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ABSTRACT 

Terrestrial water storage (TWS) is a critical component of the hydrological cycle, directly 

influencing water security, energy production, and climate resilience in Brazil. Although the 

country has abundant freshwater resources, their uneven spatial distribution combined with the 

growing impacts of climate change exposes both the population and the economy to 

hydrological risks. The Gravity Recovery and Climate Experiment (GRACE) missions have 

provided valuable insights into TWS variability since 2002; however, their limited temporal 

coverage constrains long-term analyses. To overcome this limitation, this research 

reconstructed terrestrial water storage anomalies (TWSA) for Brazil’s 12 major river basins 

from 1985 to 2002, integrating GRACE data with climatic variables (precipitation, soil 

moisture, temperature, and teleconnection indices) and anthropogenic indicators derived from 

land use and land cover (LULC) data. Two machine learning models—Random Forest (RF) 

and Long Short-Term Memory (LSTM)—were implemented and compared to assess 

performance, interpretability, and suitability for GRACE-TWSA reconstructions. Results 

indicate natural seasonality throughout the year, with vegetation and climate indices emerging 

as highly influential predictors of TWSA, while anthropogenic factors affect anomalies 

differently across basins, particularly in areas dominated by agriculture and livestock activities 

(such as cotton in the Amazon Basin and perennial crops in the São Francisco Basin). Both RF 

and LSTM achieved satisfactory performance, though LSTM was able to reconstruct the time 

series for only a few basins, while RF provided greater interpretability of variable contributions. 

The Mann-Kendall test applied to the RF-reconstructed TWSA series revealed significant long-

term decreasing trends in the Uruguay, Parnaíba, São Francisco, and East Atlantic basins, 

underscoring Brazil’s vulnerability to water stress under future climate scenarios. By extending 

GRACE-derived observations, this study advances understanding of how climate and LULC 

influence TWSA variability and provides evidence to support public policies for sustainable 

water resource management in Brazil. 

 Keywords: terrestrial water storage, machine learning, GRACE, climate change  

  



 

 

 

 

7 

1. Introduction 

  Terrestrial water storage (TWS), defined as the total water stored above and below 

the planet's surface (Girotto; Rodell, 2019), plays a fundamental role in the hydrological balance 

and socioeconomic security of a country, particularly in nations with a global prominence in 

renewable water resources, such as Brazil (FAO, 2024). Despite this abundance, the resource's 

distribution is notably uneven, and Brazil's dependence on its hydrographic network makes it 

particularly vulnerable to extreme climatic events, including droughts that have led to energy 

crises (Cuartas et al., 2022). Climate change (CC) projections indicate that, in the coming 

decades, the country may face significant reductions in water availability, a scenario that aligns 

with the global trend of decreasing TWS (Pokhrel et al., 2021; ANA, 2024). In this context, 

understanding the spatiotemporal dynamics of TWS and its fluctuations under different climatic 

conditions is essential to support efficient water resource management and mitigate the resulting 

socioeconomic impacts. 

  The Gravity Recovery and Climate Experiment (GRACE) missions have been pivotal 

in monitoring TWS in recent years. Their data has been used to study CC in various regions 

around the world (Tapley et al., 2019) including Brazil (Getirana, 2016). However, having 

started in 2002, the relatively short duration of these missions represents a limitation for more 

in-depth analyses, especially when it comes to climate variables, which ideally require a time 

series of at least 30 years. Faced with this challenge, many researchers have dedicated efforts 

to extending the GRACE database, reconstructing historical TWS anomalies (TWSA) values 

through data assimilation techniques, statistical reconstructions, and machine learning 

(Humphrey; Rodell; Eicker, 2023). 

  The machine learning (ML) approach offers advantages over conventional models, 

such as automation and efficiency in detecting climate patterns, as well as a high capacity to 

handle limited data samples (Karpatne et al., 2019). Among the models most commonly found 

in the scientific literature for TWSA reconstruction, two consistently stand out for their superior 

performance: Random Forest (RF) (Jing et al., 2020a; Jing et al., 2020b; Jing et al., 2020c; Tang 

et al., 2021; Xiong et al., 2022), and various types of Artificial Neural Networks (ANNs) (Long 

et al., 2014; Ferreira et al., 2019; Sun et al., 2019; Li et al., 2020; Li et al., 2021; Wang et al., 

2023a).  

  Since TWS is heavily linked to land and atmosphere conditions, researchers 

commonly use climatic variables such as precipitation, soil moisture and temperature as input 

variables for the reconstruction or prediction of TWS fluctuations. However, there have been 
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only a few studies that considered the influence of anthropogenic activity in these variations. 

Furthermore, despite the extensive literature on the reconstruction of anomalies in other regions 

of the planet, no studies were found at the time of writing this project that had the primary 

objective of reconstructing and subsequently conducting long-term analyses of TWSA across 

the entirety of Brazil. Some studies have performed reconstructions for the Amazon Basin (Nie 

et al., 2016; Tian et al., 2021), and found significant seasonal variations, strongly correlated to 

the El Niño Southern Oscillation (ENOS). Others have conducted global reconstructions that 

included Brazil either entirely or partially (Li et al., 2020; Li et al., 2021; Yin et al., 2023), but 

did not include detailed discussions considering the country’s geographic characteristics and 

historical data. Additionally, some models incorporated variables that are poorly representative 

of Brazil’s reality, such as ice and snow water equivalents. 

  This research aimed to reconstruct TWSA values from the GRACE mission for each 

of the 12 main river basins of Brazil, utilizing both RF and Long-Short Term Memory (LSTM), 

a type of Recurrent Neural Network, for comparative analysis. The reconstruction extends back 

to 1985, leveraging predictive variables that include climate datasets (precipitation, 

temperature, soil moisture, and climate teleconnection indices) as well as anthropogenic factors 

such as land use and land cover. The expected outcomes of this reconstruction are to provide a 

more comprehensive database that facilitates a deeper understanding of TWS variability in 

Brazil within the context of CC. This work has the potential to foster more detailed scientific 

investigations and assist public agencies responsible for water resource management in making 

more informed decisions on how to prioritize their actions. 

1.1 Objectives 

1.1.1 General Objective 

  Reconstruction of historical (1984 – 2002) terrestrial water storage anomaly values 

across the territorial extent of Brazil, using the 12 main river basins as the spatial units of 

analysis, with machine learning and data from the GRACE mission combined with climatic and 

anthropogenic data. 

1.1.2 Specific Objectives 

• To compare the performance of a Neural Network and Random Forest models in 

reconstructing terrestrial water storage anomalies (TWSA) 

• To describe the role of climatic variables in TWSA modeling 
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• To analyze the temporal variation of TWSA in Brazil for each basin for the reconstructed 

period 

1.2 Research Hypothesis 

1.2.1 Model performance 

 LSTM and RF models tend to exhibit similar performance, with LSTM being slightly 

superior in terms of accuracy. However, RF offers greater interpretability, which can be 

considered an advantage in understanding the interaction mechanisms between variables. 

1.2.2 Role of climate variables 

 Precipitation and climate indices are the most influential climatic variables in 

determining TWSA anomalies in Brazil, reflecting the importance of the surface hydrological 

cycle in terrestrial water storage, particularly in a country predominantly located in a tropical 

zone. 

1.2.3 Anthropogenic influence 

 The spatial variation of TWSA in Brazil is strongly influenced by land use and land 

cover, with basins predominantly characterized by agricultural activity showing greater 

vulnerability to positive TWSA anomalies due to infiltration caused by irrigation. In contrast, 

areas dominated by extensive livestock farming are more susceptible to negative anomalies due 

to vegetation removal and water extraction. 

1.3 Justification 

  Brazil's abundance of water resources positions the country as a significant 

international exporter of virtual water (Suweis et al., 2013), while also enabling the generation 

of more than 61.9% of the nation's total electricity (EPE, 2023). Although the hydrological 

cycle exhibits natural spatial and temporal variations, global projections, such as those from the 

Intergovernmental Panel on Climate Change (IPCC), indicate that extreme events may become 

increasingly frequent in the coming years, with natural climate variability amplifying or 

attenuating their adverse consequences (Parmesan et al., 2022). 

