UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE TECNOLOGIA E GEOCIENCIAS
DEPARTAMENTO DE ENGENHARIA ELETRICA
CURSO DE GRADUAGAO EM ENGENHARIA DE CONTROLE E AUTOMACAO

DANIEL FERREIRA DA SILVA

CIBERSEGURANCA PARA IOT: Arquitetura Segura para Comunicacao e
Atualizagado de Firmware em Dispositivos ESP32

Recife
2025

DANIEL FERREIRA DA SILVA

CIBERSEGURANCA PARA IOT: Arquitetura Segura para Comunicagao e

Atualizagao de Firmware em Dispositivos ESP32

Trabalho de Conclusdo de Curso
apresentado ao Curso de Graduacdo em
Engenharia de Controle e Automacéao da
Universidade Federal de Pernambuco,
como requisito parcial para obtencdo do
grau de Bacharel em Engenharia de
Controle e Automagéao.

Orientador(a): Prof. Dr. Marcio Evaristo da Cruz Brito

Recife
2025

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragéo automatica do SIB/UFPE

Silva, Daniel Ferreirada
Ciberseguranca paraloT: arquitetura segura para comunicagao e atualizacdo de
firmware em dispositivos ESP32 / Daniel Ferreirada Silva. - Recife, 2025.
77p:il., tab.

Orientador(a): Marcio Evaristo da Cruz Brito
Trabalho de Conclusdo de Curso (Graduag&o) - Universidade Federal de
Pernambuco, Centro de Tecnologia e Geociéncias, Engenharia de Controle e
Automacdo - Bacharelado, 2025.
Inclui referéncias.

1. 10T. 2. Ciberseguranca. 3. Criptografia. 4. ESP32. 5. OTA. |. Brito,
Mércio Evaristo da Cruz. (Orientagdo). I1. Titulo.

620 CDD (22.ed.)

DANIEL FERREIRA DA SILVA

CIBERSEGURANCA PARA IOT: Arquitetura Segura para Comunicacao e
Atualizagao de Firmware em Dispositivos ESP32

Trabalho de Conclusdo de Curso
apresentado ao Curso de Graduacdo em
Engenharia de Controle e Automacéao da
Universidade Federal de Pernambuco,
como requisito parcial para obtencdo do
grau de Bacharel em Engenharia de
Controle e Automacao.

Aprovado em: 16/12/2025.

BANCA EXAMINADORA

Prof. Dr. Marcio Evaristo da Cruz Brito (Orientador)

Universidade Federal de Pernambuco

Prof. Dr. Geraldo Leite Maia (Examinador Interno)
Universidade Federal de Pernambuco

Eng. M.Sc. Néstor Ivan Medina Giraldo (Examinador Interno)
Universidade Federal de Pernambuco

AGRADECIMENTOS

Agradeco a todos que contribuiram, direta ou indiretamente, para a realizagao
deste trabalho e para a minha trajetéria académica. Aos professores, pela dedicagao,
orientacado e conhecimentos compartilhados ao longo do curso. Aos amigos e colegas,
pelo apoio, incentivo e pelas trocas de experiéncias que contribuiram para o meu
crescimento pessoal e profissional. A minha familia, pelo suporte, compreenséo e

encorajamento constantes, fundamentais para a conclusado desta etapa.

RESUMO

O presente trabalho tem como objetivo desenvolver e integrar multiplas camadas
de seguranca aplicaveis a sistemas de Internet das Coisas (IoT), com foco na protegao
de dados e na confiabilidade da comunicagdo entre dispositivos conectados. A
proposta consiste na criagdo de um sistema capaz de realizar a troca segura de
mensagens, assegurando que apenas usuarios e dispositivos autenticados possam
se comunicar e que o cédigo-fonte permanecga protegido contra acessos indevidos e

tentativas de modificacao.

Para a validacdo pratica da proposta, foi implementado um ambiente
experimental composto por dois modulos ESP32, nos quais um atua como emissor e
o outro como receptor de mensagens. A comunicagao entre os dispositivos é realizada
por meio do protocolo ESP-NOW, desenvolvido pela Espressif, o qual possibilita a
troca de mensagens de forma eficiente e com baixo consumo de energia, utilizando
mecanismos nativos de criptografia simétrica baseados no algoritmo AES para a
protecdo dos dados transmitidos. Além da camada de confidencialidade, o sistema
emprega o algoritmo de assinatura digital ECDSA (Elliptic Curve Digital Signature

Algorithm), garantindo a autenticidade e a integridade das mensagens transmitidas.

Complementarmente, foram integradas as funcionalidades de Secure Boot,
criptografia da memoria flash e atualizacdo segura de firmware Over-The-Air (OTA),
assegurando a protegao integral do dispositivo desde o processo de inicializagédo até

sua manutengao remota.

Os resultados obtidos demonstram que a integracdo das camadas de
seguranga propostas reforga significativamente a resiliéncia do sistema loT contra
ataques de interceptacao e adulteracao de dados, oferecendo uma arquitetura viavel,
segura, escalavel e compativel com aplicagdes industriais e domésticas que exigem

elevado nivel de seguranca.

Palavras-chave: |oT; Cibersegurancga; Criptografia; ESP32; OTA.

ABSTRACT

The present work aims to develop and integrate multiple security layers
applicable to Internet of Things (loT) systems, focusing on data protection and the
reliability of communication between connected devices. The proposal consists of
creating a system capable of performing secure message exchange, ensuring that only
authenticated users and devices can communicate, and that the source code remains
protected against unauthorized access and modification attempts.

For the practical validation of the proposed approach, an experimental
environment composed of two ESP32 modules was implemented, in which one acts
as a message transmitter and the other as a receiver. Communication between the
devices is carried out using the ESP-NOW protocol, developed by Espressif, which
enables efficient message exchange with low power consumption by employing native
symmetric cryptographic mechanisms based on the AES algorithm to protect the
transmitted data. In addition to the confidentiality layer, the system employs the
ECDSA (Elliptic Curve Digital Signature Algorithm), ensuring the authenticity and
integrity of the transmitted messages.

Furthermore, Secure Boot, flash memory encryption, and secure Over The Air
(OTA) firmware update functionalities were integrated, ensuring complete device
protection from the boot process to remote maintenance.

The obtained results demonstrate that the integration of the proposed security
layers significantly enhances the resilience of the loT system against data interception
and tampering attacks, providing a viable, secure, scalable architecture compatible

with industrial and domestic applications that require a high level of security.

Keywords: |0T; Cybersecurity; Cryptography; ESP32; OTA.

LISTA DE ILUSTRAGOES

Figura 1 - Estrutura interna do ESP32 ... 22
Figura 2 - Quadro Vendor-Specific ACHONoovviiiiiiiiiii e 23
Figura 3 - Estrutura do Vendor Specific Content ... 24
Figura 4 - Fluxograma de depurac&o do OTA ... 31
Figura 5 - Chain of Trust do Secure BOOt............oovvviiiiiiiiiii e 33
Figura 6 - Comparativo entre o tamanho das chaves usados no RSA, AES e ECC .35
Figura 7 - Fluxo de gravagao do firmwareccccooiiiiiiiiieiice e 38
Figura 8 - Funcgéo para obtencédo de enderego MAC..........coooiiiiiiiiiiiiiee e, 41
Figura 9 - Funcéo para geragdo das PKM e LMK ..., 44
Figura 10 - Fungédo para derivagdo da LMK ..o, 44
Figura 11 - Funcgao de inicializagdo do ECDSA ..., 47
Figura 12 - Funcédo de assinatura da mensagem com ECDSAcccccciiiiiiiiinneen. 48
Figura 13 - Menuconfig OTA ... e 50
Figura 14 - Estado dos eFuses antes da criptografia da flash 54
Figura 15 - Estado dos eFuses antes do Secure BoOtccccoovvvveieiiiiiiiiieeeanen, 56
Figura 16 - Menuconfig SECUIe BOOKccouuuuuuuiiiiiiiiaae e 57
Figura 17 - Log do emissor para transmissao de mensagem via ESP-NOW............ 59
Figura 18 - Log do receptor para recepgao de mensagens via ESP-NOW............... 59
Figura 19 - Captura de pacotes ESP-NOW via Wireshark com criptografia habilitada
... 60
Figura 20 - Captura de pacotes ESP-NOW via Wireshark com a criptografia

[0 L=TS= 1 o111 =T = 60
Figura 21 - Envio da mensagem a ser verificadaccooviiiiiiiiiiiic e, 62
Figura 22 - Verificagdo da assinatura enviada pelo emissor.............ccceeeeeviviiiieeeenes 62
Figura 23 - Atualizagdo OTA abortadacooeviiiiiiiiiiiii e 63
Figura 24 - |dentificacdo de nova atualizagéo disponivelciiiiiiiiiiiiienenees 64
Figura 25 - Processo de atualizagao OTA.........oiii i, 64
Figura 26 - Layout do servidor desenvolVido...........cccouvuiiiiiiiiiiiii e 65
Figura 27 - Resultado da queima da chave de criptografiacccovviiiiiiinn. 66

Figura 28 - Queima do eFuse FLASH_CRYPT_CNT ..., 67

Figura 29 - Configuragao eFuse FLASH_CRYPT_CONFIG........cccccciiiiciiiiiieeeee. 68

Figura 30 - Estado dos eFuses depois da criptografia da flashcccceeeeos 69
Figura 31 - Resultado gravacao do bootloader..............cccccoeeeuiiiiiiiiiiiiieeeeeiieee e, 70
Figura 32 - Log indicando ativagao do Secure BoOot ... 70

Figura 33 - Estado dos eFuse depois do Secure BoOt ..o, 71

LISTA DE TABELAS

Tabela 1 — Principais eFuses relacionados a criptografia da flash

Tabela 2 - Principais fungoes OTAccoo it

Tabela 3 - Eventos do OTA

4G

5G
ACK
AES
BLE
CAN
CCMP
Protocol
CPU
CRC
DDoS
ECC
ECDSA
ESP-IDF
FAT
HTTPS
12C

12S
IEEE
lloT

IP
IRAM
loT
LMK
LoRa
MAC
NVS
O]
OTA
PEM
PMK

LISTA DE ABREVIATURAS E SIGLAS

Fourth Generation

Fifth Generation
Acknowledged

Advanced Encryption Standard
Bluetooth Low Energy
Controller Area Network

Counter Mode Cipher Block Chaining Message Authentication Code

Central Processing Unit

Cyclic Redundancy Check

Distributed Denial of Service

Elliptic Curve Cryptography

Elliptic Curve Digital Signature Algorithm
Espressif loT Development Framework
File Allocation Table

HyperText Transfer Protocol Secure
Inter-Integrated Circuit

Inter-Integrated Circuit Sound

Institute of Electrical and Electronics Engineers
Industrial Internet of Things

Internet Protocol

Internal Random Access Memory
Internet of Things

Local Master Key

Long Range

Media Access Control

Non-Volatile Storage

Open Systems Interconnection

Over the Air

Privacy Enhanced Mail

Primary Master Key

ROM
RSA
RTC
SHA
SoC
SPI
TLS
UART
URL

Read Only Memory

Rivest Shamir Adleman

Real Time Clock

Secure Hash Algorithm

System on Chip

Serial Peripheral Interface

Transport Layer Security

Universal Asynchronous Receiver Transmitter

Uniform Resource Locator

SUMARIO

1 13V 20 510 031 Y o 1S 14
1.1 OBUETIVOS ...ttt e e e ettt a e e e e e e e e e e e e eeeeeenne 16
(S I R € 7= - | PP 16
1.1.2 ESPECITICOS .ottt 16
1.1.2.1 Desenvolver mecanismos de troca de mensagens seguras utilizando o

PrOtOCOIO COMP. ...ttt ettt e et e e et e e e e e e e 16

1.1.2.2 Implementar criptografia de memoria flash para evitar o acesso nao

autorizado ao COIGO fONTE.ccoii i 16

1.1.2.3 Estabelecer métodos de autenticagdo confiaveis para garantir acesso ao

meio apenas aos USUArios @utOriZadOs.eeeueeeeeieeieeiieeee et 16
1.1.2.4 Aplicar e validar as ferramentas propostas fazendo uso do SoC ESP32.16

1.1.2.5 Implementar uma forma segura de atualizagdo de firmware via atualizagdo
remota sem fio (OVer The Ailr — OTA). ... e 16

1.1.2.6 Documentar os métodos utilizados, bem como o seu papel na construgdo de

SISTEMAS 10T SEQUIOS. ...ttt ettt ettt e e e et e e e eaaeaeanas 16
1.2 ORGANIZACAO DO TRABALHOooiiieeoeeceeeee et 17
2 FUNDAMENTAGAO TEORICAccooeeeeeereeeeeee e sasseese e ssesasseeneeens 18
2.1 INTERNET DAS COISAS ... e 18
2.2 T 1SRRI 20
2.3 ESP-NOWV ...ttt et e e e e e e et e e e e e e e nnneeeeeaens 22
24 FLASH ENCRYPTION.cccoiitiiieiaie ettt e e e nteee e anneea e 25
25 ATUALIZACOES OVER THE AIR.oouiiiiieeeieceece e 29
2.6 SECURE BOOT ...ttt e e e e e e e e e 32
2.7 ASSINATURAS DIGITAIS ...t e 34
3 METODOLOGIAeiiiiiiceerre e mnr s ssne e mnn e e e mmnn s 36

3.1 ARQUITETURA DO SISTEMA ...ttt 36

3.2 MECANISMOS DE SEGURANCA DO FIRMWAREcccooeeveeenenennnen. 36
3.3 AMBIENTE DE DESENVOLVIMENTOccooviiiieieeieeeeeeeeeee e, 37
34 PROCEDIMENTO DE IMPLEMENTAGAO.c.coiivieeeeeeeeeeeee e, 38
4 DESENVOLVIMENTO DO TRABALHOcccoereierretere e eeee e ensae s 40
4.1 COMUNICACAO ESP-NOW COM MECANISMOS DE CRIPTOGRAFIA

SIMETRICA ...ttt n e eeenens 40
42 IMPLEMENTACAO DA ASSINATURA ECDSAccoovoieeeeeeeeeeeeeenns 45
43 IMPLEMENTACAO DE ATUALIZAGOES OTA ..o 49
44 FLASHENCRYPTION.ciiiiieiceee et 53
45 SECURE BOOT ...ocoiiioeieeeee et en e en e 55
5 RESULTADOS.......ccoeetemeueaeseeresasasseessssssssssssssssssssssessssssssssessnsssssssssssnsnens 58
5.1 COMUNICACAO ENTRE DOIS DISPOSITIVOS VIA ESP-NOW 58
52 AUTENTICACAO VIA ECDSA.oooeeeeeeeeeeeeeeeeeeee e, 61
5.3 ATUALIZACAO OTA ..o, 63
54 FLASHENCRYPTION.......cociiiiiieieeeeee e n e, 66
5.5 SECURE BOOTooviioiieeeeeeeeeeee oo en e en e, 69
6 CONCLUSAO E PROPOSTA DE TRABALHOS FUTUROS.........c.cceeurunee 72
7 REFERENCIAS.......coeieteteieteeeseseeeeaesessessssessesssssssssessssssssssssesssssssensesssnens 74

14

1 INTRODUGCAO

A Internet das Coisas (loT) tem se consolidado como uma das mais promissoras
vertentes tecnoldgicas da era digital, promovendo maior conectividade, automacgao e
praticidade no cotidiano. Trata-se de uma tecnologia em franca expansao,
impulsionada pelos avangos em areas como redes de computadores, microeletrénica,
computagdo embarcada e sensoriamento (ATZORI, IERA e MORABITO, 2010).
Estimativas apontam que o numero global de dispositivos conectados via loT atingiu
18,8 bilhdes em 2024, representando um crescimento de 13 % em relacdo a 2023,
com projegdes que indicam a marca de 40 a 43 bilhdes de conexdes até 2030 (IOT
ANALYTICS, 2024); (RFID JOURNAL, 2024). Em termos de mercado, o setor global
de loT movimentou US$ 714,48 bilhdes em 2024, com expectativa de alcangar US$ 4
trilhdes em 2032, a uma taxa média de crescimento anual (CAGR) de 24,3 %
(BUSINESS INSIGHTS FORTUNE, 2024).

