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Resumo 

Com o aumento exponencial dos dados e o desenvolvimento de sistemas inteligentes baseados em 

Aprendizado de Máquina (AM), surgem novas oportunidades e desafios. A eficácia desses 

sistemas depende da compreensão dos princípios do AM, principalmente na utilização de 

algoritmos supervisionados, que aprendem a partir de dados rotulados para realizar tarefas de 

previsão. Nesse contexto, dados de proveniência oferecem uma oportunidade de rastrear e entender 

decisões feitas durante as execuções anteriores de pipelines de AM, promovendo a transparência 

e rastreabilidade desses processos. Embora a literatura explore o uso de dados de proveniência em 

AM, sua aplicação em atividades de seleção de atributos ainda é pouco explorada, apesar do 

potencial para automatizar ajustes e melhorar a avaliação dos modelos. O presente trabalho propõe 

uma abordagem focada em dados de proveniência de execuções de pipelines de AM, com o 

objetivo de explorar o papel desses dados na reexecução e ajuste de atividades de seleção de 

atributos em pipelines de AM. Especificamente, investigam-se duas questões de pesquisa: (1) 

como dados de proveniência capturados durante a execução de um pipeline de AM podem ser 

utilizados para registrar e viabilizar a reexecução consistente de atividades específicas em 

momentos futuros, e (2) como as informações obtidas a partir dos dados de proveniência de 

execuções anteriores de pipelines de AM podem auxiliar na realização de ajustes na seleção de 

atributos, de forma a contribuir para a melhoria da avaliação dos modelos de AM. A solução 

apresentada envolve a captura de dados de proveniência durante a execução de pipelines e a 

estruturação semântica desses dados usando uma extensão da Ontologia PROV (W3C). A 

estruturação visa otimizar a reutilização das informações para ajustar e melhorar a avaliação dos 

modelos de AM. A abordagem permite ajustar a seleção de atributos com base em execuções 

anteriores, promovendo o aprimoramento contínuo do modelo. Para avaliar a proposta, foi 

desenvolvido um protótipo que automatiza esse processo. Em experimentos com diferentes tarefas 

de treinamento de modelos de AM, foi observado que os ajustes baseados em dados de 

proveniência resultaram em melhorias nas métricas de acurácia e F1-score dos modelos de AM 

gerados. Os resultados indicam que o uso de dados de proveniência contribui para otimizar o 

processo de treinamento, especialmente ao considerar a reexecução e o ajuste das atividades. As 

principais contribuições deste trabalho incluem a definição da ontologia PROVX, a qual permite 

modelar e  gerenciar os dados de proveniência dos pipelines de AM, e a proposta de uma estratégia 

de seleção de atributos que facilita o aprimoramento dos modelos com base nesses dados. 

Palavras-chave: Aprendizado de Máquina, Dados de Proveniência, Seleção de Atributos, 

Ontologias. 



 

 

 

Abstract 

With the exponential growth of data and the development of intelligent systems based on Machine 

Learning (ML), new opportunities and challenges have emerged. The effectiveness of these 

systems depends on a comprehensive understanding of ML principles, particularly the use of 

supervised algorithms that learn from labeled data to perform predictive tasks. In this context, 

provenance data offers a valuable opportunity to trace and understand decisions made during 

previous executions of ML pipelines, thereby promoting transparency and traceability in these 

processes. Although the literature explores the use of provenance data in ML, its application to 

feature selection activities remains underexplored, despite its potential to automate tuning 

processes and improve model evaluation. This study proposes an approach focused on provenance 

data derived from ML pipeline executions, aiming to investigate the role of such data in the 

reexecution and adjustment of feature selection activities within ML pipelines. Specifically, two 

research questions are addressed: (1) how provenance data captured during the execution of an 

ML pipeline can be used to record and enable the consistent re-execution of specific activities at 

later stages, and (2) how information obtained from provenance data of previous ML pipeline 

executions can support adjustments to feature selection in order to enhance ML model evaluation. 

The proposed solution involves the capture of provenance data during pipeline executions and the 

semantic structuring of this data using an extension of the PROV Ontology (W3C). This 

structuring aims to optimize the reuse of information to refine and improve ML model evaluation. 

The approach enables feature selection adjustments based on prior executions, thereby supporting 

the continuous enhancement of the model. To evaluate the proposal, a prototype was developed to 

automate the process. In experiments involving different ML model training tasks, it was observed 

that adjustments based on provenance data led to improvements in accuracy and F1-score metrics 

of the resulting models. The results indicate that the use of provenance data contributes to the 

optimization of the training process, particularly when considering the re-execution and 

adjustment of specific activities. The main contributions of this work include the definition of the 

PROVX ontology, which enables the modeling and management of provenance data from ML 

pipelines, and the proposal of a feature selection strategy that facilitates model enhancement based 

on such data. 

Keywords: Machine Learning, Provenance Data, Feature Selection, Ontologies. 
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1 INTRODUÇÃO 

Neste capítulo, é descrito o contexto no qual este trabalho está inserido. Inicialmente, é 

apresentada a motivação do trabalho, seguida da definição do problema. Também são 

estabelecidos os objetivos, uma visão geral da solução proposta, a metodologia de pesquisa e 

as contribuições esperadas. Por fim, a organização geral do documento é exposta. 

1.1 CONTEXTO E MOTIVAÇÃO 

Com o crescimento exponencial dos dados produzidos ao longo dos anos, técnicas foram 

desenvolvidas com o objetivo de extrair informações valiosas (OMITAOMU et al., 2021). A 

adoção de metodologias baseadas em Inteligência Artificial (IA), especialmente em 

Aprendizado de Máquina (AM), tem gerado oportunidades e desafios para uma melhor 

utilização desses dados, incluindo o desenvolvimento de sistemas inteligentes capazes de 

realizar tarefas, como previsões e tomadas de decisões baseadas nas previsões obtidas. 

Compreender os princípios que norteiam o AM, incluindo os algoritmos e as etapas 

relacionadas ao treinamento de modelos de AM, é essencial para melhorar a eficácia dessas 

técnicas.  Os algoritmos de aprendizado supervisionado, em particular, desempenham um papel 

crucial nesse processo. Sendo uma das categorias mais comuns e utilizadas em AM, o 

aprendizado supervisionado faz uso de algoritmos que aprendem a partir de dados rotulados 

para realizar tarefas de previsão (JIANG et al., 2020).  

Para o treinamento de modelos de AM, podemos considerar as fases fundamentais para 

o desenvolvimento do modelo: coleta de dados, preparação de dados, treinamento do modelo, 

avaliação do modelo e otimização (TEUBL et al., 2023). Nessas fases, podemos ter uma série 

de tarefas específicas, como na fase de preparação de dados, que pode incluir a limpeza e 

transformação dos mesmos, e a seleção de atributos relevantes. Os resultados obtidos por esses 

modelos dependem dos dados coletados e das atividades realizadas sobre eles, as quais 

influenciam diretamente os resultados dos modelos de AM. Alguns trabalhos, como os de 

CELDRAN et al. (2023) e SCHELTER et al. (2023), indicam a relevância do conhecimento 

detalhado sobre um pipeline de AM, em nível de execução e configuração. Esse conhecimento 

compreende as atividades realizadas para o treinamento de modelos de AM, como o 

entendimento do modelo gerado, os parâmetros utilizados e a detecção de problemas nos dados, 

de forma a tornar o processo mais transparente e rastreável. 

A partir do treinamento de modelos de AM, pode ser interessante a obtenção de dados 

de proveniência que permitam rastrear e facilitar o entendimento das decisões tomadas durante 
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a execução do pipeline. A proveniência se refere a qualquer informação que descreva o processo 

de geração de um produto final (como um dado ou até um objeto físico), podendo ser obtida 

para diferentes finalidades, como a reprodutibilidade, a rastreabilidade e a depuração de 

processos (HERSCHEL et al., 2017). Dados de proveniência podem incluir informações sobre 

a origem de artefatos, como o responsável e a data de criação de um conjunto de dados, além 

de aspectos sobre o script e execução dos pipelines de AM, como parâmetros utilizados, 

duração da execução e status das operações realizadas. Por exemplo, ao executar um pipeline 

para classificação de risco de crédito, no qual o rótulo indica se um cliente é um "bom" ou 

"mau" pagador, os dados de proveniência podem registrar todo o pré-processamento dos dados. 

Esses registros também podem incluir detalhes do modelo gerado, como algoritmo, parâmetros 

e atributos utilizados, permitindo acesso a um histórico das execuções realizadas com esse 

pipeline específico. 

Considerando o contexto de execução de pipelines de AM, dados de proveniência 

podem ser capturados para ajudar na análise dos resultados obtidos a partir de um modelo de 

AM e do processo aplicado para identificar fatores que impactaram o desempenho do modelo. 

Ao relacionar os dados de proveniência com os resultados gerados pelo modelo de AM, também 

é possível aplicar técnicas que reflitam na  melhoria dos resultados dos modelos de AM. Como 

ilustração, o trabalho realizado por LOURENÇO et al. (2020) utiliza dados de proveniência 

extraídos de um histórico de execuções com o objetivo de identificar falhas, como a geração de 

resultados errôneos, e aplicar a otimização de hiperparâmetros utilizados no treinamento de 

modelos de AM. Ao considerar esse processo iterativo, é possível ajustar e avaliar o modelo a 

partir de dados de proveniência, utilizando informações sobre a execução do pipeline e os 

resultados obtidos, o que torna os dados de proveniência relevantes para futuras execuções do 

pipeline.   

Para estruturar esses dados de proveniência, utiliza-se, em geral, uma ontologia com o 

objetivo de padronizar a representação, facilitar sua interpretação e reutilização. Entre as 

ontologias existentes, a mais comumente adotada é a PROV, proposta pelo World Wide Web 

Consortium (W3C) (LEBO et al., 2013). Essa ontologia se destaca por sua flexibilidade na 

modelagem dos processos, podendo ser estendida para representar de forma mais 

contextualizada as atividades em domínios específicos de AM, conforme demonstrado por 

SCHLEGEL & SATTLER (2023), BUTT & FITCH (2020) e SOUZA et al. (2021). 

Os dados de proveniência das atividades realizadas na fase de preparação de dados 

também ajudam a entender o tratamento realizado sobre eles e a possível influência que cada 

operação exerceu no resultado do modelo preditivo (OLIVEIRA et al., 2024). Em um pipeline 
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de classificação de atrasos de voos, por exemplo, os dados de proveniência podem indicar que 

a exclusão de atributos com baixa variabilidade ou alta correlação com outros atributos 

contribuiu para melhorias de métricas de avaliação, como a F1-score, nos modelos de AM.  

Ao considerar que a melhoria e adequação dos dados realizados na fase de preparação 

desempenham um papel importante na análise e otimização do processo de treinamento do 

modelo de AM, torna-se relevante associar essas atividades aos dados de proveniência. Isso se 

deve ao fato de que eles permitem registrar de forma estruturada todo o processo aplicado para 

a obtenção dos atributos utilizados nos modelos de AM. Também se torna possível realizar 

ajustes mais precisos ao longo do tempo, como na identificação de problemas nos dados e o 

ajuste dos parâmetros das atividades desempenhadas, aprimorando os resultados obtidos a partir 

dos modelos. 

As melhorias observadas a partir do uso dos dados de proveniência entre execuções de 

um pipeline no contexto da fase de preparação de dados ainda necessitam de investigações mais 

aprofundadas. Além disso, são necessárias avaliações experimentais que comprovem sua 

efetividade em diferentes cenários e domínios. Isso destaca a necessidade de desenvolver 

métodos para detalhar as atividades relacionadas à preparação dos dados, como realizado em 

OLIVEIRA et al. (2024) e CHAPMAN et al. (2020), mas também para analisar e aplicar dados 

de proveniência, de modo que este uso possa refletir de forma positiva na avaliação dos modelos 

de AM. Além disso, embora trabalhos na literatura indiquem que os dados de proveniência 

podem contribuir para o desenvolvimento de modelos de AM, sua aplicação ao longo desse 

processo ainda não foi plenamente explorada. 

No trabalho realizado por SCHELTER et al. (2024), dados provenientes de execuções 

anteriores são utilizados para identificar automaticamente correções que devem ser realizadas 

no pipeline. De modo semelhante, os dados de proveniência também podem ser utilizados para 

otimizar atividades específicas executadas ao longo do pipeline, como a seleção de atributos. 

Ao rastrear e correlacionar os atributos mais eficazes em execuções, torna-se possível 

identificar os atributos que impactam positivamente a avaliação do modelo, o que pode 

contribuir diretamente para a qualidade dos modelos gerados (OLIVEIRA et al., 2024). 

A utilização eficaz dos dados de proveniência, muitas vezes, encontra obstáculos na 

dificuldade de rastrear como determinados atributos foram selecionados ou descartados ao 

longo do pipeline de AM e como reexecutar essas atividades de forma que a consistência do 

processo seja mantida. Isso pode, por sua vez, refletir diretamente na avaliação do modelo, 

afetando as métricas avaliativas, impactando a acurácia, precisão e outras medidas de 

desempenho essenciais para a qualidade das previsões. O desenvolvimento de métodos 
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baseados em dados de proveniência pode contribuir significativamente para a documentação e 

interpretação dos modelos, além de possibilitar ajustes mais precisos e melhorias em diferentes 

contextos de aplicação, conforme evidenciado em trabalhos como os de OLIVEIRA et al. 

(2024), SCHELTER et al. (2024) e CHAPMAN et al. (2020). 

1.2 QUESTÕES DE PESQUISA 

Dado o cenário exposto, este trabalho visa compreender como dados de proveniência obtidos 

na execução de pipelines de AM podem ser utilizados para a auxiliar em sua melhoria. Nesse 

sentido, delineiam-se as seguintes questões de pesquisa: 

Q1: Como dados de proveniência capturados durante a execução de um pipeline de aprendizado 

de máquina podem ser utilizados para registrar e viabilizar a reexecução consistente de 

atividades específicas em momentos futuros? 

Ao considerar um processo em que os dados de proveniência, obtidos a partir da execução do 

pipeline de aprendizado de máquina, são estruturados semanticamente, é possível acessar o 

histórico de atividades. Isso proporciona maior compreensão, confiança e reutilização dos 

dados em diferentes execuções (SOUZA et al., 2021), melhorando a análise e o aprimoramento 

contínuo dos modelos de aprendizado de máquina. A partir dos dados de proveniência também 

é possível identificar se, para uma execução atual de um pipeline existem execuções anteriores 

relacionadas, desde que seja utilizado o mesmo pipeline e conjunto de dados, o que também 

contribui para a consistência das atividades que podem ser reexecutadas. 

Q2: Como as informações obtidas a partir dos dados de proveniência de execuções anteriores 

de pipelines de aprendizado de máquina podem auxiliar na realização de ajustes na seleção de 

atributos, de forma a contribuir para a melhoria da avaliação dos modelos de AM? 

Em um contexto iterativo, novas execuções de um pipeline de aprendizado de máquina podem 

se beneficiar de execuções anteriores, alterando o processo, promovendo a sua reexecução e 

ajustando-o com base nos dados de proveniência obtidos. Isso se aplica tanto à reexecução de 

atividades quanto à introdução ou ajuste de atividades, como a seleção de atributos. Embora a 

literatura explore o uso de dados de proveniência em atividades dos pipelines de AM, a 

aplicação desses dados na seleção de atributos ainda é pouco explorada, o que motiva o foco 

do presente trabalho nessa atividade. Ao analisar os atributos utilizados em execuções passadas 

e seu impacto na avaliação do modelo, é possível ajustar e refinar a escolha de atributos em 

futuras execuções, selecionando aqueles mais relevantes para o modelo, o que tende a melhorar 

a sua avaliação. 
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1.3 OBJETIVOS 

O principal objetivo deste trabalho de doutorado é propor uma abordagem que considere desde 

a estruturação semântica de dados de proveniência relacionados à execução de pipelines de AM 

até a sua utilização de modo a promover a melhoria dos modelos treinados. Para atingir esse 

objetivo, definem-se alguns objetivos específicos: 

● Estruturar e organizar os dados de proveniência gerados em pipelines de AM, 

utilizando ontologias para promover uma representação semântica que favoreça 

a interpretação, reutilização e integração com diferentes ferramentas; 

● Investigar como os dados de proveniência provenientes de execuções anteriores 

de treinamento de modelos de AM podem ser analisados para orientar e 

automatizar ajustes na atividade de seleção de atributos, com ênfase em técnicas 

como a Eliminação Recursiva de Atributos (RFE, do inglês Recursive Feature 

Selection); 

● Propor e desenvolver uma abordagem que, a partir da captura de dados de 

proveniência, realize a estruturação semântica desses dados, possibilitando sua 

utilização tanto na reexecução de atividades específicas dos pipelines quanto no 

aprimoramento da seleção de atributos, com o objetivo de dar suporte para uma 

possível melhoria na avaliação dos modelos gerados; e 

● Avaliar a eficácia da abordagem proposta por meio de experimentos, utilizando 

métricas como acurácia e F1-score, comparando os modelos gerados com e sem 

o suporte dos dados de proveniência. 

1.4 VISÃO GERAL DA SOLUÇÃO PROPOSTA 

Considerando o objetivo deste trabalho, a estruturação semântica dos dados de proveniência 

relacionados à execução de pipelines de AM e seu uso têm como propósito a melhoria dos 

modelos treinados. Essa estruturação semântica inclui a organização e categorização das 

informações sobre os artefatos utilizados e os dados obtidos durante a execução do pipeline de 

AM. Assim, todos os dados de proveniência relevantes estarão disponíveis para análise 

posterior. 

Além disso, a realização de ajustes nas atividades a partir dos dados de proveniência 

pode refletir positivamente nos resultados dos modelos de AM. Por exemplo, ao analisar os 

modelos de AM em execuções anteriores, torna-se possível identificar quais atributos têm maior 

influência nos resultados do modelo, possibilitando a seleção dos atributos mais adequados. 
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Dessa forma, a solução proposta busca facilitar a interpretação e a transparência dos modelos 

de AM, além de promover melhorias contínuas com base na análise e na reexecução de 

atividades bem-sucedidas. 

Neste trabalho, a seleção de atributos é realizada a partir da aplicação da técnica de RFE 

(KUHN & JOHSON, 2013), visando aprimorar o desempenho dos modelos gerados. A RFE foi 

escolhida por permitir a seleção de um conjunto de atributos de forma automatizada e 

padronizada, levando em consideração a contribuição dos atributos para o modelo gerado, 

independentemente de particularidades específicas de cada pipeline. Além disso, a escolha pela 

RFE em vez de outras técnicas também automatizadas, como o Lasso (HASTIE et al., 2015), 

se dá pelo fato de ser mais adequada para modelos não lineares, permitindo levar em 

consideração as interações não lineares entre as variáveis, como nos modelos utilizados nos 

pipelines dos experimentos, que envolvem algoritmos de Árvore de Decisão e Random Forest. 

A Figura 1 ilustra as etapas de execução da solução proposta, que abrange desde a 

utilização de dados de proveniência de execuções anteriores para ajustar o pipeline de AM até 

a estruturação semântica dos dados de proveniência da execução atual. O processo inicia a partir 

do momento em que o usuário fornece o pipeline de AM (Pip), o conjunto de dados (Dat) a ser 

utilizado e o conjunto de metadados associado a esse conjunto de dados (Dat_M).  

Na primeira etapa, verifica-se, no repositório de dados, se há alguma execução anterior 

relacionada à execução atual do pipeline. Com base nessa verificação, se houver execuções 

anteriores desse pipeline, os dados de proveniência são utilizados para identificar atributos que 

possam melhorar os resultados do modelo por meio da aplicação da técnica RFE. A partir da 

identificação desses atributos mais relevantes, a atividade de seleção de atributos é atualizada, 

resultando em um pipeline ajustado (Pip’), que segue para a etapa de execução. Por outro lado, 

se não houver dados de proveniência relacionados ao pipeline, ou se o usuário não desejar 

alterar o pipeline com os dados de proveniência, o fluxo segue para a execução do pipeline, sem 

alterações. 

Figura 1 – Etapas de Execução da solução proposta. 

 
Fonte: O Autor. 
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A partir da execução do pipeline, é realizada a captura dos dados de proveniência e, na 

etapa seguinte, esses dados de proveniência e os metadados do conjunto de dados são 

estruturados semanticamente de forma automatizada utilizando a extensão da Ontologia PROV 

do W3C (LEBO et al., 2023), denominada PROVX, proposta neste trabalho. Após esta etapa, 

a proveniência estruturada semanticamente é armazenada no repositório de dados em formato 

RDF. Em seguida, é disponibilizada ao usuário para a realização de consultas do tipo SPARQL. 

Por fim, os resultados da execução atual são avaliados e comparados com os resultados das 

execuções anteriores, permitindo avaliar os ajustes realizados e os respectivos impactos nos 

resultados. 

1.5 METODOLOGIA DE PESQUISA 

O tema central desta tese, relacionado ao uso de dados de proveniência em pipelines de AM, 

foi inicialmente investigado por meio de um estudo exploratório. Esse estudo teve como 

propósito fornecer uma visão das abordagens existentes, possibilitando a identificação de 

lacunas e limitações nas soluções previamente propostas. Posteriormente, foi realizado um 

levantamento direcionado sobre os trabalhos que estendem a Ontologia/Modelo PROV no 

contexto da execução de pipelines de AM, com o intuito de compreender as estratégias adotadas 

e identificar aspectos ainda não explorados. A partir dessa análise, foi possível delimitar o 

escopo da pesquisa, que se concentra na proposição de uma abordagem que permita a 

reexecução e o ajuste de atividades de um pipeline de AM, utilizando dados de proveniência 

estruturados semanticamente. 

Com base no cenário identificado, foram formuladas duas perguntas de pesquisa (Seção 

1.2), as quais nortearam o desenvolvimento da investigação. A pesquisa adota uma metodologia 

quantitativa experimental, com o objetivo de avaliar, de forma controlada, os efeitos da 

aplicação de dados de proveniência na atividade de seleção de atributos em pipelines de AM. 

Além disso, foi adotada uma abordagem exploratória, considerando a natureza ainda pouco 

explorada da aplicação de dados de proveniência na atividade de seleção de atributos em 

pipelines de AM. 

A proposta deste trabalho foi estruturada em três fases principais: (i) modelagem 

conceitual e definição da solução, incluindo a extensão da Ontologia PROV, denominada 

PROVX, e a estratégia de ajuste baseada em execuções anteriores; (ii) desenvolvimento do 

protótipo nFlowX, que considera a captura, estruturação e utilização dos dados de proveniência; 

e (iii) avaliação experimental da abordagem. Para a avaliação, foram definidos cenários e 

conduzidos experimentos com diferentes conjuntos de dados, conforme descrito na Seção 5. Os 
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resultados obtidos foram analisados por meio de métricas quantitativas e comparados com 

cenários de referência (baseline), de modo a evidenciar as contribuições da proposta. 

1.6 CONTRIBUIÇÕES ESPERADAS 

Estas são as principais contribuições desta tese: 

● Uma abordagem que, a partir da obtenção de dados de proveniência da execução de 

pipelines de AM, estrutura esses dados considerando elementos essenciais do contexto, 

como artefatos, atores e o processo aplicado, e os disponibiliza para consulta; 

● A definição de uma extensão de ontologia (PROVX) baseada na PROV-O para modelar 

e gerenciar dados de proveniência em pipelines de aprendizado de máquina, 

considerando as características e o detalhamento de execuções iterativas; 

● Uma abordagem para reexecutar atividades com o objetivo de auxiliar na melhoria da 

avaliação dos pipelines de AM; 

● Uma prova de conceito, representada por um protótipo (nFlowX), desenvolvido para 

validar a abordagem proposta; e 

● Avaliação da abordagem proposta por meio de experimentos que analisam a melhoria 

na avaliação dos modelos de AM, resultante do uso de dados de proveniência para a 

reexecução de atividades e para ajustes na seleção de atributos utilizados no modelo, 

considerando métricas como acurácia e F1-score. 

1.7 ORGANIZAÇÃO DO DOCUMENTO 

O restante deste documento está organizado da seguinte forma: 

● O Capítulo 2 detalha os conceitos e técnicas fundamentais que envolvem a abordagem 

proposta; 

● O Capítulo 3 apresenta uma visão geral dos trabalhos relacionados, considerando os 

trabalhos que exploram a execução de pipelines de aprendizado de máquina, com ênfase 

especial no gerenciamento e uso de dados de proveniência, e os trabalhos que estendem 

a Ontologia/Modelo PROV do W3C considerando o contexto de execução de pipelines 

de aprendizado de máquina; 

● O Capítulo 4 descreve a abordagem proposta, considerando a formalização de algumas 

definições e cada fase que compõe a abordagem, sendo detalhada a extensão PROVX; 

● O Capítulo 5 detalha os experimentos realizados neste trabalho a partir do protótipo 

nFlowX, sendo avaliados os ganhos que a abordagem proposta promove; e 
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● O Capítulo 6 expõe as considerações finais acerca do trabalho, considerando as 

contribuições alcançadas, limitações e trabalhos futuros. 
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2 FUNDAMENTAÇÃO 

Neste capítulo, são apresentados os conceitos fundamentais que compõem o escopo deste 

trabalho. Primeiramente, são introduzidos conceitos sobre aprendizado de máquina e sobre 

algumas técnicas que podem ser utilizadas no contexto de aprendizado supervisionado. Em 

seguida, na Seção 2.2, são incluídas definições acerca de dados de proveniência. Na Seção 2.3, 

são expostas definições e características principais das ontologias e seu uso para representar dados 

de proveniência. Por fim, são apresentadas as considerações sobre o capítulo. 

2.1 APRENDIZADO DE MÁQUINA 

Na Inteligência Artificial, diversas técnicas permitem a análise de dados para realizar previsões 

e recomendações, como o Aprendizado de Máquina e o Processamento de Linguagem Natural. 

O Aprendizado de Máquina, um dos ramos da IA, fornece algumas técnicas, que contribuem 

para o processo de descoberta de conhecimento por meio de algoritmos capazes de alcançar 

resultados notáveis mesmo em tarefas mais complexas (OLIVEIRA et al. 2024). A partir desses 

algoritmos, são gerados modelos que aprendem automaticamente a partir dos dados e podem 

ser classificados em três tipos principais (LUDERMIR, 2021): Supervisionado, Não 

Supervisionado e por Reforço. Cada uma dessas abordagens pode ser aplicada de acordo com 

o cenário apresentado, sendo (ALPPAYDIN, 2010):  

 Aprendizado Supervisionado: técnica de aprendizado em que o objetivo é aprender um 

mapeamento da entrada para uma saída, utilizando dados de treinamento rotulados, 

cujos valores corretos são fornecidos por um supervisor; 

 Aprendizado Não-Supervisionado: essa técnica de aprendizado de máquina utiliza os 

dados de entrada para identificar os padrões que ocorrem com mais frequência do que 

outros, utilizando conjuntos de dados não-rotulados; e 

 Aprendizado por Reforço: técnica de aprendizado de máquina em que um agente 

interage com um ambiente, recebendo recompensas ou penalidades por suas ações. O 

agente aprende a seguir a melhor política a partir de suas tentativas e erros, tendo como 

objetivo obter a sequência de ações que melhore a recompensa total. 

