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RESUMO

A energia proveniente da fonte edlica tem cada vez mais confirmado a sua
importancia na produ¢ao de energia elétrica renovavel no Brasil e no mundo. Em
tempos de transicdo energética, desastres climaticos e metas cada vez mais
ambiciosas na reducdo de emissdo de gases de efeito estufa, a edlica tem se
firmado como uma opgédo ndo sé viavel, como essencial, na produgdo de energia
limpa. Uma das formas de se avaliar o desempenho de uma turbina edlica se da
através da analise de dados SCADA, essenciais no monitoramento, tanto da
condigdo, quanto da performance da turbina, fornecendo informagdes cruciais aos
operadores. Também é possivel utiliza-los para estimar a curva de poténcia historica
das turbinas de um parque edlico e fazer previsdes futuras da producéo de energia.
Para que isso seja possivel de ser realizado, a limpeza dos dados € essencial; tanto
de dados espurios, quanto para isolar problemas como indisponibilidade e
problemas de desempenho, como por exemplo no sistema de pitch e de yaw. A
depender da quantidade de dados a serem avaliados, esta tarefa pode ser exaustiva
e computacionalmente custosa. Este trabalho apresenta uma nova metodologia para
a limpeza automatica de curvas de poténcia de turbinas edlicas, utilizando técnicas
de aprendizado de maquina que ainda sao pouco exploradas nesse contexto. A
pesquisa comegou com um algoritmo de agrupamento para identificar anomalias nos
dados, mas os resultados iniciais mostraram limitagcbes na separagado clara entre
diferentes tipos de falhas. Para superar esse desafio, foram desenvolvidos dois
novos modelos baseados na combinacdo de autoencoders com uma rede neural
inspirada na teoria de Kolmogorov-Arnold, denominados AE-KAN e VAE-KAN.
Ambos os modelos conseguiram classificar melhor os tipos de falhas e se
destacaram por detectar com mais sensibilidade os casos mais raros, superando
outros métodos ja consagrados na literatura. Como referéncia, os dados utilizados
foram rotulados por um especialista da area, com base em uma ferramenta usada
na industria eolica, reforcando o potencial de aplicagdo pratica da metodologia
proposta.

Palavras-chave: Energia edlica; Dados SCADA; Limpeza de curvas de
poténcia; Autoencoders; Rede Kolmogorov-Arnold.



ABSTRACT

Wind energy has increasingly proven its importance in renewable electricity
generation in Brazil and worldwide. In times of energy transition, climate disasters,
and increasingly ambitious targets for reducing greenhouse gas emissions, wind
power has established itself not only as a viable option but as an essential
component of clean energy production. One of the key methods for assessing the
performance of a wind turbine is through the analysis of SCADA data, which is
crucial for monitoring both the turbine's condition and performance, providing
valuable insights to operators. In addition to evaluating turbine performance, SCADA
data can also be used to estimate a wind farm’s historical power curve and make
future energy production forecasts. However, for these analyses to be reliable,
proper data cleaning is essential—both to remove spurious data and to isolate issues
such as unavailability, curtailments, and performance problems, including
malfunctions in the pitch and yaw systems. Depending on the volume of data to be
analyzed, this task can be both exhaustive and computationally demanding. This
work proposes a new methodology for the automatic cleaning of wind turbine power
curves, using machine learning techniques that are still underexplored in this context.
The research began with a clustering algorithm to identify anomalies in the data, but
initial results revealed limitations in separating different types of failures. To
overcome this challenge, two new models were developed, combining autoencoders
with a neural network inspired by Kolmogorov-Arnold theory — resulting in the AE-
KAN and VAE-KAN approaches. Both models proved effective in distinguishing
between different failure types and showed superior sensitivity in detecting rare
cases, outperforming widely used methods in the literature. The dataset was labeled
by an industry expert using a tool commonly applied in the wind energy sector,
highlighting the practical applicability of the proposed methodology.

Keywords: Wind energy; SCADA data; Power curve cleaning; Autoencoders;
Kolmogorov-Arnold Network.
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1 INTRODUGAO

Um dos principais objetivos da sociedade consiste na produgao sustentavel e
de forma segura de energia, uma vez que ela € uma propulsora indispensavel ao
desenvolvimento econdmico e social. Ao longo dos anos, o0 uso extensivo dos
combustiveis fésseis contribuiu diretamente para o agravamento do aquecimento
global e 0 aumento na emissao de gases do efeito estufa e, infelizmente, os mesmos
ainda tém sido amplamente utilizados e sdo empregados em varios setores para
suprir a necessidade de geragcédo de energia. A grande escala de esgotamento da
energia nao renovavel ocorreu devido a rapida utilizacdo desses recursos, o que
também causou efeitos adversos como mudancgas climaticas e aquecimento global
devido a alta emissdo de gases de efeito estufa. Esses efeitos podem causar
problemas inevitaveis, como elevagao do nivel do mar, derretimento de geleiras,
destruicdo de florestas, poluicdo do ar, diminuicdo da camada de ozbnio, uso de
agua e terra, emissdes radioativas, precipitacao acida, perda de vida selvagem e
danos a ecologia, ameagando significativamente a humanidade (Bennagi et al.,
2024).

Diante deste cenario, uma das maiores preocupacdes atuais esta relacionada
as mudancas climaticas e seus impactos no planeta. A 282 edicao da Conferéncia
das Partes (COP-28), ocorrida em novembro de 2023, em Dubai, nos Emirados
Arabes Unidos, foi um dos maiores eventos ja realizados sobre o tema, reunindo 198
partes (197 paises e a Unido Europeia). A COP-28 foi especificamente marcante,
pois representou o primeiro chamado “global stockage”. processo que consiste em
verificar onde os paises estao progredindo em relagdo ao que foi definido no acordo
de Paris e onde eles ndo estdo. Uma das regras definidas neste acordo foi, por
exemplo, a limitagdo do aumento da temperatura média mundial a 1,5°C até 2050,
em relacdo aos niveis pré-industriais, e a redugado a metade das emissdes de gases
do efeito estufa até 2030 (United Nations Climate Change, 2024). Para que possam
avancar nesta direcdo, durante a COP-28, ficou definido que os paises devem
reduzir as emissdes de gases do efeito estufa em pelo menos 45% até 2030, em
relagdo aos niveis de 2010 (Alba energia, 2023). Apesar de serem metas bastante
ambiciosas, isto significa um compromisso cada vez maior com a transicao
energética, progressivamente abandonando todo um sistema baseado em

combustiveis fésseis para outro majoritariamente renovavel.
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O Brasil, que possui participacao relativa de 84,4% de fontes renovaveis em
sua matriz energética, conforme apresentado na Figura 1-1 (Infovento, 2024),
representa uma parte importante na transicdo energética global. Nos ultimos anos, o
pais viu um crescimento significativo das fontes edlicas e solar, chegando a 31 GW
de capacidade instalada da primeira fonte e 12 GW da segunda, para geragao
centralizada, e mais de 27,7 GW em geragao distribuida. Baseado nos contratos
viabilizados em leildes ja realizados e no mercado livre, ha uma expectativa de que
mais de 22 GW de energia proveniente da fonte edlica onshore sejam instalados
entre 2025 e 2030 (Figura 1-2).

Figura 1-1 Matriz energética brasileira.
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Fonte: Infovento (2024)

Além disso, o IBAMA ja recebeu mais de 170 GW em projetos propostos para
energia eolica offshore; praticamente o mesmo valor de toda a capacidade da matriz
elétrica brasileira atual, mostrando, portanto, o apetite dos investidores e
confirmando o grande potencial de energia proveniente da fonte edlica offshore
antes previsto. Com cerca de 8000 km de costa, o Brasil tem o potencial de instalar
mais de 1200 GW de edlica offshore, de acordo com um estudo realizado pelo
Banco Mundial (World bank group, 2020). A ABEEdlica (Associagcéo Brasileira de
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Energia Edlica e Novas Tecnologias) tem se mostrado otimista em relagdo ao
mercado offshore, principalmente apds a aprovagao no congresso nacional e sangao
do presidente da republica, resultando na publicagdo da Lei n° 15.097 de 10 de
janeiro de 2025 — o Marco Legal das Edlicas Offshore no Brasil (Gomes et al., 2025).

Figura 1-2 Evolugdo da capacidade instalada da fonte edlica onshore.
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7

A fonte edlica, que é a segunda maior na matriz elétrica brasileira, com
participagdo, em marg¢o/2024, de 15,4% e poténcia instalada de 31 GW, teve o seu
desenvolvimento impulsionado por importantes politicas publicas federais, estaduais
e de instituicdes de fomento, sendo responsavel em 2023, por abastecer mais de 47
milhdes de residéncias brasileiras (Infovento, 2024). Em um estudo feito para
ABEEJdlica, estima-se que para cada um real investido em energia edlica, ha um
aumento de R$2,90 no PIB (Borges, 2022). O setor edlico no Brasil tem consolidado
seu crescimento através do mercado livre, se vendo mais distante do ACR
(Ambiente de Contratagdo Regulada) e seguindo cada vez mais na direcdo dos
PPAs (Power Purchase Agreements) corporativos, o que lhe confere uma maior
resiliéncia (GWEC, 2024).

Globalmente, este cenario ndo é muito diferente. A energia edlica € um dos

pilares da transigdo energética, sendo uma das fontes mais competitivas, com o
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mercado amadurecido e a tecnologia consolidada. De toda energia gerada no
mundo, 6% sao dependentes da fonte edlica. Em alguns paises esse numero é
ainda muito mais expressivo. A Dinamarca gera mais de 50% de sua eletricidade a
partir da energia edlica e na Alemanha essa participagdo chega proxima aos 30%.
Em 2023, o mundo bateu um novo recorde em termos de acréscimo em capacidade

instalada, como apresentado na Figura 1-3 (GWEC, 2024).

Figura 1-3 Histérico de novas capacidades instaladas no planeta, em GW.
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De acordo com o Global Wind Energy Council, todos os planos de
desenvolvimento indicam que as novas poténcias instaladas devem quadruplicar
anualmente, quando comparadas aos niveis atuais, para que se atinja a neutralidade
das emissdes de carbono até 2030. Até 2050, a edlica devera fornecer mais de 35%
da energia elétrica mundial, em comparagcdo aos 6% que se tem hoje (GWEC,
2024). Em um periodo marcado por uma crise climatica evidente, com desastres
ambientais frequentes, como o ocorrido no Rio Grande do Sul em maio de 2024, a
urgéncia pela transi¢cdo energética se torna mais clara. Ja estamos atrasados para
abandonar as fontes de energia que emitem gases de efeito estufa e adotar

alternativas renovaveis. Catastrofes como as que vivenciamos em 2024, antes
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previstas pelos cientistas para ocorrerem mais adiante, ja s&o realidade. Portanto, a
busca por um futuro mais sustentavel é essencial para a sobrevivéncia da
humanidade.

Embora a energia edlica apresente diversas vantagens, como ser renovavel e
possuir um mercado consolidado globalmente, sua natureza intermitente gera
incertezas significativas nos sistemas de gestao de energia, afetando a programagao
de despacho e, consequentemente, a confiabilidade da rede elétrica (BILENDO et
al., 2023). Essa questdo motiva pesquisadores a desenvolver solu¢des especificas,
muitas das quais dependem de uma estimativa precisa da curva de poténcia da
turbina. Tal estimativa é essencial tanto para o gerenciamento operacional da
energia edlica quanto para o monitoramento de desempenho da turbina.

Como sera abordado na fundamentagédo tedrica, a curva de poténcia
representa a relagcédo entre a velocidade do vento e a poténcia elétrica gerada por
uma turbina edlica — ou seja, indica quanta energia a turbina entrega em funcéo da
velocidade do vento. Essa curva pode ser estimada a partir de grandes volumes de
dados operacionais registrados automaticamente por sensores instalados nas
proprias turbinas. Esses sensores monitoram continuamente variaveis como
velocidade do vento, poténcia gerada, angulo de inclinagdo das pas (pitch), posigao
da nacele (yaw), temperatura de componentes e o estado geral de operagcédo. Os
dados coletados sao organizados por sistemas de supervisao e aquisicéo,
usualmente conhecidos como sistemas SCADA (do inglés Supervisory Control and
Data Acquisition System), que armazenam milhares de pontos de medi¢cao ao longo
do tempo. A analise dessas informagdes permite ndo apenas estimar a curva de
poténcia em condicdes reais de operagao, mas também identificar falhas, eventos
de indisponibilidade, cortes de producgao (curtailments) e anomalias de desempenho.
Tais eventos compdem 0 que se convencionou chamar de pontos de operagao
andmalos, cuja correta identificagdo constitui a chamada limpeza da curva. Essa
etapa é essencial para garantir que a curva de poténcia estimada represente com
precisdo o comportamento da turbina, servindo como base para decisdes técnicas,
operacionais e até comerciais. No entanto, devido ao volume massivo de dados
gerados diariamente por cada turbina, esse processo de limpeza pode se tornar
bastante trabalhoso e computacionalmente custoso, especialmente quando

realizado manualmente ou com abordagens pouco eficientes. Esse desafio reforga a



27

importancia de se desenvolver metodologias automatizadas, robustas e confiaveis
para o tratamento desses dados.
1.1. OBJETIVOS
1.1.1. Objetivo Geral

Este trabalho tem como objetivo desenvolver uma nova metodologia para a
fitragem automatica de curvas de poténcia de turbinas edlicas — ou mais
comumente conhecida no setor edlico como limpeza da curva de poténcia -
utilizando técnicas de Aprendizado de Maquina (AM), incluindo métodos de

agrupamento de dados e classificagao.

1.1.2 Objetivos Especificos

Dentre os objetivos especificos, pode-se citar:

a) Implementar algoritmos de agrupamento de dados e de classificagdo com
o objetivo de identificar dados anémalos e dados normais em curvas de
poténcia de turbinas edlicas;

b) Avaliar diferentes técnicas de aprendizado de maquina e determinar a
mais eficiente para limpeza de curvas de poténcia;

c) Aplicar a metodologia desenvolvida em dados de turbinas edlicas reais;

d) Comparar a metodologia desenvolvida com outras técnicas de
aprendizado de maquina ja consolidadas na literatura analisando
vantagens e limitacoes;

e) Validar a metodologia com a limpeza manual conduzida por um

especialista no setor.

1.2. JUSTIFICATIVAS

A energia edlica atualmente se destaca como uma das principais fontes de
geracgao de energia elétrica no mundo, com grande potencial de expansao. A medida
que mais turbinas edlicas séo instaladas, torna-se cada vez mais relevante garantir o
seu bom desempenho ao longo do tempo. A curva de poténcia da turbina é uma das
principais ferramentas para esse monitoramento. Desvios em relagdo a curva
esperada podem ocorrer por diversos motivos, incluindo periodos de

indisponibilidade parcial, cortes programados de geragao (curtailments), limitagdes
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temporarias no controle da maquina, falhas em sensores ou até problemas de
comunicagao de dados. Embora nem sempre representem falhas definitivas ou
degradagao fisica, esses desvios impactam diretamente a produgdo de energia e
dificultam a avaliagao precisa do desempenho da turbina.

Nesse contexto, os dados operacionais registrados durante a vida util das
turbinas assumem um papel fundamental. Eles possibilitam a estimativa da curva de
poténcia em condigdes reais, a identificagdo de comportamentos anémalos e a
antecipagao de situacdes que possam comprometer a performance do parque. No
entanto, o grande volume de dados gerados, aliado a sua complexidade e a
presenga recorrente de registros inconsistentes, torna o processo de limpeza uma
tarefa trabalhosa e custosa do ponto de vista computacional. Para lidar com esse
desafio, surgem como alternativa as técnicas de aprendizado de maquina, capazes
de reconhecer padrbes complexos e auxiliar na separagdo automatica entre pontos
normais e andmalos. Com a aplicagao dessas técnicas, torna-se possivel construir
modelos mais robustos para o monitoramento da curva de poténcia, contribuindo
diretamente para previsbes mais precisas de geracdo, avaliagbes operacionais
confiaveis e decisdes estratégicas sobre manutencao, operacgao e gestao de ativos.

Esta dissertacdo tem como objetivo investigar os dados de curvas de poténcia
de turbinas edlicas, com foco nos desafios enfrentados por engenheiros na analise e
no processamento dessas informagdes. Sao exploradas diferentes abordagens para
a limpeza automatica da curva de poténcia, avaliando suas limitagdes e potencial de
aplicacdo. Como principal contribuicdo, propde-se um novo modelo hibrido que
combina autoencoders com redes neurais baseadas na teoria Kolmogorov-Arnold,
buscando maior precisao na identificacdo de anomalias e melhor separacao entre os

diferentes tipos de desvios operacionais.

1.3. ESTRUTURA DO TRABALHO

Esta dissertagdo esta estruturada da seguinte forma: o primeiro capitulo
apresenta a introducgao, incluindo a contextualizacdo do tema, a definicdo dos
objetivos gerais e especificos e a justificativa do estudo. Em seguida, o segundo
capitulo aborda o referencial tedrico, fornecendo a base conceitual necessaria para
o estudo desenvolvido, tanto no contexto da energia edlica quanto no do

aprendizado de maquina. O terceiro capitulo corresponde a revisao de literatura,
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onde sao explorados os avangos e estudos mais recentes na area, destacando o
estado da arte sobre o tema.

No quarto capitulo, € apresentada a metodologia, detalhando-se os dados
utilizados e os algoritmos implementados. O quinto capitulo expde os resultados,
trazendo analises em formato de tabelas e figuras para ilustrar os testes conduzidos
e 0s achados da analise. Por fim, o sexto capitulo traz as conclusbées, com uma
sintese dos principais resultados obtidos, e por fim, as referéncias bibliograficas

utilizadas ao longo do trabalho.
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2 REFERENCIAL TEORICO
2.1 FUNCIONAMENTO DE UMA TURBINA EOLICA
2.1.2 Principios basicos

Turbinas edlicas ou moinhos, como eram chamados, tém sido utilizados ha
séculos para extrair energia do vento. Uma turbina edlica € uma maquina que
converte a energia cinética do vento em torque e velocidade angular no seu eixo e,
posteriormente, em energia elétrica. A poténcia de saida P é dada pela conhecida
Equacao (1) (BURTON et al. (2011)):

P = ~CppAU?, (1)

em que p é a densidade do ar (massa especifica), C, é o coeficiente de poténcia, 4

€ a area do rotor e U é a velocidade do vento ndo perturbada. O coeficiente de
poténcia representa a fragdo da poténcia do vento que pode ser convertida pela
turbina em taxa de trabalho mecanico. Possui um limite maximo tedrico de 0,593,
demonstrado mais adiante, chamado de o “limite de Betz”. O fisico alem&o Albert
Betz, em um artigo publicado em 1920 na revista Journal of Turbine Science, provou
que no maximo 59,3% da energia cinética contida em um escoamento que esta em
um tubo de corrente de mesma secgao transversal de um disco atuador (que simula o
rotor de uma turbina) pode ser convertido em trabalho util pelo disco (Okulov & Kuik,
2009). Na pratica valores sempre menores do que este sao atingidos.

A teoria do disco atuador explica o processo da extragdo de energia de uma
turbina edlica. Por conservacao de energia, ao remover a energia cinética contida no
vento, a velocidade da massa de ar que passa pelo disco atuador é reduzida. Antes
do disco, a area de secéao transversal do tubo de corrente € menor do que a do disco
e se torna maior a jusante (Figura 2-1). Essa expansao acontece porque a mesma
quantidade de ar deve passar por cada se¢do € a massa que passa pela segao
transversal do tubo, por unidade de tempo, é dada por pAU (vazdo massica). Logo,
mantendo a densidade do ar constante (escoamento incompressivel), ao reduzir a
velocidade, a area deve ser maior. A taxa do fluxo de massa deve ser a mesma ao

longo do tubo de corrente, entéo,

pAOOAU = pADUD = pAwa- (2)
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Figura 2-1 Tubo de escoamento da extragao de energia de uma turbina edlica.

Fonte: Adaptado de BURTON et al. (2011)

O simbolo = se refere a condigdo upstream (anterior ao disco — escoamento
nao perturbado), D se refere as condigdes no disco e w as condigdes downstream
(na esteira/wake). Se considera que a presenga do disco atuador induz uma redugao
da velocidade do vento livre, dada por —aU,, em que a € chamado de fator de
inducdo axial. No disco, portanto, a velocidade na diregdo do escoamento é dada

por

Up = Uxs(1—a). (3)

O fluxo de ar sofre uma mudanca resultante de velocidade de U, — U,. A taxa de
mudanca do momento linear € dada pela mudanga da velocidade vezes a taxa do

fluxo de massa, e assim,

Taxa de mudanga do momento = (U, — U, )pApUp. (4)

A forca que causa a mudanga de momento advém da diferengca de pressao no
entorno do disco atuador (o tubo de corrente é cercado por ar a pressao atmosférica,

entao a forga resultante é zero). Entéo, tem-se que
(05 —1p)Ap = (Us — Uy)pApUs (1 — a). (5)
Para calcular a diferenca de pressao, a Equacao de Bernoulli é aplicada, de

forma separada, antes e apds o disco atuador (energias separadas sdo necessarias

porque a energia é diferente antes e apds). A energia total do escoamento, que
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consiste em energia cinética, pressao estatica e gravitacional, deve permanecer
constante, visto que nenhum trabalho é realizado pelo fluido. Assim, para um volume
de ar, tem-se que

%pUZ +p + pgh = constante. (6)

Upstream temos

1 1
5PoUS + Poo + Pooghe = ZppUs + 15 + ppgho, (7)
e assumindo que o escoamento é incompressivel (p,, = pp) € horizontal (h,, = hp),
entao:
1 12 1 772 +

Analogamente, downstream

~pUZ + P = 7pUE +pj. )

Subtraindo a equacéo (9) da (8) chegamos em

Pp —DPp = %p(UEO - U3) (10)
e substituindo a (10) na (5)
1
5P(UE = Ui)Ap = (U = Uy)pApUe(1— a), (11)
0 que resulta em
Uy = (1 —2a)U,. (12)

As variaveis das equagdes (1) a (12) sao ilustradas na Figura 2-2, que é uma
representacdo esquematica do modelo do disco atuador. As curvas na Figura
demonstram como a velocidade do escoamento diminui e a pressao sofre uma

queda ao atravessar o disco, simulando a extragao de energia pela turbina.
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Figura 2-2 Variagdo das grandezas de velocidade e pressdo em diferentes regides do

escoamento: a montante (upstream), a jusante (downstream) e proximas ao disco simulando o rotor.

