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RESUMO 

 

O Brasil é o maior consumidor de agrotóxicos do mundo desde 2008 e em 2021 

consumiu cerca de 719 mil toneladas. O clorotalonil (CTL) é um pesticida de amplo 

espectro e não sistêmico, e foi o quinto pesticida mais vendido do Brasil em 2023. O 

CTL está enquadrado na classificação 2 de toxicidade: altamente tóxico. Neste 

trabalho buscamos investigar os efeitos do CTL em células do córtex pré-frontal do 

camundongo através de dados públicos de sequenciamento de RNA. Duas amostras 

de CTL, foram selecionadas do bioprojeto com o código de acesso PRJNA288135, 

no banco de dados SRA (Sequence Read Archive) do National Center for 

Biotechnology information (NCBI). O biorojeto é proveniente de um artigo no qual os 

autores investigam alterações transcricionais semelhantes ao autismo e à 

neurodegeneração de 294 pesticidas em culturas celulares do córtex pré-frontal de 

camundongo.  As culturas foram tratadas com a dose não-citotóxica de 1 µM de CTL 

(grupo exposto ao CTL), ou com dimetilsulfóxido na concentração final ≤ 0,5% 

(grupo veículo, condição controle). As amostras selecionadas para os grupos 

controle e CTL foram baixadas diretamente no ambiente Galaxy e seguimos dois 

fluxos de trabalho: (a) o fluxo 1, no qual as amostras tiveram as 10 bases iniciais 

trimadas no pré-processamento; e o fluxo 2 (b), no qual essas bases foram 

mantidas. Realizamos análises de qualidade, pré-processamento, mapeamento, 

análise de similaridade, análise de expressão diferencial e análise das vias 

metabólicas. Três genes foram estatisticamente inibidos (False Discovery Rate < 

0,05) – subunidade beta-1 da proteína de ligação a nucleotídeos de guanina (Gnb1), 

placofilina 4 (Pkp4) e proteína de domínio triplo funcional (PTPRF Trio). O fluxo 2 foi 

robusto o suficiente para agrupar os transcriptomas das amostras de CTL e 

identificar o efeito do CTL na repressão desses genes. Nosso trabalho aponta que o 

CTL afeta genes envolvidos no citoesqueleto e na sinalização celular e os seus 

efeitos na expressão destes genes pode estar associada à carcionogenicidade deste 

pesticida. 
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ABSTRACT 

 

Brazil has been the world’s largest consumer of pesticides since 2008, and in 2021 it 

used approximately 719 thousand tons. Chlorothalonil (CTL) is a broad-spectrum, 

non-systemic pesticide and was the fifth best-selling pesticide in Brazil in 2023. CTL 

is classified as toxicity class 2: highly toxic. In this study, we sought to investigate the 

effects of CTL on prefrontal cortex cells of the mouse using public RNA sequencing 

data. Two CTL samples from the bioproject with accession code PRJNA288135 were 

selected from the Sequence Read Archive (SRA) of the National Center for 

Biotechnology Information (NCBI). The bioproject originates from a study in which the 

authors investigated transcriptional alterations resembling autism and 

neurodegeneration induced by 294 pesticides in cultured mouse prefrontal cortex 

cells. The cultures were treated with a non-cytotoxic dose of 1 µM CTL 

(CTL-exposed group) or with dimethyl sulfoxide at a final concentration ≤ 0.5% 

(vehicle group, control condition). The selected samples for the control and CTL 

groups were downloaded directly into the Galaxy environment, and we followed two 

workflow strategies: (a) workflow 1, in which the first 10 bases of the reads were 

trimmed during preprocessing; and (b) workflow 2, in which these bases were 

retained. We performed quality control, preprocessing, read mapping, similarity 

analysis, differential expression analysis, and metabolic pathway analysis. Three 

genes were statistically downregulated (False Discovery Rate < 0.05): guanine 

nucleotide-binding protein subunit beta-1 (Gnb1), plakophilin-4 (Pkp4), and triple 

functional domain protein (PTPRF Trio). Workflow 2 was sufficiently robust to cluster 

the CTL transcriptomes and detect the CTL-induced repression of these genes. Our 

findings indicate that CTL affects genes involved in cytoskeletal organization and cell 

signaling, and its effects on the expression of these genes may be associated with 

the carcinogenic potential of this pesticide. 

 

 

Keywords: pesticides; RNA-Seq; agrochemicals; bioinformatics; genes.​  
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1.​ INTRODUÇÃO  
1.1.​ Pesticidas no mundo e no Brasil 

Pesticidas são formulações químicas com compostos ativos que servem, 

primariamente, para eliminar plantas, insetos, fungos e outros agentes indesejados 

na agricultura. A quantidade de pesticidas utilizados na agricultura mundialmente, 

em 2022, foi de 3,7 milhões de toneladas (Mt), 4% maior que em 2021, 13% a mais 

que na última década e o dobro desde 1990 (FAO, 2024, p. 3). Segundo a 

Organização das Nações Unidas para Alimentação e Agricultura (FAO) (2024), as 

Américas são as maiores consumidoras de pesticidas dentre todos os continentes 

desde meados da década de 90. No Brasil, o uso de pesticidas mais que dobrou nos 

últimos 15 anos, atingindo a marca de 719 mil toneladas em 2021 e é considerado, 

desde 2008, o maior consumidor de agrotóxicos do mundo (Bombardi, 2023). 

Enquanto cultivos de alimentos-chave da dieta brasileira declinaram nas últimas 

décadas, a soja e a área destinada à criação de gado cresceu colossalmente.  

1.2.​ Problemas do uso dos pesticidas  

1.2.1.​ Saúde humana 

A exposição aos pesticidas desencadeia uma série de problemas para a 

saúde humana, de acordo com a classificação de toxicidade, o tempo de exposição 

e a quantidade absorvida pelo organismo (INCA, 2022). Segundo o boletim 

epidemiológico da Secretaria de Vigilância em Saúde e Ambiente (2023), entre 

janeiro de 2013 e junho de 2022, 124.294 casos de intoxicação exógena por 

agrotóxicos foram notificados em todo o Brasil. A exposição a pesticidas aumentou a 

incidência de cânceres, depressão, abortos e óbitos fetais, problemas respiratórios e 

problemas renais (Corrêa et al., 2020).  

1.2.2.​ Ambiente  

O uso de pesticidas costuma ser específico para os seus alvos de acordo com 

seu mecanismo de ação. Entretanto, organismos não-alvo do ecossistema também 

sofrem com a exposição a esses pesticidas, que podem estar ligados a perda global 

de biodiversidade (Wan et al., 2025). Rachel Carlson, em sua obra pioneira 

“Primavera silenciosa”, alertou sobre o uso indiscriminado de pesticidas, sobretudo o 
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DDT (diclorodifeniltricloroetano), e suas terríveis consequências para o meio natural, 

como a contaminação do ar, do solo e da água (Carlson, 2010). 

1.3.​Clorotalonil  

1.3.1.​Descrição do composto 

O clorotalonil (CTL) é um pesticida de amplo espectro e não sistêmico, 

utilizado principalmente como fungicida para controlar doenças foliares de hortaliças, 

campos e plantas ornamentais. É, também, utilizado como protetor de madeira, 

agente antimofo e em tintas anti-incrustantes. Apesar de seu vasto uso, seu 

mecanismo de ação não é completamente conhecido (USEPA, 1999). Seu nome 

químico é 2,4,5,6-Tetracloroisoftalonitrila, sua fórmula molecular é C8Cl4N2, sua 

massa molar é 265,9 g/mol, seu ponto de fusão é 253 °C e sua fórmula estrutural é a 

apresentada na figura 1. 

 

Figura 1 – Fórmula estrutural do clorotalonil 

 

1.3.2.​ Mecanismo de ação 

O clorotalonil (CTL) é um fungicida clorado cuja ação tóxica principal decorre 

da reatividade eletrofílica do anel aromático com nucleófilos tiol ou grupos sulfidrila 

(–SH). Essa reação forma conjugados com pequenas moléculas, como a glutationa, 

e com grupos tiol de proteínas, levando à inibição de enzimas dependentes de tiol, 

depleção de glutationa, estresse oxidativo e disfunção mitocondrial — efeitos que 

explicam sua toxicidade em fungos e também em animais (Tillman; Siegel; Long, 

1973; Arvanites; Boerth, 2001). O CTL, durante a sua biotransformação, reage com 

a glutationa, formando um aduto de glutationa com eliminação de ácido clorídrico. 
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Seu mecanismo de ação é semelhante ao dos fungicidas sulfenil triclorometil 

(Tillman; Siegel; Long, 1973). O efeito antifúngico do CTL é atribuído à inibição da 

glicólise e da respiração celular pela reação com grupos tiol funcionais de enzimas 

dessas vias (Tillman et al., 1973), como a gliceraldeído-3-fosfato desidrogenase 

(Long; Siegel, 1975). O CTL é capaz de reagir com tiois de baixo peso molecular 

(Vincent; Sisler, 1968). 
Como um composto aromático eletrofílico, o clorotalonil [...] entra em 
reações de substituição com componentes nucleofílicos de proteínas, 
por exemplo, com resíduos tiol livres (Enoch et al., 2009; Natsch et 
al., 2011; Roberts et al., 2015) como resultados dos quais estruturas 
exógenas imunologicamente processáveis são formadas. (Hartwig; 
Mak Comission, 2025, tradução nossa). 

