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RESUMO

Decisões cotidianas podem levar a situações conflituosas em que as partes com poder de

decisão podem ter interesses distintos em um determinado contexto. Nesse cenário, o uso de

métodos de resolução de conflitos surge como uma abordagem estratégica para representar e

analisar tais situações. Assim, esta tese visa contribuir para a análise da estabilidade em conflitos

com horizonte variável, utilizando métodos matriciais no Modelo de Grafos para Resolução de

Conflitos (GMCR). Mais especificamente, propusemos resultados sobre representações matriciais

para determinar estados estáveis de acordo com os conceitos de estabilidade sequencial de ordem

superior (m-SEQ), Maximinh e movimento limitado (Lh) no âmbito do GMCR considerando

conflitos bilaterais e multilaterais. Com base nos sistemas lógicos já existentes na literatura, são

desenvolvidos os sistemas matriciais para 2 ou mais tomadores de decisão (DMs).

Com os métodos propostos, análises de estabilidade com horizonte variável em conflitos en-

volvendo um grande número de estados ou DMs podem ser feitas de forma eficiente. Após o

desenvolvimento dos sistemas matriciais, a fim de demonstrar a utilidade das representações

matriciais obtidas, foram feitas aplicações da representação matricial m-SEQ para o caso de uma

disputa com dois DMs, o clássico jogo Matching Pennies, e para o caso de n DMs, o conflito

da renovação de área de instalação industrial privada. No caso da representação matricial da

estabilidade Maximinh, realizamos a aplicação dos métodos propostos na análise da Fase 3

do conflito entre Sun Belt e o Governo da Colúmbia Britânica e demonstramos a eficiência

do método matricial e o tempo computacional a partir da aplicação do conflito do Dilema dos

Prisioneiros para n DMs. Por fim, no caso da representação matricial da estabilidade Lh, foram

realizadas três aplicações: o Dilema dos prisioneiros para 2 decisores para ilustrar o método,

a análise das 4 fases cognitivas do conflito de seleção tecnológica até o horizonte h = 3, e

exploramos a existência e os tamanhos dos ciclos na estabilidade Lh aplicado a todos os jogos em

forma normal 2×2. Como esperado, as representações matriciais propostas quando comparadas

ao sistema lógico apresentaram maior eficiência e facilidade nos cálculos de estabilidade.

Palavras-chave: Modelo de Grafos, Noções de Estabilidade, Representação Matricial, Hori-

zonte Variável, Ciclos.



ABSTRACT

Everyday decisions can lead to conflict situations in which the parties with decision-making

power may have different interests in a given context. In this scenario, the use of conflict

resolution methods has emerged as a strategic approach to represent and analyze such situations.

Thus, this thesis aims to contribute to the analysis of stability in conflicts with variable horizons,

using matrix methods in the Graph Model for Conflict Resolution (GMCR). Specifically, we

propose results on matrix representations to determine stable states according to the concepts of

higher-order sequential stability (m-SEQ), Maximinh, and bounded motion (Lh) in the context of

GMCR, considering bilateral and multilateral conflicts. Based on existing logical systems in the

literature, matrix systems for 2 or more decision makers (DMs) are developed. With the proposed

methods, stability analyses with variable horizons in conflicts involving a large number of states

or DMs can be carried out efficiently. After the development of the matrix systems, in order to

demonstrate the usefulness of the obtained matrix representations, applications of the m-SEQ

matrix representation were made to the case of a dispute with two DMs, the classic Matching

Pennies game, and to the case of n DMs, the conflict over the renovation of a private industrial

site. In the case of the matrix representation of Maximinh stability, we applied the proposed

methods to the analysis of Phase 3 of the conflict between the Sun Belt and the Government of

British Columbia, and demonstrated the efficiency of the matrix method and the computational

time when applying the Prisoner’s Dilemma conflict to n DMs. Finally, in the case of the

matrix representation of stability Lh, three applications were made: the Prisoner’s Dilemma

for 2 decision makers to illustrate the method, the analysis of the 4 cognitive phases of the

technological choice conflict up to the horizon h = 3, and we explored the existence and sizes

of cycles in stability Lh applied to all games in normal form 2×2. As expected, the proposed

matrix representations showed greater efficiency and ease in stability computations compared to

the logical system.

Keywords: Graph Model, Stability Notions, Matrix Representation, Variable Horizon, Cycles.
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1 INTRODUÇÃO

Diariamente lidamos com a necessidade de tomadas de decisões em nossa vida

pessoal, profissional ou acadêmica, buscando diversas formas que possam ajudar em nossas

escolhas. A partir do momento em que cada decisor toma caminhos diferentes, isso pode afetá-

los mutualmente, gerando possíveis conflitos. Em uma tomada de decisão racional, o tomador

de decisão (decision maker - DM) precisa definir quais objetivos ele deseja alcançar e avaliar, de

forma estratégica, quais possíveis movimentos ele pode realizar a fim de que obtenha o melhor

ganho para ele.

O uso de métodos de resolução de conflitos pode facilitar a finalização de conflitos,

a fim de obter ganhos para todos, podendo ser utilizado em mediações e negociações. Esses

métodos baseados em resultados de análise de estabilidade do modelo fornecem previsões,

sugestões e possíveis soluções que auxiliam na tomada de decisões, avaliando as possíveis

estratégias de resolução de conflitos.

Levando em consideração conceitos de análise de conflitos e teoria dos jogos, foi

proposto, por Kilgour et al. em 1987, um modelo matemático que torna capaz a modelagem e

análise de situações de conflitos estratégicos. Esse modelo é conhecido como modelo de grafo

para resolução de conflitos (GMCR) e visa acomodar diversos comportamentos presentes nos

DMs em sua análise de estabilidade, podendo ser adaptado para situações diversas.

Para tomar decisões mais coerentes e aumentar o ganho em relação à escolha rea-

lizada, um DM precisa estar ciente de suas principais características e ter noção dos possíveis

comportamentos que os seus oponentes podem ter no decurso de um conflito. A fim de pre-

servar que nenhum DM em um determinado conflito desvie da solução sugerida, a análise de

estabilidade busca possíveis soluções para garantir isso em um conflito.

Dada uma escolha de ação para cada um dos DMs envolvidos no conflito, temos

um cenário do conflito, que é denominado estado do conflito. A análise de estabilidade visa

determinar, para cada estado, os possíveis DMs que tenham incentivo de mudar ou não as suas

possíveis ações. Como existem diversos critérios que avaliam este incentivo, também existem

diferentes definições de estabilidade que visam capturar diferentes tipos de comportamentos

que podem surgir ao longo de um conflito estratégico. Em situações em que um DM não tem

incentivo para se desviar de um estado, este estado é conhecido como estado estável para este

DM. No caso em que nenhum dos DMs, envolvidos no conflito, têm incentivo para se desviar
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de um estado de acordo com uma definição de estabilidade, então esse estado é chamado de

equilíbrio para esta noção de estabilidade.

As definições de estabilidades mais usuais na literatura sobre o modelo de grafo para

resolução de conflitos (GMCR) são: Nash (NASH, 1950; NASH, 1951), metarracionalidade geral

(GMR) (HOWARD, 1971), metarracionalidade simétrica (SMR) (HOWARD, 1971), estabilidade

sequencial (SEQ) (FRASER; HIPEL, 1984), estabilidade sequencial simétrica (SSEQ) (RÊGO;

VIEIRA, 2016), sequencial de ordem superior (m-SEQ) (RÊGO; OLIVEIRA, 2020), estabilidade

maximin no horizonte h (Maximinh) (RÊGO; VIEIRA, 2019) e a estabilidade movimento

limitado no horizonte h (Lh) (KILGOUR, 1985). Intuitivamente, na estabilidade de Nash, cada

DM, ignorando as possíveis reações que os oponentes podem ter, verifica se ele pode ou não

alcançar um estado mais preferível para ele. Nas estabilidades GMR e SEQ, o DM focal, ou

seja, decisor ou agente cujas preferências e estratégias estão sendo analisadas em um momento

específico no conflito, verifica se os oponentes podem sancioná-lo levando o conflito a um

estado que não é preferível ao estado inicial para o DM focal, sendo que esses conceitos diferem

entre si pelo fato de que no conceito SEQ as reações dos adversários devem sempre trazer uma

melhora para a situação deles, enquanto que no conceito GMR isso não necessariamente ocorre.

A estabilidade SEQ é, portanto, um conceito de estabilidade mais forte no sentido de que as

reações ao movimento inicial de DM focal são mais plausíveis. Já nos conceitos SMR e SSEQ,

além do DM focal analisar as respostas que podem ser dadas pelos seus oponentes, exatamente

como ocorre nos conceitos GMR e SEQ, respectivamente, o DM focal também analisa se ele

consegue escapar, da situação imposta pelos seus oponentes, para uma situação que seja melhor

do que o estado inicial em que o DM focal se encontrava.

Porém, na estabilidade SEQ os oponentes podem reagir, saindo de um estado que

é SEQ estável para eles apenas para punir o DM focal. Esse movimento torna questionável

a plausibilidade de tais reações. No entanto, a estabilidade m-SEQ evita que essas reações

aconteçam, impossibilitando que um DM deixe um estado SEQ estável para sancionar o DM

focal, se tornando uma ação mais plausível. Já para o caso do conceito solução Lh, o DM focal

antecipa h passos a frente qual será o cenário final do conflito, levando em consideração que

os DMs sempre irão mudar as suas ações a fim de obter o melhor cenário possível para eles.

No conceito maximinh, o DM focal também antecipa h passos a frente qual será o estado final

do conflito, mas diferente da estabilidade Lh, o DM focal acredita que os oponentes sempre se

movem para o pior cenário para o DM focal.

Apesar das diversas vantagens que o GMCR apresenta, em circunstâncias onde o
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número de estados ou DMs é expressivamente grande (ou até em alguns casos considerados

pequenos) realizar a análise de estabilidade dos estados de um conflito manualmente pode tornar-

se uma tarefa exaustiva. Desta forma, faz-se necessário o uso de métodos computacionais para

buscar estados estáveis no modelo, com o intuito de facilitar e auxiliar as análises de forma mais

rápida e eficiente. Estes métodos computacionais são baseados em representações matriciais de

conceitos de solução para o GMCR, que podem ser codificados conforme a necessidade de cada

representação matricial.

Atualmente na literatura sobre o GMCR é possível encontrar diversos trabalhos

que apresentam representações matriciais de vários conceitos de estabilidades do GMCR. Por

exemplo, no trabalho da Xu et al. em 2007 e em 2009 foram propostas representações matriciais

de modelos grafos com vários níveis de preferência para o caso de conflitos com dois DMs e,

mais tarde, em outro trabalho Xu et al. em 2010 expandiram estes resultados para múltiplos DMs.

Xu et al. em 2011 propuseram representações matriciais dos conceitos solução utilizando GMCR

em conflitos onde eram considerados múltiplos decisores com preferência incerta. Wu et al. em

2021, utilizou expressões matriciais para representar relações de preferência recíproca de DMs,

movimentos unilaterais (UMs) e melhorias unilaterais fuzzy (FUIs). Em 2021 Rêgo e Vieira,

propuseram representações matriciais para obtenção de estabilidades no GMCR com preferências

probabilísticas, analisando para quais valores dos parâmetros α , β e γ os estados satisfazem

certas noções de estabilidade. Vale ressaltar que as ideias relacionadas a representações matriciais

propostas por Xu et al. em 2007, também foram adaptados para outras extensões do GMCR, tais

como: GMCR com preferências incertas (XU; KILGOUR; HIPEL, 2007), (XU; KILGOUR;

HIPEL, 2011), para análise de status quo (XU et al., 2009), para aprimorar a implementação

de análises de estabilidade mista (ZHAO et al., 2019), e também para desenvolver um método

baseado em matriz para uma análise inversa (WANG et al., 2018). A representação matricial de

conceitos de solução com horizonte variável é pouco explorada na literatura do GMCR.

As representações matriciais existentes no GMCR auxiliam também na avaliação da

estabilidade e na implantação de novos conceitos de estabilidade por meio do desenvolvimento

de algoritmos através da conversão do sistema lógico usual para um sistema matricial. Aplicando

a codificação de matrizes no âmbito do GMCR, por meio de operações matriciais, as análises de

estabilidade são celeremente encontradas. A partir da ideia dos artigos mencionados no pará-

grafo anterior motivou-se o desenvolvimento de representações matriciais para os conceitos de

estabilidades sequenciais de ordem superior (m−SEQ), estabilidade Maximinh e a estabilidade

movimento limitado (Lh).
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A primeira contribuição dessa tese foi propor representações matriciais para o

conceito de estabilidade sequencial de ordem superior no âmbito do GMCR, considerando

conflitos bilaterais e multilaterais. Com base nos sistemas lógicos já existentes na literatura,

foram desenvolvidos sistemas matriciais para auxiliar na obtenção de estabilidade, de acordo com

este conceito, em conflitos com dois e com múltiplos decisores. Após o desenvolvimento dos

sistemas matriciais, foram realizadas aplicações a fim de ilustrar os procedimentos encontrados.

Para a aplicação da representação matricial m− SEQ para o caso de uma disputa com dois

DMs, consideramos o jogo clássico “Matching Pennies” (GIBBONS, 1992) e, para o caso com

n-DMs, consideramos o Conflito de Renovação de Instalação Industrial Privada (WALKER;

BOUTILIER; HIPEL, 2010). Com base nessas aplicações, mostramos como a representação

matricial proposta é mais eficiente, no sentido de facilitar e otimizar a obtenção de estados

estáveis de acordo com esse conceito.

A segunda contribuição dessa tese foi o desenvolvimento de métodos matriciais

para determinar estados estáveis de acordo com o conceito de estabilidade Maximinh e algumas

de suas variantes. Neste conceito de estabilidade, não é necessário ter conhecimento prévio

sobre as preferências de outros DMs no conflito, e é facilmente adequado para modelagem de

conflitos nos quais os DMs têm perfis cautelosos. Os conceitos clássicos de estabilidade, Nash,

GMR e SMR são casos particulares da estabilidade Maximinh, para horizonte igual a 1, 2 e 3,

respectivamente (RÊGO; VIEIRA, 2019). Com os métodos propostos neste trabalho, a análise

de estabilidade com horizonte variável em conflitos envolvendo um grande número de estados ou

DMs pode ser feita eficientemente. Analisamos um conflito real descrito na literatura do GMCR,

conhecido como o confronto entre o Sun Belt e o Governo de British Columbia (OBEIDI;

HIPEL, 2005). Além disso, abordamos um conflito amplamente estudado na teoria dos jogos, o

Dilema dos Prisioneiros, adaptado para múltiplos jogadores. O objetivo, desta última aplicação,

é examinar o tempo necessário para realizar análises de estabilidade com base nos resultados

matriciais que serão apresentados, à medida que o número de DMs aumenta.

A terceira contribuição dessa tese foi a representação matricial da estabilidade

movimento limitado (Lh). Neste conceito o DM antecipa, um certo número de passos a frente,

qual será o cenário final do conflito, considerando que os DMs mudam sempre as suas ações

para alcançar o melhor cenário final possível para eles. Diferente do Maximinh, é necessário

ter um conhecimento completo sobre as preferências dos outros DMs. Demonstramos que as

estabilidades Lh podem ser derivadas das representações matriciais fornecidas e implementamos

essas operações computacionalmente. A metodologia é detalhadamente ilustrada na aplicação do



21

Dilema dos Prisioneiros, e na análise do conflito real de seleção tecnológica em neurociência na

China (ZHOU; WANG, 2018) utilizando o conceito Lh. Esta abordagem também nos permitiu

explorar o comportamento dinâmico e variável associado à estabilidade Lh (FANG; HIPEL;

KILGOUR, 1993) em todos os jogos 2× 2, conforme descrito na tabela periódica (BRUNS,

2015b), incluindo a identificação dos respectivos ciclos em cada jogo.

1.1 OBJETIVO GERAL

O objetivo principal desta tese é desenvolver representações matriciais de alguns

conceitos de estabilidade com horizontes variáveis no âmbito do modelo de grafos para resolução

de conflitos. Dessa forma, as representações matriciais são propostas para determinar, eficiente-

mente, os estados estáveis de um conflito conforme os conceitos de estabilidades sequenciais de

ordem superior, estabilidade Maximinh e a estabilidade do movimento limitado com horizonte h.

1.2 OBJETIVOS ESPECÍFICOS

No intuito de alcançar o objetivo geral desta tese, temos como objetivos específicos:

• Revisar a literatura referente ao GMCR e acerca de trabalhos que fornecem representações

matriciais de conceitos de estabilidades desse modelo, como também às definições de

estabilidade m−SEQ, Maximinh e Lh ;

• Desenvolver a representação matricial das estabilidades sequenciais de ordem superior

para conflitos com dois e n−DMs;

• Desenvolver a representação matricial para o conceito de estabilidade Maximin com

horizonte h e algumas de suas variantes para conflitos bilaterais e multilaterais;

• Desenvolver a representação matricial para o conceito de estabilidade do movimento

limitado com horizonte h para conflitos bilaterais;

• Desenvolver e aplicar análises cíclicas do conceito de estabilidade Lh;

• Implementar as representações matriciais dos conceitos de estabilidade que foram desen-

volvidos nesta tese utilizando o software R;

• Aplicar os resultados obtidos em conflitos estratégicos, com o intuito de ilustrar a utilidade

das ferramentas desenvolvidas.
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1.3 MÉTODOS E PROCEDIMENTOS

Para elaboração desta tese, realizamos um amplo estudo acerca de trabalhos exis-

tentes na literatura sobre o GMCR. Identificamos que, recentemente, a área de análise de

estabilidade relacionada ao GMCR tem recebido muita atenção ao longo dos últimos anos, com

vários conceitos de estabilidades sendo propostos para conflitos com múltiplos DMs. Dessa

forma, observamos as complexidades existentes quando é necessário realizar análises de estabili-

dade de acordo com alguns desses conceitos, em conflitos maiores, em termos de números de

DMs ou estados, por conta da exaustão e inviabilidade dos cálculos utilizando as formas lógicas

desses conceitos de estabilidades.

Motivados e inspirados pelos trabalhos Xu et al. nos anos de 2009 e 2010, que

apresentam formas mais eficazes de obter estados estáveis de acordo com as noções de estabi-

lidades mais usuais na literatura do GMCR, ou seja, (Nash, GMR, SMR e SEQ) por meio de

representações matriciais, observamos a necessidade de ampliar essa ideia de representações

matriciais para otimizar a obtenção de estados estáveis de acordo com algumas dessas noções de

estabilidade com horizonte variável propostas no GMCR.

1.4 ESTRUTURA DA TESE

Incluindo este capítulo introdutório, esta tese está dividida em seis capítulos. No

Capítulo 2, realizamos uma revisão da literatura sobre os principais conceitos que serão abordados

neste trabalho, ou seja, as principais componentes do GMCR, algumas representações matriciais

de conceitos clássicos e, também, os conceitos de soluções que serão utilizados ao longo da

pesquisa.

No Capítulo 3, são desenvolvidas representações matriciais para a estabilidade

sequencial de ordem superior tanto para o caso bilateral, como para o caso multilateral. Apre-

sentamos também os teoremas obtidos, especificando como as estabilidade, de acordo com

essa noção, podem ser calculadas a partir das representações propostas. Adicionalmente, são

apresentadas duas aplicações a fim de ilustrar o uso das representações matriciais propostas.

No Capítulo 4, apresentamos as representações matriciais relacionadas ao conceito de

estabilidade Maximinh para conflitos com dois e múltiplos DMs. As adaptações necessárias para

lidar com conflitos em que considera-se a credibilidade da estabilidade Maximinh também são
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descritas neste capítulo. Ilustramos também as representações matriciais obtidas para representar

o conceito de Maximinh no conflito entre Sun Belt e o Governo da Colúmbia Britânica e no

Dilema dos prisioneiros para n DMs.

No Capítulo 5, apresentamos os resultados obtidos acerca do trabalho que desen-

volvemos para obter representações matriciais para a estabilidade do movimento limitado. Os

teoremas apresentados, são referentes a adaptação da forma lógica deste conceito em representa-

ções matriciais. Com o intuito de auxiliar no entendimento da praticidade da forma matricial

do Lh, ilustramos este conceito no conflito referente a seleção da tecnologia neurocientífica na

China, consideradas nesse conflito e no Dilema dos prisioneiro considerando o horizonte h = 3.

Além disso, analisamos os ciclos na estabilidade Lh e ilustramos essa análise cíclica utilizando

os jogos da tabela periódica para jogos 2×2.

No Capítulo 6, são apresentadas as principais conclusões obtidas ao longo do desen-

volvimento desta tese. Uma breve recapitulação sistemática dos resultados apresentados nos

capítulos anteriores é realizada e, também, apresentamos as considerações finais e as sugestões

para trabalhos futuros.

1.5 SUPORTE COMPUTACIONAL

O principal instrumento utilizado para a construção desta tese foi uma ferramenta de

produção de textos matemáticos e científicos com elevada qualidade tipográfica conhecida como

LATEX 1 . Foi utilizada uma versão online do LATEX oferecida pelo site Overleaf, facilitando a cons-

trução da tese em tempo real, já que o orientador, o co-orientador e a doutoranda encontravam-se

em diferentes estados do Brasil, facilitando no trabalho remoto da tese. Também foi utilizado o

software estatístico R 2 na construção dos algoritmos necessários para a representação matricial

das estabilidades.

1 Para mais informações e detalhes sobre o sistema de tipografia LATEX visitar http://www.tex.ac.uk/CTAN/latex
2 (R Core Team, 2020)
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2 REFERENCIAL TEÓRICO

Neste capítulo, serão apresentadas algumas definições importantes com o intuito de

facilitar a compreensão dos resultados que apresentaremos nos próximos capítulos desta tese.

Descrevemos os componentes básicos da GMCR, os conceitos de estabilidades mais usuais

e, também, os conceitos de estabilidade m− SEQ, estabilidade Maximinh e estabilidade Lh.

Revisamos também algumas representações matriciais, de conceitos sobre o GMCR, que serão

utilizadas ao longo deste trabalho.

2.1 GMCR

Os modelos de conflito consistem numa estrutura sistemática que visa captar as

principais características de um conflito estratégico e podem ser utilizados para realizar análises

de estabilidade com o intuito de identificar cenários estáveis que são candidatos a uma resolução

de conflito viável (HIPEL; KILGOUR; FANG, 2011). De acordo com Hipel et al.(2011),

podemos definir um conflito estratégico como um problema de decisão que envolve vários DMs,

cada um dos quais apresenta preferências distintas relacionadas com possíveis cenários/estados

que podem ocorrer no resultado final de um conflito.

A fim de definir uma metodologia mais abrangente e sistemática, Kilgour et al. em

1987, propuseram o Modelo de Grafos para Resolução de Conflitos (GMCR) em que a interação

entre DMs é modelada através de possíveis movimentos e contra-movimentos que estes podem

fazer.

O GMCR é formado por uma coleção de grafos direcionados, cada um representando

as possíveis formas em que um DM pode alterar o estado do conflito numa única etapa. Todos

estes grafos têm o mesmo conjunto de vértices que representam o conjunto de estados viáveis

do conflito. Além destes grafos, são necessárias preferências relativas para cada DM sobre o

conjunto de estados viáveis para medir o grau de satisfação dos DMs com cada possível estado

do conflito (FANG; HIPEL; KILGOUR, 1993; FANG et al., 2003a; XU et al., 2018). Um estado

é considerado estável para um DM se este preferir não se afastar dele, com base em alguma

definição de estabilidade que acomoda um determinado comportamento que os DMs possam ter

no decurso de um conflito.

A fim de fornecer as informações necessárias para compreender os resultados deste
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documento, a definição formal do GMCR e dos conceitos de estabilidade relevantes serão

apresentadas a seguir. Para uma visão mais detalhada sobre estes tópicos, consultar (KILGOUR;

HIPEL; FANG, 1987; FANG; HIPEL; KILGOUR, 1989; FANG; HIPEL; KILGOUR, 1993;

KILGOUR; HIPEL, 2005; HIPEL; KILGOUR; FANG, 2011).

Para descrever um conflito, através do GMCR, é necessário especificar os seus

principais componentes. Neste modelo, o conjunto N representa os DMs atuantes no conflito,

e as combinações possíveis de ações que podem ser tomadas pelos decisores são chamadas

de estados viáveis e denotada pelo conjunto S. Outro componente do GMCR é uma coleção

de grafos direcionados, denotados por Di = (S,Ai), i ∈ N, onde o conjunto comum de nós dos

grafos corresponde aos estados de S. Os arcos em Ai são utilizados para representar a relação

de acessibilidade entre estados, eles especificam para quais estados o DM i pode mover-se de

um determinado estado para outro. Esta relação de acessibilidade pode ser representada por

meio de um conjunto de movimentos unilaterais (UMs), representados por Ri(s), um estado

pertence a este conjunto se for acessível ao decisor i a partir do estado s em um único movimento.

Formalmente, este conjunto é definido como Ri(s) = {s′ ∈ S : (s,s′) ∈ Ai}.

No GMCR, as avaliações dos estados viáveis do conflito são representadas por uma

estrutura de preferências. Na maioria dos trabalhos referentes ao GMCR, assume-se que a

estrutura de preferências utilizada pelos DMs é uma relação binária assimétrica, denotada por

�i, onde s�i s′, para i ∈ N, significa que DM i prefere estritamente o estado s ao s′.

A partir das relações de preferência estritas, pode-se derivar uma outra relação de

preferência, denominada de preferência fraca, denotada por %i. Uma preferência fraca pode ser

definida como a ausência da preferência estrita, em que s %i s′ se s′ �i s, ou seja, se o DM i não

prefere estritamente o estado s′ ao estado s.

Uma vez definidas as preferências, podemos descrever um subconjunto do conjunto

de UMs, denominado conjunto de melhoramento unilateral (UI). Este conjunto, representado por

R+
i (s), contém apenas os estados em Ri(s) que podem ser alcançado através de movimentos de

melhoria, realizados pelo DM i a partir do estado s, sendo esse conjunto formalmente definido

como R+
i (s) = {s′ ∈ Ri(s) : s′ �i s}.

Na subseção seguinte, relembramos três definições de estabilidade que serão utiliza-

das nesta tese e também os casos clássicos usualmente utilizados na análise de estabilidade do

GMCR.
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2.2 CONCEITOS DE SOLUÇÕES NO GMCR

A análise de estabilidade verifica, para cada estado, quais DMs têm interesse em

alterar ou não as suas ações. A fim de avaliar o interesse dos DMs em mover-se a partir

de um estado, as definições de estabilidade apresentam vários critérios que visam capturar

diferentes tipos de comportamentos que DMs podem adotar em situações de conflito. Neste

capítulo, iremos apresentar definições de estabilidades mais comumente usadas na análise de

estabilidade do GMCR. Além disso, também apresentaremos as estabilidades que estamos

particularmente interessados nesta pesquisa, ou seja, que darão base para as representações

matriciais desenvolvidas nesta tese.

Nesta tese, também iremos considerar conflitos multilaterais, isto é, conflitos com

mais de dois DMs. Nesse tipo de conflito, os DMs podem antecipar o que a coalizão composta

por seus oponentes pode fazer em resposta a um de seus movimentos. No GMCR, um conjunto

não vazio de DMs é chamado de coalizão e, ao considerar quais estados podem ser alcançados

por uma coalizão, restringe-se a sequência de movimentos para ser legal, onde uma sequência

legal de movimentos é aquela em que os DMs podem se mover mais de uma vez, mas não duas

vezes consecutivas.

Desta forma, para uma coalizão H ⊆ N, faz-se necessário definir dois outros

conjuntos importantes, RH(s) e R+
H(s). Uma sequência legal de movimentos realizadas por

DMs em H, é uma sequência alternada de DMs e estados, ou seja, uma sequência da forma

(s0, i1,s1, . . . , ik+1,sk+1), em que s0 = s, i j ∈H, i j+1 6= i j e s j+1 ∈ Ri j+1(s j) para j = 0,1,2, . . . ,k.

Uma UM para a coalizão H, a partir do estado s, é um estado final de uma sequência legal de

movimentos realizadas por DMs em H, partindo de s. O conjunto de todas as UMs por H a

partir de s é denotado por RH(s). De forma similar, pode-se definir o conjunto de UIs para a

coalizão H, a partir do estado s, denotado por R+
H(s). Para isso, basta substituir R j+1 por R+

j+1

na definição do conjunto RH(s).

A seguir, apresentamos um exemplo, conhecido na literatura da teoria dos jogos

como "Dilema do Prisioneiro" (AXELROD, 1984), a fim de ilustrar o comportamento dos

tomadores de decisão em situações de conflito, além de apresentar os possíveis movimen-

tos e contramovimentos feitos pelos DMs em conflitos estratégicos utilizando as análises de

estabilidades.

O conflito consiste em dois indivíduos que são suspeitos de cometerem um crime
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e são presos pela polícia. Porém, a polícia não tem provas suficientes para condená-los. Desta

forma, a polícia decide separá-los em salas diferentes e propor a eles o mesmo acordo. O acordo

é estabelecido da seguinte forma, como ilustrado na Figura 2.1.

Figura 2.1 – Ilustração do problema do Dilema do prisioneiro

Adaptado - Foggion (2015)

• Se um deles cooperar (C) e o outro delatar (D), o traidor ficará livre e o cooperador, que

ficou calado, receberá a pena de 10 anos de prisão;

• Se ambos cooperarem entre si, cada um dos presos receberá a pena de 6 meses de prisão;

• Se ambos traírem, ou seja, delatarem, cada um receberá a pena de 5 anos de prisão.

Neste jogo, os decisores possuem duas estratégias, formando um total de quatro

possíveis cenários ou estados de decisão e pode ser representado por meio de modelo de grafo,

em que as escolhas disponíveis para cada um dos DMs podem ser representadas utilizando nós e

arcos. Na Figura 2.2 os estados de decisão são representados por s1 (CC), s2 ( CD), s3 (DC) e s4

(DD). A partir do modelo de grafos, podemos observar que DM 1 pode mudar sua decisão do

estado CC para o estado DC, ou entre o estado CD e o estado DD. No caso do DM 2, ele pode

usar sua estratégia para mudar do estado CC para o estado CD ou entre o estado de decisão DC e

DD.

Os arcos que conectam os estados de decisão, ou seja, os nós s1 e s3 representam a

possibilidade que o DM 1 tem de decidir a mudança do estado s1 (CC) para o estado s3 (DC) ou
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Figura 2.2 – Modelo de Grafos do conflito do Dilema do prisioneiro

vice-versa. O mesmo ocorre com as possibilidade de decisão do DM 2 com o movimento entre

os estados de decisão s2 e s4, representado pelos arcos que conectam os nós s2 e s4.

A relação de preferência neste conflito para DM 1 é denotada por s3(DC) �1

s1(CC) �1 s4(DD) �1 s2(CD) e para DM 2 s2(CD) �2 s1(CC) �2 s4(DD) �2 s3(DC). Ob-

serve que o estado de decisão preferencial para o DM 1 é o estado s3 (DC), neste estado o DM

1 estará livre, pois não colaborou e o DM 2 receberá uma pena de 10 anos de prisão por ter

cooperado. Para DM 2, o estado de decisão mais preferido é o estado s2 (CD) e o estado menos

preferido é o estado s3 (DC).

A fim de analisar os conflitos estratégicos, iremos recordar as noções de estabilidade

mais utilizadas na literatura do GMCR e as noções que iremos utilizar nesta tese. Para todas as

noções de estabilidade, se algum estado é estável para todo DM, ele é chamado de equilíbrio de

acordo com essa noção de estabilidade.

Estabilidade de Nash

Intuitivamente, um estado é Nash (NASH, 1950) estável para o DM i, se este não

pode se mover unilateralmente, a partir desse estado, para um outro estado que seja mais

preferível. Denote por SNASH
i o conjunto de todos os estados Nash estáveis para DM i.

Definição 2.2.1 (NASH, 1950) Seja i ∈ N, o estado s ∈ S é Nash estável (ou individualmente

racional) (R) para o DM i se, e somente se, R+
i (s) = /0.

No exemplo do Dilema do Prisioneiro, o estado s3 (DC) é Nash estável para DM



29

1, pois não há estado mais preferível que ele. O estado s1 (CC) é considerado Nash instável

porque existe outro estado que é mais preferível e acessível para DM 1. Analisando todas as

possibilidades de decisão para a estabilidade de Nash em relação a ambos os jogadores, vemos

que o estado de decisão s4 (DD) é o único equilíbrio de Nash, já que nenhum DM pode se mover

unilateralmente para um estado melhor do que o estado s4. Todos os outros estados são Nash

instáveis para pelo menos um DM, que sempre pode melhorar sua situação ao não cooperar com

o outro DM, ou seja, delatando.