A presenca da loT é perceptivel em diversos segmentos. Na agricultura, sensores
inteligentes monitoram parametros como temperatura, umidade e acidez do solo,
auxiliando no manejo sustentavel e na produtividade (GARCIA, PARRA, et al., 2020).
No setor da saude, o uso de wearables e dispositivos conectados para o
monitoramento remoto de pacientes ja movimenta cerca de US$ 1,6 bilhdo no Brasil,
favorecendo diagnodsticos preventivos e a gestdo hospitalar (KEN RESEARCH, 2025).
Ja nas cidades inteligentes, solugbes de loT tém se expandido rapidamente, com o
mercado brasileiro estimado em US$ 17,2 milhdes em 2024, devendo atingir US$ 61
milhdes até 2030, com uma CAGR de 25,3% (GRANDVIEW RESEARCH, 2024). Essa
tendéncia reflete um contexto urbano em que 85 % da populagao brasileira vive em
areas urbanas, impulsionando a digitalizacdo de servigos publicos e a modernizagao
da infraestrutura (BRASIL, 2021).

O Brasil também apresenta crescimento expressivo na adogao da loT. O mercado
nacional foi avaliado em US$ 18,41 bilhdes em 2024, com previsdo de atingir US$
99,34 bilhdes até 2033, e crescimento médio anual de 17,8% (IMARC GROUP, 2024).
No mesmo periodo, o numero de conexdes loT passou de 28 milhées em 2020 para
46,2 milhdes em 2024, consolidando o pais como um dos principais mercados
emergentes da América Latina (MVNO INDEX, 2024).

15

Apesar dos beneficios, a expansao acelerada da loT traz consigo desafios
significativos em seguranca, privacidade e confiabilidade (SICARI, RIZZARDI, et al.,
2015). Muitos dispositivos conectados sdo desenvolvidos com foco na funcionalidade,
negligenciando mecanismos de protecdo robustos. Esse cenario torna os sistemas
vulneraveis a ataques cibernéticos, como demonstrado pelo botnet Mirai, responsavel
em 2016 por um ataque de negacéao de servigo distribuido (DDoS) em larga escala,
explorando falhas de seguranca em cameras IP, roteadores e outros dispositivos 0T
(ANTONAKAKIS, APRIL, et al., 2017).

Diante desse panorama, torna-se imprescindivel o desenvolvimento de
mecanismos de seguranga integrados que assegurem a confidencialidade,
integridade e autenticidade das comunicagdes entre dispositivos. Este trabalho propde
a criagdo de um sistema de camadas de segurancga aplicaveis a loT, com o objetivo
de fortalecer a protegéo na troca de dados, impedir 0 acesso nao autorizado e mitigar
o risco de interceptacdo ou roubo de informacdes sensiveis. Assim, busca-se
contribuir para o avango de uma infraestrutura digital mais segura e confiavel, alinhada

as crescentes demandas da sociedade conectada.

16

1.1 Objetivos

1.1.1 Geral

Desenvolver um conjunto de ferramentas que promovam a seguranga de
dispositivos 10T, com foco na protecdo dos usuarios, de forma a garantir a
Confidencialidade, Autenticidade e Integridade (CIA) dos sistemas a serem

concebidos.

1.1.2 Especificos

1.1.2.1 Desenvolver mecanismos de troca de mensagens seguras utilizando o
protocolo CCMP.

1.1.2.2 Implementar criptografia de memoria flash para evitar o acesso néao

autorizado ao codigo fonte.

1.1.2.3 Estabelecer métodos de autenticagdo confiaveis para garantir acesso ao

meio apenas aos usuarios autorizados.

1.1.2.4 Aplicar e validar as ferramentas propostas fazendo uso do SoC ESP32.

1.1.2.5 Implementar uma forma segura de atualizagdo de firmware via atualizagdo
remota sem fio (Over The Air— OTA).

1.1.2.6 Documentar os métodos utilizados, bem como o seu papel na construgdo de

sistemas loT seguros.

17

1.2 Organizacao do Trabalho

Este trabalho esta organizado em seis capitulos, conforme descrito a seguir:

o Capitulo 2: Reune o embasamento tedrico necessario para compreender a
proposta desenvolvida. Sdo abordados conceitos de Internet das Coisas, as
principais caracteristicas do microcontrolador ESP32, bem como os

mecanismos e protocolos de seguranga aplicaveis a estes dispositivos.

e Capitulo 3: Descreve a organizagao do processo de desenvolvimento do
sistema. Este capitulo inclui a definicdo da arquitetura proposta, a selegcédo dos
dispositivos e protocolos empregados, além dos métodos utilizados para

validacao e verificagdo do funcionamento do sistema.

e« Capitulo 4: Detalha a aplicacdo pratica da proposta, abrangendo a
comunicagao entre os dispositivos ESP32, a integracdo das camadas de
seguranga implementadas, a estrutura do cdédigo-fonte desenvolvido e as

configuracdes necessarias para a execugao do sistema.

o Capitulo 5: Apresenta os resultados obtidos durante os testes realizados,
demonstrando o funcionamento da troca de mensagens, o processo de
autenticagao e assinatura digital, o procedimento de atualizagdo segura, bem
como as implementagdes de Secure Boot e da criptografia da memoria flash

(Flash Encryption).

o Capitulo 6: Expbde as conclusdes do trabalho, discutindo a eficiéncia dos
mecanismos propostos, os desafios enfrentados e as limitagdes observadas.

Por fim, sugere possiveis aprimoramentos e diregdes para trabalhos futuros.

18

2 FUNDAMENTAGAO TEORICA

Neste capitulo sdo apresentados os fundamentos tedricos essenciais para o
desenvolvimento do sistema de comunicacado segura entre dispositivos ESP32. Sao
abordados os conceitos de Internet das Coisas e suas aplicagdes, os mecanismos de
seguranga em redes sem fio, o protocolo ESP-NOW e os mecanismos internos de
criptografia simétrica baseados em AES utilizados para protecdo das mensagens,
bem como o uso do algoritmo de assinatura digital ECDSA (Elliptic Curve Digital
Signature Algorithm) para autenticagao e integridade das mensagens. Além disso, sdo
discutidas as tecnologias de Secure Boot, criptografia da memoaria flash e atualizagao

segura de firmware Over The Air.

2.1 Internet das Coisas

Nas ultimas décadas, observou-se um avango expressivo em diversos setores
da tecnologia, especialmente no campo da comunicagdo. A evolugido desse
ecossistema tem impulsionado inovacbes que viabilizam a conectividade de
dispositivos com recursos computacionais limitados, permitindo sua integragao direta
com a internet. (RAFIULLAH, SARMAD, et al., 2012).

Gracas a esta evolucgao, tem-se buscado agregar caracteristicas de inteligéncia
a esses dispositivos, permitindo que analisem informacodes, identifiquem padrbes e
tomem decisdes de forma autbnoma, com base nos dados coletados do ambiente.
Essa capacidade de percepcao e reagao consolidou o conceito de Internet das Coisas
(Internet of Things — |0T), termo introduzido por Kevin Ashton em 1999, ao propor um
sistema capaz de conectar o mundo fisico ao digital por meio de sensores e redes de
comunicagcao (ANSHUMAN, PAWANI e MADHUSANKA, 2019).

Embora ndo exista uma definicdo universalmente aceita, uma das descrigdes
mais abrangentes caracteriza a loT como “Uma rede aberta e abrangente de objetos
inteligentes capazes de se auto-organizar, compartilhar informacdes, dados e
recursos, reagindo e agindo diante de mudancas no ambiente” (ANSHUMAN,
PAWANI e MADHUSANKA, 2019). E importante destacar que, apesar de o termo

19

conter Internet, os dispositivos 0T n&o precisam estar necessariamente conectados
a redes Wi-Fi ou moveis (4G/5G). Outras tecnologias de comunicagdo, como
Bluetooth, ZigBee, LoRa e ESP-NOW, também podem ser utilizadas, dependendo da
aplicacao e das restricbes de energia ou alcance (MADAKAM SOMAYYA, 2015).

Estima-se que até o final de 2025, existam cerca de 75 bilhdes de dispositivos
loT em operagdo. Ainda nado existe uma arquitetura totalmente padronizada e
amplamente aceita para sistemas baseados loT. Porém, as arquiteturas existentes
adotam uma arquitetura flexivel tomando como base o modelo OS| (Open Systems
Interconnection). Dentre as propostas, destacam-se duas abordagens mais
difundidas: uma composta por trés camadas e outra por cinco camadas (ANSHUMAN,
PAWANI e MADHUSANKA, 2019).

A arquitetura de trés camadas é constituida pelas camadas de Percepcéo, Rede
e Aplicacdo. A camada de Percepcao corresponde a camada mais baixa da
arquitetura e tem como funcéo interagir com o ambiente fisico por meio de sensores,
realizando a aquisicao, o pré-processamento e o envio das informacbes para as
camadas superiores. A camada de Rede é responsavel pelo roteamento e pela
transmissao dos dados por meio de diferentes tecnologias de comunicag¢ao, enquanto
a camada de Aplicacao fornece os servigos destinados aos usuarios finais, baseando-

se nos dados processados pelas camadas inferiores. (WU, LU, et al., 2010).

A arquitetura de cinco camadas mantém as camadas j4 mencionadas e
acrescenta duas novas: Camada de Middleware e Camada de Negocios. A camada
de Middleware situa-se entre as camadas de rede e aplicagao, sendo responsavel por
receber as informacdes provenientes da camada de rede, organiza-las para
processamento e as armazena-las em bancos de dados para posterior andlise. Por
sua vez, a camada de negdcio € encarregada do gerenciamento de todo o sistema
loT, da geracgao de representagdes visuais dos dados processados e do tratamento

de aspectos relacionados a privacidade do usuario (WU, LU, et al., 2010).

A Internet das Coisas esta presente nos mais diversos campos, sendo a
agricultura um dos exemplos mais notaveis. O monitoramento e aquisicdo dos dados
ambientais auxiliam na tomada de decisdes de curto e longo prazo, como na previséo

de produtividade e na deteccéo precoce de doencas que possam se disseminar nas

20

lavouras, possibilitando a adocdo de medidas preventivas em tempo habil
(ANSHUMAN, PAWANI e MADHUSANKA, 2019).

Outro campo amplamente impactado pela lIoT é o setor industrial, contexto em
que o conceito & conhecido como Industrial Internet of Things (lloT). Neste cenario, é
possivel interconectar os ativos industriais por meio diversos protocolos de
comunicagao, aliados a tecnologias como Inteligéncia Artificial e analise Big Data, a
fim de facilitar a supervisdo dos processos produtivos e otimizar a produtividade
reduzindo custos operacionais e de manutengdo (ANSHUMAN, PAWANI e
MADHUSANKA, 2019).

O advento dos dispositivos baseados em Internet das Coisas trouxe uma série
de beneficios, como o0 aumento dos niveis de automacao, a possibilidade de controle
remoto de equipamentos, a comunicagao mais rapida e eficiente entre sistemas, além
da melhoria na coleta e analise de dados em tempo real (MADAKAM SOMAYYA,
2015).

2.2 ESP32

O ESP32 consiste em um sistema em um unico chip (System on Chip - SoC), ou
seja, um circuito integrado que reiine em um unico chip os componentes principais de
um sistema computacional, tais como CPU, memdria, interfaces de comunicagéo e
periféricos. Desenvolvido pela Espressif Systems, o ESP32 permite a criagao de
sistemas embarcados compactos, eficientes e com baixo consumo de energia
(ESPRESSIF, 2019).

O primeiro modelo do ESP32 foi langado em 2016 e destacou-se rapidamente
pela combinagcdo de recursos avangados, baixo custo e alta versatilidade. Sua
arquitetura é baseada em processadores Xtensa LX6, Xtensa 32-bit e, em versdes
mais recentes, RISC-V 32-bit (MAIER, SHARP e VAGAPOQV, 2017).

O ESP32 integra conectividade Wi-Fi 802.11 b/g/n e Bluetooth, incluindo
Bluetooth Low Energy (BLE), o que o torna altamente adequado para aplicagdes em

Internet das Coisas. Considerado o sucessor do ESP8266, apresenta melhorias

21

significativas, como processador dual-core e frequéncia de clock de até 240 MHz,
variando conforme a versédo (BABIUCH, FOLTYNEK e SMUTNy, 2019).

A estrutura interna do ESP32 €& composta por dois nucleos de CPU,
denominados PRO_CPU e APP_CPU, que podem ser controlados de forma
independente. Todos os blocos de memoéria e periféricos estdo conectados ao
barramento de dados e instrugdes. Além disso, o ESP32 dispbe de 520 KB de SRAM,
448 KB de ROM e duas memdérias RTC de 8 KB, utilizadas para operagdo em modos
de baixo consumo energético (MAIER, SHARP e VAGAPOQOV, 2017).

Ademais, o chip oferece suporte a diversos protocolos e interfaces de
comunicagao, como SPI, 12S, 12C, CAN, UART e Ethernet MAC, dependendo da placa
utilizada. Entre os periféricos integrados, destacam-se o sensor de efeito Hall, o

sensor de temperatura e os sensores touch (ESPRESSIF, 2019).

O ESP32 também conta com aceleradores de hardware para criptografia,
oferecendo suporte a diversos algoritmos, incluindo gerador de numeros aleatérios
(RNG), SHA-2, RSA, Elliptic Curve Cryptography (ECC) e AES (BABIUCH,
FOLTYNEK e SMUTNy, 2019).

A Figura 1 apresenta a estrutura interna do ESP32, evidenciando seus principais
blocos funcionais, como os nucleos de processamento, moédulos de comunicagdo sem

fio e aceleradores criptograficos.

22

Figura 1 - Estrutura interna do ESP32

In-Package
Flash or PSRAM Biuetooth Blustooth RF
P e mnt e link recene
nd acene
SP cantrolier e ———
Clock 5 g
f2c generator | | Z| | B
_generator J, 3
12S Wi-Fi RF
> . WEFIMAC 9
baseband transmit
SO0
UART
e " Cryptographic hardware
TWAI®D) acceleration
2 (or 1) x Xtensa® 32-bit
ETH) . $or wWOONSe
A LX8 Microprocessors SHA RSA
RMT WL LS
PWM ROM SRAM AES RNG

Touch sensor =
: 2 RIC

DAC
ADC PMU uLp Recavery
COProcessor memory
Timers

Fonte: retirado de (ESPRESSIF, 2019)

As placas baseadas no ESP32 podem ser aplicadas em uma ampla variedade
de areas, incluindo automacéo residencial e industrial, wearables, casas inteligentes,
e sistemas loT conectados a nuvem, demonstrando sua flexibilidade e relevancia no
contexto dos sistemas embarcados modernos (MAIER, SHARP e VAGAPQOV, 2017).

2.3 ESP-NOW

O ESP-NOW consiste em um protocolo de comunicagao sem fio desenvolvido
pela Espressif Systems, projetado para operar com Wi-Fi em modo peer-to-peer, ou
seja, sem a necessidade de um ponto de acesso. Esse protocolo possibilita
comunicagdes com baixo consumo de energia, baixa laténcia e alto rendimento entre
dispositivos ESP32 (ESPRESSIF, 2025).