Velocity

Actuator disc

Da equacéo (5), a forca atuante é dada por

T = (ps —pp)Ap = 2pApUsa(l — a).

A poténcia produzida pelo fluxo de ar no disco atuador € TU,. Logo, tem-se:

P = TUp = 2pApU%a(l — a)?

Da equacéo (1), o coeficiente de poténcia é definido por

P

Cop = ——.
P ZpAU3

Substituindo a Equacgéo (14) na Equacao (15), tem-se que

Cp = 4a(1—a)?.
O maximo valor de Cp ocorre quando

dCp
da

¥'

Fonte: BURTON et al. (2011)

=0 ~4(1-a)(1-3a) =0.

(13)

(14)

(15)

(16)

(17)

Resultando em a=§-’- Cpmax = 0.593. Esse €& o limite obtido por Betz,

representando o valor tedrico maximo de energia cinética que uma turbina edlica

pode extrair do vento. Este fator € importante na estimativa da curva de poténcia da

turbina. A forga no disco atuador causada pela diminuigdo da pressao, dada pela

Equacao (13) também pode ser adimensionalizada, fornecendo o coeficiente de

Thrust,
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Thrust

1
E.DUOZOAD

Cp = =4(1—a). (18)

Quanto maior o valor de C;, maior a resisténcia imposta pela turbina ao escoamento,
permitindo a extracdo de mais energia. Em contrapartida, essa maior energia
extraida resulta em uma menor velocidade a jusante e maior o efeito esteira

provocado pela turbina.

21.21 Tecnologia de uma turbina edlica

Em 1983, uma turbina com poténcia nominal de 55kW e didametro de rotor de
cerca de 15 m era referéncia comercial no mercado europeu ocidental
(Heinzelmann, 2019). Ainda segundo a autora, pouco mais de 10 anos depois, a
poténcia nominal média multiplicou-se por 10 e as dimensdes dos rotores
aerodinamicos tornaram-se duas a trés vezes maiores. Nos dias de hoje temos
turbinas centenas de vezes mais potentes. Considerando a interdisciplinaridade que
existe em uma turbina edlica e toda a cadeia de suprimentos envolvida, desde a
concepcao do projeto, fabricagao, constru¢ao e manutengao, considera-se esse um
desenvolvimento bastante célere.

Em 2020, em novas instalacdes na Europa, as turbinas tinham em torno de
8,2 MW, chegando até 10,4 MW. O modelo da GE, Haliade-X, estabeleceu um novo
recorde, chegando a 14 MW de capacidade. Esta turbina recebeu uma certificagao
independente da consultora norueguesa DNV para operar até 14,7 MW e um
protétipo segue operando em um porto de Roterdd, onde foi instalada em
outubro/2021 (Marinho, 2022).

A Figura 2-3 mostra uma comparacado do tamanho das turbinas com prédios
famosos, em que se é possivel perceber a evolugdao destas. Num futuro muito
proximo, esperam-se turbinas de 15 MW provenientes da Siemens Gamesa e
Vestas. Além destas, a chinesa MingYang ja anunciou o seu novo modelo de 16 MW
e 242 m de diametro de rotor. A industria prevé que em 2030 havera maquinas de
20 MW de capacidade e 275 m de rotor.
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Figura 2-3 - Evolugao do tamanho de turbinas edlicas em comparagao a edificagdes

histéricas.
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Fonte: MEGAWIND (2024)

Como observado na Figura 2-3, as turbinas alcangaram tamanhos
impressionantes, sendo, portanto, as maiores maquinas rotativas do mundo. Sao
necessarios trés A380s (o maior avido de transporte civil do planeta) para equivaler
ao comprimento do didmetro de rotor da GE Haliade-X (vide Figura 2-4). Mas
diferentemente dos avides, as turbinas sado projetadas para operar de maneira
totalmente autdbnoma, em um ambiente bastante insalubre, com muitas cargas
externas, com o minimo de manutencdo e maximo de disponibilidade possivel,
acumulando cerca de 100 milhdes de ciclos de fadiga ao longo dos seus 20 anos de

operacao (Veers et al., 2023)
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Figura 2-4 Dimens6es de um A380 e de uma turbina GE Haliade-X 12-14MW.
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Fonte: VEERS et al. (2023)

As turbinas edlicas modernas possuem pas tdo extensas que ultrapassam a
camada limite atmosférica. Essas estruturas sédo longas e flexiveis, interagindo de
forma dindmica com o escoamento do ar no local. Além do carregamento causado
pelo escoamento livre, as turbinas também estdo sujeitas aos carregamentos
provenientes das esteiras de outras turbinas edlicas. Esse vento perturbado, de
baixa velocidade e alta turbuléncia, exerce um impacto adicional significativo nessas
estruturas. A Figura 2-5 apresenta as variaveis e toda complexidade envolvida na
analise de uma turbina edlica, seja no ambiente onshore ou offshore.

A complexidade aumenta no ambiente offshore, onde varias cargas atuam na
turbina: além do vento em velocidades mais altas, ha também a influéncia de
correntes e marés. Nesse cenario, a fundacdo assume um papel crucial. No caso da
fundagdo monopilar, a mais utilizada em todo o mundo, a turbina e a fundagao séo
consideradas como uma unica unidade estrutural. Isso resulta em um sistema mais
esbelto e dinamicamente suscetivel as cargas externas, devido a sua frequéncia
natural estar préxima das frequéncias de excitagdo. A interagdo do solo com a
turbina também se torna critica devido aos grandes carregamentos (CAMPELLO DE
SOUZA; RIBEIRO, 2017). Além da fundagdao monopilar, existem outras solu¢des na
ellica offshore, como as fundagdes do tipo jaqueta, gravidade e ainda as flutuantes,

que estdo em constante movimento.
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Sistemas de controle avangados, juntamente com sensores de
monitoramento, sdo empregados para melhorar a gestdo dessas maquinas.
Ferramentas de simulagcdo aeroelastica precisam capturar a grande escala, a
flexibilidade aumentada e os carregamentos complexos, frequentemente utilizando
modelos de alta fidelidade. Nos processos de fabricacdo, espera-se a adogao de
novos materiais com maior resisténcia e menor peso, além de melhorias na
qualidade para comprimentos superiores a 100 metros. As turbinas edlicas
representam um campo de alta complexidade e continua evolugdo. A pesquisa
continua é fundamental para aprofundar o entendimento das dinamicas envolvidas e
impulsionar inovagdes que garantirdo a eficiéncia, sustentabilidade e resisténcia

dessas gigantes energéticas frente aos desafios ambientais e operacionais.

Figura 2-5 Componentes da natureza e parametros fisicos de uma turbina edlica.
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Fonte: VEERS et al. (2023).

A Figura 2-6 e a Figura 2-7 apresentam, respectivamente, os componentes
basicos de uma turbina de eixo horizontal e um exemplo de um tipico modelo, com

seus respectivos componentes.



Figura 2-6 Componentes basicos de turbinas de eixo horizontal.
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Fonte: NERY et al (2014).

Figura 2-7 Esquema dos componentes principais de uma turbina edlica.
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Fonte: PIRES (2018)
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A Tabela 2-1 Principais caracteristicas mecanicas de uma turbina edlica.Tabela 2-1

apresenta as principais caracteristicas mecanicas de uma turbina eodlica e os

respectivos tipos em cada caracteristica.

Tabela 2-1 Principais caracteristicas mecanicas de uma turbina edlica.

Principio aerodinamico de
conversdo de energia

Baseado na forga de sustentagao
Baseado na forga de arrasto

Posicao do rotor em relacéo a torre

A barlavento
A sotavento

Com caixa de engrenagem

e Pa unica
Numero de pas * DuAaS p’as
e Trés pas
e Multiplas pas
Principio aerodinamico de controle * Estol .
de torque e Estol ativo _ _
e Controle de passo ativo (pitch)
Sistema de orientacao do rotor em o Ativo
relacédo a direcdo do vento (yaw) e Passivo
Velocidade de rotacao do rotor * Cor?§tante
e Variavel
e Expandido
Eixo de acionamento mecanico e Semicompacto
e Compacto
[}
[ J

Conversao de velocidade de
rotacao

Sem caixa de engrenagem (Direct-
drive)

Fonte: Adaptado de HEINZELMANN (2019).

A nacele € uma estrutura, em formato de “caixa”, que abriga os principais

componentes de uma turbina edlica. As turbinas edlicas comerciais conectadas na

rede elétrica, para geragao centralizada, possuem as seguintes caracteristicas:

e Principio de extracdo de energia baseado na forgca de sustentagao

aerodinamica;

e FEixo de acionamento horizontal;

¢ Rotor de trés pas, a barlavento;

e Yaw ativo.

Quanto as outras caracteristicas mecanicas, descritas na Tabela 2-1, estas

ainda podem variar de acordo com a maquina escolhida.

As turbinas de eixo horizontal funcionam mediante a forga de sustentacao,

enquanto as de eixo vertical geralmente sdo atreladas a forga de arrasto. No
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entanto, algumas turbinas de eixo vertical também podem ter seu funcionamento
mediante a for¢ca de sustentagdo, como por exemplo, a Darrieus e a Savonius
(GASCH; TWELE, 2012), (Hau, 2013). A Figura 2-8 ilustra diferentes tipos de

rotores.

Figura 2-8 Tipos de rotores.
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Fonte: EPE (2016)

Apesar de nao necessitarem de direcionamento do rotor em relagao a diregao
predominante do vento e o fato da casa de maquinas ficar no solo (facilitando a
manutengao), os custos de producgao e fabricacdo das pas das turbinas Darrieus sao
cerca de 30% maiores do que as de eixo horizontal. O desempenho aerodinamico e
a eficiéncia energética também sao inferiores, o que faz com que as turbinas de
rotores verticais ndo sejam competitivas comercialmente frente as de eixo horizontal
(HEINZELMANN, 2019). Dentre as vantagens de uma turbina edlica de eixo
horizontal, podemos citar (KUSUMA et al., 2024):

1.Captura de ventos de altas velocidades: devido a sua elevada altura, essas
turbinas conseguem capturar velocidades mais altas. Em alguns locais, o
coeficiente de cisalhamento (wind shear) é relativamente alto, podendo
aumentar a velocidade em 20% a cada 10 metros de altura, resultando em um
aumento de 34% na poténcia de saida.

2.Grande area varrida pelas pas: a ampla area varrida pelas pas permite a
captura de mais vento, o que eleva a eficiéncia dessas maquinas para niveis

geralmente superiores a 70%.
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3.Uso comercial: devido a sua alta eficiéncia, essas turbinas sdo amplamente
utilizadas comercialmente, havendo uma grande disponibilidade no mercado.
4.Sistemas variaveis de pitch: muitos modelos possuem um sistema variavel
de pitch, permitindo que as pas se posicionem em um angulo de ataque 6timo,
melhorando ainda mais a eficiéncia na captagao de energia.

A posigao a barlavento consiste no rotor estar posicionado anteriormente a
torre e a sotavento, o oposto. Na posi¢cao a sotavento, o escoamento passa pela
torre antes de chegar ao rotor sofrendo perturbagcdo devido a interagdo com a
estrutura; perdendo, portanto, energia, provocando maior impacto aerodinamico e
ainda gerando maiores emissdes acusticas. Sendo assim, a configuragdao a
barlavento é a adotada comercialmente.

Considerando a turbina comercial com eixo horizontal e rotor a barlavento,
faz-se necessario um sistema de orientacdo do rotor em relacdo a velocidade
predominante do vento; que no caso da configuragao padrao, € sempre ativo. Esse
sistema é composto por uma roda dentada, motores elétricos de passo e sistemas
de frenagem com pastilha que fornecem o torque necessario para rotacionar a
nacele e manté-la alinhada com o vento (KARAKASIS et al., 2016). Existe ainda o
freio do yaw, que trava a nacele quando ela esta corretamente orientada, evitando
giros desnecessarios.

A escolha pelo numero 6timo de pas esta ligada a razdo da velocidade de

ponta de pa A (Tip Speed Ratio, ou, TSR), dada pela Equacao (19)

A= ﬂ, (19)
Uoo

em que R é a distancia da ponta da pa ao centro do cubo, € a velocidade angular
do rotor (RQ é, portanto, a velocidade linear da ponta de pa), e U,, € a velocidade do
vento nao perturbado. Um outro conceito importante na definicdo do numero de pas
€ a solidez, que é a razao entre a area soélida de pas e a area circular definida pelo
extremo da pa em rotacdo. Uma baixa solidez significa que a pa tem uma area de
suporte menor, o que pode levar a vibragdes e instabilidade na rotacéo, reduzindo a
vida util da turbina. Porém, uma baixa solidez também indica um alto TSR, o que
aumenta a eficiéncia na conversdo de energia. Por outro lado, uma alta solidez,
reduz a eficiéncia da turbina, pois se tem um menor TSR; entretanto, elas sdo mais
estaveis mecanicamente. O equilibrio entre esses dois conceitos, levou a um

numero 6timo de pas como sendo menor do que cinco (Fadigas, 2011). Uma turbina
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de quatro pas tem a desvantagem de ser mais custosa do que solu¢gdes com menos
pas (o rotor corresponde a cerca de 20% do custo de uma turbina e cada pa a cerca
de 6% do total), ndo compensada pelo aumento na eficiéncia. Um compromisso
otimo, portanto, entre custo, eficiéncia energética e mecanica da estrutura chega a
um numero de 3 pas (Heinzelmann, 2019).

Em relagdo ao controle do torque, uma turbina pode fazer mediante estol
passivo, pitch e estol ativo. O controle por estol passivo, como 0 nome sugere, é um
sistema de controle passivo que responde a velocidade do vento. As pas do rotor
sao fixadas em um angulo de passo B especifico (Figura 2-9), escolhido para que o
escoamento de ar ao redor do perfil aerodindmico se desprenda da superficie, nao
girando em torno do eixo longitudinal. Para velocidades de vento superiores a
nominal, o efeito estol reduz as forcas de sustentacdo e aumenta as forcas de
arrasto. Por isso, as pas sao projetadas para que esse efeito ocorra pelo menos
parcialmente. Menores forcas de sustentacdo e maiores forgas de arrasto
contrabalangam o aumento da poténcia do rotor, e uma pequena tor¢éo longitudinal
é feita nas pas para evitar que o efeito ocorra simultaneamente em todas as

posicoes radiais (Adaramola, 2014).

Figura 2-9 Aerofélio com respectivo dngulo de passo e de ataque.

Plano de Rotagéo
~«_ Aerofélio

~

o Angulo de passo()

p ' Angulo de ataque
\ (o)

Fonte: CARVALHO (2003).

Ja o controle por pitch € um sistema de controle ativo que requer informagdes
de um controlador. Quando este indica que a poténcia nominal do gerador foi
ultrapassada, as pas alteram seu angulo de passo [, girando em torno do eixo
longitudinal para reduzir o angulo de ataque a e, assim, a poténcia extraida. Para
velocidades de vento superiores a nominal, o angulo é ajustado para que a turbina

produza apenas a poténcia nominal. Em todas as condi¢gbes de vento, 0 escoamento
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de ar ao redor dos perfis das pas do rotor permanece aderente a superficie, gerando
sustentacao aerodinamica e forgas de arrasto reduzidas. No mecanismo por pitch,
cada pa possui ajuste individual, mas as pas sdo sempre ajustadas de um modo
sincrono em um mesmo angulo. Por ultimo, o controle por estol ativo combina os
sistemas de estol e de passo. Nesse caso, o angulo de passo da pa do rotor &
ajustado ativamente na diregao do estol (ou seja, aumentando o angulo de ataque) e
nao na direcdo da posicdo de embandeiramento (menor sustentagdo), como nos
sistemas de passo convencionais. Esta variante foi apresentada comercialmente por
um curto periodo e existe em algumas turbinas de classe 2MW — 3MW. A Figura

2-10 apresenta curvas de poténcia de turbinas controlada por pitch e por estol.

Figura 2-10 Curvas de poténcia de turbinas controlada por passo (pitch) e por estol

ativo e passivo.
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Fonte: LIBERADO (2020).

As turbinas que operam usando o mecanismo de estol estdo sujeitas a cargas
aerodindmicas nao completamente previsiveis e, portanto, pas e rotores sao
dimensionados de maneira mais conservadora. Em fungdo disso, rotores “estol”

apresentam uma regido cilindrica (Figura 2-11).
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Figura 2-11 Turbina edlica com regiao cilindrica na base da pa.

As turbinas com pitch, que dominam o mercado atual, permitem um
dimensionamento de pa mais delgado, o que contribui para uma maior eficiéncia da
turbina (Heinzelmann, 2019). Ainda segundo a autora, as solugdes técnico-
conceituais com controle por pitch, velocidade do rotor variavel, conexao a rede de
forma indireta, via conversor de frequéncia, sdao o estado da arte das turbinas
edlicas.

O eixo de acionamento de uma turbina edlica € composto por um eixo de
transmissao principal, que sera acoplado ou integrado ao gerador, com o objetivo de
transmitir o torque gerado pelo rotor aerodindmico ao gerador elétrico. Dependendo
da configuracdo, alguns componentes podem ou ndo estar presentes, como por
exemplo, a caixa de engrenagens (Heinzelmann, 2019).

Inicialmente, muitas solugdes adotavam um eixo de acionamento expandido,
que oferece a vantagem de melhor acesso as pegas e subsistemas, facilitando a
montagem, inspegédo, manutengao e substituicdo de componentes. Entretanto, tanto
para o eixo de acionamento expandido, quanto para o semi-compacto, a caixa de
engrenagens esta presente (no semi-compacto, o rolamento posterior do eixo
principal esta integrado a caixa de engrenagens).

No inicio do desenvolvimento de turbinas edlicas, ambas as configuragdes
exigiam que o rotor fosse desmontado e o eixo mecanico retirado e levado para a
fabrica para a substituicdo da gearbox. A substituicdo deste grande componente era
muito comum, uma vez que as cargas aerodinamicas a que as turbinas estavam
expostas ainda ndo eram completamente compreendidas e definidas, impedindo o
correto dimensionamento. Somando-se a erros na montagem e produgao, em vez de
um esperado ciclo de vida de 20 anos, o setor confrontava-se com a substituigcdo de
engrenagens apos apenas 3 a 5 anos. Este tipo de parada impacta diretamente na

disponibilidade da turbina, interferindo na produg¢ao de energia do parque.
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A partir dessa custosa experiéncia, para turbinas de classes de poténcia mais
elevadas, especialmente para as turbinas offshore, as solug¢des técnico-conceituais
foram revistas e reprojetadas, incluindo ndo apenas o apoio posterior para o eixo de
acionamento, mas também um guincho e uma abertura na nacele, que
possibilitaram a insergao e retirada de pegas e componentes.

Por outro lado, outros fabricantes optaram pela solugdo do eixo de
acionamento compacto, visando reduzir o peso da nacele e eliminar a necessidade
da caixa de engrenagens. Um exemplo séo as turbinas da empresa alema Enercon
(no Brasil conhecida como Wobben). A Figura 2-2 apresenta exemplos de eixo de

acionamento semi-compacto e compacto.

Figura 2-2 A esquerda, um modelo com eixo de acionamento semi-compacto e, a

direita, um modelo compacto.

Fontes: HINE (2020), ENERCON (2021).

Em relagdo a evolugdo das pas de turbinas edlicas, houve um grande
progresso em termos de projeto, dimensionamento, pesquisa e produgao em série
nos ultimos anos. A evolugao técnica e computacional permitiu que, além do uso de
tuneis de vento com infraestrutura de teste para pas de grandes dimensdes e
softwares para calculos aerodinamicos bidimensionais de perfis, softwares altamente
especializados, comerciais e de dominio livre e de simulagdo CFD (Computational
Fluid Dynamics), também se tornassem ferramentas essenciais para o estudo,
melhoramento e otimizagao dos projetos de pas (Heinzelmann, 2019). No entanto,
esses avangos técnicos nao evitam diversos problemas que ocorrem com muitos

fabricantes. Um exemplo é a Siemens Gamesa, que tem enfrentado problemas
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significativos com suas turbinas edlicas no Brasil. Os defeitos, identificados
principalmente nas pas, foram detectados nas novas plataformas 4.X e 5.X,
resultando em incidentes como a quebra de pas e até fogo em uma turbina, gerando
um custo estimado de 1 bilhdo de euros. Empresas como AES Brasil e Engie foram
impactadas, mas estdo investigando as causas e avaliando solugbes em

colaboragcdo com a Siemens Gamesa (Eixos, 2023).

2.1.2.2 Curva de poténcia

A relagao entre poténcia de saida e velocidade do vento na altura do cubo &
representada pela curva de poténcia da turbina. A menor velocidade na qual uma
turbina consegue dar partida € chamada de velocidade de partida (ou cut-in). A
velocidade nominal é a velocidade na qual a maquina atinge a poténcia nominal. Ao
atingir esta velocidade, o sistema de controle € acionado com o objetivo de manter a
poténcia de saida constante. A velocidade de corte, ou cut-out € aquela na qual a
maquina se desliga, sendo um valor definido em projeto que visa a protegdo da
turbina contra carregamentos extremos.

Em algumas turbinas, ha a chamada estratégia de histerese, na qual ao invés
de haver um desligamento abrupto, a poténcia € progressivamente reduzida com o
aumento da velocidade, até que se atinja a velocidade de corte. Ainda existe a
chamada velocidade de “recut-in”, que é a velocidade na qual a turbina volta a
funcionar apds ser desligada na velocidade de corte. A velocidade de recut-in é
tipicamente menor do que a de cut-out. A Figura 2-12 ilustra uma curva de poténcia
tipica, com as velocidades de partida, nominal e de corte.