  Some trend projections suggest that water availability in Brazil could decrease by up 

to 40% by 2040 due to CC (ANA, 2024). This reality has become increasingly evident in recent 

years, as shown by the severe drought event recorded in the Amazon in 2023, which was 
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attributed more to the impacts of CC than solely to the ENSO phenomenon, traditionally 

associated with drought episodes in the region (Clarke et al., 2024). Additionally, the impact of 

CC has been underscored by the recent and unprecedented identification of an arid climate area 

in the center of the Northeastern region of Brazil (INPE, 2024). This highlights the country's 

vulnerability to the risks posed by CC. If the projections from the IPCC and ANA are 

confirmed, Brazil may face a series of challenges related to the management and availability of 

its water resources. In this context, it is crucial to deepen the understanding of the spatial and 

temporal variations of terrestrial water storage across the national territory. This will equip 

regulatory agencies with essential information for public policy debates and provide the 

academic community with valuable data for more detailed investigations into climate variables 

and their influence on water availability. 

  Parallel to the climate threat to Brazil's water resources, the world is witnessing a 

rapid evolution in AI, which is revolutionizing various sectors, including the Geosciences 

(Karpatne et al., 2019). ML techniques are emerging as powerful tools in the fight against 

climate change (Rolnick et al., 2023), presenting immense potential to mitigate its impacts. The 

research presented here is precisely situated within this context, aiming to employ ML 

advancements to tackle climate challenges and contribute to the sustainable management of 

Brazil's water resources. 

2 Literature review 

2.1. Terrestrial water storage and GRACE missions 

  TWS is composed of six components: surface water, groundwater, soil moisture, ice, 

snow, and water stored in biomass, as shown in Equation 1 (Girotto; Rodell, 2019; Humphrey; 

Rodell; Eicker, 2023). 

𝑇𝑊𝑆 = 𝑆𝑊 + 𝐺𝑊 + 𝑆𝑀 + 𝑆𝑊𝐸 + 𝐿𝐼 + 𝐵𝑊 

 Where 𝑆𝑊 represents surface water, 𝐺𝑊 represents groundwater, 𝑆𝑀 represents soil 

moisture, 𝑆𝑊𝐸 represents snow water equivalent, 𝐿𝐼 represents land ice, and 𝐵𝑊 represents 

biomass water. The contribution of each component to TWS variations depends on the local 

geography (Zhang et al., 2022). 

 Considering the mentioned components, it is natural that TWS variation significantly 

depends on local climatic behavior. Therefore, climatic variables such as precipitation, 

(1) 
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temperature, soil moisture, and climate indices are fundamental for understanding TWS 

behavior, with precipitation being the variable that contributes most to TWS changes in low-

latitude regions such as Brazil. (Zhang et al., 2019).  

 It is possible to estimate TWS values using surface models such as the Global Land 

Data Assimilation System (GLDAS). However, thanks to the GRACE and GRACE-FO 

missions, TWS estimates can be made much more accurately and reliably. The concept behind 

these missions is based on observing variations in the distance between two satellites sharing 

the same orbit, leveraging the fact that Earth's gravitational field is heterogeneous due to the 

uneven distribution of mass. When a satellite approaches an area with greater gravitational 

force, its velocity increases, moving away from the trailing satellite; upon passing that area, its 

velocity decreases, reducing the distance between them (Figure 1). These distances are 

determined using a combination of highly precise instruments. Each satellite in the original 

GRACE mission was equipped with GNSS sensors, which enabled accurate estimation of their 

orbital positions and, consequently, the measurement of the distance between the two satellites. 

In the follow-up mission, GRACE-FO, a laser-ranging interferometer (LRI) has been 

introduced as a technology demonstrator to enhance the precision of these inter-satellite 

distance measurements. In addition, the mission employs the HAIRS (High Accuracy Inter 

Satellite Ranging System), which operates in the microwave spectrum, and corner-cube 

retroreflectors on both satellites, allowing ground-based laser tracking to determine the distance 

from each satellite to Earth. 

 The monthly analysis of these distance differences provides the temporal variations 

(or anomalies) of Earth's gravitational field (Girotto; Rodell, 2019; Humphrey; Rodell; Eicker, 

2023). Considering that large geological formations and urban clusters have relatively static 

mass, mass variations on continents are primarily attributed to atmospheric and oceanic 

circulations and the redistribution of water on the surface. By using climate models, it is 

possible to identify and exclude the signals from these circulations, enabling the estimation of 

TWS variations in isolation. However, satellites cannot directly calculate storage values; 

instead, they calculate anomalies based on deviations from an average. Therefore, in addition 

to TWS, there are two similar concepts that frequently appear in the literature and must be 

differentiated: (1) TWS anomalies, or TWSA; and (2) TWS changes, or TWSC. 



 

 

 

 

12 

 

Figure 1. Principle of the GRACE missions. As a satellite passes over a region with a mass concentration, it 

increases its velocity toward the concentration due to the stronger gravitational pull. Upon moving past this region, 

the satellite remains under the influence of this anomaly, thereby reducing its velocity. (Humphrey; Rodell; Eicker, 

2023). 

  The anomalies (TWSA) are calculated based on how much the gravitational attraction 

at a given point (excluding the influences of atmospheric and oceanic circulations) deviates 

from the mean over a reference period, as expressed in Equation 2 (Humphrey; Rodell; Eicker, 

2023). 

𝑇𝑊𝑆𝐴 = 𝑇𝑊𝑆 − 𝑇𝑊𝑆̅̅ ̅̅ ̅̅  

 Where 𝑇𝑊𝑆̅̅ ̅̅ ̅̅  is the average TWS for a reference period. TWSC, in turn, refers to the 

variation of TWSA relative to the previous period, as expressed in Equation 3 (Lv et al., 2019): 

𝑇𝑊𝑆𝐶𝑡 =
𝑇𝑊𝑆𝐴𝑡 − 𝑇𝑊𝑆𝐴𝑡−1

∆𝑡
 

 Where 𝑡 is the period (month), 𝑡 − 1 is the previous month, and ∆𝑡 is the time 

difference between the two periods. 

 Currently, the mission's data processing is carried out by four centers: the Jet 

Propulsion Laboratory (JPL), the Center for Space Research (CSR), and the Goddard Space 

(2) 

(3) 
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Flight Center (GSFC) of NASA, as well as the GeoForschungsZentrum (GFZ) in Germany. 

The data can be processed in two ways to provide products to users: (1) spherical harmonics; 

and (2) mass concentration blocks (mascons). 

 Spherical harmonics are functions used to model variations in Earth's gravitational 

field, representing these variations continuously across the planet's surface based on the 

estimation of coefficients of degree l and order m. (Humphrey; Rodell; Eicker, 2023). Currently, 

spherical harmonic-based solutions are produced by the JPL, CSR, and GFZ centers. In 

contrast, mascon solutions do not represent TWSA anomalies as a continuous field but rather 

in blocks of specific dimensions, assigning a single TWSA value to each block. The JPL and 

CSR are the centers responsible for these solutions. 

 The GRACE mission products available to users, whether based on spherical 

harmonics or mascons, are presented in units of meters, centimeters, or millimeters of water 

equivalent. These units reflect the amount of water required on the ellipsoid's surface to account 

for the anomalies observed in the gravitational field (Humphrey; Rodell; Eicker, 2023). 

 Some studies have already explored the data provided by the GRACE mission to 

investigate the spatiotemporal distribution of TWS in regions of Brazil, particularly for 

monitoring hydrological droughts. (Oliveira et al., 2014; Getirana, 2016; Rebello et al., 2017; 

Rossi et al., 2023). However, no studies found have performed a reconstruction aimed at the 

long-term analysis of TWSA variations in Brazil. On the other hand, in other regions of the 

world, several studies have focused on TWSA reconstruction using ML techniques (as 

discussed in Section 2.3). 