 

 

1.3.3.​Uso no Brasil 

O Brasil é um dos principais destinos de agrotóxicos proibidos na União 

Europeia (Bombardi, 2023). Dentre os 10 pesticidas mais vendidos aqui, 5 estão 

banidos na Europa. O clorotalonil foi o 5º pesticida mais vendido no Brasil em 2023, 

com 45.533,10 toneladas de ingrediente ativo vendido, segundo o Instituto Brasileiro 

do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama, 2023). O seu é uso 

é direcionado para diversas culturas, tais como, amendoim, banana, batata, 

batata-doce, berinjela, beterraba, caqui, figo, caju, carombola, figo, goiaba, kiwi, 

mangaba, cará, cenoura, feijão, ervilha, grão-de-bico, lentinha, gengibre, inhame, 

jiló, mandioca, melão, melancia, milho, nabo, rabanete, pepino, abóbora, abobrinha, 

chuchu, maxixe, pimenta, pimentão, soja, sorgo, tomate e trigo (Nortox S.A., 2024). 

Ainda, no Brasil o limite máximo de resíduos (LMR) dos pesticidas costuma ser 

dezenas, centenas e quiçá milhares de vezes maior do que na União Europeia (UE). 

É o caso do resíduo do CTL no alface, que tem LMR de 0,01 mg/kg na UE e 6 mg/kg 

no Brasil, 600 vezes maior (Bombardi, 2023). 

1.3.4.​ Efeitos do CTL 

A exposição oral de pequenos mamíferos ao clorotalonil é considerada 

“praticamente não tóxica” DL50 > 10.000 mg/kg, porém a toxicidade é 

expressivamente maior através da inalação (CL50 0,094 mg/L) em ratos machos 
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(USEPA, 1999). Segundo Hartwig e Mak Comission (2025), a exposição ao CTL 

acarretou em danos pulmonares, como congestão pulmonar, bronquite e rinite. 

1.4.​Modelo animal: camundongo e células do córtex pré-frontal 

A utilização de Mus musculus como modelo animal para investigar os efeitos 

tóxicos do clorotalonil justifica-se pelo seu vasto uso dentro do campo das 

neurociências e da toxicologia (Araújo, 2023). Acredita-se que o uso de culturas 

célulares híbridas modelem melhor a variação genética associada às populações 

humanas (French et al., 2015). Culturas de células do córtex pré-frontal, região 

altamente desenvolvida do cérebro e responsável pela tomada de decisão e 

planejamento (Chen; Colonna, 2021), são particularmente vantajosas pela sua 

reprodutibilidade e confiabilidade devido ao controle rigoroso das condições 

ambientais.  

1.5.​Sequenciamento de nova geração (NGS) e bioinformática 

O sequenciamento de nova geração (NGS) representa um avanço 

tecnológico significativo em relação à primeira geração e caracteriza-se por ser 

capaz de avaliar milhões de reações de sequenciamentos simultâneos, além de 

reduzir o custo e o tempo para o sequenciamento (Korpelainen et al., 2015). O 

sequenciamento de RNA (RNA-Seq) é uma tecnologia robusta, que permite a 

quantificação de abundância de moléculas de RNA mensageiro (mRNA) em uma 

amostra. A quantidade de vezes que um gene é transcrito pelo mRNA indica o seu 

grau de expressão. Se muitas sequências de leituras codificantes de um mesmo 

gene são transcritas, a proteína/enzima codificada por ele será significativamente 

mais expressa (Samih; Ferreira; Nikoloski, 2026). Possibilita, assim, a identificação 

dos transcritos que foram muito expressos e também daqueles pouco expressos 

(Araújo, 2023). É uma ferramenta muito útil para analisar o transcriptoma celular e 

suas alterações e, dentre seus principais usos, destaca-se a identificação dos genes 

diferencialmente expressos entre duas ou mais condições biológicas (Batut et al., 

2021).  
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2.​ OBJETIVOS 
2.1.​Objetivo Geral 

O objetivo geral do trabalho é determinar o efeito do clorotalonil em culturas 

de células do córtex pré-frontal do camundongo (Mus musculus) através de dados 

públicos de sequenciamento de RNA. 

 

2.2.​Objetivos Específicos 

Os objetivos específicos deste trabalho são: 

1.​ Identificar os genes cuja expressão é afetada pela exposição ao clorotalonil; 

2.​ Comparar os efeitos de dois protocolos diferentes de pré-processamento das 

amostras nos resultados obtidos; e 

3.​ Investigar o efeito do clorotalonil na expressão de genes que codificam para 

enzimas das vias metabólicas relacionadas ao mecanismo de ação deste 

pesticida. 
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3.​ METODOLOGIA 

3.1.​ Obtenção e caracterização das amostras de RNA-Seq 

Duas amostras de CTL, com os números de acesso: SRR2078355 e 

SRR2078356, foram selecionadas do bioprojeto com o código de acesso 

PRJNA288135, no banco de dados SRA (Sequence Read Archive) do National 

Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/; NCBI), usando 

como palavra-chave “chlorothalonil”. Este bioprojeto foi aberto para o depósito de 

405 amostras de RNA-Seq, provenientes de um estudo sobre o efeito de 294 

pesticidas no sistema nervoso de mamíferos (Pearson, 2016). Neste mesmo estudo, 

foram selecionadas as amostras veículo SRR2078648, SRR2078649, SRR2078651, 

SRR2078654, SRR2078659 e SRR2078661, para compor o grupo controle. 

No estudo de Pearson (2016), o modelo de sistema nervoso utilizado foi a 

cultura primária de neurônios do córtex de camundongo (Mus musculus). Fêmeas 

C57BL/6J foram cruzadas com machos CAST/EiJ e os embriões foram coletados no 

décimo quarto dia de gravidez. O córtex dos embriões foi dissecado e tripsinizado 

com TrypLE express a 37 °C por 10 minutos. Os neurônios dissociados foram 

semeados em placas revestidas com poli-D-lisina (0,1 mg/mL) com meio Neurobasal 

(Life Technologies) contendo 5% de soro fetal bovino (Gibco), B27 (17504-044, 

Invitrogen) e o agente antimicrobiano Antibiotic-Antimycotic (15240-062, Invitrogen) 

e GlutaMAX (35050-061, Invitrogen). No terceiro dia in vitro (DIV 3), foi realizada 

troca de metade do meio, sendo o meio adicionado idêntico ao meio de 

plaqueamento, exceto pela omissão de soro fetal bovino e inclusão de 4,84 mg/mL 

de uridina 50-trifosfato (U6625, Sigma-Aldrich) e 2,46 mg/mL de 

5-fluoro-20-deoxiuridina (F0503, Sigma-Aldrich) para evitar mitose nas células em 

divisão. No DIV 7, as culturas foram tratadas com a dose não-citotóxica de 1 µM de 

CTL (grupo exposto ao clorotalonil), ou com DMSO (dimetilsulfóxido) na 

concentração final ≤ 0,5% (grupo veículo - condição controle), por 24 horas em 

placas de 12 poços, na densidade de 5x105 células por poço. Ao final da exposição, 

as células foram coletadas, e o RNA foi isolado usando o kit RNeasy plus mini (Cat. 

#74134, Qiagen) e quantificado no espectrofotômetro Nanodrop 1000 (Thermo 

Scientific). A qualidade do RNA foi determinada por Nanodrop e a partir do RNA 

https://www.ncbi.nlm.nih.gov/
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Integrity Number (RIN), usando Agilent Bioanalyzer 2100 ou TapeStation 2200. 

Amostras com valores de RIN superiores a 7 foram usadas para sequenciamento. 

As bibliotecas de cDNA foram construídas a partir de amostras de RNA usando o kit 

TruSeq RNA Library Preparation e sequenciadas na plataforma Illumina HiSeq 2500 

em leituras (reads) com 50 pares de base (bp) de comprimento e extremidades 

pareadas na University of North Carolina High Throughput Sequencing Facility 

(Chapel Hill, NC/ Estados Unidos da América). 

As amostras selecionadas para os grupos controle (veículo) e CTL (tabela 1) 

foram baixadas diretamente no ambiente Galaxy (The Galaxy Comunity, 2014; 

https://usegalaxy.eu/). A plataforma Galaxy é um ambiente digital gratuito que 

permite a realização de uma vasta quantidade de análises computacionais via 

servidores na nuvem, fornece uma interface amigável ao usuário e possui mais de 

9000 ferramentas científicas, permitindo uma grande variedade de análises 

aplicadas às ciências da vida. 