Estabilidade Metarracionalidade Geral

No conceito de estabilidade metarracionalidade geral (GMR) (HOWARD, 1971),

intuitivamente, o DM focal analisa seus possíveis movimentos de forma conservadora, consi-

derando todas as possíveis reações aos seus movimentos, ignorando suas próprias possíveis

contra-reações. O conjunto de todos os estados estáveis GMR para DM i é denotado por SGMR
i .

Definição 2.2.2 (HOWARD, 1971) Seja i ∈ N, o estado s ∈ S é GMR estável para o DM i se, e

somente se, para todo s1 ∈ R+
i (s) existe s2 ∈ RN−{i}(s1) tal que s %i s2.

No caso do Dilema do Prisioneiro, do estado s1, o DM 1 tem um movimento de

melhoria unilateral para o estado s3. No entanto, DM 2 pode punir DM 1 passando do estado s3

para o estado s4, que é menos preferível ao DM 1 do que o estado s1. Assim, o estado s1 (CC) é

GMR estável para DM 1. Por simetria, este estado também é GMR estável para DM 2, portanto

um equilíbrio GMR. Analisando todos os estados, é possível concluir que os estados s1 e s4 são

equilíbrios de acordo com o conceito GMR.

Estabilidade Metarracionalidade Simétrica

Na noção de estabilidade Metarracional Simétrica (SMR) (HOWARD, 1971), intuiti-

vamente, o DM focal considera não apenas seus próprios movimentos possíveis e as reações de

seus oponentes a cada um desses movimentos, mas também sua própria contra-reação, sendo,

portanto, uma definição de estabilidade mais restritiva do que a estabilidade metarracionalidade

geral. O conjunto de todos os estados SMR estáveis para DM i é denotado por SSMR
i .
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Conforme este conceito, o DM focal tem a capacidade de analisar três movimentos

à frente, enquanto que segundo o conceito da estabilidade metarracionalidade geral, observa

apenas dois movimentos à frente e de acordo com o conceito de Nash, apenas um movimento à

frente.

Definição 2.2.3 (HOWARD, 1971) Seja i ∈ N, o estado s ∈ S é SMR para o DM i se, e somente

se, para todo s1 ∈ R+
i (s) existe s2 ∈ RN−{i}(s1) tal que s %i s2 e s %i s3, para todo s3 ∈ Ri(s2).

Observando o conflito do Dilema do Prisioneiro, vemos que quando DM 1 se move

do estado de decisão s1 para o estado s3, o DM 2 pode reagir movendo-se do estado s3 para o

estado s4, onde o estado s4 não é preferível ao estado s1 pelo DM 1. Para escapar desta punição,

o DM 1 só pode passar do estado s4 para o estado s2, que também não é preferível ao estado s1

para DM 1. Assim, o estado s1 é SMR estável para o DM 1. O estado s1 também é SMR estável

para o DM 2 e, consequentemente, um equilíbrio SMR, juntamente com o estado s4. Vale a pena

notar que em uma análise de estabilidade SMR, o DM focal deve considerar que seu adversário

pode reagir se punindo com o intuito de forçar o DM focal a não se mover para um estado de

decisão mais preferível.

Estabilidade Sequencial

O conceito de estabilidade Sequencial (SEQ) (FRASER; HIPEL, 1979) é seme-

lhantemente à noção GMR, porém segundo essa noção, as reações dos oponentes também são

benéficas para eles, ou seja, assume-se que os movimentos dos oponentes do DM focal sejam

credíveis. O conjunto de todos os estados SEQ estáveis para DM i é denotado por SSEQ
i .

Definição 2.2.4 (FRASER; HIPEL, 1979) Seja i ∈ N, o estado s ∈ S é sequencialmente estável

(SEQ) para DM i se, e somente se, para todo s1 ∈ R+
i (s) existe s2 em R+

N−{i}(s1) tal que s %i s2.

No caso do Dilema do Prisioneiro, ao analisar a estabilidade SEQ do estado s1 para

DM 1, vemos que ele tem um movimento de melhora unilateral para o estado s3. Por outro

lado, DM 2 tem um movimento de melhora unilateral do estado s3 para estado s4, que é menos

preferível do que o estado s1 por DM 1. Assim, o estado de decisão s1 (CC) é SEQ estável para

DM 1 e, da mesma forma, SEQ estável para DM 2. Assim, o estado s1 é um equilíbrio SEQ. O

estado s4 é Nash estável para ambos os jogadores e, consequentemente, também um equilíbrio

sequencial.
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Estabilidade Sequencial Simétrica

A estabilidade sequencial simétrica (SSEQ) (RÊGO; VIEIRA, 2016) é um tipo de

estabilidade sequencial, na qual o DM focal, ao planejar se mover, considera não apenas a reação

de seus oponentes, mas também sua própria contra-reação. Vale a pena notar que a contra-reação

não leva necessariamente a uma melhoria unilateral para o DM focal, mas sim que o estado

resultante, após sua contra-reação, não seja melhor do que o estado inicial para que este último

seja estável. O conjunto de todos os estados SSEQ estáveis para DM i é denotado por SSSEQ
i .

Definição 2.2.5 (RÊGO; VIEIRA, 2016) Seja i ∈ N, o estado s ∈ S é SSEQ para DM i se, e

somente se, para todo s1 ∈ R+
i (s) existe s2 ∈ R+

N−{i}(s1) tal que s %i s2 e s %i s3 para todo

s3 ∈ Ri(s2).

Vamos observar agora a estabilidade SSEQ no caso do conflito do Dilema do Pri-

sioneiro. Podemos verificar um resultado semelhante ao SEQ, mas é necessário analisar a

contra-resposta do DM 1. Portanto, o estado s1 do conflito (CC) também é SSEQ estável para

DM 1 e DM 2 e, consequentemente, um equilíbrio SSEQ, já que os DMs não conseguem neutra-

lizar a punição do oponente. Além disso, como o estado s4 (DD) é Nash estável, também é SSEQ

estável. Através da análise de estabilidade, vemos que apenas os estados s1 e s4 são possíveis

equilíbrios, sendo o estado s4 um equilíbrio de acordo com o maior número de conceitos de

estabilidade.

Estabilidade Sequencial de Ordem superior

Em 2020, Rêgo e Oliveira demostraram que alguns equilíbrios SEQ dependem de

DMs deixarem um estado estável de acordo com esse conceito para que possam sancionar o

DM focal. A plausibilidade de tais equilíbrios SEQ é questionável, já que, de acordo com a

essa noção, os DMs não devem sair de estados SEQ estáveis. Este tipo de sanção pode ser

considerado não credível, ou seja, uma sanção que não será implementada pelos oponentes.

Para superar este problema, Rêgo e Oliveira (2020) propuseram uma nova família de

conceitos de solução para conflitos bilaterais no GMCR, conhecida como higher-order sequential

stabilities (estabilidades sequenciais de ordem superior), que essencialmente proíbe um DM de

deixar um estado SEQ estável para sancionar o DM focal, fazendo com que tais sanções sejam
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mais plausíveis. Eles mostraram também que as estabilidades sequenciais de ordem superior são

refinamentos da estabilidade SEQ para conflitos bilaterais. Em 2023, Rêgo e Oliveira estenderam

este conceito para o caso de conflitos multilaterais.

Intuitivamente, um estado s é sequencialmente estável de ordem m, denotado por

m− SEQ, para um DM focal, se cada UI que possa ser realizada pelo DM focal, a partir do

estado s, puder ser sancionada por uma sequência legal de UIs realizada pelos oponentes do

DM focal, onde nenhum DM se move de um estado que é (m−1)−SEQ estável para ele na

sequência. Formalmente, seja Sm−SEQ
i o conjunto de todos os estados estáveis de m−SEQ para

DM i ∈ N, onde 1−SEQ é o mesmo que a estabilidade SEQ.

Para recordarmos o conceito m−SEQ, necessitamos também relembrar um impor-

tante conjunto. Seja R+m
H (s) o conjunto de estados alcançáveis pelos DMs em H através de uma

sequência plausível de UIs a partir do estado s, em que uma sequência de UIs é legal se os DMs

não puderem mover-se duas vezes consecutivas na sequência e é m-ordem plausível se nenhum

DM deixar um estado que seja (m−1)−SEQ estável para ele (RÊGO; OLIVEIRA, 2023). A

noção de estabilidade m−SEQ para m≥ 2 é definida indutivamente como se segue:

Definição 2.2.6 (RÊGO; OLIVEIRA, 2020) Para m≥ 2, o estado s ∈ S satisfaz a m-ésima ordem

da estabilidade sequencial para o DM i se, e somente se, ∀s1 ∈ R+
i (s), existe s2 ∈ R+m

N−{i}(s1) de

tal forma que s %i s2.

Rêgo e Oliveira (2020 e 2023) estabeleceram o resultado enunciado no Teorema

2.2.7 relativamente às implicações entre estabilidades m-SEQ para vários valores de m.

Teorema 2.2.7 Considere i ∈ N e dois inteiros positivos: m e m1. Para m1 par, segue que

Sm1−SEQ
i ⊆ Sm−SEQ

i , para todo m1 ≤ m. Para m1 ímpar, segue que Sm−SEQ
i ⊆ Sm1−SEQ

i , para

todo m1 ≤ m.

De acordo com a estabilidade m-SEQ, as sanções dos adversários não podem deixar

um estado estável (m−1)-SEQ para eles, onde 1-SEQ é a estabilidade SEQ original. Assim, para

verificar se um estado é 2-SEQ para um DM, conhecido como o DM focal, é necessário verificar

se todos os estados que ele pode alcançar e que são melhorias para ele, são SEQ estáveis para os

adversários. Para verificar se um estado é SEQ estável para um DM, analisa-se o conflito dois

passos à frente, o movimento inicial e as possíveis sanções. Assim, devem ser considerados três

movimentos para a estabilidade 2-SEQ: o movimento inicial do DM focal e os dois movimentos

para analisar se as sanções dos adversários partem de estados SEQ para eles ou não. Este número
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de movimentos e contra-movimentos é designado por horizonte. Assim, por indução, pode ver-se

que para analisar a estabilidade m-SEQ é necessário considerar um horizonte igual a m+ 1.

Como o horizonte de conflito depende de m, a estabilidade sequencial de ordem superior é um

conceito de estabilidade de horizonte variável.

Figura 2.3 – Árvore de decisão do DM 1 a partir de s1 - 3-SEQ

Iremos utilizar árvore de decisão (Figura 2.3), para analisar a estabilidade 3-SEQ

no conflito do Dilema dos Prisioneiros. Observe que a última etapa corresponde a estabilidade

sequencial de primeira ordem, a antepenúltima será a de segunda ordem e assim por diante, ou

seja, a ordem é analisada de trás para a frente.

Analisando a estabilidade 3-SEQ no conflito do Dilema dos Prisioneiros, vemos que

na ordem 1 o DM 1 tem a escolha de permanecer no estado s4 ou mover-se para o estado s2,

como s4 é mais preferível para o DM 1 do que o estado s2, ele preferirá permanecer em s4. Logo,

o estado s4 é Nash e, consequentemente, 1-SEQ para o DM 1. No passo anterior, como s4 é

melhor que s3 para o DM 2 e s4 é 1-SEQ para o DM 1, temos que s3 não é 2-SEQ para o DM 2.

Finalmente, no passo inicial, apesar de s3 ser melhor que s1 para o DM 1, como s3 não é 2-SEQ

para o DM 2, o DM 2 prefere sair de s3 para s4 e s4 é pior que s1 para o DM 1, temos que s1 é

3-SEQ para o DM 1.

Estabilidade do Movimento Limitado com horizonte h

O conceito de estabilidade movimento limitado com horizonte h, denotado por Lh, é

uma noção na qual é permitido realizar vários movimentos de reações e contra-reações, por parte

dos decisores que estão envolvidos em um determinado conflito. Neste conceito de estabilidade,
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o DM focal antecipa, h passos à frente, qual será o cenário final do conflito, considerando que

os decisores mudam sempre as suas ações para chegar ao melhor cenário possível para eles,

fazendo-se necessário o conhecimento prévio sobre as preferências dos DMs envolvidos no

conflito. Nesta tese, focaremos em recordar a definição do conceito Lh somente para o caso de

dois DMs, pois as definições existentes para o caso de n DMs não serão abordadas neste trabalho.

Neste conceito, assume-se que as preferências são completas, transitivas, e assimé-

tricas em S. Para podermos recordar esse conceito, seja Ki(s) a cardinalidade do conjunto de

estados que são piores do que o estado s para o DM i, ou seja, Ki(s) = |{s′ ∈ S : s�i s′}|. Seja

Gh(i,s) ∈ S, i ∈ N, o estado que DM i acredita que será o estado final do conflito, considerando

um horizonte h, quando o conflito inicia-se no estado s e o DM i se move primeiro neste estado e

os DMs alternam movimentos. Neste conceito, assume-se, por convenção, que G0(·,s) = s e o

estado Gh(i,s), para h≥ 1 é construído indutivamente da seguinte forma:

Gh(i,s) =


s, se Ri(s) = /0

s, se Ki(s)≥ Ah(i,s)

Gh−1( j,Mh(i,s)), caso contrário,

em que Mh(i,s) é algum estado s
′
1 ∈ Ri(s) que satisfaz Ki(Gh−1( j,s

′
1)) = max{Ki(Gh−1( j,s1)) :

s1 ∈ Ri(s)}, j 6= i, e Ah(i,s) = Ki(Gh−1( j,Mh(i,s))).

Em outras palavras, podemos intuir que Gh(i,s), o estado antecipado pelo DM i

quando este se move primeiro no estado s, considerando um horizonte h, será igual a s caso i não

possa se afastar de s, ou se s for pelo menos tão bom quanto o melhor estado Gh−1( j,Mh(i,s))

que pode ser antecipado com o horizonte h−1. Esse melhor estado é aquele alcançável pelo

DM i ao se afastar do estado s, considerando que seu oponente se move posteriormente dentro

do horizonte h−1. Caso contrário, temos que Gh(i,s) = Gh−1( j,Mh(i,s)).

No conceito de estabilidade Lh, assume-se que é de conhecimento comum entre os

DMs que eles realizam movimentos que sejam benéficos para si mesmo, em cada horizonte h
′

menor que h e, para isto, é necessário considerar que ambos os DMs conheçam as preferências

um do outro. Formalmente, o conceito Lh para o caso de conflitos bilaterais é apresentado a

seguir:

Definição 2.2.8 (KILGOUR, 1985) Um estado s ∈ S é estável de acordo com o conceito movi-

mento limitado com horizonte h ( Lh ) para DM i ∈ N se, e somente se, Gh(i,s) = s.
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Vamos analisar o Dilema dos prisioneiros com a estabilidade do movimento limitado

considerando um horizonte de 3 passos, ou seja, h = 3. Para facilitar a compreensão, utilizaremos

uma árvore de decisão e realizaremos a análise por indução reversa. Primeiramente, observe

o que ocorre com o estado s1, quando o DM 1 antecipa os próximos 3 passos em relação ao

estado final do conflito, levando em conta que ele tem conhecimento das preferências dos DMs

envolvidos. A árvore de decisão correspondente é mostrada na Figura 2.4.

Figura 2.4 – Árvore de decisão do DM 1 a partir de s1 - L3

No último passo, o DM deve escolher entre permanecer em s4 ou mover-se para s2.

Como s4 �i s2, ele optará por permanecer em s4. No passo anterior, como s4 é preferível a s3

para o DM 2, temos que o DM 2 sairá de s3 para s4. Finalmente, no estado inicial s1, como s1 é

melhor que s4 para o DM 1, temos que o DM 1 irá permanecer em s1. Logo, podemos concluir

que o estado s1 (CC) é estável no movimento limitado para h = 3. Além disso, como o estado s4

(DD) é estável em Nash, ele também é estável em L3.

Estabilidade Maximinh

Proposta por Wald (1945), a regra de decisão maximin escolherá a ação que, na pior

das hipóteses, proporciona a melhor consequência possível. Ou seja, o decisor observará qual

seria a pior consequência que poderia obter em relação a cada uma das suas possíveis ações e,

diante disso, escolherá a ação que, na pior das hipóteses, lhe oferece a melhor consequência. Na

Teoria dos Jogos (NEUMANN; MORGENSTERN, 2007), o caso em que ambos os jogadores

escolhem simultaneamente uma estratégia que consegue o melhor retorno no pior caso, mas que
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não permite o comportamento prospectivo dos DMs chama-se equilíbrio maximin.

Rêgo e Vieira em 2019, inspirados na regra de decisão maximin, propuseram uma

nova noção de estabilidade dentro do GMCR, chamada estabilidade Maximinh. Este conceito é

inspirado na noção de estabilidade movimento limitada (Lh) (KILGOUR, 1985) e pode ser útil em

situações em que os DMs agem cautelosamente, ou seja, quando não possuem necessariamente

conhecimento das preferências dos seus oponentes.

Além de não requerer conhecimento sobre as preferências dos adversários, a estabili-

dade Maximinh proporciona algumas vantagens interessantes, pois é flexível no que diz respeito

ao horizonte do conflito, e fornece conhecimentos a outros conceitos de solução comumente

utilizados na literatura da GMCR, uma vez que alguns destes são equivalentes a casos especiais

da estabilidade Maximinh.

Considere um modelo grafo com dois DMs, digamos i e j, de modo que quando DM

i analisa o conflito considerando um horizonte h, ele acredita que DM j se deslocará para o pior

cenário possível em relação ao DM i, admitindo que DM i se deslocará sempre para o melhor

cenário possível considerando um horizonte h
′
< h.

Uma vez que de acordo com a estabilidade Maximinh o DM focal, prevê o conflito h

passos à frente, é também necessário definir o estado que ela acredita que será o estado final do

conflito após h movimentos. Seja Gi
h( j,s) ∈ S, i, j ∈ N o estado final antecipado pelo DM i, com

um movimento inicial de DM j a partir do estado s considerando um horizonte h. Por convenção,

assume-se que Gi
0(·,s) = s e, o estado Gi

h(i,s), é formalmente definido indutivamente, como:

Gi
h(i,s) =


s, se Ri(s) = /0

s, se Ki(s)≥ Ai
h(i,s)

Gi
h−1( j,Mi

h(i,s)), caso contrário,

(2.1)

em que Mi
h(i,s) é algum estado s

′
1 ∈ Ri(s) que satisfaz Ki(Gi

h−1( j,s
′
1)) = max{Ki(Gi

h−1( j,s1)) :

s1 ∈ Ri(s)}, j 6= i, e Ai
h(i,s) = Ki(Gi

h−1( j,Mi
h(i,s))).

Além disso, Gi
h( j,s) é definido da forma:

Gi
h( j,s) =


s, se R j(s) = /0

s, se Ki(s)≤ Ai
h( j,s)

Gi
h−1(i,M

i
h( j,s)), caso contrário,

(2.2)
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em que Mi
h( j,s) é algum estado s

′
1 ∈ R j(s) que satisfaz Ki(Gi

h−1(i,s
′
1)) = min{Ki(Gi

h−1(i,s1)) :

s1 ∈ R j(s)}, j 6= i, e Ai
h( j,s) = Ki(Gi

h−1(i,M
i
h( j,s))).

Assim, a definição formal da estabilidade Maximinh é a seguinte:

Definição 2.2.9 (RÊGO; VIEIRA, 2019) Para qualquer inteiro positivo h, o estado s ∈ S é

maximin estável com horizonte h (Maximinh) para DM i se, e somente se, Gi
h(i,s) = s.

No caso de conflitos multilaterais, a estabilidade Maximinh é definida de forma

semelhante ao caso bilateral. A única alteração necessária é a substituição do conjunto R j por

RN−i (RÊGO; VIEIRA; KILGOUR, 2022).

Diferentemente do Lh, onde todos os DMs buscam maximizar suas preferências,

no caso do Maximinh, quando o DM 2 faz sua escolha, ele não leva em conta suas próprias

preferências. Em vez disso, ele minimiza as preferências do DM 1, que está tentando maximizar

suas próprias escolhas. Note que o DM 2 tem a opção de permanecer em s3, o que maximiza o

resultado para o DM 1, ou mover-se para s4, que minimiza esse resultado. Como resultado, o

DM 2 opta por se mover para o estado s4. Em seguida, o DM 1 deve decidir entre permanecer no

estado s1 ou migrar para s3, antecipando que o conflito irá acabar em s4. Como s1 é preferível a

s4 para o DM 1, o DM 1 prefere ficar em s1. Isso torna o estado Maximin3 estável para o DM 1.

Temos também que o estado s4 (DD) é um equilíbrio de Nash, o que confirma a estabilidade do

Maximin3 (Figura 2.5).

Figura 2.5 – Árvore de decisão do DM 1 a partir de s1 - Maximin3
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Estabilidade Maximinh Credível

Mais recentemente, Rêgo et al. em 2022 propuseram três variações do conceito de

estabilidade Maximinh, denominado maximin credível. Estas variações diferem entre si pela

possibilidade do DM focal ou seus oponentes adotarem apenas movimentos credíveis, ao analisar

o conflito de acordo com o conceito Maximinh. Essas variações generalizam, para horizontes

variáveis, as estabilidades sequencial e sequencial simétrica. A seguir, recordaremos, brevemente,

essas variações da estabilidade Maximinh.

Estabilidade Maximin com DM Focal Credível

Neste conceito de estabilidade, o DM focal, ao analisar a estabilidade de um estado de

acordo com a noção Maximinh, não pode fazer movimentos unilaterais que não sejam melhorias

unilaterais. Dessa forma, o estado antecipado pelo DM i, quando ele se move primeiro no estado

s e o conflito é analisado h passos à frente, denotado por, Gi,Fc
h (i,s), em que Fc representa que o

DM focal realiza somente movimentos de melhorias unilaterais, é definido de maneira análoga ao

estado Gi
h(i,s), sendo que a única diferença necessária é substituir Ri(s) por R+

i (s) na definição

do estado Gi
h(i,s) apresentada na Equação 2.1. Além disso, assumindo que N−{i} = Ni, o

estado Gi,Fc
h (Ni,s) é definido exatamente da mesma que o estado Gi

h(Ni,s), apresentado na

Equação 2.2. Formalmente, um estado maximin com DM focal credível estável é definido da

seguinte maneira:

Definição 2.2.10 (RÊGO; VIEIRA; KILGOUR, 2022) Para qualquer inteiro positivo h, o estado

s ∈ S satisfaz a estabilidade maximin com DM focal credível com horizonte h (Maximinc(h))

para DM i ∈ N, se, e somente se, Gi,Fc
h (i,s) = s.

Observe que, na Figura 2.6 o DM 1 não pode fazer movimentos unilaterais que não

sejam melhorias unilaterais. Portanto, em s4, o DM 1 só tem a opção de permanecer em s4.

Logo, de forma análoga à análise para o conflito do Dilema dos prisioneiros para a estabilidade

Maximin3, temos que para h = 3 o estado s1 (CC) é Maximin3 com DM Focal Credível estável e

s4 (DD) é Nash estável, logo Maximin3 com DM Focal Credível estável. A análise é semelhante

para as estabilidades Maximin3 com Oponente Credível e Total Credível.
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Figura 2.6 – Árvores de decisão do DM 1 - Maximinc
3 - DM Focal

Estabilidade Maximinh com Oponente Credível

Em situações em que os oponentes do DM focal podem realizar apenas melhorias

unilaterais, ao analisar a estabilidade de um estado de acordo com a noção Maximinh, denotamos

o estado antecipado pelo DM i, quando ele se move primeiro no estado s e o conflito é analisado

h passos à frente, por Gi,Oc
h (i,s) , em que Oc representa o oponente , que também é definido de

maneira análoga ao estado Gi
h(i,s), sendo necessário realizar uma substituição do RNi(s) por

R+
Ni
(s) na definição do estado Gi

h(Ni,s) apresentada na Equação 2.2. Ademais, o estado Gi,Oc
h (i,s)

é definido semelhantemente ao estado Gi
h(i,s), apresentado na Equação 2.1. A definição da

estabilidade maximin com oponente credível é apresentada formalmente a seguir.

Definição 2.2.11 (RÊGO; VIEIRA; KILGOUR, 2022) Para qualquer inteiro positivo h, o estado

s ∈ S satisfaz a estabilidade maximin com oponente credível com horizonte h (CMaximin(h))

para DM i ∈ N, se e somente se Gi,Oc
h (i,s) = s.

Estabilidade Maximinh Credível Total

Neste conceito de solução, todos os DMs não podem fazer movimentos unilaterais

que não sejam melhorias unilaterais para eles. Conforme a noção de estabilidade Maximinh,

Gi,T c
h (i,s) denota o estado antecipado pelo DM i, quando ele se move primeiro no estado s e o

conflito é analisado h passos à frente. Ele é definido de forma semelhante ao estado Gi
h(i,s),

sendo que a única diferença necessária é substituir Ri(s) por R+
i (s) na definição do estado Gi

h(i,s)

apresentada na Equação 2.1. Temos também que, o estado Gi,T c
h (Ni,s) é definido exatamente da
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mesma forma que o estado Gi
h(Ni,s), apresentado na Equação 2.2, exceto pela substituição do

RNi(s) por R+
Ni
(s). A definição formal de estabilidade maximin credível total pode ser observada

na definição a seguir.

Definição 2.2.12 (RÊGO; VIEIRA; KILGOUR, 2022) Para qualquer inteiro positivo h, o estado

s ∈ S satisfaz a estabilidade maximin credível total com horizonte h (CMaximinc(h)) para DM

i ∈ N, se somente se Gi,T c
h (i,s) = s.

2.3 ALGUMAS REPRESENTAÇÕES MATRICIAIS DE CONCEITOS DE ESTABILIDADE

NO GMCR

A representação matricial não elimina a necessidade de buscas exaustivas em pro-

blemas complexos, mas proporciona uma base sólida para realizar essa análise de forma mais

eficiente, organizada e visualmente compreensível. Isso a torna uma ferramenta indispensável na

modelagem e solução de problemas de decisão e teoria dos jogos.

Em Xu (2007 e 2008), são propostos métodos matriciais para se determinar es-

tabilidade de acordo com alguns dos conceitos clássicos de solução no GMCR com dois e

múltiplos DMs, respectivamente. Estes resultados matriciais auxiliam na utilização de códigos

computacionais para determinar estabilidades de estados mais rapidamente, sendo cruciais para

a análise de conflitos com numerosos DMs ou estados. Recordamos, a seguir, algumas dessas

representações, que serão importantes para o desenvolvimento de resultados desta tese.

Em 2007, Xu et al. definiram duas matrizes para expressar as acessibilidades

e melhorias unilaterais dos DMs. Essas matrizes são chamadas de matriz de acessibilidade,

denotada por Ji, e a matriz de melhoria unilateral, denotada por J+i . Formalmente, Ji e J+i são

matrizes 0−1, de ordem |S|, cujas entradas (s,s′) são definidas, respectivamente, como se segue:

Ji(s,s′) =

1 se s′ ∈ Ri(s)

0 caso contrário,
(2.3)

e

J+i (s,s′) =

1 se Ji(s,s′) = 1 e s′ �i s,

0 caso contrário.
(2.4)
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Note que na matriz Ji (resp. J+i ) a entrada (s,s′) recebe o valor 1 se o estado s′ for unilateralmente

alcançável (resp. uma melhoria unilateral) a partir do estado s pelo DM i. Caso contrário, a

entrada de (s,s′) da matriz Ji (resp. J+i ) recebe o valor 0.

Diversas matrizes relacionadas as representações das preferências dos DMs também

foram propostas por Xu et al. em 2007. A matriz de preferências estritas, denotada por P+
i , é

uma matriz de ordem |S| cujo elemento (s,s′) é:

P+
i (s,s′) =

1 se s′ �i s,

0 caso contrário.
(2.5)

Enquanto isso, as matrizes de menor preferência (P−i ) e indiferença (P=
i ) são definidas da

seguinte forma por:

P−i (s,s′) =

1 se s�i s′,

0 caso contrário.
(2.6)

P=
i (s,s′) =

1 se s∼i s′,

0 caso contrário.
(2.7)

Por meio da matriz P+
i , define-se a matriz de preferências não estrita, P−,=i , cujo

elemento (s,s′) é dado por:

P−,=i (s,s′) = 1−P+
i (s,s′). (2.8)

Esta definição de P−,=i foi proposta por Rêgo e Vieira (2021), pois a definição

original dada por Xu em 2007 fazia com que os elementos da diagonal principal de P−,=i

fossem nulos, podendo não representar corretamente as definições de estabilidades lógicas se os

oponentes puderem sancionar o DM focal regressando ao estado original.

Podemos também relacionar as definições das matrizes UM (Ji) e UI (J+i ) e a matriz

de preferência (P+
i ), esta relação é dada por:

J+i = Ji ◦P+
i , (2.9)
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em que ◦ é o produto Hadamard, ou seja, J+i (s,s′) = Ji(s,s′)P+
i (s,s′).

Outra matriz utilizada em Xu et al. em 2007 é a matriz sinal, denotada por sinal(·).

Seja W uma matriz de ordem |S|, desta forma, sinal(W ) é uma matriz de ordem |S| tal que a

entrada (s,s′) é:

sinal[W ](s,s′) =


1 se W (s,s′)> 0,

0 se W (s,s′) = 0,

−1 se W (s,s′)< 0.

(2.10)

Da mesma forma, ao aplicar a função sinal, sinal(·), a um número real y, o resultado será -1, 0

ou 1, dependendo se y for menor que 0, igual a 0, ou maior que 0, respectivamente.

Ao lidar com conflitos com múltiplos DMs, Xu et al. em 2008 forneceram representa-

ções matriciais que correspondem aos conjuntos de estados alcançáveis através de uma sequência

legal de UMs, RH , ou UIs, R+
H . As matrizes com estes objetivos, indicadas respectivamente por

JH (matriz de movimentos conjuntos) e J+H (matriz de melhoramento conjunto), são matrizes de

ordem |S| tais que suas entradas (s,s
′
) são definidas da seguinte forma:

JH(s,s′) =

1 se s′ ∈ RH(s),

0 caso contrário
(2.11)

e

J+H (s,s′) =

1 se s′ ∈ R+
H(s),

0 caso contrário.
(2.12)

Xu et al. em 2008 mostraram que as matrizes JH e J+H podem ser calculadas a partir

das matrizes Ji e J+i , respectivamente. Para isso, assuma que Z1 e Z2 sejam matrizes 0−1 de

ordem |S| e que Z = Z1∨Z2 seja uma matriz tal que a sua entrada (s,s′) seja definida da seguinte

forma:

Z(s,s′) =

1 se Z1(s,s′)+Z2(s,s′) 6= 0

0 caso contrário.
(2.13)

Seja δ = |∪i∈N ∪s∈SRi(s)| (resp. δ+ = |∪i∈N ∪s∈SR+
i (s)|) um limite superior para o

número de movimentos legais necessários para obter todos os estados em alguma lista RH(s),
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para qualquer s ∈ S, (resp. R+
H(s)), e seja Jr

i,H (resp. Jr,+
i,H ) a matriz com entrada (s,s′) igual a

1 se o DM i faz o primeiro movimento e s′ é alcançável a partir do estado s em exatamente

r ≥ 1 movimentos legais (resp. r movimentos legais de melhoria unilateral) de DMs em H; caso

contrário, ela é igual a 0. Assim, segue-se que:

Jr
i,H = sinal

(
Ji ·

( ∨
j∈H−i

J(r−1)
j,H

))
(2.14)

e

Jr,+
i,H = sinal

(
J+i ·

( ∨
j∈H−i

J(r−1,+)
j,H

))
, (2.15)

em que J1
i,H = Ji e J1,+

i,H = J+i . Desta forma, Xu et al. (XU; HIPEL; KILGOUR, 2008) estabele-

ceram que

JH =
δ∨

r=1

∨
i∈H

J(r)i,H (2.16)

e

J+H =
δ+∨
r=1

∨
i∈H

J(r,+)
i,H . (2.17)

Em Xu et al. (2008), há exemplos de como as matrizes Jr
i,H , Jr,+

i,H , JH e J+H podem ser

calculadas.

Por fim, as representações matriciais também fazem uso de uma matriz quadrada

de ordem |S| com todas entradas iguais a 1, denotada por E. Vale ressaltar também que ek é

um vetor coluna |S|-dimensional com o k-ésimo elemento igual a 1 e todos os outros elementos

iguais a zero.

2.4 CONCEITOS CLÁSSICOS: REPRESENTAÇÃO MATRICIAL

Apresentaremos, a matriz de conceitos de solução (MRSC) de alguns casos clássicos

fortemente conhecidos na literatura para conflitos bilaterais. O método MRSC, incorpora um

conjunto de matrizes de ordem |S|, MNash
i , MGMR

i , MSMR
i , MSEQ

i e MSSEQ
i . As quatro primeiras

formas matriciais dos conceitos que serão apresentadas a seguir, foram obtidas por (XU et al.,
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2018) e (XU et al., 2019). A quinta forma matricial foi proposta em (RÊGO; VIEIRA, 2021).

Nesses trabalhos são apresentadas as devidas provas desses resultados.

