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RESUMO

Decisoes cotidianas podem levar a situagdes conflituosas em que as partes com poder de
decisdo podem ter interesses distintos em um determinado contexto. Nesse cendrio, o uso de
métodos de resolugdo de conflitos surge como uma abordagem estratégica para representar e
analisar tais situacdes. Assim, esta tese visa contribuir para a andlise da estabilidade em conflitos
com horizonte varidvel, utilizando métodos matriciais no Modelo de Grafos para Resolugao de
Conflitos (GMCR). Mais especificamente, propusemos resultados sobre representacdes matriciais
para determinar estados estdveis de acordo com os conceitos de estabilidade sequencial de ordem
superior (m-SEQ), Maximin;, e movimento limitado (L;) no ambito do GMCR considerando
conflitos bilaterais e multilaterais. Com base nos sistemas 16gicos ja existentes na literatura, sdo
desenvolvidos os sistemas matriciais para 2 ou mais tomadores de decisao (DMs).

Com os métodos propostos, andlises de estabilidade com horizonte varidvel em conflitos en-
volvendo um grande nimero de estados ou DMs podem ser feitas de forma eficiente. Apos o
desenvolvimento dos sistemas matriciais, a fim de demonstrar a utilidade das representagdes
matriciais obtidas, foram feitas aplicagdes da representacdo matricial m-SEQ para o caso de uma
disputa com dois DMs, o cldssico jogo Matching Pennies, e para o caso de n DMs, o conflito
da renovacdo de area de instalacdo industrial privada. No caso da representacao matricial da
estabilidade Maximiny, realizamos a aplicagdo dos métodos propostos na andlise da Fase 3
do conflito entre Sun Belt e o0 Governo da Colimbia Britanica e demonstramos a eficiéncia
do método matricial e o tempo computacional a partir da aplicacdo do conflito do Dilema dos
Prisioneiros para n DMs. Por fim, no caso da representacdo matricial da estabilidade L, foram
realizadas trés aplicacdes: o Dilema dos prisioneiros para 2 decisores para ilustrar o método,
a andlise das 4 fases cognitivas do conflito de selecao tecnoldgica até o horizonte h = 3, e
exploramos a existéncia e os tamanhos dos ciclos na estabilidade L; aplicado a todos os jogos em
forma normal 2 x 2. Como esperado, as representagdes matriciais propostas quando comparadas

ao sistema logico apresentaram maior eficiéncia e facilidade nos cdlculos de estabilidade.

Palavras-chave: Modelo de Grafos, Nog¢des de Estabilidade, Representacdo Matricial, Hori-

zonte Variavel, Ciclos.



ABSTRACT

Everyday decisions can lead to conflict situations in which the parties with decision-making
power may have different interests in a given context. In this scenario, the use of conflict
resolution methods has emerged as a strategic approach to represent and analyze such situations.
Thus, this thesis aims to contribute to the analysis of stability in conflicts with variable horizons,
using matrix methods in the Graph Model for Conflict Resolution (GMCR). Specifically, we
propose results on matrix representations to determine stable states according to the concepts of
higher-order sequential stability (m-SEQ), Maximiny, and bounded motion (L) in the context of
GMCR, considering bilateral and multilateral conflicts. Based on existing logical systems in the
literature, matrix systems for 2 or more decision makers (DMs) are developed. With the proposed
methods, stability analyses with variable horizons in conflicts involving a large number of states
or DMs can be carried out efficiently. After the development of the matrix systems, in order to
demonstrate the usefulness of the obtained matrix representations, applications of the m-SEQ
matrix representation were made to the case of a dispute with two DMs, the classic Matching
Pennies game, and to the case of n DMs, the conflict over the renovation of a private industrial
site. In the case of the matrix representation of Maximiny, stability, we applied the proposed
methods to the analysis of Phase 3 of the conflict between the Sun Belt and the Government of
British Columbia, and demonstrated the efficiency of the matrix method and the computational
time when applying the Prisoner’s Dilemma conflict to » DMs. Finally, in the case of the
matrix representation of stability L, three applications were made: the Prisoner’s Dilemma
for 2 decision makers to illustrate the method, the analysis of the 4 cognitive phases of the
technological choice conflict up to the horizon & = 3, and we explored the existence and sizes
of cycles in stability L; applied to all games in normal form 2 x 2. As expected, the proposed
matrix representations showed greater efficiency and ease in stability computations compared to

the logical system.

Keywords: Graph Model, Stability Notions, Matrix Representation, Variable Horizon, Cycles.
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1 INTRODUCAO

Diariamente lidamos com a necessidade de tomadas de decisdes em nossa vida
pessoal, profissional ou académica, buscando diversas formas que possam ajudar em nossas
escolhas. A partir do momento em que cada decisor toma caminhos diferentes, isso pode afeta-
los mutualmente, gerando possiveis conflitos. Em uma tomada de decisdo racional, o tomador
de decisdo (decision maker - DM) precisa definir quais objetivos ele deseja alcancar e avaliar, de
forma estratégica, quais possiveis movimentos ele pode realizar a fim de que obtenha o melhor
ganho para ele.

O uso de métodos de resolugdo de conflitos pode facilitar a finalizagdo de conflitos,
a fim de obter ganhos para todos, podendo ser utilizado em media¢cdes e negociacdes. Esses
métodos baseados em resultados de andlise de estabilidade do modelo fornecem previsoes,
sugestoes e possiveis solucdes que auxiliam na tomada de decisdes, avaliando as possiveis
estratégias de resolucdo de conflitos.

Levando em considerac@o conceitos de andlise de conflitos e teoria dos jogos, foi
proposto, por Kilgour et al. em 1987, um modelo matemadtico que torna capaz a modelagem e
andlise de situagdes de conflitos estratégicos. Esse modelo € conhecido como modelo de grafo
para resolucao de conflitos (GMCR) e visa acomodar diversos comportamentos presentes nos
DMs em sua andlise de estabilidade, podendo ser adaptado para situacdes diversas.

Para tomar decisdes mais coerentes € aumentar o ganho em relacdo a escolha rea-
lizada, um DM precisa estar ciente de suas principais caracteristicas e ter no¢ao dos possiveis
comportamentos que os seus oponentes podem ter no decurso de um conflito. A fim de pre-
servar que nenhum DM em um determinado conflito desvie da solucdo sugerida, a andlise de
estabilidade busca possiveis solucdes para garantir isso em um conflito.

Dada uma escolha de acdo para cada um dos DMs envolvidos no conflito, temos
um cendrio do conflito, que é denominado estado do conflito. A andlise de estabilidade visa
determinar, para cada estado, os possiveis DMs que tenham incentivo de mudar ou ndo as suas
possiveis acoes. Como existem diversos critérios que avaliam este incentivo, também existem
diferentes definicoes de estabilidade que visam capturar diferentes tipos de comportamentos
que podem surgir ao longo de um conflito estratégico. Em situagdes em que um DM nio tem
incentivo para se desviar de um estado, este estado é conhecido como estado estdvel para este

DM. No caso em que nenhum dos DMs, envolvidos no conflito, t€m incentivo para se desviar
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de um estado de acordo com uma definicdo de estabilidade, entdo esse estado é chamado de
equilibrio para esta nog¢ao de estabilidade.

As defini¢des de estabilidades mais usuais na literatura sobre o modelo de grafo para
resolugdo de conflitos (GMCR) sao: Nash (NASH, 1950; NASH, 1951), metarracionalidade geral
(GMR) (HOWARD, 1971), metarracionalidade simétrica (SMR) (HOWARD, 1971), estabilidade
sequencial (SEQ) (FRASER; HIPEL, 1984), estabilidade sequencial simétrica (SSEQ) (REGO;
VIEIRA, 2016), sequencial de ordem superior (m-SEQ) (REGO; OLIVEIRA, 2020), estabilidade
maximin no horizonte 7 (Maximin,) (REGO; VIEIRA, 2019) e a estabilidade movimento
limitado no horizonte & (L;) (KILGOUR, 1985). Intuitivamente, na estabilidade de Nash, cada
DM, ignorando as possiveis reagdes que os oponentes podem ter, verifica se ele pode ou nao
alcancar um estado mais preferivel para ele. Nas estabilidades GMR e SEQ, o DM focal, ou
seja, decisor ou agente cujas preferéncias e estratégias estdo sendo analisadas em um momento
especifico no conflito, verifica se os oponentes podem sanciond-lo levando o conflito a um
estado que ndo € preferivel ao estado inicial para o DM focal, sendo que esses conceitos diferem
entre si pelo fato de que no conceito SEQ as reagdes dos adversdrios devem sempre trazer uma
melhora para a situagdo deles, enquanto que no conceito GMR isso ndo necessariamente ocorre.
A estabilidade SEQ €, portanto, um conceito de estabilidade mais forte no sentido de que as
reacdes ao movimento inicial de DM focal sdo mais plausiveis. Ja nos conceitos SMR e SSEQ,
além do DM focal analisar as respostas que podem ser dadas pelos seus oponentes, exatamente
como ocorre nos conceitos GMR e SEQ, respectivamente, o DM focal também analisa se ele
consegue escapar, da situacdo imposta pelos seus oponentes, para uma situacao que seja melhor
do que o estado inicial em que o0 DM focal se encontrava.

Porém, na estabilidade SEQ os oponentes podem reagir, saindo de um estado que
€ SEQ estavel para eles apenas para punir o DM focal. Esse movimento torna questionavel
a plausibilidade de tais reacdes. No entanto, a estabilidade m-SEQ evita que essas reagdes
acontecam, impossibilitando que um DM deixe um estado SEQ estavel para sancionar o DM
focal, se tornando uma ac¢do mais plausivel. Ja para o caso do conceito solucdo L;, o DM focal
antecipa h passos a frente qual serd o cendrio final do conflito, levando em consideracao que
os DMs sempre irdo mudar as suas agdes a fim de obter o melhor cendrio possivel para eles.
No conceito maximiny, o DM focal também antecipa % passos a frente qual serd o estado final
do conflito, mas diferente da estabilidade Lj,, o DM focal acredita que os oponentes sempre se
movem para o pior cendrio para o DM focal.

Apesar das diversas vantagens que o GMCR apresenta, em circunstancias onde o
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nimero de estados ou DMs € expressivamente grande (ou até em alguns casos considerados
pequenos) realizar a andlise de estabilidade dos estados de um conflito manualmente pode tornar-
se uma tarefa exaustiva. Desta forma, faz-se necessario o uso de métodos computacionais para
buscar estados estaveis no modelo, com o intuito de facilitar e auxiliar as andlises de forma mais
répida e eficiente. Estes métodos computacionais sdo baseados em representa¢des matriciais de
conceitos de solugdo para o GMCR, que podem ser codificados conforme a necessidade de cada
representacio matricial.

Atualmente na literatura sobre 0 GMCR € possivel encontrar diversos trabalhos
que apresentam representagdes matriciais de varios conceitos de estabilidades do GMCR. Por
exemplo, no trabalho da Xu et al. em 2007 e em 2009 foram propostas representagcdes matriciais
de modelos grafos com varios niveis de preferéncia para o caso de conflitos com dois DMs e,
mais tarde, em outro trabalho Xu et al. em 2010 expandiram estes resultados para multiplos DMs.
Xu et al. em 2011 propuseram representa¢des matriciais dos conceitos solugdo utilizando GMCR
em conflitos onde eram considerados multiplos decisores com preferéncia incerta. Wu et al. em
2021, utilizou expressdes matriciais para representar relacdes de preferéncia reciproca de DMs,
movimentos unilaterais (UMs) e melhorias unilaterais fuzzy (FUIs). Em 2021 Régo e Vieira,
propuseram representacdes matriciais para obtencao de estabilidades no GMCR com preferéncias
probabilisticas, analisando para quais valores dos pardmetros o, 3 ¢ ¥ os estados satisfazem
certas nogoes de estabilidade. Vale ressaltar que as ideias relacionadas a representacdes matriciais
propostas por Xu ef al. em 2007, também foram adaptados para outras extensoes do GMCR, tais
como: GMCR com preferéncias incertas (XU; KILGOUR; HIPEL, 2007), (XU; KILGOUR;
HIPEL, 2011), para andlise de status quo (XU et al., 2009), para aprimorar a implementacao
de andlises de estabilidade mista (ZHAO et al., 2019), e também para desenvolver um método
baseado em matriz para uma andlise inversa (WANG et al., 2018). A representa¢do matricial de
conceitos de solu¢ao com horizonte varidvel é pouco explorada na literatura do GMCR.

As representacdes matriciais existentes no GMCR auxiliam também na avaliagdo da
estabilidade e na implanta¢do de novos conceitos de estabilidade por meio do desenvolvimento
de algoritmos através da conversdo do sistema l6gico usual para um sistema matricial. Aplicando
a codificacdo de matrizes no ambito do GMCR, por meio de operacdes matriciais, as andlises de
estabilidade sdo celeremente encontradas. A partir da ideia dos artigos mencionados no para-
grafo anterior motivou-se o desenvolvimento de representacdes matriciais para os conceitos de
estabilidades sequenciais de ordem superior (m — SEQ), estabilidade Maximiny, e a estabilidade

movimento limitado (L).
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A primeira contribui¢cdo dessa tese foi propor representacdes matriciais para o
conceito de estabilidade sequencial de ordem superior no ambito do GMCR, considerando
conflitos bilaterais e multilaterais. Com base nos sistemas logicos j4 existentes na literatura,
foram desenvolvidos sistemas matriciais para auxiliar na obtencdo de estabilidade, de acordo com
este conceito, em conflitos com dois e com multiplos decisores. Apds o desenvolvimento dos
sistemas matriciais, foram realizadas aplicacdes a fim de ilustrar os procedimentos encontrados.
Para a aplicagdo da representagdo matricial m — SEQ para o caso de uma disputa com dois
DMs, consideramos o jogo classico “Matching Pennies” (GIBBONS, 1992) e, para o caso com
n-DMs, consideramos o Conflito de Renovacao de Instalagdao Industrial Privada (WALKER;
BOUTILIER; HIPEL, 2010). Com base nessas aplicacdes, mostramos como a representa¢ao
matricial proposta é mais eficiente, no sentido de facilitar e otimizar a obtencdo de estados
estdveis de acordo com esse conceito.

A segunda contribui¢do dessa tese foi o desenvolvimento de métodos matriciais
para determinar estados estdveis de acordo com o conceito de estabilidade Maximiny, e algumas
de suas variantes. Neste conceito de estabilidade, ndo € necessdrio ter conhecimento prévio
sobre as preferéncias de outros DMs no conflito, e € facilmente adequado para modelagem de
conflitos nos quais os DMs tém perfis cautelosos. Os conceitos cldssicos de estabilidade, Nash,
GMR e SMR sdo casos particulares da estabilidade Maximiny,, para horizonte igual a 1, 2 e 3,
respectivamente (REGO; VIEIRA, 2019). Com os métodos propostos neste trabalho, a analise
de estabilidade com horizonte varidvel em conflitos envolvendo um grande nimero de estados ou
DMs pode ser feita eficientemente. Analisamos um conflito real descrito na literatura do GMCR,
conhecido como o confronto entre o Sun Belt e o Governo de British Columbia (OBEIDI;
HIPEL, 2005). Além disso, abordamos um conflito amplamente estudado na teoria dos jogos, o
Dilema dos Prisioneiros, adaptado para multiplos jogadores. O objetivo, desta ultima aplicacao,
¢ examinar o tempo necessdrio para realizar andlises de estabilidade com base nos resultados
matriciais que serdo apresentados, a medida que o nimero de DMs aumenta.

A terceira contribuicdo dessa tese foi a representacdo matricial da estabilidade
movimento limitado (L;). Neste conceito o DM antecipa, um certo nimero de passos a frente,
qual serd o cendrio final do conflito, considerando que os DMs mudam sempre as suas agdes
para alcangar o melhor cendrio final possivel para eles. Diferente do Maximiny,, € necessario
ter um conhecimento completo sobre as preferéncias dos outros DMs. Demonstramos que as
estabilidades L;, podem ser derivadas das representacdes matriciais fornecidas e implementamos

essas operacdes computacionalmente. A metodologia € detalhadamente ilustrada na aplicag¢do do
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Dilema dos Prisioneiros, e na andlise do conflito real de sele¢do tecnoldgica em neurociéncia na
China (ZHOU; WANG, 2018) utilizando o conceito L. Esta abordagem também nos permitiu
explorar o comportamento dindmico e varidvel associado a estabilidade L, (FANG; HIPEL;
KILGOUR, 1993) em todos os jogos 2 x 2, conforme descrito na tabela periddica (BRUNS,

2015b), incluindo a identificacdo dos respectivos ciclos em cada jogo.

1.1 OBJETIVO GERAL

O objetivo principal desta tese é desenvolver representacdes matriciais de alguns
conceitos de estabilidade com horizontes varidveis no ambito do modelo de grafos para resolugdo
de conflitos. Dessa forma, as representacOes matriciais sao propostas para determinar, eficiente-
mente, os estados estdveis de um conflito conforme os conceitos de estabilidades sequenciais de

ordem superior, estabilidade Maximiny, e a estabilidade do movimento limitado com horizonte /.

1.2 OBJETIVOS ESPECIFICOS

No intuito de alcancar o objetivo geral desta tese, temos como objetivos especificos:

* Revisar a literatura referente ao GMCR e acerca de trabalhos que fornecem representacdes
matriciais de conceitos de estabilidades desse modelo, como também as defini¢des de
estabilidade m — SEQ, Maximiny, e Lj, ;

* Desenvolver a representacdo matricial das estabilidades sequenciais de ordem superior
para conflitos com dois e n—DMs;

* Desenvolver a representacdo matricial para o conceito de estabilidade Maximin com
horizonte 4 e algumas de suas variantes para conflitos bilaterais e multilaterais;

* Desenvolver a representacdo matricial para o conceito de estabilidade do movimento
limitado com horizonte & para conflitos bilaterais;

* Desenvolver e aplicar anélises ciclicas do conceito de estabilidade Lj;

* Implementar as representa¢des matriciais dos conceitos de estabilidade que foram desen-
volvidos nesta tese utilizando o software R;

* Aplicar os resultados obtidos em conflitos estratégicos, com o intuito de ilustrar a utilidade

das ferramentas desenvolvidas.
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1.3 METODOS E PROCEDIMENTOS

Para elaboracgdo desta tese, realizamos um amplo estudo acerca de trabalhos exis-
tentes na literatura sobre o GMCR. Identificamos que, recentemente, a drea de andlise de
estabilidade relacionada ao GMCR tem recebido muita atenc¢ao ao longo dos tltimos anos, com
varios conceitos de estabilidades sendo propostos para conflitos com multiplos DMs. Dessa
forma, observamos as complexidades existentes quando € necessario realizar anélises de estabili-
dade de acordo com alguns desses conceitos, em conflitos maiores, em termos de nimeros de
DMs ou estados, por conta da exaustio e inviabilidade dos cédlculos utilizando as formas 16gicas
desses conceitos de estabilidades.

Motivados e inspirados pelos trabalhos Xu ef al. nos anos de 2009 e 2010, que
apresentam formas mais eficazes de obter estados estdveis de acordo com as noc¢des de estabi-
lidades mais usuais na literatura do GMCR, ou seja, (Nash, GMR, SMR e SEQ) por meio de
representacdes matriciais, observamos a necessidade de ampliar essa ideia de representacdes
matriciais para otimizar a obten¢ao de estados estdveis de acordo com algumas dessas no¢des de

estabilidade com horizonte variavel propostas no GMCR.

1.4 ESTRUTURA DA TESE

Incluindo este capitulo introdutorio, esta tese estd dividida em seis capitulos. No
Capitulo 2, realizamos uma revisdo da literatura sobre os principais conceitos que serdo abordados
neste trabalho, ou seja, as principais componentes do GMCR, algumas representacdes matriciais
de conceitos cldssicos e, também, os conceitos de solucdes que serdo utilizados ao longo da
pesquisa.

No Capitulo 3, sdo desenvolvidas representacOes matriciais para a estabilidade
sequencial de ordem superior tanto para o caso bilateral, como para o caso multilateral. Apre-
sentamos também os teoremas obtidos, especificando como as estabilidade, de acordo com
essa nocao, podem ser calculadas a partir das representacdes propostas. Adicionalmente, sao
apresentadas duas aplicacdes a fim de ilustrar o uso das representacdes matriciais propostas.

No Capitulo 4, apresentamos as representagdes matriciais relacionadas ao conceito de
estabilidade Maximiny, para conflitos com dois e multiplos DMs. As adaptacdes necessdrias para

lidar com conflitos em que considera-se a credibilidade da estabilidade Maximin;, também sao
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descritas neste capitulo. Ilustramos também as representacdes matriciais obtidas para representar
o conceito de Maximiny, no conflito entre Sun Belt e 0 Governo da Colimbia Britanica e no
Dilema dos prisioneiros para n DMs.

No Capitulo 5, apresentamos os resultados obtidos acerca do trabalho que desen-
volvemos para obter representacdes matriciais para a estabilidade do movimento limitado. Os
teoremas apresentados, sdo referentes a adaptacdo da forma légica deste conceito em representa-
¢Oes matriciais. Com o intuito de auxiliar no entendimento da praticidade da forma matricial
do L, ilustramos este conceito no conflito referente a selecdo da tecnologia neurocientifica na
China, consideradas nesse conflito e no Dilema dos prisioneiro considerando o horizonte & = 3.
Além disso, analisamos os ciclos na estabilidade L; e ilustramos essa analise ciclica utilizando
0s jogos da tabela periddica para jogos 2 X 2.

No Capitulo 6, sdao apresentadas as principais conclusdes obtidas ao longo do desen-
volvimento desta tese. Uma breve recapitulacdo sistemética dos resultados apresentados nos
capitulos anteriores € realizada e, também, apresentamos as consideragdes finais e as sugestoes

para trabalhos futuros.

1.5 SUPORTE COMPUTACIONAL

O principal instrumento utilizado para a constru¢do desta tese foi uma ferramenta de
producdo de textos matematicos e cientificos com elevada qualidade tipografica conhecida como
IATEX ! . Foi utilizada uma versio online do IATEX oferecida pelo site Overleaf, facilitando a cons-
trucdo da tese em tempo real, ja que o orientador, o co-orientador e a doutoranda encontravam-se
em diferentes estados do Brasil, facilitando no trabalho remoto da tese. Também foi utilizado o
software estatistico R 2 na construcio dos algoritmos necessarios para a representagio matricial

das estabilidades.

Para mais informacdes e detalhes sobre o sistema de tipografia LATEX visitar http://www.tex.ac.uk/CTAN/latex
2 (R Core Team, 2020)
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2 REFERENCIAL TEORICO

Neste capitulo, serdo apresentadas algumas defini¢des importantes com o intuito de
facilitar a compreensao dos resultados que apresentaremos nos proximos capitulos desta tese.
Descrevemos os componentes basicos da GMCR, os conceitos de estabilidades mais usuais
e, também, os conceitos de estabilidade m — SEQ, estabilidade Maximin,, e estabilidade Lj,.
Revisamos também algumas representacdes matriciais, de conceitos sobre o GMCR, que serdo

utilizadas ao longo deste trabalho.

2.1 GMCR

Os modelos de conflito consistem numa estrutura sistematica que visa captar as
principais caracteristicas de um conflito estratégico e podem ser utilizados para realizar andlises
de estabilidade com o intuito de identificar cendrios estaveis que sdo candidatos a uma resolugdo
de conflito vidvel (HIPEL; KILGOUR; FANG, 2011). De acordo com Hipel et al.(2011),
podemos definir um conflito estratégico como um problema de decisdo que envolve varios DMs,
cada um dos quais apresenta preferéncias distintas relacionadas com possiveis cendrios/estados
que podem ocorrer no resultado final de um conflito.

A fim de definir uma metodologia mais abrangente e sistematica, Kilgour et al. em
1987, propuseram o Modelo de Grafos para Resolu¢ao de Conflitos (GMCR) em que a interagdo
entre DMs € modelada através de possiveis movimentos e contra-movimentos que estes podem
fazer.

O GMCR ¢ formado por uma colecdo de grafos direcionados, cada um representando
as possiveis formas em que um DM pode alterar o estado do conflito numa tnica etapa. Todos
estes grafos t€ém o mesmo conjunto de vértices que representam o conjunto de estados vidveis
do conflito. Além destes grafos, sdo necessdrias preferéncias relativas para cada DM sobre o
conjunto de estados vidveis para medir o grau de satisfacdo dos DMs com cada possivel estado
do conflito (FANG; HIPEL; KILGOUR, 1993; FANG et al., 2003a; XU et al., 2018). Um estado
€ considerado estavel para um DM se este preferir ndo se afastar dele, com base em alguma
defini¢do de estabilidade que acomoda um determinado comportamento que os DMs possam ter
no decurso de um conflito.

A fim de fornecer as informagdes necessdrias para compreender os resultados deste
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documento, a definicdo formal do GMCR e dos conceitos de estabilidade relevantes serdao
apresentadas a seguir. Para uma visao mais detalhada sobre estes tdpicos, consultar (KILGOUR;
HIPEL; FANG, 1987; FANG; HIPEL; KILGOUR, 1989; FANG; HIPEL; KILGOUR, 1993;
KILGOUR; HIPEL, 2005; HIPEL; KILGOUR; FANG, 2011).

Para descrever um conflito, através do GMCR, € necessario especificar os seus
principais componentes. Neste modelo, o conjunto N representa os DMs atuantes no conflito,
e as combinagdes possiveis de acdes que podem ser tomadas pelos decisores sao chamadas
de estados vidveis e denotada pelo conjunto S. Outro componente do GMCR € uma colecao
de grafos direcionados, denotados por D; = (S,A;), i € N, onde o conjunto comum de nds dos
grafos corresponde aos estados de S. Os arcos em A; sdo utilizados para representar a relagao
de acessibilidade entre estados, eles especificam para quais estados o DM i pode mover-se de
um determinado estado para outro. Esta relacdo de acessibilidade pode ser representada por
meio de um conjunto de movimentos unilaterais (UMs), representados por R;(s), um estado
pertence a este conjunto se for acessivel ao decisor i a partir do estado s em um tinico movimento.
Formalmente, este conjunto € definido como R;(s) = {s’' € S: (s,5') € A;}.

No GMCR, as avalia¢des dos estados vidveis do conflito sdo representadas por uma
estrutura de preferéncias. Na maioria dos trabalhos referentes ao GMCR, assume-se que a
estrutura de preferéncias utilizada pelos DMs € uma relag@o bindria assimétrica, denotada por
~;,onde s =; ', para i € N, significa que DM i prefere estritamente o estado s ao s'.

A partir das relagdes de preferéncia estritas, pode-se derivar uma outra relagao de
preferéncia, denominada de preferéncia fraca, denotada por ;. Uma preferéncia fraca pode ser
definida como a auséncia da preferéncia estrita, em que s .—; 5" se s’ ; s, ou seja, se 0 DM i ndo
prefere estritamente o estado s’ ao estado s.

Uma vez definidas as preferéncias, podemos descrever um subconjunto do conjunto
de UMs, denominado conjunto de melhoramento unilateral (UI). Este conjunto, representado por
R; (s), contém apenas os estados em R;(s) que podem ser alcangado através de movimentos de
melhoria, realizados pelo DM i a partir do estado s, sendo esse conjunto formalmente definido
como R} (s) = {s’ € Ri(s) : 5’ = s}.

Na subsecao seguinte, relembramos trés defini¢des de estabilidade que serdo utiliza-
das nesta tese e também os casos cldssicos usualmente utilizados na andlise de estabilidade do

GMCR.
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2.2 CONCEITOS DE SOLUCOES NO GMCR

A andlise de estabilidade verifica, para cada estado, quais DMs tém interesse em
alterar ou ndo as suas acdes. A fim de avaliar o interesse dos DMs em mover-se a partir
de um estado, as definicdes de estabilidade apresentam vérios critérios que visam capturar
diferentes tipos de comportamentos que DMs podem adotar em situa¢des de conflito. Neste
capitulo, iremos apresentar defini¢cdes de estabilidades mais comumente usadas na andlise de
estabilidade do GMCR. Além disso, também apresentaremos as estabilidades que estamos
particularmente interessados nesta pesquisa, ou seja, que dardo base para as representacoes
matriciais desenvolvidas nesta tese.

