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RESUMO 

A energia proveniente da fonte eólica tem cada vez mais confirmado a sua 

importância na produção de energia elétrica renovável no Brasil e no mundo. Em 

tempos de transição energética, desastres climáticos e metas cada vez mais 

ambiciosas na redução de emissão de gases de efeito estufa, a eólica tem se 

firmado como uma opção não só viável, como essencial, na produção de energia 

limpa. Uma das formas de se avaliar o desempenho de uma turbina eólica se dá 

através da análise de dados SCADA, essenciais no monitoramento, tanto da 

condição, quanto da performance da turbina, fornecendo informações cruciais aos 

operadores. Também é possível utilizá-los para estimar a curva de potência histórica 

das turbinas de um parque eólico e fazer previsões futuras da produção de energia. 

Para que isso seja possível de ser realizado, a limpeza dos dados é essencial; tanto 

de dados espúrios, quanto para isolar problemas como indisponibilidade e 

problemas de desempenho, como por exemplo no sistema de pitch e de yaw. A 

depender da quantidade de dados a serem avaliados, esta tarefa pode ser exaustiva 

e computacionalmente custosa. Este trabalho apresenta uma nova metodologia para 

a limpeza automática de curvas de potência de turbinas eólicas, utilizando técnicas 

de aprendizado de máquina que ainda são pouco exploradas nesse contexto. A 

pesquisa começou com um algoritmo de agrupamento para identificar anomalias nos 

dados, mas os resultados iniciais mostraram limitações na separação clara entre 

diferentes tipos de falhas. Para superar esse desafio, foram desenvolvidos dois 

novos modelos baseados na combinação de autoencoders com uma rede neural 

inspirada na teoria de Kolmogorov-Arnold, denominados AE-KAN e VAE-KAN. 

Ambos os modelos conseguiram classificar melhor os tipos de falhas e se 

destacaram por detectar com mais sensibilidade os casos mais raros, superando 

outros métodos já consagrados na literatura. Como referência, os dados utilizados 

foram rotulados por um especialista da área, com base em uma ferramenta usada 

na indústria eólica, reforçando o potencial de aplicação prática da metodologia 

proposta. 

. 

 

Palavras-chave: Energia eólica; Dados SCADA; Limpeza de curvas de 

potência; Autoencoders; Rede Kolmogorov-Arnold.  



 
 

 
 

 

 ABSTRACT 

 

Wind energy has increasingly proven its importance in renewable electricity 

generation in Brazil and worldwide. In times of energy transition, climate disasters, 

and increasingly ambitious targets for reducing greenhouse gas emissions, wind 

power has established itself not only as a viable option but as an essential 

component of clean energy production. One of the key methods for assessing the 

performance of a wind turbine is through the analysis of SCADA data, which is 

crucial for monitoring both the turbine's condition and performance, providing 

valuable insights to operators. In addition to evaluating turbine performance, SCADA 

data can also be used to estimate a wind farm’s historical power curve and make 

future energy production forecasts. However, for these analyses to be reliable, 

proper data cleaning is essential—both to remove spurious data and to isolate issues 

such as unavailability, curtailments, and performance problems, including 

malfunctions in the pitch and yaw systems. Depending on the volume of data to be 

analyzed, this task can be both exhaustive and computationally demanding. This 

work proposes a new methodology for the automatic cleaning of wind turbine power 

curves, using machine learning techniques that are still underexplored in this context. 

The research began with a clustering algorithm to identify anomalies in the data, but 

initial results revealed limitations in separating different types of failures. To 

overcome this challenge, two new models were developed, combining autoencoders 

with a neural network inspired by Kolmogorov-Arnold theory — resulting in the AE-

KAN and VAE-KAN approaches. Both models proved effective in distinguishing 

between different failure types and showed superior sensitivity in detecting rare 

cases, outperforming widely used methods in the literature. The dataset was labeled 

by an industry expert using a tool commonly applied in the wind energy sector, 

highlighting the practical applicability of the proposed methodology. 

 

Keywords: Wind energy; SCADA data; Power curve cleaning; Autoencoders; 

Kolmogorov-Arnold Network.  
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1 INTRODUÇÃO 

Um dos principais objetivos da sociedade consiste na produção sustentável e 

de forma segura de energia, uma vez que ela é uma propulsora indispensável ao 

desenvolvimento econômico e social. Ao longo dos anos, o uso extensivo dos 

combustíveis fósseis contribuiu diretamente para o agravamento do aquecimento 

global e o aumento na emissão de gases do efeito estufa e, infelizmente, os mesmos 

ainda têm sido amplamente utilizados e são empregados em vários setores para 

suprir a necessidade de geração de energia. A grande escala de esgotamento da 

energia não renovável ocorreu devido à rápida utilização desses recursos, o que 

também causou efeitos adversos como mudanças climáticas e aquecimento global 

devido à alta emissão de gases de efeito estufa. Esses efeitos podem causar 

problemas inevitáveis, como elevação do nível do mar, derretimento de geleiras, 

destruição de florestas, poluição do ar, diminuição da camada de ozônio, uso de 

água e terra, emissões radioativas, precipitação ácida, perda de vida selvagem e 

danos à ecologia, ameaçando significativamente a humanidade (Bennagi et al., 

2024). 

Diante deste cenário, uma das maiores preocupações atuais está relacionada 

às mudanças climáticas e seus impactos no planeta. A 28ª edição da Conferência 

das Partes (COP-28), ocorrida em novembro de 2023, em Dubai, nos Emirados 

Árabes Unidos, foi um dos maiores eventos já realizados sobre o tema, reunindo 198 

partes (197 países e a União Europeia). A COP-28 foi especificamente marcante, 

pois representou o primeiro chamado “global stockage”: processo que consiste em 

verificar onde os países estão progredindo em relação ao que foi definido no acordo 

de Paris e onde eles não estão. Uma das regras definidas neste acordo foi, por 

exemplo, a limitação do aumento da temperatura média mundial a 1,5°C até 2050, 

em relação aos níveis pré-industriais, e a redução à metade das emissões de gases 

do efeito estufa até 2030 (United Nations Climate Change, 2024). Para que possam 

avançar nesta direção, durante a COP-28, ficou definido que os países devem 

reduzir as emissões de gases do efeito estufa em pelo menos 45% até 2030, em 

relação aos níveis de 2010 (Alba energia, 2023). Apesar de serem metas bastante 

ambiciosas, isto significa um compromisso cada vez maior com a transição 

energética, progressivamente abandonando todo um sistema baseado em 

combustíveis fósseis para outro majoritariamente renovável. 
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O Brasil, que possui participação relativa de 84,4% de fontes renováveis em 

sua matriz energética, conforme apresentado na Figura 1-1 (Infovento, 2024), 

representa uma parte importante na transição energética global. Nos últimos anos, o 

país viu um crescimento significativo das fontes eólicas e solar, chegando a 31 GW 

de capacidade instalada da primeira fonte e 12 GW da segunda, para geração 

centralizada, e mais de 27,7 GW em geração distribuída. Baseado nos contratos 

viabilizados em leilões já realizados e no mercado livre, há uma expectativa de que 

mais de 22 GW de energia proveniente da fonte eólica onshore sejam instalados 

entre 2025 e 2030 (Figura 1-2). 

 

Figura 1-1 Matriz energética brasileira. 

 

Fonte: Infovento (2024) 

 

Além disso, o IBAMA já recebeu mais de 170 GW em projetos propostos para 

energia eólica offshore; praticamente o mesmo valor de toda a capacidade da matriz 

elétrica brasileira atual, mostrando, portanto, o apetite dos investidores e 

confirmando o grande potencial de energia proveniente da fonte eólica offshore 

antes previsto. Com cerca de 8000 km de costa, o Brasil tem o potencial de instalar 

mais de 1200 GW de eólica offshore, de acordo com um estudo realizado pelo 

Banco Mundial (World bank group, 2020). A ABEEólica (Associação Brasileira de 
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Energia Eólica e Novas Tecnologias) tem se mostrado otimista em relação ao 

mercado offshore, principalmente após a aprovação no congresso nacional e sanção 

do presidente da república, resultando na publicação da Lei n° 15.097 de 10 de 

janeiro de 2025 – o Marco Legal das Eólicas Offshore no Brasil (Gomes et al., 2025). 

Figura 1-2 Evolução da capacidade instalada da fonte eólica onshore.  

 

Fonte: Infovento (2024) 

 

A fonte eólica, que é a segunda maior na matriz elétrica brasileira, com 

participação, em março/2024, de 15,4% e potência instalada de 31 GW, teve o seu 

desenvolvimento impulsionado por importantes políticas públicas federais, estaduais 

e de instituições de fomento, sendo responsável em 2023, por abastecer mais de 47 

milhões de residências brasileiras (Infovento, 2024). Em um estudo feito para 

ABEEólica, estima-se que para cada um real investido em energia eólica, há um 

aumento de R$2,90 no PIB (Borges, 2022). O setor eólico no Brasil tem consolidado 

seu crescimento através do mercado livre, se vendo mais distante do ACR 

(Ambiente de Contratação Regulada) e seguindo cada vez mais na direção dos 

PPAs (Power Purchase Agreements) corporativos, o que lhe confere uma maior 

resiliência (GWEC, 2024). 

Globalmente, este cenário não é muito diferente. A energia eólica é um dos 

pilares da transição energética, sendo uma das fontes mais competitivas, com o 
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mercado amadurecido e a tecnologia consolidada. De toda energia gerada no 

mundo, 6% são dependentes da fonte eólica. Em alguns países esse número é 

ainda muito mais expressivo. A Dinamarca gera mais de 50% de sua eletricidade a 

partir da energia eólica e na Alemanha essa participação chega próxima aos 30%. 

Em 2023, o mundo bateu um novo recorde em termos de acréscimo em capacidade 

instalada, como apresentado na Figura 1-3 (GWEC, 2024). 

Figura 1-3 Histórico de novas capacidades instaladas no planeta, em GW. 

 

Fonte: GWEC (2024) 

 

De acordo com o Global Wind Energy Council, todos os planos de 

desenvolvimento indicam que as novas potências instaladas devem quadruplicar 

anualmente, quando comparadas aos níveis atuais, para que se atinja a neutralidade 

das emissões de carbono até 2030. Até 2050, a eólica deverá fornecer mais de 35% 

da energia elétrica mundial, em comparação aos 6% que se tem hoje (GWEC, 

2024). Em um período marcado por uma crise climática evidente, com desastres 

ambientais frequentes, como o ocorrido no Rio Grande do Sul em maio de 2024, a 

urgência pela transição energética se torna mais clara. Já estamos atrasados para 

abandonar as fontes de energia que emitem gases de efeito estufa e adotar 

alternativas renováveis. Catástrofes como as que vivenciamos em 2024, antes 
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previstas pelos cientistas para ocorrerem mais adiante, já são realidade. Portanto, a 

busca por um futuro mais sustentável é essencial para a sobrevivência da 

humanidade. 

Embora a energia eólica apresente diversas vantagens, como ser renovável e 

possuir um mercado consolidado globalmente, sua natureza intermitente gera 

incertezas significativas nos sistemas de gestão de energia, afetando a programação 

de despacho e, consequentemente, a confiabilidade da rede elétrica (BILENDO et 

al., 2023). Essa questão motiva pesquisadores a desenvolver soluções específicas, 

muitas das quais dependem de uma estimativa precisa da curva de potência da 

turbina. Tal estimativa é essencial tanto para o gerenciamento operacional da 

energia eólica quanto para o monitoramento de desempenho da turbina. 

Como será abordado na fundamentação teórica, a curva de potência 

representa a relação entre a velocidade do vento e a potência elétrica gerada por 

uma turbina eólica — ou seja, indica quanta energia a turbina entrega em função da 

velocidade do vento. Essa curva pode ser estimada a partir de grandes volumes de 

dados operacionais registrados automaticamente por sensores instalados nas 

próprias turbinas. Esses sensores monitoram continuamente variáveis como 

velocidade do vento, potência gerada, ângulo de inclinação das pás (pitch), posição 

da nacele (yaw), temperatura de componentes e o estado geral de operação. Os 

dados coletados são organizados por sistemas de supervisão e aquisição, 

usualmente conhecidos como sistemas SCADA (do inglês Supervisory Control and 

Data Acquisition System), que armazenam milhares de pontos de medição ao longo 

do tempo. A análise dessas informações permite não apenas estimar a curva de 

potência em condições reais de operação, mas também identificar falhas, eventos 

de indisponibilidade, cortes de produção (curtailments) e anomalias de desempenho. 

Tais eventos compõem o que se convencionou chamar de pontos de operação 

anômalos, cuja correta identificação constitui a chamada limpeza da curva. Essa 

etapa é essencial para garantir que a curva de potência estimada represente com 

precisão o comportamento da turbina, servindo como base para decisões técnicas, 

operacionais e até comerciais. No entanto, devido ao volume massivo de dados 

gerados diariamente por cada turbina, esse processo de limpeza pode se tornar 

bastante trabalhoso e computacionalmente custoso, especialmente quando 

realizado manualmente ou com abordagens pouco eficientes. Esse desafio reforça a 
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importância de se desenvolver metodologias automatizadas, robustas e confiáveis 

para o tratamento desses dados. 

1.1. OBJETIVOS 

1.1.1. Objetivo Geral 

Este trabalho tem como objetivo desenvolver uma nova metodologia para a 

filtragem automática de curvas de potência de turbinas eólicas – ou mais 

comumente conhecida no setor eólico como limpeza da curva de potência - 

utilizando técnicas de Aprendizado de Máquina (AM), incluindo métodos de 

agrupamento de dados e classificação. 

 

1.1.2 Objetivos Específicos 

Dentre os objetivos específicos, pode-se citar: 

a) Implementar algoritmos de agrupamento de dados e de classificação com 

o objetivo de identificar dados anômalos e dados normais em curvas de 

potência de turbinas eólicas; 

b) Avaliar diferentes técnicas de aprendizado de máquina e determinar a 

mais eficiente para limpeza de curvas de potência; 

c) Aplicar a metodologia desenvolvida em dados de turbinas eólicas reais; 

d) Comparar a metodologia desenvolvida com outras técnicas de 

aprendizado de máquina já consolidadas na literatura analisando 

vantagens e limitações; 

e) Validar a metodologia com a limpeza manual conduzida por um 

especialista no setor. 

 

 

1.2. JUSTIFICATIVAS 

 

A energia eólica atualmente se destaca como uma das principais fontes de 

geração de energia elétrica no mundo, com grande potencial de expansão. A medida 

que mais turbinas eólicas são instaladas, torna-se cada vez mais relevante garantir o 

seu bom desempenho ao longo do tempo. A curva de potência da turbina é uma das 

principais ferramentas para esse monitoramento. Desvios em relação à curva 

esperada podem ocorrer por diversos motivos, incluindo períodos de 

indisponibilidade parcial, cortes programados de geração (curtailments), limitações 
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temporárias no controle da máquina, falhas em sensores ou até problemas de 

comunicação de dados. Embora nem sempre representem falhas definitivas ou 

degradação física, esses desvios impactam diretamente a produção de energia e 

dificultam a avaliação precisa do desempenho da turbina. 

Nesse contexto, os dados operacionais registrados durante a vida útil das 

turbinas assumem um papel fundamental. Eles possibilitam a estimativa da curva de 

potência em condições reais, a identificação de comportamentos anômalos e a 

antecipação de situações que possam comprometer a performance do parque. No 

entanto, o grande volume de dados gerados, aliado à sua complexidade e à 

presença recorrente de registros inconsistentes, torna o processo de limpeza uma 

tarefa trabalhosa e custosa do ponto de vista computacional. Para lidar com esse 

desafio, surgem como alternativa as técnicas de aprendizado de máquina, capazes 

de reconhecer padrões complexos e auxiliar na separação automática entre pontos 

normais e anômalos. Com a aplicação dessas técnicas, torna-se possível construir 

modelos mais robustos para o monitoramento da curva de potência, contribuindo 

diretamente para previsões mais precisas de geração, avaliações operacionais 

confiáveis e decisões estratégicas sobre manutenção, operação e gestão de ativos. 

Esta dissertação tem como objetivo investigar os dados de curvas de potência 

de turbinas eólicas, com foco nos desafios enfrentados por engenheiros na análise e 

no processamento dessas informações. São exploradas diferentes abordagens para 

a limpeza automática da curva de potência, avaliando suas limitações e potencial de 

aplicação. Como principal contribuição, propõe-se um novo modelo híbrido que 

combina autoencoders com redes neurais baseadas na teoria Kolmogorov-Arnold, 

buscando maior precisão na identificação de anomalias e melhor separação entre os 

diferentes tipos de desvios operacionais. 

 

1.3. ESTRUTURA DO TRABALHO 

 

Esta dissertação está estruturada da seguinte forma: o primeiro capítulo 

apresenta a introdução, incluindo a contextualização do tema, a definição dos 

objetivos gerais e específicos e a justificativa do estudo. Em seguida, o segundo 

capítulo aborda o referencial teórico, fornecendo a base conceitual necessária para 

o estudo desenvolvido, tanto no contexto da energia eólica quanto no do 

aprendizado de máquina. O terceiro capítulo corresponde à revisão de literatura, 



29 

 

 
 

onde são explorados os avanços e estudos mais recentes na área, destacando o 

estado da arte sobre o tema. 

No quarto capítulo, é apresentada a metodologia, detalhando-se os dados 

utilizados e os algoritmos implementados. O quinto capítulo expõe os resultados, 

trazendo análises em formato de tabelas e figuras para ilustrar os testes conduzidos 

e os achados da análise. Por fim, o sexto capítulo traz as conclusões, com uma 

síntese dos principais resultados obtidos, e por fim, as referências bibliográficas 

utilizadas ao longo do trabalho. 
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2 REFERENCIAL TEÓRICO 

2.1 FUNCIONAMENTO DE UMA TURBINA EÓLICA 

2.1.2 Princípios básicos 

Turbinas eólicas ou moinhos, como eram chamados, têm sido utilizados há 

séculos para extrair energia do vento. Uma turbina eólica é uma máquina que 

converte a energia cinética do vento em torque e velocidade angular no seu eixo e, 

posteriormente, em energia elétrica. A potência de saída P é dada pela conhecida 

Equação (1) (BURTON et al. (2011)): 

𝑃 =   
1

2
𝐶𝑃𝜌𝐴𝑈3, (1) 

 
em que 𝜌 é a densidade do ar (massa específica), PC  é o coeficiente de potência, A

é a área do rotor e U é a velocidade do vento não perturbada. O coeficiente de 

potência representa a fração da potência do vento que pode ser convertida pela 

turbina em taxa de trabalho mecânico. Possui um limite máximo teórico de 0,593, 

demonstrado mais adiante, chamado de o “limite de Betz”. O físico alemão Albert 

Betz, em um artigo publicado em 1920 na revista Journal of Turbine Science, provou 

que no máximo 59,3% da energia cinética contida em um escoamento que está em 

um tubo de corrente de mesma seção transversal de um disco atuador (que simula o 

rotor de uma turbina) pode ser convertido em trabalho útil pelo disco (Okulov & Kuik, 

2009). Na prática valores sempre menores do que este são atingidos.  

A teoria do disco atuador explica o processo da extração de energia de uma 

turbina eólica. Por conservação de energia, ao remover a energia cinética contida no 

vento, a velocidade da massa de ar que passa pelo disco atuador é reduzida. Antes 

do disco, a área de seção transversal do tubo de corrente é menor do que a do disco 

e se torna maior à jusante (Figura 2-1). Essa expansão acontece porque a mesma 

quantidade de ar deve passar por cada seção e a massa que passa pela seção 

transversal do tubo, por unidade de tempo, é dada por 𝜌𝐴𝑈 (vazão mássica). Logo, 

mantendo a densidade do ar constante (escoamento incompressível), ao reduzir a 

velocidade, a área deve ser maior. A taxa do fluxo de massa deve ser a mesma ao 

longo do tubo de corrente, então, 

𝜌𝐴∞𝐴𝑈  =  𝜌𝐴𝐷𝑈𝐷 = 𝜌𝐴𝑤𝑈𝑤. (2) 
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Figura 2-1 Tubo de escoamento da extração de energia de uma turbina eólica. 

 

Fonte: Adaptado de BURTON et al. (2011) 

 

O símbolo ∞ se refere à condição upstream (anterior ao disco – escoamento 

não perturbado), D se refere às condições no disco e w às condições downstream 

(na esteira/wake). Se considera que a presença do disco atuador induz uma redução 

da velocidade do vento livre, dada por −𝒂𝑼∞, em que 𝒂 é chamado de fator de 

indução axial. No disco, portanto, a velocidade na direção do escoamento é dada 

por 

𝑈𝐷 =  𝑈∞(1 − 𝑎). (3) 
 

 

O fluxo de ar sofre uma mudança resultante de velocidade de 𝑈∞ −  𝑈𝑤. A taxa de 

mudança do momento linear é dada pela mudança da velocidade vezes a taxa do 

fluxo de massa, e assim, 

𝑇𝑎𝑥𝑎 𝑑𝑒 𝑚𝑢𝑑𝑎𝑛ç𝑎 𝑑𝑜 𝑚𝑜𝑚𝑒𝑛𝑡𝑜 =  (𝑈∞ −  𝑈𝑤)𝜌𝐴𝐷𝑈𝐷 . (4) 
 

 

A força que causa a mudança de momento advém da diferença de pressão no 

entorno do disco atuador (o tubo de corrente é cercado por ar a pressão atmosférica, 

então a força resultante é zero). Então, tem-se que 

(𝑝𝐷
+ − 𝑝𝐷

−)𝐴𝐷 =  (𝑈∞ −  𝑈𝑤)𝜌𝐴𝐷𝑈∞(1 − 𝑎). (5) 
 

 

Para calcular a diferença de pressão, a Equação de Bernoulli é aplicada, de 

forma separada, antes e após o disco atuador (energias separadas são necessárias 

porque a energia é diferente antes e após). A energia total do escoamento, que 
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consiste em energia cinética, pressão estática e gravitacional, deve permanecer 

constante, visto que nenhum trabalho é realizado pelo fluido. Assim, para um volume 

de ar, tem-se que  

1

2
𝜌𝑈2 + 𝑝 +  𝜌𝑔ℎ =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒. (6) 

 
Upstream temos 

1

2
𝜌∞𝑈∞

2 + 𝑝∞ +  𝜌∞𝑔ℎ∞ =  
1

2
𝜌𝐷𝑈𝐷

2 + 𝑝𝐷
+ + 𝜌𝐷𝑔ℎ𝐷, (7) 

 
e assumindo que o escoamento é incompressível (𝜌∞ =  𝜌𝐷) e horizontal (ℎ∞ = ℎ𝐷), 

então: 

1

2
𝜌𝑈∞

2 + 𝑝∞ =  
1

2
𝜌𝑈𝐷

2 + 𝑝𝐷
+. (8) 

 
Analogamente, downstream 

1

2
𝜌𝑈𝑤

2 + 𝑝∞ =  
1

2
𝜌𝑈𝐷

2 + 𝑝𝐷
−. (9) 

 
Subtraindo a equação (9) da (8) chegamos em 

𝑝𝐷
+ − 𝑝𝐷

− =  
1

2
𝜌(𝑈∞

2 − 𝑈𝑤
2 ) (10) 

 
e substituindo a (10) na (5) 

1

2
𝜌(𝑈∞

2 − 𝑈𝑤
2 )𝐴𝐷 =  (𝑈∞ − 𝑈𝑤)𝜌𝐴𝐷𝑈∞(1 − 𝑎), (11) 

 
o que resulta em 

𝑈𝑤 = (1 − 2𝑎)𝑈∞. (12) 
 

 

As variáveis das equações (1) a (12) são ilustradas na Figura 2-2, que é uma 

representação esquemática do modelo do disco atuador. As curvas na Figura 

demonstram como a velocidade do escoamento diminui e a pressão sofre uma 

queda ao atravessar o disco, simulando a extração de energia pela turbina. 
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Figura 2-2 Variação das grandezas de velocidade e pressão em diferentes regiões do 

escoamento: à montante (upstream), à jusante (downstream) e próximas ao disco simulando o rotor. 