Tem-se, portanto, trés regides caracteristicas em uma curva de poténcia:

1. poténcia igual a zero abaixo da velocidade de partida;
2. poténcia proporcional ao cubo da velocidade (na chamada parte cubica da
curva), advinda da Equagao (1);

3. poténcia constante e igual a nominal.
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Figura 2-12 Curva de poténcia tipica de uma turbina edlica.
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Fonte: adaptado de PAIK; CHUNG; KIM (2023)

Da Equacéo (1), tem-se que a poténcia de saida ao longo do tempo ira
depender essencialmente da densidade do ar, da velocidade do vento e do
coeficiente de poténcia. Considerando que a densidade do ar permanece
praticamente constante na altura do cubo, resta apenas a velocidade e o coeficiente
de poténcia, este dependendo do TSR e do angulo de pitch.

Ao longo do desenvolvimento de um projeto edlico, em suas diversas fases,
estimativas de producdo de energia serdo conduzidas para que se avalie a
viabilidade técnica e financeira deste, e para que se cumpram as exigéncias
regulatorias na emissdo das outorgas. Para tais estimativas, duas informagdes sao
cruciais: a primeira € a velocidade do vento do local e a segunda € a curva de
poténcia da turbina.

Quanto a primeira, medi¢gées da velocidade, diregdo, pressao, temperatura e
umidade relativa do ar sao registrados, de preferéncia em varios pontos do local do
projeto, por equipamentos de medi¢ao confiaveis, ao longo de, no minimo, 3 anos,
conforme exigido pela ANEEL. Esses dados, em resolugédo de 10 minutos, serao
limpos e manipulados, com o objetivo de se obter um recurso edlico representativo
dos 20 anos de operagao, no local das turbinas, na altura do cubo. O recurso, ao ser
cruzado com a informacédo da curva de poténcia, fornecera a energia bruta do

parque edlico.
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A curva de poténcia € obtida pela fabricante da turbina, em um local de testes,
com uma turbina em funcionamento e uma torre anemométrica a montante em
relagdo a diregcao predominante do vento, no intuito de capturar o escoamento livre.
Em teoria, a curva de poténcia é definida em funcdo do vento livre; porém, na
pratica, ndo é possivel que esta medicao seja feita. A norma IEC61400-12-1:2005
estabelece que, em uma medigc&o de curva de poténcia, a torre anemomeétrica esteja
entre 2 e 4 didmetros de rotor (indicado como D) de distancia da turbina, sendo perto
o suficiente para que o escoamento esteja bem correlacionado com as condi¢des da
turbina, mas distante para que a influéncia da indugédo da turbina seja desprezivel.
Apesar dessas restricdes, ha evidéncias que mostram que a presenga da turbina
perturba o escoamento a montante: é o chamado efeito de bloqueio.

Em 2018, a DNV, com base em medicdes realizadas em trés parques eolicos
onshore e em simulagées complementares, identificou que as velocidades do vento
medidas a 2 D a montante dos parques edlicos apresentaram uma redugcao meédia de
3,4% apds o inicio da operagdo das turbinas. As reducbdes observadas foram
significativamente superiores ao que seria esperado apenas pela indugdo de uma
unica turbina, o que levou a conclusdo de que outras turbinas do parque também
contribuiram para esse efeito. Dessa forma, concluiu-se que o efeito de bloqueio nao
apenas reduz a velocidade do vento a montante do parque, mas também impacta as
velocidades do vento incidentes nas turbinas posicionadas nessa regido, fazendo
com que, em geral, produzam menos do que produziriam se estivessem operando
isoladamente (Bleeg et al., 2018). Até este momento, os chamados modelos de
baixa fidelidade aplicados na industria apenas consideravam os efeitos de esteira; a
partir deste momento, fica constatada a importancia de também se contabilizar o
efeito de bloqueio tanto na curva de poténcia quanto no calculo de produgao de
energia.

Em resumo, a medicdo da curva de poténcia € realizada em um local
diferente do parque e por um periodo especifico, com medi¢cdes impactadas pelo
efeito de bloqueio. Idealmente, seria necessaria uma curva de poténcia obtida no
local do projeto, representativa dos 20 anos de operacédo e baseada na velocidade
do vento livre. Dessa forma, para que a curva de poténcia possa ser utilizada de
forma precisa no calculo de produgcdo de energia, sdo necessarios ajustes para
compensar o efeito de bloqueio, as condi¢des ambientais locais e a degradagao ao

longo do tempo.
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O cenario descrito nos paragrafos anteriores ilustra 0 que ocorre antes do
parque eolico entrar em operagao, ainda no campo das estimativas, que servirdo de
referéncia para o modelo financeiro do projeto. Considerando as diversas incertezas
inerentes a estimativa da curva de poténcia na fase pré-construtiva, € apenas na
fase operacional que a curva de poténcia real podera ser modelada, utilizando os
dados de poténcia e velocidade capturados pelo SCADA. E por isso que a
modelagem e a limpeza dessa curva ao longo da vida util do parque séo
fundamentais, assegurando que a analise de desempenho reflita com preciséo as

condi¢cbes operacionais reais.

2.1.2.3 Medigcado de uma curva de poténcia a partir da IEC 61400-12-1:2005

Dada a importancia da estimativa da curva de poténcia “mais préxima da real”
de uma turbina, existe, ainda, um procedimento frequentemente executado no local
do projeto durante a operagédo do parque: a medigdo ou teste da curva de poténcia
segundo a norma IEC. A |IEC 61400-12-1 fornece orientagdes para medigdo da
curva, incluindo requisitos para os equipamentos utilizados, posicionamento dos
mesmos, bem como critérios que devem ser atendidos durante a medi¢ao (Zou;
Djokic, 2020). O procedimento descrito em seguida estd de acordo com o que
enuncia a norma |IEC 61400-12-1, primeira edicdo, do ano de 2005.

O objetivo de uma medicdo de curva de poténcia € coletar dados que
atendam a critérios previamente definidos, garantindo quantidade e qualidade
suficientes para determinar as caracteristicas de desempenho da geragdo de
energia de uma turbina eodlica. Para isso, uma torre anemométrica deve ser
posicionada entre 2 e 4 didmetros de rotor (Figura 2-13). Este intervalo é para que a
torre ndo seja posicionada muito perto da turbina (onde sofre pelo efeito de
bloqueio), nem muito longe, onde o vento capturado pela torre ja ndo correlacione
com o vento experienciado pela turbina.

Além disso, de acordo com a IEC, as caracteristicas do local podem
influenciar significativamente o desempenho medido da turbina, especialmente
devido a possiveis distorcdes no escoamento de vento, que podem causar
diferengas entre a velocidade registrada na torre e aquela que realmente atinge a
turbina. Por isso, é fundamental avaliar o local considerando fatores como

topografia, presenga de outras turbinas e obstaculos, como edificios e arvores. Essa
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analise permite posicionar corretamente a torre, aplicar corregbes ao escoamento e
definir um setor de medigao confiavel para reduzir incertezas.

Durante o periodo de medicdo, a turbina edlica deve operar normalmente,
sem alteragbes na configuragdo da maquina. O status operacional deve ser
registrado por meio de sinais de status, e a manutencao regular deve ser realizada
durante todo o periodo, com os trabalhos registrados em um “diario de teste”.
Qualquer manutengéo especial, como por exemplo lavagem das pas para melhorar
o desempenho, deve ser devidamente anotada, mas sé deve ser realizada se

acordada previamente entre as partes contratantes.

Figura 2-13 Distancia da torre anemomeétrica a turbina edlica de 2 D a 4 D. Distancia

recomendada de 2,5 D.

TorreadD

Turbina

eolica
I

Setor perturbado
devido a esteira
da turhina edlica

Fonte: adaptado de IEC 61400-12-1:2005.

Para garantir que apenas os dados obtidos durante a operagdo normal da
turbina sejam utilizados na analise e que os dados nao sejam corrompidos, devem
ser excluidos os conjuntos de dados nos seguintes casos:

« Condicbes externas, exceto a velocidade do vento, fora da faixa operacional
da turbina;

e Falha na turbina que impecga sua operacéo;

e Desligamento manual ou operagdo em modo de teste ou manutengao;

« Falha ou degradacdo dos equipamentos de teste (por exemplo, devido a
formacao de gelo);

« Direcao do vento fora do setor de medigao definido;
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e Diregdes do vento fora dos setores validos e completos de calibragdo do
local.

Os conjuntos selecionados devem ser organizados utilizando o "método de
bins". Os dados devem abranger, no minimo, uma faixa de velocidade do vento que
se estende desde 1 m/s abaixo da velocidade de entrada em operacgao (cut-in) até
1,5 vezes a velocidade do vento correspondente a 85% da poténcia nominal da
turbina edlica. O banco de dados sera considerado completo quando atender aos
seguintes critérios:

o Cada bin deve conter, no minimo, 30 minutos de dados amostrados;
e O banco de dados deve incluir, no total, no minimo 180 horas de dados

amostrados.

A curva de poténcia medida de acordo com a norma IEC tem, no entanto,
suas limitacbdes. Ela pode servir de referéncia para a turbina na qual esta sendo
medida, porém nao € tdo simples extrapolar para outras turbinas do parque, ainda
mais em locais com elevada complexidade do terreno e do escoamento. Além disso,
as possiveis causas para o desempenho subdétimo ndo sdo exploradas na norma
(Astolfi; De Caro; Vaccaro, 2023). E ai que entra a avaliacdo do especialista e a
utilizagcao dos dados SCADA.

2.2 MONITORAMENTO DE UMA CURVA DE POTENCIA DE UMA TURBINA
EOLICA OPERACIONAL

Ao se monitorar uma curva de poténcia se tem alguns objetivos principais
(Lydia et al., 2014):
e Calculo da producédo de energia historica e previsao futura;
e Monitoramento de performance com a avaliacdo de problemas de
desempenho e disponibilidade;
¢ Monitoramento da condicdo, incluindo o controle preditivo e otimizagao

da operacéo.

2.2.1. Dados SCADA
O sistema SCADA (Supervisory Control and Data Acquisition System) é uma

solugdo composta por hardware e software voltada a supervisdo, aquisicao e
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monitoramento de dados em tempo real. Esse sistema permite a coleta de
informagdes e o controle de varidveis e dispositivos em sistemas industriais,
viabilizando o gerenciamento eficiente de processos automatizados.

Sua arquitetura € formada por componentes como Unidades Terminais
Remotas (RTUs), Controladores Logico-Programaveis (CLPs) e uma interface
grafica que facilita a visualizagdo e a interagcdo com os dados operacionais. Além
disso, o SCADA pode operar com protocolos de comunicagcdo proprietarios ou
abertos, o que garante compatibilidade com equipamentos e softwares de diferentes
fabricantes. O sistema pode ser instalado em um unico computador ou distribuido
em diversas maquinas, conforme a complexidade e as necessidades da planta. E
comumente executado em computadores convencionais e utiliza sistemas
operacionais amplamente conhecidos, como o Windows (Cravo, 2024). A Figura
2-14 traz uma ilustragdo do posicionamento de alguns sensores em uma turbina
edlica e as respectivas grandezas medidas. Tipicamente mais de 300 variaveis sao
monitoradas (Marti-Puig et al., 2021).

Figura 2-14 Posicionamento de alguns sensores para monitoramento SCADA em uma

turbina edlica.

2o
Fonte: adaptado de HINE (2020).
Posicao \!ariével
1 Angulo de pitch
2 Velocidade do rotor
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2.2.2. Calculo da producgao de energia

O calculo da producgao histérica de energia de um parque edlico em operagao
baseia-se na curva de poténcia derivada de dados SCADA. Para obter essas curvas
de referéncia, é essencial processar e limpar esses dados, excluindo registros
invalidos e identificando corretamente, para posterior remogédo, os pontos que
indicam operagdes anbmalas da turbina. Considerando-se uma amostra
representativa de longo prazo, essa curva de poténcia histérica pode ser usada
como referéncia para a operagdo normal da maquina ao longo de todo o periodo
operacional. A estimativa da produgao de energia de longo prazo de um parque
edlico operacional contera menos incerteza, se comparada a uma estimativa pre-
construtiva. Além de refletir de forma mais precisa o desempenho real do ativo, essa
estimativa funciona como uma espécie de recertificagao para o operador, permitindo
a atualizagdo do planejamento financeiro para os anos remanescentes do projeto.
Também €& uma ferramenta estratégica para embasar decisdes relacionadas a

expansao do parque, a renegociacao de contratos de energia ou a avaliagado de

viabilidade em processos de compra e venda de ativos.

2.2.3. Monitoramento de performance e de condigao

Embora o sistema SCADA nao tenha sido originalmente projetado para
monitoramento por condi¢cdo, a utilizacdo de seus dados para avaliar a saude das
turbinas tornou-se uma pratica amplamente adotada a medida que a otimizacido da
manutengdo passou a ser uma prioridade na industria eodlica (Tautz-Weinert;
Watson, 2016). Uma das principais estratégias para reduzir os prejuizos financeiros
de um parque edlico é a contengédo dos custos de operagdo e manutencéo (O&M),
que podem representar até 30% dos custos totais ao longo da vida util de um parque
onshore (May,; McMillan; Théns, 2015), e ainda mais nos casos de parques offshore.

Isso destaca a crescente atengcdo dada ao monitoramento de performance e
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condicao das turbinas edlicas (Stetco et al., 2019), uma tarefa desafiadora devido a
complexidade das turbinas e sua exposicdo a condicbes operacionais nao
estacionarias.

A previsao de falhas em estagio incipiente é desejavel na redugédo de custos
da operagao e manutengao. A manutencgéao preditiva baseia-se no monitoramento de
condicdo, fornecendo informagdes sobre equipamentos e componentes que
provavelmente falhardo e os substituindo no momento certo. A manutengéo preditiva
ajuda os gestores de ativos a preencherem a lacuna entre a manutencgao reativa e a
manutencdo programada, realizando a manutengdo ndo muito tarde nem muito
cedo, mas no momento ideal. A manutencao preditiva pode ajudar a estimar o tempo
até a falha (vida util restante), detectar problemas em equipamentos (deteccéo de
anomalias) e ajudar a identificar quais partes precisam ser consertadas (diagnéstico
de tipos de falhas) (Udo; Muhammad, 2021).

Um dos sistemas muito utilizados € o CMS (Condition Monitoring System). O
CMS monitora diversos parametros chave incluindo vibragdes dos componentes da
nacele, qualidade do éleo e temperatura em alguns conjuntos principais. Sistemas
como estes sao frequentemente implementados como complementos a configuragao
padrao das turbinas edlicas. No entanto, o aumento nos custos de operagao e
manutencido resultante dessa instalagdo desencorajou alguns operadores, apesar
dos beneficios da deteccdo precoce de falhas por meio do CMS ja terem sido
provados (Yang; Court; Jiang, 2013).

Todas as turbinas edlicas de grande escala ja possuem um sistema SCADA
padrao, que é utilizado principalmente para o monitoramento de desempenho. O uso
de dados SCADA para o monitoramento de condi¢gdes representa uma alternativa
menos custosa, que nao requer dados adicionais. Diversas metodologias baseadas
nesses dados tém sido desenvolvidas ao longo dos ultimos anos (Tautz-Weinert;
Watson, 2016). Neste contexto, a curva de poténcia gerada a partir dos dados
SCADA se destaca como uma ferramenta valiosa para a analise de desempenho,
pois esses dados sado facilmente acessiveis e oferecem uma abordagem mais
econdmica (Gonzalez et al., 2017).

No presente estudo, definimos como 'anormais' as instancias que divergem do
padrdo predominante e, portanto, que se situam fora da trajetéria principal da curva
de poténcia. A identificagcado e remocao dessas anomalias sdo essenciais para evitar

vieses nas analises realizadas (Morrison; Liu; Lin, 2022). Ressalta-se que esses
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outliers nem sempre representam dados invalidos; em condigdes adversas, eles
podem refletir o comportamento esperado da maquina e, portanto, sdo fisicamente
coerentes. Entre os outliers, também se incluem dados efetivamente invalidos, que
nao atendem aos critérios de operacao da turbina. Os pontos avaliados sao divididos
em quatro categorias:
1. Operagdo normal da turbina: sdo os pontos que seguem o padrao
esperado de uma curva de poténcia (Figura 2-12). Podem apresentar
pequenas variagdes ao longo da operagao, resultando em uma curva mais

ou menos dispersa. Um exemplo é mostrado na Figura 2-15.

Figura 2-15 Pontos normais de uma curva de poténcia com dados SCADA.
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Fonte: A autora (2024).

2. Indisponibilidade: abrange tanto a indisponibilidade total (poténcia igual ou
menor que zero — correspondendo ao consumo da turbina — e velocidade
acima da velocidade de corte) quanto a parcial (pontos dispersos a direita
da curva). A indisponibilidade parcial indica que, em um intervalo de 10
minutos, a turbina esteve parcialmente indisponivel, resultando em um

valor de poténcia integralizado entre zero e a poténcia esperada. Uma
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curva de poténcia com exemplos de indisponibilidade total e parcial é

apresentada na Figura 2-16.

Figura 2-16 Pontos normais e de indisponibilidade na curva de poténcia.
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Fonte: A autora (2024).

3. Desempenho subdétimo (ou subdesempenho): inclui limitagées de poténcia
(curtailments) impostas pelo operador do sistema ou por restricoes
internas a nivel de parque ou turbina, além de problemas no sistema de
controle (pitch ou yaw), estratégias de desligamento por setor de direcao
do vento (wind sector management), desligamento por altas temperaturas
(temperature derating), histerese (atraso na resposta da turbina no
desligamento e religamento a mudangas nas condi¢des de vento), dentre
outros fatores de subdesempenho. O exemplo da Figura 2-17 apresenta

limitagdes fixas de poténcia e histerese.
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Figura 2-17 Pontos normais e de subdesempenho na curva de poténcia.
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Fonte: A autora (2024).

4. Dados espurios: registros decorrentes de erros no processamento e
armazenamento de dados ou mau funcionamento de sensores. Sao
considerados invalidos e devem ser excluidos. Podem existir dados
espurios de qualquer sinal. Instancias espurias podem ser observadas nos
seguintes casos:

a. Poténcia acima de zero para velocidades abaixo do cut-in;
b. Valores fora de bandas aceitaveis, por exemplo:
i. Velocidade negativa ou acima de 40 m/s;
ii. Poténcia muito negativa (abaixo de -300kW) ou mais do que
10% acima da poténcia nominal;
c. Velocidade do vento fixa em determinado valor enquanto a poténcia
ou outro sensor de velocidade varia.

O exemplo da Figura 2-18 apresenta o item “c” descrito acima. Neste caso,

dois anemdmetros da nacele estdo presentes nos dados SCADA, o que permite

estabelecer a correlacido entre os sinais.
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Figura 2-18 Pontos normais e espurios (em roxo) da velocidade do vento 2.
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Fonte: A autora (2024).

Caso nao existam dois sensores, € possivel que a velocidade do anemdmetro
da nacele seja comparada com a velocidade média do parque, por exemplo.

Vale destacar que a distingdo entre indisponibilidade e desempenho subétimo
nem sempre € clara, ja que alguns pontos podem facilmente ser confundidos,
introduzindo uma incerteza inerente a classificacdo. Para reduzir essa incerteza,
podem ser utilizados sinais adicionais do sistema SCADA, como velocidade do rotor,
velocidade do gerador, diregdo da nacele, temperatura ambiente e angulo de pitch,
entre outros. Graficos como poténcia versus velocidade do rotor ou angulo de pitch
versus velocidade do vento exibem comportamentos caracteristicos que ajudam
nessa distingdo. A Figura 2-19 ilustra uma curva de poténcia e um grafico de angulo
de pitch versus velocidade do vento com instdncias de indisponibilidade e
subdesempenho. Os pontos no grafico inferior auxiliam na distingdo entre essas
classificagdes: indisponibilidade geralmente é caracterizada por valores mais
elevados de pitch, enquanto subdesempenho pode ocorrer em valores normais ou

até mais baixos de pitch.
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Figura 2-19 Pontos de indisponibilidade e de subdesempenho na curva de poténcia (a

esquerda) e pitch versus velocidade do vento (a direita)
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Fonte: A autora (2024).

Registros de paradas, mau funcionamento, falhas e periodos de manutengéo
das turbinas edlicas podem servir como informacdes auxiliares na identificacdo de
anomalias (WANG et al., 2019).

A limpeza de uma curva de poténcia consiste, portanto, em classificar
corretamente os dados em pontos normais ou anémalos — sendo estes ultimos

associados a condigdes de indisponibilidade, subdesempenho ou registros espurios.

2.3 APRENDIZAGEM DE MAQUINA
Aprendizado de Maquina (AM) é um ramo da Inteligéncia Artificial (IA) que tem
como foco capacitar computadores e maquinas a imitarem a forma como os
humanos aprendem, permitindo que realizem tarefas de maneira autbnoma e
melhorem seu desempenho e precisdo com base na experiéncia e na exposi¢ao a
novos dados (UC Berkeley, 2022).
O sistema de aprendizado de um algoritmo de AM pode ser dividido em trés
etapas (UC Berkeley, 2022):
1. Processo de decisdo: em geral, os algoritmos sdo usados para fazer
previsdes ou classificagdes. Com base em dados de entrada (que podem
ser rotulados ou nao) o algoritmo gera uma estimativa sobre um padrao

presente nesses dados;
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2. Funcgao de erro: a fungcdo de erro avalia a previsao feita pelo modelo.
Quando ha exemplos conhecidos, essa fungdo realiza uma comparagéo
entre o resultado previsto e o valor real, permitindo medir a precisdo do
modelo.

3. Processo de otimizacdo do modelo: caso o modelo possa se ajustar
melhor aos dados do conjunto de treinamento, os pesos sdo modificados
para reduzir a diferenca entre os exemplos conhecidos e as estimativas do
modelo. Esse processo iterativo de avaliar e otimizar é repetido diversas
vezes, com o algoritmo atualizando os pesos de forma autébnoma até
atingir um nivel de precisao satisfatorio.

Entre as diversas aplicacbes do Aprendizado de Maquina, destaca-se a

deteccao de anomalias. Modelos de AM sé&o particularmente eficazes nesse tipo de
tarefa justamente por sua capacidade de aprender padrées complexos e reconhecer

desvios sutis, muitas vezes imperceptiveis por métodos tradicionais de analise.