Nesta tese, também iremos considerar conflitos multilaterais, isto €, conflitos com
mais de dois DMs. Nesse tipo de conflito, os DMs podem antecipar o que a coalizio composta
por seus oponentes pode fazer em resposta a um de seus movimentos. No GMCR, um conjunto
nao vazio de DMs é chamado de coalizdo e, ao considerar quais estados podem ser alcancados
por uma coalizao, restringe-se a sequéncia de movimentos para ser legal, onde uma sequéncia
legal de movimentos € aquela em que os DMs podem se mover mais de uma vez, mas ndo duas
vezes consecutivas.

Desta forma, para uma coalizio H C N, faz-se necessario definir dois outros
conjuntos importantes, Ry (s) € Rj;(s). Uma sequéncia legal de movimentos realizadas por
DMs em H, é uma sequéncia alternada de DMs e estados, ou seja, uma sequéncia da forma
(so,il,sl,...,ik+1,sk+1), em que sg = S, ij €H, ij+1 7& ij €5j+1 ER,'H_I(S]') para j=0,1,2,... k.
Uma UM para a coalizdo H, a partir do estado s, € um estado final de uma sequéncia legal de
movimentos realizadas por DMs em H, partindo de s. O conjunto de todas as UMs por H a
partir de s é denotado por Ry (s). De forma similar, pode-se definir o conjunto de Uls para a
coalizdo H, a partir do estado s, denotado por R;(s). Para isso, basta substituir R, por R;l
na defini¢do do conjunto Ry (s).

A seguir, apresentamos um exemplo, conhecido na literatura da teoria dos jogos
como "Dilema do Prisioneiro” (AXELROD, 1984), a fim de ilustrar o comportamento dos
tomadores de decis@o em situacdes de conflito, além de apresentar os possiveis movimen-
tos e contramovimentos feitos pelos DMs em conflitos estratégicos utilizando as andlises de
estabilidades.

O conflito consiste em dois individuos que sdo suspeitos de cometerem um crime
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e sdo presos pela policia. Porém, a policia ndo tem provas suficientes para condend-los. Desta
forma, a policia decide separd-los em salas diferentes e propor a eles 0 mesmo acordo. O acordo

¢ estabelecido da seguinte forma, como ilustrado na Figura 2.1.

Figura 2.1 - Ilustraciao do problema do Dilema do prisioneiro

COOPERAR DELATAR

1]
B ®
(=] w
=]
u
PEMA DE
.*-.._'_“_-?E MESES
<
'5 2]
w
=]

PENA DE
E soLTo! . =", 5 ANOS

Adaptado - Foggion (2015)

* Se um deles cooperar (C) e o outro delatar (D), o traidor ficara livre e o cooperador, que
ficou calado, receberd a pena de 10 anos de prisdo;
* Se ambos cooperarem entre si, cada um dos presos receberd a pena de 6 meses de prisao;
* Se ambos trairem, ou seja, delatarem, cada um receberd a pena de 5 anos de prisao.
Neste jogo, os decisores possuem duas estratégias, formando um total de quatro
possiveis cendrios ou estados de decisdo e pode ser representado por meio de modelo de grafo,
em que as escolhas disponiveis para cada um dos DMs podem ser representadas utilizando nds e
arcos. Na Figura 2.2 os estados de decis@o sio representados por s (CC), so (CD), s3 (DC) e s4
(DD). A partir do modelo de grafos, podemos observar que DM 1 pode mudar sua decisdao do
estado CC para o estado DC, ou entre o estado CD e o estado DD. No caso do DM 2, ele pode
usar sua estratégia para mudar do estado CC para o estado CD ou entre o estado de decisdo DC e
DD.
Os arcos que conectam os estados de decisdo, ou seja, 0s nds s; € §3 representam a

possibilidade que o DM 1 tem de decidir a mudanga do estado s; (CC) para o estado s3 (DC) ou
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Figura 2.2 — Modelo de Grafos do conflito do Dilema do prisioneiro

s1
DM 2

DM 1

52

w
w

DM 1 DM 2

«(8)

vice-versa. O mesmo ocorre com as possibilidade de decisdo do DM 2 com o movimento entre
os estados de decisdo s, e 54, representado pelos arcos que conectam 0s nos s € 4.

A relagdo de preferéncia neste conflito para DM 1 é denotada por s3(DC) =
51(CC) =1 s4(DD) =1 52(CD) e para DM 2 55(CD) >3 s1(CC) =7 s4(DD) >3 s3(DC). Ob-
serve que o estado de decisdo preferencial para o DM 1 € o estado s3 (DC), neste estado o DM
1 estard livre, pois ndo colaborou e 0 DM 2 recebera uma pena de 10 anos de prisdo por ter
cooperado. Para DM 2, o estado de decisao mais preferido € o estado s, (CD) e o estado menos
preferido é o estado s3 (DC).

A fim de analisar os conflitos estratégicos, iremos recordar as nocdes de estabilidade
mais utilizadas na literatura do GMCR e as noc¢des que iremos utilizar nesta tese. Para todas as
nogoes de estabilidade, se algum estado € estdvel para todo DM, ele é chamado de equilibrio de

acordo com essa nog¢do de estabilidade.

Estabilidade de Nash

Intuitivamente, um estado é Nash (NASH, 1950) estdvel para o DM i, se este ndo

pode se mover unilateralmente, a partir desse estado, para um outro estado que seja mais

NASH
Si

preferivel. Denote por o conjunto de todos os estados Nash estaveis para DM i.

Definicao 2.2.1 (NASH, 1950) Seja i € N, o estado s € S é Nash estdvel (ou individualmente

racional) (R) para o DM i se, e somente se, R;' (s) = 0.

No exemplo do Dilema do Prisioneiro, o estado s3 (DC) € Nash estavel para DM
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1, pois ndo hé estado mais preferivel que ele. O estado s; (CC) é considerado Nash instavel
porque existe outro estado que € mais preferivel e acessivel para DM 1. Analisando todas as
possibilidades de decisdo para a estabilidade de Nash em relagdo a ambos os jogadores, vemos
que o estado de decisdo s4 (DD) € o tnico equilibrio de Nash, j4 que nenhum DM pode se mover
unilateralmente para um estado melhor do que o estado s4. Todos os outros estados sdo Nash
instdveis para pelo menos um DM, que sempre pode melhorar sua situacdo ao nao cooperar com

o outro DM, ou seja, delatando.

Estabilidade Metarracionalidade Geral

No conceito de estabilidade metarracionalidade geral (GMR) (HOWARD, 1971),
intuitivamente, o DM focal analisa seus possiveis movimentos de forma conservadora, consi-
derando todas as possiveis reagdes aos seus movimentos, ignorando suas proprias possiveis

contra-reacdes. O conjunto de todos os estados estaveis GMR para DM i é denotado por SZ.GMR.

Definicao 2.2.2(HOWARD, 1971) Sejai € N, o estado s € S ¢ GMR estdvel para o DM i se, e

somente se, para todo s\ € R (s) existe sy € Ry_iiy (1) tal que s 77; $5.

No caso do Dilema do Prisioneiro, do estado s;, 0o DM 1 tem um movimento de
melhoria unilateral para o estado s3. No entanto, DM 2 pode punir DM 1 passando do estado s3
para o estado s4, que é menos preferivel ao DM 1 do que o estado s;. Assim, o estado s (CC) é
GMR estdvel para DM 1. Por simetria, este estado também é GMR estavel para DM 2, portanto
um equilibrio GMR. Analisando todos os estados, € possivel concluir que os estados s; € s4 sdo

equilibrios de acordo com o conceito GMR.

Estabilidade Metarracionalidade Simétrica

Na nocao de estabilidade Metarracional Simétrica (SMR) (HOWARD, 1971), intuiti-
vamente, o DM focal considera ndo apenas seus proprios movimentos possiveis e as reacdes de
seus oponentes a cada um desses movimentos, mas também sua prépria contra-reagao, sendo,
portanto, uma definicao de estabilidade mais restritiva do que a estabilidade metarracionalidade

geral. O conjunto de todos os estados SMR estaveis para DM i é denotado por SfMR .
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Conforme este conceito, o DM focal tem a capacidade de analisar trés movimentos
a frente, enquanto que segundo o conceito da estabilidade metarracionalidade geral, observa
apenas dois movimentos a frente e de acordo com o conceito de Nash, apenas um movimento a

frente.

Definicao 2.2.3(HOWARD, 1971) Sejai € N, o estado s € S é SMR para o DM i se, e somente

se, para todo s1 € R;“ (s) existe s, € Ry_(iy (1) tal que s 7 53 e s 7 83, para todo s3 € Ri(s2).

Observando o conflito do Dilema do Prisioneiro, vemos que quando DM 1 se move
do estado de decisao s para o estado s3, 0 DM 2 pode reagir movendo-se do estado s3 para o
estado s4, onde o estado s4 ndo é preferivel ao estado 51 pelo DM 1. Para escapar desta punicao,
0 DM 1 s6 pode passar do estado s4 para o estado 53, que também ndo é preferivel ao estado s
para DM 1. Assim, o estado s; € SMR estdvel para o DM 1. O estado s; também é SMR estavel
para o DM 2 e, consequentemente, um equilibrio SMR, juntamente com o estado s4. Vale a pena
notar que em uma andlise de estabilidade SMR, o DM focal deve considerar que seu adversario
pode reagir se punindo com o intuito de forcar o DM focal a ndo se mover para um estado de

decisdo mais preferivel.

Estabilidade Sequencial

O conceito de estabilidade Sequencial (SEQ) (FRASER; HIPEL, 1979) é seme-
lhantemente a no¢cdo GMR, porém segundo essa no¢do, as reagdes dos oponentes também sao

benéficas para eles, ou seja, assume-se que os movimentos dos oponentes do DM focal sejam
SEQ

crediveis. O conjunto de todos os estados SEQ estaveis para DM i € denotado por §;™~.

Definicao 2.2.4 (FRASER; HIPEL, 1979) Sejai € N, o estado s € S é sequencialmente estdvel

(SEQ) para DM i se, e somente se, para todo s\ € R (s) existe sy em R]J([_{l.} (s1) tal que s 7Z; 57.

No caso do Dilema do Prisioneiro, ao analisar a estabilidade SEQ do estado s para
DM 1, vemos que ele tem um movimento de melhora unilateral para o estado s3. Por outro
lado, DM 2 tem um movimento de melhora unilateral do estado s3 para estado s4, que € menos
preferivel do que o estado s; por DM 1. Assim, o estado de decisdo s; (CC) é SEQ estavel para
DM 1 e, da mesma forma, SEQ estavel para DM 2. Assim, o estado s; € um equilibrio SEQ. O
estado s4 € Nash estdvel para ambos os jogadores e, consequentemente, também um equilibrio

sequencial.
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Estabilidade Sequencial Simétrica

A estabilidade sequencial simétrica (SSEQ) (REGO; VIEIRA, 2016) é um tipo de
estabilidade sequencial, na qual o DM focal, ao planejar se mover, considera ndo apenas a reagdo
de seus oponentes, mas também sua propria contra-reacio. Vale a pena notar que a contra-reagao
nao leva necessariamente a uma melhoria unilateral para o DM focal, mas sim que o estado
resultante, apds sua contra-reacdo, nao seja melhor do que o estado inicial para que este dltimo

seja estavel. O conjunto de todos os estados SSEQ estaveis para DM i é denotado por Sf SEQ

Definicao 2.2.5 (REGO; VIEIRA, 2016) Seja i € N, o estado s € S é SSEQ para DM i se, e
somente se, para todo s| € R;L (s) existe s, € R;_{l.} (s1) tal que s 7; 5o e s 72; s3 para todo

§3 € R,‘(Sz).

Vamos observar agora a estabilidade SSEQ no caso do conflito do Dilema do Pri-
sioneiro. Podemos verificar um resultado semelhante ao SEQ, mas é necessario analisar a
contra-resposta do DM 1. Portanto, o estado s; do conflito (CC) também € SSEQ estdvel para
DM 1 e DM 2 e, consequentemente, um equilibrio SSEQ, ja que os DMs ndo conseguem neutra-
lizar a puni¢@o do oponente. Além disso, como o estado s4 (DD) € Nash estavel, também é SSEQ
estavel. Através da andlise de estabilidade, vemos que apenas os estados s| € s4 sd0 possiveis
equilibrios, sendo o estado s4 um equilibrio de acordo com o maior nimero de conceitos de

estabilidade.

Estabilidade Sequencial de Ordem superior

Em 2020, Régo e Oliveira demostraram que alguns equilibrios SEQ dependem de
DMs deixarem um estado estavel de acordo com esse conceito para que possam sancionar o
DM focal. A plausibilidade de tais equilibrios SEQ € questionével, ja que, de acordo com a
essa nocao, os DMs ndo devem sair de estados SEQ estdveis. Este tipo de san¢do pode ser
considerado ndo credivel, ou seja, uma sancao que ndo serd implementada pelos oponentes.

Para superar este problema, Régo e Oliveira (2020) propuseram uma nova familia de
conceitos de solug@o para conflitos bilaterais no GMCR, conhecida como higher-order sequential
stabilities (estabilidades sequenciais de ordem superior), que essencialmente proibe um DM de

deixar um estado SEQ estdvel para sancionar o DM focal, fazendo com que tais sangdes sejam
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mais plausiveis. Eles mostraram também que as estabilidades sequenciais de ordem superior sdo
refinamentos da estabilidade SE Q para conflitos bilaterais. Em 2023, Régo e Oliveira estenderam
este conceito para o caso de conflitos multilaterais.

Intuitivamente, um estado s € sequencialmente estavel de ordem m, denotado por
m— SEQ, para um DM focal, se cada Ul que possa ser realizada pelo DM focal, a partir do
estado s, puder ser sancionada por uma sequéncia legal de Uls realizada pelos oponentes do
DM focal, onde nenhum DM se move de um estado que é (m — 1) — SEQ estavel para ele na
sequéncia. Formalmente, seja S —SEQ conjunto de todos os estados estdveis de m — SEQ para
DM i€ N, onde 1 —SEQ é o mesmo que a estabilidade SEQ.

Para recordarmos o conceito m — SEQ, necessitamos também relembrar um impor-
tante conjunto. Seja R;m (s) o conjunto de estados alcancgaveis pelos DMs em H através de uma
sequéncia plausivel de Uls a partir do estado s, em que uma sequéncia de Uls € legal se os DMs
ndo puderem mover-se duas vezes consecutivas na sequéncia e é m-ordem plausivel se nenhum

DM deixar um estado que seja (m — 1) — SEQ estével para ele (REGO; OLIVEIRA, 2023). A

noc¢do de estabilidade m — SEQ para m > 2 € definida indutivamente como se segue:

Definicao 2.2.6( REGO; OLIVEIRA, 2020) Param > 2, o estado s € S satisfaz a m-ésima ordem
da estabilidade sequencial para o DM i se, e somente se, Vs € R;' (s), existe s € R\ (i) (1) de

tal forma que s =~; 5.

Régo e Oliveira (2020 e 2023) estabeleceram o resultado enunciado no Teorema

2.2.7 relativamente as implicagdes entre estabilidades m-SEQ para vérios valores de m.

Teorema 2.2.7 Considere i € N e dois inteiros positivos: m e my. Para m| par, segue que

m—SEQ — gmi—SEQ
— l

mi—SEQ m—SEQ .
S; c§; , para todo my < m. Para m| impar, segue que S;

, para

todo my < m.

De acordo com a estabilidade m-SEQ, as san¢des dos adversarios ndo podem deixar
um estado estavel (m — 1)-SEQ para eles, onde 1-SEQ é a estabilidade SEQ original. Assim, para
verificar se um estado é 2-SEQ para um DM, conhecido como o DM focal, € necessério verificar
se todos os estados que ele pode alcancar e que sdo melhorias para ele, sdo SEQ estdveis para os
adversarios. Para verificar se um estado é SEQ estavel para um DM, analisa-se o conflito dois
passos a frente, 0 movimento inicial e as possiveis sangdes. Assim, devem ser considerados trés
movimentos para a estabilidade 2-SEQ: o movimento inicial do DM focal e os dois movimentos

para analisar se as san¢des dos adversarios partem de estados SEQ para eles ou ndo. Este nimero
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de movimentos e contra-movimentos € designado por horizonte. Assim, por indu¢do, pode ver-se
que para analisar a estabilidade m-SEQ € necessario considerar um horizonte igual a m + 1.
Como o horizonte de conflito depende de m, a estabilidade sequencial de ordem superior € um

conceito de estabilidade de horizonte variavel.

Figura 2.3 — Arvore de decisio do DM 1 a partir de s; - 3-SEQ
DM 1

§ R

Y

Iremos utilizar arvore de decisdo (Figura 2.3), para analisar a estabilidade 3-SEQ
no conflito do Dilema dos Prisioneiros. Observe que a ultima etapa corresponde a estabilidade
sequencial de primeira ordem, a antepenultima serd a de segunda ordem e assim por diante, ou
seja, a ordem € analisada de trds para a frente.

Analisando a estabilidade 3-SEQ no conflito do Dilema dos Prisioneiros, vemos que
na ordem 1 o DM 1 tem a escolha de permanecer no estado s4 ou mover-se para o estado s,
como s4 € mais preferivel para o DM 1 do que o estado s, ele preferird permanecer em s4. Logo,
o estado s4 € Nash e, consequentemente, 1-SEQ para o DM 1. No passo anterior, como s4 €
melhor que s3 parao DM 2 e s4 € 1-SEQ para o DM 1, temos que s3 ndo é 2-SEQ para o DM 2.
Finalmente, no passo inicial, apesar de s3 ser melhor que s para o DM 1, como s3 ndo é 2-SEQ
para o DM 2, o DM 2 prefere sair de s3 para s4 € s4 € pior que s; para o DM 1, temos que s €

3-SEQ parao DM 1.
Estabilidade do Movimento Limitado com horizonte /

O conceito de estabilidade movimento limitado com horizonte 4, denotado por L, é
uma nocao na qual é permitido realizar varios movimentos de reagdes e contra-reacoes, por parte

dos decisores que estdo envolvidos em um determinado conflito. Neste conceito de estabilidade,
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o DM focal antecipa, / passos a frente, qual serd o cendrio final do conflito, considerando que
os decisores mudam sempre as suas acdes para chegar ao melhor cendrio possivel para eles,
fazendo-se necessdrio o conhecimento prévio sobre as preferéncias dos DMs envolvidos no
conflito. Nesta tese, focaremos em recordar a defini¢do do conceito L; somente para o caso de
dois DMs, pois as defini¢Oes existentes para o caso de n DMs ndo serdo abordadas neste trabalho.

Neste conceito, assume-se que as preferéncias sdo completas, transitivas, e assimé-
tricas em S. Para podermos recordar esse conceito, seja K;(s) a cardinalidade do conjunto de
estados que sdo piores do que o estado s para 0 DM i, ou seja, K;(s) = |{s' € S: s >; 5'}|. Seja
Gy(i,s) € S,i € N, o estado que DM i acredita que serd o estado final do conflito, considerando
um horizonte 4, quando o conflito inicia-se no estado s € 0 DM i se move primeiro neste estado e
os DMs alternam movimentos. Neste conceito, assume-se, por convengio, que Go(-,s) =se 0

estado Gy (i, s), para h > 1 é construido indutivamente da seguinte forma:

(

s, se Ri(s) =0

Gn(i,s) =S s, se Ki(s) > Ap(i,s)

Gp_1(j,My(i,s)), caso contrario,
\

em que Mj,(i,s) é algum estado s/1 € Ri(s) que satisfaz K;(Gj— 1 (j,s/l)) = max{K;(Gp—1(j,s1)) :
s1 €ERi(s)},j # i, e An(i,s) = Ki(Gp1(J, Mi(i,s))).

Em outras palavras, podemos intuir que Gy(i,s), o estado antecipado pelo DM i
quando este se move primeiro no estado s, considerando um horizonte 4, serd igual a s caso i ndo
possa se afastar de s, ou se s for pelo menos tao bom quanto o melhor estado Gy, (j, My (i,s))
que pode ser antecipado com o horizonte 7 — 1. Esse melhor estado é aquele alcancavel pelo
DM i ao se afastar do estado s, considerando que seu oponente se move posteriormente dentro
do horizonte 4 — 1. Caso contrério, temos que Gy (i,s) = Gj—1(j, Mp(i,s)).

No conceito de estabilidade L;, assume-se que € de conhecimento comum entre 0s
DMs que eles realizam movimentos que sejam benéficos para si mesmo, em cada horizonte 3
menor que & e, para isto, € necessdrio considerar que ambos os DMs conhecam as preferéncias
um do outro. Formalmente, o conceito L, para o caso de conflitos bilaterais € apresentado a

seguir:

Definicao 2.2.8 (KILGOUR, 1985) Um estado s € S é estdvel de acordo com o conceito movi-

mento limitado com horizonte h ( Ly, ) para DM i € N se, e somente se, Gj,(i,s) = s.
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Vamos analisar o Dilema dos prisioneiros com a estabilidade do movimento limitado
considerando um horizonte de 3 passos, ou seja, 1 = 3. Para facilitar a compreensao, utilizaremos
uma arvore de decisdo e realizaremos a andlise por indu¢do reversa. Primeiramente, observe
0 que ocorre com o estado s;, quando o DM 1 antecipa os préximos 3 passos em relacdo ao
estado final do conflito, levando em conta que ele tem conhecimento das preferéncias dos DMs

envolvidos. A drvore de decisdo correspondente € mostrada na Figura 2.4.

Figura 2.4 — Arvore de decisio do DM 1 a partir de s, - Ls

oW

No ultimo passo, 0 DM deve escolher entre permanecer em s4 ou mover-se para s;.
Como s4 >; 52, ele optard por permanecer em s4. No passo anterior, como s4 € preferivel a s3
para o DM 2, temos que o DM 2 saird de s3 para s4. Finalmente, no estado inicial s1, como s €
melhor que s4 para 0 DM 1, temos que o DM 1 ird permanecer em s1. Logo, podemos concluir
que o estado s; (CC) € estdvel no movimento limitado para & = 3. Além disso, como o estado s4

(DD) € estavel em Nash, ele também € estavel em L3.

Estabilidade Maximiny,

Proposta por Wald (1945), a regra de decisdao maximin escolherd a acao que, na pior
das hipoéteses, proporciona a melhor consequéncia possivel. Ou seja, o decisor observard qual
seria a pior consequéncia que poderia obter em relacdo a cada uma das suas possiveis acoes e,
diante disso, escolherd a acdo que, na pior das hipéteses, lhe oferece a melhor consequéncia. Na
Teoria dos Jogos (NEUMANN; MORGENSTERN, 2007), o caso em que ambos os jogadores

escolhem simultaneamente uma estratégia que consegue o melhor retorno no pior caso, mas que
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ndo permite o comportamento prospectivo dos DMs chama-se equilibrio maximin.

Régo e Vieira em 2019, inspirados na regra de decisdo maximin, propuseram uma
nova no¢ao de estabilidade dentro do GMCR, chamada estabilidade Maximin;,. Este conceito é
inspirado na no¢do de estabilidade movimento limitada (L;) (KILGOUR, 1985) e pode ser til em
situacdes em que os DMs agem cautelosamente, ou seja, quando ndo possuem necessariamente
conhecimento das preferéncias dos seus oponentes.

Além de ndo requerer conhecimento sobre as preferéncias dos adversarios, a estabili-
dade Maximiny, proporciona algumas vantagens interessantes, pois € flexivel no que diz respeito
ao horizonte do conflito, e fornece conhecimentos a outros conceitos de solucio comumente
utilizados na literatura da GMCR, uma vez que alguns destes sdo equivalentes a casos especiais
da estabilidade Maximiny,.

Considere um modelo grafo com dois DMs, digamos i e j, de modo que quando DM
i analisa o conflito considerando um horizonte 4, ele acredita que DM j se deslocard para o pior
cendrio possivel em relagdo ao DM i, admitindo que DM i se deslocard sempre para o melhor
cendrio possivel considerando um horizonte h <h.

Uma vez que de acordo com a estabilidade Maximin;, o DM focal, prevé o conflito &
passos a frente, € também necessario definir o estado que ela acredita que sera o estado final do
conflito apds & movimentos. Seja G;l( J,8) € S,i,j € N o estado final antecipado pelo DM i, com
um movimento inicial de DM j a partir do estado s considerando um horizonte /. Por convengdo,

assume-se que Gh(-,s) = s e, 0 estado G, (i,s), é formalmente definido indutivamente, como:

S, se Ri(s) =0

Gj,(irs) = 4 s, se Ki(s) > Al (i,5) 2.1)

1 (j,Mi(i,s)), caso contrério,
\

em que M (i,s) é algum estado 5| € Ri(s) que satisfaz Ki(G: (j,57)) = max{Ki(G,_,(j,s1)):
s1 € Ri(s)}, j # 1, e Aj(i,5) = Ki(G),_; (/. M; (i, 5))).

Além disso, G} (j,s) é definido da forma:

(

5, seRj(s) =0

CATOERE se Ki(s) < Al (j,s) (2.2)

G, ,(i,Mi(j,s)), caso contrério,
\
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em que M. (j,s) é algum estado s, € R;(s) que satisfaz K;(G},_,(i,s,)) = min{Ki(G',_,(i,s1)) :
s1 €R;(8)}, ) # i, e Ay(j,s) = Ki(Gj,_ (i, M}, (), 9))).

Assim, a defini¢do formal da estabilidade Maximiny, € a seguinte:

Definiciio 2.2.9 (REGO; VIEIRA, 2019) Para qualquer inteiro positivo h, o estado s € S é

maximin estdvel com horizonte h (Maximiny) para DM i se, e somente se, G;l(i ,8) =S.

No caso de conflitos multilaterais, a estabilidade Maximin;, é definida de forma
semelhante ao caso bilateral. A unica alteracio necessaria € a substitui¢do do conjunto R; por
Ry_; (REGO; VIEIRA; KILGOUR, 2022).

Diferentemente do Lj, onde todos os DMs buscam maximizar suas preferéncias,
no caso do Maximiny, quando o DM 2 faz sua escolha, ele ndo leva em conta suas préprias
preferéncias. Em vez disso, ele minimiza as preferéncias do DM 1, que estd tentando maximizar
suas proprias escolhas. Note que o DM 2 tem a op¢ao de permanecer em s3, 0 que maximiza o
resultado para o DM 1, ou mover-se para s4, que minimiza esse resultado. Como resultado, o
DM 2 opta por se mover para o estado s4. Em seguida, o DM 1 deve decidir entre permanecer no
estado s ou migrar para s3, antecipando que o conflito ird acabar em s4. Como s € preferivel a
sq4 para 0 DM 1, o DM 1 prefere ficar em s1. Isso torna o estado Maximins estdvel para o DM 1.
Temos também que o estado s4 (DD) € um equilibrio de Nash, o que confirma a estabilidade do

Maximinjz (Figura 2.5).