 

Fonte: BURTON et al. (2011) 

 

Da equação (5), a força atuante é dada por 

𝑇 = (𝑝𝐷
+ − 𝑝𝐷

−)𝐴𝐷 =  2𝜌𝐴𝐷𝑈∞
2 𝑎(1 − 𝑎). (13) 

 
A potência produzida pelo fluxo de ar no disco atuador é 𝑇𝑈𝐷. Logo, tem-se: 

𝑃 =  𝑇𝑈𝐷 =  2𝜌𝐴𝐷𝑈∞
2 𝑎(1 − 𝑎)². (14) 

 
Da equação (1), o coeficiente de potência é definido por 

𝐶𝑃 =  
𝑃

1

2
𝜌𝐴𝑈3

 . (15) 
 

Substituindo a Equação (14) na Equação (15), tem-se que 

𝐶𝑃 =  4𝑎(1 − 𝑎)² . (16) 
 

O máximo valor de 𝐶𝑃 ocorre quando  

𝑑𝐶𝑃

𝑑𝑎
= 0 ∴ 4(1 − 𝑎)(1 − 3𝑎) = 0. (17) 

 
 

Resultando em 𝑎 =  
1

3
 ∴  𝐶𝑃𝑚á𝑥 ≈ 0.593. Esse é o limite obtido por Betz, 

representando o valor teórico máximo de energia cinética que uma turbina eólica 

pode extrair do vento. Este fator é importante na estimativa da curva de potência da 

turbina. A força no disco atuador causada pela diminuição da pressão, dada pela 

Equação (13) também pode ser adimensionalizada, fornecendo o coeficiente de 

Thrust, 
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𝐶𝑇 =  
𝑇ℎ𝑟𝑢𝑠𝑡

1

2
𝜌𝑈∞

2 𝐴𝐷
= 4(1 − 𝑎). (18) 

 
Quanto maior o valor de 𝐶𝑇, maior a resistência imposta pela turbina ao escoamento, 

permitindo a extração de mais energia. Em contrapartida, essa maior energia 

extraída resulta em uma menor velocidade à jusante e maior o efeito esteira 

provocado pela turbina. 

 

2.1.2.1 Tecnologia de uma turbina eólica 

Em 1983, uma turbina com potência nominal de 55kW e diâmetro de rotor de 

cerca de 15 m era referência comercial no mercado europeu ocidental 

(Heinzelmann, 2019). Ainda segundo a autora, pouco mais de 10 anos depois, a 

potência nominal média multiplicou-se por 10 e as dimensões dos rotores 

aerodinâmicos tornaram-se duas a três vezes maiores. Nos dias de hoje temos 

turbinas centenas de vezes mais potentes. Considerando a interdisciplinaridade que 

existe em uma turbina eólica e toda a cadeia de suprimentos envolvida, desde a 

concepção do projeto, fabricação, construção e manutenção, considera-se esse um 

desenvolvimento bastante célere.  

Em 2020, em novas instalações na Europa, as turbinas tinham em torno de 

8,2 MW, chegando até 10,4 MW. O modelo da GE, Haliade-X, estabeleceu um novo 

recorde, chegando a 14 MW de capacidade. Esta turbina recebeu uma certificação 

independente da consultora norueguesa DNV para operar até 14,7 MW e um 

protótipo segue operando em um porto de Roterdã, onde foi instalada em 

outubro/2021 (Marinho, 2022).  

A Figura 2-3 mostra uma comparação do tamanho das turbinas com prédios 

famosos, em que se é possível perceber a evolução destas. Num futuro muito 

próximo, esperam-se turbinas de 15 MW provenientes da Siemens Gamesa e 

Vestas. Além destas, a chinesa MingYang já anunciou o seu novo modelo de 16 MW 

e 242 m de diâmetro de rotor. A indústria prevê que em 2030 haverá máquinas de 

20 MW de capacidade e 275 m de rotor.  
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Figura 2-3 - Evolução do tamanho de turbinas eólicas em comparação a edificações 

históricas. 

 

Fonte: MEGAWIND (2024) 

 

Como observado na Figura 2-3, as turbinas alcançaram tamanhos 

impressionantes, sendo, portanto, as maiores máquinas rotativas do mundo. São 

necessários três A380s (o maior avião de transporte civil do planeta) para equivaler 

ao comprimento do diâmetro de rotor da GE Haliade-X (vide Figura 2-4). Mas 

diferentemente dos aviões, as turbinas são projetadas para operar de maneira 

totalmente autônoma, em um ambiente bastante insalubre, com muitas cargas 

externas, com o mínimo de manutenção e máximo de disponibilidade possível, 

acumulando cerca de 100 milhões de ciclos de fadiga ao longo dos seus 20 anos de 

operação (Veers et al., 2023) 
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Figura 2-4 Dimensões de um A380 e de uma turbina GE Haliade-X 12-14MW. 

 

Fonte: VEERS et al. (2023) 

As turbinas eólicas modernas possuem pás tão extensas que ultrapassam a 

camada limite atmosférica. Essas estruturas são longas e flexíveis, interagindo de 

forma dinâmica com o escoamento do ar no local. Além do carregamento causado 

pelo escoamento livre, as turbinas também estão sujeitas aos carregamentos 

provenientes das esteiras de outras turbinas eólicas. Esse vento perturbado, de 

baixa velocidade e alta turbulência, exerce um impacto adicional significativo nessas 

estruturas. A Figura 2-5 apresenta as variáveis e toda complexidade envolvida na 

análise de uma turbina eólica, seja no ambiente onshore ou offshore. 

A complexidade aumenta no ambiente offshore, onde várias cargas atuam na 

turbina: além do vento em velocidades mais altas, há também a influência de 

correntes e marés. Nesse cenário, a fundação assume um papel crucial. No caso da 

fundação monopilar, a mais utilizada em todo o mundo, a turbina e a fundação são 

consideradas como uma única unidade estrutural. Isso resulta em um sistema mais 

esbelto e dinamicamente suscetível às cargas externas, devido à sua frequência 

natural estar próxima das frequências de excitação. A interação do solo com a 

turbina também se torna crítica devido aos grandes carregamentos (CAMPELLO DE 

SOUZA; RIBEIRO, 2017). Além da fundação monopilar, existem outras soluções na 

eólica offshore, como as fundações do tipo jaqueta, gravidade e ainda as flutuantes, 

que estão em constante movimento.  
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Sistemas de controle avançados, juntamente com sensores de 

monitoramento, são empregados para melhorar a gestão dessas máquinas. 

Ferramentas de simulação aeroelástica precisam capturar a grande escala, a 

flexibilidade aumentada e os carregamentos complexos, frequentemente utilizando 

modelos de alta fidelidade. Nos processos de fabricação, espera-se a adoção de 

novos materiais com maior resistência e menor peso, além de melhorias na 

qualidade para comprimentos superiores a 100 metros. As turbinas eólicas 

representam um campo de alta complexidade e contínua evolução. A pesquisa 

contínua é fundamental para aprofundar o entendimento das dinâmicas envolvidas e 

impulsionar inovações que garantirão a eficiência, sustentabilidade e resistência 

dessas gigantes energéticas frente aos desafios ambientais e operacionais. 

Figura 2-5 Componentes da natureza e parâmetros físicos de uma turbina eólica. 

 

Fonte: VEERS et al. (2023). 

 

A Figura 2-6 e a Figura 2-7 apresentam, respectivamente, os componentes 

básicos de uma turbina de eixo horizontal e um exemplo de um típico modelo, com 

seus respectivos componentes. 
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Figura 2-6 Componentes básicos de turbinas de eixo horizontal. 

 

Fonte: NERY et al (2014). 

Figura 2-7 Esquema dos componentes principais de uma turbina eólica. 

 

Fonte: PIRES (2018) 
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A Tabela 2-1 Principais características mecânicas de uma turbina eólica.Tabela 2-1 

apresenta as principais características mecânicas de uma turbina eólica e os 

respectivos tipos em cada característica.  

 

Tabela 2-1 Principais características mecânicas de uma turbina eólica. 

Princípio aerodinâmico de 
conversão de energia 

• Baseado na força de sustentação 

• Baseado na força de arrasto 

Posição do rotor em relação à torre 
• À barlavento 

• À sotavento 

Número de pás 

• Pá única 

• Duas pás 

• Três pás 

• Múltiplas pás 

Princípio aerodinâmico de controle 
de torque 

• Estol 

• Estol ativo 

• Controle de passo ativo (pitch) 

Sistema de orientação do rotor em 
relação à direção do vento (yaw) 

• Ativo 

• Passivo 

Velocidade de rotação do rotor 
• Constante 

• Variável 

Eixo de acionamento mecânico 

• Expandido  

• Semicompacto 

• Compacto 

Conversão de velocidade de 
rotação 

• Com caixa de engrenagem 

• Sem caixa de engrenagem (Direct-
drive) 

Fonte: Adaptado de HEINZELMANN (2019). 

 

A nacele é uma estrutura, em formato de “caixa”, que abriga os principais 

componentes de uma turbina eólica. As turbinas eólicas comerciais conectadas na 

rede elétrica, para geração centralizada, possuem as seguintes características: 

• Princípio de extração de energia baseado na força de sustentação 

aerodinâmica; 

• Eixo de acionamento horizontal; 

• Rotor de três pás, à barlavento; 

• Yaw ativo. 

Quanto às outras características mecânicas, descritas na Tabela 2-1, estas 

ainda podem variar de acordo com a máquina escolhida.  

As turbinas de eixo horizontal funcionam mediante a força de sustentação, 

enquanto as de eixo vertical geralmente são atreladas à força de arrasto. No 
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entanto, algumas turbinas de eixo vertical também podem ter seu funcionamento 

mediante a força de sustentação, como por exemplo, a Darrieus e a Savonius 

(GASCH; TWELE, 2012), (Hau, 2013). A Figura 2-8 ilustra diferentes tipos de 

rotores. 

Figura 2-8 Tipos de rotores. 

 

Fonte: EPE (2016) 

 

Apesar de não necessitarem de direcionamento do rotor em relação à direção 

predominante do vento e o fato da casa de máquinas ficar no solo (facilitando a 

manutenção), os custos de produção e fabricação das pás das turbinas Darrieus são 

cerca de 30% maiores do que as de eixo horizontal. O desempenho aerodinâmico e 

a eficiência energética também são inferiores, o que faz com que as turbinas de 

rotores verticais não sejam competitivas comercialmente frente as de eixo horizontal 

(HEINZELMANN, 2019). Dentre as vantagens de uma turbina eólica de eixo 

horizontal, podemos citar (KUSUMA et al., 2024): 

1. Captura de ventos de altas velocidades: devido à sua elevada altura, essas 

turbinas conseguem capturar velocidades mais altas. Em alguns locais, o 

coeficiente de cisalhamento (wind shear) é relativamente alto, podendo 

aumentar a velocidade em 20% a cada 10 metros de altura, resultando em um 

aumento de 34% na potência de saída. 

2. Grande área varrida pelas pás: a ampla área varrida pelas pás permite a 

captura de mais vento, o que eleva a eficiência dessas máquinas para níveis 

geralmente superiores a 70%. 
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3. Uso comercial: devido à sua alta eficiência, essas turbinas são amplamente 

utilizadas comercialmente, havendo uma grande disponibilidade no mercado. 

4. Sistemas variáveis de pitch: muitos modelos possuem um sistema variável 

de pitch, permitindo que as pás se posicionem em um ângulo de ataque ótimo, 

melhorando ainda mais a eficiência na captação de energia. 

A posição à barlavento consiste no rotor estar posicionado anteriormente à 

torre e à sotavento, o oposto. Na posição à sotavento, o escoamento passa pela 

torre antes de chegar ao rotor sofrendo perturbação devido à interação com a 

estrutura; perdendo, portanto, energia, provocando maior impacto aerodinâmico e 

ainda gerando maiores emissões acústicas. Sendo assim, a configuração à 

barlavento é a adotada comercialmente.  

 Considerando a turbina comercial com eixo horizontal e rotor à barlavento, 

faz-se necessário um sistema de orientação do rotor em relação à velocidade 

predominante do vento; que no caso da configuração padrão, é sempre ativo. Esse 

sistema é composto por uma roda dentada, motores elétricos de passo e sistemas 

de frenagem com pastilha que fornecem o torque necessário para rotacionar a 

nacele e mantê-la alinhada com o vento (KARAKASIS et al., 2016). Existe ainda o 

freio do yaw, que trava a nacele quando ela está corretamente orientada, evitando 

giros desnecessários. 

A escolha pelo número ótimo de pás está ligada à razão da velocidade de 

ponta de pá λ (Tip Speed Ratio, ou, TSR), dada pela Equação (19) 

λ =   
𝑅Ω

𝑈∞
, (19) 

 
em que 𝑅 é a distância da ponta da pá ao centro do cubo, Ω é a velocidade angular 

do rotor (𝑅Ω é, portanto, a velocidade linear da ponta de pá), e 𝑈∞ é a velocidade do 

vento não perturbado. Um outro conceito importante na definição do número de pás 

é a solidez, que é a razão entre a área sólida de pás e a área circular definida pelo 

extremo da pá em rotação. Uma baixa solidez significa que a pá tem uma área de 

suporte menor, o que pode levar a vibrações e instabilidade na rotação, reduzindo a 

vida útil da turbina. Porém, uma baixa solidez também indica um alto TSR, o que 

aumenta a eficiência na conversão de energia. Por outro lado, uma alta solidez, 

reduz a eficiência da turbina, pois se tem um menor TSR; entretanto, elas são mais 

estáveis mecanicamente. O equilíbrio entre esses dois conceitos, levou a um 

número ótimo de pás como sendo menor do que cinco (Fadigas, 2011). Uma turbina 
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de quatro pás tem a desvantagem de ser mais custosa do que soluções com menos 

pás (o rotor corresponde a cerca de 20% do custo de uma turbina e cada pá a cerca 

de 6% do total), não compensada pelo aumento na eficiência. Um compromisso 

ótimo, portanto, entre custo, eficiência energética e mecânica da estrutura chega a 

um número de 3 pás (Heinzelmann, 2019).  

Em relação ao controle do torque, uma turbina pode fazer mediante estol 

passivo, pitch e estol ativo. O controle por estol passivo, como o nome sugere, é um 

sistema de controle passivo que responde à velocidade do vento. As pás do rotor 

são fixadas em um ângulo de passo β específico (Figura 2-9), escolhido para que o 

escoamento de ar ao redor do perfil aerodinâmico se desprenda da superfície, não 

girando em torno do eixo longitudinal. Para velocidades de vento superiores à 

nominal, o efeito estol reduz as forças de sustentação e aumenta as forças de 

arrasto. Por isso, as pás são projetadas para que esse efeito ocorra pelo menos 

parcialmente. Menores forças de sustentação e maiores forças de arrasto 

contrabalançam o aumento da potência do rotor, e uma pequena torção longitudinal 

é feita nas pás para evitar que o efeito ocorra simultaneamente em todas as 

posições radiais (Adaramola, 2014).  

Figura 2-9 Aerofólio com respectivo ângulo de passo e de ataque. 

 

Fonte: CARVALHO (2003). 

 

Já o controle por pitch é um sistema de controle ativo que requer informações 

de um controlador. Quando este indica que a potência nominal do gerador foi 

ultrapassada, as pás alteram seu ângulo de passo β, girando em torno do eixo 

longitudinal para reduzir o ângulo de ataque α e, assim, a potência extraída. Para 

velocidades de vento superiores à nominal, o ângulo é ajustado para que a turbina 

produza apenas a potência nominal. Em todas as condições de vento, o escoamento 
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de ar ao redor dos perfis das pás do rotor permanece aderente à superfície, gerando 

sustentação aerodinâmica e forças de arrasto reduzidas. No mecanismo por pitch, 

cada pá possui ajuste individual, mas as pás são sempre ajustadas de um modo 

síncrono em um mesmo ângulo. Por último, o controle por estol ativo combina os 

sistemas de estol e de passo. Nesse caso, o ângulo de passo da pá do rotor é 

ajustado ativamente na direção do estol (ou seja, aumentando o ângulo de ataque) e 

não na direção da posição de embandeiramento (menor sustentação), como nos 

sistemas de passo convencionais. Esta variante foi apresentada comercialmente por 

um curto período e existe em algumas turbinas de classe 2MW – 3MW. A Figura 

2-10 apresenta curvas de potência de turbinas controlada por pitch e por estol.  

Figura 2-10 Curvas de potência de turbinas controlada por passo (pitch) e por estol 

ativo e passivo. 

 

Fonte: LIBERADO (2020). 

 

 

As turbinas que operam usando o mecanismo de estol estão sujeitas a cargas 

aerodinâmicas não completamente previsíveis e, portanto, pás e rotores são 

dimensionados de maneira mais conservadora. Em função disso, rotores “estol” 

apresentam uma região cilíndrica (Figura 2-11). 
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Figura 2-11 Turbina eólica com região cilíndrica na base da pá. 

 

 

As turbinas com pitch, que dominam o mercado atual, permitem um 

dimensionamento de pá mais delgado, o que contribui para uma maior eficiência da 

turbina (Heinzelmann, 2019). Ainda segundo a autora, as soluções técnico-

conceituais com controle por pitch, velocidade do rotor variável, conexão à rede de 

forma indireta, via conversor de frequência, são o estado da arte das turbinas 

eólicas.  

 O eixo de acionamento de uma turbina eólica é composto por um eixo de 

transmissão principal, que será acoplado ou integrado ao gerador, com o objetivo de 

transmitir o torque gerado pelo rotor aerodinâmico ao gerador elétrico. Dependendo 

da configuração, alguns componentes podem ou não estar presentes, como por 

exemplo, a caixa de engrenagens (Heinzelmann, 2019).  

Inicialmente, muitas soluções adotavam um eixo de acionamento expandido, 

que oferece a vantagem de melhor acesso às peças e subsistemas, facilitando a 

montagem, inspeção, manutenção e substituição de componentes. Entretanto, tanto 

para o eixo de acionamento expandido, quanto para o semi-compacto, a caixa de 

engrenagens está presente (no semi-compacto, o rolamento posterior do eixo 

principal está integrado à caixa de engrenagens).  

No início do desenvolvimento de turbinas eólicas, ambas as configurações 

exigiam que o rotor fosse desmontado e o eixo mecânico retirado e levado para a 

fábrica para a substituição da gearbox. A substituição deste grande componente era 

muito comum, uma vez que as cargas aerodinâmicas a que as turbinas estavam 

expostas ainda não eram completamente compreendidas e definidas, impedindo o 

correto dimensionamento. Somando-se a erros na montagem e produção, em vez de 

um esperado ciclo de vida de 20 anos, o setor confrontava-se com a substituição de 

engrenagens após apenas 3 a 5 anos. Este tipo de parada impacta diretamente na 

disponibilidade da turbina, interferindo na produção de energia do parque.  
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A partir dessa custosa experiência, para turbinas de classes de potência mais 

elevadas, especialmente para as turbinas offshore, as soluções técnico-conceituais 

foram revistas e reprojetadas, incluindo não apenas o apoio posterior para o eixo de 

acionamento, mas também um guincho e uma abertura na nacele, que 

possibilitaram a inserção e retirada de peças e componentes.  

Por outro lado, outros fabricantes optaram pela solução do eixo de 

acionamento compacto, visando reduzir o peso da nacele e eliminar a necessidade 

da caixa de engrenagens. Um exemplo são as turbinas da empresa alemã Enercon 

(no Brasil conhecida como Wobben). A Figura 2-2 apresenta exemplos de eixo de 

acionamento semi-compacto e compacto. 

Figura 2-2 À esquerda, um modelo com eixo de acionamento semi-compacto e, à 

direita, um modelo compacto. 

 

 

 

Fontes: HINE (2020), ENERCON (2021). 

 

Em relação à evolução das pás de turbinas eólicas, houve um grande 

progresso em termos de projeto, dimensionamento, pesquisa e produção em série 

nos últimos anos. A evolução técnica e computacional permitiu que, além do uso de 

túneis de vento com infraestrutura de teste para pás de grandes dimensões e 

softwares para cálculos aerodinâmicos bidimensionais de perfis, softwares altamente 

especializados, comerciais e de domínio livre e de simulação CFD (Computational 

Fluid Dynamics), também se tornassem ferramentas essenciais para o estudo, 

melhoramento e otimização dos projetos de pás (Heinzelmann, 2019). No entanto, 

esses avanços técnicos não evitam diversos problemas que ocorrem com muitos 

fabricantes. Um exemplo é a Siemens Gamesa, que tem enfrentado problemas 
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significativos com suas turbinas eólicas no Brasil. Os defeitos, identificados 

principalmente nas pás, foram detectados nas novas plataformas 4.X e 5.X, 

resultando em incidentes como a quebra de pás e até fogo em uma turbina, gerando 

um custo estimado de 1 bilhão de euros. Empresas como AES Brasil e Engie foram 

impactadas, mas estão investigando as causas e avaliando soluções em 

colaboração com a Siemens Gamesa (Eixos, 2023). 

 

2.1.2.2 Curva de potência 

A relação entre potência de saída e velocidade do vento na altura do cubo é 

representada pela curva de potência da turbina. A menor velocidade na qual uma 

turbina consegue dar partida é chamada de velocidade de partida (ou cut-in). A 

velocidade nominal é a velocidade na qual a máquina atinge a potência nominal. Ao 

atingir esta velocidade, o sistema de controle é acionado com o objetivo de manter a 

potência de saída constante. A velocidade de corte, ou cut-out é aquela na qual a 

máquina se desliga, sendo um valor definido em projeto que visa a proteção da 

turbina contra carregamentos extremos.  

Em algumas turbinas, há a chamada estratégia de histerese, na qual ao invés 

de haver um desligamento abrupto, a potência é progressivamente reduzida com o 

aumento da velocidade, até que se atinja a velocidade de corte. Ainda existe a 

chamada velocidade de “recut-in”, que é a velocidade na qual a turbina volta a 

funcionar após ser desligada na velocidade de corte. A velocidade de recut-in é 

tipicamente menor do que a de cut-out. A Figura 2-12 ilustra uma curva de potência 

típica, com as velocidades de partida, nominal e de corte.  