Popularmente utilizados, os algoritmos de AM supervisionado podem ser aplicados em 

tarefas de classificação (utilizando um rótulo como alvo) ou tarefas de regressão (prevendo 

valores contínuos a partir de um conjunto de variáveis de entrada) (BURKART & HUBER, 

2021). Alguns desses algoritmos induzem modelos interpretáveis e transparentes por sua 
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natureza simples, por exemplo, regressão logística e árvores de decisão (SCHNEIDER et al., 

2023).  

Existe uma variedade de algoritmos supervisionados para a classificação, na qual a 

escolha do algoritmo mais apropriado depende de uma série de fatores, como o objetivo do 

modelo, o poder de processamento dos dados, a necessidade de interpretação dos resultados e 

os recursos computacionais disponíveis (BURKART & HUBER, 2021). Alguns desses 

algoritmos, como Árvores de Decisão e Naive Bayes, são amplamente utilizados devido à sua 

simplicidade e a sua possível interpretação. Além dessas abordagens tradicionais, também se 

destaca o Deep Learning (Aprendizado Profundo), um subcampo do aprendizado de máquina 

baseado em redes neurais artificiais com múltiplas camadas (LECUN et al., 2015). Apesar de 

necessitar de maior poder computacional e geralmente resultar em modelos menos 

interpretáveis, essa técnica é notável por seu alto desempenho em grandes volumes de dados. 

Por isso, é amplamente utilizada em tarefas como reconhecimento de imagens e processamento 

de linguagem natural. 

PATIL et al. (2024) detalha alguns dos algoritmos de classificação: 

 Árvore de Decisão: Um modelo com estrutura de árvore usado para tomar 

decisões e prever resultados, dividindo os dados em ramos com base nos 

valores das características; 

 K-Nearest-Neighbors (KNN): Um algoritmo simples e não paramétrico 

utilizado para classificação e regressão, que compara novos pontos de dados 

com os pontos mais próximos no conjunto de treinamento; 

 Naive Bayes: Um classificador probabilístico baseado no teorema de Bayes, 

que assume independência entre os atributos; e 

 Support Vector Machines (SVM): Um algoritmo de aprendizado 

supervisionado que encontra uma superfície de decisão (hiperplano) ótima para 

classificar os pontos de dados em diferentes classes. 

Estes algoritmos permitem classificar uma nova entrada em uma das categorias de uma 

variável Y. Conforme exemplificado na Tabela 1, na qual uma amostra de dados composta por 

características sociodemográficas de clientes será utilizada para prever o comportamento de um 

futuro solicitante de crédito com base na variável Y, classificando-o em bom ou mau pagador 

(SICSÚ et al., 2023).  
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Tabela 1 - Dados para um problema de classificação 

Cliente Idade UF Resid. Est. Civil Instrução Renda Y=status 

1 33 SP Própria Casado Fundamental 1200 Bom 

2 52 PA Própria Solteiro Fundamental 6500 Bom 

3 65 SP Própria Solteiro Superior 7832 Mau 

...        

Fonte: SICSÚ et al. (2023) 

Para avaliar os resultados dos modelos de aprendizado de máquina, devem ser consideradas 

métricas que indicam o desempenho dos modelos treinados, como as métricas de acurácia, 

precisão, cobertura e F1-score (ELMRABIT et al., 2020), estabelecidas da seguinte forma: 

(i) Acurácia (Accuracy) se refere à fração de previsões corretas em relação ao número 

total de instâncias, conforme fórmula seguinte: 

𝐴𝑐𝑢𝑟á𝑐𝑖𝑎 =  
𝑉𝑃 + 𝑉𝑁

𝑉𝑃 + 𝑉𝑁 + 𝐹𝑃 + 𝐹𝑁
 

  Onde: 

VP são os verdadeiros positivos; 

VN são os verdadeiros negativos; 

FP são os falsos positivos; 

FN são os falsos negativos. 

(ii) Precisão (Precision) corresponde à fração de previsões corretas entre todas as 

instâncias classificadas como positivas. 

𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 =  
𝑉𝑃

𝑉𝑃 + 𝐹𝑃
 

  Onde: 

VP verdadeiros positivos; 

FP falsos positivos. 

(iii) Cobertura (Recall) é a fração de resultados verdadeiros positivos entre todos os 

exemplos que realmente são positivos. 

𝐶𝑜𝑏𝑒𝑟𝑡𝑢𝑟𝑎 =  
𝑉𝑃

𝑉𝑃 + 𝐹𝑁
 

Onde: 

VP verdadeiros positivos; 

FN falsos negativos. 
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(iv) F1-score representa a média harmônica entre os valores de Precisão e de Cobertura.  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 ∗  𝐶𝑜𝑏𝑒𝑟𝑡𝑢𝑟𝑎

𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 +  𝐶𝑜𝑏𝑒𝑟𝑡𝑢𝑟𝑎
 

2.1.1 Pipeline para Treinamento de Modelos de AM 

Um pipeline de AM consiste em uma série de etapas ordenadas utilizadas para automatizar o 

workflow para o treinamento do modelo (SAMUEL et al. 2021). O desenvolvimento de um 

pipeline para modelos de AM é um processo composto por etapas com o objetivo de treinar o 

modelo com os dados para que ele seja capaz de prever valores ou classes (CHERAGHI et al., 

2021; MARSLAND, 2015). Este pipeline deve incluir etapas como: coleta e preparação de 

dados, treinamento do modelo, teste e avaliação (TEUBL et al., 2023; CHERAGHI et al., 2021), 

as quais podem ser definidas por metodologias específicas para o desenvolvimento do processo.  

Em relação às atividades importantes para o pipeline de AM, podemos considerar o  

trabalho de KOTSIANTIS (2007),  no qual é definido um processo de AM para um problema 

do mundo real (Figura 2). A partir da definição do problema, esse processo inicia com a coleta 

do conjunto de dados. Em seguida, ocorre a etapa de pré-processamento de dados, na qual são 

utilizadas técnicas como o tratamento de dados ausentes, detecção de outliers, seleção de 

instâncias e atributos, que permitem reduzir a dimensionalidade dos dados e melhorar a eficácia 

dos algoritmos. 

Figura 2: Atividades pipeline de AM 

 

Fonte: KOTSIANTIS, 2007. 
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Em relação à etapa de modelagem de AM, são realizadas atividades como a definição 

do conjunto de dados de treinamento (ex.: divisão do conjunto de treinamento utilizando dois 

terços dos dados e a avaliação do desempenho utilizando o restante dos dados), a escolha do 

algoritmo e as atividades de treinamento e teste do modelo de AM. A escolha do algoritmo de 

AM é uma etapa importante desse processo e, a partir da realização de testes preliminares, o 

classificador poderá ser utilizado ou não.  

A avaliação de um classificador normalmente é baseada na acurácia, que é calculada 

pela porcentagem de predições corretas dividida pelo número total de predições. Se a taxa de 

erro for insatisfatória, será necessário revisar as etapas anteriores do processo de treinamento 

do modelo, considerando aspectos como o tamanho do conjunto de dados de treino, a seleção 

de atributos relevantes e a redução da dimensionalidade, a adequação do algoritmo e o ajuste 

de parâmetros. A seleção adequada de atributos é fundamental para identificar as variáveis que 

realmente influenciam os resultados do modelo  (HAMDARD & LODIN, 2023). Isso permite 

eliminar atributos que são irrelevantes ou redundantes, o que melhora a eficiência do modelo e 

pode reduzir a taxa de erro, concentrando o aprendizado nos atributos mais significativos.  

Outros trabalhos também destacam a importância de seguir um conjunto estruturado de 

etapas ao desenvolver um pipeline de AM, visando a eficiência e a precisão do modelo. Segundo 

TEUBL et al. (2023) e CHERAGHI et al. (2021), um pipeline típico deve incluir as etapas que 

considerem atividades para a coleta e organização dos dados, seguida da limpeza e preparação 

para remover ruídos e inconsistências dos dados. Após essa preparação, o modelo deve ser 

treinado com os dados preparados e, em seguida, testado e avaliado para verificar sua eficácia 

e precisão. Sendo uma abordagem sistemática composta por fases essenciais para transformar 

os dados brutos em predições úteis. 

Entre as áreas relacionadas ao AM, temos a mineração de dados. A mineração de dados 

é o processo de encontrar padrões nas informações contidas em grandes bases de dados, sendo 

uma área de pesquisa com interseção com várias disciplinas, incluindo estatística, banco de 

dados, reconhecimento de padrões e IA (FAYYAD, 2003). Algumas das metodologias 

estabelecidas e detalhadas para o desenvolvimento de projetos de extração de conhecimento de 

Mineração de Dados são consideradas e aplicadas dentro do contexto do aprendizado de 

máquina. O modelo CRISP-DM (CHAPMAN et al. 2000), que, embora tenha sido inicialmente 

projetado para gerenciar projetos de mineração de dados, teve sua utilidade expandida com a 

propagação de tecnologias de AM. Estudos como os de SINGH et al. (2022) e PURBASARI et 

al. (2021), exemplificam o uso do CRISP-DM no desenvolvimento de projetos de AM. 
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2.1.1.1 CRISP-DM 

O CRISP-DM (CRoss-Industry Standard Process for Data Mining) surgiu em 1996, proposto 

por um consórcio de três empresas do mercado de mineração de dados, formado pela Daimler 

AG1 (na época Daimler-Benz), SPSS Inc.2 da IBM (na época ISL) e a NCR3 (CHAPMAN et 

al. 2000). Esse modelo de processo foi projetado para a indústria, de forma independente de 

ferramentas e aplicativos, e possui um ciclo de vida para projetos de mineração de dados 

composto por seis fases (Figura 3), conforme descrito a seguir: 

● Entendimento do Negócio: fase que visa definir os objetivos e requisitos do 

projeto, de forma que, a partir desses objetivos e requisitos, possa ser definido 

um problema de negócio e um plano para que os objetivos possam ser 

alcançados; 

● Entendimento dos Dados: fase iniciada com a coleta dos dados, passa pela 

descrição e exploração dos mesmos, permitindo identificar problemas de 

qualidade e formação de hipóteses sobre informações ocultas; 

● Preparação dos Dados: realiza a preparação dos dados que serão utilizados na 

fase de modelagem, podendo ser realizadas atividades (sem ordem estabelecida) 

de seleção, limpeza, construção, integração e formatação de dados; 

● Modelagem: ocorre a seleção e aplicação de técnicas em busca da extração de 

conhecimento, como, por exemplo, segmentação, classificação e/ou predição 

dos dados. Dependendo da técnica utilizada, pode haver requisitos específicos 

em relação ao formato de dados, sendo possível retornar à fase de preparação de 

dados, se houver necessidade; 

● Avaliação: momento em que é realizada a avaliação detalhada do modelo 

construído na fase de modelagem, visando identificar se os objetivos de negócio 

foram alcançados; e 

● Implantação: utiliza os resultados da fase de avaliação para determinar uma 

estratégia de implantação, de forma que fique claro quais ações precisam ser 

realizadas para o uso dos modelos de conhecimento criados. Essa fase pode 

resultar na geração de um relatório como um resumo geral ou até mesmo em 

uma apresentação final e abrangente acerca dos resultados obtidos.  

                                            
1 Daimler AG <https://www.daimler.com/en/> 
2 SPSS Inc. <https://www.ibm.com/br-pt/analytics/spss-statistics-software> 
3 NCR <https://www.ncr.com/> 
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As fases não são obrigatórias, e é possível reexecutar fases que já foram realizadas, 

tendo em vista que se trata de um processo iterativo. As setas entre as fases do CRISP-DM 

(Figura 3) indicam as dependências mais importantes e frequentes, e o círculo externo simboliza 

a natureza cíclica do próprio processo de mineração de dados, em que a solução implantada 

pode ser utilizada em futuras iterações (CHAPMAN et al., 2000). A Figura 4 apresenta as 

tarefas genéricas (em negrito) e saídas (em itálico) de cada fase do modelo de referência CRISP-

DM. 

Figura 3 – Fases do CRISP-DM. 

 

Fonte: Adaptado de CHAPMAN et al., 2000. 

Figura 4 – Tarefas e Saídas das Fases do CRISP-DM. 

 

Fonte: Adaptado de CHAPMAN et al., 2000. 
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2.1.2 Atividade de Seleção de Atributos em pipelines de AM 

A seleção de atributos em AM é uma técnica de redução da dimensionalidade dos dados que 

tem o objetivo de selecionar o conjunto de atributos mais relevantes dos atributos originais, 

removendo atributos irrelevantes, redundantes ou ruidosos (MIAO et al., 2016). Essa atividade 

é realizada com o objetivo de melhorar o desempenho dos modelos de AM, pois, por meio dela, 

é possível manter os atributos mais impactantes para o problema de AM em questão (LI et al. 

2017). Ao descartar atributos irrelevantes ou redundantes, o treinamento do modelo consegue 

focar nos atributos mais essenciais, podendo refletir no aumento da métrica de precisão, 

melhorar o tempo de treinamento e até prevenir o overfitting, que comprometeria a capacidade 

do modelo generalizar e ter um bom desempenho em novos dados.  

Entre os métodos utilizados para a seleção de atributos, pode-se destacar (MIAO, et al., 

2016; LI et al. 2017):  

 Métodos Filter: avaliam os atributos de forma independente do modelo de aprendizado, 

utilizando métricas estatísticas para classificar a importância desses atributos; 

 Métodos Wrapper: utilizam um modelo de aprendizado específico para avaliar a 

qualidade de subconjuntos de atributos. Neste caso, é realizada uma busca iterativa para 

encontrar o subconjunto que melhore o desempenho do modelo, podendo ser  

computacionalmente caro, devido à necessidade de treinar o modelo várias vezes; e 

 Métodos Embedded: realizam a seleção de atributos como parte do processo de 

treinamento do modelo, sendo mais eficiente em termos de tempo e desempenho. 

Uma das técnicas amplamente utilizadas em algoritmos de classificação, como Árvores de 

Decisão e Random Forest, é a Eliminação Recursiva de Atributos, que se classifica como um 

método do tipo Wrapper. Essa técnica realiza a seleção dos atributos a partir da importância de 

cada atributo dentro do modelo, em que os atributos menos relevantes são removidos um por 

vez (KUHN & JOHSON, 2013). Nos algoritmos de classificação baseados em árvores de 

decisão, as importâncias dos atributos são calculadas com base na redução da impureza (como 

o índice de Gini ou a entropia) durante as divisões realizadas na construção da árvore, refletindo 

o impacto de cada atributo nas previsões do modelo (SVETNIK et al., 2003).  

Para reduzir a quantidade de atributos utilizados no modelo, podemos considerar o seguinte 

processo (PRIYATNO & WIDIYANINGTYAS, 2024): o modelo de AM é treinado no 

conjunto de dados, e as importâncias dos atributos são calculadas; os atributos que apresentarem 

menor importância são eliminados um a um, até que seja alcançada a quantidade desejada de 

atributos ou então verificar se há uma certa quantidade de atributos que otimizam o desempenho 
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do modelo. Apesar de haver diversas técnicas para seleção de atributos, a RFE se destaca no 

uso em algoritmos de classificação devido ao seu processo automatizado e à capacidade de 

adaptação ao modelo específico, sem a necessidade de intervenção manual, permitindo a 

identificação otimizada do conjunto de atributos mais relevantes para a tarefa preditiva. 

2.2 DADOS DE PROVENIÊNCIA 

De acordo com BUNEMAN et al. (2001), a proveniência de dados pode ser definida como a 

"linhagem" ou o "pedigree" que descreve a origem de um dado e os processos aplicados sobre 

o mesmo. A proveniência de dados envolve todo o histórico do dado, desde a sua criação, 

considerando também a fonte de origem do dado e quem o gerencia, podendo ser utilizada 

para diversas finalidades, conforme descrito no trabalho de GOBLE (2002): 

 Confiabilidade e qualidade: considera informações sobre os processos aplicados ao 

dado e a sua origem; 

 Justificativa e auditoria: utilizam o registro histórico e preciso da fonte e do método 

utilizado, de forma que seja reprodutível e que também possa identificar possíveis erros 

ocorridos na geração dos dados; 

 Reuso, reprodução e repetição: possibilita a repetição e validação de experimentos, mas 

deve utilizar as mesmas condições, desde os dados até as ferramentas e algoritmos; e 

 Propriedade, segurança, crédito e direitos autorais: se referem à origem e à propriedade 

do dado, considerando também quando este passar por alterações. 

Além da proveniência dos dados, também é possível capturar a proveniência de um 

fluxo de atividades, como a de uma tarefa computacional, cujos dados de proveniência se 

enquadram na seguinte classificação (FREIRE et al. 2008, ZHAO et al. 2006): 

 Proveniência Prospectiva: considera aspectos de um procedimento ou fluxo de trabalho 

(ex.: script ou fluxo de trabalho) de uma tarefa computacional, sendo as etapas que 

devem ser seguidas para gerar um produto de dados; e 

 Proveniência Retrospectiva: captura as etapas que foram executadas para derivar um 

produto de dados específico, também captura outras informações de ambiente de forma 

mais detalhada, como o tempo de execução e recursos utilizados. 

Além desses dois tipos de proveniência, no trabalho de HERSCHEL et al. (2017) 

também é indicada a proveniência do tipo evolutiva, que representa a proveniência em cada 

execução de um processo iterativo, refletindo alterações que podem ter ocorrido em pelo 

menos um dos seguintes elementos: dados de entrada, fluxo de trabalho ou contexto de 
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execução (ex.: parâmetros). Com a captura desse tipo de proveniência é possível comparar as 

execuções realizadas, o que permite identificar qual delas apresenta os melhores resultados 

(PIMENTEL et al. 2016). 

Os mecanismos que permitem a captura de dados de proveniência em tarefas 

computacionais podem acessar detalhes relevantes, como as etapas e suas respectivas 

atividades, informações de execução e anotações especificadas pelo usuário. Entre as 

ferramentas genéricas que permitem capturar a proveniência a partir da execução de scripts 

temos: Vamsa (NAMAKI et al., 2020), Variolite (KERY et al., 2017) e noWorkflow 

(PIMENTEL et al., 2017). No entanto, Vamsa não captura informações de tempo de execução 

e Variolite não disponibiliza a evolução de proveniência. O MLflow4 é outra ferramenta 

popular para o gerenciamento de experimentos e captura de dados de proveniência, com foco 

principalmente em parâmetros, métricas, artefatos e código. Porém, não oferece um 

rastreamento tão detalhado quanto o noWorkflow5 (Seção 5.1.1), especialmente no que se 

refere à captura mais aprofundada dos dados de proveniência.  

O noWorkflow permite explorar os dados de proveniência de forma mais completa, 

considerando informações de tempo de execução e o histórico detalhado das execuções. Além 

disso, o noWorkflow funciona diretamente com scripts Python, sem necessidade de modificar 

o código, nem de ambientes específicos para sua execução, sendo uma boa solução para a 

rastreabilidade e a reprodutibilidade dos experimentos. 

2.3 REPRESENTAÇÃO DE DADOS DE PROVENIÊNCIA 

Nesta seção, são apresentados alguns tópicos referentes à representação dos dados de 

proveniência, abordando as definições e conceitos acerca de ontologias. Em seguida, a seção 

é finalizada explorando a modelagem dos dados de proveniência, na qual são detalhados os 

modelos utilizados para documentar esse tipo de dado. 

2.3.1 Ontologias 

Uma ontologia define uma especificação formal de uma conceitualização compartilhada 

(BORST, 1997), permitindo assim, descrever conceitos, promover o conhecimento e o 

compartilhamento dos dados, e sua interpretação por seres humanos ou por máquinas 

(GRUBER, 1993). As ontologias podem modelar tanto um domínio geral quanto um domínio 

                                            
4 https://mlflow.org/ 
5 https://github.com/gems-uff/noworkflow 
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específico, proporcionando a representação do conhecimento, viabilizando a integração de 

informações de diversas fontes de dados, facilitando a comunicação e a compreensão entre 

diferentes sistemas e usuários. 

O uso de ontologias permite relacionar as informações por meio de sua estrutura de 

conhecimento, e estabelecer associações que exigiriam compreensão humana, por meio de 

classes e propriedades. Com o uso de ontologias é possível estabelecer definições formais de 

termos e suas equivalências, geralmente utilizando taxonomias e regras de inferência 

(BERNERS-LEE et. al. 2001). Para as ontologias, estão relacionadas tecnologias como o OWL 

(Ontology Web Language) e o RDF (Resource Description Framework). O OWL é a linguagem 

padrão proposta pelo W3C (2012), utilizada para representar um conhecimento rico e complexo 

sobre coisas, grupos de coisas e relações entre coisas, sem ambiguidades, permitindo atribuir 

semântica e definir relações. Já o RDF é o modelo organizado em triplas (sujeito + predicado 

+ objeto) para intercâmbio de dados na Web, fornecendo uma estrutura organizada para os 

dados, permitindo atribuir significado, e representando e relacionando recursos (W3C, 2014). 

Com o uso das ontologias, é possível atribuir significado comum mesmo para termos 

que sejam de bases diferentes, o que é viabilizado a partir do uso de termos definidos por 

vocabulários, que permitem estabelecer um padrão para os termos utilizando identificadores 

únicos (URIs, do inglês Uniform Resource Identifiers), que ajudam a padronizar a representação 

dos conceitos e a reduzir ambiguidades, facilitando o compartilhamento de conhecimento. Um 

exemplo disso pode ser observado no vocabulário FOAF, identificado pela URI 

“http://xmlns.com/foaf/0.1/” que utiliza URIs para identificar suas classes e propriedades, 

como, por exemplo, a propriedade “name” apresenta sua URI correspondente 

“http://xmlns.com/foaf/0.1/name” (LAUFER, 2015).  

2.3.2 Modelagem de Dados de Proveniência 

Para a representação dos dados de proveniência, existem alguns modelos propostos que são 

baseados em ontologias e permitem a organização desses dados. Por exemplo, o OPM (Open 

Provenance Model), que é um modelo aberto de proveniência de dados que permite descrever 

dependências entre artefatos (Artifact), processos (Process) e agentes (Agent) (MOREAU et 

al., 2011).  
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Figura 5 – Relacionamentos entre os elementos do OPM.  

 
Fonte: Moreau et al., 2011. 

Conforme observado na Figura 5, os artefatos (A), que são objetos usados ou gerados 

por um processo, os processos (P), que correspondem a ações executadas que consomem e/ou 

geram artefatos, e os agentes (Ag), que são entidades responsáveis por influenciar a execução 

dos processos, representam os nós dos grafos. Já as arestas, são dependências 

(relacionamentos) entre esses nós, que apresentam os seguintes tipos: used (artefato usado por 

um processo), was generated by (artefatos gerados por processos), was triggered by (processo 

iniciado por outro processo), was derived from (artefato derivado de artefato) e was controlled 

by (processo controlado pelo agente). 

De forma semelhante, a PROV-O (W3C) permite representar a proveniência entre 

entidades, atividades e agentes, possibilitando que representações de proveniência específicas 

de domínio e aplicação sejam estabelecidas por meio deste modelo de dados e intercambiadas 

entre sistemas (Figura 6). No modelo PROV-DM (W3C), utilizado na Ontologia PROV, os 

dados são representados por um grafo direcionado para que a proveniência possa descrever o 

uso e a produção de entidades por atividades, as quais podem ser influenciadas pelos agentes  

(LEBO et al., 2013). Nesse modelo, um tipo pode se referir a uma classe ou subclasse, tendo 

como base as três classes a seguir: 

● Entidade (Entity) - representa um objeto (físico/digital/conceitual) com alguns aspectos 

fixos; 

● Atividade (Activity) - ocorre durante um período de tempo e atua sobre ou com 
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entidades; e 

● Agente (Agent) - possui alguma forma de responsabilidade pela realização de uma 

atividade. 

Figura 6 – Principais Conceitos da Ontologia PROV. 

 

Fonte: W3C, 2013. 

Já para os relacionamentos entre os tipos de elementos, são utilizadas propriedades, 

como as propriedades a seguir: geração de uma entidade por uma atividade 

(WasGeneratedBy), uso de uma entidade por uma entidade (Used), informação sobre uso de 

entidade (WasInformedBy), derivação de entidade (WasDerivedFrom), atribuição de uma 

entidade a um agente (WasAttributedTo), associação de uma atividade com um agente 

(WasAssociatedWith), delegação de responsabilidade entre agentes (ActedOnBehalfOf), 

derivação de entidade com objetivo de corrigir erros (wasRevisionOf), início de uma entidade 

já existente por uma atividade (wasStartedBy) ou finalização de uma entidade já existente por 

uma atividade (wasEndedBy). 

Quando comparada com o OPM, a ontologia PROV possui maior destaque, pois é o 

modelo recomendado pelo W3C e permite armazenar a proveniência de forma mais detalhada. 

Essa ontologia contempla relacionamentos equivalentes a todos os relacionamentos 

apresentados no OPM, e inclui quatro relacionamentos adicionais: wasInformedBy, 

wasEndedBy, actedOnBehalfOf e wasAttributedTo (LEBO et al., 2013). Além disso, esses 

relacionamentos também permitem especificar responsabilidades e histórico de dados, 

enquanto o OPM está voltado apenas para o controle de fluxos de execução (BIVAR et al., 

2013). 

A PROV-O possui várias extensões que ampliam suas capacidades para atender a 

necessidades específicas. Uma dessas extensões é a ontologia P-PLAN (GARIJO & GIL, 
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2014), a qual expande a PROV-O para incluir a descrição detalhada dos planos de execução, 

oferecendo uma representação clara das etapas e ações em fluxos de trabalho complexos 

(Figura 7). No P-PLAN, um Plan é um conjunto de instruções ou ações planejadas, composto 

de Steps, que são as atividades específicas que compõem esse plano. Além disso, o P-PLAN 

define Variables, que são os dados utilizados ou gerados durante a execução de um plano. O 

P-PLAN utiliza os conceitos de Entidades, Atividades e Agentes da PROV-O para descrever 

os detalhes de como os processos são planejados e implementados. No P-PLAN, os Steps estão 

alinhados com as Atividades da PROV-O e Variables correspondem às Entidades do PROV-

DM, o que permite descrever a sequência de atividades em projetos científicos e tecnológicos 

com um entendimento mais aprofundado e melhor rastreabilidade das atividades realizadas. 

Figura 7 – Visão geral do P-PLAN e como se relaciona com os conceitos do PROV-

DM. 

 
Fonte: GARIJO e GIL, 2014. 

No exemplo indicado na Figura 8, consideremos um pipeline de aprendizado de 

máquina, e as ontologias PROV-O e P-PLAN são utilizadas para descrever os dados de 

proveniência referentes ao plano de execução de uma atividade em um pipeline de AM. O 

ex:TrainingData corresponde a uma entidade da Ontologia PROV que representa o conjunto 

de dados utilizado durante o treinamento, enquanto o ex:TrainedModel é a entidade que 

representa o modelo final gerado. A atividade ex:ModelTraining descreve o processo de 

treinamento do modelo, vinculando os dados de entrada ao resultado final. Por outro lado, o 

ex:TrainingStep se refere a um passo da ontologia P-PLAN que está dentro do pipeline, que 

define o uso dos dados de treinamento como entrada p-plan:hasInput e o treinamento do 



37 

 

 

modelo treinado como saída p-plan:hasOutput. A utilização dessas ontologias permite rastrear 

de forma clara e detalhada as atividades e resultados do pipeline, além de estabelecer um 

vínculo entre o plano teórico do workflow e sua execução real, facilitando tarefas como a 

reprodutibilidade e a auditoria do processo. 