Figura 2.5 — Arvore de decisio do DM 1 a partir de s, - Maximin;
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Estabilidade Maximin;, Credivel

Mais recentemente, Régo et al. em 2022 propuseram trés variacdes do conceito de
estabilidade Maximin,, denominado maximin credivel. Estas varia¢Oes diferem entre si pela
possibilidade do DM focal ou seus oponentes adotarem apenas movimentos crediveis, ao analisar
o conflito de acordo com o conceito Maximiny,. Essas variacdes generalizam, para horizontes
varidveis, as estabilidades sequencial e sequencial simétrica. A seguir, recordaremos, brevemente,

essas variagdes da estabilidade Maximiny,.
Estabilidade Maximin com DM Focal Credivel

Neste conceito de estabilidade, o DM focal, ao analisar a estabilidade de um estado de
acordo com a no¢do Maximiny, ndo pode fazer movimentos unilaterais que nao sejam melhorias
unilaterais. Dessa forma, o estado antecipado pelo DM i, quando ele se move primeiro no estado
s e o conflito € analisado & passos a frente, denotado por, GZFC(i, s), em que Fc representa que o
DM focal realiza somente movimentos de melhorias unilaterais, é definido de maneira andloga ao
estado G, (i,s), sendo que a tinica diferenga necessdria € substituir R;(s) por R} (s) na definigdo
do estado G!(i,s) apresentada na Equagdo 2.1. Além disso, assumindo que N — {i} = N;, o
estado GZFC(NZ-,S) ¢ definido exatamente da mesma que o estado G} (N;,s), apresentado na

Equacdo 2.2. Formalmente, um estado maximin com DM focal credivel estdvel € definido da

seguinte maneira:

Definiciio 2.2.10 (REGO; VIEIRA; KILGOUR, 2022) Para qualquer inteiro positivo h, o estado
s € S satisfaz a estabilidade maximin com DM focal credivel com horizonte h (Maximin®(h))

para DM i € N, se, e somente se, G;;Fc(i,s) =y.

Observe que, na Figura 2.6 o DM 1 ndo pode fazer movimentos unilaterais que nao
sejam melhorias unilaterais. Portanto, em s4, 0 DM 1 s6 tem a opcdo de permanecer em s4.
Logo, de forma andloga a andlise para o conflito do Dilema dos prisioneiros para a estabilidade
Maximins, temos que para & = 3 o estado s; (CC) € Maximinz com DM Focal Credivel estdvel e
s4 (DD) € Nash estavel, logo Maximinz com DM Focal Credivel estavel. A andlise € semelhante

para as estabilidades Maximinz com Oponente Credivel e Total Credivel.



39

Figura 2.6 — Arvores de decisiio do DM 1 - Maximin§ - DM Focal

o DM 1

/
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i
/
F

DM 1

Estabilidade Maximin;, com Oponente Credivel

Em situagdes em que os oponentes do DM focal podem realizar apenas melhorias
unilaterais, ao analisar a estabilidade de um estado de acordo com a no¢do Maximiny,, denotamos
o estado antecipado pelo DM i, quando ele se move primeiro no estado s e o conflito € analisado
h passos a frente, por GZOC(i ,s) , em que Oc representa o oponente , que também ¢ definido de
maneira andloga ao estado G, (i,s), sendo necessério realizar uma substitui¢do do Ry;(s) por
R;\;i (s) na defini¢do do estado G, (N;, s) apresentada na Equagdo 2.2. Ademais, o estado GZOC(i ,8)

€ definido semelhantemente ao estado G;l(i,s), apresentado na Equacgdo 2.1. A defini¢do da

estabilidade maximin com oponente credivel € apresentada formalmente a seguir.

Definicao 2.2.11 (REGO; VIEIRA; KILGOUR, 2022) Para qualquer inteiro positivo h, o estado
s € S satisfaz a estabilidade maximin com oponente credivel com horizonte h (CMaximin(h))

para DM i € N, se e somente se Gzoc(i,s) =5.
Estabilidade Maximiny, Credivel Total

Neste conceito de solugdo, todos os DMs ndo podem fazer movimentos unilaterais
que nao sejam melhorias unilaterais para eles. Conforme a nocao de estabilidade Maximiny,,
G;Z’Tc(i, s) denota o estado antecipado pelo DM i, quando ele se move primeiro no estado s € 0
conflito € analisado & passos a frente. Ele € definido de forma semelhante ao estado Gﬁl(i,s),
sendo que a tnica diferenca necessaria € substituir R;(s) por R (s) na defini¢do do estado G (i, s)

apresentada na Equacgdo 2.1. Temos também que, o estado GZTC(N,-, s) é definido exatamente da
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mesma forma que o estado G;l (Ni,s), apresentado na Equag@o 2.2, exceto pela substituicdo do
Ry (s) por R;i (s). A definicdo formal de estabilidade maximin credivel total pode ser observada

na defini¢do a seguir.

Definiciio 2.2.12 (REGO; VIEIRA; KILGOUR, 2022) Para qualquer inteiro positivo h, o estado
s € S satisfaz a estabilidade maximin credivel total com horizonte h (CMaximin®(h)) para DM

. i\ Tc.
i € N, se somente se G;; “(i,s) = .

2.3 ALGUMAS REPRESENTACOES MATRICIAIS DE CONCEITOS DE ESTABILIDADE
NO GMCR

A representacdo matricial nao elimina a necessidade de buscas exaustivas em pro-
blemas complexos, mas proporciona uma base sélida para realizar essa andlise de forma mais
eficiente, organizada e visualmente compreensivel. Isso a torna uma ferramenta indispensavel na
modelagem e solu¢do de problemas de decisdo e teoria dos jogos.

Em Xu (2007 e 2008), s@o propostos métodos matriciais para se determinar es-
tabilidade de acordo com alguns dos conceitos cldssicos de solucio no GMCR com dois e
multiplos DMs, respectivamente. Estes resultados matriciais auxiliam na utiliza¢ao de cédigos
computacionais para determinar estabilidades de estados mais rapidamente, sendo cruciais para
a andlise de conflitos com numerosos DMs ou estados. Recordamos, a seguir, algumas dessas
representacdes, que serdo importantes para o desenvolvimento de resultados desta tese.

Em 2007, Xu et al. definiram duas matrizes para expressar as acessibilidades
e melhorias unilaterais dos DMs. Essas matrizes sao chamadas de matriz de acessibilidade,
denotada por J;, e a matriz de melhoria unilateral, denotada por J L+ . Formalmente, J; e J l.+ sdo

matrizes 0 — 1, de ordem |S|, cujas entradas (s, s ) sdo definidas, respectivamente, como se segue:

1 ses €Ri(s)
Ji(s,s') = (2.3)

0 caso contrario,

1 seli(s,s)=1les =;s,
TH(s,5') = 2.4)

0 caso contrario.
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Note que na matriz J; (resp. J i*) aentrada (s,s’) recebe o valor 1 se o estado s’ for unilateralmente
alcancdvel (resp. uma melhoria unilateral) a partir do estado s pelo DM i. Caso contrdrio, a
entrada de (s,s”) da matriz J; (resp. J;") recebe o valor 0.

Diversas matrizes relacionadas as representacdes das preferéncias dos DMs também
foram propostas por Xu ef al. em 2007. A matriz de preferéncias estritas, denotada por P, ¢

uma matriz de ordem |S| cujo elemento (s,5") é:

1 ses' =;s,
Pt (s,s') = (2.5)

l
0 caso contrario.

Enquanto isso, as matrizes de menor preferéncia (P;) e indiferenca (P;~) sdo definidas da

seguinte forma por:

1 ses>;s,
P (s,s") = (2.6)

0 caso contrario.

o, 1 ses~;s,
P~ (s,s') = (2.7)
0 caso contrario.

Por meio da matriz Pf, define-se a matriz de preferéncias no estrita, P, ", cujo

elemento (s,s") € dado por:
P (s,s") =1—P"(s,s). (2.8)

Esta defini¢do de P, "~ foi proposta por Régo e Vieira (2021), pois a definigdo
original dada por Xu em 2007 fazia com que os elementos da diagonal principal de P, ™~
fossem nulos, podendo nao representar corretamente as definicdes de estabilidades 16gicas se os
oponentes puderem sancionar o DM focal regressando ao estado original.

Podemos também relacionar as definicdes das matrizes UM (J;) e Ul (Ji+) € a matriz
de preferéncia (Pf), esta relagcdo € dada por:

JT=JoP"

1 [

(2.9)
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em que o ¢ o produto Hadamard, ou seja, J;" (s,s") = Ji(s,s") P (s,5').

Outra matriz utilizada em Xu et al. em 2007 é a matriz sinal, denotada por sinal(-).

Seja W uma matriz de ordem |S|, desta forma, sinal(W) é uma matriz de ordem |S| tal que a

entrada (s,s’) é:

1 seW(s,s')>0,

sinal[W(s,s') =0 seW(s,s') =0, (2.10)

—1 seW(s,s") <0.

\

Da mesma forma, ao aplicar a fung@o sinal, sinal(-), a um nimero real y, o resultado serd -1, 0
ou 1, dependendo se y for menor que 0, igual a 0, ou maior que 0, respectivamente.

Ao lidar com conflitos com multiplos DMs, Xu ef al. em 2008 forneceram representa-
cOes matriciais que correspondem aos conjuntos de estados alcancdveis através de uma sequéncia
legal de UMs, Ry, ou Uls, R;f,. As matrizes com estes objetivos, indicadas respectivamente por
Jy (matriz de movimentos conjuntos) e ];; (matriz de melhoramento conjunto), sdo matrizes de

ordem |S| tais que suas entradas (s,s ) sdo definidas da seguinte forma:

1 ses €Ry(s),
Ju(s,s’) = 2.11)

0 caso contrario

1 ses €R}(s),
Th(s,s) = " (2.12)

0 caso contrario.
Xu et al. em 2008 mostraram que as matrizes Jy e J;; podem ser calculadas a partir
das matrizes J; e Jl.+, respectivamente. Para isso, assuma que Z; e Z; sejam matrizes 0 — 1 de
ordem |S| e que Z = Z; V Z, seja uma matriz tal que a sua entrada (s,s’) seja definida da seguinte

forma:

1 Z1(s,8")+2Z(s,5") #0
Loty oAl ® AT o1

0 caso contrario.

Seja 8 = |Ujen UsesRi(s)| (resp. 81 = | Ujen UsesR; (s)|) um limite superior para o

nimero de movimentos legais necessdrios para obter todos os estados em alguma lista Ry (s),
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para qualquer s € S, (resp. R+( ), e sejaJ i (resp. lr ’,}L) a matriz com entrada (s,s’) igual a
1 se 0 DM i faz o primeiro movimento e s’ é alcangavel a partir do estado s em exatamente
r > 1 movimentos legais (resp. r movimentos legais de melhoria unilateral) de DMs em H; caso

contrdrio, ela é igual a 0. Assim, segue-se que:

LH—nmd( (ﬁv J’1>> (2.14)
JjeEH—I

f;—wmd< (ﬁv J’1+>) (2.15)
JjeEH—I

em que J; ] iH = =Je Jll};' =J . Desta forma, Xu et al. (XU; HIPEL; KILGOUR, 2008) estabele-

ceram que
° (r)
=\ V% (2.16)
r=1ieH
e
@_VVﬂf (2.17)
r=licH

Em Xu et al. (2008), ha exemplos de como as matrizes J; , J; ; , Ju € J;; podem ser

calculadas.

Por fim, as representa¢des matriciais também fazem uso de uma matriz quadrada
de ordem IS| com todas entradas iguais a 1, denotada por E. Vale ressaltar também que e; €
um vetor coluna |SI-dimensional com o k-ésimo elemento igual a 1 e todos os outros elementos

iguais a zero.

2.4 CONCEITOS CLASSICOS: REPRESENTACAO MATRICIAL

Apresentaremos, a matriz de conceitos de solucao (MRSC) de alguns casos cldssicos
fortemente conhecidos na literatura para conflitos bilaterais. O método MRSC, incorpora um
conjunto de matrizes de ordem |S|, MIN ash_ Ml.GMR, MZ.SMR, Mf EQ o Mf SEQ As quatro primeiras

formas matriciais dos conceitos que serdo apresentadas a seguir, foram obtidas por (XU et al.,
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2018) e (XU et al., 2019). A quinta forma matricial foi proposta em (REGO; VIEIRA, 2021).

Nesses trabalhos sdo apresentadas as devidas provas desses resultados.

1. Matriz Nash: MZN‘”’1 = J;FE

Matriz GMR: MPMR = JFE —sinal(J;(P,7)")] jEN,j#i

Matriz SMR: MMR = JF(E — sinal (J;[(P,7) " o (E — sinal(J;(PT)"))])] jEN,j#i

Matriz SEQ: M;“? = J"[E — sinal(J] (P7)")] jEN,j#i

Matriz SSEQ: M; 2 [E — sinal(JT[(P77) T o (E — sinal (J;(PF)"))))] jEN,j#i
Para X € {Nash, GMR,SMR,SEQ,SSEQ}, o estado s satisfaz a estabilidade X para

ok w D

o DM i se e somente se MX (s,s) = 0.

No caso da matriz Nash, a multiplicagdo entre essas matrizes retorna uma matriz
tal que seu elemento (s,s'), MN4"(s,s"), é igual a linha s da matriz J;” multiplicada pela coluna
s dessa matriz E que é uma coluna de 1’s. Ou seja, estamos somando todos os elementos da
linha s da matriz Ji+ (melhorias unilaterais). Entdo, estamos somando a quantidade de estados
acessiveis e melhores que s, logo, ele serd Nash se esta soma for nula.

Na MPMR estamos deixando de somar o valor resultante do sinal entre J; e
(Pi_’:)T, significando que o j consegue acessar um estado que nao € preferivel para o DM i.
Quando o DM j consegue acessar um estado que seja pior ou igual para o DM i, essa matriz
sinal serd 1. Ou seja, € uma retaliacdo, entdo mesmo que o DM i tenha uma melhoria do estado s
para o estado s, a partir de s’, 0 DM j vai levar o conflito para um cendrio pior ou igual para o
DM i. Desta forma, a melhoria de s para s’ ndo entra na soma dos elementos com a Jl-+ . No caso
do SMR, o ultimo termo estd capturando justamente as suas proprias contra-reacdes € a matriz
SEQ ¢é semelhante ao GMR, a tnica diferenca € que ele consegue capturar que o0 DM j s se
mova para estados de melhorias para ele.

No caso de conflitos multilaterais, basta usar as matrizes Jy_(;) € J]J\;_ (i} 1O lugar de
Jje J;F, respectivamente.

No capitulo a seguir fornecemos representa¢cdes matriciais para obtencao de estabili-
dades de acordo com a nocao sequencial de ordem superior no modelo de grafos para resolugdo
de conflitos, em casos bilaterais e multilaterais. Também fornecemos aplica¢des para ilustrar a

utilidade das representagdes obtidas.
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3 REPRESENTACAO MATRICIAL DAS ESTABILIDADES SEQUENCIAIS DE OR-
DEM SUPERIOR NO MODELO GRAFO PARA RESOLUCAO DE CONFLITOS

3.1 INTRODUCAO

Na estabilidade SEQ, ao considerar a mudanca para um estado mais preferido, o DM
prevé se o oponente pode reagir levando o conflito a um estado menos preferivel do que o atual,
desde que a reacdo do oponente também beneficie a ele. No entanto, existem situacdes em que,
para realizar tal reacdo, o oponente deve deixar um estado SEQ estdvel para ele, o que torna essa
ameaca nao credivel.

O exemplo a seguir ilustra um cendrio de andlise do conceito SEQ, focando na reagao
ao DM focal relacionado a situagdo em que o adversdrio sai de um estado que € SEQ para ele

mesmo nio sendo Nash estavel.

Figura 3.1 - Ilustracdo do SEQ nao credivel

ONRO

OBRO

DM, DM,

Analisando a estabilidade do jogo, vemos que o estado s; € considerado SEQ (e
SSEQ) para o DM 1, indicando que, nesse cendrio, o DM 1 estd em uma situagdo de equilibrio.
Por outro lado, o DM 2 apresenta um melhoramento a partir do estado s, 0 que provoca um
conflito que resulta no estado s3. No entanto, o estado s3 € menos favoravel para o DM 1 do que
o estado s1, tornando-o uma opc¢ao inferior. Além disso, a punicio do DM 2 ao sair do estado s;
e ir para o estado s3 ndo é considerada crivel, uma vez que o estado s, é um SEQ para o0 DM 2,

sugerindo que ele prefere permanecer nesse estado.
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Desta forma, Régo e Oliveira (2020 e 2023) propuseram a estabilidade sequencial de
ordem superior, modificando o conceito de estabilidade sequencial a fim de mitigar o problema
das ameacas nao crediveis inerente a esse conceito. Isto retifica o fato de que, na estabilidade
SEQ, um DM pode deixar um estado que € SEQ para ele apenas para punir o seu oponente.

A estabilidade sequencial de ordem superior identifica quais sdo as possiveis san¢des
plausiveis que os oponentes do DM focal podem impor a ele. Ou seja, DMs ndo devem deixar
os estados que sao SEQ para eles. A fim de evitar uma defini¢ao circular, € necessario definir
multiplas ordens de estabilidade SEQ.

Em conflitos complexos, caracterizados por um grande niimero de estados ou varios
DM, a anélise de estabilidade utilizando defini¢des 16gicas torna-se invidvel. Nesse contexto,
a construcdo de representacdes matriciais pode tornar a obtengdo de estados estdveis mais
eficaz, uma vez que proporciona uma andlise de estabilidade mais rdpida, baseada em estruturas
algébricas flexiveis, e convertendo a andlise de estabilidade de uma estrutura 16gica para um
sistema matricial. Mesmo em conflitos menores, a andlise pode ser exaustiva, o que torna o
desenvolvimento de métodos computacionais para encontrar estados estaveis extremamente
relevante.

Neste capitulo, nosso principal objetivo € fornecer métodos matriciais para determi-
nar estabilidades sequenciais de ordem superior no modelo de grafos para a resolucao de conflitos
com dois ou miltiplos DMs. A fim de capturar estabilidades sequenciais de ordem superior,
sao derivadas equacdes matriciais recursivas. Desta forma, na Secao 3.2 serdo apresentadas as
propriedades e definicdes das representagdes matriciais para este conceito. Adicionalmente, na
Secdo 3.3, com o objetivo de ilustrar a utilidade das representacdes obtidas, realizamos aplicacdes
dos métodos propostos a conflitos ja existentes na literatura sobre o GMCR, considerando tanto
2-DMs quanto n-DMs. Vale ressaltar que este trabalho encontra-se submetido no periédico

Group Decision and Negotiation.

3.2 REPRESENTACOES MATRICIAIS DO CONCEITOS DE SOLUCAO m-SEQ

Nesta secdo, sao desenvolvidos métodos matriciais para determinar estados estaveis

m— SEQ no GMCR considerando conflitos com dois € n DMs.
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3.2.1 Caso Bilateral

Sabemos que para que o estado seja estdvel m-SEQ, a reacdo do seu oponente, além
de ser uma melhoria unilateral, ndo deve desviar-se de um estado estdvel (m — 1)-SEQ. Como

veremos no Teorema 3.2.1, podemos obter estados estdveis de acordo com esse conceito a partir

m—SEQ

da seguinte representagdo matricial, M; , para o m-SEQ, que ¢ dada por:

M"SEC = JHE —sinal (1" (PTT)T] jEN, j#£i 3.1)
em que, J](-m’+) ¢ dado por:
1" = sinal(1o M\ oy m > 2, (3.2)
em que / é a matriz identidade de ordem |S| e M; (1-SEQ) _ M]SEQ, uma vez que O conceito

1 —SEQ € por defini¢do igual a SEQ.
O Teorema 3.2.1 a seguir estabelece que um estado s é m — SEQ estdvel para um
DM i se e somente se o elemento que se encontra na linha s e na coluna s da matriz Mm SEQ for

igual a zero.

Teorema 3.2.15S¢jas € Sei € N, entdo s ¢ m— SEQ para DM i se, e somente se, M;miSEQ) (s,8)=
0.

Prova: A prova sera feita por indu¢do em m. Primeiro, suponhamos que m = 2.
Nesse caso,

M2 SE(s,5) = ZJﬂs,s])[E—smal<J§2’”<E":>T>1<sl,s>
s1ES
= Y J(s,s0)[1 = sinal () J Sl,S2 (P (52,5)))]
s1ES €S
= Y J(s,s0)[1 = sinal () J 51,82 7 (5,52))]
s1€S $HES

Portanto, segue-se que M2 SEQ(5.5)

= 0 se somente se, para todo 51 € R (s) existir
57 € S tal que Jj(- : )(sl,sz) =1leP, " (s,50)=1.

Note que P, '~ (s,52) = 1 se somente se s 2Z; 5. Além disso, temos que
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J(.Z’H(s],sz) = Zsinal(IoMfEQ)(sl 53).] (53,52)
s3€S

= Y sinal(I(sy,s3)M; % (s1,53))TF (s3,52)

s3€S

= sinal(MfEQ(sl , 81 ))J;r (51,52)

Assim, J](.2’+) (s1,52) =1 se somente se M;?EQ(sl ,51)#0e J;F (s1,52) = 1. Em outras

palavras J) (51,52) = 1 se somente se 51 ¢ S?EQ es € R;r (s1).

Y
2— SEQ(

Portanto, M; 5,5) = 0 se somente se para todo s; € R/ (s) existir s, € S tal

que s i 52, 51 ¢ Sj EQ o sy € R;F(sl) Consequentemente, M2 SEQ(

s € S?iSEQ.

s) = 0 se somente se

(m—l)—SEQ(S7S) = (0 se somente se

Assumindo agora a hipétese de indugdo de que M;

s € SEmil)*SEQ, Vi € N. Temos que:

M"SEC(s.5) = ZJ;“(s,sl)[E—sinal(J](.m’H(Pl-_’:)T)](sl,s)
s1ES
= Y J(s,s0)[1 = sinal () J s1 52) (P )  (52,9))]
s1ES $HES
= Z Ji(s,51)[1 — sinal( Z J s1 $2)P. " (8,52))]
s1E€S sHES

Assim, segue-se que M." ~SEQ (5. 5) = 0 se somente se para todo 5| € R} (s) existir
57 € Stal que J](m’+) (s1,82) =1e P (s,5) = 1.

Posteriormente, note que

Jj(-m’ﬂ(sl,sz) = ZSSiI’lal(]OMJ(.m1>SEQ)(S1,S3)J (83,82)
s3€

= Zsinal([(s1,S3)Mj(.m71)7SEQ(S1,S3))JJJ~“(S3,S2)
s3E€S

M DTSEC (51 sV (s1,50)

= sinal(M; ;

Assim, Jj(.m’ﬂ(sl,sz) = 1 se somente se MEmil)*SEQ(sl,sl) #0e Jj+(s1,s2) = 1.

(m,+

Logo, pela hipétese de indugdo, J; )(sl,sz) = 1 se somente se 5] ¢ ngil)*SEQ es € R;r (s1).

Logo, Mimf‘gEQ(s,s) = 0 se somente se para todo s € R (s) existir s, € S tal que
S i 852, 51 ¢ S; (m=1)=SEQ ¢ 5y € Rj (s1). Consequentemente, M;"_SEQ(s,s) = 0 se somente se

seS! SEQ o
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3.2.2 Caso Multilateral

Na estabilidade m — SE Q para conflitos multilaterais, os oponentes de um DM podem
realizar uma sequéncia de melhorias plausiveis Uls de ordem m — 1 para sancionar o movimento
inicial de algum DM, em que uma Ul € considerada plausivel de ordem m — 1 se 0 DM n@o deixar
um estado estdvel (m — 1) — SEQ para ele. Agora definimos a matriz conjunta de movimentos

de melhoria plausiveis de ordem m — 1, J. I(;n,+)’ que representa o conjunto R;{Im. A entrada (s,s1)

da matriz J I({m’ﬂ ¢ dada por

1 ses; € RY™(s),
J[(_Im’+)(S,S1) — H

0 caso contrario.

Seja 8™ o nlimero maximo de movimentos em uma sequéncia legal Uls plausiveis
de ordem m — 1 a partir de s realizados pelos DMs em H necessdrios para alcangar um estado
em R}, (s). 6™ é, no mdximo, igual ao nimero total de Uls existentes no conflito, que é dado
por L= ZiGN ZSGS Zslesji—’_ (Sv 51 )

Como a sequéncia de movimentos de san¢do de Uls plausiveis de ordem m — 1
realizada pelos oponentes do DM focal pode ter comprimentos diferentes, seja Ji€27t’+) uma
matriz de ordem |S| que representa os estados alcangdveis por uma sequéncia de exatamente ¢ Uls
Plausiveis de ordem m — 1 realizadas pelos DMs em H, onde o DM i faz o primeiro movimento.

(m.t,+)

O elemento (s,s1) de J; Ht ¢ formalmente definido como:

.
1 se,descS,s; €S pode ser alcancado
exatamente em ¢ Uls legais e DM i € o primeiro a se mover,
) 7+ .
Ji(,nI:{t J(s,51) = em que nenhuma das UI deixa um (m — 1) — SEQ 3.3)

estado estdvel para o DM que se move,

0 caso contrario.
\

O Lema 3.2.1 mostra como obter Ji(Z’t”L) de forma indutiva.

Lema 3.2.1 Param>2et > 2, JE’Z,’[’H é dado recursivamente por

, (3.4)

1

JiErZ7t7+):sinal Jim) \/ JJ(-ZZFI’H

jeH—{i}
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em que JJ(.le’”L) = JJ(.m’+) = sinal (D oMJ(.(m_])_SE@)J;“, VjeEN.

Prova: Como o caso t = 2 tem um formato especial, vamos prova-lo primeiro.

Ji’}}zﬂ = sinal Jl-(m’ﬂ \/ Jm’l’+
jeH—{i}

= sinal Jl-(m’ﬂ \/ Jj(-m’ﬂ
jed—{i}

Consequentemente,

Jignlfl’z’+)(s,s2) = sinal ZJi(m’Jr)(s,sl) \/ J](.m’+) (51,82)
51€S8 jeH—{i}

= sinal <Z Jl.(m’ (s,81)sinal ( Z J sl,s2)>> i
s1€S jEH {}

Assim, Ji(z’2’+) (s,52) = 1 se e somente se existir s; € S e j € H— {i} tal que

g (s,s1)=1e Jj(.m’+) (s1,82) = 1. Na prova do Teorema 3.2.1, mostramos que Jj(.m’Jr

l
1 se e somente se 5] ¢ Sg.mfl)*SEQ

existirs; € Se j€ H—{i}talque s ¢ Sl(m_l)_SEQ, s1 ERS(s), 51 ¢ Sg.m_])_SEQ es € R}“(sl).

)(S1,S2) =

es € R}L (s1). Portanto, Ji€2’2’+) (s,52) = 1 se e somente se

Assim, Ji%’z’ﬂ(s,sz) = 1 se e somente se existir uma sequéncia de melhorias plausiveis de
ordem m — 1 e comprimento 2, com o primeiro movimento sendo do DM i.

Para o caso geral, observe que qualquer sequéncia plausivel de Uls de ordem m e
comprimento ¢, com o primeiro movimento sendo do DM i, consiste em um primeiro movimento
plausivel de ordem m — 1 do DM i, seguido por uma sequéncia de melhorias plausiveis de ordem
m— 1 e comprimento ¢ — 1, com o primeiro movimento sendo de qualquer outro DM em H
diferente de i.

Desde que

Jl(fztﬂ(s,st) = sinal ZJi(m’+)(s,s1) \/ J](-m’tfl’ﬂ (51,8¢)

s1ES jeH-{i}
= sinal (Z Ji(m’ﬂ (s,81)sinal ( Z Jj(~m7t717+) (S1,Sz>>> )
s1E€S jEH*{i}

Temos que Jl-(n;’t’ﬂ (s,5¢:) = 1 se e somente se existir s € S e j € H— {i} tal que

Ji(m’+)(s,s1) =1le J](.m’zfl’ﬂ(s],st) = 1. Portanto, Ji(_Z’t’ﬂ(s,s,) = 1 se e somente se existir
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si€SejeH—{i}talques ¢ Sl(m_l)_SEQ

, 51 € R (s), e s, pode ser alcangado a partir de uma
sequéncia plausivel de Uls de ordem m — 1 e comprimento ¢ — 1 a partir de s;, onde o primeiro
movimento € do DM .

