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RESUMO 

 

Foi investigada a maneira com que parâmetros tais como, concentração de íon 

sensibilizador, densidade de potência da fonte de excitação, taxas de decaimento não-

radiativo, taxas de emissão e a temperatura influenciam a dinâmica da conversão 

ascendente de energia (CAE) em sistemas LiYF4: Yb3+,Er3+. O estudo envolveu a 

matriz hospedeira LiYF4 por possuir comportamento semelhante à muitos tipos de 

nanopartículas. O íon Yb3+ é um dos sensibilizadores mais utilizados, pois apresenta 

elevada absorção em 980 nm em relação a outros íons Ln3+, podendo ser excitado 

por lasers de diodo. O íon ativador Er3+ é muito utilizado em CAE, com emissões no 

vermelho, verde e azul, além de possuir dois níveis excitados acoplados termicamente 

4S3/2 e 2H11/2, que são empregados em termometria. Foi desenvolvido um sistema de 

equações de taxa para modelar a dinâmica da CAE. As taxas de decaimento não-

radiativo foram calculadas com base no modelo de relaxação por multifonons. Os 

valores de constantes de taxa de transferência de energia foram obtidos a partir de 

valores na literatura. O sistema de equações de taxa foi resolvido numericamente com 

o algoritmo Runge-Kutta de ordem 4 e passo temporal adaptativo. Foram testados 

valores das taxas dos níveis emissores, em intervalos encontrados na literatura, 

típicos para sistemas que apresentam luminescência. As curvas para a lei de potência 

da CAE em diferentes condições desse sistema indicam uma dependência muito 

próxima de 2 fótons para CAE. Foi observado que houve um distanciamento dessa 

dependência ao se utilizar elevados valores da densidade de potência de excitação, 

consistente com a saturação. Foi obtido e avaliado o parâmetro termométrico baseado 

nos níveis acoplados termicamente do íon Er3+ visando à influência da dinâmica CAE 

nas populações térmicas em equilíbrio desses níveis. Os resultados sugerem que a 

aproximação de equilíbrio térmico dos níveis acoplados termicamente é válida para 

os intervalos de taxas utilizados e fornecem condições nas quais o comportamento do 

sistema corresponde de maneira satisfatória ao funcionamento de termômetros 

baseados na distribuição de Boltzmann. 

Palavras-chave: Conversão Ascendente de Energia; Transferência de 

Energia; Runge-Kutta; Íons Lantanídeos; Luminescência em sólidos; LiYF4. 

  



ABSTRACT 

 

The influence of the parameters such as the concentration of the sensitizer ion, 

excitation power density, non-radiative decay rates, emission rates, and the 

temperature on the dynamics of energy transfer upconversion (ETU) in LiYF4: Yb3+,Er3+ 

systems were investigated with theoretical and computational approaches. The LiYF4 

host was selected because its dynamics can be considered like the ones of most 

nanoparticles. Additionally, its properties are available and well-investigated. The Yb3+ 

ion is one of the most relevant sensitizers, as it exhibits high absorption at 980 nm and 

can be excited by diode lasers. Er3+ ions are commonly employed as activators in ETU, 

producing emissions at the red, green, and blue wavelengths, and have two thermally 

coupled excited states, which are used in thermometry. A system of rate equations was 

developed to model the dynamics of this ETU process. The non-radiative decay rates 

were calculated based on the multiphonon model. The energy transfer rates were 

obtained from the literature. The system of rate equations was solved numerically using 

the fourth-order Runge-Kutta algorithm with an adaptive timestep. Emission rates were 

varied within the typical intervals of values for these luminescent systems. Power-law 

curves of ETU under different conditions indicated a dependence very close to two 

photons for ETU. A deviation from this dependence was observed at high excitation 

power densities, which is consistent with saturation effects. A thermometric parameter 

based on the thermally coupled levels of the Er3+ ion was obtained and evaluated to 

investigate the influence of ETU dynamics on the thermal populations of these levels 

at equilibrium. The results corroborate that the thermal equilibrium approximation of 

the coupled levels is valid for the rate intervals used and provide conditions under 

which the behavior of the system is consistent with a thermometer based on a 

Boltzmann-type distribution. 

Keywords: Energy Transfer Upconversion; Thermometry; 4th order Runge-

Kutta; Lanthanide Ions; Luminescence in Solids; LiYF4. 
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1 INTRODUÇÃO 

Os elementos terras-raras (TRs), que incluem os Lantanídeos, são 

relativamente abundantes na crosta terrestre. Essa abundância varia, em ppm (partes 

por milhão), desde 66 para o cério (Ce), 40 para o neodímio (Nd), 35 para o lantânio 

(La), até 0,5 para o túlio (Tm) (GREENWOOD; EARNSHAW, 2012). O promécio (Pm) 

não é detectável (HOSHINO; SANEMATSU; WATANABE, 2016), pois todos seus 

isótopos são radioativos. Apesar de livros textos mais antigos destacarem debates 

quanto à inclusão do La ao grupo dos lantanídeos (GREENWOOD; EARNSHAW, 

2012), de acordo com a IUPAC, os elementos classificados como lantanídeos são La, 

Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb e Lu (DAMHUS; HARTSHORN; 

HUTTON, 2005). 

Elementos TRs, constituídos dos lantanídeos mais o escândio (Sc) e ítrio (Y), 

são muito importantes para o mercado global (CHARALAMPIDES et al., 2015), de maneira 

que a World Trader Organization avalia uma considerável possibilidade de ocorrência 

de conflitos comerciais devido à escassez desses elementos em determinadas nações 

(WORLD TRADE ORGANIZATION., 2010). 

Os lantanídeos (Ln) são conhecidos por emitirem luz (luminescência) com 

bandas significativamente estreitas. A luminescência ocorre quando a diferença de 

energia entre os níveis envolvidos na transição corresponde a cinco ou mais fônons, 

com a garantia que o estado excitado seja suficientemente populado e que não ocorra 

desativação não-radiativa (TANNER, 2011). Visto que a maior parte dos íons 

lantanídeos apresentam pequenas seções de choque de absorção de fótons, devido 

as pequenas magnitudes das forças de oscilador comparado a grande parte dos 

demais elementos químicos (HATANAKA; YABUSHITA, 2009; IRFANULLAH; 

IFTIKHAR, 2011), a transferência de energia (TE) não-radiativa foi consolidada como 

uma abordagem bem-sucedida para obtenção de luminescência do íon lantanídeo, 

por meio da absorção por ligantes ou íons, que sejam melhores absorvedores, que 

atuam como sensibilizadores do íon lantanídeo (NETO et al., 2022). 

Processos de TE ocorrem quando a absorção e a emissão de energia não 

ocorrem no mesmo centro (AUZEL, F. E., 1973; AUZEL, François, 2004). Os 

processos de conversão ascendente de energia (CAE) compreendem mecanismos 

nos quais os fótons emitidos possuem maior valor de energia em comparação aos 

fótons absorvidos (WANG, Fei et al., 2018). A CAE por TE consiste em um processo 
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não-linear, primeiramente identificado por Auzel (AUZEL, 1966), no qual a emissão de 

um fóton com maior energia do que o fóton de excitação ocorre mediante sucessivas 

etapas de transferência de energia entre as espécies. Em sistemas íon-íon, esse 

processo envolve um íon sensibilizador (S) e um íon ativador (A). O íon S possui a 

função de absorver radiação proveniente da fonte de excitação, enquanto o íon A tem 

a função de receber a energia oriunda da excitação do íon S, e de maneira geral 

provocar luminescência. A matriz hospedeira também pode atuar como um 

sensibilizador (GUPTA, I. et al., 2021; GUPTA, S. K.; KADAM; PUJARI, 2020). 

Denota-se por luminóforos (ou fósforos) o conjunto: matriz hospedeira, 

sensibilizador e ativador. Luminóforos são materiais luminescentes capazes de 

converter energia absorvida em radiação na região visível do espectro, ou ainda 

ultravioleta e infravermelho próximo, sem sofrer incandescência ou aquecimento 

elevado. Partículas de luminóforos normalmente apresentam tamanhos entre 1 µm e 

1 nm (GUPTA, I. et al., 2021). As aplicações tecnológicas dos luminóforos e dos íons Ln 

são diversas, incluindo diodos emissores de luz branca, lâmpadas LED em três cores, 

cintiladores, displays (HÖPPE, 2009), módulos fotovoltaicos (GHAZY et al., 2021; HÖPPE, 

2009; LEI; LI, Yongfang; JIN, Z., 2022), bioimagem (XIANG, G. et al., 2021), células de bateria 

(YANG, S.-O. et al., 2022), terapia fotodinâmica (GONG et al., 2023), impressão 3D (GAO, 

H. et al., 2023), sistemas de anti-falsificação, criptografia (LUO et al., 2023; SILVA, J. Y. R. 

et al., 2019; WANG, C. et al., 2019; WANG, W. et al., 2023a, 2023b; XIANG, G. et al., 2020), e 

nanotermometria (CARLOS, Lu\’\is Dias; PALACIO, 2015). Este último tipo de 

tecnologia tem sido utilizada no desenvolvimento de termômetros tecnologicamente 

mais avançados, aplicáveis a micromateriais ou até mesmo nanomateriais, onde o 

contato é remoto (JIN, X. Y. et al., 2022). 

O mercado mundial entende que o uso de íons lantanídeos em tecnologia é 

abrangente. Materiais de conversão ascendente são extensivamente produzidos e/ou 

discutidos na literatura científica (AUZEL, François, 2004, 2020; CHENG et al., 2022; 

CHIVIAN; CASE; EDEN, 1979; DONG et al., 2016; DONG; SUN, L.-D.; YAN, 2013; HAASE; 

SCHÄFER, 2011; HEHLEN; FREI; GÜDEL, Hans U, 1994; JOSHI; KUMAR; RAI, 2009a; MA, C. et 

al., 2017; NEXHA et al., 2022; RIVERA-LÓPEZ; TORRES; COS, DE, 2021; SKRZYPCZAK et al., 2014; 

SUO et al., 2018; XIANG, G. et al., 2020; ZHOU, Jing et al., 2015; ZHOU, X. et al., 2014). 

Alguns íons Ln possuem níveis termicamente acoplados que podem ser 

utilizados em termometria óptica, uma vez que esses níveis emitem de acordo com a 
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temperatura (SUTA; MEIJERINK, 2020; WANG, C. et al., 2022; XIANG, G. et al., 2020). Níveis 

termicamente acoplados denotam níveis eletrônicos que se encontram em equilíbrio 

térmico e, portanto, as populações desses níveis satisfazem a distribuição de 

Boltzmann (SUTA; MEIJERINK, 2020). Por exemplo, o íon Er3+ apresenta níveis 

excitados 2H11/2 e 4S3/2 que são acoplados termicamente, com diferença de energia de 

aproximadamente 700 cm−1 (MARTINS et al., 2021) e a razão entre as intensidades das 

emissões 2H11/2 → 4I15/2 e 4S3/2 → 4I15/2 tem sido muito usado em termometria 

luminescente (XIANG, G. et al., 2020). 

O íon Yb3+ apresenta nível excitado 2F5/2 com energia, relativa ao estado 

fundamental 2F7/2, ~10000 cm−1, que demonstra elevada ressonância (CHENG et al., 

2022) com o nível 4I11/2 do íon Er3+. Ainda, como a seção de choque de absorção da 

transição Yb3+ 2F7/2 → 2F5/2 é elevada, e o estado excitado 2F5/2 apresenta tempo de 

vida longo comparado aos valores típicos das transições Ln3+ 4f-4f (LUPEI, A. et al., 

1998; TAMRAKAR; BISEN; BRAHME, 2015), o íon Yb3+ tornou-se um sensibilizador do íon 

Er3+ extensivamente usado (LIU, Z.; QIN; LIU, Xiaogang, 2022), sendo o par de íons 

Yb3+,Er3+ um dos mais utilizados em processos de conversão ascendente de energia 

(CAE) (RIVERA-LÓPEZ; TORRES; COS, DE, 2021; WANG, W. et al., 2023a; XIANG, G. et al., 2020, 

2021). Os estudos mostram que os níveis 2H11/2 e 4S3/2 do Er3+ satisfazem distribuição 

de Boltzmann. Isso é relevante, pois essa distribuição pode ser usada para avaliar 

como a emissão desses níveis é afetada pela temperatura (WANG, C. et al., 2022), 

também sendo possível o processo inverso, que consiste na determinação da 

temperatura por meio da luminescência, possibilitando a construção de um 

termômetro primário. Para isso, se utiliza parâmetros termométricos como por 

exemplo o LIR (do Inglês, Luminescence Intensity Ratio), isto é, a razão entre as 

intensidades de luminescência (SUTA; MEIJERINK, 2020). Os termômetros primários 

são classificados em dois grupos. Os termômetros primários-T (do Inglês: Primary-T), 

pois são calibrados em uma dada temperatura conhecida (ou de referência). Nessa 

temperatura, obtém-se a razão entre as áreas das bandas de emissão envolvendo 

níveis eletrônicos que estejam em equilíbrio térmico entre si. Uma equação linear é 

usada para predizer valores de temperatura dada uma determinada emissão do Ln3+. 

Os termômetros primários-S (do inglês: Primary-S) envolve a obtenção de um fator 

pré-exponencial na equação termométrica a partir de medidas espectrais (SOUZA, K. 

M. N. DE et al., 2022). 



17 

 

Quando os estados envolvidos no FIR estão acoplados termicamente e seguem 

a distribuição de Boltzmann, é possível obter uma expressão analítica para a equação 

termométrica, da qual pode-se obter a sensibilidade térmica relativa. Isso permite 

determinar os intervalos de temperatura adequados para esse tipo de parâmetro 

termométrico, dessa maneira determinando a eficácia do termômetro primário (SUTA; 

MEIJERINK, 2020). Termômetros primários são determinados por uma equação 

termométrica explícita entre a grandeza medida (parâmetro termométrico) e a 

temperatura, de forma que as constantes matemáticas presentes na equação não 

sejam significativamente dependentes da temperatura. Nesse sentido, termômetros 

primários não necessitam de calibração recorrente (DRAMIĆANIN, 2018). 

A análise da relação entre fluorescência e a temperatura pode ser realizada 

utilizando a razão entre as intensidades de luminescência dos níveis emissores que 

estão acoplados termicamente (SUTA; MEIJERINK, 2020). As intensidades de 

luminescência são diretamente proporcionais às populações de seus níveis emissores 

(DIESTLER et al., 1976). Para determinar as populações desses níveis pode-se utilizar 

algoritmos computacionais construídos para solução das equações de taxa que 

representam a dinâmica do sistema, consistindo em Equações Diferenciais Ordinárias 

(EDO) acopladas. O uso de equações de taxa tem fornecido avanços significativos na 

compreensão da cinética das populações nos estados excitados e suas 

consequências nas propriedades luminescentes. Por exemplo, Kienle e colaboradores 

(KIENLE; LEE, M. P.; KOHSE-HÖINGHAUS, 1996), desenvolveram um sistema de 

equações de taxa para simular o efeito das taxas de transferência de energia na 

fluorescência induzida por laser em grupos OH, com compatibilidade entre os 

resultados obtidos e as observações experimentais. Outros exemplos do uso de 

sistemas de equações de taxa incluem: lasers baseados em pontos-quânticos 

(GRILLOT et al., 2009; HUANG, H.; DEPPE, 2001), aplicação na população e depopulação 

de armadilhas de isótopos de hidrogênio em materiais de tungstênio (HODILLE et al., 

2015), CAE envolvendo Yb3+,Er3+ hospedados em vidro de borosilicato (SHANFENG et 

al., 2010), e recentemente na dinâmica de CAE em YVO4: Yb3+,Er3+ (SHYICHUK et al., 

2016). Nesse último caso, após obter valores para as taxas de transição e de 

transferência de energia, se utilizou o método numérico de Runge-Kutta de quarta 

ordem para obtenção da dependência temporal das populações dos níveis eletrônicos 

desses íons, quando submetidos a uma fonte de excitação, até atingirem o estado 
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estacionário. O método de Runge-Kutta é uma derivação do método de Euler para 

resolução numérica de sistemas de EDO (BUTCHER, 2015; PRESS, 2007). 

Esse trabalho foi construído a partir de um algoritmo computacional para 

resolução numérica de sistemas de equações diferenciais parciais não-lineares por 

meio do método numérico Runge-Kutta de quarta ordem implementado em linguagem 

de programação Fortran, desenvolvido para sistemas baseados em LiYF4: Yb3+,Er3+ 

com inclusão de 8 (oito) níveis eletrônicos ao todo, sendo 2 (dois) níveis pertencentes 

ao Yb3+ e 6 (seis) níveis pertencentes ao Er3+. Para introdução dos processos de TE 

entre íons Ln3+, foram discutidos os desenvolvimentos e conceitos das teorias de TE 

com foco em sistemas íon-íon. Os principais processos de conversão ascendente de 

energia (CAE) serão apresentados com ênfase naqueles envolvendo TE, que são 

dominantes nos sistemas Yb3+,Er3+. Em seguida, serão detalhados os aspectos 

relevantes relacionados aos estados eletrônicos em equilíbrio térmico e seus usos 

para construção de termômetros primários. As análises realizadas a partir de 

diferentes simulações serão apresentadas, e por fim, conclusões acerca do estudo 

realizado serão discorridas, juntamente com sugestões e propostas de estudos 

futuros. 
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2 OBJETIVOS 

2.1 OBJETIVO GERAL 

Este trabalho objetiva analisar a dependência temporal dos processos de CAE 

em sistemas LiYF4: Yb3+,Er3+ com ênfase nos efeitos das taxas não-radiativas nas 

populações dos estados acoplados termicamente. 

Para atingir esse objetivo geral, os seguintes objetivos específicos foram 

adotados: 

 

2.2 OBJETIVOS ESPECÍFICOS 

• Construir sistema de equações diferenciais parciais não-lineares 

(equações de taxa) para os níveis eletrônicos considerados em LiYF4: Yb3+,Er3+. 

• Determinar as taxas de decaimento não-radiativo de acordo com modelo 

de relaxação por multifonons. 

• Determinar a taxa do nível menos energético termicamente acoplado 

com base no balanceamento das equações de taxa para esses níveis em estado 

estacionário, e com a estatística de Boltzmann. 

• Estudar a evolução temporal das populações dos níveis considerados 

que descrevem a luminescência do sistema quando submetido à diferentes 

densidades de potência de excitação e composições percentuais do sensibilizador 

Yb3+. 

• Estudar a evolução temporal das populações dos níveis considerados 

que descrevem a luminescência do sistema para diferentes composições percentuais 

do sensibilizador Yb3+. 

• Avaliar a lei de potência e diferentes condições nas quais surgem 

anomalias. 

• Determinar a equação do parâmetro termométrico para o sistema 

utilizando regressão linear. 

• Investigar os efeitos das taxas de transição nas populações dos níveis 

termicamente acoplados. 

• Avaliar o comportamento das intensidades de emissão para crescentes 

concentrações do íon sensibilizador (Yb3+). 
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• Determinar os desvios da temperatura medida a partir do uso da 

distribuição de Boltzmann em comparação às temperaturas usadas para os cálculos 

das taxas de decaimento não-radiativo. 
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3 FUNDAMENTAÇÃO TEÓRICA 

Os processos de transferência de energia (TE) compreendem mecanismos em 

que a absorção e a emissão de energia não ocorrem no mesmo centro (ZHOU, Jing et 

al., 2015). Em um sistema íon-íon, a TE radiativa se caracteriza pela emissão de fótons 

pelo sensibilizador (S), que são absorvidos pelo ativador (A). Já que a emissão de 

fótons ocorre de acordo com o tempo de vida radiativo do estado metaestável de S, a 

emissão de fótons não depende da concentração de A. Esse tipo de transferência 

ocorre a partir da interação entre os fótons e o material e, portanto, pode ser 

significativamente dependente da estrutura cristalina do material, da sobreposição 

entre o espectro de emissão do íon sensibilizador e o espectro de absorção do íon 

ativador, da estrutura do espectro de emissão do íon sensibilizador e da 

correspondente modificação pela concentração do íon ativador (AUZEL, François, 

2004).  