Diferentemente do Wi-Fi tradicional, o ESP-NOW dispensa o processo de
associacao e autenticagédo com roteadores, o que reduz significativamente o tempo
de inicializagdo da comunicagédo (PASIC, KUZMANOV e ATANASOVSKI, 2021). As

mensagens sdo transmitidas por meio de quadros de agdo, um tipo especifico de

23

quadro definido na camada MAC do protocolo Wi-Fi. Nesses quadros, os dados da
aplicagao sao encapsulados e transmitidos diretamente de um dispositivo para outro,
sem a necessidade de estabelecer uma conexao formal. Exemplos de aplicagao
incluem dispositivos de controle remoto, sensoriamento e uso luzes inteligentes
(ESPRESSIF, 2025).

O quadro utilizado pelo ESP-NOW segue o formato de um Vendor-Specific Action
Frame, um tipo de quadro reservado a fabricantes para a implementacdo de

extensdes proprietarias (ESPRESSIF, 2025). A Figura 2 ilustra a estrutura geral desse

quadro.
Figura 2 - Quadro Vendor-Specific Action
| MAC Header | Category Code | Organization Identifier | Random Values | Vendor Specific Content
24 bytes 1 byte 3 bytes 4 bytes 7~255 bytes

Fonte: retirado de (ESPRESSIF, 2025)

A estrutura do Vendor-Specific Action Frame utilizado pelo ESP-NOW é composta
pelos seguintes campos:

o Category Code: definido com o valor 127, indicando que se trata de uma
categoria especifica do fabricante.

e Organization Identifier: contém um identificador exclusivo da Espressif,
representado pelos trés primeiros bytes do endereco MAC.

e Random Values: utilizados para prevenir ataques de repeticdo durante a
transmissao.

e Vendor Specific Content: campo que contém um ou mais elementos especificos
do fornecedor, contendo as informagdes do protocolo ESP-NOW propriamente
dito.

A estrutura detalhada do campo Vendor Specific Content pode ser vista na Figura

24

Figura 3 - Estrutura do Vendor Specific Content

1 byte 1 byte 3 bytes 1 byte 1 byte ©~250 bytes

Fonte: retirado de (ESPRESSIF, 2025)

A estrutura do campo Vendor Specific Content € composta pelos seguintes

elementos:

Element ID: definido como 221, valor reservado para elementos especificos de
fornecedor.

Length: indica o comprimento total do campo, incluindo o Organization
Identifier, Type, Version e Body; o valor maximo permitido € de 255 bytes.
Organization Identifier: contém um identificador exclusivo da Espressif,
representado pelos trés primeiros bytes do endereco MAC.

Type: definido como 4, indicando que o conteudo pertence ao protocolo ESP-
NOW.

Version: especifica a versao do protocolo ESP-NOW utilizada.

Body: contém os dados da aplicagdo que serdo transmitidos entre os

dispositivos.

Por padrdo, o bit rate de transmissdo dos quadros ESP-NOW é de 1 Mbps,

garantindo a comunicagcédo estavel em ambientes de curta distdncia e com baixo
consumo energético (PASIC, KUZMANOV e ATANASOVSKI, 2021).

O ESP-NOW emprega mecanismos internos de criptografia simétrica baseados no

algoritmo AES-128, fornecidos pela plataforma ESP32, com o objetivo de garantir a

confidencialidade e a integridade das mensagens trocadas entre os dispositivos.

Embora esses mecanismos sejam conceitualmente semelhantes aos utilizados no

CCMP, o ESP-NOW nao implementa integralmente o modelo de seguranga definido
no padrao IEEE 802.11i. (PASIC, KUZMANOV e ATANASOVSKI, 2021).

Cada ESP32 possui uma Primary Master Key (PMK) e uma ou mais Local Master

Keys (LMK), que permitem estabelecer conexdes seguras com os dispositivos alvo.

25

Os comprimentos da PMK e da LMK sao de 16 bytes. A PMK é usada para criptografar
a LMK por meio do algoritmo AES-128, enquanto a LMK é empregada na criptografia
dos quadros de agao transmitidos entre os dispositivos (ESPRESSIF, 2025)

Além disso, o protocolo oferece suporte a criptografia e descriptografia
automaticas, ao envio de cargas de dados (payloads) de até 250 bytes, bem como a
utilizacao de funcdes de retorno (callbacks), que sdo executadas automaticamente
pelo sistema para informar ao desenvolvedor o sucesso ou a falha de cada
transmissao (ESPRESSIF, 2025).

2.4 Flash Encryption

Nos dispositivos ESP32, o firmware enviado € geralmente armazenado na
memoria flash externa do dispositivo. Essa arquitetura apresenta um risco de
seguranga, uma vez que um atacante poderia remover a memoaria e realizar a leitura
de seu conteudo com auxilio de um dispositivo externo. Mesmo em versdes com
memoria integrada, como a ESP32-PICO, ainda é possivel exportar o conteudo da
flash usando ferramentas adequadas (EMBARCADOQOS, 2020).

Para mitigar este risco, o ESP32 dispde de um recurso denominado criptografia
da flash (flash encryption). Quando habilitado, esse recurso faz com que o firmware
em texto claro (plaintext) seja criptografado durante a primeira inicializacdo. Dessa
forma, embora leituras fisicas possam ser realizadas, o conteudo obtido estara cifrado,
sendo impossivel interpreta-lo sem a chave correspondente (SABBATINI, 2024).

Quando a criptografia da memoria flash € ativada, alguns blocos s&o
criptografados por padréo, sendo eles: o segundo estagio do bootloader, a tabela de
particao, a particdo da chave NVS, os dados de atualizagcdo OTA e todas as particdes
de aplicagao. Opcionalmente, outros blocos também podem ser criptografados, como
as particbes marcadas com a flag encrypted e o resumo criptografico (digest) do
bootloader utilizado no processo de inicializagdo segura (Secure Boot), mecanismo
responsavel por verificar a autenticidade e a integridade do firmware antes de sua
execucao (ESPRESSIF, 2024).

A criptografia da memoria flash pode ser habilitada em dois modos distintos: modo

de desenvolvimento (Development Mode) e modo de producéo (Release Mode). O

26

modo de desenvolvimento (Development Mode) € recomendado para as fases de
implementacéao e testes do software. Nesse modo, ainda é possivel enviar firmware
em texto claro (plaintext) para o dispositivo, sendo o bootloader responsavel por
criptografa-lo automaticamente, utilizando uma chave armazenada em um dos eFuses
do dispositivo. Dessa forma, novos firmwares em texto claro podem ser regravados e
criptografados pelo hardware durante o primeiro processo de inicializagao (boot)
(ESPRESSIF, 2024).

O Release Mode, por sua vez, € indicado para ambientes de producao e
manufatura, apds a conclusédo de todos os testes. Nesse modo, o envio de firmware
em plaintext para o dispositivo sem conhecimento prévio da chave ja nao € mais
permitido (ESPRESSIF, 2024).

Durante o processo de criptografia da flash, s&o utilizados uma série de eFuses
que controlam o comportamento do sistema. A documentacido da Espressif descreve

os principais eFuses relacionados ao processo, conforme apresentado na Tabela 1.

Tabela 1 — Principais eFuses relacionados a criptografia da flash

eFuse Descrigao Bit Depth
CODING_SCHEME Controla o numero de bits 2
do bloco 1 usados para
gerar a chave AES de 256

bits. Valores possiveis: 0
para 256 bits, 1 para 192
bits, 2 para 128 bits.
A chave AES é derivada
baseada no valor de
FLASH_CRYPT_CONFIG

flash_encryption (block1) | Armazena a chave AES 256

FLASH_CRYPT_CONFIG | Controla o processo de 4
criptografia AES

DISABLE_DL_ENCRYPT | Caso habilitado, desabilita 1

a operacao de criptografia

da flash enquanto o

27

eFuse Descri¢cao Bit Depth
firmware esta no modo
Download
DISABLE_DL_DECRYPT | Caso habilitado, desabilita 1
a descriptografia

enquanto o firmware esta
no modo Download via
UART.

FLASH_CRYPT_CNT Um numero que indica se 7

o conteudo da flash esta

criptografado.

- Se um numero impar de
bits estd habilitado (Ex:
0b0000001 ou
0b0000111), isto indica
que o conteudo da flash
estd criptografado. O
conteudo precisara ser
descriptografado de forma

transparente quando lido.

- Se um numero par de
bits estad habilitado (Ex:
0b0000000 ou
0b0000011), isto indica
que o conteudo da flash

nao esta criptografado.

Fonte: retirado de (ESPRESSIF, 2024).

Durante o primeiro reset, os dados armazenados na memoria flash ainda n&o
se encontram criptografados. O processo inicia-se quando o primeiro estagio do

bootloader (ROM) carrega o segundo estagio. Este, por sua vez, realiza a leitura do

28

eFuse FLASH_CRYPT_CNT, cujo valor inicial € 0b0000000. Esse eFuse, conforme
indicado na Tabela 1, é responsavel por indicar se a criptografia da flash esta
habilitada. Além disso, o segundo estagio também configura o eFuse
FLASH_CRYPT_CONFIG com o valor OxF (ESPRESSIF, 2024).

Se a criptografia estiver habilitada, o sistema verifica o eFuse flash_encryption
para determinar se ha uma chave valida gravada. Caso nao exista, o0 médulo RNG
gera uma nova chave AES de 256 bits, gravando-a nesse eFuse (ESPRESSIF, 2024).

Alternativamente o préprio usuario gerar e gravar sua chave manualmente,
utilizando para isto ferramentas como o OpenSSL. A chave é protegida contra leitura
e escrita, ndo podendo ser acessada por meio de software. Dessa forma, toda a
operacao de criptografia € executada diretamente pelo hardware, utilizando a chave
armazenada internamente (EMBARCADOS, 2020)

Apos a verificagdo da chave, o bloco de criptografia da flash é responsavel por
cifrar o conteudo do segundo estagio do bootloader, das aplicagdes e das particdes
marcadas com a flag encrypted. Em seguida, o primeiro bit do eFuse
FLASH_CRYPT_CNT é ativado, indicando que a criptografia foi realizada com
sucesso (ESPRESSIF, 2024).

No Development Mode, os eFuses DISABLE DL DECRTPT e
DISABLE_DL_CACHE sao ativados, porém sem protecao contra escrita. Ja no modo
Realease, os bits dos eFuses DISABLE_DL _ENCRYTPT, DISABLE_DL_DECRTPT
e DISABLE DL CACHE sao ativados, prevenindo o bootloader UART de
descriptografar conteudo da flash. Além disso, a protegdo contra leitura e escrita é
habilitada para os bits do eFuse FLASH_CRYPT_CNT (ESPRESSIF, 2024).

29

Por fim, o dispositivo € reiniciado e passa a executar imagem criptografada.
Durante o processo de inicializagao, o segundo estagio do bootloader aciona o bloco
de descriptografia da flash, que realiza a decodificagdo do conteudo em tempo real,
carregando-o na IRAM. Esse mecanismo garante a execugdo segura do firmware,
preservando sua confidencialidade e integridade (ESPRESSIF, 2024).

2.5 Atualizagoes Over The Air.

O advento das atualizagdes Over The Air trouxe a possibilidade de um dispositivo
solicitar a um servidor remoto novas imagens de firmware, baixa-las e atualizar
automaticamente o sistema para uma nova versao. Esse conceito surgiu no final do
século XX, inicialmente voltado a atualizagdo de firmwares de computadores
pessoais, processo que até entdo exigia intervengcdo manual e conhecimento técnico
especializado (MEDIUM, 2025).

Com a popularizagéao dos dispositivos mdveis no inicio dos anos 2000, motivada
especialmente pelo langamento do primeiro iPhone e do sistema operacional Android,
tornou-se evidente a necessidade de mecanismos que permitissem a atualizacdo
remota, segura e automatizada de software. Nesse contexto, atualizagdes OTA
passaram a ganhar destaque, consolidando-se como um novo padréao no processo de
manutengcdo e aprimoramento de sistemas, ao proporcionarem um aumento de
seguranca e eficiéncia das atualizagdes de sistemas (MEDIUM, 2025).

A implementacédo de atualizagdes Over The Air requer uma infraestrutura em
nuvem que contemple um conjunto de caracteristicas essenciais. Entre elas,
destacam-se a capacidade de gerenciar pacotes de forma a garantir sua integridade
e seguranga, coordenagado da sequéncia de atualizagbes, registro de atualizagdes,
além da coleta de feedbacks dos usuarios (MEDIUM, 2025).

Em geral, desenvolvedores criam seus firmwares e os criptografam antes de
armazena-los em nuvem, isto é feito para oferecer uma maior camada de seguranga
contra acessos nao autorizados e adulteragdes. Quando armazenado, o firmware
passa a ser acessado por meio de redes sem fio, usualmente WiFi ou 4G/5G. Apds o
download da nova imagem, o dispositivo realiza a descriptografia e validagdo do

conteudo, verificando aspectos como integridade, autenticidade e versao do firmware.

30

Caso a verificagao seja bem sucedida, a nova versao é instalada no dispositivo e 0
sistema é reiniciado para que a atualizacdes entre em vigor (ANDRAS, 2020).
Embora microcontroladores possuam recursos limitados, estes também conseguem
fazer atualizagbes via OTA de forma muito similar aos dispositivos convencionais
(ANDRAS, 2020). Um dos métodos para estabelecer comunicagdo segura com o
servidor & por meio do Transport Layer Security (TLS), um protocolo baseado em
criptografia assimétrica que oferece como beneficios criptografia, autenticagdo e
integridade durante a comunicagdo de suas aplicagdes. Durante o processo de
atualizagdo, apds o estabelecimento da conexédo segura com o servidor, o dispositivo
armazena o firmware na memadria como um arquivo binario, sendo verificada sua
validade e integridade antes da atualizagdo. Durante o handshake TLS, o servidor
apresenta seu certificado digital, e o dispositivo realiza a validagdo do dominio ou do
endereco IP contido no campo Common Name do certificado. Como o TLS reside em
um esquema de assinatura digital e criptografia assimétrica, um par de chaves deve
ser gerado para que a atualizagao seja possivel (KRAWCZYK, PATERSON e WEE,
2013).

A Espressif permite que seus dispositivos realizem atualizagdes OTA com
suporte a dois modos: Modo de atualizagcdo segura e Modo de atualizagdo Inseguro.
O modo de atualizagao seguro foi projetado para operar de forma resiliente, uma vez
que caso ocorra uma queda de energia durante uma atualizagdo o chip ainda
permanecera operacional, sendo capaz de inicializar a aplicacdo atual. Para
assegurar essa resiliéncia, a tabela de particbes deve conter, no minimo, duas
particbes OTA, ota 0 e ota_1, além de uma particdo de dados OTA, que armazena
informacgdes sobre qual particdo sera inicializada. Assim, caso a nova imagem nao
seja validada, o sistema pode reverter automaticamente a versao previamente
funcional do firmware (ESPRESSIF, 2025).

O firmware é gravado na particdo inativa, por exemplo, ota_1 se ota_0 estiver em
execugao. Apos a gravacéao e validagao bem-sucedida, a particdo ativa é atualizada
no registro de dados OTA, e o sistema é reiniciado na nova verséo.
A particdo de dados OTA utiliza dois setores de 8192 bytes cada, que sdo escritos de
forma independente para evitar corrupgdo em caso de falha de energia. Para isso,

utiliza-se um contador para determinar qual setor foi gravado mais recentemente,

31

garantindo integridade dos dados durante o processo de atualizagédo (ESPRESSIF,
2025).

No modo de atualizagéo inseguro, por sua vez, a nova imagem é baixada para
uma particdo temporaria e, apods o download, € copiada para a partigao final. Caso
ocorra uma interrupgao nesse processo, como falha no fornecimento de energia, o
firmware pode ser corrompido, resultando em falha irreversivel na inicializacdo do
chip. As particbes envolvidas incluem a de bootloader, tabela de particdo e partigdes
de dados como NVS ou FAT (ESPRESSIF, 2025).

