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ABSTRACT

Terrestrial water storage (TWS) is a critical component of the hydrological cycle, directly
influencing water security, energy production, and climate resilience in Brazil. Although the
country has abundant freshwater resources, their uneven spatial distribution combined with the
growing impacts of climate change exposes both the population and the economy to
hydrological risks. The Gravity Recovery and Climate Experiment (GRACE) missions have
provided valuable insights into TWS variability since 2002; however, their limited temporal
coverage constrains long-term analyses. To overcome this limitation, this research
reconstructed terrestrial water storage anomalies (TWSA) for Brazil’s 12 major river basins
from 1985 to 2002, integrating GRACE data with climatic variables (precipitation, soil
moisture, temperature, and teleconnection indices) and anthropogenic indicators derived from
land use and land cover (LULC) data. Two machine learning models—Random Forest (RF)
and Long Short-Term Memory (LSTM)—were implemented and compared to assess
performance, interpretability, and suitability for GRACE-TWSA reconstructions. Results
indicate natural seasonality throughout the year, with vegetation and climate indices emerging
as highly influential predictors of TWSA, while anthropogenic factors affect anomalies
differently across basins, particularly in areas dominated by agriculture and livestock activities
(such as cotton in the Amazon Basin and perennial crops in the Sao Francisco Basin). Both RF
and LSTM achieved satisfactory performance, though LSTM was able to reconstruct the time
series for only a few basins, while RF provided greater interpretability of variable contributions.
The Mann-Kendall test applied to the RF-reconstructed TWSA series revealed significant long-
term decreasing trends in the Uruguay, Parnaiba, Sdo Francisco, and East Atlantic basins,
underscoring Brazil’s vulnerability to water stress under future climate scenarios. By extending
GRACE-derived observations, this study advances understanding of how climate and LULC
influence TWSA variability and provides evidence to support public policies for sustainable

water resource management in Brazil.

Keywords: terrestrial water storage, machine learning, GRACE, climate change



1. Introduction

Terrestrial water storage (TWS), defined as the total water stored above and below
the planet's surface (Girotto; Rodell, 2019), plays a fundamental role in the hydrological balance
and socioeconomic security of a country, particularly in nations with a global prominence in
renewable water resources, such as Brazil (FAO, 2024). Despite this abundance, the resource's
distribution is notably uneven, and Brazil's dependence on its hydrographic network makes it
particularly vulnerable to extreme climatic events, including droughts that have led to energy
crises (Cuartas et al., 2022). Climate change (CC) projections indicate that, in the coming
decades, the country may face significant reductions in water availability, a scenario that aligns
with the global trend of decreasing TWS (Pokhrel et al., 2021; ANA, 2024). In this context,
understanding the spatiotemporal dynamics of TWS and its fluctuations under different climatic
conditions is essential to support efficient water resource management and mitigate the resulting
socioeconomic impacts.

The Gravity Recovery and Climate Experiment (GRACE) missions have been pivotal
in monitoring TWS in recent years. Their data has been used to study CC in various regions
around the world (Tapley et al., 2019) including Brazil (Getirana, 2016). However, having
started in 2002, the relatively short duration of these missions represents a limitation for more
in-depth analyses, especially when it comes to climate variables, which ideally require a time
series of at least 30 years. Faced with this challenge, many researchers have dedicated efforts
to extending the GRACE database, reconstructing historical TWS anomalies (TWSA) values
through data assimilation techniques, statistical reconstructions, and machine learning
(Humphrey; Rodell; Eicker, 2023).

The machine learning (ML) approach offers advantages over conventional models,
such as automation and efficiency in detecting climate patterns, as well as a high capacity to
handle limited data samples (Karpatne et al., 2019). Among the models most commonly found
in the scientific literature for TWSA reconstruction, two consistently stand out for their superior
performance: Random Forest (RF) (Jing et al., 2020a; Jing et al., 2020b; Jing et al., 2020c; Tang
etal., 2021; Xiong et al., 2022), and various types of Artificial Neural Networks (ANNs) (Long
et al., 2014; Ferreira et al., 2019; Sun et al., 2019; Li et al., 2020; Li et al., 2021; Wang et al.,
2023a).

Since TWS is heavily linked to land and atmosphere conditions, researchers
commonly use climatic variables such as precipitation, soil moisture and temperature as input

variables for the reconstruction or prediction of TWS fluctuations. However, there have been



only a few studies that considered the influence of anthropogenic activity in these variations.
Furthermore, despite the extensive literature on the reconstruction of anomalies in other regions
of the planet, no studies were found at the time of writing this project that had the primary
objective of reconstructing and subsequently conducting long-term analyses of TWSA across
the entirety of Brazil. Some studies have performed reconstructions for the Amazon Basin (Nie
et al., 2016; Tian et al., 2021), and found significant seasonal variations, strongly correlated to
the El Nifio Southern Oscillation (ENOS). Others have conducted global reconstructions that
included Brazil either entirely or partially (Li et al., 2020; Li et al., 2021; Yin et al., 2023), but
did not include detailed discussions considering the country’s geographic characteristics and
historical data. Additionally, some models incorporated variables that are poorly representative
of Brazil’s reality, such as ice and snow water equivalents.

This research aimed to reconstruct TWSA values from the GRACE mission for each
of the 12 main river basins of Brazil, utilizing both RF and Long-Short Term Memory (LSTM),
a type of Recurrent Neural Network, for comparative analysis. The reconstruction extends back
to 1985, leveraging predictive variables that include climate datasets (precipitation,
temperature, soil moisture, and climate teleconnection indices) as well as anthropogenic factors
such as land use and land cover. The expected outcomes of this reconstruction are to provide a
more comprehensive database that facilitates a deeper understanding of TWS variability in
Brazil within the context of CC. This work has the potential to foster more detailed scientific
investigations and assist public agencies responsible for water resource management in making

more informed decisions on how to prioritize their actions.
1.1 Objectives

1.1.1 General Objective

Reconstruction of historical (1984 — 2002) terrestrial water storage anomaly values
across the territorial extent of Brazil, using the 12 main river basins as the spatial units of
analysis, with machine learning and data from the GRACE mission combined with climatic and

anthropogenic data.

1.1.2 Specific Objectives

e To compare the performance of a Neural Network and Random Forest models in
reconstructing terrestrial water storage anomalies (TWSA)

e To describe the role of climatic variables in TWSA modeling



e To analyze the temporal variation of TWSA in Brazil for each basin for the reconstructed

period

1.2 Research Hypothesis
1.2.1 Model performance

LSTM and RF models tend to exhibit similar performance, with LSTM being slightly
superior in terms of accuracy. However, RF offers greater interpretability, which can be

considered an advantage in understanding the interaction mechanisms between variables.

1.2.2 Role of climate variables

Precipitation and climate indices are the most influential climatic variables in
determining TWSA anomalies in Brazil, reflecting the importance of the surface hydrological
cycle in terrestrial water storage, particularly in a country predominantly located in a tropical

zone.

1.2.3 Anthropogenic influence

The spatial variation of TWSA in Brazil is strongly influenced by land use and land
cover, with basins predominantly characterized by agricultural activity showing greater
vulnerability to positive TWSA anomalies due to infiltration caused by irrigation. In contrast,
areas dominated by extensive livestock farming are more susceptible to negative anomalies due

to vegetation removal and water extraction.