 
Tabela 1 – Tabela de amostras de RNA-Seq 

GRUPO NÚMERO DE ACESSO CÓDIGO DA AMOSTRA NESTE 
TRABALHO 

Controle (veículo - VH) SRR2078648 VH48 

SRR2078649 VH49 

SRR2078651 VH51 

SRR2078654 VH54 

SRR2078659  VH59 

SRR2078661 VH61 

Clorotalonil (CTL) SRR2078355  CTL55 

SRR2078356 CTL56 

 

3.2.​ Análise de qualidade 

Primeiramente, a qualidade das amostras foi analisada utilizando a 

ferramenta Falco versão 1.2.4 (Brandine; Smith, 2021), no ambiente Galaxy. Os 
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parâmetros verificados nesta análise são estatísticas básicas, como: total de 

sequências, comprimento da sequência e taxa do conteúdo de guanina-citosina 

(GC), qualidade por base da sequência, qualidade média por leitura, conteúdos de 

sequência por base, proporção de bases GC em cada sequência, proporção de 

bases N em cada posição da sequência, distribuição do tamanho das leituras, nível 

de duplicação das leituras, sequências super-representadas e sequências de 

adaptadores nas leituras. 

3.3.​ Pré-processamento 

Ainda no ambiente Galaxy, as leituras brutas (raw reads) são filtradas com a 

ferramenta Trimmomatic Versão 0.39 (Bolger; Lohse; Usadel, 2014). O Trimmomatic 

é uma ferramenta baseada em Java que pode eliminar adaptadores e cortar as 

leituras de diferentes maneiras de acordo com a qualidade delas (Britton et al., 

2015). Duas diferentes trimagens foram realizadas, dando origem a dois fluxos de 

trabalho, e os parâmetros utilizados para cada uma estão dispostos na tabela 2. 

Após a trimagem, uma nova análise de qualidade é feita para avaliar o efeito do 

pré-processamento nas amostras. 

 
Tabela 2 – Parâmetros de operação do Trimommatic  

ETAPA Fluxo 1 Fluxo 2 

Executar etapa inicial do 
ILLUMINACLIP? 

Sim Sim 

Selecionar sequências de 
adaptadores padrão ou fornecer 
personalizadas? 

Padrão Padrão 

Sequências adaptadoras a serem 
usadas 

TruSeq3 (additional seqs) 
(paired-end, for MiSeq and 
HiSeq) 

TruSeq3 (additional seqs) 
(paired-end, for MiSeq and 
HiSeq) 

Contagem máxima de 
incompatibilidades que ainda 
permitirá que uma correspondência 
completa seja realizada 

2 2 

Quão precisa deve ser a 
correspondência entre as duas 
leituras 'adaptadas' para o 
alinhamento da leitura do palíndromo 
PE 

30 30 

Quão precisa deve ser a 10 10 
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correspondência entre qualquer 
sequência de adaptador etc. em 
relação a uma leitura 

Comprimento mínimo do adaptador 
que precisa ser detectado (modo 
específico de PE/palíndromo) 

8 8 

Sempre manter ambas as leituras 
(modo específico de 
PE/palíndromo)? 

Sim Sim 

Operação 1: Cortar um número 
especificado de bases do início de 
uma leitura (HEADCROP) 

10 Não 

Operação 2: Corte leituras adaptativamente, equilibrando o 
comprimento da leitura e a taxa de erros para maximizar o valor de 
cada leitura (MAXINFO) 

 

Comprimento de leitura alvo 36 36 

Rigor 0,8 0,8 

Operação 3: Remover leituras abaixo de um comprimento 
especificado (MINLEN) 

 

Comprimento mínimo de leituras a 
serem mantidas 

20 20 

 

3.4.​ Mapeamento e quantificação de transcritos ​  

Para quantificar os transcritos de cada amostra, utilizamos a ferramenta 

Salmon quant Versão. 1.10.1 (Patro et al., 2017; Srivastava et al., 2019), no 

ambiente Galaxy. Esta ferramenta mapeia as leituras trimadas em uma referência e 

estima a expressão gênica baseada na abundância das leituras mapeadas em uma 

dada sequência da referência. Nesta análise, utilizamos como referência o 

transcriptoma do camundongo, disponível no NCBI, bem como os parâmetros 

listados na tabela 3. 

​  

​ Tabela 3 – Parâmetros da operação Salmon quant 

ETAPA Entrada 

Selecione o modo de quantificação do Salmon Leituras 

Selecione um transcriptoma de referência do seu histórico ou 
use um índice integrado? 

Histórico 

 arquivo FASTA dos transcritos GCF_000001635.27_GRCm39_rna.fna 
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Contagem de k-mer 31 

Hash perfeito Falso 

Tipo de índice quasi 

Descartar quasi órfãos Falso 

Validar mapeamentos 

Fração de pontuação mínima 0,65 

Pontuação de correspondência 2 

Penalidade de divergência 4 

Penalidade de abertura de lacuna 5 

Penalidade de extensão de lacuna 3 

Imitar Bowtie 2 Falso 

Imitar Bowtie 2 estrito Falso 

Filtro rígido Falso 

Folga de consenso 0 

Permitir Dovetail Falso 

Recuperar órfãos Falso 

Qualidade de escrita Falso 

Sucessos consistentes Falso 

Executar correção de viés específica de sequência Sim 

Executar correção de viés de GC de fragmento Sim 

incompatPrior 0 

Meta Falso 

 

3.5.​ Similaridade de expressão gênica entre os transcriptomas 

Os resultados do mapeamento e da quantificação foram extraídos do Galaxy 

e usados para construir uma única matriz, contendo todas as amostras. Para isso, 

os comandos abaixo listados, em linguagem de programação Python (v. 3.13.3), 

através da biblioteca de código aberto Pandas, foram utilizados através da interface 

do programa Visual Studio Code versão 1.105.1, a partir do código: 
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import pandas as pd 

import os 

 

os.chdir(r'D:\\UFPE\\GRADUAÇÃO\\TCC\\AMOSTRAS\\ANOTAÇÃO SEM 

HEADCROP\\') 

list_arch = [] 

for c in os.listdir(): 

    list_arch.append(c) 

 

#Entrada do arquivo do clorotalonil CTL55 

dfs = {} 

print("ATENÇÃO: Para as amostras de clorotalonil, utilize o código 'CTL 

+ o código da amostra'\nPara os veículos/controles, utilize 'VH + o código do 

veículo.") 

for c in list_arch: 

    print("-"*20) 

    caminho = c 

    print(c) 

    print("-"*20) 

    name = input("Qual o nome da sua amostra ou código?\n") 

    if caminho.endswith(".tabular"): 

        df = pd.read_table(caminho, sep="\t") #Lê o arquivo tabular e 

atribui a variável 

    elif caminho.endswith(".xlsx"): 

        df = pd.read_excel(caminho) 

    #contador = f"df{i}" 

    df1 = df.drop(["Length", "EffectiveLength", "TPM"], axis=1) 

    df1.columns = ["Name", f"NumReads {name}"] 

    dfs[name] = df1 

    print("\n","\n") 

    #[f'df{i}'] 

 

#print(dfs.keys()) 

keys_df = list(dfs.keys()) 

print(keys_df) 

keys_CTL = [] 

keys_VH = [] 

 

for c in keys_df: 

    if "CTL" in c: 

        keys_CTL.append(c) 
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print(keys_CTL) 

for c in keys_df: 

    if "VH" in c: 

        keys_VH.append(c) 

 

print(keys_VH) 

print("Fazendo a junção de todos...") 

df_final = pd.merge(dfs[keys_df[0]], dfs[keys_df[1]], on="Name") 

for key in list(dfs.keys())[2:]: 

    df_final = pd.merge(df_final, dfs[key], on="Name") 

print("Finalizado\n") 

 

print("Começando a formação do Clorotalonil") 

df_finalCTL = pd.merge(dfs[keys_CTL[0]], dfs[keys_CTL[1]], on="Name") 

print("Finalizado :D\n") 

 

df_finalVH = pd.merge(dfs[keys_VH[0]], dfs[keys_VH[1]], on="Name") 

for key in keys_VH[2:]: 

    df_finalVH = pd.merge(df_finalVH, dfs[key], on="Name") 