O processo completo de atualizacdo OTA da Espressif pode ser visualizado no
fluxograma apresentado na Figura 4, que ilustra o caminho légico desde a criagao do
servidor local, verificacdo final de integridade (CRC) e etapas de depuracéo

recomendadas pela Espressif.

Figura 4 - Fluxograma de depuragéo do OTA

Stant
L]
Create a local server
(common rame P addreas)
.

Erase Nash

Is your device No

cornected 10 the server? '

I8 your govice No
gonnecied 1 TCP?
Yes
L]
¥
- o I8 your device . No
. goonected 10 SSL2 +
.
Retney t Shep 1 Open debug In menuconiiy and check which
» date oy o o Step 1 Chack whothe! the sorver'y
from the server step faded (Mosty handshake lalure, 0 g IP a0cress is correct
I8 correct
handshahe falure resulting from insufficent intemal
L] Storage
Write data 1o - . | - L=
tash Step 2: Check whethar the server's certificate & Step 2. Chack whether te server
T comect. in the local server's corticate, the can be started
+ common nama s ¥ address
No | .
Is CRC passeq? - i probsems still cannot be catedt
L 18 cannat 4 X
! proGiems cannot be scéved, ploase caplre packots (10 check which
please capture packets lo debug stop taded)
Yeos T
] .
1A w
OTA wpdate = OTA upcaie ‘ais
SuCCoads

.
Raport te bug
10 Esprossit

L]
End

Fonte: retirado de (ESPRESSIF, 2025)

32

2.6 Secure Boot

O Secure Boot é um mecanismo de seguranga que assegura que apenas coédigo
autorizado seja executado no microcontrolador. Durante cada inicializagao, os dados
carregados da memodria flash sdo verificados antes da execugdo (ANDRAS, 2020).

Para habilitar o Secure Boot, é necessario implementar o conceito de cadeia de
confianga (chain of trust). Nessa cadeia, cada estagio de inicializagdo valida a
integridade do estagio seguinte por meio de assinaturas digitais. O primeiro elemento
confiavel dessa cadeia € denominado Root of Trust, que é implementado por meio
dos componentes de hardware, como memorias somente de leitura (ROM) ou
memorias de programagdo Uunica (eFuse). Esses elementos armazenam
permanentemente chaves criptograficas, que ndo podem ser modificadas ou
acessadas por software (ANDRAS, 2020).

A chave armazenada nos eFuses ¢ utilizada para validar o estagio seguinte, cuja
imagem é assinada digitalmente com essa chave. Quando necessario, a cadeia de
confianca pode ser estendida, permitindo que cada componente verifique a
integridade do estagio subsequente. Esse fluxo modular assegura que a execugao do
sistema ocorra apenas se todos os estagios forem validados com sucesso
(ESPRESSIF, 2024).

A Figura 5 apresenta o fluxograma do processo de verificagdo da cadeia de
confianga do Secure Boot.

Os dados criticos relacionados ao Secure Boot sdo armazenados em eFuses
internos, inacessiveis ao software.
O bloco 2 dos eFuses € destinado ao armazenamento da chave AES de 256 bits
utilizada pelo Secure Boot. Um bit de controle, denominado ABS DONE O, é
queimado como indicagdo de que o Secure Boot foi ativado. Uma vez configurado,
esse bit ndo pode ser revertido (ESPRESSIF, 2024).

O Secure Boot, por padrédo, assina imagens e dados contidos na tabela de
particdo durante o build. As chaves utilizadas para assinatura e verificagdo consistem
em um par ECDSA no formato PEM. A chave privada é informada no arquivo de
configuragdo (menuconfig) e utilizada para assinar as imagens, enquanto a chave

publica é incorporada ao bootloader para realizar a verificagdao (ESPRESSIF, 2024).

33

Figura 5 - Chain of Trust do Secure Boot

Reset

Hardware root of trust:
BootROM, eFuse

Verifies

Software Bootloader

Verifies

v

Firmware

Fonte: retirado de (ANDRAS, 2020)

Durante o processo de compilagdo, a imagem do bootloader de segundo estagio
€ gerada e armazenada no offset 0x1000 da memodria flash (ESPRESSIF, 2024).
Na primeira inicializagao, o bootloader segue o seguinte fluxo para ativar o Secure
Boot:

e O suporte de hardware do Secure Boot gera uma chave AES de 256 bits e um
digest associado.

e A chave é gerada com auxilio do gerador de numeros aleatérios (RNG) do
hardware e armazenado no eFuse, com protecdo contra leitura e escrita
habilitada.

o O digest é derivado a partir da chave, de um vetor de inicializagao (V) e do
conteudo da imagem do bootloader, sendo armazenado no offset 0x0 da flash.

Apos essa etapa, o bootloader configura o bit ABS_DONE_0, ativando o Secure
Boot de forma permanente. Dessa maneira, o dispositivo sé podera inicializar
imagens cujo digest corresponda ao valor armazenado (ESPRESSIF, 2024).

Nas inicializagdes subsequentes, o bootloader de primeiro estagio detecta que
o bit ABS_DONE_0 foi queimado e passa a comparar o digest armazenado no

34

offset 0x0 com o digest calculado no momento do boot. Essa comparacao é
realizada integralmente por hardware (ESPRESSIF, 2024).

Enquanto o Secure Boot estiver ativo, o bootloader de segundo estagio usara
a chave publica ECDSA incorporada para verificar a assinatura digital das imagens
de aplicagéo e da tabela de particdes antes de carrega-las na meméria (ANDRAS,
2020).

2.7 Assinaturas Digitais

Uma assinatura, em contexto juridico, representa o ato de concordancia de uma
parte em relacdo as condi¢gdes impostas por outra, servindo como uma comprovagao
da aceitagdo dos termos propostos (BARROS, 2015). A assinatura digital € uma
aplicacado do campo da criptografia, desenvolvida para atuar como equivalente digital
de assinaturas manuscritas, podendo oferecer propriedades adicionais de seguranca.
Esse mecanismo consiste em um valor numérico cuja geracdo depende de dois
componentes principais: uma chave privada, as vezes referida como segredo do
signatario, e o conteudo de mensagem a ser assinada. Qualquer alteragcdo em um
desses elementos resulta em uma assinatura distinta, assegurando caracteristicas
fundamentais da seguranca da informacao, como integridade, autenticidade e nao
repudio (JOHNSON, MENEZES e VANSTONE, 2013).

E requerida que assinaturas digitais sejam verificaveis. Dessa forma, caso ocorra
algum impasse quanto a participagao de determinada entidade na assinatura de um
documento, deve existir um terceiro que, de maneira imparcial, possa analisar a
autenticidade da assinatura sem a necessidade de acesso a chave privada do
signatario. Um dos esquemas mais comuns de assinaturas digitais € o esquema de
criptografia assimétrica. Neste método, cada participante gera um par de chaves
composto por uma chave privada e uma chave publica. A chave privada deve ser
mantida em sigilo e é utilizada para gerar a assinatura digital, enquanto a chave
publica é distribuida para que outras entidades possam verificar a validade das
assinaturas geradas. (JOHNSON, MENEZES e VANSTONE, 2013).

35

Tradicionalmente, algoritmos de criptografia assimétrica e de assinatura digital,
como o RSA e o DAS, utilizam chaves com um grande numero de bits. Essa
caracteristica resulta em maior consumo de recursos computacionais, reducao de
desempenho e aumento na complexidade de implementacédo e compatibilidade. Para
contornar essas limitagdes, Victor Miller e Neal Koblitz propuseram, em 1985, um novo
algoritmo de criptografia baseado em curvas elipticas, conhecido como Eliptic Curve
Cryptography (ECC). Esse tipo de algoritmo utiliza chaves menores, porém oferecem
niveis de seguranga equivalentes aos métodos tradicionais, proporcionando maior
agilidade no processamento e menor consumo de recursos. Por essa razdo, a ECC é
recomendada para dispositivos com recursos limitados, como é o0 caso de
microcontroladores (MOREIRA, 2006).

A Figura 6 apresenta um comparativo entre o tamanho das chaves utilizadas em
um algoritmo tradicional (RSA e AES) e no ECC.

Figura 6 - Comparativo entre o tamanho das chaves usados no RSA, AES e ECC

[NIST guidelines for public key sizes for AES]
ECC KEY SIZE RSA KEY SIZE KEY SIZE AES KEY SIZE
(Bits) (Bits) RATIO (Bits) .-
163 1024 1:6
256 3072 1:12 28 |=
384 7680 1:20 192 |3
512 15 360 1:30 256

Fonte: retirado de (MOREIRA, 2006)

No algoritmo ECC sao usados pontos definidos sobre uma curva eliptica em um
campo finito, os quais sdo empregados na geragdo dos componentes da assinatura
digital (MOREIRA, 2006).

36

3 METODOLOGIA

3.1 Arquitetura do Sistema

O sistema de segurancga proposto foi planejado para ser implementado utilizando
dois microcontroladores ESP32, configurados de forma que cada um desempenhe
uma fungao especifica dentro da arquitetura desenvolvida. A escolha do ESP32 se
justifica pelo dispositivo integrar médulos de Wi-Fi e Bluetooth, além de aceleradores
de criptografia em hardware. Tais recursos facilitam a implementagéo de criptografia
com maior eficiéncia e menor consumo de energia. Além disso, o ESP32 também
oferece suporte a outros recursos de segurangca como Secure Boot e Flash
Encryption.

O primeiro dispositivo do sistema atua como emissor sendo encarregado de gerar,
assinar digitalmente e criptografar as mensagens antes da transmissao. O segundo
dispositivo, por sua vez, opera como receptor, sendo responsavel pela recepgao,
verificagdo da assinatura e descriptografia das mensagens recebidas.

A comunicagao entre os dispositivos € realizada por meio do protocolo ESP-NOW,
o qual foi escolhido por oferecer baixa laténcia, eficiéncia energética e mecanismos
nativos de criptografia simétrica baseados no algoritmo AES, fornecidos pela
plataforma ESP32 e adequados para aplicacbes embarcadas e de Internet das
Coisas.

Além da criptografia, a arquitetura também faz uso de assinaturas digitais ECDSA
para assegurar a autenticidade e a integridade das mensagens trocadas. Antes que
uma mensagem seja aceita pelo receptor, sua assinatura é verificada utilizando a
chave publica correspondente, garantindo que os dados realmente foram enviados
por um dispositivo legitimo e que n&o sofreram alteragdes durante o processo de

transmissao.

3.2 Mecanismos de Seguranga do Firmware

Foram aplicadas medidas de protecao diretamente relacionadas ao firmware e a

memoria nao volatil do ESP32. Essas medidas tiveram como objetivo garantir que

37

apenas codigos legitimos fossem executados e que os dados armazenados
permanecessem confidenciais, mesmo em caso de acesso fisico ao dispositivo.

O primeiro procedimento consistiu na ativagdo da criptografia da flash,
funcionalidade nativa do ESP32 responsavel por criptografar automaticamente o
conteudo gravado na memoria flash. A configuracéo foi feita de forma manual usando
o utilitario espsecure.py. A chave utilizada no processo foi gerada utilizando a
ferramenta openssl, posteriormente a chave foi armazenada de forma segura no
eFuse.

Em seguida, foi habilitado o Secure Boot, realizado por meio das ferramentas de
configuracdo do ESP-IDF. O processo envolveu a geragao de uma chave privada
utilizada para assinar digitalmente o firmware e a posterior gravacao da chave publica
correspondente na particdo de boot do microcontrolador

Por fim, foi implementado o mecanismo de atualizagcédo remota via OTA. O firmware
foi configurado para aceitar apenas imagens assinadas digitalmente, de modo que o
dispositivo realizasse a verificacdo da assinatura antes da substituicado da particao

ativa.

3.3 Ambiente de Desenvolvimento

A implementacdo do sistema foi realizada utilizando o Espressif loT
Development Framework, traduzido como framework de desenvolvimento para
Internet das Coisas, abreviado como ESP-IDF, que consiste no ambiente oficial
fornecido pela Espressif Systems para a programagédo de microcontroladores da
familia ESP32. O ESP-IDF oferece suporte nativo a diversas bibliotecas, multitarefa
por meio do FreeRTOS e multiplos recursos de seguranga, o que o torna adequado
para aplicagbes embarcadas que exigem confiabilidade e eficiéncia.

A Figura 7 apresenta o fluxo geral do processo de desenvolvimento e
gravagao da aplicagdo no microcontrolador ESP32. Esse processo inicia-se no
ambiente de desenvolvimento ESP-IDF, que inclui um conjunto de ferramentas, o
sistema de build baseado em CMake e o gerenciamento do projeto. Apos a etapa de
build, o cédigo é convertido em um binario que € entdo feito seu upload para o

dispositivo.

38

Figura 7 - Fluxo de gravagao do firmware

CMake / IDE

ESP-IDF

Application

BUILD

uv,oAll)\ : =
V

Fonte: retirado de (ESPRESSIF, 2025)

Para as rotinas de seguranga, o projeto faz uso da biblioteca mbedTLS,
incorporada ao ESP-IDF. Essa biblioteca fornece uma ampla gama de algoritmos
criptograficos padronizados, como AES, SHA-256 e ECDSA, que foram utilizados para
garantir confidencialidade, integridade e autenticagao durante a comunicagao entre os
dispositivos. O mbedTLS também oferece suporte a aceleracdo de hardware,
aproveitando os recursos internos do ESP32 para otimizar o desempenho das
operacoes criptograficas.

O sistema foi desenvolvido e testado em ambiente Windows 11, utilizando o
terminal ESP-IDF CMD para execug¢ao de comandos € monitoramento em tempo real.
Além disso, foram empregados recursos de depuragdo e monitoramento serial para

analise do comportamento do sistema durante as fases de teste e validagao.

3.4 Procedimento de Implementacgao

A implementacdo do sistema seguiu uma sequéncia de etapas sequenciais,
abrangendo a configuragdo da comunicagao, a geragcédo de chaves criptograficas, o
processo de assinatura digital e a criptografia das mensagens.

Inicialmente, o ambiente de comunicagéao foi configurado utilizando o protocolo

ESP-NOW, onde foram definidos os enderegcos MAC dos dispositivos participantes e

39

o canal de comunicacgao, assegurando que apenas o emissor e o receptor autorizados
pudessem trocar dados.

Em seguida, foi implementada a camada de seguranga da comunicagdo. O
emissor € responsavel por gerar uma mensagem inicial, aplicar uma assinatura digital
ECDSA com sua chave privada e, posteriormente, criptografar o conteudo utilizando
mecanismos de criptografia simétrica baseados no algoritmo AES, conceitualmente
semelhantes aos empregados no CCMP. O receptor, por sua vez, realiza a verificagao
da assinatura digital por meio da chave publica do emissor e procede com a
descriptografia do conteudo, validando a integridade e a autenticidade da mensagem
recebida. Caso a assinatura nao seja validada, o receptor encerra a comunicagao com
0 emissor, deixando de aceitar novas mensagens provenientes desse dispositivo.

Para o calculo da assinatura digital, foram utilizadas fungdes baseadas na curva
eliptica secp256r1, recomendada pelo NIST. A criptografia e autenticagdo dos blocos
de dados foram realizadas por meio das rotinas nativas do ESP-NOW.

Foram realizados testes de envio e recepgao entre os dispositivos, analisando o
desempenho da criptografia e a validade das assinaturas, de modo a garantir o
funcionamento correto de todo o processo de autenticagéo e transmisséo segura.