Figura 8 – Exemplo de uso da Ontologia PROV em conjunto da ontologia P-Plan. 

 

Fonte: O Autor. 

2.4  CONSIDERAÇÕES 

Neste capítulo, foram apresentados os principais conceitos relacionados à proposta de uma 

abordagem que considera a estruturação semântica dos dados de proveniência da execução de 

pipelines de AM e à sua utilização. Também foram apresentados conceitos relacionados ao 

AM e ao modelo de processo para seu treinamento e atividades relacionadas, com destaque 

para a atividade de seleção de atributos. Além disso, foi discutido sobre dados de proveniência 

e suas classificações, explorando também a documentação a partir do uso de  ontologias e os 

respectivos modelos para a representação desses dados.  

No próximo capítulo, será apresentado um levantamento do estado da arte, 

considerando trabalhos que estão relacionados com as atividades que compõem a proposta 

desta pesquisa. 
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3 ESTADO DA ARTE 

Este capítulo discute trabalhos existentes na literatura que estão relacionados com as questões 

de pesquisa. Neste cenário, são  abordados estudos que se enquadram em duas principais 

categorias: (Seção 3.1) Extensão da Ontologia/Modelo PROV para Dados de Proveniência 

em Execução de Pipelines de Aprendizado de Máquina, e (Seção 3.2) Uso de Dados de 

Proveniência derivados da Execução de Pipelines de Aprendizado de Máquina. Na Seção 3.3, 

é realizada uma análise comparativa dos trabalhos relacionados, considerando algumas 

características importantes para esta tese, e na Seção 3.4, são tecidas algumas considerações 

sobre o capítulo. 

3.1 EXTENSÃO DA ONTOLOGIA/MODELO PROV PARA DADOS DE 

PROVENIÊNCIA EM EXECUÇÃO DE PIPELINES DE APRENDIZADO DE 

MÁQUINA 

Nesta seção, são discutidos trabalhos que estendem a Ontologia/Modelo PROV do W3C, 

considerando o contexto de execução de pipelines de aprendizado de máquina. Esses trabalhos 

foram analisados com o objetivo de entender como as ontologias/modelos foram utilizados 

para organizar e gerenciar as informações, além de explorar suas aplicações nos cenários 

apresentados. Consideram-se, nesta seção, as contribuições dessas pesquisas para o campo, 

bem como as principais questões e desafios enfrentados. 

3.1.1 SCHLEGEL & SATTLER (2023)  

No trabalho de SCHLEGEL & SATTLER (2023), foi apresentada uma abordagem que propõe 

um modelo de dados de proveniência que é uma extensão do modelo PROV-DM. Nesse 

modelo, são mapeadas as atividades de sistemas de versionamento de código (e.g., GitHub) e 

de sistemas de gerenciamento de experimentos de aprendizado de máquina (e.g., MLFlow). A 

proposta é implementada por meio da ferramenta MLflow2PROV, que realiza a extração de 

grafos de proveniência de acordo com o modelo proposto, baseado no PROV-DM, e possibilita 

a pesquisa, a análise e o processamento futuro das informações de proveniência obtidas. 

No contexto do desenvolvimento de modelos de AM, devem ser considerados artefatos, 

como códigos de experimentos, modelos treinados e metadados associados. O gerenciamento 

desses elementos deve seguir uma abordagem estruturada e organizada, utilizando sistemas 

específicos de gerenciamento de experimentos, como o MLflow (Zaharia et al., 2018). No 

entanto, esses sistemas geralmente não fornecem a documentação completa sobre os dados de 
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proveniência dos experimentos, incluindo todas as atividades relacionadas à execução, como 

entidades (arquivos de dados, modelos treinados), atividades (execuções de pipelines, 

treinamentos de modelos, tarefas de processamento de dados) e agentes (usuários responsáveis 

pelas mudanças, times de cientistas de dados). Além disso, nesses sistemas os dados de 

proveniência nem sempre são documentados em um formato interoperável, como o modelo 

PROV-DM (garantindo que dados e metadados sejam compreendidos e utilizados de forma 

consistente), o que limita o uso desses dados por outras ferramentas. A proposta do trabalho é 

extrair automaticamente a proveniência dos sistemas de gerenciamento de experimentos de 

AM e dos sistemas de gerenciamento de versões, criando grafos de proveniência a partir desses 

dados. As principais contribuições incluem um modelo de proveniência baseado nas atividades 

capturadas durante os experimentos e uma ferramenta que extrai e disponibiliza essa 

proveniência no modelo proposto. 

Nesse contexto, são considerados como entidades os arquivos, experimentos, 

execuções e qualquer outro artefato e suas inter-relações. Isso resulta em um grafo direcionado 

acíclico, com seus nós e arestas definidos semanticamente, permitindo descrever o significado, 

a função e o papel de cada elemento no pipeline de AM. O modelo proposto utiliza a notação 

do PROV-DM e é composto por vários submodelos, considerando atividades relacionadas aos 

sistemas de gerenciamento e sistemas de versionamento. Seu objetivo é viabilizar a 

recuperação de informações relevantes, respondendo a questionamentos como: quais 

parâmetros foram utilizados no treinamento da versão mais recente do modelo X? Ou ainda, 

qual agente foi responsável pelo modelo com melhor avaliação e quem contribuiu mais para 

aquele modelo? 

Os submodelos, que compõem a proposta, podem ser categorizados em dois grupos: 

 Relacionados  ao GitHub: Captura os efeitos dos Commits realizados no Github sobre 

os estados dos arquivos e conteúdo, como: adição, alteração e exclusão de um arquivo. 

Como exemplo, tem-se a adição de um novo File (arquivo) (Figura 9), na qual o File 

representa uma entidade, o Commit corresponde à atividade, o CommitAuthor e o 

Comitter são os agentes envolvidos na realização deste Commit; e 
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Figura 9 - Submodelo representando a criação de um arquivo. 

 

Fonte: SCHLEGEL & SATTLER, 2023. 

 Relacionados ao MLFlow: Realiza o rastreamento dos componentes que são 

organizados considerando os conceitos das execuções do script de AM, essas execuções 

podem ser organizadas em experimentos que agrupam execuções pertencentes à mesma 

tarefa. Neste submodelo, são capturados dados de proveniência de atividades como: 

adição de novo experimento e de nova execução; e a exclusão de execuções e 

experimentos. Essas atividades apresentam um conjunto de entidades, como, por 

exemplo, a atividade de criação de execução (RunCreation) (Figura 10), que ocorre 

com a execução de um Experiment considerando um modelo de treinamento, sendo 

possível identificar entidades importantes, como a própria execução (Run), métricas 

(Metric), parâmetros (Parameter), tag de execução (RunTag), artefatos gerados 

(Artifact) e o modelo do artefato (ModelArtifact). 

Figura 10 - Submodelo representando a criação de uma execução. 

 

Fonte: SCHLEGEL & SATTLER, 2023. 
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A implementação da proposta foi realizada em Python, utilizando bibliotecas para 

acessar os sistemas do GitHub e o MLFlow. O processo de extração do grafo de proveniência 

(Figura 11) a partir do Github ou de uma instância do MLFlow segue as seguintes etapas 

(destacadas em azul na figura):   

 Primeiramente, é obtida a proveniência do Github considerando elementos como: o 

commit, os arquivos e os usuários; 

 Em seguida, é obtida a proveniência a partir do sistema de gerenciamento de 

experimento, de onde são obtidos metadados, como parâmetros, métricas e modelos; e 

 Após isso, os dados são estruturados utilizando o modelo proposto, sendo gerados 

grafos de proveniência que podem ser processados em sistemas específicos de 

armazenamento de dados de proveniência, a exemplo do ProvStore (HUYNH & 

MOREAU, 2015), ou sistemas de banco de dados de grafos, como o Neo4J6. 

Figura 11 - Processo de extração de grafo de proveniência. 

 

Fonte: SCHLEGEL & SATTLER, 2023. 

A proposta foi avaliada por meio da implementação (MLflow2PROV), considerando 

sua  capacidade de capturar a proveniência completa dos pipelines de experimentos. Todas as 

atividades de desenvolvimento e experimentos foram incluídas no repositório de código-fonte 

e na instância do sistema de gerenciamento de experimentos. A capacidade de captura foi 

medida por meio da realização de consultas a partir dos dados de proveniência obtidos. Isso 

permitiu responder a questionamentos, como determinar o modelo que apresenta melhor 

desempenho na métrica de acurácia, a partir dos dados de proveniência armazenados, que são 

filtrados e ordenados de acordo com a métrica de interesse. Além disso, a proposta foi avaliada 

quanto à sua capacidade de exportar a documentação de proveniência em um formato 

interoperável, como a PROV-O. Também foi possível verificar a geração de grafos de 

proveniência compatíveis com o padrão PROV do W3C, o que permite o uso de ferramentas 

compatíveis com esse padrão para processamento, análise e visualização adicionais. 

 

                                            
6 https://neo4j.com/ 
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3.1.2 ESTEVES et al. (2015) 

Nesse trabalho, é discutido um formato padrão para a disponibilização dos metadados 

provenientes de experimentos de aprendizado de máquina, sendo destacada a necessidade de 

disponibilização desses metadados em um formato legível por máquina e a grande quantidade 

de dados gerados durante esses experimentos, o que torna a sua análise desafiadora. 

O vocabulário proposto por ESTEVES et al. (2015), chamado MEX, reutiliza as 

classes e propriedades do PROV-DM, porém apresenta uma estrutura voltada para a 

representação e compartilhamento de dados de proveniência de experimentos de AM. Sendo 

composto por três partes principais: 

 MEX-Core (Figura 12): Estabelece as entidades essenciais para representar passos 

básicos em execuções de aprendizado de máquina, incluindo informações sobre o 

contexto do experimento, a configuração do hardware, e a atividade de execução 

propriamente dita, as quais são relacionadas utilizando propriedades do PROV-DM, 

como  prov:used e  prov:wasAttributedTo; 

Figura 12 - MEX-Core 

 

Fonte: ESTEVES et al., 2015. 

 MEX-Algorithm (Figura 13): Representa os métodos de AM, considera o tipo de 

aprendizado (supervisionado, não supervisionado ou por reforço), o algoritmo e os 

parâmetros dos algoritmos. Estes componentes são associados por meio das 

propriedades hasAlgorithm e hasParameter, que relacionam os parâmetros às suas 

respectivas configurações e facilitam a troca de informações e a reprodutibilidade dos 

experimentos; e 
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Figura 13 - MEX-Algorithm 

 

Fonte: ESTEVES et al., 2015. 

 MEX-Performance (Figura 14): Refere-se ao desempenho dos algoritmos em 

experimentos de AM. Considera as métricas configuradas para avaliar a eficácia dos 

modelos, como precisão, recall, F1-score. A associação entre a execução do algoritmo 

e as métricas utilizadas é realizada por meio de propriedades como 

prov:wasGeneratedBy e  prov:hadMember, garantindo a padronização do registro dos 

dados de desempenho. 

Figura 14 - MEX-Performance 

 

Fonte: ESTEVES et al., 2015. 

De forma geral, o objetivo é facilitar a descrição dos experimentos, considerando os 

dados de proveniência e a manutenção desses experimentos a longo prazo. O vocabulário foi 

avaliado em casos de uso práticos, considerando experimentos reais de aprendizado de 

máquina. Esses experimentos demonstraram sua facilidade para uso e implementação, 

permitindo que pesquisadores documentassem os experimentos de AM. Um desses casos de 



44 

 

 

uso envolveu a realização de várias atividades de classificação para avaliar ofertas em 

contratos de trabalho. Nesse contexto, o vocabulário permitiu organizar as execuções e 

avaliações dos modelos, estruturando as execuções em diferentes configurações e fases 

(treinamento, teste e validação), além de associar os modelos às suas métricas de desempenho 

de forma padronizada.  

A partir da análise comparativa e do feedback dos usuários, foi indicado que o uso do 

vocabulário melhorou a interoperabilidade, no sentido de possibilitar a troca de informações 

entre diferentes plataformas e ferramentas de aprendizado de máquina. Além disso, o 

vocabulário contribuiu para a reprodutibilidade dos experimentos, ao registrar de forma 

precisa os parâmetros, dados, configurações e resultados. Permitindo que outros 

pesquisadores possam repetir os experimentos sob as mesmas condições. 

3.1.3 BUTT & FITCH (2020) 

Os autores apresentam o ProvOne+, uma extensão do modelo ProvOne7 e do modelo PROV-

DM, sendo o mesmo modelo utilizado na Ontologia PROV. O objetivo dessa extensão é 

representar e gerenciar a proveniência em workflows científicos. Com isso, é possível 

especificar e rastrear o histórico de execução considerando detalhes como dados de entrada, 

resultados obtidos e o processo executado, promovendo a reusabilidade e reprodutibilidade 

dos resultados. 

Nesse trabalho, são introduzidos conceitos, como Workflow, Process (processo), Data 

(dados) e Execution (execução), além de classes como ControlTask, ControllerCollection e 

ControlOperator, esses conceitos são utilizados para especificar comportamentos de controle 

de workflows, permitindo descrever de forma mais detalhada suas etapas e componentes. A 

partir do uso de classes do PROV-DM e ProvOne, as tarefas de workflows são representadas 

pela classe Program que pode ser simples ou composta, com entradas e saídas conectadas por 

Channels. A classe Controller gerencia a execução dos programas e as execuções são 

registradas pela classe Execution, rastreando entradas e saídas de dados, visualizações ou 

documentos, e obtendo a proveniência do workflow. Dados no workflow são representados 

pelas classes Data, Visualization e Document, e agrupados pela classe Collection, que 

organiza conjuntos de itens. 

                                            
7 http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-

trunk/ws/provenance/ProvONE/v1/provone.html 
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As classes desta extensão se referem aos controladores, que permitem expressar o 

controle do fluxo do workflow de maneira mais detalhada. Esses controladores, indicados na 

Figura 15, são responsáveis por definir e gerenciar estruturas de condições, bifurcações e laços 

de repetição dentro do processo, facilitando a execução e o direcionamento das atividades de 

acordo com as regras estabelecidas. Essas classes se integram com outras do modelo PROV-

DM, como Entity, Plan e Collection, e do ProvOne, como Program e Controller, ampliando a 

capacidade de rastrear a proveniência e a execução das atividades, garantindo 

interoperabilidade e transparência no workflow. 

Figura 15 – ProvONE+: classes mais importantes e seus relacionamentos. 

 

Fonte: BUTT & FITCH, 2020. 

O modelo proposto (ProvONE+) foi avaliado por meio de uma análise comparativa 

com o modelo ProvONE, na qual foram identificadas limitações deste último, sobretudo no 

que se refere à representação da estrutura de workflows. Essa análise evidenciou a necessidade 

de um modelo mais expressivo, reforçando a validade da proposta apresentada. Com o 

detalhamento das interações e dependências entre tarefas promovido pelo ProvONE+, foi 

constatado que é possível melhorar a reprodutibilidade e a reusabilidade dos experimentos. 

Além disso, esse detalhamento facilita a auditoria em contextos regulamentados, promovendo 

também a transparência e eficiência nas tarefas realizadas. 

3.1.4 SOUZA et al. (2021) 

Nesse trabalho, são apresentadas estratégias relacionadas a dados de proveniência de workflows 

para melhorar a análise de dados em AM científicos, considerando os desafios de 
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heterogeneidade e complexidade desses dados. Também é proposto um modelo de ciclo de 

vida que integra essas análises de maneira abrangente, considerando as seguintes fases 

principais: 

 Curadoria de Dados: realização da limpeza e preparação de dados brutos, onde são 

utilizadas ferramentas especializadas para transformá-los em dados úteis e 

compreensíveis; 

 Preparação de Dados para Aprendizado: seleção e transformação dos dados curados em 

conjuntos de dados de aprendizado, considerando características específicas do 

domínio; e 

 Aprendizado: realização das atividades de treinamento, validação e avaliação do 

modelo. 

 Em relação aos dados de proveniência obtidos, são consideradas informações sobre 

transformações, parâmetros e resultados de modelos. Para a representação desses dados, é 

utilizado o PROV-ML, que amplia o padrão PROV-DM (W3C) e incorpora elementos do ML 

Schema (W3C). O ML Schema é um modelo de dados que permite representar os algoritmos 

de aprendizado de máquina e as tarefas realizadas, considerando também implementações, 

execuções, dados de entrada e os modelos gerados.  

No PROV-ML são considerados os seguintes conceitos principais: 

 Learning Data: refere-se aos conjuntos de dados que são preparados e utilizados 

durante o processo de aprendizado de máquina, podendo ser divididos em:  Dados 

Brutos, Dados Curados; Conjuntos de Dados de Treinamento, Conjuntos de dados de 

Validação e Teste; 

 Learning: considera o treinamento, validação e avaliação do modelo de aprendizado de 

máquina; e 

 Model: corresponde à representação matemática ou computacional que resulta do 

processo de aprendizado, podendo ser de diferentes tipos, como: Modelos de Regressão 

e Modelos de Classificação. 

O PROV-ML é composto por várias classes que são fundamentais no ciclo de vida do 

aprendizado de máquina, entre essas classes que compõem o modelo temos: 

 Study: Representa a investigação ou hipótese que orienta o workflow de aprendizado de 

máquina; 

 LearningExperiment: Conjunto de análises que impulsionam o workflow; 

 LearningProcessExecution: Execução de um workflow de aprendizado, incluindo 
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detalhes sobre como os dados foram processados; 

 LearningTask: Define a tarefa do processo de aprendizado, como classificação ou 

regressão; e 

 BaseLearningStage: Classes que representam as etapas do aprendizado (treinamento, 

validação e avaliação). 

A abordagem foi avaliada considerando um estudo de caso na indústria de petróleo e 

gás. Os resultados indicaram que o sistema demonstrou ser eficiente na captura de dados de 

proveniência. O sistema possui capacidade de registrar detalhadamente as transformações e 

interações nos workflows ao longo do ciclo de vida de AM, facilitando análises que conectam 

dados brutos a modelos aprendidos.  

3.2 USO DE DADOS DE PROVENIÊNCIA DERIVADOS DA EXECUÇÃO DE 

PIPELINES DE APRENDIZADO DE MÁQUINA 

Nesta seção, são descritos trabalhos que exploram a execução de pipelines de aprendizado de 

máquina, com ênfase especial no uso de dados de proveniência. Esses estudos investigam como 

a rastreabilidade e a documentação das etapas do processo de desenvolvimento de modelos 

preditivos podem ser aprimoradas para promover um processo transparente e compreensível. 

Esse aprimoramento reflete na melhoria da análise dos resultados e na geração de 

conhecimento a partir desses processos. 

3.2.1 OLIVEIRA et al. (2024) 

O trabalho de OLIVEIRA et al. (2024) promove a explicabilidade de modelos por meio de 

dados de proveniência obtidos a partir de transformações dos dados. O trabalho utiliza técnicas 

de Inteligência Artificial Explicável (XAI, do inglês Explainable Artificial Intelligence) para 

encontrar atributos relevantes para o modelo e indicar as transformações realizadas sobre esses 

dados por meio dos dados de proveniência, melhorando a explicabilidade dos modelos de AM. 

Os dados de proveniência são obtidos a partir da execução de pipelines de AM, 

considerando  especialmente a fase de pré-processamento dos dados.  Os dados de 

proveniência, referentes às transformações realizadas sobre os atributos utilizados no modelo 

de AM, são utilizados para explicar melhor os resultados obtidos pelo modelo de AM. O 

objetivo é entender o tratamento dos dados, como as atividades de preparação de dados, e sua 

influência nos resultados dos modelos. 
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Para a organização dos dados de proveniência, foi especificado um modelo lógico de 

dados baseado no paradigma relacional, utilizando a notação Cross Foot (Figura 16). Cada cor 

utilizada na especificação das entidades representa uma categoria de dados relacionada ao 

workflow, sendo: verde para informações básicas do workflow e do conjunto de dados, cinza 

para atividades de pré-processamento, amarelo para informações dos experimentos realizados, 

e azul para a configuração e resultados do XAI. 

Figura 16 - Modelo de Dados especificado em OLIVEIRA et al. (2024). 

 

Fonte: OLIVEIRA et al., 2024. 

Além da especificação das entidades, as operações realizadas sobre os atributos também 

ficam disponíveis graficamente. Conforme observado na Figura 17, a representação dos dados 

de proveniência utiliza como base o modelo PROV-DM do W3C, o qual indica as atividades 

relacionadas aos atributos, no qual cada atributo é representado como uma entidade. Nesse 

exemplo da Figura 17, o atributo Groupsize, da coleção de dados Titanic, é associado a um 

agente e foi gerado a partir da soma do total de mulheres e crianças, sendo utilizado nas 

atividades de divisão de dados e normalização. 

A proposta para a obtenção e representação das transformações aplicadas sobre os 

atributos mais influentes de modelos supervisionados foi avaliada por meio de experimentos, 

nos quais os dados de proveniência foram relacionados às explicações dos resultados dos 
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modelos, sendo demonstrado que um maior entendimento sobre a derivação dos atributos 

melhorava a confiabilidade e a clareza das previsões.  

Como principal limitação do trabalho, destaca-se a complexidade das operações de pré-

processamento, que envolvem técnicas variadas, etapas encadeadas e decisões contextuais nem 

sempre registradas de forma explícita. Essa complexidade dificulta a captura completa dessas 

etapas e a interpretação de seu impacto nos atributos do modelo. Como contribuições do 

trabalho é possível considerar a integração dos dados de proveniência com técnicas de XAI, o 

que fornece mais detalhes acerca dos atributos importantes para o modelo gerado, promovendo 

o aumento da confiança nos resultados.  

Figura 17 - Visualização das operações realizadas sobre o atributo Groupsize. 

 

Fonte: Adaptado de OLIVEIRA et al., 2024. 

3.2.2 KERZEL et al. (2021) 

No artigo de KERZEL et al. (2021), é considerado o ambiente do JupyterLab8, que permite o 

desenvolvimento interativo e flexível para execução de códigos e a visualização de dados. 

Nesse contexto, foi criada uma extensão (MLProvLab), que visa o rastreamento e a gestão de 

dados de proveniência de pipelines de aprendizado de máquina. O trabalho também aborda o 

aspecto da reprodutibilidade de experimentos de AM. Isso é importante porque, à medida que 

o uso de algoritmos de AM se expande, a dificuldade em reproduzir resultados se torna um 

                                            
8 https://jupyterlab.readthedocs.io/en/latest/ 
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desafio significativo, devido à falta de documentação adequada sobre os dados utilizados, 

transformações aplicadas e parâmetros dos modelos.  

Os dados de proveniência capturados pelo MLProvLab abrangem uma variedade de 

informações relacionadas à execução dos pipelines de aprendizado de máquina, como 

parâmetros utilizados em cada etapa e os resultados obtidos. Também são registrados detalhes 

sobre fontes de dados, transformações aplicadas, configurações do ambiente de execução e o 

contexto geral do experimento. Isso permite, entre outras funcionalidades, a comparação entre 

execuções, aspecto fundamental para a reprodutibilidade, pois viabiliza a restauração e revisão 

de alterações feitas em um projeto, incluindo código, dados e configurações. Conforme 

observado na Figura 18, é possível identificar modificações no código, com destaque para os 

elementos alterados em relação à versão anterior. 

A abordagem proposta foi aplicada a partir do desenvolvimento do MLProvLab, para a 

captura e gerenciamento dos dados de proveniência de experimentos de AM em ambientes de 

notebook, como o JupyterLab. Entretanto, é uma ferramenta ainda em desenvolvimento, com 

funcionalidades parcialmente implementadas, sendo indicada a futura realização de testes e 

levantamentos de feedback de usuários. Como contribuições do trabalho, destaca-se a extensão 

proposta, que facilita a reprodução dos experimentos por meio do rastreamento dos dados de 

proveniência. Além disso, promove um ambiente colaborativo a partir do compartilhamento de 

notebooks com dados de proveniência, viabilizando também o melhor entendimento acerca das 

decisões tomadas durante o desenvolvimento do modelo de AM. 

Figura 18 - Comparação entre execuções realizadas pelo MLProvLAb.

 

Fonte: KERZEL et al., 2021. 
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3.2.3 SCHELTER et al. (2023) 

O trabalho apresentado por SCHELTER et al. (2023) permite a captura de dados de 

proveniência gerados durante a execução dos pipelines de aprendizado de máquina. A partir 

desses dados, é possível detectar antecipadamente problemas no pipeline, como, por exemplo, 

o vazamento de dados entre conjuntos de dados de treinamento e teste, que ocorre quando 

dados do conjunto de teste são utilizados para treinar o modelo. Além disso, podem ser 

identificados erros de rotulagem e violações de equidade, que podem gerar desigualdades em 

seus resultados com base em características como raça, gênero e idade. Essa detecção 

antecipada busca melhorar a qualidade e a confiabilidade dos modelos de AM, promovendo 

uma abordagem mais responsável e eficiente. 

Os dados de proveniência são utilizados para realizar uma análise detalhada das 

interações entre entradas e saídas nos pipelines de AM, considerando um contexto de ajustes 

contínuos. Esse tipo de atividade permite que os cientistas de dados revisem cada etapa e 

identifiquem onde erros ou inconsistências no modelo podem ter ocorrido, como manipulações 

inadequadas sobre os dados que afetam a sua qualidade. 

A abordagem foi avaliada considerando os seguintes cenários: (i) cenário relacionado a 

um pipeline de visão computacional, em que erros de rotulagem foram identificados e 

corrigidos, nos quais imagens de botas foram rotuladas como imagens de tênis e vice-versa; 

(ii) cenário que considera um pipeline de previsão de preços utilizando modelos de regressão, 

no qual foram detectados vazamentos de dados, em que várias amostras de treinamento também 

foram acidentalmente incluídas no conjunto de teste; e (iii) cenário aplicado em um pipeline 

de pontuação de crédito, em que foi analisada a equidade das previsões e foram identificadas 

disparidades entre grupos demográficos. O sucesso nas tarefas desempenhadas consistiu na 

detecção e correção proativa desses problemas (erros de rotulagem, vazamento de dados e 

violações de justiça) antes da implantação dos modelos. Esse resultado demonstrou a eficácia 

da abordagem na antecipação de falhas críticas nos pipelines, permitindo intervenções mais 

rápidas e assertivas ao longo do ciclo de desenvolvimento. 