1. Matriz Nash: MNash
i = J+i E

2. Matriz GMR: MGMR
i = J+i [E− sinal(J j(P

−,=
i )>)] j ∈ N, j 6= i

3. Matriz SMR: MSMR
i = J+i [E− sinal(J j[(P

−,=
i )> ◦ (E− sinal(Ji(P+

i )>))])] j ∈ N, j 6= i

4. Matriz SEQ: MSEQ
i = J+i [E− sinal(J+j (P

−,=
i )>)] j ∈ N, j 6= i

5. Matriz SSEQ: MSSEQ
i J+i [E− sinal(J+j [(P

−,=
i )> ◦ (E− sinal(Ji(P+

i )>))])] j ∈ N, j 6= i

Para X ∈ {Nash,GMR,SMR,SEQ,SSEQ}, o estado s satisfaz a estabilidade X para

o DM i se e somente se MX
i (s,s) = 0.

No caso da matriz Nash, a multiplicação entre essas matrizes retorna uma matriz

tal que seu elemento (s,s′), MNash
i (s,s′), é igual a linha s da matriz J+i multiplicada pela coluna

s dessa matriz E que é uma coluna de 1′s. Ou seja, estamos somando todos os elementos da

linha s da matriz J+i (melhorias unilaterais). Então, estamos somando a quantidade de estados

acessíveis e melhores que s, logo, ele será Nash se esta soma for nula.

Na MGMR
i estamos deixando de somar o valor resultante do sinal entre J j e

(P−,=i )>, significando que o j consegue acessar um estado que não é preferível para o DM i.

Quando o DM j consegue acessar um estado que seja pior ou igual para o DM i, essa matriz

sinal será 1. Ou seja, é uma retaliação, então mesmo que o DM i tenha uma melhoria do estado s

para o estado s′, a partir de s′, o DM j vai levar o conflito para um cenário pior ou igual para o

DM i. Desta forma, a melhoria de s para s′ não entra na soma dos elementos com a J+i . No caso

do SMR, o último termo está capturando justamente as suas próprias contra-reações e a matriz

SEQ é semelhante ao GMR, a única diferença é que ele consegue capturar que o DM j só se

mova para estados de melhorias para ele.

No caso de conflitos multilaterais, basta usar as matrizes JN−{i} e J+N−{i} no lugar de

J j e J+j , respectivamente.

No capítulo a seguir fornecemos representações matriciais para obtenção de estabili-

dades de acordo com a noção sequencial de ordem superior no modelo de grafos para resolução

de conflitos, em casos bilaterais e multilaterais. Também fornecemos aplicações para ilustrar a

utilidade das representações obtidas.
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3 REPRESENTAÇÃO MATRICIAL DAS ESTABILIDADES SEQUENCIAIS DE OR-

DEM SUPERIOR NO MODELO GRAFO PARA RESOLUÇÃO DE CONFLITOS

3.1 INTRODUÇÃO

Na estabilidade SEQ, ao considerar a mudança para um estado mais preferido, o DM

prevê se o oponente pode reagir levando o conflito a um estado menos preferível do que o atual,

desde que a reação do oponente também beneficie a ele. No entanto, existem situações em que,

para realizar tal reação, o oponente deve deixar um estado SEQ estável para ele, o que torna essa

ameaça não credível.

O exemplo a seguir ilustra um cenário de análise do conceito SEQ, focando na reação

ao DM focal relacionado à situação em que o adversário sai de um estado que é SEQ para ele

mesmo não sendo Nash estável.

Figura 3.1 – Ilustração do SEQ não credível

Analisando a estabilidade do jogo, vemos que o estado s1 é considerado SEQ (e

SSEQ) para o DM 1, indicando que, nesse cenário, o DM 1 está em uma situação de equilíbrio.

Por outro lado, o DM 2 apresenta um melhoramento a partir do estado s2, o que provoca um

conflito que resulta no estado s3. No entanto, o estado s3 é menos favorável para o DM 1 do que

o estado s1, tornando-o uma opção inferior. Além disso, a punição do DM 2 ao sair do estado s2

e ir para o estado s3 não é considerada crível, uma vez que o estado s2 é um SEQ para o DM 2,

sugerindo que ele prefere permanecer nesse estado.
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Desta forma, Rêgo e Oliveira (2020 e 2023) propuseram a estabilidade sequencial de

ordem superior, modificando o conceito de estabilidade sequencial a fim de mitigar o problema

das ameaças não credíveis inerente a esse conceito. Isto retifica o fato de que, na estabilidade

SEQ, um DM pode deixar um estado que é SEQ para ele apenas para punir o seu oponente.

A estabilidade sequencial de ordem superior identifica quais são as possíveis sanções

plausíveis que os oponentes do DM focal podem impor a ele. Ou seja, DMs não devem deixar

os estados que são SEQ para eles. A fim de evitar uma definição circular, é necessário definir

múltiplas ordens de estabilidade SEQ.

Em conflitos complexos, caracterizados por um grande número de estados ou vários

DMs, a análise de estabilidade utilizando definições lógicas torna-se inviável. Nesse contexto,

a construção de representações matriciais pode tornar a obtenção de estados estáveis mais

eficaz, uma vez que proporciona uma análise de estabilidade mais rápida, baseada em estruturas

algébricas flexíveis, e convertendo a análise de estabilidade de uma estrutura lógica para um

sistema matricial. Mesmo em conflitos menores, a análise pode ser exaustiva, o que torna o

desenvolvimento de métodos computacionais para encontrar estados estáveis extremamente

relevante.

Neste capítulo, nosso principal objetivo é fornecer métodos matriciais para determi-

nar estabilidades sequenciais de ordem superior no modelo de grafos para a resolução de conflitos

com dois ou múltiplos DMs. A fim de capturar estabilidades sequenciais de ordem superior,

são derivadas equações matriciais recursivas. Desta forma, na Seção 3.2 serão apresentadas as

propriedades e definições das representações matriciais para este conceito. Adicionalmente, na

Seção 3.3, com o objetivo de ilustrar a utilidade das representações obtidas, realizamos aplicações

dos métodos propostos a conflitos já existentes na literatura sobre o GMCR, considerando tanto

2-DMs quanto n-DMs. Vale ressaltar que este trabalho encontra-se submetido no periódico

Group Decision and Negotiation.

3.2 REPRESENTAÇÕES MATRICIAIS DO CONCEITOS DE SOLUÇÃO m-SEQ

Nesta seção, são desenvolvidos métodos matriciais para determinar estados estáveis

m−SEQ no GMCR considerando conflitos com dois e n DMs.
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3.2.1 Caso Bilateral

Sabemos que para que o estado seja estável m-SEQ, a reação do seu oponente, além

de ser uma melhoria unilateral, não deve desviar-se de um estado estável (m−1)-SEQ. Como

veremos no Teorema 3.2.1, podemos obter estados estáveis de acordo com esse conceito a partir

da seguinte representação matricial, Mm−SEQ
i , para o m-SEQ, que é dada por:

Mm−SEQ
i = J+i [E− sinal(J(m,+)

j (P−,=i )>)] , j ∈ N, j 6= i (3.1)

em que, J(m,+)
j é dado por:

J(m,+)
j = sinal(I ◦M((m−1)−SEQ)

j )J+j ∀ m≥ 2, (3.2)

em que I é a matriz identidade de ordem |S| e M(1−SEQ)
j = MSEQ

j , uma vez que o conceito

1−SEQ é por definição igual a SEQ.

O Teorema 3.2.1 a seguir estabelece que um estado s é m−SEQ estável para um

DM i se e somente se o elemento que se encontra na linha s e na coluna s da matriz Mm−SEQ
i for

igual a zero.

Teorema 3.2.1Seja s∈ S e i∈N, então s é m−SEQ para DM i se, e somente se, M(m−SEQ)
i (s,s)=

0.

Prova: A prova será feita por indução em m. Primeiro, suponhamos que m = 2.

Nesse caso,

M2−SEQ
i (s,s) = ∑

s1∈S
J+i (s,s1)[E− sinal(J(2,+)

j (P−,=i )T )](s1,s)

= ∑
s1∈S

J+i (s,s1)[1− sinal( ∑
s2∈S

J(2,+)
j (s1,s2)(P

−,=
i )T (s2,s))]

= ∑
s1∈S

J+i (s,s1)[1− sinal( ∑
s2∈S

J(2,+)
j (s1,s2)P

−,=
i (s,s2))]

Portanto, segue-se que M2−SEQ
i (s,s) = 0 se somente se, para todo s1 ∈ R+

i (s) existir

s2 ∈ S tal que J(2,+)
j (s1,s2) = 1 e P−,=i (s,s2) = 1.

Note que P−,=i (s,s2) = 1 se somente se s %i s2. Além disso, temos que
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J(2,+)
j (s1,s2) = ∑

s3∈S
sinal(I ◦MSEQ

j )(s1,s3)J+j (s3,s2)

= ∑
s3∈S

sinal(I(s1,s3)M
SEQ
j (s1,s3))J+j (s3,s2)

= sinal(MSEQ
j (s1,s1))J+j (s1,s2)

Assim, J(2,+)
j (s1,s2) = 1 se somente se MSEQ

j (s1,s1) 6= 0 e J+j (s1,s2) = 1. Em outras

palavras, J(2,+)
j (s1,s2) = 1 se somente se s1 /∈ SSEQ

j e s2 ∈ R+
j (s1).

Portanto, M2−SEQ
i (s,s) = 0 se somente se para todo s1 ∈ R+

i (s) existir s2 ∈ S tal

que s %i s2, s1 /∈ SSEQ
j e s2 ∈ R+

j (s1). Consequentemente, M2−SEQ
i (s,s) = 0 se somente se

s ∈ S2−SEQ
i .

Assumindo agora a hipótese de indução de que M(m−1)−SEQ
i (s,s) = 0 se somente se

s ∈ S(m−1)−SEQ
i , ∀i ∈ N. Temos que:

Mm−SEQ
i (s,s) = ∑

s1∈S
J+i (s,s1)[E− sinal(J(m,+)

j (P−,=i )T )](s1,s)

= ∑
s1∈S

J+i (s,s1)[1− sinal( ∑
s2∈S

J(m,+)
j (s1,s2)(P

−,=
i )T (s2,s))]

= ∑
s1∈S

J+i (s,s1)[1− sinal( ∑
s2∈S

J(m,+)
j (s1,s2)P

−,=
i (s,s2))]

Assim, segue-se que Mm−SEQ
i (s,s) = 0 se somente se para todo s1 ∈ R+

i (s) existir

s2 ∈ S tal que J(m,+)
j (s1,s2) = 1 e P−,=i (s,s2) = 1.

Posteriormente, note que

J(m,+)
j (s1,s2) = ∑

s3∈S
sinal(I ◦M(m−1)−SEQ

j )(s1,s3)J+j (s3,s2)

= ∑
s3∈S

sinal(I(s1,s3)M
(m−1)−SEQ
j (s1,s3))J+j (s3,s2)

= sinal(M(m−1)−SEQ
j (s1,s1))J+j (s1,s2)

Assim, J(m,+)
j (s1,s2) = 1 se somente se M(m−1)−SEQ

j (s1,s1) 6= 0 e J+j (s1,s2) = 1.

Logo, pela hipótese de indução, J(m,+)
j (s1,s2) = 1 se somente se s1 /∈ S(m−1)−SEQ

j e s2 ∈ R+
j (s1).

Logo, Mm−SEQ
i (s,s) = 0 se somente se para todo s1 ∈ R+

i (s) existir s2 ∈ S tal que

s %i s2, s1 /∈ S(m−1)−SEQ
j e s2 ∈ R+

j (s1). Consequentemente, Mm−SEQ
i (s,s) = 0 se somente se

s ∈ Sm−SEQ
i .
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3.2.2 Caso Multilateral

Na estabilidade m−SEQ para conflitos multilaterais, os oponentes de um DM podem

realizar uma sequência de melhorias plausíveis UIs de ordem m−1 para sancionar o movimento

inicial de algum DM, em que uma UI é considerada plausível de ordem m−1 se o DM não deixar

um estado estável (m−1)−SEQ para ele. Agora definimos a matriz conjunta de movimentos

de melhoria plausíveis de ordem m−1, J(m,+)
H , que representa o conjunto R+m

H . A entrada (s,s1)

da matriz J(m,+)
H é dada por

J(m,+)
H (s,s1) =

1 se s1 ∈ R+m
H (s),

0 caso contrário.

Seja δ m o número máximo de movimentos em uma sequência legal UIs plausíveis

de ordem m−1 a partir de s realizados pelos DMs em H necessários para alcançar um estado

em R+m
H (s). δ m é, no máximo, igual ao número total de UIs existentes no conflito, que é dado

por L = ∑i∈N ∑s∈S ∑s1∈S J+i (s,s1).

Como a sequência de movimentos de sanção de UIs plausíveis de ordem m− 1

realizada pelos oponentes do DM focal pode ter comprimentos diferentes, seja J(m,t,+)
i,H uma

matriz de ordem |S| que representa os estados alcançáveis por uma sequência de exatamente t UIs

Plausíveis de ordem m−1 realizadas pelos DMs em H, onde o DM i faz o primeiro movimento.

O elemento (s,s1) de J(m,t,+)
i,H é formalmente definido como:

J(m,t,+)
i,H (s,s1) =



1 se, de s ∈ S,s1 ∈ S pode ser alcançado

exatamente em t UIs legais e DM i é o primeiro a se mover,

em que nenhuma das UI deixa um (m−1)−SEQ

estado estável para o DM que se move,

0 caso contrário.

(3.3)

O Lema 3.2.1 mostra como obter J(m,t,+)
i,H de forma indutiva.

Lema 3.2.1 Para m≥ 2 e t ≥ 2, J(m,t,+)
i,H é dado recursivamente por

J(m,t,+)
i,H = sinal

J(m,+)
i

 ∨
j∈H−{i}

J(m,t−1,+)
j,H

 , (3.4)
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em que J(m,1,+)
j,H = J(m,+)

j = sinal(D◦M((m−1)−SEQ)
j )J+j , ∀ j ∈ N.

Prova: Como o caso t = 2 tem um formato especial, vamos prová-lo primeiro.

J(m,2,+)
i,H = sinal

J(m,+)
i

 ∨
j∈H−{i}

J(m,1,+)
j,H


= sinal

J(m,+)
i

 ∨
j∈H−{i}

J(m,+)
j

 .

Consequentemente,

J(m,2,+)
i,H (s,s2) = sinal

∑
s1∈S

J(m,+)
i (s,s1)

 ∨
j∈H−{i}

J(m,+)
j

(s1,s2)


= sinal

(
∑

s1∈S
J(m,+)

i (s,s1)sinal

(
∑

j∈H−{i}
J(m,+)

j (s1,s2)

))
.

Assim, J(m,2,+)
i,H (s,s2) = 1 se e somente se existir s1 ∈ S e j ∈ H − {i} tal que

J(m,+)
i (s,s1) = 1 e J(m,+)

j (s1,s2) = 1. Na prova do Teorema 3.2.1, mostramos que J(m,+)
j (s1,s2) =

1 se e somente se s1 /∈ S(m−1)−SEQ
j e s2 ∈ R+

j (s1). Portanto, J(m,2,+)
i,H (s,s2) = 1 se e somente se

existir s1 ∈ S e j ∈ H−{i} tal que s /∈ S(m−1)−SEQ
i , s1 ∈ R+

i (s), s1 /∈ S(m−1)−SEQ
j e s2 ∈ R+

j (s1).

Assim, J(m,2,+)
i,H (s,s2) = 1 se e somente se existir uma sequência de melhorias plausíveis de

ordem m−1 e comprimento 2, com o primeiro movimento sendo do DM i.

Para o caso geral, observe que qualquer sequência plausível de UIs de ordem m e

comprimento t, com o primeiro movimento sendo do DM i, consiste em um primeiro movimento

plausível de ordem m−1 do DM i, seguido por uma sequência de melhorias plausíveis de ordem

m− 1 e comprimento t− 1, com o primeiro movimento sendo de qualquer outro DM em H

diferente de i.

Desde que

J(m,t,+)
i,H (s,st) = sinal

∑
s1∈S

J(m,+)
i (s,s1)

 ∨
j∈H−{i}

J(m,t−1,+)
j

(s1,st)


= sinal

(
∑

s1∈S
J(m,+)

i (s,s1)sinal

(
∑

j∈H−{i}
J(m,t−1,+)

j (s1,st)

))
,

Temos que J(m,t,+)
i,H (s,st) = 1 se e somente se existir s1 ∈ S e j ∈ H−{i} tal que

J(m,+)
i (s,s1) = 1 e J(m,t−1,+)

j (s1,st) = 1. Portanto, J(m,t,+)
i,H (s,st) = 1 se e somente se existir
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s1 ∈ S e j ∈ H−{i} tal que s /∈ S(m−1)−SEQ
i , s1 ∈ R+

i (s), e st pode ser alcançado a partir de uma

sequência plausível de UIs de ordem m−1 e comprimento t−1 a partir de s1, onde o primeiro

movimento é do DM j.

Assim, J(m,t,+)
i,H (s,st) = 1 se e somente se existir uma sequência plausível de UIs de

ordem m−1 e comprimento t de s para st , onde o primeiro movimento é do DM i.

O Teorema 3.2.2 mostra como obter a matriz Jm,+
H a partir das matrizes J(m,+)

i , para

i ∈ H.

Teorema 3.2.2 Seja /0 6= H ⊆ N. A matriz Jm,+
H pode ser derivada da seguinte forma:

Jm,+
H =

(
L∨

t=1

∨
i∈H

J(m,t,+)
i,H

)
. (3.5)

Prova: Note que Jm,+
H (s,s1) = 1 se e somente se existir algum t ≥ 1 e i ∈ H tal que

J(m,t,+)
i,H (s,s1) = 1. Portanto, Jm,+

H (s,s1) = 1 se e somente se existir alguma sequência plausível

de UIs de ordem m−1 de s para s1 pelos DMs em H.

O Teorema 3.2.3 estabelece a representação matricial m-SEQ para conflitos multila-

terais.

Teorema 3.2.3 Defina a matriz Mm−SEQn
i de ordem |S| como

Mm−SEQn
i = J+i [E− sinal(J(m,+)

N−{i}(P
−,=
i )T ).

Para i∈N, s∈ S e m≥ 2, o estado s é considerado sequencial estavelmente de ordem m (m-SEQ)

para o DM i se e somente se Mm−SEQn
i (s,s) = 0.

Prova: Usando um argumento idêntico ao utilizado na prova do Teorema 3.2.1, segue

que Mm−SEQn
i (s,s) = 0 se e somente se para todo s1 ∈ R+

i (s) existe s2 ∈ S tal que J(m,+)
N−{i}(s1,s2) =

1 e P−,=i (s,s2) = 1.

Por definição de J(m,+)
N−{i} e P−,=i , temos que Mm−SEQn

i (s,s) = 0 se e somente se para

todo s1 ∈ R+
i (s) existe s2 ∈ S tal que s2 ∈ R+m

N−{i}(s1) e s %i s2.

3.3 APLICAÇÕES

Apresentaremos, nesta seção, duas aplicações com a finalidade de ilustrar as repre-

sentações matriciais para a estabilidade m−SEQ obtidas neste capítulo. A primeira aplicação
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que consideramos foi o jogo Matching Pennies (GIBBONS, 1992) que refere-se ao caso de

dois DMs. A outra aplicação, que envolve múltiplos DMs, consiste no conflito de renovação

de instalações industriais privadas (WALKER; BOUTILIER; HIPEL, 2010). A partir dessas

aplicações, enfatiza-se a importância da representação matricial para a estabilidade m−SEQ, na

qual os métodos matriciais apresentam maior agilidade na resolução de conflitos.

3.3.1 Matching Pennies

O jogo Matching Pennies (GIBBONS, 1992) é considerado um exemplo clássico de

um jogo de soma zero, em que num jogo de soma zero o ganho de um jogador é exatamente a

perca do outro. Neste jogo, uma vez que em todas as situações possíveis, um dos jogadores tem

um incentivo para mudar de estratégia, então não existem equilíbrios de Nash em estratégias

puras.

Neste jogo, dois jogadores, que chamaremos de DM 1 e DM 2, movem-se de maneira

simultânea, sendo que cada jogador terá uma moeda e deve escolher se quer exibir a “cara” (H)

ou “coroa” (T ) virada para cima. No caso em que as moedas corresponderem, o primeiro jogador

ganha e fica com a moeda do outro jogador, mas se as moedas não corresponderem, o segundo

jogador ganha e fica com a moeda. Este conflito é composto por quatro estados, a saber: HH(s1),

HT (s2), T H(s3), e T T (s4). As preferências dos DMs 1 e 2 são dadas, respectivamente, por

HH ∼1 T T �1 HT ∼1 T H e HT ∼2 T H �2 HH ∼2 T T . A Figura 3.2 ilustra a forma de grafo

desse conflito.

Figura 3.2 – Forma de grafo do jogo Matching Pennies

As matrizes de movimento unilateral (UM) para o DM 1 e para o DM 2, relacionadas
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com o jogo Matching Pennies no modelo de grafo apresentado na Figura 3.2 são dadas por:

J1 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 J2 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 (3.6)

De acordo com a Definição 2.5, as matrizes de preferência dos DMs 1 e 2 são,

respectivamente, dadas por:

P+
1 =


0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

 P+
2 =


0 1 1 0

0 0 0 0

0 0 0 0

0 1 1 0

 (3.7)

Temos também que as matrizes de melhorias unilaterais (UI) dos DMs 1 e 2 são,

respectivamente, dadas por:

J+1 =


0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0

 J+2 =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 (3.8)

Para obtermos as matrizes de preferências não estritas dos DMs 1 e 2, utilizamos

P−,=i = E−P+
i . Tais matrizes são dadas, respectivamente, por:

P−,=1 =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

−


0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

=


1 1 1 1

0 1 1 0

0 1 1 0

1 1 1 1

 (3.9)

P−,=2 =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

−


0 1 1 0

0 0 0 0

0 0 0 0

0 1 1 0

=


1 0 0 1

1 1 1 1

1 1 1 1

1 0 0 1

 (3.10)
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Vamos inicialmente analisar a estabilidade 1-SEQ, que é equivalente a SEQ. Para

isso, calculamos a matriz M(1−SEQ)
i = MSEQ

i = J+i (E− sinal(J+j (P
−,=
i )>) para ambos DMs:

M1−SEQ
1 =


0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0






1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

− sinal




0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0




1 0 0 1

1 1 1 1

1 1 1 1

1 0 0 1







=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


e

M1−SEQ
2 =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0






1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

− sinal




0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0




1 1 1 1

0 1 1 0

0 1 1 0

1 1 1 1







=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Assim, todos os estados são 1-SEQ estáveis para ambos os DMs. Da Equação 3.1,

sabemos que a representação matricial para o m-SEQ do DM i é

Mm−SEQ
i = J+i [E− sinal(J(m,+)

j (P−,=i )T )],

em que J(m,+)
j = sinal(I ◦M((m−1)−SEQ)

j )J+j . Assim, temos que para m = 2:
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J(2,+)
1 =

sinal




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

◦


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0








0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0



=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


e

J(2,+)
2 =

sinal




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

◦


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0








0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0



=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Consequentemente, M2−SEQ
i , i = 1,2, são dadas por:

M2−SEQ
1 =


0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0






1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

− sinal




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




1 0 0 1

1 1 1 1

1 1 1 1

1 0 0 1







=


0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0


e
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Tabela 3.1 – Estados estáveis do jogo Matching Pennies de acordo com a estabilidade
m-SEQ

m-SEQ HH (s1) HT (s2) T H (s3) T T (s4)
m par 1 2 2 1
m impar 1,2 1,2 1,2 1,2

M2−SEQ
2 =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0






1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

− sinal




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




1 1 1 1

0 1 1 0

0 1 1 0

1 1 1 1







=


1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1

 .

Portanto, os estados s1 e s4 são 2-SEQ estáveis para DM 1 e, consequentemente,

pelo Teorema 2.2.7, são m-SEQ estáveis para todos os m ≥ 2 para DM 1. Por outro lado, os

estados s2 e s3 são 2−SEQ estáveis para DM 2 e, consequentemente, pelo Teorema 2.2.7, são

m-SEQ estáveis para todos os m≥ 2 para DM 2.

A Tabela 3.1 mostra os resultados obtidos de acordo com o Teorema 3.2.1 para

todos os valores de m≥ 1. Como esperado, os resultados encontrados através da representação

matricial foram os mesmos encontrados em Oliveira (2018) usando as definições lógicas.

3.3.2 Conflito de Renovação de Instalação Industrial Privada

Vamos agora ilustrar as representações matriciais obtidas neste capítulo em uma

aplicação apresentada em Walker et al. (2010), envolvendo três DMs. O conflito consiste na

transformação em área residencial de instalações industriais da empresa Kaufman Footwear na

cidade de Kitchener, Ontário, Canadá, e é conhecido como conflito de renovação de instalação

industrial privada. Neste conflito, tem-se que os decisores envolvidos são:

• Proprietário da propriedade (PO);

• Governo municipal (CG);

• Empresa imobiliária ou um promotor imobiliário (D).

O cenário de conflito é dado pelo fato de o proprietário do imóvel e a administração

municipal estarem tentando atrair o comprador para adquirir o imóvel. O DM D, por outro lado,
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está interessado em comprar o imóvel pelo preço mais baixo possível e obter o maior benefício

possível do DM CG, ao mesmo tempo que DM PO tenta aumentar o máximo possível o preço do

imóvel. As opções para cada DM e os possíveis estados são apresentados na Tabela 3.2 a seguir.

Tabela 3.2 – Estados viáveis no conflito de aquisição

PO
Vender caro N Y N N Y N N Y N N Y N - -
Vender barato N N Y N N Y N N Y N N Y - -
Desistir N N N N N N N N N N N N - Y

CG Incentivos N N N Y Y Y N N N Y Y Y - -

D Comprar N N N N N N Y Y Y Y Y Y - -
Desistir N N N N N N N N N N N N Y -
Estado s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s13

Fonte: (WALKER; BOUTILIER; HIPEL, 2010)

As opções disponíveis para os DMs são:

1. O proprietário (PO) pode vender a propriedade por um preço alto ou baixo;

2. O governo municipal (CG) pode oferecer incentivos para a compra da propriedade;

3. O promotor (D) tem a opção de comprar a instalação industrial;

4. O promotor (D) e o proprietário (PO) têm a opção de desistir da negociação, porém se

escolherem esta opção, independentemente das opções tomadas pelos outros DMs, o

promotor e o proprietário não podem voltar à negociação e o conflito vai terminar no

estado 13 (como apresentado na tabela acima), ou seja, a única opção irreversível no

conflito é quando o DM PO ou DM D decidem desistir;

5. Os outros DMs podem mudar o estado do conflito alterando as suas próprias opções,

mantendo as opções dos outros DMs fixas.

As preferências relacionadas com os estados para cada DM são apresentadas na

Tabela 3.3 abaixo. A classificação dos estados, para cada DM, é listada da esquerda para a

direita, da mais preferível para a menos preferível. Os estados que estão entre parênteses são

considerados igualmente preferidos.

Tabela 3.3 – Classificação dos estados do conflito de aquisição
DM Ranking dos estados
PO (s8, s11), (s1, s2, s4, s5, s7, s10), (s3, s6, s13), (s9, s12)
CG (s8, s9), (s11, s12), (s1, s2, s3, s7), (s4, s5, s6, s10), s13
D s12, s9, s11, s10, s6, s5, (s3, s4), (s1, s2, s7, s13), s8

Fonte: (WALKER; BOUTILIER; HIPEL, 2010)

Com base nos movimentos unilaterais e nas classificações de preferências disponí-

veis para cada DM, analisaremos, a seguir, representação matricial da estabilidades sequenciais
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de ordem superior para cada DM desse conflito. As matrizes de movimentos unilaterais para os

DMs PO, CG e D, são, respectivamente, dadas por:

JPO =



0 1 1 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0


, JCG =



0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


e

JD =



0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0


.

Temos ainda que as matrizes de preferência dos DMs PO, CG e D, são, respectiva-

mente, dadas por:

P+
PO =



0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0
1 1 0 1 1 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0
1 1 0 1 1 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 1 1 0 1
0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0 1 1 0 0


, P+

CG =



0 0 0 0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 1 1 0
1 1 1 0 0 0 1 1 1 0 1 1 0
1 1 1 0 0 0 1 1 1 0 1 1 0
1 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0


e

P+
D =



0 0 1 1 1 1 0 0 1 1 1 1 0
0 0 1 1 1 1 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0 1 1 1 1 0
0 0 0 0 0 1 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 1 1 1 1 0 0 1 1 1 1 0
1 1 1 1 1 1 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 1 1 1 1 1 0


Com base no Teorema 3.2.3, a Tabela 3.4 a seguir apresenta os resultados obtidos

para cada estado e cada DM das análises de estabilidade do conflito de renovação de instalação

industrial privada.

Note que embora o estado s10 seja um equilíbrio sequencial, não é m-SEQ estável

para DM PO e DM CG, para m > 1, o mesmo acontece com o estado s6 para o DM CG, ou seja,
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Tabela 3.4 – Resultado da análise de estabilidade do conflito de renovação de instalação
industrial privada

m-SEQ
PO CG D

s1 ∀m ∀m ∀m
s2 ∀m ∀m ∀m
s3 - ∀m ∀m
s4 ∀m - m 6= 2
s5 ∀m - m = 1
s6 - m = 1 ∀m
s7 ∀m ∀m ∀m
s8 ∀m ∀m -
s9 - ∀m ∀m
s10 m = 1 m = 1 ∀m
s11 ∀m ∀m ∀m
s12 - ∀m ∀m
s13 ∀m ∀m ∀m

ele é estado sequencialmente estável, porém não m-SEQ para DM CG, pois, as sanções não são

credíveis uma vez que envolvem o DM D ter que deixar o estado s3 que é 2−SEQ estável para

ele. Podemos observar também que o estado s4 é SEQ e m-SEQ para DM D para todo m 6= 2, no

entanto não é 2−SEQ para DM D. Desta forma, obtivemos os mesmos resultados encontrados

através da representação matricial que foram apresentados em Oliveira (2018).

3.4 CONCLUSÃO

Neste capítulo, propusemos representações matriciais para facilitar a obtenção de

estados estáveis m-SEQ, como proposto por Rêgo e Oliveira (2020 e 2023), aplicáveis a conflitos

bilaterais e multilaterais. Este conceito de estabilidade é valioso para mitigar problemas de

ameaças não credíveis que podem surgir na estabilidade SEQ.

A representação matricial do m-SEQ expande a análise de conflitos, permitindo a

avaliação de cenários mais complexos, com mais ordens e estados, além de proporcionar maior

eficiência em termos de esforço computacional e custo de tempo na resolução de conflitos. Para

validar as representações matriciais do m-SEQ, realizamos uma análise de estabilidade em dois

conflitos do mundo real, Matching Pennies e o conflito de renovação de instalação industrial

privado.
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4 REPRESENTAÇÃO MATRICIAL DA ESTABILIDADE MAXIMINh NO MODELO

GRAFO PARA RESOLUÇÃO DE CONFLITOS

4.1 INTRODUÇÃO

Rêgo e Vieira (2019), propuseram uma nova noção de estabilidade com horizonte

variável. Tal noção, denominada por estabilidade Maximinh, considera que o DM focal não

precisa ter necessariamente informação sobre as preferências de outros DMs. Esta estabilidade

foi inspirada na regra de decisão maximin, também conhecida como a regra de decisão de Wald

(Wald, 1945). Esta é uma regra de decisão, não probabilística, segundo a qual um decisor deve

avaliar uma ação de acordo com as piores consequências que podem ser obtidas se essa ação for

escolhida. A regra maximin prescreve a escolha da ação com a melhor consequência obtida no

pior cenário possível e é útil para modelar DMs pessimistas ou cautelosos.

O conceito de estabilidade Maximinh também tem o atrativo de ter horizonte variável,

ou seja, pode ser utilizado para analisar um conflito com h passos à frente, onde h é um inteiro

não-negativo. Além disso, em Rêgo e Vieira (2019) forneceram resultados que estabelecem que

a estabilidade de Nash, a metarracionalidade geral e a metarracionalidade simétrica, que são

conceitos de solução frequentemente utilizados na literatura da GMCR, são equivalentes a casos

particulares do conceito de estabilidade Maximinh, para h = 1,2,3, respectivamente.

Motivados pela dificuldade de se solucionar, de forma manual, conflitos onde existe

um alto número de estados ou DMs, este capítulo tem como principal objetivo propôr métodos

matriciais para representar o conceito de estabilidade Maximinh em conflitos com dois e múltiplos

DMs. Com a ajuda das representações matriciais obtidas, conflitos maiores podem ser analisados,

de maneira mais viável, utilizando esse conceito. Indicamos também como modificar os métodos

de matriz propostos para representar também as variações credíveis do conceito Maximinh. Além

disso, para demonstrar a utilidade dos resultados obtidos neste capítulo, analisamos um conflito

real, conhecido na literatura do GMCR como o Sun Belt Vs. British Columbia Government

(OBEIDI; HIPEL, 2005). Vale ressaltar que este capítulo encontra-se submetido no periódico

IEEE Transactions on Systems Man Cybernetics-Systems .