2.2. Machine Learning 

 Between the conception of the idea of machines performing intellectual work at a 

human level of performance (Turing, 1950) and the application of statistical learning models as 

tools to combat climate change (Rolnick et al., 2023), there is a massive number of scientific 

contributions aimed at theoretically defining these tools and guiding their applications. 

Defining ML, therefore, is an inherently subjective task. Simplified, ML, a subfield of AI, is 

dedicated to developing algorithms that enable computers to autonomously improve their 

performance through experience gained from data (Mitchel, 1997). Unlike operating under a 

rigid set of instructions, these systems learn to discern patterns and relationships in the data 

presented, allowing them to make predictions or decisions based on new data. These tasks are 
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divided into two main types: (1) classification, when the expected outcomes are categorical, 

and (2) regression, for outputs with numerical value (Molner, 2019)1.  

 If the goal is to produce numerical estimates of TWSA for periods prior to the launch 

of the GRACE mission, associating observed anomaly values with other variables, including 

historical records of these variables in the model allows for the prediction of anomalies for the 

corresponding periods. Therefore, by inputting historical data as labeled entries, the model 

performs a regression task, estimating TWSA for past periods based on the relationships it has 

learned. 

 A recurring challenge in using ML models is the trade-off between performance and 

interpretability. Interpretability, in the context of ML, can be defined as the degree to which a 

human can understand the reasons behind a machine's decision in a given context (Miller, 

2019). Highly complex and adaptive models, particularly those that capture the non-linearity of 

relationships between variables, often achieve higher levels of accuracy. However, due to this 

additional complexity, understanding the underlying processes can become obscured, making 

it difficult to discern how inputs are being transformed into outputs. (Molner, 2019). This trade-

off becomes even more relevant in the context of Geosciences, where understanding the 

interaction mechanisms between different variables is an essential tool for scientific 

development. (Karpatne et al., 2019). 

 Therefore, the choice of ML models for this research considered both performance 

and interpretability. The next section provides a review of how different ML techniques have 

been used for the reconstruction of TWSA in other regions of the world. 

2.3. Reconstruction of TWSA using Machine Learning 

  Research on the reconstruction of TWSA using ML techniques has grown remarkably 

in recent years. Given the diversity of algorithms and methodological approaches employed in 

the ML field, this review aims to address two fundamental questions: (1) What are the 

predominant ML models used in TWSA reconstructions derived from the GRACE missions? 

(2) What variables are most frequently adopted for this purpose? Through a search on the 

academic platforms Google Scholar and Scopus, using the search strategy specified in Figure 

 
1 The definition of ML used here and the division of tasks into classification and regression are associated with 

supervised learning, which is characterized by the use of pre-labeled data, learning to map input data to known 

outputs, enabling predictions or classifications for new datasets. In contrast, unsupervised learning deals with 

unlabeled data, aiming to uncover intrinsic patterns and relationships without the guidance of specific outputs. 

This enables the grouping of similar data into clusters or the identification of association rules, exploring the data 

structure without the need for prior labeling. (Singh, 2019; Sarker, 2021). 
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2, 19 studies were selected. An additional 8 studies were included through subsequent analysis 

of the references from the initial 19, totaling 27 peer-reviewed scientific articles published in 

international journals. 

 

Figure 2. Search strategy used in the Google Scholar and Scopus databases to find the selected articles 

 The criteria for article inclusion were: (1) the use of ML as the primary tool for 

reconstructing TWSA data; and (2) a focus on extending the dataset to periods prior to the start 

of the GRACE mission, thereby excluding studies that focused exclusively on filling the gap 

between the GRACE and GRACE-FO missions. The justification for the second criterion lies 

in the need to address the reconstruction of anomalies for more distant periods, tackling the task 

of extending the dataset over a long timeframe, as opposed to merely addressing the 7-month 

data gap between the end of the GRACE mission and the start of the GRACE-FO mission. 

 The dataset extension was the primary focus of most analyzed articles, aiming to 

enable future climate research through an expanded dataset. However, some studies focused on 

specific topics, such as identifying and characterizing droughts and floods, or analyzing the 

impact of certain environmental variables on TWS variability. In these contexts, anomaly 

reconstruction emerged as a complementary objective, supporting the investigation of these 

more specific climatic and hydrological dynamics. Table 1 details the studies found, their year 

of publication, and the model(s) used. 

Table 1. Articles included in the review 

id Authorship Models used Year 

1 Long et al. Neural Network (Multi-Layer Perceptron – MLP) 2014 

2 Yang et al. Neural Network (MLP) 2014 

3 Nie et al. simple linear regression 2016 

4 Zhang et al. Neural Network (MLP) 2016 

5 Yang et al. Neural Network (MLP), RF, SVM 2018 
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The diversity of models employed in the studies reflects the adaptability of these 

techniques to different datasets and research objectives. The most used model was Neural 

Networks (NN) (18), encompassing various architectures such as MLP (9), NARX (3), CNN 

(3), ARX (2) and LSTM (1); followed by Random Forest (RF) (9), as shown in Figure 3. Other 

models included Linear Regression (6), Support Vector Machine (3), eXtreme Gradient Boost 

(3), Boosted Regression Tree (1), and LightGBM (1). The two most frequently used models 

(NN and RF) are discussed below. Subsequently, Section 2.6 presents the predictor variables 

used in the reviewed articles. 

6 Ferreira et al. Neural Network (NARX) 2019 

7 Sun et al. Neural Network (CNN) 2019 

8 Chen et al. Neural Network (MLP) 2019 

9 Jing et al. RF, XGB 2020 

10 Jing et al. RF, XGB 2020 

11 Jing et al. RF, multiple linear regression 2020 

12 Li et al. multiple linear regression, Neural Network (MLP and ARX) 2020 

13 Wang et. Neural Network (LSTM) 2021 

14 Li et al. multiple linear regression, Neural Network (MLP and ARX) 2021 

15 Meng et al. Neural Network (MLP), SVM 2021 

16 Tang et al. RF 2021 

17 Tian et al. multiple linear regression 2021 

18 Yang et al. RF, XGB 2022 

19 Dannouf et al. Boosted Regression Tree (BRT) and Neural Network (NARX) 2022 

20 Xiong et al. RF 2022 

21 Kalu et al. Neural Network (CNN) and SVM 2023 

22 Yin et al. RF and Neural Network 2023 

23 Li et al. multiple linear regression, RF 2023 

24 Kumar et al. Neural Network (MLP) 2023 

25 Wang et al. RecNet 2023 

26 Zheng et al. Neural Network (NARX) 2023 

27 Zhu et al. LightGBM 2023 
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2.4 Artificial Neural Network (ANN) 

  The functioning of an Artificial Neural Network (ANN) is inspired by the biological 

neural network model proposed by Mcculloch and Pitts (1943), which consists of a network of 

neurons that, by transmitting electrical signals among themselves, are able to perform learning 

tasks. ANNs operate through connections that transmit signals regulated by self-adjustable 

weights and processed based on activation functions, organized into layers of processing units 

(neurons), including an input layer, hidden layers, and an output layer for the result (Janiesch; 

Zschech; Heinrich, 2021). The number of layers and activation functions constitute the model's 

hyperparameters, defined externally by the user. The output value depends on how the input 

data interacts with the weights and the activation function used  (Wu; Feng, 2018). Each 

connection between neurons transmits a signal, whose strength can be attenuated or amplified 

by a weight self-regulated by the model (Janiesch; Zschech; Heinrich, 2021). Figure 4 provides 

a visual representation of a simple ANN. 

Figure 3. Frequency of ML models used in the reconstruction of TWSA. "Others" refers to: Support Vector 

Machine (3), eXtreme Gradient Boost (3), Boosted Regression Tree (1), and LightGBM (1). 
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Figure 4. Neural network (multilayer perceptron, or MLP) used by LONG et al. (2014). Each of the three neurons in the input 

layer receives a dataset (a variable). IW and lw are self-regulated weights, and ψ is the activation function. 