3.2.4 NAMAKI et al. (2020) 

No trabalho de NAMAKI et al. (2020), é apresentado o sistema Vamsa, que permite rastrear 

os dados de proveniência de atributos de modelos de aprendizado de máquina. O sistema tem 

como objetivo principal rastrear automaticamente quais atributos de um conjunto de dados 
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foram utilizados para derivar os recursos de um modelo de AM. O Vamsa é composto por 

três módulos principais: 

● Extrator de derivação dos dados: gera uma representação intermediária do workflow 

do script (Workflow Intermediate Representation - WIR). É utilizada para formar um 

grafo direcionado a partir dos principais elementos do workflow, incluindo bibliotecas 

importadas, variáveis, funções e suas dependências. Conforme exemplificado na 

Figura 19, o WIR indica todo o fluxo de atividades do script de AM, o qual considera 

desde o conjunto de dados utilizado (heart_disease.csv), as bibliotecas (Pandas9 e 

CatBoost10) até as atividades de treinamento e teste que são realizadas utilizando o 

algoritmo CatBoostClassifier; 

● Anotador de variáveis utilizando base de conhecimento: utiliza um algoritmo de anotação 

genérica e uma base de conhecimento que contém informações sobre as várias APIs de 

diferentes bibliotecas de AM. Esse módulo permite a anotação de variáveis do fluxo 

de trabalho intermediário com base em suas funções no script (por exemplo, recursos, 

rótulos e modelos); e 

● Rastreador de dados de proveniência: infere um conjunto de colunas que foram 

explicitamente incluídas ou excluídas para uso no modelo de AM, o que é obtido por 

meio do fluxo de trabalho intermediário anotado (uma representação estruturada que 

captura todas as operações e transformações realizadas sobre os dados no script)  e 

consultando a base de conhecimento. Essa inferência é realizada considerando regras 

definidas na base de conhecimento, que orientam o sistema a percorrer o grafo do 

script para localizar constantes, nomes de colunas ou intervalos de índices utilizados 

nas operações de seleção ou remoção de colunas. 

Os testes foram realizados considerando scripts Python (provenientes do Kaggle11 e do 

GitHub12) para a validação da aplicabilidade do Vamsa em diferentes contextos. Os 

experimentos avaliaram a eficácia da proposta na atividade de identificação de colunas dos 

conjuntos de dados utilizados para derivar os atributos utilizados em modelos de aprendizado 

de máquina. Os resultados demonstraram que o Vamsa atingiu uma precisão que varia entre 

90,4% e 99,1% para rastrear as colunas relevantes. Além disso, o sistema se mostrou capaz 

de operar de forma autônoma sobre scripts não modificados, adaptando-se a diferentes 

bibliotecas e frameworks de AM, o que reforça sua aplicabilidade prática em cenários reais. 

                                            
9 https://pandas.pydata.org/ 
10 https://catboost.ai/docs/en/ 
11 https://www.kaggle.com/ 
12 https://github.com 
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Figura 19 – Exemplo de WIR. 

 
Fonte: NAMAKI et al., 2020. 

3.2.5 CHAPMAN et al. (2020) 

Nesse trabalho é realizada a análise das operações realizadas durante o pré-processamento de 

dados dentro do contexto de AM. Os autores consideram as operações de pré-processamento 

dos conjuntos de dados em três classes principais, a saber:  

(i) Redução de dados: operações que reduzem o tamanho do conjunto de dados 

eliminando linhas (selection) ou colunas (projection);  

(ii) Aumento de dados: operações que aumentam o tamanho do conjunto de dados 

adicionando linhas (vertical augmentation) ou colunas (horizontal 

augmentation); e  

(iii) Transformação de dados (data transformation): operações que, aplicando 

funções adequadas, transformam elementos do conjunto de dados sem alterar 

seu tamanho ou seu esquema. Essas funções modificam apenas os valores 

internos dos dados, mantendo o mesmo número de linhas e colunas. Exemplos 

dessas funções incluem imputação de valores faltantes, normalização, 

binarização, discretização e correção de valores inconsistentes, como a 

substituição de valores nulos e a binarização de atributos. 

Para cada operação de pré-processamento, é associado um modelo (Figura 20) de 

função de geração de dados de proveniência (p-gen), que registra os dados de proveniência 
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das operações realizadas em detalhes. Nesse modelo formal, foram desenvolvidas técnicas 

práticas para registrar as derivações de dados no nível dos elementos atômicos no conjunto 

de dados, para uma classe geral de operadores de transformação de dados. No trabalho, essas 

derivações foram registradas utilizando o modelo de dados PROV (W3C). Os dados de 

proveniência associados às derivações de dados formam um conjunto de metadados 

estruturados em forma de grafo, que podem ser consultados como uma etapa preliminar para 

dar suporte às perguntas do usuário sobre as propriedades do modelo de AM. 

Figura 20 - Modelos utilizados pela função p-gen. 
 

Fonte: CHAPMAN et al., 2020. 

No trabalho, foram consideradas transformações que se aplicam em conjuntos de dados 

tabulares ou relacionais, como, por exemplo, detecção e remoção de outliers e eliminação de 

duplicatas. No modelo de proveniência, uma entidade representa um elemento de um conjunto 

de dados e é identificada exclusivamente pelo conjunto de dados e por seu índice de linha + 

atributo. Já uma atividade representa qualquer manipulação de dados de pré-processamento 

que opera sobre um conjunto de dados. Os dados de proveniência gerados são armazenados 

no MongoDB utilizando coleções em formato JSON. 

Conforme demonstrado na Figura 21, para cada registro de dados em uma tabela, é 

realizada uma derivação do atributo Age com a criação do atributo AgeRange. No exemplo 

também ocorre a seleção de registros que não tenham o valor do atributo AgeRange igual à 

Young. Isso resulta em um novo conjunto (à direita) de modelos instanciados que são 

produzidos por uma função de geração de proveniência (p-gen), tendo o primeiro registro sendo 

considerado inválido.  

Os autores ressaltam que um esforço substancial é dedicado à preparação dos dados 

para uso na modelagem de AM e que as alterações feitas durante a preparação podem afetar o 
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modelo final. Por isso, torna-se importante ser capaz de rastrear o que está acontecendo com 

os dados em um detalhado nível de granularidade, como o realizado por eles. A abordagem 

foi avaliada por meio de experimentos realizados em pipelines do mundo real na linguagem 

Python, focando em operações realizadas utilizando a biblioteca Pandas, para limpeza e pré-

processamento de dados.  

Durante as análises, também foi avaliada a capacidade de responder a consultas que 

consideram os dados de proveniência. Exemplos dessas consultas incluem identificar todas as 

operações aplicadas aos dados, rastrear quais dados de entrada influenciaram determinado 

valor, verificar como valores foram gerados e identificar registros ou atributos que foram 

invalidados ao longo do pipeline. Além disso, foi avaliada a capacidade de analisar mudanças 

na distribuição dos dados, demonstrando a eficácia da captura de proveniência em cenários 

práticos. Por exemplo, no caso em que um modelo apresentou uma avaliação de precisão 

incorreta devido a um conjunto de dados desbalanceados, e a análise da proveniência permitiu 

identificar como as transformações impactaram a distribuição dos atributos.  

A partir da avaliação da proposta, os autores observaram que é possível coletar 

proveniência das operações de forma útil, oferecendo informações relevantes para auditoria e 

depuração de pipelines, e eficiente, com baixa sobrecarga de tempo e espaço, através da 

geração incremental de fragmentos de proveniência armazenados de forma escalável em 

MongoDB. 

Figura 21 - Exemplo de modelos instanciados produzidos por uma função p-gen. 

 

Fonte: CHAPMAN et al., 2020. 
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3.3 ANÁLISE COMPARATIVA 

Em relação aos trabalhos que realizam a extensão da PROV no contexto de pipelines de AM, 

SCHLEGEL & SATTLER (2023) focam no versionamento e documentação de execuções, mas 

não oferecem suporte ao detalhamento da proveniência prospectiva. ESTEVES et al. (2015) 

priorizam a interoperabilidade para o vocabulário MEX, e focam nas execuções e algoritmos de 

AM, sem o detalhamento de outras atividades, como atividades de pré-processamento.  

BUTT & FITCH (2020), apesar de considerar o uso da extensão no contexto de AM, 

propõem uma ontologia um pouco mais genérica e voltada a workflows científicos. Já SOUZA et 

al. (2021), no PROV-ML, não consideram o detalhamento da origem de todos os artefatos 

envolvidos na execução. Além disso, é considerado apenas o agente diretamente relacionado à 

execução, sem a definição de outros agentes que possam estar envolvidos em elementos ou artefatos 

que também fazem parte do processo. 

A extensão PROVX se destaca por integrar, de forma estruturada, o detalhamento das 

execuções de pipelines de AM com aspectos específicos da proveniência em um contexto iterativo. 

A extensão proposta inclui classes como: Run, composta pelos metadados relacionados às 

execuções; BasicProvenance, descreve a origem do pipeline e do conjunto de dados; e 

ExtendedProvenance, combina a perspectiva de planejamento (prospectiva) e o histórico de 

execução (retrospectiva). Além disso, possui a propriedade hasPrevious, a qual permite identificar 

execuções anteriores relacionadas, o que também viabiliza a reutilização dos dados. 

Embora alguns dos trabalhos analisados abordem o uso de dados de proveniência em 

pipelines de AM, não são considerados aspectos para viabilizar a reexecução consistente de 

atividades específicas e nem a sua reutilização automatizada em novas execuções do pipeline. 

Tais aspectos envolvem: a obtenção detalhada dos dados de proveniência dos artefatos e 

atividades relacionadas às execuções; a estruturação semântica dos dados de proveniência, com 

suporte à consulta e interpretação automática; a identificação de execuções anteriores 

relacionadas; e a utilização automatizada desses dados para ajustes em atividades.  

Em OLIVEIRA et al. (2024), os dados de proveniência são relacionados com os 

atributos importantes para o treinamento do modelo gerado, o que permite indicar o histórico 

de transformações realizadas sobre esses atributos, promovendo um maior detalhamento. Esse 

detalhamento realizado é utilizado para o entendimento do usuário sobre o processo pelo qual 

os dados passaram. No trabalho desenvolvido, esses dados não são aplicados para outra 

finalidade. Também não há a possibilidade de as informações obtidas influenciarem 

diretamente nos resultados dos modelos, sendo necessário que o usuário aplique esse 

conhecimento adquirido a partir do que foi observado. 
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A abordagem proposta por KERZEL et al. (2021) se concentra mais na captura e 

visualização de dados de proveniência. Embora o MLProvLab ofereça funcionalidades para o 

rastreamento e a visualização de dados de proveniência em pipelines de aprendizado de 

máquina, não são utilizadas ontologias para estruturar semanticamente os dados de 

proveniência. No trabalho também não é implementado um repositório dedicado para o 

gerenciamento desses dados, o que dificulta o seu uso posterior e a análise desses dados de 

proveniência.  

O trabalho realizado por SCHELTER et al. (2023) se concentra na identificação de 

problemas como vazamentos e erros de rotulagem. A abordagem enfatiza a importância da 

estruturação semântica dos dados de proveniência e promove melhorias contínuas nos modelos 

de AM por meio da análise semântica, que permite a identificação desses problemas. 

CHAPMAN et al. (2020) realizam a captura de dados de proveniência considerando 

apenas as atividades de preparação dos dados no contexto de AM, sendo essa proveniência 

capturada a partir da execução das atividades (workflows). Por outro lado, em NAMAKI et al. 

(2020) não são consideradas atividades de preparação de dados, o estudo se concentra em 

atividades que correspondem à modelagem de AM. Além disso, os dados de proveniência 

obtidos não são estruturados de forma semântica. 

Trabalhos como os de SCHELTER et al. (2024), CHAPMAN et al. (2020) e OLIVEIRA 

et al. (2024) apresentam contribuições relevantes no que se refere à documentação e análise de 

execuções de pipelines de aprendizado de máquina. No entanto, tais abordagens não propõem 

mecanismos integrados que viabilizem a reexecução e o ajuste direto de atividades com base 

em execuções anteriores.  

O protótipo nFlowX oferece uma solução integrada e estruturada, permitindo desde a 

documentação, até o suporte à reexecução e o ajuste de atividades, visando a melhoria dos 

modelos de AM. O Quadro 1 compara os trabalhos sobre dados de proveniência em pipelines 

de AM, apresentados neste capítulo, com esta tese. Nesse quadro, são destacados aspectos 

como o tipo de proveniência abordado (prospectiva, retrospectiva ou ambos), o modelo 

utilizado para representação/persistência dos dados, além de funcionalidades como 

gerenciamento do histórico de execuções, reexecução de atividades de preparação de dados, 

uso de dados de proveniência para ajustes automatizados no pipeline e realização de análises 

sobre as execuções. 

Nesse sentido, esta tese propõe uma solução que, por meio do nFlowX, permite a 

realização de ajustes automatizados e a reexecução das atividades do pipeline, com base em 

dados de proveniência estruturados de execuções anteriores. Embora existam trabalhos que 
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utilizam dados de proveniência de forma ativa para guiar modificações no pipeline (como em 

OLIVEIRA et al. (2024) e em SCHELTER et al. (2023)), as alterações ainda são conduzidas 

manualmente. Nesses trabalhos, o usuário é responsável, ao menos, por realizar os ajustes e, 

em alguns casos, também pela análise detalhada das execuções anteriores para decidir quais 

ajustes devem ser realizados. Essa abordagem manual demanda esforço interpretativo, 

limitando o uso mais dinâmico e automatizado desses dados na melhoria do pipeline. 

Em relação aos trabalhos que estendem os elementos da PROV, todos buscam se adequar 

a aspectos mais específicos dentro do contexto de AM ou não contemplam todo o detalhamento 

da execução do pipeline. Entre esses trabalhos, não foi identificada extensão da PROV que 

represente a precedência entre diferentes execuções e que, simultaneamente, considere um 

conjunto de metadados de proveniência de todos os artefatos envolvidos na execução. Essa 

representação também deveria incluir a proveniência prospectiva e retrospectiva, dados 

relacionados ao modelo de AM, assim como dados gerais e detalhes sobre a execução do 

pipeline.
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Quadro 1 - Comparação entre os trabalhos relacionados. 

Referência 
Tipo de 

Proveniência 

Modelo para 

Representação/Persis

tência dos dados de 

proveniência 

Gerenciamento do 

histórico de execuções 

de atividades do Pipeline 

de AM 

Aplica a 

reexecução de 

Atividades de 

Preparação de 

Dados 

Uso de dados de 

Proveniência para 

ajustar de forma 

automatizada atividades 

do Pipeline de AM 

Análises 

sobre as 

execuções 

(consultas) 

ESTEVES et 

al. (2015) 

Prospectiva e 

Retrospectiva 

MEX 

(Extensão/PROV) 
Sim Não Não Não 

NAMAKI et 

al. (2020) 

Prospectiva e 

Retrospectiva 
WIR Não Não Não Não 

CHAPMAN 

et al. (2020) 

Prospectiva e 

Retrospectiva 
PROV Não Não Não Sim 

KERZEL et 

al. (2021) 

Prospectiva e 

Retrospectiva 
Não Sim Não Não Sim 

SCHLEGEL 

& SATTLER 

(2023) 

Retrospectiva 
MLflow2PROV 

(Extensão/PROV) 
Sim Não Não Sim 

SCHELTER 

et al. (2023) 
Retrospectiva Não Sim Não Não Sim 

OLIVEIRA 

et al. (2024) 

Prospectiva e 

Retrospectiva 
PROV Sim Não Não Sim 

BUTT & 

FITCH 

(2020) 

Prospectiva e 

Retrospectiva 

ProvONE+ 

(Extensão/PROV) 
Não Não Não Não 

SOUZA et 

al. (2021) 

Prospectiva e 

Retrospectiva 

Prov-ML 

(Extensão/PROV) 
Sim Não Não Sim 

Esta Tese 
Prospectiva e 

Retrospectiva 

PROVX 

(Extensão/PROV) 
Sim Sim Sim Sim 

Fonte: O Autor. 
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3.4 CONSIDERAÇÕES 

Neste capítulo, foram apresentados os trabalhos relacionados ao tema desta tese, com uma análise 

comparativa entre as abordagens, considerando suas principais características em relação à 

proposta deste trabalho. A partir dessa análise, embora existam trabalhos relevantes para a captura, 

representação e utilização de dados de proveniência em pipelines de aprendizado de máquina, 

destaca-se a ausência de soluções focadas no processo iterativo de execuções do pipeline de AM 

que utilizem esses dados de proveniência para a realização de ajustes automáticos no pipeline. No 

próximo capítulo, é apresentada a proposta deste trabalho, que utiliza dados de proveniência para 

otimizar o desenvolvimento do pipeline  de AM, com foco na atividade de seleção de atributos de 

forma automatizada.
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4 DADOS DE PROVENIÊNCIA EM CONTEXTOS DE EXECUÇÕES DE 

PIPELINES 

Este capítulo inicia com a Seção 4.1, a qual detalha o problema e o cenário em que a proposta se 

enquadra. Em seguida, a Seção 4.2 aborda as definições preliminares necessárias para o 

entendimento deste trabalho. A Seção 4.3 apresenta a abordagem proposta, por meio da exploração 

das fases de ajustes de atividades do Pipeline, Execução do Pipeline, Estruturação da Proveniência 

(Extensão PROVX) e Realização de Consultas. Por fim, é apresentado o caso de uso, além de 

serem tecidas algumas considerações do capítulo. 

4.1 DEFINIÇÃO DO PROBLEMA E CENÁRIO 

Neste trabalho, é considerado o contexto de pipelines de treinamento de modelos preditivos. Sendo 

analisado de que forma os dados de proveniência capturados nas fases de preparação de dados e 

modelagem do aprendizado podem contribuir para a reexecução e o ajuste de atividades do 

pipeline de AM, especialmente em processos iterativos. 

A partir do acesso a dados de proveniência obtidos durante execuções anteriores do pipeline, 

é possível auxiliar no desenvolvimento de modelos de aprendizado. Como ilustração, o uso de 

dados de proveniência prospectiva/retrospectiva, considerando o plano de execução do pipeline 

ou os resultados obtidos, podem ser aplicados em atividades do pipeline, como na escolha dos 

parâmetros do modelo de aprendizado e em atividades de seleção de atributos durante a fase de 

preparação de dados. 

Para isso, consideramos um processo de desenvolvimento do pipeline de AM (Figura 22), 

focado nas fases de preparação de dados e modelagem de AM. Os dados de proveniência 

capturados durante a execução dessas fases podem ser utilizados em iterações futuras, auxiliando 

o desenvolvimento das atividades do pipeline.  

Figura 22 – Escopo da Abordagem Proposta para o Pipeline de AM. 

 

Fonte: O Autor. 
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Conforme mostrado a Figura 22, para o desenvolvimento do pipeline de AM, consideramos 

um processo composto por etapas, as quais possuem suas respectivas atividades, e um repositório 

de dados de proveniência. Esses dados, coletados durante a execução dessas etapas, podem ser 

utilizados para ajustar atividades das etapas do pipeline, como a seleção de atributos. 

A primeira execução de um pipeline de treinamento de um modelo preditivo é considerada 

como a execução base, pois não há execução anterior do pipeline que permita utilizar os dados de 

proveniência. Mas, a partir dessa primeira execução do pipeline, ocorre o armazenamento de dados 

de proveniência da execução no repositório de dados utilizando o formato RDF, o que considera 

desde os dados sobre a origem do conjunto de dados e do pipeline envolvido na execução, até a 

proveniência prospectiva e retrospectiva, definidas na seção a seguir. Quando houver uma nova 

execução, é indicada a existência de execução anterior relacionada e será possível fazer uso desses 

dados.  

Após a primeira execução do pipeline, em que os dados de proveniência são armazenados 

no repositório, novas execuções podem se beneficiar dos dados armazenados. Essa identificação 

das execuções relacionadas é estabelecida quando existem execuções anteriores que utilizam o 

pipeline P e o conjunto de dados D. O objetivo é permitir o reaproveitamento dos dados de 

proveniência para ajustes e otimizações nas novas execuções, evitando retrabalho e aprimorando 

o processo de desenvolvimento de modelos de AM. 

Para formalizar essa relação, consideramos o seguinte cenário: 

 Um pipeline 𝑃𝑖 é executado utilizando um conjunto de dados 𝐷𝑗 , que possui seus 

respectivos metadados 𝐷𝑗𝑚𝑒𝑡𝑎 ; 

 Cada execução é representada como 𝐸𝑥𝑒𝑐𝑛(𝑃𝑖 , 𝐷𝑗 , 𝐷𝑗𝑚𝑒𝑡𝑎 ); e 

 Durante a execução, são gerados dados de proveniência 𝑃𝑟𝑜𝑣𝐸𝑥𝑒𝑐𝑛 , os quais são 

armazenados em um repositório de dados. 

Se for identificada no repositório de dados uma execução (𝐸𝑥𝑒𝑐𝑛−𝑚(𝑃𝑖  , 𝐷𝑗 , 𝐷𝑗𝑚𝑒𝑡𝑎 )), isto 

é, uma execução anterior do pipeline 𝑃𝑖 com o conjunto de dados 𝐷𝑗 , os dados de proveniência de 

uma execução anterior (𝑃𝑟𝑜𝑣𝐸𝑥𝑒𝑐𝑛−𝑚 ) podem ser utilizados para auxiliar no ajuste da nova 

execução 𝐸𝑥𝑒𝑐𝑛(𝑃𝑖  , 𝐷𝑗 , 𝐷𝑗𝑚𝑒𝑡𝑎 ). 

Formalmente, essa relação pode ser descrita como:  

Se ∃ (𝐸𝑥𝑒𝑐𝑛−𝑚(𝑃𝑖  , 𝐷𝑗 , 𝐷𝑗𝑚𝑒𝑡𝑎 )), então utilizar 𝑃𝑟𝑜𝑣𝐸𝑥𝑒𝑐𝑛−𝑚 para ajustar a execução 

𝐸𝑥𝑒𝑐𝑛(𝑃𝑖 , 𝐷𝑗 , 𝐷𝑗𝑚𝑒𝑡𝑎 ). 

Por exemplo, os dados de proveniência armazenados podem ser utilizados para otimizar a 

etapa de seleção de atributos, permitindo a aplicação de técnicas como a RFE, para priorizar os 

atributos mais relevantes do modelo da execução relacionada. Além disso, os dados de 
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proveniência podem ser utilizados em outras alterações no pipeline, como a escolha de 

hiperparâmetros, algoritmos e estratégias de pré-processamento, além de evitar falhas recorrentes. 

4.2 DEFINIÇÕES PRELIMINARES 

Nesta seção, são apresentados conceitos específicos adotados neste trabalho, que refletem as 

particularidades do estudo e estão alinhados com a literatura existente (TEUBL et al., 2023;  

FREIRE et al., 2008; LÓSCIO et al., 2017; LEBO et al., 2013; GARIJO et al., 2014). As definições 

são usadas para fundamentar a proposta da abordagem e algumas discussões apresentadas nas 

seções seguintes. 

Definição 01 - Proveniência básica do conjunto de dados – 𝑷𝑩𝑫(𝑫𝒋𝒎𝒆𝒕𝒂): Tendo em 

consideração os metadados 𝐷𝑗𝑚𝑒𝑡𝑎 de um conjunto de dados 𝐷𝑗 , a proveniência básica de 𝐷𝑗  se 

refere aos metadados relacionados à sua origem, expressa da seguinte forma:  

𝑃𝐵𝐷(𝐷𝑗𝑚𝑒𝑡𝑎) = (𝑑𝑡𝑐 ,  𝑑𝑡𝑢, 𝑣, 𝑐𝑟, 𝑝𝑏, 𝑓) 

  Em que:  

𝑑𝑡𝑐: Data de criação, representada como timestamp; 

𝑑𝑡𝑢: Data da última atualização, representada como timestamp; 

𝑣: Versão do conjunto de dados; 

𝑐𝑟: Criador do conjunto de dados; 

𝑝𝑏: Publicador do conjunto de dados; e 

𝑓: Fonte do conjunto de dados. 

Definição 02 - Proveniência Básica do Pipeline - 𝑷𝑩𝑷(𝑷𝒊 ): Considerando um pipeline 𝑃𝑖 , a 

proveniência básica de 𝑃𝑖 se refere aos metadados relacionados à sua origem, definida como:  

𝑃𝐵𝑃(𝑃𝑖) = (𝑑𝑡𝑐,  𝑑𝑡𝑢, 𝑣, 𝑟) 

Em que: 

𝑑𝑡𝑐: Data de criação, representada como timestamp; 

𝑑𝑡𝑢: Data da última atualização, representada como timestamp; 

𝑣: Versão do pipeline; e 

𝑟: Responsável pelo desenvolvimento do pipeline. 

Definição 03 - Proveniência Prospectiva – 𝝅𝑷𝑷(𝑷𝒊 ,  𝑫𝒋 ): A proveniência prospectiva de um 

pipeline 𝑃𝑖 , que utiliza o conjunto de dados 𝐷𝑗 , é composta por um conjunto de etapas planejadas 

a serem realizadas, definido por: 

𝜋𝑃𝑃(𝑃𝑖 ,  𝐷𝑗 ) = 𝐸 
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Em que: 

𝐸 representa o conjunto de etapas do pipeline, dado por: 𝐸 =  {𝑒1,  𝑒2, …  𝑒𝑘}. 

Cada 𝑒𝑥 contém um conjunto de atividades: 𝐴𝑥  = {𝑎𝑥1,  𝑎𝑥2, …  𝑎𝑥𝑝}, em que 

cada atividade 𝑎𝑥𝑦 representa uma função ou operação a ser executada. 

Definição 04 - Proveniência Retrospectiva – 𝝅𝑷𝑹(𝑷𝒊 ,  𝑫𝒋 ): A proveniência retrospectiva de 

um pipeline 𝑃𝑖 , que utiliza o conjunto de dados 𝐷𝑗 , corresponde a um conjunto de etapas que 

foram executadas 𝜋𝑃𝑅(𝑃𝑖 ,  𝐷𝑗 ) = 𝑅𝑒𝑠(𝐸) =  {𝑟1,  𝑟2, …  𝑟𝐾}, em que: 

Cada 𝑟𝑥 representa o resultado da execução da etapa planejada 𝑒𝑥, que corresponde aos 

dados reais da execução de 𝐴𝑥 associados à etapa 𝑒𝑥, incluindo suas entradas e saídas. 

Considera 𝜋𝑃𝑃(𝑃𝑖 ,  𝐷𝑗 )  → 𝜋𝑃𝑅(𝑃𝑖 ,  𝐷𝑗 ), ou seja,  as etapas executadas 𝑅𝑒𝑠(𝐸)  são 

dependentes das etapas planejadas 𝐸. 

Definição 05 - Proveniência Estendida – 𝑷𝑬(𝑷𝒊 ,  𝑫𝒋 ): se refere ao planejamento e execução de 

um pipeline 𝑃𝑖  que utiliza um conjunto de dados 𝐷𝑗 , sendo: 

𝑃𝐸(𝑃𝑖 ,  𝐷𝑗 ) = (𝜋𝑃𝑃(𝑃𝑖 ,  𝐷𝑗 ), 𝜋𝑃𝑅(𝑃𝑖 ,  𝐷𝑗 )) 

Em que: 

𝜋𝑃𝑃(𝑃𝑖 ,  𝐷𝑗 ): Proveniência Prospectiva de uma execução; e 

𝜋𝑃𝑅(𝑃𝑖 ,  𝐷𝑗 ): Proveniência Retrospectiva de uma execução. 