Porém, esse tipo de transferência de energia não é significativamente operativo 

entre íons lantanídeos, comumente tratados na forma trivalente Ln3+, devido às suas 

pequenas forças do oscilador (~10−6) associadas às transições 4f-4f (HATANAKA; 

YABUSHITA, 2009; IRFANULLAH; IFTIKHAR, 2011). Forças do oscilador determinam 

as intensidades das bandas de absorção e de emissão (HELLER, 2018; 

JØRGENSEN, Christian Klixbüll, 2015). Dessa maneira, exceto no caso dos íons Nd3+ 

(ZOU et al., 2009) e Yb3+ (AUZEL, F; JEAN-LOUIS; TOUDIC, 1989), os demais íons 

Ln3+ não são bons absorvedores de fótons. As forças de oscilador e as intensidades 

espectrais para diferentes transições eletrônicas 4f-4f dos íons Ln3+ são temas 

bastante explorados, tanto em abordagens teóricas, como também em abordagens 

experimentais (AUZEL, F; JEAN-LOUIS; TOUDIC, 1989; BORD; COWLEY; NORQUIST, 

1997; CARNALL, W T; FIELDS; RAJNAK, K, 1968; DODSON; ZIA, 2012; PALMERI et 

al., 2000; SHYICHUK et al., 2016; WILLIAMS, G. M. et al., 1989). 

 

3.1. MODELOS DE TE ANTECEDENTES AO DESENVOLVIMENTO DA 

TEORIA DE JUDD-OFELT 

As pequenas forças do oscilador associadas à maioria das transições 4f-4f dos 

íons lantanídeos tornam o processo de TE não-radiativo operativo na maior parte das 

circunstâncias (NETO et al., 2022). Fӧrster (FORSTER, 1946; FÖRSTER, 1960) 
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desenvolveu trabalhos sobre processos de TE em compostos orgânicos. A teoria 

desenvolvida por Fӧrster envolve transições permitidas por dipolo elétrico entre 

moléculas orgânicas. Para TE entre íons lantanídeos, a teoria foi generalizada e 

particularizada, partindo-se da regra de ouro de Fermi e utilizando métodos 

específicos aos níveis 4f para tratar a contribuição eletrônica para a taxa de TE. Assim, 

as taxas de transição são dadas por (ZHANG, J.-M.; LIU, Y., 2016): 

𝑤 =
d𝑃

d𝑡
=
2𝜋

ℏ
|𝑔(𝐸b)|

2𝜌(𝐸b) (Eq. 1.1) 

em que, 𝑃 é a probabilidade de transição, 𝜌(𝐸b) a densidade de estados, que indica a 

quantidade de níveis eletrônicos que possuem energia dentro de certos limiares, e 

|𝑔(𝐸b)|
2 o quadrado do elemento de matriz para a transição, onde 𝐸b corresponde ao 

valor esperado para energia de transição. 

Dexter (DEXTER, 1953) estendeu a teoria de Fӧrster, e abrangeu sólidos 

inorgânicos, na época caracterizados por transições proibidas por dipolo elétrico. 

Dexter desenvolveu expressões para taxas de TE associadas às interações entre as 

densidades eletrônicas de S e de A, considerando os mecanismos de interação do 

dipolo elétrico de S com o quadrupolo elétrico de A. Além disso, Dexter também 

considerou a perturbação associada aos efeitos de troca resultante da propriedade de 

indistinguibilidade das partículas quânticas (para esse caso, indistinguibilidade dos 

elétrons).  

 

3.2 MODELOS DE TE QUE SUCEDEM O DESENVOLVIMENTO DA TEORIA 

DE JUDD-OFELT 

 

Em 1962, Judd (JUDD, Brian R, 1962) e Ofelt (OFELT, 1962) desenvolveram, 

independentemente, uma teoria para explicar a origem das intensidades das 

transições 4f-4f em lantanídeos. Eles demonstraram que as transições por dipolo 

elétrico forçado são dominantes para os lantanídeos e envolvem a mistura, embora 

pequena, de configurações com paridades opostas, por exemplo 4fN-15d, com a 

configuração do nível fundamental 4fN (PAL, I. et al., 2011). Este mecanismo de 

transição 4f-4f é denominado de Dipolo Elétrico Forçado, DEF (do inglês, Forced 

Electric Dipole), e a mistura dos estados com paridades opostas é mediada pelos 

termos com paridades ímpares do campo ligante (KUSHIDA, 1973; OFELT, 1962). 
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Pouco tempo depois, Jørgensen e Judd (JØRGENSEN, Chr Klixbüll; JUDD, B R, 

1964) identificaram uma participação significativa de um outro mecanismo, bastante 

conhecido pela denominação Acoplamento Dinâmico, AD (do inglês, Dynamic 

Coupling), em que os campos elétricos oscilantes da radiação eletromagnética e da 

densidade eletrônica dos ligantes interagem entre si, gerando um campo resultante 

oscilante que contribui para a mediação das transições 4f-4f nos íons lantanídeos. 

Estas formulações que descrevem quantitativamente as intensidades das transições 

4f-4f em lantanídeos são denominadas de teoria de Judd-Ofelt, e um aspecto 

relevante precisa ser enfatizado: todas as intensidades das transições 4f-4f para o 

lantanídeo num dado composto dependem de três grandezas 2, 4 e 6, 

denominadas de parâmetros de intensidade ou, ainda, parâmetros de Judd-Ofelt. 

Logo, os modelos teóricos-computacionais que descrevem as intensidades 4f-4f 

buscam determinar os parâmetros de intensidade, enquanto as análises 

experimentais tentam obter os três parâmetros que melhor ajustam os espectros. Os 

K, com k = {2, 3, 6} possuem duas principais contribuições: FED e AD. 

Experimentalmente, não é possível separar as quantidades relativas a cada 

contribuição através do ajuste aos espectros. O cálculo das taxas de transição 4f-4f, 

por meio das expressões desenvolvidas nesta teoria deve considerar apenas Ω𝐾
A,D

 

teóricos calculados considerando unicamente a contribuição do DEF, caso contrário 

as quantidades iriam ser duplamente contabilizadas. Portanto, o uso de valores 

fenomenológicos (experimentais), obtidos por meio de dados espectrais, para cálculo 

dos Ω𝐾
A,D

, seria errôneo ao se aplicar no cálculo de taxas de transição dentro do escopo 

da teoria de Judd-Ofelt, visto que ambas as contribuições, FED e AD, são 

contabilizadas quando se obtém K’s por meio de dados espectrais (NETO; MOURA 

JR; MALTA, Oscar L, 2019).  

Vários anos após o desenvolvimento da teoria de Judd-Ofelt, começou-se a 

desenvolver modelos para a descrição da transferência de energia não-radiativa nos 

escopos das interações Ligante-Ln e Ln-Ln. Estes modelos foram trabalhados a partir 

da expressão da regra-de-ouro de Fermi, Eq. 1.1, para determinar a probabilidade de 

transição utilizando perturbações eletrostáticas ou de Coulomb (repulsão eletrônica) 

e efeitos de troca. Para o caso íon-íon, o modelo desenvolvido por Kushida (KUSHIDA, 

1973) se destaca pela inclusão das contribuições relevantes das interações 

multipolares (e.g., dipolo-quadrupolo e quadrupolo-quadrupolo). Em 2008, Malta 
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(MALTA, O L, 2008) generalizou os modelos com a inclusão dos efeitos de blindagem 

nos cálculos das taxas de transferência de energia Ln-Ln. Esses efeitos foram 

importantes para obtenção de valores mais apropriados para essas taxas, por 

exemplo, inclusive taxas correspondentes ao mecanismo de troca desenvolvidos por 

Malta (MALTA, O L, 2008). Além disso, análises baseadas no cálculo dos elementos 

de matriz considerando os Hamiltonianos para o caso íon-íon, contrapuseram às 

formulações de Dexter sobre o comportamento exponencial simples associado à 

contribuição do mecanismo de troca nas taxas de TE (DEXTER, 1953). Outro aspecto 

que deve ser mencionado é que somente o mecanismo DEF é considerado na 

contribuição para o cálculo das taxas de transferência de energia não radiativa em 

escopos de Ligante-Ln e Ln-Ln. 

A taxa TE Ln-Ln pode ser fatorada em dois termos: eletrônico e vibracional. O 

termo eletrônico envolve as funções de onda do S e de A, no estado inicial e no estado 

final, enquanto o vibracional, fator 𝐹, expressa as condições de diferença de energia 

considerando o somatório sobre os fatores de Franck-Condon. O princípio de Franck-

Condon consiste em computar a intensidade das transições vibrônicas, que envolve 

diferentes estados vibracionais, considerando o recobrimento entre as funções de 

onda vibracionais nesses estados (NETO et al., 2022). A visão quântica sobre o 

princípio de Franck-Condon associa mudanças nos estados nucleares a partir de 

transições eletrônicas entre níveis eletrônicos distintos (COOLIDGE; JAMES; 

PRESENT, 1936). Foi mostrado que para TE não-radiativa envolvendo níveis 

eletrônicos com níveis de energia bastante separados, o fator 𝐹 é dominado por 

termos relacionados à distorção, enquanto em transições ópticas é dominado por 

termos correspondentes a deslocamentos de bandas (SIEBRAND, 1967). O fator 𝐹 

possui forte dependência com as diferenças de energia entre os níveis envolvidos na 

transição, ou nas transições, e com a temperatura. Além disso, também foi mostrada 

dependência do fator 𝐹 com as larguras de banda, seja do S ou do A (NETO et al., 

2022). 
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Figura 1. Dependência do fator F com a largura de banda e com os baricentros. O 

comportamento do fator F com a largura de banda e com os baricentros é representado pelo 

Eq. (1.2). a) Diagrama de níveis para o sistema Tb3+, Eu3+ representando a rota para 

7F1 → 5D1, 5D4 → 7F5. b) Espectro de emissão para o sistema, representando largura 

de banda (∆). 

O fator F pode ser definido conforme Eq. (1.2).  Os ℏ𝛾D e ℏ𝛾A consistem nos 

valores para largura meia-altura do doador e do ativador, respectivamente, enquanto 

Δ consiste na largura de banda. Ressalta-se que maiores valores para o fator F estão 

relacionados à maiores intensidades de transições vibrônicas. 
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    (Eq. 1.2) 

 

 

3.2.1 Taxas de transições não-radiativas 

 Além das taxas radiativas, a luminescência, em geral, e conversão ascendente 

por transferência de energia, em particular, dependem fortemente das taxas não-

radiativas de inúmeras transições que ocorrem nos íons lantanídeos. Por exemplo, a 

eficiência quântica de emissão é dada pela razão da taxa radiativa de emissão 

(espontânea) e a soma das taxas de decaimento radiativo e não-radiativo. Logo, a 

eficiência quântica de emissão está fortemente relacionada à taxa não-radiativa. 
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Portanto, modelos que permitem calcular as taxas não-radiativas de íons lantanídeos 

em uma certa matriz numa dada temperatura são muito relevantes (FONG; 

NABERHUIS; MILLER, 1972). Nesse contexto a Lei do gap de energia tem se 

destacado por sua simplicidade e acurácia (WEBER, M. J., 1968). Com isso, o modelo 

pode estimar as taxas de decaimento não-radiativo de um nível eletrônico a partir do 

número de fônons envolvidos na transição, da temperatura, da energia média 

envolvida na transição – que pode ser obtida pela Lei do gap –, e por fim, da taxa de 

decaimento espontâneo em 0 K (RISEBERG; WEBER, M. J., 1977). 

 As aplicações das suposições e aproximações fornecem a seguinte equação 

para a taxa não-radiativa entre dois níveis: 

𝑤nr = 𝐶𝑒−∆𝐸 ℏ⁄ 𝜔ef (Eq. 1.3) 

em que ∆𝐸 é a diferença de energia entre os dois níveis, ℏ𝜔ef é a energia associada 

à vibração efetiva da matriz (energia de fônon efetivo), e 𝐶 é uma constante positiva 

dependente do material. 

 A expressão pode ser reescrita de maneira mais simples: 

𝑤nr = 𝐶𝑒−𝛼ΔΕ         (Eq. 1.4) 

 Esta equação foi utilizada para computar taxas de transições não-radiativas 

provenientes de fônons associados à matriz hospedeira considerada neste estudo. 

Vale ressaltar que modelos de regressão linear foram utilizados há bastante tempo 

para obtenção de taxas de decaimento, de maneira pouco eficiente, dado os recursos 

tecnológicos da época, e pouco precisa, devido aos recursos computacionais (FONG; 

NABERHUIS; MILLER, 1972). 
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4 CONVERSÃO ASCENDENTE DE ENERGIA 

Os processos de conversão ascendente de energia (CAE) compreendem 

fenômenos em que fótons emitidos na luminescência possuem energia superior à 

energia dos fótons provenientes da fonte de excitação (WANG, Fei et al., 2018). Até 

1966, todos os tipos identificados de processos de TE entre íons lantanídeos 

envolviam o recebimento de energia pelo estado fundamental do íon A. Além disso, 

até esse período, apenas processos pouco eficientes de CAE eram conhecidos 

(AUZEL, François, 2004). 

Em 1966, processos de conversão ascendente por transferência de energia 

foram identificados por François Auzel em sistemas Yb3+,Er3+ (AUZEL, 1966). Após 

algumas semanas, também observou o mesmo tipo de transferência, mas com 

emissão no azul em sistemas Yb3+, Tm3+ (AUZEL, François, 2020). Os trabalhos 

iniciais evidenciaram que os processos de CAE são mais eficientes do que os 

processos de absorção do estado excitado (AEE) (AUZEL, F; DEUTSCHBEIN, 1969; 

AUZEL, F. E., 1973). Em um típico experimento de AEE, o íon A é promovido para um 

segundo estado excitado devido a absorção sequencial de fótons provenientes da 

fonte de excitação - Tabela 1 (a) (DONG; SUN, L.-D.; YAN, 2013; WANG, Y. et al., 2018). 

Esse mecanismo possui bastante restrição, pois como as forças do oscilador de íons 

Ln3+ são muito pequenas, a absorção da radiação não é eficiente (HATANAKA; 

YABUSHITA, 2009; IRFANULLAH; IFTIKHAR, 2011). Além de que o primeiro estado 

excitado tem de apresentar tempo de vida longo e a fonte de excitação tem que ser 

altamente potente. Para que a AEE tenha possibilidade de ser observada, deve-se 

utilizar concentrações reduzidas de íons dopantes, caso contrário ocorre maior 

probabilidade de redução das intensidades de emissão devido aos processos de 

relaxação cruzada (RC) (DONG; SUN, L.-D.; YAN, 2015). Em um cenário de RC 

envolvendo íons S e A, tal que S e A são íons de mesma espécie, o íon S se 

encontraria no segundo nível excitado, enquanto o íon A se encontraria no nível 

fundamental de energia. Nesse caso, o íon S transfere energia não radiativamente 

para o íon A, que, no cenário considerado, os níveis eletrônicos de ambos os íons, ao 

fim dessa etapa são equivalentes (AUZEL, François, 2004). 

Por outro lado, processos CAE entre íons populam estados excitados do íon A 

por meio de TE não-radiativa pelo estado excitado do íon S - Tabela 1 (b). A TE não-

radiativa ocorre entre dois íons quando seus níveis de energia possuem ressonância 

suficiente de maneira que a excitação de um deles seja transferida para o outro antes 
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de ocorrer a de-excitação do íon que transfere essa energia. As probabilidades de 

transferência de energia não-radiativa possuem dependência com o grau de interação 

entre os íons. Naturalmente, os processos de TE devem envolver níveis com 

pequenas diferenças de energia. A TE assistida por fônons é comum quando não há 

ressonância completa entre os níveis de S e de A, de forma que os fônons no meio 

material são usados para fornecer/ganhar energia para que a transição eletrônica 

ocorra de acordo com a conservação de energia (AUZEL, F. E., 1973). 

A luminescência cooperativa (LC) também constitui um tipo de processo CAE, 

Tabela 1 (c), em que dois íons sensibilizadores estão envolvidos na transferência de 

energia para o ativador. Tipicamente, processos cooperativos possuem eficiência de 

quatro ou cinco ordens de magnitude inferior aos processos de CAE. O análogo da 

LC consiste na absorção cooperativa (AC). Ambos os processos são associados aos 

elementos de matriz com dois centros (AUZEL, François, 2004): 

𝐸𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑑𝑎 = ⟨𝜓1,2
fund|𝐷1

(1) + 𝐷2
(1)|𝜓1,2

exc⟩     (Eq. 1.5) 

em que 𝐷1
(1)

 e 𝐷2
(1)

 correspondem aos operadores de dipolo elétrico para o íon 1 e 

para o íon 2, respectivamente, 𝜓1,2
fund e 𝜓1,2

exc representam os estados fundamental e 

excitado do par de íons 1 e 2. Em geral, processos cooperativos não contribuem de 

forma relevante para fluorescência, exceto em condições em que há formação de 

clusters de sensibilizadores, por exemplo, na situação de agregados de Yb3+ ao redor 

do íon ativador (AUZEL, François, 2004). 

Os processos de conversão ascendente por migração de energia (CAME) – 

Tabela 1 (d) - são relevantes para o desempenho do material, e até mesmo décadas 

atrás, se foi observada como dominante em baixas concentrações do íon dopante, por 

exemplo, em Cs3Lu3Br9:1%Er3+ (HEHLEN; FREI; GÜDEL, Hans U, 1994). Esses 

processos caracterizam-se pela migração da excitação ao longo da rede iônica do 

material (WANG, Y. et al., 2018), tendo início com o íon S promovido para seu estado 

excitado. Em seguida, S transfere essa energia para um íon acumulador. Esse 

processo se repete de modo que um nível altamente excitado do íon acumulador seja 

populado. O íon acumulador transfere essa energia para o íon migrador. Finalmente, 

a energia é absorvida pelo íon A, que emite radiação na forma de luminescência 

(HOLBAN; GRUMEZESCU, 2016). A taxa de migração de energia pode ser superior 

à taxa de decaimento espontâneo do íon S ou à taxa de TE entre os íons S e A, ambos 

casos em situações de elevadas concentrações do íon S. Isso torna a avaliação do 
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regime de migração rápida relevante para o desempenho do material luminescente 

(LIU, H. et al., 2018). 

O mecanismo de avalanche de fótons (AF) consiste em um tipo de processo 

de conversão ascendente, que foi observado primeiramente em cristais de LaCl3 e 

LaBr3 dopados com Pr3+. Para esse sistema, tipicamente o nível metaestável 3H4 do 

Pr3+ é excitado por radiação próxima de 4,5 µm. Em seguida, a aplicação de uma fonte 

laser específica promove o íon Pr3+ para o nível 3P1, sendo observado um aumento 

de luminescência por várias ordens de magnitude quando a exposição ao laser ocorre 

em uma intensidade um pouco acima de um valor crítico. Acima desse valor, se 

observa redução significativa da transmissão de radiação pela amostra (CHIVIAN; 

CASE; EDEN, 1979). A fluorescência a partir do nível metaestável 3P1 resulta no nível 

metaestável 3H6. Subsequentemente, ocorre uma relaxação cruzada (RC) (3H6 + 3H4) 

→(3H5 + 3H5). Os níveis 3H5 resultantes da RC podem absorver a radiação ressonante, 

estabelecendo um ciclo no qual o estado emissor 3P1 é facilmente populado, 

provocando fortes emissões – Tabela 1 (e) (AUZEL, François, 2004)  

 

Tabela 1. Diferentes tipos de processos de conversão ascendente de energia. 