 ANNs were the first ML model used for TWSA reconstruction (Long et al., 2014), 

and continue to be widely employed in more recent studies due to their ability to capture non-

linear relationships among predictor variables (Wang et al., 2023), proving suitable for 

addressing the multifaceted nature of TWS. In all reviewed studies that utilized ANNs (as 

shown in Table 1), the model outperformed linear regression models and even TWSA estimates 

based on the sum of TWS components from Equation 1 derived from products like GLDAS. 

These reconstructions were also effective in identifying historical severe hydrological drought 

events (Long et al., 2014; Zhang et al., 2016; Wang et al., 2023; Zheng et al., 2023), 

demonstrating significant value for water resource management.  

 Although the MLP has demonstrated success in reconstructing TWSA values, a 

specific type of ANN is particularly well-suited for handling temporal and sequential data: 

recurrent neural networks (RNNs). This architecture has been utilized in five studies included 

in this review (6, 12, 14, 19, and 26), all of which reported satisfactory results. 

 An RNN is a type of neural network designed to handle sequential data by using 

feedback connections that allow information to persist over time (Rumelhart; Hinton; Williams, 

1986). Unlike traditional feedforward networks (such as the MLP), RNNs have loops that 

enable the model to process one element of a sequence at a time while retaining information 

about previous inputs, as described in Figure 5. This is achieved by maintaining a hidden state 

that is updated at each time step, incorporating both the current input and the hidden state from 
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the previous step. While effective for many temporal tasks, RNNs often struggle with capturing 

long-term dependencies due to issues like vanishing gradients during training. 

 

 

Figure 5. A recurrent neural network (RNN) architecture. The output of each neuron is fed back into itself at the subsequent 

time step, creating a recurrent loop that enables the model to learn from sequential data (adapted from SHARMA, 2019). 

 However, an advanced version of RNN, known as Long-Short Term Memory 

(LSTM), offers improved capabilities. It has been used only once for extending the GRACE 

dataset (Wang et al., 2021). It has also been used recently to fill gaps between GRACE missions 

and addressing missing months within the time series (Ferreira et al., 2024). The difference 

between an RNN and the LSTM model is that the latter incorporates a mechanism designed to 

overcome the limitations of traditional RNNs in handling long-term dependencies. The LSTM 

model achieves this through a unique architecture that includes memory cells, along with gates 

(input, output, and forget gates), which regulate the flow of information within the network. 

These gates enable LSTM to selectively remember or forget information over extended 

sequences, making it particularly effective in capturing temporal patterns in sequential data 

without the problem of vanishing or exploding gradients often encountered in standard RNNs 

(Hochreiter; Schmidhuber, 1997). Although the LSTM has only been used once in this context, 

its suitability for handling temporal data led to its selection as the ANN architecture for this 

research. 

 Regardless of the type of ANN employed, its inherent complexity can make it 

challenging to quantify the relationships it models (Sun et al., 2019; Yin et al., 2023). This often 

results in limited interpretability, which can constrain its application in the study of hydrological 

variables and TWS. 



 

 

 

 

20 

2.5 Random Forest (RF) 

  The Random Forest model consists of combining N decision trees that use different 

subsets of predictor variables. Each tree predicts a final value, and the average of the results 

from all trees is defined as the output of the RF model. Using a collection of decision trees 

instead of just one is a way to improve model performance, and this type of aggregated learning 

is referred to as ensemble learning (Sarker, 2021). The model is graphically represented in 

figure 6. 

 

Figure 6. Random Forest model, consisting of NNN decision trees. The final result is the average of the outputs from each tree 

(Sarker, 2021). 

 Considering the interpretability limitations inherent to ANNs, RF offers a clear 

advantage. As mentioned earlier, understanding the interaction mechanisms among study 

variables is essential for scientific development in the geosciences (Karpatne et al., 2019), and 

RF addresses this need through its ability to quantify the contribution of each variable to the 

model's output (Breiman, 2001). Yang et al. (2022) applied RF and XGB algorithms to 

reconstruct TWSA in the Huang-Huai-Hai River basin in China, including both climatic and 

anthropogenic variables in their analysis. They concluded that climatic variables, particularly 

precipitation from the previous month, contributed up to 70.8% to the accuracy of TWSA 

reconstruction in the studied region. Similarly, Jing et al. (2020a) identified precipitation from 
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the past two months as the most significant variable in anomaly reconstruction for the Pearl 

River Basin in China. 

 Since the studies employing these models were conducted in basins with varying 

hydroclimatic regimes, sizes, and training data periods, comparing their results directly would 

be inappropriate. Therefore, the selection of models in this research was not based on superior 

performance, but rather on their widespread use and recognition in the literature as the most 

adopted for this purpose (despite LSTM architecture specifically being used only once, it was 

chosen for its conceptual suitability for temporal data). 

2.6 Predictor variables 

 In any ML model, the selection of input data is crucial for generating accurate outputs. 

In TWSA reconstruction, predictor variables vary widely, reflecting the availability of data in 

the region of interest. However, one element stands out due to its prevalence: precipitation was 

included as a predictor variable in 24 out of the 27 analyzed articles (~92% of the studies), as 

shown in Figure 7. This choice is grounded in the intrinsic relationship between TWS and the 

hydrological cycle, where precipitation plays a central role by introducing water into the 

terrestrial system. (Girotto; Rodell, 2019). Moreover, the correlation between precipitation 

levels and TWSA is more significant when considering positive time lags, as precipitation 

precedes changes in terrestrial water storage (Jing et al., 2020a). The sources of precipitation 

data vary, including local meteorological stations, land surface models (LSMs) such as those 

provided by GLDAS, Earth observation (EO) products like NASA's Tropical Rainfall 

Measuring Mission (TRMM), and databases compiled primarily from in situ observations, such 

as the Climate Research Unit (CRU) and the Climate Prediction Center (CPC) precipitation 

datasets. In addition to precipitation, atmospheric temperature (T) and soil moisture (SM) are 

also among the most used variables, appearing as predictors in 69% and 62% of the studies, 

respectively. Again, the data sources vary among in situ measurements, LSMs, and EO 

products. 

 The preference for LSMs, particularly GLDAS, can be explained by their 

comprehensive temporal and spatial coverage. Besides providing estimates for several key 

hydrological and climatic variables, GLDAS extends its estimates back to 1948, significantly 

enhancing the possibilities for studying long-term hydrometeorological processes. EO 

techniques, on the other hand, while not covering extensive historical periods, can deliver more 
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precise measurements of precipitation and other variables, as these values are derived from 

direct observations rather than estimates, as in the case of GLDAS. 

 

 

Figure 7. The 10 most frequently used predictor variables in TWSA reconstructions using ML. The percentages 

within each bar represent the proportion of articles that utilized each variable out of the total 27. 

3 Methods 

3.1. Study area 

 Brazil is the 5th largest country in the world and the largest in the Americas by 

territorial area, covering 8,510,417 km² (IBGE, 2023). The country has 12 main river basins 

(Figure 8), which serve as the administrative units of the national water regulatory agency 

(Agência Nacional de Águas, ANA). Approximately 81.4% of its territory has a tropical 

climate, with the highest concentration of precipitation in the Amazon region and the lowest in 

the Northeast (Alvares et al., 2013). All South America (SA) is strongly influenced by ENSO, 

with drier conditions commonly occurring in the North and Northeast regions of Brazil and 

wetter conditions in the South and Southeast during the positive phase (El Niño). Conversely, 

during the negative phase (La Niña), the opposite occurs: increased rainfall in the North and 

Northeast and reduced rainfall in the South and Southeast. 

 Regarding topography, Brazil's highest altitudes are found in the South and Southeast 

regions, decreasing toward the country's center. 