2.3.1 Algoritmos de detecgdo de anomalia

Uma anomalia pode ser entendida como uma mudanga inesperada que exibe
comportamentos significativamente divergentes em comparagcdo com outras
observacdes dentro de um determinado periodo (Ersoy; Ersahin; Kiling, 2021). Em
outras palavras, a deteccdo de anomalias consiste em identificar outliers em um
conjunto de dados que apresentam caracteristicas consideravelmente diferentes dos
demais pontos, categorizando-os como desvios em relagdo ao padrdao normal. A
Figura 2-20 ilustra anomalias em um conjunto de dados bidimensional. Os dados
normais possuem duas regides, N1 e N2, ja que a maior parte das observacdes caem
nessas regides. Pontos que estdo suficientemente longe dessas regides, como 0s

pontos 01 e 02 e 0s da regidao O3 sdo anomalias.
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Figura 2-20 Exemplo de anomalias em um conjunto de dados bidimensional.
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Fonte: CHANDOLA; BANERJEE; KUMAR (2009)

A obtencao de dados rotulados, sejam eles normais ou anémalos, de forma
precisa e representativa, € frequentemente um processo caro e trabalhoso,
especialmente por depender da expertise de especialistas humanos. Além disso,
rotular instancias anémalas é particularmente desafiador, pois as anomalias tendem
a ser dindmicas, com novos tipos surgindo sem registros prévios. Em contextos
criticos, como a seguranga aérea, as anomalias geralmente correspondem a
eventos raros e catastroficos, o que dificulta ainda mais sua identificagao e rotulagao
(Chandola; Banerjee; Kumar, 2009). Ainda segundo os autores, a rotulacdo pode
operar nos trés modos seguintes:
1.Algoritmos supervisionados: requer dados rotulados para classes normais e
anbmalas. Modelos preditivos sao treinados para diferenciar as classes. Porém, ha
dois desafios principais:

e Desequilibrio entre instancias normais (mais numerosas) e anémalas.
e Dificuldade em  obter rotulos representativos para  anomalias.
Algumas técnicas usam anomalias artificiais para contornar essa limitagao.

Dentre os algoritmos conhecidos de aprendizado supervisionado para
detecgdo de anomalia podemos citar SVMs (Support Vector Machines), CNNs
(Convolutional Neural Networks), RNNs (Recurrent Neural Networks), LSTM (Long
Short-Term Memory), regressao logistica, NB (Nave Bayes), KNNs (K-Nearest
Neighbors) supervisionado, RF (Random Forests), arvores de decisao, etc (Kwon et
al., 2019).
2.Algoritmos semi-supervisionados: treina o modelo apenas com instancias

normais, sendo mais flexivel que a abordagem supervisionada. O modelo identifica
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desvios do comportamento normal como anomalias. Rétulos de anomalias ndo sao
necessarios, mas isso limita a capacidade de capturar comportamentos anémalos
mais complexos. Como exemplos podemos citar o SVM de classe unica,
autoencoders, isolation forest adaptado, dentre outros.
3.Algoritmos nao-supervisionados: nado requer dados rotulados, sendo a mais
amplamente aplicavel. Assume que instancias normais sdo muito mais frequentes
que as anOmalas. Se essa suposicao estiver errada, ocorre alta taxa de alarmes
falsos. Técnicas semi-supervisionadas podem ser adaptadas para operar de forma
nao-supervisionada, desde que as anomalias sejam raras no conjunto de dados.
Podemos subdividir os exemplos em:

= Algoritmos de agrupamento de dados: DBSCAN (Density-Based Spatial

Clustering of Applications with Noise) e o K-means;

= Modelos estatisticos: GMMs (Gaussian Mixture Models);

= Redes neurais: Autoenconders e GANs (Generative Adversarial Networks);

* Modelos baseados em distancia: KNN e /solation Forest.

No presente trabalho, o foco € dado ao DBSCAN e aos autoencoders, visto

que sao os algoritmos utilizados.

2.3.1.1  Agrupamento de dados

Algoritmos de agrupamento de dados sdao um tipo de técnica de
aprendizagem de maquina nao supervisionada usada para agrupar pontos similares
em clusters. O objetivo principal € encontrar agrupamentos naturais dos dados sem
conhecimento prévio algum de classificagdo ou de categorias as quais os pontos

pertencam (Paik; Chung; Kim, 2023)

Agrupamento de dados € amplamente utilizado para deteccdo de anomalias

em diferentes contextos e fazem as seguintes suposicdes (Toshniwal et al., 2020):

1. Pertinéncia a clusters: instadncias de dados normais pertencem a um cluster,
enquanto anomalias ndo pertencem a nenhum cluster nos dados.

2. Proximidade ao centroide: instancias normais estdo proximas ao centroide do
cluster mais préximo, enquanto as anomalias estdo distantes de seu centroide
mais préximo.

3. Tamanho e densidade do cluster. instancias normais pertencem a clusters
grandes e densos, enquanto as anomalias pertencem a clusters pequenos ou

esparsos.



63

Existem diversos algoritmos de agrupamento de dados, sendo os mais
utilizados aqueles baseados em densidade e partigao. Entre eles, destacam-se o
DBSCAN e o K-means, respectivamente (Paik; Chung; Kim, 2023). Ainda segundo
os autores, o DBSCAN ¢ um algoritmo baseado na densidade de pontos capaz de
identificar agrupamentos com formatos arbitrarios sem a necessidade de especificar
previamente o numero de clusters. Ele funciona agrupando pontos que estado
proximos uns dos outros e separando os outliers, com base na definicdo de uma
vizinhanga em torno dos pontos e na densidade local. O algoritmo possui dois
parametros principais:

e Epsilon (¢): determina o raio da vizinhanga ao redor de cada ponto.

e Min_samples: define o nUmero minimo de pontos necessarios para que
uma regido seja considerada densa e, consequentemente, formar um
cluster.

Em resumo, o DBSCAN se baseia em trés conceitos principais:

e Pontos centrais: sao pontos que possuem pelo menos um numero minimo de
vizinhos (min_samples) dentro de um raio especificado (épsilon).

« Pontos de fronteira: sdo pontos que estdo dentro da distancia € de um ponto
central, mas que, por si s6, ndo possuem vizinhos suficientes para serem
considerados pontos centrais.

o Pontos de ruido: sdo pontos que nao sdo nem centrais nem de fronteira. Eles
estao distantes de qualquer cluster e, portanto, ndo sio incluidos em nenhum
agrupamento.

A Figura 2-21 ilustra esses trés conceitos.
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Figura 2-21 Exemplo do agrupamento com o DBSCAN.
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Fonte: adaptado de KUMAR (2024).

2.3.2 Breve introdugao as Redes Neurais Artificiais

As Redes Neurais Artificiais (ANNs - Artificial Neural Networks) sao
ferramentas bastante consolidadas, com origens que remontam a década de 1950
(Rosenblatt, 1958). Sao modelos computacionais projetados para capturar relacées
nao-lineares complexas entre variaveis, utilizando conjuntos de dados de
treinamento. Sua arquitetura basica € composta por uma camada de entrada, um
nuamero variavel de camadas ocultas e uma camada de saida. Cada camada €&
formada por um conjunto de neurbnios, que recebem entradas provenientes
diretamente dos dados ou das ativagcdes de neurbnios em camadas anteriores
(Tautz-Weinert; Watson, 2016).

As ANNSs apresentam uma ampla variedade de tipos, mas todas compartilham
o fato de serem algoritmos de aprendizagem de maquina utilizados para tarefas, a
principio, de regressdao e classificagdo (aprendizado supervisionado) ou para
aprendizado de representagdes (ndo supervisionado) (Helbing; Ritter, 2018). Os
tipos mais comuns de ANNs para aprendizado supervisionado sdo a Rede Neural
Multicamadas (MLP - Multilayer Perceptron), a Rede Neural Convolucional (CNN) e
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a Rede Neural Recorrente (RNN). Para aprendizado nao supervisionado, os tipos
mais comuns sao a Maquina de Boltzmann Restrita (RBM - Restricted Boltzmann
Machine) e o autoencoder. Além disso, a literatura apresenta varias combinagdes e
subtipos dessas redes (Lecun; Bengio; Hinton, 2015).

O foco geral do aprendizado de maquina esta na representagao dos dados de
entrada e na generalizacdo dos padroes aprendidos para uso em dados futuros
ainda ndo observados (Najafabadi et al., 2015).

O processo de aprendizado da rede envolve o ajuste dos pesos associados
as conexdes entre os neurdnios, normalmente através de algoritmos como o
backpropagation, que atualiza os pesos com base no gradiente do erro calculado na
saida. Cada neurénio utiliza uma funcao de transferéncia linear ou nao-linear para
combinar as entradas recebidas e aplica uma funcdo de ativacdo, como RelU,
sigmoide ou tangente hiperbdlica, para determinar a saida a ser propagada para a
préxima camada. Entre as arquiteturas mais comuns estdo as redes feedforward,
caracterizadas pelo fluxo unidirecional de informacgdes, da entrada para a saida.
Estas contrastam com as RNNs, que possuem conexdes retroalimentadas,

permitindo o processamento de dados sequenciais ou com dependéncias temporais.

23.21 MLP

Um MultiLayer Perceptron é uma rede feedforward, composta por uma
camada de entrada, uma ou mais camadas ocultas e uma camada de saida (Haykin,
1994). Cada camada é formada por varios nés, cada um deles conectados a todos
0s nos da camada subsequente por meio de ligagbes ponderadas com numeros

reais, conforme ilustrado na Figura 2-22.
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Figura 2-22 Esquema de um MLP.
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Fonte: Adaptado de CHAN et al. (2023).

Os dados de entrada x; sao transmitidos para os nés das camadas ocultas
através de conexdes ponderadas. Em cada no oculto h;, as entradas recebidas s&o
somadas, cada uma multiplicada por um peso especifico. Isto corresponde ao

teorema da aproximacgao universal e pode ser expresso por

fj(xl, wos X3 Wijy e, W, bj) = Xl Wi x; + b, (20)
em que f; € a saida do no j, x; sdo suas entradas, w;; sdo 0s pesos das conexdes
com a camada anterior e b; € o viés. Os resultados dessas transformagdes passam
por uma funcédo de ativacdo nao-linear, geralmente uma fungao sigmoide, tangente
hiperbdlica ou a chamada unidade linear retificada (ReLU). Por exemplo, a fungao
sigmoide, frequentemente usada, transforma a saida do n6 j conforme a Equagao
(21):

fj
9(f) = = (21)

ApoOs essa transformacao, os valores sdo encaminhados para todos os nés da

1+efi’

camada subsequente por meio de conexdes ponderadas, e o processo continua até
que os dados transformados alcancem a camada de saida e passem pela ultima
funcao de ativacao. Esses valores constituem a saida da rede. Em resumo, um MLP

€ uma fungéo nao-linear f: R™ - R™, em que n € a dimensao dos dados de entrada



67

e m a dimensdo dos dados de saida. Treinar um MLP significa ajustar seus pesos e
vieses para que a saida da rede sobre um conjunto de treinamento aproxime os
valores verdadeiros (as rotulagbes) o maximo possivel (Helbing; Ritter, 2018).
Normalmente o erro quadratico p, € utilizado como medida de erro de predigao.
Dado o rétulo o (x4, ...,x,) € R™, 0 erro quadratico p, da saida 0 (xy,...,x,,) ER™ €

calculado como

1 ~ N2
pa = 3 201(0k — )%, (22)
. ~ s~ 1
em que o, representa os valores verdadeiros, o) as previsoes da rede e o fator de -

€ usado para facilitar na derivagao de certas propriedades.

O algoritmo de backpropagation € utilizado para calcular o gradiente do erro
quadratico em relagdo aos pesos e vieses da rede. Esses gradientes s&o entao
aplicados em um algoritmo de otimizagdo, como o gradiente descendente
estocastico, para ajustar os pesos e minimizar o erro de forma eficiente. Um
desenho esquematico sobre o treinamento de um MLP é apresentado na Figura
2-23.

Figura 2-23 Diagrama de um processo de treinamento de um MLP.
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Fonte: adaptado de CHAN et al. (2023)

O treinamento ocorre ao alimentar a ANN com uma sequéncia de entradas de

dados de forma iterativa. No aprendizado supervisionado, cada entrada inclui os
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dados e seu roétulo correspondente. Ja no aprendizado n&o supervisionado, o rétulo
€ simplesmente o proprio dado de entrada. A saida da rede é comparada ao rétulo,
e a diferenga é processada por uma funcédo de perda. Os gradientes dessa perda
sdo calculados para cada parametro 6 usando backpropagation. Por fim, os
parametros 6 sao ajustados, geralmente com métodos como o gradiente
descendente estocastico (Helbing; Ritter, 2018).

Frequentemente, os pesos do MLP s&o inicializados com valores aleatérios
no inicio do treinamento e, em seguida, otimizados iterativamente. No entanto,
descobriu-se que esse procedimento leva a resultados progressivamente piores a
medida que o MLP se torna mais profundo (ou seja, com mais camadas). Isso ocorre
devido a natureza do algoritmo do backpropagation, no qual os gradientes tendem a
diminuir quanto mais distante sua camada esta da camada de saida. Este fenbmeno
€ chamado de o problema dos “vanishing gradients” (Schmidhuber, 2015). Essa
dificuldade em treinar MLPs com mais de algumas camadas pode explicar por que
muitas aplicag¢des utilizam apenas uma camada oculta.

Em resumo, os MLPs possuem a capacidade de representagcao de funcdes
nao-lineares, sendo fundamentos no teorema da aproximagao universal (Hornik;
Stinchcome; White, 1989). O teorema da aproximagao universal estabelece que uma
rede neural com pelo menos uma camada oculta e um numero suficiente de
neurénios, utilizando uma fungao de ativacdo nao-linear pode aproximar, com um
grau arbitrario de precisao, qualquer fungao continua definida em um espago de
dimenséo finita. Essa propriedade torna os MLPs ferramentas extremamente
poderosas, pois sdo capazes de capturar a complexidade de relagdes nao lineares
em dados reais, independentemente do formato ou da origem dos dados. No
entanto, o teorema nao fornece garantias sobre a eficiéncia computacional ou o
numero de neurOnios necessarios para alcangar essa aproximacido, o que € um

ponto critico na pratica.

2.3.2.2 Autoenconders

Autoencoders sao um tipo especial de rede neural feedforward, podendo ser
semi-supervisionada ou n&o supervisionada, composta por uma camada de entrada
e uma camada oculta, ambas totalmente conectadas, como apresentado na Figura
2-24. A principal aplicagdo do autoencoder é capturar aspectos chave dos dados

fornecidos. Assim, ele é treinado para reconstruir os dados de entrada, e, para isso,
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estes sdo0 mapeados para a camada oculta (ou seja, os dados sédo "codificados").
Esta camada normalmente contém menos ndés do que a camada de entrada;
portanto, ha uma compresséo dos dados.

Dada a funcdo de ativacédo g e o vetor de entrada x de dimensdo n, a

codificagado h(x), de dimenséao m, € calculada como:

n
hi(x) = g(z wyx, +b),  jEL..m, (23)
i=1

em que w;; sdo os pesos das conexdes com a camada anterior e b; € o viés. Da

camada latente, os dados transformados vao até a camada de saida, onde os dados
sado retransformados (decodificados) e o erro quadratico de reconstrugdo entre a
entrada e a saida é computado. Assim, a saida do autoenconder durante o

treinamento pode ser calculada por
6i(x) = g(Z;ﬁl Wji’hj(X) + bil), i€1l,..,n, (24)

e o erro de reconstrucao é dado por

Pq = BiL(3i(0) — 0)?, (25)

Figura 2-24 Esquema de um autoenconder.

Codificador Camada latente Decodificador

Dados de entrada Dados codificados Dados reconstruidos
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Adaptado de AGGARWAL (2023).
Durante o processo de treino, o autoenconder aprende a comprimir os dados

de entrada de modo a preservar o maximo de informagao possivel. Deste modo, o
autoenconder € uma variante nao-linear do algoritmo de Analise de Componentes
Principais (PCA). Vale notar que a composi¢do dos codificadores tem a mesma
estrutura de um MLP, mas a rede é treinada de maneira incremental e sem rétulos
(Helbing; Ritter, 2018).

Existem diversos pacotes de software que permitem implementar as ANNs
‘rasas” em linguagens de programacao populares. Exemplos incluem o pacote do R
(Gunther; Fritsch, 2010), o médulo Scikit-learn do Python (Pedregosa et al., 2011) e
o Neural Network Toolbox do Matlab (Hudson et al., 1992).

Por outro lado, as aplicagdes de Deep Learning demandam mais recursos
computacionais, pois consistem em muitos neurénios interconectados e geralmente
requerem grandes volumes de dados para treinamento. Para atender a essas
demandas, surgiram frameworks especializados. A maioria desses frameworks
utiliza um backend em C++ combinado com APIs para linguagens amplamente
usadas, como Python, permitindo que os analistas de dados se concentrem na
modelagem, sem se preocupar com detalhes técnicos, como o uso de GPUs via
APIls como CUDA (Helbing; Ritter, 2018).

No presente trabalho, mdédulos como o Scikit-learn do Python e os
frameworks do TensorFlow, Pytorch e Keras s&o utilizados. A plataforma utilizada
para execugao dos cdédigos em Python foi 0 VSCode e o Google Colab, esta ultima

sendo uma plataforma baseada na nuvem, que oferece acesso a GPUs e TPUs.

3.3.2.2.1. Autoencoders variacionais

O Autoencoder Variacional (VAE) foi proposto por KINGMA & WELLING
(2013) e é baseado na inferéncia variacional Bayesiana. Seu principio fundamental
€ mapear um conjunto de dados para uma distribuicdo Gaussiana por meio de um
codificador (encoder). A partir dessa distribuicdo, novas amostras sao geradas e
utilizadas como entrada para o decodificador (decoder), que tem a fungédo de
reconstruir os dados originais.

A estrutura do VAE é ilustrada na Figura 3.23, em que E e D representam o

encoder e o decoder, respectivamente.
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Figura 2-25 Estrutura de um autoencoder variacional.
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Os simbolos ® e @ representam, respectivamente, a multiplicacéo e a adigéo
elemento a elemento entre vetores. O codificador recebe X como entrada para
calcular p e o, introduzindo uma distribuicdo Gaussiana € para obter a codificacao
probabilistica Z. Em seguida, o decodificador processa Z para reconstruir X (Li; Pei;
Li, 2023).

Supondo que existe um conjunto de fungdes capazes de gerar X a partir de Z
(em que cada funcdo é determinada a partir de um parametro 0), o objetivo da
otimizacdo do VAE é maximizar a probabilidade P(x) de geracao de X, ajustando 6

sob a premissa de que Z é amostrado. P(x) € dado por

P(x) = [ f(x|2)P(2)dz. (26)

O VAE obtém a distribuicido de probabilidade da variavel latente Z ao
adicionar uma rede de codificagdo que atua como um mecanismo de inferéncia
porque aproxima a relagéo entre os dados observaveis (X) e as variaveis latentes (Z)
escondidas no modelo. Para isso, € introduzida a fungcdo Q(z|x), responsavel por
atuar como a rede de codificagdo. O objetivo dessa fungdo € determinar a

distribuicao da variavel latente Z que permite reconstruir X, dado X como entrada.
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Queremos que Q(z|x) seja o mais proximo possivel da distribuicdo ideal P(z|x). Para
medir essa similaridade, utiliza-se a divergéncia de Kullback-Leibler, representada

por D, conforme apresentado na Equacéo (27).

D[Q((z12) || P((z10)] = Eq(czxy)[log Q((zlx)) — logP((zlx))]  (27)

Em seguida, P(x|z) é expandido utilizando a férmula de Bayes, resultando na
férmula (28) apds simplificagcdes. A partir disso, obtém-se a fungéo de perda do VAE,
apresentada na Equacao (29),

D[Q((z]x) || P(2)]

Joar = Eq(ziyllog P((x12)) — D[Q((zI) || P()] - (29)

A funcgao de perda do VAE é composta por duas partes: a primeira impde uma
restricdo a variavel latente Z, garantindo que siga uma distribuicdo padrao; a
segunda busca minimizar a diferenca entre os dados reconstruidos e os dados de

entrada, tornando o resultado final o mais préximo possivel dos dados originais.

2.3.2.3 Redes Kolmogorov-Arnold

Ao longo dos ultimos anos, diversos autores tém proposto alternativas aos
MLPs, cada uma projetada para lidar com tipos especificos de problemas e dados,
ampliando a aplicabilidade das redes neurais tradicionais. Entre essas alternativas
destacam-se as ja mencionadas CNNs e as RNNs. As CNNs séo projetadas para
explorar as relagdes espaciais entre os dados de entrada, sendo amplamente
utilizadas em tarefas como reconhecimento de imagens e analise de videos
(Krizhevsky; Sutskever; Hinton, 2013). Por outro lado, as RNNs sado especialmente
adequadas para o processamento de dados sequenciais, como séries temporais ou
textos em linguagem natural, devido a sua capacidade de capturar dependéncias
temporais entre os elementos da sequéncia (Graves; Mohamed; Hinton, 2013).

Em 2024, LIU et al. propuseram uma nova arquitetura de redes neurais,
denominada Redes Kolmogorov-Arnold (KANs), que se destacam como uma
abordagem inovadora frente aos modelos tradicionais, como os MLPs.

Diferentemente dessas redes especializadas, as KANs oferecem uma abordagem
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mais geral, fundamentada no teorema de Kolmogorov-Arnold, que endereca a
representacao de fungbes multivariaveis usando fungées mais simples, de apenas
uma variavel. O teorema de Vladimir Arnold e Andrey Kolmogorov estabelece que
sendo f uma funcéo continua, multivariavel em um dominio fechado, entdo f pode
ser escrita como uma composi¢ao finita de fungdes continuas de uma unica variavel
e a operagao da adigao (Kolmogorov, 1957). Mais especificamente, sendo f: [0,1] -
R,

fQ) = fxy, o, xn) = XG2T @ (Xp=1 Pgp (), (30)

emque ¢,,:[0,1] > Re ®;:R - R.