1.3 Justification

Brazil's abundance of water resources positions the country as a significant
international exporter of virtual water (Suweis et al., 2013), while also enabling the generation
of more than 61.9% of the nation's total electricity (EPE, 2023). Although the hydrological
cycle exhibits natural spatial and temporal variations, global projections, such as those from the
Intergovernmental Panel on Climate Change (IPCC), indicate that extreme events may become
increasingly frequent in the coming years, with natural climate variability amplifying or
attenuating their adverse consequences (Parmesan et al., 2022).

Some trend projections suggest that water availability in Brazil could decrease by up
to 40% by 2040 due to CC (ANA, 2024). This reality has become increasingly evident in recent

years, as shown by the severe drought event recorded in the Amazon in 2023, which was



attributed more to the impacts of CC than solely to the ENSO phenomenon, traditionally
associated with drought episodes in the region (Clarke et al., 2024). Additionally, the impact of
CC has been underscored by the recent and unprecedented identification of an arid climate area
in the center of the Northeastern region of Brazil (INPE, 2024). This highlights the country's
vulnerability to the risks posed by CC. If the projections from the IPCC and ANA are
confirmed, Brazil may face a series of challenges related to the management and availability of
its water resources. In this context, it is crucial to deepen the understanding of the spatial and
temporal variations of terrestrial water storage across the national territory. This will equip
regulatory agencies with essential information for public policy debates and provide the
academic community with valuable data for more detailed investigations into climate variables
and their influence on water availability.

Parallel to the climate threat to Brazil's water resources, the world is witnessing a
rapid evolution in Al, which is revolutionizing various sectors, including the Geosciences
(Karpatne et al., 2019). ML techniques are emerging as powerful tools in the fight against
climate change (Rolnick et al., 2023), presenting immense potential to mitigate its impacts. The
research presented here is precisely situated within this context, aiming to employ ML
advancements to tackle climate challenges and contribute to the sustainable management of

Brazil's water resources.

2 Literature review
2.1. Terrestrial water storage and GRACE missions

TWS is composed of six components: surface water, groundwater, soil moisture, ice,
snow, and water stored in biomass, as shown in Equation 1 (Girotto; Rodell, 2019; Humphrey;

Rodell; Eicker, 2023).
TWS = SW + GW + SM + SWE + LI + BW (1)

Where SW represents surface water, GW represents groundwater, SM represents soil
moisture, SWE represents snow water equivalent, LI represents land ice, and BW represents
biomass water. The contribution of each component to TWS variations depends on the local
geography (Zhang et al., 2022).

Considering the mentioned components, it is natural that TWS variation significantly

depends on local climatic behavior. Therefore, climatic variables such as precipitation,
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temperature, soil moisture, and climate indices are fundamental for understanding TWS
behavior, with precipitation being the variable that contributes most to TWS changes in low-
latitude regions such as Brazil. (Zhang et al., 2019).

It is possible to estimate TWS values using surface models such as the Global Land
Data Assimilation System (GLDAS). However, thanks to the GRACE and GRACE-FO
missions, TWS estimates can be made much more accurately and reliably. The concept behind
these missions is based on observing variations in the distance between two satellites sharing
the same orbit, leveraging the fact that Earth's gravitational field is heterogeneous due to the
uneven distribution of mass. When a satellite approaches an area with greater gravitational
force, its velocity increases, moving away from the trailing satellite; upon passing that area, its
velocity decreases, reducing the distance between them (Figure 1). These distances are
determined using a combination of highly precise instruments. Each satellite in the original
GRACE mission was equipped with GNSS sensors, which enabled accurate estimation of their
orbital positions and, consequently, the measurement of the distance between the two satellites.
In the follow-up mission, GRACE-FO, a laser-ranging interferometer (LRI) has been
introduced as a technology demonstrator to enhance the precision of these inter-satellite
distance measurements. In addition, the mission employs the HAIRS (High Accuracy Inter
Satellite Ranging System), which operates in the microwave spectrum, and corner-cube
retroreflectors on both satellites, allowing ground-based laser tracking to determine the distance
from each satellite to Earth.

The monthly analysis of these distance differences provides the temporal variations
(or anomalies) of Earth's gravitational field (Girotto; Rodell, 2019; Humphrey; Rodell; Eicker,
2023). Considering that large geological formations and urban clusters have relatively static
mass, mass variations on continents are primarily attributed to atmospheric and oceanic
circulations and the redistribution of water on the surface. By using climate models, it is
possible to identify and exclude the signals from these circulations, enabling the estimation of
TWS variations in isolation. However, satellites cannot directly calculate storage values;
instead, they calculate anomalies based on deviations from an average. Therefore, in addition
to TWS, there are two similar concepts that frequently appear in the literature and must be

differentiated: (1) TWS anomalies, or TWSA; and (2) TWS changes, or TWSC.
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Figure 1. Principle of the GRACE missions. As a satellite passes over a region with a mass concentration, it
increases its velocity toward the concentration due to the stronger gravitational pull. Upon moving past this region,
the satellite remains under the influence of this anomaly, thereby reducing its velocity. (Humphrey; Rodell; Eicker,
2023).

The anomalies (TWSA) are calculated based on how much the gravitational attraction
at a given point (excluding the influences of atmospheric and oceanic circulations) deviates
from the mean over a reference period, as expressed in Equation 2 (Humphrey; Rodell; Eicker,
2023).

TWSA = TWS —TWS 2

Where TWS is the average TWS for a reference period. TWSC, in turn, refers to the

variation of TWSA relative to the previous period, as expressed in Equation 3 (Lv et al., 2019):

TWSA, — TWSA,_,

TWSC, = i

A3)
Where t is the period (month), ¢ — 1 is the previous month, and At is the time
difference between the two periods.
Currently, the mission's data processing is carried out by four centers: the Jet

Propulsion Laboratory (JPL), the Center for Space Research (CSR), and the Goddard Space
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Flight Center (GSFC) of NASA, as well as the GeoForschungsZentrum (GFZ) in Germany.
The data can be processed in two ways to provide products to users: (1) spherical harmonics;
and (2) mass concentration blocks (mascons).

Spherical harmonics are functions used to model variations in Earth's gravitational
field, representing these variations continuously across the planet's surface based on the
estimation of coefficients of degree / and order m. (Humphrey; Rodell; Eicker, 2023). Currently,
spherical harmonic-based solutions are produced by the JPL, CSR, and GFZ centers. In
contrast, mascon solutions do not represent TWSA anomalies as a continuous field but rather
in blocks of specific dimensions, assigning a single TWSA value to each block. The JPL and
CSR are the centers responsible for these solutions.

The GRACE mission products available to users, whether based on spherical
harmonics or mascons, are presented in units of meters, centimeters, or millimeters of water
equivalent. These units reflect the amount of water required on the ellipsoid's surface to account
for the anomalies observed in the gravitational field (Humphrey; Rodell; Eicker, 2023).

Some studies have already explored the data provided by the GRACE mission to
investigate the spatiotemporal distribution of TWS in regions of Brazil, particularly for
monitoring hydrological droughts. (Oliveira et al., 2014; Getirana, 2016; Rebello et al., 2017;
Rossi et al., 2023). However, no studies found have performed a reconstruction aimed at the
long-term analysis of TWSA variations in Brazil. On the other hand, in other regions of the
world, several studies have focused on TWSA reconstruction using ML techniques (as

discussed in Section 2.3).