 

 

 

 

23 

 

Figure 8. The 12 major river basins in Brazil. Data: ANA, 2016 

3.2. Data 

 The reconstruction of the TWSA time series was performed using climatic and 

anthropogenic variables as input. The climatic variables include precipitation (P), temperature 

The 12 Major River Basins in Brazil 
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(T), soil moisture (SM), and climatic teleconnection indices. The first three variables are 

sourced from the Global Land Data Assimilation System (GLDAS), while the indices were 

obtained from the National Oceanic and Atmospheric Administration (NOAA) website. The 

anthropogenic variables were the land use and land cover (LULC) classes mapped by the 

MapBiomas. 

 All the data preprocessing described below was done using python libraries such as 

‘xarray’, ‘pandas’, ‘geopandas’ and ‘numpy’, using the cloud computing service Google 

Colaboratory, and the LULC data was preprocessed using the cloud computing platform 

specialized in processing EO data, Google Earth Engine (GEE). 

3.2.1. GRACE mascons 

  In this study, the target variable to be reconstructed (TWSA) was based on the 

monthly mascon set (RL06.3) processed by CSR. This dataset covers the period from April 

2002 to May 2025 and is available for download with a 0.25° spatial resolution resampling. The 

reason for using mascon solutions instead of spherical harmonic solutions lies in the advantage 

that mascons do not require the application of smoothing filters or other preprocessing steps. 

(HUMPHREY; RODELL; EICKER, 2023). 

  After downloading the dataset, the TWSA values were first compiled into a single 

multiband raster file, where each band corresponded to a specific time step. For each basin and 

each month of the time series, descriptive statistics of the TWSA values were then computed, 

including the mean, median, variance, and standard deviation. These metrics were exported to 

a CSV file. The rationale for computing these statistics was to assess whether intra-basin 

variability could be related to the performance of the ML reconstructions and were not used as 

features (predictive variables). The resulting CSV file contained the following columns: 

twsa_mean (the target variable to be reconstructed), twsa_median, twsa_var, 

twsa_std, basin, month, and year. Lastly, the data was cropped to cover the period from 

April 2002 and December 2014, to be time-compatible with the GLDAS. This final, cropped 

dataset contained 16 missing months (10%) out of a total of 156 monthly observations for each 

basin, which were later imputed by the models themselves. 

  . The use of mean values for each variable aims to harmonize the datasets by 

compensating for the differences in spatial resolution between GRACE/GLDAS (0.25°) and 

MapBiomas (30 m), as well as addressing the non-overlapping grid cells present in the 0.25° 

GRACE/GLDAS framework. 

https://www2.csr.utexas.edu/grace/RL06_mascons.html
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3.2.2. Global Land Data Assimilation System (GLDAS) 

  The Global Land Data Assimilation System (GLDAS) is a land surface model (LSM) 

collaboratively developed by NASA and NOAA in the United States of America. It is a global 

land modeling system that integrates Earth Observation (EO) data with in situ data, using data 

assimilation techniques to generate fields of various variables related to land states and fluxes 

in near real-time. (RODELL et al., 2004).  

  Soil moisture from the GLDAS version 2 datasets have been compared to the Global 

Precipitation Climatology Centre (GPCC) observational precipitation dataset for the 

southeastern part of SA, and the Noah LSM (one of the GLDAS datasets) was regarded as the 

best due to its high correlation with the Standardized Precipitation Index (SPI) calculated with 

GPCC data (SPENNEMANN et al., 2015). Regarding precipitation, GLDAS has shown 

monthly values consistent with in situ measurements for the state of Mato Grosso, Brazil 

(PEDREIRA JUNIOR et al., 2021). Regarding air temperature, GLDAS values have shown 

consistent performance globally when compared to the global Historical Climatology Network 

(GHCN), although agreement indices were lower in SA compared to other regions (JI; SENAY; 

VERDIN, 2015). This difference is likely to be due to the significantly smaller number of 

weather stations available for validation in SA, which limits the reliability of the comparison 

and naturally results in lower quality assessments for this region. 

  The datasets are available at spatial resolutions of 0.25° and 1°, covering the period 

from 1948 to the present. For this research, the GLDAS Noah Land Surface Model L4 monthly 

1.0 x 1.0-degree V2.0 (Beaudoing; Rodell, 2019) dataset was used (available from 1948 to 

2014). Among the 36 available variables, only P, T, and SM were utilized, as these are the three 

most used variables in similar studies (as discussed in Section 2.3). Each variable underwent 

the same process of conversion into a raster file and mean aggregation by basin and time period, 

as described for the mascons. 

 The P variable in the GLDAS dataset is expressed in units of kg m-2 s-1. To convert 

the precipitation values into millimeters (mm), the transformation was performed following the 

GLDAS guidelines outlined in the README Document for NASA GLDAS Version 2 Data 

Products. Since the monthly average files represent straightforward averages of 3-hourly data, 

each monthly average is expressed in units per 3 hours. Therefore, the conversion to mm was 

carried out using the formula presented in Equation 4. 
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𝑃 {
𝑘𝑔

𝑚2
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𝑠
} ∗ 10800 {

𝑠

3ℎ
} ∗ 8 {

3ℎ

𝑑𝑎𝑦
} ∗ 30{𝑑𝑎𝑦𝑠}       (4) 

 Since 1kg/m² of water is equivalent to 1 mm of water depth, the resulting value can 

already be interpreted as mm of precipitation. 

 The SM variable is expressed as kg m-2, representing the water content in the first 10 

cm of soil depth. To convert it to m³/m³, which is a standard measure for soil moisture, the value 

is divided by the depth of the soil layer in meters (0.1 m) and by the density of water 

(1000kg/m³), as shown in Equation 5. 

𝑆𝑀 {𝑚³/𝑚³ } =
𝑆𝑀{𝑘𝑔/𝑚² }

0.1 𝑚 ∗ 1000𝑘𝑔/𝑚³ 
                                                                (5) 

 

 The T variable is originally expressed in Kelvin and was further converted to Celsius, 

as described in Equation 6. 

𝑇 {°𝐶} = 𝑇{𝐾} − 273.15                                                                                           (6) 

3.2.3. MapBiomas 

 MapBiomas is a collaborative and independent initiative composed of Brazilian 

NGOs, universities, and technology startups that has been mapping LULC in Brazil since 2015, 

with data retrospectively extended back to 1985 (Souza et al., 2020). Collection 9 of the dataset 

includes 29 LULC classes with a spatial resolution of 30 meters. The use of LULC data as a 

predictor variable in TWSA reconstruction has also been reported by Yin et al. (2023) and 

serves to incorporate the effects of anthropogenic activity on TWS variation, as changes in this 

variable have been linked to TWS fluctuations (Chen et al., 2017; Wang et al., 2020). The 

existing classes in the dataset are Aquaculture, Beach, Dune and Sand Spot, Citrus, Coffee, 

Cotton, Floodable Forest, Forest Formation, Forest Plantation, Grassland, Herbaceous 

Sandbank Vegetation, Hypersaline Tidal Flat, Mangrove, Mining, Mosaic of Uses, Other non-

Vegetated Areas, Other Perennial Crops, Other Temporary Crops, Palm Oil, Pasture, Rice, 

River, Lake and Ocean, Rocky Outcrop, Savanna Formation, Soybean, Sugar cane, Urban Area, 

Wetland, Wooded Sandbank Vegetation, Not Observed.  

 Using GEE, the proportion of LULC classes for each basin and at each time step was 

calculated, resulting in a dataset representing the percentage of each LULC type per basin, per 
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year. Later, the proportion of each class was used as a predictor variable for the TWSA 

reconstructions, except for the “Not Observed” class. This class accounted for less than 1% 

across all basins and was excluded to minimize noise in the model training. 