Tem-se, portanto, três regiões características em uma curva de potência:  

1. potência igual a zero abaixo da velocidade de partida; 

2. potência proporcional ao cubo da velocidade (na chamada parte cúbica da 

curva), advinda da Equação (1); 

3. potência constante e igual à nominal.  
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Figura 2-12 Curva de potência típica de uma turbina eólica. 

 

Fonte: adaptado de PAIK; CHUNG; KIM (2023) 

 

Da Equação (1), tem-se que a potência de saída ao longo do tempo irá 

depender essencialmente da densidade do ar, da velocidade do vento e do 

coeficiente de potência. Considerando que a densidade do ar permanece 

praticamente constante na altura do cubo, resta apenas a velocidade e o coeficiente 

de potência, este dependendo do TSR e do ângulo de pitch. 

Ao longo do desenvolvimento de um projeto eólico, em suas diversas fases, 

estimativas de produção de energia serão conduzidas para que se avalie a 

viabilidade técnica e financeira deste, e para que se cumpram as exigências 

regulatórias na emissão das outorgas. Para tais estimativas, duas informações são 

cruciais: a primeira é a velocidade do vento do local e a segunda é a curva de 

potência da turbina.  

Quanto à primeira, medições da velocidade, direção, pressão, temperatura e 

umidade relativa do ar são registrados, de preferência em vários pontos do local do 

projeto, por equipamentos de medição confiáveis, ao longo de, no mínimo, 3 anos, 

conforme exigido pela ANEEL. Esses dados, em resolução de 10 minutos, serão 

limpos e manipulados, com o objetivo de se obter um recurso eólico representativo 

dos 20 anos de operação, no local das turbinas, na altura do cubo. O recurso, ao ser 

cruzado com a informação da curva de potência, fornecerá a energia bruta do 

parque eólico. 
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A curva de potência é obtida pela fabricante da turbina, em um local de testes, 

com uma turbina em funcionamento e uma torre anemométrica à montante em 

relação à direção predominante do vento, no intuito de capturar o escoamento livre. 

Em teoria, a curva de potência é definida em função do vento livre; porém, na 

prática, não é possível que esta medição seja feita. A norma IEC61400-12-1:2005 

estabelece que, em uma medição de curva de potência, a torre anemométrica esteja 

entre 2 e 4 diâmetros de rotor (indicado como D) de distância da turbina, sendo perto 

o suficiente para que o escoamento esteja bem correlacionado com as condições da 

turbina, mas distante para que a influência da indução da turbina seja desprezível. 

Apesar dessas restrições, há evidências que mostram que a presença da turbina 

perturba o escoamento à montante: é o chamado efeito de bloqueio.  

Em 2018, a DNV, com base em medições realizadas em três parques eólicos 

onshore e em simulações complementares, identificou que as velocidades do vento 

medidas a 2 D a montante dos parques eólicos apresentaram uma redução média de 

3,4% após o início da operação das turbinas. As reduções observadas foram 

significativamente superiores ao que seria esperado apenas pela indução de uma 

única turbina, o que levou à conclusão de que outras turbinas do parque também 

contribuíram para esse efeito. Dessa forma, concluiu-se que o efeito de bloqueio não 

apenas reduz a velocidade do vento a montante do parque, mas também impacta as 

velocidades do vento incidentes nas turbinas posicionadas nessa região, fazendo 

com que, em geral, produzam menos do que produziriam se estivessem operando 

isoladamente (Bleeg et al., 2018). Até este momento, os chamados modelos de 

baixa fidelidade aplicados na indústria apenas consideravam os efeitos de esteira; a 

partir deste momento, fica constatada a importância de também se contabilizar o 

efeito de bloqueio tanto na curva de potência quanto no cálculo de produção de 

energia.  

Em resumo, a medição da curva de potência é realizada em um local 

diferente do parque e por um período específico, com medições impactadas pelo 

efeito de bloqueio. Idealmente, seria necessária uma curva de potência obtida no 

local do projeto, representativa dos 20 anos de operação e baseada na velocidade 

do vento livre. Dessa forma, para que a curva de potência possa ser utilizada de 

forma precisa no cálculo de produção de energia, são necessários ajustes para 

compensar o efeito de bloqueio, as condições ambientais locais e a degradação ao 

longo do tempo. 
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O cenário descrito nos parágrafos anteriores ilustra o que ocorre antes do 

parque eólico entrar em operação, ainda no campo das estimativas, que servirão de 

referência para o modelo financeiro do projeto. Considerando as diversas incertezas 

inerentes à estimativa da curva de potência na fase pré-construtiva, é apenas na 

fase operacional que a curva de potência real poderá ser modelada, utilizando os 

dados de potência e velocidade capturados pelo SCADA. É por isso que a 

modelagem e a limpeza dessa curva ao longo da vida útil do parque são 

fundamentais, assegurando que a análise de desempenho reflita com precisão as 

condições operacionais reais.  

 

2.1.2.3 Medição de uma curva de potência a partir da IEC 61400-12-1:2005 

Dada a importância da estimativa da curva de potência “mais próxima da real” 

de uma turbina, existe, ainda, um procedimento frequentemente executado no local 

do projeto durante a operação do parque: a medição ou teste da curva de potência 

segundo a norma IEC. A IEC 61400-12-1 fornece orientações para medição da 

curva, incluindo requisitos para os equipamentos utilizados, posicionamento dos 

mesmos, bem como critérios que devem ser atendidos durante a medição (Zou; 

Djokic, 2020). O procedimento descrito em seguida está de acordo com o que 

enuncia a norma IEC 61400-12-1, primeira edição, do ano de 2005. 

O objetivo de uma medição de curva de potência é coletar dados que 

atendam a critérios previamente definidos, garantindo quantidade e qualidade 

suficientes para determinar as características de desempenho da geração de 

energia de uma turbina eólica. Para isso, uma torre anemométrica deve ser 

posicionada entre 2 e 4 diâmetros de rotor (Figura 2-13). Este intervalo é para que a 

torre não seja posicionada muito perto da turbina (onde sofre pelo efeito de 

bloqueio), nem muito longe, onde o vento capturado pela torre já não correlacione 

com o vento experienciado pela turbina.  

Além disso, de acordo com a IEC, as características do local podem 

influenciar significativamente o desempenho medido da turbina, especialmente 

devido a possíveis distorções no escoamento de vento, que podem causar 

diferenças entre a velocidade registrada na torre e aquela que realmente atinge a 

turbina. Por isso, é fundamental avaliar o local considerando fatores como 

topografia, presença de outras turbinas e obstáculos, como edifícios e árvores. Essa 
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análise permite posicionar corretamente a torre, aplicar correções ao escoamento e 

definir um setor de medição confiável para reduzir incertezas. 

Durante o período de medição, a turbina eólica deve operar normalmente, 

sem alterações na configuração da máquina. O status operacional deve ser 

registrado por meio de sinais de status, e a manutenção regular deve ser realizada 

durante todo o período, com os trabalhos registrados em um “diário de teste”. 

Qualquer manutenção especial, como por exemplo lavagem das pás para melhorar 

o desempenho, deve ser devidamente anotada, mas só deve ser realizada se 

acordada previamente entre as partes contratantes. 

Figura 2-13 Distância da torre anemométrica à turbina eólica de 2 D a 4 D. Distância 

recomendada de 2,5 D. 

 

Fonte: adaptado de IEC 61400-12-1:2005.  

 

Para garantir que apenas os dados obtidos durante a operação normal da 

turbina sejam utilizados na análise e que os dados não sejam corrompidos, devem 

ser excluídos os conjuntos de dados nos seguintes casos: 

• Condições externas, exceto a velocidade do vento, fora da faixa operacional 

da turbina; 

• Falha na turbina que impeça sua operação; 

• Desligamento manual ou operação em modo de teste ou manutenção; 

• Falha ou degradação dos equipamentos de teste (por exemplo, devido à 

formação de gelo); 

• Direção do vento fora do setor de medição definido; 
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• Direções do vento fora dos setores válidos e completos de calibração do 

local. 

Os conjuntos selecionados devem ser organizados utilizando o "método de 

bins". Os dados devem abranger, no mínimo, uma faixa de velocidade do vento que 

se estende desde 1 m/s abaixo da velocidade de entrada em operação (cut-in) até 

1,5 vezes a velocidade do vento correspondente a 85% da potência nominal da 

turbina eólica. O banco de dados será considerado completo quando atender aos 

seguintes critérios: 

• Cada bin deve conter, no mínimo, 30 minutos de dados amostrados; 

• O banco de dados deve incluir, no total, no mínimo 180 horas de dados 

amostrados. 

 

A curva de potência medida de acordo com a norma IEC tem, no entanto, 

suas limitações. Ela pode servir de referência para a turbina na qual está sendo 

medida, porém não é tão simples extrapolar para outras turbinas do parque, ainda 

mais em locais com elevada complexidade do terreno e do escoamento. Além disso, 

as possíveis causas para o desempenho subótimo não são exploradas na norma 

(Astolfi; De Caro; Vaccaro, 2023). É aí que entra a avaliação do especialista e a 

utilização dos dados SCADA.  

  

2.2 MONITORAMENTO DE UMA CURVA DE POTÊNCIA DE UMA TURBINA 

EÓLICA OPERACIONAL 

 

Ao se monitorar uma curva de potência se tem alguns objetivos principais 

(Lydia et al., 2014): 

• Cálculo da produção de energia histórica e previsão futura; 

• Monitoramento de performance com a avaliação de problemas de 

desempenho e disponibilidade; 

• Monitoramento da condição, incluindo o controle preditivo e otimização 

da operação. 

 

2.2.1. Dados SCADA 

O sistema SCADA (Supervisory Control and Data Acquisition System) é uma 

solução composta por hardware e software voltada à supervisão, aquisição e 
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monitoramento de dados em tempo real. Esse sistema permite a coleta de 

informações e o controle de variáveis e dispositivos em sistemas industriais, 

viabilizando o gerenciamento eficiente de processos automatizados. 

Sua arquitetura é formada por componentes como Unidades Terminais 

Remotas (RTUs), Controladores Lógico-Programáveis (CLPs) e uma interface 

gráfica que facilita a visualização e a interação com os dados operacionais. Além 

disso, o SCADA pode operar com protocolos de comunicação proprietários ou 

abertos, o que garante compatibilidade com equipamentos e softwares de diferentes 

fabricantes. O sistema pode ser instalado em um único computador ou distribuído 

em diversas máquinas, conforme a complexidade e as necessidades da planta. É 

comumente executado em computadores convencionais e utiliza sistemas 

operacionais amplamente conhecidos, como o Windows (Cravo, 2024). A Figura 

2-14 traz uma ilustração do posicionamento de alguns sensores em uma turbina 

eólica e as respectivas grandezas medidas. Tipicamente mais de 300 variáveis são 

monitoradas (Marti-Puig et al., 2021). 

Figura 2-14 Posicionamento de alguns sensores para monitoramento SCADA em uma 

turbina eólica. 

 

Fonte: adaptado de HINE (2020). 

 

Posição Variável 

1 Ângulo de pitch 

2 Velocidade do rotor 
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3 Pressão do atuador 

4 Temperatura do rolamento principal 

5 Temperatura do óleo da gearbox 

6 Ângulo de yaw 

7 Temperatura ambiente 

8 Rotação do eixo do gerador 

9 Corrente/Voltagem nos enrolamentos do gerador 

10 Velocidade do vento 

 

2.2.2. Cálculo da produção de energia 

O cálculo da produção histórica de energia de um parque eólico em operação 

baseia-se na curva de potência derivada de dados SCADA. Para obter essas curvas 

de referência, é essencial processar e limpar esses dados, excluindo registros 

inválidos e identificando corretamente, para posterior remoção, os pontos que 

indicam operações anômalas da turbina. Considerando-se uma amostra 

representativa de longo prazo, essa curva de potência histórica pode ser usada 

como referência para a operação normal da máquina ao longo de todo o período 

operacional. A estimativa da produção de energia de longo prazo de um parque 

eólico operacional conterá menos incerteza, se comparada a uma estimativa pré-

construtiva. Além de refletir de forma mais precisa o desempenho real do ativo, essa 

estimativa funciona como uma espécie de recertificação para o operador, permitindo 

a atualização do planejamento financeiro para os anos remanescentes do projeto. 

Também é uma ferramenta estratégica para embasar decisões relacionadas à 

expansão do parque, à renegociação de contratos de energia ou à avaliação de 

viabilidade em processos de compra e venda de ativos.  

 

2.2.3. Monitoramento de performance e de condição 

Embora o sistema SCADA não tenha sido originalmente projetado para 

monitoramento por condição, a utilização de seus dados para avaliar a saúde das 

turbinas tornou-se uma prática amplamente adotada à medida que a otimização da 

manutenção passou a ser uma prioridade na indústria eólica (Tautz-Weinert; 

Watson, 2016). Uma das principais estratégias para reduzir os prejuízos financeiros 

de um parque eólico é a contenção dos custos de operação e manutenção (O&M), 

que podem representar até 30% dos custos totais ao longo da vida útil de um parque 

onshore (May; McMillan; Thöns, 2015), e ainda mais nos casos de parques offshore. 

Isso destaca a crescente atenção dada ao monitoramento de performance e 
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condição das turbinas eólicas (Stetco et al., 2019), uma tarefa desafiadora devido à 

complexidade das turbinas e sua exposição a condições operacionais não 

estacionárias.  

A previsão de falhas em estágio incipiente é desejável na redução de custos 

da operação e manutenção. A manutenção preditiva baseia-se no monitoramento de 

condição, fornecendo informações sobre equipamentos e componentes que 

provavelmente falharão e os substituindo no momento certo. A manutenção preditiva 

ajuda os gestores de ativos a preencherem a lacuna entre a manutenção reativa e a 

manutenção programada, realizando a manutenção não muito tarde nem muito 

cedo, mas no momento ideal. A manutenção preditiva pode ajudar a estimar o tempo 

até a falha (vida útil restante), detectar problemas em equipamentos (detecção de 

anomalias) e ajudar a identificar quais partes precisam ser consertadas (diagnóstico 

de tipos de falhas) (Udo; Muhammad, 2021).  

Um dos sistemas muito utilizados é o CMS (Condition Monitoring System). O 

CMS monitora diversos parâmetros chave incluindo vibrações dos componentes da 

nacele, qualidade do óleo e temperatura em alguns conjuntos principais. Sistemas 

como estes são frequentemente implementados como complementos à configuração 

padrão das turbinas eólicas. No entanto, o aumento nos custos de operação e 

manutenção resultante dessa instalação desencorajou alguns operadores, apesar 

dos benefícios da detecção precoce de falhas por meio do CMS já terem sido 

provados (Yang; Court; Jiang, 2013). 

Todas as turbinas eólicas de grande escala já possuem um sistema SCADA 

padrão, que é utilizado principalmente para o monitoramento de desempenho. O uso 

de dados SCADA para o monitoramento de condições representa uma alternativa 

menos custosa, que não requer dados adicionais. Diversas metodologias baseadas 

nesses dados têm sido desenvolvidas ao longo dos últimos anos (Tautz-Weinert; 

Watson, 2016). Neste contexto, a curva de potência gerada a partir dos dados 

SCADA se destaca como uma ferramenta valiosa para a análise de desempenho, 

pois esses dados são facilmente acessíveis e oferecem uma abordagem mais 

econômica (Gonzalez et al., 2017). 

No presente estudo, definimos como 'anormais' as instâncias que divergem do 

padrão predominante e, portanto, que se situam fora da trajetória principal da curva 

de potência. A identificação e remoção dessas anomalias são essenciais para evitar 

vieses nas análises realizadas (Morrison; Liu; Lin, 2022). Ressalta-se que esses 
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outliers nem sempre representam dados inválidos; em condições adversas, eles 

podem refletir o comportamento esperado da máquina e, portanto, são fisicamente 

coerentes. Entre os outliers, também se incluem dados efetivamente inválidos, que 

não atendem aos critérios de operação da turbina. Os pontos avaliados são divididos 

em quatro categorias: 

1. Operação normal da turbina: são os pontos que seguem o padrão 

esperado de uma curva de potência (Figura 2-12). Podem apresentar 

pequenas variações ao longo da operação, resultando em uma curva mais 

ou menos dispersa. Um exemplo é mostrado na Figura 2-15. 

Figura 2-15 Pontos normais de uma curva de potência com dados SCADA. 

 

Fonte: A autora (2024). 

 

2. Indisponibilidade: abrange tanto a indisponibilidade total (potência igual ou 

menor que zero – correspondendo ao consumo da turbina – e velocidade 

acima da velocidade de corte) quanto a parcial (pontos dispersos à direita 

da curva). A indisponibilidade parcial indica que, em um intervalo de 10 

minutos, a turbina esteve parcialmente indisponível, resultando em um 

valor de potência integralizado entre zero e a potência esperada. Uma 
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curva de potência com exemplos de indisponibilidade total e parcial é 

apresentada na Figura 2-16. 

Figura 2-16 Pontos normais e de indisponibilidade na curva de potência. 

 

Fonte: A autora (2024). 

 

3. Desempenho subótimo (ou subdesempenho): inclui limitações de potência 

(curtailments) impostas pelo operador do sistema ou por restrições 

internas a nível de parque ou turbina, além de problemas no sistema de 

controle (pitch ou yaw), estratégias de desligamento por setor de direção 

do vento (wind sector management), desligamento por altas temperaturas 

(temperature derating), histerese (atraso na resposta da turbina no 

desligamento e religamento a mudanças nas condições de vento), dentre 

outros fatores de subdesempenho. O exemplo da Figura 2-17 apresenta 

limitações fixas de potência e histerese.  
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Figura 2-17 Pontos normais e de subdesempenho na curva de potência. 

 

Fonte: A autora (2024). 

 

4. Dados espúrios: registros decorrentes de erros no processamento e 

armazenamento de dados ou mau funcionamento de sensores. São 

considerados inválidos e devem ser excluídos. Podem existir dados 

espúrios de qualquer sinal. Instâncias espúrias podem ser observadas nos 

seguintes casos: 

a. Potência acima de zero para velocidades abaixo do cut-in; 

b. Valores fora de bandas aceitáveis, por exemplo: 

i. Velocidade negativa ou acima de 40 m/s; 

ii. Potência muito negativa (abaixo de -300kW) ou mais do que 

10% acima da potência nominal; 

c. Velocidade do vento fixa em determinado valor enquanto a potência 

ou outro sensor de velocidade varia. 

O exemplo da Figura 2-18 apresenta o item “c” descrito acima. Neste caso, 

dois anemômetros da nacele estão presentes nos dados SCADA, o que permite 

estabelecer a correlação entre os sinais.  



58 

 

 
 

Figura 2-18 Pontos normais e espúrios (em roxo) da velocidade do vento 2. 

 

Fonte: A autora (2024). 

 

Caso não existam dois sensores, é possível que a velocidade do anemômetro 

da nacele seja comparada com a velocidade média do parque, por exemplo.  

Vale destacar que a distinção entre indisponibilidade e desempenho subótimo 

nem sempre é clara, já que alguns pontos podem facilmente ser confundidos, 

introduzindo uma incerteza inerente à classificação. Para reduzir essa incerteza, 

podem ser utilizados sinais adicionais do sistema SCADA, como velocidade do rotor, 

velocidade do gerador, direção da nacele, temperatura ambiente e ângulo de pitch, 

entre outros. Gráficos como potência versus velocidade do rotor ou ângulo de pitch 

versus velocidade do vento exibem comportamentos característicos que ajudam 

nessa distinção. A Figura 2-19 ilustra uma curva de potência e um gráfico de ângulo 

de pitch versus velocidade do vento com instâncias de indisponibilidade e 

subdesempenho. Os pontos no gráfico inferior auxiliam na distinção entre essas 

classificações: indisponibilidade geralmente é caracterizada por valores mais 

elevados de pitch, enquanto subdesempenho pode ocorrer em valores normais ou 

até mais baixos de pitch. 
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Figura 2-19 Pontos de indisponibilidade e de subdesempenho na curva de potência (à 

esquerda) e pitch versus velocidade do vento (à direita) 

 

Fonte: A autora (2024). 

 

Registros de paradas, mau funcionamento, falhas e períodos de manutenção 

das turbinas eólicas podem servir como informações auxiliares na identificação de 

anomalias (WANG et al., 2019).  

A limpeza de uma curva de potência consiste, portanto, em classificar 

corretamente os dados em pontos normais ou anômalos — sendo estes últimos 

associados a condições de indisponibilidade, subdesempenho ou registros espúrios. 

 

2.3 APRENDIZAGEM DE MÁQUINA 

Aprendizado de Máquina (AM) é um ramo da Inteligência Artificial (IA) que tem 

como foco capacitar computadores e máquinas a imitarem a forma como os 

humanos aprendem, permitindo que realizem tarefas de maneira autônoma e 

melhorem seu desempenho e precisão com base na experiência e na exposição a 

novos dados (UC Berkeley, 2022). 

O sistema de aprendizado de um algoritmo de AM pode ser dividido em três 

etapas (UC Berkeley, 2022): 

1. Processo de decisão: em geral, os algoritmos são usados para fazer 

previsões ou classificações. Com base em dados de entrada (que podem 

ser rotulados ou não) o algoritmo gera uma estimativa sobre um padrão 

presente nesses dados; 
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2. Função de erro: a função de erro avalia a previsão feita pelo modelo. 

Quando há exemplos conhecidos, essa função realiza uma comparação 

entre o resultado previsto e o valor real, permitindo medir a precisão do 

modelo. 

3. Processo de otimização do modelo: caso o modelo possa se ajustar 

melhor aos dados do conjunto de treinamento, os pesos são modificados 

para reduzir a diferença entre os exemplos conhecidos e as estimativas do 

modelo. Esse processo iterativo de avaliar e otimizar é repetido diversas 

vezes, com o algoritmo atualizando os pesos de forma autônoma até 

atingir um nível de precisão satisfatório. 

Entre as diversas aplicações do Aprendizado de Máquina, destaca-se a 

detecção de anomalias. Modelos de AM são particularmente eficazes nesse tipo de 

tarefa justamente por sua capacidade de aprender padrões complexos e reconhecer 

desvios sutis, muitas vezes imperceptíveis por métodos tradicionais de análise. 

 

2.3.1 Algoritmos de detecção de anomalia 

Uma anomalia pode ser entendida como uma mudança inesperada que exibe 

comportamentos significativamente divergentes em comparação com outras 

observações dentro de um determinado período (Ersoy; Erşahin; Kılınç, 2021). Em 

outras palavras, a detecção de anomalias consiste em identificar outliers em um 

conjunto de dados que apresentam características consideravelmente diferentes dos 

demais pontos, categorizando-os como desvios em relação ao padrão normal. A 

Figura 2-20 ilustra anomalias em um conjunto de dados bidimensional. Os dados 

normais possuem duas regiões, N1 e N2, já que a maior parte das observações caem 

nessas regiões. Pontos que estão suficientemente longe dessas regiões, como os 

pontos o1 e o2 e os da região O3 são anomalias. 
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Figura 2-20 Exemplo de anomalias em um conjunto de dados bidimensional. 