(a) Absorção do estado excitado (AEE). Conversão ascendente de energia (b) por 

transferência de energia (CAE), (c) por luminescência cooperativa (LC) e (d) por 

migração de energia (CAME). (e) Avalanche de fótons (AF). Os esquemas (a), (b), (c) 
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e (d) foram produzidos com base em (WANG, Y. et al., 2018), enquanto (e) foi produzido 

baseado em (CHIVIAN; CASE; EDEN, 1979) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

A participação do mecanismo de CAE na dinâmica de sistemas luminescentes 

tem sido bastante comum. Tipicamente, o mecanismo de CAE é consideravelmente 

predominante comparado ao mecanismo AEE, por exemplo em: Yb3+,Er3+ e Yb3+, 

Tm3+ (AUZEL, François, 2020), Nd3+ (íon 1), Nd3 (íon 2) (ZHOU, X. et al., 2014) em 
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matrizes hospedeiras com baixas energias de fônons, além de sistemas triplamente 

dopados, por exemplo com os íons Tm3+, Yb3+, Tb3+ (MORAIS, DE et al., 2023). 

A explicação para as observações e escolhas desses pares de íons lantanídeos 

está nos diagramas dos seus níveis de energia apresentados na Figura 2. A figura é 

denominada de diagrama de Dieke (DIEKE, 1968), que foi estendido com base em 

cálculos e novas medições experimentais (CARNALL, W Tꎬ et al., 1989). Recentemente, 

se utilizou radiação ultravioleta em vácuo para análise das transições 

intraconfiguracionais envolvendo elevados níveis de energia dos íons Ln3+ (WEGH et 

al., 2000). 

 

Figura 2. Diagrama de níveis de energia para os íons Lantanídeos, 

academicamente conhecido como diagrama de Dieke. Os principais níveis de 

energia de todos os íons estão destacados, com os principais níveis e caminhos de 

transferência de energia envolvendo até três fótons (MA, C.-G. et al., 2016). 

 

Fonte: (MA, C.-G. et al., 2016) 

 

Figura 3. Diagrama de níveis de energia dos íons (a) Yb3+,Er3+ e Tm3+, com os 

principais níveis e caminhos de transferência de energia (b) e (c) envolvendo até 

três fótons. 
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Fonte: (CESARIA; BARTOLO, DI, 2019) 

 

É possível notar a quase-ressonância entre os níveis do Yb3+ e os do Er3+ e 

Tm3+ como apresentados na Figura 3. A denominação “níveis de energia 

ressonantes”, tradicionalmente significa que, para que a taxa de TE seja satisfatória 

para grande parte das aplicações, é necessário que as energias dos estados 

envolvidos na TE possuam magnitudes muito próximas. Originalmente, os processos 

de TE, identificados por Fӧrster, receberam denominação de Transferência de Energia 

Ressonante de Fӧrster, FRET (Do inglês: Fӧrster Resonante Energy Transfer), 

atualmente reduzido para Transferência de Energia Ressonante, RET (Do inglês: 

Resonante Energy Transfer). Os processos em que envolvem níveis com alta 

ressonância tendem a possuir alta eficiência, visto que a conservação da energia para 

esse caso pode ser satisfeita por meio de fônons acústicos ou ópticos (ANDREWS; 

CURUTCHET; SCHOLES, 2011).  

Para o estudo da dinâmica desses e de outros sistemas luminescentes, 

pesquisadores têm usado equações diferenciais de taxa. Em particular, Shyichuk e 

colaboradores (SHYICHUK et al., 2016) usaram um programa computacional para 

estudos da dinâmica em sistemas YVO4 Yb3+,Er3+. Eles utilizaram o método numérico 

de Runge-Kutta de quarta-ordem com um passo temporal adaptativo (MALTA, Oscar 

L; E SILVA; LONGO, R., 1999; PRESS, 2007), implementado em um programa 

computacional desenvolvido por Longo e colaboradores (FERREIRA et al., 2012; LONGO, 

R.; E SILVA; MALTA, Oscar L, 2000; MALTA, Oscar L; E SILVA; LONGO, R., 1999). A seguir, 
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alguns aspectos desse tipo de análise serão detalhados, assim como os princípios 

fundamentais que norteiam o uso de equações de taxa em luminescência. 

 

4.1  EQUAÇÕES DE TAXA TRATAR SISTEMAS DE CAE 

Equações diferenciais são bastante usadas para processos não-lineares 

luminescentes como por exemplo a CAE (LIU, H. et al., 2018). A primeira dedução 

detalhada e documentada de equações de taxa em luminescência com base em 

primeiros princípios para descrever a CAE foi realizada por Grant (GRANT, 1971). 

Foram estabelecidas considerações no uso dessas equações: (1) taxas de transição 

em que não haja conservação de energia são nulas; (2) a TE pode envolver S-A, S-

S, A-A, não apenas S-A; (3) é fundamental considerar TE cooperativa para sistemas 

que possuam níveis pouco ressonantes; (4) é considerada uma probabilidade 

conjunta de um íon 𝑖 em 𝑟𝑖 estar num estado 𝛼𝑖, em contrapartida à probabilidade 

simples de a partícula fixa em 𝑟𝑖 se encontrar no estado 𝛼𝑖; (5) as taxas de migração 

de energia são consideradas rápidas devido às concentrações significantes de íons S 

e A, de maneira que todos os sítios sejam adotados como equivalentes e que as taxas 

de TE sejam no sentido do S para o A. 

Com base em algumas considerações, Wright (DIESTLER et al., 1976) 

desenvolveu equações de taxa para sistemas contendo Yb3+,Er3+, cujo diagrama de 

níveis associado é mostrado na Figura 4. 

 

Figura 4. Diagrama dos principais níveis de energia dos íons Yb3+ e Er3+ envolvidos 

na conversão ascendente por transferência de energia (CAE) para emissão 

vermelha e verde do íon Er3+ (DIESTLER et al., 1976). 
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O tratamento realizado por Grant não considera o tempo finito na migração de 

energia (GRANT, 1971), associada à TE ao longo dos íons no cristal, sendo adequado 

para altas concentrações de S (DIESTLER et al., 1976). Zubenko complementou esse 

modelo, com inclusão de um tempo finito para ME por meio da substituição de um 

coeficiente de taxa de TE independente do tempo por uma taxa não-linear de 

supressão (quenching) (ZUBENKO et al., 1997). Em luminescência, a supressão 

(quenching) consiste em processos nos quais níveis excitados decaem não apenas 

de forma radiativa, mas também de maneira não-radiativa, promovendo redução nas 

emissões observadas (DRAMIĆANIN, 2018). 

Apesar de algumas limitações, equações de taxa baseadas no modelo de Grant 

(GRANT, 1971) são amplamente utilizadas (DIESTLER et al., 1976; LIU, H. et al., 2018), 

principalmente para o caso de conversão ascendente de dois fótons. De fato, 

resultados experimentais indicam que a difusão de íons Yb3+ em um sistema com 

pares Yb3+, Ho3+ torna a transferência direta dominante para concentrações de até 

mesmo 3% em mols de Yb3+ (WATTS; RICHTER, 1972). Dessa forma, assim como 

demonstrado na literatura, se espera que as equações de taxa descrevam 

adequadamente sistemas de CAE em íons Yb3+,Er3+ com concentração de Yb3+ 

aproximadamente igual ou superior à 3% em mols, devido a satisfação da 

aproximação que desconsidera o tempo finito associado à difusão da energia 

(DIESTLER et al., 1976). 
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Um exemplo de sistemas de equações de taxa pode ser encontrado em Longo et al 

(SHYICHUK et al., 2016): 

 

Figura 5. Diagrama dos níveis de energia e os processos no modelo para o sistema  

YVO4: Er3+, Yb3+ utilizado por Longo et al (SHYICHUK et al., 2016), rad, nrad, e ET. 

correspondem, respectivamente, taxa de transição radiativa, taxa de transição não-

radiativa, e ao processo de transferência de energia. As flechas apontam para os 

níveis finais do aceitador, enquanto as linhas verticais apontam para os níveis 

envolvidos na transição para correspondente etapa de TE. Adaptada de (SHYICHUK et 

al., 2016)  

 

 

 

Correspondente ao seguinte sistema de equações de taxa: 

 

⁡
𝑑𝜂1

𝑑𝑡
= −𝛷𝜂1 +

1

𝜏2
𝜂2 +𝑊52𝜂2𝜂3 +𝑊62𝜂2𝜂4 +𝑊72𝜂2𝜂5 −𝑊25𝜂1𝜂5 −𝑊26𝜂1𝜂6 −𝑊27𝜂1𝜂7

           (Eq. 1.6) 

𝑑𝜂2

𝑑𝑡
= −

𝑑𝜂1

𝑑𝑡
          (Eq. 1.7) 

𝑑𝜂3

𝑑𝑡
=

1

𝜏4
𝜂4 −𝑊52𝜂2𝜂3 +𝑊25𝜂1𝜂5 + (𝑊65𝜂4𝜂5 +𝑊75𝜂5𝜂5)   (Eq. 1.8) 

𝑑𝜂4

𝑑𝑡
= −

1

𝜏4
𝜂4 +𝑊5𝜂5 −𝑊62𝜂2𝜂4 +𝑊26𝜂1𝜂6 − (𝑊65𝜂4𝜂5)   (Eq. 1.9) 
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𝑑𝜂5

𝑑𝑡
= −𝑊5𝜂5 +𝑊6𝜂6 +𝑊52𝜂2𝜂3 −𝑊72𝜂2𝜂5 −𝑊25𝜂1𝜂5 +𝑊27𝜂1𝜂7  

 −(𝑊65𝜂4𝜂5 + 2𝑊75𝜂5𝜂5)       (Eq. 2.0) 

𝑑𝜂6

𝑑𝑡
= −𝑊6𝜂6 +𝑊7𝜂7 +𝑊62𝜂2𝜂4 −𝑊26𝜂1𝜂6 + (𝑊65𝜂4𝜂5)   (Eq. 2.1) 

𝑑𝜂7

𝑑𝑡
= −𝑊7𝜂7 +𝑊72𝜂2𝜂5 −𝑊27𝜂1𝜂7 + (𝑊75𝜂5𝜂5)     (Eq. 2.2) 

 

Foi usado como sistema de equações de taxa para predição das populações 

dos níveis eletrônicos considerados, para o sistema YVO4: Er3+, Yb3+ (SHYICHUK et al., 

2016). Os resultados obtidos por meio das simulações de pulso contínuo e de pulso 

excitatório geraram resultados condizentes com dados experimentais associados à 

dependência da intensidade da CAE em função da densidade de potência da fonte de 

excitação. Para maioria das aplicações, a resolução numérica ideal dessas equações 

de taxa é obtida após estabelecida condição de estado-estacionário, nesse caso, 

𝑑𝑛1

𝑑𝑡
= 0. 

Alguns métodos numéricos são possíveis na resolução dessas equações de 

taxa, como o método de Runge-Kutta (RK) utilizado em (SHYICHUK et al., 2016). Os 

métodos numéricos de RK podem resolver problemas de valor inicial (PVI) de maneira 

eficiente. Em um PVI, definimos os valores iniciais – condição inicial do sistema – e 

acompanhamos como o sistema evolui de acordo com as condições fornecidas. 

Alguns outros métodos numéricos usados em aplicações de PVI incluem a 

extrapolação Richardson e o método preditor-corretor. Porém, os métodos de RK em 

geral se sobressaem por serem bastante rápidos e eficientes em relação aos demais. 

Em essência, os métodos de RK são fundamentados no método de Euler (PRESS, 

2007). 

O método de Euler se baseia na obtenção de valores para 𝑓(𝑥 + ℎ) a partir dos 

valores de 𝑓(𝑥) e de d𝑓(𝑥) d𝑥⁄ , possibilitando propagar ao longo da curva real de 

acordo com o passo ℎ adotado no cálculo. Para uma aproximação efetiva, é 

importante que o passo seja suficientemente pequeno (BISWAS et al., 2013). Uma 

abordagem mais adequada consiste no método de Euler aperfeiçoado, que 

corresponde a um método de RK de 2ª ordem (RK2). Esse método pode fazer uso ou 

da equação do ponto médio, ou da equação de quadratura do trapézio, permitindo que 

o erro seja reduzido significativamente. Porém, em geral os métodos de RK de 3ª 

ordem (RK3), assim como o correspondente de 4ª ordem (RK4), produzem resultados 
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mais satisfatórios (BUTCHER, 2015). Esses métodos numéricos tratam da resolução 

de equações com passos baseados no método de Euler, de maneira que apresentem 

máxima correspondência associada a uma expansão em séries de Taylor até uma 

maior ordem (PRESS, 2007).  

Os métodos de RK podem ser implementados com passos adaptativos. Esses 

passos são importantes, visto que podem ocorrer erros no processo numérico, algo 

considerado esperado em praticamente todas as aplicações. Esses passos são 

atualizados automaticamente conforme o decorrer do processamento computacional. 

Usualmente, o objetivo desse controle é adquirir uma acurácia satisfatória pré-

determinada, com o mínimo de custo computacional. Isso geralmente é obtido a partir 

do erro associado ao truncamento (PRESS, 2007). 

Os métodos de RK têm sido amplamente aplicados em teoria do caos (MEHDI; 

KAREEM, 2017; PARK, 2006a, 2006b; YASSEN, 2003), resolução de equações de 

Navier-Stokes (CARPENTER et al., 2005), problemas de otimização (ZHANG, Meilin et al., 

2023), entre outros (MEI; WU, X., 2017; MUNIZ et al., 2023). Ademais, RK4 também foi 

utilizado para tratar sistemas de equações de taxas não-lineares de forma eficaz 

(FERREIRA et al., 2012; LONGO, R.; E SILVA; MALTA, Oscar L, 2000; MALTA, Oscar L; E SILVA; 

LONGO, R., 1999). 

 

4.2  TERMOMETRIA BASEADA EM SISTEMAS COM NÍVEIS 

TERMICAMENTE ACOPLADOS. 

 

A razão entre as intensidades - LIR de dois níveis emissores acoplados 

termicamente pode ser considerada como parâmetro termométrico (∆⁡= 𝐿𝐼𝑅). Na 

notação de (BRITES; BALABHADRA; CARLOS, Lu\’\is D, 2019):  

∆⁡=
𝐼2
𝐼1
=
𝐴02𝑁2

𝐴01𝑁1
 (Eq. 2.3) 

em que 𝐴0𝑖 e 𝑁𝑖 correspondem, respectivamente, à taxa de emissão espontânea |𝑖⟩ →

|0⟩ e população do nível |𝑖⟩. 

Considerando níveis em equilíbrio térmico, isto é, acoplados termicamente na 

temperatura 𝑇, da distribuição de Boltzmann, se tem: 

𝑁2

𝑁1
=
𝑔2
𝑔1

e−∆𝐸 (𝑘𝑇)⁄  (Eq. 2.4) 
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em que 𝑔1 e 𝑔2 correspondem a degenerescência dos níveis 1 e 2, respectivamente, 

∆𝐸 é a diferença de energia (‘gap’) entre os baricentros das bandas associadas às 

transições |2⟩ → |0⟩ e |1⟩ → |0⟩ e 𝑘 é a constante de Boltzmann. 

Assim, pode-se reescrever o parâmetro termométrico ∆ como 

∆⁡=
𝐴02
𝐴01

𝑔2
𝑔1

e−∆𝐸 (𝑘𝑇)⁄ = 𝐵e−∆𝐸 (𝑘𝑇)⁄  (Eq. 2.5) 

Pode-se associar um parâmetro termométrico ∆0 a uma temperatura 𝑇0: 

∆0⁡= 𝐵e−∆𝐸 (𝑘𝑇0)⁄  (Eq. 2.6) 

semelhante ao discutido em (BRITES; BALABHADRA; CARLOS, Lu\’\is D, 2019). 

Então, fazendo o logaritmo da razão ∆ ∆0⁄  e reorganizando a equação para isolar a 

temperatura: 

1

𝑇
=

1

𝑇0
−

𝑘

∆𝐸
ln

∆

∆0
 (Eq. 2.7) 

Assim, a inclinação da curva de 1 𝑇⁄  versus ln(∆ ∆0⁄ ) fornece a diferença de 

energia ∆𝐸 entre os níveis termicamente acoplados. 

Como os íons lantanídeos podem ser colocados em nanopartículas ou em 

moléculas (complexos), pode-se utilizar a Eq. 2.8 na determinação da temperatura em 

escala nanométrica, isto é, da nanotermometria remota, uma vez que a interação com 

o sistema é via somente radiação eletromagnética. Logo, esse procedimento 

possibilita, em geral, que nanotermômetros ópticos não perturbem a medida da 

temperatura de forma significante (BRITES; BALABHADRA; CARLOS, Lu\’\is D, 

2019), o que os tornam muito importantes para tecnologia moderna. 

A equação termométrica Eq. 2.7 pode ser utilizada após obtenção do parâmetro 

termométrico numa temperatura em que o aquecimento do material provocado pela 

fonte de excitação seja mínimo. Apesar disso, é importante destacar que, ao se 

trabalhar numericamente com coeficientes de sistemas de equações excessivamente 

pequenos, ocorre instabilidade numérica, comprometendo resultados obtidos por 

simulações computacionais (PRESS, 2007; SUTA; MEIJERINK, 2020). Por outro lado, 

em nível experimental, esse procedimento é muito relevante para obtenção de 

parâmetros termométricos adequados (BRITES; BALABHADRA; CARLOS, Lu\’\is D, 2019; 

WANG, C. et al., 2022). 
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5 MÉTODOS 

5.1 EQUAÇÕES DE TAXA DA CAE LiYF4: Yb3+,Er3+ E RESOLUÇÃO 

NUMÉRICA. 

Um algoritmo previamente implementado em linguagem de programação 

Fortran por Longo e colaboradores (FERREIRA et al., 2012; LONGO, R.; E SILVA; 

MALTA, Oscar L, 2000; MALTA, Oscar L; E SILVA; LONGO, R., 1999) foi adaptado para 

esse estudo. O algoritmo resolve numericamente o sistema de equações de taxa a 

partir do método de RK4 com passo adaptativo (PRESS, 2007). Os arquivos de código 

Fortran utilizados foram nomeados como ucnum8.f, que remete a conversão 

ascendente de energia para um sistema de (oito) 8 níveis de energia. A extensão (.f) 

é utilizada para arquivos de código Fortran com formato fixo. Nesse estudo, para 

obtenção das populações temporais, um executável deve ser gerado por meio de um 

compilador Fortran, a partir de dois arquivos: ucnum8.f e ET.INP. A execução do 

executável gera (oito) 8 arquivos do tipo CSV, cada qual com duas colunas. A primeira 

consiste nos valores do tempo e a segunda consiste em valores para as populações 

eletrônicas absolutas. O tratamento dos dados e execução automatizada dos 

executáveis foi realizado utilizando Linguagem de Programação Python. Os códigos 

foram armazenados em um repositório no GitHub. 

Para considerar os níveis do Er3+ acoplados termicamente no processo de 

conversão ascendente por transferência de energia, os níveis considerados estão 

ilustrados no diagrama da Figura 6. 
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Figura 6. Diagrama de níveis de energia considerado na implementação do 

algoritmo computacional para resolução de equações de taxa. 𝜎 Corresponde à 

seção de choque do Yb3+. 