No campo do aprendizado de maquina, a aproximagdo de funcdes
desempenha um papel importante, e o teorema de Kolmogorov-Arnold poderia, em
teoria, ter aplicagcbes significativas. No entanto, na pratica, as fungbes univariadas
resultantes da decomposi¢cao podem ser n&o suaves ou até mesmo apresentar um
comportamento irregular, tornando-as extremamente dificeis de aprender. Por essa
razado, apesar de sua robustez teorica, o teorema foi amplamente considerado
impraticavel para aplicagdes em aprendizado de maquina, sendo efetivamente
relegado a um papel marginal na area (Girosi; Poggio, 1989). Todavia, para resolver
tais limitagdes LIU et al. (2024) ndo aderiram estritamente a formulagédo original.
Inicialmente, eles partiram do principio de que em um problema de aprendizado
supervisionado, tem-se pares de entrada-saida {x;, y;}, em que se quer encontrar
uma fungao f tal que y; = f(x;). De acordo com a Equagao (30), isto pode ser feito
caso se consiga determinar fungdes univariadas apropriadas @, e ®,. Com base
nisso, a ideia dos autores foi a de projetar uma rede neural onde todas as fungdes a
serem aprendidas seriam univariadas e parametrizadas como uma curva B-spline,
com coeficientes ajustaveis, seguindo o teorema de Kolmogorov-Arnold. Uma curva

B-spline pode ser representada por

spline (x) = Y;¢;B;(x), (31)

em que c; sao coeficientes que determinam o peso de cada fung¢ao base e B;(x) séo
funcdes que determinam como cada intervalo do dominio contribui para a curva final.
Essas fungdes base sao definidas em termos de nds, que dividem o dominio em
intervalos especificos. Entretanto, como mencionado, tal rede seria muito simples

para aproximar fungdes arbitrarias com apenas splines.
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Eis que entra a contribuicdo dos autores ao fazer uma analogia entre MLP e
KAN. No MLP uma camada é composta por transformacgdes lineares seguidas por
funcbes de ativacdo nao-lineares, podendo-se empilhar varias camadas para tornar
a rede mais profunda. Uma camada KAN com entradas de dimensbes n;, e saidas

de dimensbdes n,,; € representada por uma matriz de fungdes univariadas,

d={d,,Lp=12., nn q=12,.., Nous (32)

em que as fungdes @, ,, possuem parametros treinaveis. Sendo assim,
e As fungdes internas formam uma camada KAN comn;, =ne nyy, = 2n+ 1;
e As fungdes externas formam outra camada KAN com n;,, =2n+1 e nyy, =

1.

Isto significa que as representagdes descritas na Equagao (30) podem ser
vistas como a composi¢cdo de duas camadas KAN. Os autores propdem entao
generalizar a rede para largura e profundidades arbitrarias, ao invés de duas
camadas e um numero de termos 2n + 1.

Em esséncia a KAN é uma rede neural que aplica fungbes de ativacao
aprendiveis nas arestas, ao invés de funcdes de ativagao fixas nos ndés, como nos
MLPs. Isto permite que qualquer pardmetro de peso seja substituido por uma fungao
univariada. Cada n6 no KAN soma as fungbées sem aplicar nenhuma transformagao
nao-linear, ao contrario do MLP. Além disso, a flexibilidade das splines permite
modelar de maneira adaptativa complexas relagdes nos dados, ajustando a forma
para minimizar o erro de aproximacdo e, consequentemente, melhorando a
capacidade da rede de aprender determinados padrbdes de alta dimens&o. A Figura

2-26 apresenta as principais diferencas entre o MLP e a KAN.
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Figura 2-26 Principais diferengas entre MLP e KAN.
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2.3.2.4. Meétricas de algoritmos de classificagao

Neste trabalho, a KAN é empregada como algoritmo de classificacdo e seu
desempenho é avaliado por meio de diferentes métricas. Além da acuracia, sao
consideradas outras métricas relevantes, com o objetivo de proporcionar uma
analise mais abrangente da performance do modelo. As métricas adotadas sao
descritas a sequir.

1. Acuracia

A acuracia mede, de forma simples, a proporcdo de previsdes corretas

realizadas por um modelo. Ela é definida como a razdo entre o numero de acertos e

o total de previsdes realizadas, e é dada por

i — TP + TN
A TP ¥ TN + FP + FN' (33)

em que:
e TP - verdadeiro positivo: prevé positivo e é positivo;
e TN - verdadeiro negativo: prevé negativo e € negativo;
e FP - falso positivo: prevé positivo e é negativo;

e FN - falso negativo: prevé negativo e é positivo.
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A acuracia € uma meétrica adequada para conjuntos de dados balanceados,
mas pode ser enganosa em cenarios desbalanceados, pois tende a mascarar o real
desempenho do modelo. Por exemplo, em um problema binario com 99 instancias
da classe 0 e apenas 1 da classe 1, um modelo que classifica todas as amostras
como pertencentes a classe 0 atingira 99% de acuracia. Embora esse valor parecga
alto, o modelo falha completamente em identificar a classe 1 — que, em aplicagdes
reais, costuma representar eventos criticos, como falhas, fraudes com cartdo de
crédito ou spam em e-mails. Nesses casos, outras métricas sdao mais indicadas para

avaliar a performance do modelo de forma mais apropriada.

2. Precisao
Explica quantos dos casos corretamente previstos como TP de fato se
tornaram positivos. E a razdo entre os verdadeiros positivos e o total de instancias

classificadas como positivas,

procico —
recisao = W (34)

Essa métrica é especialmente relevante em cenarios em que o custo de uma falsa

deteccao positiva é elevado, como em sistemas de detecg¢ao de fraudes.

3. Recall (sensibilidade)

Explica quantos casos de verdadeiros positivos foram corretamente
identificados. E uma métrica interessante para quando falsos negativos sdo mais
preocupantes do que falsos positivos, como por exemplo em diagndsticos médicos.
Prever que um paciente esta com uma doenca que ele ndo esta € menos critico do

que deixar passar uma doencga que existe. Recall é dada por
TP

Recall = TP-l-—FIV (35)

4. F1-score
Combina precisao e recall, e é dada pela expressao
Precisdo . Recall

F1-— =2 :
score Precisao + Recall (36)
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O F1-score pune valores extremos. Geralmente é relevante quando falsos negativos

e falsos positivos sao igualmente custosos.

5. AUC (area sob a curva) ROC
A curva ROC (Receiver Operating Characteristic) € uma representagao grafica
que avalia o desempenho de um modelo de classificacdo, plotando a taxa de
verdadeiros positivos (sensibilidade) contra a taxa de falsos positivos em diferentes
limiares de decis&o. A métrica associada a curva ROC é a AUC (Area Under the
Curve), que quantifica a capacidade do modelo de distinguir entre as classes. Por
exemplo:
e Um modelo com AUC = 1 possui separacgao perfeita entre as classes.
¢ Um AUC = 0,5 indica desempenho equivalente ao acaso, ou seja, o
modelo ndo tem capacidade discriminativa.
e Ja um AUC = 0 representa um classificador que inverte totalmente as
previsdes (erra tudo).
A Figura 2-27 ilustra dois exemplos de area sob a curva ROC, com valores de
0,5 e 0,93, evidenciando a diferenga entre um modelo sem capacidade de

discriminagao e outro com bom desempenho.

Figura 2-27 Exemplos de curva ROC e respectivos valores de AUC.
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Fonte: Classification: ROC and AUC | Machine Learning | Google for Developers (2024)

2.3.3 Consideragoes da fundamentagao teérica

Este capitulo apresentou os principais conceitos tedricos que sustentam a
proposta desenvolvida nesta dissertagcdo. Inicialmente, foram discutidos os
fundamentos da energia edlica e a importancia das curvas de poténcia como
ferramenta essencial para o monitoramento e avaliacdo do desempenho de turbinas,
com destaque para o papel dos sistemas de aquisicdo de dados (SCADA). A partir
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dai, exploraram-se os paradigmas do Aprendizado de Maquina e suas aplicagdes na
deteccdo de anomalias. Por fim, foram apresentados os principais modelos de redes
neurais utilizados em tarefas de classificacdo e modelagem de comportamento.
Todos esses conceitos convergem para a constru¢cdo da solugédo proposta neste
trabalho, que visa automatizar a limpeza de curvas de poténcia por meio de técnicas

de aprendizado de maquina.
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3 REVISAO DA LITERATURA
3.1 LIMPEZA DA CURVA DE POTENCIA

O SCADA desempenha um papel crucial no monitoramento da condi¢céo e do
desempenho das turbinas edlicas (CAMBRON et al., 2016).De acordo com KUSIAK
(2016), o monitoramento orientado por dados pode reduzir os custos de manutengao
de um parque edlico em até 10%. O autor defende a importancia do acesso aberto a
dados sobre o desempenho das turbinas edlicas para otimizar o funcionamento dos
parques através da mineracao de dados. KUSIAK enfatiza que a industria energética
poderia melhorar significativamente sua eficiéncia e inovagdo ao permitir que
pesquisadores tenham acesso aos dados.

No geral, um processo de limpeza de uma curva de poténcia envolve
distinguir corretamente os dados considerados normais dos anémalos, de forma
eficiente, classificando os ultimos corretamente (WANG et al., 2019). Diversos
estudos tém explorado métodos variados para deteccdo e limpeza de dados
andmalos em uma curva de poténcia. Nas proximas secgdes, os estudos sao
divididos em trés grandes grupos: aqueles que aplicam métodos baseados em
regressdo e modelos estatisticos, os que utilizam algoritmos baseados em
agrupamento de dados e analise de distancia e os que utilizam como base métodos

de aprendizado de maquina.

= Métodos baseados em regressao e modelos estatisticos

TASLIMI-RENANI et al. (2016) propuseram um modelo paramétrico baseado
na tangente hiperbdlica (MHTan) e empregaram o erro quadratico minimo e a
estimativa de maxima verossimilhanga para estimar os parametros. Também
avaliaram a utilizacdo de outros modelos paramétricos e n&o-parameétricos e
compararam o desempenho de todos os modelos com dados reais coletados de um
parque edlico do Ira.

VILLANUEVA & FEIJOO (2018) fizeram comparagbes entre diferentes
fungdes logisticas, variando a quantidade de parametros utilizados, para modelagem
de curvas de poténcia comerciais. Cada funcdo foi testada com sete turbinas
diferentes. Erros percentuais absolutos, erros quadraticos médios e erros absolutos
foram calculados. As fungdes com 3 e 5 pardmetros demonstraram ser o melhor

compromisso entre quantidade de parametros e erros calculados.
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WANG et al. (2018) propuseram dois modelos de regressédo para modelagem
de curvas de poténcia: HSRM (Heteroscedastic Spline Regression Model) e RSRM
(Robust Spline Regression Model). Para avaliagdo dos modelos, dados de duas
turbinas foram utilizados, em duas estacbes do ano, usando como métrica o erro
médio absoluto e o erro médio quadratico. O desempenho dos modelos propostos
foi comparado com outros modelos da literatura e apresentou erros menores.

MEHRJOO; JAFARI JOZANI; PAWLAK (2020) propuseram dois meétodos
baseados no método de inclinacdo e no meétodo de regressdo por splines
monotdnica para modelar a curva. Os algoritmos foram testados com dados de
quatro turbinas de um parque edlico em Manitoba, no Canada. Utilizando-se de
métricas como o erro quadratico médio e o erro médio normalizado percentual
absoluto, concluiu-se que o método de regressdo por splines teve melhor
desempenho.

MARCIUKAITIS et al. (2017) apresentaram um modelo de regress&do nao-
linear e usaram validacao cruzada para estimar a precisdo. Este modelo foi aplicado
a uma turbina do parque edlico Seirjai na Lituania.

JAVADI et al. (2018) empregaram um algoritmo linear por partes, baseado no
programa Statistical Analysis Software para descrever a curva de poténcia e eliminar
os dados anémalos. O algoritmo foi testado usando dados de uma turbina edlica
real.

QIAO et al. (2024) propéem uma metodologia de modelagem multivariada de
curvas de poténcia de turbinas edlicas que considera as diferengas de controle por
segmentos e a autodependéncia de curto prazo dos parametros ambientais.
Inicialmente, é apresentada uma técnica de limpeza de dados anémalos baseada
em correspondéncia temporal e algoritmo de quartis bidirecional. Em seguida, €&
construido um modelo multivariado baseado na regressdao de piece-wise de
multiplos parametros ambientais, aplicado a avaliagdo de degradagcdo de
desempenho da turbina. Os resultados indicam que a abordagem de limpeza
proposta € eficaz na identificacdo de regides de transigdo entre dados normais e
an6malos, e que o modelo multivariado melhora a acuracia da modelagem e da

avaliacao de desempenho sob diferentes condigdes de recurso edlico.
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= Métodos baseados em agrupamento de dados e analise de distancia

KUSIAK & VERMA (2013) construiram uma curva de referéncia baseada em
5 anos de dados. O terceiro e quarto momento estatistico (curtose e skewness)
foram calculados como métricas para descrever o formato das curvas. Para
identificacdo de outliers sugeriram um algoritmo multivaridvel baseado em
agrupamento k-means e distancia de Mahalanobis.

YESILBUDAK (2016) desenvolveu um método para detecgédo de outliers em
trés niveis: agrupamento de dados por k-means, baseada na distancia Euclidiana ao
quadrado e de Manhattan, calculo da forma da curva para comparagcéo das duas
clusterizacbes e filtragem dos dados usando a distancia de Mahalanobis como
limiar. A distancia Euclidiana ao quadrado resultou em um coeficiente de Silhouette
maior quando comparado ao de Manhattan, mas ao final dos trés niveis, o autor foi
bem-sucedido ao obter as curvas de referéncia.

Ha na literatura, ainda, o caso da modelagem do formato dos outliers, ao
invés da curva. E o caso de SHEN; FU; ZHOU (2019), que classificaram os outliers
da curva de poténcia em quatro categorias: os da base da curva, os do meio, 0s
fixos do topo e os esparsos. A partir das formas e distribuicbes desses outliers, o
algoritmo do changepoint e do quartil sdo aplicados.

LUO et al. (2021) empregaram diferentes algoritmos para cada forma de
outlier e validaram seu método usando dados de diferentes parques edlicos. Dentre
os algoritmos utilizados incluiam agrupamento de dados, extragdo de contorno e
regularizacao de contorno. Os resultados indicaram que os modelos de curva de
poténcia foram, no geral, eficazes na limpeza dos outliers, mas enfrentaram
dificuldades em reconhecer dados anémalos gerados por curtailment.

ZHENG; HU; MIN (2015) utilizaram o algoritmo LOF (Local Outlier Factor) em
combinagdo com a avaliacdo do grau de similaridade em dados de vento de turbinas
edlicas para calcular um fator de outlier. O método foi testado em dados de um
parque eolico no nordeste da China.

ZHAO et al. (2018) propuseram um método de limpeza de dados anémalos
que combina agrupamento de dados em quartis e densidade de pontos.
Primeiramente o método do quartil é utilizado duas vezes para eliminacao de outliers
esparsos € em seguida o algoritmo DBSCAN é usado para eliminagdo de pontos
com a poténcia fixa. Um estudo de caso em um parque edlico com 20 turbinas foi

conduzido e o método se provou eficaz e com baixo custo computacional. Também
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se mostrou que o método € insensivel aos parametros utilizados, sendo, portanto,
capaz de ser utilizado em diferentes turbinas edlicas sem a necessidade de
calibragéo prévia.

E amplamente reconhecido que as técnicas de agrupamento de dados
baseadas em densidade sdo mais eficientes do que as técnicas baseadas em
particdo quando se trata de identificar clusters de formas arbitrarias ou detectar
anomalias (Hossain, 2017). A Figura 3-1 apresenta um exemplo de agrupamento por

agrupamento de dados com o DBSCAN.

Figura 3-1 Outilers identificados com o DBSCAN.
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Fonte: Adaptado de PAIK; CHUNG; KIM (2023).

PAIK; CHUNG; KIM (2023) propuseram um novo procedimento para a
identificacdo e remocao de outliers na estimativa de curvas de poténcia de parques
edlicos, utilizando algoritmos de agrupamento de dados baseados em quantizagao
vetorial no DBSCAN. A metodologia € aplicada e validada em turbinas individuais de
um parque eolico na Coreia, testando diferentes modelos paramétricos para a curva

de poténcia.
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= Métodos baseados em aprendizado de maquina

MANOBEL et al. (2018) apresentaram um método de modelagem baseado
em Processo Gaussiano (PG) e em redes neurais. Inicialmente, os dados foram
filtrados através do PG e, em seguida, esses dados “limpos” sédo utilizados como
dados de treinamento da rede neural. Como dados de entrada se utilizam da
velocidade e diregdo do vento para obter como saida a poténcia. Por fim, os autores
utilizam o erro quadratico médio entre a poténcia gerada e a poténcia esperada
como métrica de desempenho do algoritmo, comparando o erro do método
desenvolvido com outros da literatura.

DONG et al. (2022) utilizaram aprendizagem semi-supervisionada e o
algoritmo Robust Random Cut Forest. Para isso, selecionaram os dados
considerados normais e, a cada nova amostra, inseriram esses dados no modelo. A
alteracao na complexidade do modelo foi entdo comparada com um limite dinémico,
permitindo a identificacdo de dados anémalos. Para minimizar a dependéncia dos
dados normais rotulados na modelagem, foi proposta uma estratégia de atualizagéo
em tempo real baseada em auto-treinamento semi-supervisionado. Os resultados
experimentais indicam que a precisao de deteccdo do método proposto pode atingir
95% com 1000 grupos de dados normais rotulados, e o tempo de detecgdo de uma
unica amostra é de 50 ms.

ZHANG; HU; YANG (2022) propuseram um meétodo de detecgdo e
diagnostico de anomalias baseado em um denoising autoencoder com LSTM
(LSTM-SDAE) e XGBoost. Primeiramente um algoritmo de reconhecimento de dados
anbmalos baseado no LOF e k-means adaptativo foi desenvolvido para fazer o pré-
processamento e eliminar ruido. O modelo LSTM-SDAE foi estabelecido para obter
uma relagdo temporal nao-linear entre variaveis. Em seguida, a distancia de
Mahalanobis foi calculada baseada em uma técnica de janela deslizante para
deteccdo de anomalias em tempo real. Para testar o método proposto, dados
SCADA reais de um parque edlico localizado no nordeste da China foram utilizados.

MORRISON; LIU; LIN (2022) conduziram uma analise comparativa de quatro
métodos de deteccdo de anomalias, o iForest, LOF, GMM e k-NN, com e sem
filtragem. A avaliagéo foi baseada no erro de previsdo, nas taxas de remogao de
dados e na preservagao das caracteristicas estatisticas do vento. Os resultados

mostraram que a filtragem melhorou o desempenho de todos os métodos, com o
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GMM demonstrando precisao favoravel enquanto ainda mantinha a variabilidade do
vento.

KHAN; YEUN; BYUN (2023) apresentaram uma abordagem de aprendizado
em conjunto, baseada em algoritmos genéticos, para detectar anomalias em turbinas
edlicas usando dados SCADA. O método proposto combina XGBoost, random forest
e modelos de arvore extra, enquanto emprega um limiar de erro quadratico médio
para identificagdo de anomalias. A principal desvantagem desses modelos nao
paramétricos é o alto custo computacional.

YAO et al. (2023) empregaram uma abordagem abrangente composta por
duas etapas principais para a limpeza da curva de poténcia. Primeiro, usaram uma
técnica de pré-processamento para remover outliers com base no mecanismo
operacional da maquina. Em seguida, propuseram um novo método de limpeza de
dados chamado TTLOF (Thompson Tau-Local Outlier Factor), que utiliza ECMI
(Empirical Copula-Based Mutual Information) para sele¢ao de limiares de parametros
de correlagdo e limpeza fina por segmentacdo (reduzindo a complexidade da
limpeza) a fim de identificar caracteristicas anémalas nos dados de curva de
poténcia. Por fim, o método LSTM €& usado para avaliar a eficacia do método.

LETZGUS & MULLER (2024) propéem uma metodologia baseada em
inteligéncia artificial explicavel (XAl) para avaliagdo de modelos de curvas de
poténcia de turbinas edlicas gerados por aprendizado de maquina. Com o objetivo
de complementar as métricas tradicionais de erro, introduzem uma métrica que
quantifica o alinhamento dos modelos com principios fisicos do sistema. A analise é
conduzida utilizando uma variedade de abordagens, que vao desde modelos fisicos
simplificados até métodos de aprendizado supervisionado mais complexos, incluindo
regressoes lineares segmentadas, regressdes polinomiais, Random Forests, ANNs e
SVMs. O trabalho investiga como essas diferentes escolhas influenciam a
capacidade de generalizagao e a robustez dos modelos em ambientes dinamicos.

YIN et al. (2025) propdem uma abordagem multivariada para previsédo de
curvas de poténcia de turbinas edlicas, integrando técnicas de aprendizado de
maquina avancadas. O método combina regressado por arvores impulsionadas por
gradiente estocastico (SGBRT) e otimizagao por matilha de lobos cinzentos (GWO),
aliados a etapas inovadoras de pré-processamento de dados e selegcao de variaveis.
A limpeza dos dados é realizada em um espaco bidimensional de Cépula, utilizando

a velocidade do rotor como critério auxiliar para lidar com incertezas e dependéncias
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nao lineares. A selecao de variaveis é feita com base na analise da informacao
mutua parcial (PMI), resultando na escolha de oito parametros significativos. O
modelo SGBRT tem seus hiperparametros otimizados via GWO, considerando uma
funcdo de ajuste baseada em RMSE, MAE e R2 A validacdo com dados SCADA
reais demonstra que o modelo proposto supera métodos existentes em termos de

acuracia, eficiéncia e robustez.

3.2 REDES KOLMOGOROV-ARNOLD

Até o momento da escrita desta dissertagao, poucos trabalhos utilizando KAN
haviam sido publicados.

No campo da energia edlica, apenas um artigo foi identificado. MUBARAK et
al. (2024) avaliaram o desempenho da KAN e MLP em previsdes de produgao de
energia de seis parques edlicos na China. A KAN supera limitagdes do MLP, como
escalabilidade e interpretabilidade, utilizando fungdes de ativacdo B-Spline e
otimizacdo pelo algoritmo LBFGS. Técnicas de pré-processamento, como
Interquartile Range para tratar outliers e K-Nearest Neighbor para imputacdo de
dados, também foram aplicadas. A KAN demonstrou desempenho superior, com
erro meédio quadratico de 0,0039 no melhor local.