 

Fonte: CHANDOLA; BANERJEE; KUMAR (2009) 

 

A obtenção de dados rotulados, sejam eles normais ou anômalos, de forma 

precisa e representativa, é frequentemente um processo caro e trabalhoso, 

especialmente por depender da expertise de especialistas humanos. Além disso, 

rotular instâncias anômalas é particularmente desafiador, pois as anomalias tendem 

a ser dinâmicas, com novos tipos surgindo sem registros prévios. Em contextos 

críticos, como a segurança aérea, as anomalias geralmente correspondem a 

eventos raros e catastróficos, o que dificulta ainda mais sua identificação e rotulação 

(Chandola; Banerjee; Kumar, 2009). Ainda segundo os autores, a rotulação pode 

operar nos três modos seguintes: 

1. Algoritmos supervisionados: requer dados rotulados para classes normais e 

anômalas. Modelos preditivos são treinados para diferenciar as classes. Porém, há 

dois desafios principais: 

• Desequilíbrio entre instâncias normais (mais numerosas) e anômalas. 

• Dificuldade em obter rótulos representativos para anomalias. 

Algumas técnicas usam anomalias artificiais para contornar essa limitação. 

Dentre os algoritmos conhecidos de aprendizado supervisionado para 

detecção de anomalia podemos citar SVMs (Support Vector Machines), CNNs 

(Convolutional Neural Networks), RNNs (Recurrent Neural Networks), LSTM (Long 

Short-Term Memory), regressão logística, NB (Nave Bayes), KNNs (K-Nearest 

Neighbors) supervisionado, RF (Random Forests), árvores de decisão, etc (Kwon et 

al., 2019). 

2. Algoritmos semi-supervisionados: treina o modelo apenas com instâncias 

normais, sendo mais flexível que a abordagem supervisionada. O modelo identifica 
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desvios do comportamento normal como anomalias. Rótulos de anomalias não são 

necessários, mas isso limita a capacidade de capturar comportamentos anômalos 

mais complexos. Como exemplos podemos citar o SVM de classe única, 

autoencoders, isolation forest adaptado, dentre outros. 

3. Algoritmos não-supervisionados: não requer dados rotulados, sendo a mais 

amplamente aplicável. Assume que instâncias normais são muito mais frequentes 

que as anômalas. Se essa suposição estiver errada, ocorre alta taxa de alarmes 

falsos. Técnicas semi-supervisionadas podem ser adaptadas para operar de forma 

não-supervisionada, desde que as anomalias sejam raras no conjunto de dados. 

Podemos subdividir os exemplos em: 

▪ Algoritmos de agrupamento de dados: DBSCAN (Density-Based Spatial 

Clustering of Applications with Noise) e o K-means; 

▪ Modelos estatísticos: GMMs (Gaussian Mixture Models); 

▪ Redes neurais: Autoenconders e GANs (Generative Adversarial Networks); 

▪ Modelos baseados em distância: KNN e Isolation Forest. 

No presente trabalho, o foco é dado ao DBSCAN e aos autoencoders, visto 

que são os algoritmos utilizados. 

 

2.3.1.1 Agrupamento de dados 

Algoritmos de agrupamento de dados são um tipo de técnica de 

aprendizagem de máquina não supervisionada usada para agrupar pontos similares 

em clusters. O objetivo principal é encontrar agrupamentos naturais dos dados sem 

conhecimento prévio algum de classificação ou de categorias às quais os pontos 

pertençam (Paik; Chung; Kim, 2023) 

Agrupamento de dados é amplamente utilizado para detecção de anomalias 

em diferentes contextos e fazem as seguintes suposições (Toshniwal et al., 2020): 

1. Pertinência a clusters: instâncias de dados normais pertencem a um cluster, 

enquanto anomalias não pertencem a nenhum cluster nos dados. 

2. Proximidade ao centroide: instâncias normais estão próximas ao centroide do 

cluster mais próximo, enquanto as anomalias estão distantes de seu centroide 

mais próximo. 

3. Tamanho e densidade do cluster: instâncias normais pertencem a clusters 

grandes e densos, enquanto as anomalias pertencem a clusters pequenos ou 

esparsos. 
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Existem diversos algoritmos de agrupamento de dados, sendo os mais 

utilizados aqueles baseados em densidade e partição. Entre eles, destacam-se o 

DBSCAN e o K-means, respectivamente (Paik; Chung; Kim, 2023). Ainda segundo 

os autores, o DBSCAN é um algoritmo baseado na densidade de pontos capaz de 

identificar agrupamentos com formatos arbitrários sem a necessidade de especificar 

previamente o número de clusters. Ele funciona agrupando pontos que estão 

próximos uns dos outros e separando os outliers, com base na definição de uma 

vizinhança em torno dos pontos e na densidade local. O algoritmo possui dois 

parâmetros principais: 

• Épsilon (ε): determina o raio da vizinhança ao redor de cada ponto. 

• Min_samples: define o número mínimo de pontos necessários para que 

uma região seja considerada densa e, consequentemente, formar um 

cluster. 

Em resumo, o DBSCAN se baseia em três conceitos principais: 

• Pontos centrais: são pontos que possuem pelo menos um número mínimo de 

vizinhos (min_samples) dentro de um raio especificado (épsilon). 

• Pontos de fronteira: são pontos que estão dentro da distância ε de um ponto 

central, mas que, por si só, não possuem vizinhos suficientes para serem 

considerados pontos centrais. 

• Pontos de ruído: são pontos que não são nem centrais nem de fronteira. Eles 

estão distantes de qualquer cluster e, portanto, não são incluídos em nenhum 

agrupamento. 

A Figura 2-21 ilustra esses três conceitos. 
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Figura 2-21 Exemplo do agrupamento com o DBSCAN. 

 

Fonte: adaptado de KUMAR (2024). 

 

2.3.2 Breve introdução às Redes Neurais Artificiais 

As Redes Neurais Artificiais (ANNs - Artificial Neural Networks) são 

ferramentas bastante consolidadas, com origens que remontam a década de 1950 

(Rosenblatt, 1958). São modelos computacionais projetados para capturar relações 

não-lineares complexas entre variáveis, utilizando conjuntos de dados de 

treinamento. Sua arquitetura básica é composta por uma camada de entrada, um 

número variável de camadas ocultas e uma camada de saída. Cada camada é 

formada por um conjunto de neurônios, que recebem entradas provenientes 

diretamente dos dados ou das ativações de neurônios em camadas anteriores 

(Tautz-Weinert; Watson, 2016).  

As ANNs apresentam uma ampla variedade de tipos, mas todas compartilham 

o fato de serem algoritmos de aprendizagem de máquina utilizados para tarefas, a 

princípio, de regressão e classificação (aprendizado supervisionado) ou para 

aprendizado de representações (não supervisionado) (Helbing; Ritter, 2018). Os 

tipos mais comuns de ANNs para aprendizado supervisionado são a Rede Neural 

Multicamadas (MLP - Multilayer Perceptron), a Rede Neural Convolucional (CNN) e 
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a Rede Neural Recorrente (RNN). Para aprendizado não supervisionado, os tipos 

mais comuns são a Máquina de Boltzmann Restrita (RBM - Restricted Boltzmann 

Machine) e o autoencoder. Além disso, a literatura apresenta várias combinações e 

subtipos dessas redes (Lecun; Bengio; Hinton, 2015).  

O foco geral do aprendizado de máquina está na representação dos dados de 

entrada e na generalização dos padrões aprendidos para uso em dados futuros 

ainda não observados (Najafabadi et al., 2015).  

O processo de aprendizado da rede envolve o ajuste dos pesos associados 

às conexões entre os neurônios, normalmente através de algoritmos como o 

backpropagation, que atualiza os pesos com base no gradiente do erro calculado na 

saída. Cada neurônio utiliza uma função de transferência linear ou não-linear para 

combinar as entradas recebidas e aplica uma função de ativação, como ReLU, 

sigmoide ou tangente hiperbólica, para determinar a saída a ser propagada para a 

próxima camada. Entre as arquiteturas mais comuns estão as redes feedforward, 

caracterizadas pelo fluxo unidirecional de informações, da entrada para a saída. 

Estas contrastam com as RNNs, que possuem conexões retroalimentadas, 

permitindo o processamento de dados sequenciais ou com dependências temporais. 

 

2.3.2.1 MLP 

Um MultiLayer Perceptron é uma rede feedforward, composta por uma 

camada de entrada, uma ou mais camadas ocultas e uma camada de saída (Haykin, 

1994). Cada camada é formada por vários nós, cada um deles conectados a todos 

os nós da camada subsequente por meio de ligações ponderadas com números 

reais, conforme ilustrado na Figura 2-22. 



66 

 

 
 

Figura 2-22 Esquema de um MLP. 

 

Fonte: Adaptado de CHAN et al. (2023). 

 

Os dados de entrada 𝑥𝑖 são transmitidos para os nós das camadas ocultas 

através de conexões ponderadas. Em cada nó oculto ℎ𝑗, as entradas recebidas são 

somadas, cada uma multiplicada por um peso específico. Isto corresponde ao 

teorema da aproximação universal e pode ser expresso por 

𝑓𝑗(𝑥1, … , 𝑥𝑛;  𝑤𝑖𝑗, … , 𝑤𝑛𝑗, 𝑏𝑗) =  ∑  𝑤𝑖𝑗 𝑥𝑖 +   𝑏𝑗
𝑛
𝑖=1 , (20) 

 
em que 𝑓𝑗 é a saída do nó j, 𝑥𝑖 são suas entradas, 𝑤𝑖𝑗 são os pesos das conexões 

com a camada anterior e 𝑏𝑗 é o viés. Os resultados dessas transformações passam 

por uma função de ativação não-linear, geralmente uma função sigmoide, tangente 

hiperbólica ou a chamada unidade linear retificada (ReLU). Por exemplo, a função 

sigmoide, frequentemente usada, transforma a saída do nó j conforme a Equação 

(21): 

𝑔(𝑓𝑗) =  
𝑒

𝑓𝑗

1+𝑒
𝑓𝑗

. (21) 
 

Após essa transformação, os valores são encaminhados para todos os nós da 

camada subsequente por meio de conexões ponderadas, e o processo continua até 

que os dados transformados alcancem a camada de saída e passem pela última 

função de ativação. Esses valores constituem a saída da rede. Em resumo, um MLP 

é uma função não-linear 𝑓: 𝑅𝑛 → 𝑅𝑚, em que 𝑛 é a dimensão dos dados de entrada 
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e 𝑚 a dimensão dos dados de saída. Treinar um MLP significa ajustar seus pesos e 

vieses para que a saída da rede sobre um conjunto de treinamento aproxime os 

valores verdadeiros (as rotulações) o máximo possível (Helbing; Ritter, 2018). 

Normalmente o erro quadrático 𝜌𝑞 é utilizado como medida de erro de predição. 

Dado o rótulo 𝑜 (𝑥1, … , 𝑥𝑛) ∈ 𝑅𝑛 , o erro quadrático 𝜌𝑞 da saída 𝑜̃ (𝑥1, … , 𝑥𝑚) ∈ 𝑅𝑚 é 

calculado como 

𝜌𝑞 =  
1

2
∑ (𝑜𝑘 − 𝑜̃𝑘)²𝑚

𝑘=1 , (22) 
 

em que 𝑜𝑘 representa os valores verdadeiros, 𝑜̃𝑘 as previsões da rede e o fator de 
1

2
 

é usado para facilitar na derivação de certas propriedades.  

O algoritmo de backpropagation é utilizado para calcular o gradiente do erro 

quadrático em relação aos pesos e vieses da rede. Esses gradientes são então 

aplicados em um algoritmo de otimização, como o gradiente descendente 

estocástico, para ajustar os pesos e minimizar o erro de forma eficiente. Um 

desenho esquemático sobre o treinamento de um MLP é apresentado na Figura 

2-23. 

 

Figura 2-23 Diagrama de um processo de treinamento de um MLP. 

 

Fonte: adaptado de CHAN et al. (2023) 

 

O treinamento ocorre ao alimentar a ANN com uma sequência de entradas de 

dados de forma iterativa. No aprendizado supervisionado, cada entrada inclui os 
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dados e seu rótulo correspondente. Já no aprendizado não supervisionado, o rótulo 

é simplesmente o próprio dado de entrada. A saída da rede é comparada ao rótulo, 

e a diferença é processada por uma função de perda. Os gradientes dessa perda 

são calculados para cada parâmetro 𝜃 usando backpropagation. Por fim, os 

parâmetros 𝜃 são ajustados, geralmente com métodos como o gradiente 

descendente estocástico (Helbing; Ritter, 2018). 

 Frequentemente, os pesos do MLP são inicializados com valores aleatórios 

no início do treinamento e, em seguida, otimizados iterativamente. No entanto, 

descobriu-se que esse procedimento leva a resultados progressivamente piores à 

medida que o MLP se torna mais profundo (ou seja, com mais camadas). Isso ocorre 

devido à natureza do algoritmo do backpropagation, no qual os gradientes tendem a 

diminuir quanto mais distante sua camada está da camada de saída. Este fenômeno 

é chamado de o problema dos “vanishing gradients” (Schmidhuber, 2015). Essa 

dificuldade em treinar MLPs com mais de algumas camadas pode explicar por que 

muitas aplicações utilizam apenas uma camada oculta. 

Em resumo, os MLPs possuem a capacidade de representação de funções 

não-lineares, sendo fundamentos no teorema da aproximação universal (Hornik; 

Stinchcome; White, 1989). O teorema da aproximação universal estabelece que uma 

rede neural com pelo menos uma camada oculta e um número suficiente de 

neurônios, utilizando uma função de ativação não-linear pode aproximar, com um 

grau arbitrário de precisão, qualquer função contínua definida em um espaço de 

dimensão finita. Essa propriedade torna os MLPs ferramentas extremamente 

poderosas, pois são capazes de capturar a complexidade de relações não lineares 

em dados reais, independentemente do formato ou da origem dos dados. No 

entanto, o teorema não fornece garantias sobre a eficiência computacional ou o 

número de neurônios necessários para alcançar essa aproximação, o que é um 

ponto crítico na prática. 

 

2.3.2.2 Autoenconders 

Autoencoders são um tipo especial de rede neural feedforward, podendo ser 

semi-supervisionada ou não supervisionada, composta por uma camada de entrada 

e uma camada oculta, ambas totalmente conectadas, como apresentado na Figura 

2-24. A principal aplicação do autoencoder é capturar aspectos chave dos dados 

fornecidos. Assim, ele é treinado para reconstruir os dados de entrada, e, para isso, 
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estes são mapeados para a camada oculta (ou seja, os dados são "codificados"). 

Esta camada normalmente contém menos nós do que a camada de entrada; 

portanto, há uma compressão dos dados.  

Dada a função de ativação 𝑔 e o vetor de entrada 𝑥 de dimensão 𝑛, a 

codificação ℎ(𝑥), de dimensão 𝑚, é calculada como: 

ℎ𝑗(𝑥) = 𝑔(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗), 𝑗 ∈ 1, … , 𝑚

𝑛

𝑖=1

, (23) 
 

 

em que 𝑤𝑖𝑗 são os pesos das conexões com a camada anterior e 𝑏𝑗 é o viés. Da 

camada latente, os dados transformados vão até a camada de saída, onde os dados 

são retransformados (decodificados) e o erro quadrático de reconstrução entre a 

entrada e a saída é computado. Assim, a saída do autoenconder durante o 

treinamento pode ser calculada por 

𝑜̃𝑖(𝑥) = 𝑔(∑ 𝑤𝑗𝑖′ℎ𝑗(𝑥) + 𝑏𝑖′), 𝑖 ∈ 1, … , 𝑛𝑚
𝑗=1 , (24) 

 
e o erro de reconstrução é dado por 

𝜌𝑞 = ∑ (𝑜̃𝑖(𝑥) − 𝑥)²𝑛
𝑖=1 , (25) 

 
 

Figura 2-24 Esquema de um autoenconder. 
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Adaptado de AGGARWAL (2023). 

Durante o processo de treino, o autoenconder aprende a comprimir os dados 

de entrada de modo a preservar o máximo de informação possível. Deste modo, o 

autoenconder é uma variante não-linear do algoritmo de Análise de Componentes 

Principais (PCA). Vale notar que a composição dos codificadores tem a mesma 

estrutura de um MLP, mas a rede é treinada de maneira incremental e sem rótulos 

(Helbing; Ritter, 2018). 

Existem diversos pacotes de software que permitem implementar as ANNs 

“rasas” em linguagens de programação populares. Exemplos incluem o pacote do R 

(Günther; Fritsch, 2010), o módulo Scikit-learn do Python (Pedregosa et al., 2011) e 

o Neural Network Toolbox do Matlab (Hudson et al., 1992). 

 Por outro lado, as aplicações de Deep Learning demandam mais recursos 

computacionais, pois consistem em muitos neurônios interconectados e geralmente 

requerem grandes volumes de dados para treinamento. Para atender a essas 

demandas, surgiram frameworks especializados. A maioria desses frameworks 

utiliza um backend em C++ combinado com APIs para linguagens amplamente 

usadas, como Python, permitindo que os analistas de dados se concentrem na 

modelagem, sem se preocupar com detalhes técnicos, como o uso de GPUs via 

APIs como CUDA (Helbing; Ritter, 2018). 

No presente trabalho, módulos como o Scikit-learn do Python e os 

frameworks do TensorFlow, Pytorch e Keras são utilizados. A plataforma utilizada 

para execução dos códigos em Python foi o VSCode e o Google Colab, esta última 

sendo uma plataforma baseada na nuvem, que oferece acesso a GPUs e TPUs.  

 

3.3.2.2.1. Autoencoders variacionais 

O Autoencoder Variacional (VAE) foi proposto por KINGMA & WELLING 

(2013)  e é baseado na inferência variacional Bayesiana. Seu princípio fundamental 

é mapear um conjunto de dados para uma distribuição Gaussiana por meio de um 

codificador (encoder). A partir dessa distribuição, novas amostras são geradas e 

utilizadas como entrada para o decodificador (decoder), que tem a função de 

reconstruir os dados originais. 

A estrutura do VAE é ilustrada na Figura 3.23, em que E e D representam o 

encoder e o decoder, respectivamente. 
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Figura 2-25 Estrutura de um autoencoder variacional. 

 

Fonte: LI; PEI; LI (2023) 

 

Os símbolos ⊗ e ⊕ representam, respectivamente, a multiplicação e a adição 

elemento a elemento entre vetores. O codificador recebe X como entrada para 

calcular μ e σ, introduzindo uma distribuição Gaussiana ε para obter a codificação 

probabilística Z. Em seguida, o decodificador processa Z para reconstruir X (Li; Pei; 

Li, 2023). 

Supondo que existe um conjunto de funções capazes de gerar X a partir de Z 

(em que cada função é determinada a partir de um parâmetro θ), o objetivo da 

otimização do VAE é maximizar a probabilidade P(x) de geração de X, ajustando θ 

sob a premissa de que Z é amostrado. P(x) é dado por 

𝑃(𝑥) =  ∫ 𝑓(𝑥|𝑧)𝑃(𝑧)𝑑𝑧.  (26) 
 

 

O VAE obtém a distribuição de probabilidade da variável latente Z ao 

adicionar uma rede de codificação que atua como um mecanismo de inferência 

porque aproxima a relação entre os dados observáveis (X) e as variáveis latentes (Z) 

escondidas no modelo. Para isso, é introduzida a função Q(z|x), responsável por 

atuar como a rede de codificação. O objetivo dessa função é determinar a 

distribuição da variável latente Z que permite reconstruir X, dado X como entrada. 
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Queremos que Q(z|x) seja o mais próximo possível da distribuição ideal P(z|x). Para 

medir essa similaridade, utiliza-se a divergência de Kullback-Leibler, representada 

por D, conforme apresentado na Equação (27). 

𝐷[𝑄((𝑧|𝑥) || P((𝑧|𝑥)]   = 𝐸𝑄((𝑧|𝑥))[log 𝑄((𝑧|𝑥)) − 𝑙𝑜𝑔𝑃((𝑧|𝑥))]  (27) 
 

 

Em seguida, P(x|z) é expandido utilizando a fórmula de Bayes, resultando na 

fórmula (28) após simplificações. A partir disso, obtém-se a função de perda do VAE, 

apresentada na Equação (29), 

𝑙𝑜𝑔𝑃(𝑥) −  𝐷[𝑄((𝑧|𝑥) || P((𝑧|𝑥)]  =  𝐸𝑄((𝑧|𝑥))[log 𝑃((𝑥|𝑧)) −

𝐷[𝑄((𝑧|𝑥) || P(𝑧)]  
(28) 

 

𝐽𝑉𝐴𝐸 =  𝐸𝑄((𝑧|𝑥))[log 𝑃((𝑥|𝑧)) − 𝐷[𝑄((𝑧|𝑥) || P(𝑧)]  . (29) 
 

 

A função de perda do VAE é composta por duas partes: a primeira impõe uma 

restrição à variável latente Z, garantindo que siga uma distribuição padrão; a 

segunda busca minimizar a diferença entre os dados reconstruídos e os dados de 

entrada, tornando o resultado final o mais próximo possível dos dados originais. 

 

2.3.2.3 Redes Kolmogorov-Arnold 

Ao longo dos últimos anos, diversos autores têm proposto alternativas aos 

MLPs, cada uma projetada para lidar com tipos específicos de problemas e dados, 

ampliando a aplicabilidade das redes neurais tradicionais. Entre essas alternativas 

destacam-se as já mencionadas CNNs e as RNNs. As CNNs são projetadas para 

explorar as relações espaciais entre os dados de entrada, sendo amplamente 

utilizadas em tarefas como reconhecimento de imagens e análise de vídeos 

(Krizhevsky; Sutskever; Hinton, 2013). Por outro lado, as RNNs são especialmente 

adequadas para o processamento de dados sequenciais, como séries temporais ou 

textos em linguagem natural, devido à sua capacidade de capturar dependências 

temporais entre os elementos da sequência (Graves; Mohamed; Hinton, 2013). 

Em 2024, LIU et al. propuseram uma nova arquitetura de redes neurais, 

denominada Redes Kolmogorov-Arnold (KANs), que se destacam como uma 

abordagem inovadora frente aos modelos tradicionais, como os MLPs. 

Diferentemente dessas redes especializadas, as KANs oferecem uma abordagem 
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mais geral, fundamentada no teorema de Kolmogorov-Arnold, que endereça a 

representação de funções multivariáveis usando funções mais simples, de apenas 

uma variável. O teorema de Vladimir Arnold e Andrey Kolmogorov estabelece que 

sendo 𝑓 uma função contínua, multivariável em um domínio fechado, então 𝑓 pode 

ser escrita como uma composição finita de funções contínuas de uma única variável 

e a operação da adição (Kolmogorov, 1957). Mais especificamente, sendo 𝑓: [0,1] →

 𝑅, 

𝑓(𝑥) = 𝑓(𝑥1, … , 𝑥𝑛) = ∑ Φ𝑞(∑ Φ𝑞,𝑝(𝑥𝑝))𝑛
𝑝=1

2𝑛+1
𝑞=1 , (30) 

 
em que Φ𝑞,𝑝: [0,1] →  𝑅 e Φ𝑞: 𝑅 →  𝑅.  