2.2. Machine Learning

Between the conception of the idea of machines performing intellectual work at a
human level of performance (Turing, 1950) and the application of statistical learning models as
tools to combat climate change (Rolnick et al., 2023), there is a massive number of scientific
contributions aimed at theoretically defining these tools and guiding their applications.
Defining ML, therefore, is an inherently subjective task. Simplified, ML, a subfield of Al, is
dedicated to developing algorithms that enable computers to autonomously improve their
performance through experience gained from data (Mitchel, 1997). Unlike operating under a
rigid set of instructions, these systems learn to discern patterns and relationships in the data

presented, allowing them to make predictions or decisions based on new data. These tasks are
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divided into two main types: (1) classification, when the expected outcomes are categorical,
and (2) regression, for outputs with numerical value (Molner, 2019)".

If the goal is to produce numerical estimates of TWSA for periods prior to the launch
of the GRACE mission, associating observed anomaly values with other variables, including
historical records of these variables in the model allows for the prediction of anomalies for the
corresponding periods. Therefore, by inputting historical data as labeled entries, the model
performs a regression task, estimating TWSA for past periods based on the relationships it has
learned.

A recurring challenge in using ML models is the trade-off between performance and
interpretability. Interpretability, in the context of ML, can be defined as the degree to which a
human can understand the reasons behind a machine's decision in a given context (Miller,
2019). Highly complex and adaptive models, particularly those that capture the non-linearity of
relationships between variables, often achieve higher levels of accuracy. However, due to this
additional complexity, understanding the underlying processes can become obscured, making
it difficult to discern how inputs are being transformed into outputs. (Molner, 2019). This trade-
off becomes even more relevant in the context of Geosciences, where understanding the
interaction mechanisms between different variables is an essential tool for scientific
development. (Karpatne et al., 2019).

Therefore, the choice of ML models for this research considered both performance
and interpretability. The next section provides a review of how different ML techniques have

been used for the reconstruction of TWSA in other regions of the world.

2.3. Reconstruction of TWSA using Machine Learning

Research on the reconstruction of TWSA using ML techniques has grown remarkably
in recent years. Given the diversity of algorithms and methodological approaches employed in
the ML field, this review aims to address two fundamental questions: (1) What are the
predominant ML models used in TWSA reconstructions derived from the GRACE missions?
(2) What variables are most frequently adopted for this purpose? Through a search on the

academic platforms Google Scholar and Scopus, using the search strategy specified in Figure

! The definition of ML used here and the division of tasks into classification and regression are associated with
supervised learning, which is characterized by the use of pre-labeled data, learning to map input data to known
outputs, enabling predictions or classifications for new datasets. In contrast, unsupervised learning deals with
unlabeled data, aiming to uncover intrinsic patterns and relationships without the guidance of specific outputs.
This enables the grouping of similar data into clusters or the identification of association rules, exploring the data
structure without the need for prior labeling. (Singh, 2019; Sarker, 2021).
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2, 19 studies were selected. An additional 8 studies were included through subsequent analysis

of the references from the initial 19, totaling 27 peer-reviewed scientific articles published in

international journals.
“reconstruction”
“machine “gravity recovery and “terrestrial
learning” climate experiment” water storage”

“retrodiction”

Figure 2. Search strategy used in the Google Scholar and Scopus databases to find the selected articles

The criteria for article inclusion were: (1) the use of ML as the primary tool for
reconstructing TWSA data; and (2) a focus on extending the dataset to periods prior to the start
of the GRACE mission, thereby excluding studies that focused exclusively on filling the gap
between the GRACE and GRACE-FO missions. The justification for the second criterion lies
in the need to address the reconstruction of anomalies for more distant periods, tackling the task
of extending the dataset over a long timeframe, as opposed to merely addressing the 7-month
data gap between the end of the GRACE mission and the start of the GRACE-FO mission.

The dataset extension was the primary focus of most analyzed articles, aiming to
enable future climate research through an expanded dataset. However, some studies focused on
specific topics, such as identifying and characterizing droughts and floods, or analyzing the
impact of certain environmental variables on TWS variability. In these contexts, anomaly
reconstruction emerged as a complementary objective, supporting the investigation of these
more specific climatic and hydrological dynamics. Table 1 details the studies found, their year

of publication, and the model(s) used.

Table 1. Articles included in the review

id Authorship Models used Year
1 Long et al. Neural Network (Multi-Layer Perceptron — MLP) 2014
2 Yang et al. Neural Network (MLP) 2014
3 Nie et al. simple linear regression 2016
4 Zhang et al. Neural Network (MLP) 2016
5 Yang et al. Neural Network (MLP), RF, SVM 2018
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6 Ferreira et al. Neural Network (NARX) 2019
7 Sun et al. Neural Network (CNN) 2019
8 Chen et al. Neural Network (MLP) 2019
9 Jing et al. RF, XGB 2020
10 Jing et al. RF, XGB 2020
11 Jing et al. RF, multiple linear regression 2020
12 Liet al. multiple linear regression, Neural Network (MLP and ARX) 2020
13 Wang et. Neural Network (LSTM) 2021
14 Li et al. multiple linear regression, Neural Network (MLP and ARX) 2021
15 Meng et al. Neural Network (MLP), SVM 2021
16 Tang et al. RF 2021
17 Tian et al. multiple linear regression 2021
18 Yang et al. RF, XGB 2022
19 Dannouf et al. Boosted Regression Tree (BRT) and Neural Network (NARX) 2022
20 Xiong et al. RF 2022
21 Kalu et al. Neural Network (CNN) and SVM 2023
22 Yin et al. RF and Neural Network 2023
23 Lietal. multiple linear regression, RF 2023
24 Kumar et al. Neural Network (MLP) 2023
25 Wang et al. RecNet 2023
26 Zheng et al. Neural Network (NARX) 2023
27 Zhu et al. LightGBM 2023

The diversity of models employed in the studies reflects the adaptability of these

techniques to different datasets and research objectives. The most used model was Neural
Networks (NN) (18), encompassing various architectures such as MLP (9), NARX (3), CNN
(3), ARX (2) and LSTM (1); followed by Random Forest (RF) (9), as shown in Figure 3. Other

models included Linear Regression (6), Support Vector Machine (3), eXtreme Gradient Boost

(3), Boosted Regression Tree (1), and LightGBM (1). The two most frequently used models

(NN and RF) are discussed below. Subsequently, Section 2.6 presents the predictor variables

used in the reviewed articles.
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Machine Learning models for GRACE-TWSA reconstruction

20

18 9 6 8

Neural Networks Random Forest Linear Regression Others

66% of articles 33% of articles 22% of articles 29% of articles

Figure 3. Frequency of ML models used in the reconstruction of TWSA. "Others" refers to: Support Vector
Machine (3), eXtreme Gradient Boost (3), Boosted Regression Tree (1), and LightGBM (1).

2.4 Artificial Neural Network (ANN)

The functioning of an Artificial Neural Network (ANN) is inspired by the biological
neural network model proposed by Mcculloch and Pitts (1943), which consists of a network of
neurons that, by transmitting electrical signals among themselves, are able to perform learning
tasks. ANNs operate through connections that transmit signals regulated by self-adjustable
weights and processed based on activation functions, organized into layers of processing units
(neurons), including an input layer, hidden layers, and an output layer for the result (Janiesch;
Zschech; Heinrich, 2021). The number of layers and activation functions constitute the model's
hyperparameters, defined externally by the user. The output value depends on how the input
data interacts with the weights and the activation function used (Wu; Feng, 2018). Each
connection between neurons transmits a signal, whose strength can be attenuated or amplified
by a weight self-regulated by the model (Janiesch; Zschech; Heinrich, 2021). Figure 4 provides

a visual representation of a simple ANN.
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Figure 4. Neural network (multilayer perceptron, or MLP) used by LONG et al. (2014). Each of the three neurons in the input
layer receives a dataset (a variable). /I and /w are self-regulated weights, and v is the activation function.