Definição 06 – Dados do Modelo de AM – 𝑴𝑴(𝑷𝒊 ,  𝑫𝒋 ): Considerando que um pipeline 𝑃𝑖  é 

executado utilizando um conjunto de dados 𝐷𝑗 , os dados do modelo de AM correspondem às 

informações capturadas durante essa execução. Esses dados descrevem aspectos do algoritmo de 

AM utilizado no pipeline, definidos da seguinte forma: 

𝑀𝑀(𝑃𝑖,  𝐷𝑗 ) = (𝑎𝑙𝑔,  𝑝𝑎𝑟𝑎𝑚𝑎𝑙𝑔, 𝑠𝑒𝑡𝑠, 𝑠𝑐𝑟) 

Em que: 

𝑎𝑙𝑔: o algoritmo de classificação, por exemplo, Random Forest ou SVM 

(Máquinas de Vetores de Suporte); 

𝑝𝑎𝑟𝑎𝑚𝑎𝑙𝑔: conjunto de parâmetros especificados para o algoritmo, como por 

exemplo, para Random Forest: n_estimators=100, max_depth=10; 

𝑠𝑒𝑡𝑠: especificação da partição dos conjuntos de treinamento, teste e validação, 

por exemplo: divisão de 60% para treinamento, 20% para teste e 20% para 

validação; e 

𝑠𝑐𝑟: conjunto de pontuações das métricas de avaliação, como acurácia, 

precisão, cobertura e F1-score. 
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Definição 07 - Execução do pipeline de AM – 𝑬𝒙𝒆𝒄𝒏(𝑷𝒊 ,  𝑫𝒋,  𝑫𝒋𝒎𝒆𝒕𝒂 ): Considera a execução 

de um pipeline 𝑃𝑖  que utiliza um conjunto de dados 𝐷𝑗  (e apresenta seus metadados 𝐷𝑗𝑚𝑒𝑡𝑎 ), 

referindo-se a um processo para executar uma sequência de atividades estabelecidas nas etapas 

que compõe 𝑃𝑖 e utilizam 𝐷𝑗 , a fim de treinar um modelo de AM. O resultado do modelo e as 

informações relacionadas com a execução são obtidos da seguinte forma: 

𝐸𝑥𝑒𝑐𝑛(𝑃𝑖  ,  𝐷𝑗 ,  𝐷𝑗𝑚𝑒𝑡𝑎 ) =  (𝑃𝑟𝑜𝑣𝐸𝑥𝑒𝑐𝑛 , 𝑟𝑒𝑠𝑝) 

Em que: 

   𝑃𝑟𝑜𝑣𝐸𝑥𝑒𝑐𝑛 : é o conjunto de informações de proveniência associadas à 

execução, incluindo: 

𝑃𝐵𝐷(𝐷𝑗𝑚𝑒𝑡𝑎) : é a proveniência básica do conjunto de dados; 

𝑃𝐵𝑃(𝑃𝑖) : é a proveniência básica do pipeline; 

𝑃𝐸(𝑃𝑖  ,  𝐷𝑗) : é a proveniência estendida da execução; e 

𝑀𝑀(𝑃𝑖 ,  𝐷𝑗) : são os dados referentes ao modelo gerado pelo pipeline. 

𝑟𝑒𝑠𝑝 são as saídas do pipeline executado. 

Definição 8 - Reexecução de Atividade por Dados de Proveniência – 𝑨𝒕𝒗𝑹(𝑫𝒋, 𝑨): Antes da 

execução 𝐸𝑥𝑒𝑐𝑛(𝑃𝑖  ,  𝐷𝑗 ,  𝐷𝑗𝑚𝑒𝑡𝑎 ), um conjunto de Atividades (𝐴) pertencentes a uma ou mais 

Etapas (𝐸) de um pipeline 𝑃𝑞, pode ser reexecutado considerando o plano apresentado em 

𝜋𝑃𝑃(𝑃𝑞 ,  𝐷𝑟 ), estabelecido em uma 𝑃𝐸𝑛−𝑚(𝑃𝑞 ,  𝐷𝑟 )  ∈  𝐸𝑥𝑒𝑐𝑛−𝑚(𝑃𝑞 ,  𝐷𝑟 ,  𝐷𝑟𝑚𝑒𝑡𝑎 ). 

Essa reexecução é possível quando as seguintes condições são atendidas: 

Title(𝑃𝑖) =  𝑇𝑖𝑡𝑙𝑒(𝑃𝑞)   && (𝑑𝑡𝑐, 𝑟)  ∈ 𝑃𝐵𝑃(𝑃𝑖) =  (𝑑𝑡𝑐 , 𝑟)  ∈ 𝑃𝐵𝑃(𝑃𝑞), ou 

seja, o título, a data de criação e o responsável pelo 𝑃𝑖  são equivalentes ao do 

pipeline  𝑃𝑞; e 

𝑇𝑖𝑡𝑙𝑒(𝐷𝑗) =  𝑇𝑖𝑡𝑙𝑒(𝐷𝑟)  && (𝑑𝑡𝑐, 𝑐𝑟)  ∈ 𝑃𝐵𝐷(𝐷𝑗) =  (𝑑𝑡𝑐 , 𝑐 𝑟)  ∈ 𝑃𝐵𝐷(𝐷𝑟), 

indicando que o título, a data de criação e o criador do conjunto de dados  𝐷𝑗  e 

 𝐷𝑟 também são equivalentes. 

Isso possibilita a realização de novas análises que podem contribuir para o ajuste do 

pipeline 𝑃𝑖 na nova execução 𝐸𝑥𝑒𝑐𝑛(𝑃𝑖  ,  𝐷𝑗 ,  𝐷𝑗𝑚𝑒𝑡𝑎 ). 

Definição 9 - Ajuste de Pipeline Utilizando Dados de Proveniência - 𝑨𝒋𝑷𝒓𝒐𝒗(𝑷𝒊, 𝑨) : Antes 

de uma execução 𝐸𝑥𝑒𝑐𝑛(𝑃𝑖 ,  𝐷𝑗 ,  𝐷𝑗𝑚𝑒𝑡𝑎 ), uma ou mais atividades do pipeline 𝑃𝑖 podem ser 

ajustadas com base em dados derivados das análises obtidas em 𝐸𝑥𝑒𝑐𝑛−𝑚(𝑃𝑞 ,  𝐷𝑟 ,  𝐷𝑟𝑚𝑒𝑡𝑎)  ou 

em 𝐴𝑡𝑣𝑅(𝐷𝑗 , 𝐴), desde que sejam atendidas as seguintes condições: 
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Title(𝑃𝑖) =  𝑇𝑖𝑡𝑙𝑒(𝑃𝑞) && (𝑑𝑡𝑐, 𝑟)  ∈ 𝑃𝐵𝑃(𝑃𝑖) =  (𝑑𝑡𝑐, 𝑟)  ∈ 𝑃𝐵𝑃(𝑃𝑞), ou seja, o 

título, a data de criação e o responsável pelo 𝑃𝑖  são equivalentes ao do pipeline  𝑃𝑞; e 

𝑇𝑖𝑡𝑙𝑒(𝐷𝑗) =  𝑇𝑖𝑡𝑙𝑒(𝐷𝑟)  && (𝑑𝑡𝑐, 𝑐𝑟)  ∈ 𝑃𝐵𝐷(𝐷𝑗) =  (𝑑𝑡𝑐, 𝑐 𝑟)  ∈ 𝑃𝐵𝐷(𝐷𝑟), 

indicando que o título, a data de criação e o criador do conjunto de dados  𝐷𝑗  e  𝐷𝑟 

também são equivalentes. 

Como, por exemplo, com a identificação de um conjunto de atributos que melhora a 

avaliação do modelo de AM, é possível ajustar o pipeline, resultando em um pipeline 𝑃′𝑖 e em uma 

execução 𝐸𝑥𝑒𝑐𝑛(𝑃′𝑖 ,  𝐷𝑗 ,  𝐷𝑗𝑚𝑒𝑡𝑎 ), refletindo as modificações realizadas. 

4.3 DADOS DE PROVENIÊNCIA APLICADOS AO DESENVOLVIMENTO DO 

PIPELINE DE AM 

A abordagem proposta considera um processo que inclui a estruturação semântica dos dados de 

proveniência relacionados à execução de pipelines de AM, até a sua utilização para apoiar a 

seleção mais adequada de atributos. A seleção de atributos exerce influência direta sobre os 

resultados dos modelos gerados, podendo contribuir significativamente para sua melhoria. A 

proposta deste trabalho destaca o uso dos dados de proveniência como elemento central e 

diferencial para a realização da seleção de atributos, viabilizando a aplicação desse processo de 

forma mais automatizada e orientada, com base nas informações registradas durante as execuções 

anteriores dos pipelines.  

A abordagem proposta nesta tese (Figura 23) apresenta quatro fases principais: Ajuste de 

Atividades, Execução do Pipeline (composta, ao menos, por atividades relacionadas à preparação 

dos dados e ao treinamento do modelo de AM), Estruturação da Proveniência e Realização de 

Consultas. 

Figura 23 – Visão Geral da abordagem proposta. 

 

Fonte: O Autor. 
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4.3.1 Fase I: Ajustes de atividades do Pipeline 

Nessa fase, é possível realizar ajustes antes da execução de um dado pipeline, sendo aplicados a 

partir de dados de proveniência de execuções anteriores que estão armazenados no repositório de 

dados (Figura 24). Para essa fase, são necessários os artefatos para a execução da abordagem 

(pipeline de AM, conjunto de dados e metadados do conjunto de dados). A partir dos dados de 

Proveniência Básica, é identificado se no repositório de dados existem execuções anteriores que 

utilizaram o pipeline P e conjunto de dados D da execução atual (Consulta SPARQL (I), detalhada 

no Apêndice C). 

Para este cenário, consideramos um pipeline (P), que pode apresentar um conjunto de 

execuções (Exec1 até Execn), utilizando um conjunto de dados (D) e seus respectivos metadados 

(Dmeta). Uma execução atual pode ter suas atividades ajustadas considerando os dados de 

proveniência obtidos a partir de execuções anteriores, de modo que uma determinada execução n 

utilize as informações obtidas a partir de uma execução n-i. 

Figura 24 – Etapas da fase de ajustes de atividades do pipeline. 

 
Fonte: O Autor. 

Conforme observado na Figura 24, a partir da verificação da existência de uma execução 

anterior relacionada à atual, torna-se viável o ajuste automatizado do pipeline. Com a identificação 

de execução relacionada, é possível ajustar atividades já desempenhadas no pipeline a partir dos 

dados de proveniência da execução relacionada, como a atividade de seleção de atributos, utilizada 

neste trabalho para explicar seu uso. Essa atividade de seleção de atributos será realizada utilizando 

RFE do método Wrapper para a recomendação dos melhores atributos para o modelo.  

Neste contexto, a seleção ocorre a partir da reexecução de atividades do pipeline da execução 

relacionada, considerando os dados obtidos por meio da proveniência prospectiva e retrospectiva. 

Com a identificação desses atributos, o pipeline P é ajustado para que o modelo considere apenas 

os atributos recomendados, resultando em um pipeline P’, que será utilizado na execução. 

Para a etapa de reexecução de atividades (que inclui atividades de preparação dos dados e 

do modelo de AM) e realização da RFE, foi especificado o Algoritmo I. Esse algoritmo inicia com 

a obtenção da execução melhor avaliada do pipeline P associada ao conjunto de dados D, por meio 
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da função consultar_execucoes(Ptítulo,dt_criação,resp,Dtítulo,dt_criação,resp). Caso existam execuções 

anteriores, é priorizada a execução que apresente melhor avaliação, e então a proveniência 

prospectiva 𝜋PP(P,D) é obtida (linha 4), permitindo a identificação das atividades da fase de 

preparação dos dados (linha 5) e as atividades relacionadas ao modelo de AM utilizado (linha 6), 

considerando os mesmos parâmetros e algoritmo. A seleção de atributos (linha 7) é realizada 

mediante a função exec_selecao(AtvR([atvpreparacao, atvmodelo], D)), sendo reexecutadas as 

atividades de preparação de dados e do modelo de AM, utilizando a função AtvR. Em seguida, é 

aplicada a seleção de atributos considerando o modelo obtido em AtvR, retornando o conjunto de 

atributos recomendados pela atividade de seleção (atrsel) (linha 9).  

Para a seleção dos atributos, foi utilizada a técnica RFE, que foi automatizada e integrada ao 

processo de reexecução de atividades, sendo realizada após a reexecução das atividades de 

preparação de dados e do modelo de AM. Com a avaliação iterativa do impacto da exclusão de 

cada atributo com base no desempenho do modelo, como na métrica de acurácia, obtido na 

execução do pipeline de melhor desempenho, é possível comparar os desempenhos e identificar 

se existe um conjunto de atributos que melhora a avaliação do modelo. Dessa forma, a RFE atua 

de forma mais direcionada e automatizada, permitindo a seleção de atributos com base no modelo 

da execução de melhor desempenho do pipeline, buscando aprimorar os resultados.  

Com a identificação desse conjunto de atributos, o pipeline (P) passa pelo ajuste da atividade 

de seleção de atributos utilizando os dados de proveniência (processo AjProv(P,A)), resultando no 

pipeline atualizado (P’), o qual será executado. Caso não seja identificado um conjunto de 

atributos que resulte em uma melhor avaliação do modelo, o pipeline (P) é executado sem 

alterações. 

Algoritmo I: Seleção de Atributos com Reexecução de Atividades 

 Entrada: Conjunto de dados(D), Pipeline de AM(P) 

 Saída: atributos recomendados (atrsel) 

 Início 

   1:  atrsel ← { } 

   2:  melhorexec ← consultar_execucoes(Ptítulo,dt_criação,resp,Dtítulo,dt_criação,resp) 

   3:  Se melhorexec ≠ ∅ Então 

   4:       𝜋PP(P,D) ← melhorexec.prospectiva() 

   5:       atvspreparacao ← preparação_dados(𝜋PP(P,D)) 

   6:       atvsmodelo ← modelo_AM(𝜋PP(P,D)) 

   7:       atrsel ← exec_selecao(AtvR([atvpreparacao, atvmodelo], D)) 

   8:  fim Se         

   9: retorna atrsel 

Fim 
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4.3.2 Fase II: Execução do Pipeline 

Nesta fase, é realizada a execução do pipeline (P), ou do pipeline atualizado (P’), utilizando o 

conjunto de dados (D). São destacadas, nesse contexto, as etapas de preparação dos dados e de 

modelagem de AM, detalhadas nas seções a seguir, e considerando o pressuposto de que o conjunto 

de dados a ser utilizado foi previamente coletado e disponibilizado. Além disso, os dados de 

proveniência da execução do pipeline são obtidos a partir da execução do pipeline em conjunto 

com uma ferramenta que realiza a captura da proveniência, como a noWorkflow (Seção 2.2). 

Como resultado dessa execução, é obtido o modelo gerado, juntamente com os dados de 

proveniência básica e estendida, além dos dados do modelo de AM. Em seguida, esses dados são 

estruturados e armazenados no repositório de dados (processo detalhado na Seção 4.3.3), para 

posterior utilização na fase de realização de consultas (Seção 4.3.4).  

4.3.2.1 Preparação de Dados  

Esta etapa recebe como entrada o conjunto de dados para a realização de atividades de pré-

processamento que permitam transformar os dados a fim de atender às necessidades para o 

desenvolvimento do modelo de AM. Entre as atividades a serem realizadas, podemos considerar 

aquelas estabelecidas na fase de preparação de dados da metodologia CRISP-DM (conforme Seção 

2.1.1), as quais geralmente também são executadas em pipelines de AM, conforme descrito em 

SINGH et al. (2022) e PURBASARI et al. (2021), destacando-se, neste trabalho, as seguintes 

atividades:  

● Seleção de Dados - Seleção dos dados a serem utilizados no treinamento do modelo, 

considerando a tarefa de predição ou tipo de dados;  

● Limpeza de Dados - Utiliza técnicas para correção de registros do conjunto de dados, por 

exemplo, deletar ou tratar erros e dados ausentes; e 

● Enriquecimento de Dados - Geração de novas informações a partir de dados existentes, 

como produzir novos recursos a partir da derivação de recursos existentes.  

A realização das atividades de preparação de dados depende das necessidades de cada 

conjunto de dados e do objetivo do modelo a ser gerado. Nem todas as atividades precisam ser 

necessariamente realizadas durante a execução desta fase, mas, para aquelas que forem realizadas, 

será feita a documentação do fluxo e das ações executadas por meio de uma ferramenta para 

captura de dados de proveniência. Durante a execução das atividades desta fase, os dados de 

proveniência prospectiva e retrospectiva também são capturados e, com a conclusão desta fase, o 

conjunto de dados refinado segue para a etapa de treinamento e avaliação do modelo.  
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4.3.2.2 Modelagem de AM  

Esta é a última etapa da fase do pipeline e corresponde às atividades de modelagem de AM e 

avaliação. Com base na literatura (TEUBL et al., 2023; CHERAGHI et al., 2021), neste trabalho, 

são consideradas as seguintes atividades: 

● Divisão do Conjunto de Dados: separação dos dados para as atividades voltadas à obtenção 

do modelo de AM, como treinamento, teste e validação. Todas as partes do conjunto de 

dados devem ser preparadas de forma que possam ser selecionadas aleatoriamente, para 

evitar qualquer viés ou influência intencional no processo de seleção. 

● Treinamento do Modelo: etapa em que é necessário realizar ajustes nos parâmetros 

específicos do algoritmo escolhido; e 

● Avaliação: avaliar o modelo, utilizando o conjunto de dados de teste para verificar o  

desempenho do modelo, podendo utilizar algumas métricas, como cobertura, precisão, F1-

score (definidas na Seção 2.1).  

Assim como na etapa anterior, os dados de proveniência prospectiva e retrospectiva 

também são obtidos a partir da execução das atividades realizadas. Os metadados do conjunto de 

dados, os dados sobre a origem do pipeline (por exemplo, data de atualização e criador) e os dados 

de proveniência obtidos a partir do pipeline (proveniência prospectiva e retrospectiva) são 

encaminhados para a fase de estruturação dos dados de proveniência. 

4.3.3 Fase III: Estruturação dos Dados de Proveniência – Extensão PROVX 

Nesta fase, os dados de proveniência obtidos na fase anterior são estruturados semanticamente 

utilizando a extensão proposta (PROVX) da Ontologia PROV (W3C). As informações 

estruturadas geradas nesta fase podem ser agrupadas em três categorias: (I) Proveniência Básica 

do Conjunto de Dados e Proveniência Básica do Pipeline: consistem em informações descritivas 

sobre a origem dos artefatos, como data de criação, atualização, e agentes responsáveis (por 

exemplo, autores e publicadores); (II) Dados do Modelo de AM: obtidos por meio do pipeline 

executado, fornecem detalhes essenciais sobre o modelo de AM e promovem confiança nos 

modelos (LI et al., 2023); e (III) Proveniência da Execução: considerando a proveniência estendida 

(proveniência prospectiva e retrospectiva), detalhes da execução e versões. 

A PROVX, detalhada no Apêndice A, compreende 15 novas classes (Figura 25), sendo 13 

entidades primárias e 2 subclasses. Algumas dessas classes estão vinculadas à ontologia P-Plan, 

que descreve planos e seus componentes, e à MLOnto13, especializada em representar conceitos e 

práticas em aprendizado de máquina.  

                                            
13 https://github.com/MLOntology/MLO 
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Figura 25 - Lista de Classes definidas. 

 

Fonte: O Autor. 

Essa integração facilitou a construção de um modelo capaz de descrever tanto o 

planejamento e a execução de processos quanto o desenvolvimento das atividades ao longo do 

tempo, tendo seus conceitos e definições estabelecidos a seguir: 

● BasicProvenance: Esta classe representa a entidade generalizada de um 

DatasetBasicProvenance ou um PipenilineBasicProvenance. Ela é gerada pela 

atividade Run e consiste de propriedades que descrevem a origem do arquivo, incluindo 

sua data de criação/atualização e o prov:Agent responsável por ele; 

● Dataset: Esta classe representa uma coleção organizada de dados disponíveis na Web, 

a qual é usada na atividade Run; 

● DatasetMetadata: Esta classe representa uma coleção organizada de metadados que 

descreve o conjunto de dados, incluindo informações sobre sua origem e estrutura, 

sendo usada na atividade Run; 

● DatasetCreator/UpdaterAgent: Esta classe representa o prov:Agent responsável por 

criar/atualizar o conjunto de dados; 

● DatasetPublisherAgent: Esta classe representa o prov:Agent responsável por publicar 

o conjunto de dados na Web; 

● ExtendedProvenance: Esta classe representa os detalhes da execução do pipeline, 

incluindo a indicação da ProspectiveProvenance e da RetrospectiveProvenance;  

● MLModel: Esta classe se refere aos dados que descrevem o modelo de AM. Está 

relacionada a mlo:Algorithms (indica o(s) algoritmo(s) usado(s) no modelo) e é gerada 

pela atividade Run; 

● Pipeline: Esta classe representa uma sequência organizada de instruções bem definidas 

projetadas para treinar e testar um ou mais algoritmos de AM, usando dados para fazer 

previsões ou classificações. Essas instruções são executadas na atividade Run; 
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● PipelineCreator/UpdaterAgent: Esta classe representa o prov:Agent responsável por 

criar e atualizar o pipeline; 

● ProspectiveProvenance: Esta classe representa a estrutura do Pipeline, suas etapas 

formam um p-plan:Plan. Cada etapa corresponde a um p-plan:Step.  

● RetrospectiveProvenance: Esta classe representa a proveniência retrospectiva obtida a 

partir de provx:Run, descrevendo a execução das etapas previstas em 

ProspectiveProvenance. 

● Run: Esta classe representa a atividade que abrange todo o processo de execução de um 

pipeline de AM, gera metadados que consideram aspectos relacionados à proveniência 

e ao modelo de AM; e 

● RunExecutorAgent: Esta classe representa o prov:Agent responsável por executar a 

atividade Run. 

Conforme observado na Figura 26, o modelo associado à ontologia proposta apresenta a 

atividade central Run que considera as fases de execução do pipeline e a geração dos metadados. 

Essa atividade representa a execução de uma entidade pipeline, sobre uma determinada entidade 

de conjunto de dados e sua respectiva entidade de metadados do conjunto de dados (todas essas 

entidades também possuem a indicação dos agentes relacionados), sendo a atividade Run de 

responsabilidade do agente RunExecutorAgent. Como resultado, são geradas as seguintes 

entidades: (i) DatasetBasicProvenance e PipelineBasicProvenance, responsáveis pelas 

informações relacionadas à origem dos artefatos utilizados; (ii) ExtendedProvenance, composta 

pela ProspectiveProvenance e RetrospectiveProvenance, que descrevem o plano e a execução 

efetiva do pipeline, respectivamente; e (iii) MLModel, que armazena informações relacionadas ao 

modelo de AM gerado. Além disso, a identificação de execuções relacionadas é realizada quando 

existem execuções anteriores que utilizam o pipeline P e o conjunto de dados D, identificados pela 

relação hasPrevious, possibilitando a análise entre as iterações e a reutilização de execuções 

anteriores. 
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Figura 26 – PROVX: Modelo baseado no PROV(W3C). 

 

Fonte: O Autor. 

 Considerando as subatividades realizadas na Atividade Run, a Figura 27 ilustra a fase de 

execução do pipeline. Essa subatividade é responsável por descrever as operações realizadas sobre 

os dados, desde o pré-processamento até a geração do modelo preditivo. A representação 

semântica contempla os artefatos utilizados (como o pipeline e os dados de entrada), os parâmetros 

aplicados, bem como os produtos gerados (modelo treinado e proveniência retrospectiva), que são 

relacionados aos agentes responsáveis. Esse detalhamento permite registrar o histórico das ações 

executadas e fornecer detalhes que possibilitam a comparação entre diferentes execuções. 

Figura 27 – PROVX - Subatividade referente à fase de execução do Pipeline. 

 

Fonte: O Autor. 

A Figura 28 apresenta a subatividade responsável pela estruturação dos dados de 

proveniência, ocorrida após a execução do pipeline. Esta subatividade é voltada para a geração dos 

metadados de proveniência, abrangendo tanto a Proveniência Prospectiva, que documenta o plano 

de execução (com base na ontologia P-Plan), quanto a Proveniência Retrospectiva, que descreve 

as ações efetivamente realizadas. A modelagem semântica dessas informações permite capturar o 
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plano de execução e os resultados observados durante essa execução, sendo essencial para a 

verificação da conformidade do processo. A disponibilização desses metadados no formato RDF 

viabiliza a realização de consultas semânticas via SPARQL e a interoperabilidade entre diferentes 

sistemas, contribuindo para a transparência e o aprimoramento contínuo de pipelines de AM. 

Figura 28 – PROVX - Subatividade referente à fase de Proveniência. 

 

Fonte: O Autor. 

4.3.4 Fase IV: Realização de Consultas 

A fase de consultas aos dados de proveniência tem o objetivo de facilitar a análise detalhada desses 

dados de proveniência gerados durante a execução de pipelines de AM. Ela possibilita a extração 

de informações que podem apoiar tanto o desenvolvimento do modelo de AM quanto a definição 

do melhor modelo entre várias iterações de execuções do pipeline de AM. 

Para a realização de consultas ao repositório de dados, é possível utilizar consultas 

predefinidas ou escrever novas consultas SPARQL, que permitem analisar os dados de 

proveniência e responder a perguntas sobre o desempenho e as configurações dos modelos 

treinados. Por exemplo, é possível identificar, em um conjunto de iterações de um pipeline, qual 

delas apresentou o melhor valor de acurácia e qual foi esse valor. Além disso, nesta fase, também 

é possível verificar os valores dos parâmetros e métricas de avaliação associados a um pipeline 

específico, sendo possível comparar diferentes execuções de um pipeline, permitindo rastrear as 

alterações realizadas ao longo da execução do pipeline, e proporcionar uma visão completa e 

detalhada do processo de modelagem. 

4.4 EXEMPLO DE USO 

Esta seção apresenta uma ilustração do passo a passo definido na abordagem proposta para a 

execução de pipelines de AM, nos quais dados de proveniência são utilizados para reexecutar e/ou 

ajustar atividades para novas execuções. O objetivo deste exemplo é demonstrar como os dados 
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de execuções anteriores podem ser utilizados para orientar ajustes para a seleção de atributos e 

como os dados estruturados são organizados e disponibilizados ao final da execução. Para isso, 

consideramos o pipeline (P1) Alzheimer's Disease Prediction on Patient14 para o problema de 

detecção da doença de Alzheimer em pacientes com base no histórico médico, utilizando 

algoritmos como Random Forest e Decision Tree, e apresentando as fases correspondentes à 

preparação de dados e à modelagem de AM. Nesse exemplo, os dados de proveniência de 

execuções anteriores do pipeline contribuem para novas execuções por meio da identificação e 

seleção dos atributos mais relevantes com base nas execuções passadas.  