No campo do aprendizado de máquina, a aproximação de funções 

desempenha um papel importante, e o teorema de Kolmogorov-Arnold poderia, em 

teoria, ter aplicações significativas. No entanto, na prática, as funções univariadas 

resultantes da decomposição podem ser não suaves ou até mesmo apresentar um 

comportamento irregular, tornando-as extremamente difíceis de aprender. Por essa 

razão, apesar de sua robustez teórica, o teorema foi amplamente considerado 

impraticável para aplicações em aprendizado de máquina, sendo efetivamente 

relegado a um papel marginal na área (Girosi; Poggio, 1989). Todavia, para resolver 

tais limitações LIU et al. (2024) não aderiram estritamente à formulação original. 

Inicialmente, eles partiram do princípio de que em um problema de aprendizado 

supervisionado, tem-se pares de entrada-saída {𝑥𝑖, 𝑦𝑖}, em que se quer encontrar 

uma função 𝑓 tal que 𝑦𝑖  ≈ 𝑓(𝑥𝑖). De acordo com a Equação (30), isto pode ser feito 

caso se consiga determinar funções univariadas apropriadas Φ𝑞,𝑝 e Φ𝑞. Com base 

nisso, a ideia dos autores foi a de projetar uma rede neural onde todas as funções a 

serem aprendidas seriam univariadas e parametrizadas como uma curva B-spline, 

com coeficientes ajustáveis, seguindo o teorema de Kolmogorov-Arnold. Uma curva 

B-spline pode ser representada por 

𝑠𝑝𝑙𝑖𝑛𝑒 (𝑥) =  ∑ 𝑐𝑖𝐵𝑖(𝑥)𝑖 , (31) 
 

em que 𝑐𝑖 são coeficientes que determinam o peso de cada função base e 𝐵𝑖(𝑥) são 

funções que determinam como cada intervalo do domínio contribui para a curva final. 

Essas funções base são definidas em termos de nós, que dividem o domínio em 

intervalos específicos. Entretanto, como mencionado, tal rede seria muito simples 

para aproximar funções arbitrárias com apenas splines.  
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Eis que entra a contribuição dos autores ao fazer uma analogia entre MLP e 

KAN. No MLP uma camada é composta por transformações lineares seguidas por 

funções de ativação não-lineares, podendo-se empilhar várias camadas para tornar 

a rede mais profunda. Uma camada KAN com entradas de dimensões  𝑛𝑖𝑛 e saídas 

de dimensões  𝑛𝑜𝑢𝑡 é representada por uma matriz de funções univariadas, 

Φ = {Φ𝑞,𝑝}, 𝑝 = 1,2, … ,  𝑛𝑖𝑛, 𝑞 = 1,2, … ,  𝑛𝑜𝑢𝑡, (32) 
 

em que as funções Φ𝑞,𝑝 possuem parâmetros treináveis. Sendo assim, 

• As funções internas formam uma camada KAN com 𝑛𝑖𝑛 = 𝑛 e  𝑛𝑜𝑢𝑡 = 2𝑛 + 1; 

• As funções externas formam outra camada KAN com  𝑛𝑖𝑛 = 2𝑛 + 1 e  𝑛𝑜𝑢𝑡 =

1. 

Isto significa que as representações descritas na Equação (30) podem ser 

vistas como a composição de duas camadas KAN. Os autores propõem então 

generalizar a rede para largura e profundidades arbitrárias, ao invés de duas 

camadas e um número de termos 2𝑛 + 1. 

Em essência a KAN é uma rede neural que aplica funções de ativação 

aprendíveis nas arestas, ao invés de funções de ativação fixas nos nós, como nos 

MLPs. Isto permite que qualquer parâmetro de peso seja substituído por uma função 

univariada. Cada nó no KAN soma as funções sem aplicar nenhuma transformação 

não-linear, ao contrário do MLP. Além disso, a flexibilidade das splines permite 

modelar de maneira adaptativa complexas relações nos dados, ajustando a forma 

para minimizar o erro de aproximação e, consequentemente, melhorando a 

capacidade da rede de aprender determinados padrões de alta dimensão. A Figura 

2-26 apresenta as principais diferenças entre o MLP e a KAN.  
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Figura 2-26 Principais diferenças entre MLP e KAN. 

 

Fonte: adaptado de LIU et al. (2024) 

 

2.3.2.4. Métricas de algoritmos de classificação 

Neste trabalho, a KAN é empregada como algoritmo de classificação e seu 

desempenho é avaliado por meio de diferentes métricas. Além da acurácia, são 

consideradas outras métricas relevantes, com o objetivo de proporcionar uma 

análise mais abrangente da performance do modelo. As métricas adotadas são 

descritas a seguir. 

1. Acurácia 

A acurácia mede, de forma simples, a proporção de previsões corretas 

realizadas por um modelo. Ela é definida como a razão entre o número de acertos e 

o total de previsões realizadas, e é dada por 

𝐴𝑐𝑢𝑟á𝑐𝑖𝑎 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, 

 
(33) 

 

em que: 

• TP - verdadeiro positivo: prevê positivo e é positivo; 

• TN - verdadeiro negativo: prevê negativo e é negativo; 

• FP - falso positivo: prevê positivo e é negativo; 

• FN – falso negativo: prevê negativo e é positivo. 
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A acurácia é uma métrica adequada para conjuntos de dados balanceados, 

mas pode ser enganosa em cenários desbalanceados, pois tende a mascarar o real 

desempenho do modelo. Por exemplo, em um problema binário com 99 instâncias 

da classe 0 e apenas 1 da classe 1, um modelo que classifica todas as amostras 

como pertencentes à classe 0 atingirá 99% de acurácia. Embora esse valor pareça 

alto, o modelo falha completamente em identificar a classe 1 — que, em aplicações 

reais, costuma representar eventos críticos, como falhas, fraudes com cartão de 

crédito ou spam em e-mails. Nesses casos, outras métricas são mais indicadas para 

avaliar a performance do modelo de forma mais apropriada. 

 

2. Precisão 

Explica quantos dos casos corretamente previstos como TP de fato se 

tornaram positivos. É a razão entre os verdadeiros positivos e o total de instâncias 

classificadas como positivas, 

𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. 

 
(34) 

 

 

Essa métrica é especialmente relevante em cenários em que o custo de uma falsa 

detecção positiva é elevado, como em sistemas de detecção de fraudes. 

 

3. Recall (sensibilidade) 

Explica quantos casos de verdadeiros positivos foram corretamente 

identificados. É uma métrica interessante para quando falsos negativos são mais 

preocupantes do que falsos positivos, como por exemplo em diagnósticos médicos. 

Prever que um paciente está com uma doença que ele não está é menos crítico do 

que deixar passar uma doença que existe. Recall é dada por 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. 

 
(35) 

 

 

4. F1-score 

Combina precisão e recall, e é dada pela expressão 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2
𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙
. 

 
(36) 
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O F1-score pune valores extremos. Geralmente é relevante quando falsos negativos 

e falsos positivos são igualmente custosos. 

 

5. AUC (área sob a curva) ROC 

A curva ROC (Receiver Operating Characteristic) é uma representação gráfica 

que avalia o desempenho de um modelo de classificação, plotando a taxa de 

verdadeiros positivos (sensibilidade) contra a taxa de falsos positivos em diferentes 

limiares de decisão. A métrica associada à curva ROC é a AUC (Area Under the 

Curve), que quantifica a capacidade do modelo de distinguir entre as classes. Por 

exemplo: 

• Um modelo com AUC = 1 possui separação perfeita entre as classes. 

• Um AUC = 0,5 indica desempenho equivalente ao acaso, ou seja, o 

modelo não tem capacidade discriminativa. 

• Já um AUC = 0 representa um classificador que inverte totalmente as 

previsões (erra tudo). 

A Figura 2-27 ilustra dois exemplos de área sob a curva ROC, com valores de 

0,5 e 0,93, evidenciando a diferença entre um modelo sem capacidade de 

discriminação e outro com bom desempenho. 

Figura 2-27 Exemplos de curva ROC e respectivos valores de AUC. 

 
Fonte: Classification: ROC and AUC  |  Machine Learning  |  Google for Developers (2024) 

 

2.3.3 Considerações da fundamentação teórica 

Este capítulo apresentou os principais conceitos teóricos que sustentam a 

proposta desenvolvida nesta dissertação. Inicialmente, foram discutidos os 

fundamentos da energia eólica e a importância das curvas de potência como 

ferramenta essencial para o monitoramento e avaliação do desempenho de turbinas, 

com destaque para o papel dos sistemas de aquisição de dados (SCADA). A partir 
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daí, exploraram-se os paradigmas do Aprendizado de Máquina e suas aplicações na 

detecção de anomalias. Por fim, foram apresentados os principais modelos de redes 

neurais utilizados em tarefas de classificação e modelagem de comportamento. 

Todos esses conceitos convergem para a construção da solução proposta neste 

trabalho, que visa automatizar a limpeza de curvas de potência por meio de técnicas 

de aprendizado de máquina. 
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3 REVISÃO DA LITERATURA 

3.1 LIMPEZA DA CURVA DE POTÊNCIA 

 
O SCADA desempenha um papel crucial no monitoramento da condição e do 

desempenho das turbinas eólicas (CAMBRON et al., 2016).De acordo com KUSIAK 

(2016), o monitoramento orientado por dados pode reduzir os custos de manutenção 

de um parque eólico em até 10%. O autor defende a importância do acesso aberto a 

dados sobre o desempenho das turbinas eólicas para otimizar o funcionamento dos 

parques através da mineração de dados. KUSIAK enfatiza que a indústria energética 

poderia melhorar significativamente sua eficiência e inovação ao permitir que 

pesquisadores tenham acesso aos dados.  

No geral, um processo de limpeza de uma curva de potência envolve 

distinguir corretamente os dados considerados normais dos anômalos, de forma 

eficiente, classificando os últimos corretamente (WANG et al., 2019). Diversos 

estudos têm explorado métodos variados para detecção e limpeza de dados 

anômalos em uma curva de potência. Nas próximas seções, os estudos são 

divididos em três grandes grupos: aqueles que aplicam métodos baseados em 

regressão e modelos estatísticos, os que utilizam algoritmos baseados em 

agrupamento de dados e análise de distância e os que utilizam como base métodos 

de aprendizado de máquina. 

 

▪ Métodos baseados em regressão e modelos estatísticos 

TASLIMI-RENANI et al. (2016) propuseram um modelo paramétrico baseado 

na tangente hiperbólica (MHTan) e empregaram o erro quadrático mínimo e a 

estimativa de máxima verossimilhança para estimar os parâmetros. Também 

avaliaram a utilização de outros modelos paramétricos e não-paramétricos e 

compararam o desempenho de todos os modelos com dados reais coletados de um 

parque eólico do Irã.  

VILLANUEVA & FEIJÓO (2018) fizeram comparações entre diferentes 

funções logísticas, variando a quantidade de parâmetros utilizados, para modelagem 

de curvas de potência comerciais. Cada função foi testada com sete turbinas 

diferentes. Erros percentuais absolutos, erros quadráticos médios e erros absolutos 

foram calculados. As funções com 3 e 5 parâmetros demonstraram ser o melhor 

compromisso entre quantidade de parâmetros e erros calculados.  
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WANG et al. (2018) propuseram dois modelos de regressão para modelagem 

de curvas de potência: HSRM (Heteroscedastic Spline Regression Model) e RSRM 

(Robust Spline Regression Model). Para avaliação dos modelos, dados de duas 

turbinas foram utilizados, em duas estações do ano, usando como métrica o erro 

médio absoluto e o erro médio quadrático. O desempenho dos modelos propostos 

foi comparado com outros modelos da literatura e apresentou erros menores.  

MEHRJOO; JAFARI JOZANI; PAWLAK (2020) propuseram dois métodos 

baseados no método de inclinação e no método de regressão por splines 

monotônica para modelar a curva. Os algoritmos foram testados com dados de 

quatro turbinas de um parque eólico em Manitoba, no Canadá. Utilizando-se de 

métricas como o erro quadrático médio e o erro médio normalizado percentual 

absoluto, concluiu-se que o método de regressão por splines teve melhor 

desempenho.  

MARČIUKAITIS et al. (2017) apresentaram um modelo de regressão não-

linear e usaram validação cruzada para estimar a precisão. Este modelo foi aplicado 

a uma turbina do parque eólico Seirjai na Lituânia.  

JAVADI et al. (2018) empregaram um algoritmo linear por partes, baseado no 

programa Statistical Analysis Software para descrever a curva de potência e eliminar 

os dados anômalos. O algoritmo foi testado usando dados de uma turbina eólica 

real.  

QIAO et al. (2024) propõem uma metodologia de modelagem multivariada de 

curvas de potência de turbinas eólicas que considera as diferenças de controle por 

segmentos e a autodependência de curto prazo dos parâmetros ambientais. 

Inicialmente, é apresentada uma técnica de limpeza de dados anômalos baseada 

em correspondência temporal e algoritmo de quartis bidirecional. Em seguida, é 

construído um modelo multivariado baseado na regressão de piece-wise de 

múltiplos parâmetros ambientais, aplicado à avaliação de degradação de 

desempenho da turbina. Os resultados indicam que a abordagem de limpeza 

proposta é eficaz na identificação de regiões de transição entre dados normais e 

anômalos, e que o modelo multivariado melhora a acurácia da modelagem e da 

avaliação de desempenho sob diferentes condições de recurso eólico. 
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▪  Métodos baseados em agrupamento de dados e análise de distância 

KUSIAK & VERMA (2013) construíram uma curva de referência baseada em 

5 anos de dados. O terceiro e quarto momento estatístico (curtose e skewness) 

foram calculados como métricas para descrever o formato das curvas. Para 

identificação de outliers sugeriram um algoritmo multivariável baseado em 

agrupamento k-means e distância de Mahalanobis.   

YESILBUDAK (2016) desenvolveu um método para detecção de outliers em 

três níveis: agrupamento de dados por k-means, baseada na distância Euclidiana ao 

quadrado e de Manhattan, cálculo da forma da curva para comparação das duas 

clusterizações e filtragem dos dados usando a distância de Mahalanobis como 

limiar. A distância Euclidiana ao quadrado resultou em um coeficiente de Silhouette 

maior quando comparado ao de Manhattan, mas ao final dos três níveis, o autor foi 

bem-sucedido ao obter as curvas de referência.  

Há na literatura, ainda, o caso da modelagem do formato dos outliers, ao 

invés da curva. É o caso de SHEN; FU; ZHOU (2019), que classificaram os outliers 

da curva de potência em quatro categorias: os da base da curva, os do meio, os 

fixos do topo e os esparsos. A partir das formas e distribuições desses outliers, o 

algoritmo do changepoint e do quartil são aplicados.  

LUO et al. (2021) empregaram diferentes algoritmos para cada forma de 

outlier e validaram seu método usando dados de diferentes parques eólicos. Dentre 

os algoritmos utilizados incluíam agrupamento de dados, extração de contorno e 

regularização de contorno. Os resultados indicaram que os modelos de curva de 

potência foram, no geral, eficazes na limpeza dos outliers, mas enfrentaram 

dificuldades em reconhecer dados anômalos gerados por curtailment.  

ZHENG; HU; MIN (2015) utilizaram o algoritmo LOF (Local Outlier Factor) em 

combinação com a avaliação do grau de similaridade em dados de vento de turbinas 

eólicas para calcular um fator de outlier. O método foi testado em dados de um 

parque eólico no nordeste da China.  

ZHAO et al. (2018) propuseram um método de limpeza de dados anômalos 

que combina agrupamento de dados em quartis e densidade de pontos. 

Primeiramente o método do quartil é utilizado duas vezes para eliminação de outliers 

esparsos e em seguida o algoritmo DBSCAN é usado para eliminação de pontos 

com a potência fixa. Um estudo de caso em um parque eólico com 20 turbinas foi 

conduzido e o método se provou eficaz e com baixo custo computacional. Também 
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se mostrou que o método é insensível aos parâmetros utilizados, sendo, portanto, 

capaz de ser utilizado em diferentes turbinas eólicas sem a necessidade de 

calibração prévia.  

É amplamente reconhecido que as técnicas de agrupamento de dados 

baseadas em densidade são mais eficientes do que as técnicas baseadas em 

partição quando se trata de identificar clusters de formas arbitrárias ou detectar 

anomalias (Hossain, 2017). A Figura 3-1 apresenta um exemplo de agrupamento por 

agrupamento de dados com o DBSCAN. 

Figura 3-1 Outilers identificados com o DBSCAN. 

 

Fonte: Adaptado de PAIK; CHUNG; KIM (2023). 

 

PAIK; CHUNG; KIM (2023) propuseram um novo procedimento para a 

identificação e remoção de outliers na estimativa de curvas de potência de parques 

eólicos, utilizando algoritmos de agrupamento de dados baseados em quantização 

vetorial no DBSCAN. A metodologia é aplicada e validada em turbinas individuais de 

um parque eólico na Coreia, testando diferentes modelos paramétricos para a curva 

de potência. 
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▪ Métodos baseados em aprendizado de máquina 

MANOBEL et al. (2018) apresentaram um método de modelagem baseado 

em Processo Gaussiano (PG) e em redes neurais. Inicialmente, os dados foram 

filtrados através do PG e, em seguida, esses dados “limpos” são utilizados como 

dados de treinamento da rede neural. Como dados de entrada se utilizam da 

velocidade e direção do vento para obter como saída a potência. Por fim, os autores 

utilizam o erro quadrático médio entre a potência gerada e a potência esperada 

como métrica de desempenho do algoritmo, comparando o erro do método 

desenvolvido com outros da literatura.  

DONG et al. (2022) utilizaram aprendizagem semi-supervisionada e o 

algoritmo Robust Random Cut Forest. Para isso, selecionaram os dados 

considerados normais e, a cada nova amostra, inseriram esses dados no modelo. A 

alteração na complexidade do modelo foi então comparada com um limite dinâmico, 

permitindo a identificação de dados anômalos. Para minimizar a dependência dos 

dados normais rotulados na modelagem, foi proposta uma estratégia de atualização 

em tempo real baseada em auto-treinamento semi-supervisionado. Os resultados 

experimentais indicam que a precisão de detecção do método proposto pode atingir 

95% com 1000 grupos de dados normais rotulados, e o tempo de detecção de uma 

única amostra é de 50 ms.  

ZHANG; HU; YANG (2022) propuseram um método de detecção e 

diagnóstico de anomalias baseado em um denoising autoencoder com LSTM 

(LSTM-SDAE) e XGBoost. Primeiramente um algoritmo de reconhecimento de dados 

anômalos baseado no LOF e k-means adaptativo foi desenvolvido para fazer o pré-

processamento e eliminar ruído. O modelo LSTM-SDAE foi estabelecido para obter 

uma relação temporal não-linear entre variáveis. Em seguida, a distância de 

Mahalanobis foi calculada baseada em uma técnica de janela deslizante para 

detecção de anomalias em tempo real. Para testar o método proposto, dados 

SCADA reais de um parque eólico localizado no nordeste da China foram utilizados.  

MORRISON; LIU; LIN (2022) conduziram uma análise comparativa de quatro 

métodos de detecção de anomalias, o iForest, LOF, GMM e k-NN, com e sem 

filtragem. A avaliação foi baseada no erro de previsão, nas taxas de remoção de 

dados e na preservação das características estatísticas do vento. Os resultados 

mostraram que a filtragem melhorou o desempenho de todos os métodos, com o 
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GMM demonstrando precisão favorável enquanto ainda mantinha a variabilidade do 

vento.  

KHAN; YEUN; BYUN (2023) apresentaram uma abordagem de aprendizado 

em conjunto, baseada em algoritmos genéticos, para detectar anomalias em turbinas 

eólicas usando dados SCADA. O método proposto combina XGBoost, random forest 

e modelos de árvore extra, enquanto emprega um limiar de erro quadrático médio 

para identificação de anomalias. A principal desvantagem desses modelos não 

paramétricos é o alto custo computacional.  

YAO et al. (2023) empregaram uma abordagem abrangente composta por 

duas etapas principais para a limpeza da curva de potência. Primeiro, usaram uma 

técnica de pré-processamento para remover outliers com base no mecanismo 

operacional da máquina. Em seguida, propuseram um novo método de limpeza de 

dados chamado TTLOF (Thompson Tau-Local Outlier Factor), que utiliza ECMI 

(Empirical Copula-Based Mutual Information) para seleção de limiares de parâmetros 

de correlação e limpeza fina por segmentação (reduzindo a complexidade da 

limpeza) a fim de identificar características anômalas nos dados de curva de 

potência. Por fim, o método LSTM é usado para avaliar a eficácia do método.  

LETZGUS & MÜLLER (2024) propõem uma metodologia baseada em 

inteligência artificial explicável (XAI) para avaliação de modelos de curvas de 

potência de turbinas eólicas gerados por aprendizado de máquina. Com o objetivo 

de complementar as métricas tradicionais de erro, introduzem uma métrica que 

quantifica o alinhamento dos modelos com princípios físicos do sistema. A análise é 

conduzida utilizando uma variedade de abordagens, que vão desde modelos físicos 

simplificados até métodos de aprendizado supervisionado mais complexos, incluindo 

regressões lineares segmentadas, regressões polinomiais, Random Forests, ANNs e 

SVMs. O trabalho investiga como essas diferentes escolhas influenciam a 

capacidade de generalização e a robustez dos modelos em ambientes dinâmicos. 

YIN et al. (2025) propõem uma abordagem multivariada para previsão de 

curvas de potência de turbinas eólicas, integrando técnicas de aprendizado de 

máquina avançadas. O método combina regressão por árvores impulsionadas por 

gradiente estocástico (SGBRT) e otimização por matilha de lobos cinzentos (GWO), 

aliados a etapas inovadoras de pré-processamento de dados e seleção de variáveis. 

A limpeza dos dados é realizada em um espaço bidimensional de Cópula, utilizando 

a velocidade do rotor como critério auxiliar para lidar com incertezas e dependências 
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não lineares. A seleção de variáveis é feita com base na análise da informação 

mútua parcial (PMI), resultando na escolha de oito parâmetros significativos. O 

modelo SGBRT tem seus hiperparâmetros otimizados via GWO, considerando uma 

função de ajuste baseada em RMSE, MAE e R². A validação com dados SCADA 

reais demonstra que o modelo proposto supera métodos existentes em termos de 

acurácia, eficiência e robustez. 

 

3.2 REDES KOLMOGOROV-ARNOLD 

Até o momento da escrita desta dissertação, poucos trabalhos utilizando KAN 

haviam sido publicados.  