Paralelamente a prote¢cdo da comunicacédo, medidas de seguranga do firmware
foram implementadas para assegurar a execugao apenas de codigos legitimos e a
confidencialidade dos dados armazenados. O Secure Boot foi ativado, garantindo que
o microcontrolador s6 execute firmware assinado digitalmente. A Flash Encryption foi
configurada, de modo que todo o conteudo gravado na memoria ndo volatil seja
automaticamente criptografado, protegendo os dados mesmo em caso de acesso
fisico ao dispositivo. O mecanismo de atualizagdo remota via OTA também foi
habilitado, permitindo que novas versdes de firmware sejam aplicadas somente se
assinadas digitalmente. Durante o processo de atualizagdo, o dispositivo realiza a
verificagdo da assinatura antes de substituir a partigdo ativa, garantindo a integridade

e autenticidade da nova versao do firmware.

40

4 DESENVOLVIMENTO DO TRABALHO

Inicialmente, para a implementacao da arquitetura proposta, foi necessario realizar
a instalacado do conjunto de ferramentas disponibilizado pela Espressif. Ao acessar o
site oficial, é possivel baixar um pacote contendo trés ferramentas principais: Espressif
IDE, ESP-IDF CMD e ESP-IDF PowerShell. As caracteristicas gerais dessas

ferramentas sao descritas abaixo:

o Espressif IDE é o ambiente de desenvolvimento integrado baseado no Eclipse,
que oferece recursos de edi¢ao, compilacéo e depuracao de projetos voltados
para os microcontroladores ESP32.

e ESP-IDF CMD é um prompt de comando configurado com todas as variaveis
de ambiente necessarias para compilar, gravar e monitorar projetos utilizando
o framework ESP-IDF.

e ESP-IDF PowerShell fornece funcionalidades semelhantes ao CMD, mas em
um ambiente PowerShell, oferecendo suporte a scripts € comandos mais

avancados.

Para o desenvolvimento das aplicagbes deste trabalho, foi utilizado o ESP-IDF
CMD, por fornecer maior versatilidade durante o desenvolvimento e testes dos
cédigos.

Os algoritmos foram desenvolvidos de forma gradual. Inicialmente, implementou-
se a comunicagcdo entre emissor e receptor via protocolo ESP-NOW, com a
criptografia habilitada. Em seguida, foram integrados os médulos de assinatura digital
ECDSA, atualizacédo segura OTA, e, por fim, as camadas de protegdo da memoria

flash e o Secure Boot.

4.1 Comunicagciao ESP-NOW com mecanismos de criptografia simétrica

O ESP-NOW é um protocolo que oferece suporte tanto a comunicagao
unidirecional quanto a bidirecional, permitindo grande flexibilidade na topologia da

rede.

41

Em comunicacéao unidirecional, pode-se configurar um mestre e um escravo, varios
mestres comunicando-se com um unico escravo, ou varios escravos enviando dados
a um mestre central. A escolha da topologia depende diretamente da aplicagdo. Por
exemplo, um mestre com multiplos escravos ¢é ideal em sistemas de automacao ou
monitoramento distribuido, nos quais um unico ESP32 central coleta informagdes de
diversos nds sensores espalhados por diferentes locais.

Ja na comunicacgao bidirecional, cada ESP32 pode atuar simultaneamente como
emissor e receptor, possibilitando o desenvolvimento de sistemas de troca de
mensagens seguras e dindmicas entre os dispositivos.

Um dos requisitos fundamentais para o estabelecimento da comunicagao via ESP-
NOW é o conhecimento prévio do endereco MAC dos dispositivos participantes. Cada
ESP32 possui um identificador fisico unico, utilizado para distinguir os nés na rede,
garantindo assim que os pacotes sejam enviados ao destino correto. O trecho de
codigo apresentado na Figura 8 mostra o procedimento utilizado para obtencéo desse
identificador. Nessa figura, € possivel observar a chamada da fungao responsavel por
recuperar o MAC e o armazenamento do valor no buffer correspondente. Embora o
exemplo tenha sido retirado do cédigo do emissor, 0 mesmo procedimento pode ser

aplicado a qualquer dispositivo.

Figura 8 - Funcao para obtencdo de endereco MAC

uint8 t mac[e];
err t err = esp wifi get mac(ESP_IF WIFI STA, mac);
if (err == ESP_0K) {
ESP_LOGI(TAG, "Ende AC do " BB2X 1 H02X H02X H02X: %02X: 62X,

mac[@], mac[1], mac[2], mac[3], mac[4], mac[5]);

} else {

ESP_LOGE(TAG, "Falha ao obter MAC: %s", esp err to name(err));

Fonte: Autor, 2025

A funcao “esp_wifi_get mac” é disponibilizada pela propria ESP-IDF e permite
obter o endereco MAC da interface Wi-Fi configurada. O valor retornado é
armazenado em um vetor de seis bytes denominado “mac”. Em seguida, esse

endereco € formatado em representagdo hexadecimal e exibido no log por meio da

42

funcéo “ESP_LOGI”. Além disso, foi implementado um tratamento de erro para o caso
de falha na leitura do endereco, utilizando “ESP_LOGE” para registrar no log uma
mensagem informando o tipo de erro ocorrido.

Apods a obtencédo do endereco MAC dos dispositivos, a implementacao do ESP-
NOW segue um determinado fluxo. Inicialmente, o protocolo deve ser inicializado com
suas configuragdes basicas, de modo a preparar o modulo para o envio € o
recebimento de dados.

Em seguida, sdo desenvolvidos blocos de fungdo distintos para o emissor e
para o receptor. Esses blocos sdo responsaveis pela transmissdo e recepcao de
mensagens, bem como fornecer um retorno indicando se uma mensagem foi enviada
ou recebida com sucesso.

No caso do emissor, € necessario adicionar um par, correspondente ao
dispositivo receptor, informando o endereco MAC obtido previamente. As funcdes
desenvolvidas para o envio e recepgao das mensagens devem ser registradas como
fungdes de callback, sendo automaticamente chamadas pelo sistema sempre que
uma mensagem for transmitida ou recebida.

A Tabela 2 apresenta uma relagdo das principais fungdes utilizadas na

implementagéo do fluxo descrito.

Tabela 2 - Principais fungdes OTA

Funcéo Descrigéo
esp_now_init() Inicializar o ESP-NOW. O Wi-Fi

deve ser inicializado antes da

chamada desta fungao

esp_now_add_peer() Emparelhar dispositivos. Deve
ser passado como argumento o
endereco MAC do dispositivo

alvo

esp_now_send() Enviar dados

esp_now_register_send_cb() Registrar funcéo de callback que
deve ser chamada ao enviar

dados

43

Funcéao Descricao

esp_now_register_recv_cb() Registrar funcéo de callback que
deve ser chamada ao receber

dados.

Fonte: retirado de (ESPRESSIF, 2024).

A configuragdo do método de criptografia utilizado pelo ESP-NOW requer a
definicdo prévia das chaves PMK e LMK. Caso a PMK nao seja configurada
manualmente, o ESP-NOW utiliza uma chave padrao.

A LMK deve ser definida para permitir a criptografia dos action frames trocados
entre os dispositivos. O protocolo suporta até seis LMKs distintas, sendo cada uma
associada a um par especifico de comunicacao.

No fluxo de envio e recepgdo de mensagens via ESP-NOW, descrito
anteriormente, segue-se com a definicdo da chave PMK do dispositivo emissor,
seguido da associagdo da chave LMK ao dispositivo receptor. E importante destacar
que a PMK deve ser idéntica em ambos os dispositivos, enquanto a LMK é exclusiva
para cada par emissor-receptor.

As chaves PMK e LMK possuem comprimento de 16 bytes e foram geradas
previamente pelo moédulo de geracdo de chaves criptograficas.
Esse mddulo utiliza o gerador de numeros aleatérios CTR-DRBG (Counter-mode
Deterministic Random Bit Generator), alimentado por uma fonte de entropia interna,
para criar a PMK de forma segura. A LMK, por sua vez, é derivada a partir da PMK e
do endere¢co MAC do par de comunicagao.

O processo de geracao e derivagao das chaves é realizado por meio de duas
fungdes principais, apresentadas nos trechos de codigo das Figura 9 e Figura 10. Na
Figura 9, observa-se a fungdo “generate_keys”, que utiliza o gerador de numeros
aleatérios da biblioteca mbedTLS para criar a PMK de 16 bytes. Ja na Figura 10, é
possivel visualizar a fungao responsavel pela derivacdo da LMK a partir da PMK. A
PMK é impressa no console apenas para fins de verificacdo durante os testes, nao

devendo ser exibida em um ambiente real para evitar exposi¢ao indevida da chave.

Figura 9 - Fungao para geragédo das PKM e LMK

e Imk(pmk key,
061 (TAG,

printf("%e2;

Fonte: Autor, 2025

Figura 10 - Fungao para derivagdo da LMK
derive Imk(*pmk , pmk_len,

*peer_mac, mac_len,
*1mk, Imk len)

buffer[32];
input[pmk_len + mac_len];

memcpy (input, pmk, pmk_len);
memcpy (input + pmk len, peer mac, mac len);

mbedtls sha256 ret(input, input), buffer, @);

memcpy (1mk, buffer, Imk len);

ESP_LOGI(TAG, "LI

Fonte: Autor, 2025

44

45

A funcéo “derive_Imk” é responsavel por derivar a LMK a partir da PMK e do
endereco MAC do dispositivo pareado. O processo combina ambos os valores em um
unico buffer e aplica a fungao de hash SHA-256, extraindo os 16 primeiros bytes do
resultado como a LMK. Esse método garante que cada par de dispositivos tenha uma
chave unica e vinculada ao seu enderego MAC.

A chave PMK do dispositivo deve ser definida antes de qualquer comunicagao
criptografada, sendo realizada através da funcédo “esp_now_set pmk”, que recebe
como argumento um ponteiro para o array de bytes contendo a PMK previamente
gerada.

A LMK deve ser configurada no momento em que o par é registrado utilizando
‘esp_now_add_peer”. Para isso, o array de 16 bytes contendo a LMK derivada deve
ser copiado para o campo “Imk” da estrutura “esp_now_peer_info t”. Além disso, é
necessario habilitar a criptografia para esse par definindo o campo “encrypt” como

true.

4.2 Implementagao da assinatura ECDSA

A autenticagdo do emissor € realizada por meio da verificagdo da assinatura digital
ECDSA utilizando a chave publica correspondente. A variavel denominada ACK
(Acknowledgment) é utilizada exclusivamente como um mecanismo de sinalizagao,
responsavel por indicar ao emissor o resultado do processo de verificagdo da
assinatura. Os valores atribuidos a variavel ACK representam estados de controle da
comunicagao, utilizados para sinalizar o resultado da verificagdo da assinatura digital,

conforme descrito a seguir:

« ACK = 0: indicacao de que a verificacao da assinatura falhou;
« ACK = 1:indicacéo de que a assinatura foi verificada com sucesso;
e« ACK = 2: estado inicial, utilizado enquanto o receptor aguarda a conclusdo do

processo de verificagado da assinatura.

Inicialmente, o emissor envia uma mensagem de desafio ao receptor. Ao receber

essa mensagem, o receptor realiza a verificagdo da assinatura digital ECDSA,

46

processo pelo qual € avaliada a autenticidade do emissor e a integridade da
mensagem. O resultado dessa verificagdo é entdo sinalizado ao emissor por meio de
uma variavel de controle denominada ACK, utilizada exclusivamente para indicar o
estado do processo. Caso a assinatura seja validada com sucesso, o receptor envia
um ACK indicando sucesso, caso contrario, sinaliza falha e encerra a comunicagéo.

Como discutido anteriormente, o algoritmo ECDSA baseia-se em um esquema de
chaves assimétricas, composto por uma chave privada (utilizada para gerar a
assinatura) e uma chave publica (utilizada para verificar sua autenticidade). As chaves
foram geradas externamente por meio do OpenSSL, sendo a chave privada
armazenada no emissor e a publica distribuida entre os dispositivos receptores.

Para armazenar os componentes da assinatura, foi criada uma struct denominada
curva_t, contendo os parametros r e s resultantes da assinatura, bem como a
mensagem a ser assinada e enviada.

A ESP32 também utiliza a biblioteca mbedTLS para implementar a assinatura

ECDSA. O processo de assinatura inicia com a definicdo dos contextos necessarios:

e ecdsa: contexto principal do algoritmo de assinatura;
e entropy: responsavel pela coleta de entropia para o gerador aleatorio;

e ctr_drbg: gerador deterministico de numeros aleatérios.

Esses contextos sdo fundamentais, uma vez que armazenam as configuragdes e
o estado do algoritmo durante a execugao, além de permitir que a assinatura seja
gerada de forma segura e imprevisivel.

A funcdo denominada “init_ecdsa” €& responsavel por inicializar os contextos
necessarios para o uso do ECDSA, além de configurar a variavel pers, uma string
utilizada como parametro na geragdo de numeros aleatorios. Essa fungdo também
carrega a curva eliptica SECP256R1 e importa a chave privada previamente gerada,
armazenando-a no contexto ECDSA. A Figura 11 exibe a implementacdao desta
funcdo, onde destacam-se as etapas de inicializacdo dos contextos, a definicdo da

string pers e o carregamento da chave privada.

47

Figura 11 - Funcéo de inicializacdo do ECDSA

init ecdsa()

mbedtls ecdsa_init(&ecdsa);
mbedtls entropy init(&entropy);
mbedtls ctr drbg init(&ctr drbg);

*pers = "ecdsa";
&ctr_drbg, mbedtls entropy func, &entropy,
*)pers, strlen(pers));
if (ret 1=9) {

ESP_LOGE(TAG, "mbedtls ctr drbg

mbedtls ecp group load(&ecdsa.MBEDTLS PRIVATE(grp), MBEDTLS ECP DP SECP256R1);

mbedtls mpi read binary(&ecdsa.MBEDTLS PRIVATE(d),
device private key, device private key));

Fonte: Autor, 2025

Outro bloco relevante é a fungao “sign_and_send_challenge”, responsavel por
assinar e transmitr a mensagem de autenticagdo ao receptor.
Como parametro, essa fungao recebe o endereco MAC do dispositivo de destino e a
struct que contém os campos r, s e message.

Antes da assinatura, é gerado um hash SHA-256 da mensagem, visto que o
ECDSA nao assina o conteudo diretamente, mas sim o seu resumo criptografico. Esse
procedimento garante que a assinatura tenha tamanho fixo e que pequenas alteragoes
na mensagem resultem em hashes completamente distintos.

ApOs a geracdo do hash, os parédmetros r e s sdo inicializados e preenchidos com
o resultado da operacédo de assinatura. Em seguida, esses valores sdo convertidos
para formato binario e enviados ao receptor por meio do ESP-NOW. No receptor, a
chave publica correspondente é utilizada para validar a assinatura e garantir a
autenticidade da mensagem recebida. Na Figura 12, observam-se as etapas de

conversao, transmissao e validagdo desses parametros ao longo do processo.

48

Figura 12 - Fungao de assinatura da mensagem com ECDSA

esp_err_t sign _and send challenge(uintd t *dest mac)

memset(&out, @, out

B

*challenge = "Challenge: Authenticate
strncpy(*out.message, challenge,
size t msg_len = strlen(challenge);

hash[32];

_mpi r, s;
- mpi_init(&r); mbedtls mpi_init(&s);

ret = mbedtls ecdsa sign(&ecdsa.MBEDTLS PRIVATE(grp),
&r, &s,
&ecdsa.MBEDTLS PRIVATE(d),
hash, hash},
mbedtls ctr drbg random, &ctr drbg);
1= 8) {
LOGE(TAG, "mbedtls ecdsa_sign falhou: -8x%@dx", -ret);
mbedtls mpi free(&r); mbedtls mpi free(&s);
return ESP_FAIL;

mbedtls mpi write binary(&r, out.r_bin, 32),
mbedtls_mpi_ write binary(&s, out.s_bin, 32);
mbedtls mpi_ free(&r); mbedtls mpi_ free(&s);

err_t send_ret = esp_now_send(dest_mac, (uint8& t*)&out,

x", send_ret);

Fonte: Autor, 2025

O receptor foi implementado para verificar a autenticidade das mensagens
recebidas via ESP-NOW antes de aceitar qualquer outro dado proveniente do emissor.
Para isso, o cédigo foi estruturado de modo a reconhecer automaticamente o tipo de

pacote recebido. Se o payload possuir o tamanho correspondente a estrutura curva_t,

49

o receptor interpreta o conteudo como uma mensagem acompanhada de assinatura
digital ECDSA, caso contrario,b se o tamanho corresponder a estrutura
struct_message, o conteudo é tratado como dados de aplicagao.