Este capítulo está estruturado da seguinte forma: na Seção 4.2, são apresentadas as

representações matriciais relacionadas ao conceito de estabilidade Maximinh para conflitos bila-

terais. As adaptações necessárias para lidar com conflitos multilaterais ou com as estabilidades
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maximin credíveis também são abordadas nesta seção. Posteriormente, na Seção 4.3, ilustramos

as representações matriciais obtidas para representar o conceito Maximinh no conflito de Sun

Belt Vs. British Columbia Government (OBEIDI; HIPEL, 2005) considerando a terceira fase

deste conflito e também analisamos o dilema dos prisioneiros para 2, 3 e 4 DMs, com o intuito

de mensurar o crescimento do esforço computacional necessário para obtenção das estabilidades.

4.2 REPRESENTAÇÕES MATRICIAIS DA ESTABILIDADE MAXIMINh NO GMCR

Nesta seção, fornecemos as representações matriciais para obter a estabilidade

Maximinh para conflitos bilaterais e multilaterais. Mostramos também como adaptá-los de modo

a representar estabilidades Maximinh credíveis. Começamos com as representações matriciais

para conflitos bilaterais.

4.2.1 Representações matriciais da estabilidade Maximinh para conflitos bilaterais

Para atingir o nosso objetivo principal, precisamos introduzir algumas novas matrizes,

que serão utilizadas na representação proposta. Primeiro, considere que I seja a matriz identidade

de ordem |S| e E
′
=
[
1 1 1 · · · 1

]
uma matriz linha com dimensão |S|. Considere também

que se F for uma matriz 0−1, então Fc representa o complemento da matriz binária F , o que

significa que Fc(s1,s2) = 1−F(s1,s2). Finalmente, seja Ki uma matriz coluna com dimensão

|S| dada por Ki = [E
′ ·P+

i ]T . O Lema 4.2.1 estabelece uma relação entre a matriz Ki e a função

Ki que foi definida na Seção 2.2. O Lema 4.2.1 estabelece uma relação entre a matriz Ki e a

função Ki.

Lema 4.2.1 Seja i ∈ N, s e q ∈ S. Então Ki(q,1) = Ki(q).

Prova: Note que

Ki(q,1) = [E
′
·P+

i ]T (q,1) = ∑
s∈S

P+
i (s,q) = Ki(q).

Agora vamos definir dois vetores importantes, a saber: Min(A) e Max(A).
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Definição 4.2.1Seja A = [atk] uma matriz de ordem |S|, então Min(A) e Max(A) são duas matri-

zes coluna com dimensão |S| tais que Min(A)[(k,1)]=min{ak1,ak2, . . . ,ak|S|} e Max(A)[(k,1)]=

max{ak1,ak2, . . . ,ak|S|}, respectivamente.

Intuitivamente, o número que aparece na linha k do vetor Min(A) é o menor número

que aparece na linha k da matriz A, no caso do Max(A) consideramos o maior número que

aparece na linha k da matriz A.

Por exemplo, se considerarmos a matriz A =


3 1 4 6

2 0 4 4

5 2 2 3

0 4 1 2

, então

Min(A) =


1

0

2

0

 e Max(A) =


6

4

5

4

 .

Definimos agora duas matrizes, Bi
h e B j

h, que em geral representam o ganho anteci-

pado, ou seja, o valor do estado final antecipado que o DM i espera receber após um horizonte

de conflito h se ele ou o adversário, respectivamente, for o primeiro a se mover. Cada linha

destas matrizes contém o que o DM i prevê receber no final do conflito se o estado de conflito

mudar do estado da linha para o estado da coluna. Se o estado da coluna não for alcançável a

partir do estado da linha e não for igual ao estado da linha, então a entrada correspondente será

zero em Bi
h e será igual a |S| em B j

h, uma vez que no primeiro caso, onde o DM focal se move,

consistirá em um movimento de maximização e, no segundo, um movimento de minimização.

Formalmente, temos:

Bi
h =

(
(Ji ◦ (C j

h−1 ·E
′
)>+ I ◦ (Ki ·E

′
)>)
)

(4.1)

e

B j
h = |S|× (J j + I)c +(J j ◦ (Ci

h−1 ·E
′
)>+ I ◦ (Ki ·E

′
)>), (4.2)

em que, Ci
0 =C j

0 = Ki, Ci
h = Max(Bi

h) e C j
h = Min(B j

h), ∀h≥ 1.

Lema 4.2.2 estabelece que a entrada (s,1) da matriz coluna Ci
h é igual ao ganho

máximo que o DM i pode obter escolhendo ficar em s ou afastar-se de s e o que antecipa quando
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o DM j se move a seguir e o horizonte é h−1. Do mesmo modo, a entrada de (s,1) da coluna

da matriz C j
h é igual ao ganho mínimo que DM i pode obter quando DM j escolhe ficar em s ou

afastar-se de s e o que o DM i antecipa quando se move a seguir e o horizonte é h−1.

Lema 4.2.2 Para cada estado s ∈ S e para cada horizonte h≥ 1, segue-se que:

Ci
h(s,1) = max

{
Ai

h(i,s),Ki(s)
}

e

C j
h(s,1) = min

{
Ai

h( j,s),Ki(s)
}
.

Prova: Para provarmos esse resultado vamos usar o primeiro princípio de indução

matemática em h. Dessa forma, é necessário verificar primeiro a etapa base da indução, verifi-

cando o caso h = 1, tanto para Ci
h(s,1) como para C j

h(s,1). Como definido em (RÊGO; VIEIRA,

2019), temos que

Ai
1(i,s) = Ki(Gi

0( j,Mi
h(i,s)))

= max
{

Ki(s′) : s′ ∈ Ri(s)
}
.

Analisamos agora o caso h = 1. Note-se que Ci
1(s,1) = Max(Bi

1)(s,1), em que

Bi
1(s,s

′) = [
(
(Ji ◦ (Ki ·E

′
)>+ I ◦ (Ki ·E

′
)>)
)
](s,s′)

=

Ki(s′) se s′ ∈ Ri(s)∪{s}

0 caso contrário.

Assim, segue-se que

Ci
1(s,1) = max(Bi

1)(s,1)

= max
{

Bi
1(s,s

′),∀s′ ∈ S
}
∀s ∈ S.

Ou seja,

Ci
1(s,1) = max

{
Ki(s′) : s′ ∈ Ri(s)∪{s}

}
= max

{
Ai

1(i,s),Ki(s)
}
.
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Também temos que, de acordo com Rêgo e Vieira (2019),

Ai
1( j,s) = Ki(Gi

0(i,M
i
h( j,s)))

= min
{

Ki(s′) : s′ ∈ R j(s)
}
.

Note também que C j
1(s,1) = min(B j

1)(s,1), em que

B j
1(s,s

′) = [|S|× (J j + I)c +
(
(J j + I)◦ (Ki ·E

′
)>
)
](s,s′)

=

Ki(s′) se s′ ∈ R j(s)∪{s};

|S| se s′ /∈ R j(s)∪{s}.

Assim, segue-se que

C j
1(s,1) = min(B j

1)(s,1)

= min
{

B j
1(s,s

′),∀s′ ∈ S
}
∀s ∈ S.

Ou seja,

C j
1(s,1) = min

{
Ki(s′) : s′ ∈ R j(s)∪{s}

}
= min

{
Ai

1( j,s),Ki(s)
}
.

Vamos assumir que as igualdades são válidas para h−1, ou seja,

Ci
h−1(s,1) = max

{
Ai

h−1(i,s),Ki(s)
}

e

C j
h−1(s,1) = min

{
Ai

h−1( j,s),Ki(s)
}
.

Vamos agora analisar o caso h. Como definido em Rêgo e Vieira (2019)

Ai
h(i,s) = Ki(Gi

h−1( j,Mi
h(i,s)))

= max
{

min{Ki(s′),Ai
h−1( j,s′) : s′ ∈ Ri(s)}

}
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e

Ai
h( j,s) = Ki(Gi

h−1(i,M
i
h( j,s)))

= min
{

max{Ki(s′),Ai
h−1(i,s

′) : s′ ∈ R j(s)}
}
.

Sabemos que,

Bi
h(s,s

′) = [(Ji ◦ (C j
h−1 ·E

′
)>+ I ◦ (Ki ·E

′
)>)](s,s′)

=


C j

h−1(s
′,1) se s′ ∈ Ri(s);

Ki(s′) se s′ = s;

0 se s′ /∈ Ri(s)∪{s}

e

B j
h(s,s

′) = [|S|× (J j + I)c +(J j ◦ (Ci
h−1 ·E

′
)>+ I ◦ (Ki ·E

′
)>)](s,s′)

=


Ci

h−1(s
′) se s′ ∈ R j(s);

Ki(s′) se s′ = s;

|S| se s′ /∈ R j(s)∪{s}.

Portanto, temos que

Ci
h(s,1) =

(
max(Bi

h)
)
(s,1)

= max
{

Bi
h(s,s

′),∀s′ ∈ S
}
∀s ∈ S

= max
{

Ki(s)∪
{

C j
h−1(s

′,1) : s′ ∈ Ri(s)
}}

= max
{

Ki(s)∪
{

min
{

Ai
h−1( j,s′),Ki(s′)

}
: s′ ∈ Ri(s)

}}
= max

{
Ai

h(i,s),Ki(s)
}

e



66

C j
h(s,1) =

(
min(B j

h)
)
(s,1)

= min
{

B j
h(s,s

′),∀s′ ∈ S
}
∀s ∈ S

= min
{

Ki(s)∪
{

Ci
h−1(s

′,1) : s′ ∈ R j(s)
}}

= min
{

Ki(s)∪
{

max
{

Ai
h−1(i,s),Ki(s)

}
: s′ ∈ R j(s)

}}
= min

{
Ai

h( j,s),Ki(s)
}
.

O Teorema 4.2.2 fornece um resultado que permite obter estados Maximinh estáveis

usando apenas operações matriciais.

Teorema 4.2.2Um estado s∈ S é Maximinh para o DM i se, e somente se,
(
sinal(Ki−Ci

h)
)
(s,1)=

0.

Prova: Pelos Lemas 4.2.1 e 4.2.2, segue-se que Ki(s,1)≤Ci
h(s,1). Assim, precisa-

mos considerar dois casos.

Se
(
sinal(Ki−Ci

h)
)
(s,1) = 0, então isto implica que Ki(s) = Ki(s,1) =Ci

h(s,1). As-

sim, como Ci
h(s,1)=max

{
Ai

h(i,s),Ki(s)
}

, temos que Ki(s)≥Ai
h(i,s). Assim, temos Gi

h(i,s)= s,

e, por conseguinte, segue-se que s é Maximinh para o DM i.

Se
(
sinal(Ki−Ci

h)
)
(s,1) < 0, logo isto implica que Ki(s) = Ki(s,1) < Ci

h(s,1).

Logo, Ci
h(s,1) = Ai

h(i,s) e segue-se que Ki(s)< Ai
h(i,s) e, consequentemente, Gi

h(i,s) 6= s. Logo,

s é Maximinh instável para o DM i.

De acordo com Teorema 4.2.2, se a entrada (s,1) do vetor coluna Ki for igual à

mesma entrada do vetor coluna Ci
h, então o estado s é Maximinh estável para o DM i. Esta

situação implica que, antecipando um horizonte h e adotando uma crença pessimista sobre os

movimentos do adversário, o DM focal prefere ficar no estado s. Por outro lado, se a entrada

(s,1) do vetor coluna Ki for inferior à mesma entrada do vetor coluna Ci
h, então o estado s não é

Maximinh estável para DM i. Isto implica que o DM focal antecipa um ganho melhor ao sair do

estado s considerando um horizonte h do que ao ficar em s.

Exemplo 1 Para ilustrar a representação matricial obtida neste trabalho, considere um conflito

hipotético envolvendo dois tomadores de decisão, DM i e DM j, e quatro estados, s1, s2, s3 e s4.
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Suponha que os conjuntos de acessibilidade para este conflito sejam: Ri(s1) = {s3}, Ri(s2) =

{s4}, Ri(s3) = {s1}, Ri(s4) = {s2}, R j(s1) = {s2}, R j(s2) = {s1}, R j(s3) = {s4} e R j(s4) = {s3}.

Suponha ainda que as preferências do DM i são s1 �i s3 �i s2 �i s4 (as preferências de DM j

não são necessárias para analisar a estabilidade Maximinh para o DM i). Neste conflito, temos

que as matrizes Ji, J j, P+
i e Ki são, respetivamente, dadas por:

Ji =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

, J j =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

,

P+
i =


0 0 0 0

1 0 1 0

1 0 0 0

1 1 1 0

 e Ki =


3

1

2

0

.

Por simplicidade, utilizaremos a representação matricial obtida no Teorema 4.2.2

para analisar a estabilidade dos estados de conflito para o DM i, considerando horizontes

h = 1,2 e 3. Neste conflito hipotético, temos

Bi
1 =


3 0 2© 0

0 1 0 0©

3© 0 2 0

0 1© 0 0

 , Ci
1 =


3

1

3

1

 ,

B j
1 =


3 1© 4 4

3© 1 4 4

4 4 2 0©

4 4 2© 0

 , C j
1 =


1

1

0

0

 ,

Bi
2 =


3 0 0© 0

0 1 0 0©

1© 0 2 0

0 1© 0 0

 , Ci
2 =


3

1

2

1

 ,
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B j
2 =


3 1© 4 4

3© 1 4 4

4 4 2 1©

4 4 3© 0

 , C j
2 =


1

1

1

0

 ,

Bi
3 =


3 0 1© 0

0 1 0 0©

1© 0 2 0

0 1© 0 0

 , Ci
3 =


3

1

2

1

 .

Como pode ser observado, todos os elementos diagonais das matrizes Bi
h ou B j

h, que

estão destacados dentro de retângulos, correspondem aos valores dos estados apresentados no

vetor Ki. Na matriz Bi
h, os números circulados representam os valores do estado para o qual

o DM i pode se mover a partir do estado indicado na linha, sendo esses valores derivados de

C j
h−1. Todas as outras posições na matriz Bi

h são iguais a 0. De forma análoga, na matriz B j
h,

os números circulados representam os valores do estado para o qual o DM j pode se deslocar

a partir do estado da linha correspondente, com esses valores sendo obtidos a partir de Ci
h−1.

Todas as demais posições na matriz B j
h são iguais a |S| = 4. Os números sublinhados nos

vetores Ci
h indicam aqueles que coincidem com o valor do próprio estado, sugerindo que o DM

i preferiria permanecer nesses estados. Consequentemente, esses estados são considerados

Maximinh estáveis para o DM i, enquanto os demais não o são.

Na tabela abaixo, apresentamos os resultados da representação matricial para a

estabilidade Maximinh do DM i, considerando os horizontes h = 1,2 e 3. As células da tabela

correspondem aos valores da matriz de sinais do Teorema 4.2.2 para os estados indicados nas

colunas, levando em conta o horizonte especificado nas linhas.

Tabela 4.1 – Análise de estabilidade Maximinh para o DM i
h s1 s2 s3 s4
1 0 0 -1 -1

DM i 2 0 0 0 -1
3 0 0 0 -1

Rêgo e Vieira (2019) apresentaram um resultado que estabelece que a estabilidade

Maximin2n+1 implica estabilidade Maximinh para todos os h ≥ 2n+ 1, e que a estabilidade

Maximin2n implica estabilidade Maximin2m para todos os m tais que 1 ≤ m ≤ n. Assim, se

um estado satisfaz a estabilidade Maximin3 para o DM i, ele também satisfaz a estabilidade
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Maximinh para cada h≥ 3. Por outro lado, se um estado não satisfizer a estabilidade Maximin2

para o DM i, ele não satisfará a estabilidade Maximinh para qualquer valor de h. Usando

esse resultado, observamos que, no conflito hipotético mencionado, os estados s1, s2 e s3 são

Maximinh estáveis para o DM i para cada h≥ 3, enquanto o estado s4 não é Maximinh estável

para nenhum valor de h.

4.2.2 Representações matriciais de extensões do conceito Maximinh

Os resultados matriciais para determinar estados estáveis de acordo com o conceito

de estabilidade Maximinh podem ser facilmente adaptados para o caso de conflitos com múltiplos

DMs. Para este fim, como nos conflitos com múltiplos DMs, o DM focal considera as possíveis

respostas dos oponentes, então a representação matricial do caso n-DM para a estabilidade de

Maximinh será idêntica ao caso de 2-DMs, substituindo apenas a matriz J j, isto é, a matriz

de acessibilidade do DM j pela matriz JN−i, isto é, pela matriz de movimentos conjuntos de

coalizão N− i na definição de matriz B j
h apresentada na Equação 4.2.

Além disso, é importante notar que, na estabilidade de Maximinh, os DMs podem

optar por um movimento unilateral que não represente uma melhoria imediata, mas que antecipe

um ganho futuro. No entanto, isso pode tornar o conceito de estabilidade Maximinh não credível,

uma vez que tais movimentos podem não ser sustentáveis ou confiáveis na prática.

No trabalho de Rêgo et al. (2022) foram propostas modificações da estabilidade

Maximinh, requerendo que ou o DM focal, os seus oponentes ou todos os envolvidos realizem

apenas movimentos de UI. Neste estudo, os autores demonstraram que, quando se exige que o

DM focal faça apenas movimentos UIs, os estados estáveis permanecem inalterados. No entanto,

a estabilidade dos estados pode ser impactada se os oponentes do DM focal forem obrigados a

fazer apenas UIs. Desta forma, é possível obter representações matriciais semelhantes às obtidas

na subseção anterior, que facilitam a identificação de estados estáveis conforme o conceito

de estabilidade Maximin credível do adversário. Para isso, a única modificação necessária

é substituir a matriz J j, ou seja, a matriz de acessibilidade de DM j pela matriz J+N−i, que

representa a matriz de melhoria conjunta de coalizão N− i na definição de matriz de B j
h, conforme

apresentada na Equação 4.2.
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4.3 APLICAÇÃO

Com o intuito de ilustrar a representação matricial do conceito Maximinh proposto

neste trabalho, consideramos um conflito real, conhecido na literatura do GMCR como o Sun Belt

Vs. British Columbia Government (OBEIDI; HIPEL, 2005). Adicionalmente, apresentaremos

também um conflito muito conhecido na literatura de teoria dos jogos, chamado de Dilema dos

Prisioneiros, considerando n jogadores a fim de observar o custo de tempo para se fazer analise

de estabilidade de acordo com os resultados matriciais obtidos neste capítulo a medida que o

número de DMs aumenta.

4.3.1 Sun Belt Vs. British Columbia Government

A Sun Belt Water Inc., da Califórnia, formou uma parceria com uma empresa

canadense, a qual possuía uma licença para exportar 200 acre-feet (247 milhões de litros)

de água doce a granel por ano, transportada por caminhões-tanque da Colúmbia Britânica,

no Canadá, para os Estados Unidos e outros países. Logo após o início da colaboração, o

Goleta Water District, na Califórnia, convidou a Sun Belt para estabelecer um contrato para o

fornecimento de água a granel via transporte marítimo.

Diante da perspectiva de aumento na demanda por água, a empresa canadense

solicitou uma ampliação de sua autorização anual de fornecimento para 15.000 acre-feet (18,5

bilhões de litros). Segundo a Sun Belt, o Governo da Colúmbia Britânica (BCG) informou que,

se o pedido da empresa canadense atendesse aos requisitos normais da Lei da Água, a expansão

da licença seria aprovada para atender às necessidades de água doce do Goleta Water District.

A Goleta selecionou a Sun Belt como fornecedora preferencial para negociar um contrato de

compra de água a granel.

No entanto, o BCG impôs uma moratória sobre a emissão de novas ou renovadas

licenças de exportação de água, bloqueando assim o potencial negócio da Sun Belt com a Goleta.

Em resposta, a Sun Belt contestou as ações do BCG e entrou com uma ação judicial reivindicando

indenização por danos decorrentes da moratória.

O BCG concordou em iniciar negociações extrajudiciais separadas com as duas

empresas envolvidas na joint venture da Sun Belt. Como resultado, foi firmado um acordo

monetário de 220.000 com o parceiro canadense da joint venture, mas não com a Sun Belt, que

reivindicava uma indenização de 46,8 milhões. Posteriormente, a legislatura provincial aprovou

a Lei de Proteção da Água de 1995, que proíbe a exportação de água da Colúmbia Britânica em
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contentores com dimensões ou capacidades adequadas, colocando assim a atividade da Sun Belt

em risco.

Após buscar, sem sucesso, compensação nos tribunais da Colúmbia Britânica, a Sun

Belt decidiu recorrer ao processo de resolução de litígios entre investidores e estados previsto

no Acordo de Livre Comércio da América do Norte (NAFTA). A empresa apresentou uma

notificação de intenção para requerer arbitragem contra o Canadá. Na sua notificação, a Sun Belt

alega que o Canadá violou suas obrigações e cometeu diversos atos ilícitos por parte de ministros

e funcionários dos governos federal e provincial da Colúmbia Britânica, bem como por parte de

juízes (para mais detalhes sobre o caso e referências completas, consulte (OBEIDI, 2002)).

4.3.1.1 Fases do conflito

A Figura 4.1 ilustra a cronologia do litígio com a Sun Belt, destacando a evolução

dos eventos e a crescente complexidade do caso que, eventualmente, envolveu o governo federal

canadense e outras províncias.

Inicialmente, quando o BCG impôs uma moratória temporária sobre as captações de

água a granel, o Goleta Water District e a Sun Belt não possuíam um contrato vinculativo de

fornecimento de água, e o NAFTA ainda não havia sido estabelecido. Entre março de 1991 e

dezembro de 1998, as principais partes envolvidas no litígio eram a Sun Belt e o BCG.

Com a percepção de que não conseguiria obter justiça nos tribunais da Colúmbia

Britânica, a Sun Belt decidiu, em 1998, invocar o Capítulo 11 do NAFTA para processar o

governo federal canadense. Essa decisão elevou o litígio a um novo patamar, abrangendo a

totalidade do Canadá e envolvendo o governo federal na disputa.

Com base na Figura 4.1, o conflito entre a Sun Belt e o BCG pode ser dividido em

três fases distintas:

• Fase 1: (1991 - 1994), implementação da NAFTA;

• Fase 2: (1994 - 1995), o BCG implementou a Lei de Proteção da Água;

• Fase 3: (1995 - 1998), A Sun Belt apresentou uma carta de intenções para resolver o

litígio.

Para os propósitos deste capítulo, focaremos na Fase 3. Com a promulgação da

Lei de Proteção da Água em 1995, o BCG enfrentou duas opções: litigar ou negociar. Neste

contexto, ficou evidente que o BCG optou pela via judicial em vez da negociação.
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Figura 4.1 – Cronologia do litígio com a Sun Belt

Fonte: Adaptado (OBEIDI; HIPEL, 2005)

4.3.1.2 Análise de estabilidade Maximinh da fase 3 do conflito

Os estados viáveis da terceira fase do conflito e os grafos direcionados dos DMs

envolvidos são apresentados, respectivamente, na Tabela 4.2 e na Figura 4.2. Para mais detalhes

sobre o contexto deste conflito, consulte (OBEIDI; HIPEL, 2005).

Tabela 4.2 – DMs, opções e estados viáveis do conflito estratégico - Fase 3
DMs Opções s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

SB
Litigar N N N N Y Y N N N Y Y
Negociar N Y N Y N Y Y N Y N Y

BCG
NAFTA N N Y Y N N N Y Y N N
Litigar N N N N Y Y N N N Y Y
Negociar N N N N N N Y Y Y Y Y

Na Fase 3, existem 11 estados viáveis, cuja ordem de preferência para a Sun Belt

(SB) é a seguinte:s5 �SB s11 �SB s6 �SB s3 �SB s10 �SB s9 �SB s4 �SB s8 �SB s7 �SB s2 �SB s1.

Nesta fase, o litígio é a opção mais preferida pela Sun Belt, seguido pela negociação e, por

último, pela opção de arbitragem sob o NAFTA.

Para o BCG, a ordem de preferência dos estados é a seguinte:s1 �BCG s2 �BCG

s5 �BCG s6 �BCG s11 �BCG s8 �BCG s7 �BCG s3 �BCG s4 �BCG s10 �BCG s9. A BCG prefere a

negociação ao litígio e demonstra resistência à ideia de usar o NAFTA para arbitragem.
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Figura 4.2 – Modelo de grafo para o conflito Sun Belt vs British Comumbia Government
- Fase 3.

As matrizes de acessibilidade dos DMs SB e BCG são, respetivamente:

JSB =



0 1 1 0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0

 e JBCG =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

 .

As matrizes de preferência do DM SB e do DM BCG, na Fase 3 deste conflito, são,

respetivamente, dadas por

P+
SB =



0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 0 0 0 1
0 0 1 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1
0 0 1 1 1 1 0 1 1 1 1
0 0 1 1 1 1 0 0 1 1 1
0 0 1 0 1 1 0 0 0 1 1
0 0 1 0 1 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0

 e P+
BCG =



0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 1 0 0 1
1 1 1 0 1 1 1 1 0 0 1
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 1 0 1 0 0 1
1 1 0 0 1 1 0 0 0 0 1
1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 0 0 1
1 1 0 0 1 1 0 0 0 0 0

 .

Na Tabela 4.3, apresentamos os resultados da representação matricial para a estabi-

lidade Maximinh com horizontes de até 20, na Fase 3 deste conflito. As células da Tabela 4.3

correspondem aos valores da matriz de sinal do Teorema 4.2.2 para os estados indicados nas

colunas, considerando os horizontes apresentados nas linhas.

Na Fase 3 do conflito, para o DM SB, os estados s3, s5, s9 e s11 são estáveis segundo

o critério de Nash e, consequentemente, satisfazem a estabilidade Maximinh para qualquer valor

de h. Por outro lado, os estados s4 e s6 são estáveis apenas em horizontes pares. Isso ocorre

porque, quando o DM SB é o último a mover-se, ele pode escapar à sanção, resultando na

instabilidade desses estados em horizontes ímpares. No entanto, se o DM BCG for o último
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Tabela 4.3 – Análise de estabilidade Maximinh até o horizonte 20 na Fase 3 do conflito
h≤ 20 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

SB ímpar -1 -1 0 -1 0 -1 -1 -1 0 -1 0
par -1 -1 0 0 0 0 -1 -1 0 -1 0

BCG h = 1 0 0 -1 0 0 0 -1 0 -1 -1 -1
h > 1 0 0 0 0 0 0 0 0 -1 -1 -1

Eq. - h≥ 2 h par h≥ 1 h par

a mover-se, ele pode sancionar o DM SB, tornando os estados s4 e s6 estáveis em qualquer

horizonte par.

É importante destacar que a estabilidade dos estados s4 e s6 não pode ser determinada

apenas por relações entre estabilidades Maximinh ou entre Maximinh e noções clássicas de

estabilidade. Para compreender plenamente essa questão, é necessário realizar os cálculos

específicos de estabilidade Maximinh. Por fim, os estados s1, s2, s7, s8 e s10 não são GMR para

o DM SB e, portanto, não satisfazem a estabilidade Maximinh para qualquer valor de h.

Para o DM BCG, os estados s1, s2, s4, s5, s6 e s8 são estáveis segundo Nash e,

consequentemente, em Maximinh para qualquer valor de h. Por outro lado, os estados s9, s10 e

s11 não são GMR para o DM BCG e, portanto, não satisfazem qualquer noção de estabilidade

Maximinh. Os estados s3 e s7, embora sejam SMR, não são estáveis segundo Nash para o DM

BCG e, assim, satisfazem a estabilidade Maximinh apenas para valores de h superiores a 1.

Combinando esses resultados, podemos concluir que os estados s3 e s5 são equilíbrios

Maximinh para todos os h≥ 2 e h≥ 1, respectivamente. O estado s5 possui o grau mais forte de

estabilidade, uma vez que representa um equilíbrio de Nash (Maximin1). No estudo de Obeidi e

Hipel (2005), os autores indicam que o desfecho real do conflito foi que o DM SB decidiu não

prosseguir com o litígio e notificou o governo federal canadense sobre a intenção de arbitragem

sob o Capítulo 11 do NAFTA. Essa situação é representada pelo estado s3, que é menos preferido

pelo DM SB em comparação ao estado s5.

Adicionalmente, é importante observar que os estados s4 e s6 são equilíbrios

Maximinh apenas quando o horizonte é par. Isso demonstra que, embora o conceito de estabili-

dade Maximinh seja equivalente a Nash, GMR, e SMR para horizontes 1, 2 e 3, respectivamente,

como demonstrado em Rêgo e Vieira (2019), as representações matriciais desses conceitos, for-

necidas em Xu et al. (2007 e 2008), não são suficientes para determinar estabilidades Maximinh

para h≥ 4. Nessa situação específica, não é possível inferir nada sobre a estabilidade Maximinh

para h≥ 4 utilizando apenas essas equivalências com conceitos clássicos. Portanto, o método

proposto neste trabalho é crucial para uma compreensão mais aprofundada do comportamento do
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Maximinh, especialmente em grandes conflitos estratégicos envolvendo múltiplos DM e estados,

analisados em horizontes mais longos.

Por fim, como esperado, os resultados da análise de estabilidade obtidos nesta

aplicação são consistentes com os apresentados no artigo original de Obeidi e Hipel (2005) ,

quando a análise é limitada a horizontes até 3. Contudo, com a nossa proposta de representação

matricial, é possível estender essa análise para horizontes superiores, proporcionando uma visão

mais ampla e detalhada da situação estratégica.

4.3.2 Dilema dos Prisioneiros para n jogadores

Com o intuito de demonstrar a eficiência da representação matricial da estabilidade

Maximinh, iremos apresentar uma aplicação matricial para o caso do Dilema dos Prisioneiros

considerando n jogadores (NIPD), conforme descrito por Yao e Darwen (1993). O NIPD é um

jogo mais realista e geral que pode auxiliar na modelagem de problemas sociais e econômicos.

Neste trabalho, os autores examinam o impacto do número de jogadores no NIPD sobre a

evolução da cooperação no grupo, mostrando que a cooperação tem menos probabilidade de

surgir considerando um grande grupo quando comparado a um grupo pequeno.

Segundo Colman (2016), três propriedades podem ser definidas para o caso do

Dilema do Prisioneiro com n jogadores:

• Os jogadores podem escolher entre Cooperar (C) e delatar (D);

• Para cada jogador a opção dominante é a D, ou seja, independente de quantos dos outros

jogadores escolham cooperar, a opção D sempre será a melhor escolha para cada um deles;

• As estratégias dominantes D se intersectam em um ponto de equilíbrio não eficiente. Em

um caso particular, em que o resultado se todos os jogadores escolherem as suas estratégias

C, ou seja, não dominantes, é preferível, do ponto de vista de cada jogador, àquele em que

todos escolhem D, mas ninguém está motivado para se desviar unilateralmente de D.

A Figura 4.3 representa a matriz de payoff do conflito Dilema dos Prisioneiros

considerando n jogadores, sendo ela simétrica para cada jogador, em que, Ci é a ação de cooperar

para o decisor i e Di é a ação de delatar para o decisor i. Segundo Yao e Darwen (1993) as

seguintes condições devem ser satisfeitas:

1. Di >Ci para 0≤ i≤ n−1;

2. Di+1 > Di e Ci+1 > Di para 0≤ i≤ n−1;

3. Ci > (Di +Ci−1)/2 para 0≤ i≤ n−1.
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Figura 4.3 – Matriz de payoff do Dilema dos Prisioneiros para n jogadores

Fonte: Adaptada de (YAO; DARWEN, 1993)

Inúmeros valores satisfazem os requisitos apresentados na Figura 4.3. Yao e Darwen

(1993) escolheram valores de forma que caso nc seja o número de cooperadores no jogo de n

jogadores, então o prêmio (payoff) por cooperação será 2nc−2 e o prêmio (payoff) por delatar

será 2nc +1. A Figura 4.4 ilustra um exemplo de um jogo com n jogadores.

Figura 4.4 – Matriz de payoff para n jogadores

Fonte: (YAO; DARWEN, 1993)

4.3.2.1 Dilema dos Prisioneiros para 3 jogadores

Neste cenário são considerados 3 prisioneiros, em que cada um deles deverá con-

siderar as ações dos outros dois jogadores em relação a sua escolha. Desta forma, ele deverá

considerar não apenas as consequências imediatas para ele, mas também para os demais joga-

dores. Ou seja, a dinâmica de traição, confiança e cooperação será ainda mais complexa se
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comparada ao cenário de 2 DMs.