ANNSs were the first ML model used for TWSA reconstruction (Long et al., 2014),
and continue to be widely employed in more recent studies due to their ability to capture non-
linear relationships among predictor variables (Wang et al., 2023), proving suitable for
addressing the multifaceted nature of TWS. In all reviewed studies that utilized ANNs (as
shown in Table 1), the model outperformed linear regression models and even TWSA estimates
based on the sum of TWS components from Equation 1 derived from products like GLDAS.
These reconstructions were also effective in identifying historical severe hydrological drought
events (Long et al.,, 2014; Zhang et al.,, 2016; Wang et al., 2023; Zheng et al., 2023),
demonstrating significant value for water resource management.

Although the MLP has demonstrated success in reconstructing TWSA values, a
specific type of ANN is particularly well-suited for handling temporal and sequential data:
recurrent neural networks (RNNs). This architecture has been utilized in five studies included
in this review (6, 12, 14, 19, and 26), all of which reported satisfactory results.

An RNN is a type of neural network designed to handle sequential data by using
feedback connections that allow information to persist over time (Rumelhart; Hinton; Williams,
1986). Unlike traditional feedforward networks (such as the MLP), RNNs have loops that
enable the model to process one element of a sequence at a time while retaining information
about previous inputs, as described in Figure 5. This is achieved by maintaining a hidden state

that is updated at each time step, incorporating both the current input and the hidden state from
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the previous step. While effective for many temporal tasks, RNNs often struggle with capturing

long-term dependencies due to issues like vanishing gradients during training.

S SR
7RIN

SEIT RN
y

Figure 5. A recurrent neural network (RNN) architecture. The output of each neuron is fed back into itself at the subsequent
time step, creating a recurrent loop that enables the model to learn from sequential data (adapted from SHARMA, 2019).

However, an advanced version of RNN, known as Long-Short Term Memory
(LSTM), offers improved capabilities. It has been used only once for extending the GRACE
dataset (Wang et al., 2021). It has also been used recently to fill gaps between GRACE missions
and addressing missing months within the time series (Ferreira et al., 2024). The difference
between an RNN and the LSTM model is that the latter incorporates a mechanism designed to
overcome the limitations of traditional RNNs in handling long-term dependencies. The LSTM
model achieves this through a unique architecture that includes memory cells, along with gates
(input, output, and forget gates), which regulate the flow of information within the network.
These gates enable LSTM to selectively remember or forget information over extended
sequences, making it particularly effective in capturing temporal patterns in sequential data
without the problem of vanishing or exploding gradients often encountered in standard RNNs
(Hochreiter; Schmidhuber, 1997). Although the LSTM has only been used once in this context,
its suitability for handling temporal data led to its selection as the ANN architecture for this
research.

Regardless of the type of ANN employed, its inherent complexity can make it
challenging to quantify the relationships it models (Sun et al., 2019; Yin et al., 2023). This often
results in limited interpretability, which can constrain its application in the study of hydrological

variables and TWS.
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2.5 Random Forest (RF)

The Random Forest model consists of combining N decision trees that use different
subsets of predictor variables. Each tree predicts a final value, and the average of the results
from all trees is defined as the output of the RF model. Using a collection of decision trees
instead of just one is a way to improve model performance, and this type of aggregated learning

is referred to as ensemble learning (Sarker, 2021). The model is graphically represented in

figure 6.
Dataset
Decision Tree-1 Decision Tree-2 Decision Tree-N
Result-1 Result-2 Result-N
L»{ Majority Voting / Averaging
Final Result

Figure 6. Random Forest model, consisting of NNN decision trees. The final result is the average of the outputs from each tree
(Sarker, 2021).

Considering the interpretability limitations inherent to ANNs, RF offers a clear
advantage. As mentioned earlier, understanding the interaction mechanisms among study
variables is essential for scientific development in the geosciences (Karpatne et al., 2019), and
RF addresses this need through its ability to quantify the contribution of each variable to the
model's output (Breiman, 2001). Yang et al. (2022) applied RF and XGB algorithms to
reconstruct TWSA in the Huang-Huai-Hai River basin in China, including both climatic and
anthropogenic variables in their analysis. They concluded that climatic variables, particularly
precipitation from the previous month, contributed up to 70.8% to the accuracy of TWSA

reconstruction in the studied region. Similarly, Jing et al. (2020a) identified precipitation from
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the past two months as the most significant variable in anomaly reconstruction for the Pearl
River Basin in China.

Since the studies employing these models were conducted in basins with varying
hydroclimatic regimes, sizes, and training data periods, comparing their results directly would
be inappropriate. Therefore, the selection of models in this research was not based on superior
performance, but rather on their widespread use and recognition in the literature as the most
adopted for this purpose (despite LSTM architecture specifically being used only once, it was

chosen for its conceptual suitability for temporal data).

2.6 Predictor variables

In any ML model, the selection of input data is crucial for generating accurate outputs.
In TWSA reconstruction, predictor variables vary widely, reflecting the availability of data in
the region of interest. However, one element stands out due to its prevalence: precipitation was
included as a predictor variable in 24 out of the 27 analyzed articles (~92% of the studies), as
shown in Figure 7. This choice is grounded in the intrinsic relationship between TWS and the
hydrological cycle, where precipitation plays a central role by introducing water into the
terrestrial system. (Girotto; Rodell, 2019). Moreover, the correlation between precipitation
levels and TWSA is more significant when considering positive time lags, as precipitation
precedes changes in terrestrial water storage (Jing et al., 2020a). The sources of precipitation
data vary, including local meteorological stations, land surface models (LSMs) such as those
provided by GLDAS, Earth observation (EO) products like NASA's Tropical Rainfall
Measuring Mission (TRMM), and databases compiled primarily from in situ observations, such
as the Climate Research Unit (CRU) and the Climate Prediction Center (CPC) precipitation
datasets. In addition to precipitation, atmospheric temperature (T) and soil moisture (SM) are
also among the most used variables, appearing as predictors in 69% and 62% of the studies,
respectively. Again, the data sources vary among in situ measurements, LSMs, and EO
products.

The preference for LSMs, particularly GLDAS, can be explained by their
comprehensive temporal and spatial coverage. Besides providing estimates for several key
hydrological and climatic variables, GLDAS extends its estimates back to 1948, significantly
enhancing the possibilities for studying long-term hydrometeorological processes. EO

techniques, on the other hand, while not covering extensive historical periods, can deliver more

21



precise measurements of precipitation and other variables, as these values are derived from

direct observations rather than estimates, as in the case of GLDAS.

Most common predictor variables

Precipitation
Temperature

Soil Moisture
Streamflow
Evapotranspiration
Snow and ice
Canopy water
Groundwater
Climate indices

Sea surface temperature

Figure 7. The 10 most frequently used predictor variables in TWSA reconstructions using ML. The percentages
within each bar represent the proportion of articles that utilized each variable out of the total 27.

3 Methods
3.1. Study area

Brazil is the 5th largest country in the world and the largest in the Americas by
territorial area, covering 8,510,417 km? (IBGE, 2023). The country has 12 main river basins
(Figure 8), which serve as the administrative units of the national water regulatory agency
(Agéncia Nacional de Aguas, ANA). Approximately 81.4% of its territory has a tropical
climate, with the highest concentration of precipitation in the Amazon region and the lowest in
the Northeast (Alvares et al., 2013). All South America (SA) is strongly influenced by ENSO,
with drier conditions commonly occurring in the North and Northeast regions of Brazil and
wetter conditions in the South and Southeast during the positive phase (El Nifio). Conversely,
during the negative phase (La Nifia), the opposite occurs: increased rainfall in the North and
Northeast and reduced rainfall in the South and Southeast.