3.2.4. Climate teleconnection indices 

  The climate of SA is strongly influenced by the El Niño-Southern Oscillation (ENSO) 

phenomenon, which triggers extreme events such as hydrological droughts and floods 

depending on its phase and the specific region of the continent (Cai et al., 2020). TWS variation 

has often been associated with ENSO fluctuations (Nie et al. 2016; YANG et al. 2018b; Li et 

al. 2020; Li et al. 2021; Tian et al. 2021; Wang et al. 2023a; Yin et al. 2023), indicating that 

incorporating indices that measure these fluctuations can enhance the accuracy of TWSA 

reconstructions. 

  In this study, the Oceanic Niño Index (ONI) was utilized. The ONI is calculated as a 

three-month moving average of sea surface temperature (SST) anomalies in the Niño 3.4 region 

(5°N–5°S, 120°W–170°W), with deviations from the 30-year climatological mean (updated 

every five years) determining the index values. An ONI value of ≥0.5°C signifies El Niño 

conditions, ≤−0.5°C indicates La Niña, and values in between represent a neutral phase.

 Beyond ENSO, other climate teleconnections can also influence Brazilian climate, 

and although it is not possible to objectively rank the patterns that have the greatest impact on 

the country’s climate, several of them have well-documented and widely studied effects, such 

as the Pacific Decadal Oscillation (PDO), Southern Atlantic Ocean Dipole (SAOD) and 

Tropical Southern Atlantic (TSA) SST anomalies (REBOITA et al., 2021). 

  The PDO is a long-term climate pattern characterized by periodic SST changes in the 

North Pacific Ocean, primarily north of 20°N, with warm and cool phases that influence 

ENSO's effects on Brazil by intensifying droughts in the Northeast region and altering rainfall 

patterns in the South during its warm phase (Mantua; Hare, 2002; Kayano; Andreoli, 2007). 

  The SAOD is another significant SST pattern in the South Atlantic Ocean, marked by 

opposing anomalies between the northeastern Atlantic Niño region and the southwestern coast 

off Argentina, Uruguay, and Brazil. Lasting approximately eight months with peak impacts 

during austral winter, the SAOD drives climate variability and affects precipitation along 

Brazil’s southern coast (Nnamchi; Li; Anyadike, 2011). The Southern Atlantic Dipole Index 

(SAODI) quantifies this phenomenon by measuring the difference in average SST between two 

regions of intense warming and cooling associated with the SAOD. 
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 Additionally, SST anomalies in the TSA influence Brazil’s climate by interacting with 

the Intertropical Convergence Zone (ITCZ), a primary driver of precipitation in the northern 

and northeastern regions of Brazil (Ferreira; Giovanni; Mello, 2005). This interaction 

modulates regional climate variability and atmospheric circulation patterns (Enfield et al., 

1999). 

  All indices used to account for these teleconnections were sourced from the Climate 

Prediction Center (CPC), from the NOAA website (NOAA, 2017). The indices were compiled 

into a dataset spanning monthly data from 1948 to 2014, with values recorded for each 

corresponding period. 

3.3.TWSA reconstruction 

3.3.1. Random Forest 

 After the data preprocessing mentioned in the previous sections, all the resulting 

preprocessed data was compiled into a single tabular dataset containing a column for the basin 

identifier, the month, year, the target variable (TWSA) and each of the predictor variables. 

Then, the implementation of the RF model was done using the python library scikit-learn, via 

the cloud computing platform Google Collaboratory. 

 The complete data from 2002 to 2014 was split into three parts: training (70%), 

validation (15%) and testing (15%). Then, the categorical variable representing the basin 

identifier was transformed using one-hot encoding, resulting in a binary (True/False) 

representation for each category. In this format, each basin was assigned a dedicated column; 

for instance, if the first row corresponded to the Amazon basin, the 'Amazon' column would be 

marked as True, while all other basin columns would be marked as False. This encoding scheme 

is commonly used to prepare unordered categorical data for RF algorithms. 

 The selection of the number of estimators (i.e. decision trees) was determined through 

an empirical trial-and-error approach. As varying this parameter resulted in only minor changes 

to the performance metrics, altering values solely at the third decimal place, the chosen number 

was set to 100 (the standard number for most ML applications), since increasing the number of 

trees would have led to higher computational costs without yielding significant improvements 

in accuracy. 

 The importance of each variable was assessed using the permutation importance 

method, which consists of randomly shuffling the values of each predictor several times and 

measuring the decrease in the model’s R² caused by this perturbation (Breiman, 2001). This 
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approach is a key tool in the Random Forest framework, as it enhances the interpretability of 

the model’s results. 

3.3.2. Long Short-Term Memory  

 The performance of a neural network method is heavily dependent on the 

hyperparameters chosen by the user, as well as the nature of the data. The set of parameters 

used in this research was a mix between the parameters used by Wang et al., 2021 and other 

parameters selected by a trial-and-error approach: 4 hidden layers (with 50, 50, 60 and 10 

neurons respectively and 20% dropout in each), window size of 3 months, 75 epochs and batch 

size of 2. 

 The LSTM model, due to its recurrent structure, was built independently for each 

basin to accurately represent sequential data. Given that the original dataset contained 12 

monthly records per time step, the data had to be partitioned by basin. Consequently, a single 

performance metric applicable to all basins could not be established; instead, individual metrics 

were calculated for each basin. 

 The dataset was split into training, validation, and testing sets using a 70-15-15% 

ratio, as was done with the RF model. The implementation of the LSTM model was carried out 

using the TensorFlow Python library. The performance metrics for each model were calculated 

as described in the next section. 

3.4. Metrics for performance assessment  

The metrics used to assess model performance were the determination coefficient (R²), 

mean absolute error (MAE) and root mean squared error (RMSE), as shown in Equations 7, 8 

and 9, respectively. 

𝑅2 = 1 −
∑(𝑥𝑖 − 𝑦𝑖) ²

∑(𝑥𝑖 − 𝑦̅) ²
                                                                                                         (7) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

                                                                                                          (8) 

𝑅𝑀𝑆𝐸 = √
∑(𝑥𝑖 −  𝑦𝑖)2

𝑛
                                                                                                     (9) 
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 Where 𝑥𝑖 represents each observed value, 𝑦𝑖 represents each predicted value, 𝑦̅ is the 

mean of the predictions, and 𝑛 is the number of observed-predicted value pairs (dataset size).

 Each metric was calculated to evaluate the model's performance both across all basins 

collectively (for the RF model) and individually for each basin (RF and LSTM models). 

3.5. Trend analysis 

  To find important increasing or decreasing trends in the reconstructed time series, the 

Mann-Kendall test was used. This non-parametric test is very commonly used for 

hydrometeorological data analysis (Abdullahi et al., 2023). It assesses the presence of a 

monotonic trend (either increasing or decreasing) over time without requiring the data to be 

normally distributed (hence, non-parametric). The test works by comparing each data point with 

all subsequent points in the series, counting the number of times a later value is higher or lower 

than an earlier one. The result is a test statistic that indicates the direction of the trend 

(increasing or decreasing), and a normalized Z value is used to determine its statistical 

significance. A positive Z value suggests an increasing trend, while a negative Z indicates a 

decreasing trend. If the absolute value of Z exceeds a certain threshold (based on the chosen 

significance level), the trend is considered statistically significant. Additionally, Kendall’s Tau 

(τ) coefficient is reported to quantify the strength of the monotonic trend. Tau ranges from –1 

to +1, where values close to zero indicate a weak trend and values farther from zero represent 

stronger increasing (positive τ) or decreasing (negative τ) tendencies. In this research, the test 

was employed using the ‘pymannkendall’ library in the python language. 