 

Com esse esquema de oito níveis, construiu-se o seguinte sistema de 

equações de taxa para descrever a luminescência: 

𝑑𝑛1
𝑑𝑡

= −(𝑘12𝑛1 + 𝑘42𝑛1𝑛4 + 𝑘82𝑛1𝑛8) + (𝑘21𝑛2 + 𝑘24𝑛2𝑛3 + 𝑘28𝑛2𝑛4) (Eq. 2.8) 

𝑑𝑛2
𝑑𝑡

= −(𝑘21𝑛2 + 𝑘24𝑛2𝑛3 + 𝑘28𝑛2𝑛4) + (𝑘12𝑛1 + 𝑘42𝑛1𝑛4 + 𝑘82𝑛1𝑛8) (Eq. 2.9) 

𝑑𝑛3
𝑑𝑡

= −(𝑘24𝑛2𝑛3) + (𝑘43𝑛4 + 𝑘53𝑛5 + 𝑘63𝑛6 + 𝑘73𝑛7 + 𝑘42𝑛1𝑛4) (Eq. 3.0) 

𝑑𝑛4
𝑑𝑡

= −(𝑘43𝑛4 + 𝑘42𝑛1𝑛4 + 𝑘28𝑛2𝑛4) + (𝑘24𝑛2𝑛3 + 𝑘82𝑛1𝑛8 + 𝑘54𝑛5) (Eq. 3.1) 

𝑑𝑛5
𝑑𝑡

= −(𝑘53𝑛5 + 𝑘54𝑛5) + (𝑘65𝑛6) (Eq. 3.2) 

𝑑𝑛6
𝑑𝑡

= −(𝑘63𝑛6 + 𝑘65𝑛6 + 𝑘67𝑛6) + (𝑘76𝑛7) (Eq. 3.3) 

𝑑𝑛7
𝑑𝑡

= −(𝑘73𝑛7 + 𝑘76𝑛7) + (𝑘67𝑛6 + 𝑘87𝑛8) (Eq. 3.4) 

𝑑𝑛8
𝑑𝑡

= −(𝑘87𝑛8 + 𝑘82𝑛8𝑛1) + (𝑘28𝑛2𝑛4) (Eq. 3.5) 
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em que 𝑛𝑖 ≡ 𝑛𝑖(𝑡) é a população do nível 𝑖, 𝑛̇𝑖 ≡ d𝑛𝑖 d𝑡⁄  é a sua taxa (derivada 

temporal), 𝑘𝑖𝑗 denota a taxa de transição do nível 𝑖 para 𝑗 (𝑖 → 𝑗), podendo ser taxa de 

decaimento radiativo, decaimento não radiativo, ou taxa de transferência de energia 

não radiativa, sendo 𝑘𝑖𝑖 = 0. Os valores para as taxas são fixos. A obtenção das 

expressões para as equações de taxa 𝑛̇𝑖 para um dado nível 𝑖 envolve somar todos 

os caminhos que populam o nível 𝑖 e subtrair aqueles que o despopulam. Para 

transições que envolve níveis no mesmo íon, os termos envolvem simplesmente o 

produto da taxa de transição e a população, e.g., −𝑘𝑖𝑗𝑛𝑖 e +𝑘𝑗𝑖𝑛𝑗. Entretanto, para 

aquelas transições entre níveis de íons distintos (TE), certos cuidados são 

necessários para incluir suas contribuições. Por exemplo, considere a contribuição da 

TE 2 → 4, 𝑘24, para a taxa da população do nível 2, 𝑛̇2. Como essa transição TE 

depopula o nível 2, então terá sinal negativo. Para determinar as populações 

envolvidas, o processo TE é tratado como a de-excitação do estado doador, nesse 

caso, 2 → 1 e a contribuição dependerá de 𝑛2, e a excitação do estado aceitador: 3 

→ 4, que dependerá de 𝑛3, fornecendo o termo −𝑘24𝑛2𝑛3. Ainda, o nível 2 é 

depopulado pela TE 2 → 8, 𝑘28, que envolve a de-excitação 2 → 1, proporcional a 𝑛2, 

e a excitação 4 → 8, proporcional a 𝑛4, originando o termo −𝑘28𝑛2𝑛4. Com esse 

procedimento é importante também verificar o balanço completo de todos os caminhos 

contribuindo para cada nível. A simulações considera condições iniciais nas quais as 

populações dos níveis fundamentais são equivalentes as concentrações dos íons Ln. 

Os níveis de energia para o Er3+ em matriz de LiYF4 foram obtidos na referência 

(GAMA, DA et al., 1981) e estão reproduzidos em Anexos. 

As taxas de decaimento não-radiativo foram calculadas com uso do modelo 

multifonons. Uma revisão sobre esse modelo pode ser encontrada nas referências 

(REISFELD, Renata; JORGENSEN, 2012; RISEBERG; WEBER, M. J., 1977). Em 

resumo, os cálculos envolvendo fônons são demasiados complexos, visto envolver 

estados intermediários e diferentes modos vibracionais, porém, é possível realizar 

uma média estatística dos elementos de matriz considerando a magnitude de 

acoplamento para o material da matriz hospedeira utilizado. Em geral, se considera a 

constante de acoplamento em 0 K, na qual é realizado o ajuste entre as energias 

envolvidas nas transições e as taxas de decaimento não-radiativo obtidas. Considera-

se que os processos multifonon dominantes envolvem o mínimo número de fônons 

produzidos. Finalmente, são considerados parâmetros que envolvem a contribuição 
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da temperatura, resultando em emissão estimulada de fônons térmicos, provocando 

aumento das taxas de relaxamento não-radiativas. Nesse desenvolvimento, pode-se 

obter uma equação definida a partir de parâmetros fenomenológicos: 

𝑊nr(𝑇) = 𝐶
𝑒−𝛼∆𝐸

[1 − 𝑒−𝜈̃ef (𝑘B𝑇)⁄ ]∆𝐸 𝜈̃ef⁄
 (Eq. 3.6) 

em que 𝐶 e 𝛼 são parâmetros característicos da matriz hospedeira, e ℏ𝜈̃ef consiste no 

número médio de fônons efetivos para a dinâmica do sistema (REISFELD, Renata; 

JORGENSEN, 2012). 

Os valores usados para os parâmetros fenomenológicos da matriz considerada 

– LiYF4 – foram encontrados nas referências (JENSSEN; LINZ, 1971; RISEBERG; 

WEBER, M. J., 1977) e serão apresentados posteriormente. As taxas 𝑘87, 𝑘76 e 𝑘65 

tiveram seus valores calculados dessa maneira. O valor para a taxa 𝑘67 foi obtido 

considerando o princípio de balanço detalhado entre os níveis 6 e 7, que será discutido 

posteriormente. 

Os valores das taxas de TE (𝑘24⁡, 𝑘42⁡𝑒⁡𝑘82) foram obtidos da referência (QIN et 

al., 2021). As concentrações usadas nas simulações foram equivalentes às 

concentrações utilizadas na referência (QIN et al., 2021), exceto no caso das análises 

associadas ao efeito da concentração nas curvas de população temporais. O valor da 

taxa de decaimento radiativo 2F5/2 → 2F7/2 do Yb3+ foi obtido em (SHYICHUK et al., 2016). 

 

Tabela 2. Valores das taxas de transição (em 𝑠−1) utilizadas no programa “ucnum8.f” 

para resolução numérica com o método de RK4. 

𝑘12 ∝ 𝜙 (a) 𝑘21 = 3,57 × 103 𝑘24 = 1,25 × 106 𝑘28 = 1,10 × 106 

𝑘42 = 7,9 × 104 𝑘43 = 6,00 × 103 𝑘53 = 1,00 × 103 𝑘54 = 5,00 × 102 

𝑘63 = 1,00 × 103 𝑘65 = 9,57 × 102 (b) 𝑘67 = 1,03 × 105 (b) 𝑘73 = 1,00 × 103 

𝑘76 = 3,23 × 106 (b) 𝑘82 = 2, 3 × 105 𝑘87 = 3,56 × 105 (b)  

(a) – Variou-se conforme densidade de potência usada, 𝜙. 
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(b) – Variou-se conforme temperatura utilizada. 

 

De maneira que: 

𝑘12 = 𝜙𝜎, 𝑘21 =
1

𝜏2
, 𝑘24 =⁡𝑊24, ⁡⁡⁡⁡⁡𝑘28 = 𝑊28 

𝑘42 = 𝑊42, 𝑘43 =
1

𝜏4
, 𝑘53 =

1

𝜏5
, 𝑘54 = 𝜉54, 𝑘63 =

1

𝜏6
 

𝑘65 = 𝜉65, 𝑘67 = 𝜖67, 𝑘73 =
1

𝜏7
, 𝑘76 = 𝜉76, ⁡𝑘82 =⁡𝑊82, 𝑘87 =⁡

1

𝜏8
 

em que 𝜙 é a densidade de potência da fonte de excitação, 𝜎 é a seção de choque do 

íon Yb3+ na matriz, 𝑊𝑖𝑗 é a taxa de transferência de energia do nível 𝑖 para 𝑗 entre 

diferentes íons, 𝜏𝑖 é o tempo de vida de decaimento do nível 𝑖, 𝜉𝑖𝑗 taxa de decaimento 

não-radiativo do nível 𝑖 para 𝑗, e finalmente, 𝜖67 consiste na taxa de repopulação 

devido ao equilíbrio térmico entre os níveis termicamente acoplados, 6 e 7. 

A análise realizada considerou a seção de choque 𝜎 constante, portanto, a taxa 𝑘12 é 

proporcional à densidade de potência da fonte de excitação. A taxa da transição 𝑘34, 

relacionada à absorção direta pelo ativador (Er3+) foi considerada nula, visto que a 

seção de choque do Er3+ pode ser desprezada quando comparada com a do Yb3+ 

devido à alta discrepância nos valores (MIR, 2022) . As taxas das transições 𝑘𝑖𝑖 também 

são consideradas nulas porque não possuem significado físico. 

Esses valores foram inseridos no arquivo de entrada “ET.INP” do programa 

“ucnum8.f”, que após ser modificado com a inclusão das Eqs. 2.9 a 3.6, foi compilado 

com o pacote “gfortran v. 14.1.0”, em ambiente conda no ambiente de 

desenvolvimento integrado (IDE) Visual Studio Code, para o sistema operacional 

Windows 11 versão 24H2, gerando o arquivo executável “ucnum8.exe”. A execução 

do “ucnum8.exe” na pasta contendo o arquivo “ET.INP” gera o arquivo “ET.OUT” que 

contém dados da estatística e eficiência da execução, bem como as populações finais 

(e sua soma) e os arquivos “pop1”, ..., “pop7” e “pop8” que contém as populações dos 

níveis 1, ..., 7 e 8 em cada passo temporal. 

 

 

5.2 CONSTRUÇÃO DE RESULTADOS E TRATAMENTO DE DADOS 
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Todos os arquivos com denominação pop, seguido de um número entre 1 e 8, 

possuem em sua segunda coluna, os valores das respectivas populações, e em sua 

primeira coluna, o tempo decorrido correspondente. 

A leitura dos dados de populações temporais foi realizada usando a biblioteca 

Pandas. A plotagem das populações temporais foi realizada com auxílio da biblioteca 

Matplotlib, sendo possível avaliar como as populações se comportam ao alterar 

valores no arquivo “ET.INP”, por exemplo: 

• A taxa 𝑘12 correspondente à densidade de potência, 

• Os valores das taxas de decaimento não-radiativo de acordo com a 

temperatura, 

• Concentrações do íon sensibilizador, e 

• O tempo no processo associado à excitação pela fonte. 

 

Após realizar as simulações utilizando 0,1, 0,01 e 0,005 s como parâmetros de 

tempo, se identificou que o tempo de propagação de 0,005 s foi suficiente para a 

obtenção do estado-estacionário. 

Também se determinou o efeito das densidades de potência sobre o 

comportamento da lei de potência: 

• Quando o sistema é submetido a baixas densidades de potência, e 

• CAE quando o sistema é submetido a moderadas densidades de potência. 

Além disso, investigou-se os seguintes comportamentos: 

• CAE operando em diferentes temperaturas, 

• Lei de potência para diferentes densidades de potência da fonte de excitação, 

• Dependência da CAE com a concentração do sensibilizador Yb3+, 

• Obtenção da diferença de energia (‘gap’) a partir de parâmetro termométrico, 

• Efeitos das taxas 𝑘87 e 𝑘65 nas populações dos níveis acoplados termicamente, 

• Relação entre os valores das taxas de emissão 𝑘67, 𝑘63 e 𝑘65 com as 

populações dos níveis acoplados termicamente, 

• Desvios da temperatura medida com base nos valores das taxas 𝑘76, 𝑘67, 𝑘63 

e 𝑘65 usados nas simulações daquela prevista pela distribuição de Boltzmann 

com os valores das razões das populações 𝑛6 𝑛7⁄ . 
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6 RESULTADOS E DISCUSSÃO 

 

Inicialmente serão apresentados os valores calculados das taxas dos 

decaimentos não-radiativo necessárias para descrever o processo CAE no sistema 

LiYF4: Yb3+,Er3+. Com esses valores e das demais taxas de transição, foram realizadas 

simulações da luminescência desse sistema com a solução numérica das equações 
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de taxa. Foram investigados os efeitos da taxa de excitação, da temperatura, da 

concentração e de taxas de decaimento não-radiativo. Essas variáveis são 

importantes para o melhor entendimento da dinâmica desse sistema em diferentes 

condições, de maneira que seja possível comparar com resultados experimentais, e 

possivelmente predizer comportamentos de sistemas similares. 

 

6.1 TAXAS DE DECAIMENTOS NÃO-RADIATIVO COM O MODELO DE 

MULTIFONONS 

As taxas de decaimentos não-radiativo foram calculadas utilizando o modelo 

de relaxação por múltiplos fônons, Eq. 3.6, para os níveis de energia dos íons Er3+ e 

Yb3+ na matriz LiYF4. Os valores dos parâmetros fenomenológicos foram obtidos a 

partir de (JENSSEN; LINZ, 1971) e estão apresentados na Tabela 3. 

 

Tabela 3. Parâmetros fenomenológicos para uso no modelo de relaxação por 

multifonons no LiYF4, no qual 𝜀 consiste na constante de acoplamento para os 

processos de TE correspondentes aos valores de ℏ𝜔ef e de 𝛼 extraídos da referência 

(REISFELD, R, 1980). 

ℏ𝜔ef (cm
−1) 𝐶 (s−1) 𝛼 (cm) 𝜀 

 00 3,5 × 107 3,8 × 10−3 0,22 

 

Os níveis de energia foram obtidos a partir de (GAMA, DA et al., 1981). Os valores 

calculados dessas constantes de taxa nas temperaturas entre 290 e 360 K estão 

apresentados na Tabela 4. A diferença na magnitude de energia entre os níveis 6 e 7 

foi obtida em resultados significativamente mais recentes (MARTINS et al., 2021). 

 

 

 

 

Tabela 4. Taxas de decaimentos não-radiativo, 𝑘𝑖𝑗 (em s−1), entre os níveis 𝑖 e 𝑗 

calculadas na temperatura T (em K), com base nos níveis de energia obtidos em 

(GAMA, DA et al., 1981) e com os parâmetros encontrados em (JENSSEN; LINZ, 1971). 

T (K) 𝑘4310−8 𝑘54 𝑘65103 𝑘76106 𝑘87105 𝑘2110−8 
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290 2,94 0,809 0,957 3,23 3,56 2,36 

300 3,88 0,931 1,04 3,29 3,69 3,12 

310 5,13 1,07 1,13 3,35 3,83 4,14 

320 6,79 1,24 1,23 3,42 3,98 5,49 

330 9,01 1,43 1,34 3,48 4,13 7,30 

340 12,0 1,65 1,46 3,55 4,29 9,71 

350 15,9 1,90 1,60 3,62 4,45 12,9 

360 21,1 2,20 1,74 2,73 4,62 17,2 

 

Com o valor da taxa 𝑘76, foi calculado o valor da taxa 𝑘67 considerando o 

princípio de balanço detalhado entre os níveis acoplados termicamente, ou seja, 

𝑘67𝑛6 = 𝑘76𝑛7 →
𝑘76
𝑘67

=
𝑛6
𝑛7

 (Eq. 3.7) 

Considerando que as populações dos níveis 6 (4S3/2) e 7 (2H11/2) estejam em 

equilíbrio térmico e que obedecem a distribuição de Boltzmann, tem-se que 

𝑛6
𝑛7

= 𝑒∆𝐸76 (𝑘𝑇)⁄  (Eq. 3.8) 

e, portanto, 

𝑘67 = 𝑘76𝑒
−∆𝐸76 (𝑘𝑇)⁄  (Eq. 3.9) 

Os valores obtidos das taxas 𝑘67 estão exibidos na Tabela 5. 

 

 

 

 

 

 

Tabela 5. Valores das taxas 𝑘67 (s−1) calculados para várias temperaturas com a 

condição de balanço detalhado e equilíbrio térmico (distribuição de Boltzmann) para 

os níveis acoplados termicamente.  

T (K) 𝑘67105 (s−1) 

290 1,03 

300 1,17 

310 1,33 
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320 1,50 

330 1,68 

340 1,88 

350 2,08 

360 2,30 

 

6.2 DEPENDÊNCIA TEMPORAL DAS POPULAÇÕES DOS NÍVEIS 

ENVOLVIDOS NA CAE LiYF4: Yb3+,Er3+. 

 

Antes de apresentar e discutir os resultados das simulações das equações de 

taxa que fornecem a dependência temporal das populações dos níveis, é instrutivo 

relatar o desenvolvimento do trabalho. Inicialmente, as simulações indicavam que 

algumas populações não atingiam o estado-estacionário, mesmo após longas 

propagações, e a soma das populações não era constante. Devido a esses resultados 

incorretos, fez-se uma investigação detalhada com inúmeras simulações variando-se 

as taxas de transição e foram identificados erros nas equações de taxa. Corrigidas as 

equações de taxa e as modificações correspondentes no código “ucnum8.f”, as 

simulações foram referênciaeitas e todas a populações atingiram o estado-

estacionário em menos de 0,005 s e a soma das populações durante toda propagação 

ficou constante. Isso ilustra uma outra relevância da solução numérica das equações 

de taxa, a saber, se estão corretas do ponto de vista algébrico e de balanço. 

Outro aspecto relevante para as simulações das equações de taxa é a escolha das 

populações iniciais. Considerando que os íons envolvidos não têm níveis de energia 

que podem ser significativamente populados termicamente, as populações iniciais dos 

estados excitados (níveis 2, 4 a 8) foram nulas (ver Figura 6) e somente os estados 

fundamentais dos íons Yb3+ (nível 1) e Er3+ (nível 3) tinham populações iniciais não 

nulas. Considerando a proporção em mol dos íons Yb3+:Er3+ nos experimentos típicos 

de CAE, populações iniciais dos níveis 2F7/2 e 3 foram, respectivamente, 20,0 e 2,0. 

Os efeitos da concentração do íon Yb3+ no processo CAE foram modelados variando-

se a população inicial do nível 2F7/2 entre 2,0 e 20,0, em acordo com as proporções 

típicas em estudos e experimentos descritos na literatura. 

Cabe ainda mencionar que as equações de taxa foram expressas em termos 

das populações de cada nível utilizado para descrever processo CAE. A população 
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do nível 𝑖, associada ao íon S ou A, 𝑛𝑖,S ou 𝑛𝑖,A, foi definida como a razão entre o 

número de íons S ou A no nível 𝑖, 𝑁𝑖,S ou 𝑁𝑖,A, e o número total de íons S ou A, 𝑁S ou 

𝑁A, a saber, 

𝑛𝑖,S = 𝑁𝑖,S 𝑁S⁄ , 𝑛𝑖,A = 𝑁𝑖,A 𝑁A⁄  (Eq. 4.0) 

Esta escolha da representação das equações de taxa deve-se ao fato das 

populações 𝑛𝑖 serem adimensionais e, portanto, todas as taxas de transição, 𝑘𝑖𝑗, terão 

a mesma unidade de s−1. Além disso, esta escolha torna consistente com a definição 

da população de Boltzmann para estados acoplados termicamente. Na literatura, 

entretanto, encontram-se as equações de taxa expressas em termos de densidade 

numérica, isto é, número de íons S ou A no nível 𝑖, 𝑁𝑖,S ou 𝑁𝑖,A, por unidade de volume, 

ou densidade de população dada pela população de íons S ou A no nível 𝑖, 𝑛𝑖,S ou 

𝑛𝑖,A, por unidade de volume. Com isso, as taxas de transição, 𝑘𝑖𝑗, terão unidade de 

volume ou volume ao quadrado por unidade de tempo, visto que estas 

necessariamente multiplicam, respectivamente, população por unidade de volume 

(por exemplo, k12n1), ou população por unidade de volume ao quadrado (por exemplo, 

k42n1n4. Logo, as comparações com resultados da literatura devem ser realizadas com 

cuidado quando as equações de taxa forem representadas em termos de densidade.  

Para realizar as resoluções numéricas das equações de taxa foram utilizados 

os valores das taxas das transições apresentados na Tabela 2 para o esquema de 

níveis da Figura 6. 