 

print("Iniciando a exportação...\n") 

df_final.to_excel(r'D:\\UFPE\\GRADUAÇÃO\\TCC\\AMOSTRAS\\NumReads SEM 

HEADCROP\\NumReadsTodos_Sem_Headcrop.xlsx', index=False, index_label=False) 

df_finalCTL.to_excel(r'D:\\UFPE\\GRADUAÇÃO\\TCC\\AMOSTRAS\\NumReads SEM 

HEADCROP\\NumReadsCTL_Sem_Headcrop.xlsx', index=False, index_label=False) 

df_finalVH.to_excel(r'D:\\UFPE\\GRADUAÇÃO\\TCC\\AMOSTRAS\\NumReads SEM 

HEADCROP\\NumReadsVH_Sem_Headcrop.xlsx', index=False, index_label=False) 

print('CTL + VH') 

print('-'*80) 

print(df_final.head(5)) 

print('-'*80) 

print('CTL') 

print(df_finalCTL.head(5)) 

print('VH') 

print('-'*80) 

print(df_finalVH.head(5)) 

print('-'*40) 

print('Exportação concluída com êxito.') 

print('-'*40) 
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Nesta matriz, as linhas determinavam os códigos de identificação dos 

transcritos e as colunas o número de leituras de cada amostra. A partir desta matriz, 

foi calculado o coeficiente de correlação entre cada duas amostras, através do 

seguinte código: 

 
import seaborn as sb 

import pandas as pd 

import os 

import matplotlib.pyplot as plt 

import numpy as np 

 

def MEGA_file(matriz): 

    #MEGA 

    with open('matriz.meg', 'a') as arc: 

        nome = input('Qual o nome da matriz? ') 

        arc.write('#MEGA\n') 

        arc.write(f'!Title: Matriz Correlação{nome};\n') 

        arc.write('!Format DataType=Distance 

DataFormat=UpperRight;\n\n') 

        spcs = [] 

        for c in matriz.columns: 

            spcs.append(c) 

            especie = '#'+c+'\n' 

            arc.write(especie) 

        arc.write('\n') 

         

        for c in spcs: 

            param = False 

            valores = reversed(list(matriz.loc[c])) 

            print(valores) 

            for c in valores: 

                if c == 1: 

                    break 

                local = valores 

                values = str(c)+" " 

                arc.write(values) 

                 

            arc.write("\n") 

 

os.chdir(r'D:\\UFPE\\GRADUAÇÃO\\TCC\\AMOSTRAS\\NumReads COM HEADCROP') 
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df = pd.read_excel('NumReadsTodosComHeadcrop.xlsx') 

df = df.set_index(['Name']) 

print(df) 

df = df.corr() 

print(df) 

matriz = df.where(np.triu(np.ones(df.shape)).astype(bool)) 

print(matriz) 

#matriz.to_excel("MatrizNumRead_Sem_Headcrop.xlsx", index=False, 

index_label=False) 

#MEGA_file(matriz) 

 

plot = sb.heatmap(df, annot=True) 

plt.show() 

print('Cabosse') 

df = 1-df 

df.to_excel(r'D:\\UFPE\\GRADUAÇÃO\\TCC\\AMOSTRAS\\CORRELAÇÃO COM 

HEADCROP\\matriz_com_headcrop_corrigida.xlsx') 

 

Os coeficientes de correlação foram transformados em coeficientes de 

distância de acordo com a equação: 

 𝐶𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒 𝑑𝑖𝑠𝑡â𝑛𝑐𝑖𝑎 =  1 −  𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎çã𝑜

 Em seguida, os coeficientes de distância foram utilizados no programa MEGA 

(Molecular Evolutionary Genetics Analysis, v. 12.0.11) para representar a 

similaridade entre as amostras através de uma árvore filogenética Neighbor-joining. 

3.6.​ Anotação dos transcritos em genes 

​ A anotação dos transcritos foi extraída do próprio arquivo fasta do 

transcriptoma de Mus musculus usado como referência, através da linguagem de 

programação Python. Para isso,  o nome e símbolo do gene referente a cada 

transcrito foi identificado no arquivo fasta de RNA de Mus musculus e inserida na 

tabela. Os comandos para esta operação foram os abaixo descritos: 

 
from Bio import SeqIO #Análise de dados de sequências   

import pandas as pd #Criação de data frames   

 

#Abrir o arquivo com sua referência 

arch = r"Galaxy35-GCF_000001635.27_GRCm39_rna.fna" #arquivo entrada 
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sequencias = SeqIO.parse(f"{arch}.fasta", "fasta") #acessar cada sequência 

 

#Extrair dados das sequências (ids, descrição e código) 

def description(descricao): 

    num0 = descricao.find("musculus") 

    desc_filtrada = descricao[(num0+9):] 

    num1 = desc_filtrada.rfind("(") 

    num2 = desc_filtrada.rfind(")") 

    ofcname = (desc_filtrada[(num1+1):num2]) 

    return desc_filtrada, ofcname 

 

#Abertura de listas para adicionar os dados de cada id: 

ids = [] 

desc = [] 

ofc_name = [] 

 

#Extrair dados e inserir nas listas 

for c in sequencias: 

    ids.append(c.id) 

    desc.append(description(c.description)[0]) 

    ofc_name.append(description(c.description)[1]) 

 

#Criação de um dataframe com as colunas e dados 

df = pd.DataFrame({ 

    "Name" : ids, 

    "Descrição" : desc, 

    "Nome Oficial" : ofc_name 

}) 

 

#Exportar o dataframe para um arquivo excel 

df.to_excel("IdsAnotadas.xlsx", index=False) 

 

Com o Python e a biblioteca Pandas, unimos os dados de mapeamento e 

quantificação de cada amostra, obtidas conforme item anterior, com a planilha dos 

transcritos anotados, contendo a sigla do gene codificante e a descrição por extenso 

do que cada gene codifica. O resultado desta união foi uma tabela para cada 

amostra contendo as colunas “Name”, “Nome Oficial”, designação escolhida para se 

referir ao nome do gene, “Descrição” com o nome por extenso do gene, e dados de 

expressão “TPM”. O código usado foi o seguinte: 
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import pandas as pd 

 

df = 

pd.read_excel(r"D:\\UFPE\\GRADUAÇÃO\\TCC\\REFERÊNCIAS\\IdsAnotadas.xlsx") 

df1  = pd.read_table(r"D:\\UFPE\\GRADUAÇÃO\\TCC\\AMOSTRAS\\ANOTAÇÃO SEM 

HEADCROP\\SRR2078355.tabular", sep='\t') 

 

df_final = pd.merge(df[['Name','Nome Oficial','Descrição']], 

df1[['Name','TPM']], on='Name', how='right') 

print(df_final) 

 

3.7.​ Preparação dos dados para as análises de expressão gênica   

 

A linguagem de programação Python foi utilizada para preparar as tabelas de 

dados para a análise de expressão diferencial. A preparação dos dados consistiu da 

remoção das colunas “Length”, “EffectiveLength” e “TPM” das tabelas resultantes da 

operação de mapeamento e contagem, e do acréscimo do código identificador de 

cada amostra à coluna “NumReads” (ex.: “NumReads CTL56”, referindo-se à 

amostra de clorotalonil com terminação do código SRR em 56). Os comandos 

usados para tanto foram: 

 
import pandas as pd 

import os 

 

os.chdir(r"D:\\UFPE\\GRADUAÇÃO\\TCC\\AMOSTRAS\\CTL SEM 

HEADCROP\\SRR2078356 SEM HEADCROP") 

df = pd.read_table(r'SRR2078356.tabular', sep='\t', decimal='.') 

df = df[["Name","NumReads"]] 

df.rename(columns={'NumReads':'NumReads CTL56'}, inplace=True) 

df.to_csv(r'SRR2078356_tratado.tabular', sep='\t', index=False) 

print('Concluído com êxito.') 
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3.8.​ Análise de expressão gênica diferencial (DEG) 

Após a preparação das tabelas conforme item 3.7, as tabelas foram 

carregadas no ambiente Galaxy, onde foi realizada a análise de expressão gênica 

diferencial (differentially expressed genes, DEG) com a ferramenta edgeR versão 

3.36.0 (Robinson; McCarthy; Smyth, 2010; Liu et al., 2015). Nesta operação foram 

utilizados os parâmetros da tabela 4. A estatísica do edgeR assumiu o limiar do valor 

de P em 0,05, o método de ajuste foi o Benjamini e Hochberg (1995). O valor de 

expressão foi considerado estatisticamente significativo se o FDR (False Discovery 

Rate) fosse menor que 0,05. O método de normalização foi o Trimmed Mean of 

M-values (TMM).  