Regarding topography, Brazil's highest altitudes are found in the South and Southeast

regions, decreasing toward the country's center.
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The 12 Major River Basins in Brazil
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Figure 8. The 12 major river basins in Brazil. Data: ANA, 2016

3.2. Data

The reconstruction of the TWSA time series was performed using climatic and

anthropogenic variables as input. The climatic variables include precipitation (P), temperature
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(T), soil moisture (SM), and climatic teleconnection indices. The first three variables are
sourced from the Global Land Data Assimilation System (GLDAS), while the indices were
obtained from the National Oceanic and Atmospheric Administration (NOAA) website. The
anthropogenic variables were the land use and land cover (LULC) classes mapped by the
MapBiomas.

All the data preprocessing described below was done using python libraries such as
‘xarray’, ‘pandas’, ‘geopandas’ and ‘numpy’, using the cloud computing service Google
Colaboratory, and the LULC data was preprocessed using the cloud computing platform
specialized in processing EO data, Google Earth Engine (GEE).

3.2.1. GRACE mascons

In this study, the target variable to be reconstructed (TWSA) was based on the
monthly mascon set (RL06.3) processed by CSR. This dataset covers the period from April
2002 to May 2025 and is available for download with a 0.25° spatial resolution resampling. The
reason for using mascon solutions instead of spherical harmonic solutions lies in the advantage
that mascons do not require the application of smoothing filters or other preprocessing steps.
(HUMPHREY; RODELL; EICKER, 2023).

After downloading the dataset, the TWSA values were first compiled into a single
multiband raster file, where each band corresponded to a specific time step. For each basin and
each month of the time series, descriptive statistics of the TWSA values were then computed,
including the mean, median, variance, and standard deviation. These metrics were exported to
a CSV file. The rationale for computing these statistics was to assess whether intra-basin
variability could be related to the performance of the ML reconstructions and were not used as
features (predictive variables). The resulting CSV file contained the following columns:
twsa mean (the target variable to be reconstructed), twsa median, twsa var,
twsa std,basin,month, and year. Lastly, the data was cropped to cover the period from
April 2002 and December 2014, to be time-compatible with the GLDAS. This final, cropped
dataset contained 16 missing months (10%) out of a total of 156 monthly observations for each
basin, which were later imputed by the models themselves.

. The use of mean values for each variable aims to harmonize the datasets by
compensating for the differences in spatial resolution between GRACE/GLDAS (0.25°) and
MapBiomas (30 m), as well as addressing the non-overlapping grid cells present in the 0.25°

GRACE/GLDAS framework.
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3.2.2. Global Land Data Assimilation System (GLDAS)

The Global Land Data Assimilation System (GLDAS) is a land surface model (LSM)
collaboratively developed by NASA and NOAA in the United States of America. It is a global
land modeling system that integrates Earth Observation (EO) data with in situ data, using data
assimilation techniques to generate fields of various variables related to land states and fluxes
in near real-time. (RODELL et al., 2004).

Soil moisture from the GLDAS version 2 datasets have been compared to the Global
Precipitation Climatology Centre (GPCC) observational precipitation dataset for the
southeastern part of SA, and the Noah LSM (one of the GLDAS datasets) was regarded as the
best due to its high correlation with the Standardized Precipitation Index (SPI) calculated with
GPCC data (SPENNEMANN et al., 2015). Regarding precipitation, GLDAS has shown
monthly values consistent with in situ measurements for the state of Mato Grosso, Brazil
(PEDREIRA JUNIOR et al., 2021). Regarding air temperature, GLDAS values have shown
consistent performance globally when compared to the global Historical Climatology Network
(GHCN), although agreement indices were lower in SA compared to other regions (JI; SENAY;
VERDIN, 2015). This difference is likely to be due to the significantly smaller number of
weather stations available for validation in SA, which limits the reliability of the comparison
and naturally results in lower quality assessments for this region.

The datasets are available at spatial resolutions of 0.25° and 1°, covering the period
from 1948 to the present. For this research, the GLDAS Noah Land Surface Model L4 monthly
1.0 x 1.0-degree V2.0 (Beaudoing; Rodell, 2019) dataset was used (available from 1948 to
2014). Among the 36 available variables, only P, T, and SM were utilized, as these are the three
most used variables in similar studies (as discussed in Section 2.3). Each variable underwent
the same process of conversion into a raster file and mean aggregation by basin and time period,
as described for the mascons.

The P variable in the GLDAS dataset is expressed in units of kg m? s™!. To convert
the precipitation values into millimeters (mm), the transformation was performed following the
GLDAS guidelines outlined in the README Document for NASA GLDAS Version 2 Data
Products. Since the monthly average files represent straightforward averages of 3-hourly data,
each monthly average is expressed in units per 3 hours. Therefore, the conversion to mm was

carried out using the formula presented in Equation 4.
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Since lkg/m? of water is equivalent to 1 mm of water depth, the resulting value can
already be interpreted as mm of precipitation.

The SM variable is expressed as kg m™, representing the water content in the first 10
cm of soil depth. To convert it to m3/m?, which is a standard measure for soil moisture, the value
is divided by the depth of the soil layer in meters (0.1 m) and by the density of water
(1000kg/m?), as shown in Equation 5.

SM{kg/m?}

SM{m?/m*} =g 1000kg /m® ®)

The T variable is originally expressed in Kelvin and was further converted to Celsius,

as described in Equation 6.
T {°C} = T{K} —273.15 (6)

3.2.3. MapBiomas

MapBiomas is a collaborative and independent initiative composed of Brazilian
NGGOs, universities, and technology startups that has been mapping LULC in Brazil since 2015,
with data retrospectively extended back to 1985 (Souza et al., 2020). Collection 9 of the dataset
includes 29 LULC classes with a spatial resolution of 30 meters. The use of LULC data as a
predictor variable in TWSA reconstruction has also been reported by Yin et al. (2023) and
serves to incorporate the effects of anthropogenic activity on TWS variation, as changes in this
variable have been linked to TWS fluctuations (Chen et al., 2017; Wang et al., 2020). The
existing classes in the dataset are Aquaculture, Beach, Dune and Sand Spot, Citrus, Coffee,
Cotton, Floodable Forest, Forest Formation, Forest Plantation, Grassland, Herbaceous
Sandbank Vegetation, Hypersaline Tidal Flat, Mangrove, Mining, Mosaic of Uses, Other non-
Vegetated Areas, Other Perennial Crops, Other Temporary Crops, Palm Oil, Pasture, Rice,
River, Lake and Ocean, Rocky Outcrop, Savanna Formation, Soybean, Sugar cane, Urban Area,
Wetland, Wooded Sandbank Vegetation, Not Observed.

Using GEE, the proportion of LULC classes for each basin and at each time step was

calculated, resulting in a dataset representing the percentage of each LULC type per basin, per
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year. Later, the proportion of each class was used as a predictor variable for the TWSA
reconstructions, except for the “Not Observed” class. This class accounted for less than 1%

across all basins and was excluded to minimize noise in the model training.