 

6.2.1 Efeitos da taxa de excitação entre 1,0 e 10,0 s−1. 

Foram realizadas simulações aos valores de 𝑘12 iguais a 1,0; 2,0; 3,0; 4,0; 5,0; 

6,0; 7,0; 8,0; 9,0 e 10,0 s−1, para parâmetro de temperatura correspondente à 290 K. 

Como a seção de choque de absorção 𝜎 do íon Yb3+ foi considerada constante, o 

aumento do valor de k12 corresponde diretamente ao aumento da densidade de 

potência de excitação 𝜙, pois 𝑘12 = 𝜎𝜙. As taxas de decaimentos não-radiativo e a 

taxa k67 foram calculadas a temperatura correspondente, 290 K. As Figuras 7 e 8 

apresentam a dependência temporal das populações de cada um dos oito níveis (ver 

Figura 6) envolvidos na CAE do sistema LiYF4: Yb3+,Er3+ para cada valor de 𝑘12. 
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Figura 7. Dependência temporal da população dos níveis eletrônicos para o sistema 

LiYF4: Yb3+,Er3+ em diferentes densidades de potência de excitação (valores de k12 

entre 1,0 e 10 s−1) (a) Nível 1 (2F7/2 Yb3+), (b) Nível 2 (2F5/2 Yb3+), (c) Nível 3 (4I15/2 Er3+) 

(d) Nível 4 (4I11/2 Er3+). 
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Figura 8. Dependência temporal da população dos níveis eletrônicos para o sistema 

LiYF4: Yb3+,Er3+ em diferentes densidades de potência de excitação (valores de k12 

entre 1,0 e 10 s−1). (a) Nível 5 (4I9/2 Er3+), (b) Nível 6 (4F9/2 Er3+), (c) Nível 7 (2S3/2 Er3+), 

(d) Nível 8 (2H11/2 Er3+). 

 

 

 

Como esperado, é observada a diminuição das populações dos estados 

fundamentais: níveis 1, 2F7/2 Yb3+ e 3, 4F15/2 Er3+, com o tempo até atingir o estado-

estacionário e com o aumento da densidade de potência. No estado-estacionário, a 

população do nível 1 varia de aproximadamente 17,989 até 17,999 e a do nível 2 de 

0,001 até 0,011 quando da taxa de excitação 𝑘12 aumenta de 1,0 até 10,0 s−1. Nota-

se que as diminuições das populações dos níveis 1 e 3 são praticamente lineares com 

𝑘12. Em contraste, as populações dos níveis excitados aumentam com o tempo (até 

atingirem estado-estacionário) e com o aumento da taxa de excitação 𝑘12. No estado-

estacionário, a população do nível 6 varia aproximadamente de 110−4 até 810−3 com 

o aumento de 𝑘12, enquanto a do nível 7 de valores da ordem de 10−6 até 2,2510−4. 

Entretanto, o aumento observado nas populações não é linear com 𝑘12. Estas relações 

entre as populações no estado-estacionário com a taxa de excitação estão 

apresentadas na Figura 9. 

 



52 

 

Figura 9. Dependência da população no estado-estacionário de cada nível, ni, com a 

taxa de excitação k12 (em s−1) para o processo CAE no sistema LiYF4: Yb3+,Er3+. Cada 

população foi normalizada pelo seu valor em k12 = 1,0 s−1. 

 

 

Foi observado que a taxa de excitação possui pequeno efeito absoluto nas 

populações do nível 1 e do nível 3. Isso é consistente com o comportamento do 

número de partículas para um sistema considerado isolado. Nesse caso, o somatório 

das populações no estado estacionário necessita ser suficientemente próximo do 

somatório das populações iniciais. Além disso, pode-se inferir que o comportamento 

de dependência das populações com as taxas k12 não é linear. Apesar do gráfico não 

ser possível destacar essa dependência para os níveis fundamentais, deve-se 

ressaltar que conclusões visuais, para o caso específico, são errôneas. O motivo é 

que as populações dos níveis fundamentais não variam significativamente. 

  

6.2.2 Efeitos da taxa de excitação entre 10,0 e 100,0 s−1. 

Adicionalmente, foram realizadas simulações para taxas de excitação 𝑘12 com 

valores iguais a 10,0; 20,0; 30,0; 40,0; 50,0; 60,0; 70,0; 80,0; 90,0 e 100,0 s−1. Os 

resultados são mostrados a seguir. 
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Figura 10. Dependência temporal da população dos níveis eletrônicos para o 

sistema LiYF4: Yb3+,Er3+ em diferentes densidades de potência de excitação (valores 

de k12 entre 10,0 e 100,0 s−1). (a) Nível 1 (2F7/2 Yb3+), (b) Nível 2 (2F5/2 Yb3+), (c) Nível 

3 (4I15/2 Er3+), (d) Nível 4 (4I11/2 Er3+). 

 

 

Figura 11. Dependência temporal da população dos níveis eletrônicos para o sistema 

LiYF4: Yb3+,Er3+ em diferentes densidades de potência de excitação (valores de k12 

entre 10,0 e 100,0 s−1). (a) Nível 5 (4I9/2 Er3+), (b) Nível 6 (4F9/2 Er3+), (c) Nível 7 (2S3/2 

Er3+), (d) Nível 8 (2H11/2 Er3+). 
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.

 

 

O comportamento apresentado para as populações dos níveis é muito similar 

àquele com menores taxas de excitação. Entretanto, para o nível 4 com elevadas 

taxas de excitação, observa-se um acúmulo de população para depois diminuir e 

atingir o estado-estacionário. Isso sugere que o nível 4 é bastante populado, não 

apenas pela taxa k24, mas também pelos decaimentos não-radiativo a partir dos níveis 

mais elevados no Er3+. O nível 4 pode receber mais energia por TE, populando o nível 

8, que poderá sofrer repopulação a partir de sucessivos decaimentos não-radiativo. 

A relação entre a população no estado-estacionário de cada nível com a taxa 

de excitação pode ser visualizada na Figura 12. 

 

Figura 12. Dependência da população no estado-estacionário de cada nível, ni, com 

a taxa de excitação k12 (em s−1) para o processo CAE no sistema LiYF4: Yb3+,Er3+. 

Cada população foi normalizada pelo seu valor em k12 = 10,0 s−1. 
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Primeiramente, se observou que as populações do nível 3 diminuem 

significativamente com a taxa k12, quando os valores de k12 estão entre 10 e 100, em 

comparação aos valores de k12 entre 1 e 10. Ademais, as populações dos demais 

níveis no estado-estacionário não apresentaram comportamento linear com as taxas 

k12, como observado visualmente pelas curvas. Além disso, o comportamento não 

linear ficou mais perceptível para o caso de maiores valores da taxa de excitação. 

 

6.3 DEPENDÊNCIA DAS POPULAÇÕES DOS NÍVEIS COM A 

CONCENTRAÇÃO DO SENSIBILIZADOR Yb3+. 

 

Está bem estabelecida na literatura a dependência da conversão ascendente 

por transferência de energia CAE com as concentrações do sensibilizador e ativador. 

No sistema LiYF4:Yb3+,Er3+, o sensibilizador Yb3+ desempenha papel relevante na 

eficiência do processo CAE, pois em elevadas concentrações pode ocorrer 

significativas taxas de RC e ME, que pode resultar em supressão (ou quenching) do 

processo CAE, dependendo da proporção entre as concentrações do sensibilizador e 

do ativador. Por outro lado, baixas concentrações de sensibilizador pode geralmente 

resultar em pequenas taxas de TE, de forma que o estado estacionário seja atingido 

com mais rapidez. As concentrações interferem diretamente na distância inter-iônica 
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entre os íons substituintes, sejam ou não íons eventualmente do mesmo tipo, de forma 

que as interações entre os íons no sistema se tornam bastante influenciadas pelas 

dopagens realizadas (MELKUMOV et al., 2010). 

Logo, foram realizadas simulações variando-se a concentração de Yb3+ 

atribuindo os seguintes valores para a população inicial do nível 1, 2F7/2 Yb3+: 2,0; 4,0; 

6,0; 8,0; 10,0; 12,0; 14,0; 16,0; 18,0 e 20,0, sendo a população inicial do nível 3, 4I15/2 

Er3+, mantida igual a 2,0. As taxas de transição também foram as mesmas utilizadas 

em simulações anteriores, com 𝑘12 = 10,0⁡s−1 e a temperatura de 290 K. Cabe notar, 

entretanto, que as taxas de TE utilizadas foram determinadas para a proporção 9:1 de 

Yb3+: Er3+ (QIN et al., 2021), baseando-se num modelo de distribuição aleatória dos íons 

no cristal LiYF4. Como a distribuição das distâncias sensibilizador-ativador é 

dependente da proporção dos íons, as taxas TE irão variar com as concentrações. Os 

mecanismos de TE atuantes possuem dependência com as distâncias. Tipicamente, 

mecanismos de TE podem contribuir mais significativamente para menores distâncias, 

como é o caso do mecanismo de troca. Apesar disso, os mecanismos de TE 

competem entre si, isto é, a ocorrência muito frequente de um mecanismo pode 

atenuar a contribuição de outros tipos para as taxas de TE (NETO et al., 2022; NETO; 

MOURA JR; MALTA, Oscar L, 2019; SHYICHUK et al., 2016). 

Entretanto, para não introduzir duas variações simultâneas de grandezas 

relevantes nas simulações e, assim mascarar seus efeitos, as taxas de transição 

foram mantidas as mesmas, e somente a proporção Yb3+: Er3+ foi variada para 

investigar como afetam as populações dos níveis envolvidos na CAE. A dependência 

de cada população com a proporção Yb3+:Er3+ está apresentada nas Figuras 13 e 14. 

 

Figura 13. Dependência temporal da população dos níveis eletrônicos para o sistema 

LiYF4: Yb3+,Er3+ em diferentes concentrações de íons Yb3+ (concentrações entre 2,0 

e 20,0) para o sistema LiYF4: Yb3+,Er3+ com k12 = 10 s−1. (a) Nível 1 (2F7/2 Yb3+), (b) 

Nível 2 (2F5/2 Yb3+), (c) Nível 3 (4I15/2 Er3+), (d) Nível 4 (4I11/2 Er3+). 
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Figura 14. Dependência temporal da população dos níveis eletrônicos para o sistema 

LiYF4: Yb3+,Er3+ em diferentes concentrações de íons Yb3+ (concentrações entre 2,0 

e 20,0) para o sistema LiYF4: Yb3+,Er3+ com k12 = 10 s−1. (a) Nível 5 (4I9/2 Er3+), (b) 

Nível 6 (4F9/2 Er3+), (c) Nível 7 (2S3/2 Er3+), (d) Nível 8 (2H11/2 Er3+). 

 

 

 

Nota-se que na escala de 2 a 20 nas populações iniciais do nível 1, Figura 13 

(a), a variação dessa população é tão pequena nessa escala que parecem ser 
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constantes. Esta pequena variação pode ser verificada na Figura 13 (b), visto que a 

equação de taxa correspondente ao nível 1, Figura 13 (a), possui sinal oposto ao da 

equação correspondente ao nível 2, Figura 13 (b). 

As Figuras 13 (b) - (d), 14 (a) - (d), mostram o aumento das populações dos 

níveis excitados com o aumento da concentração inicial do íon sensibilizador. As 

Figuras 13 (a) e 13 (c) ilustram o efeito oposto. Isso é coerente com a observação 

bem estabelecida de que as concentrações de sensibilizador interferem diretamente 

nas populações de estados excitados do íon ativador. Inicialmente, as curvas 

apresentam inclinações mais elevadas quando são consideradas maiores 

concentrações de íons lantanídeos. Estas relações entre as populações no estado-

estacionário e a concentração do sensibilizador Yb3+ pode ser visualizada na Figura 

15. 

 

Figura 15. Dependência da população no estado-estacionário de cada nível, popn, com 

a concentração do sensibilizador (população inicial, n1(0)) para o processo CAE no 

sistema LiYF4: Yb3+,Er3+ com k12 = 10 s−1. Cada população foi normalizada pelo seu 

valor em n1(0) = 20. A concentração do ativador, i.e., a população inicial do nível 3 foi 

mantida fixa em n3(0) = 2. 
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As populações obtidas para o estado-estacionário do nível 1 demonstraram 

linearidade com a população inicial desse nível (concentração inicial de 

sensibilizador). Foi observada concavidades nas curvas correspondentes as 

populações dos níveis 4, 5, 6, 7 e 8. A concavidade sugere comportamento pelo 

menos próximo a funções polinomiais de grau 2. Além disso, conforme expectativa, a 

população no estado-estacionário para o nível 3 decresce com aumento da 

concentração do sensibilizador, mas assim como para o nível 1, também se comporta 

linearmente. 

A intensidade emissão, 𝐼𝑖, do nível 𝑖 tem a seguinte forma (DIESTLER et al., 1976): 

𝐼𝑖 = ℎ𝑣𝑖𝑓𝐴𝑖𝑓𝑛𝑖 (Eq. 4.1) 

em ℎ𝑣𝑖𝑓 é a energia do fóton emitido, 𝐴𝑖𝑓 é a taxa radiativa da transição e 𝑛𝑖 é a 

população do estado emissor. 

Isso indica que a intensidade de emissão deve aumentar com o aumento da 

concentração do sensibilizador, como observado em (MA, C. et al., 2017), pois a 

população do estado emissor aumenta. Porém, deve-se ressaltar que para 

concentrações muito elevadas do sensibilizador podem ocorrer processos como a 

relaxação cruzada, que podem causar a supressão (quenching) da luminescência, 

como foi observado ainda em (MA, C. et al., 2017). A dependência das intensidades de 

emissão dos níveis 5, 6 e 7 com a concentração do sensibilizador está apresentada 

na Figura 16 a 19, considerando que as taxas radiativas de emissão desses níveis 

não dependem da concentração do sensibilizador. Para fins de comparação, as taxas 

radiativas de emissão 𝐴𝑖3 (𝑖 = 5, 6 e 7) foram consideradas iguais a 500 s−1. 
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Figura 16. Gráfico de 𝐼𝑖3 (𝑖 = 5, 6 e 7) considerando 𝐴𝑖3 = 500 s−1, em função da 

concentração do sensibilizador (população inicial do nível 1, 2F7/2 Yb3+) para o 

processo CAE no sistema LiYF4: Yb3+,Er3+ com k12 = 1,0 s−1. 

 

 

Figura 17. Gráfico de 𝐼𝑖3 (𝑖 = 5, 6 e 7) considerando 𝐴𝑖3 = 500 s−1, em função da 

concentração do sensibilizador (população inicial do nível 1, 2F7/2 Yb3+) para o 

processo CAE no sistema LiYF4: Yb3+,Er3+ com k12 = 5,0 s−1. 
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Figura 18. Gráfico de 𝐼𝑖3 (𝑖 = 5, 6 e 7) considerando 𝐴𝑖3 = 500 s−1, em função da 

concentração do sensibilizador (população inicial do nível 1, 2F7/2 Yb3+) para o 

processo CAE no sistema LiYF4: Yb3+,Er3+ com k12 = 30,0 s−1. 
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Figura 19. Gráfico de 𝐼𝑖3 (𝑖 = 5, 6 e 7) considerando 𝐴𝑖3 = 500 s−1, em função da 

concentração do sensibilizador (população inicial do nível 1, 2F7/2 Yb3+) para o 

processo CAE no sistema LiYF4: Yb3+,Er3+ com k12 = 50,0 s−1. 

 

 

Com base nos resultados e nas análises acima, foi possível identificar uma 

pequena não-linearidade na dependência das emissões radiativas com as 

concentrações de sensibilizador utilizadas. Além disso, para taxas k12 elevadas (altas 

densidades de potência), foram observadas atenuação nas inclinações das curvas, 

de maneira que em altas concentrações iniciais do sensibilizador, se observou 

supressão do crescimento das intensidades de luminescência, indicando efeitos 

relacionados à RC. RC pode ser magnificada com uso de altas concentrações de 

sensibilizador (SOUZA, A. S. et al., 2015). Porém, devido à viabilidade, não se modificou 

a temperatura de maneira condizente com aquecimento da amostra provocado pela 

fonte de excitação ao longo das simulações. O aquecimento da amostra tipicamente 

provoca aumento de supressão das intensidades de luminescência, visto que provoca 

perda de energia não luminosa (BACHMANN; RONDA; MEIJERINK, 2009). Isso 

indica que o efeito observado nesta análise computacional não representa 

consideravelmente os experimentos físicos, pois o aumento das taxas não radiativas 

em virtude do aquecimento da amostra pode provocar aumento nas probabilidades de 

RC. 
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6.4 DEPENDÊNCIA DA INTENSIDADE DE EMISSÃO COM A DENSIDADE 

DE POTÊNCIA DE EXCITAÇÃO DE CAE LiYF4: Yb3+,Er3+. 

 

Em processos de conversão ascendente de energia (CAE) é prática comum 

investigar a dependência do logaritmo da intensidade integrada de emissão do nível 

𝑖, log 𝐼𝑖, com o logaritmo da densidade de potência, log 𝑃 (WANG, C. et al., 2022). A razão 

de investigar essa dependência é que a emissão CAE integrada é proporcional à 

densidade de potência 𝑃 elevada à potência, 𝛼𝑖, isto é, 

𝐼𝑖 ∝ 𝑃𝛼𝑖 (Eq. 4.2) 

que fornece a relação linear log-log: 

log 𝐼𝑖 ∝ 𝛼𝑖 log 𝑃 (Eq. 4.3) 

cuja inclinação 𝛼𝑖 está associada ao número de fótons envolvidos no processo CAE. 

Em geral, na literatura, essa inclinação 𝛼𝑖 é representada por 𝑛𝑖, entretanto, estamos 

utilizando a notação 𝑛𝑖 para a população do nível 𝑖, portanto, a mudança na 

representação. 

 De fato, esta relação linear tem sido verificada para inúmeros sistemas com 

CAE, mas há anomalias. Por exemplo, foram observadas curvas de dependência em 

formato de S, para CAE em Gd₂O₃:Er3+, indicando um feedback positivo na população 

do nível intermediário 4I11/2, ao início da curva em formato de “s”. Os resultados 

indicaram que o valor da curva de crescimento da intensidade de luz verde é máximo 

num valor de threshold para a magnitude da densidade de potência incidente no 

material. Valores ligeiramente mais acima do threshold provocam curvas 

relativamente mais inclinadas quando comparados com valores abaixo do threshold. 

Esse comportamento foi destacado como sendo similar ao comportamento da AF 

convencional (CHEN, G. Y. et al., 2009).  

Alguns materiais podem aumentar significativamente de eficiência ao serem 

otimizados. Processos de calcinação, por exemplo, afetam as intensidades de 

emissão da CAE. São destacadas duas maneiras: remoção de impurezas com 

consequente aumento dos valores para o caminho óptico, e conversão termoinduzida 

Yb2+ em Yb3+  (JOSHI; KUMAR; RAI, 2009b). Os estudos teóricos sobre anomalias 

associadas à lei de potência indicam uma modificação das dependências na absorção 

da energia da fonte, após finalização da CAE envolvendo n fótons, de maneira que a 
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dependência seja P1 ao se aumentar a densidade de potência (P) da fonte de 

excitação. Além disso, níveis de menor energia sofrem modificação nessas 

dependências de forma que se tornam dependentes de Px, no qual x < 1 (SUYVER et 

al., 2005). 