 
Tabela 4 – Parâmetros de entrada da análise de expressão gênica diferencial com o edgeR 

ETAPA Entrada 

Contar arquivos ou matriz? Arquivos 

Nome DGE_CTL_e_VH 

Nome CTL 

Arquivos SRR2078355_tratado.tabular 

SRR2078356_tratado.tabular 

Nome VH 

Arquivos SRR2078648_tratado.tabular 

SRR2078649_tratado.tabular 

SRR2078651_tratado.tabular 

SRR2078654_tratado.tabular 

SRR2078659_tratado.tabular 

SRR2078661_tratado.tabular 

Usar anotações genéticas? Falso 

Contrastes de entrada manualmente ou por meio de um 
arquivo 

Manualmente 

Contraste de interesse 1 CTL-VH 

Contraste de interesse 2 VH-CTL 

Filtrar genes pouco expressos? Não 
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3.9.​ Análise da expressão de genes envolvidos no mecanismo de ação do CTL 

A expressão de genes que codificam para enzimas relacionadas ao 

mecanismo de ação do CTL foi investigada de duas formas. Primeiramente, foi 

construída uma lista de genes de interesse envolvidos em rotas metabólicas 

associadas, em estudos prévios, aos mecanismos de ação do CTL. À lista publicada 

no estudo de Hoff et al. (2017), abrangendo genes da via glicolítica e da fosforilação 

oxidativa, foram adicionados genes que codificam enzimas envolvidas no 

metabolismo de glutationa. Estes genes adicionados foram curados a partir da rota 

descrita como “00480 - Glutathione metabolism” na página Kyoto Encyclopedia of 

Genes and Genomes (KEGG; https://www.kegg.jp/). Os genes de interesse listados 

foram selecionados e extraídos da tabela de saída da análise de expressão gênica 

diferencial realizada com o edgeR. Nesta tabela são fornecidos dados da diferença 

da expressão entre os grupos veículo (controle) e CTL em LogFC. Esta unidade se 

refere ao logaritmo na base dois (2) da diferença de expressão entre os grupos 

representada por fold change (FC) da expressão do grupo controle. A unidade  “fold 

change” é calculada da seguinte forma: 

 

 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =  (𝑒𝑥𝑝𝑟𝑒𝑠𝑠ã𝑜 𝑚é𝑑𝑖𝑎 𝑛𝑜 𝑔𝑟𝑢𝑝𝑜 𝐶𝑇𝐿) / (𝑒𝑥𝑝𝑟𝑒𝑠𝑠ã𝑜 𝑚é𝑑𝑖𝑎 𝑛𝑜 𝑔𝑟𝑢𝑝𝑜 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑒)

 

Posteriormente, a análise de vias metabólicas foi realizada com Pathview 

versão 1.34.0 (Luo; Brouwer, 2013), dentro do ambiente Galaxy. Nesta operação, 

unificamos as leituras do Salmon pelo nome dos genes no qual elas mapearam e 

rodamos o edgeR para obter os valores de LogFC. A tabela de saída do edgeR foi 

preparada para que mantivesse apenas as colunas “Gene Symbol” e “LogFC”. Esta 

tabela foi então usada na análise de vias por Pathview, segundo os parâmetros 

listados na tabela 5. As seguintes vias metabólicas foram analisadas: “00010 - 

Glycolysis/Gluconeogenesis”; “00020 - Citrate cycle (TCA cycle)”; “00190 - Oxidative 

phosphorylation” e  “00480 - Glutathione metabolism”. 

 

 

Tabela de contagens normalizadas de saída? Não 

https://www.kegg.jp/
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Tabela 5  – Parâmetros de entrada para a análise de vias Pathview 

ETAPA ENTRADA 

Número de vias para plotar Uma 

Código da via no KEGG 00010 

Espécie a se usar Rato 

Prover um arquivo de gene  DGE_CTL-VH_ANOTADO_LogFOLD_CHANGE
_Grouped.tabular 

O arquivo tem cabeçalho? Sim 

Formato para dos dados gênicos “Gene Symbol” 

Prover um arquivo de composto? Falso 

Integrar e representar no mesmo gráfico 
múltiplos estados de genes ou dados de 
compostos verdadeiros? 

Sim 

Os dados de genes e compostos estão 
verdadeiramente pareados? 

Sim 

Saída para o caminho Sim 

Plotar na mesma camada? Sim 

Mapear o gene NULL ou os dados reais 
compostos para a via metabólica? 

Sim 

 

O fluxograma de trabalho que seguimos para os dois fluxos de trabalhos 

seguiu da análise de qualidade, passou pelos pré-processamentos distintos, 

mapeamentos, análise de correlação, e chegou à árvore neighbor joining. A partir 

daí, seguimos apenas com o fluxo 2 pela análise de expressão diferencial e pela 

análise de vias Pathview (figura 2). 
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Figura 2 – Fluxograma de trabalho para os dois fluxos de pré-processamento 
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4.​ RESULTADOS 
4.1.​ Análise de qualidade dos dados brutos 

​ As amostras, tanto do grupo CTL quanto do grupo controle, apresentaram um 

total de sequências variando entre 3.284.215, referente à amostra CTL55 forward e 

7.059.616 reads, referente à amostra VH61 forward, comprimento da sequência de 

48 bp, e conteúdo de guanina-citosina (GC) entre 48 e 50%. A mediana do Phread 

oscilou entre 34 e 40. A análise de qualidade dos dados brutos apontou a presença 

dos adaptadores PolyA, PolyG, Nextera Transposase Sequence e Illumina Universal 

Adapter. Todas as amostras falharam no parâmetro “Conteúdo de bases das 

sequências”. Como é possível notar na figura 3, houve uma grande variação no 

conteúdo de bases nitrogenadas até aproximadamente a 15ª posição das 

sequências das leituras. 

 
 

 
Figura 3 – Falha do conteúdo de sequência por base. 

 

4.2.​ Análise de qualidade dos dados trimados 

​ Como resultado do pré-processamento seguindo o fluxo 1, todas as amostras 

foram aprovadas em estatísticas básicas (tabela 6), qualidade por base da 

sequência, qualidade média por leitura, conteúdo de bases G e C em cada 
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sequência, proporção de bases N em cada posição da sequência, nível de 

duplicação das leituras, sequências super-representadas e presença de sequências 

de adaptadores nas leituras. No parâmetro distribuição de comprimento de 

sequência, todas as amostras receberam um aviso, como evidenciado pela figura 4. 

 
Tabela 6 – Parâmetros estatísticos básicos das amostras trimadas nos fluxos 1 e 2  

amostra  
(SRR) 

sentido Fluxo 1 (com headcrop) Fluxo 2 (sem headcrop) 

número total 
de 
sequências 
(reads) 

comprimento 
das 
sequências 
(bp) 

conteúdo 
de GC 
(%) 

número total 
de 
sequências 
(reads) 

comprimento 
das 
sequências 
(bp) 

conteúdo 
de GC 
(%) 

SRR2078355 forward 3.259.707 31-38 49 3.259.707 34-48 48 

reverse 3.259.707 33-38 49 3.259.707 35-48 48 

SRR2078356 forward 5.476.900 28-38 50 5.476.900 35-48 50 

reverse 5.476.900 33-38 50 5.476.900 35-48 50 

SRR2078648 forward 5.637.280 35-38 51 5.637.280 35-48 50 

reverse 5.637.280 31-38 51 5.637.280 35-48 50 

SRR2078649 forward 5.247.788 35-38 50 5.247.788 35-48 50 

reverse 5.247.788 29-38 50 5.247.788 35-48 50 

SRR2078651 forward 5.043.494 35-38 50 5.043.494 35-48 50 

reverse 5.043.494 30-38 50 5.043.494 35-48 50 

SRR2078654 forward 5.759.174 34-38 51 5.759.175 35-48 50 

reverse 5.759.174 35-38 51 5.759.175 24-48 50 

SRR2078659 forward 5.309.868 30-38 50 5.309.868 35-48 49 

reverse 5.309.868 30-38 50 5.309.868 35-48 49 

SRR2078661 forward 7.010.518 35-38 50 7.010.518 33-48 50 

reverse 7.010.518 31-38 50 7.010.518 33-48 50 
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Figura 4 – Representação da análise de qualidade das amostras trimadas no fluxo 1.  

 

 

Com relação ao fluxo 2, a qualidade de todas as amostras após a trimagem 

foi aprovada na maioria dos parâmetros avaliados, com exceção da reprovação no 

conteúdo por base das sequências e do aviso para o parâmetro distribuição do 

tamanho das leituras (figura 5). As estatísticas básicas das amostras trimadas para o 

fluxo 2 estão apresentadas na tabela 6. 
 

 

Figura 5 – Representação da análise de qualidade das amostras trimadas no fluxo 2   
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4.3.​ Similaridade da expressão gênica entre os transcriptomas 

A árvore neighbor-joining construída a partir da distância das expressões 

gênicas entre os transcriptomas analisados do fluxo 1 mostra as amostras de CTL 

pouco relacionadas, bem como não há um agrupamento claro das amostras de 

veículo (figura 6). 

 

Figura 6 – Representação da similaridade de expressão gênica entre as amostras 

analisadas pelo fluxo 1. 