Assim, J, .("If]’t’ﬂ (s,s:) = 1 se e somente se existir uma sequéncia plausivel de Uls de

L

ordem m — 1 e comprimento ¢ de s para s;, onde o primeiro movimento é do DM i. I

Ji(er)

O Teorema 3.2.2 mostra como obter a matriz Jz’+ a partir das matrizes , para

i€ H.

Teorema 3.2.2 Seja 0 +# H C N. A matriz JE’Jr pode ser derivada da seguinte forma:

L
Iyt = (\/ \/Jf,’:/’“> : (3.5)

t=licH

Prova: Note que JZI’+(S,81) = 1 se e somente se existir algum¢ > 1 e i € H tal que

Ji("é’l’ﬂ (s,s1) = 1. Portanto, JZ”L(s,sl) = 1 se e somente se existir alguma sequéncia plausivel

de Uls de ordem m — 1 de s para s; pelos DMs em H. 1

O Teorema 3.2.3 estabelece a representacio matricial m-SEQ para conflitos multila-

terais.
. m—SEQp
Teorema 3.2.3 Defina a matriz M; de ordem |S| como

M}~ = JFE — sinal(Jy" i (B 0)T).

Parai €N, s € Sem>?2, oestado s é considerado sequencial estavelmente de ordem m (m-SEQ)

para o DM i se e somente se M;"_SEQ” (s,5) =0.

Prova: Usando um argumento idéntico ao utilizado na prova do Teorema 3.2.1, segue

que Ml-m_SEQ" (s,5) = 0 se e somente se para todo s1 € R} (s) existe s, € S tal que Jz(vni{t)} (51,82) =
leP " (s,50)=1.

J(m7+)

N (i) © P, temos que M!"*F% (s, s)

Por definicdo de = 0 se e somente se para

todo 51 € R/ (s) existe s € S tal que 57 € R;T{l.} (s1)es sy 1

3.3 APLICACOES

Apresentaremos, nesta se¢ao, duas aplicagdes com a finalidade de ilustrar as repre-

sentacOes matriciais para a estabilidade m — SEQ obtidas neste capitulo. A primeira aplicacdo
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que consideramos foi o jogo Matching Pennies (GIBBONS, 1992) que refere-se ao caso de
dois DMs. A outra aplicagao, que envolve multiplos DMs, consiste no conflito de renovagao
de instalagdes industriais privadas (WALKER; BOUTILIER; HIPEL, 2010). A partir dessas
aplicagdes, enfatiza-se a importancia da representacdo matricial para a estabilidade m — SEQ, na

qual os métodos matriciais apresentam maior agilidade na resolucdo de conflitos.
3.3.1 Matching Pennies

O jogo Matching Pennies (GIBBONS, 1992) é considerado um exemplo cldssico de
um jogo de soma zero, em que num jogo de soma zero o ganho de um jogador € exatamente a
perca do outro. Neste jogo, uma vez que em todas as situagdes possiveis, um dos jogadores tem
um incentivo para mudar de estratégia, entdo ndo existem equilibrios de Nash em estratégias
puras.

Neste jogo, dois jogadores, que chamaremos de DM 1 e DM 2, movem-se de maneira
simultanea, sendo que cada jogador terd uma moeda e deve escolher se quer exibir a “cara” (H)
ou “coroa” (T') virada para cima. No caso em que as moedas corresponderem, o primeiro jogador
ganha e fica com a moeda do outro jogador, mas se as moedas nao corresponderem, o segundo
jogador ganha e fica com a moeda. Este conflito ¢ composto por quatro estados, a saber: HH (s1),
HT(s2), TH(s3), e TT(s4). As preferéncias dos DMs 1 e 2 sdo dadas, respectivamente, por
HH ~TT = HT ~y THe HT ~, TH =y HH ~, TT. A Figura 3.2 ilustra a forma de grafo

desse conflito.

Figura 3.2 — Forma de grafo do jogo Matching Pennies

DM 1 DM 2

As matrizes de movimento unilateral (UM) para o DM 1 e para o DM 2, relacionadas
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com o jogo Matching Pennies no modelo de grafo apresentado na Figura 3.2 sd@o dadas por:

0010 0100
0 001 1 00O
J1= Jr = (3.6)
1 000 0001
0100 0010

De acordo com a Defini¢cdo 2.5, as matrizes de preferéncia dos DMs 1 e 2 sdo,

respectivamente, dadas por:

0 00O 0110
1 00 0 00O
Pf: P;: (3.7)
1 0 01 00 0O
00 0O 0110

Temos também que as matrizes de melhorias unilaterais (UI) dos DMs 1 e 2 séao,

respectivamente, dadas por:

0000 0100
001 0000

Ji= Jy = (3.8)
1000 0000
0000 0010

Para obtermos as matrizes de preferéncias nao estritas dos DMs 1 e 2, utilizamos

P =E-— Pf. Tais matrizes sao dadas, respectivamente, por:

1111 0 00O 1 111

o I 111 1 001 0110
P = — = (3.9)

I 111 1 001 0110

1 111 0 00O 1111

1111 0110 1 001

_ 1 111 0 00O 1 111
P, = — = (3.10)

I 111 0 00O I 111

I 111 0110 1 001
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Vamos inicialmente analisar a estabilidade 1-SEQ, que é equivalente a SEQ. Para

isso, calculamos a matriz Ml-(lfsEQ) = M@ = JF(E — sinal (/7 (P7)T) para ambos DMs:

0000\ [f1111 01 00\(100°1
MTSEQ_OOOl traf oo offt1
toooflfr 111 oooof|ll1 111
0000/ |\1 111 oo0o10/\1oo1
0000
~Joooo
loooo
0000
€
o1 00\[[/1 111 0000y (1 111)\)]
i _ 000 of[ft | o0 1fllo1 10
oooof||l1 111 tooofllo1 1o
oo 10/ |\1t111 0oo0oo00/\1 111
0000
~Joooo
~loooo
0000

Assim, todos os estados sdo 1-SEQ estdveis para ambos os DMs. Da Equacao 3.1,

sabemos que a representacao matricial para o m-SEQ do DM i é

M"SEC = JHE — sinal (1" (77T,

1

em que J](.m’ﬂ = sinal (I oM](-(m_l)_SEQ))J;F. Assim, temos que para m = 2:



12 SEQ

2,4+)

2,4+)

S O

o o o o

sinal

S O O O
o o o O

sinal

S O o O
o o o O

o o o O

o o o O

S O o O

S O o O

p— e e

Consequentemente, Ml.2 —SEQ

o o O

o o O

S O O O
S O O O

S O O O
S O O O

o o o O

o o o O

o o o O

,1=1,2, sdo dadas por:

S O O O

o o o O

o o o O

S O O O

o o o O

o o O

S O O O

o o O

55
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Tabela 3.1 — Estados estdveis do jogo Matching Pennies de acordo com a estabilidade

m-SEQ
m-SEQ | HH (s1) | HT (s2) | TH (s3) | TT (s4)
m par 1 2 2 1
m impar 1,2 1,2 1,2 1,2
0100 I 111 00O0@O0 1 111
0 00O I 1 11 00O0O0 0110
M227SEQ = — sinal
0 00O 1 1 11 00 0O 0110
0010 1 111 0 00O 1 111
1 111
0 00O
0 00O

1 1 11

Portanto, os estados s; e s4 sdo 2-SEQ estdveis para DM 1 e, consequentemente,
pelo Teorema 2.2.7, sdao m-SEQ estdveis para todos os m > 2 para DM 1. Por outro lado, os
estados s; € s3 sdo 2 — SEQ estaveis para DM 2 e, consequentemente, pelo Teorema 2.2.7, sdo
m-SEQ estaveis para todos os m > 2 para DM 2.

A Tabela 3.1 mostra os resultados obtidos de acordo com o Teorema 3.2.1 para
todos os valores de m > 1. Como esperado, os resultados encontrados através da representacao

matricial foram os mesmos encontrados em Oliveira (2018) usando as defini¢des logicas.

3.3.2 Conflito de Renovacao de Instalacao Industrial Privada

Vamos agora ilustrar as representacdes matriciais obtidas neste capitulo em uma
aplicacdo apresentada em Walker et al. (2010), envolvendo trés DMs. O conflito consiste na
transformacdo em drea residencial de instalagdes industriais da empresa Kaufman Footwear na
cidade de Kitchener, Ontério, Canad4, e é conhecido como conflito de renovacao de instalacdo
industrial privada. Neste conflito, tem-se que os decisores envolvidos sdo:

* Proprietario da propriedade (PO);
* Governo municipal (CG);
* Empresa imobilidria ou um promotor imobilidrio (D).
O cendrio de conflito é dado pelo fato de o proprietdrio do imével e a administracio

municipal estarem tentando atrair o comprador para adquirir o imével. O DM D, por outro lado,
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estd interessado em comprar o imdvel pelo preco mais baixo possivel e obter o maior beneficio
possivel do DM CG, ao mesmo tempo que DM PO tenta aumentar o maximo possivel o preco do

imovel. As op¢des para cada DM e os possiveis estados sdo apresentados na Tabela 3.2 a seguir.

Tabela 3.2 — Estados vidveis no conflito de aquisicdao

Vender caro N

PO  Vender barato N
Desistir N

CG Incentivos N
N

N

Comprar
Desistir

z zZ|ZZ ~
z Z|Z|Z~< Z
z z|<|ZZz2Z
PAVAR PV ALS
Z z|<|Z < Z
z <|ZZ2z2Z
z <|ZZz~
Z~<|zlZzZ~<2Z
z <|=<lZzz2z
z <<z 'z~
Z <<z <z
<

Estado S1 52 3 S4 A S6 857 S8 59 510 S11

5%
)
9%
w
9%
w

Fonte: (WALKER; BOUTILIER; HIPEL, 2010)

As opgdes disponiveis para os DMs sdo:
1. O proprietario (PO) pode vender a propriedade por um preco alto ou baixo;
O governo municipal (CG) pode oferecer incentivos para a compra da propriedade;

O promotor (D) tem a opcao de comprar a instalacio industrial;

el

O promotor (D) e o proprietario (PO) t€m a op¢ao de desistir da negociacao, porém se
escolherem esta opcao, independentemente das opcdes tomadas pelos outros DMs, o
promotor € o proprietdrio ndo podem voltar a negociacio e o conflito vai terminar no
estado 13 (como apresentado na tabela acima), ou seja, a Unica opg¢do irreversivel no
conflito € quando o DM PO ou DM D decidem desistir;
5. Os outros DMs podem mudar o estado do conflito alterando as suas proprias opg¢oes,
mantendo as opcdes dos outros DMs fixas.
As preferéncias relacionadas com os estados para cada DM sdo apresentadas na
Tabela 3.3 abaixo. A classificacdo dos estados, para cada DM, € listada da esquerda para a
direita, da mais preferivel para a menos preferivel. Os estados que estdo entre parénteses sao
considerados igualmente preferidos.
Tabela 3.3 — Classificacao dos estados do conflito de aquisicao
DM Ranking dos estados
PO (s, 511), (51, 52, 54, 85, 57, 510), (53, 86, $13), (59, 512)

CG  (s3,59), (511, S12), (S1, 52, 83, §7), (S4, 55, S6, S10)> 513
D 512, 59, S11, S10, S6» 55, (53, 54), (51, 52, 57, 513), 58

Fonte: (WALKER; BOUTILIER; HIPEL, 2010)

Com base nos movimentos unilaterais e nas classificacdes de preferéncias disponi-

veis para cada DM, analisaremos, a seguir, representacdo matricial da estabilidades sequenciais



58

de ordem superior para cada DM desse conflito. As matrizes de movimentos unilaterais para os

DMs PO, CG e D, sdo, respectivamente, dadas por:

[

elelslslslelelelelelelelwe)
elelelelelelelelojelelelo)
OO0 O—OOOOoO
elelelelelelojelelelelelo)
slelelelelelelelelalalyje)
elelaleleleleleleleloleje)
slelelelalelelelellelala)
slelolelelelelelelelelalo)
=l plelelelelelelelalolal)
inlelelelelelelelelelelalo)
slelelelallelelelalelola)
elelalelojelelelelelelal)
slelaeljelelelelelalolal)

Jeg =

e et et e e e e e e e e e ©
SO OoO—— OO
[slelelelelelelelelolellw)]
slelelelelelelelelelol ]
[slelelelelelololelelelel]
slelelelelelolelolelelelw]
[slelelelelelelololelelel]
[slelelol o lelelelelelelelw]
slelelolelolelelelelelel]
slelelelololelelelelelel]
\mimielelelelelelelelelel]
imielolelelelelelelelele ]
(el aielelelelelelelelel]

Jpo =

b L e R e R R e R e R ke
[slelslelelolelelelelelele)
[slelelellelelelelalolala)
[slelelolelelelelelelelele)
[slelojelelelelelelolololo)
(el lelelelelelelelelelele)
inlelelelelelelelelelelol)
COOOOOOOoOoOoOo—O
[slelelelelelelolelalolele)
COOOOOOOoOo—OOO
[slelelelelelelelolele i)
COOOOOO—OOoOOoOOoO
[slelelelelelolelelelelalo)

I
2

Temos ainda que as matrizes de preferéncia dos DMs PO, CG e D, sdo, respectiva-

mente, dadas por:

0]

[slelelelelelelelelelololo)
et e e e e e = O O~ OO
—_ A A A At OO — O O —
[slelaelelelelelelelolelely)
el e e e e e e (O O
Tt e e e e e e O O v
OCOO———OO0OO—OO—
[slelelelelelelelelolelely)
[slelslelelelelelelelelely)
[slelelelelelelelelolelely)
OO ———OO0O—OO—
OCOO———OO0O—OO—
OO ———OO0O—OO—

I

©)
+0
A

OO O—OO—O
[slelelelelelelelelalo i)
e e e e e e O el O —
OCO—OO—OCO—OO—
[slelelelelelelelelele i)
Tt e e e e e e O e e O
OO~ OO~ OO —OO——
OO0 O—OO—O
OCO—OO—OO—OO——
OCO—OO—OCO—OO—
OO O—OO—O
OCO—OO—OCO—OO——
OCO—OO—OO—OO——

I
)

&

_

slelslelslelelolelelelele)
e b b R D R D e R e S k]
T et e e e e e = (O = O O
—_— A At OO OO —
et e e e e e e e () vt vt (O
[elelelelelelelololalo ol
[slelslelslelelolelelelele)
e O O OO O
Y e e yoed (O O vt et O O OO
—_—OO0O0O——OOoOO—
—_—OOO0O——OOo0OoO—
elelelelelelelolelelelelo)
slelslelalelelolelalelal)

+
D:.D

1

ave

-SEQ esta

,hiao ém

Com base no Teorema 3.2.3, a Tabela 3.4 a seguir apresenta os resultados obtidos

para cada estado e cada DM das andlises de estabilidade do conflito de renovacao de instalacdo
Note que embora o estado 51 seja um equilibrio sequencial

para DM PO e DM CG, para m > 1, o mesmo acontece com o estado s¢ para o DM CG, ou seja,

industrial privada.
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Tabela 3.4 — Resultado da andlise de estabilidade do conflito de renovacdo de instalagcdo
industrial privada
m-SEQ
PO CG D

S1 Vm Vm Vm
52 Vm Vm Vm
53 - Vm Vm
54 Vm - m#£2
S5 Vm - m=1
S6 - m=1 Vm
57 Vm Vm Vm
S8 Vm Vm -
59 - Vm Vm
sjo |l m=1 m= Vm
S11 Vm Vm Vm
S12 - Vm Vm
513 Vm Vm Vm

ele € estado sequencialmente estdvel, porém ndao m-SEQ para DM CG, pois, as sangdes ndo sao
crediveis uma vez que envolvem o DM D ter que deixar o estado s3 que é 2—SEQ estdvel para
ele. Podemos observar também que o estado s4 ¢ SEQ e m-SEQ para DM D para todo m # 2, no
entanto nao € 2—SEQ para DM D. Desta forma, obtivemos os mesmos resultados encontrados

através da representagdo matricial que foram apresentados em Oliveira (2018).

3.4 CONCLUSAO

Neste capitulo, propusemos representacdes matriciais para facilitar a obtengao de
estados estdveis m-SEQ, como proposto por Régo e Oliveira (2020 e 2023), aplicaveis a conflitos
bilaterais e multilaterais. Este conceito de estabilidade € valioso para mitigar problemas de
ameacas nao crediveis que podem surgir na estabilidade SEQ.

A representacao matricial do m-SEQ expande a andlise de conflitos, permitindo a
avaliacdo de cendrios mais complexos, com mais ordens e estados, além de proporcionar maior
eficiéncia em termos de esforco computacional e custo de tempo na resolucio de conflitos. Para
validar as representacdes matriciais do m-SEQ, realizamos uma anélise de estabilidade em dois
conflitos do mundo real, Matching Pennies e o conflito de renovacao de instalagcdo industrial

privado.
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4 REPRESENTACAO MATRICIAL DA ESTABILIDADE MAXIMIN, NO MODELO
GRAFO PARA RESOLUCAO DE CONFLITOS

4.1 INTRODUCAO

Régo e Vieira (2019), propuseram uma nova nog¢ao de estabilidade com horizonte
varidvel. Tal nocdo, denominada por estabilidade Maximiny,, considera que o DM focal nao
precisa ter necessariamente informacgao sobre as preferéncias de outros DMs. Esta estabilidade
fol inspirada na regra de decisdo maximin, também conhecida como a regra de decisdo de Wald
(Wald, 1945). Esta € uma regra de decisdo, ndo probabilistica, segundo a qual um decisor deve
avaliar uma agdo de acordo com as piores consequéncias que podem ser obtidas se essa a¢do for
escolhida. A regra maximin prescreve a escolha da acdo com a melhor consequéncia obtida no
pior cendrio possivel e € util para modelar DMs pessimistas ou cautelosos.

O conceito de estabilidade Maximin;, também tem o atrativo de ter horizonte variavel,
ou seja, pode ser utilizado para analisar um conflito com /4 passos a frente, onde 4 € um inteiro
ndo-negativo. Além disso, em Régo e Vieira (2019) forneceram resultados que estabelecem que
a estabilidade de Nash, a metarracionalidade geral e a metarracionalidade simétrica, que sao
conceitos de solu¢do frequentemente utilizados na literatura da GMCR, sdo equivalentes a casos
particulares do conceito de estabilidade Maximiny, para h = 1,2, 3, respectivamente.

Motivados pela dificuldade de se solucionar, de forma manual, conflitos onde existe
um alto nimero de estados ou DMs, este capitulo tem como principal objetivo propor métodos
matriciais para representar o conceito de estabilidade Maximiny, em conflitos com dois e multiplos
DMs. Com a ajuda das representacdes matriciais obtidas, conflitos maiores podem ser analisados,
de maneira mais viavel, utilizando esse conceito. Indicamos também como modificar os métodos
de matriz propostos para representar também as variagdes crediveis do conceito Maximiny. Além
disso, para demonstrar a utilidade dos resultados obtidos neste capitulo, analisamos um conflito
real, conhecido na literatura do GMCR como o Sun Belt Vs. British Columbia Government
(OBEIDI; HIPEL, 2005). Vale ressaltar que este capitulo encontra-se submetido no periédico
IEEE Transactions on Systems Man Cybernetics-Systems .

Este capitulo estd estruturado da seguinte forma: na Secdo 4.2, sdo apresentadas as
representacdes matriciais relacionadas ao conceito de estabilidade Maximiny, para conflitos bila-

terais. As adaptacdes necessdrias para lidar com conflitos multilaterais ou com as estabilidades
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maximin crediveis também sdo abordadas nesta se¢do. Posteriormente, na Se¢do 4.3, ilustramos
as representacdes matriciais obtidas para representar o conceito Maximiny no conflito de Sun
Belt Vs. British Columbia Government (OBEIDI; HIPEL, 2005) considerando a terceira fase
deste conflito e também analisamos o dilema dos prisioneiros para 2, 3 e 4 DMs, com o intuito

de mensurar o crescimento do esforco computacional necessario para obtencdo das estabilidades.

4.2 REPRESENTACOES MATRICIAIS DA ESTABILIDADE MAXIMIN;, NO GMCR

Nesta secdo, fornecemos as representagdes matriciais para obter a estabilidade
Maximiny, para conflitos bilaterais e multilaterais. Mostramos também como adaptd-los de modo
a representar estabilidades Maximiny, crediveis. Comegamos com as representacdes matriciais

para conflitos bilaterais.

4.2.1 Representacoes matriciais da estabilidade Maximin;, para conflitos bilaterais

Para atingir o nosso objetivo principal, precisamos introduzir algumas novas matrizes,
que serdo utilizadas na representacdo proposta. Primeiro, considere que / seja a matriz identidade
deordem [S|eE =1 1 1 ... 1] uma matriz linha com dimens@o |S|. Considere também
que se F for uma matriz 0 — 1, entdo F° representa o complemento da matriz bindria F, o que
significa que F¢(sy,s2) = 1 — F(s1,s2). Finalmente, seja K; uma matriz coluna com dimensao
|S| dada por K; = [E’ -P7]T. O Lema 4.2.1 estabelece uma relagdo entre a matriz K; € a fungéo
K; que foi definida na Secdo 2.2. O Lema 4.2.1 estabelece uma relacdo entre a matriz K; e a

funcao K.
Lema 4.2.1 Sejai € N, se q € S. Entdo Ki(q,1) = Ki(q).
Prova: Note que

Ki(q,1)=[E P (q.1) = Y P"(5,9) = Ki(q).
ses

Agora vamos definir dois vetores importantes, a saber: Min(A) e Max(A).
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Definicao 4.2.1Seja A = [a,;] uma matriz de ordem |S|, entdo Min(A) e Max(A) sdo duas matri-
zes coluna com dimensdo |S| tais que Min(A)[(k, 1)] = min{ a1, axa, - . . ,ays } e Max(A)[(k, 1)] =

max{a,ary, . .,ays|}, respectivamente.

Intuitivamente, o nimero que aparece na linha k do vetor Min(A) é o menor nimero
que aparece na linha k da matriz A, no caso do Max(A) consideramos o maior nimero que

aparece na linha k da matriz A.

3146
. . 2 0 4 4
Por exemplo, se considerarmos a matriz A = , entdo
5223
0 412
1 6
0 4
Min(A) = e Max(A) =
2 5
0 4

Definimos agora duas matrizes, B;l e B{;, que em geral representam o ganho anteci-
pado, ou seja, o valor do estado final antecipado que o DM i espera receber ap6s um horizonte
de conflito % se ele ou o adversario, respectivamente, for o primeiro a se mover. Cada linha
destas matrizes contém o que o DM i prevé receber no final do conflito se o estado de conflito
mudar do estado da linha para o estado da coluna. Se o estado da coluna ndo for alcangédvel a
partir do estado da linha e ndo for igual ao estado da linha, entdo a entrada correspondente sera
Zero em B;l e serd igual a |S| em B;;, uma vez que no primeiro caso, onde o DM focal se move,
consistird em um movimento de maximizagdo e, no segundo, um movimento de minimizacao.

Formalmente, temos:

By = (Uiolc] )T +10(Ki-E)T)) @.1)

B = |S|x(Jj+1)+(Jjo(Chy-E) +1o(Ki-E)"), (4.2)

em que, Cy = C} = K;, C, = Max(B) e C} = Min(B}), Yh > 1.
Lema 4.2.2 estabelece que a entrada (s, 1) da matriz coluna C;l ¢ igual ao ganho

maximo que o DM i pode obter escolhendo ficar em s ou afastar-se de s e o que antecipa quando
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o DM j se move a seguir e o horizonte é 7 — 1. Do mesmo modo, a entrada de (s, 1) da coluna
da matriz C}Jl' ¢ igual ao ganho minimo que DM i pode obter quando DM j escolhe ficar em s ou

afastar-se de s e 0 que o DM i antecipa quando se move a seguir e o horizonte € & — 1.

Lema 4.2.2 Para cada estado s € S e para cada horizonte h > 1, segue-se que:

Ci(s,1) = max {Aﬁl(i, 5),Ki(s)}

C}Jl'(s, 1) = min {Aﬁl(j,s),Ki(s)} :

Prova: Para provarmos esse resultado vamos usar o primeiro principio de indugao
matemadtica em h. Dessa forma, é necessario verificar primeiro a etapa base da indugdo, verifi-

cando o caso i = 1, tanto para C;'l(s, 1) como para C,i (s,1). Como definido em (REGO; VIEIRA,
2019), temos que

Al(is) = Ki(Gh(j.Mj(i,s)))

= max{Ki(s'): s €Ri(s)}.

Analisamos agora o caso h = 1. Note-se que C} (s, 1) = Max(B})(s, 1), em que

Bi(s5) = [(Uro(Ki-E) +10(Ki-E)T))](s,)
Ki(s') ses’ €Ri(s)U{s}
0 caso contrario.

Assim, segue-se que

C’i (s,1) = max(B’i)(s, 1)

= max{B’i(s,s'),Vs’ €S}VseS.

Ou seja,

Ci(s,1) = max{Ki(s'):s € Ri(s)U{s}}

= max{A(i,s),Ki(s)} .
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Também temos que, de acordo com Régo e Vieira (2019),

AY(s) = Ki(Gy(i. My (j.s)))

= min{Ki(s') :s' €R;(s)}.

Note também que C{(s, 1) = min(B{) (s,1), em que

Bl(s,5) = [SIx (4D + W+ Do (Ki-E) T )](5,)
Ki(s") ses' €Rj(s)U{s};
S| se s’ ¢ Rj(s)U{s}.

Assim, segue-se que

Ci(s,1) = min(B})(s,1)
= min{B{(s,sl),VsleS}VseS.

Ou seja,

C{(s,l) = min{Ki(s'):s' € Rj(s)U{s}}
= min{A’i(j,s),K,-(s)}.

Vamos assumir que as igualdades sao vélidas para & — 1, ou seja,

Cl_((s,1) = max {Az_l(i,s),K,-(s)}

C}]l'_l(s, 1) = min {AZ_I(j,s),Ki(s)} :

Vamos agora analisar o caso 4. Como definido em Régo e Vieira (2019)

Aji,s) = Ki(Gy_1(j,M;(i,s)))

= max{min{K,-(s’),A;ﬁl(jvsl) 05" €Ri(s)}}



Ay(ss) = Ki(Gy_y(i,M;(4,9)))

= min {max{Ki(s’),A;lfl(i,s') :s' €Rj(s)}}

Sabemos que,

Bi(s,s') = [(Jio(Cl_,-E)T +Io(K;i-E))|(s.5)
CZ_I(S’,I) se s’ € Ri(s);

= { Ki(s) se s’ =,

0 se s’ & Ri(s)U{s}

\

Bl(s,s") = [S|x(J;+D+ (o (Ch_y-E) +1o(Ki-E))](s,s")

Ci_,(s) ses €Rj(s);

= S Ki(s) se s’ =s;

\|S| se s’ & Rj(s)U{s}.

Portanto, temos que

C;l(s, 1) = (max(B;l)) (s,1)

65
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C,{(s, 1)= <mm(B{l)) (s,1)
= min {B;;(s,s'),Vs' € S} VseS
— min{Kils) U {C) (5 1) 5 € R(9)))
= min{Ki(s)U {max{Aj_,(i,5),Ki(s)} :s' € R;(5)} }

= min {AZ(j,s),K,-(s)}.

O Teorema 4.2.2 fornece um resultado que permite obter estados Maximiny, estaveis

usando apenas operagdes matriciais.

Teorema 4.2.2Um estado s € S é Maximiny, para o DM i se, e somente se, (sinal(K; — C})) (s,1) =

0.

Prova: Pelos Lemas 4.2.1 e 4.2.2, segue-se que K;(s, 1) < Cl (s, 1). Assim, precisa-
mos considerar dois casos.