Para validacdo da assinatura, o receptor realiza o calculo do hash SHA-256 da
mensagem original e utiliza a chave publica previamente cadastrada do emissor para
verificar a validade da assinatura ECDSA. Se a assinatura digital for validada com
sucesso, a variavel interna ACK ¢é atualizada para o valor 1, indicando o resultado
positivo da verificacdo da assinatura e um pacote de confirmacao é enviado de volta
ao emissor, caso contrario, o ACK assume o valor 0 e o pacote é rejeitado.

O cdédigo também realiza a verificagao do enderego MAC de origem, como mais
uma medida para assegurar que apenas dispositivos previamente registrados possam
enviar mensagens de autenticagdo. Apds a autenticagao, o receptor passa a aceitar

pacotes de dados e exibe as informacdes recebidas.

4.3 Implementacgao de atualizag6es OTA

A atualizacdo OTA foi implementada utilizando um servidor HTTPS para
armazenar o novo firmware. O dispositivo recebe uma URL do servidor a ser acessado
e é configurado para realizar verificagbes peridédicas em busca de novas versdes do
firmware, conforme o tempo definido em sua configuragéo.

Foi necessario configurar a tabela de particdes para incluir duas particbes OTA,
requisito fundamental para a implementacdo do mecanismo de atualizac&o. Para isso,
utilizou-se o comando idf.py menuconfig a fim de acessar o arquivo de configuragéo
do projeto. Na secdo destinada a tabela de particbes, selecionou-se a opgédo que
habilita o suporte a duas partigdes OTA. Na Figura 13, nota-se a tela do menuconfig

exibindo essa seleg¢ao, evidenciando a configuragao aplicada.

50

Figura 13 - Menuconfig OTA

Esprossié Joi levelepsent Frasework Configuration

two OTA definitions)

artition Table (Factory app
(8x8668) Offset of partition table
[*] Generate an MDS checksum for the partition table

ESC] Leave menu
?] Symbol info (/] Junp to symbol
] Yoggle show-nane mode (A] Toggle show-all

D] Save minimal config (advanced)

Fonte: Autor, 2025

Por se tratar de uma conexdo HTTPS, € necessario o uso de um certificado digital,
o qual foi gerado no formato PEM utilizando a ferramenta OpenSSL. Esse certificado
€ incorporado ao firmware e armazenado como uma string bruta, garantindo a
autenticacao do servidor durante o processo de atualizacao.

Para assegurar a integridade do firmware, foi criada a fungdo
“validate_image_header”. O propdsito principal dessa fungao é verificar a validade das
informacdes da nova imagem e comparar a versao do firmware disponivel no servidor
com a versao atualmente instalada no dispositivo. Esse bloco sempre é executado
antes da aplicagao de uma nova atualizacao.

Durante a validag&o, o codigo tenta ler a descricdo da particdo em execucgao e
registra nos logs a versao atual. Caso seja detectado que a nova versao € idéntica a
instalada, o processo é abortado.

Outro bloco importante é a funcdo “ota_event handler’, responsavel por atuar
como callback de eventos gerados durante o processo de atualizagédo. Esses eventos
permitem monitorar cada etapa do ciclo OTA, desde a conexdo com o servidor até a
finalizacdo da gravacao, registrando mensagens no log, o que auxilia no diagndstico

de falhas. Os principais eventos e seus propoésitos estdo descritos na Tabela 3.

Tabela 3 - Eventos do OTA

51

Evento

Descricao

Propésito

ESP_HTTPS_OTA_START

Inicio do

processo OTA

Informa o inicio

da atualizacao

ESP_HTTPS_OTA_CONNECTED

Conexdo com

Confirma a

servidor comunicagao
HTTPS
ESP_HTTPS OTA_GET IMG_DESC Leitura da Obtém

descricdo da

imagem

metadados da

nova versao

ESP_HTTPS_OTA_VERIFY_CHIP_ID

Verificagcdo do

Evita

chip incompatibilidade
de hardware
ESP_HTTPS OTA _DECRYPT_CB Descriptografia Protege o
do firmware firmware durante
o download
ESP_HTTPS_OTA_WRITE_FLASH Escrita de Mostra o

blocos na flash

progresso da

gravacao

ESP_HTTPS_OTA_UPDATE_BOOT_PARTITION

Atualizacido da
particao de
boot

Define a proxima
particao de

inicializacao

ESP_HTTPS_OTA_FINISH

Finalizacdo da
OTA

Indica sucesso e
prontidao para

reinicializagao.

ESP_HTTPS_OTA_ABORT

Abortar OTA

Informa falha ou
interrupgao no

processo

Fonte: retirado de (ESPRESSIF, 2024).

A parte principal do processo de atualizacéo esta contida na funcéo “do_https_ota”,

responsavel por coordenar todo o processo de atualizagao via HTTPS, incluindo a

52

validacao do certificado, verificagcao da versao, download da nova imagem, gravagao
na particdo OTA e reinicializacdo do dispositivo. O fluxo de execucédo segue as

seguintes etapas:

1. Inicializagdo do cliente HTTPS, com parametros como a URL do firmware,
certificado do servidor e tempo limite de resposta.

2. Criagao da configuragdo OTA, que associa o cliente HTTPS e define callbacks.

3. Obtencéo da descrigcdo da nova imagem, contendo versao e informagdes de
seguranca.

4. Validacao da nova versao, comparando-a com o firmware em execugao.

5. Download e gravacdo em flash da nova imagem, com logs indicando o
progresso.

6. Finalizacdo e atualizacdo da particdo de boot, seguida de reinicializagao

automatica.

Além disso, foi criada uma task responsavel por verificar periodicamente a
disponibilidade de atualiza¢des. Essa tarefa aguarda a conexao Wi-Fi ser estabelecida
e, em seguida, executa a funcdo “do_https_ota”. Caso nenhuma nova versao seja
detectada ou ocorra erro de validagao, o processo é encerrado sem reinicializagao,
mantendo o firmware atual em execugao.

O servidor HTTPS foi criado utilizando o framework Flask, escrito em Python. Esse
servidor tem a fungcdo de hospedar o arquivo binario do firmware e disponibiliza-lo de
forma segura para o ESP32 durante o processo de atualizagdo. O servidor foi
configurado para operar localmente, armazenando os arquivos enviados em um
diretorio especifico definido na variavel UPLOAD_FOLDER.

A aplicagao Flask implementa duas rotas principais. A primeira € responsavel por
receber o upload de novos firmwares através de uma interface simples em HTML.
Essa interface pode ser acessada diretamente por um navegador, permitindo
selecionar o arquivo de firmware com extensao .bin e envia-lo ao servidor. Apos o
envio, o arquivo € salvo na pasta configurada, sendo sempre renomeado, no caso do
emissor, para “EmissorOTA.bin”, o que garante que o firmware mais recente substitua

automaticamente o anterior, simplificando o controle de versdes. Ao concluir o upload,

53

o servidor retorna uma mensagem de confirmagao, informando que o arquivo foi
recebido com sucesso.

A segunda rota é a responsavel por fornecer o firmware para o ESP32. Quando o
microcontrolador realiza uma requisicdo HTTPS para essa rota, o servidor envia o
arquivo binario armazenado, permitindo que o dispositivo realize o download do novo
firmware e inicie o processo de atualizagdo. Essa comunicagdo ocorre de forma
autenticada e segura, pois o servidor Flask foi configurado para operar sobre o
protocolo HTTPS. Para isso, foram gerados, por meio da ferramenta OpenSSL, um
certificado digital e uma chave privada nos formatos cert.pem e key.pem,
respectivamente. Esses arquivos sao utilizados pelo paréametro ssl_context na
inicializacao do servidor, garantindo que toda a comunicagao seja criptografada e que
o ESP32 possa validar a autenticidade do servidor antes de baixar o firmware.

O servidor € executado localmente por meio do terminal, utilizando o comando
‘python3 upload_server.py”, onde upload_server.py € o0 nome do servidor
desenvolvido, a partir do diretério onde o arquivo do servidor e o firmware estao
armazenados. Uma vez em execucido, o ESP32 pode se conectar ao servidor pelo

endereco configurado para verificar se ha uma nova versao disponivel.

4.4 Flash Encryption

Antes de realizar a configuragdo necessaria para habilitar a criptografia da flash,
foi feita a verificagdo do estado dos eFuses relacionados a esse recurso. A Figura 14
apresenta o resumo dessas configuracbes. Nela, destaca-se que o campo
FLASH_CRYPT_CNT, responsavel por indicar se a criptografia esta ativada, ainda
ndao possui nenhum bit gravado. Além disso, o BLOCK1, area reservada para o
armazenamento da chave de criptografia, aparece vazio, evidenciando que nenhuma
chave havia sido definida. Assim, confirma-se que o dispositivo encontrava-se sem
qualquer mecanismo de criptografia de flash habilitado antes das configuragdes

realizadas.

54

Figura 14 - Estado dos eFuses antes da criptografia da flash

Fonte: Autor, 2025

Inicialmente, foi gerada uma chave AES-256, responsavel por realizar a
criptografia e descriptografia automatica dos dados armazenados na memoaria Flash.
A geracdo dessa chave foi realizada por meio do comando “espsecure.py
generate_flash_encryption_key”. Como argumento adicional, foi especificado o
caminho do arquivo da chave. Em seguida, essa chave foi gravada no bloco de eFuses
reservado para o mecanismo de criptografia, utilizando o comando “espefuse.py
burn_key flash_encryption”. Durante a execugao, foram fornecidos como argumentos
adicionais a porta de comunicagao utilizada e o caminho do arquivo contendo a chave
gerada.

Em seguida, foram verificados os enderegos de offset das particdes presentes
na memoria Flash, correspondentes as particdes do bootloader, da tabela de particbes
e da aplicacao principal. Essa informacao é essencial para a etapa posterior, na qual
0s arquivos criptografados devem ser gravados na ESP32 exatamente nos enderegos
de memoria destinados a cada partigao.

Apos essa verificagdo, procedeu-se com a configuracdo das regides da

memoria que seriam submetidas ao processo de criptografia. O eFuse

55

FLASH_CRYPT_CONFIG foi ajustado com o valor OxOF, o que determina que todas
as regides citadas anteriormente sejam criptografadas pelo dispositivo. Essa etapa foi
executada por meio do comando “espefuse.py burn_efuse FLASH_CRYPT_CONFIG
OxOF”, sendo especificada como argumento adicional a porta de comunicagao
utilizada.

Com a chave e as regides de memoria configuradas, deu-se continuidade ao
processo com a queima do eFuse FLASH_CRYPT_CNT. Ao gravar o valor 0x1, o
numero de bits ativos nesse registrador torna-se impar, o que habilita 0 mecanismo
de criptografia do chip. Essa operagao foi realizada utilizando o comando “espefuse.py
burn_efuse FLASH_CRYPT_CNT 0x1”, no qual foi especificada como argumento
adicional a porta de comunicag¢ao usada na gravagao.

Posteriormente, cada binario referente as partigdes do firmware foi
criptografado individualmente utilizando a ferramenta espsecure.py. As criptografias
foram realizadas utilizando os enderegos de cada particdo na Flash, os caminhos dos
arquivos binarios das particdes e da chave utilizada.

Cada arquivo resultante foi entdo gravado na meméria do ESP32 nos respectivos
enderecgos, completando o processo de criptografia do firmware. Apds a primeira
inicializacdo, o controlador passa a realizar automaticamente a descriptografia dos

blocos de memoria durante a execugao.

4.5 Secure Boot

Assim como no processo de Flash Encryption, realizou-se inicialmente a
verificagdo do estado dos eFuses do ESP32. O resumo da leitura desses registradores
€ apresentado na Figura 15. Na figura, percebe-se que o campo ABS_DONE 0,
responsavel por indicar a ativacdo da primeira versdo do Secure Boot, ainda estava
desabilitado. Além disso, o BLOCK2, area destinada ao armazenamento da chave
publica utilizada na verificagdo da assinatura do firmware, aparece completamente
zerado, revelando que nenhuma chave havia sido gravada. Dessa forma, confirma-se
que o dispositivo se encontrava sem o recurso de Secure Boot habilitado antes da

configuracao realizada.

56

Figura 15 - Estado dos eFuses antes do Secure Boot

Fonte: Autor, 2025

Para ativar o Secure Boot, inicialmente foi gerada uma chave de assinatura no
formato PEM, utilizando o comando “openssl ecparam -name prime256v1 -genkey -
noout -out secure_boot_signing_key.pem”. Vale reforgar que, caso a chave nao seja
previamente criada, o proprio sistema gera automaticamente uma nova chave no
momento da ativacdo do Secure Boot.

Em seguida, foram realizadas as configuragdes necessarias para a habilitacdo do
recurso. Por meio do comando “idf.py menuconfig” foi acessado o menu de
configuracdo do ESP32. Dentro da secao “Security Features”, a opgao “Enable Secure
Boot” foi marcada, configurando o recurso no modo One-Time Flash. Essa
configuracdo garante que o bootloader seja permanentemente vinculado a chave
utilizada na assinatura, impossibilitando futuras modificacbes apdés a queima dos
eFuses. Ainda nessa etapa, foi especificado o caminho da chave de assinatura
previamente gerada, permitindo que o sistema assine automaticamente os binarios
durante o processo de build.

A Figura 16 apresenta a tela de configuracdo do menuconfig, evidenciando as
opcdes habilitadas para o Secure Boot. Nesse trecho, é possivel identificar tanto a
ativacdo do modo One-Time Flash quanto a definicdo do caminho da chave de
assinatura utilizada no processo, conforme discutido anteriormente.

Posteriormente, foi realizada a constru¢cdo do bootloader por meio do comando
“idf.py bootloader”. Durante esse processo, o sistema gerou o arquivo bootloader.bin
e exibiu, ao final da compilagdo, um comando sugerido para a gravagado manual do
bootloader na meméria Flash. Esse comando deve ser executado antes do uso do
“idf.py flash”, uma vez que o bootloader precisa ser gravado separadamente e de

forma limpa antes do primeiro boot com o Secure Boot habilitado. Essa etapa garante

57

que o bootloader seja devidamente assinado e compativel com as configuragdes de

seguranga atuais do dispositivo, evitando falhas na inicializacao.

Figura 16 - Menuconfig Secure Boot

s5if 1aT Bovelepnant Franssorl Tanfiguratian
*] Enable hardsare Secure Scot in bootloader (READ DOCS FIRST)
Select secure boot version (Enable Secure 8oot version 1) ===>
Secure bootloader mode (One-time Flask) -—>
[#] Sign binaries during build (NEW)
secura_boot_signing_ley.pen) Secure boot private sigaing key (NEW)
[1 Allow potentially insecure options (NEW)
[] Enable flash encryption en boot (READ DOCS FIRST)

Fonte: Autor, 2025

Apds a gravagdo do bootloader e das demais particdes realizadas pelo

comando “idf.py flash”, foi necessario reinicializar a placa para que o segundo estagio

do bootloader fosse executado. Essa reinicializacdo permite que o ESP32 valide as

novas configuragdes de segurancga e inicie o processo de autenticagcéo e verificagdo

de integridade do firmware. Apds o carregamento do bootloader e das demais

particdes, o Secure Boot foi efetivamente ativado por meio da queima do eFuse

correspondente.