 

A árvore neighbor-joining construída a partir da distância das expressões 

gênicas entre os transcriptomas analisados do fluxo 2 evidencia as amostras de CTL 

mais proximamente relacionadas, assim como o grupo controle forma um 

agrupamento melhor definido (figura 7). 
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Figura 7 – Árvore filogenética neighbor-joining das amostras do fluxo 2 
 

4.3.1.​ Análise de genes diferencialmente expressos 

Os resultados da análise de genes diferencialmente expressos (DEG) no fluxo 

2 mostram a regulação negativa de três genes (tabela 7). O gene que codifica para a  

proteína de ligação a nucleotídeos de guanina, o Gnb1 foi o gene com maior 

diferença na expressão em relação à condição controle. Gnb1 apresentou expressão 

de cerca de vinte oito mil vezes menor nas células tratadas com CTL em relação à 

condição controle (tabela 7). O segundo gene mais diferencialmente expresso foi o 

gene Pkp4 (placofilina 4) e o terceiro gene foi PTPRF Trio (proteína de domínio triplo 

funcional), aproximadamente 6500 e 6200 vezes menos expresso no CTL em 

relação ao controle, respectivamente. 

 
Tabela 7 – Resultados da análise de genes diferencialmente expressos no fluxo 2 

Gene ID Símbolo  Fold Change FDR 

NM_008142.5 Gnb1 -28229,37 0,004637935974 

NM_026361.2 Pkp4 -6491,42 0,04019869298 

NM_001081302.1
​  

PTPRF (Trio) 
-6176,94 0,04092260684 
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4.4.​ Análise dos genes mais diferencialmente expressos no CTL em relação ao 

controle 

​ Os dez genes  mais diferencialmente expressos com expressão positiva no 

CTL, dada em fold change em relação ao controle estão apresentados na tabela 8. 

Para nenhum destes genes, entretanto, foi encontrada significância na diferença de 

expressão (tabela 8). Dentre os genes com maior diferença de expressão 

destaca-se o Map2 (proteína 2 associada a microtúbulos), com uma expressão mais 

de onze mil vezes maior no tratamento com CTL em relação ao veículo (F = 19,70; 

FDR = 1; P = 0,009471). Nesta tabela também é possível notar que o gene DCX 

(doublecortin) teve uma expressão cerca de oito mil vezes maior no grupo CTL em 

relação ao controle (F = 22,07; FDR = 1; P = 0,004358). Quando observamos os 

genes mais diferencialmente expressos com regulação negativa (tabela 9), 

encontramos o Gnb1, com expressão cerca de vinte oito mil vezes menor nas 

células tratadas com CTL em relação à condição controle (F = 198,25; FDR = 

0,0046; P = 0,0000000342). 

 
​ Tabela 8 – Dez genes mais diferencialmente expressos com expressão positiva no 

CTL dada em fold change em relação ao controle 

Gene ID Símbolo Fold Change F FDR P 
XM_006495756.4 Map2 11030,09 19,7098 1 0,009471 
XM_036162881.1 Dclk1 10752,55 19,7680 1 0,009230 
XM_036160951.1 Apc 9644,48 20,9459 1 0,006552 
NM_001401929.1 Ids 9209,67 112,3847 0,3435 0,000022 
NM_001410010.1 Dcx 8318,06 22,0763 1 0,004358 
NM_001426499.1 Amph 7686,11 22,8907 1 0,003162 
NM_010906.4 Nfix 7033,92 22,8980 1 0,002717 
NR_182008.1 Snap25 6904,04 23,1119 1 0,002460 
NM_001243047.1 Dlg2 6798,95 71,9650 0,6231 0,000088 
XM_006529075.4 Hdlbp 6769,31 23,2348 1 0,002275 
 

 

Tabela 9 – Dez genes mais diferencialmente expressos com expressão negativa no CTL 

dada em fold change em relação ao controle 

Gene ID Símbolo Fold Change F FDR P 
NM_008142.5 Gnb1 -28229,37 198,25 0,0046 0,0000000342 
XM_006528759.1 Tmsb4x -16391,05 6,82 1 0,037622 
NM_008478.3 L1cam -15809,66 7,23 1 0,033354 
XM_006511268.4 Tmod2 -13597,49 13,26 1 0,007557 
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NM_001159634.1 Prrc2b -12028,14 5,64 1 0,051951 
NM_001146123.1 Psap -11764,96 3,78 1 0,096930 
NM_175836.2 Sptbn1 -11747,44 2,82 1 0,142450 
XM_036155218.1 Rpl4 -11091,43 6,01 1 0,045984 
XM_006522883.5 Cxadr -10542,70 3,88 1 0,093303 
XM_017321377.3 Chl1 -9606,35 9,68 1 0,015401 
 

4.5.​ Análise de genes envolvidos no mecanismo de ação do CTL 

Dentre os genes de interesse listados, os genes Eno 2, Sdhc, Ndufs1 e 

Ndufs6 apresentam  maior expressão diferencial no grupo clorotalonil em relação ao 

controle. O gene associado ao mecanismo de ação do CTL com maior expressão 

dada em fold change positiva em relação ao controle é Eno2 (enolase 2), que está 

3.769,4 vezes mais expresso no grupo CTL (F = 16,29 ; FDR = 1; P = 

0,005624867687). O gene Sdhc (complexo da succinato desidrogenase, subunidade 

C) está cerca de 700 vezes mais expresso no grupo clorotalonil (F = 8,96; FDR = 1; 

P = 0,02159) enquanto o Ndufs1 (subunidade central S1 da ubiquinona 

oxidorredutase; F = 8,64861; FDR = 1; P = 0,02325) e o Ndufs6 (subunidade central 

S6 da NADH:ubiquinona oxidorredutase; F = 8,46239; FDR = 1; P = 0,02429) estão 

cerca de 600 e 450 vezes mais expressos, respectivamente, em relação ao controle 

(tabela 11). 

​  
Tabela 11 – Dez genes relacionados ao mecanismo de ação do CTL mais expressos no 

grupo CTL 

Gene ID Símbolo (nome) do gene Fold 
change 

F FDR P 

NM_001409687.1 Eno2 (enolase 2) 3769,42 16,29449 1 0,00562 

XM_006496955.3 

Sdhc (complexo da 
succinato desidrogenase, 
subunidade C) 694,73 8,96967 1 0,02159 

XM_036164425.1 

Ndufs1 (subunidade central 
S1 da ubiquinona 
oxidorredutase) 597,36 8,64861 1 0,02325 

NM_001423716.1 

Ndufs6 (subunidade central 
S6 da NADH:ubiquinona 
oxidorredutase) 452,79 8,46239 1 0,02429 

NR_187114.1 

Ndufs6 (subunidade central 
S6 da NADH:ubiquinona 
oxidorredutase) 219,79 8,06190 1 0,02675 
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NM_001378832.1 

Slc37a4 (transportador de 
soluto família 37 
[transportador de 
glicose-6-fosfato]) 218,46 8,21644 1 0,02576 

NM_001378833.1 

Slc37a4 (transportador de 
soluto família 37 
[transportador de 
glicose-6-fosfato]) 195,95 8,15445 1 0,02615 

NM_001361905.1 

Ogdh (oxoglutarato 
[alfa-cetoglutarato] 
desidrogenase [lipoamida]) 49,17 7,74586 1 0,02892 

XM_030245650.1 

Ogdh (oxoglutarato 
[alfa-cetoglutarato] 
desidrogenase [lipoamida]) 39,56 3,13463  0,10292 

XM_036164417.1 

Ndufs1 (subunidade central 
S1 da ubiquinona 
oxidorredutase) 37,76 10,50521  0,01549 

 

O gene associado ao mecanismo de ação do CTL com maior diferença de 

expressão dada em fold change negativa em relação ao controle é Ldha, 4.584,85 

vezes menos expresso no CTL (F = 3,12794 ; FDR = 1 ; P = 0,11947; tabela 12). 

Outros genes mais inibidos no grupo CTL são o Pkm, o Ogdh e o Ndufs1, cerca de 

4.600, 2.100 e 1.100 vezes, respectivamente, mais expressos no controle. 