3.2.4. Climate teleconnection indices

The climate of SA is strongly influenced by the El Nifio-Southern Oscillation (ENSO)
phenomenon, which triggers extreme events such as hydrological droughts and floods
depending on its phase and the specific region of the continent (Cai et al., 2020). TWS variation
has often been associated with ENSO fluctuations (Nie et al. 2016; YANG et al. 2018b; Li et
al. 2020; Li et al. 2021; Tian et al. 2021; Wang et al. 2023a; Yin et al. 2023), indicating that
incorporating indices that measure these fluctuations can enhance the accuracy of TWSA
reconstructions.

In this study, the Oceanic Nifio Index (ONI) was utilized. The ONI is calculated as a
three-month moving average of sea surface temperature (SST) anomalies in the Nifio 3.4 region
(5°N-5°S, 120°W-170°W), with deviations from the 30-year climatological mean (updated
every five years) determining the index values. An ONI value of >0.5°C signifies El Nifio
conditions, <—0.5°C indicates La Nina, and values in between represent a neutral phase.

Beyond ENSO, other climate teleconnections can also influence Brazilian climate,
and although it is not possible to objectively rank the patterns that have the greatest impact on
the country’s climate, several of them have well-documented and widely studied effects, such
as the Pacific Decadal Oscillation (PDO), Southern Atlantic Ocean Dipole (SAOD) and
Tropical Southern Atlantic (TSA) SST anomalies (REBOITA et al., 2021).

The PDO is a long-term climate pattern characterized by periodic SST changes in the
North Pacific Ocean, primarily north of 20°N, with warm and cool phases that influence
ENSQO's effects on Brazil by intensifying droughts in the Northeast region and altering rainfall
patterns in the South during its warm phase (Mantua; Hare, 2002; Kayano; Andreoli, 2007).

The SAOD is another significant SST pattern in the South Atlantic Ocean, marked by
opposing anomalies between the northeastern Atlantic Nifo region and the southwestern coast
off Argentina, Uruguay, and Brazil. Lasting approximately eight months with peak impacts
during austral winter, the SAOD drives climate variability and affects precipitation along
Brazil’s southern coast (Nnamchi; Li; Anyadike, 2011). The Southern Atlantic Dipole Index
(SAODI) quantifies this phenomenon by measuring the difference in average SST between two

regions of intense warming and cooling associated with the SAOD.
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Additionally, SST anomalies in the TSA influence Brazil’s climate by interacting with
the Intertropical Convergence Zone (ITCZ), a primary driver of precipitation in the northern
and northeastern regions of Brazil (Ferreira; Giovanni; Mello, 2005). This interaction
modulates regional climate variability and atmospheric circulation patterns (Enfield et al.,
1999).

All indices used to account for these teleconnections were sourced from the Climate
Prediction Center (CPC), from the NOAA website (NOAA, 2017). The indices were compiled
into a dataset spanning monthly data from 1948 to 2014, with values recorded for each

corresponding period.

3.3. TWSA reconstruction
3.3.1. Random Forest

After the data preprocessing mentioned in the previous sections, all the resulting
preprocessed data was compiled into a single tabular dataset containing a column for the basin
identifier, the month, year, the target variable (TWSA) and each of the predictor variables.
Then, the implementation of the RF model was done using the python library scikit-learn, via
the cloud computing platform Google Collaboratory.

The complete data from 2002 to 2014 was split into three parts: training (70%),
validation (15%) and testing (15%). Then, the categorical variable representing the basin
identifier was transformed using one-hot encoding, resulting in a binary (True/False)
representation for each category. In this format, each basin was assigned a dedicated column;
for instance, if the first row corresponded to the Amazon basin, the 'Amazon' column would be
marked as True, while all other basin columns would be marked as False. This encoding scheme
1s commonly used to prepare unordered categorical data for RF algorithms.

The selection of the number of estimators (i.e. decision trees) was determined through
an empirical trial-and-error approach. As varying this parameter resulted in only minor changes
to the performance metrics, altering values solely at the third decimal place, the chosen number
was set to 100 (the standard number for most ML applications), since increasing the number of
trees would have led to higher computational costs without yielding significant improvements
in accuracy.

The importance of each variable was assessed using the permutation importance
method, which consists of randomly shuffling the values of each predictor several times and

measuring the decrease in the model’s R? caused by this perturbation (Breiman, 2001). This
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approach is a key tool in the Random Forest framework, as it enhances the interpretability of

the model’s results.

3.3.2. Long Short-Term Memory

The performance of a neural network method is heavily dependent on the
hyperparameters chosen by the user, as well as the nature of the data. The set of parameters
used in this research was a mix between the parameters used by Wang et al., 2021 and other
parameters selected by a trial-and-error approach: 4 hidden layers (with 50, 50, 60 and 10
neurons respectively and 20% dropout in each), window size of 3 months, 75 epochs and batch
size of 2.

The LSTM model, due to its recurrent structure, was built independently for each
basin to accurately represent sequential data. Given that the original dataset contained 12
monthly records per time step, the data had to be partitioned by basin. Consequently, a single
performance metric applicable to all basins could not be established; instead, individual metrics
were calculated for each basin.

The dataset was split into training, validation, and testing sets using a 70-15-15%
ratio, as was done with the RF model. The implementation of the LSTM model was carried out
using the TensorFlow Python library. The performance metrics for each model were calculated

as described in the next section.

3.4. Metrics for performance assessment

The metrics used to assess model performance were the determination coefficient (R?),
mean absolute error (MAE) and root mean squared error (RMSE), as shown in Equations 7, 8

and 9, respectively.

2 Xli—y)?®
=S -9 (7)
1 n
MAE = ;lei - yll (8)
RMSE = M 9
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Where x; represents each observed value, y; represents each predicted value, y is the
mean of the predictions, and n is the number of observed-predicted value pairs (dataset size).
Each metric was calculated to evaluate the model's performance both across all basins

collectively (for the RF model) and individually for each basin (RF and LSTM models).

3.5. Trend analysis

To find important increasing or decreasing trends in the reconstructed time series, the
Mann-Kendall test was used. This non-parametric test is very commonly used for
hydrometeorological data analysis (Abdullahi et al., 2023). It assesses the presence of a
monotonic trend (either increasing or decreasing) over time without requiring the data to be
normally distributed (hence, non-parametric). The test works by comparing each data point with
all subsequent points in the series, counting the number of times a later value is higher or lower
than an earlier one. The result is a test statistic that indicates the direction of the trend
(increasing or decreasing), and a normalized Z value is used to determine its statistical
significance. A positive Z value suggests an increasing trend, while a negative Z indicates a
decreasing trend. If the absolute value of Z exceeds a certain threshold (based on the chosen
significance level), the trend is considered statistically significant. Additionally, Kendall’s Tau
(t) coefficient is reported to quantify the strength of the monotonic trend. Tau ranges from —1
to +1, where values close to zero indicate a weak trend and values farther from zero represent
stronger increasing (positive 1) or decreasing (negative 1) tendencies. In this research, the test

was employed using the ‘pymannkendall’ library in the python language.
3.6.Pearson’s correlation

The correlation analysis throughout this research was employed with Pearson

correlation, defined as:

Cov(X,Y)
r=——=>

Ox Oy

where Cov(X,Y) is the covariance between the variables X and Y, and gy and oy are their
respective standard deviations. The Pearson correlation coefficient is a standardized measure
of the linear association between two variables, ranging from —1 to +1. Values close to +1

indicate a strong positive linear relationship, values close to —1 indicate a strong negative linear
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relationship, and values near 0 suggest little or no linear association. The values were

interpreted as:

Table 2. Correlation interpretation intervals

Interval () Level of correlation
0-0.20 No correlation

0.21-0.40 Weak correlation

0.41-0.70 Moderate correlation
0.71 -1 Strong correlation

4 Results and Discussion
4.1. Random Forest reconstruction
The RF model’s performance across all basins achieved an R? of 0.82, RMSE of 5.29,

and MAE of 3.49. The performance metrics for each basin are presented in Table 3.