O conjunto de dados (D1) utilizado neste pipeline de AM,  Alzheimer's Disease Dataset15 

(Quadro 2), é composto por 35 atributos e 2149 instâncias, com informações sobre a saúde de 

pacientes, abrangendo dados demográficos, fatores de estilo de vida, histórico médico, medições 

clínicas, avaliações cognitivas e funcionais, sintomas e diagnósticos de Alzheimer, o que permite 

que cientistas e analistas de dados explorem os fatores associados à doença de Alzheimer, 

desenvolvam modelos preditivos e realizem análises estatísticas. Junto a este conjunto de dados 

também são disponibilizados seus metadados em formato JSON-LD. Nesse arquivo12, são 

disponibilizados metadados que permitem descrever o conjunto de dados, incluindo metadados 

que descrevem a sua estrutura e metadados de proveniência básica do conjunto de dados.  

Quadro 2 - Fragmento do conjunto de dados “Alzheimer's Disease Dataset”. 

 

Fonte: ELKHAROUA (2023). 

 

 A abordagem proposta neste trabalho recebe como entrada o pipeline com o 

desenvolvimento do modelo preditivo (sem alterações a partir dos dados de proveniência, sendo 

considerado, assim, o baseline), o conjunto de dados utilizado no pipeline e o conjunto de 

                                            
14 https://www.kaggle.com/code/pilarkukuh/alzheimer-s-disease-prediction-on-patient 
15 https://www.kaggle.com/datasets/rabieelkharoua/alzheimers-disease-dataset 
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metadados que descreve o conjunto de dados. A primeira execução do pipeline é considerada como 

baseline, pois não há execuções anteriores que permitam utilizar os dados de proveniência, e o 

pipeline não foi ajustado a partir desses dados.  

Nesta execução, focando no modelo gerado pelo algoritmo de Random Forest, foram 

utilizados os parâmetros base do algoritmo. Em relação ao conjunto de dados, foi utilizada a 

variável target Diagnosis e os seguintes atributos para os dados de treinamento e teste: Age, 

Gender, Ethnicity, EducationLevel, BMI, Smoking,        AlcoholConsumption, PhysicalActivity, 

DietQuality, SleepQuality, FamilyHistoryAlzheimers, CardiovascularDisease, Diabetes, 

Depression, HeadInjury, Hypertension, SystolicBP, DiastolicBP, CholesterolTotal, 

CholesterolLDL, CholesterolHDL, CholesterolTriglycerides, MMSE, FunctionalAssessment, 

MemoryComplaints, BehavioralProblems, ADL, Confusion,        Disorientation, 

PersonalityChanges, DifficultyCompletingTasks e Forgetfulness. 

Na execução baseline, os resultados obtidos para as métricas de acurácia, cobertura, 

precisão e F1-score variaram entre 0.82 e 0.96 (conforme observado na Tabela 2). Após a 

conclusão da execução do pipeline, ocorre a estruturação semântica dos metadados dessa 

execução, que são armazenados em um banco de dados NoSQL (GraphDB), o qual contém os 

metadados de proveniência básica, proveniência estendida e os dados do modelo gerado, como o 

algoritmo e seus parâmetros.  

Na segunda execução, são utilizados os dados de proveniência obtidos a partir da 

identificação de execução com a melhor avaliação do modelo de AM. Neste cenário, o pipeline 

foi ajustado com os atributos indicados pela técnica RFE, que foi aplicada em conjunto com a 

reexecução das atividades, considerando as atividades da preparação dos dados e o algoritmo de 

classificação utilizado (com os mesmos parâmetros). A RFE foi aplicada de forma que os atributos 

selecionados sejam determinados de maneira automatizada e com base no desempenho do modelo, 

o que permite otimizar o conjunto de atributos para melhorar os resultados do modelo. 

Com a aplicação da RFE identifica-se o conjunto de atributos que permite otimizar a 

acurácia do modelo de classificação, o valor dessa melhor acurácia identificado pela RFE também 

é comparado com o resultado do modelo da execução relacionada (obtida a partir da proveniência 

retrospectiva) para verificar se é apresentado algum ganho com a realização da atividade. A partir 

disso, foram recomendados os seguintes atributos para otimizar o desempenho do modelo: 

PhysicalActivity, DietQuality, CholesterolTotal, CholesterolHDL, CholesterolTriglycerides, 

MMSE, FunctionalAssessment, MemoryComplaints, BehavioralProblems, ADL, Diagnosis.  

O Quadro 3 se refere a uma amostra dos dados de proveniência prospectiva das duas 

execuções do pipeline de Alzheimer's Disease. Cada linha do quadro descreve uma etapa do 

pipeline, identificando a execução específica, a proveniência básica do pipeline correspondente, a 
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origem da proveniência prospectiva, além do identificador e o algoritmo utilizado em cada etapa. 

Esses dados estruturados ficam persistidos no repositório de dados, sendo possível a realização de 

consultas e utilização desses dados para o ajuste de futuras execuções (conforme indicado na Seção 

4.3.1 e na Seção 4.3.2). 

Quadro 3 – Amostra dos Dados Referentes à Proveniência Prospectiva para as duas Execuções 

do Pipeline sobre Alzheimer's Disease. 

 

Fonte: O Autor. 

Conforme observado na Tabela 2, ao comparar os resultados obtidos nas duas execuções 

realizadas, foi apresentado um aumento de até cerca de +8% nas métricas que avaliam o 

desempenho do modelo de classificação. Na segunda execução, a inclusão automatizada da etapa 

de seleção de atributos, por meio da técnica RFE e com base nos dados provenientes de execuções 

anteriores, possibilitou a geração de um modelo de aprendizado de máquina mais eficiente, o que 

se refletiu positivamente nas métricas avaliadas. Além disso, os benefícios promovidos pela 

abordagem proposta não se limitam apenas aos resultados apresentados no desempenho dos 

modelos gerados, sendo possível também realizar análises sobre os dados de proveniência obtidos 

durante as execuções, o que permite responder a questionamentos. Entre as possibilidades de 

análise, destacam-se questões como qual execução de um pipeline apresentou o melhor 

desempenho, quais parâmetros e atributos foram utilizados nessa execução, quais pipelines 

utilizaram determinado conjunto de dados e qual o agente responsável por esse conjunto de dados. 

O cenário experimental, conjuntos de dados utilizados, configuração de ambiente e resultados 

obtidos são detalhados no capítulo a seguir. 

Tabela 2 – Métricas de desempenho avaliadas durante as execuções do pipeline sobre 

Alzheimer's Disease. 

Execução Acurácia Precisão Cobertura F1-score 

Primeira Execução  

(baseline) 
0,9256 0,9618 0,8235 0,8873 

Segunda Execução  

(utilizando dados de proveniência) 
0,9535 0,9650 0,9020 0,9324 

Fonte: O Autor. 
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4.5 CONSIDERAÇÕES 

Ao comparar essa proposta com os trabalhos apresentados no Quadro 1, observa-se que, embora 

as propostas de SCHLEGEL & SATTLER (2023), OLIVEIRA et al. (2024) e os demais trabalhos 

relacionados forneçam contribuições importantes para o uso de dados de proveniência em 

pipelines de AM, essas abordagens não abordam de forma integrada e sistemática a reexecução de 

atividades e a utilização dos dados de proveniência para ajustar o pipeline de AM em execuções 

futuras.  

O trabalho de OLIVEIRA et al. (2024), que foca na relação entre os dados de proveniência 

com os atributos importantes para o treinamento do modelo,  não realiza a aplicação direta desses 

dados para influenciar em avaliações futuras do modelo.  

A abordagem de KERZEL et al. (2021) que permite a captura e visualização de dados de 

proveniência, e a de SCHELTER et al. (2023) que trata de problemas nos modelos gerados, 

também não exploram a reexecução de atividades, a estruturação semântica completa dos dados 

de proveniência, nem seu uso otimizado para ajustes nos modelos.  

Em relação aos trabalhos que estendem a PROV-O, as abordagens buscam adaptar seus 

elementos a contextos mais específicos de AM. No entanto, não foi observada uma extensão dessa 

ontologia que integre os dados de proveniência de todos os artefatos envolvidos na execução, como 

o pipeline e o conjunto de dados, com dados de proveniência prospectiva e retrospectiva, como 

propõe a abordagem deste trabalho, além de permitir relacionar as diferentes execuções. 

A proposta apresentada neste trabalho se destaca por promover a reexecução e o ajuste de 

atividades, como a seleção de atributos, por meio de dados de proveniência. Para isso, utiliza a 

ontologia PROVX de modo integrado à reexecução de atividades em execuções posteriores de 

pipelines. O capítulo a seguir descreve os experimentos realizados, bem como os resultados 

obtidos a partir de sua execução. 
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5 EXPERIMENTOS E RESULTADOS 

Neste capítulo, são apresentados os resultados obtidos com a implementação do protótipo 

desenvolvido para apoiar a abordagem proposta, bem como por meio dos experimentos 

conduzidos para sua avaliação. A Seção 5.1 descreve o protótipo nFlowX, desenvolvido para a 

abordagem proposta, incluindo a arquitetura que detalha os módulos e as funcionalidades do 

protótipo. Na Seção 5.2, é descrito o cenário utilizado para a realização dos experimentos. Em 

seguida, a Seção 5.3 discorre sobre a avaliação experimental, incluindo a metodologia adotada e 

as métricas de avaliação empregadas, e, na Seção 5.4, é realizada a análise dos resultados obtidos. 

Por fim, na Seção 5.5 são apresentadas as considerações finais deste capítulo. 

5.1 PROTÓTIPO nFlowX 

Nesta seção, é apresentado o protótipo desenvolvido (nFlowX) para apoiar a abordagem proposta. 

Com o uso do nFlowX, usuários, como cientistas de dados e engenheiros de AM, podem 

desenvolver pipelines de AM utilizando os dados de proveniência capturados durante execuções 

anteriores do pipeline, visando melhorar o desempenho do modelo de AM em questão. A 

implementação do protótipo viabiliza a reexecução de atividades realizadas em iterações 

anteriores, a análise dos dados de proveniência para responder a questões relacionadas ao 

desenvolvimento do modelo de AM, além de utilizar essas informações para ajustar atividades 

desempenhadas no pipeline de  AM. 

5.1.1 Arquitetura 

O nFlowX foi estruturado considerando uma arquitetura que apresenta três camadas (Figura 29), 

contendo a camada do usuário, a camada lógica e a camada de dados, definidas a seguir:  

● Camada do Usuário: consiste na interface da aplicação onde o usuário interage com o 

protótipo, fazendo uso das funcionalidades; 

● Camada Lógica: composta pelos seguintes módulos disponibilizados pela aplicação: 

o Módulo de Execução do Pipeline: essa é a funcionalidade principal do protótipo, 

onde o usuário pode ajustar, executar e obter dados de proveniência de pipelines de 

AM. Para utilizar essa funcionalidade, é necessário fornecer o pipeline, o conjunto 

de dados que será utilizado pelo pipeline e os metadados do conjunto de dados. 

Sendo composto por três submódulos: (i) ajuste do pipeline: onde o usuário poderá 

ajustar o pipeline a partir dos dados de proveniência; (ii) execução do pipeline: 

permite executar o pipeline, o que é realizado utilizando a ferramenta noWorkflow 

para que sejam capturados os dados de proveniência durante a execução, devido às 
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funcionalidades oferecidas, conforme explicado na Seção 2.2. Para executar o 

pipeline com esta ferramenta, é utilizado o comando now run -v [pipeline] 

[conjunto de dados], especificando o pipeline e o conjunto de dados - esse 

comando permite a execução do pipeline e fornece um feedback geral sobre o 

processo. Durante a execução, as atividades relacionadas ao pipeline, como o uso 

de variáveis, funções e acesso a arquivos, também são registradas. Com a conclusão 

da execução, os dados de proveniência são obtidos por meio de comandos como 

now prov [id execução], que exporta a proveniência da execução, e now 

show -a [id execução], que retorna o detalhamento da execução e de 

chamadas de funções, incluindo status e duração da execução, e a data e horário de 

ativação de cada função; e (iii) estruturação dos dados de proveniência: nesse 

submódulo, é utilizada a extensão PROVX para estruturar semanticamente os 

dados obtidos a partir da execução do pipeline e os metadados referentes à 

proveniência básica do conjunto de dados e do pipeline, sendo armazenados no 

repositório de dados. 

o Módulo de Consultas: permite consultar os dados de proveniência armazenados no 

repositório de dados para a obtenção de informações sobre as execuções dos 

pipelines de AM, podendo responder a questionamentos acerca dos resultados 

obtidos sobre os modelos e da composição desses pipelines. 

● Camada de Dados: os dados de proveniência gerados durante cada execução são 

armazenados em um repositório de dados orientado a grafos e disponibilizados para acesso 

pelo módulo de consulta. Os dados de proveniência de cada execução são compostos por 

metadados de proveniência básica, metadados de proveniência estendida e os metadados 

referentes ao modelo de aprendizado de máquina. O sistema utilizado foi o GraphDB16, 

uma plataforma NoSQL, que permite o armazenamento de grafos e as consultas sobre esses 

dados utilizando a linguagem SPARQL, além de ser acessível por meio de biblioteca para 

conexão com a aplicação (que foi desenvolvida em Python). 

 

 

 

 

 

                                            
16 https://graphdb.ontotext.com/ 
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Figura 29- Visão geral da arquitetura do nFlowX. 

 

Fonte: O Autor. 

5.1.2 Implementação do nFlowX 

 O protótipo foi desenvolvido utilizando a linguagem de programação Python, tendo a interface 

desenvolvida utilizando o CustomTkinter17, que é uma extensão personalizada da biblioteca 

TKinter18, sendo a biblioteca padrão de interface gráfica do usuário (GUI) para Python. Para o 

acesso ao GraphDB, foi utilizada a biblioteca SPARQLWrapper19, que permite acesso ao endpoint 

SPARQL disponibilizado por meio do repositório de dados. 

5.1.2.1 Interface do nFlowX 

O protótipo nFlowX apresenta uma interface amigável que permite que os usuários acessem os 

módulos disponibilizados pela aplicação. Como mostrado na Figura 30, o usuário tem acesso ao 

menu com os módulos disponíveis, os quais correspondem às opções para execução do pipeline e 

para realizar consultas ao repositório de dados. No módulo de execução do pipeline, é requisitado 

que o usuário realize o upload do pipeline e dos arquivos referentes ao pipeline de AM, a saber: o 

conjunto de dados e o arquivo de metadados do conjunto de dados (Seção 5.1.1).  

 

 

 

 

                                            
17 https://customtkinter.tomschimansky.com/ 
18 https://docs.python.org/3/library/tkinter.html 
19 https://sparqlwrapper.readthedocs.io/en/latest/ 
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Figura 30 - nFlowX - Módulo de Execução do pipeline. 

 

Fonte: O Autor. 

No módulo de consultas, o usuário pode utilizar consultas predefinidas ou desenvolver 

novas consultas SPARQL. Entre as consultas predefinidas (detalhadas no Apêndice C), podemos 

destacar: a partir da identificação do pipeline (por meio dos seus metadados de proveniência), 

podemos consultar o desempenho do modelo de predição gerado pelo pipeline, considerando o 

desempenho de todas as iterações executadas, e consultar a iteração do pipeline que apresentou o 

melhor desempenho; a partir da identificação do conjunto de dados (por meio dos seus metadados 

de proveniência), é possível consultar as execuções relacionadas a um determinado conjunto de 

dados; e consultar os dados de proveniência de uma iteração específica. 

5.2 CENÁRIO DOS EXPERIMENTOS 

Nesta seção, são apresentados os elementos essenciais para a realização dos experimentos, 

considerando os pipelines, incluindo seus respectivos problemas de classificação e os conjuntos 

de dados utilizados, além da configuração do ambiente para execução dos experimentos. 

5.2.1 Problemas de Classificação e Pipelines de AM 

Para a realização dos experimentos, foram obtidos, a partir da plataforma Kaggle20, cinco pipelines 

de AM, sendo cada um associado a um conjunto de dados diferente. Para os pipelines, foram 

considerados aqueles que aplicam algoritmos de classificação e apresentam pelo menos as etapas 

de preparação de dados e modelagem de AM. Além disso, foram utilizados pipelines que 

                                            
20 https://www.kaggle.com/ 
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apresentam variações nas atividades de preparação de dados realizadas e que apresentam variação 

na quantidade de atributos disponibilizados pelos conjuntos de dados.  

Para os algoritmos de classificação, foram considerados modelos amplamente utilizados na 

literatura, como Decision Tree21 e Random Forest22, devido à sua interpretabilidade e capacidade 

de lidar com diferentes tipos de dados. Para a identificação das fases no pipeline, foi utilizada uma 

notação em forma de comentário na linguagem Python, por exemplo: fase de preparação de dados: 

#fase:preparação_dados; fase de modelagem: #fase:modelagem_AM. Por fim, para 

cada conjunto de dados, também foram obtidos seus respectivos arquivos de metadados 

(disponibilizados na plataforma).  

A seguir, são listados os problemas de classificação dos pipelines e os conjuntos de dados 

selecionados: 

● Pipeline - Breast Cancer: tem o objetivo de classificar se o tumor da paciente é benigno 

ou maligno, a partir de atributos como as medidas relacionadas à forma, tamanho e textura 

das células do tumor.  

o Conjunto de Dados - Breast Cancer23: conjunto de dados que apresenta 

informações detalhadas sobre pacientes com câncer de mama, sendo composto por 

32 atributos e 569 instâncias. Esse conjunto de dados viabiliza a análise dos dados 

e o desenvolvimento de modelos preditivos que auxiliam na detecção e 

classificação do câncer de mama. 

● Pipeline - NASA: Asteroids Classification: permite classificar os asteroides em 

potencialmente perigosos ou não perigosos.  

o Conjunto de Dados - NASA: Asteroids Classification24: é um conjunto de dados que 

disponibiliza a Classificação de Asteroides, sua fonte é o Near-Earth Object 

(NEO)25 da NASA, um serviço web RESTful para informações de Asteroides 

próximos à Terra. O conjunto de dados consiste em 40 atributos e 4.687 instâncias, 

fornecendo informações como nome, magnitude, data de aproximação, velocidades 

relativas e órbita. 

● Pipeline - Alzheimer's Disease: realiza a detecção da doença de Alzheimer em pacientes 

com base em seu histórico médico. 

                                            
21 https://scikit-learn.org/stable/modules/tree.html 
22 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
23

 https://www.kaggle.com/datasets/rahmasleam/breast-cancer 
24

 https://www.kaggle.com/datasets/lovishbansal123/nasa-asteroids-classification 
25

 https://cneos.jpl.nasa.gov/ 
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o Conjunto de Dados - Alzheimer's Disease Dataset26: conjunto de dados que permite 

explorar fatores associados à doença de Alzheimer, sendo composto por dados de 

2.149 pacientes e 35 atributos, apresentando detalhes como: dados demográficos, 

fatores de estilo de vida, histórico médico, medidas clínicas, avaliações cognitivas 

e funcionais, sintomas e diagnóstico da doença de Alzheimer. 

● Pipeline - Comprehensive Diabetes Clinical: a partir de dados demográficos e de saúde, 

permite classificar se cada instância representa um caso de diabetes ou não.  

o Conjunto de Dados - Comprehensive Diabetes Clinical Dataset27: conjunto de 

dados que viabiliza análises e modelagem sobre a diabetes, apresenta 100.000 

instâncias e 16 atributos, que incluem informações sobre gênero, idade, localização, 

raça, hipertensão, doença cardíaca, histórico de tabagismo, IMC, nível de HbA1c, 

nível de glicose no sangue e status de diabetes. 

● Pipeline - Airlines Delay:  realiza a classificação para a previsão de atrasos em voos. 

o Conjunto de Dados - Airlines Delay28: conjunto de dados que fornece dados sobre 

voos e atrasos, sendo composto por 53.9382 instâncias e 8 atributos, como: 

aeroporto de origem e de destino, horário programado de partida e de chegada, 

horário real de partida e de chegada, condições climáticas e dia da semana. 

Para a seleção desses conjuntos de dados foi considerada a variação de cenários e a 

complexidade dos problemas abordados, incluindo desde a detecção de doenças até a previsão de 

eventos no setor de transporte. Além disso, a escolha dos pipelines relacionados aos conjuntos de 

dados, considerando algoritmos de aprendizado supervisionado semelhantes, visa obter resultados 

mais consistentes e comparáveis, facilitando a análise de como as transformações dos dados 

impactam a avaliação e a comparação entre os modelos. 

5.2.2 Configuração do Ambiente para Execução dos Experimentos 

Todos os experimentos foram conduzidos em uma máquina com processador Intel core i7 de 1,99 

GHz com 16GB de RAM, Sistema Operacional Windows 10. Foi utilizado o interpretador Python 

versão 3.7. Para a captura dos dados de proveniência, foi utilizada a versão 2.0 da ferramenta 

noWorkflow e, durante a execução dos pipelines, foram utilizadas bibliotecas que apoiam o 

desenvolvimento de modelos de AM, como: NumPy29, Pandas e Sklearn30.  

 

                                            
26

 https://www.kaggle.com/datasets/rabieelkharoua/alzheimers-disease-dataset 
27

 https://www.kaggle.com/datasets/priyamchoksi/100000-diabetes-clinical-dataset 
28

 https://www.kaggle.com/datasets/ulrikthygepedersen/airlines-delay/ 
29 https://numpy.org/ 
30 https://scikit-learn.org/stable/ 
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5.3 AVALIAÇÃO EXPERIMENTAL 

Nestes experimentos, foi considerada a hipótese de que a utilização de dados de proveniência de 

execuções anteriores melhora a avaliação do modelo preditivo, sendo:  

 H0: Quando a avaliação de modelos de AM que passaram por ajustes bem-sucedidos com 

base nos dados de proveniência é comparada à avaliação de modelos sem esses ajustes, não 

se observa melhoria nos resultados do modelo; e 

 H1: Quando a avaliação de modelos de AM que passaram por ajustes bem-sucedidos com 

base nos dados de proveniência é comparada à avaliação de modelos sem esses ajustes, 

observa-se melhoria nos resultados do modelo. 

Para a realização dos experimentos, os pipelines foram submetidos ao seguinte cenário 

(Cenário 01): Execuções que utilizam dados de proveniência considerando o pipeline P de AM e 

o conjunto de dados D da execução baseline (indicada na Seção 4.4), para ajustar atividades por 

meio dos dados de proveniência. Para efeito de controle experimental, a primeira execução 

(baseline) dos pipelines é realizada sem a garantia de que tenha ocorrido a seleção ideal de 

atributos. Essa decisão visou possibilitar a observação do impacto da aplicação orientada da 

técnica RFE com base em dados de proveniência. Contudo, em cenários práticos, essa 

simplificação nem sempre se aplica, sendo possível que o pipeline já utilize técnicas de seleção 

com ajustes ótimos. Mesmo assim, a proposta apresentada ainda pode ser utilizada para comparar 

e apoiar execuções futuras com base no histórico de execuções. 

No Cenário 01, a atividade de seleção de atributos foi ajustada com base nos dados de 

proveniência. Para isso, foram seguidas as instruções estabelecidas na Seção 4.3.2 e no Algoritmo 

I, implementadas no protótipo nFlowX. Para cada pipeline, foi verificada, no repositório de dados, 

a existência de execuções relacionadas. Em seguida, os dados de proveniência foram utilizados 

para aplicar a RFE, utilizando o mesmo modelo e os atributos da execução relacionada com melhor 

avaliação, com o objetivo de obter um subconjunto de atributos que melhorasse a avaliação desse 

modelo. Após essa etapa, o pipeline foi ajustado com a seleção dos atributos recomendados pela 

RFE, finalizado com a execução do pipeline atualizado e o armazenamento dos dados de 

proveniência da nova execução. 

5.3.1 Comparação avaliativa de modelos de Aprendizado de Máquina 

Para comparar os resultados dos modelos de AM obtidos, considerando a execução do baseline e 

do Cenário 1 de cada pipeline, foi aplicada, inicialmente, a técnica de k-fold cross-validation 

(KOHAVI, 1995), com K  = 10, devido ao equilíbrio entre viés e variância na estimativa do 

desempenho de modelos, e apresentar custo computacional viável com resultados estatisticamente 
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confiáveis. Onde, a cada iteração, k−1 folds são usados para treino e um fold é usado para teste, 

repetindo esse processo k vezes. Resultando em um conjunto de 10 valores para as métricas de 

acurácia, precisão, cobertura e F1-score. 

Em seguida, foi realizada avaliação estatística para verificar a significância das diferenças 

observadas entre o baseline e o Cenário 1 dos pipelines. Considerando o contexto do estudo e a 

natureza das amostras pareadas entre o baseline e o Cenário 1, a aplicação do teste de hipótese de 

Wilcoxon (WILCOXON, 1945) é apropriada para avaliar a significância da diferença entre os 

resultados obtidos por ambos os modelos. A partir das métricas que avaliam os modelos, o teste 

permite verificar se as diferenças entre os resultados dos modelos são significativas do ponto de 

vista estatístico, considerando as hipóteses definidas na seção anterior.  

5.4 RESULTADOS E DISCUSSÕES 

Nesta seção são avaliados os resultados obtidos durante a execução da abordagem, considerando 

os pipelines indicados na Seção 5.2.1 e as especificações da Seção 5.3. Para cada um dos cinco 

pipelines, a partir da execução baseline e do Cenário 1, foi aplicada a abordagem k-fold, na qual 

cada modelo obteve 10 avaliações para as métricas de acurácia, cobertura,  precisão e F1-score, 

indicados nas Tabelas 3 a 7.  

Tabela 3 – Pipeline - Breast Cancer: Resultados das execuções aplicando a estratégia k-fold. 

k 

Acurácia Precisão Cobertura F1-score 

Baseline Cenário 

1 

Baseline Cenário 

1 

Baseline Cenário 

1 

Baseline Cenário 

1 

1 0.9122 0.9298 0.9047 0.9090 0.8636 0.9090 0.8837 0.9090 

2 0.8596 0.9298 0.85 1.0 0.7727 0.8181 0.8095 0.9 

3 0.9298 0.92982 0.9474 0.9474 0.8571 0.8571 0.9 0.9 

4 0.8421 0.9298 0.7727 0.9474 0.8095 0.8571 0.7906 0.9 

5 0.9824 1.0 0.9545 1.0 1.0 1.0 0.9767 1.0 

6 0.9123 0.9474 0.9 0.9090 0.8571 0.9523 0.8780 0.9302 

7 0.8596 0.9473 0.8095 0.95 0.8095 0.9047 0.8095 0.9268 

8 0.9473 1.0 0.9090 1.0 0.9523 1.0 0.9302 1.0 

9 0.9123 0.9649 0.8077 0.9130 1.0 1.0 0.8936 0.9545 

10 0.9464 0.9286 0.95 0.869 0.9047 0.9523 0.9268 0.9090 

Fonte: O Autor. 
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Tabela 4 – Pipeline - NASA: Asteroids Classification: Resultados das execuções aplicando a 

estratégia k-fold. 

k 

Acurácia Precisão Cobertura F1-score 

Baseline Cenário 

1 

Baseline Cenário 

1 

Baseline Cenário 

1 

Baseline Cenário 

1 

1 0.9829 0.9850 0.9722 1.0 0.9210 0.9078 0.9459 0.9517 

2 0.9893 0.9978 1.0 1.0 0.9342 0.9868 0.9659 0.9933 

3 0.9808 0.9936 1.0 1.0 0.8815 0.9605 0.9370 0.9798 

4 0.9829 0.9893 1.0 0.9863 0.8947 0.9473 0.9444 0.9664 

5 0.9914 0.9936 1.0 1.0 0.9473 0.9605 0.9729 0.9798 

6 0.9893 0.9957 1.0 1.0 0.9333 0.9733 0.9655 0.9864 

7 0.9872 0.9914 1.0 1.0 0.92 0.9466 0.9583 0.9726 

8 0.9871 0.9935 0.9859 0.9864 0.9333 0.9733 0.9589 0.9798 

9 0.9914 0.9957 1.0 1.0 0.9466 0.9733 0.9726 0.9864 

10 0.9957 0.9957 1.0 1.0 0.9733 0.9733 0.9864 0.9864 

Fonte: O Autor. 