Se (sinal (K; —C})) (s,1) =0, entdo isto implica que Ki(s) = Ki(s,1) = Cj (s, 1). As-
sim, como C} (s, 1) = max {Al (i,s),K;(s) }, temos que K;(s) > Al (i,s). Assim, temos G, (i,s) =s,
e, por conseguinte, segue-se que s ¢ Maximiny, para o DM i.

Se (sinal(K; —C})) (s,1) < 0, logo isto implica que K;(s) = K;(s,1) < Ci(s,1).
Logo, C (s,1) = Al (i,s) e segue-se que K;(s) < A! (i,s) e, consequentemente, G: (i,s) # 5. Logo,
s € Maximiny, instavel para o DM i.

De acordo com Teorema 4.2.2, se a entrada (s, 1) do vetor coluna K; for igual a
mesma entrada do vetor coluna C;;, entdo o estado s € Maximiny, estavel para o DM i. Esta
situacdo implica que, antecipando um horizonte /4 e adotando uma crenga pessimista sobre os
movimentos do adversario, o DM focal prefere ficar no estado s. Por outro lado, se a entrada
(s,1) do vetor coluna K; for inferior a mesma entrada do vetor coluna C Z, entdo o estado s ndo €
Maximiny, estdvel para DM i. Isto implica que o DM focal antecipa um ganho melhor ao sair do

estado s considerando um horizonte /4 do que ao ficar em s.

Exemplo 1 Para ilustrar a representacdo matricial obtida neste trabalho, considere um conflito

hipotético envolvendo dois tomadores de decisdo, DM i e DM j, e quatro estados, sy, $3, $3 € S4.
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Suponha que os conjuntos de acessibilidade para este conflito sejam: Ri(s1) = {s3}, Ri(s2) =
{sa}, Ri(s3) ={s1}, Ri(s4) = {s2}, Rj(s1) = {s2}, Rj(s2) ={s1}, Rj(s3) = {s4} € Rj(s54) = {s3}.
Suponha ainda que as preferéncias do DM i sdo s\ > s3 > S2 > S4 (as preferéncias de DM j
ndo sdo necessdrias para analisar a estabilidade Maximiny, para o DM i). Neste conflito, temos

que as matrizes J;, Jj, Pl-+ e K; sdo, respetivamente, dadas por:

0010 0100
0 001 1 000
‘]l: )J]: b

1 000 0001
0100 0010

0 00O 3

1 010 1

Pi+: eK,':
1 000 2
1 110 0

Por simplicidade, utilizaremos a representagdo matricial obtida no Teorema 4.2.2
para analisar a estabilidade dos estados de conflito para o DM i, considerando horizontes

h = 1,2 e 3. Neste conflito hipotético, temos

3]0 @ o [ 3 |
S ) R
@ 0 [2] 0 3
|0 @ o0 [o]] | 1]
(3] @ 4 4 | 1
Bj:@44 o | !
e s ol T ol
| 4 4 @ [o]] | 0 |
(3] 0 © o (3]
N ) RS
® 0 [2] 0 2
|0 @ o0 [o]] | 1]




_®44_ BN
B£:@44 521
4 4 2] @ 1
_44@@_ | 0 |
(3] 0 © o (3]
® o0 [2] 0 2
_0@0@_ | 1]
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Como pode ser observado, todos os elementos diagonais das matrizes B;l ou Bi, que
estdo destacados dentro de retangulos, correspondem aos valores dos estados apresentados no
vetor K;. Na matriz B., os niimeros circulados representam os valores do estado para o qual
0 DM i pode se mover a partir do estado indicado na linha, sendo esses valores derivados de
Cljz.—l' Todas as outras posigbes na matriz B;l sdo iguais a 0. De forma andloga, na matriz B ,
os ntimeros circulados representam os valores do estado para o qual o DM j pode se deslocar
a partir do estado da linha correspondente, com esses valores sendo obtidos a partir de Cfl_l.
Todas as demais posicoes na matriz B;; sdo iguais a |S| = 4. Os niimeros sublinhados nos
vetores C;l indicam aqueles que coincidem com o valor do préprio estado, sugerindo que o DM
i preferiria permanecer nesses estados. Consequentemente, esses estados sdo considerados
Maximiny, estdveis para o DM i, enquanto os demais ndo o sdo.

Na tabela abaixo, apresentamos os resultados da representacdo matricial para a
estabilidade Maximiny, do DM i, considerando os horizontes h = 1,2 e 3. As células da tabela
correspondem aos valores da matriz de sinais do Teorema 4.2.2 para os estados indicados nas

colunas, levando em conta o horizonte especificado nas linhas.

Tabela 4.1 — Analise de estabilidade Maximin, para o DM i

h 51 52 853 S4
10 0 -1 -1
DM:|2|0 0 0 -1
3/]0 0 0 -1

Régo e Vieira (2019) apresentaram um resultado que estabelece que a estabilidade
Maximiny, 4 implica estabilidade Maximiny, para todos os h > 2n+ 1, e que a estabilidade
Maximin,, implica estabilidade Maximiny,, para todos os m tais que 1 < m < n. Assim, se

um estado satisfaz a estabilidade Maximinz para o DM i, ele também satisfaz a estabilidade
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Maximiny, para cada h > 3. Por outro lado, se um estado ndo satisfizer a estabilidade Maximin;
para o DM i, ele ndo satisfard a estabilidade Maximiny, para qualquer valor de h. Usando
esse resultado, observamos que, no conflito hipotético mencionado, os estados sy, s> e 3 sGo
Maximiny, estdveis para o DM i para cada h > 3, enquanto o estado s4 ndo é Maximiny, estdvel

para nenhum valor de h.

4.2.2 Representacoes matriciais de extensoes do conceito Maximiny,

Os resultados matriciais para determinar estados estdveis de acordo com o conceito
de estabilidade Maximiny, podem ser facilmente adaptados para o caso de conflitos com multiplos
DM:s. Para este fim, como nos conflitos com multiplos DMs, o DM focal considera as possiveis
respostas dos oponentes, entdo a representacao matricial do caso n-DM para a estabilidade de
Maximiny, serd idéntica ao caso de 2-DMs, substituindo apenas a matriz J;, isto €, a matriz
de acessibilidade do DM j pela matriz Jy_;, isto €, pela matriz de movimentos conjuntos de
coalizdo N —i na defini¢do de matriz B;; apresentada na Equacdo 4.2.

Além disso, € importante notar que, na estabilidade de Maximiny,, os DMs podem
optar por um movimento unilateral que ndo represente uma melhoria imediata, mas que antecipe
um ganho futuro. No entanto, isso pode tornar o conceito de estabilidade Maximiny, ndo credivel,
uma vez que tais movimentos podem nao ser sustentaveis ou confidveis na pratica.

No trabalho de Régo et al. (2022) foram propostas modificagdes da estabilidade
Maximiny,, requerendo que ou o DM focal, os seus oponentes ou todos os envolvidos realizem
apenas movimentos de UL Neste estudo, os autores demonstraram que, quando se exige que o
DM focal faca apenas movimentos Uls, os estados estdveis permanecem inalterados. No entanto,
a estabilidade dos estados pode ser impactada se os oponentes do DM focal forem obrigados a
fazer apenas Uls. Desta forma, € possivel obter representacdes matriciais semelhantes as obtidas
na subsec¢do anterior, que facilitam a identificacdo de estados estdveis conforme o conceito
de estabilidade Maximin credivel do adversdrio. Para isso, a inica modificacdo necessdria
€ substituir a matriz J;, ou seja, a matriz de acessibilidade de DM j pela matriz J;_l., que
representa a matriz de melhoria conjunta de coalizdo N — i na definicdo de matriz de B/, conforme

apresentada na Equacdo 4.2.
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4.3 APLICACAO

Com o intuito de ilustrar a representacao matricial do conceito Maximin;, proposto
neste trabalho, consideramos um conflito real, conhecido na literatura do GMCR como o Sun Belt
Vs. British Columbia Government (OBEIDI; HIPEL, 2005). Adicionalmente, apresentaremos
também um conflito muito conhecido na literatura de teoria dos jogos, chamado de Dilema dos
Prisioneiros, considerando n jogadores a fim de observar o custo de tempo para se fazer analise
de estabilidade de acordo com os resultados matriciais obtidos neste capitulo a medida que o

namero de DMs aumenta.
4.3.1 Sun Belt Vs. British Columbia Government

A Sun Belt Water Inc., da Califérnia, formou uma parceria com uma empresa
canadense, a qual possuia uma licenca para exportar 200 acre-feet (247 milhdes de litros)
de agua doce a granel por ano, transportada por caminhdes-tanque da Columbia Britanica,
no Canadd, para os Estados Unidos e outros paises. Logo apds o inicio da colaboracdo, o
Goleta Water District, na Califérnia, convidou a Sun Belt para estabelecer um contrato para o
fornecimento de 4gua a granel via transporte maritimo.

Diante da perspectiva de aumento na demanda por dgua, a empresa canadense
solicitou uma ampliacio de sua autorizac¢do anual de fornecimento para 15.000 acre-feet (18,5
bilhdes de litros). Segundo a Sun Belt, o0 Governo da Coltimbia Britanica (BCG) informou que,
se o pedido da empresa canadense atendesse aos requisitos normais da Lei da Agua, a expansdo
da licenca seria aprovada para atender as necessidades de dgua doce do Goleta Water District.
A Goleta selecionou a Sun Belt como fornecedora preferencial para negociar um contrato de
compra de dgua a granel.

No entanto, 0 BCG imp6s uma moratdria sobre a emissdao de novas ou renovadas
licengas de exportacdo de dgua, bloqueando assim o potencial negécio da Sun Belt com a Goleta.
Em resposta, a Sun Belt contestou as agdes do BCG e entrou com uma ac¢ao judicial reivindicando
indenizagdo por danos decorrentes da moratoria.

O BCG concordou em iniciar negociagdes extrajudiciais separadas com as duas
empresas envolvidas na joint venture da Sun Belt. Como resultado, foi firmado um acordo
monetério de 220.000 com o parceiro canadense da joint venture, mas nao com a Sun Belt, que
reivindicava uma indenizacdo de 46,8 milhdes. Posteriormente, a legislatura provincial aprovou

a Lei de Protecdo da Agua de 1995, que proibe a exportacdo de dgua da Coldmbia Britanica em
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contentores com dimensdes ou capacidades adequadas, colocando assim a atividade da Sun Belt
em risco.

ApOs buscar, sem sucesso, compensacao nos tribunais da Columbia Britanica, a Sun
Belt decidiu recorrer ao processo de resolucdo de litigios entre investidores e estados previsto
no Acordo de Livre Comércio da América do Norte (NAFTA). A empresa apresentou uma
notificacdo de inten¢do para requerer arbitragem contra o Canada. Na sua notificacdo, a Sun Belt
alega que o Canada violou suas obrigacOes e cometeu diversos atos ilicitos por parte de ministros
e funciondrios dos governos federal e provincial da Colimbia Britinica, bem como por parte de

juizes (para mais detalhes sobre o caso e referéncias completas, consulte (OBEIDI, 2002)).
4.3.1.1 Fases do conflito

A Figura 4.1 ilustra a cronologia do litigio com a Sun Belt, destacando a evolu¢ao
dos eventos e a crescente complexidade do caso que, eventualmente, envolveu o governo federal
canadense e outras provincias.

Inicialmente, quando o BCG impds uma moratdria temporaria sobre as captagcdes de
dgua a granel, o Goleta Water District e a Sun Belt ndo possuiam um contrato vinculativo de
fornecimento de agua, e 0 NAFTA ainda ndo havia sido estabelecido. Entre marco de 1991 e
dezembro de 1998, as principais partes envolvidas no litigio eram a Sun Belt e 0 BCG.

Com a percepg¢ao de que nao conseguiria obter justica nos tribunais da Colimbia
Britanica, a Sun Belt decidiu, em 1998, invocar o Capitulo 11 do NAFTA para processar o
governo federal canadense. Essa decisdo elevou o litigio a um novo patamar, abrangendo a
totalidade do Canadd e envolvendo o governo federal na disputa.

Com base na Figura 4.1, o conflito entre a Sun Belt e o BCG pode ser dividido em
trés fases distintas:

* Fase 1: (1991 - 1994), implementacdo da NAFTA;

« Fase 2: (1994 - 1995), o BCG implementou a Lei de Protecdo da Agua;

* Fase 3: (1995 - 1998), A Sun Belt apresentou uma carta de inten¢des para resolver o
litigio.

Para os propdésitos deste capitulo, focaremos na Fase 3. Com a promulgacao da
Lei de Protecio da Agua em 1995, o BCG enfrentou duas opgdes: litigar ou negociar. Neste

contexto, ficou evidente que o0 BCG optou pela via judicial em vez da negociagdo.



Figura 4.1 — Cronologia do litigio com a Sun Belt
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4.3.1.2 Anadlise de estabilidade Maximiny, da fase 3 do conflito

Fonte: Adaptado (OBEIDI; HIPEL, 2005)
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Os estados vidveis da terceira fase do conflito e os grafos direcionados dos DMs

envolvidos sdo apresentados, respectivamente, na Tabela 4.2 e na Figura 4.2. Para mais detalhes

sobre o contexto deste conflito, consulte (OBEIDI; HIPEL, 2005).

Tabela 4.2 — DMs, opc¢oes e estados viaveis do conflito estratégico - Fase 3

DMs Opg()es S1 |82 (8384|5586 |S857[58|59]|S810]|S511
SB Litigar (N|N|N/N|Y|Y|N|NIN|Y |Y
Negociar [ N|Y|N|Y|N|Y|Y|N|Y N |Y
NAFTA ININ|Y|Y|NIN|N|Y|Y|N|N
BCG |Litigar |[NIN/N|N|Y|YN|N|N|Y |Y
Negociar [ N|NIN|N/N|N|Y|Y|Y| Y |Y

Na Fase 3, existem 11 estados vidveis, cuja ordem de preferéncia para a Sun Belt

(SB) € a seguinte:ss >=sp S11 =SB 56 =SB $3 =SB $10 =SB $9 =SB S4 =SB S8 =SB §7 =SB 52 =SB S1.

Nesta fase, o litigio é a op¢cao mais preferida pela Sun Belt, seguido pela negociagdo e, por

ultimo, pela opc¢do de arbitragem sob o NAFTA.

Para o BCG, a ordem de preferéncia dos estados € a seguinte:s| >pcG S2 > BCG

§5 =BCG S6 ™BCG S11 ™BCG S8 =BCG 57 ™BCG S3 ™BCG S4 =BCG 10 ~BcG 59. A BCG prefere a

negociacao ao litigio e demonstra resisténcia a ideia de usar o NAFTA para arbitragem.
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Figura 4.2 — Modelo de grafo para o conflito Sun Belt vs British Comumbia Government
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ase 3 deste conflito, sdo,

Na Tabela 4.3, apresentamos os resultados da representa¢do matricial para a estabi-

lidade Maximiny;, com horizontes de até 20, na Fase 3 deste conflito. As células da Tabela 4.3

correspondem aos valores da matriz de sinal do Teorema 4.2.2 para os estados indicados nas

colunas, considerando os horizontes apresentados nas linhas.

Na Fase 3 do conflito, para o DM SB, os estados s3, s5, 59 € 511 sdo estiaveis segundo

o critério de Nash e, consequentemente, satisfazem a estabilidade Maximin,, para qualquer valor

de h. Por outro lado, os estados s4 € s¢ sdo estdveis apenas em horizontes pares. Isso ocorre

porque, quando o DM SB € o ultimo a mover-se, ele pode escapar a sancao, resultando na

instabilidade desses estados em horizontes impares. No entanto, se 0 DM BCG for o dltimo
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Tabela 4.3 — Anadlise de estabilidade Maximin), até o horizonte 20 na Fase 3 do conflito
h<20|s1 s2 53 4 55 S6  S7 S§ S9 S10 S11

SB | fmpar |-1 -1 O -1 0 -1 -1-1 0 -1 0

par |-1 -1 O 0 0 O -1-10 -1 0

BCG| h=1|0 0 -1 0 0 0o -1 0 -1 -1 -1

h>110 0 O 0 0 0o 0 0 -1 -1 -1

Eq. - h>2 hpar h>1 hpar

a mover-se, ele pode sancionar o DM SB, tornando os estados s4 € s¢ estdveis em qualquer
horizonte par.

E importante destacar que a estabilidade dos estados s4 € s¢ ndo pode ser determinada
apenas por relagcdes entre estabilidades Maximin, ou entre Maximiny, e nogdes cldssicas de
estabilidade. Para compreender plenamente essa questdo, é necessario realizar os calculos
especificos de estabilidade Maximiny,. Por fim, os estados sy, 53, 57, 53 € 519 ndo sao GMR para
o DM SB e, portanto, ndo satisfazem a estabilidade Maximin;, para qualquer valor de 4.

Para o DM BCQG, os estados s1, $2, 54, S5, S¢ € 3 s@o estdveis segundo Nash e,
consequentemente, em Maximiny, para qualquer valor de /4. Por outro lado, os estados sg, s19 €
s11 ndo s@o GMR para o DM BCG e, portanto, ndo satisfazem qualquer no¢ao de estabilidade
Maximiny. Os estados s3 € s7, embora sejam SMR, ndo sdo estaveis segundo Nash para o DM
BCG e, assim, satisfazem a estabilidade Maximin;, apenas para valores de s superiores a 1.

Combinando esses resultados, podemos concluir que os estados s3 € s5 sdo equilibrios
Maximiny, para todos os & > 2 e h > 1, respectivamente. O estado s5 possui o grau mais forte de
estabilidade, uma vez que representa um equilibrio de Nash (Maximin;). No estudo de Obeidi e
Hipel (2005), os autores indicam que o desfecho real do conflito foi que o DM SB decidiu nao
prosseguir com o litigio e notificou o governo federal canadense sobre a intencao de arbitragem
sob o Capitulo 11 do NAFTA. Essa situacdo € representada pelo estado s3, que € menos preferido
pelo DM SB em comparagdo ao estado ss.

Adicionalmente, € importante observar que os estados s4 € sg sdo equilibrios
Maximin, apenas quando o horizonte € par. Isso demonstra que, embora o conceito de estabili-
dade Maximiny, seja equivalente a Nash, GMR, e SMR para horizontes 1, 2 e 3, respectivamente,
como demonstrado em Régo e Vieira (2019), as representacdes matriciais desses conceitos, for-
necidas em Xu et al. (2007 e 2008), ndo sdo suficientes para determinar estabilidades Maximiny,
para h > 4. Nessa situacdo especifica, ndo € possivel inferir nada sobre a estabilidade Maximiny,
para h > 4 utilizando apenas essas equivaléncias com conceitos classicos. Portanto, o método

proposto neste trabalho € crucial para uma compreensao mais aprofundada do comportamento do
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Maximiny, especialmente em grandes conflitos estratégicos envolvendo miiltiplos DM e estados,
analisados em horizontes mais longos.

Por fim, como esperado, os resultados da andlise de estabilidade obtidos nesta
aplicacdo sdo consistentes com os apresentados no artigo original de Obeidi e Hipel (2005) ,
quando a andlise € limitada a horizontes até 3. Contudo, com a nossa proposta de representacao
matricial, € possivel estender essa andlise para horizontes superiores, proporcionando uma visao

mais ampla e detalhada da situagdo estratégica.
4.3.2 Dilema dos Prisioneiros para n jogadores

Com o intuito de demonstrar a eficiéncia da representacao matricial da estabilidade
Maximiny, iremos apresentar uma aplicacdo matricial para o caso do Dilema dos Prisioneiros
considerando n jogadores (NIPD), conforme descrito por Yao e Darwen (1993). O NIPD € um
jogo mais realista e geral que pode auxiliar na modelagem de problemas sociais € econOmicos.
Neste trabalho, os autores examinam o impacto do nimero de jogadores no NIPD sobre a
evolucgdo da cooperacao no grupo, mostrando que a cooperagao tem menos probabilidade de
surgir considerando um grande grupo quando comparado a um grupo pequeno.

Segundo Colman (2016), trés propriedades podem ser definidas para o caso do
Dilema do Prisioneiro com n jogadores:

* Os jogadores podem escolher entre Cooperar (C) e delatar (D);

* Para cada jogador a op¢cdo dominante € a D, ou seja, independente de quantos dos outros
jogadores escolham cooperar, a op¢do D sempre serd a melhor escolha para cada um deles;

* As estratégias dominantes D se intersectam em um ponto de equilibrio ndo eficiente. Em
um caso particular, em que o resultado se todos os jogadores escolherem as suas estratégias
C, ou seja, nao dominantes, € preferivel, do ponto de vista de cada jogador, aquele em que
todos escolhem D, mas ninguém estd motivado para se desviar unilateralmente de D.

A Figura 4.3 representa a matriz de payoff do conflito Dilema dos Prisioneiros
considerando n jogadores, sendo ela simétrica para cada jogador, em que, C; € a acao de cooperar
para o decisor i € D; é a acdo de delatar para o decisor i. Segundo Yao e Darwen (1993) as
seguintes condi¢des devem ser satisfeitas:

1. Di>Cipara0<i<n—1;
2. Diy1>DjeCiyy >Djpara0 <i<n—1;
3. Ci> (Di+Ci—1)/2para0 <i<n-—1.
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Figura 4.3 — Matriz de payoff do Dilema dos Prisioneiros para n jogadores

Numero de cooperadores entre os n-1 jogadores restantes

0 1 2 n-1
C Co Cs C, Cai g
jogador A
& D, D, D, Dy

Fonte: Adaptada de (YAO; DARWEN, 1993)

Inimeros valores satisfazem os requisitos apresentados na Figura 4.3. Yao e Darwen
(1993) escolheram valores de forma que caso n. seja o nimero de cooperadores no jogo de n
jogadores, entdo o prémio (payoff) por cooperagdo serd 2n, — 2 e o prémio (payoff) por delatar

serd 2n. + 1. A Figura 4.4 ilustra um exemplo de um jogo com n jogadores.

Figura 4.4 — Matriz de payoff para n jogadores

Nitmero de cooperadores entre os n-1 jogadores restantes

0 I 2 n-1
C 0 2 4 2(n-1)
jogador A
D 1 3 ] 2(n-1)+1

Fonte: (YAO; DARWEN, 1993)

4.3.2.1 Dilema dos Prisioneiros para 3 jogadores

Neste cendrio sao considerados 3 prisioneiros, em que cada um deles devera con-
siderar as acoes dos outros dois jogadores em relacdo a sua escolha. Desta forma, ele devera
considerar ndo apenas as consequéncias imediatas para ele, mas também para os demais joga-

dores. Ou seja, a dindmica de trai¢do, confianca e cooperacao serd ainda mais complexa se
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comparada ao cendrio de 2 DMs.

Sao 8 possiveis estados no caso do Dilema dos Prisioneiros para 3 DMs. Os trés
prisioneiros podem cooperar (CCC) e receber uma recompensa coletiva. Um dos jogadores pode
trair enquanto os outros dois cooperam (CCD, CDC e DCC), esse jogador pode receber uma
grande recompensa enquanto os outros recebem uma penalidade significativa. Dois jogadores
podem trair enquanto o terceiro coopera (CDD, DCD e DDC), o terceiro pode receber uma
penalidade severa enquanto os dois traidores recebem uma recompensa moderada. E por fim, os
trés jogadores podem trair (DDD) e serem punidos por isto. A Tabela 4.4 apresenta a relagao

entre os 8 possiveis estados e suas composicoes.

Tabela 4.4 — Relacio dos possiveis estados e suas composicoes - 3DMs

Estados | Composicoes | Estados | Composicoes
S1 CCC S5 DCC
52 CCD S6 DCD
53 CDC 57 DDC
S4 CDD S8 DDD

A matriz de acessibilidade de cada decisor, neste cenario de 3 DMs, serda uma
matriz 8 X 8, ou seja, 8 possiveis escolhas que os jogadores podem realizar. Para exemplificar a
movimentacdo de um DM considere, por exemplo, o DM 3. Este DM poderd realizar movimentos
apenas no que diz respeito a posi¢cao dele (a terceira), ou seja, ele ndo consegue interferir na
decisdo dos seus oponentes. Como a ultima posicao é referente a ele, desta forma, ele pode se
mover de 51 (CCC) para s, (CCD) e de s, para s, mudando a op¢do de cooperar para delatar e
de delatar para cooperar. As matrizes de acessibilidades, para cada um dos DMs considerados

sdo apresentadas a seguir.

00001000 00100000 01000000
00000100 00010000 10000000
00000010 10000000 00010000
Ji— | 00000001 Jo— | 01000000 | o Jo— | 00100000
1 10000000 ) 2 00000010 3 00000100
01000000 00000001 00001000
00100000 00001000 00000001
00010000 00000100 00000010

Para encontrar os valores dos K;’s na aplicacao do Dilema dos Prisioneiros conside-

rando 3 DMs, utilizaremos os payoffs apresentados na Figura 4.4.
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Tabela 4.5 — K/s do Dilema dos Prisioneiros com 3DMs

Estados | Comp. Cooperam Nao Cooperam
S1 CCC K](Sl)ZKQ(S1)=K3(S1)=2(I’£—1)= -
52 CCD Ki(s2) =Kx(s2) =2(n—1)=2 K3(s2)=2(n—1)+1=5
53 CDC Kl(s3):K3(s3):2(n—1):2 K2(S3)=2(n—1)+1=5
S4 CDD Ki(s4)=2(n—1)=0 Ky(s4) =K3(sa) =2(n—1)+1=3
S5 DCC Ky(s5) =Ka(ss) =2(n—1)=2 Ki(ss)=2(n—1)+1=5
56 DCD Kz(Sﬁ):z(}’lfl):O K](S(,)ZK3(S6):2(I’Z*1)+1:3
§7 DDC K3(S7):2<n—1)20 K](S7):K2(S7):2(n—1)+]:3
S8 DDD - Ki(s3) =Kx(ss) =K3(sg) =2(n—1)+1=1
4 4 4
2 2 5
2 5 2
0 3 3
Desta forma, temos que, K| = , Koy = e Kz =
5 2 2
3 0 3
3 3 0
1 1 1

A Tabela 4.6, apresenta os resultados da representacdo matricial para a estabilidade

Maximiny, para varios horizontes considerando o conflito do Dilema dos Prisioneiros para 3

decisores. Cada célula da Tabela 4.6 referem-se ao valor da matriz sinal do Teorema 4.2.2 para

o estado da coluna, considerando o horizonte apresentado na linha.