Table 3. Performance of the Random Forest model for each basin

Basin R? RMSE MAE Basin size (km?)

Amazon 093 4.69 3.64 3,844.917.76
Paraguay  0.89 3.23 2.63 362,263.92
Tocantins-Araguaia  0.88 6.13 4.28 918,273.16
Parana  0.85 3.75 2.49 877,513.54
Uruguay  0.83 2.38 1.85 174,127.78
Southeast Atlantic  0.80 3.99 3.28 213,316.01
South Atlantic  0.77 2.51 2.12 186,079.86
East Northeast Atlantic 0.72 3.33 2.70 285,281.21
Parnaiba  0.70 6.32 4.71 331,808.82
Sao Francisco 0.70 6.24 4.72 636,137.07
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West Northeast Atlantic 0.69 11.71 7.42 268,906.01

East Atlantic  0.59 2.99 2.28 386,068.13

The basin that presented the best R? was the Amazon Basin (indicating that the model
explained 93% of the variability in the data). In contrast, the East Atlantic Basin showed the
lowest R? (0.59), meaning that the model explained only 59% of the data variability.

These results can be moderately attributed to the basin size, as indicated by a
correlation of 0.52 between R? and basin area, meaning that the bigger the basin, the better the
R2. Moreover, no relationship was observed between the performance metrics and the level of
basin anthropization, measured in this case by the proportion of anthropogenic LULC in each
basin.

Regarding variable importance, Table 4 contains the top 5 most important variables

for the reconstruction of each basin.

Table 4. The top 5 variables in Variable Importance for each basin

Basin Variable Importance
Month 1.17
Temperature 0.04
Amazon Soil Moisture 0.02
Rocky Outcrop 0.02
Cotton 0.01
Month 0.64
Soil Moisture 0.11
East Atlantic PDO 0.03
Herbaceous Sandbank Vegetation 0.02
SAODI 0.01
Month 0.62
Temperature 0.15
West Northeast Atlantic Floodable Forest 0.02
SAODI 0.01
Mangrove 0.01
Soil Moisture 0.20
Temperature 0.09
East Northeast Atlantic River, Lake and Ocean 0.05
Precipitation 0.04
Grassland 0.02
Month 0.97
Southeast Atlantic Soil Moisture ST
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River, Lake and Ocean 0.01

Precipitation 0.01

Wetland 0.01

Month 0.51

Soil Moisture 0.41

South Atlantic Precipitation 0.04
TSA 0.02

SAODI 0.02

Month 1.28

Soil Moisture 0.09

Paraguay Mosaic of Uses 0.03
Temperature 0.01

Grassland 0.01

Month 0.62

Soil Moisture 0.07

Parana River, Lake and Ocean 0.06
PDO 0.03

Savanna Formation 0.03

Month 0.64

Temperature 0.15

Parnaiba Soil Moisture 0.13
Mangrove 0.05

Hypersaline Tidal Flat 0.02

Month 1.04

Temperature 0.09

Sédo Francisco Soil Moisture 0.07
Other Perennial Crops 0.04

River, Lake and Ocean 0.03

Month 1.05

Temperature 0.19

Tocantins-Araguaia Soil Moisture 0.05
ONI 0.02

PDO 0.01

Soil Moisture 0.46

Month 0.16

Uruguay Precipitation 0.09
ONI 0.05

PDO 0.04

The relevance of the month across all basins is expected, as seasonal variations are a
fundamental factor in determining the climate of a region, as well as SM, since it is a component

of TWS. Precipitation and temperature also emerged as influential variables, alongside the
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teleconnection indices, whose effects are distributed unevenly across the different basins. The
PDO emerges as a key driver in the East Atlantic, Parand, Tocantins-Araguaia, and Uruguay
basins, while the ONI shows relevance in Tocantins-Araguaia and Uruguay. TSA exerts
influence exclusively in the South Atlantic basin, whereas the SAODI plays a role in the East
Atlantic, West Northeast Atlantic, and South Atlantic. This spatial heterogeneity suggests that
the sensitivity of TWSA to global climate variability differs across basins.

Regarding LULC, the model revealed a clear relationship between many different
vegetation types and TWSA, with Floodable Forest, Savanna Formation, Grassland,
Herbaceous Sandbank Vegetation and Mangrove emerging as relevant variables across
different basins. Regions with humid vegetation typically exhibit higher TWSA values, while
drier vegetation shows lower values, underscoring the connection between vegetation and
TWSA. The presence of anthropic classes can be seen in the Paraguay basin (Mosaic of Uses),
Sao Franciso (Other Perennial Crops) and Amazon (Cotton).

Mosaic of Uses encompasses different classes depending on the biome in question
(Souza et al., 2020). In general, this class represents areas where it was not possible to
differentiate between pasture and agriculture or, in the case of urban areas, other types of
cultivated vegetation. However, since it represents anthropogenic activity, the results show that
human influence contributes to the model's ability to predict TWSA values for the Paraguay
basin.

The MapBiomas project does not specify which crops are included in the class “Other
Perennial Crops”. Nevertheless, its classification as an anthropogenic feature indicates that, in
the Sao Francisco Basin, TWSA variability is influenced by agricultural activity in general.
This interpretation is consistent with previous findings for the Urucuia aquifer system (a major
aquifer that covers 19.6% of the Sdo Francisco Basin) where irrigation driven by diverse
cropping systems has been shown to affect TWSA variability (Gongalves et al., 2020).

For the Amazon Basin, cotton emerged among the top five most relevant variables.
Its cultivation is highly dependent on irrigation and has undergone substantial expansion in
recent years, particularly in the northern region of the state of Mato Grosso, located in the
southern portion of the Amazon Basin (IPEA, 2022). The combination of this agricultural
expansion and the prominence of cotton in the model suggests a potential correlation between
cotton cultivation and TWSA, a relationship that has also been emphasized in previous studies

in other parts of the world with this type of crop (Yin et al., 2023b).
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Figure 9 presents the reconstructed time series for each basin, while Figure 10
summarizes the reconstructed series using a boxplot for all basins. When analyzing the
complete time series (reconstructed + observed), the basin with the largest variation in TWSA
is the West Northeast Atlantic, exhibiting an amplitude of 78.35 cm across the entire dataset.
In contrast, the East Atlantic basin showed the smallest variation, with an amplitude of 20.69
cm.

The Mann-Kendall test, applied to the 30-year dataset, revealed statistically
significant evidence of a decreasing trend in TWSA for 4 basins: Uruguay (p = 0.04), Parnaiba
(p = 0.00), Sao Francisco (p = 0.00), East Atlantic (p = 0.02). The remaining basins did not
exhibit any statistically significant trends (p > 0.05), indicating no evidence of a consistent

increase or decrease over time. The test results for each basin are available in Table 5.