No campo da energia eólica, apenas um artigo foi identificado. MUBARAK et 

al. (2024) avaliaram o desempenho da KAN e MLP em previsões de produção de 

energia de seis parques eólicos na China. A KAN supera limitações do MLP, como 

escalabilidade e interpretabilidade, utilizando funções de ativação B-Spline e 

otimização pelo algoritmo LBFGS. Técnicas de pré-processamento, como 

Interquartile Range para tratar outliers e K-Nearest Neighbor para imputação de 

dados, também foram aplicadas. A KAN demonstrou desempenho superior, com 

erro médio quadrático de 0,0039 no melhor local. 

SULAIMAN et al. (2024) propuseram o uso da KAN para modelar as relações 

não lineares dos dados de consumo de um edifício comercial. Comparando o 

desempenho da KAN com MLP e um algoritmo híbrido TLBO-DL (Teaching-

Learning-Based Optimization with Deep Learning), o KAN demonstrou superioridade. 

A pesquisa destaca a aplicação inovadora do KAN em previsões energéticas, com 

maior precisão e eficiência computacional, contribuindo para a gestão energética em 

sistemas reais. 

GAO et al. (2025) propõem o uso da KAN como uma solução para melhorar a 

interpretabilidade e o desempenho preditivo da radiação solar e temperatura 

externa. Os autores conduziram estudos de caso com dados do Observatório 

Meteorológico de Tóquio, a KAN mostrou-se capaz de reduzir o erro médio 

quadrático em 75,33% em relação a modelos recorrentes tradicionais, mesmo com 

apenas um neurônio oculto na previsão de radiação solar.  

GAO; KONG (2025) propõem uma abordagem para sistemas de 

posicionamento espacial, especialmente no caso de cápsulas médicas, com o uso 

da tecnologia Magnetic Positioning (MP) combinada à KAN. O algoritmo demonstrou 
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bom desempenho, com erro máximo de posicionamento de 0,24 mm e erro relativo 

variando de 0,25% a 5,72%, mantendo precisão constante independente da 

distância entre o alvo e o sistema de medição.  

 

3.3 PERSPECTIVAS DO ESTUDO 

A partir da revisão apresentada, observa-se que a detecção e a remoção de 

anomalias em curvas de potência de turbinas eólicas têm sido amplamente 

estudadas por meio de diferentes abordagens, incluindo modelos estatísticos, 

técnicas de agrupamento e algoritmos de aprendizado de máquina. Métodos 

baseados em regressão apresentam boa capacidade de ajuste, mas são sensíveis à 

presença de outliers e requerem suposições sobre a forma da curva. Técnicas de 

agrupamento e análise de distância demonstram eficácia na identificação de 

padrões anômalos sem a necessidade de rótulos, porém podem apresentar 

limitações em cenários com estruturas de dados mais complexas ou com ruídos 

sobrepostos. Já os métodos baseados em aprendizado de máquina, especialmente 

os não supervisionados ou semi-supervisionados, oferecem maior flexibilidade e 

capacidade de generalização, mas ainda enfrentam desafios relacionados à 

interpretabilidade dos modelos e ao custo computacional. 

Além disso, embora muitos estudos foquem na remoção de pontos 

inconsistentes ou ruídos, poucos abordam de forma clara a separação entre 

diferentes tipos de anomalias, como eventos de indisponibilidade, nos quais a 

turbina está fora de operação, e situações de subdesempenho, em que a turbina 

permanece operando, porém com rendimento inferior ao esperado. Essa distinção é 

fundamental, pois impacta diretamente na estimativa de produção, nas análises de 

disponibilidade e nos relatórios técnicos de desempenho. A correta identificação 

dessas condições exige modelos capazes de capturar nuances nos dados e 

interpretar diferentes padrões de desvio em relação à curva de potência ideal. 

Diante desse cenário, observa-se uma lacuna na aplicação de modelos que 

aliem previsão e identificação precisa de diferentes anomalias, além de 

interpretabilidade. Em especial, observa-se a ausência de estudos que explorem o 

uso de redes Kolmogorov-Arnold (KAN) nesse contexto. A aplicação que existe está 

relacionada à previsão da produção de energia, não contemplando seu potencial 

para a classificação de dados operacionais. Assim, a presente dissertação propõe o 

desenvolvimento de um modelo híbrido, baseado na combinação de autoencoders e 
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redes KAN, com o objetivo de automatizar a limpeza da curva de potência ao 

mesmo tempo em que diferencia, de forma confiável, dados normais, eventos de 

indisponibilidade e casos de subdesempenho. 
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4 METODOLOGIA 

Este trabalho tem como objetivo propor uma nova metodologia de limpeza 

automática de curvas de potência, explorando abordagens computacionais 

modernas para identificação e remoção de outliers. A limpeza consiste em 

categorizar os dados de uma curva de potência em duas principais rotulações: 

1. Dados normais; 

2. Dados anômalos, que incluem: 

a. Indisponibilidade; 

b. Subdesempenho. 

As duas categorias dos dados anômalos seguem as definições previamente 

apresentadas na seção 2.2. Importante mencionar que se assume a classe 0 como 

pontos normais, classe 1, indisponibilidade e classe 2, subdesempenho. As 

rotulações categorizadas automaticamente são comparadas com a rotulação 

realizada manualmente por um especialista da área. 

 

4.1 DADOS DE TURBINAS EÓLICAS UTILIZADOS 

No setor eólico, os dados SCADA são geralmente confidenciais e de 

propriedade da operadora do parque. Apesar disto, existem algumas iniciativas e 

conjuntos de dados disponíveis publicamente para pesquisa. A Tabela 4-1 apresenta 

os dados utilizados no presente trabalho.  

Tabela 4-1 Dados SCADA públicos utilizados no presente trabalho. 

Parque eólico / 

Empresa 
Localização 

Quantidade 
de turbinas 

Dados 
Resolução 

temporal 
Fonte 

Kelmarsh / 

Cubico 

Northampto
nshire – 
Reino 
Unido 

6 

• SCADA 

• Produção de 
energia da 
subestação 

• Log de alarmes 

• Layout 

• Turbina 

10 minutos 

https://zenodo
.org/records/5
841834#.Ygp
BQ_so-V7 

 

A seguir, é feita uma breve descrição sobre o conjunto de dados utilizado. 
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1. Kelmarsh e Pernmanshiel 

 

Os dados foram disponibilizados pela Cubico Sustainable Investments Ltd em 

2022 com o objetivo de ampliar o acesso a informações do setor e incentivar o 

envolvimento de profissionais e pesquisadores em desafios inovadores. Foi criado o 

espaço “Cubico Open Data Exploration”, liderado por Charlie Plumley, que lançou o 

primeiro desafio: "Operational Energy Yield Analysis Using Open Data". O objetivo 

desse desafio era prever a produção de energia ao longo de 20 anos e as incertezas 

associadas para o parque eólico (WeDoWind, 2023). 

Os conjuntos de dados abrangem o período de 2016 a 2021, totalizando 6 

anos de informações. Eles incluem dados SCADA, medições de energia na 

subestação, layout dos parques, especificações das turbinas e as respectivas datas 

de entrada em operação. Considerando todo o período, a quantidade de pontos dos 

dados SCADA gira em torno de 200.000 a 210.000. A Figura 4-1 ilustra o layout do 

parque eólico Kelmarsh, bem como curvas de nível e declividade do terreno. 

Figura 4-1 Parque eólico Kelmarsh. 

 

Fonte: a Autora (2024) 
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A Figura 4-2 apresenta a curva de potência, rosa dos ventos e cobertura de 

dados de uma turbina do parque. 

Figura 4-2 Curva de potência, rosa dos ventos e cobertura da turbina K01. 

  

 
Fonte: a Autora (2024) 

 

4.2 VARIÁVEIS SCADA CONSIDERADAS 

Na limpeza de uma curva de potência, a princípio, o foco principal está na 

relação entre potência e velocidade do vento. No entanto, conforme destacado na 

seção 2.2.3, sinais auxiliares podem contribuir significativamente para a 

classificação dos pontos associados à indisponibilidade e ao subdesempenho. Por 

esse motivo, além da potência e da velocidade do vento, também foram 

consideradas as variáveis velocidade do rotor, ângulo de pitch e direção da nacele. 
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4.3 METODOLOGIA DE ANÁLISE E ALGORITMOS EMPREGADOS 

Nesta seção, são detalhados os procedimentos adotados, estruturados em 

quatro etapas principais: pré-processamento dos dados, testes de algoritmos e 

implementação, avaliação dos resultados e comparação com algoritmos bem 

estabelecidos na área de aprendizado de máquina. Os códigos foram rodados em 

uma máquina com as seguintes características: 

• Processador: Intel Core i7 (2 núcleos físicos, 4 núcleos lógicos, 2.7 GHz); 

• Memória RAM:16 GB; 

• Placa de vídeo: NVIDIA GeForce 940MX (4 GB VRAM). 

É importante ressaltar que algumas abordagens foram testadas até a 

obtenção dos modelos finais, sendo elas: 

1. DBSCAN; 

2. DBSCAN com janela deslizante e parâmetros estatísticos; 

3. Autoconder com KAN; 

4. Autoencoder variacional com KAN. 

A etapa de pré-processamento é comum a todas as metodologias avaliadas, 

enquanto a etapa seguinte, referente à limpeza da curva de potência, foi testada e 

explorada com diferentes abordagens até a definição do algoritmo selecionado. A 

Figura 4-3 e a Figura 4-4 ilustram a metodologia dos modelos 1 e 2, 

respectivamente. A Figura 4-5 apresenta as etapas dos modelos 3 e 4 (modelos 

finais), que vão do pré-processamento até a comparação com algoritmos bem 

estabelecidos na área. 
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Figura 4-3 Fluxograma da metodologia DBSCAN. 

 

Fonte: A autora (2024). 
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Figura 4-4 Fluxograma da metodologia DBSCAN com parâmetros estatísticos e janela 

deslizante. 

 

Fonte: A autora (2024). 
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Figura 4-5 Fluxograma da metodologia final utilizada. 

 

Fonte: a Autora (2024) 
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4.3.1 Pré-processamento 

O pré-processamento de dados SCADA é fundamental, pois os dados brutos 

frequentemente contêm registros inválidos que precisam ser filtrados. Sensores 

podem registrar leituras incorretas devido a falhas operacionais e lacunas nos dados 

podem surgir por interrupções na comunicação do sistema SCADA. Além disso, 

algoritmos em aprendizagem de máquina podem ser sensíveis a escalas entre 

diferentes variáveis e uma boa prática é a normalização ou escalonamento. O pré-

processamento é dividido basicamente em três etapas: 

1. Remoção de dados NaN: registros cujos timestamps contenham valores 

NaN são eliminados. Esta abordagem foi adotada neste estudo, ao invés 

do preenchimento dos valores faltantes, pois o preenchimento estaria 

apenas adicionando incerteza e ruído e os dados remanescentes são 

suficientes para manter a robustez do modelo, pela grande quantidade de 

dados. 

2. Eliminação de dados espúrios: a remoção de leituras incorretas é 

fundamental para garantir a qualidade dos dados. Os seguintes critérios 

foram estabelecidos: 

a. Velocidade do vento inferior a 0 m/s ou superior a 40 m/s; 

b. Velocidade do vento com cinco ou mais repetições consecutivas; 

c. Potência, ângulo de pitch e velocidade do vento com mais de cinco 

repetições consecutivas, simultaneamente. É interessante que as 

repetições de pitch e potência estejam correlacionadas entre si e 

com a velocidade do vento, pois, isoladamente, sensores podem 

apresentar valores repetidos plausíveis. 

3. Escalonamento dos dados: algoritmos de aprendizagem de máquina são 

sensíveis a diferenças de magnitude entre variáveis. Para garantir 

consistência e evitar que características com valores maiores dominem a 

análise, os dados foram normalizados.  

 

4.3.1.1. Balanceamento de classes em algoritmos de classificação 

Muitos conjuntos de dados do mundo real apresentam desbalanceamento e 

isso pode levar a um desempenho enviesado do modelo, já que os algoritmos de 

aprendizado de máquina tendem a classificar corretamente a classe majoritária, 

enquanto cometem erros na classificação da classe minoritária. Entretanto, em 



96 

 

 
 

problemas de classificação desbalanceada, geralmente há interesse em classificar 

corretamente as amostras da classe minoritária, pois são elas que representam os 

casos mais importantes, como por exemplo falhas ou anomalias. Ainda assim, os 

algoritmos de aprendizado de máquina utilizados para classificação binária ou 

multiclasse são, em sua maioria, projetados para trabalhar com conjuntos de dados 

balanceados, otimizando métricas igualmente distribuídas entre as classes (Galli, 

2023). 

Uma forma de lidar com o desbalanceamento é fazer um “resampling” 

(reamostragem) dos dados de treino. No presente trabalho, se utilizou da 

abordagem SMOTE, sigla para Synthetic Minority Over-sampling Technique, que é 

uma técnica de oversampling, que cria dados sintéticos para a classe minoritária. O 

funcionamento do SMOTE baseia-se na criação de amostras sintéticas ao longo das 

linhas que conectam os vizinhos mais próximos. Geram-se novas amostras da 

classe minoritária dando pequenos passos a partir de uma instância existente em 

direção a um de seus k vizinhos mais próximos, sendo k um parâmetro do algoritmo. 

Para isso, o algoritmo seleciona aleatoriamente um dos k vizinhos mais próximos e 

gera uma nova amostra ao adicionar uma pequena perturbação vetorial ao ponto de 

origem, interpolando entre ele e o vizinho escolhido. Dessa forma, as novas 

amostras sintéticas mantêm características similares às amostras reais da classe 

minoritária, mas não são cópias exatas, aumentando assim a diversidade da base 

de dados. 

 

4.3.2 Testes de algoritmos e implementação 

Nesta seção são apresentados os algoritmos testados durante a elaboração 

deste trabalho, descrevendo-se a metodologia utilizada em cada um deles. Para fins 

de ilustração de resultados, estes são mostrados para a turbina K01 do parque 

eólico Kelmarsh. 

 

4.3.2.1 DBSCAN 

Conforme apresentado na seção 3.1, diversos autores empregam métodos de 

agrupamento de dados para limpeza de curvas de potência, abordagem que serviu 

como ponto de partida para este trabalho. Os parâmetros principais a serem 

determinados são o “Épsilon” e o “Min_samples”.  
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Para determinação do primeiro, foi utilizado o algoritmo KneeLocator, que 

identifica um ponto de inflexão na curva de distâncias entre vizinhos mais próximos. 

A premissa é que, em um agrupamento, espera-se que os pontos centrais 

apresentem distâncias menores entre si, os pontos na borda do cluster ainda 

permaneçam dentro de um intervalo razoável, e os pontos considerados ruídos 

tendem a apresentar distâncias significativamente maiores. Dessa forma, o ponto de 

joelho na curva representa a transição entre regiões e pode fornecer um valor 

adequado para ε. Isto é ilustrado na Figura 4-6 para uma investigação considerando 

11 vizinhos mais próximos.  

Figura 4-6 Obtenção do joelho da curva com o KneeLocator 

  

Fonte: a Autora (2024). 

 

Neste exemplo, o joelho ocorre na instância 183307, correspondendo a uma 

distância de 0,084. No presente trabalho, na realização de alguns testes 

exploratórios, notou-se que o valor de Épsilon igual ao previsto pelo KneeLocator era 

conservador. Isto acontece, pois quando os outliers são raros ou mais dispersos, 

pontos mais afastados podem ser incorretamente incorporados ao cluster, ao invés 

de serem identificados como ruído. Para mitigar este efeito, no presente trabalho, 

optou-se por ajustar o ε para metade do valor obtido com o KneeLocator.  



98 

 

 
 

Quanto ao Min_samples, existem algumas regras gerais que se pode adotar 

na escolha (Sefidian, 2023): 

• Quanto maior o conjunto de dados, maior deve ser o valor de 

Min_samples; 

• Se o conjunto de dados for ruidoso, é preferível um valor maior de 

Min_samples; 

• Geralmente, Min_samples deve ser maior ou igual à dimensionalidade 

do conjunto de dados 

• Se os dados tiverem mais de duas dimensões, escolha Min_samples = 

2*dimensão (Sander et al., 1998) 

No presente trabalho, a dimensão corresponde a 5. Logo, a princípio, é adotado 

como valor inicial Min_samples = 10. No entanto, considerando o grande volume de 

dados disponíveis, foi realizada uma investigação dos valores Min_samples, 

permitindo a avaliação de valores maiores, de modo a otimizar a segmentação dos 

clusters. 

 

4.3.2.2 DBSCAN com parâmetros estatísticos e janela deslizante 

Como segunda abordagem a ser testada, foi utilizado um algoritmo de 

DBSCAN considerando-se como dados de entrada parâmetros estatísticos em 

janela deslizante, para processar os dados em segmentos sobrepostos. Isto é muito 

útil em séries temporais, pois se permite dividir os dados em janelas móveis, 

analisando padrões e tendências ao longo do tempo. As anomalias, em geral, 

possuem uma dependência temporal, pois períodos de falha ou baixo desempenho 

da turbina costumam se estender por um período de tempo. Dessa forma, pontos 

que mantêm um comportamento anômalo de forma consistente são mais facilmente 

identificáveis e a janela deslizante é uma forma de incluir esta dependência 

temporal.  

Os primeiros parâmetros a serem definidos são o tamanho da janela e o 

passo. Neste estudo, utilizou-se uma janela de 6 horas e um passo de 2 horas. 

Esses valores foram determinados a partir de testes exploratórios, nos quais se 

variou o tamanho da janela e o passo para avaliar em quais configurações a curva 

de potência média preservava seu comportamento normal. Com essa 

parametrização, um novo dataframe segmentado foi criado, no qual os dados foram 
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organizados em janelas de 6 horas, com um deslocamento de 2 horas entre cada 

janela. O timestamp original, registrado a cada 10 minutos, foi mantido, mas agora 

os valores eram agrupados dentro das janelas de 6 horas. Como resultado, uma 

mesma ocorrência poderia aparecer repetidamente em diferentes janelas, já que 

pertencia a vários segmentos, devido à sobreposição das janelas móveis.   

Como parâmetros de entrada para o algoritmo DBSCAN, são utilizados dados 

estatísticos extraídos por meio da biblioteca tsfresh. Entre as estatísticas calculadas 

incluem-se mediana, média, desvio padrão, mínimo, máximo, amplitude, primeira e 

última posição dos valores extremos, coeficientes da tendência linear (inclinação, 

offset e coeficiente de correlação), curtose e assimetria. Essas métricas permitem 

capturar padrões importantes da série temporal, facilitando a identificação de pontos 

com características similares. Diferentes parâmetros são testados a fim de verificar o 

desempenho do modelo. Os resultados são apresentados no capítulo 5. 

 

4.3.2.3 Autoencoder clássico com KAN (AE-KAN) 

Como terceira metodologia a ser testada, adotam-se algoritmos de 

classificação. Para avaliar o desempenho da rede neural Kolmogorov-Arnold, ainda 

pouco explorada, a mesma foi escolhida como principal método de teste. Além 

disso, optou-se por utilizar um autoencoder padrão como etapa de pré-

processamento, com o objetivo de aprimorar os dados de entrada para a KAN. Este 

algoritmo híbrido é nomeado no presente trabalho de AE-KAN.  

Um autoencoder padrão possui os seguintes parâmetros: 

1. Dimensão de entrada (input_dim): define o número de neurônios da 

camada de entrada e depende da quantidade de variáveis dos dados 

originais; 

2. Dimensão do espaço latente (encoding_dim): número de neurônios da 

camada latente (compactação ou expansão da informação); 

3. Arquitetura da rede: define a quantidade de camadas e neurônios do 

codificador e decodificador; 

4. Função de ativação: controla a não linearidade entre as camadas (funções 

ReLU, sigmóide, tanh, etc); 

5. Função de perda: mede a diferença entre a entrada original e a saída 

reconstruída; 

6. Otimizador: ajusta os pesos para minimizar a função de perda; 
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7. Taxa de aprendizado: define o tamanho do passo que o otimizador dá na 

atualização dos pesos; 

8. Número de épocas: quantas vezes o modelo vê os dados de treinamento 

e aprende com eles. 

 

Para treinamento do autoencoder, apenas os pontos considerados normais (classe 

0) são utilizados como dados de entrada para que o modelo aprenda a 

representação dos dados normais. Para treino e ajuste, são utilizados dados da 

turbina K01 do parque Kelmarsh. Os hiperparâmetros base são apresentados na 

Tabela 4-2. 

Tabela 4-2 Parâmetros base considerados no autoencoder. 

Parâmetro Valor considerado 

Input_dim 4 

Encoding_dim 3 

Arquitetura da rede 3 camadas no codificador + 3 camadas no 
decodificador 

Função de ativação ReLU 

Função de perda MSELoss 

Otimizador Adam 

Taxa de aprendizado 0,001 

Número de épocas 100 

 

Para o treinamento do autoencoder, é feito um ajuste dos hiperparâmetros a 

serem considerados, conforme Tabela 4-3. Os parâmetros são combinados, 

formando um total de 24 possibilidades. Em relação ao custo computacional, 

contabilizou-se em torno de 15 minutos para cada rodada do ajuste, totalizando um 

tempo aproximado de 6 horas. 

Tabela 4-3 Parâmetros para treinamento do autoencoder. 

Número de camadas Dimensão latente Otimizador  Número de épocas 

3+3 3 Adam 100 

4+4 4 RMSProp 500 

  AdamW  

 

Inicialmente, as variáveis consideradas são as mesmas utilizadas para o 

agrupamento de dados: velocidade do vento, potência, posição da nacele, 

velocidade do rotor e ângulo de pitch. No entanto, com a introdução do autoencoder, 

torna-se interessante avaliar a influência de cada variável na reconstrução dos 

dados. Analisar a variância dos parâmetros ajuda a identificar se todas as variáveis 

são relevantes ou se algumas podem ser removidas sem comprometer a qualidade 



101 

 

 
 

da representação. Para isso, gera-se um gráfico de violino, permitindo visualizar a 

distribuição dos dados e identificar padrões de variação, conforme ilustrado na 

Figura 4-7. 

Figura 4-7 Gráfico violino com os valores das variáveis consideradas. 

 

Fonte: a Autora (2024) 

No gráfico tem-se: 

• Nws: velocidade do vento; 

• Pwr: potência; 

• Rotorspd: velocidade do rotor; 

• Nacpos: posição da nacele; 

• Pitch: ângulo de pitch. 

 

Pode-se observar na Figura 4-7 que o ângulo de pitch apresenta baixa variação, 

indicando que sua inclusão na reconstrução dos dados pelo autoencoder tende a ter 

um impacto mínimo. Portanto, ela não é considerada como variável para 

treinamento.  

Após ajuste de hiperparâmetros do autoencoder com a turbina K01 e escolha 

da configuração do autoencoder, os dados da turbina K02 são passados pelo 

autoencoder treinado.  
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No caso da KAN, os seguintes parâmetros devem ser avaliados: 

1. Tamanho das camadas ocultas (hidden_layer_size): número de neurônios 

das camadas ocultas; 

2. Regularização da ativação (regularize_activation): controla a penalização na 

ativação dos neurônios para evitar overfitting; 

3. Regularização da entropia (regularize_entropy): regula a entropia para 

suavizar o comportamento da rede; 

4. Regularização ridge (regularize_ridge): adiciona penalização para evitar 

pesos excessivamente grandes; 

5. Ordem do spline: determina a ordem da interpolação spline usada na 

modelagem. 