Tabela 4.6 — Analise de estabilidade Maximin,, - 3 Decisores

DMs h S1 52 53 S4 S5 S 57 S8
1 1 -1 -1 -1 -1 0 0 0 0
>2 0 0 0 0 0 0 0 0
2 1 -1 -1 0 0 -1 -1 0 0
>2 0 0 0 0 0 0 0 0
3 1 -1 0 -1 0 -1 0 -1 0
>2 0 0 0 0 0 0 0 0

Eq. - h>2 h>2 h>2 h>2 h2>2 h>2 h>2 h>1

Observando os resultados, temos que apenas o estado sg é um equilibrio de acordo

com o conceito de estabilidade Maximin,, para qualquer horizonte A. Este resultado no conflito

acaba por representar a situacdo em que todos os 3 DMs tendem a ndo cooperar (DDD). Podemos

observar também que a partir do horizonte & = 2 todos os estados sdo estdveis para todos os

DMs.
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4.3.2.2 Dilema dos Prisioneiros para 4 jogadores

A fim de observar o custo de tempo para executar um conflito com mais decisores,

consideraremos agora o Dilema dos Prisioneiros para 4 prisioneiros, em que cada um deles

deverd considerar as acdes dos outros trés jogadores em relac@o a sua escolha. Neste conflito

temos 16 possiveis estados, sendo eles apresentados na Tabela 4.7
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icoes

tados e suas compos
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2.
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As matrizes de acessibilidades de cada um dos 4 DMs sao:
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Os valores dos K;’s na aplicacdo do Dilema dos Prisioneiros considerando 4 DMs

também foram construidos utilizando os payoffs apresentados na Figura 4.4.
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Estados | Composicoes Cooperam Nao Cooperam
S1 CCcCC Kl(sl) =K2(S1) =K3(S1) =K4(S1) =6 -
52 CCCD Ki(s2) =Kx(s2) = K3(s2) =4 Ky(s2) =7
853 CCDC K] (S3) = KZ(S3) = K4(S3) =14 K3(S3) =7
S4 CCDD Ki(s4) =Ky(s4) =2 K3(s4) = Ka(s4) =5
S5 CDCC Ki(s5) = Kz(ss5) = Ka(s5) =4 Ka(ss) =7
S6 CDCD K] (S6) = K3 (S6) =2 ( ) K4(56) =5
§7 CDDC Kl (S7) = K4(S7) =2 ( ) K3(S7) =5
S8 CDDD Ki(sg) =0 Ko(sg) = K3(s3) = Ky(s3) =3
S9 DCCC KQ(SQ) = K3 (Sg) (Sg) 4 K] (Sg) 7
510 DCCD K>(s10) = K3(s10) =2 Ki(s10) = Ka(s10) =
s11 DCDC Ki(s11) = Ka(s11) =5 Kl(S11)=K3(S11)=
512 DCDD K>(s12) =0 Ki(s12) = K3(s12) = Ka(s12) =3
513 DDCC K3(s13) = Kq(s13) =2 Ki(s13) =Ka(s13) =5
S14 DDCD K3(s14) =0 Ki(s14) = Ka(s14) = Ka(s14) =3
S15 DDDC Ki(s15) =0 Ki(s15) = Ka(s15) = K3(s15) =3
516 DDDD - Ki(s16) = Ka(s16) = K3(s16) = Ka(s16) = 1

Desta forma, temos que, KT
Kl =[6442755342205331],
Kl =[6475425342532031]e
Kl =[6745452345232301]

6442422075535331],

A Tabela 4.9, apresenta os resultados da representacdo matricial para a estabilidade

Maximiny, para varios horizontes considerando o conflito do Dilema dos Prisioneiros com 4

decisores. Cada célula da Tabela 4.9 referem-se ao valor da matriz sinal do Teorema 4.2.2 para

o estado da coluna, considerando o horizonte apresentado na linha. Nota-se que apenas o estado

S16, Situacao em que todos os 4 DMs ndo cooperam, é um equilibrio segundo o conceito de

estabilidade Maximiny, considerando qualquer horizonte 4. Podemos observar também que a

partir do horizonte 2 todos os estados sdo Maximiny, estaveis para todos os DMs.

Tabela 4.9 — Analise de estabilidade Maximin,,

- 4 Decisores

DMs S 52 53 4 85 S6 57 53 S9  S10 S11 S12 S13 S14 S5 Si6
1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0
>2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 0 0 0 0
>2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0
>2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 -1 0 -1 0 -1 0 -1 0 -1 0 1 0 -1 0 -1 0
>2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Eq. >2 22 22 22 >2 >2 >2 >2 22 22 22 22 >2 >2 >2 >1

A Tabela 4.10 apresenta o tempo (em segundos) de execu¢do do cédigo Maximiny,

para os conflitos que consideram 2,3 e 4 DMs. Sado consideradas trés medidas principais:

 Usuario: Tempo de CPU gasto pelo processo em execugdo, ou seja, o tempo gasto pela
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CPU para executar as operacdes da fungdo.

* Sistema: Tempo de CPU gasto pelo sistema operacional em nome do processo, por
exemplo, para tarefas como operagdes de entrada/saida.

* Decorrido: Tempo real decorrido desde o inicio até o fim da execu¢do da funcio, ou seja,

o tempo total “de parede” (wall clock time).

Tabela 4.10 — Tempo de execucao Maximiny, - n Decisores

Tempo
Qnt. DMs | Usuario | Sistema | Decorrido
2 0.03 0.00 0.03
3 0.05 0.00 0.14
4 0.20 0.00 0.63

Como esperado, o tempo de execucdo aumenta conforme o nimero de DM’s é

incrementado. Porém, cabe enfatizar que todos os tempos ficaram abaixo de 1 segundo.
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4.4 CONCLUSAO

Neste capitulo, foram apresentadas representagdes matriciais para determinar os
estados Maximiny, estdveis dentro do GMCR, abrangendo tanto conflitos bilaterais quanto
multilaterais. Além disso, introduzimos representagdes voltadas para a anélise de estabilidades
Maximiny, crediveis.

Embora as tarefas envolvidas na andlise matricial possam parecer complexas, elas
podem ser implementadas facilmente em qualquer linguagem de programacao. As operagdes
matriciais necessdrias incluem multiplicagc@o, produto de Hadamard, complemento, transposicao,
e cdlculo de maximos e minimos, todas com complexidade polinomial em relacdo ao niimero de
estados vidveis.

Esses resultados sdo significativos, pois a estabilidade Maximin; e Maximiny, cre-
diveis generalizam conceitos de estabilidade amplamente utilizados, como Nash, GMR, SMR,
SEQ e SSEQ. Com o auxilio das representacOes matriciais propostas, € possivel realizar uma
andlise completa de um conflito, considerando qualquer horizonte e levando em conta ou ndo a
restricdo de sanc¢des crediveis.

[lustramos a aplicacdo dos métodos propostos na andlise da Fase 3 do conflito entre
Sun Belt e 0 Governo da Columbia Britanica. Com os métodos matriciais, determinamos para
quais horizontes os estados sdo estdveis de acordo com a estabilidade Maximiny,. Nesta andlise,
estendemos a andlise de estabilidade até o horizonte 20.

Além disso, a fim de demostrar a eficiéncia do método matricial e o tempo computa-
cional de execucao a medida que incrementamos o nimero de jogadores, realizamos a aplicagdo
do conflito do Dilema dos Prisioneiros para n tomadores de decisdo. Verificou-se que, a medida
que o valor de n aumenta, maior serd o tempo de excussao, refletindo a crescente complexidade

do problema.
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5 REPRESENTACAO MATRICIAL DA ESTABILIDADE DE MOVIMENTO LIMI-
TADO (Z;) NO MODELO DE GRAFOS PARA RESOLUCAO DE CONFLITOS
COM 2 DECISORES

5.1 INTRODUCAO

O presente capitulo visa apresentar representagcdes matriciais para alcangar estados
estaveis de acordo com o conceito de estabilidade de movimento limitado (L) para conflitos
bilaterais, de maneira andloga ao que foi desenvolvido, no capitulo anterior, para a estabilidade
Maximiny. Como vimos, no conceito Maximiny, o DM focal ndo utiliza informagdes sobre as
preferéncias do oponente, presumindo que este tomard a acdo que minimiza os ganhos do DM
focal. Deste modo, isto resulta em alternancias entre movimentos de maximiza¢ao € minimizagao,
dependendo de quem estd agindo, seja o decisor focal ou seu oponente, respectivamente. Por
outro lado, no conceito Lj, as preferéncias de ambos os DMs devem ser de conhecimento comum,
resultando em ambos realizando movimentos de maximizac¢ao de acordo com suas proprias
preferéncias.

Intuitivamente, teremos que além de usar a matriz de payoffs K; do DM focal, usar a
matriz K; de payoffs do oponente do DM focal. Assim como no caso do Maximin, teremos que
definir matrizes que representam os payoffs que os DMs esperam receber ao final do conflito ao
mudarem o conflito do estado da linha para o estado da coluna considerando um determinado
horizonte de andlise /. Estas matrizes também serdo definidas recursivamente e a cada passo
devera ser registrado além do maior payoff que pode ser obtido pelo DM, ao se mover de cada
estado, qual € o estado da coluna que atinge este maior valor de payoff.

Na Secdo 5.2, apresentamos nossa proposta de como deverad ser feita esta recursao.
Além disso, demonstramos que as estabilidades L, podem ser obtida a partir das representacdes
matriciais apresentadas e implementamos computacionalmente estas operagdes matriciais. A
metodologia € ilustrada detalhadamente em uma aplicacdo no jogo do Dilema dos prisioneiros na
Secdo 5.2.1. A andlise do conflito real de selecdo tecnoldgica de neurociéncia na China (ZHOU;
WANG, 2018) por meio do conceito L, foi realizada na Secdo 5.2.2. Adicionalmente, essa
metodologia nos permitiu analisar o comportamento dindmico ou oscilatorio que ocorre na
estabilidade L;, (FANG; HIPEL; KILGOUR, 1993) considerando todos os jogos 2 x 2, descritos
conforme a tabela periédica (BRUNS, 2015b) na Secao 5.2.3, além, também, da identificacao

dos seus respectivos ciclos.
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5.2 REPRESENTACOES MATRICIAIS DA ESTABILIDADE L;, NO GMCR

Nesta se¢do, iremos propor a representacdo matricial da estabilidade L. Na estabi-
lidade Maximiny, o decisor focal observa qual serd a pior consequéncia que ele poderia obter
em relacdo a cada uma das suas possiveis acdes e, dada esta andlise, ele escolhe a acdo que, no
pior cendrio, lhe oferece a melhor consequéncia. Recorde que, no caso da estabilidade L, os
tomadores de decisao se movem a fim de obterem o melhor resultado possivel para eles préprios,
utilizando o conhecimento prévio sobre as preferéncias de todos os DMs envolvidos no conflito.

O primeiro passo na constru¢do da nova representagdo matricial € definir a matriz de
ganho antecipado, denotada por %', que o DM i espera receber apés um horizonte , se ele for o
primeiro a se mover. Nesta matriz, as linhas representam o que o DM i prevé receber ao final do
conflito se o estado do conflito mudar do estado da linha para o estado da coluna.

A seguir, vamos definir uma importante matriz, denominada de ArgMax(A), que

serd importante para uma boa compreensao de alguns resultados que apresentaremos abaixo.

Definicao 5.2.1Seja A = [a;;] uma matriz de ordem |S|, entdo ArgMax(A) é também uma matriz

de ordem |S| tal que:

1, set=keay>ay V1 <I<|S|

1, seay > ay, an > ay,¥1 <1< S
ArgMax(A)[(t,k)] =

e se existir | tal que a;, = ay;, entdo k <1

0, caso contrdrio.

Desta forma, para qualquer j € N e horizonte A, seja D;; uma matriz quadrada de

ordem |§/, tal que
D;; = ArgMax(%}J;).

Podemos agora definir a matrize%’;'l recursivamente. Considerando & = 1, temos,
B = (Ji o(K;-EN +10 (Ki-E’)T>

e quando i > 2 temos que,
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#, = (Uio((D]_ 0 (E=1)- G, +(D]_joD) K)-EN ) +10(K; - E)T),

emque j#£i, €. =K, %”({ =K, ¢ = max(#.),Vh > 1.

O Lema 5.2.1 a seguir tem o intuito de estabelecer que a entrada (s, 1) da matriz
coluna (Ké seja igual ao ganho maximo que o DM podera obter caso escolha permanecer em s
ou se afastar de s e ambos os DMs se movem a fim de maximizar o seu proprio payoff a cada

rodada.

Lema 5.2.1 Para quaisquer estados s;,s, € S e para todo inteiro positivo h:

(

Ki(se), Sk = 5t
By(se,58) = S Ki(Guo1(jysw)), sk € Ri(s:)
0, caso contrdrio,

\

Cli(si, 1) = Max{{Ki(s))}U{Ki(Gp_1(j,sx)) : sx € Ri(s:)}} = Max{K;(s;),An(i,s:)}.

Prova: Para provarmos esse resultado vamos usar indu¢ao matematica em h. Dessa
forma, é necessdrio verificar primeiro a etapa base da inducao, verificando o caso h = 1, para

‘5}2(5, 1). Pela defini¢do da estabilidade Lj, temos que,

Ai(i,s;) = Ki(Go(j,Mp(i,s1)))

= max{Ki(sg) : sk € Ri(s;)}.

Além disso, note que %} (s;, 1) = Max(2,)(s;, 1), onde
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Hi(ses) = [(Uio K E) +10(K; EN))] (51,50)

Ki(sx) sesg € Ri(s;)U{s:}

0 caso contrario
\

Ki(s¢) se S = S

= \Ki(Gol(j,sx))  se sk € Risr)

0 caso contrario.
\

Assim, segue-se que

‘Kf(st, 1) = max(%”i)(st, 1)

= max{%i(st,sk),Vsk €S8}Vs; €8.

Ou seja,

i (si,1) = max{Ki(s) : s € Ri(s¢) U{s:}}

= max{A(i,s:),Ki(s:)}.

Como %}l € definido em termos que ‘K,f_z, vamos provar também que paras =2 o

lema € vélido. Pela definicdo da estabilidade L;, temos que,

As(iys;) = Ki(G1(j,Mp(i,s1)))
= max{Ki(G1(Jj,sx)) : sx € Ri(s:)}

= max{Ki(sy) : su € argmax{K;(s,) : su € {se} UR;(s),sx € Ris1)}}.

Além disso, note que 4 (s;, 1) = Max(25)(s;, 1), onde



Zi(srs) = (U0 ((D]o(E=D)-%+(D] o) - K)-EN)+10(K-E)") (5150

p
K,’(Sk), Sk = 8¢

K,-(su), Sk € R,-(st),su € Rj(sk) CD{ (sk,su) =1
Ki(sk), sk € Ri(s;) eD{(sk,sk) =1

\ 0 caso contrario

(
Ki(sg), sp=st

Ki(su), sk € Ri(st),5u € R (1), B (sky5u) > B (51, 5¢)
= e B](sk,5u) > B|(sk.51), 51 € S

Ki(st), sk € Ri(s:) e Bl(si,s0) > Bl(sk,80), Y5 €S

0 caso contrario.
\

Pelo caso h = 1, temos que

I(i(Sk)7 Sk = St

Ki(su), Sk €Ri(se),8u € Rj(sr),Kj(su) > K;j(sk)
B (s1,56) = e K;(s,) > K;(s)),Vs; € Rj(sy)
I(,'(Sk)7 Sk € Ri(s,) e Kj(sk) > K]'(Su)7vsu - RJ'(Sk)

0 caso contrario

K,‘(Sk), Sk = 8¢
= Ki(sy), sk € Ri(st)

0 caso contrario,

em que s, € argmax{K;(s,) : sy € {sx} UR;(s)}. Logo, temos que

(

Ki(sx), Sk = St
%é(shsk) = < Ki(Gl(j;Sk))7 Sk ERi(Sl)
0 caso contrario.

\

Assim, segue-se que



(gzi(st, 1)

Ou seja,

max(ggé)(st, 1)
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max{%é(s,,sk),‘v’sk € S}Vst eSs.

Ga(s;,1) = Max{{Ki(s))} U{Ki(G1(j,sx)) : sx € Ri(s)}} = Max{K;(s;),A»(i,s)}.

Vamos assumir que estas igualdades sdo validas parah— 1 e h — 2, ou seja,

‘@;l—l (S[, Sk)

%Zfz(sta Sk)

(

\

(

\

Ki(s),
Ki(Gp-2(j,sx)),

0,

Ki(sk),
Ki(Ghr—3(j,sx)),

0,

Sk = St
sk € Ri(sy)

caso contrario,

Sk = St
sk € Ri(sy)

caso contrario,

1 (se, 1) = max{Ap_1(i,s:),Ki(s:) }

G o (si,1) = max{Ap_2(i,s:), Ki(s1)}.

Vamos agora analisar o caso h. Pela defini¢do de Ly, temos que



Ah(ia Sl‘)

'%;z(st>sk)
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= Ki(Gh71<]‘;Mh(i7s1)))
= max{Ki(Gp_1(j,5t)) : sx € Ri(s:)}
Ki(si) Kj(sk) = An-1(J,50), 8k € Ri(s1)

| Ki(Gna(i: M1 (Jys1)) - Kj(st) < An—1(J; k)50 € Ri(si)
(

Ki(sx) Kji(sk) = An—1(j,5%), 5k € Ri(sr)

| max{Ki(Gp-a(i,su)) : 5u € Ri(s)}  Kj(sx) < An—1(j,5):5¢ € Ri(sr)

K;(sk) Kj(sk) > An—1(j,5%), Sk € Ri(sr)

\max{{Ki(su),Ah_z(i,su)} 18y € Rj(sk)} Kj(sk) <Ah_1(j,sk),sk S Ri(st).

Sabemos que,

= (Uio (D] o (E=1))- %o+ (D) o) - K)-E))+10 (Ki-E)T) (51,50)
(Ki(sk)> Sk =5t

‘f;ﬁ_z(su, 1), sk €Ri(s:),su €Rj(sx) e Di_l(sk,su) =1

K,'(Sk), Sk € R,‘(St) e D;z—l(slﬁsk) =1
\O caso contrario
4

Ki(sr), Sk = St

G (su,1), Sk € Ri(st),8u € Ri(50), B (x,50) > B (s1,5%)
= e @;{_l(sk,su) > ,%’}{_l(sk,sl),Vsl es

Ki(sr), Sk € Ri(sy) e %ifl(sk,sk) > %ﬁfl(sk,su),Vsu €S

0 caso contrario.
\

Usando o caso & — 1 para substituir o valor de ,%’;;71, temos que
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K,-(sk), S = 8¢

%}f_z(su, 1), Sk € R,‘(S,),Su € Rj(sk),Kj(Gh,Q(i,su)) > Kj(sk)

%Z(stask) - € KJ(Gh_z(i,Su)) Z Kj(Gh_z(i,Sl)),Vsl c Rj(sk)
K,-(sk), Sk € Ri(s,) e Kj(sk) > Kj(Gh_z(i,Su)),vsu € Rj(sk)
0 caso contrario.

\

Em seguida, usando o caso & — 2 para substituir o valor de %éfz(su, 1), temos

4
Ki(sk), Sk = S

max{Ap_2(i,5u),Ki(su)}, Sk € Ri(s:),84 € Rj(sx),K;(Gp—2(i,54)) > K;(sk)

%;Z(S;,Sk) = e Kj(Gh_z(i,su)) > Kj(Gh_z(i,S[)),Vsl S Rj(sk)
Ki(sk), sk € Ri(se) € Kj(sk) > Kj(Gpa(i;su)), Vsu € Rj(sk)
0 caso contrario
\
Ki(sk), Sk =8

= Y Ki(Gh1(j,5x)), sk € Ri(st)

0, caso contréario.
\

Portanto, temos que

G(si, 1) = Max{{Ki(s))}U{Ki(Gp_1(j,sx)) : sx € Ri(s:)}} = Max{K;(s;),An(i,s:)}.

O Teorema 5.2.2 fornece o resultado matricial que visa obter estados estdveis de

acordo com o conceito de estabilidade L.
Teorema 5.2.2 Um estado s € S é L, para o DM i se somente se, (sinal(K; —¢)) (s,1) = 0.

Prova: A prova neste caso é similar a prova do Teorema 4.2.2, fazendo uso do
Lema 5.2.1.

Se (sinal(K; —%})) (s,1) = 0, entdo isto implica que K;(s,1) = €/ (s, 1), assim,
como pelo Lema 5.2.1, € (s, 1) = max{K;(s),An(i,s) }, entdo, K;(s) > Ap(i,s). Assim, teremos

Gy(i,s) = s, 0 que implica que s é L, estdvel para o DM i.
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Se (sinal(K; —%})) (s,1) < 0, entdo isto implica que K;(s,1) < €(s,1), assim,
como pelo Lema 5.2.1, € (s, 1) = max {Ki(s),Au(i,s)}, entdo, Ki(s) < Ap(i,s). Assim, teremos
Gy(i,s) # s, 0 que implica que s ndo é L, estdvel para 0 DM i.

Desta forma, isto implicaria que se somente se a entrada (s, 1) dos vetores colunas

K;e ‘5}; forem iguais, o estado s € L, estdvel para o DM i. I

5.2.1 Dilema dos Prisioneiros

Iremos apresentar agora uma aplicacio da representacdo matricial do conceito L,
considerando um horizonte 4 = 3, no conflito do dilema dos prisioneiros.
Com base na Figura 2.2, temos que as matrizes de acessibilidade a seguir apresentam

o conjunto de acessibilidade entre os estados vidveis deste conflito para ambos os DMs.

0010 0100
0001 1000
Ji= Jj=
1000 0001
0100 0010

Lembrando que a relacdo de preferéncia neste conflito para o DM i é denotada por
S3(DC) =i S1 (CC) i S4<DD> i S2(CD) e para o DM j temos S2<CD) Sl (CC) i S4(DD) =

53(DC). Dessa forma, as matrizes de preferéncias dos DMs sdo:

Precisamos encontrar agora a matriz de payoffs K; do DM focal e a matriz K; de

P =

0
1
0
1

010
011
0 0O

010

payoffs do oponente do DM focal.

P =

o O

S O O O

o o o O

w O N
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0100 2

: 0000 3
K;=(E P = [1 11 1]‘

1101 0

1100 1

Agora, vamos encontrar o ganho antecipado que o DM i espera receber apds um
horizonte de conflito & = 3, se ele for o primeiro a se mover. Recordando a defini¢do de 4},

temos que

((ro ((D3o (E=D)-{+(Djo1)-Ky)-ENT)+10(K;-E))
= ((Jl- o ((ArgMax(#}) o (E —1)) -6} + (ArgMax(}) o 1) - K;)-E ) ") + 10 (K; -E')T) .

Sabemos que %1’ = Max%’i, desta forma, precisamos encontrar a matriz %”1 Logo,

note que
# = (o E) +10(&-E)))
Vamos obter cada parte da matriz %’1 acima. Observe que:
- - - - T - -
0010 2 0030
N 0 0 01 0 0 0 01
Jio(Ki-E) = o [1 11 1] =
1 000 3 2000
0100 1 00O0O
1 000 2 2000
N 0100 0 00O0O
Io(K;-E)' = -[1 11 1}
0010 3 0030
0 001 1 0 001
Logo,
2030
. 0001
4
2030
0001
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Encontrando agora %7, temos que

2030 3
€l =MaxP. = Max 0001 = !
1 — 1 — -

2 0 30 3

0 001 1

Precisamos encontrar ArgMax(,%’é), para isto precisamos primeiro encontrar ,%’é

Observe que,

B = ((Jjo((Dio(E—I))-F]+( li01)'Kj)'E/)T)‘i—IO(Kj'E,)T)

= <(Jjo (((ArgMax(%i) o(E-1))-K;+ (ArgMax(f%’i) ol)-Kj) -E/)T) +1o (Kj-El)T> )

Temos que como

0010
. 0 0 01
ArgMax(#,) =
0010
0001
obtém-se que
2100
: 0300
#] =
0 001
0 001
Desta forma, temos que
1 00O
: 0100
ArgMax(#;) = )
0001
0001
e, consequentemente, obtém-se que
2010
, 0 001
By =
2030
0 001
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Deste modo, pode-se calcular ‘53’ da seguinte forma:

2010 2
, , 0001 1
€3 =Max#y; = Max =
2 0 30 3

0001 1

Em seguida, fazendo a diferenca de quanto DM i tem se permanecer em um dado

estado e quanto ele terd ao final do horizonte de andlise se ele mover-se deste estado, temos que

2| |2 0

i o |t] |-t
O PY B Y B
1|1 0

Sinal(K; — €%) =

0

Podemos observar, pelo resultado da matriz sinal, que os estados s1,s3 € 54 S0
estaveis para o DM i no horizonte 4 = 3, pois foram os tinicos que ndo apresentaram valores
negativos em suas colunas. Na Figura 5.1, podemos observar o mesmo resultado através das
arvores de decisdo, utilizando indugao reversa.

Na Tabela 5.1, apresentamos os resultados da representacdo matricial para a esta-
bilidade L, para os 3 primeiros horizontes deste conflito. As células da Tabela 5.1 referem-se
ao valor da matriz sinal do Teorema 5.2.2 para o estado da coluna, considerando o horizonte

apresentado na linha.

Tabela 5.1 — Analise de estabilidade L, para 2 < 3 - Dilema dos Prisioneiros

DMs h 51 52 3 S4
1 -1 -1 0 0
i 2 0 -1 0 0
3 0 -1 0 0
1 -1 0 -1 0
i |2 0 0 -1 0
3 0 0 -1 0

Eq. | - |2<h<3 - - 1<h<3
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Figura 5.1 - Arvores de decisdo do DM 1 - L5
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Assim, temos que o estado s4 estd em equilibrio de acordo com o conceito de
estabilidade L, para qualquer horizonte /4 neste conflito. Este resultado no conflito acaba por
representar a situacdo em que ambos os DMs delatam e cada um deles recebe uma pena de 5
anos. Temos também que para horizontes maiores que dois o estado s; também se torna um

equilibrio que representa a situacdo em que ambos os DMs cooperam e cada um deles recebe

uma pena de 6 meses.
5.2.2 Conflito de selecao de tecnologia de neurociéncia na China

No conflito de selecao de tecnologia de neurociéncia na China, estudado por Zhou
e Wang (2018), foi realizada uma andlise comportamental tendo em conta as preferéncias dos
DMs. Uma teoria para mudancas de preferéncia em quatro fases do processo de cognicao foi

proposta sob a suposicao de racionalidade limitada. As fases consideradas nesse conflito sdo:
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» Fase 1 (Intuicao): Falta de capacidade do DM para avaliar as suas preferéncias. Comportam-
se intuitivamente, de acordo com experiéncias ou rotinas anteriores;
* Fase 2 (Emocao): Os DMs baseiam as suas decisdes nas suas emogdes;
* Fase 3 (Racionalidade em pequena escala): Sao feitas avaliagdes realistas, no entanto,
as preferéncias sao frequentemente arriscadas;
* Fase 4 (Racionalidade em grande escala): Objetivos e preferéncias de longo prazo sdo
normalmente levados em consideracao de forma mais conservadora.
Este conflito envolve dois DMs: o Governo (G) e a Comunidade Cientifica (R). O
DM G tem as trés opgdes seguintes: (M) - Manter o status quo existente sem fornecer suporte
adequado para inovagdo tecnoldgica; (F) - Financiar o proprietdrio da nova tecnologia; e (P) -
Fornecer apoio politico através da redu¢cdo de impostos e do fornecimento de terrenos ao proprie-
tario da nova tecnologia. Por outro lado, as op¢des disponiveis para o DM R sdo: (IN) - trabalhar
na inovacao tecnoldgica disruptiva e (IM) - melhorar a tecnologia atual. Apresentamos os estados
vidveis do conflito e os grafos dirigidos dos DM envolvidos no mesmo, respectivamente, em
Tabela 5.2 e Figura 5.2. Para mais informacdes sobre o cendrio desta disputa, consulte Zhou e

Wang (2018).

Tabela 5.2 — DMs, opc¢oes e estados viaveis do conflito de selecao tecnolégica

DMs | Opgoes | s; | s2 | s3 | s4 | 85 | S6 | 57 | S8
M Y NIN|N|Y|N|N|N

G F N|Y N|JY| N|Y|N|Y
P NI N|/Y|Y| N|N|Y|Y

R IN Y| Y|Y|Y|N|N|N|N
M N|IN|ININ|Y|Y|Y|Y

As matrizes de acessibilidade dos DMs G e R sio, respectivamente:

)

|
SOOoOO———O
[lelelel g Yl J
SOOoO—O——
[lelelelel ot
—_—_—_—o o000
—_—_O—=OoO0o0O
—O——=OOo00
O——=—=O00O

(¢}

=

I
[slelel jelelelo)
el Helelelele)
(=l jelelelelelo)
e =lelelelelele)
[slelelelelelell
[elolelelelel Yo
[slelelelel i)
eslelelelelele)

5.2.2.1 Fase 1 - Intuicdo

As matrizes de preferéncia de DM G e DM R, na Fase 1 sdo, respectivamente, dadas

por
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Figura 5.2 — Modelo de grafo para o conflito de selecio de tecnologia de neurociéncia na
China

A R

=1 ."!I —

Fonte: (REGO; VIEIRA, 2019)

00000000 01111111
10101000 00010101
10001000 01010111
pr—=111101000 e PF=100000001
G |110000000 R~ 101110111
11111010 00010001
11111000 01010101
11111110 00000000

Na Tabela 5.3, apresentamos os resultados da representacdo matricial para a estabili-
dade L, para & < 3, na Fase 1 deste conflito. As células da Tabela 5.3 referem-se ao valor da
matriz sinal do Teorema 5.2.2 para o estado da coluna, considerando o horizonte apresentado na

linha.