No caso das simulações, tem-se que log 𝐼𝑖 = log 𝑛𝑖 + 𝑐1, em que 𝑐1 =

log(ℎ𝑣𝑖𝑓𝐴𝑖𝑓) pode ser considerado constante, pois se referência às propriedades 

intrínsecas do ativador Er3+ (e.g., ℎ𝑣𝑖𝑓 energia do fóton emitido e 𝐴𝑖𝑓 taxa radiativa de 

emissão) que devem ser independentes da densidade de potência. Por outro lado, 

log 𝑘12 = log𝑃 + 𝑐2, em que 𝑐2 = log 𝜎 pode ser considerado constante, pois a seção 

de choque de absorção do sensibilizador Yb3+ é independente da densidade de 

potência. Portanto, nas simulações das equações de taxa, a relação linear de log 𝐼𝑖 

versus log 𝑃 é equivalente à relação log-log: 

log 𝐼𝑖 ∝ 𝛼𝑖 log 𝑃 → log 𝑛𝑖 + 𝑐1 ∝ 𝛼𝑖 log 𝑘12 − 𝑐2 → log 𝑛𝑖 ∝ 𝛼𝑖 log 𝑘12 (Eq. 4.4) 

Na operação acima, c2 é assimilado em c1, e a equação final consiste na Lei de 

potência em que o argumento do log consiste na taxa k12, proporcional à densidade 

de potência, o que resulta numa inclinação idêntica de acordo com o modelo e com a 

condição de seção de choque constante.  

Logo, foram determinadas as relações entre o logaritmo da população do nível 

emissor 𝑖, log 𝑛𝑖, e o logaritmo da taxa de excitação, log 𝑘12, para os níveis emissores 

𝑖 = 5, 6 e 7. Estas relações estão apresentadas nas Figuras 20, 21, e 22 para taxa 

de excitação 𝑘12 variando de 1,0 a 10 s−1. 

 

Figura 20. Dependência do logaritmo da população do nível emissor 5, 4F9/2 Er3+, 

log 𝑛5, e o logaritmo da taxa de excitação, log 𝑘12, para a CAE no sistema Yb3+,Er3+. A 

população foi obtida após 0,005 s em condição de estado-estacionário. A linha 

vermelha representa o ajuste linear com inclinação igual a 1,85969 e R2 = 0,99962. 
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Figura 21. Mesmo que a Figura 20 para o nível emissor 6, 4S3/2 Er3+, com inclinação 

igual a 1,85969 e R2 = 0,99962. 

 

 

 

Figura 22. Mesmo que a Figura 20 para o nível emissor 7, 2H11/2 Er3+, com inclinação 

igual a 1,85969 e R2 = 0,99962. 
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Os resultados foram semelhantes aos anteriores. Porém, nesse caso, os 

valores para as taxas mais reduzidas de k12 levaram um aumento no coeficiente 

angular da reta, portanto, na dependência da CAE com relação ao número de fótons 

de excitação. 

A regressão linear da dependência do logaritmo da população do nível emissor 

𝑖, log 𝑛𝑖, com o logaritmo da taxa de excitação, log 𝑘12, apresenta excelente coeficiente 

de correção (R2 = 0,99962) e para os três níveis investigados (5, 6 e 7) as inclinações 

foram exatamente iguais a 1,85969. Estes resultados sugerem o envolvimento de dois 

fótons no processo CAE descrito pelas equações de taxa Eq. 2.8-3.5 para os níveis 

na Figura 6. Os valores das inclinações não foram iguais a 2, provavelmente por 

causa do intervalo investigado envolver densidades de potência elevadas. De fato, 

pode ser demonstrado utilizando a condição de estado-estacionário e foi mostrado 

experimentalmente que para densidades de potência muito altas a inclinação da 

relação log 𝐼 versus log 𝑃 tende para 1 (CHEN, G. Y. et al., 2009; JOSHI; KUMAR; RAI, 2009b; 

SUYVER et al., 2005). Pode-se conferir alguns resultados que evidenciam essa 

tendência no Apêndice A. 

De fato, quando as simulações foram realizadas com taxas de excitação 𝑘12 

variando entre 0,1 e 1,0 s−1, as inclinações obtidas foram iguais a 1,982, ou seja, mais 

próxima de 2 (dois), mostrando a consistência das simulações e a concordância com 

as observações na literatura. O Apêndice A contém ilustrações obtidas nas 
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simulações, sobre essa dependência de log 𝑛𝑖 com log 𝑘12, para esse intervalo com 

taxas de excitação menores. 

 Outro aspecto peculiar foi a obtenção de exatamente as mesmas inclinações 

para os três níveis 5, 6 e 7. Isto se deve, provavelmente, ao fato de se ter utilizados 

os mesmos valores para a taxas de decaimento, 𝑘53, 𝑘63 e 𝑘73, desses níveis. E, como 

os níveis são sequenciais na ordem de energia, suas interdependências fornecem as 

mesmas dependências com a taxa de excitação e, portanto, as mesmas inclinações. 

 

6.5 ANÁLISE DO PARÂMETRO TERMOMÉTRICO NO SISTEMA DE CAE 

LiYF4 Yb3+,Er3+. 

 

Realizou-se simulações para taxas de decaimentos não-radiativo obtidas nas 

temperaturas entre 290 e 360 K (ver Tabela 4) usando o modelo de relaxação por 

multifonons (RISEBERG; WEBER, M. J., 1977). As simulações foram realizadas com 

10 valores de taxas de excitação, entre 0,1 e 1,0 s−1. Entretanto, serão apresentadas 

e discutidas as simulações com taxas de excitação iguais a 0,1; 0,5 e 1,0 s−1, pelo alto 

grau de similaridade. 

Conforme apresentado anteriormente, na seção 4.2 sobre termometria por 

luminescência, utiliza-se como parâmetro termométrico ∆ a razão entre as 

intensidades integradas de emissão, ∆⁡= 𝐼2 𝐼1⁄ , dos dois níveis acoplados 

termicamente. Para obter a temperatura 𝑇 da amostra a partir da medida do parâmetro 

termométrico ∆ é utilizada a razão, ⁡(
∆

∆0⁡
), do ∆ pelo valor dessa grandeza, ∆0, 

determinada numa temperatura de referência 𝑇0. Do ponto de vista da simulação das 

equações de taxa, o parâmetro termométrico ∆ na temperatura 𝑇, pode ser calculado 

como 

∆⁡=
𝐼2
𝐼1
=
𝐴02𝑛2(𝑇)

𝐴01𝑛1(𝑇)
 (Eq. 4.5) 

em que ℎ𝜐0𝑖 é a energia do fóton emitido na transição 0 → 𝑖, 𝐴0𝑖 é a taxa radiativa 

(coeficiente de emissão espontânea) dessa transição e 𝑛𝑖(𝑇) é a população do estado 

emissor no estado-estacionário na temperatura 𝑇. Logo, a razão ∆ ∆0⁄  pode ser 

expressa como, 

∆

∆0
=

𝐴02𝑛2(𝑇) 𝐴01𝑛1(𝑇)⁄

𝐴02𝑛2(𝑇0) 𝐴01𝑛1(𝑇0)⁄
=

𝑛2(𝑇) 𝑛1(𝑇)⁄

𝑛2(𝑇0) 𝑛1(𝑇0)⁄
 (Eq. 4.6) 
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em que se considerou a energia do fóton emitido ℎ𝜐0𝑖 e a taxa radiativa 𝐴0𝑖 

independentes da temperatura. No caso da modelagem da CAE no sistema LiYF4: 

Yb3+,Er3+, os índices 1 e 2 correspondem aos níveis 6 e 7 acoplados termicamente. 

 Considerando a equação termométrica, Eq. 2.7, a relação entre 1 𝑇⁄  e ln(∆ ∆0⁄ ) 

deve ser linear com inclinação igual a 𝑘 ∆𝐸⁄ , em que 𝑘 é a constante de Boltzmann e 

∆𝐸 a diferença de energia entre os níveis acoplados termicamente. 

 Utilizando 𝑇0 = 290 K como a temperatura de referência, o gráfico de 1 𝑇⁄  

versus ln(∆ ∆0⁄ ) é, de fato, linear (com R2 = 0,9998877) conforme apresentado na 

Figura 23 para a taxa de excitação 𝑘12 igual a 0,1 s−1, nas temperaturas 290, 300, 

310, 320, 330, 340 e 350 K e 360 K. 

 

Figura 23. Relação entre o inverso da temperatura, 1 𝑇⁄ , e o logaritmo da razão entre 

os parâmetros termométricos, ln(∆ ∆0⁄ ), com taxa de excitação 𝑘12 igual a 0,1 s−1 para 

o sistema de CAE LiYF4: Yb3+,Er3+. 

 

 

 O valor da inclinação da regressão linear é igual a −1,00610−3, que fornece o 

valor para ∆𝐸 = 690,8895 cm−1, considerando a constante de Boltzmann igual a 

0,6950348 cm−1 K−1 (PITRE et al., 2019). Cabe ressaltar que para calcular a taxa 𝑘67, a 

partir da distribuição de Boltzmann e da condição de balanço detalhado, o valor 

utilizado para ∆𝐸 foi igual a 695 cm−1 obtido da referência (MARTINS et al., 2021). Note 

que o valor de ∆𝐸 obtido da regressão linear, 690,8895 cm−1, é menor do que aquele 
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utilizado na determinação da taxa 𝑘67, 695 cm−1, mas, se mantém na faixa de erro 

695±23 cm−1 determinado na referência (BRITES; BALABHADRA; CARLOS, Lu\’\is 

D, 2019), para nanopartículas de LiYF4 dopadas com Yb3+ e Er3+. Estes resultados 

indicam que mesmo utilizando um valor inicial de ∆𝐸 maior, as simulações da CAE 

fornecem populações e suas dependências com a temperatura que se aproximam 

melhor da equação termométrica. Ainda, os gráficos para taxas de excitação 𝑘12 com 

valores entre 0,2 e 1,0 s−1 forneceram exatamente os mesmos valores para as 

inclinações, −1,00710−3, uma unidade acrescida na 6ª casa decimal, comparado ao 

valor obtido para k12 = 0,1 s-1, indicando que a termometria consideravelmente 

independente da densidade de potência de excitação, para pequenas densidades de 

potência da fonte de excitação. Este resultado é relevante, pois mostra que possíveis 

desvios experimentais relacionados à determinação de ∆0 devem estar associados ao 

aquecimento local da amostra pela fonte laser de excitação. 

Com relação ao valor de ∆𝐸 obtido dos baricentros das bandas no espectro de 

emissão, cabe lembrar que o íon Er3+ tem configuração eletrônica 4f11 (número ímpar 

de elétrons) e, portanto, os multipletos se separam em (𝐽 + 1 2⁄ ) dupletos discretos de 

Kramers (VALIEV, U. V; GRUBER; BURDICK, 2012) na presença do campo cristalino. 

Dessa maneira, é necessário realizar a média ponderada dos níveis desdobrados para 

obter o baricentro do nível. Isso foi realizado para os níveis exibidos em (GAMA, DA et 

al., 1981). Por exemplo, o nível 4S3/2 do íon Er3+ é desdobrado em dois dupletos 

discretos de Kramers, visto que 𝐽 = 3 2⁄  e 𝐽 + 1 2⁄ = 2. Os níveis desdobrados 

possuem energia 18437 e 18496 cm−1, sendo a energia média 18466,5 cm−1. A 

energia dos níveis usados nesse trabalho, exceto as correspondentes aos níveis 6 e 

7, considerou as médias dos desdobramentos de cada multipleto do íon Er3+ em matriz 

de LiYF4. 

A diferença entre o valor de ∆𝐸76 = 695 cm−1 obtido da referência (GAMA, DA et 

al., 1981) se refere às energias dos multipletos do íon Er3+ e utilizado para calcular a 

taxa 𝑘67, Eq. 3.9, considerando os níveis 6 e 7 isolados, e aquele valor de ∆𝐸ac = 

690,8895 cm−1 obtido das populações dos níveis 6 e 7 acoplados aos demais níveis 

pelas equações de taxa, pode ser explicada pela perturbação do nível 6. Da Eq. 3.8 

tem-se que, 

𝑛7
𝑛6

= 𝑒−∆𝐸76 (𝑘𝑇)⁄  (Eq. 3.8b) 
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Para o nível 6, utilizando a equação para 𝑛̇6, Eq. 3.4, com a aproximação 𝑛̇6 =

0, obtém-se: (𝑘63 + 𝑘65 + 𝑘67)𝑛6 = 𝑘76𝑛7, que fornece 

𝑛7
𝑛6

=
𝑘67
𝑘76

+
𝑘63 + 𝑘65

𝑘76
= 𝑒−∆𝐸76 (𝑘𝑇)⁄ +

𝑘63 + 𝑘65
𝑘76

= 𝑒−∆𝐸ac (𝑘𝑇)⁄  (Eq. 4.8) 

após a substituição da Eq. 3.8b. Logo, a seguinte relação entre as diferenças de 

energias pode ser deduzida: 

𝑒(∆𝐸ac−∆𝐸76) (𝑘𝑇)⁄ = 1 −
𝑘63 + 𝑘65

𝑘76
𝑒∆𝐸ac (𝑘𝑇)⁄ < 1 (Eq. 4.9) 

em que a desigualdade se deve ao fato de as taxas de transição serem positivas e a 

exponencial 𝑒∆𝐸ac (𝑘𝑇)⁄  também ser positiva. Com isso, ∆𝐸ac < ∆𝐸76, pois ln 𝑥 < 0, para 

𝑥 < 1, explicando assim o resultado ∆𝐸ac = 690,8895 cm−1 < ∆𝐸76 = 695 cm−1. Com 

os valores das taxas de transição, Tabela 6, pode-se estimar a diferença ∆𝐸ac − ∆𝐸76 

a partir da Eq. 4.9, em que 𝑒(∆𝐸ac−∆𝐸76) (𝑘𝑇)⁄ ≅ 0,98 e para 𝑇 = 290 K, ∆𝐸76 − ∆𝐸ac ≈ 

4,0721 cm−1, que representa um desvio inferior a 1% do valor obtido usando equação 

do parâmetro termométrico (4,1105 cm−1). Nesse sentido, o desvio é maior quando o 

coeficiente angular é menor, portanto, quando uma pequena variação na temperatura 

provoca grande alteração na magnitude do parâmetro termométrico. 

Este resultado e análise é relevante para a termometria envolvendo níveis 

excitados acoplados termicamente, pois para a previsão da temperatura é necessário 

utilizar o valor de ∆𝐸. Em geral, esse valor é obtido a partir da diferença de energia 

dos baricentros dos níveis. Entretanto, parece ser mais adequado utilizar o valor de 

∆𝐸 obtido do ajuste linear da equação termométrica, a saber, ln ∆ (logaritmo do 

parâmetro termométrico) versus o inverso da temperatura (1/T). Isto deve-se ao fato 

de que o parâmetro termométrico ser obtido das populações (intensidades integradas) 

dos níveis que, além de estarem acoplados termicamente entre si, estão acoplados 

aos demais níveis do íon através das equações de taxa. 

 

6.6 ANÁLISE DAS PERTURBAÇÕES NAS POPULAÇÕES DOS NÍVEIS 

TERMICAMENTE ACOPLADOS.  

 

Uma consideração importante na termometria óptica é a validade da 

distribuição de Boltzmann entre os níveis acoplados termicamente. Isto significa que 

as taxas que populam ou depopulam estes níveis devem estar em certos intervalos 
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para que o equilíbrio das populações dos níveis acoplados termicamente não seja 

perturbado significativamente, invalidando a equação termométrica. Na modelagem 

da CAE do sistema LiYF4:Yb3+,Er3+, de acordo com a da Figura 24, as taxas que 

potencialmente podem perturbar o equilíbrio entre as populações 𝑛6 e 𝑛7 

correspondem ao decaimento do nível 6, 𝑘65, e a população do nível 7, 𝑘87. Note que 

é a razão entre as populações dos níveis 6 e 7, 𝑛6 𝑛7⁄ , que determina o parâmetro 

termométrico e, portanto, válida a equação termométrica baseada na distribuição de 

Boltzmann. Logo, o comportamento da razão 𝑛6 𝑛7⁄  das populações dos níveis 

termicamente acoplados foi analisado alterando-se os valores das taxas 𝑘65 e 𝑘87. Os 

gráficos nas Figuras 24 e 25 demonstram os efeitos da variação de 𝑘65 e 𝑘87, 

respectivamente. 

 

Figura 24. Dependência da razão 𝑛6 𝑛7⁄  das populações dos níveis 6 e 7 com a taxa 

𝑘65 (em s−1). 

 

 

Figura 25. Dependência da razão 𝑛6 𝑛7⁄  das populações dos níveis 6 e 7 com a taxa 

𝑘65 (em s−1). 
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A dependência da razão 𝑛6 𝑛7⁄  das populações dos níveis termicamente 

acoplados com a taxa 𝑘65, Figura 24, é claramente linear com coeficiente R2 = 

0,99996 e inclinação −9,410−4 s. Esta dependência pode ser explicada pelo fato de 

a taxa 𝑘65 depopular o nível 6, portanto, diminuindo o numerador 𝑛6 na razão 𝑛6 𝑛7⁄  e 

fornecendo a pequena inclinação negativa. Por outro lado, a taxa 𝑘87 popula o nível 7 

que está em equilíbrio com o nível 6, pois as taxas 𝑘76 e 𝑘67 são elevadas, e a variação 

da taxa 𝑘87 causa perturbações desprezíveis na razão 𝑛6 𝑛7⁄ , que parecem ser 

aleatórias. 

Logo, a variação das taxas 𝑘65 e 𝑘87 nos intervalos 200-1000 s−1 e (1,0-3,0)105 

s−1, respectivamente, não perturbam significativamente a razão 𝑛6 𝑛7⁄  e, portanto, o 

equilíbrio entre as populações dos níveis acoplados termicamente continua válido. 

Cabe ressaltar que as taxas 𝑘65 e 𝑘87 se referenciam a decaimentos não-

radiativo que dependem da matriz hospedeira e da temperatura. Portanto, essas 

variações se referenciam à validade do equilíbrio entre as populações dos níveis 

acoplados termicamente em diferentes matrizes. 

 

6.7 DESVIOS DA TEMPERATURA PREDITA E MEDIDA 

 

Como apresentado, as taxas dos decaimentos não-radiativo foram calculadas 

com a utilização do modelo de relaxação por multifonons, em oito temperaturas entre 

290 e 360 K. Com essas taxas, foram simuladas as equações de taxa e obtidas as 
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populações no estado-estacionário. Considerando que as populações dos níveis 6 e 

7, acoplados termicamente, estão em equilíbrio térmico e obedecem à distribuição de 

Boltzmann tem-se que 

𝑛6
𝑛7

= 𝑒∆𝐸76 (𝑘𝑇)⁄  (Eq. 3.8c) 

Logo, a partir da razão 𝑛6 𝑛7⁄  das populações dos níveis 6 e 7, obtida das simulações 

das equações de taxa, pode-se prever a temperatura 𝑇pred como 

𝑇pred = (∆𝐸76 𝑘⁄ )[1 ln(𝑛6 𝑛7⁄ )⁄ ] (Eq. 4.9) 

em que ∆𝐸76 = 690,8895 cm−1 e 𝑘 = 0,6950348004 cm−1 K−1. 

Dessa maneira, pode-se calcular os desvios percentuais, 𝐷(%), entre a 

temperatura predita 𝑇pred e a temperatura utilizada para determinar as taxas dos 

decaimentos não-radiativo, como 

𝐷(%) = (
𝑇pred − 𝑇

𝑇
) × 100% (Eq. 5.0)  

Os valores dos desvios 𝐷(%) foram determinados para cada temperatura entre 

290 e 360 K para taxas de excitação, 𝑘12, entre 0,1 e 1,0 s−1. Os desvios se mostraram 

constantes a partir de k12 = 0,4. As Figuras 26, 27, e 28 apresentam resultados para 

k12 = 1,0 s−1, 0,4 s−1
 e 0,1 s−1, respectivamente. 
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Figura 26. Desvios percentuais de temperatura predita nas simulações com 𝑘12 = 1,0 

s−1. 

 

 

Figura 27. Desvios percentuais de temperatura predita nas simulações com 𝑘12 = 0,4 

s−1. 
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Figura 28. Desvios percentuais de temperatura predita nas simulações com 𝑘12 = 0,1 

s−1. 

 

 

Nota-se que o uso de constantes de taxa k12 associada a pequenas densidades 

de potência não é adequado para análises computacionais desse tipo. Isso ocorre 

porque o algoritmo RK4 usado produz muitas flutuações e erros numéricos. No caso 

experimental, não existe exatamente esse tipo de limitação. 