São 8 possíveis estados no caso do Dilema dos Prisioneiros para 3 DMs. Os três

prisioneiros podem cooperar (CCC) e receber uma recompensa coletiva. Um dos jogadores pode

trair enquanto os outros dois cooperam (CCD, CDC e DCC), esse jogador pode receber uma

grande recompensa enquanto os outros recebem uma penalidade significativa. Dois jogadores

podem trair enquanto o terceiro coopera (CDD, DCD e DDC), o terceiro pode receber uma

penalidade severa enquanto os dois traidores recebem uma recompensa moderada. E por fim, os

três jogadores podem trair (DDD) e serem punidos por isto. A Tabela 4.4 apresenta a relação

entre os 8 possíveis estados e suas composições.

Tabela 4.4 – Relação dos possíveis estados e suas composições - 3DMs
Estados Composições Estados Composições

s1 CCC s5 DCC
s2 CCD s6 DCD
s3 CDC s7 DDC
s4 CDD s8 DDD

A matriz de acessibilidade de cada decisor, neste cenário de 3 DMs, será uma

matriz 8×8, ou seja, 8 possíveis escolhas que os jogadores podem realizar. Para exemplificar a

movimentação de um DM considere, por exemplo, o DM 3. Este DM poderá realizar movimentos

apenas no que diz respeito a posição dele (a terceira), ou seja, ele não consegue interferir na

decisão dos seus oponentes. Como a última posição é referente a ele, desta forma, ele pode se

mover de s1 (CCC) para s2 (CCD) e de s2 para s1, mudando a opção de cooperar para delatar e

de delatar para cooperar. As matrizes de acessibilidades, para cada um dos DMs considerados

são apresentadas a seguir.

J1 =


0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 , J2 =


0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 e J3 =


0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 .

Para encontrar os valores dos Ki’s na aplicação do Dilema dos Prisioneiros conside-

rando 3 DMs, utilizaremos os payoffs apresentados na Figura 4.4.
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Tabela 4.5 – K′i s do Dilema dos Prisioneiros com 3DMs
Estados Comp. Cooperam Não Cooperam

s1 CCC K1(s1) = K2(s1) = K3(s1) = 2(n−1) = 4 -
s2 CCD K1(s2) = K2(s2) = 2(n−1) = 2 K3(s2) = 2(n−1)+1 = 5
s3 CDC K1(s3) = K3(s3) = 2(n−1) = 2 K2(s3) = 2(n−1)+1 = 5
s4 CDD K1(s4) = 2(n−1) = 0 K2(s4) = K3(s4) = 2(n−1)+1 = 3
s5 DCC K2(s5) = K3(s5) = 2(n−1) = 2 K1(s5) = 2(n−1)+1 = 5
s6 DCD K2(s6) = 2(n−1) = 0 K1(s6) = K3(s6) = 2(n−1)+1 = 3
s7 DDC K3(s7) = 2(n−1) = 0 K1(s7) = K2(s7) = 2(n−1)+1 = 3
s8 DDD - K1(s8) = K2(s8) = K3(s8) = 2(n−1)+1 = 1

Desta forma, temos que, K1 =



4

2

2

0

5

3

3

1



, K2 =



4

2

5

3

2

0

3

1



e K3 =



4

5

2

3

2

3

0

1



.

A Tabela 4.6, apresenta os resultados da representação matricial para a estabilidade

Maximinh para vários horizontes considerando o conflito do Dilema dos Prisioneiros para 3

decisores. Cada célula da Tabela 4.6 referem-se ao valor da matriz sinal do Teorema 4.2.2 para

o estado da coluna, considerando o horizonte apresentado na linha.

Tabela 4.6 – Análise de estabilidade Maximinh - 3 Decisores
DMs h s1 s2 s3 s4 s5 s6 s7 s8

1 1 -1 -1 -1 -1 0 0 0 0
≥ 2 0 0 0 0 0 0 0 0

2 1 -1 -1 0 0 -1 -1 0 0
≥ 2 0 0 0 0 0 0 0 0

3 1 -1 0 -1 0 -1 0 -1 0
≥ 2 0 0 0 0 0 0 0 0

Eq. - h≥ 2 h≥ 2 h≥ 2 h≥ 2 h≥ 2 h≥ 2 h≥ 2 h≥ 1

Observando os resultados, temos que apenas o estado s8 é um equilíbrio de acordo

com o conceito de estabilidade Maximinh para qualquer horizonte h. Este resultado no conflito

acaba por representar a situação em que todos os 3 DMs tendem a não cooperar (DDD). Podemos

observar também que a partir do horizonte h = 2 todos os estados são estáveis para todos os

DMs.
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4.3.2.2 Dilema dos Prisioneiros para 4 jogadores

A fim de observar o custo de tempo para executar um conflito com mais decisores,

consideraremos agora o Dilema dos Prisioneiros para 4 prisioneiros, em que cada um deles

deverá considerar as ações dos outros três jogadores em relação a sua escolha. Neste conflito

temos 16 possíveis estados, sendo eles apresentados na Tabela 4.7

Tabela 4.7 – Relação dos possíveis estados e suas composições - 4 DMs
Estados Composições Estados Composições

s1 CCCC s9 DCCC
s2 CCCD s10 DCCD
s3 CCDC s11 DCDC
s4 CCDD s12 DCDD
s5 CDCC s13 DDCC
s6 CDCD s14 DDCD
s7 CDDC s15 DDDC
s8 CDDD s16 DDDD

As matrizes de acessibilidades de cada um dos 4 DMs são:

J1 =



0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


J2 =



0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0



J3 =



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


J4 =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



Os valores dos Ki’s na aplicação do Dilema dos Prisioneiros considerando 4 DMs

também foram construídos utilizando os payoffs apresentados na Figura 4.4.



80

Tabela 4.8 – Ki’s do Dilema dos Prisioneiros com 4 DMs
Estados Composições Cooperam Não Cooperam

s1 CCCC K1(s1) = K2(s1) = K3(s1) = K4(s1) = 6 -
s2 CCCD K1(s2) = K2(s2) = K3(s2) = 4 K4(s2) = 7
s3 CCDC K1(s3) = K2(s3) = K4(s3) = 4 K3(s3) = 7
s4 CCDD K1(s4) = K2(s4) = 2 K3(s4) = K4(s4) = 5
s5 CDCC K1(s5) = K3(s5) = K4(s5) = 4 K2(s5) = 7
s6 CDCD K1(s6) = K3(s6) = 2 K2(s6) = K4(s6) = 5
s7 CDDC K1(s7) = K4(s7) = 2 K2(s7) = K3(s7) = 5
s8 CDDD K1(s8) = 0 K2(s8) = K3(s8) = K4(s8) = 3
s9 DCCC K2(s9) = K3(s9) = K4(s9) = 4 K1(s9) = 7
s10 DCCD K2(s10) = K3(s10) = 2 K1(s10) = K4(s10) = 5
s11 DCDC K1(s11) = K4(s11) = 5 K1(s11) = K3(s11) = 5
s12 DCDD K2(s12) = 0 K1(s12) = K3(s12) = K4(s12) = 3
s13 DDCC K3(s13) = K4(s13) = 2 K1(s13) = K2(s13) = 5
s14 DDCD K3(s14) = 0 K1(s14) = K2(s14) = K4(s14) = 3
s15 DDDC K4(s15) = 0 K1(s15) = K2(s15) = K3(s15) = 3
s16 DDDD − K1(s16) = K2(s16) = K3(s16) = K4(s16) = 1

Desta forma, temos que, KT
1 = [6 4 4 2 4 2 2 0 7 5 5 3 5 3 3 1] ,

KT
2 = [6 4 4 2 7 5 5 3 4 2 2 0 5 3 3 1] ,

KT
3 = [6 4 7 5 4 2 5 3 4 2 5 3 2 0 3 1] e

KT
4 = [6 7 4 5 4 5 2 3 4 5 2 3 2 3 0 1]

A Tabela 4.9, apresenta os resultados da representação matricial para a estabilidade

Maximinh para vários horizontes considerando o conflito do Dilema dos Prisioneiros com 4

decisores. Cada célula da Tabela 4.9 referem-se ao valor da matriz sinal do Teorema 4.2.2 para

o estado da coluna, considerando o horizonte apresentado na linha. Nota-se que apenas o estado

s16, situação em que todos os 4 DMs não cooperam, é um equilíbrio segundo o conceito de

estabilidade Maximinh, considerando qualquer horizonte h. Podemos observar também que a

partir do horizonte 2 todos os estados são Maximinh estáveis para todos os DMs.

Tabela 4.9 – Análise de estabilidade Maximinh - 4 Decisores
DMs h s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

1 1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0
≥ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 0 0 0 0
≥ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0
≥ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0
≥ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Eq. h ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 1

A Tabela 4.10 apresenta o tempo (em segundos) de execução do código Maximinh

para os conflitos que consideram 2,3 e 4 DMs. São consideradas três medidas principais:

• Usuário: Tempo de CPU gasto pelo processo em execução, ou seja, o tempo gasto pela
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CPU para executar as operações da função.

• Sistema: Tempo de CPU gasto pelo sistema operacional em nome do processo, por

exemplo, para tarefas como operações de entrada/saída.

• Decorrido: Tempo real decorrido desde o início até o fim da execução da função, ou seja,

o tempo total “de parede” (wall clock time).

Tabela 4.10 – Tempo de execução Maximinh - n Decisores
Tempo

Qnt. DMs Usuário Sistema Decorrido
2 0.03 0.00 0.03
3 0.05 0.00 0.14
4 0.20 0.00 0.63

Como esperado, o tempo de execução aumenta conforme o número de DM’s é

incrementado. Porém, cabe enfatizar que todos os tempos ficaram abaixo de 1 segundo.
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4.4 CONCLUSÃO

Neste capítulo, foram apresentadas representações matriciais para determinar os

estados Maximinh estáveis dentro do GMCR, abrangendo tanto conflitos bilaterais quanto

multilaterais. Além disso, introduzimos representações voltadas para a análise de estabilidades

Maximinh credíveis.

Embora as tarefas envolvidas na análise matricial possam parecer complexas, elas

podem ser implementadas facilmente em qualquer linguagem de programação. As operações

matriciais necessárias incluem multiplicação, produto de Hadamard, complemento, transposição,

e cálculo de máximos e mínimos, todas com complexidade polinomial em relação ao número de

estados viáveis.

Esses resultados são significativos, pois a estabilidade Maximinh e Maximinh cre-

díveis generalizam conceitos de estabilidade amplamente utilizados, como Nash, GMR, SMR,

SEQ e SSEQ. Com o auxílio das representações matriciais propostas, é possível realizar uma

análise completa de um conflito, considerando qualquer horizonte e levando em conta ou não a

restrição de sanções credíveis.

Ilustramos a aplicação dos métodos propostos na análise da Fase 3 do conflito entre

Sun Belt e o Governo da Colúmbia Britânica. Com os métodos matriciais, determinamos para

quais horizontes os estados são estáveis de acordo com a estabilidade Maximinh. Nesta análise,

estendemos a análise de estabilidade até o horizonte 20.

Além disso, a fim de demostrar a eficiência do método matricial e o tempo computa-

cional de execução a medida que incrementamos o número de jogadores, realizamos a aplicação

do conflito do Dilema dos Prisioneiros para n tomadores de decisão. Verificou-se que, à medida

que o valor de n aumenta, maior será o tempo de excussão, refletindo a crescente complexidade

do problema.
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5 REPRESENTAÇÃO MATRICIAL DA ESTABILIDADE DE MOVIMENTO LIMI-

TADO (Lh) NO MODELO DE GRAFOS PARA RESOLUÇÃO DE CONFLITOS

COM 2 DECISORES

5.1 INTRODUÇÃO

O presente capítulo visa apresentar representações matriciais para alcançar estados

estáveis de acordo com o conceito de estabilidade de movimento limitado (Lh) para conflitos

bilaterais, de maneira análoga ao que foi desenvolvido, no capítulo anterior, para a estabilidade

Maximinh. Como vimos, no conceito Maximinh, o DM focal não utiliza informações sobre as

preferências do oponente, presumindo que este tomará a ação que minimiza os ganhos do DM

focal. Deste modo, isto resulta em alternâncias entre movimentos de maximização e minimização,

dependendo de quem está agindo, seja o decisor focal ou seu oponente, respectivamente. Por

outro lado, no conceito Lh as preferências de ambos os DMs devem ser de conhecimento comum,

resultando em ambos realizando movimentos de maximização de acordo com suas próprias

preferências.

Intuitivamente, teremos que além de usar a matriz de payoffs Ki do DM focal, usar a

matriz K j de payoffs do oponente do DM focal. Assim como no caso do Maximinh, teremos que

definir matrizes que representam os payoffs que os DMs esperam receber ao final do conflito ao

mudarem o conflito do estado da linha para o estado da coluna considerando um determinado

horizonte de análise h. Estas matrizes também serão definidas recursivamente e a cada passo

deverá ser registrado além do maior payoff que pode ser obtido pelo DM, ao se mover de cada

estado, qual é o estado da coluna que atinge este maior valor de payoff.

Na Seção 5.2, apresentamos nossa proposta de como deverá ser feita esta recursão.

Além disso, demonstramos que as estabilidades Lh podem ser obtida a partir das representações

matriciais apresentadas e implementamos computacionalmente estas operações matriciais. A

metodologia é ilustrada detalhadamente em uma aplicação no jogo do Dilema dos prisioneiros na

Seção 5.2.1. A análise do conflito real de seleção tecnológica de neurociência na China (ZHOU;

WANG, 2018) por meio do conceito Lh foi realizada na Seção 5.2.2. Adicionalmente, essa

metodologia nos permitiu analisar o comportamento dinâmico ou oscilatório que ocorre na

estabilidade Lh (FANG; HIPEL; KILGOUR, 1993) considerando todos os jogos 2×2, descritos

conforme a tabela periódica (BRUNS, 2015b) na Seção 5.2.3, além, também, da identificação

dos seus respectivos ciclos.
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5.2 REPRESENTAÇÕES MATRICIAIS DA ESTABILIDADE Lh NO GMCR

Nesta seção, iremos propor a representação matricial da estabilidade Lh. Na estabi-

lidade Maximinh, o decisor focal observa qual será a pior consequência que ele poderia obter

em relação a cada uma das suas possíveis ações e, dada esta análise, ele escolhe a ação que, no

pior cenário, lhe oferece a melhor consequência. Recorde que, no caso da estabilidade Lh, os

tomadores de decisão se movem a fim de obterem o melhor resultado possível para eles próprios,

utilizando o conhecimento prévio sobre as preferências de todos os DMs envolvidos no conflito.

O primeiro passo na construção da nova representação matricial é definir a matriz de

ganho antecipado, denotada por Bi
h, que o DM i espera receber após um horizonte h, se ele for o

primeiro a se mover. Nesta matriz, as linhas representam o que o DM i prevê receber ao final do

conflito se o estado do conflito mudar do estado da linha para o estado da coluna.

A seguir, vamos definir uma importante matriz, denominada de ArgMax(A), que

será importante para uma boa compreensão de alguns resultados que apresentaremos abaixo.

Definição 5.2.1Seja A = [atk] uma matriz de ordem |S|, então ArgMax(A) é também uma matriz

de ordem |S| tal que:

ArgMax(A)[(t,k)] =



1, se t = k e akk ≥ atl,∀1≤ l ≤ |S|

1, se atk > akk, atk ≥ atl,∀1≤ l ≤ |S|

e se existir l tal que atk = atl, então k < l

0, caso contrário.

Desta forma, para qualquer j ∈ N e horizonte h, seja D j
h uma matriz quadrada de

ordem |S|, tal que

D j
h = ArgMax(B j

h).

Podemos agora definir a matrizBi
h recursivamente. Considerando h = 1, temos,

Bi
1 =

(
Ji ◦ (Ki ·E

′
)>+ I ◦ (Ki ·E

′
)>
)

e quando h≥ 2 temos que,
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Bi
h =

(
(Ji ◦ (((D j

h−1 ◦ (E− I)) ·C i
h−2 +(D j

h−1 ◦ I) ·Ki) ·E
′
)>)+ I ◦ (Ki ·E

′
)>
)
,

em que j 6= i, C i
0 = Ki, C j

0 = K j, C i
h = max(Bi

h), ∀h≥ 1.

O Lema 5.2.1 a seguir tem o intuito de estabelecer que a entrada (s,1) da matriz

coluna C i
h seja igual ao ganho máximo que o DM poderá obter caso escolha permanecer em s

ou se afastar de s e ambos os DMs se movem a fim de maximizar o seu próprio payoff a cada

rodada.

Lema 5.2.1 Para quaisquer estados st ,sk ∈ S e para todo inteiro positivo h:

Bi
h(st ,sk) =


Ki(sk), sk = st

Ki(Gh−1( j,sk)), sk ∈ Ri(st)

0, caso contrário,

e

C i
h(st ,1) = Max{{Ki(st)}∪{Ki(Gh−1( j,sk)) : sk ∈ Ri(st)}}= Max{Ki(st),Ah(i,st)} .

Prova: Para provarmos esse resultado vamos usar indução matemática em h. Dessa

forma, é necessário verificar primeiro a etapa base da indução, verificando o caso h = 1, para

C i
h(s,1). Pela definição da estabilidade Lh, temos que,

A1(i,st) = Ki(G0( j,Mh(i,st)))

= max{Ki(sk) : sk ∈ Ri(st)} .

Além disso, note que C i
1(st ,1) = Max(Bi

1)(st ,1), onde
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Bi
1(st ,sk) =

[(
(Ji ◦ (Ki ·E

′
)>+ I ◦ (Ki ·E

′
)>)
)]

(st ,sk)

=

Ki(sk) se sk ∈ Ri(st)∪{st}

0 caso contrário

=


Ki(sk) se sk = st

Ki(G0( j,sk)) se sk ∈ Ri(st)

0 caso contrário.

Assim, segue-se que

C i
1(st ,1) = max(Bi

1)(st ,1)

= max
{
Bi

1(st ,sk),∀sk ∈ S
}
∀st ∈ S.

Ou seja,

C i
1(st ,1) = max{Ki(sk) : sk ∈ Ri(st)∪{st}}

= max{A1(i,st),Ki(st)} .

Como Bi
h é definido em termos que C i

h−2, vamos provar também que para h = 2 o

lema é válido. Pela definição da estabilidade Lh, temos que,

A2(i,st) = Ki(G1( j,Mh(i,st)))

= max{Ki(G1( j,sk)) : sk ∈ Ri(st)}

= max
{

Ki(su) : su ∈ argmax{K j(su) : su ∈ {sk}∪R j(sk),sk ∈ Ri(st)}
}
.

Além disso, note que C i
2(st ,1) = Max(Bi

2)(st ,1), onde
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Bi
2(st ,sk) =

(
(Ji ◦ (((D j

1 ◦ (E− I)) ·C i
0 +(D j

1 ◦ I) ·Ki) ·E
′
)>)+ I ◦ (Ki ·E

′
)>
)
(st ,sk)

=



Ki(sk), sk = st

Ki(su), sk ∈ Ri(st),su ∈ R j(sk) e D j
1(sk,su) = 1

Ki(sk), sk ∈ Ri(st) e D j
1(sk,sk) = 1

0 caso contrário

=



Ki(sk), sk = st

Ki(su), sk ∈ Ri(st),su ∈ R j(sk),B
j
1(sk,su)> B j

1(sk,sk)

e B j
1(sk,su)≥B j

1(sk,sl),∀sl ∈ S

Ki(sk), sk ∈ Ri(st) e B j
1(sk,sk)≥B j

1(sk,su),∀su ∈ S

0 caso contrário.

Pelo caso h = 1, temos que

Bi
2(st ,sk) =



Ki(sk), sk = st

Ki(su), sk ∈ Ri(st),su ∈ R j(sk),K j(su)> K j(sk)

e K j(su)≥ K j(sl),∀sl ∈ R j(sk)

Ki(sk), sk ∈ Ri(st) e K j(sk)≥ K j(su),∀su ∈ R j(sk)

0 caso contrário

=


Ki(sk), sk = st

Ki(su), sk ∈ Ri(st)

0 caso contrário,

em que su ∈ argmax{K j(su) : su ∈ {sk}∪R j(sk)}. Logo, temos que

Bi
2(st ,sk) =


Ki(sk), sk = st

Ki(G1( j,sk)), sk ∈ Ri(st)

0 caso contrário.

Assim, segue-se que
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C i
2(st ,1) = max(Bi

2)(st ,1)

= max
{
Bi

2(st ,sk),∀sk ∈ S
}
∀st ∈ S.

Ou seja,

C i
2(st ,1) = Max{{Ki(st)}∪{Ki(G1( j,sk)) : sk ∈ Ri(st)}}= Max{Ki(st),A2(i,st)} .

Vamos assumir que estas igualdades são válidas para h−1 e h−2, ou seja,

Bi
h−1(st ,sk) =


Ki(sk), sk = st

Ki(Gh−2( j,sk)), sk ∈ Ri(st)

0, caso contrário,

Bi
h−2(st ,sk) =


Ki(sk), sk = st

Ki(Gh−3( j,sk)), sk ∈ Ri(st)

0, caso contrário,

C i
h−1(st ,1) = max{Ah−1(i,st),Ki(st)}

e

C i
h−2(st ,1) = max{Ah−2(i,st),Ki(st)} .

Vamos agora analisar o caso h. Pela definição de Lh, temos que
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Ah(i,st) = Ki(Gh−1( j,Mh(i,st)))

= max{Ki(Gh−1( j,sk)) : sk ∈ Ri(st)}

=

Ki(sk) K j(sk)≥ Ah−1( j,sk),sk ∈ Ri(st)

Ki(Gh−2(i,Mh−1( j,sk)) K j(sk)< Ah−1( j,sk),sk ∈ Ri(st)

=

Ki(sk) K j(sk)≥ Ah−1( j,sk),sk ∈ Ri(st)

max{Ki(Gh−2(i,su)) : su ∈ R j(sk)} K j(sk)< Ah−1( j,sk),sk ∈ Ri(st)

=

Ki(sk) K j(sk)≥ Ah−1( j,sk),sk ∈ Ri(st)

max{{Ki(su),Ah−2(i,su)} : su ∈ R j(sk)} K j(sk)< Ah−1( j,sk),sk ∈ Ri(st).

Sabemos que,

Bi
h(st ,sk) =

(
(Ji ◦ (((D j

h−1 ◦ (E− I)) ·C i
h−2 +(D j

h−1 ◦ I) ·Ki) ·E
′
)>)+ I ◦ (Ki ·E

′
)>
)
(st ,sk)

=



Ki(sk), sk = st

C i
h−2(su,1), sk ∈ Ri(st),su ∈ R j(sk) e D j

h−1(sk,su) = 1

Ki(sk), sk ∈ Ri(st) e D j
h−1(sk,sk) = 1

0 caso contrário

=



Ki(sk), sk = st

C i
h−2(su,1), sk ∈ Ri(st),su ∈ R j(sk),B

j
h−1(sk,su)> B j

h−1(sk,sk)

e B j
h−1(sk,su)≥B j

h−1(sk,sl),∀sl ∈ S

Ki(sk), sk ∈ Ri(st) e B j
h−1(sk,sk)≥B j

h−1(sk,su),∀su ∈ S

0 caso contrário.

Usando o caso h−1 para substituir o valor de B j
h−1, temos que
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Bi
h(st ,sk) =



Ki(sk), sk = st

C i
h−2(su,1), sk ∈ Ri(st),su ∈ R j(sk),K j(Gh−2(i,su))> K j(sk)

e K j(Gh−2(i,su))≥ K j(Gh−2(i,sl)),∀sl ∈ R j(sk)

Ki(sk), sk ∈ Ri(st) e K j(sk)≥ K j(Gh−2(i,su)),∀su ∈ R j(sk)

0 caso contrário.

Em seguida, usando o caso h−2 para substituir o valor de C i
h−2(su,1), temos

Bi
h(st ,sk) =



Ki(sk), sk = st

max{Ah−2(i,su),Ki(su)} , sk ∈ Ri(st),su ∈ R j(sk),K j(Gh−2(i,su))> K j(sk)

e K j(Gh−2(i,su))≥ K j(Gh−2(i,sl)),∀sl ∈ R j(sk)

Ki(sk), sk ∈ Ri(st) e K j(sk)≥ K j(Gh−2(i,su)),∀su ∈ R j(sk)

0 caso contrário

=


Ki(sk), sk = st

Ki(Gh−1( j,sk)), sk ∈ Ri(st)

0, caso contrário.

Portanto, temos que

C i
h(st ,1) = Max{{Ki(st)}∪{Ki(Gh−1( j,sk)) : sk ∈ Ri(st)}}= Max{Ki(st),Ah(i,st)} .

O Teorema 5.2.2 fornece o resultado matricial que visa obter estados estáveis de

acordo com o conceito de estabilidade Lh.

Teorema 5.2.2 Um estado s ∈ S é Lh para o DM i se somente se,
(
sinal(Ki−C i

h)
)
(s,1) = 0.

Prova: A prova neste caso é similar a prova do Teorema 4.2.2, fazendo uso do

Lema 5.2.1.

Se
(
sinal(Ki−C i

h)
)
(s,1) = 0, então isto implica que Ki(s,1) = C i

h(s,1), assim,

como pelo Lema 5.2.1, C i
h(s,1) = max{Ki(s),Ah(i,s)}, então, Ki(s)≥ Ah(i,s). Assim, teremos

Gh(i,s) = s, o que implica que s é Lh estável para o DM i.
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Se
(
sinal(Ki−C i

h)
)
(s,1) < 0, então isto implica que Ki(s,1) < C i

h(s,1), assim,

como pelo Lema 5.2.1, C i
h(s,1) = max{Ki(s),Ah(i,s)}, então, Ki(s)< Ah(i,s). Assim, teremos

Gh(i,s) 6= s, o que implica que s não é Lh estável para o DM i.

Desta forma, isto implicaria que se somente se a entrada (s,1) dos vetores colunas

Ki e C i
h forem iguais, o estado s é Lh estável para o DM i.

5.2.1 Dilema dos Prisioneiros

Iremos apresentar agora uma aplicação da representação matricial do conceito Lh,

considerando um horizonte h = 3, no conflito do dilema dos prisioneiros.

Com base na Figura 2.2, temos que as matrizes de acessibilidade a seguir apresentam

o conjunto de acessibilidade entre os estados viáveis deste conflito para ambos os DMs.

Ji =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 J j =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

Lembrando que a relação de preferência neste conflito para o DM i é denotada por

s3(DC)�i s1(CC)�i s4(DD)�i s2(CD) e para o DM j temos s2(CD)� j s1(CC)� j s4(DD)� j

s3(DC). Dessa forma, as matrizes de preferências dos DMs são:

P+
i =


0 0 1 0

1 0 1 1

0 0 0 0

1 0 1 0

 P+
j =


0 1 0 0

0 0 0 0

1 1 0 1

1 1 0 0


Precisamos encontrar agora a matriz de payoffs Ki do DM focal e a matriz K j de

payoffs do oponente do DM focal.

Ki = (E
′
·P+

i )> =


[
1 1 1 1

]
·


0 0 1 0

1 0 1 1

0 0 0 0

1 0 1 0





>

=


2

0

3

1


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e

K j = (E
′
·P+

j )
> =


[
1 1 1 1

]
·


0 1 0 0

0 0 0 0

1 1 0 1

1 1 0 0





>

=


2

3

0

1

 .
Agora, vamos encontrar o ganho antecipado que o DM i espera receber após um

horizonte de conflito h = 3, se ele for o primeiro a se mover. Recordando a definição de Bi
3,

temos que

Bi
3 =

(
(Ji ◦ (((D j

2 ◦ (E− I)) ·C i
1 +(D j

2 ◦ I) ·Ki) ·E
′
)>)+ I ◦ (Ki ·E

′
)>
)

=
(
(Ji ◦ (((ArgMax(B j

2)◦ (E− I)) ·C i
1 +(ArgMax(B j

2)◦ I) ·Ki) ·E
′
)>)+ I ◦ (Ki ·E

′
)>
)
.

Sabemos que C i
1 = MaxBi

1, desta forma, precisamos encontrar a matriz Bi
1. Logo,

note que

Bi
1 =

(
(Ji ◦ (Ki ·E

′
)>+ I ◦ (Ki ·E

′
)>)
)

Vamos obter cada parte da matriz Bi
1 acima. Observe que:

Ji ◦ (Ki ·E
′
)> =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

◦



2

0

3

1

 ·
[
1 1 1 1

]


>

=


0 0 3 0

0 0 0 1

2 0 0 0

0 0 0 0


e

I ◦ (Ki ·E
′
)> =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

◦



2

0

3

1

 ·
[
1 1 1 1

]


>

=


2 0 0 0

0 0 0 0

0 0 3 0

0 0 0 1

 .
Logo,

Bi
1 =


2 0 3 0

0 0 0 1

2 0 3 0

0 0 0 1


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Encontrando agora C i
1, temos que

C i
1 = MaxBi

1 = Max


2 0 3 0

0 0 0 1

2 0 3 0

0 0 0 1

=


3

1

3

1


Precisamos encontrar ArgMax(B j

2), para isto precisamos primeiro encontrar B j
2.

Observe que,

B j
2 =

(
(J j ◦ (((Di

1 ◦ (E− I)) ·C j
0 +(Di

1 ◦ I) ·K j) ·E
′
)>)+ I ◦ (K j ·E

′
)>
)

=
(
(J j ◦ (((ArgMax(Bi

1)◦ (E− I)) ·K j +(ArgMax(Bi
1)◦ I) ·K j) ·E

′
)>)+ I ◦ (K j ·E

′
)>
)
.

Temos que como

ArgMax(Bi
1) =


0 0 1 0

0 0 0 1

0 0 1 0

0 0 0 1


obtém-se que

B j
2 =


2 1 0 0

0 3 0 0

0 0 0 1

0 0 0 1

 .
Desta forma, temos que

ArgMax(B j
2) =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 1

 ,
e, consequentemente, obtém-se que

Bi
3 =


2 0 1 0

0 0 0 1

2 0 3 0

0 0 0 1

 .
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Deste modo, pode-se calcular C i
3 da seguinte forma:

C i
3 = MaxBi

3 = Max


2 0 1 0

0 0 0 1

2 0 3 0

0 0 0 1

=


2

1

3

1

 .

Em seguida, fazendo a diferença de quanto DM i tem se permanecer em um dado

estado e quanto ele terá ao final do horizonte de análise se ele mover-se deste estado, temos que

Ki−C i
3 =


2

0

3

1

−


2

1

3

1

=


0

−1

0

0


Finalmente, aplicando o sinal na matriz resultante, segue que:

Sinal(Ki−C i
3) =


0

−1

0

0

 .

Podemos observar, pelo resultado da matriz sinal, que os estados s1,s3 e s4 são

estáveis para o DM i no horizonte h = 3, pois foram os únicos que não apresentaram valores

negativos em suas colunas. Na Figura 5.1, podemos observar o mesmo resultado através das

árvores de decisão, utilizando indução reversa.

Na Tabela 5.1, apresentamos os resultados da representação matricial para a esta-

bilidade Lh para os 3 primeiros horizontes deste conflito. As células da Tabela 5.1 referem-se

ao valor da matriz sinal do Teorema 5.2.2 para o estado da coluna, considerando o horizonte

apresentado na linha.

Tabela 5.1 – Análise de estabilidade Lh, para h≤ 3 - Dilema dos Prisioneiros
DMs h s1 s2 s3 s4

i
1 -1 -1 0 0
2 0 -1 0 0
3 0 -1 0 0

j
1 -1 0 -1 0
2 0 0 -1 0
3 0 0 -1 0

Eq. - 2≤ h≤ 3 - - 1≤ h≤ 3



95

Figura 5.1 – Árvores de decisão do DM 1 - L3

Assim, temos que o estado s4 está em equilíbrio de acordo com o conceito de

estabilidade Lh para qualquer horizonte h neste conflito. Este resultado no conflito acaba por

representar a situação em que ambos os DMs delatam e cada um deles recebe uma pena de 5

anos. Temos também que para horizontes maiores que dois o estado s1 também se torna um

equilíbrio que representa a situação em que ambos os DMs cooperam e cada um deles recebe

uma pena de 6 meses.

5.2.2 Conflito de seleção de tecnologia de neurociência na China

No conflito de seleção de tecnologia de neurociência na China, estudado por Zhou

e Wang (2018), foi realizada uma análise comportamental tendo em conta as preferências dos

DMs. Uma teoria para mudanças de preferência em quatro fases do processo de cognição foi

proposta sob a suposição de racionalidade limitada. As fases consideradas nesse conflito são:
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• Fase 1 (Intuição): Falta de capacidade do DM para avaliar as suas preferências. Comportam-

se intuitivamente, de acordo com experiências ou rotinas anteriores;

• Fase 2 (Emoção): Os DMs baseiam as suas decisões nas suas emoções;

• Fase 3 (Racionalidade em pequena escala): São feitas avaliações realistas, no entanto,

as preferências são frequentemente arriscadas;

• Fase 4 (Racionalidade em grande escala): Objetivos e preferências de longo prazo são

normalmente levados em consideração de forma mais conservadora.