 
Tabela 12 –  Dez genes relacionados ao mecanismo de ação do CTL menos expressos no 

grupo CTL 

Gene ID Símbolo (nome) do gene Fold-change  F FDR P 
NM_00113
6069.2 

Ldha (lactato desidrogenase 
subunidade a) -4584,85 3,12794 1 0,11947 

NM_00140
5491.1 Pkm (piruvato kinase) -2094,01 3,98663 1 0,07222 

XM_03024
5651.1 

Ogdh (oxoglutarato 
[alfa-cetoglutarato] desidrogenase 
[lipoamida]) -1694,53 

16,2230
0 1 0,00215 

NM_00137
8867.1 Pkm (piruvato kinase) -1210,69 2,92026 1 0,11658 
NM_00116
0038.1 

Ndufs1 (subunidade central S1 da 
ubiquinona oxidorredutase) -1127,67 4,08526 1 0,06928 

XM_03024
1961.1 

Sdhc (complexo da succinato 
desidrogenase, subunidade C) -577,63 3,21327 1 0,10163 

NR_15379
8.1 

Ndufab1 (subunidade AB1 da 
NADH:ubiquinona oxidorredutase) -507,76 5,04554 1 0,04709 

NM_00136 Ndufs7 (subunidade central S7 da -368,30 2,72038 1 0,12840 
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4694.1 NADH:ubiquinona oxidorredutase) 
XR_00395
0460.1 Pfkp (fosfofrutocinase) -325,67 2,67584 1 0,13123 
NM_01027
4.3 

Gpd2 (glicerol fosfato 
desidrogenase 2) -240,47 2,52100 1 0,14173 

 

 

A análise da via glicolítica pelo Pathview mostra que os genes que codificam 

para as enzimas GCK (glicoquinase, E.C. 2.7.1.2), ADPGK (a glicoquinase 

dependente de ADP, E.C. 2.7.1.147), PGK (fosfoglicerato quinase, E.C. 2.7.2.3) e  

Eno (enolase, E.C. 4.2.1.11) foram inibidos transcricionalmente (em verde na figura 

8). Dentre as enzimas com regulação transcricional positiva, indicada pela cor 

vermelha na figura 8, estão a HK (hexokinase, E.C. 2.7.1.1), a GPI (glicose-6-fosfato 

isomerase, E.C. 5.3.1.9), a PFK (6-fosfofrutokinase, E.C.  2.7.1.11), a ALDO 

(frutose-bisfosfato aldolase, classe I, E.C. 4.1.2.13), a GAPDH (gliceraldeído 

3-fosfato desidrogenase, E.C. 1.2.1.12) e a PK (piruvato kinase, E.C. 2.7.1.40). 
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Figura 8 – Análise de via da rota glicolítica 

 

 

A análise de vias referente ao ciclo do ácido tricarboxílico mostra quatro 

enzimas com transcrição regulada positivamente em resposta ao tratamento com 

CTL (em vermelho na figura 9). São elas: a ACLY (ATP citrato [pro-S]-liase, E.C. 

2.3.3.8), a DLST (componente E2 da 2-oxoglutarato desidrogenase 

[succiniltransferase de diidrolipoamida],  E.C. 2.3.1.61), a SDH (succinato 

desidrogenase, E.C. 1.3.5.1) e a MDH1 (malato desidrogenase, E.C. 1.1.1.37). 

Dentre as enzimas com regulação transcricional negativa (em verde na figura 9) 
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estão: a IDH1 (isocitrato desidrogenase, E.C. 1.1.1.42), a OGDH (componente E1 da 

2-oxoglutarato desidrogenase, E.C. 1.2.4.2), a sucD (subunidade alfa da 

succinil-CoA sintetase, E.C. 6.2.1.5), a LSC1 (subunidade alfa da succinil-CoA 

sintetase, E.C. 6.2.1.4) e a fumA (fumarato hidratase, classe I, E.C. 4.2.1.2). 

  

 
Figura 9 – Rota do ciclo do ácido tricarboxílico (TCA) 

 

Com relação à análise de via da fosforilação oxidativa, o conjunto de 

alterações de expressão gênica revelou expressão negativa (em verde na figura 10) 

da subunidade A da NADH-quinona oxidoredutase (E.C. 7.1.1.2) do complexo I da 

cadeia transportadora de elétrons. As enzimas com regulação transcricional positiva 

(em vermelho na figura 10) foram a succinato desidrogenase (SDH , E.C. 1.3.5.1), a 

citocromo c oxidase (E.C. 7.1.1.9), a subunidade a transportadora de H+ do tipo F 

(ATPF0A, E.C. 7.1.2.2) e a subunidade alfa da ATPase de troca H+/K+ (ATP4A E.C. 

7.2.2.19), constituintes da unidade F1 da ATP sintase. 
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Figura 10 – Rota da fosforilação oxidativa 

 

Com relação ao metabolismo de glutationa, a análise de via aponta a 

regulação positiva do gene que codifica para a subunidade catalítica da enzima 

glutamato cisteína ligase (GCL, E.C. 6.3.2.2) nas culturas de células expostas ao 

CTL em relação às culturas de células expostas ao veículo (em vermelho na figura 

11). Além disso, o tratamento com CTL causou a regulação negativa (em verde na 

figura 11) dos genes codificantes para as enzimas 5-oxiprolinase (E.C. 3.5.2.9), 

glutationa sintetase (GS, E.C. 6.3.2.3), bem como para GGT 

(gama-glutamiltranspeptidase/glutationa hidrolase, E.C. 3.4.19.13). 

 



42 

 
Figura 11 – Rota do metabolismo da glutationa 
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5.​ DISCUSSÃO 

Nosso estudo mostra o efeito do pré-processamento e do desenho 

experimental nas análises de RNA-Seq, bem como o efeito do CTL em cultura 

primária de neurônios de camundongo. 

5.1.​ Efeito do pré-processamento 

5.1.1.​Comparação entre o fluxo 1 e 2  

A análise de qualidade das amostras de RNA-Seq selecionadas mostrou que 

elas estavam homogêneas e apresentavam boa qualidade geral. Entretanto, as 

amostras falharam no conteúdo da sequência por base, variando até a 15ª base das 

reads. Sobre o sequenciamento da nova geração (next generation sequencing, 

NGS) da Illumina, Korpelainen (2015) afirma “foi demonstrado que o priming usando 

hexâmeros aleatórios induz vieses na composição de nucleotídeos no início das 

leituras de RNA-seq”. Dessa forma, a falta de compatibilidade no início das 

sequências das leituras pode ser um reflexo do próprio método de NGS utilizado na 

obtenção dos transcriptomas. Tendo em vista esta variabilidade no início das 

sequências, resolvemos seguir dois fluxos de análise: o fluxo 1, no qual a trimagem 

excluiu as 10 primeiras bases das leituras, e o fluxo 2, no qual estas 10 primeiras 

bases foram mantidas. 

A similaridade entre os transcriptomas foi quantificada por análise de 

correlação da expressão gênica entre todas as amostras para cada um dos fluxos. 

Para visualizar a relação entre os transcriptomas, construímos árvores 

neighbor-joining baseadas nas distâncias entre as expressões gênicas, calculadas a 

partir dos coeficientes de correlação. Nestas  árvores, esperávamos a formação de 

dois grupos claros: o grupo CTL e o grupo controle.  

A árvore para o fluxo 1 não agrupou as amostras de veículo e nem as de CTL 

de forma clara. As amostras de clorotalonil apareceram de lados opostos da árvore, 

sugerindo pouca similaridade entre os transcriptomas. Uma provável explicação está 

relacionada à trimagem realizada no fluxo 1. Após a trimagem, o comprimento de 

sequência das amostras do fluxo 1 oscilou entre 28 e 38 pares de base. Molinari et 

al. (2018) afirmam que a taxa de duplicatas não-naturais em reads de 50 bp são 

maiores do que em reads com 100 bp ou mais. Leituras muito pequenas têm pouco 
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valor por serem muito ambíguas para serem informativas (Bolger; Lohse; Usadel, 

2014). Esses dados corroboram com a ideia de que reads menores tendem a 

apresentar maior redundância e menor precisão no mapeamento. Em sequências 

curtas, como o caso da nossa (48 bp), pode ser mais vantajoso manter essas bases 

iniciais da leitura na trimagem para que as leituras tenham comprimento suficiente 

para serem informativas (Korpelainen, 2015). Logo, a trimagem das dez primeiras 

bases das reads pode ter afetado o mapeamento e diminuído o conteúdo de 

informação. 

A árvore para o fluxo 2, por outro lado, mostrou maior proximidade entre os 

transcriptomas das amostras CTL. Apesar disso, os transcriptomas de amostras 

controle no fluxo 2 não formaram um grupo único. Uma possível explicação para a 

variabilidade entre as amostras controle é o fato do bioprojeto incluir 55 amostras de 

veículo e não ser claro a respeito de quais amostras de RNA-Seq foram obtidas 

como controle no experimento em que as células foram expostas ao CTL. Além 

disso, neste bioprojeto foram geradas somente duas amostras de RNA-Seq tratadas 

com CTL. Apesar destas limitações, com este desenho experimental esperamos 

encontrar poucos genes com expressão diferencial, mas indicação robusta do efeito 

do CTL na expressão destes genes em modelo de culturas primárias de neurônios 

de camundongo. Para tanto, a escolha por seguir o fluxo 2 para análise e 

interpretação de dados apresentou-se como mais adequada para o nosso trabalho. 

5.1.2.​ Análise de genes diferencialmente expressos (DEG) 

A partir da visualização da similaridade entre transcriptomas na forma de 

árvores filogenéticas, decidimos aprofundar as análises no fluxo 2. Neste fluxo de 

trabalho, três genes foram diferencialmente expressos, todos os quais foram 

regulados negativamente no tratamento com CTL. Estes genes são:  Gnb1,  Pkp4 e  

PTPRF (Trio). 