Observa-se que quase todos os desvios médios das temperaturas previstas 

são menores que 1%, exceto para os casos que usam taxas k12 excessivamente 

pequenas, caracterizando a consistência das simulações e validade aproximada do 

equilíbrio entre as populações dos níveis acoplados termicamente. 

Estes resultados são importantes para validar a termometria primária-T que 

utiliza a emissão CAE do íon Er3+ no sistema LiYF4:Yb3+,Er3+ (SOUZA, K. M. N. DE et al., 

2022). 

 Logo, é relevante compreender do ponto de vista das equações de taxa a 

consistência com a distribuição de Boltzmann observada nas simulações. Para isso 

pode-se considerar as expressões para as populações dos níveis 6 e 7 no estado-

estacionário. Para o nível 6, utilizando a equação para 𝑛̇6, Eq. 4.6, com a aproximação 

𝑛̇6 = 0, obtém-se a seguinte expressão para a razão entre as populações dos níveis 

6 e 7: 
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𝑛6
𝑛7

=
𝑘76
𝑘67

(1 + 𝑥)−1 ≅
𝑘76
𝑘67

(1 − 𝑥), 𝑥 =
𝑘63 + 𝑘65

𝑘67
 (Eq. 5.1) 

em que a última aproximação é válida para 𝑥 ≪ 1. 

Utilizando a Eq. 4.7 para 𝑛̇7, com a aproximação 𝑛̇7 = 0, obtém-se: 

𝑛6
𝑛7

=
𝑘76
𝑘67

(1 − 𝑦), 𝑦 =
𝑘87
𝑘76

𝑛8
𝑛7

−
𝑘73
𝑘76

 (Eq. 5.2) 

 

 Com os valores das taxas de transição 𝑘𝑖𝑗 na temperatura 290 K pode estimar 

o valor de 𝑥 ≅ 0,042, e com as populações 𝑛8 e 𝑛7 aproximadas  ,5 × 10−5 e 

1,75 × 10−4, respectivamente, estima-se 𝑦 ≅⁡0,040. Ou seja, os valores obtidos para 

as taxas de transição envolvendo os níveis acoplados termicamente são consistentes, 

pois fornecem praticamente a mesma razão 𝑛6 𝑛7⁄ , pois 𝑥 ≅ 𝑦. Além disso, os valores 

estimados de 𝑥 e 𝑦 são muito menores que 1, demonstrando que os níveis 6 e 7 estão 

em balanço detalhado, ou seja, 

𝑛6
𝑛7

≅
𝑘76
𝑘67

→ 𝑘67𝑛6 ≅ 𝑘76𝑛7 (Eq. 5.3) 

 Como discutido anteriormente, o valor de ∆𝐸 na equação termométrica, Eq. 4.9, 

mais adequado deve ser aquele obtido pelo ajuste linear do logaritmo do parâmetro 

com o inverso da temperatura, a saber, ∆𝐸 = ∆𝐸ac = 695 cm−1. Como a temperatura 

prevista é diretamente proporcional a ∆𝐸, e como as energias corrigidas estão muito 

próximas, não é relevante realizar uma nova predição dos desvios da temperatura 

com base no valor ajustado de energia, 690 cm−1. Caso contrário, o procedimento 

seria realizado para redução do erro sistemático e melhora na predição da 

temperatura. 

 Lembrando que a razão entre as populações dos níveis 6 e 7, 𝑛6 𝑛7⁄ , fornece o 

parâmetro termométrico, teremos aproximadamente que 

∆(𝑇) ∝
𝑛6(𝑇)

𝑛7(𝑇)
≅
𝑘76(𝑇)

𝑘67(𝑇)
 (Eq. 5.4) 

No modelo multifonons, a taxa do decaimento não-radiativo 𝑘76(𝑇) pode ser expressa 

como (REISFELD, Renata; JORGENSEN, 2012): 

𝑘76(𝑇) = 𝑘0[1 − 𝑒−𝜈̃ef (𝑘𝑇)⁄ ]
−∆𝐸76 𝜈̃ef⁄

, 𝑘0 = 𝐶𝑒−𝛼∆𝐸76  (Eq. 5.5) 

em que 𝐶 (em s−1) e 𝛼 (em cm) são os parâmetros fenomenológicos da matriz 

hospedeira, 𝜈ef é a energia em cm−1 (número de onda) do fônon e ∆𝐸76 (em cm−1) é a 
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diferença de energia entre os níveis 6 e 7. Vale ressaltar que a referência (REISFELD, 

Renata; JORGENSEN, 2012) usou notações para os parâmetros fenomenológicos 

diferentes das utilizadas aqui. Para matrizes hospedeiras com 𝜈ef ≅ 𝑘𝑇, próximo à 

temperatura ambiente, a seguinte aproximação 1 − 𝑒−𝜈̃ef (𝑘𝑇)⁄ ≅ 𝜈ef (𝑘𝑇)⁄  pode ser 

utilizada para fornecer: 

𝑘76(𝑇) ≅ 𝑘0 (
𝑘

𝜈ef
)
𝜂

𝑇𝜂 , 𝜂 =
∆𝐸76
𝜈ef

 (Eq. 5.6) 

Nesses casos, com a razão 𝜂 entre 1 e 2, a taxa de decaimento não-radiativo 

apresenta dependência entre linear e quadrática com a temperatura. 

 De fato, para a matriz hospedeira LiYF4(s), a dependência de 𝑘76 com a 

temperatura, no intervalo de 290 a 360 K (Tabela 3) é linear conforme ilustrado na 

Figura 29, com coeficiente de correlação R2 = 0,9986. 

 

Figura 29. Dependência da taxa de decaimento não-radiativo de 𝑘76 com a 

temperatura, no intervalo de 290 a 360 K, para o sistema LiYF4:Yb3+,Er3+. 

 

 

 Por outro lado, a taxa 𝑘67 representa a transição do nível com menor energia 6 

para o de maior energia 7, portanto, é um processo termicamente ativado (WILLIAMS, 

F. E.; EYRING, 1947). 

 

A equação de Arrhenius ou a equação de Eyring (ou Eyring-Polanyi) deduzida no 

contexto da teoria do complexo ativado (ou do estado de transição) são as mais 
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utilizadas para descrever processos ativados. A descrição da taxa 𝑘67 pela equação 

de Eyring fornece a seguinte expressão (WILLIAMS, F. E.; EYRING, 1947): 

𝑘67(𝑇) ∝
𝑘𝑇

ℎ
𝑒−∆

‡𝐺 (𝑘𝑇)⁄  (Eq. 5.7) 

em que ℎ é a constante de Planck e ∆‡𝐺 é a energia de ativação do processo, nesse 

caso deve estar associada com a diferença de energia ∆𝐸76 e com o número de fônons 

𝜂 necessários para suprir essa energia, a saber, 𝜂 = ∆‡𝐺 𝜈ef⁄ ≅ ∆𝐸76 𝜈ef⁄ . 

Com isso, o parâmetro termométrico previsto pelas equações de taxa é 

expresso como: 

∆(𝑇) ∝
𝑘76(𝑇)

𝑘67(𝑇)
∝ 𝑇𝜂−1𝑒∆

‡𝐺 (𝑘𝑇)⁄  (Eq. 5.8) 

Logo, considerando 𝜂 − 1 ≅ 0, a equação termométrica tem a forma exponencial 

∆(𝑇) ∝ 𝐵𝑒∆
‡𝐺 (𝑘𝑇)⁄  daquela obtida da suposição de equilíbrio estatístico entre as 

populações dos níveis 6 e 7. Este resultado é relevante, pois demonstra que a forma 

exponencial do parâmetro termométrico pode ser obtida das equações de taxa sob as 

várias aproximações e suposições envolvidas (e.g., 𝑥 ≅ 𝑦 ≪ 1, 1 − 𝑒−𝜈̃ef (𝑘𝑇)⁄ ≅

𝜈ef (𝑘𝑇)⁄ , 𝜂 − 1 ≅ 0) na dedução da Eq. 5.6. Demonstra também que a validade da 

suposição de equilíbrio estatístico entre as populações dos níveis 6 e 7, portanto, da 

validade da distribuição de Boltzmann entre esses níveis excitados, é restrita pelas 

aproximações utilizadas e que a mudança da matriz hospedeira ou do par de íons 

lantanídeos podem afetar a validade dessa suposição, afetando assim a viabilidade 

do sistema como termômetro primário-T (SOUZA, K. M. N. DE et al., 2022). 
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6.8 EFEITO DAS CONSTANTES DE TAXA K67, K65 E K63 NA 

POPULAÇÃO DOS NÍVEIS TERMICAMENTE ACOPLADOS 

 

Foram realizados estudos usando-se valores das constantes de taxa k67 e k65 

de acordo com a temperatura sobre a população dos níveis termicamente acoplados 

4S3/2 e 2H11/2, objetivando avaliar o comportamento das taxas de depopulação do nível 

6 sobre a razão n6/n7. Nesse sentido, foram calculados os valores da razão das 

populações n6/n7 para os respectivos valores da razão entre as taxas de transição 

envolvidas nos estados 6 e 7: 

𝑥 =
𝑘67

𝑘63 + 𝑘65
 

𝑦 =
𝑛6
𝑛7

 

 

(Eq. 5.9) 

nas temperaturas de 290, 300, 310, 320, 330, 340, 350 e 360 K, com k12 = 1,0 s−1. 

Nesse cenário, k63 foi adotado como constante e igual a 1000 s−1. 

A Figura 30 busca mostrar o efeito da proporção dessas taxas na razão das 

populações dos níveis termicamente acoplados, que determinam a temperatura do 

sistema. 
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Figura 30. Efeito das taxas de transição k67, k65 e k63 nas populações dos níveis 

termicamente acoplados. 

 

 

Observa-se que a razão n6/n7 decai exponencial com o aumento da razão entre 

as taxas e com a temperatura. Esse comportamento é consistente com a equação 

termométrica e com a dependência das taxas de transição com a temperatura, tanto 

descritas pelo modelo de multifonons como pela teoria do estado de transição. 
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7 CONCLUSÕES E PESPECTIVAS 

 

7.1 CONCLUSÕES 

 

Com objetivo de entender o comportamento temporal da luminescência para o 

sistema LiYF4:Yb3+,Er3+, construiu-se algoritmos que utilizam o método RK4 com 

passo adaptativo. A execução dos scripts produz dados de saída com valores de 

tempo e de população dos estados eletrônicos. Foi possível observar que o estado 

estacionário é atingido em um período ligeiramente inferior à 0,005 s. As inclinações 

das curvas indicam a velocidade de crescimento das populações, e para os níveis 

emissores, corresponde ao aumento das emissões.  

 Foi identificado na análise das populações temporais que as populações dos 

níveis fundamentais são reduzidas na medida em que as populações dos níveis 

excitados são magnificadas, em consistência com o modelo e com os resultados 

experimentais. Se observou que a utilização de valores superiores para as taxas k12 

promove aumento das populações dos níveis excitados no estado estacionário, e uma 

diminuição das populações dos níveis fundamentais no estado estacionário. Para os 

níveis emissores, a utilização de maiores valores para as taxas k12 demonstrou 

emissões mais elevadas. Por fim, também se observou que o comportamento das 

populações do estado estacionário não demonstra linearidade com a taxa k12, e que 

o comportamento não linear é magnificado com a utilização de valores mais elevados 

para k12.  

 Procurou-se entender quais influências as concentrações de sensibilizador 

teriam sobre a luminescência. Foi identificado que a utilização de valores maiores para 

as concentrações do íon sensibilizador promove emissões mais intensas, e que as 

populações dos níveis excitados atingem valores superiores no estado estacionário, 

em conformidade com as condições iniciais. Foi possível observar que o 

comportamento associado a dependência das populações no estado estacionário com 

a concentração do sensibilizador foi, em geral, ligeiramente distante do 

comportamento linear, exceto para o nível eletrônico 1. Além disso, pode-se constatar 

um comportamento ligeiramente distante do comportamento linear para a análise das 

intensidades das emissões com a concentração do sensibilizador. Adicionalmente, 

também foi constatado que houve supressão (quenching) das intensidades de 

emissão com uso de elevadas concentrações do sensibilizador. Isso demonstra uma 
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inadequação no uso de valores muito elevados para essas concentrações, em geral, 

visando aumento de emissões e do rendimento quântico. 

 Foram realizadas regressões lineares com objetivo de identificar o 

comportamento de dependência da CAE com a densidade de potência. Pode-se 

observar um comportamento com dependência de aproximadamente 2 (dois) fótons 

para o sistema estudado. Além disso, o erro associado aos valores de R² ocorreram 

na 4ª (quarta) casa decimal. Foi constatado que o número de fótons envolvidos na Lei 

de potência tende a aumentar com aplicação de maiores valores para as taxas k12, 

correspondendo a densidades de potência mais elevadas, em consistência com 

resultados na literatura.  

 Visando validar os valores de gap de energia utilizado, realizou-se ajuste dos 

dados ao parâmetro termométrico correspondente a razão entre as intensidades de 

emissão. O ajuste indiciou uma diferença de energia inferior a 1% do valor exato, com 

erro do R² na 5ª (quinta) casa decimal. Isso sugere uma elevada precisão na predição 

dos valores das emissões com o método utilizado.  

 

 7.2 PROPOSTAS FUTURAS E PESPECTIVAS 

 As principais propostas futuras e perspectivas para o prosseguimento dos 

estudos realizados nesse trabalho incluem: 

 1 – Obtenção das taxas de TE para cada concentração utilizada, visto que as 

concentrações influenciam na contribuição dos mecanismos de TE que, quando 

somados, definem os valores para as taxas, como evidenciado, por exemplo, pelas 

equações de Kushida (NETO et al., 2022). 

 2 – Abrangência das faixas de temperatura para observação de possíveis 

comportamentos anômalos, como por exemplo, a relação entre o equilíbrio térmico 

associado às populações de Boltzmann e as taxas de transição entre os níveis 

associados à essas populações. 

 3 – Abrangência da faixa de valores utilizados para obtenção de predições mais 

precisas para validação da lei de potência. 

 4 – Ajuste das equações de taxa com a inclusão de uma maior quantidade de 

níveis eletrônicos. 

 5 – Análise do impacto da condição de equilíbrio térmico com a utilização de 

maiores valores de k12 – emprego de maiores densidades de potência. 

 6 – Melhoria na versatilidade dos códigos desenvolvidos. 
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7 – Testes envolvendo outros tipos de materiais. 

 

Com isso, espera-se obter um conjunto de protocolos significativamente 

formalizados para aplicação em uma ampla variedade de sistemas e condições 

desses sistemas. 
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APÊNDICE A. 

Estão apresentadas as dependências entre o logaritmo da população do nível 

emissor 𝑖, log 𝑛𝑖, e o logaritmo da taxa de excitação, log 𝑘12, para os níveis emissores 

𝑖 = 5, 6 e 7, com taxas de excitação 𝑘12 variando de 0,1 a 1,0 s−1. 

 

Figura A1. Dependência do logaritmo da população do nível emissor 5, 4F9/2 Er3+, 

log 𝑛5, e o logaritmo da taxa de excitação, log 𝑘12, para a CAE no sistema Yb3+,Er3+. A 

população foi obtida após 0,01 s em condição de estado-estacionário. A linha 

vermelha representa o ajuste linear com inclinação igual a 1,982 e R2 = 0,99999. 

 

 

Figura A2. Mesmo que a Figura A1 para o nível emissor 6, 4S3/2 Er3+, com inclinação 

igual a 1,982 e R2 = 0,99999. 
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Figura A3. Mesmo que a Figura A1 para o nível emissor 7, 2H11/2 Er3+, com inclinação 

igual a 1,982 e R2 = 0,99999. 

 

 

Estão apresentadas as dependências entre o logaritmo da população do nível 

emissor 𝑖, log 𝑛𝑖, e o logaritmo da taxa de excitação, log 𝑘12, para os níveis emissores 

𝑖 = 5, 6 e 7, com taxas de excitação 𝑘12 variando de 10,0 a 100,0 s−1. 

 

Figura A4. Dependência do logaritmo da população do nível emissor 5, 4F9/2 Er3+, 

log 𝑛5, e o logaritmo da taxa de excitação, log 𝑘12, para a CAE no sistema Yb3+,Er3+. A 
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população foi obtida após 0,01 s em condição de estado-estacionário. A linha 

vermelha representa o ajuste linear com inclinação igual a 1,982 e R2 = 0,99999. 

 

 

Figura A5. Mesmo que a Figura A4 para o nível emissor 6, 4S3/2 Er3+, com inclinação 

igual a 1,982 e R2 = 0,99999. 

 

 

Figura A6. Mesmo que a Figura A4 para o nível emissor 7, 2H11/2 Er3+, com inclinação 

igual a 1,982 e R2 = 0,99999. 
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APÊNDICE B. 

 

𝑛̇6 = −(𝑘63𝑛6 + 𝑘65𝑛6 + 𝑘67𝑛6) + (𝑘76𝑛7) (Eq. 3.4) 

𝑛̇7 = −(𝑘73𝑛7 + 𝑘76𝑛7) + (𝑘67𝑛6 + 𝑘87𝑛8) (Eq. 3.5) 

Considerando regime de estado-estacionário (𝑛̇6 = 𝑛̇7 = 0), 

0 = −(𝑘63𝑛6 + 𝑘65𝑛6 + 𝑘67𝑛6) + (𝑘76𝑛7) 

0 = −(𝑘73𝑛7 + 𝑘76𝑛7) + (𝑘67𝑛6 + 𝑘87𝑛8) 

Para o nível 6: 

Reordenando os termos: 

(𝑘76𝑛7) = (𝑘63 + 𝑘65 + 𝑘67)𝑛6 

→
𝑛6

𝑛7
=⁡

𝑘76

(𝑘63+𝑘65+𝑘67)
  

Fazendo 𝑥 = ⁡
𝑘63+𝑘65

𝑘67
 

Então, 

→ (1 + 𝑥)−1 = (1 +
𝑘63 + 𝑘65

𝑘67
)
−1

 

→ (1 + 𝑥)−1 = (
𝑘63 + 𝑘67 + 𝑘65

𝑘67
)
−1

 

→ (1 + 𝑥)−1 = (
𝑘67

𝑘63 + 𝑘67 + 𝑘65
) 

Portanto, 

→
𝑛6

𝑛7
=⁡

𝑘76

𝑘67
(1 + 𝑥)−1  

Para 𝑥 ≪ 1 

(1 + 𝑥)−1 ≅ (1 − 𝑥) 

E podemos assumir: 

𝑛6
𝑛7

≅⁡
𝑘76
𝑘67

(1 − 𝑥) 

 

Para o nível 7: 
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(𝑘67𝑛6 + 𝑘87𝑛8) = (𝑘73 + 𝑘76)𝑛7 

𝑘67𝑛6 = 𝑘73𝑛7 + 𝑘76𝑛7 − 𝑘87𝑛8 

Supondo um y tal que: 

 

𝑛6
𝑛7

=⁡
𝑘76
𝑘67

(1 − 𝑦) 

Então, 

(1 − 𝑦) = ⁡
𝑛6
𝑛7

𝑘67
𝑘76

 

(1 − 𝑦)⁡𝑘76𝑛7 =⁡𝑘67𝑛6 

𝑘76𝑛7 − 𝑦𝑘76𝑛7⁡ = ⁡𝑘67𝑛6 

Pela equação de taxa: 

𝑘67𝑛6 = ⁡𝑘76𝑛7+⁡⁡𝑘73𝑛7 − 𝑘87𝑛8⁡⁡ 

Portanto, 

−𝑦𝑘76𝑛7⁡ =⁡ ⁡𝑘73𝑛7 − 𝑘87𝑛8⁡⁡ 

𝑦 = ⁡
−𝑘73𝑛7 + 𝑘87𝑛8⁡

𝑘76𝑛7⁡
 

 

→ 𝑛7 =⁡
𝑘67𝑛6+𝑘87𝑛8
(𝑘73 + 𝑘76)

 

 

Dividindo ambos os membros por 𝑘76𝑛7. 