Este conflito envolve dois DMs: o Governo (G) e a Comunidade Científica (R). O

DM G tem as três opções seguintes: (M) - Manter o status quo existente sem fornecer suporte

adequado para inovação tecnológica; (F) - Financiar o proprietário da nova tecnologia; e (P) -

Fornecer apoio político através da redução de impostos e do fornecimento de terrenos ao proprie-

tário da nova tecnologia. Por outro lado, as opções disponíveis para o DM R são: (IN) - trabalhar

na inovação tecnológica disruptiva e (IM) - melhorar a tecnologia atual. Apresentamos os estados

viáveis do conflito e os grafos dirigidos dos DM envolvidos no mesmo, respectivamente, em

Tabela 5.2 e Figura 5.2. Para mais informações sobre o cenário desta disputa, consulte Zhou e

Wang (2018).

Tabela 5.2 – DMs, opções e estados viáveis do conflito de seleção tecnológica
DMs Opções s1 s2 s3 s4 s5 s6 s7 s8

G
M Y N N N Y N N N
F N Y N Y N Y N Y
P N N Y Y N N Y Y

R IN Y Y Y Y N N N N
IM N N N N Y Y Y Y

As matrizes de acessibilidade dos DMs G e R são, respectivamente:

JG =


0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0

 e JR =


0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 .

5.2.2.1 Fase 1 - Intuição

As matrizes de preferência de DM G e DM R, na Fase 1 são, respectivamente, dadas

por
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Figura 5.2 – Modelo de grafo para o conflito de seleção de tecnologia de neurociência na
China

Fonte: (RÊGO; VIEIRA, 2019)

P+
G =


0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0
1 1 1 0 1 0 0 0
1 0 0 0 0 0 0 0
1 1 1 1 1 0 1 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0

 e P+
R =


0 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1
0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 1
0 1 1 1 0 1 1 1
0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0



Na Tabela 5.3, apresentamos os resultados da representação matricial para a estabili-

dade Lh, para h≤ 3, na Fase 1 deste conflito. As células da Tabela 5.3 referem-se ao valor da

matriz sinal do Teorema 5.2.2 para o estado da coluna, considerando o horizonte apresentado na

linha.

Tabela 5.3 – Análise de estabilidade Lh, para h≤ 3 - Fase 1
h s1 s2 s3 s4 s5 s6 s7 s8
1 0 -1 -1 -1 0 -1 -1 -1

G 2 0 -1 -1 -1 0 -1 -1 -1
3 0 -1 -1 -1 0 -1 -1 -1
1 0 0 0 0 -1 -1 -1 -1

R 2 0 -1 -1 -1 -1 -1 -1 -1
3 0 -1 -1 -1 -1 -1 -1 -1

Eq. - 1≤ h≤ 3

Assim, temos que apenas o estado s1 está em equilíbrio de acordo com o conceito de

estabilidade Lh para esta fase do conflito. Este estado é um equilíbrio para qualquer horizonte

h ≤ 3. Este resultado no conflito acaba por representar a situação em que os DMs tendem a

continuar fazendo o que foi feito no passado. Em outras palavras, o DM G mantém as coisas
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como estão sem fazer investimentos suficientes em inovação tecnológica, enquanto o DM R opta

por fazer pesquisa tecnológica incremental.

5.2.2.2 Fase 2 - Emoção

As matrizes de preferência dos DMs para a Fase 2 são apresentadas a seguir:

P+
G =


0 1 1 1 0 1 1 1
0 0 1 1 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1
0 1 1 1 0 0 1 1
0 1 1 1 0 0 0 1
0 0 0 1 0 0 0 0

 e P+
R =


0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1
1 1 1 1 0 0 0 1
1 1 1 1 0 1 0 1
1 1 1 1 0 0 0 0

 .

A análise de estabilidade Lh, para h ≤ 3, da Fase 2 deste conflito é apresentada

na Tabela 5.4. Vê-se que apenas o estado s4 é um equilíbrio Lh para esta fase do conflito,

independentemente do horizonte h considerado. O estado s4 representa o cenário em que o

DM G atua com base em emoções e escolhe tanto fornecer incentivos políticos para inovação

tecnológica quanto doar fundos e o DM R trabalhará em inovação tecnológica disruptiva. Assim,

temos que os DMs G e R não levarão em consideração os riscos, agindo de forma a favorecer a

inovação tecnológica enquanto estiverem na fase da emoção.

Tabela 5.4 – Análise de estabilidade Lh, para h≤ 3 - Fase 2
DM h s1 s2 s3 s4 s5 s6 s7 s8

1 -1 -1 -1 0 -1 -1 -1 0
G 2 -1 -1 -1 0 -1 -1 -1 0

3 -1 -1 -1 0 -1 -1 -1 0
1 0 0 0 0 -1 -1 -1 -1

R 2 0 0 0 0 -1 -1 -1 -1
3 0 0 0 0 -1 -1 -1 -1

Eq. - 1≤ h≤ 3

5.2.2.3 Fase 3 - Racionalidade em pequena escala

A seguir, são apresentadas as matrizes de preferência dos DMs para a Fase 3.

P+
G =


0 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 1 1 0
1 1 1 1 0 0 1 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0

 e P+
R =


0 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 0 0 0 0 1 0 1
0 1 1 1 0 1 1 1
0 0 0 0 0 0 0 1
0 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0

 .

A Tabela 5.5 apresenta os resultados da representação matricial da análise de esta-

bilidade Lh, para h ≤ 3, para a terceira fase deste conflito. O estado s3 é equilíbrio para todo
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horizonte h, como pode ser visto. Os DMs nessa fase levam em consideração riscos e incertezas,

o que pode diminuir o investimento em inovação técnica. Portanto, a presença de condições

alternativas estáveis no conflito que serão consideradas vantajosas a longo prazo será quando os

DMs avaliarem o conflito para qualquer horizonte.

Tabela 5.5 – Análise de estabilidade Lh, para h≤ 3 - Fase 3
h s1 s2 s3 s4 s5 s6 s7 s8
1 -1 -1 0 -1 -1 -1 0 -1

G 2 -1 -1 0 -1 -1 -1 0 -1
3 -1 -1 0 -1 -1 -1 -1 -1
1 -1 -1 0 -1 0 0 -1 0

R 2 -1 0 0 0 -1 0 -1 0
3 -1 0 0 0 -1 0 -1 0

Eq. - 1≤ h≤ 3

5.2.2.4 Fase 4 - Racionalidade em grande escala

Finalmente, as matrizes de preferência dos DMs para a Fase 4 são apresentadas

abaixo:

P+
G =


0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 1 0
1 1 1 1 1 0 1 0
1 0 1 1 0 0 0 0
1 1 1 1 1 1 1 0

 e P+
R =


0 1 1 1 1 1 1 1
0 0 0 1 0 1 1 1
0 1 0 1 0 1 1 1
0 0 0 0 0 1 1 1
0 1 1 1 0 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0

 .

As conclusões do estudo de estabilidade Lh, para h≤ 3, da Fase 4 deste conflito são

apresentadas na Tabela 5.6. O estado s7, que reflete o cenário em que DM G dá respaldo político,

cede terras ao dono da nova tecnologia e reduz impostos, enquanto DM R opta por avançar na

tecnologia existente, também é equilíbrio para qualquer horizonte h. O DM R é cauteloso e evita

desenvolvimentos perturbadores nesta fase final.

Tabela 5.6 – Análise de estabilidade Lh, para h≤ 3 - Fase 4
h s1 s2 s3 s4 s5 s6 s7 s8
1 0 -1 -1 -1 -1 -1 0 -1

G 2 0 -1 0 0 -1 -1 0 -1
3 0 -1 0 0 -1 -1 0 -1
1 -1 -1 -1 -1 0 0 0 0

R 2 -1 -1 -1 -1 0 0 0 0
3 -1 -1 -1 -1 0 0 0 0

Eq. - 1≤ h≤ 3

Na seção a seguir, por meio das representações matriciais Lh conseguimos identificar
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um padrão relacionado aos estados antecipados. Esses padrões são conhecidos como ciclos na

estabilidade.

5.2.3 Ciclos na Estabilidade Lh

Os “ciclos na estabilidade Lh”, são trajetórias periódicas ou oscilatórias que surgem

no sistema dinâmico linear, considerando as propriedades de estabilidade Lh. Isso implica que,

mesmo que o sistema possa ter um ponto de equilíbrio estável Lh, ele pode também apresentar

comportamentos dinâmicos periódicos ou oscilatórios.

Um jogo entra em um ciclo de tamanho r, a partir do horizonte h, se Gt+r(i,s) =

Gt(i,s), para todo inteiro t tal que t ≥ h, todos os i ∈ N, e todos os s ∈ S, sendo h e r os menores

inteiros com esta propriedade (FANG; HIPEL; KILGOUR, 1993). Como Gt(i,s) é o estado que

o DM i antecipa como final a partir do estado s e considerando um horizonte t, quando o jogo

entra em um ciclo de tamanho r a partir do horizonte h, significa que para horizontes pelo menos

igual a h, a cada incremento de tamanho r no horizonte de análise, todos os DMs antecipam

os mesmos estados finais a partir de qualquer estado inicial. Por exemplo, em um jogo que

apresenta um ciclo de tamanho 2, significa que para um horizonte de análise suficientemente

grande, a cada incremento de 2 no horizonte de análise os estados antecipados serão os mesmos

por todos os DMs a partir de todos os estados do conflito.

Se um jogo possui um ciclo de tamanho 1, diz-se que ele possui um ponto fixo. Em

Fang et al. (1993), os autores afirmam que em todos os jogos que eles analisaram, os jogos

possuíam ciclos de tamanho 1, 2 ou 4. Esses autores conjecturaram que essas são todas as

possibilidades. Nesta tese, vamos utilizar a representação matricial proposta, para investigar os

ciclos em todos os jogos 2×2. A partir das matrizes Ch que apresentam os payoffs antecipados

conseguimos identificar os estados antecipados e seus padrões de repetição, identificando os

ciclos.

Mudanças nos payoffs podem transformar, por exemplo, o jogo do Dilema do

Prisioneiro no jogo de Caça ao Veado, ou seja, alterações nos payoffs podem transformar um

jogo em outro. Com base nessa visão, Bruns (2015a) demonstrou como uma topologia de trocas

de payoffs organiza elegantemente os jogos 2× 2 em uma tabela periódica, estruturada em

uma ordem natural conforme os vizinhos de troca, o alinhamento dos melhores resultados, a

simetria, o número de estratégias e equilíbrios dominantes, entre outras propriedades. Segundo

Bruns (2015a), esta representação mostra visualmente ainda mais a topologia dos jogos 2×2,
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mostrando as relações entre jogos e os caminhos para transformar situações estratégicas, além

disso, eles apresentam a diversidade dos jogos 2×2, a variedade de situações estratégicas no

qual o resultado da ação de cada pessoa depende do que a outra decide, e a gama de estruturas

de incentivos possíveis quando duas pessoas têm duas escolhas interdependentes.

A Figura 5.4 apresenta os jogos da tabela periódica referente a jogos 2×2 (BRUNS,

2015a), no qual está organizada em torno dos jogos 2×2 simétricos num eixo diagonal, desta-

cando os doze jogos ordinais estritos em que cada DM tem quatro recompensas distintas. Os

padrões de payoffs dos jogos simétricos se combinam para formar jogos assimétricos, consti-

tuindo assim uma base conveniente para nomear os jogos. Os payoffs nos equilíbrios de Nash

classificam os jogos em famílias, que são representadas por cores segundo a Figura 5.3. Aqui

cabe ressaltar que o conceito de jogos cíclicos na Figura 5.4 não é o mesmo que a análise de

ciclos na estabilidade Lh, que está sendo investigada nesta seção. Os jogos cíclicos referem-se

aos jogos que não possuem equilíbrio de Nash em estratégias puras, o que significa apenas que

eles não possuem nenhum equilíbrio L1. Ao final desta nossa análise, veremos que existe uma

relação entre tais jogos e aqueles que possuem ciclo de tamanho 2.

Figura 5.3 – Legenda de cores da Tabela de jogos 2×2

Fonte: Adaptado de (BRUNS, 2015a)

A Figura 5.4 contém doze padrões de payoffs que formam 144 jogos estritamente

ordinais (sem indiferença), estes jogos são considerados distintos mesmo quando os DMs 1 e 2

trocam de papéis, totalizando 144 combinações únicas. No entanto, como argumentaremos a

seguir, podemos focar em apenas 78 desses jogos, selecionados dessa tabela. Esses jogos estão

categorizados em 12 tipos distintos de comportamentos dos DMs. Essa classificação deriva do

fato de haver 24 permutações diferentes dos números de 1 a 4 (4!), mas dividimos por dois para

descontar as que são distintas apenas devido à troca das estratégias dos DMs, o que mantém
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o jogo inalterado. Por exemplo, descrever o Dilema dos Prisioneiros com “Delatar” na linha

superior e “Cooperar” na inferior é equivalente a inverter essas estratégias.

Assim, cada DM tem 12 possíveis preferências distintas, resultando em 144 com-

binações de jogos (12× 12 = 144). Cada uma das 12 combinações de comportamentos está

associada a um jogo clássico (como o Dilema dos Prisioneiros, Galinha, Stag-Hunt, etc.). Dessa

forma, existem 12 jogos nos quais ambos os DMs estão jogando o mesmo jogo clássico, como

ambos jogando o Dilema dos Prisioneiros, que está localizado na interseção da linha 6 com a

coluna 7 da tabela periódica da Figura 5.4.

Nos outros 132 jogos (144 - 12), os DMs têm utilidades provenientes de jogos

diferentes, como por exemplo, um DM jogando o jogo da Galinha e o outro jogando o Dilema

dos Prisioneiros, designado na linha 1 coluna 7 da tabela como “ChPd”. Note que se invertermos

os papéis dos DMs 1 e 2, obtemos o jogo “PdCh”, localizado na linha 6 na última coluna da

tabela, conhecido na literatura como “Called Bluff”. Entretanto, os jogos “ChPd” e “PdCh”

são equivalentes e resultam no mesmo resultado na análise, portanto não há necessidade de

duplicação, apenas de repetição dos resultados encontrados.

Ao dividir os 132 jogos distintos por dois, obtemos 66, que somados aos outros 12

jogos resultam nos 78 jogos 2×2 distintos que foram analisados. Dito isto, para interpretar os

payoffs na Figura 5.4, consideraremos os payoffs do DM 1 destacados em vermelho, enquanto os

do DM 2 são destacados em azul.

Vamos adotar que em cada jogo 2×2, os estados estão dispostos na seguinte ordem:

s1 s2

s3 s4

Então, para todos os jogos as matrizes de acessibilidade dos DMs 1 e 2 são, respecti-

vamente:

J1 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 e J2 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

Para obter as matrizes de payoffs, considere o exemplo do jogo na primeira linha da

primeira coluna (ChNc) da Tabela 5.4. Reescrevendo, as utilidades dos DMs 1 e 2 conforme

comumente é feito em um jogo na forma normal, temos:
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Figura 5.4 – Diagrama da Topologia dos Jogos 2 × 2

Fonte: Adaptado de (BRUNS, 2015a)

Tabela 5.7 – Forma normal do jogo ChNc
DM 2

DM 1 (2,3) (3,4)
(1,1) (4,2)

K1 e K2, representam o número de estados piores que o estado para os DMs 1 e 2.

Como os valores na tabela do jogo variam de 1 a 4, K1 e K2 variam 0 a 3 correspondendo a um

valor a menos. Assim, K1 e K2 são respectivamente:

K1 =


1

2

0

3

 e K2 =


2

3

0

1

 .

Para cada um dos 78 jogos, podemos repetir este mesmo procedimento para obter as

matrizes K1 e K2 de cada um deles. Utilizando a representação matricial para cada um desses
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jogos, foi analisado o conceito Lh até o valor h = 20, e observou-se a existência do ciclo, bem

como seu início.

Na Figura 5.5, apresentamos os payoffs usando a mesma tabela, destacando com

cores iguais os jogos com os mesmos ciclos resultantes e o horizonte no qual o ciclo inicia está

destacado por tons da cor daquele ciclo, sendo o horizonte h = 1 o tom mais fraco e o h = 5 o

tom mais forte. Vale ressaltar que cada jogo é representado pelas iniciais do seu nome original,

como, por exemplo, Chicken Game será representado por Ch.

Ao relacionar a tabela original, Figura 5.4, com os nossos resultados sobre os ciclos,

Figura 5.5, podemos extrair algumas conclusões interessantes. Observa-se que todos os jogos

que apresentam ciclo de tamanho 2 pertencem ao grupo que não possui equilíbrio de Nash em

estratégias puras (grupo cinza na Figura 5.4). Além disso, todos os jogos em que ambos os DMs

atingem o melhor resultado no equilíbrio (grupo verde na Figura 5.4) apresentam ciclo 1. Por

fim, todos os jogos classificados como “tristes”, ou seja, que não têm sequer o potencial para um

resultado Pareto-superior (grupo rosa na Figura 5.4), também possuem ciclo 1.

Figura 5.5 – Diagrama da Topologia dos Jogos 2 × 2 por ciclos e horizontes



105

5.3 CONCLUSÃO

No presente capítulo, apresentamos representações matriciais para obter estados

estáveis de acordo com o conceito de estabilidade do movimento limitado, Lh, considerando

conflitos bilaterais. Diferentemente do conceito Maximinh, que não leva em consideração as

preferências dos oponentes, o Lh integra as preferências de ambos os DMs, permitindo que cada

DM realize movimentos de maximização de acordo com suas próprias preferências.

Aplicamos essas representações a dois cenários distintos. Primeiramente, utilizamos

o Dilema dos Prisioneiros, um conflito amplamente discutido na literatura, onde aplicamos a

representação do Lh considerando um horizonte h = 3. Em seguida, aplicamos ao caso real de

seleção de tecnologia de neurociência na China, estudado por Zhou e Wang (2018), analisando

as quatro fases nas quais esse conflito foi dividido.

Além disso, exploramos os ciclos na estabilidade Lh. Ilustramos essa análise cíclica

utilizando os jogos da tabela periódica para jogos 2× 2, conforme apresentado por Bruns

(2015a). Nessa análise, pudemos extrair conclusões interessantes ao relacionar a tabela periódica

de (2015a) com a nossa versão adaptada, abrindo novas possibilidades de estudo sobre ciclos e

padrões de estabilidade em jogos estratégicos.
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6 CONSIDERAÇÕES FINAIS

O GMCR pode ser considerado uma ferramenta que possui grande potencial para

analisar, modelar e explicar conflitos estratégicos. Porém, quando consideramos conflitos estra-

tégicos muito extensos, em termos de números de estados ou decisores, identificar estabilidades

de estados pode se torna uma tarefa custosa se for realizada por meio das representações lógicas

das noções de estabilidades. Desta forma, nos baseamos e realizamos adaptações de métodos

matriciais propostos por Xu et al. (2007 e 2008) para propor representações matriciais para

alguns conceitos de estabilidade com horizonte variável existentes na literatura do GMCR. As

principais motivações para a construção desta tese são:

• As representações matriciais facilitam o desenvolvimento de algoritmos melhorados para

avaliar as estabilidades dos estados.

• Os métodos matriciais propostos são propícios para a análise teórica de problemas de

conflito.

• Os métodos matriciais possuem a vantagem de serem fáceis de se calcular e codificar, em

comparação com a representação lógica dos conceitos de soluções.

• As representações matriciais fornecem expressões algébricas explícitas que podem ser

adaptadas para novos conceitos de solução.

• A representação matricial de conceitos soluções pode ser integrada num sistema de suporte

a decisão.

Diante disto, nesta tese foram propostas representações matriciais de conceitos de

estabilidade com horizontes variáveis no GMCR considerando situações de conflitos bilaterais

e multilaterais. As representações matriciais obtidas nesta pesquisa foram produzidas para as

seguintes conceitos de solução: estabilidade m−SEQ, Maximinh e Lh.

Esses resultados são de suma importância, pois as estabilidade Maximinh, e suas

variantes credíveis, generalizam os conceitos de estabilidade mais utilizados na análise de

estabilidade do GMCR, como: Nash, GMR, SMR, SEQ e SSEQ. Com a ajuda das representações

matriciais propostas, agora se pode realizar uma análise completa de um conflito, considerando

qualquer horizonte, considerando ou não a restrição a sanções credíveis.

Ilustramos diversas aplicações para demonstrar o uso das representações matriciais

apresentadas nesta tese, visando facilitar o entendimento dos conceitos discutidos. No contexto de

estabilidade m-SEQ, abordamos dois conflitos reais, Matching Pennies e o conflito de renovação
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de instalação industrial privado. Para a noção de estabilidade Maximinh, analisamos a Fase

3 do conflito entre a Sun Belt e o Governo da Colúmbia Britânica, estendendo a análise de

estabilidade até o horizonte h = 20. Além disso, aplicamos os métodos matriciais obtidos, para

este conceito, ao Dilema dos Prisioneiros com n DMs, com o objetivo de demonstrar a eficiência

da abordagem matricial e mensurar o tempo computacional à medida que o número de DMs,

deste conflito, aumenta. Aplicamos os resultados matriciais ao Dilema dos Prisioneiros e às

quatro fases cognitivas do conflito sobre a seleção de tecnologia de neurociência na China.

Complementamos as aplicações com análises cíclicas do conceito Lh, ou seja, exploramos a

existência de ciclos na estabilidade Lh em jogos 2×2.

Como sugestão para trabalhos futuros, planejamos propor representações matriciais

para outras noções de estabilidade com horizonte variável, como: estabilidade de otimismo-

pessimismo (SABINO; RÊGO, 2023), e estabilidade de arrependimento mínimo (SABINO;

RÊGO, 2024). Adicionalmente, pretendemos investigar a existência de ciclos, em jogos 2×2,

de acordo com a noção de estabilidade Maximinh.
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APÊNDICE A – CÓDIGOS COMPUTACIONAIS

Neste apêndice, são apresentados os códigos computacionais que foram implementa-

dos, utilizando a sintaxe do R, para obtenção dos resultados expostos nesta tese. Os scripts para

as aplicações do m-SEQ, Maximinh e Lh são apresentados abaixo:

A.1 SCRIPT DO R - CONFLITO PRIVADO DE RENOVAÇÃO DE BROWNFIELD - CÓ-

DIGO M-SEQ

1

2 #####################################################################

3 ################ Aplicacoes Private Brownfield ################

4 ################ Renovation Conflict ################

5 ################ France Oliveira ################

6 #####################################################################

7

8

9 #--------------------- Bibliotecas necessarias ------------------- #

10

11 library(matrixcalc)

12 library(readxl)

13

14 #--------------------- Caso 3-DMs - Conj de Dados ----------------#

15

16 # Matriz de acessibilidade (J_i)

17 J1Brownfield_PO <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus

Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/

J1Brownfield_PO.xlsx")

18 J1 <- as.matrix(J1Brownfield_PO)

19 J1

20

21 J2Brownfield_CG <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus

Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/

J2Brownfield_CG.xlsx")

22 J2 <- as.matrix(J2Brownfield_CG)

23 J2

24
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25 J3Brownfield_D <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus

Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/

J3Brownfield_D.xlsx")

26 J3 <- as.matrix(J3Brownfield_D)

27 J3

28

29 # Matriz de preferencia (P^+)

30 P1Brownfield_PO <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus

Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/

P1Brownfield_PO.xlsx")

31 P1_plus <- as.matrix(P1Brownfield_PO)

32 P1_plus

33

34 P2Brownfield_CG <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus

Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/

P2Brownfield_CG.xlsx")

35 P2_plus <- as.matrix(P2Brownfield_CG)

36 P2_plus

37

38 P3Brownfield_D <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus

Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/

P3Brownfield_D.xlsx")

39 P3_plus <- as.matrix(P3Brownfield_D)

40 P3_plus

41

42

43 #------------------------ Elementos de entrada -------------------#

44

45 N = sqrt(length(J1)) #Numero de estados

46 m = 2 #sqrt(length(m)) #Numero de ordem

47 D = diag(rep(1,N)) #Matriz diagonal

48 E = matrix(1, nrow = N, ncol = N, byrow = TRUE) #Matriz de uns

49

50 #------------------ Matriz de indiferenca (P^-,=) ----------------#

51

52 P1_ind = (E - P1_plus) # DM 1

53 P2_ind = (E - P2_plus) # DM 2

54 P3_ind = (E - P3_plus) # DM 3

55
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56 #----- Matriz de Melhorias unilaterais (J_i^+ = J_i o P^+) ------#

57

58 J1_plus = hadamard.prod(J1, P1_plus) # DM 1

59 J2_plus = hadamard.prod(J2, P2_plus) # DM 2

60 J3_plus = hadamard.prod(J3, P3_plus) # DM 3

61

62 #-------- Matriz de representacao SEQ (M_i^SEQ) - Coalizao -------#

63

64 # MSEQ_1

65 delta_1 <- sum(!!J2_plus)+sum(!!J3_plus)

66

67 J_2 <- J2_plus

68 J_3 <- J3_plus

69 J_23 <- sign(J_2+J_3)

70

71 for(t in 1:delta_1)

72 {

73 JT2 <- J_2

74 J_2 <- sign(J2_plus%*% J_3)

75 J_3 <- sign(J3_plus%*% JT2)

76 J_23 <- sign(J_23 + (sign(J_2 + J_3)))

77 }

78

79

80 SINAL <- sign(J_23 %*% t(P1_ind))

81

82 MSEQ_1 <- (J1_plus %*%( E- SINAL))

83

84 # MSEQ_2

85 delta_2 <- sum(!!J1_plus)+sum(!!J3_plus)

86

87 J_1 <- J1_plus

88 J_3 <- J3_plus

89 J_13 <- sign(J_1+J_3)

90

91 for(t in 1:delta_2)

92 {

93 JT1 <- J_1

94 J_1 <- sign(J1_plus%*% J_3)
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95 J_3 <- sign(J3_plus%*% JT1)

96 J_13 <- sign(J_13 + (sign(J_1 + J_3)))

97 }

98

99

100 SINAL <- sign(J_13 %*% t(P2_ind))

101

102 MSEQ_2 <- (J2_plus %*%( E- SINAL))

103

104

105 # MSEQ_3

106 delta_3 <- sum(!!J1_plus)+sum(!!J2_plus)

107

108 J_1 <- J1_plus

109 J_2 <- J2_plus

110 J_12 <- sign(J_1+J_2)

111

112 for(t in 1:delta_3)

113 {

114 JT3 <- J_1

115 J_1 <- sign(J1_plus%*% J_2)

116 J_2 <- sign(J2_plus%*% JT3)

117 J_12 <- sign(J_12 + (sign(J_1 + J_2)))

118 }

119

120

121 SINAL <- sign(J_12 %*% t(P3_ind))

122

123 MSEQ_3 <- (J3_plus %*%( E- SINAL))

124

125

126 #--------- Matriz de representacao Mm1SEQ (M_j^((m-1)SEQ)) -------#

127

128 #Caso m=1

129 MmSEQ_1 = MSEQ_1

130 MmSEQ_2 = MSEQ_2

131 MmSEQ_3 = MSEQ_3

132

133 #caso m>1
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134

135 for(k in 2:m){

136

137 # Matriz J_j^(m,+)

138 J1_mplus = sign(hadamard.prod(D, MmSEQ_1)) %*% J1_plus

139 J2_mplus = sign(hadamard.prod(D, MmSEQ_2)) %*% J2_plus

140 J3_mplus = sign(hadamard.prod(D, MmSEQ_3)) %*% J3_plus

141

142 # Matriz de representacao MmSEQ (M_i^(m-SEQ))

143

144 # MmSEQ_1

145 delta_1 <- sum(!!J2_plus)+sum(!!J3_plus)

146

147 J_2 <- J2_mplus

148 J_3 <- J3_mplus

149 J_23 <- sign(J_2+J_3)

150

151 for(t in 1:delta_1)

152 {

153 JT2 <- J_2

154 J_2 <- sign(J2_mplus%*% J_3)

155 J_3 <- sign(J3_mplus%*% JT2)

156 J_23 <- sign(J_23 + (sign(J_2 + J_3)))

157 }

158

159 SINAL <- sign(J_23 %*% t(P1_ind))

160 MmSEQ_1 <- (J1_plus %*%( E- SINAL))

161

162 # MmSEQ_2

163 delta_2 <- sum(!!J1_mplus)+sum(!!J3_mplus)

164

165 J_1 <- J1_mplus

166 J_3 <- J3_mplus

167 J_13 <- sign(J_1+J_3)

168

169 for(t in 1:delta_2)

170 {

171 JT1 <- J_1

172 J_1 <- sign(J1_mplus%*% J_3)
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173 J_3 <- sign(J3_mplus%*% JT1)

174 J_13 <- sign(J_13 + (sign(J_1 + J_3)))

175 }

176

177 SINAL <- sign(J_13 %*% t(P2_ind))

178 MmSEQ_2 <- (J2_plus %*%( E- SINAL))

179

180

181 # MmSEQ_3

182 delta_3 <- sum(!!J1_mplus)+sum(!!J2_mplus)

183

184 J_1 <- J1_mplus

185 J_2 <- J2_mplus

186 J_12 <- sign(J_1+J_2)

187

188 for(t in 1:delta_3)

189 {

190 JT1 <- J_1

191 J_1 <- sign(J1_mplus%*% J_2)

192 J_2 <- sign(J2_mplus%*% JT1)

193 J_12 <- sign(J_12 + (sign(J_1 + J_2)))

194 }

195

196 SINAL <- sign(J_12 %*% t(P3_ind))

197 MmSEQ_3 <- (J3_plus %*%( E- SINAL))

198 }

A.2 SCRIPT DO R - FASE 3 - WATER EXPORT CONFLICT - CÓDIGO MAXIMINh

1

2 #####################################################################

3 ################ Aplicacoes Phase 3 ################

4 ################ Water Export Conflict ################

5 ################ France Oliveira ################

6 #####################################################################

7

8

9 #--------------------- Bibliotecas necessarias ------------------- #
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10

11 library(matrixcalc)

12

13 #------------------------ Elementos de entrada -------------------#

14

15 S= 11 # Quantidade de estados

16 E = rep(1,S) # Vetor de um's

17 D = diag (x = 1, nrow=S, ncol=S) # Matriz diagonal

18

19 #---------------------- Caso DM i - Conj de Dados ----------------#

20

21 # Matriz de acessibilidade

22

23 # Sun Belt

24 DM_SanBelt = matrix(c(0,1,1,0,1,0,0,0,0,0,0,

25 1,0,0,1,0,1,0,0,0,0,0,

26 1,0,0,1,0,0,0,0,0,0,0,

27 0,1,1,0,0,0,0,0,0,0,0,

28 1,0,0,0,0,1,0,0,0,0,0,

29 0,1,0,0,1,0,0,0,0,0,0,

30 0,0,0,0,0,0,0,0,1,0,1,

31 0,0,0,0,0,0,0,0,1,0,0,

32 0,0,0,0,0,0,1,1,0,0,0,

33 0,0,0,0,0,0,0,0,0,0,1,

34 0,0,0,0,0,0,1,0,0,1,0),S,S)

35

36

37 # BCG

38 DM_BCG = matrix(c(0,0,0,0,0,0,0,0,0,0,0,

39 0,0,0,0,0,0,1,0,0,0,0,

40 0,0,0,0,0,0,0,1,0,0,0,

41 0,0,0,0,0,0,0,0,1,0,0,

42 0,0,0,0,0,0,0,0,0,1,0,

43 0,0,0,0,0,0,0,0,0,0,1,

44 0,1,0,0,0,0,0,0,0,0,0,

45 0,0,1,0,0,0,0,0,0,0,0,

46 0,0,0,1,0,0,0,0,0,0,0,

47 0,0,0,0,1,0,0,0,0,0,0,

48 0,0,0,0,0,1,0,0,0,0,0),S,S)
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49

50 Ji = DM_SanBelt

51 Jj = DM_BCG

52 # ----------------------------------- #

53 # Matriz de preferencia

54 # ----------------------------------- #

55

56 # Sun Belts

57 Pi_plus_SanBelt = matrix(c(0,0,0,0,0,0,0,0,0,0,0,

58 1,0,0,0,0,0,0,0,0,0,0,

59 1,1,0,1,0,0,1,1,1,1,0,

60 1,1,0,0,0,0,1,1,0,0,0,

61 1,1,1,1,0,1,1,1,1,1,1,

62 1,1,1,1,0,0,1,1,1,1,0,

63 1,1,0,0,0,0,0,0,0,0,0,

64 1,1,0,0,0,0,1,0,0,0,0,

65 1,1,0,1,0,0,1,1,0,0,0,

66 1,1,0,1,0,0,1,1,1,0,0,

67 1,1,1,1,0,1,1,1,1,1,0),S,S)