A Subunidade beta-1 da proteína de ligação a nucleotídeos de guanina 

(Gnb1) age principalmente com a sinalização celular por meio de proteínas 

heterotriméricas e dos receptores acoplados à proteína G (GPCRs). É um ator 

central na transdução de sinais de membrana, funcionando como a subunidade 

regulatória Gβ que, ao se desconectar da subunidade Gɑ, desencadeia uma vasta 

rede de respostas celulares, controlando enzimas e canais iônicos essenciais para a 

homeostase e o desenvolvimento (Petrovski et al., 2016). Variantes patogênicas da 
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Gnb1 foram associadas com a encefalopatia e com a síndrome de West (Nasvytis; 

Čiauškaitė; Jurkevičienė, 2024; Hemati et al., 2018), além de ter sido apontada com 

papel pró-cancerígeno para os cânceres de pulmão e mama (Zhang et al., 2023). As 

evidências sugerem que há relação do CTL com a maioria dos tumores quando a 

sua regulação [CTL] é positiva. Ainda, segundo estudos de carcinogenicidade, o 

CTL foi enquadrado como provável carcinogênico para humanos (USEPA, 1999).    

A proteína tirosina fosfatase tipo F ou proteína de domínio triplo funcional 

(PTPRF Trio) é uma fosfatase importante que desempenha funções na regulação do 

crescimento celular, diferenciação (Chagnon; Uetani; Tremblay, 2004) e 

transformação oncogênica (Tian et al., 2018). Ainda segundo Tian et al (2018), a 

baixa expressão de PTPRF está relacionada com estágios avançados de câncer 

gástrico, além da baixa taxa de sobrevivência dos pacientes. Ademais, um estudo 

demonstrou uma associação entre a superexpressão do RNA longo não codificante 

lncRNA TCONS_00004099 e a menor expressão do PTPRF, o que sugere uma 

relação indireta entre o lncRNA TCONS_00004099 e a PTPRF na regulação do 

desenvolvimento de gliomas (Wang et al., 2021). 

A placofilina 4 (Pkp4) desempenha papel como reguladora da atividade de 

proteínas da família Rho – família de pequenas proteínas G de sinalização que 

regulam, dentre suas funções, muitos aspectos da dinâmica da actina intracelular 

(Mott; Owen, 2010) durante a citocinese (The Uniprot Consortium, 2025). Este dado 

aponta uma provável relação entre a exposição ao CTL e alterações na dinâmica da 

mobilidade do citoesqueleto. 

5.1.3.​ Análise da expressão de genes mais e menos expressos no grupo 

clorotalonil em relação ao controle 

Dois genes envolvidos na organização do citoesqueleto foram mais expressos 

nos neurônios expostos à CTL em relação ao controle: Map2 e o DCX. A Map2, 

proteína 2 associada a microtúbulos, é uma proteína específica para neurônios 

localizada no compartimento somatodendrítico e é conhecida pela sua propriedade 

de polimerização de microtúbulos (DeGiosio et al., 2024). A DCX, que codifica para 

a proteína de migração neuronal doublecortin, exerce papel central na migração de 

células neuronais até o córtex, ajuda na estabilização e agrupamento dos 

microtúbulos em neurônios migratórios (Gleeson et al., 1999) e mutações nesse 

gene são a causa mais comum de lisencefalia ligada ao cromossomo X em 
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humanos (Kato; Dobyns, 2003). Em conjunto, estes dados sugerem que o CTL afeta 

o citoesqueleto dos neurônios de camundongo em cultura de célula primária.  

5.1.4.​ Análise da expressão de genes de interesse 

Embora o mecanismo de ação do clorotalonil não seja completamente 

compreendido, a literatura atribui seus efeitos antifúngicos à inibição da glicólise e 

da respiração celular, através da sua reação com enzimas de grupos tiol funcionais 

dessas vias, como a GAPDH – gliceraldeído-3-fosfato desidrogenase (Tillman et al., 

1973; Long; Siegel, 1975). Assim sendo, analisamos individualmente os genes que 

participam destas vias, bem como analisamos as vias de forma integrada. 

A análise de vias da rota glicolítica mostra uma regulação complexa, com 

genes mais e menos expressos. A GAPDH foi positivamente transcrita, contrariando 

o esperado para a exposição ao CTL. A superexpressão de GAPDH pode ser um 

indicador de que a célula está passando por estresse energético e, por isso, 

tentando compensar através de uma maior produção de energia. Junto com o dado 

que aponta a inibição transcricional do complexo da piruvato desidrogenase, a 

análise de vias sugere que o CTL afeta a obtenção de energia a partir de glicose. 

Com relação ao metabolismo mitocondrial, a análise de vias mostra perfil 

consistente com inibição do ciclo de Krebs e do complexo I da cadeia transportadora 

de elétrons nas células expostas ao CTL. Contudo, a análise de vias mostra os 

complexos II, IV e V ativados transcricionalmente. Esta resposta dual de ativação e 

inibição de vias e complexos mitocondriais pode sugerir desbalanço metabólico 

mitocondrial e produção de espécies reativas de oxigênio (ERO). Embora não haja 

dados sobre o efeito do CTL na inibição do complexo I da cadeia respiratória em 

modelo de sistema nervoso, o estudo de Wang et al (2024) apontou que a exposição 

de oócitos de camundongos ao CTL causou danos à função mitocondrial, levando a 

uma diminuição do ATP e um aumento na quantidade de ERO. Estudos mostraram 

que os intermediários de metabolização ditiol e tritiol do CTL inibiram o complexo II 

da respiração mitocondrial (Hartwig; Mak Comission, 2025). A observação da 

ativação transcricional da SDH do complexo II, contrariando o que é esperado 

segundo a literatura, sugere que a célula ativou um mecanismo compensatório. 

Quando a atividade da SDH é prejudicada, a célula pode responder aumentando a 

atividade transcricional deste complexo na tentativa de restabelecer sua função e 

preservar seu fluxo metabólico (Hartwig; Mak Commission, 2025).  
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A análise das vias do metabolismo de glutationa evidencia um desbalanço na 

sua síntese. Nota-se regulação positiva do gene que codifica a subunidade catalítica 

da glutamato-cisteína ligase (GCL), enquanto a glutationa sintetase está diminuída 

nas culturas expostas ao CTL em comparação ao veículo, sugerindo um desbalanço 

da via biossintética. Além disso, a inibição da transcrição de genes envolvidos no 

ciclo gama-glutamil indica um possível declínio do conteúdo intracelular de glutationa 

reduzida (GSH). Esse padrão é compatível com o mecanismo conhecido de 

biotransformação do CTL. A molécula reage com tióis de baixo peso molecular, 

sendo conjugada à GSH como primeiro passo do seu metabolismo em mamíferos, 

processo catalisado pela glutationa-S-transferase, GST, (USEPA, 1999). A 

conjugação intensiva somada ao desbalanço na via de síntese, contribui para a 

depleção de GSH, que desempenha papel central, junto à GST, na defesa 

antioxidante celular e no metabolismo de xenobióticos. Níveis reduzidos de 

glutationa diminuem a capacidade de desintoxicação de xenobióticos e favorecem o 

aumento do estresse oxidativo (Gallagher; Canada; Di Giulio, 1992).  
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6.​ CONCLUSÃO 

Neste trabalho, o efeito do clorotalonil em culturas celulares do córtex 

pré-frontal foi determinado através de dados públicos de sequenciamento de RNA. 

Foram encontradas somente duas amostras de RNA-Seq para CTL no banco de 

dados. Adicionalmente, todas amostras de RNA-Seq deste bioprojeto variaram no 

conteúdo das quinze primeiras bases. Apesar destas limitações, o fluxo de trabalho 

2 foi robusto o suficiente para agrupar os transcriptomas das amostras de CTL e 

identificar o efeito do CTL na repressão dos genes Gnb1, Pkp4 e PTPRF (Trio). Este 

é o primeiro trabalho que mostra que o CTL afeta genes envolvidos no citoesqueleto 

e sinalização celular. Além disso, os efeitos do CTL na expressão destes genes 

pode estar associada à carcionogenicidade deste pesticida. Com relação aos 

mecanismos de ação, diferentemente do esperado, a análise de vias da glicólise não 

mostrou inibição em enzimas-chave, como a PFK e nem da GAPDH, descrita como 

um alvo do CTL. Entretanto, pode-se verificar que há um desbalanço entre o ciclo de 

Krebs e a cadeia transportadora de elétrons, o que pode levar à produção de 

espécies reativas de oxigênio. Conforme o esperado, a análise da via do 

metabolismo da glutationa sugere comprometimento da defesa antioxidante celular. 

Em conjunto, este trabalho mostra que as análises de transcriptoma servem tanto 

para levantar hipóteses e eleger genes candidatos, quanto para entender as bases 

moleculares dos danos de agentes tóxicos.  
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