→ 𝑘73 − 𝑘87
𝑛8
𝑛7

=⁡
𝑘67
𝑘76

𝑛6
𝑛7

 

→⁡
𝑘73𝑛7 − 𝑘87𝑛8

𝑛7
= ⁡

𝑘67
𝑘76

𝑛6
𝑛7

 

→⁡
𝑘73𝑛7 − 𝑘87𝑛8

𝑛7

𝑘76
𝑘67

=⁡
𝑛6
𝑛7

 

 

→ (1 − 𝑦)
𝑘76
𝑘67

=⁡
𝑛6
𝑛7
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𝑘73𝑛7 − 𝑘87𝑛8
𝑛7

= 1 − 𝑦 

Então  

𝑦 =
𝑘87
𝑘76

𝑛8
𝑛7

−
𝑘73
𝑘76

 

 

Demonstração da obtenção Eq. 5.6. 

Considerando Eq. 5.5: 

𝑘76(𝑇) = 𝑘0[1 − 𝑒−𝜈̃ef (𝑘𝑇)⁄ ]
−∆𝐸76 𝜈̃ef⁄

, 𝑘0 = 𝐶𝑒−𝛼∆𝐸76  (Eq. 5.5) 

Para 𝜈ef ≅ 𝑘𝑇, 

Pode-se aproximar: 

1 − 𝑒−𝜈̃ef (𝑘𝑇)⁄ ≅ 𝜈ef (𝑘𝑇)⁄  

A Eq. 5.5 pode ser rearranjada: 

𝑘76(𝑇) = 𝑘0
1

[1 − 𝑒−𝜈̃ef (𝑘𝑇)⁄ ]∆𝐸76 𝜈̃ef⁄
, 𝑘0 = 𝐶𝑒−𝛼∆𝐸76  

, 

 

 

Substituindo a aproximação usada, no denominador, chegamos na Eq. 5.6: 

𝑘76(𝑇) ≅ 𝑘0 (
𝑘

𝜈ef
)
𝜂

𝑇𝜂 , 𝜂 =
∆𝐸76
𝜈ef

 (Eq. 5.6) 
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ANEXOS 

Tabela 5. Experimental and theoretical energy levels in cm−1 of Er3+ in LiYF4. 

Multiplet Γ(𝑆4)
[𝑎] E (Experimental [b] E (Theoretical) 

⁡4115/2 

5,6 0 8 

5,6 15 11 

7,8 23 11 

7,8 53 50 

7,8 247 250 

5,6 286 285 

5,6 325 317 

5,6 352 336 

⁡4113/2 

7,8 6536 6539 

5,6 6540 6544 

5,6 6579 6583 

7,8 6672 6680 

5,6 6696 6703 

7,8 6725 6731 

5,6 6739 6744 

 

⁡4𝐼11/2 

7,8 10222 10216 

5,6 10239 10231 

5,6 10285 10284 

7,8 10303 10305 

5.6 10320 10310 

7,8 10355 10322 

⁡4𝐼9/2 
7,8 

5,6 
12369 12368 12519 
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7,8 12549 12559 

5,6 12575 12574 

7,8 12671 12678 

⁡4𝐹9/2 

7,8 
 

15314 
15335
15359

 

5,6 15333 15359 

7,8 15349 15375 

7,8 15425 15447 

5,6 15477 15502 

⁡4𝑠3/2 

5,6 18438 18437 

7,8 18497 18496 

⁡2H11/2(2) 

5,6 19157 19165 

7,8 19176 19188 

7,8 19228 19232 

5,6 19313 19307 

7,8 19330 19313 

5,6 19346 19327 

⁡4𝐹7/2 

7,8 20576 20542 

5,6  20544 

5,6 20666 20638 

7,8 20674 20647 
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SCRIPT FORTRAN (ucnum8.f) 

      program ucnum8 

c 

c     Numerical solution of rate equations for upconversion 

c     with 8-level system 

c 

      implicit none 

      integer 

     $     maxstp,nmax,nvar,nok,noktot,nbad,nbadtot,kount, 

     $     iunit,junit,lunit,munit, 

     $     k, i, j, ii, jj, ll, mm, nn, nm, nl, skip, kwrite 

      double precision 

     $     rate,ystart,ratemax,hmin,h1,tfinal,y,dydx,yscal,eps,x1,x2, 

     $     ytemp,ysav,dysav,ytemp1,dytemp1,dytemp2, 

     $     zero,one,ten 

      character*1 str1 

      character*2 str2 

      character*4 file1 

      character*5 file2 

      parameter 

     $     (maxstp=10000, nmax=10, eps=1.0d-7) 

      dimension 

     $     rate(nmax,nmax), ystart(nmax), 

     $     y(nmax), dydx(nmax), yscal(nmax), 

     $     ytemp(nmax), ysav(nmax), dysav(nmax), 

     $     ytemp1(nmax), dytemp1(nmax), dytemp2(nmax) 

      data 

     $     zero/0.0d0/, one/1.0d0/, ten/1.0d01/ 

c      

      open(unit=9,file='ET.INP',status='old') 

      open(unit=8,file='ET.OUT',status='replace') 

      rewind (9,err=1000) 

c      

c     read the number of equations (nvar), the final time tfinal 

c     (in seconds), and the number of points at which the 

c     equations will be integrated. 

      read(9,*) 

      read(9,*)nvar, tfinal, skip 

c 

c     nvar = number of states; tfinal = final time; 

c     skip = number of calls that will be skipped for printing 

c 

c     check for the maximum number of equations allowed 

      if(nvar .gt. nmax) goto 1002 

c      

c     read the initial populations: y(1) y(2) y(3) ... y(nvar) 

c     which in general have y(i)=1.0 and y(j.ne.i)=0.0 
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c      

      do 5 k=1,nvar 

         read(9,*) ystart(k) 

 5    continue 

c      

c     read each transfer rate (in second**-1) in the following 

c     order: rate(1,1) rate(1,2) rate(1,3) ... rate(1,n) 

c            rate(2,1) rate(2,2) rate(2,3) ... rate(2,n) 

c            rate(3,1) rate(3,2) rate(3,3) ... rate(3,n) 

c                          ... 

c            rate(n,1) rate(n,2) rate(n,3) ... rate(n,n) 

c 

c     where n=nvar 

c      

      ratemax = zero 

      do 10 i=1,nvar 

         do 11 j=1,nvar 

            read(9,*) rate(i,j) 

            if(rate(i,j) .gt. ratemax) ratemax = rate(i,j) 

 11      continue 

 10   continue 

c      

      close(unit=9,status='keep') 

c      

c     open the units and files for writing the results 

      do 15 ii=1,nvar 

         iunit=9+ii 

         if(ii .lt. 10) then 

            write(str1,1060)ii 

            file1='pop'//str1 

            open(unit=iunit,file=file1,status='replace') 

         else 

            write(str2,1070)ii 

            file2='pop'//str2 

            open(unit=iunit,file=file2,status='replace') 

         endif 

 15   continue 

c      

c     write up the initial values 

      do 20 jj=1,nvar 

         junit=9+jj 

         write(junit,1020) x1, ystart(jj) 

 20   continue 

c      

c     Guess for the initial step (h1) 

      h1 = one/(ratemax*ten) 

      x1 = zero 

      hmin = zero 

      kount = 0 
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      kwrite = skip 

      nbadtot = 0 

      noktot = 0 

 100  continue 

      x2 = x1 + h1 

      call odeint(ystart,rate,x1,x2,eps,h1,hmin,y,dydx,yscal, 

     *            ytemp,ysav,dysav,ytemp1,dytemp1,dytemp2, 

     *            nvar,nmax,nok,nbad,maxstp) 

c      

      noktot = noktot + nok 

      nbadtot = nbadtot + nbad 

      kount = kount + 1 

c      

c     write up the initial results 

      if (kount .eq. 1) then 

         do 40 ll=1,nvar 

            lunit=9+ll 

            write(lunit,1020) x2, ystart(ll) 

 40      continue 

      endif 

c      

c     write up the results after skip times 

      if (kount .eq. kwrite) then 

         do 45 ll=1,nvar 

            lunit=9+ll 

            write(lunit,1020) x2, ystart(ll) 

 45      continue 

         kwrite = kwrite + skip 

      endif 

c      

      x1 = x2 

      if(x2 .lt. tfinal) goto 100 

c      

c     close all open units 

      do 50 mm=1,nvar 

         munit=9+mm 

         close(munit,status='keep') 

 50   continue 

c      

      write(8,*)'Initial Time Step = ', h1 

      write(8,*)'Final Time (s) = ', x2 

      write(8,*)'Final Populations' 

c 

      do 60 nn=1,nvar 

         write(8,*) ystart(nn) 

 60   continue 

c 

      write(8,*)'Sum of the populations of the donor = ', y(1)+y(2) 

      write(8,*)'Sum of the populations of the acceptor = ', 
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     $     y(3)+y(4)+y(5)+y(6)+y(7)+y(8) 

      write(8,*)'Sum of all populations = ', 

     $     y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+y(8) 

c 

      write(8,*)'Transition rates (s-1)' 

c 

      do 70 nm=1,nvar 

         do 71 nl=1,nvar 

            write(8,*) nm, nl, rate(nm,nl) 

 71      continue 

 70   continue 

c      

      write(8,*)'Normal Termination of UCNUM8' 

c 

      close(unit=8,status='keep') 

c     ! Consider modifying the status of 'keep' above 

      stop 

c-------------------------------------------------------------------- 

c    Error messages 

c-------------------------------------------------------------------- 

 1000 write(8,1001) 

      stop 

 1001 format(10x,'NO INPUT DECK SUPPLIED') 

c 

 1002 write(8,1003)nmax 

      stop 

 1003 format(10x,'The maximum number of equations is ',i4) 

c 

c-------------------------------------------------------------------- 

c    Formats 

c-------------------------------------------------------------------- 

 1020 format(3x,d15.7,d15.7) 

 1030 format(3x,a13,F4.1,a1) 

 1060 format(i1) 

 1070 format(i2) 

      end 

c 

c 

      subroutine odeint(ystart,rate,x1,x2,eps,h1,hmin,y,dydx,yscal, 

     $                  ytemp,ysav,dysav,ytemp1,dytemp1,dytemp2, 

     $                  nvar,nmax,nok,nbad,maxstp) 

      implicit none 

      integer 

     $     nvar, nmax, nok, nbad, maxstp, nstp, i, j, k  

      double precision 

     $     ystart(nmax), rate(nmax,nmax), 

     $     y(nmax), dydx(nmax), yscal(nmax), 

     $     ytemp(nmax), ysav(nmax), dysav(nmax), 

     $     ytemp1(nmax), dytemp1(nmax), dytemp2(nmax), 
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     $     x1, x2, eps, h1, hmin, tiny, x, h, hdid, hnext, 

     $     zero, one 

      parameter 

     $     (tiny=1.0d-30) 

      data 

     $     zero /0.0d0/, one /1.0d0/ 

c 

      x = x1 

      h = sign(h1,x2-x1) 

      nok  = 0 

      nbad = 0 

c 

      do 11 i=1,nvar 

         y(i) = ystart(i) 

 11   continue 

c 

      do 24 nstp=1,maxstp 

         call derivs(y,dydx,rate,nvar,nmax) 

         do 12 j=1,nvar 

crll            yscal(j)=abs(y(j))+abs(h*dydx(j))+tiny 

c     since some y(i)'s starts and goes to zero, this expression for 

c     yscal(j) is not going to work. So, yscal(j) are set the the 

c     maximum values of y(i)=1.0 

c 

            yscal(j) = one 

 12      continue 

         if((x+h-x2)*(x+h-x1).gt.zero) h=x2-x 

c 

         call rkqc(y,dydx,rate,yscal,ytemp,ysav,dysav, 

     *             ytemp1,dytemp1,dytemp2, 

     *             x,h,eps,hdid,hnext,nvar,nmax) 

         if (hdid .eq. h)then 

            nok = nok + 1 

         else 

            nbad = nbad + 1 

         endif 

c 

         if ((x-x2)*(x2-x1) .ge. zero)then 

c      

            do 14 k=1,nvar 

               ystart(k) = y(k) 

 14         continue 

c      

            h1 = hnext 

            return 

         endif 

c 

         if (abs(hnext) .lt. hmin) stop 'Stepsize smaller than minimum' 

         h=hnext 
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c 

 24      continue 

c 

      stop 'Too many steps.' 

      end 

c 

c 

      subroutine rkqc(y,dydx,rate,yscal,ytemp,ysav,dysav, 

     $                ytemp1,dytemp1,dytemp2, 

     $                x,htry,eps,hdid,hnext,n,nmax) 

      implicit none 

      integer 

     $     n, nmax, i, j, k 

      double precision 

     $     y(nmax),dydx(nmax),rate(nmax,nmax),yscal(nmax), 

     $     x,htry,eps,hdid,hnext, 

     $     ytemp(nmax),ysav(nmax),dysav(nmax),xsav,h,hh, 

     $     ytemp1(nmax),dytemp1(nmax),dytemp2(nmax), 

     $     fcor,safety,errcon,pgrow,pshrnk,errmax, 

     $     zero,one,half,four  

      parameter 

     $     (fcor=0.0666666667d0,safety=0.9d0,errcon=6.0d-4) 

      data 

     $     zero/0.0d0/, one/1.0d0/, half/0.5d0/, four/4.0d0/ 

c 

      pgrow=-0.20 

      pshrnk=-0.25 

      xsav=x 

c 

      do 11 i=1,n 

         ysav(i)=y(i) 

         dysav(i)=dydx(i) 

 11   continue 

c 

      h=htry 

  1   hh=h*half 

      call rk4(ysav,dysav,rate,xsav,hh,ytemp,ytemp1,dytemp1,dytemp2, 

     *         n,nmax) 

      x=xsav+hh 

      call derivs(ytemp,dydx,rate,n,nmax) 

      call rk4(ytemp,dydx,rate,x,hh,y,ytemp1,dytemp1,dytemp2, 

     *         n,nmax) 

      x=xsav+h 

      if (x. eq. xsav) stop 'Stepsize not significant in rkqc.' 

      call rk4(ysav,dysav,rate,xsav,h,ytemp,ytemp1,dytemp1,dytemp2, 

     *         n,nmax) 

      errmax=zero 

      do 12 j=1,n 

         ytemp(j)=y(j)-ytemp(j) 
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         errmax=max(errmax,abs(ytemp(j)/yscal(j))) 

 12   continue 

      errmax=errmax/eps 

      if(errmax.gt.one) then 

        h=safety*h*(errmax**pshrnk) 

        goto 1 

      else 

        hdid=h 

        if(errmax.gt.errcon)then 

          hnext=safety*h*(errmax**pgrow) 

        else 

          hnext=h*four 

        endif 

      endif 

      do 13 k=1,n 

         y(k)=y(k)+ytemp(k)*fcor 

 13   continue 

      return 

      end 

c 

c 

      subroutine rk4(y,dydx,rate,x,h,yout,yt,dyt,dym,n,nmax) 

      implicit none 

      integer 

     $     n, nmax, i, j, k, l 

      double precision 

     $     y(nmax),dydx(nmax),rate(nmax,nmax),x,h,yout(nmax), 

     $     yt(nmax),dyt(nmax),dym(nmax), 

     $     hh, h6, xh, 

     $     half, two, six 

      data 

     $     half /0.5d0/, two /2.0d0/, six /6.0d0/ 

c 

      hh=h*half 

      h6=h/six 

      xh=x+hh 

c 

      do 11 i=1,n 

         yt(i)=y(i)+hh*dydx(i) 

 11   continue 

      call derivs(yt,dyt,rate,n,nmax) 

c 

      do 12 j=1,n 

         yt(j)=y(j)+hh*dyt(j) 

 12   continue 

      call derivs(yt,dym,rate,n,nmax) 

c 

      do 13 k=1,n 

         yt(k)=y(k)+h*dym(k) 
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         dym(k)=dyt(k)+dym(k) 

 13   continue 

      call derivs(yt,dyt,rate,n,nmax) 

c 

      do 14 l=1,n 

         yout(l)=y(l)+h6*(dydx(l)+dyt(l)+two*dym(l)) 

 14   continue 

c 

      return 

      end 

c 

c 

      subroutine derivs(y,dydx,k,nvar,nmax) 

      implicit none 

      integer 

     $     nvar, nmax, 

     $     i, j 

      double precision 

     $     y(nmax), dydx(nmax), k(nmax,nmax), 

     $     sum, zero 

      data zero /0.0d0/ 

c                                                                     

c     rate equations for 8-level system upconversion        

c                                                                             

         

      dydx(1)=-(k(1,2)*y(1)+k(4,2)*y(1)*y(4)+k(8,2)*y(1)*y(8)) 

     $     +(k(2,1)*y(2)+k(2,4)*y(2)*y(3)+k(2,8)*y(2)*y(4)) 

      dydx(2)=-(k(2,1)*y(2)+k(2,4)*y(2)*y(3)+k(2,8)*y(2)*y(4)) 

     $     +(k(1,2)*y(1)+k(4,2)*y(1)*y(4)+k(8,2)*y(1)*y(8)) 

      dydx(3)=-(k(2,4)*y(2)*y(3)) 

     $     +(k(4,3)*y(4)+k(5,3)*y(5)+k(6,3)*y(6)+k(7,3)*y(7) 

     $     +k(4,2)*y(1)*y(4)) 

      dydx(4)=-(k(4,3)*y(4)+k(4,2)*y(1)*y(4)+k(2,8)*y(2)*y(4)) 

     $     +(k(2,4)*y(2)*y(3)+k(8,2)*y(1)*y(8)+k(5,4)*y(5)) 

      dydx(5)=-(k(5,3)*y(5)+k(5,4)*y(5)) 

     $     +(k(6,5)*y(6)) 

      dydx(6)=-(k(6,3)*y(6)+k(6,5)*y(6)+k(6,7)*y(6)) 

     $     +(k(7,6)*y(7)) 

      dydx(7)=-(k(7,3)*y(7)+k(7,6)*y(7)) 

     $     +(k(6,7)*y(6)+k(8,7)*y(8)) 

      dydx(8)=-(k(8,7)*y(8)+k(8,2)*y(8)*y(1)) 

     $     +(k(2,8)*y(2)*y(4)) 

c       

      return 

      end 

c 
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EXEMPLO DE ARQUIVO DE INPUT (ET.INP) 

 

 

nvar  tfinal skip 

8      0.01    1 

18.0   y1 

0.0E0  y2 

2.0E0  y3 

0.0E0  y4 

0.0E0  y5 

0.0E0  y6 

0.0E0  y7 

0.0E0  y8 

0.0  k11 

0.9  k12 

0.0  k13 

0.0  k14 

0.0  k15 

0.0  k16 

0.0  k17 

0.0  k18 

3.57E03  k21 

0.0  k22 

0.0  k23 

1.25E06  k24 

0.0  k25 

0.0  k26 

0.0  k27 

1.10E06  k28 

0.0  k31 

0.0  k32 

0.0  k33 
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0.0  k34 

0.0  k35 

0.0  k36 

0.0  k37 

0.0  k38 

0.0  k41 

7.94E04  k42 

6.00E03  k43 

0.0  k44 

0.0  k45 

0.0  k46 

0.0  k47 

0.0  k48 

0.0  k51 

0.0  k52 

1.00E03  k53 

5.00E02    k54 

0.0  k55 

0.0  k56 

0.0  k57 

0.0  k58 

0.0  k61 

0.0  k62 

1.00E03  k63 

0.0  k64 

1.60E03  k65 

0.0  k66 

2.08E05  k67 

0.0  k68 

0.0  k71 

0.0  k72 

1.00E03  k73 

0.0  k74 

0.0  k75 



116 

 

3.62E06  k76 

0.0  k77 

0.0  k78 

0.0  k81 

2.43E05  k82 

0.0  k83  

0.0  k84 

0.0  k85 

0.0  k86 

4.45E05  k87 

0.0  k88  
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