SULAIMAN et al. (2024) propuseram o uso da KAN para modelar as relacbdes
nao lineares dos dados de consumo de um edificio comercial. Comparando o
desempenho da KAN com MLP e um algoritmo hibrido TLBO-DL (Teaching-
Learning-Based Optimization with Deep Learning), o KAN demonstrou superioridade.
A pesquisa destaca a aplicagao inovadora do KAN em previsdes energéticas, com
maior preciséo e eficiéncia computacional, contribuindo para a gestao energética em
sistemas reais.

GAO et al. (2025) propéem o uso da KAN como uma solug¢ao para melhorar a
interpretabilidade e o desempenho preditivo da radiacdo solar e temperatura
externa. Os autores conduziram estudos de caso com dados do Observatorio
Meteorolégico de Toquio, a KAN mostrou-se capaz de reduzir o erro médio
quadratico em 75,33% em relacdo a modelos recorrentes tradicionais, mesmo com
apenas um neurdnio oculto na previsao de radiacéo solar.

GAO; KONG (2025) propbéem uma abordagem para sistemas de
posicionamento espacial, especialmente no caso de capsulas médicas, com o uso

da tecnologia Magnetic Positioning (MP) combinada a KAN. O algoritmo demonstrou
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bom desempenho, com erro maximo de posicionamento de 0,24 mm e erro relativo
variando de 0,25% a 5,72%, mantendo precisdo constante independente da

distancia entre o alvo e o sistema de medicéo.

3.3 PERSPECTIVAS DO ESTUDO

A partir da revisdo apresentada, observa-se que a detecgado e a remocgao de
anomalias em curvas de poténcia de turbinas edlicas tém sido amplamente
estudadas por meio de diferentes abordagens, incluindo modelos estatisticos,
técnicas de agrupamento e algoritmos de aprendizado de maquina. Métodos
baseados em regressao apresentam boa capacidade de ajuste, mas sao sensiveis a
presenca de outliers e requerem suposi¢cdes sobre a forma da curva. Técnicas de
agrupamento e analise de distadncia demonstram eficacia na identificacdo de
padroes andmalos sem a necessidade de roétulos, porém podem apresentar
limitagcbes em cenarios com estruturas de dados mais complexas ou com ruidos
sobrepostos. Ja os métodos baseados em aprendizado de maquina, especialmente
0s nao supervisionados ou semi-supervisionados, oferecem maior flexibilidade e
capacidade de generalizagcdo, mas ainda enfrentam desafios relacionados a
interpretabilidade dos modelos e ao custo computacional.

Além disso, embora muitos estudos foquem na remocgcdo de pontos
inconsistentes ou ruidos, poucos abordam de forma clara a separacdo entre
diferentes tipos de anomalias, como eventos de indisponibilidade, nos quais a
turbina esta fora de operacao, e situacbes de subdesempenho, em que a turbina
permanece operando, porém com rendimento inferior ao esperado. Essa distingao é
fundamental, pois impacta diretamente na estimativa de produg¢do, nas analises de
disponibilidade e nos relatorios técnicos de desempenho. A correta identificacéo
dessas condi¢gdes exige modelos capazes de capturar nuances nos dados e
interpretar diferentes padrdes de desvio em relagao a curva de poténcia ideal.

Diante desse cenario, observa-se uma lacuna na aplicacdo de modelos que
aliem previsdo e identificacdo precisa de diferentes anomalias, além de
interpretabilidade. Em especial, observa-se a auséncia de estudos que explorem o
uso de redes Kolmogorov-Arnold (KAN) nesse contexto. A aplicagdo que existe esta
relacionada a previsdo da produgdo de energia, ndo contemplando seu potencial
para a classificacao de dados operacionais. Assim, a presente dissertacdo propde o

desenvolvimento de um modelo hibrido, baseado na combinacédo de autoencoders e
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redes KAN, com o objetivo de automatizar a limpeza da curva de poténcia ao
mesmo tempo em que diferencia, de forma confiavel, dados normais, eventos de

indisponibilidade e casos de subdesempenho.
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4 METODOLOGIA

Este trabalho tem como objetivo propor uma nova metodologia de limpeza
automatica de curvas de poténcia, explorando abordagens computacionais
modernas para identificacdo e remocdo de outliers. A limpeza consiste em
categorizar os dados de uma curva de poténcia em duas principais rotulagdes:

1. Dados normais;

2. Dados anémalos, que incluem:
a. Indisponibilidade;
b. Subdesempenho.

As duas categorias dos dados anémalos seguem as definicdes previamente
apresentadas na secao 2.2. Importante mencionar que se assume a classe 0 como
pontos normais, classe 1, indisponibilidade e classe 2, subdesempenho. As
rotulagbes categorizadas automaticamente sdo comparadas com a rotulagao

realizada manualmente por um especialista da area.

4.1 DADOS DE TURBINAS EOLICAS UTILIZADOS

No setor edlico, os dados SCADA sado geralmente confidenciais e de
propriedade da operadora do parque. Apesar disto, existem algumas iniciativas e
conjuntos de dados disponiveis publicamente para pesquisa. A Tabela 4-1 apresenta

os dados utilizados no presente trabalho.

Tabela 4-1 Dados SCADA publicos utilizados no presente trabalho.

Parque edlico / Quantidade Resolugao
Localizacdo ; Dados Fonte
Empresa de turbinas temporal
«SCADA
Northampto * Produgao de https://zenodo
Kelmarsh / . P energia da ps:
Cubi gshlre - 6 subestacao 10 minutos éﬂ'%rgzgrssﬁ
ubico eino .Ygp
Unido *Log de alarmes BQ_so-V7
eLayout
e Turbina

A sequir, é feita uma breve descrigdo sobre o conjunto de dados utilizado.
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1. Kelmarsh e Pernmanshiel

Os dados foram disponibilizados pela Cubico Sustainable Investments Ltd em
2022 com o objetivo de ampliar o acesso a informagdes do setor e incentivar o
envolvimento de profissionais e pesquisadores em desafios inovadores. Foi criado o
espaco “Cubico Open Data Exploration”, liderado por Charlie Plumley, que langou o
primeiro desafio: "Operational Energy Yield Analysis Using Open Data". O objetivo
desse desafio era prever a producéo de energia ao longo de 20 anos e as incertezas
associadas para o parque eolico (WeDoWind, 2023).

Os conjuntos de dados abrangem o periodo de 2016 a 2021, totalizando 6
anos de informagbes. Eles incluem dados SCADA, medicbes de energia na
subestacao, layout dos parques, especificagdes das turbinas e as respectivas datas
de entrada em operacgao. Considerando todo o periodo, a quantidade de pontos dos
dados SCADA gira em torno de 200.000 a 210.000. A Figura 4-1 ilustra o layout do

parque edlico Kelmarsh, bem como curvas de nivel e declividade do terreno.

Figura 4-1 Parque edlico Kelmarsh.
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A Figura 4-2 apresenta a curva de poténcia, rosa dos ventos e cobertura de

dados de uma turbina do parque.

Figura 4-2 Curva de poténcia, rosa dos ventos e cobertura da turbina K01.
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Fonte: a Autora (2024)

4.2 VARIAVEIS SCADA CONSIDERADAS

Na limpeza de uma curva de poténcia, a principio, o foco principal esta na
relacdo entre poténcia e velocidade do vento. No entanto, conforme destacado na
secdo 2.2.3, sinais auxiliares podem contribuir significativamente para a
classificagdo dos pontos associados a indisponibilidade e ao subdesempenho. Por
esse motivo, além da poténcia e da velocidade do vento, também foram

consideradas as variaveis velocidade do rotor, angulo de pitch e diregdo da nacele.




91

4.3 METODOLOGIA DE ANALISE E ALGORITMOS EMPREGADOS

Nesta secdo, sdo detalhados os procedimentos adotados, estruturados em
quatro etapas principais: pré-processamento dos dados, testes de algoritmos e
implementagdo, avaliagdo dos resultados e comparagdo com algoritmos bem
estabelecidos na area de aprendizado de maquina. Os codigos foram rodados em
uma maquina com as seguintes caracteristicas:

e Processador: Intel Core i7 (2 nucleos fisicos, 4 nucleos légicos, 2.7 GHz);

e Memodria RAM:16 GB;

e Placa de video: NVIDIA GeForce 940MX (4 GB VRAM).

E importante ressaltar que algumas abordagens foram testadas até a
obtencao dos modelos finais, sendo elas:

1. DBSCAN;

2. DBSCAN com janela deslizante e parametros estatisticos;

3. Autoconder com KAN;

4. Autoencoder variacional com KAN.
A etapa de pré-processamento é comum a todas as metodologias avaliadas,
enquanto a etapa seguinte, referente a limpeza da curva de poténcia, foi testada e
explorada com diferentes abordagens até a definicdo do algoritmo selecionado. A
Figura 4-3 e a Figura 4-4 ilustram a metodologia dos modelos 1 e 2,
respectivamente. A Figura 4-5 apresenta as etapas dos modelos 3 e 4 (modelos
finais), que vao do pré-processamento até a comparagao com algoritmos bem

estabelecidos na area.



Figura 4-3 Fluxograma da metodologia DBSCAN.
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Figura 4-4 Fluxograma da metodologia DBSCAN com parametros estatisticos e janela

deslizante.
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Figura 4-5 Fluxograma da metodologia final utilizada.
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4.3.1Pré-processamento

O pré-processamento de dados SCADA ¢é fundamental, pois os dados brutos
frequentemente contém registros invalidos que precisam ser filtrados. Sensores
podem registrar leituras incorretas devido a falhas operacionais e lacunas nos dados
podem surgir por interrup¢gdes na comunicagao do sistema SCADA. Além disso,
algoritmos em aprendizagem de maquina podem ser sensiveis a escalas entre
diferentes variaveis e uma boa pratica € a normalizagdo ou escalonamento. O pré-
processamento € dividido basicamente em trés etapas:

1. Remocéo de dados NaN: registros cujos timestamps contenham valores
NaN sao eliminados. Esta abordagem foi adotada neste estudo, ao invés
do preenchimento dos valores faltantes, pois o preenchimento estaria
apenas adicionando incerteza e ruido e os dados remanescentes sao
suficientes para manter a robustez do modelo, pela grande quantidade de
dados.

2. Eliminagdo de dados espurios: a remocg¢ao de leituras incorretas é
fundamental para garantir a qualidade dos dados. Os seguintes critérios
foram estabelecidos:

a. Velocidade do vento inferior a 0 m/s ou superior a 40 m/s;

b. Velocidade do vento com cinco ou mais repeticbes consecutivas;

c. Poténcia, angulo de pitch e velocidade do vento com mais de cinco
repeticdes consecutivas, simultaneamente. E interessante que as
repeticbes de pitch e poténcia estejam correlacionadas entre si e
com a velocidade do vento, pois, isoladamente, sensores podem
apresentar valores repetidos plausiveis.

3. Escalonamento dos dados: algoritmos de aprendizagem de maquina sao
sensiveis a diferencas de magnitude entre variaveis. Para garantir
consisténcia e evitar que caracteristicas com valores maiores dominem a

analise, os dados foram normalizados.

4.3.1.1. Balanceamento de classes em algoritmos de classificacéo

Muitos conjuntos de dados do mundo real apresentam desbalanceamento e
isso pode levar a um desempenho enviesado do modelo, ja que os algoritmos de
aprendizado de maquina tendem a classificar corretamente a classe majoritaria,

enquanto cometem erros na classificagdo da classe minoritaria. Entretanto, em
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problemas de classificagdo desbalanceada, geralmente ha interesse em classificar
corretamente as amostras da classe minoritaria, pois séo elas que representam os
casos mais importantes, como por exemplo falhas ou anomalias. Ainda assim, os
algoritmos de aprendizado de maquina utilizados para classificagdo binaria ou
multiclasse s&o, em sua maioria, projetados para trabalhar com conjuntos de dados
balanceados, otimizando métricas igualmente distribuidas entre as classes (Galli,
2023).

Uma forma de lidar com o desbalanceamento é fazer um “resampling”
(reamostragem) dos dados de treino. No presente trabalho, se utilizou da
abordagem SMOTE, sigla para Synthetic Minority Over-sampling Technique, que é
uma técnica de oversampling, que cria dados sintéticos para a classe minoritaria. O
funcionamento do SMOTE baseia-se na criagdo de amostras sintéticas ao longo das
linhas que conectam os vizinhos mais préximos. Geram-se novas amostras da
classe minoritaria dando pequenos passos a partir de uma instancia existente em
diregdo a um de seus k vizinhos mais proximos, sendo k um parametro do algoritmo.
Para isso, o algoritmo seleciona aleatoriamente um dos k vizinhos mais proximos e
gera uma nova amostra ao adicionar uma pequena perturbacgao vetorial ao ponto de
origem, interpolando entre ele e o vizinho escolhido. Dessa forma, as novas
amostras sintéticas mantém caracteristicas similares as amostras reais da classe
minoritaria, mas nao sao copias exatas, aumentando assim a diversidade da base
de dados.

4.3.2 Testes de algoritmos e implementacgao

Nesta segdo sdo apresentados os algoritmos testados durante a elaboragéo
deste trabalho, descrevendo-se a metodologia utilizada em cada um deles. Para fins
de ilustracdo de resultados, estes sdo mostrados para a turbina KO1 do parque

eodlico Kelmarsh.

43.21 DBSCAN

Conforme apresentado na secéo 3.1, diversos autores empregam métodos de
agrupamento de dados para limpeza de curvas de poténcia, abordagem que serviu
como ponto de partida para este trabalho. Os parametros principais a serem

determinados s&o o “Epsilon” e o “Min_samples”.
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Para determinacdo do primeiro, foi utilizado o algoritmo KneelLocator, que
identifica um ponto de inflexdo na curva de distancias entre vizinhos mais proximos.
A premissa é que, em um agrupamento, espera-se que o0s pontos centrais
apresentem distancias menores entre si, os pontos na borda do cluster ainda
permanecam dentro de um intervalo razoavel, e os pontos considerados ruidos
tendem a apresentar distancias significativamente maiores. Dessa forma, o ponto de
joelho na curva representa a transicdo entre regides e pode fornecer um valor
adequado para ¢. Isto é ilustrado na Figura 4-6 para uma investigagdo considerando

11 vizinhos mais préximos.

Figura 4-6 Obtencao do joelho da curva com o KneeLocator
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Fonte: a Autora (2024).

Neste exemplo, o joelho ocorre na instancia 183307, correspondendo a uma
distdncia de 0,084. No presente trabalho, na realizagdo de alguns testes
exploratdrios, notou-se que o valor de Epsilon igual ao previsto pelo KneeLocator era
conservador. Isto acontece, pois quando os outliers sao raros ou mais dispersos,
pontos mais afastados podem ser incorretamente incorporados ao cluster, ao invés
de serem identificados como ruido. Para mitigar este efeito, no presente trabalho,
optou-se por ajustar o € para metade do valor obtido com o KneeLocator.
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Quanto ao Min_samples, existem algumas regras gerais que se pode adotar
na escolha (Sefidian, 2023):
e Quanto maior o conjunto de dados, maior deve ser o valor de
Min_samples;
e Se o0 conjunto de dados for ruidoso, € preferivel um valor maior de
Min_samples;
e Geralmente, Min_samples deve ser maior ou igual a dimensionalidade
do conjunto de dados
e Se os dados tiverem mais de duas dimensodes, escolha Min_samples =
2*dimenséao (Sander et al., 1998)
No presente trabalho, a dimensao corresponde a 5. Logo, a principio, € adotado
como valor inicial Min_samples = 10. No entanto, considerando o grande volume de
dados disponiveis, foi realizada uma investigacdo dos valores Min_samples,
permitindo a avaliagdo de valores maiores, de modo a otimizar a segmentagdo dos

clusters.

4.3.2.2 DBSCAN com parametros estatisticos e janela deslizante

Como segunda abordagem a ser testada, foi utilizado um algoritmo de
DBSCAN considerando-se como dados de entrada parametros estatisticos em
janela deslizante, para processar os dados em segmentos sobrepostos. Isto € muito
utii em séries temporais, pois se permite dividir os dados em janelas moveis,
analisando padrdes e tendéncias ao longo do tempo. As anomalias, em geral,
possuem uma dependéncia temporal, pois periodos de falha ou baixo desempenho
da turbina costumam se estender por um periodo de tempo. Dessa forma, pontos
que mantém um comportamento anédmalo de forma consistente sdo mais facilmente
identificaveis e a janela deslizante € uma forma de incluir esta dependéncia
temporal.

Os primeiros parametros a serem definidos sdo o tamanho da janela e o
passo. Neste estudo, utilizou-se uma janela de 6 horas e um passo de 2 horas.
Esses valores foram determinados a partir de testes exploratérios, nos quais se
variou o tamanho da janela e o passo para avaliar em quais configuragcdes a curva
de poténcia média preservava seu comportamento normal. Com essa

parametrizagdo, um novo dataframe segmentado foi criado, no qual os dados foram
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organizados em janelas de 6 horas, com um deslocamento de 2 horas entre cada
janela. O timestamp original, registrado a cada 10 minutos, foi mantido, mas agora
os valores eram agrupados dentro das janelas de 6 horas. Como resultado, uma
mesma ocorréncia poderia aparecer repetidamente em diferentes janelas, ja que
pertencia a varios segmentos, devido a sobreposigao das janelas moéveis.

Como parametros de entrada para o algoritmo DBSCAN, sao utilizados dados
estatisticos extraidos por meio da biblioteca tsfresh. Entre as estatisticas calculadas
incluem-se mediana, média, desvio padrao, minimo, maximo, amplitude, primeira e
ultima posicdo dos valores extremos, coeficientes da tendéncia linear (inclinagao,
offset e coeficiente de correlagédo), curtose e assimetria. Essas métricas permitem
capturar padrbes importantes da série temporal, facilitando a identificacido de pontos
com caracteristicas similares. Diferentes parametros sao testados a fim de verificar o

desempenho do modelo. Os resultados sao apresentados no capitulo 5.

4.3.2.3 Autoencoder classico com KAN (AE-KAN)

Como terceira metodologia a ser testada, adotam-se algoritmos de
classificagdo. Para avaliar o desempenho da rede neural Kolmogorov-Arnold, ainda
pouco explorada, a mesma foi escolhida como principal método de teste. Além
disso, optou-se por utilizar um autoencoder padrdo como etapa de pré-
processamento, com o objetivo de aprimorar os dados de entrada para a KAN. Este
algoritmo hibrido € nomeado no presente trabalho de AE-KAN.

Um autoencoder padrao possui os seguintes parametros:

1. Dimensado de entrada (input_dim): define o numero de neurbnios da
camada de entrada e depende da quantidade de variaveis dos dados
originais;

2. Dimensdo do espacgo latente (encoding dim). numero de neurdnios da
camada latente (compactagao ou expanséo da informagéao);

3. Arquitetura da rede: define a quantidade de camadas e neurbnios do
codificador e decodificador;

4. Funcéo de ativagao: controla a nao linearidade entre as camadas (fungdes
RelLU, sigmoide, tanh, etc);

5. Funcgdo de perda: mede a diferenca entre a entrada original e a saida
reconstruida;

6. Otimizador: ajusta os pesos para minimizar a funcao de perda;
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7. Taxa de aprendizado: define o tamanho do passo que o otimizador da na
atualizagao dos pesos;
8. Numero de épocas: quantas vezes o modelo vé os dados de treinamento

e aprende com eles.

Para treinamento do autoencoder, apenas os pontos considerados normais (classe
0) sado utilizados como dados de entrada para que o modelo aprenda a
representacdo dos dados normais. Para treino e ajuste, sdo utilizados dados da
turbina KO1 do parque Kelmarsh. Os hiperparametros base sao apresentados na
Tabela 4-2.

Tabela 4-2 Parametros base considerados no autoencoder.

Parametro Valor considerado

Input_dim 4

Encoding dim 3

Arquitetura da rede 3 camadas no codificador + 3 camadas no
decodificador

Funcgao de ativacéo RelLU

Funcéo de perda MSELoss

Otimizador Adam

Taxa de aprendizado 0,001

Numero de épocas 100

Para o treinamento do autoencoder, é feito um ajuste dos hiperparametros a
serem considerados, conforme Tabela 4-3. Os parametros sao combinados,
formando um total de 24 possibilidades. Em relagdo ao custo computacional,
contabilizou-se em torno de 15 minutos para cada rodada do ajuste, totalizando um

tempo aproximado de 6 horas.

Tabela 4-3 Parametros para treinamento do autoencoder.

Numero de camadas Dimenséo latente Otimizador Numero de épocas
3+3 3 Adam 100
4+4 4 RMSProp 500

AdamW

Inicialmente, as variaveis consideradas sao as mesmas utilizadas para o
agrupamento de dados: velocidade do vento, poténcia, posicdo da nacele,
velocidade do rotor e angulo de pitch. No entanto, com a introdug¢ao do autoencoder,
torna-se interessante avaliar a influéncia de cada variavel na reconstrucdo dos
dados. Analisar a variancia dos parametros ajuda a identificar se todas as variaveis

sao relevantes ou se algumas podem ser removidas sem comprometer a qualidade
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da representacdo. Para isso, gera-se um grafico de violino, permitindo visualizar a
distribuicdo dos dados e identificar padrbes de variagdo, conforme ilustrado na

Figura 4-7.

Figura 4-7 Grafico violino com os valores das variaveis consideradas.
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Fonte: a Autora (2024)

No grafico tem-se:
¢ Nws: velocidade do vento;
e Pwr: poténcia;
e Rotorspd: velocidade do rotor;
¢ Nacpos: posicédo da nacele;

e Pitch: angulo de pitch.

Pode-se observar na Figura 4-7 que o angulo de pitch apresenta baixa variagéo,
indicando que sua inclusédo na reconstrugao dos dados pelo autoencoder tende a ter
um impacto minimo. Portanto, ela ndo ¢é considerada como variavel para
treinamento.