Tabela 5 – Pipeline - Alzheimer's Disease: Resultados das execuções aplicando a estratégia k-

fold. 

k 

Acurácia Precisão Cobertura F1-score 

Baseline Cenário 

1 

Baseline Cenário 

1 

Baseline Cenário 

1 

Baseline Cenário 

1 

1 0.9534 0.9860 0.9852 0.9866 0.8815 0.9736 0.9305 0.9801 

2 0.9720 0.9906 0.9861 0.9868 0.9342 0.9868 0.9594 0.9868 

3 0.9813 0.9767 0.9864 0.9610 0.9605 0.9736 0.9733 0.9673 

4 0.9720 0.9906 0.9729 0.9743 0.9473 1.0 0.9599 0.9870 

5 0.9813 0.9813 0.9864 0.9864 0.9605 0.9605 0.9733 0.9733 

6 0.9581 0.9813 0.9718 0.9736 0.9078 0.9736 0.9387 0.9736 

7 0.9953 1.0 1.0 1.0 0.9868 1.0 0.9933 1.0 

8 0.9581 0.9906 0.9718 0.9743 0.9078 1.0 0.9387 0.9870 

9 0.9348 0.9534 0.9696 0.9714 0.8421 0.8947 0.9014 0.9315 

10 0.6775 0.6775 0.5686 0.5660 0.3815 0.3947 0.4566 0.4651 

Fonte: O Autor. 

Tabela 6 – Pipeline - Comprehensive Diabetes Clinical: Resultados das execuções aplicando a 

estratégia k-fold. 

k 

Acurácia Precisão Cobertura F1-score 

Baseline Cenário 

1 

Baseline Cenário 

1 

Baseline Cenário 

1 

Baseline Cenário 

1 

1 0.9522 0.9728 0.7074 1.0 0.7482 0.6811 0.7272 0.8103 

2 0.9530 0.9719 0.7128 1.0 0.7505 0.6705 0.7312 0.8028 

3 0.9533 0.9728 0.7142 1.0 0.7529 0.6811 0.7331 0.8103 

4 0.95 0.9691 0.6934 1.0 0.74 0.6376 0.7159 0.7787 

5 0.955 0.9722 0.7323 1.0 0.7435 0.6741 0.7378 0.8053 

6 0.951 0.9725 0.6981 1.0 0.7482 0.6776 0.7223 0.8078 

7 0.9502 0.9712 0.6928 1.0 0.7458 0.6623 0.7184 0.7968 

8 0.9522 0.9716 0.7065 1.0 0.7505 0.6670 0.7278 0.8002 

9 0.9478 0.9704 0.6833 1.0 0.7211 0.6529 0.7017 0.7900 

10 0.9522 0.9732 0.7011 1.0 0.7647 0.6858 0.7315 0.8136 

Fonte: O Autor. 
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Tabela 7 – Pipeline - Airlines Delay: Resultados das execuções aplicando a estratégia k-fold. 

k 

Acurácia Precisão Cobertura F1-score 

Baseline Cenário 

1 

Baseline Cenário 

1 

Baseline Cenário 

1 

Baseline Cenário 

1 

1 0.6108 0.6598 0.5662 0.6352 0.5406 0.5550 0.5531 0.5924 

2 0.6131 0.6591 0.5687 0.6346 0.5439 0.5535 0.5560 0.5912 

3 0.614 0.6611 0.5698 0.6368 0.5475 0.5566 0.5584 0.5940 

4 0.6098 0.6592 0.5647 0.6338 0.5414 0.5563 0.5528 0.5925 

5 0.6121 0.6575 0.5671 0.6319 0.5457 0.5533 0.5562 0.5900 

6 0.6171 0.6607 0.5734 0.6361 0.5488 0.5568 0.5608 0.5939 

7 0.6134 0.6586 0.5689 0.6331 0.5459 0.5557 0.5571 0.5919 

8 0.6139 0.6578 0.5695 0.6319 0.5461 0.5552 0.5575 0.5911 

9 0.6150 0.6605 0.5710 0.6376 0.5451 0.5510 0.5578 0.5912 

10 0.6139 0.6584 0.5693 0.6326 0.5472 0.5563 0.5580 0.5920 

Fonte: O Autor. 

Conforme observado no gráfico da Figura 31, a partir dos valores obtidos nas tabelas 

apresentadas, foram calculadas as médias de cada uma das métricas para cada pipeline. Esses 

valores médios permitiram uma análise mais abrangente do impacto da abordagem proposta, 

facilitando a comparação entre o baseline e o Cenário 1.  

Figura 31 - Comparativo dos resultados obtidos a partir das duas execuções do pipeline  

de AM – Baseline e Cenário 01. 

 

Fonte: O Autor. 

Ao comparar os resultados, foi observado que, em todos os pipelines, as métricas de acurácia 

e F1-score apresentaram melhorias. Nos pipelines que registravam para essas métricas valores de 

até aproximadamente 94%, houve um aumento mais significativo nos resultados. De forma geral, 

para essas duas métricas, os pipelines mostraram uma melhora de até cerca de +8%. Por outro 

lado, no pipeline de Diabetes, quando comparado com o baseline, a métrica de cobertura diminuiu 

cerca de -7,5%, mas houve um aumento nas métricas de acurácia, precisão e F1-score, o que indica 

que o modelo cometeu menos erros ao prever a classe positiva, mas pode não ter conseguido 



89 

 

 

detectar todas as instâncias positivas. Além disso, nesse pipeline, a precisão alcançou 100%, o que 

sugere um ajuste excessivo do modelo aos dados de treinamento, caracterizando um overfitting.  

No pipeline de Alzheimer, a métrica de precisão apresentou valor um pouco menor (-0,0019), 

mas houve uma melhora de +0,0447 na métrica de cobertura, o que indica que, apesar da leve 

diminuição na precisão, o modelo conseguiu identificar melhor as instâncias positivas, o que é 

relevante nesse contexto. 

Ainda que as melhorias observadas nos modelos de AM possam ser associadas à aplicação 

da técnica de RFE, o diferencial desta proposta está centrado na utilização dos dados de 

proveniência como mecanismo de apoio à execução dessa técnica. Neste trabalho, a aplicação da 

RFE ocorre de forma orientada a partir dos dados de execuções anteriores do pipeline, permitindo 

o direcionamento, a automatização do processo e a reexecução das atividades realizadas 

anteriormente. Dessa forma, os resultados apresentados refletem a eficácia da técnica de seleção 

de atributos e, sobretudo, evidenciam a relevância da contribuição dos dados de proveniência para 

a realização dos ajustes nos pipelines de AM. 

5.4.1 Análises acerca do uso da proveniência das execuções dos pipelines de AM 

Nesta seção, são realizadas avaliações sobre os dados de proveniência das execuções dos pipelines 

de AM. A abordagem proposta facilita a análise do processo de desenvolvimento do pipeline, além 

de possibilitar a reexecução das atividades realizadas, trazendo mais transparência e confiabilidade 

aos experimentos. Com a captura e uso de dados de proveniência, torna-se viável avaliar e 

comparar diferentes versões do modelo, ajudando a identificar a melhor configuração para o 

problema de modelagem de aprendizado em questão. Isso também viabiliza o gerenciamento do 

desenvolvimento do pipeline, incluindo o rastreamento de mudanças e a avaliação de impacto entre 

versões de forma estruturada e eficiente. 

Para isso, é considerado o módulo de consultas disponibilizado no protótipo (indicado na 

Seção 4.3.4), o qual acessa o repositório de dados onde são armazenados os dados de proveniência 

gerados durante as execuções do pipeline. Essas consultas são escritas em SPARQL e executadas 

no repositório de dados. No entanto, são disponibilizadas algumas consultas predefinidas, 

permitindo que usuários sem conhecimento prévio da linguagem realizem análises. Se o usuário 

tiver domínio sobre a linguagem SPARQL, o módulo também oferece a possibilidade de escrever 

consultas personalizadas,  o que traz maior flexibilidade e aprofundamento nas análises. 

Com a estruturação dos dados de proveniência, obtêm-se informações organizadas com 

base nos metadados definidos no capítulo anterior. Estes são exemplificados a seguir: 
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● Dados de proveniência básica do pipeline: incluem as informações referentes à criação e à 

atualização do pipeline, o responsável pelo desenvolvimento do pipeline, e o título do 

pipeline (obtido a partir da especificação do nome do arquivo); 

● Dados de proveniência básica do conjunto de dados: incluem informações como datas de 

criação e modificação, título, publicador, versão, URL de acesso e agente responsável. 

Alguns deles estão representados no Quadro 4; 

Quadro 4 – Exemplo de Dados de Proveniência Básica do Conjunto de Dados (Pipeline 

Alzheimer's Disease) 

 

Fonte: O Autor 

● Dados do Modelo de AM: Esses dados são compostos por detalhes sobre os modelos 

gerados, considerando o algoritmo utilizado, os parâmetros especificados, a especificação 

da partição dos conjuntos de treinamento, teste e validação, bem como os valores obtidos 

pelas métricas de avaliação. Conforme observado no Quadro 5, a consulta exemplifica o 

retorno de alguns desses dados de AM referentes às execuções do pipeline Alzheimer's 

Disease. Nessa consulta, os pares rdfs:label e provx:value, correspondentes a cada 

parâmetro do modelo e a cada métrica de avaliação, são agrupados no resultado com o 

objetivo de facilitar a visualização; e 

Quadro 5 – Exemplo de Dados do Modelo de AM (Pipeline Alzheimer's Disease) 

 

Fonte: O Autor 

● Dados da execução: exemplificados no Quadro 6, incluem detalhes como a duração da 

execução, os momentos de início e término e o status de conclusão. Entre esses dados, 

também estão incluídos os dados de proveniência estendida, que estabelecem os pares que 

identificam o plano definido para a execução e os resultados gerados. Esses elementos 

correspondem, respectivamente, à proveniência prospectiva (instruções e planos) e à 

proveniência retrospectiva (resultados observados da execução). 



91 

 

 

 

 

Quadro  6 – Exemplo de Dados de Proveniência da Execução – Dados da Execução (Pipeline 

Alzheimer's Disease) 

 

Fonte: O Autor 

Conforme observado no Quadro 7, temos uma amostra dos dados de proveniência 

retrospectiva, indicando algumas das entidades relacionadas à execução do pipeline. De acordo 

com o detalhado na Seção 5.1.1, essa proveniência retrospectiva é disponibilizada pela ferramenta 

noWorkflow e estruturada utilizando o modelo PROVX. Nesta abordagem, essa proveniência 

retrospectiva é associada à sua classe correspondente (provx:RetrospectiveProvenance), a qual 

compõe a proveniência estendida juntamente com a proveniência prospectiva. Isso possibilita a 

realização de consultas e o uso desses dados para ajustar futuras execuções (conforme indicado na 

Seção 4.3.1 e na Seção 4.3.2). 

Quadro 7 – Amostra dos Dados Referentes à Proveniência Retrospectiva para uma Execução do 

Pipeline Alzheimer's Disease. 

 

Fonte: O Autor. 

O usuário pode acessar todas essas informações referentes às execuções específicas e 

relacionar os dados de diferentes execuções, sendo possível analisá-los para realizar ajustes no 

pipeline como, por exemplo, a otimização da escolha dos parâmetros do algoritmo de AM, o que 

pode auxiliar nas execuções futuras do pipeline. Para as consultas predefinidas, é necessário apenas 

que o usuário especifique o alvo de cada consulta (por exemplo: indicar qual pipeline que deseja 

verificar o melhor desempenho). Entre essas consultas, destacam-se: 
 

●    Quais foram os resultados obtidos para as métricas avaliadas em todas as execuções de um 

mesmo pipeline? 

●   Qual iteração apresentou o melhor resultado para a métrica de acurácia, considerando todas 

as execuções de um mesmo pipeline? 
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●   Quais execuções de pipelines de AM foram realizadas utilizando um mesmo conjunto de 

dados específico? 

●   Quais foram os dados obtidos para uma execução específica? 

A seguir, a primeira consulta é detalhada, mostrando seu funcionamento e os resultados 

obtidos nos cenários avaliados. O detalhamento das demais consultas utilizadas neste trabalho, 

incluindo exemplos de uso e execuções, estão disponíveis no Apêndice B, já as consultas em 

linguagem SPARQL estão disponíveis no Apêndice C. 

 Consulta predefinida 01: Quais foram os resultados obtidos para as métricas avaliadas em 

todas as execuções de um mesmo pipeline? 

Para esta consulta, é necessário que o usuário indique dados de proveniência básica 

do pipeline alvo (o título do pipeline, responsável e a data de criação). Isso permite 

identificar quais execuções correspondem ao pipeline indicado, sendo retornado ao 

usuário os resultados obtidos a partir do repositório de dados. Na Figura 32, é 

apresentado o resultado obtido para a execução do pipeline Alzheimer's Disease, o 

qual retorna ao usuário o identificador da execução e os resultados obtidos para as 

métricas avaliadas. A partir desses resultados, é possível comparar os resultados 

das execuções de forma direta, onde o usuário também pode explorar os resultados 

de uma execução específica a partir da utilização da Consulta 04, a qual retorna o 

seu respectivo detalhamento. 

Figura 32 – Resultado obtido para a Consulta 01 

 

Fonte: O Autor. 

5.4.2 Análises acerca dos modelos gerados no Cenário 01 

Para avaliar se os modelos criados no Cenário 1 apresentam melhorias significativas em 

comparação aos modelos gerados no baseline, a partir das métricas avaliativas dos modelos, 

conforme detalhado na Seção 5.3.1, foi aplicado o teste de Wilcoxon (Tabela 8), considerando as 
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hipóteses definidas na seção 5.3. Caso o p-valor obtido no teste seja menor do que o nível de 

significância estabelecido (por padrão, α = 0,05), pode-se afirmar que há uma diferença 

estatisticamente significativa entre os dois modelos. 

Tabela 8 – Resultados da Avaliação de Modelos - Valores do Teste de Wilcoxon. 

 Wilcoxon: p-valor 

Pipeline Acurácia Precisão Cobertura F1-score 

Pip:Breast Cancer 0.0207 0.0284 0.0176 0.0109 

Pip:Nasa 0.0076 0.5930 0.0107 0.0077 

Pip:Alzhiemier 0.0199 0.6744 0.0076 0.0109 

Pip:Diabetes 0.0020 0.0020 0.0020 0.0020 

Pip:Flight 0.0020 0.0020 0.0020 0.0020 

Fonte: O Autor. 

Com a aplicação do p-valor dos testes de Wilcoxon para os diferentes pipelines de modelos, 

avaliando quatro métricas (Acurácia, Precisão, Cobertura e F1-score), os resultados demonstraram 

que, para o pipeline Pip:Breast Cancer e Pip:Flight, os p-valores são estatisticamente significativos 

em todas as métricas. No caso do Pip:Nasa, apesar dos resultados do p-valor para acurácia, F1-

score e cobertura serem significativos, a precisão não indicou melhorias. Para o Pip:Alzheimer, já 

havia sido observado nos resultados da Seção 5.4 que a precisão seria dificilmente beneficiada 

pelas alterações que foram realizadas no pipeline. No caso do pipeline Pip:Diabetes, embora os 

modelos indiquem melhorias em geral, as diferenças observadas na comparação da métrica de 

cobertura entre o baseline e o Cenário 1 foram predominantemente negativas. Isso significa que, 

apesar da existência de uma diferença entre os resultados do baseline e do Cenário 1, o modelo do 

baseline apresentou melhores resultados. Portanto, essa métrica também não demonstrou um 

desempenho satisfatório para o Cenário 1. Esse comportamento está relacionado ao fato de que o 

processo aplicado, de forma geral, promoveu um equilíbrio entre precisão e cobertura, o que 

refletiu diretamente na melhora do F1-score, mas não necessariamente em ganhos expressivos em 

cada uma dessas métricas de forma individual. 

Dessa forma, ao considerar as hipóteses formuladas na seção 5.3: 

o H0: Quando a avaliação de modelos de AM que passaram por ajustes bem-

sucedidos com base nos dados de proveniência é comparada à avaliação de modelos 

sem esses ajustes, não se observa melhoria nos resultados do modelo; e 

o H1: Quando a avaliação de modelos de AM que passaram por ajustes bem-

sucedidos com base nos dados de proveniência é comparada à avaliação de modelos 

sem esses ajustes, observa-se melhoria nos resultados do modelo. 

Os resultados obtidos indicam que a hipótese H1 é confirmada para as métricas de acurácia 

e F1-score, uma vez que foi observada uma melhoria estatisticamente significativa nessas 
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métricas. No entanto, a hipótese H1 foi refutada para as métricas de precisão e cobertura, já que 

as alterações nos modelos não demonstraram ganhos significativos nessas métricas. É possível 

afirmar que a abordagem utilizada é eficaz no aprimoramento de modelos quando o foco está na 

melhoria da acurácia e do F1-score, atendendo, assim, às necessidades dos modelos voltados para 

a otimização dessas métricas específicas. 

Com os resultados obtidos, também é relevante considerar os aspectos relacionados ao custo 

computacional envolvido na aplicação da abordagem, bem como seus benefícios práticos. Embora 

a captura e estruturação dos dados de proveniência, assim como a realização de consultas ao 

repositório de dados, introduzam um custo computacional adicional ao processo, esse custo pode 

ser compensado pelos benefícios decorrentes de sua aplicação. A abordagem proposta contribui 

para reduzir o retrabalho, otimizar o desenvolvimento do pipeline e promover a transparência e 

reexecução das atividades, o que  é importante em contextos iterativos, nos quais a melhoria dos 

modelos de AM e a rastreabilidade das alterações assumem um papel importante na qualidade e 

confiabilidade dos resultados obtidos. 

5.5 CONSIDERAÇÕES 

A partir dos experimentos realizados, considerando o cenário especificado, foi possível observar 

que o uso de dados de proveniência para ajustar pipelines de AM resultou em uma melhoria na 

avaliação dos modelos ao considerar as métricas de acurácia e F1-score. Em resumo, os resultados 

dos experimentos indicam que a captura, documentação e acesso aos dados de proveniência, 

considerando a proveniência básica e estendida, viabilizam a reexecução de atividades originárias 

de execuções prévias, o ajuste de atividades do pipeline e a avaliação dos resultados, considerando 

as iterações, de forma que é possível refletir positivamente nos resultados dessas métricas. 
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6 CONCLUSÕES E TRABALHOS FUTUROS 

Neste trabalho, foi apresentada uma abordagem que explora o uso de dados de proveniência 

capturados nas fases de preparação de dados e modelagem de AM em pipelines. O foco da 

abordagem é demonstrar como dados de proveniência podem ser utilizados para a reexecução de 

atividades entre execuções de pipelines e no ajuste de atividades associadas. Para isso, um caso de 

uso voltado à seleção de atributos foi realizado. A partir da implementação da abordagem, por 

meio de um protótipo denominado de nFlowX, é possível utilizar os dados de proveniência para 

otimizar as atividades nas execuções subsequentes de pipelines. 

Para a realização dos experimentos, foram conduzidas duas execuções para cada pipeline: 

uma execução baseline e outra correspondente ao Cenário 01. Nessas execuções, foram 

empregados os mesmos pipelines e conjuntos de dados. No entanto, no Cenário 01, os dados de 

proveniência foram utilizados com o propósito de otimizar e beneficiar novas execuções.  

Os resultados indicaram uma melhoria na avaliação da acurácia e do F1-score dos modelos 

de aprendizado de máquina analisados que realizaram os ajustes a partir dos dados de proveniência, 

quando comparados aos resultados obtidos sem o uso dos dados de proveniência. Dessa forma, é 

possível concluir que o presente trabalho atingiu seus objetivos, evidenciando o potencial do uso 

de dados de proveniência como uma estratégia para aprimorar o ajuste contínuo de modelos de 

AM. Nas seções 6.1, 6.2 e 6.3, respectivamente, são apresentadas as contribuições deste trabalho, 

seguidas das limitações e sugestões para trabalhos futuros. 

6.1 CONTRIBUIÇÕES 

As principais contribuições deste trabalho são listadas a seguir: 

● A definição de uma extensão de ontologia baseada na PROV-O (W3C): a extensão 

PROVX considera especificamente o contexto da modelagem e o gerenciamento dos dados 

de proveniência em pipelines de AM. A PROVX inclui conceitos e relacionamentos 

associados à proveniência básica dos artefatos envolvidos em um pipeline de AM (conjunto 

de dados e atividades) e à proveniência estendida referente à execução do pipeline, o qual 

considera a proveniência prospectiva e retrospectiva, além de permitir relacionar uma 

execução com execuções prévias. Desta forma, é possível estabelecer uma estrutura bem 

definida que auxilia na compreensão e análise detalhada das atividades realizadas durante 

o desenvolvimento dos modelos de aprendizado; 

● Uma estratégia para uso dos dados de proveniência de forma que auxilie no 

desenvolvimento e aprimoramento de pipelines de AM: a estratégia proposta permite 

melhorar os resultados obtidos pelos modelos de AM, mas também viabiliza a realização 

de análises utilizando os dados de proveniência, os quais podem fornecer informações 
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valiosas a serem utilizadas para alterar o pipeline, permitindo a realização de ajustes 

personalizados para os pipelines com base em execuções anteriores. A estratégia permite 

identificar execuções anteriores que utilizaram o pipeline P e o conjunto de dados D e, com 

base nos dados de proveniência estruturados, realizar intervenções automatizadas, como o 

uso da técnica RFE para refinar a seleção de atributos. No cenário baseline, o pipeline é 

executado sem modificações, enquanto no Cenário 1 os ajustes baseados em dados de 

proveniência são aplicados. Essa configuração resultou em melhorias nas métricas de 

avaliação, como acurácia e F1-score, demonstrando que a intervenção com a escolha 

otimizada de atributos trouxe um ganho significativo na avaliação dos modelos preditivos; 

e 

● O protótipo nFlowX, que implementa a abordagem proposta: para avaliar a abordagem 

proposta, foi implementado o protótipo nFlowX, que automatiza todo o processo e inclui 

a captura e a estruturação dos dados de proveniência, a utilização desses dados obtidos em 

execuções anteriores para ajustes nos pipelines, o acesso e a análise das informações 

geradas durante as execuções dos pipelines de AM. Os experimentos realizados com o 

protótipo comprovaram a relevância dos resultados obtidos por meio da implementação da 

abordagem. 

As seguintes publicações foram produzidas, até o momento, com base nos resultados 

alcançados durante o desenvolvimento desta tese: 

● N. Targino, D. Souza, A. C. Salgado. An Approach to Associate Provenance From ML 

Pipelines With Transparency and Accountability. 2024. 15th International Conference on 

Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 2024, pp. 

1-8, Disponível em: < https://doi.org/10.1109/IISA62523.2024.10786622>. 

● N. Targino, D. Souza, A. C. Salgado. Using Provenance Data For Enhancing Model 

Training Pipelines: A Use Case with Feature Selection. 2025. Journal of Intelligent 

Information Systems. (Submetido). 

6.2 LIMITAÇÕES 

A seguir, estão descritas algumas limitações identificadas na abordagem proposta.  

 Ajuste de atividades utilizando dados de proveniência apenas para a seleção de 

atributos: nesta versão, os dados de proveniência são utilizados para ajustar a atividade 

de seleção de atributos. No entanto, há potencial para expandir seu uso para considerar 

outras atividades no pipeline. Por exemplo, a seleção de parâmetros para o algoritmo 

de AM também pode ser aprimorada com base no histórico de execuções anteriores. O 
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uso desses dados de proveniência pode facilitar ajustes mais eficientes, contribuindo 

para um desempenho geral melhor do modelo; 

 Anotação para as fases do pipeline: para a execução do pipeline, é necessário que as 

suas fases estejam explicitamente bem definidas, o que requer a inclusão de anotações 

que indiquem as fases principais gerenciadas na proposta. Atualmente, esse processo 

envolve alterações manuais no pipeline por parte do usuário. No entanto, seria 

vantajoso desenvolver uma abordagem que automatize a identificação e a marcação 

das fases, reduzindo a necessidade de intervenção direta e facilitando a integração e o 

gerenciamento do pipeline; e 

 Experimentos: os experimentos realizados apresentaram resultados satisfatórios. 

Entretanto, foi observada a necessidade de realizar novos experimentos com usuários 

especialistas, considerando o desenvolvimento do pipeline desde suas etapas iniciais. 

Isso permitirá um acompanhamento mais detalhado e completo da evolução do pipeline 

ao longo do processo. 

6.3 TRABALHOS FUTUROS 

A seguir, são delineados alguns tópicos que podem ser investigados em pesquisas futuras 

relacionadas à abordagem desenvolvida: 

● Além da Seleção de Atributos: A abordagem apresentada utiliza os dados de proveniência 

para atualizar a seleção de atributos, permitindo a seleção a partir do histórico das 

execuções. No entanto, é interessante expandir o uso da proveniência para outras atividades 

do pipeline de aprendizado, conforme indicado anteriormente em outros trabalhos, como 

para a otimização de hiperparâmetros e a detecção de falhas;  

● Exploração além da atividade de classificação: A abordagem desenvolvida foi avaliada 

em problemas de classificação, como detecção de doenças e categorização de asteroides. 

No entanto, o uso de dados de proveniência estruturados semanticamente pode ser 

explorado em outras tarefas de AM, como problemas de regressão, o que demanda 

diferentes ajustes na estrutura dos pipelines e na forma de avaliação dos modelos;  

● Priorização de métricas avaliativas: A abordagem proposta demonstrou melhorias nas 

métricas de acurácia e F1-score dos modelos de AM, ao utilizar dados de proveniência 

para ajustes nos pipelines. No entanto, métricas como precisão e cobertura não 

apresentaram avanços significativos separadamente, indicando oportunidades para 

aperfeiçoamentos mais direcionados. Neste sentido, podem ser investigadas técnicas de 

ajuste do pipeline voltadas à melhoria de métricas específicas, como a melhora direta da 

avaliação da precisão ou da cobertura, além da exploração de métodos que permitam 
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balancear de forma mais controlada as métricas avaliativas mais relevantes ao contexto de 

aplicação do pipeline; e 

● Fases do pipeline: Neste trabalho, a abordagem proposta é voltada para as fases de 

preparação de dados e modelagem de AM, mas existem outras fases que compõem o ciclo 

de atividades que um pipeline pode contemplar, como a fase de entendimento dos dados e 

a fase de implantação, as quais envolvem a integração do modelo treinado em sistemas de 

produção para gerar previsões em tempo real. Ao considerar mais fases do pipeline, será 

possível fornecer uma visão mais abrangente do processo de desenvolvimento e 

manutenção de modelos de aprendizado de máquina. 
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APÊNDICE A – PROVX: Detalhamento das classes 

 
Sobre a Ontologia 

A ontologia PROVX foi desenvolvida para representar os dados de proveniência em execuções de 

pipelines de aprendizado de máquina. A PROVX fornece um modelo extensível e interoperável 

baseado em padrões, incluindo PROV-O e P-Plan, contemplando tanto a proveniência prospectiva 

quanto a proveniência retrospectiva de execuções de pipelines de AM. 