68

69

70 # BCG

71 Pi_plus_BCG = matrix(c(0,1,1,1,1,1,1,1,1,1,1,

72 0,0,1,1,1,1,1,1,1,1,1,

73 0,0,0,1,0,0,0,0,1,1,0,

74 0,0,0,0,0,0,0,0,0,1,1,

75 0,0,1,1,0,1,1,1,1,1,1,

76 0,0,1,1,0,0,1,1,1,1,1,

77 0,0,1,1,0,0,0,0,1,1,0,

78 0,0,1,1,0,0,1,0,1,1,0,

79 0,0,0,0,0,0,0,0,0,0,0,

80 0,0,0,0,0,0,0,0,1,0,0,

81 0,0,1,1,0,0,1,1,1,1,0),S,S)

82

83 Pi_plus = Pi_plus_SanBelt

84 K_i = t(E %*% Pi_plus) # Encontrar o valor de K_i(s)

85

86 # --------------------- #

87 # Ci Function



120

88 # --------------------- #

89

90 h=1

91 C <- function(h){

92 Jj_D = D + Jj # Diagonal + matriz de acessibilidade do DM j

93 comp_Jj_D = E - Jj_D # Matriz complementar da Jj_D

94 prod_estado = S * comp_Jj_D

95 if(h %% 2 == 0){ # Teste se par

96 #h=2

97 #prod_hadamard_h2 = hadamard.prod(Jj_D, (t(K_i%*%E))) # Para onde

o oponente pode levar o conflito e quanto o DM focal vai

receber

98 prod_hadamard_h2 = (hadamard.prod(Jj , (t(K_i%*%E))) + hadamard.

prod(D, (t(K_i%*%E))))

99 B_1j = prod_estado + prod_hadamard_h2

100 C_1j = cbind(apply(B_1j,1,min)) # Min de cada linha

101 #F= hadamard.prod((Ji + D), (t(C_1j %*% E)))

102 F= (hadamard.prod(Ji, (t( C_1j%*%E))) + hadamard.prod(D, (t(K_i%*

%E))))

103 C_2i= cbind(apply(F,1,max))

104 Ci = C_2i

105 if(h>2){

106 for (g in 1:(h/2) -1){

107 prod_hadamard_h = (hadamard.prod(Jj , (t(Ci%*%E))) + hadamard.

prod(D, (t(K_i%*%E)))) # (C_(h-2)i)

108 BiPlus1j = prod_estado + prod_hadamard_h

109 CiPlus1j = cbind(apply(BiPlus1j ,1,min)) # Min de cada linha

110 F= (hadamard.prod(Ji, (t( CiPlus1j%*%E))) + hadamard.prod(D,

(t(K_i%*%E))))

111 CiPlus2= cbind(apply(F,1,max))

112 Ci=CiPlus2

113 }

114 }

115 }

116 else{ # h eh impar

117 # h=1

118 Ji_D = D + Ji # Diagonal + matriz de acessibilidade do DM i

119 B_1i = hadamard.prod(Ji_D, (t(K_i%*%E))) # Para onde o oponente

pode levar o conflito e quanto o DM focal vai receber
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120 C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha

121 #Q=matrix(1,nrow = S,ncol = 1) # Matriz coluna de 1's

122 #C_1i = Q %*% C_1_max # Matriz dos max em coluna

123 Ci = C_1i

124 if (h>1) {

125 for (g in 1:(h-1)/2){

126 prod_hadamard_h = (hadamard.prod(Jj , (t(Ci%*%E))) + hadamard.

prod(D, (t(K_i%*%E)))) # (C_(h-2)i)

127 BiPlus1j = prod_estado + prod_hadamard_h

128 CiPlus1j = cbind(apply(BiPlus1j ,1,min)) # Min de cada linha

129 F= (hadamard.prod(Ji, (t( CiPlus1j%*%E))) + hadamard.prod(D,

(t(K_i%*%E))))

130 CiPlus2= cbind(apply(F,1,max))

131 Ci=CiPlus2

132 }

133 }

134 }

135 Dif_h = (K_i - Ci) # dif de quanto tenho se permanecer e quanto

terei se eu me mover

136 Sign_Dif_h = sign(Dif_h)

137 return(Sign_Dif_h)

138 }

139

140

141 for(h in 1:20){

142 C(h)

143 print(paste("Horizonte", h, ": Resultado =", C(h)))

144 }

145

146

147

148

149 #---------------------- Caso DM j - Conj de Dados ----------------#

150

151 # Matriz de acessibilidade

152 # Sun Belt

153 Ji = matrix(c(0,1,1,0,1,0,0,0,0,0,0,

154 1,0,0,1,0,1,0,0,0,0,0,

155 1,0,0,1,0,0,0,0,0,0,0,
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156 0,1,1,0,0,0,0,0,0,0,0,

157 1,0,0,0,0,1,0,0,0,0,0,

158 0,1,0,0,1,0,0,0,0,0,0,

159 0,0,0,0,0,0,0,0,1,0,1,

160 0,0,0,0,0,0,0,0,1,0,0,

161 0,0,0,0,0,0,1,1,0,0,0,

162 0,0,0,0,0,0,0,0,0,0,1,

163 0,0,0,0,0,0,1,0,0,1,0),S,S)

164 # BCG

165 Jj = matrix(c(0,0,0,0,0,0,0,0,0,0,0,

166 0,0,0,0,0,0,1,0,0,0,0,

167 0,0,0,0,0,0,0,1,0,0,0,

168 0,0,0,0,0,0,0,0,1,0,0,

169 0,0,0,0,0,0,0,0,0,1,0,

170 0,0,0,0,0,0,0,0,0,0,1,

171 0,1,0,0,0,0,0,0,0,0,0,

172 0,0,1,0,0,0,0,0,0,0,0,

173 0,0,0,1,0,0,0,0,0,0,0,

174 0,0,0,0,1,0,0,0,0,0,0,

175 0,0,0,0,0,1,0,0,0,0,0),S,S)

176

177 # ----------------------------------- #

178 # Matriz de preferencia

179 # ----------------------------------- #

180

181 # Sun Belts

182 Pi_plus = matrix(c(0,0,0,0,0,0,0,0,0,0,0,

183 1,0,0,0,0,0,0,0,0,0,0,

184 1,1,0,1,0,0,1,1,1,1,0,

185 1,1,0,0,0,0,1,1,0,0,0,

186 1,1,1,1,0,1,1,1,1,1,1,

187 1,1,1,1,0,0,1,1,1,1,0,

188 1,1,0,0,0,0,0,0,0,0,0,

189 1,1,0,0,0,0,1,0,0,0,0,

190 1,1,0,1,0,0,1,1,0,0,0,

191 1,1,0,1,0,0,1,1,1,0,0,

192 1,1,1,1,0,1,1,1,1,1,0),S,S)

193

194 # BCG



123

195 Pj_plus = matrix(c(0,1,1,1,1,1,1,1,1,1,1,

196 0,0,1,1,1,1,1,1,1,1,1,

197 0,0,0,1,0,0,0,0,1,1,0,

198 0,0,0,0,0,0,0,0,0,1,1,

199 0,0,1,1,0,1,1,1,1,1,1,

200 0,0,1,1,0,0,1,1,1,1,1,

201 0,0,1,1,0,0,0,0,1,1,0,

202 0,0,1,1,0,0,1,0,1,1,0,

203 0,0,0,0,0,0,0,0,0,0,0,

204 0,0,0,0,0,0,0,0,1,0,0,

205 0,0,1,1,0,0,1,1,1,1,0),S,S)

206

207

208 K_j = t(E %*% Pj_plus) # Encontrar o valor de K_i(s)

209

210 # --------------------- #

211 # Ci Function

212 # --------------------- #

213

214 h=1

215 C <- function(h){

216 Ji_D = D + Ji # Diagonal + matriz de acessibilidade do DM i

217 comp_Ji_D = E - Ji_D # Matriz complementar da Ji_D

218 prod_estado = S * comp_Ji_D

219 if(h %% 2 == 0){ # Teste se par

220 #h=2

221 #prod_hadamard_h2 = hadamard.prod(Jj_D, (t(K_i%*%E))) # Para onde

o oponente pode levar o conflito e quanto o DM focal vai

receber

222 prod_hadamard_h2 = (hadamard.prod(Ji , (t(K_j%*%E))) + hadamard.

prod(D, (t(K_j%*%E))))

223 B_1i = prod_estado + prod_hadamard_h2

224 C_1i = t(cbind(apply(B_1i,1,max))) # Min de cada linha

225 #F= hadamard.prod((Ji + D), (t(C_1j %*% E)))

226 F= (hadamard.prod(Jj, (C_1i%*%E)) + hadamard.prod(D, (t(K_j%*%E)

)))

227 C_2j= cbind(apply(F,1,min))

228 Cj = C_2j

229 if(h>2){
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230 for (g in 1:(h/2) -1){

231 prod_hadamard_h = (hadamard.prod(Ji , (t(Cj%*%E))) + hadamard.

prod(D, (t(K_j%*%E)))) # (C_(h-2)i)

232 BiPlus1i = prod_estado + prod_hadamard_h

233 CiPlus1i = cbind(apply(BiPlus1i ,1,max)) # Min de cada linha

234 F= (hadamard.prod(Jj, (t( CiPlus1i%*%E))) + hadamard.prod(D,

(t(K_j%*%E))))

235 CjPlus2= cbind(apply(F,1,min))

236 Cj=CjPlus2

237 }

238 }

239 }

240 else{ # h eh impar

241 # h=1

242 Jj_D = D + Jj # Diagonal + matriz de acessibilidade do DM i

243 B_1j = hadamard.prod(Jj_D, (t(K_j%*%E))) # Para onde o oponente

pode levar o conflito e quanto o DM focal vai receber

244 C_1j = cbind(apply(B_1j,1,min)) # Max de cada linha

245 #Q=matrix(1,nrow = S,ncol = 1) # Matriz coluna de 1's

246 #C_1i = Q %*% C_1_max # Matriz dos max em coluna

247 Cj = C_1j

248 if (h>1) {

249 for (g in 1:(h-1)/2){

250 prod_hadamard_h = (hadamard.prod(Ji , (t(Cj%*%E))) + hadamard.

prod(D, (t(K_j%*%E)))) # (C_(h-2)i)

251 BjPlus1i = prod_estado + prod_hadamard_h

252 CjPlus1i = cbind(apply(BjPlus1i ,1,max)) # Min de cada linha

253 F= (hadamard.prod(Jj, (t( CjPlus1i%*%E))) + hadamard.prod(D,

(t(K_j%*%E))))

254 CjPlus2= cbind(apply(F,1,min))

255 Cj=CjPlus2

256 }

257 }

258 }

259 Dif_h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto

terei se eu me mover

260 Sign_Dif_h = sign(Dif_h)

261 return(Sign_Dif_h)

262 }
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263

264

265 for(h in 1:20){

266 C(h)

267 print(paste("Horizonte", h, ": Resultado =", C(h)))

268 }

A.3 SCRIPT DO R - DILEMA DOS PRISIONEIROS N-DMS - CÓDIGO MAXIMINh

1

2 #####################################################################

3 ########### Aplicacoes Dilema dos Prisioneiros n DMs #############

4 ########## France Oliveira ##############

5 #####################################################################

6

7

8 #--------------------- Bibliotecas necessarias ------------------- #

9

10 library(matrixcalc)

11 library('ramify ')

12 library(readxl)

13

14 #------------------------ Elementos de entrada -------------------#

15 # --------------------------------------- #

16 # Dilema dos Prisioneiros - 3 DMs

17 # --------------------------------------- #

18

19

20 J1 <- Dilema_Prisioneiros_J1_3_Decisores

21 J1 <- as.matrix(J1)

22

23 J2 <- Dilema_Prisioneiros_J2_3_Decisores

24 J2 <- as.matrix(J2)

25

26 J3 <- Dilema_Prisioneiros_J3_3_Decisores

27 J3 <- as.matrix(J3)

28

29 matriz_acess = list(J1, J2, J3)
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30

31 # Acessando e removendo uma matriz especifica da lista , ou seja , o DM

Focal

32 Id_DM_Focal <- 1

33

34 N = 3 # Qnt de DMs

35 h = 1 # Horizonte

36 S = 8 # Qnt de estados

37 E = rep(1,S) # Vetor de um's

38 D = diag (x = 1, nrow=S, ncol=S) # Matriz diagonal

39 E_1 = matrix(1, nrow = S, ncol = 1, byrow = TRUE) # Matriz coluna de

uns

40 K1 = matrix(c(4,2,2,0,5,3,3,1), nrow = S, ncol = 1, byrow = TRUE)

41 K2 = matrix(c(4,2,5,3,2,0,3,1), nrow = S, ncol = 1, byrow = TRUE)

42 K3 = matrix(c(4,5,2,3,2,3,0,1), nrow = S, ncol = 1, byrow = TRUE)

43

44 matriz_pref = list(K1, K2, K3)

45

46

47 # --------------------------------------- #

48 # Funcao Coalizao - J_H

49 # --------------------------------------- #

50

51 JH <- function(S, Id_DM_Focal , matriz_acess){

52

53 conj_coalizao <- matriz_acess[-Id_DM_Focal]

54 #soma_coalizao = J2 + J3 + J4

55 #sinal_coalizao = sign(soma_coalizao)

56 #J_r = sign(J1 %*% sinal_coalizao)

57

58 delta = sum(unlist(conj_coalizao))

59 soma_matrizes <- function(matriz1 , matriz2) {

60 return(matriz1 + matriz2)

61 }

62 J_op <- Reduce(soma_matrizes , conj_coalizao)

63

64

65 # for(l in 1: length(conj_coalizao)){

66 # DM_Focal = matriz_acess [[Id_DM_Focal]]
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67 # conj_coalizao = matriz_acess[-Id_DM_Focal]

68 new_conj_coalizao = conj_coalizao

69 temp_conj_coalizao = new_conj_coalizao

70 for(r in 2:delta){

71 for(i in 1: length(conj_coalizao)){

72 soma_coalizao = matrix(0,S,S)

73 for(j in 1: length(conj_coalizao)){

74 if(j != i){

75 soma_coalizao = soma_coalizao + new_conj_coalizao [[j]]

76 }

77 }

78 sinal_coalizao = sign(soma_coalizao) # o sinal garanti que

tenhamos 1 se a soma for dif de 0 e 0 c.c.

79 temp_conj_coalizao [[i]] = sign(conj_coalizao [[i]] %*% sinal_

coalizao)

80 }

81 new_conj_coalizao = temp_conj_coalizao

82 J_op = J_op + Reduce(soma_matrizes , new_conj_coalizao)

83 }

84 # }

85 J_op = sign(J_op)

86 return(J_op)

87 }

88

89

90 # --------------------------------------- #

91 # Ci Function - Maximin_h DM i

92 # --------------------------------------- #

93

94 C <- function(h){

95 Jj_D = D + Jj # Diagonal + matriz de acessibilidade do DM j

96 comp_Jj_D = E - Jj_D # Matriz complementar da Jj_D

97 prod_estado = S * comp_Jj_D

98 if(h %% 2 == 0){ # Teste se par

99 #h=2

100 #prod_hadamard_h2 = hadamard.prod(Jj_D, (t(K_i%*%E))) # Para onde

o oponente pode levar o conflito e quanto o DM focal vai

receber
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101 prod_hadamard_h2 = (hadamard.prod(Jj , (t(K_i%*%E))) + hadamard.

prod(D, (t(K_i%*%E))))

102 B_1j = prod_estado + prod_hadamard_h2

103 C_1j = cbind(apply(B_1j,1,min)) # Min de cada linha

104 #F= hadamard.prod((Ji + D), (t(C_1j %*% E)))

105 F= (hadamard.prod(Ji, (t( C_1j%*%E))) + hadamard.prod(D, (t(K_i%*

%E))))

106 C_2i= cbind(apply(F,1,max))

107 Ci = C_2i

108 if(h>2){

109 for (g in 1:(h/2) -1){

110 prod_hadamard_h = (hadamard.prod(Jj , (t(Ci%*%E))) + hadamard.

prod(D, (t(K_i%*%E)))) # (C_(h-2)i)

111 BiPlus1j = prod_estado + prod_hadamard_h

112 CiPlus1j = cbind(apply(BiPlus1j ,1,min)) # Min de cada linha

113 F= (hadamard.prod(Ji, (t( CiPlus1j%*%E))) + hadamard.prod(D,

(t(K_i%*%E))))

114 CiPlus2= cbind(apply(F,1,max))

115 Ci=CiPlus2

116 }

117 }

118 }

119 else{ # h eh impar

120 # h=1

121 Ji_D = D + Ji # Diagonal + matriz de acessibilidade do DM i

122 B_1i = hadamard.prod(Ji_D, (t(K_i%*%E))) # Para onde o oponente

pode levar o conflito e quanto o DM focal vai receber

123 C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha

124 #Q=matrix(1,nrow = S,ncol = 1) # Matriz coluna de 1's

125 #C_1i = Q %*% C_1_max # Matriz dos max em coluna

126 Ci = C_1i

127 if (h>1) {

128 for (g in 1:(h-1)/2){

129 prod_hadamard_h = (hadamard.prod(Jj , (t(Ci%*%E))) + hadamard.

prod(D, (t(K_i%*%E)))) # (C_(h-2)i)

130 BiPlus1j = prod_estado + prod_hadamard_h

131 CiPlus1j = cbind(apply(BiPlus1j ,1,min)) # Min de cada linha

132 F= (hadamard.prod(Ji, (t( CiPlus1j%*%E))) + hadamard.prod(D,

(t(K_i%*%E))))
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133 CiPlus2= cbind(apply(F,1,max))

134 Ci=CiPlus2

135 }

136 }

137 }

138 Dif_h = (K_i - Ci) # dif de quanto tenho se permanecer e quanto

terei se eu me mover

139 Sign_Dif_h = sign(Dif_h)

140 return(Sign_Dif_h)

141 }

142

143 execut_i <- function (){

144 for(h in 1:10){

145 for (Id_DM_Focal in 1:N) {

146 Ji <- matriz_acess [[Id_DM_Focal]]

147 Jj <- JH(S, Id_DM_Focal ,matriz_acess)

148 K_i <- matriz_pref[[Id_DM_Focal ]]

149 C(h)

150 print(paste("Horizonte", h, "DM_Focal:", Id_DM_Focal , ":

Resultado =", C(h)))

151 }

152 }

153 }

154 tempo <- system.time(execut_i())

A.4 SCRIPT DO R - DILEMA DOS PRISIONEIROS - CÓDIGO Lh

1

2 ####################################################################

3 ############# Aplicacoes Dilema dos Prisioneiros ################

4 ############# France Oliveira ##################

5 ####################################################################

6

7

8 #--------------------- Bibliotecas necessarias ------------------- #

9

10 library(matrixcalc)

11 library('ramify ')
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12

13 #------------------------ Elementos de entrada -------------------#

14

15 S=4 # Quantidade de estados

16 E = rep(1,S) # Vetor de um's # Matriz de um 's

17 D = diag (x = 1, nrow=S, ncol=S) # Matriz diagonal

18 D_1j = matrix(c(0,0,0,0,

19 0,0,0,0,

20 0,0,0,0,

21 0,0,0,0),S,S)

22

23 #------------------------- Conj de Dados -------------------------#

24

25 # Matriz de acessibilidade

26 Ji = matrix(c(0,0,1,0,

27 0,0,0,1,

28 1,0,0,0,

29 0,1,0,0),S,S)

30

31 Jj = matrix(c(0,1,0,0,

32 1,0,0,0,

33 0,0,0,1,

34 0,0,1,0),S,S)

35

36

37

38 # Matriz de preferencia - DM i

39 Pi_plus = matrix(c(0,1,0,1,

40 0,0,0,0,

41 1,1,0,1,

42 0,1,0,0),S,S)

43

44 # Matriz de preferencia - DM j

45 Pj_plus = matrix(c(0,0,1,1,

46 1,0,1,1,

47 0,0,0,0,

48 0,0,1,0),S,S)

49

50 # Matrizes K_i e K_j
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51 K_i = t(E %*% Pi_plus) # Encontrar o valor de K_i(s)

52 K_j = t(E %*% Pj_plus) # Encontrar o valor de K_j(s)

53

54

55

56 # --------------------------------------------------------------- #

57 # CASO h=1

58 # --------------------------------------------------------------- #

59

60 # --------------- Para o DM i -----------------

61

62 # Calculando B_1i

63 B_1i = (hadamard.prod(Ji , (t(K_i%*%E)))) + (hadamard.prod(D, (t(K_i%*

%E))))

64

65 # Calculando C_1i = Max(B_1i)

66 C_1i = cbind(apply(B_1i,1,max))

67

68 # Calculando (K_i - C_1i) e depois o sinal da diff - dif de quanto

tenho se permanecer e quanto terei se eu me mover

69 Dif_1_i = (K_i - C_1i)

70 Sign_Dif_1_i = sign(Dif_1_i)

71

72

73 # --------------- Para o DM j -----------------

74

75 # Calculando B_1j

76 B_1j = (hadamard.prod(Jj , (t(K_j%*%E))) + hadamard.prod(D, (t(K_j%*%E

))))

77

78 # Calculando C_1j = Max(B_1j)

79 C_1j= cbind(apply(B_1j,1,max))

80

81 # Calculando (K_i - C_1i) e sinal da diff

82 Dif_1_j = (K_j - C_1j)

83 Sign_Dif_1_j = sign(Dif_1_j)

84

85

86 # --------------------------------------------------------------- #
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87 # CASO h=2

88 # --------------------------------------------------------------- #

89

90

91 # Funcao Argmax

92

93 Argmax <- function(mat) {

94 result <- mat

95 for (i in 1:nrow(mat)) {

96 row <- mat[i, ]

97 max_index <- which.max(row)

98 row[max_index] <- 1

99 row[-max_index] <- 0

100 result[i, ] <- row

101 }

102 return(result)

103 }

104

105 # Exemplo

106 matriz <- matrix(c(1, 2, 3, 4, 8, 6, 7, 8, 9), nrow = 3)

107 resultado <- Argmax(matriz)

108 print(resultado)

109

110

111

112

113

114 # --------------- Para o DM i -----------------

115

116 # Calculando B_2i

117 y=(E-D)

118 q=hadamard.prod(Argmax(B_1j), y)

119 p=hadamard.prod(Argmax(B_1j), D)

120 r= (q %*% K_i) + (p %*% K_i)

121 v=t(r %*% E)

122 I=hadamard.prod(Ji, v)

123 II = (hadamard.prod(D, (t(K_i%*%E))))

124

125 B_2i = (I + II)
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126

127

128 # Calculando C_2i = Max(B_2i)

129 C_2i = cbind(apply(B_2i,1,max))

130

131 # Calculando (K_2 - C_2i) e depois o sinal da diff - dif de quanto

tenho se permanecer e quanto terei se eu me mover

132 Dif_2_i = (K_i - C_2i)

133 Sign_Dif_2_i = sign(Dif_2_i)

134

135

136 # --------------- Para o DM j -----------------

137

138 # Calculando B_2j

139 y=(E-D)

140 q=hadamard.prod(Argmax(B_1i), y)

141 p=hadamard.prod(Argmax(B_1i), D)

142 r= (q %*% K_j) + (p %*% K_j)

143 v=t(r %*% E)

144 I=hadamard.prod(Jj, v)

145 II = (hadamard.prod(D, (t(K_j%*%E))))

146

147 B_2j = (I + II)

148

149 # Calculando C_2j = Max(B_2j)

150 C_2j= cbind(apply(B_2j,1,max))

151

152 # Calculando (K_j - C_2j) e sinal da diff

153 Dif_2_j = (K_j - C_2j)

154 Sign_Dif_2_j = sign(Dif_2_j)

155

156

157

158 # ------------------------------ #

159 # Ci Function - DM i Inicia

160 # ------------------------------ #

161

162 Ci <- function(h){

163 if(h==1){



134

164 B_1i = (hadamard.prod(Ji , (t(K_i%*%E)))) + (hadamard.prod(D, (t(K

_i%*%E))))

165 C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha

166 Ci = C_1i

167 }

168 if(h==2){

169 B_2i = (( hadamard.prod(Ji , (t(((( hadamard.prod(Argmax(B_1j), (E-D

))) %*% K_i) + (( hadamard.prod(Argmax(B_1j), D)) %*% K_i)) %*%

E)))) + (hadamard.prod(D, (t(K_i%*%E)))))

170 C_2i = cbind(apply(B_2i,1,max)) # Max de cada linha

171 Ci = C_2i

172 }

173 if(h>2){

174 for (g in 3:h){

175 B_3i = (( hadamard.prod(Ji , (t(((( hadamard.prod(Argmax(B_2j), (E

-D))) %*% K_i) + (( hadamard.prod(Argmax(B_2j), D)) %*% K_i))

%*% E)))) + (hadamard.prod(D, (t(K_i%*%E)))))

176 C_3i = cbind(apply(B_3i,1,max)) # Max de cada linha

177 Ci = C_3i

178 }

179 }

180 Dif_h = (K_i - Ci) # dif de quanto tenho se permanecer e quanto

terei se eu me mover

181 Sign_Dif_h = sign(Dif_h)

182 return(Sign_Dif_h)

183 }

184

185

186 # ------------------------------ #

187 # Cj Function - DM j Inicia

188 # ------------------------------ #

189

190 Cj <- function(h){

191 if(h==1){

192 B_1j = (hadamard.prod(Jj , (t(K_j%*%E)))) + (hadamard.prod(D, (t(K

_j%*%E))))

193 C_1j = cbind(apply(B_1i,1,max)) # Max de cada linha

194 Cj = C_1j

195 }
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196 if(h==2){

197 B_2j = (( hadamard.prod(Jj , (t(((( hadamard.prod(Argmax(B_1i), (E-D

))) %*% K_j) + (( hadamard.prod(Argmax(B_1i), D)) %*% K_j)) %*%

E)))) + (hadamard.prod(D, (t(K_j%*%E)))))

198 C_2j = cbind(apply(B_2i,1,max)) # Max de cada linha

199 Cj = C_2j

200 }

201 if(h>2){

202 for (g in 3:h){

203 B_3j = (( hadamard.prod(Jj , (t(((( hadamard.prod(Argmax(B_2i), (E

-D))) %*% K_j) + (( hadamard.prod(Argmax(B_2i), D)) %*% K_j))

%*% E)))) + (hadamard.prod(D, (t(K_j%*%E)))))

204 C_3j = cbind(apply(B_3j,1,max)) # Max de cada linha

205 Cj = C_3j

206 }

207 }

208 Dif_h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto

terei se eu me mover

209 Sign_Dif_h = sign(Dif_h)

210 return(Sign_Dif_h)

211 }

A.5 SCRIPT DO R - CONFLITO DE SELEÇÃO DE TECNOLOGIA DE NEUROCIÊNCIA

NA CHINA - CÓDIGO Lh

1

2 #-----------------------------------------------------------------

3 # Conflito de selecao de tecnologia de neurociencia na China - L_h

4 #-----------------------------------------------------------------

5

6 # Codigo para obter os resultados do DM i

7

8 library(matrixcalc)

9 library('ramify ')

10

11

12 S=8 # Quantidade de estados

13 E = rep(1,S) # Vetor de um's # Matriz de um 's
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14 D = diag (x = 1, nrow=S, ncol=S) # Matriz diagonal

15 D_1j = matrix(c(0,0,0,0,0,0,0,0,

16 0,0,0,0,0,0,0,0,

17 0,0,0,0,0,0,0,0,

18 0,0,0,0,0,0,0,0,

19 0,0,0,0,0,0,0,0,

20 0,0,0,0,0,0,0,0,

21 0,0,0,0,0,0,0,0,

22 0,0,0,0,0,0,0,0),S,S)

23

24 # Matriz de acessibilidade

25 Ji = matrix(c(0,1,1,1,0,0,0,0,

26 1,0,1,1,0,0,0,0,

27 1,1,0,1,0,0,0,0,

28 1,1,1,0,0,0,0,0,

29 0,0,0,0,0,1,1,1,

30 0,0,0,0,1,0,1,1,

31 0,0,0,0,1,1,0,1,

32 0,0,0,0,1,1,1,0),S,S)

33

34 Jj = matrix(c(0,0,0,0,1,0,0,0,

35 0,0,0,0,0,1,0,0,

36 0,0,0,0,0,0,1,0,

37 0,0,0,0,0,0,0,1,

38 1,0,0,0,0,0,0,0,

39 0,1,0,0,0,0,0,0,

40 0,0,1,0,0,0,0,0,

41 0,0,0,1,0,0,0,0),S,S)

42

43 # ------------------------------------------------- #

44 # CASO 1 - Intuition Phase

45 # ------------------------------------------------- #

46

47 # Matriz de preferencia - DM i

48 #Pi_plus = matrix(c(0,1,1,1,1,1,1,1,

49 # 0,0,0,1,0,1,1,1,

50 # 0,1,0,1,0,1,1,1,

51 # 0,0,0,0,0,1,1,1,

52 # 0,1,1,1,0,1,1,1,
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53 # 0,0,0,0,0,0,0,1,

54 # 0,0,0,0,0,1,0,1,

55 # 0,0,0,0,0,0,0,0),S,S)

56

57 # Matriz de preferencia - DM j

58 #Pj_plus = matrix(c(0,1,1,1,1,1,1,1,

59 # 0,0,0,1,0,1,1,1,

60 # 0,1,0,1,0,1,1,1,

61 # 0,0,0,0,0,1,1,1,

62 # 0,1,1,1,0,1,1,1,

63 # 0,0,0,0,0,0,0,1,

64 # 0,0,0,0,0,1,0,1,

65 # 0,0,0,0,0,0,0,0),S,S)

66

67 # ------------------------------------------------- #

68 # CASO 2 - Emotion Phase

69 # ------------------------------------------------- #

70

71 # Matriz de preferencia - DM i

72 #Pi_plus = matrix(c(0,0,0,0,1,0,0,0,

73 # 1,0,0,0,1,1,1,0,

74 # 1,1,0,0,1,1,1,0,

75 # 1,1,1,0,1,1,1,1,

76 # 0,0,0,0,0,0,0,0,

77 # 1,0,0,0,1,0,0,0,

78 # 1,0,0,0,1,1,0,0,

79 # 1,1,1,0,1,1,1,0),S,S)

80

81 # Matriz de preferencia - DM j

82 #Pj_plus = matrix(c(0,0,0,0,1,1,1,1,

83 # 1,0,1,0,1,1,1,1,

84 # 1,0,0,0,1,1,1,1,

85 # 1,1,1,0,1,1,1,1,

86 # 0,0,0,0,0,0,0,0,

87 # 0,0,0,0,1,0,1,0,

88 # 0,0,0,0,1,0,0,0,

89 # 0,0,0,0,1,1,1,0),S,S)

90

91 # -------------------------------------------------- #
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92 # CASO 3 - Small -Scale Rationality Phase

93 # -------------------------------------------------- #

94

95 # Matriz de preferencia - DM i

96 #Pi_plus = matrix(c(0,1,0,1,1,1,1,1,

97 # 0,0,0,0,1,1,1,1,

98 # 1,1,0,1,1,1,1,1,

99 # 0,1,0,0,1,1,1,1,

100 # 0,0,0,0,0,0,0,1,

101 # 0,0,0,0,1,0,0,1,

102 # 0,0,0,0,1,1,0,1,

103 # 0,0,0,0,0,0,0,0),S,S)

104

105 # Matriz de preferencia - DM j

106 #Pj_plus = matrix(c(0,0,0,0,0,0,0,0,

107 # 1,0,1,0,1,0,1,0,

108 # 1,0,0,0,1,0,1,0,

109 # 1,1,1,0,1,0,1,0,

110 # 1,0,0,0,0,0,0,0,

111 # 1,1,1,1,1,0,1,0,

112 # 1,0,0,0,1,0,0,0,

113 # 1,1,1,1,1,1,1,0),S,S)

114

115 # -------------------------------------------------- #

116 # CASO 4 - Large -Scale Rationality Phase

117 # -------------------------------------------------- #

118

119 # Matriz de preferencia - DM i

120 Pi_plus = matrix(c(0,1,1,1,1,1,1,1,

121 0,0,0,0,1,1,0,1,

122 0,1,0,1,1,1,1,1,

123 0,1,0,0,1,1,1,1,

124 0,0,0,0,0,1,0,1,

125 0,0,0,0,0,0,0,1,

126 0,1,0,0,1,1,0,1,

127 0,0,0,0,0,0,0,0),S,S)

128

129 # Matriz de preferencia - DM j

130 Pj_plus = matrix(c(0,0,0,0,0,0,0,0,
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131 1,0,1,0,1,0,0,0,

132 1,0,0,0,1,0,0,0,

133 1,1,1,0,1,0,0,0,

134 1,0,0,0,0,0,0,0,

135 1,1,1,1,1,0,1,0,

136 1,1,1,1,1,0,0,0,

137 1,1,1,1,1,1,1,0),S,S)

138

139 # Matrizes K_i e K_j

140 K_i = t(E %*% Pi_plus) # Encontrar o valor de K_i(s)

141 K_j = t(E %*% Pj_plus) # Encontrar o valor de K_j(s)

142

143

144 # ------------------------------------------------------------- #

145 # CASO h=1

146 # ------------------------------------------------------------- #

147

148 # --------------- Para o DM i -----------------

149

150 # Calculando B_1i

151 B_1i = (hadamard.prod(Ji , (t(K_i%*%E)))) + (hadamard.prod(D, (t(K_i%*

%E))))