ApOs ajuste de hiperparametros do autoencoder com a turbina KO1 e escolha
da configuracdo do autoencoder, os dados da turbina K02 sdo passados pelo

autoencoder treinado.
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No caso da KAN, os seguintes parametros devem ser avaliados:

1. Tamanho das camadas ocultas (hidden_layer size): numero de neurdnios
das camadas ocultas;

2. Regularizacdo da ativagao (regularize_activation): controla a penalizagdo na
ativagao dos neurbnios para evitar oveffitting;

3. Regularizagdo da entropia (regularize_entropy): regula a entropia para
suavizar o comportamento da rede;

4. Regularizacdo ridge (regularize_ridge). adiciona penalizagdo para evitar
pesos excessivamente grandes;

5. Ordem do spline: determina a ordem da interpolagdo spline usada na

modelagem.

A Tabela 4-4 apresenta os parametros base utilizados no treinamento da rede

Kolmogorov-Arnold.

Tabela 4-4 Hiperparametros base da KAN.

Tamanho da Regularizagao de Regularizagao da | Regularizagao Ordem do
camada ativacao entropia ridge spline
32 0.3 0.3 0.5 3

Para otimizacdo dos hiperparametros, rodadas de treino foram executadas

variando-se os valores utilizados. Os valores sdao mostrados na Tabela 4-5. Para

cada rodada de ajustes de hiperparametros, estima-se 10 minutos de custo

computacional, totalizando em torno de 2h e 40 minutos de tempo. Os resultados

sao apresentados mais adiante.

Tabela 4-5 Hiperparametros da KAN.

Roda | Tamanho da Regularizagao de Regularizagao da Regularizagdo | Ordem do
da camada ativagao entropia ridge spline
1 32 0.3 0.3 0.5 3

2 32 0.3 0.3 0.7 3

3 32 0.3 0.5 0.5 3

4 32 0.3 0.5 0.7 3

5 32 0.5 0.3 0.5 3

6 32 0.5 0.3 0.7 3

7 32 0.5 0.5 0.5 3

8 32 0.5 0.5 0.7 3

9 64 0.3 0.3 0.5 3

10 64 0.3 0.3 0.7 3
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11 64 0.3 0.5 0.5 3
12 64 0.3 0.5 0.7 3
13 64 0.5 0.3 0.5 3
14 64 0.5 0.3 0.7 3
15 64 0.5 0.5 0.5 3
16 64 0.5 0.5 0.7 3

Apos o ajuste de hiperparametros o modelo AE-KAN é testado com a turbina KO2 do
parque eolico Kelmarsh. Uma vez que o autoencoder esta treinado, o custo
computacional para teste é de algo em torno de 3 minutos. Para a KAN, temos o

tempo de 2 minutos. Os resultados do treino e teste sdo apresentados no capitulo 5.

4.3.2.4 Autoencoder variacional com KAN (VAE-KAN)

Para avaliar possiveis melhorias nos resultados (mais especificamente na
identificacdo da classe 2, como é discutido mais adiante), um autoencoder
variacional (VAE) é testado no pré-processamento em substituicdo ao autoencoder
padrao. A principal diferenca do VAE € que a saida da camada latente ndo apenas
representa uma codificacdo comprimida dos dados, mas também incorpora uma
distribuicdo probabilistica, permitindo maior flexibilidade na modelagem das
variagdes dentro dos dados. Nesse contexto, a saida da camada latente € utilizada
como informacao adicional. O objetivo é avaliar se os resultados s&o aprimorados
quanto a separabilidade das classes e potencial reducdo de falsos positivos na
classe 2. O modelo é denominado VAE-KAN.

Em relacdo aos hiperparametros utilizados, alguns s&o iguais aos ja listados
no autoencoder padrdao, como o input_dim, arquitetura do codificador e decodificador
e a fungao de perda. Além destes, tem-se:

1. Tamanho das camadas ocultas (hidden _dim): quantidade de neurénios

das camadas ocultas;

2. Tamanho do espago latente (latent dim): numero de variaveis

compactadas no espaco latente;

3. Parametros da distribuicao latente (fc_mu e fc_logvar): camadas que

aprendem média e logaritmo da variancia da distribuigao latente;

4. Reparametrizagdo: garante que a distribuigdo latente seja amostrada de

forma continua;
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5. Funcgao de perda com o KL divergence: regularizagdo do espacgo latente,

forcando-o a se aproximar de uma distribuicdo normal padrao.

Para otimizacdo dos hiperparametros, assim como realizado nos outros
casos, diferentes valores sao testados com o objetivo de obter a configuragao 6tima.
Os valores utilizados sao apresentados na Tabela 4-6, totalizando 16 combinagdes.
Assim como no caso do autoencoder classico, o tempo para cada rodada de treino &

em torno de 15 minutos, o que totaliza 4 horas.

Tabela 4-6 Hiperparametros do autoencoder variacional.

Tamanho do espago latente Epocas |Tamanho das camadas ocultas Otimizador
3 20 8 Adam
4 30 16 RMSProp

Assim como no caso do autoencoder classico, apds ajuste e treino com os dados da
turbina K01, o teste é feito com os dados da turbina KO2. De forma analoga, a saida
do autoencoder variacional € usada como entrada para a KAN, que € treinada
novamente. Os hiperparametros sao ajustados conforme apresentado na Tabela 4-5
e o custo computacional € o mesmo. De forma analoga, executa-se o teste para a
turbina K02. O tempo do teste é virtualmente o mesmo do caso AE-KAN.

De modo a resumir, a Tabela 4-7 e a Tabela 4-8 apresentam os dados de
entrada utilizados nos modelos AE-KAN e VAE-KAN para treino e teste de uma
turbina arbitraria. No presente trabalho correspondem as turbinas K01 e K02 do
parque eodlico Kelmarsh. Vale ressaltar que as variaveis utilizadas compreendem a
poténcia, velocidade do vento, velocidade do rotor e posicédo da nacele e que o
SMOTE é apenas utilizado do conjunto de dados de treino. O treino e teste sao

conduzidos em turbinas distintas.

Tabela 4-7 Dados de entrada do modelo AE-KAN.

Treino — turbina arbitraria 01

Teste — turbina arbitraria 02

Variaveis originais

Variaveis originais

Variaveis reconstruidas

Variaveis reconstruidas

Erro de reconstrucdo

Erro de reconstrucao

Tabela 4-8 Dados de entrada do modelo VAE-KAN

Treino — turbina arbitraria 01

Teste — turbina arbitraria 02

Variaveis originais

Variaveis originais

Variaveis reconstruidas

Variaveis reconstruidas

Saida da camada latente

Saida da camada latente

Erro de reconstrucdo

Erro de reconstrucao
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Com base nos experimentos definidos na metodologia, espera-se que a
abordagem com DBSCAN, utilizada como ponto de partida, permita uma
identificacdo inicial de outliers com base na densidade dos dados. A seguir, a
introducéo de janelas deslizantes e variaveis estatisticas visa incorporar a dimensé&o
temporal e melhorar a deteccdo de padroes andmalos persistentes, especialmente
associados a indisponibilidade e ao subdesempenho. Na sequéncia, os modelos
baseados em autoencoders, AE-KAN e VAE-KAN, sdo esperados apresentar
desempenho superior, com maior capacidade de representar a estrutura dos dados
normais e identificar desvios com maior precisao. Por fim, espera-se que os modelos
generalizem adequadamente entre turbinas distintas, mantendo coeréncia nos

resultados e boa correspondéncia com a rotulagdo manual feita pelo especialista.
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5 RESULTADOS
5.1 LIMPEZA DA CURVA DE POTENCIA PELO ESPECIALISTA

A limpeza das curvas de poténcia foi realizada por um software interno da
companhia de certificagdo e classificacdo DNV, amplamente validado e utilizado
globalmente. Este programa permite a visualizagdo de qualquer sinal na resolugao
temporal desejada, além da marcagdo manual de pontos especificos. Além dos
sinais principais de velocidade do vento e poténcia, sinais auxiliares de angulo de
pitch, velocidade do rotor e angulo da nacele foram utilizados. Importante mencionar
que a classe 0 denota pontos normais, classe 1, indisponibilidade e classe 2,
subdesempenho.

A Figura 5-1 e a Figura 5-2 apresentam, respectivamente, as marcagdes de

pontos das turbinas utilizadas para treino e teste.

Figura 5-1 Curva de poténcia da turbina K01 do parque Kelmarsh manualmente limpa.

Curva de poténcia — turbina KO1 — Parque edlico Kelmarsh
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Fonte: a Autora (2024).
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Figura 5-2 Curva de poténcia da turbina K02 do parque Kelmarsh manualmente limpa.

Curva de poténcia — turbina K02 — Parque edlico Kelmarsh
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Fonte: a Autora (2024).

5.2 DBSCAN

Para deteccdo automatica de outliers, o primeiro algoritmo utilizado foi a
clusterizacdo com o DBSCAN. A metodologia empregada é a descrita na segao
4.3.2.1. Os resultados sado apresentados variando-se a quantidade de vizinhos mais
proximos K e o valor de Min_samples. Para avaliacdo dos resultados considerou-se
a classe 0 como pontos normais e a 1 como andbmalos. As Figuras a seguir
apresentam os resultados encontrados. Para interpretacdo dos resultados,
considera-se que o cluster 0 denota os pontos normais e os demais clusters,
usualmente fora da curva de poténcia, por simplificagdo, foram considerados como
dados da classe 1. As métricas de precisdo, recall e F1-score foram calculadas

baseadas nesta consideragéo.




Figura 5-3 Resultados do DBSCAN com K =7
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Figura 5-4 Resultados com o DBSCAN utilizando K = 9.
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Figura 5-5 Resultados com o DBSCAN para K = 11.
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As imagens apresentadas demonstram o desempenho do algoritmo DBSCAN
na classificacdo dos dados. Observa-se que o0 mesmo teve um excelente
desempenho na identificacdo da classe 0, com métricas de precisao, recall e F1-
score praticamente iguais a 1. Além disso, na detecgdo de dados andbmalos, os
resultados foram satisfatérios em alguns casos, considerando o total de verdadeiros
positivos, com recall chegando a 0,81.

No entanto, nota-se que o algoritmo enfrentou dificuldades na subdivisao dos
outliers, ndao conseguindo distinguir de forma clara entre indisponibilidade e
subdesempenho. Esse comportamento indica que a divisdo dessas categorias
poderia exigir ajustes nos parametros do DBSCAN ou a combinagdo com outras

abordagens para melhorar a diferenciagao.

5.3 DBSCAN COM PARAMETROS ESTATISTICOS E JANELA DESLIZANTE

Com o objetivo de aprimorar a metodologia baseada no DBSCAN, foi utilizado
um algoritmo que incorpora parametros estatisticos como dados de entrada. Além
disso, implementou-se uma abordagem com janela deslizante, permitindo capturar a
dependéncia temporal dos dados anédmalos. O objetivo da adaptagao € melhorar a
identificacdo de padrbes e a divisdo dos outliers em indisponibilidade e

subdesempenho.
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Conforme mencionado na sec¢do 4.3.2.2, foi adotado um comprimento de
janela de 6 horas com um passo de 2 horas, com o objetivo de se obter uma curva
de poténcia préxima da real a partir dos valores médios. Para cada janela temporal,
parametros estatisticos sdo extraidos a partir do tsfresh. A Figura 5-6 apresenta a
curva de poténcia original versus a curva de poténcia média, construida a partir dos
valores médios obtidos pelo tsfresh. Cada ponto no grafico a direita representa um

intervalo de 6 horas.

Figura 5-6 A esquerda, a curva de poténcia original da turbina K01. A direita, a curva de

poténcia com pontos médios, advindos do tsfresh.
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E importante mencionar que para o DBSCAN s3o utilizados, além da média,
parametros estatisticos que também servem de auxilio na deteccdo de anomalias.
Entdo, mesmo que algum ponto tenha sido suavizado pela média, o desvio padréo,
por exemplo, pode ajudar na identificagdo de pontos discrepantes. A amplitude, que
€ a diferenca entre o maior e o menor valor dentro da janela, também pode ajudar na
identificacdo de picos que aparegcam, mesmo que na média o valor tenha sido
diluido.

Os parametros estatisticos calculados pelo tsfresh sdo testados no intuito de
se avaliar o desempenho do DBSCAN. Os testes podem ser divididos em trés
grupos:

1. Grupo 1: apenas valores de média e de desvio padrao;

Grupo 2: média, desvio padrao e parametros da correlagao linear;
3. Grupo 3: média, desvio padrao, parametros da correlagao linear, minimo,
maximo e posigdes de minimo e maximo.
O valor de Epsilon é de metade do valor do joelho calculado, assim como para o

primeiro caso do DBSCAN e o Min_samples ¢é igual a 100, visto que este foi o valor
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que apresentou o melhor desempenho para o DBSCAN. Os resultados para cada

um dos testes sao apresentados na Figura 5-7, Figura 5-8 e Figura 5-9.

Figura 5-7 Agrupamento em clusters utilizando DBSCAN com parametros estatisticos
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Figura 5-8 Agrupamento em clusters utilizando DBSCAN com parametros estatisticos
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Figura 5-9 Agrupamento em clusters utilizando DBSCAN com parametros estatisticos

em janela deslizante para o Grupo 3.
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Pelas Figuras apresentadas, pode-se observar que mais uma vez o algoritmo
foi bem sucedido na deteccdo da indisponibilidade total e em pontos esparsos
abaixo da curva. Porém, novamente, ndo foi capaz de separar pontos de
indisponibilidade e de subdesempenho. A Tabela 5-1, Tabela 5-2, Tabela 5-3
apresentam os resultados de precisdo, recall e F1-score, considerando cluster O
como pontos normais e diferente de 0 como pontos anémalos para estimativa de

métricas de preciséo, recall e F1-score para cada grupo de variaveis.

Tabela 5-1 Resultados do DBSCAN com parametros estatisticos e janela deslizante

para o grupo 1.

Precisao Recall F1-score
Classe 0 1,00 0,99 0,99
Classe 1 0,50 0,79 0,62

Tabela 5-2 Resultados do DBSCAN com parametros estatisticos e janela deslizante

para o grupo 2.

Precisao Recall F1-score

Classe 0 1,00 0,99 0,99

Classe 1 0,51 0,80 0,62
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Tabela 5-3 Resultados do DBSCAN com parametros estatisticos e janela deslizante

para o grupo 3.

Precisao Recall F1-score
Classe 0 0,99 0,94 0,97
Classe 1 0,17 0,86 0,28

Assim como nos primeiros testes com o DBSCAN, o algoritmo apresenta um
bom desempenho na identificagdo da classe majoritaria. No entanto, para os dados
an6malos, os grupos 1 e 2 sdo melhores, ambos com um F7-score de 0,62,
enquanto o grupo 3 tem um desempenho inferior, com um F171-score de apenas 0,28.
Embora o grupo 3 apresente um recall mais alto, identificando uma maior quantidade
de pontos anémalos, sua precisdo € muito baixa. Isso indica que muitos falsos
positivos (ou seja, falhas detectadas erroneamente) foram classificados, o que
impactou negativamente o F7-score. E assim, como acontece no DBSCAN classico,

o DBSCAN com janela deslizante também falha na diferenciagao entre as classes.

5.4 AUTOENCODER CLASSICO COM KAN (AE-KAN)

Conforme descrito na secgéo 4.3.2.3, a terceira metodologia a ser testada € o
autoencoder combinado com KAN (AE-KAN). A Tabela 5-4 apresenta os parametros
utilizados em cada rodada de treino do autoencoder para o ajuste de

hiperparametros e o respectivo erro de reconstrugao.

Tabela 5-4 Parametros para ajustes de hiperparametros do autoencoder.

Rodada Numero de Dimenséao Otimizador Nﬂmero de Erro de )
camadas latente epocas reconstrugao
1 3+3 3 Adam 100 0,19
2 3+3 4 Adam 100 0,21
3 3+3 3 Adam 500 0,12
4 3+3 4 Adam 500 0,07
5 3+3 3 RMSProp 100 0,15
6 3+3 4 RMSProp 100 0,08
7 3+3 3 RMSProp 500 0,09
8 3+3 4 RMSProp 500 0,03
9 3+3 3 Adamw 100 0,19
10 3+3 4 AdamW 100 0,21
11 3+3 3 AdamWw 500 0,12
12 3+3 4 AdamW 500 0,07
13 4+4 3 Adam 100 0,18
14 4+4 4 Adam 100 0,10




119

15 4+4 3 Adam 500 0,06
16 4+4 4 Adam 500 0,05
17 4+4 3 RMSProp 100 0,09
18 4+4 4 RMSProp 100 0,06
19 4+4 3 RMSProp 500 0,03
20 4+4 4 RMSProp 500 0,03
21 4+4 3 AdamW 100 0,18
22 4+4 4 AdamW 100 0,10
23 4+4 3 AdamW 500 0,06
24 4+4 4 AdamW 500 0,05

A curva de poténcia com os dados originais e reconstruidos de cada rodada é

apresentada no Apéndice A. Observa-se que as rodadas 08, 19 e 20 sdo as que

apresentam menor erro de reconstrucdo. Avaliando também a curva de poténcia, o

treino de numero 20 apresentou o melhor desempenho e, portanto, seus resultados

sao usados como dados de entrada para a KAN. Sao usados tanto os dados da

turbina K01, para treino da KAN, quanto os dados da turbina K02, para teste da

KAN.

Na rede Kolmogorov-Arnold, os hiperparametros s&o ajustados e as métricas

de classificagdo — acuracia global, AUC ROC, precisao, recall e F1-score - séao

calculadas a fim de se comparar o desempenho de cada um dos treinos. Os

resultados sdo apresentados na Tabela 5-5, em que P denota precisao, R, recall e

F1, o F1-score, seguidos de um hifen e da respectiva classe.

Tabela 5-5 Acuracia, AUC-ROC, precisao, recall, F1-score para cada uma das classes

durante o ajuste de hiperparametros da KAN.

Rodada | Acuracia | AUC ROC | P-0 P-1 P-2 R-0 R-1 R-2 F1-0 |F1-1 |F1-2
1 1,00 0,83 1,00 |0,83 |0,09 (098 |099 |0,74 (0,99 |0,90 |0,16
2 1,00 0,84 1,00 |0,85 (0,45 (0,99 |098 (0,84 (0,99 (091 |0,25
3 1,00 0,85 1,00 |0,84 (0,13 (0,99 |099 |087 (0,99 (091 |0,23
4 1,00 0,85 1,00 |0,83 |0,09 (098 |098 (081 (0,99 (090 |0,17
5 1,00 0,84 1,00 |0,82 |0,05 (0,97 |099 |065 (0,99 (0,89 |0,09
6 1,00 0,85 1,00 |0,83 (0,14 (0,99 |099 |0,79 (0,99 |0,90 0,23
7 1,00 0,83 1,00 (0,85 |0,06 (097 |099 (0,69 (0,99 (091 |0,11
8 1,00 0,84 1,00 |0,82 (0,16 (0,99 |0,99 |080 (0,99 (0,89 |0,26
9 1,00 0,85 1,00 (0,84 |0,12 (0,99 |0,99 |(0,75 |0,99 (0,90 |0,20
10 1,00 0,86 1,00 |0,83 (0,26 (0,99 |0,99 |085 (1,00 (0,90 |0,40
11 1,00 0,85 1,00 (0,84 |0,13 (0,99 |098 |0,78 |0,99 (0,91 |0,22
12 1,00 0,86 1,00 |0,84 |0,07 (098 |099 |064 (0,99 |091 |0,12
13 1,00 0,85 1,00 |0,83 |0,20 (0,99 |0,99 |080 (1,00 |09 |0,31
14 1,00 0,85 1,00 (0,85 |0,06 (098 |099 (0,65 (0,99 (091 |0,11
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15 1,00 0,87 1,00 |0,84 (0,13 (0,99 |099 |0,76 |0,99 (0,90 0,23

16 1,00 0,85 1,00 (0,81 |0,07 |098 |099 |067 |0,99 |089 (0,13

Observa-se que, para a classe 0, os resultados sao excelentes, com métricas
proximas de 1. Para a classe 1, o desempenho também ¢é satisfatério, com o F71-
score atingindo 0,91. No caso da classe 2, ha uma baixa precisdo e um recall
razoavel, indicando que, apesar do alto numero de falsos positivos, 0 modelo ainda
consegue identificar boa parte dos verdadeiros positivos. Na identificagcdo de
anomalias, € preferivel um maior numero de falsos positivos do que de falsos
negativos, garantindo que menos falhas reais passem despercebidas.

O critério para a selegao dos hiperparametros foi o valor do recall para a
classe 2, uma vez que os resultados para as classes 0 e 1 sdo muito semelhantes.
Com base nisso, os hiperparametros da rodada 3 sao escolhidos para teste. O
modelo é testado em outras turbinas do parque, a K02, KO3 e K04. A Tabela 5-6,

Tabela 5-7 e Tabela 5-8 apresentam os resultados dos testes.

Tabela 5-6 Acuracia, AUC ROC, precisao, recall e F1-score do teste com a turbina K02 —
modelo AE-KAN.

... | AUC
Acuracia ROC P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2

0,98 1,00 1,00 0,85 0,09 0,98 0,99 0,69 0,99 0,91 0,17

Tabela 5-7 Acuracia, AUC ROC, precisao, recall e F1-score do teste com a turbina K03 —
modelo AE-KAN.

Acurécia gg% PO |P1 |P2 |RO |R1 |R2 |F10 |F1-1 |F12
0.97 100 100 |088 006 097 1099 |100 [099 |093 |011

Tabela 5-8 Acuracia, AUC ROC, precisao, recall e F1-score do teste com a turbina K04 —
modelo AE-KAN.

Acuracia gl(J)CC:; P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2
0,97 1,00 1,00 0,88 0,07 0,97 1,00 0,97 0,98 0,94 0,12

Durante o processo de treinamento, o modelo apresentou um desempenho
consistente na distingéo entre as classes 0 e 1, resultado que também se confirmou
na etapa de teste. O AE-KAN teve capacidade razoavel de reconhecer corretamente

instancias da classe 2, com recall chegando a 1,00 para a turbina KO3. Contudo, sua
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maior fragilidade esta relacionada a baixa precisdo nessa classe, ja que uma
quantidade consideravel de dados normais foi equivocadamente rotulada como
pertencente a classe 2. Isto é apresentado na matriz de confusado, para cada uma

das turbinas, ilustradas na Figura 5-10, Figura 5-11 e Figura 5-12.