Table 5. Man-Kendall test statistics

Basin Trend p value Z score T

East Atlantic Decreasing 0.0246 -2.2480 -0.0794
Parnaiba Decreasing 0.0007 -3.3797 -0.1193
Sao Francisco Decreasing 0.0004 -3.5577 -0.1256
Uruguay Decreasing 0.0427 -2.0262 -0.0716
Amazon No trend 0.3149 -1.0050 -0.0355
East Northeast

No trend 0.4018 -1.7536 -0.0619
Atlantic
Paraguay No trend 0.6375 -0.4712 -0.0167
Parana No trend 0.1211 1.5503 0.0548
South Atlantic No trend 0.2823 -1.0751 -0.0380
Southeast

No trend 0.3365 -0.9612 -0.0340
Atlantic
Tocantins-

No trend 0.6871 -3.5577 -0.1256
Araguaia
West Northeast

No trend 0.4018 0.8385 0.0296
Atlantic

It is important to note that the reconstructed time series exhibits less amplitude
compared to the observed time series. Since each basin has its own TWSA, P, T and SM spatial
variability, the use of mean values could reduce part of the observed amplitude during
processing, which may result in less accurate results. To evaluate whether intra-basin variability

impacts performance, basin-level model R? was correlated with the observed variability of
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GRACE (standard deviation and variance). The correlations were r = 0.50 and r = 0.49,
respectively, indicating a moderate positive association.

Another explanation that might contribute to this compression in amplitude is the fact
that every time series contains a noise component that cannot be modeled. As a result, the
observed time series shows greater variation, while the reconstructed series captures only the
most significant part of the variation, excluding the noise, which is random and mostly
unpredictable.

Additionally, Jing et al. (2020) caution that tree models can under-represent extremes
outside the training range, which can also explain why the amplitude was not entirely

represented in this model.
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Time Series for Basin: Parnafba (1985-2014)
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Time Series for Basin: Paraguay (1985-2014)
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Figure 9. The complete time series (reconstructed (RF) + observed) for each basin.

TWSA boxplot for the reconstructed time period (1985-2002) by basin
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Figure 10. Boxplot for the reconstructed time series (RF)

By examining the boxplot, it becomes clear that the basins with the highest standard
deviations (and therefore greater heterogeneity) are also the largest in size. This is expected,
since larger basins are influenced by multiple hydroclimatic regimes and LULC patterns. This
relationship is further supported by the strong correlation between basin size and standard
deviation (r = 0.95).

The correlations between the reconstructed TWSA and the climate variables are
presented in Table 6. The analysis revealed a weak negative correlation between TWSA and
temperature (r =-0.20), as well as a weak positive correlation between TWSA and precipitation
(r =0.30). A moderate positive correlation was observed between TWSA and soil moisture (r
= 0.50). However, no significant correlations were found between TWSA and the climate

indices examined in this study.
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Table 6. Correlations between reconstructed TWSA and climate data

Variable Correlation with reconstructed TWSA

T -0.20
SM 0.50

P 0.30
ONI 0.01
PDO 0.13
SAODI 0.03
TSA 0.11

Regarding land use classes, no significant correlations were observed between most
classes and the reconstructed TWSA values. However, weak positive correlations were
identified for Herbaceous Sandbank Vegetation (r = 0.29), Wooded Sandbank Vegetation (r =
0.27) and Citrus (r =0.21).

4.2. Long Short-Term Memory Reconstruction

The LSTM model, due to its recurrent structure, was built independently for each
basin to accurately represent sequential data. Given that the original dataset contained 12
monthly records per time step, the data had to be partitioned by basin. Consequently, a single
performance metric applicable to all basins could not be established; instead, individual metrics
were calculated for each basin. In this model, only 4 basins presented usable results (Table 7).
For the remaining basins, the R* was close to 0 or negative, meaning that the model did not

perform better than the simple use of the mean TWSA value for making the reconstruction.

Table 7. Performance of the LSTM model for each basin

Basin R? RMSE MAE
Tocantins-Araguaia 0.96 3.17 2.53
Amazon 0.77 9.34 7.10
West-Northeast Atlantic 0.78 7.59 6.17
Paraguay 0.60 7.38 5.04

As was the case with RF, the model performance might be moderately attributed to
basin size, since the correlation between RMSE and MAE was 0.53 and 0.59, respectively.

There was no significant correlation between the size of the basin and the R? (0.08).
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The observation that only four basins yielded good results in contrast with the
successful application of LSTM models in previous studies (Wang et al., 2021) suggests that
using identical parameters or predictive variables across a wide range of basins of different
sizes with diverse climates and hydrological regimes is suboptimal. Ideally, the parameters or
sets of predictive variables should be tailored to the specific characteristics of each basin being
studied.

The reconstructed datasets for each basin are presented in Figure 11, while Figure 12
provides a summary of these datasets in the form of a boxplot. Among the basins analyzed, the
West Northeast basin exhibited the greatest variability in the reconstructed dataset, with an
amplitude of 93.60 cm. In contrast, the Paraguay basin showed the least variability, with an
amplitude of 47.13 cm. The Mann-Kendall test applied to the entire time series indicated no

significant trends for any of the reconstructed basins.
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Time Series for Basin: Tocantins-Araguaia (1985-2014)
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Figure 11. The complete time series (reconstructed (LSTM) + observed) for each basin.
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Figure 12. Boxplot for the reconstructed time series (LSTM)

When comparing the two reconstructions for the commonly analyzed basins
(represented in Figure 13), strong positive correlations were observed across all cases. The
correlations were 0.88 for the two West Northeast Atlantic basins and 0.93 for the remaining
ones (Amazon, Tocantins-Araguaia, and Paraguay). These results indicate consistency between

the reconstructions for these regions.
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Comparative Reconstruction for the West Northeast Atlantic basin (1986-01 to 2002-03)
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Figure 13. Comparison among the different reconstructions

Conclusions

The findings of this study underscore some conclusions regarding the performance
and applicability of machine learning models for TWSA reconstruction for the major Brazilian
basins. Firstly, the performance of both the RF and LSTM models shows a moderate
dependence on basin size, with larger basins generally yielding better results. This suggests that
basin size might play a role in the models' ability to explain variability, likely due to the reduced
influence of localized noise in larger hydrological systems.

The RF model revealed critical insights into the relationships between TWSA and
environmental and anthropogenic factors. Notably, the influence of vegetation on TWSA
became particularly evident, as variables representing different types of vegetation emerged as
key predictors. Additionally, anthropogenic factors, such as cotton, other crops and mosaic of
uses class, exhibited a stronger relationship with TWSA than traditional climatic variables like
precipitation and temperature. This finding highlights the impact of human activity on
hydrological processes, reinforcing the importance of integrating land-use variables in
hydrological models for certain basins. Furthermore, the RF model demonstrated its ability to
detect significant decreasing trends in TWSA for some basins, highlighting its potential for
identifying long-term changes in water availability.

In contrast, the LSTM model displayed significant variability in performance across
basins, indicating that the use of uniform hyperparameters is not suitable for diverse

hydrological contexts. The behavior of the hyperparameters was inconsistent, further
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emphasizing the need for tailored approaches when applying LSTM models to basins with
differing sizes, climates, and hydrological regimes. Furthermore, it is important to note as a
limitation that the fact of the basin average was used limits the conclusions, since each basin
has its own TWSA variability, even if the performance does not seem to be significantly
correlated to basin TWSA variability. Hence, the data reconstructed in this research make more
sense when analyzed in the long-term and for spatially bigger events, since it is only the basin
average used for analysis. For future research, it is recommended to explore alternative neural
network architectures and diverse sets of hyperparameters, in order to enhance model
adaptability and robustness across the heterogeneous hydroclimatic contexts of Brazilian
basins.

Despite these differences, both models demonstrated high consistency between
themselves, capturing similar patterns and trends in the reconstructed data. This suggests that
either model can be useful for understanding TWSA dynamics, with their applicability

depending on the specific context and objectives of the analysis.
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