3.6.Pearson’s correlation 

 The correlation analysis throughout this research was employed with Pearson 

correlation, defined as: 

𝑟 =
Cov(𝑋, 𝑌)

σ𝑋  σ𝑌
 

where Cov(X,Y) is the covariance between the variables X and Y, and 𝜎𝑋  𝑎𝑛𝑑 𝜎𝑌 are their 

respective standard deviations. The Pearson correlation coefficient is a standardized measure 

of the linear association between two variables, ranging from –1 to +1. Values close to +1 

indicate a strong positive linear relationship, values close to –1 indicate a strong negative linear 
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relationship, and values near 0 suggest little or no linear association. The values were 

interpreted as: 

Table 2. Correlation interpretation intervals 

Interval (±) Level of correlation 

0 – 0.20 No correlation 

0.21 – 0.40 Weak correlation 

0.41 – 0.70 Moderate correlation 

0.71 – 1 Strong correlation 

 

4 Results and Discussion 

4.1. Random Forest reconstruction  

  The RF model’s performance across all basins achieved an R² of 0.82, RMSE of 5.29, 

and MAE of 3.49. The performance metrics for each basin are presented in Table 3. 

Table 3. Performance of the Random Forest model for each basin 

Basin R² RMSE MAE Basin size (km²) 

Amazon 0.93 4.69 3.64 3,844,917.76 

Paraguay 0.89 3.23 2.63 362,263.92 

Tocantins-Araguaia 0.88 6.13 4.28 918,273.16 

Paraná 0.85 3.75 2.49 877,513.54 

Uruguay 0.83 2.38 1.85 174,127.78  

Southeast Atlantic 0.80 3.99 3.28 213,316.01 

South Atlantic 0.77 2.51 2.12 186,079.86 

East Northeast Atlantic 0.72 3.33 2.70 285,281.21 

Parnaíba 0.70 6.32 4.71 331,808.82 

São Francisco 0.70 6.24 4.72 636,137.07 
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West Northeast Atlantic 0.69 11.71 7.42 268,906.01 

East Atlantic 0.59 2.99 2.28 386,068.13 

 The basin that presented the best R² was the Amazon Basin (indicating that the model 

explained 93% of the variability in the data). In contrast, the East Atlantic Basin showed the 

lowest R² (0.59), meaning that the model explained only 59% of the data variability. 

 These results can be moderately attributed to the basin size, as indicated by a 

correlation of 0.52 between R² and basin area, meaning that the bigger the basin, the better the 

R². Moreover, no relationship was observed between the performance metrics and the level of 

basin anthropization, measured in this case by the proportion of anthropogenic LULC in each 

basin. 

  Regarding variable importance, Table 4 contains the top 5 most important variables 

for the reconstruction of each basin. 

Table 4. The top 5 variables in Variable Importance for each basin 

Basin Variable Importance 

Amazon 

Month 1.17 

Temperature 0.04 

Soil Moisture 0.02 

Rocky Outcrop 0.02 

Cotton 0.01 

East Atlantic 

Month 0.64 

Soil Moisture 0.11 

PDO 0.03 

Herbaceous Sandbank Vegetation 0.02 

SAODI 0.01 

West Northeast Atlantic 

Month 0.62 

Temperature 0.15 

Floodable Forest 0.02 

SAODI 0.01 

Mangrove 0.01 

East Northeast Atlantic 

Soil Moisture 0.20 

Temperature 0.09 

River, Lake and Ocean 0.05 

Precipitation 0.04 

Grassland 0.02 

Southeast Atlantic 
Month 0.97 

Soil Moisture 0.17 
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River, Lake and Ocean 0.01 

Precipitation 0.01 

Wetland 0.01 

South Atlantic 

Month 0.51 

Soil Moisture 0.41 

Precipitation 0.04 

TSA 0.02 

SAODI 0.02 

Paraguay 

Month 1.28 

Soil Moisture 0.09 

Mosaic of Uses 0.03 

Temperature 0.01 

Grassland 0.01 

Paraná 

Month 0.62 

Soil Moisture 0.07 

River, Lake and Ocean 0.06 

PDO 0.03 

Savanna Formation 0.03 

Parnaíba 

Month 0.64 

Temperature 0.15 

Soil Moisture 0.13 

Mangrove 0.05 

Hypersaline Tidal Flat 0.02 

São Francisco 

Month 1.04 

Temperature 0.09 

Soil Moisture 0.07 

Other Perennial Crops 0.04 

River, Lake and Ocean 0.03 

Tocantins-Araguaia 

Month 1.05 

Temperature 0.19 

Soil Moisture 0.05 

ONI 0.02 

PDO 0.01 

Uruguay 

Soil Moisture 0.46 

Month 0.16 

Precipitation 0.09 

ONI 0.05 

PDO 0.04 

 

  The relevance of the month across all basins is expected, as seasonal variations are a 

fundamental factor in determining the climate of a region, as well as SM, since it is a component 

of TWS. Precipitation and temperature also emerged as influential variables, alongside the 
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teleconnection indices, whose effects are distributed unevenly across the different basins. The 

PDO emerges as a key driver in the East Atlantic, Paraná, Tocantins-Araguaia, and Uruguay 

basins, while the ONI shows relevance in Tocantins-Araguaia and Uruguay. TSA exerts 

influence exclusively in the South Atlantic basin, whereas the SAODI plays a role in the East 

Atlantic, West Northeast Atlantic, and South Atlantic. This spatial heterogeneity suggests that 

the sensitivity of TWSA to global climate variability differs across basins. 

  Regarding LULC, the model revealed a clear relationship between many different 

vegetation types and TWSA, with Floodable Forest, Savanna Formation, Grassland, 

Herbaceous Sandbank Vegetation and Mangrove emerging as relevant variables across 

different basins. Regions with humid vegetation typically exhibit higher TWSA values, while 

drier vegetation shows lower values, underscoring the connection between vegetation and 

TWSA. The presence of anthropic classes can be seen in the Paraguay basin (Mosaic of Uses), 

São Franciso (Other Perennial Crops) and Amazon (Cotton). 

  Mosaic of Uses encompasses different classes depending on the biome in question 

(Souza et al., 2020). In general, this class represents areas where it was not possible to 

differentiate between pasture and agriculture or, in the case of urban areas, other types of 

cultivated vegetation. However, since it represents anthropogenic activity, the results show that 

human influence contributes to the model's ability to predict TWSA values for the Paraguay 

basin. 

  The MapBiomas project does not specify which crops are included in the class “Other 

Perennial Crops”. Nevertheless, its classification as an anthropogenic feature indicates that, in 

the São Francisco Basin, TWSA variability is influenced by agricultural activity in general. 

This interpretation is consistent with previous findings for the Urucuia aquifer system (a major 

aquifer that covers 19.6% of the São Francisco Basin) where irrigation driven by diverse 

cropping systems has been shown to affect TWSA variability (Gonçalves et al., 2020). 

  For the Amazon Basin, cotton emerged among the top five most relevant variables. 

Its cultivation is highly dependent on irrigation and has undergone substantial expansion in 

recent years, particularly in the northern region of the state of Mato Grosso, located in the 

southern portion of the Amazon Basin (IPEA, 2022). The combination of this agricultural 

expansion and the prominence of cotton in the model suggests a potential correlation between 

cotton cultivation and TWSA, a relationship that has also been emphasized in previous studies 

in other parts of the world with this type of crop (Yin et al., 2023b). 
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  Figure 9 presents the reconstructed time series for each basin, while Figure 10 

summarizes the reconstructed series using a boxplot for all basins. When analyzing the 

complete time series (reconstructed + observed), the basin with the largest variation in TWSA 

is the West Northeast Atlantic, exhibiting an amplitude of 78.35 cm across the entire dataset. 

In contrast, the East Atlantic basin showed the smallest variation, with an amplitude of 20.69 

cm. 

  The Mann-Kendall test, applied to the 30-year dataset, revealed statistically 

significant evidence of a decreasing trend in TWSA for 4 basins: Uruguay (p = 0.04), Parnaíba 

(p = 0.00), São Francisco (p = 0.00), East Atlantic (p = 0.02). The remaining basins did not 

exhibit any statistically significant trends (p ≥ 0.05), indicating no evidence of a consistent 

increase or decrease over time. The test results for each basin are available in Table 5. 