Figura 5-10 Matriz de confusdo do modelo AE-KAN testado na turbina K02.
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Figura 5-11 Matriz de confusdo do modelo AE-KAN testado na turbina K03.
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Figura 5-12 Matriz de confusdo do modelo AE-KAN testado na turbina K04.
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A Figura 5-13, Figura 5-14, Figura 5-15 apresentam os graficos da area sob a

curva ROC para as trés classes, para as turbinas K02, KO3 e K04, respectivamente.

Figura 5-13 Area sob a curva ROC, para cada classe - modelo AE-KAN testado na

turbina K02.
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Figura 5-14 Area sob a curva ROC, para cada classe - modelo AE-KAN testado na
turbina K03.
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Figura 5-15 Area sob a curva ROC, para cada classe - modelo AE-KAN testado na
turbina K04.
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A area sob a curva ROC indica que o modelo teve um desempenho
excepcional na segmentacdo entre as classes 0, 1 e 2, mostrando a eficacia do
modelo testado.

A Figura 5-16, Figura 5-25, Figura 5-28 mostram a curva de poténcia limpa,
ou seja, com a classificagdo em pontos normais, indisponibilidade e subdesempenho

para as turbinas K02, KO3 a K04, respectivamente.



Poténcia normalizada

Figura 5-16 Curva de poténcia limpa, com pontos classificados em normais,

indisponiveis e subdesempenho para a turbina K02 - modelo AE-KAN.
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Figura 5-17 Curva de poténcia limpa, com pontos classificados em normais,

indisponiveis e subdesempenho para a turbina K03 - modelo AE-KAN.
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Figura 5-18 Curva de poténcia limpa, com pontos classificados em normais,
indisponiveis e subdesempenho para a turbina K04 - modelo AE-KAN.
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Apesar dos resultados do autoencoder padrao combinados com a rede KAN
terem sido satisfatérios, uma nova metodologia é testada, no intuito de melhorar o
desempenho da identificacdo da classe 2. Por este motivo, um autoencoder
variacional é utilizado no lugar do autoencoder padréo e novos testes sdo feitos. Os

resultados s&o apresentados a seguir.

5.5 AUTOENCODER VARIACIONAL COM KAN (VAE-KAN)

Conforme descrito na sec¢ao 4.3.2.4, um autoencoder variacional é testado.
Combina-se o autoencoder variacional (VAE) com a KAN. A Tabela 5-9 apresenta os
valores utilizados no ajuste de hiperparametros do autoencoder e o respectivo erro

de reconstrucao de cada rodada.

Tabela 5-9 Hiperparametros do autoencoder variacional e o erro de reconstrugao.

Rodada I'I;?(rar:]?gho do espago Epocas '(I)':Lrj’?tzr;ho das camadas Otimizador Fer(r:g:;rugéo
1 3 20 8 Adam 0,109
2 3 20 8 RMSProp 0,108
3 3 20 16 Adam 0,109
4 3 20 16 RMSProp 0,111
5 3 30 8 Adam 0,111
6 3 30 8 RMSProp 0,164
7 3 30 16 Adam 0,106
8 3 30 16 RMSProp 0,107
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9 4 20 8 Adam 0,106
10 4 20 8 RMSProp 0,165
11 4 20 16 Adam 0,109
12 4 20 16 RMSProp 0,107
13 4 30 8 Adam 0,106
14 4 30 8 RMSProp 0,108
15 4 30 16 Adam 0,165
16 4 30 16 RMSProp 0,111

Como os valores dos erros estdo ainda mais préximos do que para o

autoencoder classico, optou-se por reportar trés casas decimais neste caso, para

que as rodadas pudessem ser mais bem discernidas. As curvas de poténcia com os

pontos originais e reconstruidos sdo mostradas no Apéndice B. A rodada de numero

13 foi a que apresentou o menor erro de reconstrucao, sendo, portanto, escolhida

como dado de entrada para a KAN.

De forma similar, gera-se os resultados do ajuste de hiperparametros da KAN

com o autoencoder variacional. Os mesmos parametros utilizados anteriormente, em

cada rodada, conforme mostrado na Tabela 4-5, se mantém. Para avaliacdo, as

métricas de acuracia global, AUC ROC, precisao, recall e f1-score sao calculadas.

Os resultados sao apresentados na Tabela 5-10.

durante o ajuste de hiperpardmetros do modelo VAE-KAN.

Tabela 5-10 Acuracia, AUC-ROC, precisao, recall, F1-score para cada uma das classes

Rodada |Acuracia |AUC ROC |P-0 P-1 P-2 R-0 |R-1 R-2 |F1-0 |F1-1 |F1-2
1 0,99 1,00 1,00 (0,87 |0,04 |095 |098 |0,94 098 |0,92 |0,08
2 0,98 1,00 1,00 |0,86 |0,04 |095 |098 |094 |098 |092 (0,08
3 0,99 1,00 1,00 (0,86 |0,07 |097 |098 |0,97 |099 |0,92 |0,13
4 0,99 1,00 1,00 (0,86 |0,05 |09 |098 |0,96 |098 |0,92 |0,10
5 0,99 1,00 1,00 |0,87 |0,04 |095 |098 |094 |098 |092 (0,08
6 0,97 0,99 1,00 (0,86 |0,06 |097 |098 |09 [0,98 |0,92 |0,11
7 0,98 0,99 1,00 (0,87 |0,04 |095 |0,98 |0,95 |098 |0,92 |0,08
8 0,98 1,00 1,00 (0,86 |0,07 |097 |098 |097 |099 |091 |0,14
9 0,98 1,00 1,00 (0,86 |0,07 |097 |098 |095 |099 (092 |0,12
10 0,99 1,00 1,00 |0,86 |0,07 |097 (0,98 (097 |0,99 |0,92 (0,13
11 0,99 1,00 1,00 (0,85 |0,08 |0,97 |098 |09 [099 |091 |0,14
12 0,99 1,00 1,00 (0,87 |0,05 |09 |0,98 |0,95 |098 |0,92 |0,09
13 0,98 1,00 1,00 (0,87 |0,09 |098 |098 |0,97 |099 |0,92 |0,17
14 0,98 1,00 1,00 |0,86 |0,12 (0,98 |0,98 (097 |099 (0,92 |0,21
15 0,99 1,00 1,00 |0,85 |0,12 (0,98 (0,98 (097 |0,99 (0,91 |0,21
16 0,99 1,00 1,00 (0,86 |0,06 |097 |098 |095 [0,98 |091 |0,11
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Tanto o modelo AE-KAN quanto o VAE-KAN demonstraram sucesso na
diferenciagao entre pontos normais, indisponibilidade e subdesempenho, superando
0s modelos de agrupamento de dados testados. Comparativamente, o VAE-KAN
apresentou R-2 mais alto para a turbina K02, enquanto o AE-KAN obteve maior
acuracia e P-2. As métricas para as classes 0 e 1 foram, de modo geral,
semelhantes entre os dois modelos.

Embora a classe 2 apresente baixa precisdo e, consequentemente, um F7-
score reduzido, o VAE-KAN se destaca pelo maior recall nessa classe. Esse fator o
torna mais eficiente na identificagdo de verdadeiros positivos da classe 2,
caracterizando-o como o modelo de melhor desempenho nesse critério.

Para teste, utiliza-se o0 modelo com os hiperparametros otimizados com uma
segunda turbina. Aplica-se, pois, 0 modelo treinado nas turbinas K02, KO3 e K04. A

Tabela 5-11, Tabela 5-12 e Tabela 5-15 apresentam os resultados dos testes.

Tabela 5-11 Acuracia, AUC ROC, precisao, recall e F1-score do teste com a turbina K02
— modelo VAE-KAN.

Acurécia ég% PO | P-1 P2 |RO |R- R2 |F1-0 |F1-1 |F12
0.96 099 |100 |087 |005 |096 |098 |095 |098 [092 |0410

Tabela 5-12 Acuracia, AUC ROC, precisao, recall e F1-score do teste com a turbina K03
— modelo VAE-KAN.

Acurécia ’Qlé% PO | P-1 P2 |RO |R- R2 |F1-0 |F1-1 |F1=2
0.92 099 |1.00 |086 002 |092 |099 |092 |096 |092 |003

Tabela 5-13 Acuracia, AUC ROC, precisao, recall e F1-score do teste com a turbina K04
— modelo VAE-KAN.

Acuracia gl(J)CC:; P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2
0,91 0,99 1,00 0,87 0,02 0,91 0,99 0,91 0,95 0,93 0,04

Conforme observado durante o treinamento, o modelo demonstrou excelente
desempenho na identificagdo das classes 0 e 1, comportamento que se manteve no
teste. Além disso, o VAE-KAN mostrou-se eficaz na identificagdo de verdadeiros
positivos da classe 2. No entanto, sua principal limitacdo esta na precisdo dessa

classe, uma vez que classifica erroneamente muitos pontos da classe normal como
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pertencentes a classe 2. Esse comportamento pode ser visualizado na Figura 5-19,
Figura 5-20 e Figura 5-21, que apresentam as matrizes de confusao das turbinas
K02, KO3 e K04, respectivamente.

Figura 5-19 Matriz de confusdo do modelo VAE-KAN testado na turbina K02.
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Figura 5-20 Matriz de confusdo do modelo VAE-KAN testado na turbina K03.
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Figura 5-21 Matriz de confusdo do modelo VAE-KAN testado na turbina K04.
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A Figura 5-22, Figura 5-23 e Figura 5-24 apresentam o grafico da area sob a

curva ROC para as trés classes, em cada turbina testada.

Figura 5-22 Area sob a curva ROC, para cada classe - modelo VAE-KAN testado na

turbina K02.
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Figura 5-23 Area sob a curva ROC, para cada classe - modelo VAE-KAN testado na
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Figura 5-24 Area sob a curva ROC, para cada classe - modelo VAE-KAN testado na

Taxa de verdadeiros positivos

turbina K04.
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A area sob a curva ROC apresentada, para cada turbina, indica que o modelo

teve um excelente desempenho na separacao das classes, com valores de AUC

proximos a 1, reforcando sua eficacia na identificacdo dos verdadeiros positivos.
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A Figura 5-25, Figura 5-26 e Figura 5-27 mostram a curva de poténcia com a

classificagdo em pontos normais, indisponibilidade e subdesempenho para as

turbinas K02, KO3 e K04, respectivamente.

Figura 5-25 Curva de poténcia normalizada com as respectivas classificagoes em

pontos normais, indisponibilidade e subdesempenho para a turbina K02 — modelo VAE-KAN.
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Figura 5-26 Curva de poténcia normalizada com as respectivas classificagoes em

pontos normais, indisponibilidade e subdesempenho para a turbina K03 — modelo VAE-KAN.
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Figura 5-27 Curva de poténcia normalizada com as respectivas classificagoes em

pontos normais, indisponibilidade e subdesempenho para a turbina K04 — modelo VAE-KAN.
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A Figura 5-28 apresenta a limpeza da curva realizada por cada um dos

métodos desenvolvidos, em comparagao com a referéncia obtida a partir da limpeza

feita pelo especialista.

Figura 5-28 Classificagdo de pontos nas curvas de poténcia, pelo AE-KAN, VAE-KAN e

especialista da turbina K02.
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Figura 5-29 Classificagdo de pontos nas curvas de poténcia, pelo AE-KAN, VAE-KAN e

especialista da turbina K03.
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Figura 5-30 Classificagdo de pontos nas curvas de poténcia, pelo AE-KAN, VAE-KAN e

especialista da turbina K04.
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O desempenho dos modelos na deteccao de indisponibilidade (classe 1) foi
bastante semelhante, apresentando resultados satisfatorios. No entanto, conforme
pode ser observado nas Figuras, o modelo VAE-KAN gerou uma quantidade
significativa de falsos positivos, especialmente na regido proxima a poténcia
nominal, em todas as turbinas, e na base da curva das turbinas KO3 e KO4. Para sua
aplicagao pratica, seria necessario incorporar uma etapa de pds-processamento,
que limite automaticamente a marcacado de pontos de subdesempenho nessas

faixas, minimizando assim os impactos desses falsos positivos.

5.6 COMPARACAO COM OUTROS ALGORITMOS DE APRENDIZADO DE
MAQUINA

Com o objetivo de avaliar a robustez do modelo desenvolvido neste trabalho e
compara-lo a outras abordagens ja consolidadas na area de aprendizado de
maquina, utilizou-se a biblioteca PyCaret, do Python, para a comparacao entre os
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diferentes algoritmos. Os dados de entrada utilizados na analise correspondem aos
utilizados pelos modelos AE-KAN e VAE-KAN, conforme apresentados na Tabela

4-7 e na Tabela 4-8, respectivamente.

5.6.1. Modelo AE-KAN
A Tabela 5-14 apresenta as métricas de classificagdo de cada um dos

modelos alternativos testados.

Tabela 5-14 Métricas para os modelos de classificagao testados.

Acuracia Precisao F1-score
Modelo global AUC ROC Recall global global
Random
Forest 1,00 1,00 1,00 1,00 1,00
XGBoost 1,00 1,00 1,00 1,00 1,00
Extra trees 1,00 1,00 1,00 1,00 1,00
Arvore de
decisdo 1,00 0,98 1,00 1,00 1,00
KNN 1,00 0,99 1,00 1,00 1,00
Gradient
Boosting 1,00 0,00 1,00 1,00 1,00
SVM 1,00 0,00 1,00 0,99 1,00
Regresséao
logistica 1,00 0,00 1,00 0,99 1,00
Ridge
Classifier 1,00 0,00 1,00 0,99 0,99
Analise
discriminante 0,99 0,00 0,99 1,00 1,00
Light Gradient
Boosting
Machine 0,99 0,93 0,99 1,00 1,00
Classificador
de referéncia 0,99 0,50 0,99 0,97 0,98
Classificador
Ada Boost 0,94 0,00 0,94 0,99 0,97
Analise
discriminante
quadratica 0,89 0,00 0,89 1,00 0,94
Naive Bayes 0,82 0,96 0,82 0,99 0,90

Uma parte dos modelos apresentou bom desempenho geral. Para uma
avaliacao mais detalhada da capacidade de separacado entre as classes, foram
selecionados os modelos Random Forest, XGBoost, Extra Trees, Arvore de Decisdo
e KNN, visando uma analise mais aprofundada. Os resultados de precisao, acuracia
e F1-score, por classe, sdo apresentados na Tabela 5-15. Na ultima linha foram
acrescentados os resultados do modelo AE-KAN para fins de comparagéo.
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Tabela 5-15 Precisao, recall e F1-score, por classe, para cada modelo alternativo

testado.

Modelo PO | P P-2 R-0 R-1 R-2 F1-0 | F1-1 F1-2
Egr”eds‘t’m 1,00 | 0,99 0,94 1,00 0,97 0,34 1,00 0,98 0,49
XGBoost 1,00 | 1,00 0,96 1,00 0,83 | 0,36 1,00 0,91 0,52
Extra trees 1,00 | 0,08 0,94 1,00 0,97 | 0,34 1,00 0,98 0,50
Arvore de 1,00 | 0,08 0,91 1,00 097 |0,38 1,00 0,98 0,53
decisao

KNN 1,00 | 0,08 0,90 1,00 0,96 | 0,34 1,00 0,97 0,49
AE-KAN 1,00 | 0,85 | 0,09 0,98 0,99 | 0,69 0,99 0,91 0,17

Em termos de precisdo e F1-score, os modelos de classificacdo alternativos

testados apresentaram desempenho superior ao AE-KAN. No entanto, o AE-KAN

destacou-se na identificacdo de verdadeiros positivos das classes 1 e 2, o que é

relevante, por aumentar a sensibilidade do modelo na deteccdo de anomalias.

5.6.2. Modelo VAE-KAN

A Tabela 5-16 mostra os resultados das métricas de classificagdo dos

modelos avaliados para fins de comparagao com o VAE-KAN.

Tabela 5-16 Métricas para os modelos de classificagao testados.

Acuracia Precisao F1-score
Modelo global AUC ROC Recall global global
XGBoost 1,00 1,00 1,00 1,00 1,00
Arvore de
decisao 1,00 0,98 1,00 1,00 1,00
Random
Forest 1,00 1,00 1,00 1,00 1,00
Gradient
Boosting 1,00 0,00 1,00 1,00 1,00
Extra Trees 1,00 1,00 1,00 1,00 1,00
SVM 1,00 0,00 1,00 0,99 1,00
Regresséo
logistica 1,00 0,00 1,00 0,99 1,00
Ridge
Classifier 1,00 0,00 1,00 0,99 0,99
KNN 0,99 0,88 0,99 0,99 0,99
Dummy
Classifier 0,99 0,50 0,99 0,97 0,98
Analise
discriminante 0,98 0,00 0,98 0,99 0,99
Light Gradient
Boosting
Machine 0,98 0,84 0,98 0,99 0,98
Analise
discriminante
quadratica 0,96 0,00 0,96 1,00 0,98
Classificador
Ada Boost 0,89 0,00 0,89 0,99 0,94
Naive Bayes 0,80 0,96 0,80 1,00 0,89
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Assim como no caso do AE-KAN, uma parte dos modelos € bem-sucedida,
com meétricas que chegam a 1 ou muito proximo disso. Para uma analise mais
detalhada, os mesmos cinco modelos sao selecionados e comparados com o VAE-

KAN. Os resultados sdo mostrados na Tabela 5-17.

Tabela 5-17 Precisao, recall e F1-score, por classe, para cada modelo alternativo

testado.

Modelo P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2
XGBoost 1,00 | 0,99 0,93 1,00 0,99 0,71 1,00 0,99 0,80
Arvore de

decisdo 1,00 | 0,98 0,83 1,00 0,98 0,74 1,00 0,98 0,78
Random

Forest 1,00 | 0,99 0,95 1,00 0,97 0,62 1,00 0,98 0,75
Extra trees 1,00 | 0,95 0,96 1,00 0,97 0,38 1,00 0,96 0,54
KNN 1,00 | 0,92 0,00 1,00 0,74 0,00 1,00 0,82 0,00
VAE-KAN 1,00 | 0,87 0,05 0,96 0,98 0,95 0,98 0,92 0,10

Analogo ao que acontece com o AE-KAN, os modelos testados também
possuem melhor performance na precisao e no F1-score, mas desempenho inferior

no recall, especialmente da classe 2.
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6 CONCLUSOES

Este trabalho apresenta uma nova abordagem para a limpeza automatica de
curvas de poténcia de turbinas eodlicas. Foram desenvolvidas e validadas
metodologias hibridas que automatizam a limpeza de curvas de poténcia, que nao
apenas identifica e remove anomalias, mas também diferencia entre tipos distintos
de eventos anémalos, especificamente indisponibilidade e subdesempenho, com
aplicagéo inédita da rede Kolmogorov-Arnold (KAN) nesse contexto.

Ao longo do desenvolvimento, foram testados algoritmos de agrupamento de
dados que, embora eficazes na deteccdo de anomalias, ndo apresentaram um
desempenho satisfatério na separagcao entre as classes. Para aprimorar a
metodologia, propb6s-se a combinagdo de autoencoders com redes neurais
Kolmogorov-Arnold, resultando em uma abordagem mais robusta para a limpeza da
curva de poténcia.

Inicialmente, foi testada a combinacao entre um autoencoder classico e KAN.
O modelo demonstrou excelente desempenho na classificagcdo das classes 0 e 1,
apresentando alta precisdo e recall, além de um desempenho razoavel na
identificacdo dos verdadeiros positivos da classe 2. No entanto, a metodologia
revelou limitagdes na precisdo da classe 2, uma vez que gerou um numero
significativo de falsos positivos.

Com o objetivo de aprimorar a separagéo entre as classes, foi desenvolvido
um método que combina um autoencoder variacional (VAE) com KAN, aproveitando
a saida da camada latente como informacéao adicional. Comparativamente, o modelo
VAE-KAN mostrou-se superior ao AE-KAN na identificagado de verdadeiros positivos
da classe 2. No entanto, a precisdo da classe 2 permaneceu insatisfatéria,
apresentando valores ainda inferiores aos observados no modelo AE-KAN.

Para fins de comparacdo com modelos ja estabelecidos na literatura,
utilizaram-se os mesmos conjuntos de treino e teste para treinar diferentes
classificadores. Os modelos tradicionais apresentaram melhores métricas de F17-
score, indicando maior precisdao, mas foram menos eficazes na identificacdo de
verdadeiros positivos, especialmente da classe 2.

Para os resultados de classificagao, utilizou-se como referéncia, uma limpeza
conduzida por um especialista no setor, utilizando-se de uma ferramenta validada e

usada na industria.
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Pode-se concluir que os algoritmos desenvolvidos apresentaram bom
desempenho, cumprindo o objetivo de automatizar a limpeza de curvas de poténcia.
Sua implementacao pode ser uma alternativa eficiente para reduzir o esforco manual
de engenheiros responsaveis por essa tarefa. Como limitacdo, destaca-se a alta
taxa de falsos positivos, o que torna necessario um pos-processamento. Uma
estratégia simples e automatizavel seria restringir a marcagao de pontos de
subdesempenho a regido proxima da poténcia nominal. Além disso, por se tratar de
um modelo supervisionado, é necessario que ao menos uma turbina seja
previamente limpa manualmente para servir como base de treinamento. ldealmente,
essa turbina deve apresentar a maior diversidade possivel de falhas, permitindo que
o0 modelo aprenda a reconhecer diferentes padrées de anomalia.

Como recomendacdes para trabalhos futuros, recomenda-se a exploracdo de
uma gama mais ampla de hiperparametros durante o treinamento e a exploragéo de
abordagens para preenchimento de lacunas nos dados SCADA, como o uso dos
dados de energia da subestagéo e o calculo da eficiéncia elétrica para estimativa da
poténcia em periodos ausentes. Outra possibilidade € a sintese de dados de
velocidade do vento a partir de dados de reanalise, permitindo reconstituir a curva de
poténcia em cenarios com falhas prolongadas nos sensores de vento. Por fim,
recomenda-se que os treinamentos sejam realizados por faixa (bin) de poténcia,
favorecendo uma segmentagdo mais precisa e adaptada as diferentes regides

operacionais da turbina.
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APENDICE B - RECONSTRUGAO DA CURVA DE POTENCIA COM O
AUTOENCODER VARIACIONAL
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