Tabela 5.3 — Analise de estabilidade L, para 7 < 3 - Fase 1

h S S) S3 sS4 S5 S¢ S§7 Sg

1 0 -1 -1 -1 0 -1 -1 -1
G |2 0 -1 -1 -1 0 -1 -1 -1

3 0 -1 -1 -1 0 -1 -1 -1

1 0 o o o -1 -1 -1 -1
R |2 0 -1 -1 -1 -1 -1 -1 -1

3 0 -1 -1 -1 -1 -1 -1 -1
Eq. | - | 1<h<3

Assim, temos que apenas o estado s estd em equilibrio de acordo com o conceito de
estabilidade L, para esta fase do conflito. Este estado é um equilibrio para qualquer horizonte
h < 3. Este resultado no conflito acaba por representar a situacdo em que os DMs tendem a

continuar fazendo o que foi feito no passado. Em outras palavras, o DM G mantém as coisas
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como estdo sem fazer investimentos suficientes em inovacao tecnoldgica, enquanto o DM R opta

por fazer pesquisa tecnoldgica incremental.
5.2.2.2 Fase 2 - Emocao

As matrizes de preferéncia dos DMs para a Fase 2 sdo apresentadas a seguir:

+ _
P =

SOO—OOOO
O———OoOoOo—
O—=—=—OO——
Pt et et et O bt et et
[slelaslelelelele)
[sleleljelelely
OSO——OOO—
O =t bt et O it et
(¢
=~
I
—_———0oOoO
et et et O et O
——_—_—O OO
il ™ L )
[slelelelelelele)
O—O—OOoOoOo
SOO—OOOoO
O—=——OoOoo0

A andlise de estabilidade L, para h < 3, da Fase 2 deste conflito é apresentada
na Tabela 5.4. Vé-se que apenas o estado s4 € um equilibrio L, para esta fase do conflito,
independentemente do horizonte 4 considerado. O estado s4 representa o cendrio em que o
DM G atua com base em emogdes e escolhe tanto fornecer incentivos politicos para inovagao
tecnoldgica quanto doar fundos e o DM R trabalhard em inovacgdo tecnoldgica disruptiva. Assim,
temos que os DMs G e R nao levardo em consideracdo os riscos, agindo de forma a favorecer a

inovacgao tecnoldgica enquanto estiverem na fase da emocao.

Tabela 5.4 — Andlise de estabilidade L, para 7 < 3 - Fase 2

DM | h|s1 s s3 S4 S5 S¢ S7 8§
1|-1 -1 -1 0 -1 -1 -1 O
G |21 -1 -1 0 -1 -1 -1 O
3/-1 -1 -1 0 -1 -1 -1 O
110 0 O 0 -1 -1 -1 -1
R |20 0 O 0 -1 -1 -1 -1
310 0 O 0 -1 -1 -1 -1
Eq. | - 1<h<3

5.2.2.3 Fase 3 - Racionalidade em pequena escala

A seguir, sdo apresentadas as matrizes de preferéncia dos DMs para a Fase 3.

00100000 01111111
10110000 00010101
00000000 01010101
P =1]110100000 e PF=100000101
G |11110110 — 101110111
11110010 00000001
11110000 01110101
11111110 00000000

A Tabela 5.5 apresenta os resultados da representacdo matricial da anélise de esta-

bilidade Ly, para h < 3, para a terceira fase deste conflito. O estado s3 € equilibrio para todo
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horizonte s, como pode ser visto. Os DMs nessa fase levam em consideragdo riscos e incertezas,
0 que pode diminuir o investimento em inovacao técnica. Portanto, a presenca de condi¢des
alternativas estdveis no conflito que serdo consideradas vantajosas a longo prazo serd quando os

DMs avaliarem o conflito para qualquer horizonte.

Tabela 5.5 — Analise de estabilidade L, para 7 < 3 - Fase 3

h S1 52 S3 S4 S5 S6 S7 S8

1]-1 -1 0 -1 -1 -1 0 -1
G [2|-1 -1 0 -1 -1 -1 0 -1

3 -1 -1 0 -1 -1 -1 -1

1]-1 -1 0 -1 0 0 -1 O
R [(2|-1 O 0 o -1 0 -1 O

3|1-1 0 0 o -1 0 -1 O
Eq. | - 1<h<3

5.2.2.4 Fase 4 - Racionalidade em grande escala

Finalmente, as matrizes de preferéncia dos DMs para a Fase 4 sdo apresentadas

abaixo:

+ _
P; =

Pt et o ot ok ok ek O
—Oo——OoOooO
et et ek ot ek O e O
————_O O = O
—OoO—OoOOoOooOo
[l =lelelelelel)]
—_O = OO—=O
[elelelelelelele)]
(¢
=
I
[slelelelelelele]
OSOO—O—O—
[sleleljelelely
OO O = =
[slelelelelelely
O =t O bt et ot et
QOO = = bt it
(e e

As conclusdes do estudo de estabilidade Ly, para & < 3, da Fase 4 deste conflito sdo
apresentadas na Tabela 5.6. O estado s7, que reflete o cendrio em que DM G dé respaldo politico,
cede terras ao dono da nova tecnologia e reduz impostos, enquanto DM R opta por avancar na
tecnologia existente, também € equilibrio para qualquer horizonte 2. O DM R é cauteloso e evita

desenvolvimentos perturbadores nesta fase final.

Tabela 5.6 — Analise de estabilidade L, para 7 < 3 - Fase 4

h| st s s3 S4 85 S 57 s

1,0 -1 -1 -1 -1 -1 0 -1
G [2/0 -1 0 O -1 -1 0 -1

3]0 -1 0 O -1 -1 0 -1

1/-1 -1 -1 -1 0 O 0 0
R (2|1 -1 -1 -1 0 O 0 0

3(-1 -1 -1 -1 0 O 0 0
Eq. | - 1<h<3

Na secdo a seguir, por meio das representacdes matriciais L;, conseguimos identificar
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um padrio relacionado aos estados antecipados. Esses padrdes s@o conhecidos como ciclos na

estabilidade.

5.2.3 Ciclos na Estabilidade L,

Os “ciclos na estabilidade L, sdo trajetdrias periddicas ou oscilatdrias que surgem
no sistema dindmico linear, considerando as propriedades de estabilidade L. Isso implica que,
mesmo que o sistema possa ter um ponto de equilibrio estdvel L, ele pode também apresentar
comportamentos dinamicos periddicos ou oscilatorios.

Um jogo entra em um ciclo de tamanho r, a partir do horizonte 4, se G,,(i,s) =
G;(i,s), para todo inteiro ¢ tal que t > h, todos 0s i € N, e todos os s € S, sendo / e r 0s menores
inteiros com esta propriedade (FANG; HIPEL; KILGOUR, 1993). Como G;(i,s) é o estado que
o DM i antecipa como final a partir do estado s e considerando um horizonte #, quando o jogo
entra em um ciclo de tamanho r a partir do horizonte 4, significa que para horizontes pelo menos
igual a A, a cada incremento de tamanho r no horizonte de anélise, todos os DMs antecipam
os mesmos estados finais a partir de qualquer estado inicial. Por exemplo, em um jogo que
apresenta um ciclo de tamanho 2, significa que para um horizonte de anélise suficientemente
grande, a cada incremento de 2 no horizonte de andlise os estados antecipados serdo 0os mesmos
por todos os DMs a partir de todos os estados do conflito.

Se um jogo possui um ciclo de tamanho 1, diz-se que ele possui um ponto fixo. Em
Fang et al. (1993), os autores afirmam que em todos 0s jogos que eles analisaram, os jogos
possuiam ciclos de tamanho 1, 2 ou 4. Esses autores conjecturaram que essas sao todas as
possibilidades. Nesta tese, vamos utilizar a representacdo matricial proposta, para investigar os
ciclos em todos os jogos 2 x 2. A partir das matrizes C;, que apresentam os payoffs antecipados
conseguimos identificar os estados antecipados e seus padroes de repeticdo, identificando os
ciclos.

Mudancas nos payoffs podem transformar, por exemplo, o jogo do Dilema do
Prisioneiro no jogo de Caga ao Veado, ou seja, alteracdes nos payoffs podem transformar um
jogo em outro. Com base nessa visdo, Bruns (2015a) demonstrou como uma topologia de trocas
de payoffs organiza elegantemente os jogos 2 X 2 em uma tabela periddica, estruturada em
uma ordem natural conforme os vizinhos de troca, o alinhamento dos melhores resultados, a
simetria, o nimero de estratégias e equilibrios dominantes, entre outras propriedades. Segundo

Bruns (2015a), esta representacdo mostra visualmente ainda mais a topologia dos jogos 2 x 2,
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mostrando as relagdes entre jogos e os caminhos para transformar situacdes estratégicas, além
disso, eles apresentam a diversidade dos jogos 2 x 2, a variedade de situacdes estratégicas no
qual o resultado da a¢do de cada pessoa depende do que a outra decide, e a gama de estruturas
de incentivos possiveis quando duas pessoas tém duas escolhas interdependentes.

A Figura 5.4 apresenta os jogos da tabela periddica referente a jogos 2 x 2 (BRUNS,
2015a), no qual estéd organizada em torno dos jogos 2 x 2 simétricos num eixo diagonal, desta-
cando os doze jogos ordinais estritos em que cada DM tem quatro recompensas distintas. Os
padrdes de payoffs dos jogos simétricos se combinam para formar jogos assimétricos, consti-
tuindo assim uma base conveniente para nomear os jogos. Os payoffs nos equilibrios de Nash
classificam os jogos em familias, que sdo representadas por cores segundo a Figura 5.3. Aqui
cabe ressaltar que o conceito de jogos ciclicos na Figura 5.4 ndo € o mesmo que a andlise de
ciclos na estabilidade L, que estd sendo investigada nesta sec@o. Os jogos ciclicos referem-se
aos jogos que nao possuem equilibrio de Nash em estratégias puras, o que significa apenas que
eles ndo possuem nenhum equilibrio L;. Ao final desta nossa andlise, veremos que existe uma

relacdo entre tais jogos e aqueles que possuem ciclo de tamanho 2.

Figura 5.3 — Legenda de cores da Tabela de jogos 2 x 2
Ambos DMs obtém o seu melhor resultado no equilibrio em A troca dos payoffs mais baixos para um DM no Dilema do
jogos em que todos ganham. Os jogos harmoniosos tém um Prisioneiro ou no Jogo da Galinha cria um jogo de Called Bluff,
anico equilibrio. Os jogos de caga ao veado (também parte da Familia Injusta, em que um jogador obtém o seu melhor
conhecidos como jogos de garantia) tém um segundo equilibrio resultado enquanto o outro obtém o segundo pior.
em que ambos obtém um prémio inferior, Pareto-inferior.

Nos jogos tendenciosos , a maior familia, no equilibrio de Nash /O Dilema do Prisioneiro € o tnico membro simétrico da familia
um DM fica com o melhor resultado e o outro com 0 segundo Inferior em gue o equilibrio de Nash & Pareto-inferior. Seguir 0s
melhor incentivos individuais para uma estratégia dominante conduz a

A troca de em payoffs intermedirios transforma o Dilema do [MIMESUUSCORIGIARGHESSOSHOIS PUGSSSSIIC00RSTEE

Prisioneiro em Deadlock, um dos dois jogos simétricos Second-

best.

Nos jogos ciclicos, em cada célula um jogador prefere sempre Os jogos tristes nao tém sequer o potencial para um resultado
mudar a sua jogada, pelo que nédo existe equilibrio em Pareto-superior.

estratégias puras.

Fonte: Adaptado de (BRUNS, 2015a)

A Figura 5.4 contém doze padrdes de payoffs que formam 144 jogos estritamente
ordinais (sem indiferencga), estes jogos sdao considerados distintos mesmo quando os DMs 1 e 2
trocam de papéis, totalizando 144 combinag¢des unicas. No entanto, como argumentaremos a
seguir, podemos focar em apenas 78 desses jogos, selecionados dessa tabela. Esses jogos estdo
categorizados em 12 tipos distintos de comportamentos dos DMs. Essa classificacdo deriva do
fato de haver 24 permutacgdes diferentes dos nimeros de 1 a 4 (4!), mas dividimos por dois para

descontar as que sdo distintas apenas devido a troca das estratégias dos DMs, o que mantém
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0 jogo inalterado. Por exemplo, descrever o Dilema dos Prisioneiros com “Delatar” na linha
superior e “Cooperar” na inferior é equivalente a inverter essas estratégias.

Assim, cada DM tem 12 possiveis preferéncias distintas, resultando em 144 com-
binacdes de jogos (12 x 12 = 144). Cada uma das 12 combina¢Oes de comportamentos esta
associada a um jogo classico (como o Dilema dos Prisioneiros, Galinha, Stag-Hunt, etc.). Dessa
forma, existem 12 jogos nos quais ambos os DMs estido jogando o mesmo jogo cldssico, como
ambos jogando o Dilema dos Prisioneiros, que esta localizado na interse¢do da linha 6 com a
coluna 7 da tabela periddica da Figura 5.4.

Nos outros 132 jogos (144 - 12), os DMs tém utilidades provenientes de jogos
diferentes, como por exemplo, um DM jogando o jogo da Galinha e o outro jogando o Dilema
dos Prisioneiros, designado na linha 1 coluna 7 da tabela como “ChPd”. Note que se invertermos
os papéis dos DMs 1 e 2, obtemos o jogo “PdCh”, localizado na linha 6 na dltima coluna da
tabela, conhecido na literatura como “Called Bluff”. Entretanto, os jogos “ChPd” e “PdCh”
sdo equivalentes e resultam no mesmo resultado na andlise, portanto ndo hd necessidade de
duplicacgdo, apenas de repeticdao dos resultados encontrados.

Ao dividir os 132 jogos distintos por dois, obtemos 66, que somados aos outros 12
jogos resultam nos 78 jogos 2 x 2 distintos que foram analisados. Dito isto, para interpretar os
payoffs na Figura 5.4, consideraremos os payoffs do DM 1 destacados em vermelho, enquanto os
do DM 2 sdo destacados em azul.

Vamos adotar que em cada jogo 2 x 2, os estados estdo dispostos na seguinte ordem:

S1 52

53 54

Entdo, para todos os jogos as matrizes de acessibilidade dos DMs 1 e 2 sdo, respecti-

vamente:

0010 0100

0 0 01 1 000
J1: CJQZ

1 000 0 0 01

0100 0 010

Para obter as matrizes de payoffs, considere o exemplo do jogo na primeira linha da
primeira coluna (ChNc) da Tabela 5.4. Reescrevendo, as utilidades dos DMs 1 e 2 conforme

comumente € feito em um jogo na forma normal, temos:
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Figura 5.4 — Diagrama da Topologia dos Jogos 2 x 2
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Fonte: Adaptado de (BRUNS
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3,
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DM 1

de estados piores que o estado para os DMs 1 e 2.

amero

representam o n

K1 € Kz,

K| e K; variam 0 a 3 correspondendo a um

b

Como os valores na tabela do jogo variam de 1 a 4

tivamente:

4o respec

KleKzs

9

valor a menos. Assim

Para cada um dos 78 jogos, podemos repetir este mesmo procedimento para obter as

matrizes K| e K, de cada um deles. Utilizando a representagdo matricial para cada um desses
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jogos, foi analisado o conceito Ly até o valor h = 20, e observou-se a existéncia do ciclo, bem
como seu inicio.

Na Figura 5.5, apresentamos os payoffs usando a mesma tabela, destacando com
cores iguais 0s jogos com 0s mesmos ciclos resultantes e o horizonte no qual o ciclo inicia esta
destacado por tons da cor daquele ciclo, sendo o horizonte 7 = 1 o tom mais fracoeoh =50
tom mais forte. Vale ressaltar que cada jogo € representado pelas iniciais do seu nome original,
como, por exemplo, Chicken Game sera representado por Ch.

Ao relacionar a tabela original, Figura 5.4, com os nossos resultados sobre os ciclos,
Figura 5.5, podemos extrair algumas conclusdes interessantes. Observa-se que todos os jogos
que apresentam ciclo de tamanho 2 pertencem ao grupo que ndo possui equilibrio de Nash em
estratégias puras (grupo cinza na Figura 5.4). Além disso, todos os jogos em que ambos os DMs
atingem o melhor resultado no equilibrio (grupo verde na Figura 5.4) apresentam ciclo 1. Por
fim, todos os jogos classificados como “tristes”, ou seja, que ndo tém sequer o potencial para um

resultado Pareto-superior (grupo rosa na Figura 5.4), também possuem ciclo 1.

Figura 5.5 — Diagrama da Topologia dos Jogos 2 x 2 por ciclos e horizontes
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5.3 CONCLUSAO

No presente capitulo, apresentamos representagdes matriciais para obter estados
estaveis de acordo com o conceito de estabilidade do movimento limitado, Lj, considerando
conflitos bilaterais. Diferentemente do conceito Maximiny, que ndo leva em consideracdo as
preferéncias dos oponentes, o L, integra as preferéncias de ambos os DMs, permitindo que cada
DM realize movimentos de maximizagdo de acordo com suas proprias preferéncias.

Aplicamos essas representacdes a dois cendrios distintos. Primeiramente, utilizamos
o Dilema dos Prisioneiros, um conflito amplamente discutido na literatura, onde aplicamos a
representacdo do L, considerando um horizonte &7 = 3. Em seguida, aplicamos ao caso real de
selecdo de tecnologia de neurociéncia na China, estudado por Zhou e Wang (2018), analisando
as quatro fases nas quais esse conflito foi dividido.

Além disso, exploramos os ciclos na estabilidade L. [lustramos essa andlise ciclica
utilizando os jogos da tabela periddica para jogos 2 x 2, conforme apresentado por Bruns
(2015a). Nessa andlise, pudemos extrair conclusdes interessantes ao relacionar a tabela periddica
de (2015a) com a nossa versao adaptada, abrindo novas possibilidades de estudo sobre ciclos e

padrdes de estabilidade em jogos estratégicos.
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6 CONSIDERACOES FINAIS

O GMCR pode ser considerado uma ferramenta que possui grande potencial para
analisar, modelar e explicar conflitos estratégicos. Porém, quando consideramos conflitos estra-
tégicos muito extensos, em termos de nimeros de estados ou decisores, identificar estabilidades
de estados pode se torna uma tarefa custosa se for realizada por meio das representacdes légicas
das nocdes de estabilidades. Desta forma, nos baseamos e realizamos adaptacdes de métodos
matriciais propostos por Xu et al. (2007 e 2008) para propor representagdes matriciais para
alguns conceitos de estabilidade com horizonte varidvel existentes na literatura do GMCR. As
principais motivagdes para a construcdo desta tese sao:

* As representagdes matriciais facilitam o desenvolvimento de algoritmos melhorados para
avaliar as estabilidades dos estados.

* Os métodos matriciais propostos sdo propicios para a andlise tedrica de problemas de
conflito.

* Os métodos matriciais possuem a vantagem de serem faceis de se calcular e codificar, em
comparacao com a representacao légica dos conceitos de solucdes.

* As representacdes matriciais fornecem expressoes algébricas explicitas que podem ser
adaptadas para novos conceitos de solugdo.

* A representacdo matricial de conceitos solu¢des pode ser integrada num sistema de suporte
a decisdo.

Diante disto, nesta tese foram propostas representacdes matriciais de conceitos de
estabilidade com horizontes varidveis no GMCR considerando situa¢des de conflitos bilaterais
e multilaterais. As representacdes matriciais obtidas nesta pesquisa foram produzidas para as
seguintes conceitos de solucao: estabilidade m — SEQ, Maximiny, e Lj,.

Esses resultados s@o de suma importancia, pois as estabilidade Maximiny, e suas
variantes crediveis, generalizam os conceitos de estabilidade mais utilizados na andlise de
estabilidade do GMCR, como: Nash, GMR, SMR, SEQ e SSEQ. Com a ajuda das representacdes
matriciais propostas, agora se pode realizar uma andlise completa de um conflito, considerando
qualquer horizonte, considerando ou nao a restri¢ao a sanc¢des crediveis.

[lustramos diversas aplicacdes para demonstrar o uso das representacdes matriciais
apresentadas nesta tese, visando facilitar o entendimento dos conceitos discutidos. No contexto de

estabilidade m-SEQ, abordamos dois conflitos reais, Matching Pennies e o conflito de renovagdo
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de instalacdo industrial privado. Para a nocdo de estabilidade Maximiny,, analisamos a Fase
3 do conflito entre a Sun Belt € 0 Governo da Coliumbia Britanica, estendendo a analise de
estabilidade até o horizonte 7 = 20. Além disso, aplicamos os métodos matriciais obtidos, para
este conceito, ao Dilema dos Prisioneiros com n DMs, com o objetivo de demonstrar a eficiéncia
da abordagem matricial e mensurar o tempo computacional a medida que o nimero de DMs,
deste conflito, aumenta. Aplicamos os resultados matriciais ao Dilema dos Prisioneiros e as
quatro fases cognitivas do conflito sobre a selecdo de tecnologia de neurociéncia na China.
Complementamos as aplicagdes com andlises ciclicas do conceito Ly, ou seja, exploramos a
existéncia de ciclos na estabilidade L; em jogos 2 x 2.

Como sugestdo para trabalhos futuros, planejamos propor representagdes matriciais
para outras no¢des de estabilidade com horizonte varidvel, como: estabilidade de otimismo-
pessimismo (SABINO; REGO, 2023), e estabilidade de arrependimento minimo (SABINO;
REGO, 2024). Adicionalmente, pretendemos investigar a existéncia de ciclos, em jogos 2 X 2,

de acordo com a nog¢do de estabilidade Maximiny,.
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APENDICE A - CODIGOS COMPUTACIONAIS

Neste apéndice, sdo apresentados os codigos computacionais que foram implementa-

dos, utilizando a sintaxe do R, para obtencao dos resultados expostos nesta tese. Os scripts para

as aplicacdes do m-SEQ, Maximiny, e L;, sdo apresentados abaixo:

A.1 SCRIPT DO R - CONFLITO PRIVADO DE RENOVACAO DE BROWNFIELD - CO-

10

11

13

14

15

17

19

20

21

22

23

24

DIGO M-SEQ

HHRBHAHRAHAHHHHAHARAH AR HHH AR AR AR AR HHH AR AR AR AR HHH AR AR AR B S HH RS R AR AR B R HHHH

HHAHHAHAHHAH AR HH Aplicacoes Private Brownfield HUEHHAHAHHAHAEHHAH
HHEHBAASHRARSHBHSH Renovation Conflict HH#AHHBHRHHBRSHS
HHHHAFHHARHHBHAH France 0Oliveira HHHRHHARAHARSHHH

HHBHAHAHAHHSHAH AR AR AR A S HBHAH AR AHHSH SR AR AR AR HAH SR AR AR A S HSH AR AR AR B SRS HH

library (matrixcalc)

library (readxl)

L e e Caso 3-DMs - Conj de Dados ---------------- #

# Matriz de acessibilidade (J_1i)

J1Brownfield PO <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus
Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/
J1Brownfield _PO.x1lsx")

J1 <- as.matrix(J1Brownfield_PO)

J1

J2Brownfield_CG <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus
Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/
J2Brownfield _CG.xlsx")

J2 <- as.matrix(J2Brownfield_CG)

J2




25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55
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J3Brownfield_D <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus
Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/
J3Brownfield_D.xlsx")

J3 <- as.matrix (J3Brownfield_D)

J3

# Matriz de preferencia (P~+)

P1Brownfield PO <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus
Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/
P1Brownfield _PO.x1lsx")

Pl1_plus <- as.matrix(P1Brownfield_PO)

P1_plus

P2Brownfield _CG <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus
Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/
P2Brownfield _CG.xlsx")

P2_plus <- as.matrix(P2Brownfield_CG)

P2_plus

P3Brownfield_D <- read_excel("C:/Users/franc/Google Drive/UFPE/Meus
Artigos/Artigos m-SEQ/Artigo - Matrix Representation m-SEQ/
P3Brownfield_D.xlsx")

P3_plus <- as.matrix(P3Brownfield_D)

P3_plus

Bommm e - - Elementos de entrada --------------—----- #
N = sqrt(length(J1)) #Numero de estados

m = 2 #sqrt(length(m)) #Numero de ordem

D = diag(rep(1,N)) #Matriz diagonal

E = matrix(l, nrow = N, ncol = N, byrow = TRUE) #Matriz de uns

R Matriz de indiferenca (P"-,=) —----ceooooooooo-- #
P1_ind = (E - P1_plus) # DM 1
P2_ind = (E - P2_plus) # DM 2
P3_ind = (E - P3_plus) # DM 3




56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

H----- Matriz de Melhorias unilaterais (J_i~+ = J_i o P~+)
J1_plus = hadamard.prod(J1, P1_plus) # DM 1

J2_plus = hadamard.prod(J2, P2_plus) # DM 2

J3_plus = hadamard.prod(J3, P3_plus) # DM 3

R Matriz de representacao SEQ (M_i~SEQR) - Coalizao
# MSEQ_1

delta_1 <- sum(!!J2_plus)+sum(!!J3_plus)
J_2 <- J2_plus
J_3 <- J3_plus

J_23 <- sign(J_2+J_3)

for(t in 1:delta_1)

{

JT2 <- J_2

J_2 <- sign(J2_plus¥%*% J_3)

J_3 <- sign(J3_plus¥%*% JT2)

J_23 <- sign(J_23 + (sign(J_2 + J_3)))
}

SINAL <- sign(J_23 %*% t(P1_ind))

MSEQ_1 <- (J1_plus %*%( E- SINAL))

# MSEQ_2
delta_2 <- sum(!!J1_plus)+sum(!!J3_plus)

J_1 <- J1_plus
J_3 <- J3_plus
J_13 <- sign(J_1+J_3)

for(t in 1:delta_2)
{
JT1 <- J_1
J_1 <- sign(J1_plus%*% J_3)
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95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

J_3 <- sign(J3_plus%*% JT1)
J_13 <- sign(J_13 + (sign(J_1 + J_3)))

SINAL <- sign(J_13 %x*% t(P2_ind))

MSEQ_2 <- (J2_plus %*%( E- SINAL))

# MSEQ_3

delta_3 <- sum(!!J1_plus)+sum(!!J2_plus)

J_1 <- J1_plus

J_2 <- J2_plus

J_12 <- sign(J_1+J_2)

for(t in 1:delta_3)

{

JT3 <- J_1

J_1 <- sign(J1_plus¥h*% J_2)

J_2 <- sign(J2_plus%*% JT3)

J_12 <- sign(J_12 + (sign(J_1 + J_2)))
}

SINAL <- sign(J_12 %x% t(P3_ind))

MSEQ_3 <- (J3_plus %*%( E- SINAL))

#Caso m=1

MmSEQ_1 = MSEQ_1
MmSEQ_2 = MSEQ_2
MmSEQ_3 = MSEQ_3

#caso m>1
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134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

for(k in 2:

# Matriz
J1_mplus
J2_mplus
J3_mplus

# Matriz

# MmSEQ_1

m) {

J_j~(m,+)

sign (hadamard.prod (D,
sign(hadamard.prod (D,

sign (hadamard.prod (D,

MmSEQ_1))
MmSEQ_2))
MmSEQ_3))

h*% J1_plus
%*% J2_plus
%h*% J3_plus

de representacao MmSEQ (M_i~(m-SEQ))

delta_1 <- sum(!!J2_plus)+sum(!!J3_plus)

J_2 <- J2_mplus

J_3 <- J3_mplus

J_23 <- sign(J_2+J_3)

for(t in 1:delta_1)