 

 

Classes Principais 

 
 

 provx:BasicProvenance 

Definição Entidade que representa a proveniência básica de um recurso, podendo se 

referir, por exemplo, a conjuntos de dados (provx:DatasetBasicProvenance) ou 

a pipelines (provx:PipelineBasicProvenance).  

Subclasse de prov:Entity 

Propriedades 

da Classe 

prov:wasAttributedTo: Agente responsável. 

prov:wasGeneratedBy: Atividade responsável por sua geração. 

prov:wasDerivedFrom: Entidade da qual os dados são derivados. 

Propriedades 

de Dados 

dcterms:created: Data de criação. 

dcterms:modified: Data da última modificação. 

owl:versionInfo: Versão do recurso. 

dcat:accessURL: URL para acessar os dados. 

 

 

provx:Dataset 

Definição Coleção organizada de dados utilizados em uma execução (provx:Run). 

Subclasse de prov:Entity 

Propriedades 

da Classe 

prov:wasAttributedTo: Agente responsável. 

provx:mustPresent: Necessidade de apresentar os metadados do conjunto de 

dados relacionados. 

Propriedades 

de Dados 

dcterms:title: Título do conjunto de dados. 
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provx:DatasetMetadata 

Definição Coleção de metadados que descreve o conjunto de dados (provx:Dataset), 

contendo informações como sua origem e estrutura. 

Subclasse de prov:Entity 

Propriedades 

da Classe 

prov:wasAttributedTo: Agente responsável. 

Propriedades 

de Dados 

dcterms:title: Título do conjunto de metadados. 

dcterms:created: Data de criação. 

dcterms:modified: Data da última modificação. 

 

 

 

provx:DatasetCreator/UpdaterAgent 

Definição Agente responsável por criar ou atualizar o conjunto de dados (provx:Dataset). 

Subclasse de prov:Agent 

Propriedades 

da Classe 

- 

Propriedades 

de Dados 

foaf:name: Nome do agente. 

foaf:contact: Contato do agente (opcional). 

 

 

 

provx:DatasetPublisherAgent 

Definição Agente responsável por publicar o conjunto de dados (provx:Dataset). 

Subclasse de prov:Agent 

Propriedades 

da Classe 

prov:actedOnBehalfOf: Agente em nome do qual atua, no caso do 

DatasetCreator/UpdaterAgent. 

Propriedades 

de Dados 

foaf:name: Nome do agente. 

foaf:contact: Contato do agente (opcional). 
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provx:ExtendedProvenance 

Definição Permite detalhar o planejamento e execução do pipeline, sendo uma entidade 

composta por aspectos de proveniência prospectiva 

(provx:ProspectiveProvenance) e proveniência retrospectiva  

(provx:RetrospectiveProvenance).  

Subclasse de prov:Entity 

Propriedades 

da Classe 

prov:composedBy: Componentes da proveniência estendida, formado por . 

provx:ProspectiveProvenance e provx:RetrospectiveProvenance. 

Propriedades 

de Dados 

- 

 

 

provx:MLModel 

Definição Descreve o modelo de aprendizado de máquina gerado durante a execução de 

um pipeline (provx:Pipeline). 

Subclasse de Prov:Entity 

Propriedades 

da Classe 

prov:wasAttributedTo: Agente responsável. 

prov:wasGeneratedBy: Atividade responsável por sua geração. 

Propriedades 

de Dados 

provx:Model: Cada modelo de AM gerado durante a execução do pipeline, 

sendo composto por: 

          mlonto:Algorithm: Algoritmo de AM utilizado; 

          provx:Parameters: Parâmetros do algoritmo; e 

          provx:Scores: Resultados das métricas de avaliação. 

provx:setPercent: Especificação das partições de treinamento, teste e validação. 

 

 

provx:Pipeline 

Definição Sequência organizada de instruções que especifica as etapas e atividades de um 

processo de AM, executada pela atividade provx:Run. 

Subclasse de prov:Entity 

Propriedades 

da Classe 

prov:wasAttributedTo: Agente responsável pela criação/atualização. 

Propriedades 

de Dados 

dcterms:title: Nome do pipeline. 
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provx:PipelineCreator/UpdaterAgent 

Definição Agente responsável pela criação/atualização do pipeline (provx:Pipeline). 

Subclasse de prov:Agent 

Propriedades 

da Classe 

- 

Propriedades 

de Dados 

foaf:name: Nome do agente. 

foaf:contact: Contato do agente (opcional). 

 

 

provx:ProspectiveProvenance 

Definição Representa a descrição da estrutura do pipeline (provx:Pipeline), com suas 

respectivas etapas, formando um p-plan:Plan. Cada etapa que compõe o pipeline 

corresponde a um p-plan:Step. 

Subclasse de p-plan:Plan 

Propriedades 

da Classe 

prov:wasAttributedTo: Agente responsável. 

prov:wasGeneratedBy: Atividade responsável por sua geração. 

prov:wasDerivedFrom: Pipeline correspondente. 

Propriedades 

de Dados 

provx:identifier: Identificador único. 

p-plan:hasStep: Etapas que compõe o pipeline. 
 

 

 

provx:RetrospectiveProvenance 

Definição Representa a proveniência retrospectiva obtida a partir de provx:Run, 

descrevendo a execução das etapas previstas em provx:ProspectiveProvenance.  

Subclasse de prov:Entity 

Propriedades 

da Classe 

prov:wasAttributedTo: Agente responsável. 

prov:wasGeneratedBy: Atividade responsável por sua geração. 

provx:isResultOfExecutionOf: Indica a provx:ProspectiveProvenance que foi 

executada. 

Propriedades 

de Dados 

provx:identifier: Identificador único. 

provx:outputs: Detalhamento da execução de provx:ProspectiveProvenance. 
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provx:Run 

Definição Atividade realizada utilizando o pipeline (provx:Pipeline), o conjunto de dados 

(provx:Dataset) e seus metadados (provx:DatasetMetadata). Compreende as 

subatividades de execução do pipeline (provx:PipelineExecution) e 

processamento de proveniência (provx:ProvenanceProcessing), gerando 

informações gerais da execução, dados de proveniência estendida 

(provx:ExtendedProvenance) e informações sobre o modelo de aprendizado de 

máquina (provx:MLModel). 

Subclasse de prov:Activity 

Propriedades 

da Classe 

prov:wasAssociatedWith: Agente responsável pela execução. 

prov:used: Artefato(s) utilizados na execução. 

provx:hasPrevious: Execuções anteriores relacionadas. 

Propriedades 

de Dados 

provx:identifier: Identificador único da execução. 

provx:duration: Duração da execução. 

provx:status: Status da execução (ex.: Finalizado). 

prov:startedAtTime: Início da execução. 

prov:endedAtTime: Fim da execução. 

provx:hasPreviousRun: Execuções anteriores relacionadas. 

prov:used: Artefatos utilizados na execução 

provx:ExtendedProvenance: Proveniência estendida da execução. 

 

 

 

provx:RunExecutorAgent 

Definição Agente responsável pela execução da atividade provx:Run. 

Subclasse de prov:Agent 

Propriedades 

da Classe 

- 

Propriedades 

de Dados 

foaf:name: Nome do agente. 

foaf:contact: Contato do agente (opcional). 
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APÊNDICE B – NFLOWX: Consultas Predefinidas 

 

Detalhamento das demais consultas predefinidas utilizadas no trabalho (definidas na Seção 5.4.1), 

detalhando sua estrutura, propósito e aplicação. Além disso, são fornecidos exemplos de uso e os 

resultados obtidos a partir das execuções, permitindo uma melhor compreensão do comportamento 

e da eficácia de cada consulta no contexto analisado. 

 Consulta predefinida 02: Qual iteração apresentou o melhor resultado para a métrica de 

acurácia, considerando todas as execuções de um mesmo pipeline? 

Para realizar essa consulta é necessário que o usuário informe o título do pipeline, 

responsável e a sua data de criação. Isso permite acessar as execuções relacionadas 

com o pipeline especificado para então identificar qual execução apresentou o valor 

mais alto para a métrica de acurácia. Como resultado, é exibido para o usuário todos 

os detalhes da execução e informações úteis para o desenvolvimento do pipeline, 

conforme observado na Figura 1, a qual mostra o retorno dos dados da melhor 

execução do pipeline de título  “diabetes_dataset_classification_model_eda”. 

Figura 1 – Resultado obtido para a Consulta 02 

 

Fonte: O Autor 

 Consulta predefinida 03 - Quais execuções de pipelines de AM foram realizadas utilizando 

um mesmo conjunto de dados específico? 

Nessa execução, é preciso que o usuário forneça dados de proveniência básica do 

conjunto de dados, sendo o título do conjunto de dados, o responsável e a sua data 

de criação, os quais permitem identificar todas as execuções de pipelines que 

utilizam desse mesmo conjunto de dados especificado. Nessa consulta foi realizada 
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a verificação de execuções utilizando o conjunto de dados “Comprehensive 

Diabetes Clinical Dataset(100k rows)", resultando no retorno de informações 

referentes a duas execuções de pipelines que utilizaram esse mesmo conjunto de 

dados, conforme ilustrado na Figura 2. 

Figura 2– Resultado obtido para a Consulta 03 

 

Fonte: O Autor 

 Consultas predefinida 04 - Quais foram os dados obtidos para uma execução específica? 

Para essa consulta é necessário o id da execução desejada, o qual pode ser obtido a 

partir das consultas exemplificadas nas seções anteriores. Como resultado, é 

possível acessar todos os detalhes da execução, onde são apresentados os dados de 

proveniência básica do pipeline e do conjunto de dados, dados do modelo de AM 

gerado e os dados referentes à execução do pipeline. Essas informações são 

retornadas da mesma forma em que as informações da Consulta 2, conforme 

apresentadas na Figura 1. 
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APÊNDICE C – Consultas SPARQL 

 
Este apêndice apresenta um conjunto de consultas SPARQL desenvolvidas e utilizadas ao longo 

deste trabalho para explorar os dados de proveniência obtidos a partir da abordagem proposta. As 

consultas possibilitam a recuperação de informações específicas relacionadas às execuções dos 

pipelines de AM, como as métricas que avaliaram os modelos, os parâmetros utilizados, os 

detalhes sobre os modelos gerados e os agentes envolvidos no processo. 

 
Consulta I: (Seção 4.3.1) Identifica se existe execução anterior e retorna a melhor avaliada 

(utiliza dados do pipeline P e do conjunto de dados D da execução atual). 

 Observação: Nesta consulta, são utilizadas variáveis definidas em Python, que são 

preenchidas automaticamente com os dados do pipeline e do conjunto de dados da execução atual. 

Essas variáveis são utilizadas para identificar e recuperar execuções relacionadas no repositório 

de dados do protótipo. 

 

PREFIX dcterms: <http://purl.org/dc/terms/> 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX prov: <http://www.w3.org/ns/prov#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX provx: 

<http://www.semanticweb.org/natac/ontologies/2024/5/untitled-

ontology-50> 

 

 

SELECT DISTINCT ?exec 

 WHERE { 

     GRAPH ?exec { 

         ?pipeline a provx:PipelineBasicProvenance ; 

                 dcterms:created \""""+pip_creation+"""\" ;  

                         prov:wasAttributedTo ?pip_resp . 

          

         ?pip_resp foaf:Person ?person; 

            foaf:name \""""+pip_resp+"""\" .                 

      

         ?pp a provx:Pipeline ;         

              dcterms:title  \""""+pip_title+"""\" . 

 

          

         ?dt a provx:Dataset ;         

                  dcterms:title \""""+data_title+"""\" . 

          

         ?dataset a provx:DatasetBasicProvenance ; 

                 dcterms:created \""""+data_creation+"""\" ;  

                         prov:wasAttributedTo ?data_resp . 
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         ?data_resp prov:actedOnBehalfOf ?other. 

         ?outro foaf:Person ?person2; 

            foaf:name \""""+resp_creation+"""\" . 

 

            ?mlModel a provx:MLModel ; 

                     provx:Model ?modelDetails . 

 

         ?modelDetails provx:Scores ?modelScoreDetails . 

 

         ?modelScoreDetails rdfs:label\""""+metric+"""\" . ; 

                         provx:value ?modelScoreValue. 

          

     } 

 }ORDER BY DESC (?modelScoreValue) LIMIT 1 

 
 

Consulta II: (Seção 5.4.1) Consulta aos dados de proveniência básica do conjunto de dados 

(Quadro 4): Dados de Proveniência Básica do conjunto de dados das execuções do pipeline 

Alzheimer's Disease. 

PREFIX dcterms: <http://purl.org/dc/terms/> 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX prov: <http://www.w3.org/ns/prov#> 

PREFIX pplan: <http://purl.org/net/p-plan#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX dcat: <http://www.w3.org/ns/dcat#> 

PREFIX provx: 

<http://www.semanticweb.org/natac/ontologies/2024/5/untitled-

ontology-50> 

 

SELECT ?execution ?created ?modified ?publisher ?accessURL 

 WHERE { 

     GRAPH ?execution {  

            ?pipeline a provx:PipelineBasicProvenance ; 

                  dcterms:created "2025-02-10 03:07:34" . 

 

         ?pip a provx:Pipeline ; 

              dcterms:title 

"alzheimer_s_disease_prediction_on_patient"  . 

          

            ?dataset a provx:DatasetBasicProvenance ; 

                dcterms:created ?created ;  

          dcterms:modified ?modified; 

          dcterms:publisher ?publisher; 

          dcat:accessURL ?accessURL. 

        

     } 

 }ORDER BY (?execution) 
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Consulta III: (Seção 5.4.1) Dados do modelo de AM (Quadro 5): Dados do Modelo de AM 

para as execuções do pipeline Alzheimer's Disease. 

 

PREFIX dcterms: <http://purl.org/dc/terms/> 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX prov: <http://www.w3.org/ns/prov#> 

PREFIX pplan: <http://purl.org/net/p-plan#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX dcat: <http://www.w3.org/ns/dcat#> 

PREFIX mlonto: 

<http://www.semanticweb.org/user/ontologies/2020/0/ml-

ontology#mlo:> 

PREFIX provx: 

<http://www.semanticweb.org/natac/ontologies/2024/5/untitled-

ontology-50> 

 

SELECT ?execution ?algorithm 

       (GROUP_CONCAT(DISTINCT CONCAT(?paramlabel, "=", 

?paramvalue); SEPARATOR=", ") AS ?allParams) 

       (GROUP_CONCAT(DISTINCT CONCAT(?scorelabel, "=", 

?scorevalue); SEPARATOR=", ") AS ?allScores) 

WHERE { 

  GRAPH ?execution { 

     ?pipeline a provx:PipelineBasicProvenance ; 

              dcterms:created "2025-02-10 03:07:34" . 

 

    ?pip a provx:Pipeline ; 

              dcterms:title 

"alzheimer_s_disease_prediction_on_patient"  . 

     

    ?mlModel a provx:MLModel ; 

             provx:Model ?model . 

     

    ?model provx:Parameters ?param ; 

           mlonto:Algorithm ?algorithm ; 

           provx:Scores ?scores . 

     

    ?scores rdfs:label ?scorelabel ; 

            provx:value ?scorevalue . 

     

    ?param rdfs:label ?paramlabel ; 

           provx:value ?paramvalue . 

  } 

} 

GROUP BY ?execution ?algorithm 

ORDER BY ?execution 
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Consulta IV: (Seção 5.4.1) Dados da execução (Quadro 6): Dados referentes às  execuções do 

pipeline Alzheimer's Disease. 

PREFIX dcterms: <http://purl.org/dc/terms/> 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX prov: <http://www.w3.org/ns/prov#> 

PREFIX pplan: <http://purl.org/net/p-plan#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX dcat: <http://www.w3.org/ns/dcat#> 

PREFIX provx: 

<http://www.semanticweb.org/natac/ontologies/2024/5/untitled-

ontology-50> 

 

 

SELECT ?execution ?duracao ?endedAtTime ?startedAtTime 

?wasAssociatedWith 

 WHERE { 

     GRAPH ?execution { 

             ?pipeline a provx:PipelineBasicProvenance ; 

               dcterms:created "2025-02-10 03:07:34" . 

 

         ?pip a provx:Pipeline ; 

              dcterms:title 

"alzheimer_s_disease_prediction_on_patient"  . 

             

         ?run a provx:Run ; 

                     provx:Duration ?duracao ; 

                        prov:endedAtTime ?endedAtTime ; 

                        prov:startedAtTime ?startedAtTime; 

            prov:wasAssociatedWith 

?wasAssociatedWith. 

        

     } 

 }ORDER BY (?execution) 

 

 

Consulta V: (Seção 5.4.1) Dados da execução (Quadro 7): Dados Referentes à Proveniência 

Retrospectiva para uma Execução do Pipeline Alzheimer's Disease. 

PREFIX dcterms: <http://purl.org/dc/terms/> 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX prov: <http://www.w3.org/ns/prov#> 

PREFIX pplan: <http://purl.org/net/p-plan#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX dcat: <http://www.w3.org/ns/dcat#> 

PREFIX provx: 

<http://www.semanticweb.org/natac/ontologies/2024/5/untitled-

ontology-50> 

 

SELECT ?exec ?pip_title ?retrospective 
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WHERE { 

  GRAPH ?exec { 

    ?pipeline a provx:PipelineBasicProvenance ; 

              dcterms:created "2025-02-10 03:07:34" . 

 

    ?pip a provx:Pipeline ; 

         dcterms:title ?pip_title . 

          

    FILTER(?pip_title = "alzheimer_s_disease_prediction_on_patient") 

 

    ?run a provx:Run ; 

         provx:ExtendedProvenance ?ex . 

 

    ?ex provx:RetrospectiveProvenance ?retrospective . 

  } 

}ORDER BY (?exec) LIMIT 1 

 

 

Consulta VI: (Seção 5.4.1) Consulta predefinida 01: Quais os resultados obtidos para as 

métricas avaliadas em todas as execuções de um mesmo pipeline? 

Observação: Nesta consulta, são utilizadas variáveis definidas em Python, que são 

preenchidas com base nas entradas fornecidas pelo usuário. Essas variáveis são utilizadas 

para compor e executar uma consulta SPARQL predefinida sobre o repositório do protótipo. 

PREFIX dcterms: <http://purl.org/dc/terms/> 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX prov: <http://www.w3.org/ns/prov#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX provx: <http://www.semanticweb.org/natac/ontologies/2024 

/5/untitled-ontology-50> 

 

SELECT DISTINCT ?exec ?metric ?modelMetricValue 

 WHERE { 

        GRAPH ?exec { 

            ?pipeline a provx:PipelineBasicProvenance ; 

                    dcterms:created \""""+pip_creation+"""\"  ;  

                         prov:wasAttributedTo ?pip_resp . 

          

            ?pip_resp foaf:Person ?person; 

            foaf:name \""""+pip_resp+"""\"  .          

         

            ?pp a provx:Pipeline ;            

                 dcterms:title  \""""+pip_title+"""\"  . 

                 

            ?mlModel a provx:MLModel ; 

                        provx:Model ?modelDetails . 

 

            ?modelDetails  provx:Scores ?modelMetricDetails . 

 

            ?modelMetricDetails rdfs:label ?metric ; 
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                                provx:value ?modelMetricValue.                        

        } 

    }ORDER BY ASC(?exec) 

 

Consulta VII: (Seção 5.4.1) Consulta predefinida 02: Qual iteração apresentou o melhor 

resultado para a métrica de acurácia considerando todas as execuções de um mesmo pipeline? 

Observação: Nesta consulta, são utilizadas variáveis definidas em Python, que são 

preenchidas com base nas entradas fornecidas pelo usuário. Essas variáveis são utilizadas 

para compor e executar uma consulta SPARQL predefinida sobre o repositório do protótipo. 

PREFIX dcterms: <http://purl.org/dc/terms/> 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX prov: <http://www.w3.org/ns/prov#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX mlonto: 

<http://www.semanticweb.org/user/ontologies/2020/0/ml-

ontology#mlo:> 

PREFIX provx: 

<http://www.semanticweb.org/natac/ontologies/2024/5/untitled-

ontology-50> 

 

SELECT DISTINCT ?exec ?pipelineTitle ?datasetTitle ?algorithm 

?startTime ?duration ?prospective ?retrospective 

    (GROUP_CONCAT(DISTINCT CONCAT(?param_label, \": \", 

?param_value); SEPARATOR=\", \") AS ?ALLparameters) 

    (GROUP_CONCAT(DISTINCT CONCAT(?metric_label, \": \", 

?metric_value); SEPARATOR=\", \") AS ?ALLmetrics) 

  WHERE { 

    GRAPH ?exec  { 

              ?pipeline a provx:PipelineBasicProvenance ; 

                      dcterms:created 

\""""+pip_creation+"""\"  ;  

                           prov:wasAttributedTo 

?pip_resp . 

 

     ?pip_resp foaf:Person ?person; 

                foaf:name \""""+pip_resp+"""\" .               

                

              ?pp a provx:Pipeline ;            

                   dcterms:title  ?pipelineTitle  . 

          FILTER(?pipelineTitle = \""""+tpip+"""\"  ) 

 

 

      ?dataset a provx:Dataset ; 

               dcterms:title ?datasetTitle . 

 

      ?run a provx:Run ; 

           prov:startedAtTime ?startTime ; 

           provx:Duration ?duration ; 
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           provx:ExtendedProvenance ?extendedProv . 

 

      ?extendedProv provx:RetrospectiveProvenance 

?retrospective . 

      ?extendedProv provx:ProspectiveProvenance 

?prospective . 

 

      ?mlModel a provx:MLModel ; 

                  provx:Model ?model . 

 

      ?model mlonto:Algorithm ?algorithm . 

 

      ?model provx:Parameters ?paramNode . 

      ?paramNode rdfs:label ?param_label ; 

                  provx:value ?param_value . 

 

      ?model provx:Scores ?metricNode . 

      ?metricNode rdfs:label ?metric_label ; 

                  provx:value ?metric_value . 

       

      ?model provx:Scores ?AccNode . 

          ?AccNode rdfs:label \"accuracy\" ; 

                 provx:value ?AccuracyValue . 

  } 

  }GROUP BY ?exec ?pipelineTitle ?datasetTitle ?algorithm 

?startTime ?duration ?model ?retrospective ?prospective 

?AccuracyValue ORDER BY DESC(?AccuracyValue) LIMIT 1 

   

Consulta VIII: (Seção 5.4.1) Consulta prédefinida 03: Quais execuções de pipelines de AM são 

realizadas utilizando um mesmo conjunto de dados específico? 

Observação: Nesta consulta, são utilizadas variáveis definidas em Python, que são 

preenchidas com base nas entradas fornecidas pelo usuário. Essas variáveis são utilizadas 

para compor e executar uma consulta SPARQL predefinida sobre o repositório do protótipo. 

PREFIX dcterms: <http://purl.org/dc/terms/> 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX prov: <http://www.w3.org/ns/prov#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX provx: 

<http://www.semanticweb.org/natac/ontologies/2024/5/untitled-

ontology-50> 

 

SELECT DISTINCT ?exec ?pip_tit ?dt_created ?dini  

          (GROUP_CONCAT(DISTINCT CONCAT(?metric, ": ", 

?modelMetricValue); SEPARATOR=", ") AS ?metrics) 

   WHERE { 

       GRAPH ?exec { 

           ?dataset a provx:Dataset ;         
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                    dcterms:title \""""+data_title+"""\" 

. 

           ?dt a provx:DatasetBasicProvenance ; 

                dcterms:created 

\""""+data_creation+"""\" ; 

                prov:wasAttributedTo ?data_resp . 

        ?data_resp prov:actedOnBehalfOf ?other. 

 

        ?other foaf:Person ?personn; 

                  foaf:name \""""+resp_creation+"""\" . 

 

           ?pipeline a provx:PipelineBasicProvenance ; 

                     dcterms:created ?dt_created . 

 

           ?pp a provx:Pipeline ;         

               dcterms:title ?pip_tit . 

 

           ?mlModel a provx:MLModel ; 

                       provx:Model ?modelDetails . 

 

           ?modelDetails provx:Scores 

?modelMetricDetails . 

 

           ?modelMetricDetails rdfs:label ?metric ; 

                               provx:value 

?modelMetricValue. 

 

           ?run a provx:Run ; 

                prov:startedAtTime ?dini.        

       } 

   }GROUP BY ?exec ?pip_tit ?dt_created ?dini ORDER BY 

(?exec) 

Consulta IX: (Seção 5.4.1) Consultas predefinida 04: Quais os dados obtidos para uma 

execução específica? 

Observação: Nesta consulta, são utilizadas variáveis definidas em Python, que são 

preenchidas com base nas entradas fornecidas pelo usuário. Essas variáveis são utilizadas 

para compor e executar uma consulta SPARQL predefinida sobre o repositório do protótipo. 

PREFIX dcterms: <http://purl.org/dc/terms/> 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX prov: <http://www.w3.org/ns/prov#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX mlonto: 

<http://www.semanticweb.org/user/ontologies/2020/0/ml-

ontology#mlo:> 

PREFIX provx: 

<http://www.semanticweb.org/natac/ontologies/2024/5/untitled-

ontology-50> 
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SELECT DISTINCT ?pipelineTitle ?datasetTitle ?algorithm 

?startTime ?duration ?prospective ?retrospective 

  (GROUP_CONCAT(DISTINCT CONCAT(?param_label, ": ", 

?param_value); SEPARATOR=", ") AS ?parameters) 

  (GROUP_CONCAT(DISTINCT CONCAT(?metric_label, ": ", 

?metric_value); SEPARATOR=", ") AS ?metrics) 

WHERE { 

  GRAPH <"""+id_exec+""">  { 

    ?pipeline a provx:Pipeline ; 

              dcterms:title ?pipelineTitle . 

 

    ?dataset a provx:Dataset ; 

             dcterms:title ?datasetTitle . 

 

    ?run a provx:Run ; 

         prov:startedAtTime ?startTime ; 

         provx:Duration ?duration ; 

         provx:ExtendedProvenance ?extendedProv . 

 

    ?extendedProv provx:RetrospectiveProvenance ?retrospective . 

    ?extendedProv provx:ProspectiveProvenance ?prospective . 

 

    ?mlModel a provx:MLModel ; 

                provx:Model ?model . 

 

    ?model mlonto:Algorithm ?algorithm . 

 

    ?model provx:Parameters ?paramNode . 

    ?paramNode rdfs:label ?param_label ; 

                provx:value ?param_value . 

 

    ?model provx:Scores ?metricNode . 

    ?metricNode rdfs:label ?metric_label ; 

                provx:value ?metric_value . 

} 

}GROUP BY ?pipelineTitle ?datasetTitle ?algorithm ?startTime 

?duration ?model ?retrospective ?prospective 
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