Table 5. Man-Kendall test statistics 

Basin Trend p value Z score τ 

East Atlantic Decreasing 0.0246 -2.2480 -0.0794 

Parnaíba Decreasing 0.0007 -3.3797 -0.1193 

São Francisco Decreasing 0.0004 -3.5577 -0.1256 

Uruguay Decreasing 0.0427 -2.0262 -0.0716 

Amazon No trend 0.3149 -1.0050 -0.0355 

East Northeast 

Atlantic 
No trend 0.4018 -1.7536 -0.0619 

Paraguay No trend 0.6375 -0.4712 -0.0167 

Paraná No trend 0.1211 1.5503 0.0548 

South Atlantic No trend 0.2823 -1.0751 -0.0380 

Southeast 

Atlantic 
No trend 0.3365 -0.9612 -0.0340 

Tocantins-

Araguaia 
No trend 0.6871 -3.5577 -0.1256 

West Northeast 

Atlantic 
No trend 0.4018 0.8385 0.0296 

 

  It is important to note that the reconstructed time series exhibits less amplitude 

compared to the observed time series. Since each basin has its own TWSA, P, T and SM spatial 

variability, the use of mean values could reduce part of the observed amplitude during 

processing, which may result in less accurate results. To evaluate whether intra-basin variability 

impacts performance, basin-level model R² was correlated with the observed variability of 
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GRACE (standard deviation and variance). The correlations were r = 0.50 and r = 0.49, 

respectively, indicating a moderate positive association. 

  Another explanation that might contribute to this compression in amplitude is the fact 

that every time series contains a noise component that cannot be modeled. As a result, the 

observed time series shows greater variation, while the reconstructed series captures only the 

most significant part of the variation, excluding the noise, which is random and mostly 

unpredictable. 

  Additionally, Jing et al. (2020) caution that tree models can under-represent extremes 

outside the training range, which can also explain why the amplitude was not entirely 

represented in this model. 
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Figure 9. The complete time series (reconstructed (RF) + observed) for each basin. 

 

Figure 10. Boxplot for the reconstructed time series (RF) 

  By examining the boxplot, it becomes clear that the basins with the highest standard 

deviations (and therefore greater heterogeneity) are also the largest in size. This is expected, 

since larger basins are influenced by multiple hydroclimatic regimes and LULC patterns. This 

relationship is further supported by the strong correlation between basin size and standard 

deviation (r = 0.95). 

  The correlations between the reconstructed TWSA and the climate variables are 

presented in Table 6. The analysis revealed a weak negative correlation between TWSA and 

temperature (r = -0.20), as well as a weak positive correlation between TWSA and precipitation 

(r = 0.30). A moderate positive correlation was observed between TWSA and soil moisture (r 

= 0.50). However, no significant correlations were found between TWSA and the climate 

indices examined in this study. 
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Table 6. Correlations between reconstructed TWSA and climate data 

Variable Correlation with reconstructed TWSA 

T -0.20 

SM 0.50 

P 0.30 

ONI 0.01 

PDO 0.13 

SAODI 0.03 

TSA 0.11 

  

  Regarding land use classes, no significant correlations were observed between most 

classes and the reconstructed TWSA values. However, weak positive correlations were 

identified for Herbaceous Sandbank Vegetation (r = 0.29), Wooded Sandbank Vegetation (r = 

0.27) and Citrus (r = 0.21). 

4.2. Long Short-Term Memory Reconstruction 

 

  The LSTM model, due to its recurrent structure, was built independently for each 

basin to accurately represent sequential data. Given that the original dataset contained 12 

monthly records per time step, the data had to be partitioned by basin. Consequently, a single 

performance metric applicable to all basins could not be established; instead, individual metrics 

were calculated for each basin. In this model, only 4 basins presented usable results (Table 7). 

For the remaining basins, the R² was close to 0 or negative, meaning that the model did not 

perform better than the simple use of the mean TWSA value for making the reconstruction. 

Table 7. Performance of the LSTM model for each basin 

Basin R² RMSE MAE 

Tocantins-Araguaia 0.96 3.17 2.53 

Amazon 0.77 9.34 7.10 

West-Northeast Atlantic 0.78 7.59 6.17 

Paraguay 0.60 7.38 5.04 

  As was the case with RF, the model performance might be moderately attributed to 

basin size, since the correlation between RMSE and MAE was 0.53 and 0.59, respectively. 

There was no significant correlation between the size of the basin and the R² (0.08). 
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  The observation that only four basins yielded good results in contrast with the 

successful application of LSTM models in previous studies (Wang et al., 2021) suggests that 

using identical parameters or predictive variables across a wide range of basins of different 

sizes with diverse climates and hydrological regimes is suboptimal. Ideally, the parameters or 

sets of predictive variables should be tailored to the specific characteristics of each basin being 

studied. 

  The reconstructed datasets for each basin are presented in Figure 11, while Figure 12 

provides a summary of these datasets in the form of a boxplot. Among the basins analyzed, the 

West Northeast basin exhibited the greatest variability in the reconstructed dataset, with an 

amplitude of 93.60 cm. In contrast, the Paraguay basin showed the least variability, with an 

amplitude of 47.13 cm. The Mann-Kendall test applied to the entire time series indicated no 

significant trends for any of the reconstructed basins. 
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  When comparing the two reconstructions for the commonly analyzed basins 

(represented in Figure 13), strong positive correlations were observed across all cases. The 

correlations were 0.88 for the two West Northeast Atlantic basins and 0.93 for the remaining 

ones (Amazon, Tocantins-Araguaia, and Paraguay). These results indicate consistency between 

the reconstructions for these regions. 

Figure 11. The complete time series (reconstructed (LSTM) + observed) for each basin. 

 

Figure 12. Boxplot for the reconstructed time series (LSTM) 
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Conclusions 

  The findings of this study underscore some conclusions regarding the performance 

and applicability of machine learning models for TWSA reconstruction for the major Brazilian 

basins. Firstly, the performance of both the RF and LSTM models shows a moderate 

dependence on basin size, with larger basins generally yielding better results. This suggests that 

basin size might play a role in the models' ability to explain variability, likely due to the reduced 

influence of localized noise in larger hydrological systems. 

  The RF model revealed critical insights into the relationships between TWSA and 

environmental and anthropogenic factors. Notably, the influence of vegetation on TWSA 

became particularly evident, as variables representing different types of vegetation emerged as 

key predictors. Additionally, anthropogenic factors, such as cotton, other crops and mosaic of 

uses class, exhibited a stronger relationship with TWSA than traditional climatic variables like 

precipitation and temperature. This finding highlights the impact of human activity on 

hydrological processes, reinforcing the importance of integrating land-use variables in 

hydrological models for certain basins. Furthermore, the RF model demonstrated its ability to 

detect significant decreasing trends in TWSA for some basins, highlighting its potential for 

identifying long-term changes in water availability. 

  In contrast, the LSTM model displayed significant variability in performance across 

basins, indicating that the use of uniform hyperparameters is not suitable for diverse 

hydrological contexts. The behavior of the hyperparameters was inconsistent, further 

Figure 13. Comparison among the different reconstructions 
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emphasizing the need for tailored approaches when applying LSTM models to basins with 

differing sizes, climates, and hydrological regimes. Furthermore, it is important to note as a 

limitation that the fact of the basin average was used limits the conclusions, since each basin 

has its own TWSA variability, even if the performance does not seem to be significantly 

correlated to basin TWSA variability. Hence, the data reconstructed in this research make more 

sense when analyzed in the long-term and for spatially bigger events, since it is only the basin 

average used for analysis. For future research, it is recommended to explore alternative neural 

network architectures and diverse sets of hyperparameters, in order to enhance model 

adaptability and robustness across the heterogeneous hydroclimatic contexts of Brazilian 

basins. 

  Despite these differences, both models demonstrated high consistency between 

themselves, capturing similar patterns and trends in the reconstructed data. This suggests that 

either model can be useful for understanding TWSA dynamics, with their applicability 

depending on the specific context and objectives of the analysis. 
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