152

153 # Calculando C_1i = Max(B_1i)

154 C_1i = cbind(apply(B_1i,1,max))

155

156 # Calculando (K_i - C_1i) e depois o sinal da diff - dif de quanto

tenho se permanecer e quanto terei se eu me mover

157 Dif_1_i = (K_i - C_1i)

158 Sign_Dif_1_i = sign(Dif_1_i)

159

160

161 # --------------- Para o DM j -----------------

162

163 # Calculando B_1j

164 B_1j = (hadamard.prod(Jj , (t(K_j%*%E))) + hadamard.prod(D, (t(K_j%*%E

))))

165

166 # Calculando C_1j = Max(B_1j)
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167 C_1j= cbind(apply(B_1j,1,max))

168

169 # Calculando (K_i - C_1i) e sinal da diff

170 Dif_1_j = (K_j - C_1j)

171 Sign_Dif_1_j = sign(Dif_1_j)

172

173

174 # -------------------------------------------------------------- #

175 # CASO h=2

176 # -------------------------------------------------------------- #

177

178

179 # Funcao Argmax

180

181 Argmax <- function ( mat ) {

182 result <- mat

183 for ( i in 1: nrow ( mat ) ) {

184 row <- mat [i , ]

185 max_index <- which.max ( row )

186 if (row [max_index] > row[i]){

187 row [max_index] <- 1

188 row [-max_index] <- 0

189 }

190 else {

191 row [i] <- 1

192 row [-i] <- 0

193 }

194 result [i , ] <- row

195 }

196 return ( result )

197 }

198

199

200 # Exemplo

201 #matriz <- matrix(c(1, 2, 3, 4, 8, 6, 7, 8, 9), nrow = 3)

202 #resultado <- Argmax(matriz)

203 #print(resultado)

204

205



141

206 # --------------- Para o DM i -----------------

207

208 # Calculando B_2i

209 y=(E-D)

210 q=hadamard.prod(Argmax(B_1j), y)

211 p=hadamard.prod(Argmax(B_1j), D)

212 r= (q %*% K_i) + (p %*% K_i)

213 v=t(r %*% E)

214 I=hadamard.prod(Ji, v)

215 II = (hadamard.prod(D, (t(K_i%*%E))))

216

217 B_2i = (I + II)

218

219

220 # Calculando C_2i = Max(B_2i)

221 C_2i = cbind(apply(B_2i,1,max))

222

223 # Calculando (K_2 - C_2i) e depois o sinal da diff - dif de quanto

tenho se permanecer e quanto terei se eu me mover

224 Dif_2_i = (K_i - C_2i)

225 Sign_Dif_2_i = sign(Dif_2_i)

226

227

228 # --------------- Para o DM j -----------------

229

230 # Calculando B_2j

231 y=(E-D)

232 q=hadamard.prod(Argmax(B_1i), y)

233 p=hadamard.prod(Argmax(B_1i), D)

234 r= (q %*% K_j) + (p %*% K_j)

235 v=t(r %*% E)

236 I=hadamard.prod(Jj, v)

237 II = (hadamard.prod(D, (t(K_j%*%E))))

238

239 B_2j = (I + II)

240

241 # Calculando C_2j = Max(B_2j)

242 C_2j= cbind(apply(B_2j,1,max))

243
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244 # Calculando (K_j - C_2j) e sinal da diff

245 Dif_2_j = (K_j - C_2j)

246 Sign_Dif_2_j = sign(Dif_2_j)

247

248

249

250 # ------------------------------ #

251 # Ci Function - DM i Inicia

252 # ------------------------------ #

253

254 Ci <- function(h){

255 if(h==1){

256 B_1i = (hadamard.prod(Ji , (t(K_i%*%E)))) + (hadamard.prod(D, (t(K

_i%*%E))))

257 C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha

258 Ci = C_1i

259 }

260 if(h==2){

261 B_2i = (( hadamard.prod(Ji , (t(((( hadamard.prod(Argmax(B_1j), (E-D

))) %*% K_i) + (( hadamard.prod(Argmax(B_1j), D)) %*% K_i)) %*%

E)))) + (hadamard.prod(D, (t(K_i%*%E)))))

262 C_2i = cbind(apply(B_2i,1,max)) # Max de cada linha

263 Ci = C_2i

264 }

265 if(h>2){

266 for (g in 3:h){

267 B_3i = (( hadamard.prod(Ji , (t(((( hadamard.prod(Argmax(B_2j), (E

-D))) %*% K_i) + (( hadamard.prod(Argmax(B_2j), D)) %*% K_i))

%*% E)))) + (hadamard.prod(D, (t(K_i%*%E)))))

268 C_3i = cbind(apply(B_3i,1,max)) # Max de cada linha

269 Ci = C_3i

270 }

271 }

272 Dif_h = (K_i - Ci) # dif de quanto tenho se permanecer e quanto

terei se eu me mover

273 Sign_Dif_h = sign(Dif_h)

274 if(h==1){

275 lista_resultados <- list(B_1i, Sign_Dif_h)

276 }



143

277 if(h==2){

278 lista_resultados <- list(B_2i, Sign_Dif_h)

279 }

280 if(h>2){

281 lista_resultados <- list(B_3i, Sign_Dif_h)

282 }

283 return(lista_resultados)

284

285 }

286

287

288 # ------------------------------ #

289 # Cj Function - DM j Inicia

290 # ------------------------------ #

291

292 Cj <- function(h){

293 if(h==1){

294 B_1j = (hadamard.prod(Jj , (t(K_j%*%E)))) + (hadamard.prod(D, (t(K

_j%*%E))))

295 C_1j = cbind(apply(B_1j,1,max)) # Max de cada linha

296 Cj = C_1j

297 }

298 if(h==2){

299 B_2j = (( hadamard.prod(Jj , (t(((( hadamard.prod(Argmax(B_1i), (E-D

))) %*% K_j) + (( hadamard.prod(Argmax(B_1i), D)) %*% K_j)) %*%

E)))) + (hadamard.prod(D, (t(K_j%*%E)))))

300 C_2j = cbind(apply(B_2j,1,max)) # Max de cada linha

301 Cj = C_2j

302 }

303 if(h>2){

304 for (g in 3:h){

305 B_3j = (( hadamard.prod(Jj , (t(((( hadamard.prod(Argmax(B_2i), (E

-D))) %*% K_j) + (( hadamard.prod(Argmax(B_2i), D)) %*% K_j))

%*% E)))) + (hadamard.prod(D, (t(K_j%*%E)))))

306 C_3j = cbind(apply(B_3j,1,max)) # Max de cada linha

307 Cj = C_3j

308 }

309 }
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310 Dif_J_h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto

terei se eu me mover

311 Sign_J_Dif_h = sign(Dif_J_h)

312 if(h==1){

313 lista_resultados <- list(B_1j, Sign_J_Dif_h)

314 }

315 if(h==2){

316 lista_resultados <- list( B_2j, Sign_J_Dif_h)

317 }

318 if(h>2){

319 lista_resultados <- list(B_3j, Sign_J_Dif_h)

320 }

321 return(lista_resultados)

322 }

A.6 SCRIPT DO R - CICLOS TABELA 2X2 - CÓDIGO Lh

1

2 #----------------------------------------------

3 # Jogos da Tabela Periodica 2x2

4 #----------------------------------------------

5

6 # Codigo para obter os resultados do DM i

7

8 library(matrixcalc)

9

10 S=4 # Quantidade de estados

11 E = rep(1,S) # Vetor de um's # Matriz de um 's

12 D = diag (x = 1, nrow=S, ncol=S) # Matriz diagonal

13

14 # Matriz de acessibilidade

15 Ji = matrix(c(0,0,1,0,

16 0,0,0,1,

17 1,0,0,0,

18 0,1,0,0),S,S)

19

20 Jj = matrix(c(0,1,0,0,

21 1,0,0,0,
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22 0,0,0,1,

23 0,0,1,0),S,S)

24

25 # --------------------- #

26 # Matrizes K_i e K_j

27 # --------------------- #

28

29 # Jogo 1 - ChNc | NcCh

30 #K_i = matrix(c(2, 3, 1, 4), ncol = 1)

31 #K_j = matrix(c(3, 4, 1, 2), ncol = 1)

32

33 # Jogo 2 - ChHa | HaCh

34 #K_i = matrix(c(2,3,1,4), ncol = 1)

35 #K_j = matrix(c(2,4,1,3), ncol = 1)

36

37 # Jogo 3 - ChPc | PcCh

38 #K_i = matrix(c(2,3,1,4), ncol = 1)

39 #K_j = matrix(c(1,4,2,3), ncol = 1)

40

41 # Jogo 4 - ChCo | CoCh

42 #K_i = matrix(c(2,3,1,4), ncol = 1)

43 #K_j = matrix(c(1,4,3,2), ncol = 1)

44

45 # Jogo 5 - ChAs

46 #K_i = matrix(c(2,3,1,4), ncol = 1)

47 #K_j = matrix(c(2,4,3,1), ncol = 1)

48

49 # Jogo 6 - ChSh

50 #K_i = matrix(c(2,3,1,4), ncol = 1)

51 #K_j = matrix(c(3,4,2,1), ncol = 1)

52

53 # Jogo 7 - ChPd

54 #K_i = matrix(c(2,3,1,4), ncol = 1)

55 #K_j = matrix(c(4,3,2,1), ncol = 1)

56

57 # Jogo 8 - ChDl

58 #K_i = matrix(c(2,3,1,4), ncol = 1)

59 #K_j = matrix(c(4,2,3,1), ncol = 1)

60
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61 # Jogo 9 - ChCm

62 #K_i = matrix(c(2,3,1,4), ncol = 1)

63 #K_j = matrix(c(4,1,3,2), ncol = 1)

64

65 # Jogo 10 - ChHr

66 #K_i = matrix(c(2,3,1,4), ncol = 1)

67 #K_j = matrix(c(4,1,2,3), ncol = 1)

68

69 # Jogo 11 - ChBa

70 #K_i = matrix(c(2,3,1,4), ncol = 1)

71 #K_j = matrix(c(4,2,1,3), ncol = 1)

72

73 # Jogo 12 - ChCh - Chicken Game

74 #K_i = matrix(c(2,3,1,4), ncol = 1)

75 #K_j = matrix(c(4,3,1,2), ncol = 1)

76

77 # Jogo 13 - BaNc

78 #K_i = matrix(c(3,2,1,4), ncol = 1)

79 #K_j = matrix(c(3,4,1,2), ncol = 1)

80

81 # Jogo 14 - BaHa

82 #K_i = matrix(c(3,2,1,4), ncol = 1)

83 #K_j = matrix(c(2,4,1,3), ncol = 1)

84

85 # Jogo 15 - BaPc

86 #K_i = matrix(c(3,2,1,4), ncol = 1)

87 #K_j = matrix(c(1,4,2,3), ncol = 1)

88

89 # Jogo 16 - BaCo

90 #K_i = matrix(c(3,2,1,4), ncol = 1)

91 #K_j = matrix(c(1,4,3,2), ncol = 1)

92

93 # Jogo 17 - BaAs

94 #K_i = matrix(c(3,2,1,4), ncol = 1)

95 #K_j = matrix(c(2,4,3,1), ncol = 1)

96

97 # Jogo 18 - BaSh

98 #K_i = matrix(c(3,2,1,4), ncol = 1)

99 #K_j = matrix(c(3,4,2,1), ncol = 1)
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100

101 # Jogo 19 - BaPd

102 #K_i = matrix(c(3,2,1,4), ncol = 1)

103 #K_j = matrix(c(4,3,2,1), ncol = 1)

104

105 # Jogo 20 - BaDl

106 #K_i = matrix(c(3,2,1,4), ncol = 1)

107 #K_j = matrix(c(4,2,3,1), ncol = 1)

108

109 # Jogo 21 - BaCm

110 #K_i = matrix(c(3,2,1,4), ncol = 1)

111 #K_j = matrix(c(4,1,3,2), ncol = 1)

112

113 # Jogo 22 - BaHr

114 #K_i = matrix(c(3,2,1,4), ncol = 1)

115 #K_j = matrix(c(4,1,2,3), ncol = 1)

116

117 # Jogo 23 - BaBa - Battle Game

118 #K_i = matrix(c(3,2,1,4), ncol = 1)

119 #K_j = matrix(c(4,2,1,3), ncol = 1)

120

121 # Jogo 24 = Jogo 11

122

123 # Jogo 25 - HrNc

124 #K_i = matrix(c(3,1,2,4), ncol = 1)

125 #K_j = matrix(c(3,4,1,2), ncol = 1)

126

127 # Jogo 26 - HrHa

128 #K_i = matrix(c(3,1,2,4), ncol = 1)

129 #K_j = matrix(c(2,4,1,3), ncol = 1)

130

131 # Jogo 27 - HrPc

132 #K_i = matrix(c(3,1,2,4), ncol = 1)

133 #K_j = matrix(c(1,4,2,3), ncol = 1)

134

135 # Jogo 28 - HrCo

136 #K_i = matrix(c(3,1,2,4), ncol = 1)

137 #K_j = matrix(c(1,4,3,2), ncol = 1)

138
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139 # Jogo 29 - HrAs

140 #K_i = matrix(c(3,1,2,4), ncol = 1)

141 #K_j = matrix(c(2,4,3,1), ncol = 1)

142

143 # Jogo 30 - HrSh

144 #K_i = matrix(c(3,1,2,4), ncol = 1)

145 #K_j = matrix(c(3,4,2,1), ncol = 1)

146

147 # Jogo 31 - HrPd

148 #K_i = matrix(c(3,1,2,4), ncol = 1)

149 #K_j = matrix(c(4,3,2,1), ncol = 1)

150

151 # Jogo 32 - HrDl

152 #K_i = matrix(c(3,1,2,4), ncol = 1)

153 #K_j = matrix(c(4,2,3,1), ncol = 1)

154

155 # Jogo 33 - HrCm

156 #K_i = matrix(c(3,1,2,4), ncol = 1)

157 #K_j = matrix(c(4,1,3,2), ncol = 1)

158

159 # Jogo 34 - HrHr - Hero

160 #K_i = matrix(c(3,1,2,4), ncol = 1)

161 #K_j = matrix(c(4,1,2,3), ncol = 1)

162

163 # Jogo 35 = Jogo 22

164 # Jogo 36 = Jogo 10

165

166 # Jogo 37 - CmNc

167 #K_i = matrix(c(2,1,3,4), ncol = 1)

168 #K_j = matrix(c(3,4,1,2), ncol = 1)

169

170 # Jogo 38 - CmHa

171 #K_i = matrix(c(2,1,3,4), ncol = 1)

172 #K_j = matrix(c(2,4,1,3), ncol = 1)

173

174 # Jogo 39 - CmPc

175 #K_i = matrix(c(2,1,3,4), ncol = 1)

176 #K_j = matrix(c(1,4,2,3), ncol = 1)

177
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178 # Jogo 40 - CmCo

179 #K_i = matrix(c(2,1,3,4), ncol = 1)

180 #K_j = matrix(c(1,4,3,2), ncol = 1)

181

182 # Jogo 41 - CmAs

183 #K_i = matrix(c(2,1,3,4), ncol = 1)

184 #K_j = matrix(c(2,4,3,1), ncol = 1)

185

186 # Jogo 42 - CmSh

187 #K_i = matrix(c(2,1,3,4), ncol = 1)

188 #K_j = matrix(c(3,4,2,1), ncol = 1)

189

190 # Jogo 43 - CmPd

191 #K_i = matrix(c(2,1,3,4), ncol = 1)

192 #K_j = matrix(c(4,3,2,1), ncol = 1)

193

194 # Jogo 44 - CmDl

195 #K_i = matrix(c(2,1,3,4), ncol = 1)

196 #K_j = matrix(c(4,2,3,1), ncol = 1)

197

198 # Jogo 45 - CmCm - Compromise Game

199 #K_i = matrix(c(2,1,3,4), ncol = 1)

200 #K_j = matrix(c(4,1,3,2), ncol = 1)

201

202 # Jogo 46 = Jogo 33

203 # Jogo 47 = Jogo 21

204 # Jogo 48 = Jogo 9

205

206 # Jogo 49 - DlNc

207 #K_i = matrix(c(1,2,3,4), ncol = 1)

208 #K_j = matrix(c(3,4,1,2), ncol = 1)

209

210 # Jogo 50 - DlHa

211 #K_i = matrix(c(1,2,3,4), ncol = 1)

212 #K_j = matrix(c(2,4,1,3), ncol = 1)

213

214 # Jogo 51 - DlPc

215 #K_i = matrix(c(1,2,3,4), ncol = 1)

216 #K_j = matrix(c(1,4,2,3), ncol = 1)
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217

218 # Jogo 52 - DlCo

219 #K_i = matrix(c(1,2,3,4), ncol = 1)

220 #K_j = matrix(c(1,4,3,2), ncol = 1)

221

222 # Jogo 53 - DlAs

223 #K_i = matrix(c(1,2,3,4), ncol = 1)

224 #K_j = matrix(c(2,4,3,1), ncol = 1)

225

226 # Jogo 54 - DlSh

227 #K_i = matrix(c(1,2,3,4), ncol = 1)

228 #K_j = matrix(c(3,4,2,1), ncol = 1)

229

230 # Jogo 55 - DlPd

231 #K_i = matrix(c(1,2,3,4), ncol = 1)

232 #K_j = matrix(c(4,3,2,1), ncol = 1)

233

234 # Jogo 56 - DlDl - Deadlock

235 #K_i = matrix(c(1,2,3,4), ncol = 1)

236 #K_j = matrix(c(4,2,3,1), ncol = 1)

237

238 # Jogo 57 = Jogo 44

239 # Jogo 58 = Jogo 32

240 # Jogo 59 = Jogo 20

241 # Jogo 60 = Jogo 8

242

243 # Jogo 61 - PdNc

244 #K_i = matrix(c(1,3,2,4), ncol = 1)

245 #K_j = matrix(c(3,4,1,2), ncol = 1)

246

247 # Jogo 62 - PdHa

248 #K_i = matrix(c(1,3,2,4), ncol = 1)

249 #K_j = matrix(c(2,4,1,3), ncol = 1)

250

251 # Jogo 63 - PdPc

252 #K_i = matrix(c(1,3,2,4), ncol = 1)

253 #K_j = matrix(c(1,4,2,3), ncol = 1)

254

255 # Jogo 64 - PdCo



151

256 #K_i = matrix(c(1,3,2,4), ncol = 1)

257 #K_j = matrix(c(1,4,3,2), ncol = 1)

258

259 # Jogo 65 - PdAs

260 #K_i = matrix(c(1,3,2,4), ncol = 1)

261 #K_j = matrix(c(2,4,3,1), ncol = 1)

262

263 # Jogo 66 - PdSh

264 #K_i = matrix(c(1,3,2,4), ncol = 1)

265 #K_j = matrix(c(3,4,2,1), ncol = 1)

266

267 # Jogo 67 - PdPd - Prisoner Dilema

268 #K_i = matrix(c(1,3,2,4), ncol = 1)

269 #K_j = matrix(c(4,3,2,1), ncol = 1)

270

271 # Jogo 68 = Jogo 55

272 # Jogo 69 = Jogo 43

273 # Jogo 70 = Jogo 31

274 # Jogo 71 = Jogo 19

275 # Jogo 72 = Jogo 7

276

277 # Jogo 73 - ShNc

278 #K_i = matrix(c(1,4,2,3), ncol = 1)

279 #K_j = matrix(c(3,4,1,2), ncol = 1)

280

281 # Jogo 74 - ShHa

282 #K_i = matrix(c(1,4,2,3), ncol = 1)

283 #K_j = matrix(c(2,4,1,3), ncol = 1)

284

285 # Jogo 75 - ShPc

286 #K_i = matrix(c(1,4,2,3), ncol = 1)

287 #K_j = matrix(c(1,4,2,3), ncol = 1)

288

289 # Jogo 76 - ShCo

290 #K_i = matrix(c(1,4,2,3), ncol = 1)

291 #K_j = matrix(c(1,4,3,2), ncol = 1)

292

293 # Jogo 77 - ShAs

294 #K_i = matrix(c(1,4,2,3), ncol = 1)
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295 #K_j = matrix(c(2,4,3,1), ncol = 1)

296

297 # Jogo 78 - ShSh - Stag Hunt

298 #K_i = matrix(c(1,4,2,3), ncol = 1)

299 #K_j = matrix(c(3,4,2,1), ncol = 1)

300

301 # Jogo 79 = Jogo 66

302 # Jogo 80 = Jogo 54

303 # Jogo 81 = Jogo 42

304 # Jogo 82 = Jogo 30

305 # Jogo 83 = Jogo 18

306 # Jogo 84 = Jogo 6

307

308 # Jogo 85 - AsNc

309 #K_i = matrix(c(1,4,3,2), ncol = 1)

310 #K_j = matrix(c(3,4,1,2), ncol = 1)

311

312 # Jogo 86 - AsHa

313 #K_i = matrix(c(1,4,3,2), ncol = 1)

314 #K_j = matrix(c(2,4,1,3), ncol = 1)

315

316 # Jogo 87 - AsPc

317 #K_i = matrix(c(1,4,3,2), ncol = 1)

318 #K_j = matrix(c(1,4,2,3), ncol = 1)

319

320 # Jogo 88 - AsCo

321 #K_i = matrix(c(1,4,3,2), ncol = 1)

322 #K_j = matrix(c(1,4,3,2), ncol = 1)

323

324 # Jogo 89 - AsAs - Assurance

325 #K_i = matrix(c(1,4,3,2), ncol = 1)

326 #K_j = matrix(c(2,4,3,1), ncol = 1)

327

328 # Jogo 90 = Jogo 77

329 # Jogo 91 = Jogo 65

330 # Jogo 92 = Jogo 53

331 # Jogo 93 = Jogo 41

332 # Jogo 94 = Jogo 29

333 # Jogo 95 = Jogo 17
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334 # Jogo 96 = Jogo 5

335

336 # Jogo 97 - CoNc

337 #K_i = matrix(c(2,4,3,1), ncol = 1)

338 #K_j = matrix(c(3,4,1,2), ncol = 1)

339

340 # Jogo 98 - CoHa

341 #K_i = matrix(c(2,4,3,1), ncol = 1)

342 #K_j = matrix(c(2,4,1,3), ncol = 1)

343

344 # Jogo 99 - CoPc

345 #K_i = matrix(c(2,4,3,1), ncol = 1)

346 #K_j = matrix(c(1,4,2,3), ncol = 1)

347

348 # Jogo 100 - CoCo - Coordination

349 #K_i = matrix(c(2,4,3,1), ncol = 1)

350 #K_j = matrix(c(1,4,3,2), ncol = 1)

351

352 # Jogo 101 = Jogo 88

353 # Jogo 102 = Jogo 76

354 # Jogo 103 = Jogo 64

355 # Jogo 104 = Jogo 52

356 # Jogo 105 = Jogo 40

357 # Jogo 106 = Jogo 28

358 # Jogo 107 = Jogo 16

359 # Jogo 108 = Jogo 4

360

361 # Jogo 109 - PcNc

362 #K_i = matrix(c(3,4,2,1), ncol = 1)

363 #K_j = matrix(c(3,4,1,2), ncol = 1)

364

365 # Jogo 110 - PcHa

366 #K_i = matrix(c(3,4,2,1), ncol = 1)

367 #K_j = matrix(c(2,4,1,3), ncol = 1)

368

369 # Jogo 111 - PcPc - Peace

370 #K_i = matrix(c(3,4,2,1), ncol = 1)

371 #K_j = matrix(c(1,4,2,3), ncol = 1)

372
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373 # Jogo 112 = Jogo 99

374 # Jogo 113 = Jogo 87

375 # Jogo 114 = Jogo 75

376 # Jogo 115 = Jogo 63

377 # Jogo 116 = Jogo 51

378 # Jogo 117 = Jogo 39

379 # Jogo 118 = Jogo 27

380 # Jogo 119 = Jogo 15

381 # Jogo 120 = Jogo 3

382

383 # Jogo 121 - HaNc

384 #K_i = matrix(c(3,4,1,2), ncol = 1)

385 #K_j = matrix(c(3,4,1,2), ncol = 1)

386

387 # Jogo 122 - HaHa - Harmony

388 #K_i = matrix(c(3,4,1,2), ncol = 1)

389 #K_j = matrix(c(2,4,1,3), ncol = 1)

390

391 # Jogo 123 = Jogo 110

392 # Jogo 124 = Jogo 98

393 # Jogo 125 = Jogo 86

394 # Jogo 126 = Jogo 74

395 # Jogo 127 = Jogo 62

396 # Jogo 128 = Jogo 50

397 # Jogo 129 = Jogo 38

398 # Jogo 130 = Jogo 26

399 # Jogo 131 = Jogo 14

400 # Jogo 132 = Jogo 2

401

402 # Jogo 133 - NcNc - Concord

403 K_i = matrix(c(2,4,1,3), ncol = 1)

404 K_j = matrix(c(3,4,1,2), ncol = 1)

405

406 # Jogo 134 = Jogo 121

407 # Jogo 135 = Jogo 109

408 # Jogo 136 = Jogo 97

409 # Jogo 137 = Jogo 85

410 # Jogo 138 = Jogo 73

411 # Jogo 139 = Jogo 61
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412 # Jogo 140 = Jogo 49

413 # Jogo 141 = Jogo 37

414 # Jogo 142 = Jogo 25

415 # Jogo 143 = Jogo 13

416 # Jogo 144 = Jogo 1

417

418 # --------------------- #

419 # Funcao Argmax

420 # --------------------- #

421

422 Argmax <- function ( mat ) {

423 result <- mat

424 for ( i in 1: nrow ( mat ) ) {

425 row <- mat [i , ]

426 max_index <- which.max ( row )

427 if (row [max_index] > row[i]){

428 row [max_index] <- 1

429 row [-max_index] <- 0

430 }

431 else {

432 row [i] <- 1

433 row [-i] <- 0

434 }

435 result [i , ] <- row

436 }

437 return ( result )

438 }

439

440 # ------------------------------ #

441 # Ci Function - DM i Inicia

442 # ------------------------------ #

443

444 Ci <- function(h){

445 B_1i = (hadamard.prod(Ji , (t(K_i%*%E)))) + (hadamard.prod(D, (

t(K_i%*%E))))

446 C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha

447 Ci=C_1i

448 if(h==1){

449 Ci=C_1i
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450 Dif_h = (K_i - Ci) # dif de quanto tenho se permanecer e

quanto terei se eu me mover

451 Sign_Dif_h = sign(Dif_h)

452 #lista_resultados <- list(B_1i, Sign_Dif_h)

453 lista_resultados <- list(Sign_Dif_h)

454 }

455 if(h>1){

456 B_1j = (hadamard.prod(Jj , (t(K_j%*%E)))) + (hadamard.prod(D,

(t(K_j%*%E))))

457 C_1j = cbind(apply(B_1j,1,max)) # Max de cada linha

458 B_2i = (( hadamard.prod(Ji , (t(((( hadamard.prod(Argmax(B_1j),

(E-D))) %*% K_i) + (( hadamard.prod(Argmax(B_1j), D)) %*%

K_i)) %*% E)))) + (hadamard.prod(D, (t(K_i%*%E)))))

459 C_2i = cbind(apply(B_2i,1,max)) # Max de cada linha

460 if(h==2){Ci=C_2i

461 Dif_h = (K_i - Ci) # dif de quanto tenho se permanecer e

quanto terei se eu me mover

462 Sign_Dif_h = sign(Dif_h)

463 #lista_resultados <- list(B_2i, Sign_Dif_h)

464 lista_resultados <- list(Sign_Dif_h)

465 }

466 if(h>2){

467 C_0j <- K_j

468 for (g in 3:h){

469 B_2j = (( hadamard.prod(Jj , (t(((( hadamard.prod(Argmax(

B_1i), (E-D))) %*% C_0j) + (( hadamard.prod(Argmax(B

_1i), D)) %*% K_j)) %*% E)))) + (hadamard.prod(D, (

t(K_j%*%E)))))

470 C_2j = cbind(apply(B_2j,1,max)) # Max de cada linha

471 B_3i = (( hadamard.prod(Ji , (t(((( hadamard.prod(Argmax(

B_2j), (E-D))) %*% C_1i) + (( hadamard.prod(Argmax(B

_2j), D)) %*% K_i)) %*% E)))) + (hadamard.prod(D, (

t(K_i%*%E)))))

472 C_3i = cbind(apply(B_3i,1,max)) # Max de cada linha

473 B_1i <- B_2i

474 B_2i <- B_3i

475 C_1i <- C_2i

476 C_2i <- C_3i

477 C_0j <- C_1j
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478 C_1j <- C_2j

479 }

480 Ci = C_3i

481 Dif_h = (K_i - Ci) # dif de quanto tenho se permanecer e

quanto terei se eu me mover

482 Sign_Dif_h = sign(Dif_h)

483 #lista_resultados <- list(B_3i, Sign_Dif_h)

484 lista_resultados <- list(Sign_Dif_h)

485 }

486 }

487 return(lista_resultados)

488

489 }

490

491 # ------------------------------ #

492 # Cj Function - DM j Inicia

493 # ------------------------------ #

494

495

496 Cj <- function(h){

497 B_1j = (hadamard.prod(Jj , (t(K_j%*%E)))) + (hadamard.prod(D, (t(K_j

%*%E))))

498 C_1j = cbind(apply(B_1j,1,max)) # Max de cada linha

499 Cj=C_1j

500 if(h==1){

501 Cj=C_1j

502 Dif_h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto

terei se eu me mover

503 Sign_Dif_h = sign(Dif_h)

504 #lista_resultados <- list(B_1j, Sign_Dif_h)

505 lista_resultados <- list(Sign_Dif_h)

506 }

507 if(h>1){

508 B_1i = (hadamard.prod(Ji , (t(K_i%*%E)))) + (hadamard.prod(D, (t(K

_i%*%E))))

509 C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha

510 B_2j = (( hadamard.prod(Jj , (t(((( hadamard.prod(Argmax(B_1i), (E-D

))) %*% K_j) + (( hadamard.prod(Argmax(B_1i), D)) %*% K_j)) %*%

E)))) + (hadamard.prod(D, (t(K_j%*%E)))))
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511 C_2j = cbind(apply(B_2j,1,max)) # Max de cada linha

512 if(h==2){Cj=C_2j

513 Dif_h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto

terei se eu me mover

514 Sign_Dif_h = sign(Dif_h)

515 #lista_resultados <- list(B_2j, Sign_Dif_h)

516 lista_resultados <- list(Sign_Dif_h)

517 }

518 if(h>2){

519 C_0i <- K_i

520 for (g in 3:h){

521 B_2i = (( hadamard.prod(Ji , (t(((( hadamard.prod(Argmax(B_1j),

(E-D))) %*% C_0i) + (( hadamard.prod(Argmax(B_1j), D)) %*%

K_i)) %*% E)))) + (hadamard.prod(D, (t(K_i%*%E)))))

522 C_2i = cbind(apply(B_2i,1,max)) # Max de cada linha

523 B_3j = (( hadamard.prod(Jj , (t(((( hadamard.prod(Argmax(B_2i),

(E-D))) %*% C_1j) + (( hadamard.prod(Argmax(B_2i), D)) %*%

K_j)) %*% E)))) + (hadamard.prod(D, (t(K_j%*%E)))))

524 C_3j = cbind(apply(B_3j,1,max)) # Max de cada linha

525 B_1j <- B_2j

526 B_2j <- B_3j

527 C_1j <- C_2j

528 C_2j <- C_3j

529 C_0i <- C_1i

530 C_1i <- C_2i

531 }

532 Cj = C_3j

533 Dif_h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto

terei se eu me mover

534 Sign_Dif_h = sign(Dif_h)

535 #lista_resultados <- list(B_3j, Sign_Dif_h)

536 lista_resultados <- list(Sign_Dif_h)

537 }

538 }

539 return(lista_resultados)

540

541 }

542

543 result_i <- list()
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544 result_j <- list()

545

546

547 # Matriz Resultados

548

549 matriz_resultados_i <- matrix(nrow = length(K_i), ncol = 0)

550 matriz_resultados_j <- matrix(nrow = length(K_j), ncol = 0)

551

552 #result <- list()

553 for (h in 1:20){

554 result_i[h] <- Ci(h)[1]

555 result_j[h] <- Cj(h)[1]

556 vetor_atual_i <- result_i[[h]]

557 vetor_atual_j <- result_j[[h]]

558 matriz_resultados_i <- cbind(matriz_resultados_i, vetor_atual_i)

559 matriz_resultados_j <- cbind(matriz_resultados_j, vetor_atual_j)

560 lista_matriz_resultados <- list(matriz_resultados_i, matriz_

resultados_j)}

561 print(lista_matriz_resultados)
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