 

A Tabela 4-4 apresenta os parâmetros base utilizados no treinamento da rede 

Kolmogorov-Arnold. 

Tabela 4-4 Hiperparâmetros base da KAN. 

Tamanho da 
camada 

Regularização de 
ativação 

Regularização da 
entropia  

Regularização 
ridge 

Ordem do 
spline 

32 0.3 0.3 0.5 3 

 

Para otimização dos hiperparâmetros, rodadas de treino foram executadas 

variando-se os valores utilizados. Os valores são mostrados na Tabela 4-5. Para 

cada rodada de ajustes de hiperparâmetros, estima-se 10 minutos de custo 

computacional, totalizando em torno de 2h e 40 minutos de tempo. Os resultados 

são apresentados mais adiante. 

Tabela 4-5 Hiperparâmetros da KAN. 

Roda
da 

Tamanho da 
camada 

Regularização de 
ativação 

Regularização da 
entropia 

Regularização 
ridge 

Ordem do 
spline 

1 32 0.3 0.3 0.5 3 

2 32 0.3 0.3 0.7 3 

3 32 0.3 0.5 0.5 3 

4 32 0.3 0.5 0.7 3 

5 32 0.5 0.3 0.5 3 

6 32 0.5 0.3 0.7 3 

7 32 0.5 0.5 0.5 3 

8 32 0.5 0.5 0.7 3 

9 64 0.3 0.3 0.5 3 

10 64 0.3 0.3 0.7 3 
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11 64 0.3 0.5 0.5 3 

12 64 0.3 0.5 0.7 3 

13 64 0.5 0.3 0.5 3 

14 64 0.5 0.3 0.7 3 

15 64 0.5 0.5 0.5 3 

16 64 0.5 0.5 0.7 3 

 

Após o ajuste de hiperparâmetros o modelo AE-KAN é testado com a turbina K02 do 

parque eólico Kelmarsh. Uma vez que o autoencoder está treinado, o custo 

computacional para teste é de algo em torno de 3 minutos. Para a KAN, temos o 

tempo de 2 minutos. Os resultados do treino e teste são apresentados no capítulo 5. 

 

4.3.2.4 Autoencoder variacional com KAN (VAE-KAN) 

Para avaliar possíveis melhorias nos resultados (mais especificamente na 

identificação da classe 2, como é discutido mais adiante), um autoencoder 

variacional (VAE) é testado no pré-processamento em substituição ao autoencoder 

padrão. A principal diferença do VAE é que a saída da camada latente não apenas 

representa uma codificação comprimida dos dados, mas também incorpora uma 

distribuição probabilística, permitindo maior flexibilidade na modelagem das 

variações dentro dos dados. Nesse contexto, a saída da camada latente é utilizada 

como informação adicional. O objetivo é avaliar se os resultados são aprimorados 

quanto à separabilidade das classes e potencial redução de falsos positivos na 

classe 2. O modelo é denominado VAE-KAN. 

Em relação aos hiperparâmetros utilizados, alguns são iguais aos já listados 

no autoencoder padrão, como o input_dim, arquitetura do codificador e decodificador 

e a função de perda. Além destes, tem-se: 

1. Tamanho das camadas ocultas (hidden_dim): quantidade de neurônios 

das camadas ocultas; 

2. Tamanho do espaço latente (latent_dim): número de variáveis 

compactadas no espaço latente; 

3. Parâmetros da distribuição latente (fc_mu e fc_logvar): camadas que 

aprendem média e logaritmo da variância da distribuição latente; 

4. Reparametrização: garante que a distribuição latente seja amostrada de 

forma contínua; 



104 

 

 
 

5. Função de perda com o KL divergence: regularização do espaço latente, 

forçando-o a se aproximar de uma distribuição normal padrão. 

Para otimização dos hiperparâmetros, assim como realizado nos outros 

casos, diferentes valores são testados com o objetivo de obter a configuração ótima. 

Os valores utilizados são apresentados na Tabela 4-6, totalizando 16 combinações. 

Assim como no caso do autoencoder clássico, o tempo para cada rodada de treino é 

em torno de 15 minutos, o que totaliza 4 horas. 

Tabela 4-6 Hiperparâmetros do autoencoder variacional. 

Tamanho do espaço latente Épocas Tamanho das camadas ocultas Otimizador 

3 20 8 Adam 

4 30 16 RMSProp 

 

Assim como no caso do autoencoder clássico, após ajuste e treino com os dados da 

turbina K01, o teste é feito com os dados da turbina K02. De forma análoga, a saída 

do autoencoder variacional é usada como entrada para a KAN, que é treinada 

novamente. Os hiperparâmetros são ajustados conforme apresentado na Tabela 4-5 

e o custo computacional é o mesmo. De forma análoga, executa-se o teste para a 

turbina K02. O tempo do teste é virtualmente o mesmo do caso AE-KAN.  

De modo a resumir, a Tabela 4-7 e a Tabela 4-8 apresentam os dados de 

entrada utilizados nos modelos AE-KAN e VAE-KAN para treino e teste de uma 

turbina arbitrária. No presente trabalho correspondem às turbinas K01 e K02 do 

parque eólico Kelmarsh. Vale ressaltar que as variáveis utilizadas compreendem a 

potência, velocidade do vento, velocidade do rotor e posição da nacele e que o 

SMOTE é apenas utilizado do conjunto de dados de treino. O treino e teste são 

conduzidos em turbinas distintas. 

Tabela 4-7 Dados de entrada do modelo AE-KAN. 

Treino – turbina arbitrária 01 Teste – turbina arbitrária 02 

Variáveis originais Variáveis originais 

Variáveis reconstruídas Variáveis reconstruídas 

Erro de reconstrução Erro de reconstrução 

 

Tabela 4-8 Dados de entrada do modelo VAE-KAN 

Treino – turbina arbitrária 01 Teste – turbina arbitrária 02 

Variáveis originais Variáveis originais 

Variáveis reconstruídas Variáveis reconstruídas 

Saída da camada latente Saída da camada latente 

Erro de reconstrução Erro de reconstrução 
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Com base nos experimentos definidos na metodologia, espera-se que a 

abordagem com DBSCAN, utilizada como ponto de partida, permita uma 

identificação inicial de outliers com base na densidade dos dados. A seguir, a 

introdução de janelas deslizantes e variáveis estatísticas visa incorporar a dimensão 

temporal e melhorar a detecção de padrões anômalos persistentes, especialmente 

associados à indisponibilidade e ao subdesempenho. Na sequência, os modelos 

baseados em autoencoders, AE-KAN e VAE-KAN, são esperados apresentar 

desempenho superior, com maior capacidade de representar a estrutura dos dados 

normais e identificar desvios com maior precisão. Por fim, espera-se que os modelos 

generalizem adequadamente entre turbinas distintas, mantendo coerência nos 

resultados e boa correspondência com a rotulação manual feita pelo especialista. 
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5 RESULTADOS 

5.1 LIMPEZA DA CURVA DE POTÊNCIA PELO ESPECIALISTA 

A limpeza das curvas de potência foi realizada por um software interno da 

companhia de certificação e classificação DNV, amplamente validado e utilizado 

globalmente. Este programa permite a visualização de qualquer sinal na resolução 

temporal desejada, além da marcação manual de pontos específicos. Além dos 

sinais principais de velocidade do vento e potência, sinais auxiliares de ângulo de 

pitch, velocidade do rotor e ângulo da nacele foram utilizados. Importante mencionar 

que a classe 0 denota pontos normais, classe 1, indisponibilidade e classe 2, 

subdesempenho.  

A Figura 5-1 e a Figura 5-2 apresentam, respectivamente, as marcações de 

pontos das turbinas utilizadas para treino e teste.  

Figura 5-1 Curva de potência da turbina K01 do parque Kelmarsh manualmente limpa. 

Curva de potência – turbina K01 – Parque eólico Kelmarsh 
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Indisponibilidade 

 
Subdesempenho 

 
Fonte: a Autora (2024). 
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Figura 5-2  Curva de potência da turbina K02 do parque Kelmarsh manualmente limpa. 

Curva de potência – turbina K02 – Parque eólico Kelmarsh 

 
Indisponibilidade 

 
Subdesempenho 
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Fonte: a Autora (2024). 

 

5.2 DBSCAN 

Para detecção automática de outliers, o primeiro algoritmo utilizado foi a 

clusterização com o DBSCAN. A metodologia empregada é a descrita na seção 

4.3.2.1. Os resultados são apresentados variando-se a quantidade de vizinhos mais 

próximos K e o valor de Min_samples. Para avaliação dos resultados considerou-se 

a classe 0 como pontos normais e a 1 como anômalos. As Figuras a seguir 

apresentam os resultados encontrados. Para interpretação dos resultados, 

considera-se que o cluster 0 denota os pontos normais e os demais clusters, 

usualmente fora da curva de potência, por simplificação, foram considerados como 

dados da classe 1. As métricas de precisão, recall e F1-score foram calculadas 

baseadas nesta consideração. 
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Figura 5-3 Resultados do DBSCAN com K = 7 

Min_samples = 10 

 
Classe Precisão Recall F1-score 

0 0.99 0.98 0.99 

1 0.25 0.45 0.32 

Min_samples = 50 

 
Classe Precisão Recall F1-score 

0 1.00 0.90 0.95 

1 0.12 0.97 0.22 

Min_samples = 100 
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Classe Precisão Recall F1-score 

0 1.00 0.80 0.89 

1 0.07 1.00 0.13 

 

Figura 5-4 Resultados com o DBSCAN utilizando K = 9. 

Min_samples = 10 

 
Classe Precisão Recall F1-score 

0 0.99 1.00 0.99 

1 0.43 0.18 0.25 

Min_samples = 50 
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Classe Precisão Recall F1-score 

0 0.99 0.99 0.99 

1 0.57 0.56 0.57 

Min_samples = 100 

 
Classe Precisão Recall F1-score 

0 1.00 0.98 0.99 

1 0.43 0.89 0.58 

 

Figura 5-5 Resultados com o DBSCAN para K = 11. 

Min_samples = 10 
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Classe Precisão Recall F1-score 

0 0.99 1.00 0.99 

1 0.42 0.16 0.23 

Min_samples = 50 

 
Classe Precisão Recall F1-score 
0 0.99 1.00 0.99 

1 0.59 0.47 0.52 

Min_samples = 100 
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Classe Precisão Recall F1-score 
0 1.00 0.99 0.99 

1 0.53 0.81 0.65 

 

As imagens apresentadas demonstram o desempenho do algoritmo DBSCAN 

na classificação dos dados. Observa-se que o mesmo teve um excelente 

desempenho na identificação da classe 0, com métricas de precisão, recall e F1-

score praticamente iguais a 1. Além disso, na detecção de dados anômalos, os 

resultados foram satisfatórios em alguns casos, considerando o total de verdadeiros 

positivos, com recall chegando a 0,81. 

No entanto, nota-se que o algoritmo enfrentou dificuldades na subdivisão dos 

outliers, não conseguindo distinguir de forma clara entre indisponibilidade e 

subdesempenho. Esse comportamento indica que a divisão dessas categorias 

poderia exigir ajustes nos parâmetros do DBSCAN ou a combinação com outras 

abordagens para melhorar a diferenciação. 

 

5.3 DBSCAN COM PARÂMETROS ESTATÍSTICOS E JANELA DESLIZANTE 

Com o objetivo de aprimorar a metodologia baseada no DBSCAN, foi utilizado 

um algoritmo que incorpora parâmetros estatísticos como dados de entrada. Além 

disso, implementou-se uma abordagem com janela deslizante, permitindo capturar a 

dependência temporal dos dados anômalos. O objetivo da adaptação é melhorar a 

identificação de padrões e a divisão dos outliers em indisponibilidade e 

subdesempenho. 
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Conforme mencionado na seção 4.3.2.2, foi adotado um comprimento de 

janela de 6 horas com um passo de 2 horas, com o objetivo de se obter uma curva 

de potência próxima da real a partir dos valores médios. Para cada janela temporal, 

parâmetros estatísticos são extraídos a partir do tsfresh. A Figura 5-6 apresenta a 

curva de potência original versus a curva de potência média, construída a partir dos 

valores médios obtidos pelo tsfresh. Cada ponto no gráfico à direita representa um 

intervalo de 6 horas. 

Figura 5-6 À esquerda, a curva de potência original da turbina K01. À direita, a curva de 

potência com pontos médios, advindos do tsfresh. 

  
 

É importante mencionar que para o DBSCAN são utilizados, além da média, 

parâmetros estatísticos que também servem de auxílio na detecção de anomalias. 

Então, mesmo que algum ponto tenha sido suavizado pela média, o desvio padrão, 

por exemplo, pode ajudar na identificação de pontos discrepantes. A amplitude, que 

é a diferença entre o maior e o menor valor dentro da janela, também pode ajudar na 

identificação de picos que apareçam, mesmo que na média o valor tenha sido 

diluído.  

Os parâmetros estatísticos calculados pelo tsfresh são testados no intuito de 

se avaliar o desempenho do DBSCAN. Os testes podem ser divididos em três 

grupos: 

1. Grupo 1: apenas valores de média e de desvio padrão; 

2. Grupo 2: média, desvio padrão e parâmetros da correlação linear; 

3. Grupo 3: média, desvio padrão, parâmetros da correlação linear, mínimo, 

máximo e posições de mínimo e máximo.   

O valor de Épsilon é de metade do valor do joelho calculado, assim como para o 

primeiro caso do DBSCAN e o Min_samples é igual a 100, visto que este foi o valor 
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que apresentou o melhor desempenho para o DBSCAN. Os resultados para cada 

um dos testes são apresentados na Figura 5-7, Figura 5-8 e Figura 5-9. 

Figura 5-7 Agrupamento em clusters utilizando DBSCAN com parâmetros estatísticos 

em janela deslizante para o Grupo 1. 

 

Figura 5-8 Agrupamento em clusters utilizando DBSCAN com parâmetros estatísticos 

em janela deslizante para o Grupo 2. 
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Figura 5-9 Agrupamento em clusters utilizando DBSCAN com parâmetros estatísticos 

em janela deslizante para o Grupo 3. 

 

Pelas Figuras apresentadas, pode-se observar que mais uma vez o algoritmo 

foi bem sucedido na detecção da indisponibilidade total e em pontos esparsos 

abaixo da curva. Porém, novamente, não foi capaz de separar pontos de 

indisponibilidade e de subdesempenho. A Tabela 5-1, Tabela 5-2, Tabela 5-3 

apresentam os resultados de precisão, recall e F1-score, considerando cluster 0 

como pontos normais e diferente de 0 como pontos anômalos para estimativa de 

métricas de precisão, recall e F1-score para cada grupo de variáveis. 

Tabela 5-1 Resultados do DBSCAN com parâmetros estatísticos e janela deslizante 

para o grupo 1. 

 Precisão Recall F1-score 

Classe 0 1,00 0,99 0,99 

Classe 1 0,50 0,79 0,62 

 

Tabela 5-2 Resultados do DBSCAN com parâmetros estatísticos e janela deslizante 

para o grupo 2. 

 Precisão Recall F1-score 

Classe 0 1,00 0,99 0,99 

Classe 1 0,51 0,80 0,62 
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Tabela 5-3 Resultados do DBSCAN com parâmetros estatísticos e janela deslizante 

para o grupo 3. 

 

 Precisão Recall F1-score 

Classe 0 0,99 0,94 0,97 

Classe 1 0,17 0,86 0,28 

 

Assim como nos primeiros testes com o DBSCAN, o algoritmo apresenta um 

bom desempenho na identificação da classe majoritária. No entanto, para os dados 

anômalos, os grupos 1 e 2 são melhores, ambos com um F1-score de 0,62, 

enquanto o grupo 3 tem um desempenho inferior, com um F1-score de apenas 0,28. 

Embora o grupo 3 apresente um recall mais alto, identificando uma maior quantidade 

de pontos anômalos, sua precisão é muito baixa. Isso indica que muitos falsos 

positivos (ou seja, falhas detectadas erroneamente) foram classificados, o que 

impactou negativamente o F1-score. E assim, como acontece no DBSCAN clássico, 

o DBSCAN com janela deslizante também falha na diferenciação entre as classes. 

 

5.4 AUTOENCODER CLÁSSICO COM KAN (AE-KAN) 

Conforme descrito na seção 4.3.2.3, a terceira metodologia a ser testada é o 

autoencoder combinado com KAN (AE-KAN). A Tabela 5-4 apresenta os parâmetros 

utilizados em cada rodada de treino do autoencoder para o ajuste de 

hiperparâmetros e o respectivo erro de reconstrução. 

Tabela 5-4 Parâmetros para ajustes de hiperparâmetros do autoencoder. 

Rodada 
Número de 
camadas 

Dimensão 
latente 

Otimizador 
Número de 
épocas 

Erro de 
reconstrução 

1 3+3 3 Adam 100 0,19 

2 3+3 4 Adam 100 0,21 

3 3+3 3 Adam 500 0,12 

4 3+3 4 Adam 500 0,07 

5 3+3 3 RMSProp 100 0,15 

6 3+3 4 RMSProp 100 0,08 

7 3+3 3 RMSProp 500 0,09 

8 3+3 4 RMSProp 500 0,03 

9 3+3 3 AdamW 100 0,19 

10 3+3 4 AdamW 100 0,21 

11 3+3 3 AdamW 500 0,12 

12 3+3 4 AdamW 500 0,07 

13 4+4 3 Adam 100 0,18 

14 4+4 4 Adam 100 0,10 
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15 4+4 3 Adam 500 0,06 

16 4+4 4 Adam 500 0,05 

17 4+4 3 RMSProp 100 0,09 

18 4+4 4 RMSProp 100 0,06 

19 4+4 3 RMSProp 500 0,03 

20 4+4 4 RMSProp 500 0,03 

21 4+4 3 AdamW 100 0,18 

22 4+4 4 AdamW 100 0,10 

23 4+4 3 AdamW 500 0,06 

24 4+4 4 AdamW 500 0,05 

 
A curva de potência com os dados originais e reconstruídos de cada rodada é 

apresentada no Apêndice A. Observa-se que as rodadas 08, 19 e 20 são as que 

apresentam menor erro de reconstrução. Avaliando também a curva de potência, o 

treino de número 20 apresentou o melhor desempenho e, portanto, seus resultados 

são usados como dados de entrada para a KAN. São usados tanto os dados da 

turbina K01, para treino da KAN, quanto os dados da turbina K02, para teste da 

KAN. 

Na rede Kolmogorov-Arnold, os hiperparâmetros são ajustados e as métricas 

de classificação – acurácia global, AUC ROC, precisão, recall e F1-score - são 

calculadas a fim de se comparar o desempenho de cada um dos treinos. Os 

resultados são apresentados na Tabela 5-5, em que P denota precisão, R, recall e 

F1, o F1-score, seguidos de um hífen e da respectiva classe.  

Tabela 5-5 Acurácia, AUC-ROC, precisão, recall, F1-score para cada uma das classes 

durante o ajuste de hiperparâmetros da KAN. 

Rodada Acurácia AUC ROC P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2 

1 1,00 0,83 1,00 0,83 0,09 0,98 0,99 0,74 0,99 0,90 0,16 

2 1,00 0,84 1,00 0,85 0,15 0,99 0,98 0,84 0,99 0,91 0,25 

3 1,00 0,85 1,00 0,84 0,13 0,99 0,99 0,87 0,99 0,91 0,23 

4 1,00 0,85 1,00 0,83 0,09 0,98 0,98 0,81 0,99 0,90 0,17 

5 1,00 0,84 1,00 0,82 0,05 0,97 0,99 0,65 0,99 0,89 0,09 

6 1,00 0,85 1,00 0,83 0,14 0,99 0,99 0,79 0,99 0,90 0,23 

7 1,00 0,83 1,00 0,85 0,06 0,97 0,99 0,69 0,99 0,91 0,11 

8 1,00 0,84 1,00 0,82 0,16 0,99 0,99 0,80 0,99 0,89 0,26 

9 1,00 0,85 1,00 0,84 0,12 0,99 0,99 0,75 0,99 0,90 0,20 

10 1,00 0,86 1,00 0,83 0,26 0,99 0,99 0,85 1,00 0,90 0,40 

11 1,00 0,85 1,00 0,84 0,13 0,99 0,98 0,78 0,99 0,91 0,22 

12 1,00 0,86 1,00 0,84 0,07 0,98 0,99 0,64 0,99 0,91 0,12 

13 1,00 0,85 1,00 0,83 0,20 0,99 0,99 0,80 1,00 0,90 0,31 

14 1,00 0,85 1,00 0,85 0,06 0,98 0,99 0,65 0,99 0,91 0,11 
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15 1,00 0,87 1,00 0,84 0,13 0,99 0,99 0,76 0,99 0,90 0,23 

16 1,00 0,85 1,00 0,81 0,07 0,98 0,99 0,67 0,99 0,89 0,13 

 

Observa-se que, para a classe 0, os resultados são excelentes, com métricas 

próximas de 1. Para a classe 1, o desempenho também é satisfatório, com o F1-

score atingindo 0,91. No caso da classe 2, há uma baixa precisão e um recall 

razoável, indicando que, apesar do alto número de falsos positivos, o modelo ainda 

consegue identificar boa parte dos verdadeiros positivos. Na identificação de 

anomalias, é preferível um maior número de falsos positivos do que de falsos 

negativos, garantindo que menos falhas reais passem despercebidas. 

O critério para a seleção dos hiperparâmetros foi o valor do recall para a 

classe 2, uma vez que os resultados para as classes 0 e 1 são muito semelhantes. 

Com base nisso, os hiperparâmetros da rodada 3 são escolhidos para teste. O 

modelo é testado em outras turbinas do parque, a K02, K03 e K04. A Tabela 5-6, 

Tabela 5-7 e Tabela 5-8 apresentam os resultados dos testes. 

Tabela 5-6 Acurácia, AUC ROC, precisão, recall e F1-score do teste com a turbina K02 – 

modelo AE-KAN. 

Acurácia 
AUC 
ROC 

P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2 

0,98 1,00 1,00 0,85 0,09 0,98 0,99 0,69 0,99 0,91 0,17 

 

Tabela 5-7 Acurácia, AUC ROC, precisão, recall e F1-score do teste com a turbina K03 – 

modelo AE-KAN. 

Acurácia 
AUC 
ROC 

P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2 

0,97 1,00 1,00 0,88 0,06 0,97 0,99 1,00 0,99 0,93 0,11 

 

Tabela 5-8 Acurácia, AUC ROC, precisão, recall e F1-score do teste com a turbina K04 – 

modelo AE-KAN. 