58

5 RESULTADOS

Apds a implementacdo completa da arquitetura proposta, foram realizados testes
experimentais com o objetivo de validar o funcionamento correto de cada médulo do
sistema e verificar a integragao entre as camadas de seguranga desenvolvidas. Os
testes foram realizados utilizando dois microcontroladores ESP32, representando

respectivamente o emissor e o receptor.

5.1 Comunicagao entre dois dispositivos via ESP-NOW

Inicialmente, foi testada a comunicagdo ponto a ponto entre o emissor e o
receptor utilizando o protocolo ESP-NOW com o modo de criptografia habilitado.
Durante os testes, foi possivel observar que os pacotes de dados eram transmitidos e
recebidos corretamente, demonstrando o sucesso no emparelhamento dos

dispositivos e na troca de mensagens criptografadas.

Durante os testes de transmissao, o dispositivo emissor enviou continuamente
pacotes de dados contendo as variaveis simuladas x e y, além de um contador que
identifica o numero sequencial de cada pacote transmitido. A cada envio, 0 emissor
registrou no log o status da transmissao, indicando “Sucesso” para todos os pacotes
enviados dentro do intervalo observado. O receptor, ao receber os pacotes, enviou
uma resposta ao emissor contendo apenas a indicacdo do resultado do processo,
apresentando no log o tamanho do pacote recebido, o valor do contador

correspondente e os dados transmitidos.

A Figura 17 apresenta o log de saida do emissor, no qual podem ser verificados
os dados transmitidos e o respectivo status de envio. Ja a Figura 18 mostra o log do
receptor, permitindo observar o endereco MAC do dispositivo, o tamanho do pacote
recebido e os dados recebidos, exibidos tanto em formato hexadecimal quanto em
valores decodificados e legiveis. Dessa forma, confirma-se que o fluxo de transmisséao
e recepgao de dados entre os dispositivos esta ocorrendo de maneira correta e

consistente.

59

Figura 17 - Log do emissor para transmissdo de mensagem via ESP-NOW

Fonte: Autor, 2025

Figura 18 - Log do receptor para recep¢ao de mensagens via ESP-NOW

Fonte: Autor, 2025

Durante os testes, foram realizadas capturas de pacotes ESP-NOW com a
criptografia tanto habilitada quanto desabilitada. As coletas foram feitas no Wireshark
operando em modo monitor, permitindo captar quadros transmitidos pelas redes sem
fio. A Figura 19 apresenta a captura realizada com a criptografia ativada, enquanto a
Figura 20 exibe a captura obtida apds a desativagao da criptografia. Com isso, torna-
se possivel comparar diretamente o impacto da criptografia sobre a legibilidade dos

dados transmitidos.

60

Figura 19 - Captura de pacotes ESP-NOW via Wireshark com criptografia habilitada

v Proms 135403, 241 bytes 00 wire (1028 Lite), 241 bytes captured (1928 Dits) on Interface wiol, 14 ¢
v Nndtiotop Meader vi, Langth 54
¢ 002,33 rodte Anformation
o 1RER URZAL Acthon, Flage) g€
Type/Bubtype: Action (Gxgeod)
v Frase Comtrol Field! a0
000 DOB) 0011 1000 * Duratlon: 304 sictesnconds
Secelver addross A0S DA 0 (A 300 a) N0)
Oestination aodress: 443004 ba: 20 3¢ (44130 04 hd 2 3c)
Transsitter oddress: BRID:LE 122 004 (B8 40:0F 22190 cd)
SOUCO aldruan | B8R NP IR el (ONIA T2 M ea)
A 1d) Sroadosst (TR PFOPTfrirrirr)
v 00 = Frageent smaber! O
31 MeE1 1M1 * Sequence seeher | 799
Srame chwak seguence | SxRathessc [unverifing)
[FCH Statua: Unverifisd)
s COMP parametors
* Data [AN] byiws
fat FHhalifiam ea
Lengeh: 181

U0 08 30 b0 I Al 4D 48 20 08 U0 DB B0 BO 9O B
A0 20 de 27T 00 00 B0 00 1D @2 Ue B0 A0 DR A3 0
B0 00 00 08 0 10 00 00 20 85 de X7 00 0h W 0
10 00 13 U2 @) U0 b 48 34 01 44 1d 84 b 24 20
0 A BF 22 P2 ua PR AT AP PP I FF b 21 I B2
o o i | 0e e e .

© 7 Oota (sotadatsl, 151 tytold)

Fonte: Autor, 2025

Figura 20 - Captura de pacotes ESP-NOW via Wireshark com a criptografia desabilitada

BSS Id: Brondcast (FriFF e rrorer.re)
sonn aand heed 0000 = Fragment pumber: @
8010 1661 1600 , ... = Sequence nusher: 06064
Frame check sequence: SxiBfcbbed [unverified]
[FES Status: Unverified)
« IEEE B0O2.11 Wireless Management
« Fixed parametors
Category code: Vendor Specific (127)
OUI: 18:Te:34 (Espresaif Inc.)
« Data (23 bytes
Oata! JRAVAUedd LA INTeIA0401970200001050000001 100DDOO
[Length: 23
00 G0 30 00 21 40 40 a0 20 08 00 GO OO DD 00 00 0 /o0
38 4a A% 34 00 00 G0 00 10 02 9e @0 ab 0D d9 00 n) a4
00 00 00 00 0D G0 G0 ©0 97 9f A9 34 00 0D 00 00 4
16 66 11 03 d9 08 d6 60 3a 01 44 1d 64 bd 2d 3¢ tDd e

88 13 bf 22 fS5 cA fF ff ff ff ff £Ff 5O 20 71 18 »
pond fe ™ dd 20 dd 311 4 4 4 0L OF D2 o !
0ono 0 o |

Fonte: Autor, 2025

Na primeira captura, correspondente a comunicagdo com a criptografia ativada,
foram aplicados dois filtros no Wireshark para facilitar a identificagdo dos pacotes
ESP-NOW. O primeiro filtro, “wlan.addr”, foi utilizado para exibir apenas os quadros
que envolviam o endereco MAC de uma das placas envolvidas na comunicacéo,
enquanto o segundo filtro, “wlan.fc.protected == 1", foi empregado para exibir

exclusivamente os pacotes protegidos por criptografia.

61

A analise da captura realizada no Wireshark indicou que os quadros transmitidos
apresentavam o campo Protected Frame habilitado, bem como a presenca do campo
CCMP parameters, utilizado pelo padrao IEEE 802.11 para sinalizar quadros
protegidos por mecanismos de criptografia na camada MAC. No contexto do ESP-
NOW, a observacdo desses campos indica que os quadros foram transmitidos de
forma protegida, sem que o Wireshark realize a decodificacdo ou validacao
criptografica do conteudo.

O campo de dados desses pacotes apresentou apenas valores aparentemente
aleatérios em formato hexadecimal, impossibilitando a leitura de informagdes em texto
claro. Dessa forma, a captura de trafego evidencia que o conteudo transmitido néao é
legivel. Entretanto, a ferramenta nao realiza a validagao criptografica dos quadros
ESP-NOW, limitando-se a exibigdo do payload em formato bruto.

Na segunda captura, obtida apdés a desativagcdo da criptografia, também foram
aplicados filtros no Wireshark para identificacdo dos pacotes ESP-NOW. Novamente
utilizou-se o filtro “wlan.addr” para exibir apenas os quadros que envolviam o enderego
MAC de uma das ESP32, e o filtro “wlan.fc.protected == 0”, destinado a mostrar
exclusivamente os pacotes n&o protegidos. O Wireshark mostrou que o campo
“Protected Frame” estava desabilitado, e o cabegalho CCMP nao aparecia mais na
estrutura do pacote. Nesse caso, o conteudo do campo de dados continha bytes que
correspondiam a informagdes legiveis, como identificadores e trechos reconhecidos

pelo Wireshark, incluindo a identificacdo do fabricante Espressif Inc.

5.2 Autenticagao via ECDSA

Durante os testes, o emissor transmitiu periodicamente uma mensagem de
challenge, que consistia em uma mensagem de autenticagdo assinada com o
algoritmo ECDSA. A mensagem foi usada para verificar a autenticidade do dispositivo
emissor. No receptor, ao receber o payload contendo a assinatura e a mensagem, o
sistema identificou corretamente o formato e iniciou o processo de verificagao. Nos
casos observados, a assinatura foi validada com sucesso, conforme indicado pelas

mensagens no log do receptor. Apos cada verificagdo bem-sucedida, o receptor

62

enviou uma resposta de confirmacgao ao emissor, que foi devidamente reconhecida no

terminal do emissor.

A Figura 21 e Figura 22 exemplificam as saidas de log do emissor e do receptor
durante o processo de validagdo da mensagem. No emissor, visto na Figura 21, é
possivel observar o envio bem-sucedido da mensagem de challenge e, em seguida,
a recepgao de uma mensagem de confirmacado (ACK), acompanhada do enderego
MAC do receptor, indicando ao emissor o resultado da verificagdo da assinatura
digital, permitindo a continuidade da comunicagdo apenas apds a autenticagao bem-
sucedida realizada pelo ECDSA.

No receptor, visto na Figura 22, observa-se que um pacote foi recebido, contendo
o endereco MAC do emissor, o tamanho do pacote e a identificagdo do payload,
correspondente a curva a ser assinada. Posteriormente, é possivel verificar que a
assinatura foi validada com sucesso, e um ACK de confirmacao foi enviado ao
emissor, concluindo o processo de autenticagdo. Assim, evidencia-se que o
mecanismo de assinatura funciona corretamente, garantindo a autenticacdo mutua

entre os dispositivos.

Figura 21 - Envio da mensagem a ser verificada

Fonte: Autor, 2025

Figura 22 - Verificacdo da assinatura enviada pelo emissor

Fonte: Autor, 2025

63

5.3 Atualizagao OTA

Apods a conclusao da implementagdo do mecanismo de atualizacdo OTA, foram
realizados testes para validar seu funcionamento e a integragdo com os demais

modulos de seguranga do sistema.

Durante os testes, o emissor estabeleceu a conexdo com o ponto de acesso Wi-
Fi configurado e, em seguida, iniciou o processo de verificagdo da versao disponivel
no servidor OTA. A Figura 23 apresenta a saida de log gerada durante uma tentativa
de conexao com o servidor. Nessa figura, percebe-se que o sistema consulta a versao
remota e identifica que o firmware em execucgao no dispositivo ja corresponde a versao
mais recente disponivel. Como resultado, o procedimento de atualizagcdo é
interrompido automaticamente. Dessa forma, demonstra-se que o mecanismo de
verificagdo de versdo esta funcionando corretamente, evitando atualizagbes

desnecessarias.

Figura 23 - Atualizagdo OTA abortada

Fonte: Autor, 2025

Quando uma nova versao era detectada, o dispositivo realizava
automaticamente o download do arquivo binario e o gravava na particdo OTA
designada. O progresso da operacéo péde ser acompanhado por meio dos logs no

terminal, que exibiam mensagens de status.

Os resultados podem ser observados na Figura 24 e Figura 25. Na Figura 24,
nota-se que o firmware verifica a existéncia de atualizacbes disponiveis e identifica
uma nova versao no servidor. Em seguida, o sistema compara o arquivo atual com o

arquivo remoto e detecta que as versoées sao diferentes. Diante disso, o processo de

64

atualizacdo OTA ¢é iniciado, com a inicializacdo do servico responsavel pela

transferéncia do novo firmware.

A Figura 25 ilustra o processo de atualizagdo em andamento, mostrando a
gravagao do novo firmware na particdo correspondente. Apos a conclusdo do
download, o sistema informa o término da atualizacéo e o dispositivo € reinicializado

automaticamente, passando a executar a nova versao do firmware.

Figura 24 - Identificagao de nova atualizag&o disponivel

Fonte: Autor, 2025

Figura 25 - Processo de atualizagdo OTA

Fonte: Autor, 2025

Apoés a reinicializagao, o emissor iniciou com a nova versao do firmware,
evidenciada pela mensagem de identificacdo exibida no inicio da execugdo, o que

confirmou que o processo de substituicdo da particao ativa foi concluido com sucesso.

65

Durante os testes, observou-se que o tempo meédio de atualizagéo variou entre
20 e 30 segundos, dependendo da qualidade do sinal Wi-Fi e do tamanho da imagem
binaria. Em todas as execug¢des, a comunicacado TLS foi estabelecida corretamente
utilizando o certificado digital configurado no firmware, garantindo a autenticagcdo do

servidor e evitando a aplicacao de firmwares nao autorizados.

O servidor OTA, por sua vez, registrou corretamente os uploads e downloads
realizados. Esse recurso facilitou a validagcdo do processo e demonstrou o bom
funcionamento do sistema de gerenciamento das versdes de firmware. A Figura 26

exibe o layout do servidor OTA desenvolvido.

Figura 26 - Layout do servidor desenvolvido

Upload de Firmware

Escolher ficheiro EmissorQTA bin

100%

Sucesso! EmissorOTA bin salvo. Redirecionando...

Fonte: Autor, 2025

Além disso, foi possivel verificar que o processo de OTA nao interferiu no
funcionamento do protocolo ESP-NOW, permitindo que o dispositivo continuasse a se

comunicar normalmente apds a reinicializagao.

66

5.4 Flash Encryption

A ativagdo da Flash Encryption exigiu alguns procedimentos de verificagdo para
garantir sua correta implementacao. A Figura 27 apresenta o resultado da operagéo
de queima da chave de criptografia. Na figura € possivel notar que no inicio da
execucao, o terminal informa que os dados sensiveis foram ocultados, garantindo que
o conteudo da chave ndo fosse exibido durante o procedimento. Em seguida,
identifica-se o bloco de eFuse reservado para o armazenamento da chave e indica
que suas permissdes de leitura e escrita seriam desativadas de forma permanente,
assegurando que a chave nao possa ser lida nem modificada posteriormente. Por fim,
0 processo € concluido com sucesso, confirmando que a gravacao foi realizada

corretamente e que a chave criptografica passou a estar protegida.

Figura 27 - Resultado da queima da chave de criptografia

shom-sensitive-infao)

Check all blocks for burn

Type
BURN
BURN
BURN

Fonte: Autor, 2025

A Figura 28 apresenta o resultado do comando responsavel por ativar a
criptografia da meméaria Flash. Durante a execugao, o utilitario indica que o valor inicial
do campo FLASH CRYPT_CNT era 0b00000000 e foi alterado para 0b00000001,

habilitando assim o mecanismo de criptografia do chip.

67

Figura 28 - Queima do eFuse FLASH_CRYPT_CNT

Fonte: Autor, 2025

A Figura 29 apresenta o resultado da configuragdo do eFuse
FLASH_CRYPT_CONFIG, responsavel por definir quais regides da memdria Flash
serao protegidas pelo mecanismo de criptografia. Durante a execugao, o utilitario
informa que o valor anterior do campo era 0x0 e foi atualizado para 0xOF, configurando
os bits de ajuste de chave utilizados internamente pelo hardware do ESP32 para
determinar como os blocos de dados serédo criptografados em cada regido da
memoria.

Apods a confirmagao da operacéao, o log confirma que a queima foi concluida
com éxito, validando a gravagao no bloco de eFuses correspondente. Assim como
nas demais operagdes de eFuse, essa modificagédo é irreversivel, garantindo que a
configuracdo de criptografia da memoria Flash permanega permanentemente
habilitada.