Acurácia 
AUC 
ROC 

P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2 

0,97 1,00 1,00 0,88 0,07 0,97 1,00 0,97 0,98 0,94 0,12 

 

Durante o processo de treinamento, o modelo apresentou um desempenho 

consistente na distinção entre as classes 0 e 1, resultado que também se confirmou 

na etapa de teste. O AE-KAN teve capacidade razoável de reconhecer corretamente 

instâncias da classe 2, com recall chegando a 1,00 para a turbina K03. Contudo, sua 
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maior fragilidade está relacionada à baixa precisão nessa classe, já que uma 

quantidade considerável de dados normais foi equivocadamente rotulada como 

pertencente à classe 2. Isto é apresentado na matriz de confusão, para cada uma 

das turbinas, ilustradas na Figura 5-10, Figura 5-11 e Figura 5-12. 

Figura 5-10 Matriz de confusão do modelo AE-KAN testado na turbina K02. 

 

 

Figura 5-11 Matriz de confusão do modelo AE-KAN testado na turbina K03. 
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Figura 5-12 Matriz de confusão do modelo AE-KAN testado na turbina K04. 

 

 

A Figura 5-13, Figura 5-14, Figura 5-15 apresentam os gráficos da área sob a 

curva ROC para as três classes, para as turbinas K02, K03 e K04, respectivamente.  

 

Figura 5-13 Área sob a curva ROC, para cada classe - modelo AE-KAN testado na 

turbina K02. 
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Figura 5-14 Área sob a curva ROC, para cada classe - modelo AE-KAN testado na 

turbina K03. 

 

Figura 5-15 Área sob a curva ROC, para cada classe - modelo AE-KAN testado na 

turbina K04. 

 

A área sob a curva ROC indica que o modelo teve um desempenho 

excepcional na segmentação entre as classes 0, 1 e 2, mostrando a eficácia do 

modelo testado. 

A Figura 5-16, Figura 5-25, Figura 5-28 mostram a curva de potência limpa, 

ou seja, com a classificação em pontos normais, indisponibilidade e subdesempenho 

para as turbinas K02, K03 a K04, respectivamente. 
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Figura 5-16 Curva de potência limpa, com pontos classificados em normais, 

indisponíveis e subdesempenho para a turbina K02 - modelo AE-KAN. 

 

Figura 5-17 Curva de potência limpa, com pontos classificados em normais, 

indisponíveis e subdesempenho para a turbina K03 - modelo AE-KAN. 
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Figura 5-18 Curva de potência limpa, com pontos classificados em normais, 

indisponíveis e subdesempenho para a turbina K04 - modelo AE-KAN. 

 

Apesar dos resultados do autoencoder padrão combinados com a rede KAN 

terem sido satisfatórios, uma nova metodologia é testada, no intuito de melhorar o 

desempenho da identificação da classe 2. Por este motivo, um autoencoder 

variacional é utilizado no lugar do autoencoder padrão e novos testes são feitos. Os 

resultados são apresentados a seguir. 

 

5.5 AUTOENCODER VARIACIONAL COM KAN (VAE-KAN) 

Conforme descrito na seção 4.3.2.4, um autoencoder variacional é testado. 

Combina-se o autoencoder variacional (VAE) com a KAN. A Tabela 5-9 apresenta os 

valores utilizados no ajuste de hiperparâmetros do autoencoder e o respectivo erro 

de reconstrução de cada rodada. 

Tabela 5-9 Hiperparâmetros do autoencoder variacional e o erro de reconstrução. 

Rodada 
Tamanho do espaço 
latente 

Épocas 
Tamanho das camadas 
ocultas 

Otimizador 
Erro de 
reconstrução 

1 3 20 8 Adam 0,109 

2 3 20 8 RMSProp 0,108 

3 3 20 16 Adam 0,109 

4 3 20 16 RMSProp 0,111 

5 3 30 8 Adam 0,111 

6 3 30 8 RMSProp 0,164 

7 3 30 16 Adam 0,106 

8 3 30 16 RMSProp 0,107 
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9 4 20 8 Adam 0,106 

10 4 20 8 RMSProp 0,165 

11 4 20 16 Adam 0,109 

12 4 20 16 RMSProp 0,107 

13 4 30 8 Adam 0,106 

14 4 30 8 RMSProp 0,108 

15 4 30 16 Adam 0,165 

16 4 30 16 RMSProp 0,111 

 

Como os valores dos erros estão ainda mais próximos do que para o 

autoencoder clássico, optou-se por reportar três casas decimais neste caso, para 

que as rodadas pudessem ser mais bem discernidas. As curvas de potência com os 

pontos originais e reconstruídos são mostradas no Apêndice B. A rodada de número 

13 foi a que apresentou o menor erro de reconstrução, sendo, portanto, escolhida 

como dado de entrada para a KAN.  

De forma similar, gera-se os resultados do ajuste de hiperparâmetros da KAN 

com o autoencoder variacional. Os mesmos parâmetros utilizados anteriormente, em 

cada rodada, conforme mostrado na Tabela 4-5, se mantêm. Para avaliação, as 

métricas de acurácia global, AUC ROC, precisão, recall e f1-score são calculadas. 

Os resultados são apresentados na Tabela 5-10. 

Tabela 5-10  Acurácia, AUC-ROC, precisão, recall, F1-score para cada uma das classes 

durante o ajuste de hiperparâmetros do modelo VAE-KAN. 

Rodada Acurácia AUC ROC P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2 

1 0,99 1,00 1,00 0,87 0,04 0,95 0,98 0,94 0,98 0,92 0,08 

2 0,98 1,00 1,00 0,86 0,04 0,95 0,98 0,94 0,98 0,92 0,08 

3 0,99 1,00 1,00 0,86 0,07 0,97 0,98 0,97 0,99 0,92 0,13 

4 0,99 1,00 1,00 0,86 0,05 0,96 0,98 0,96 0,98 0,92 0,10 

5 0,99 1,00 1,00 0,87 0,04 0,95 0,98 0,94 0,98 0,92 0,08 

6 0,97 0,99 1,00 0,86 0,06 0,97 0,98 0,96 0,98 0,92 0,11 

7 0,98 0,99 1,00 0,87 0,04 0,95 0,98 0,95 0,98 0,92 0,08 

8 0,98 1,00 1,00 0,86 0,07 0,97 0,98 0,97 0,99 0,91 0,14 

9 0,98 1,00 1,00 0,86 0,07 0,97 0,98 0,95 0,99 0,92 0,12 

10 0,99 1,00 1,00 0,86 0,07 0,97 0,98 0,97 0,99 0,92 0,13 

11 0,99 1,00 1,00 0,85 0,08 0,97 0,98 0,96 0,99 0,91 0,14 

12 0,99 1,00 1,00 0,87 0,05 0,96 0,98 0,95 0,98 0,92 0,09 

13 0,98 1,00 1,00 0,87 0,09 0,98 0,98 0,97 0,99 0,92 0,17 

14 0,98 1,00 1,00 0,86 0,12 0,98 0,98 0,97 0,99 0,92 0,21 

15 0,99 1,00 1,00 0,85 0,12 0,98 0,98 0,97 0,99 0,91 0,21 

16 0,99 1,00 1,00 0,86 0,06 0,97 0,98 0,95 0,98 0,91 0,11 
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Tanto o modelo AE-KAN quanto o VAE-KAN demonstraram sucesso na 

diferenciação entre pontos normais, indisponibilidade e subdesempenho, superando 

os modelos de agrupamento de dados testados. Comparativamente, o VAE-KAN 

apresentou R-2 mais alto para a turbina K02, enquanto o AE-KAN obteve maior 

acurácia e P-2. As métricas para as classes 0 e 1 foram, de modo geral, 

semelhantes entre os dois modelos. 

Embora a classe 2 apresente baixa precisão e, consequentemente, um F1-

score reduzido, o VAE-KAN se destaca pelo maior recall nessa classe. Esse fator o 

torna mais eficiente na identificação de verdadeiros positivos da classe 2, 

caracterizando-o como o modelo de melhor desempenho nesse critério. 

Para teste, utiliza-se o modelo com os hiperparâmetros otimizados com uma 

segunda turbina. Aplica-se, pois, o modelo treinado nas turbinas K02, K03 e K04. A 

Tabela 5-11, Tabela 5-12 e Tabela 5-15 apresentam os resultados dos testes. 

Tabela 5-11 Acurácia, AUC ROC, precisão, recall e F1-score do teste com a turbina K02 

– modelo VAE-KAN. 

Acurácia 
AUC 
ROC 

P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2 

0,96 0,99 1,00 0,87 0,05 0,96 0,98 0,95 0,98 0,92 0,10 

 

Tabela 5-12 Acurácia, AUC ROC, precisão, recall e F1-score do teste com a turbina K03 

– modelo VAE-KAN. 

Acurácia 
AUC 
ROC 

P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2 

0,92 0,99 1,00 0,86 0,02 0,92 0,99 0,92 0,96 0,92 0,03 

 

Tabela 5-13 Acurácia, AUC ROC, precisão, recall e F1-score do teste com a turbina K04 

– modelo VAE-KAN. 

Acurácia 
AUC 
ROC 

P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2 

0,91 0,99 1,00 0,87 0,02 0,91 0,99 0,91 0,95 0,93 0,04 

 

Conforme observado durante o treinamento, o modelo demonstrou excelente 

desempenho na identificação das classes 0 e 1, comportamento que se manteve no 

teste. Além disso, o VAE-KAN mostrou-se eficaz na identificação de verdadeiros 

positivos da classe 2. No entanto, sua principal limitação está na precisão dessa 

classe, uma vez que classifica erroneamente muitos pontos da classe normal como 
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pertencentes à classe 2. Esse comportamento pode ser visualizado na Figura 5-19, 

Figura 5-20 e Figura 5-21, que apresentam as matrizes de confusão das turbinas 

K02, K03 e K04, respectivamente.  

 

Figura 5-19 Matriz de confusão do modelo VAE-KAN testado na turbina K02. 

 

Figura 5-20 Matriz de confusão do modelo VAE-KAN testado na turbina K03. 
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Figura 5-21 Matriz de confusão do modelo VAE-KAN testado na turbina K04. 

 

 

A Figura 5-22, Figura 5-23 e Figura 5-24 apresentam o gráfico da área sob a 

curva ROC para as três classes, em cada turbina testada.  

Figura 5-22 Área sob a curva ROC, para cada classe - modelo VAE-KAN testado na 

turbina K02. 
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Figura 5-23 Área sob a curva ROC, para cada classe - modelo VAE-KAN testado na 

turbina K03. 

 

 

Figura 5-24 Área sob a curva ROC, para cada classe - modelo VAE-KAN testado na 

turbina K04. 

 

 

A área sob a curva ROC apresentada, para cada turbina, indica que o modelo 

teve um excelente desempenho na separação das classes, com valores de AUC 

próximos a 1, reforçando sua eficácia na identificação dos verdadeiros positivos. 
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A Figura 5-25, Figura 5-26 e Figura 5-27 mostram a curva de potência com a 

classificação em pontos normais, indisponibilidade e subdesempenho para as 

turbinas K02, K03 e K04, respectivamente. 

 

Figura 5-25 Curva de potência normalizada com as respectivas classificações em 

pontos normais, indisponibilidade e subdesempenho para a turbina K02 – modelo VAE-KAN. 

 

Figura 5-26 Curva de potência normalizada com as respectivas classificações em 

pontos normais, indisponibilidade e subdesempenho para a turbina K03 – modelo VAE-KAN. 
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Figura 5-27 Curva de potência normalizada com as respectivas classificações em 

pontos normais, indisponibilidade e subdesempenho para a turbina K04 – modelo VAE-KAN. 

 

A Figura 5-28 apresenta a limpeza da curva realizada por cada um dos 

métodos desenvolvidos, em comparação com a referência obtida a partir da limpeza 

feita pelo especialista.   

Figura 5-28 Classificação de pontos nas curvas de potência, pelo AE-KAN, VAE-KAN e 

especialista da turbina K02. 

AE-KAN VAE-KAN Especialista 

   
 

Figura 5-29 Classificação de pontos nas curvas de potência, pelo AE-KAN, VAE-KAN e 

especialista da turbina K03. 

AE-KAN VAE-KAN Especialista 
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Figura 5-30 Classificação de pontos nas curvas de potência, pelo AE-KAN, VAE-KAN e 

especialista da turbina K04. 

AE-KAN VAE-KAN Especialista 

   
 

O desempenho dos modelos na detecção de indisponibilidade (classe 1) foi 

bastante semelhante, apresentando resultados satisfatórios. No entanto, conforme 

pode ser observado nas Figuras, o modelo VAE-KAN gerou uma quantidade 

significativa de falsos positivos, especialmente na região próxima à potência 

nominal, em todas as turbinas, e na base da curva das turbinas K03 e K04. Para sua 

aplicação prática, seria necessário incorporar uma etapa de pós-processamento, 

que limite automaticamente a marcação de pontos de subdesempenho nessas 

faixas, minimizando assim os impactos desses falsos positivos.  

 

5.6 COMPARAÇÃO COM OUTROS ALGORITMOS DE APRENDIZADO DE 

MÁQUINA 

 

Com o objetivo de avaliar a robustez do modelo desenvolvido neste trabalho e 

compará-lo a outras abordagens já consolidadas na área de aprendizado de 

máquina, utilizou-se a biblioteca PyCaret, do Python, para a comparação entre os 
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diferentes algoritmos. Os dados de entrada utilizados na análise correspondem aos 

utilizados pelos modelos AE-KAN e VAE-KAN, conforme apresentados na Tabela 

4-7 e na Tabela 4-8, respectivamente. 

 

5.6.1. Modelo AE-KAN 

A Tabela 5-14 apresenta as métricas de classificação de cada um dos 

modelos alternativos testados. 

Tabela 5-14 Métricas para os modelos de classificação testados. 

Modelo 
Acurácia 
global AUC ROC Recall 

Precisão 
global 

F1-score 
global 

Random 
Forest  1,00 1,00 1,00 1,00 1,00 

XGBoost 1,00 1,00 1,00 1,00 1,00 

Extra trees 1,00 1,00 1,00 1,00 1,00 

Árvore de 
decisão 1,00 0,98 1,00 1,00 1,00 

KNN 1,00 0,99 1,00 1,00 1,00 

Gradient 
Boosting 1,00 0,00 1,00 1,00 1,00 

SVM 1,00 0,00 1,00 0,99 1,00 

Regressão 
logística 1,00 0,00 1,00 0,99 1,00 

Ridge 
Classifier 1,00 0,00 1,00 0,99 0,99 

Análise 
discriminante 0,99 0,00 0,99 1,00 1,00 

Light Gradient 
Boosting 
Machine 0,99 0,93 0,99 1,00 1,00 

Classificador 
de referência 0,99 0,50 0,99 0,97 0,98 

Classificador 
Ada Boost  0,94 0,00 0,94 0,99 0,97 

Análise 
discriminante 
quadrática 0,89 0,00 0,89 1,00 0,94 

Naive Bayes 0,82 0,96 0,82 0,99 0,90 

 

 

Uma parte dos modelos apresentou bom desempenho geral. Para uma 

avaliação mais detalhada da capacidade de separação entre as classes, foram 

selecionados os modelos Random Forest, XGBoost, Extra Trees, Árvore de Decisão 

e KNN, visando uma análise mais aprofundada. Os resultados de precisão, acurácia 

e F1-score, por classe, são apresentados na Tabela 5-15. Na última linha foram 

acrescentados os resultados do modelo AE-KAN para fins de comparação. 
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Tabela 5-15 Precisão, recall e F1-score, por classe, para cada modelo alternativo 

testado. 

Modelo P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2 
Random 
Forest  

1,00 0,99 0,94 1,00 0,97 0,34 1,00 0,98 0,49 

XGBoost 1,00 1,00 0,96 1,00 0,83 0,36 1,00 0,91 0,52 

Extra trees 1,00 0,98 0,94 1,00 0,97 0,34 1,00 0,98 0,50 

Árvore de 
decisão 

1,00 0,98 0,91 1,00 0,97 0,38 1,00 0,98 0,53 

KNN 1,00 0,98 0,90 1,00 0,96 0,34 1,00 0,97 0,49 

AE-KAN 1,00 0,85 0,09 0,98 0,99 0,69 0,99 0,91 0,17 

 

Em termos de precisão e F1-score, os modelos de classificação alternativos 

testados apresentaram desempenho superior ao AE-KAN. No entanto, o AE-KAN 

destacou-se na identificação de verdadeiros positivos das classes 1 e 2, o que é 

relevante, por aumentar a sensibilidade do modelo na detecção de anomalias. 

 

5.6.2. Modelo VAE-KAN 

A Tabela 5-16 mostra os resultados das métricas de classificação dos 

modelos avaliados para fins de comparação com o VAE-KAN. 

Tabela 5-16 Métricas para os modelos de classificação testados. 

Modelo 
Acurácia 
global AUC ROC Recall 

Precisão 
global 

F1-score 
global 

XGBoost 1,00 1,00 1,00 1,00 1,00 

Árvore de 
decisão 1,00 0,98 1,00 1,00 1,00 

Random 
Forest  1,00 1,00 1,00 1,00 1,00 

Gradient 
Boosting  1,00 0,00 1,00 1,00 1,00 

Extra Trees  1,00 1,00 1,00 1,00 1,00 

SVM 1,00 0,00 1,00 0,99 1,00 

Regressão 
logística 1,00 0,00 1,00 0,99 1,00 

Ridge 
Classifier 1,00 0,00 1,00 0,99 0,99 

KNN 0,99 0,88 0,99 0,99 0,99 

Dummy 
Classifier 0,99 0,50 0,99 0,97 0,98 

Análise 
discriminante 0,98 0,00 0,98 0,99 0,99 

Light Gradient 
Boosting 
Machine 0,98 0,84 0,98 0,99 0,98 

Análise 
discriminante 
quadrática 0,96 0,00 0,96 1,00 0,98 

Classificador 
Ada Boost 0,89 0,00 0,89 0,99 0,94 

Naive Bayes 0,80 0,96 0,80 1,00 0,89 
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Assim como no caso do AE-KAN, uma parte dos modelos é bem-sucedida, 

com métricas que chegam a 1 ou muito próximo disso. Para uma análise mais 

detalhada, os mesmos cinco modelos são selecionados e comparados com o VAE-

KAN. Os resultados são mostrados na Tabela 5-17. 

 

Tabela 5-17 Precisão, recall e F1-score, por classe, para cada modelo alternativo 

testado. 

Modelo P-0 P-1 P-2 R-0 R-1 R-2 F1-0 F1-1 F1-2 

XGBoost 1,00 0,99 0,93 1,00 0,99 0,71 1,00 0,99 0,80 

Árvore de 
decisão 1,00 0,98 0,83 1,00 0,98 0,74 1,00 0,98 0,78 

Random 
Forest  1,00 0,99 0,95 1,00 0,97 0,62 1,00 0,98 0,75 

Extra trees 1,00 0,95 0,96 1,00 0,97 0,38 1,00 0,96 0,54 

KNN 1,00 0,92 0,00 1,00 0,74 0,00 1,00 0,82 0,00 

VAE-KAN 1,00 0,87 0,05 0,96 0,98 0,95 0,98 0,92 0,10 

 

Análogo ao que acontece com o AE-KAN, os modelos testados também 

possuem melhor performance na precisão e no F1-score, mas desempenho inferior 

no recall, especialmente da classe 2. 
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6 CONCLUSÕES 

Este trabalho apresenta uma nova abordagem para a limpeza automática de 

curvas de potência de turbinas eólicas. Foram desenvolvidas e validadas 

metodologias híbridas que automatizam a limpeza de curvas de potência, que não 

apenas identifica e remove anomalias, mas também diferencia entre tipos distintos 

de eventos anômalos, especificamente indisponibilidade e subdesempenho, com 

aplicação inédita da rede Kolmogorov-Arnold (KAN) nesse contexto. 

Ao longo do desenvolvimento, foram testados algoritmos de agrupamento de 

dados que, embora eficazes na detecção de anomalias, não apresentaram um 

desempenho satisfatório na separação entre as classes. Para aprimorar a 

metodologia, propôs-se a combinação de autoencoders com redes neurais 

Kolmogorov-Arnold, resultando em uma abordagem mais robusta para a limpeza da 

curva de potência. 

Inicialmente, foi testada a combinação entre um autoencoder clássico e KAN. 

O modelo demonstrou excelente desempenho na classificação das classes 0 e 1, 

apresentando alta precisão e recall, além de um desempenho razoável na 

identificação dos verdadeiros positivos da classe 2. No entanto, a metodologia 

revelou limitações na precisão da classe 2, uma vez que gerou um número 

significativo de falsos positivos. 

Com o objetivo de aprimorar a separação entre as classes, foi desenvolvido 

um método que combina um autoencoder variacional (VAE) com KAN, aproveitando 

a saída da camada latente como informação adicional. Comparativamente, o modelo 

VAE-KAN mostrou-se superior ao AE-KAN na identificação de verdadeiros positivos 

da classe 2. No entanto, a precisão da classe 2 permaneceu insatisfatória, 

apresentando valores ainda inferiores aos observados no modelo AE-KAN. 

Para fins de comparação com modelos já estabelecidos na literatura, 

utilizaram-se os mesmos conjuntos de treino e teste para treinar diferentes 

classificadores. Os modelos tradicionais apresentaram melhores métricas de F1-

score, indicando maior precisão, mas foram menos eficazes na identificação de 

verdadeiros positivos, especialmente da classe 2. 

Para os resultados de classificação, utilizou-se como referência, uma limpeza 

conduzida por um especialista no setor, utilizando-se de uma ferramenta validada e 

usada na indústria. 
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Pode-se concluir que os algoritmos desenvolvidos apresentaram bom 

desempenho, cumprindo o objetivo de automatizar a limpeza de curvas de potência. 

Sua implementação pode ser uma alternativa eficiente para reduzir o esforço manual 

de engenheiros responsáveis por essa tarefa. Como limitação, destaca-se a alta 

taxa de falsos positivos, o que torna necessário um pós-processamento. Uma 

estratégia simples e automatizável seria restringir a marcação de pontos de 

subdesempenho à região próxima da potência nominal. Além disso, por se tratar de 

um modelo supervisionado, é necessário que ao menos uma turbina seja 

previamente limpa manualmente para servir como base de treinamento. Idealmente, 

essa turbina deve apresentar a maior diversidade possível de falhas, permitindo que 

o modelo aprenda a reconhecer diferentes padrões de anomalia. 

Como recomendações para trabalhos futuros, recomenda-se a exploração de 

uma gama mais ampla de hiperparâmetros durante o treinamento e a exploração de 

abordagens para preenchimento de lacunas nos dados SCADA, como o uso dos 

dados de energia da subestação e o cálculo da eficiência elétrica para estimativa da 

potência em períodos ausentes. Outra possibilidade é a síntese de dados de 

velocidade do vento a partir de dados de reanálise, permitindo reconstituir a curva de 

potência em cenários com falhas prolongadas nos sensores de vento. Por fim, 

recomenda-se que os treinamentos sejam realizados por faixa (bin) de potência, 

favorecendo uma segmentação mais precisa e adaptada às diferentes regiões 

operacionais da turbina. 
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