68

Figura 29 - Configuragdo eFuse FLASH_CRYPT_CONFIG

espefuse.py v4.10.0
Connecting
Detecting chip type. ESP32

=== Run "burn_efuse" command ===
The efuses to burn:
from BLOCKG
- FLASH_CRYPT_CONFIG

Burning efuses:

- 'FLASH_CRYPT_CONFIG' (Flash encryption config (key tweak bits)) 0x0 -> Oxf

Check all blocks for burn...

idx, BLOCK_NANME, Conclusion

(e8] BLOCKO is not empty
(written): 9x0000860401160000000001380000a200005e441d64bd2d3cPB118680
(to write): Ox0G0000008f000G00G0DEELABDACOAEDAEC0AEEDACLAEDAE00EBDAC0DO0DGE
(coding scheme = NONE)

This is an irreversible operation!

Type 'BURN' (all capitals) to continue

BURN

BURN BLOCK® - OK (all write block bits are set)
Reading updated efuses...

Checking efuses

Successful

Fonte: Autor, 2025

Apods a execugao dos procedimentos de configuragao e ativagao da criptografia
da memodria Flash, foi possivel validar as modificagbes por meio do comando
“‘espefuse.py summary”. A Figura 30 apresenta o resumo do estado final dos eFuses
do dispositivo apds a concluséo do processo. Nela, podem ser verificados os campos
modificados, incluindo os valores atualizados dos contadores e os blocos de chave

devidamente gravados e protegidos

69

Figura 30 - Estado dos eFuses depois da criptografia da flash

)0 BO 86 00 98 04 60

) 00 00 00 D0 80 09 4

Fonte: Autor, 2025

Observa-se que o campo FLASH_CRYPT_CNT passou a conter um bit ativo,
0 que confirma a habilitagdo do mecanismo de criptografia. Além disso, o BLOCK1,
anteriormente vazio, encontra-se agora preenchido, indicando que a chave AES-256
foi devidamente gravada na area de eFuses reservada para esse proposito. Dessa
forma, confirma-se que o dispositivo concluiu com sucesso o processo de habilitacdo

da criptografia da Flash.

5.5 Secure Boot

A Figura 31 mostra o log do processo de gravacado do bootloader na memoria
Flash do ESP32. No inicio, o esptool.py identifica corretamente o chip e exibe suas
principais caracteristicas, como frequéncia de 240 MHz, suporte a Wi-Fi e Bluetooth,
e o0 esquema de codificagdo de eFuse configurado como None. Em seguida, ocorre o
upload do stub, que faz a comunicagcdo entre o computador e o microcontrolador
durante a gravacgao. O log indica 0 sucesso dessa etapa, seguida do apagamento do

setor localizado no enderego 0x1000, reservado para o bootloader.

70

Posteriormente, o sistema comprime e grava os dados, confirmando por meio do
log que o arquivo bootloader.bin foi gravado com sucesso. Por fim, é feita a

confirmacao da integridade dos dados por meio de verificagdo de Hash.

Figura 31 - Resultado gravacao do bootloader

vid.16.6

SP32-DAWD-V3 (revisio 3.1)
3T, Dual Core, 248MHZ, VRef calibration in efuse, Coding Scheme None

Stub ru

Configur f ize.
Flash will be er from 6x660816080 to OxBOBOAfFf
SHA di

Compr
rd) at Ox80661666 in 2.8 seconds (effective 117.6 kbit/s)

Fonte: Autor, 2025

Com a configuragao concluida e o bootloader devidamente gravado, a placa foi
reinicializada para dar inicio ao processo de verificagdo de inicializagdo segura.
Durante o boot, foi possivel observar no monitor serial que o sistema identificou
corretamente a ativagdo do Secure Boot, exibindo mensagens que confirmam a

validagao da assinatura digital do bootloader e do aplicativo principal.

A Figura 32 apresenta o log de inicializagdo indicando a mensagem “Secure Boot
is already enabled”, demonstrando que a assinatura digital do bootloader foi

reconhecida e validada com sucesso.

Figura 32 - Log indicando ativagdo do Secure Boot

Fonte: Autor, 2025

71

A Figura 33 exibe a leitura posterior dos eFuses, mostrando a queima do bit
ABS_DONE_0, que indica a ativagao permanente da primeira versao do Secure Boot.
Além disso, o BLOCK2 apresentou-se devidamente preenchido, comprovando que o
sistema havia gravado a chave utilizada na verificacdo das assinaturas digitais. Dessa
forma, confirma-se que o dispositivo teve o Secure Boot habilitado com sucesso e que

a chave de verificagao foi armazenada corretamente nos eFuses.

Figura 33 - Estado dos eFuse depois do Secure Boot

RT download mode

08 B0 06 06 08 80 AL A0 06 90 80 80)) 80 00 50 08 A0 06 68 90 B

Fonte: Autor, 2025

72

6 CONCLUSAO E PROPOSTA DE TRABALHOS FUTUROS

A implementacgao e a validacdo experimental da arquitetura proposta permitiram
avaliar a viabilidade do uso do SoC ESP32 como plataforma para a integracao de
mecanismos de seguranga voltados para aplicagbes de Internet das Coisas. Os
resultados obtidos indicaram que a prote¢ao da comunicagao via ESP-NOW por meio
de mecanismos de criptografia simétrica baseados no algoritmo AES, a autenticagao
das mensagens por assinaturas digitais ECDSA, a atualizagdo segura de firmware via
OTA utilizando TLS, bem como a criptografia da memoria Flash e o uso do Secure
Boot apresentaram comportamento consistente durante os testes realizados,

atendendo aos requisitos funcionais definidos para o sistema.

Os testes realizados mostraram que a comunicagao entre os dispositivos por meio
do protocolo ESP-NOW ocorreu de forma continua, com as mensagens transmitidas
apresentando conteudo nao legivel quando analisadas externamente, o que ¢
compativel com o uso de mecanismos de criptografia simétrica para prote¢cao dos
dados. A etapa de autenticagdo baseada no algoritmo ECDSA permitiu que o receptor
verificasse a validade das assinaturas digitais associadas as mensagens recebidas,
possibilitando a aceitacdo apenas de mensagens provenientes de dispositivos

previamente autenticados no contexto da aplicagao.

No que se refere ao mecanismo de atualizagdo de firmware via OTA, os
experimentos demonstraram que o dispositivo realizou o processo de verificagcao,
download e gravagado de novas imagens apenas quando um firmware valido estava
disponivel no servidor configurado. Durante esse processo, a comunicagao
estabelecida por meio do TLS ocorreu sem falhas, sendo observada a rejeicdo de
conexdes que ndo atendiam aos critérios de validagdo configurados, comportamento

compativel com o uso de um canal seguro para a atualizagdo do sistema.

A ativacao do recurso de criptografia da memaria Flash permitiu verificar que o
conteudo armazenado na memoria nao volatil ndo pdde ser interpretado quando
acessado diretamente, indicando que o firmware e os dados sensiveis permaneceram
cifrados. De forma complementar, os testes com o Secure Boot evidenciaram que
apenas imagens previamente assinadas foram aceitas durante o processo de

inicializagao, impedindo a execugéo de firmwares nao autorizados no dispositivo.

73

Durante o desenvolvimento e os testes, foram identificadas limitacbes praticas
relacionadas ao tempo adicional de processamento introduzido pelas operagdes de
assinatura e verificagdo ECDSA, bem como pela criptografia de firmware. Além disso,
constatou-se a necessidade de atengéo especial na configuragdo dos eFuses, uma
vez que essas modificagdes sdo permanentes e impactam diretamente o ciclo de vida
do dispositivo. Esses fatores nao inviabilizaram a solugao proposta, mas evidenciam
a importancia de um planejamento criterioso no projeto de sistemas embarcados

Seguros.

Por fim, embora os resultados experimentais indiquem o funcionamento adequado
da arquitetura no contexto avaliado, ndo foram realizadas medi¢des quantitativas de
laténcia adicional, consumo energético ou impacto no desempenho decorrente da

ativacado dos mecanismos criptograficos.

Com base nos resultados alcangados, identificam-se pontos de aprimoramento e

continuidade, sendo propostos os seguintes trabalhos futuros:

e Utilizar uma terceira ESP32 como unidade central responsavel pela geragao e
distribuicdo segura das chaves criptograficas entre os dispositivos, atuando

como um gerenciador de chaves.

¢ Implementar mecanismos de anti-rollback com o objetivo de impedir o upload
de firmwares antigos, garantindo que apenas versdes legitimas e mais recentes

do software possam ser executadas no dispositivo.

e Implementar sistemas de atualizagao peridédica das chaves LMK e PMK, de
forma a reduzir o tempo de exposi¢cado de cada chave e aumentar a robustez do

canal de comunicagéo.

e Implementar um sistema de monitoramento continuo da rede para identificar
padrbes andmalos de trafego, possiveis tentativas de acesso nao autorizado e

comportamentos suspeitos.

e Projetar uma rede mesh segura em que multiplos dispositivos troquem dados
criptografados, com estabelecimento e renovagdo dinédmica de chaves e

gerenciamento de rotas autenticadas.

74

7 REFERENCIAS

ABNT - ASSOCIACAO BRASILEIRA DE NORMAS TECNICAS. Medigao de resisténcia de
aterramento e de potenciais na superficie do solo em sistemas de aterramento. ABNT NBR
15749, p. 49, set. 2009.

ANDRAS, GEDEON. Secure boot and firmware update on a microcontroller-based
embedded board, 10 Dezembro 2020.

ANSHUMAN, KALLA; PAWANI, PROMBAGE; MADHUSANKA, LIYANAGE. Introduction to
loT. In: MADHUSANKA, LIYANAGE, et al. loT security advantages in authentication.
[S.1]: Wiley, 2019. Cap. 1, p. 03-26.

ANTONAKAKIS, Manos et al. Understanding the Mirai Botnet. USENIX Security
Symposium, Vancouver, 2017. 1093-1110.

ATZORI, Luigi; IERA, Antonio; MORABITO, Giacomo. The Internet of Things: A survey. In:
Computer Networks. 15. ed. [S.l.]: [s.n.], v. 54, 2010. p. 2787-2805.

BABIUCH, Marek; FOLTyYNEK, Petr; SMUTNYy, Pavel. Using the ESP32 Microcontroller for
Data Processing, 2019.

BARROS, Filipe. Estudo e Implementacao do Protocolo ECDSA, 2015.

BRASIL. Carta Brasileira para Cidades Inteligentes, 2021. Disponivel em:
<https://www.gov.br/cidades/pt-br/acesso-a-informacao/acoes-e-
programas/desenvolvimento-urbano-e-metropolitano/projeto-andus/carta-brasileira-para-
cidades-inteligentes>. Acesso em: 10 Novembro 2025.

BUSINESS INSIGHTS FORTUNE. Internet of Things (loT) Market Size, Share & Industry
Analysis, 2024. Disponivel em: <https://www.fortunebusinessinsights.com/industry-
reports/internet-of-things-iot-market-100307>. Acesso em: 10 Novembro 2025.

DATTA, Soumya K. DRAFT- A Cybersecurity Framework for loT Platforms, 2020.

DELGADO, Ismael et al. Exploring loT Vulnerabilities in a Comprehensive Remote
Cybersecurity Laboratory, 2023.

EMBARCADOS. EMBARCADOS. ESP32 - Seguranga e protegao da flash, 2020.
Disponivel em: <https://embarcados.com.br/protecao-da-flash-no-esp32/>. Acesso em: 21
Outubro 2025.

ESPRESSIF. ESP32 Series. [S.1.]: [s.n.], 2019.
ESPRESSIF. Flash Encryption, 2024.
ESPRESSIF. Secure Boot, 2024.

ESPRESSIF. ESP-NOW, 2025.

ESPRESSIF. Over The Air Updates (OTA), 2025.

GARCIA, Laura et al. loT-Based Smart Irrigation Systems: An Overview on the Recent
Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture. 4. ed. [S.1.]: [s.n.],
v. 20, 2020. p. 1045-1058.

GRANDVIEW RESEARCH. Brazil Smart Cities Market & Outlook 2024-2030, 2024.
Disponivel em: <https://www.grandviewresearch.com/horizon/outlook/smart-cities-
market/brazil>. Acesso em: 10 Novembro 2025.

IEEE. IEEE Standard for an Architectural Framework for the Internet of Things (I0T).

75

IMARC GROUP. Brazil Internet of Things (loT) Market Overview, 2024. Disponivel em:
<https://www.imarcgroup.com/brazil-internet-of-things-(iot)-
market#:~:text=The%20Brazil%20Internet%200f%20Things,17.80%25%20during%202025%
2D2033.>. Acesso em: 10 Novembro 2025.

IOT ANALYTICS. Most recent analyses and market assessments, 2024. Disponivel em:
<https://iot-analytics.com/>. Acesso em: 10 Novembro 2025.

JOHNSON, Don; MENEZES, Alfred; VANSTONE, Scott. The Elliptic Curve Digital Signature
Algorithm (ECDSA), 2013.

KEN RESEARCH. KSA Internet of Things in Healthcare Market, 2025. Disponivel em:
<https://www.kenresearch.com/ksa-internet-of-things-in-healthcare-market>. Acesso em: 10
Novembro 2025.

KRAWCZYK, Hugo; PATERSON, Kenneth G.; WEE, Hoeteck. Onthe Security of the TLS
Protocol: ASystematic Analysis, 2013.

MADAKAM SOMAYYA, R. R. T. S. Internet of Things (loT): A Literature Review, Janeiro
2015.

MAIER, Alexander; SHARP, Andrew; VAGAPOV, Yuriy. Comparative Analysis and Practical
Implementation of the ESP32 Microcontroller Module for the Internet of Things, 2017.

MEDIUM. Revolutionizing Updates — The Power of OTA Technology in Modern
Systems, 2025. Disponivel em: <https://medium.com/tech-x-humanity/revolutionizing-
updates-the-power-of-ota-technology-in-modern-systems-03ed511ede9a>. Acesso em: 10
Novembro 2025.

MICROGENIQOS, 2020. Disponivel em: <https://www.youtube.com/watch?v=RGbF98Xglzs>.
Acesso em: Setembro 30 2025.

MOREIRA, Marcio. ECDSA (Elliptic Curve Digital Signature Algorithm), Julho 2006.

MVNO INDEX. Brazilian Market Update for loT Cellular Connectivity, 2024. Disponivel
em: <https://mvno-index.com/brazilian-market-update-for-iot-cellular-connectivity/>. Acesso
em: 10 Novembro 2025.

PASIC, Roberto; KUZMANOV, Ivo; ATANASOVSKI, Kokan. ESP-NOW communication
protocol with ESP32, 2021.

PODDER, Rakesh; BARAI, Ranijit K. Hybrid Encryption Algorithm for the Data Security of
ESP32 based loT-enable Robots, 2021.

RAFIULLAH, KHAN et al. Future Internet: The Internet of Things Architecture, Possible
Applications and Key Challenges, 2012.

RFID JOURNAL. Understanding Global loT Growth, 2024. Disponivel em:
<https://www.rfidjournal.com/news/understanding-global-iot-growth/222206/>. Acesso em: 10
Novembro 2025.

ROSA, Alan F.; TEIXEIRA, David V.; JUNIOR, Nilton A. Comunicacdes seguras entre
dispositivos loT utilizando o ESP32, 20 Maio 2020.

SABBATINI, Michel. Hardening loT Devices: An Analysis of the ESP32 Microcontroller, 1
Setembro 2024.

SICARI, Sabrina et al. Security, privacy and trust in Internet of Things: The road ahead,
Janeiro 2015.

TIMKO, Alexander M. Cybersecurity of Internet of Things Devices: A Secure Shell
Implementation , 5 Maio 2020.

WU, MIAO et al. Research on the architecture of Internet of things, 2010.

76

	69a4c208d1194ff37e329ee0c4def7f7c6f646b49e09af74906936b5a5c7ca67.pdf
	c740bbf2b16442859d1e1e442fe7ebdcbef58826b5dba5b7a36f255c0495c220.pdf
	69a4c208d1194ff37e329ee0c4def7f7c6f646b49e09af74906936b5a5c7ca67.pdf