{
JT2 <-

J_2

J_2 <- sign(J2_mplus¥*% J_3)

J_3 <- sign(J3_mplus¥%*’% JT2)

J_23 <- sign(J_23 + (sign(J_2 + J_3)))

SINAL <- sign(J_23 %x*% t(P1_ind))

MmSEQ_1 <-

# MmSEQ_2

(J1_plus %*%( E- SINAL))

delta_2 <- sum(!!J1_mplus)+sum(!!J3_mplus)

J_1 <- J1_mplus

J_3 <- J3_mplus

J_13 <- sign(J_1+J_3)

for(t in 1:delta_2)

{
JT1 <-

J_

1

J_1 <- sign(J1_mplus¥%*% J_3)
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173 J_3 <- sign(J3_mplus%*% JT1)
174 J_13 <- sign(J_13 + (sign(J_1 + J_3)))
175 }

176
177 SINAL <- sign(J_13 %*% t(P2_ind))
178 MmSEQ_2 <- (J2_plus %*%( E- SINAL))
179
180
181 # MmSEQ_3

182 delta_3 <- sum(!!J1_mplus)+sum(!!J2_mplus)
183
184 J_1 <- J1_mplus

185 J_2 <- J2_mplus

186 J_12 <- sign(J_1+J_2)
187

188 for(t in 1:delta_3)

189 {

190 JT1 <- J_1

191 J_1 <- sign(J1l_mplus%*’% J_2)

192 J_2 <- sign(J2_mplus%*’% JT1)

193 J_12 <- sign(J_12 + (sign(J_1 + J_2)))
194 X

195
196 SINAL <- sign(J_12 ¥%x*% t(P3_ind))
197 MmSEQ_3 <- (J3_plus %*%( E- SINAL))

198 | }
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A2 SCRIPT DO R - FASE 3 - WATER EXPORT CONFLICT - CODIGO MAXIMIN,,

2 | HEHHAHAHAHAHHHHAHARAHAHHHHAH AR AR BH B R AR AR AR BH B R H AR R BH SRR HAH BB HHH

3| HHEHHHAHBHHAHBHHH Aplicacoes Phase 3 HAHHAHAH B HAHBRH
4 |HHEHHAHHBSHAHHAHEH Water Export Conflict HEHHAHAHHAHAEHHAH
S| HHu#HAHHBHAHHAHEH France 0Oliveira HUHHAHAHHAHAHHAH

6 | HHHHAHARAHAHHHHAHARAHAHHHHAHARAHBH BB AR AR AR BH RS R A HAHHHBH B R AHAH BB RS




10

12

13

14

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

library (matrixcalc)

$omm oo
S= 11

E = rep(1,8)
D = diag (x
Hooo e

# Quantidade de estados
# Vetor de um's

1, nrow=S, ncol=S) # Matriz diagonal

——————————— Caso DM i - Conj de Dados

# Matriz de acessibilidade

# Sun Belt
DM_SanBelt

# BCG

matrix(c(0,1,1,0,1,0,0,0,0,0,0,

1,0,0,1,0,1,0,0,0,0,0,
1,0,0,1,0,0,0,0,0,0,0,
60,1,1,0,0,0,0,0,0,0,0,
1,0,0,0,0,1,0,0,0,0,0,
0,1,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,1,
6,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,
0,0,0,0,0,0,1,0,0,1,0),8,8)

DM_BCG = matrix(c(0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,1,
0,1,0,0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0),8,8)

Elementos de entrada




49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

Ji = DM_SanBelt

Jj = DM_BCG

B oo #
# Matriz de preferencia

B oo oo oo e #

# Sun Belts

Pi_plus_SanBelt = matrix(c(0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,
1,1,0,1,0,0,1,1,1,1,0,
1,1,0,0,0,0,1,1,0,0,0,
1,1,1,1,0,1,1,1,1,1,1,
1,1,1,1,0,0,1,1,1,1,0,
1,1,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,1,0,0,0,0,
1,1,0,1,0,0,1,1,0,0,0,
1,1,0,1,0,0,1,1,1,0,0,
1,1,1,1,0,1,1,1,1,1,0),8,8)

# BCG

Pi_plus_BCG = matrix(c(0,1,1,1,1,1,1,1,1,1,1,
60,0,1,1,1,1,1,1,1,1,1,
60,0,0,1,0,0,0,0,1,1,0,
60,0,0,0,0,0,0,0,0,1,1,
0,0,1,1,0,1,1,1,1,1,1,
0,0,1,1,0,0,1,1,1,1,1,
60,0,1,1,0,0,0,0,1,1,0,
60,0,1,1,0,0,1,0,1,1,0,
0,0,0,0,0,0,0,0,0,0,0,
60,0,0,0,0,0,0,0,1,0,0,
0,0,1,1,0,0,1,1,1,1,0),S8,8)

Pi_plus = Pi_plus_SanBelt

K_i = t(E %*% Pi_plus) # Encontrar o valor de K_i(s)

# Ci Function
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88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

C <-
Jj

120

function (h){

_D =D + Jj # Diagonal + matriz de acessibilidade do DM j

comp_Jj_D = E - Jj_D # Matriz complementar da Jj_D

prod_estado = S * comp_Jj_D

if

}
el

(h %% 2 =
#h=2

0){ # Teste se par

#prod_hadamard_h2 = hadamard.prod(Jj_D, (t(K_i%*%E))) # Para onde
o oponente pode levar o conflito e quanto o DM focal vai
receber
prod_hadamard_h2 = (hadamard.prod(Jj, (t(K_i%*%E))) + hadamard.
prod (D, (t(K_i%*%E))))
B_1j

Il

prod_estado + prod_hadamard_h2

C_1j cbind (apply(B_1j,1,min)) # Min de cada linha
#F= hadamard.prod ((Ji + D), (t(C_1j %*% E)))
F= (hadamard.prod(Ji, (t( C_1j%*%E))) + hadamard.prod(D, (t(K_i%*
%E)) D)
C_2i= cbind (apply(F,1,max))
Ci = C_21
if (h>2){
for (g in 1:(h/2)-1){
prod_hadamard_h = (hadamard.prod(Jj, (t(Ci%*%E))) + hadamard.
prod(D, (t(K_i%=*%E)))) # (C_(h-2)1)
BiPluslj = prod_estado + prod_hadamard_h
CiPlus1j = cbind(apply(BiPluslj,1,min)) # Min de cada linha
F= (hadamard.prod(Ji, (t( CiPlus1j%*%E))) + hadamard.prod(D,
(t(K_i%*%E))))
CiPlus2= cbind (apply(F,1,max))

Ci=CiPlus2
}
}
se{ # h eh impar
# h=1
Ji_D = D + Ji # Diagonal + matriz de acessibilidade do DM i

B_1i = hadamard.prod(Ji_D, (t(K_i%*%E))) # Para onde o oponente

pode levar o conflito e quanto o DM focal vai receber




121

120 C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha

121 #Q=matrix (1,nrow = S,ncol = 1) # Matriz coluna de 1's

122 #C_1i = Q %x*% C_1_max # Matriz dos max em coluna

123 Ci = C_11

124 if (h>1) {

125 for (g in 1:(h-1)/2){

126 prod_hadamard_h = (hadamard.prod(Jj, (t(Ci%*%E))) + hadamard.

prod(D, (t(K_i%=*%E)))) # (C_(h-2)1)

127 BiPluslj = prod_estado + prod_hadamard_h

128 CiPluslj = cbind(apply(BiPluslj,1,min)) # Min de cada linha

129 F= (hadamard.prod(Ji, (t( CiPlusl1j%*%E))) + hadamard.prod(D,
(£ (K_i%*%E))))

130 CiPlus2= cbind (apply(F,1,max))

131 Ci=CiPlus2

132 X

133 b

134 }

135 Dif _h = (K_i - Ci) # dif de quanto tenho se permanecer e quanto
terei se eu me mover

136 Sign_Dif _h = sign(Dif_h)

137 return(Sign_Dif _h)

138 | }

139
140
141 | for(h in 1:20){

142 C(h)

143 print (paste("Horizonte", h, ": Resultado =", C(h)))
144 | }

145
146
147
148
149 | #-- - s oo e e e o - Caso DM j - Conj de Dados ---------------- #
150
151 |# Matriz de acessibilidade

152 | # Sun Belt

153|Ji = matrix(c(0,1,1,0,1,0,0,0,0,0,0,
154 1,0,0,1,0,1,0,0,0,0,0,

155 1,0,0,1,0,0,0,0,0,0,0,




156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

0,1,1,0,0,0,0,0,0,0,0,
1,0,0,0,0,1,0,0,0,0,0,
60,1,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,1,
0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,
0,0,0,0,0,0,1,0,0,1,0),8,8)

# BCG

Jj = matrix(c(0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,1,
0,1,0,0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0),8,8)

# Sun Belts

Pi_plus = matrix(c(0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,
1,1,0,1,0,0,1,1,1,1,0,
1,1,0,0,0,0,1,1,0,0,0,
1,1,1,1,0,1,1,1,1,1,1,
1,1,1,1,0,0,1,1,1,1,0,
1,1,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,1,0,0,0,0,
1,1,0,1,0,0,1,1,0,0,0,
1,1,0,1,0,0,1,1,1,0,0,
1,1,1,1,0,1,1,1,1,1,0),8,S)

# BCG

122




195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

Pj_plus

K_j = t(

h=1
C <- fun
Ji_D =
comp_J
prod_e
if(h %
#h=2

#pro

123

= matrix(c(0,1,1,1,1,1,1,1,1,1,1,
60,0,1,1,1,1,1,1,1,1,1,
60,0,0,1,0,0,0,0,1,1,0,
60,0,0,0,0,0,0,0,0,1,1,
60,0,1,1,0,1,1,1,1,1,1,
0,0,1,1,0,0,1,1,1,1,1,
60,0,1,1,0,0,0,0,1,1,0,
60,0,1,1,0,0,1,0,1,1,0,
0,0,0,0,0,0,0,0,0,0,0,
60,0,0,0,0,0,0,0,1,0,0,
0,0,1,1,0,0,1,1,1,1,0),8,8)

E %*% Pj_plus) # Encontrar o valor de K_i(s)

ction(h){

D + Ji # Diagonal + matriz de acessibilidade do DM 1
i_D =E - Ji_D # Matriz complementar da Ji_D

stado = S * comp_Ji_D

h o2 =

0){ # Teste se par

d_hadamard_h2 = hadamard.prod(Jj_D, (t(K_i%*%E))) # Para onde

o oponente pode levar o conflito e quanto o DM focal vai

receber

prod

_hadamard_h2 = (hadamard.prod(Ji, (t(K_j%*%E))) + hadamard.

prod (D, (t(K_j%*%E))))

B_1i
c_1i
#F=
F= (
)
C_2j
cj =
if (h

= prod_estado + prod_hadamard_h2

= t(cbind (apply(B_1i,1,max))) # Min de cada linha
hadamard.prod ((Ji + D), (t(C_1j %*% E)))

hadamard.prod(Jj, (C_1i%*%E)) + hadamard.prod(D, (t(K_jh*%E)
))

= cbind (apply (F,1,min))

C_2j

>2){




230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

124

for (g in 1:(h/2)-1){

prod_hadamard_h = (hadamard.prod(Ji, (t(Cj%*%E))) + hadamard.
prod (D, (t(K_j%*%E)))) # (C_(h-2)1i)

BiPlusli = prod_estado + prod_hadamard_h

CiPlusli = cbind(apply(BiPlusli,1,max)) # Min de cada linha

F= (hadamard.prod(Jj, (t( CiPlusli%*%E))) + hadamard.prod(D,
(£ (K_j%*%hE))))

CjPlus2= cbind (apply(F,1,min))

Cj=CjPlus2
X
}
b
else{ # h eh impar
# h=1
Jj_D = D + Jj # Diagonal + matriz de acessibilidade do DM i

B_1j = hadamard.prod(Jj_D, (t(K_j%h*%E))) # Para onde o oponente
pode levar o conflito e quanto o DM focal vai receber

C_1j = cbind(apply(B_1j,1,min)) # Max de cada linha

#Q=matrix (1,nrow = S,ncol = 1) # Matriz coluna de 1's
#C_1i = Q %x*% C_1_max # Matriz dos max em coluna

Cj = C_1j

if (h>1) {

for (g in 1:(h-1)/2){
prod_hadamard_h = (hadamard.prod(Ji, (t(Cj%*%E))) + hadamard.
prod(D, (t(K_j%*%E)))) # (C_(h-2)1)
BjPlusli

prod_estado + prod_hadamard_h

CjPlusli = cbind(apply(BjPlusli,l,max)) # Min de cada linha

F= (hadamard.prod(Jj, (t( CjPlus1i%*%E))) + hadamard.prod(D,
(t(K_j%*%hE))))

CjPlus2= cbind (apply(F,1,min))

Cj=CjPlus2

¥

Dif _h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto
terei se eu me mover

Sign_Dif_h = sign(Dif_h)

return(Sign_Dif _h)
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for(h in 1:20){
C(h)

print (paste ("Horizonte", h, ": Resultado =", C(h)))

A3 SCRIPT DO R - DILEMA DOS PRISIONEIROS N-DMS - CODIGO MAXIMIN,,

10

11

17

18

19

20

21

22

23

24

25

26

27

28

29

HUHHHHHH AR AR AR A S FAAAAAAAH R AR B R B R R R B R A A S S SAAA A AR AR BB BB R R HHH R AR S AR A
########### Aplicacoes Dilema dos Prisioneiros n DMs HAHHBHAHHAHEHS
HA#AHARHHAHS France 0liveira HiHHHHHHHAHARS
HUHHHHHHHHHHHHASHSAAA AR R R BB BB R R HHHH S S S AA A ARR R R R RS SRR H S

library (matrixcalc)
library('ramify')
library(readxl)

e R Elementos de entrada ------------------- #
e e #

# Dilema dos Prisioneiros - 3 DMs

B om e e e - #

J1l <- Dilema_Prisioneiros_J1_3_Decisores

J1 <- as.matrix(J1)

J2 <- Dilema_Prisioneiros_J2_3_Decisores

J2 <- as.matrix(J2)

J3 <- Dilema_Prisioneiros_J3_3_Decisores

J3 <- as.matrix(J3)

matriz_acess = list(J1, J2, J3)
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# Acessando e removendo uma matriz especifica da lista,

Focal

Id_DM_Focal <- 1

#

I

N = 3 # Qnt de DMs

h = 1 # Horizonte

S = 8 # Qnt de estados

E = rep(1,S) # Vetor de um's

D = diag (x = 1, nrow=S, ncol=S)

E_1 = matrix(l, nrow = S, ncol = 1, byrow = TRUE)
uns

K1 = matrix(c(4,2,2,0,5,3,3,1), nrow = S, ncol

K2 = matrix(c(4,2,5,3,2,0,3,1), nrow = S, ncol

K3 = matrix(c(4,5,2,3,2,3,0,1), nrow = S, ncol

matriz_pref = list (K1, K2, K3)

el #
# Funcao Coalizao - J_H
e #

JH <- function(S, Id_DM_Focal, matriz_acess){

conj_coalizao <- matriz_acess[-Id_DM_Focall]

#soma_coalizao = J2 + J3 + J4
#sinal_coalizao = sign(soma_coalizao)
#J_r = sign(J1 %x*% sinal_coalizao)
delta = sum(unlist(conj_coalizao))

soma_matrizes <- function(matrizl, matriz2) {
return(matrizl + matriz2)

}

J_op <- Reduce(soma_matrizes, conj_coalizao)

# for(l in 1:length(conj_coalizao)){

# DM_Focal = matriz_acess[[Id_DM_Focalll]

Il

ou seja, o

Matriz diagonal

126

DM

# Matriz coluna de

1, byrow
1, byrow
1, byrow

Il

TRUE)
TRUE)
TRUE)
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# conj_coalizao = matriz_acess[-Id_DM_Focal]
new_conj_coalizao = conj_coalizao
temp_conj_coalizao = new_conj_coalizao

for(r in 2:delta)d{
for(i in 1:length(conj_coalizao)){
soma_coalizao = matrix(0,S,S)

for(j in 1:length(conj_coalizao)){

if(j t= i){
soma_coalizao = soma_coalizao + new_conj_coalizaol[[j]]
X
3
sinal_coalizao = sign(soma_coalizao) # o sinal garanti que
tenhamos 1 se a soma for dif de 0 e 0 c.c.
temp_conj_coalizao[[i]] = sign(conj_coalizao[[i]] %*’% sinal_
coalizao)
b
new_conj_coalizao = temp_conj_coalizao
J_op = J_op + Reduce(soma_matrizes, new_conj_coalizao)
b
# )

J_op = sign(J_op)

return (J_op)

Ci Function - Maximin_h DM i

<- function(h){
Jj_D = D + Jj # Diagonal + matriz de acessibilidade do DM j
comp_Jj_D = E - Jj_D # Matriz complementar da Jj_D
prod_estado = S * comp_Jj_D
if(h %% 2 == 0){ # Teste se par
#h=2
#prod_hadamard_h2 = hadamard.prod(Jj_D, (t(K_i%*%E))) # Para onde
o oponente pode levar o conflito e quanto o DM focal vai

receber
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prod_hadamard_h2 = (hadamard.prod(Jj, (t(K_i%*%E))) + hadamard.
prod (D, (t(K_i%*%E))))
B_1j

prod_estado + prod_hadamard_h2

C_1j cbind (apply(B_1j,1,min)) # Min de cada linha
#F= hadamard.prod ((Ji + D), (t(C_1j %*% E)))
F= (hadamard.prod(Ji, (t( C_1j%*%E))) + hadamard.prod(D, (t(K_i%*
%E)) D))
C_2i= cbind (apply(F,1,max))
Ci = C_21i
if (h>2){
for (g in 1:(h/2)-1){
prod_hadamard_h = (hadamard.prod(Jj, (t(Ci%*%E))) + hadamard.
prod (D, (t(K_i%*%E)))) # (C_(h-2)i)
BiPluslj = prod_estado + prod_hadamard_h
CiPluslj = cbind(apply(BiPluslj,1,min)) # Min de cada linha
F= (hadamard.prod(Ji, (t( CiPlus1j%*%E))) + hadamard.prod(D,
(¢ (K_i%*%E)) D)
CiPlus2= cbind (apply(F,1,max))

Ci=CiPlus2
¥
}
X
else{ # h eh impar
# h=1
Ji_D = D + Ji # Diagonal + matriz de acessibilidade do DM i

B_1i = hadamard.prod(Ji_D, (t(K_i%*%E))) # Para onde o oponente
pode levar o conflito e quanto o DM focal vai receber

C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha

#Q=matrix (1,nrow = S,ncol = 1) # Matriz coluna de 1's
#C_11 = Q %*% C_1l_max # Matriz dos max em coluna

Ci = C_11

if (h>1) {

for (g in 1:(h-1)/2){
prod_hadamard_h = (hadamard.prod(Jj, (t(Ci%*%E))) + hadamard.
prod (D, (t(K_i%*%E)))) # (C_(h-2)1i)
BiPluslj = prod_estado + prod_hadamard_h
CiPluslj = cbind(apply(BiPluslj,1,min)) # Min de cada linha
F= (hadamard.prod(Ji, (t( CiPlusl1j%*%E))) + hadamard.prod(D,
(t(K_i%*%E))))
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133 CiPlus2= cbind (apply(F,1,max))

134 Ci=CiPlus2

135 by

136 }

137 b

138 Dif _h = (K_i - Ci) # dif de quanto tenho se permanecer e quanto

terei se eu me mover
139 Sign_Dif _h = sign(Dif_h)
140 return(Sign_Dif _h)

141 | }

142
143 | execut _i <- function(){

144 for(h in 1:10){

145 for (Id_DM_Focal in 1:N) {

146 Ji <- matriz_acess[[Id_DM_Focall]]

147 Jj <- JH(S, Id_DM_Focal ,matriz_acess)

148 K_i <- matriz_pref[[Id_DM_Focalll

149 C(h)

150 print (paste("Horizonte", h, "DM_Focal:", Id_DM_Focal, ":
Resultado =", C(h)))

151 }

152 }

153 | }

154 | tempo <- system.time (execut_i())

A4 SCRIPT DO R - DILEMA DOS PRISIONEIROS - CODIGO L,

2 | HHHHHHAHAHHHHBH AR AR HHBH RS H AR BB RS HHH BB R AR SRR R B RS SRR H S S B R B H
3| #H#H###H######H#SE Aplicacoes Dilema dos Prisioneiros HUEHHAHAHHAHAHHAH
4 | #H#HHHERAHBRAH France 0Oliveira HERHHAERASHBHAHRERSH

S| HHHHAHARAHAHBHHAHARAHAHBH B AR AR AR AR AR B AR AR AR AR BH B SR AR AR BH R B SR AR AR HHH

10| library (matrixcalc)

11 |library('ramify"')
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34
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46

47
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e Elementos de entrada
S=4 # Quantidade de estados
E = rep(1,S) # Vetor de um's # Matriz de um's
D = diag (x = 1, nrow=S, ncol=S) # Matriz diagonal
D_1j = matrix(c(0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0),S,8)
R e Conj de Dados

# Matriz de acessibilidade

Ji

matrix(c(0,0,1,0,
0,0,0,1,
1,0,0,0,
0,1,0,0),8,S)

Jj matrix(c(0,1,0,0,
1,0,0,0,
0,0,0,1,

0,0,1,0),s,8)

# Matriz de preferencia - DM i

Pi_plus = matrix(c(0,1,0,1,
0,0,0,0,
1,1,0,1,
0,1,0,0),s,8)

# Matriz de preferencia - DM j

Pj_plus = matrix(c(0,0,1,1,
1,0,1,1,
0,0,0,0,

0,0,1,0),s,8)

# Matrizes K_i e K_]j
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=~
[
I

_i t(E %*% Pi_plus) # Encontrar o valor de K_i(s)

K_j = t(E %*% Pj_plus) # Encontrar o valor de K_j(s)

I it #
# CASO h=1

L e e e #
#o—mm e - Para o DM i -----------------

# Calculando B_11i
B_1i = (hadamard.prod(Ji, (t(K_i%*%E)))) + (hadamard.prod(D, (t(K_i%*
%E))))

# Calculando C_1i = Max(B_11i)

C_1i = cbind(apply(B_1i,1,max))

# Calculando (K_i - C_1i) e depois o sinal da diff - dif de quanto
tenho se permanecer e quanto terei se eu me mover
Dif _1_i = (K_i - C_11i)

Sign_Dif_1_i = sign(Dif_1_i)

# Calculando B_1j
B_1j = (hadamard.prod(Jj, (t(K_j%=*%E))) + hadamard.prod(D, (t(K_j%*%E
))))

# Calculando C_1j = Max(B_1j)

C_1j= cbind(apply(B_1j,1,max))

# Calculando (K_i - C_1i) e sinal da diff
Dif _1_j = (K_j - C_1j)

Sign_Dif_1_j = sign(Dif_1_j)
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# CASO h=2

# Funcao Argmax

Argmax <- function(mat) {

result <- mat

for (i in 1:nrow(mat)) {
row <- matl[i, ]
max_index <- which.max(row)
row [max_index] <- 1
row [-max_index] <- 0
result[i, ] <- row

¥

return(result)

# Exemplo
matriz <- matrix(c(1, 2, 3, 4, 8, 6, 7, 8, 9), nrow = 3)
resultado <- Argmax(matriz)

print (resultado)

# Calculando B_2i

y=(E-D)

g=hadamard.prod (Argmax (B_1j), y)
p=hadamard.prod (Argmax(B_1j), D)

r= (q %*% K_i) + (p %*% K_i)

v=t(r %*% E)

I=hadamard.prod(Ji, v)

ITI = (hadamard.prod(D, (t(K_i%*%E))))

B_2i = (I + II)
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# Calculando C_2i = Max(B_21i)
C_2i = cbind(apply(B_2i,1,max))

# Calculando (K_2 - C_2i) e depois o sinal da diff -
tenho se permanecer e quanto terei se eu me mover
Dif_2_i = (K_i - C_2i)

Sign_Dif_2_i = sign(Dif_2_1i)

# Calculando B_2j

y=(E-D)

g=hadamard.prod (Argmax (B_1i), y)
p=hadamard.prod (Argmax(B_1i), D)

r= (q %*% K_j) + (p %*%h K_j)

v=t(r %*% E)

I=hadamard.prod(Jj, v)

ITI = (hadamard.prod(D, (t(K_j%*%E))))

B_2j = (I + II)

# Calculando C_2j = Max(B_2j)

C_2j= cbind(apply(B_2j,1,max))

# Calculando (K_j - C_2j) e sinal da diff
Dif _2_j = (K_j - C_2j)

Sign_Dif_2_j = sign(Dif_2_j)

e e #
# Ci Function - DM i Imnicia
e T #

Ci <- function(h){

if (h==1){

dif de quanto
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134

B_1i = (hadamard.prod(Ji, (t(K_i%*%E)))) + (hadamard.prod(D, (t(K
_i%*%E)DD)
C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha

Ci = C_11
}
if (h==2){
B_2i = ((hadamard.prod(Ji, (t((((hadamard.prod(Argmax(B_1j), (E-D
))) %x% K_i) + ((hadamard.prod(Argmax(B_1j), D)) %x*x% K_i)) %x%
E)))) + (hadamard.prod(D, (t(X_i%*%E)))))
C_2i = cbind(apply(B_2i,1,max)) # Max de cada linha
Ci = C_21
}
if (h>2){
for (g in 3:h){
B_3i = ((hadamard.prod(Ji, (t((((hadamard.prod(Argmax(B_2j), (E
-D))) %x*% K_i) + ((hadamard.prod(Argmax(B_2j), D)) %*% K_1i))
%*%% E)))) + (hadamard.prod(D, (t(K_i%*%E)))))
C_3i = cbind(apply(B_3i,1,max)) # Max de cada linha
Ci = C_31
}
}
Dif _h = (K_i - Ci) # dif de quanto tenho se permanecer e quanto

terei se eu me mover
Sign_Dif _h = sign(Dif_h)

return(Sign_Dif _h)

}

S #
# Cj Function - DM j Imnicia

B o oo e #

Cj <- function(h){
if (h==1){
B_1j = (hadamard.prod(Jj, (t(K_j%*%E)))) + (hadamard.prod(D, (t(K
_IW*%KE) D)D)
C_1j = cbind(apply(B_1i,1,max)) # Max de cada linha
Cj = C_1j
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196 if (h==2){

197 B_2j = ((hadamard.prod(Jj, (t((((hadamard.prod(Argmax(B_1i), (E-D
))) %*% K_j) + ((hadamard.prod(Argmax(B_1i), D)) %*% K_j)) %x*%
E)))) + (hadamard.prod(D, (t(K_j%*%E)))))

198 C_2j = cbind(apply(B_2i,1,max)) # Max de cada linha
199 Cj = C_2j
200 3

201 if (h>2){

202 for (g in 3:h){

203 B_3j = ((hadamard.prod(Jj, (t((((hadamard.prod(Argmax(B_2i), (E
-D))) %*% K_j) + ((hadamard.prod(Argmax(B_2i), D)) %*% K_j))
%*% E)))) + (hadamard.prod(D, (t(K_j%*%E)))))

204 C_3j = cbind(apply(B_3j,1,max)) # Max de cada linha
205 Cj = C_3j

206 }

207 b

208 Dif _h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto
terei se eu me mover

209 Sign_Dif_h = sign(Dif_h)

210 return(Sign_Dif _h)

211 | }

A.5 SCRIPT DO R - CONFLITO DE SELECAO DE TECNOLOGIA DE NEUROCIENCIA
NA CHINA - CODIGO L,

6|# Codigo para obter os resultados do DM i

8 |library (matrixcalc)
9|library ('ramify')

10
11

12 |S=8 # Quantidade de estados

13/E = rep(1,S) # Vetor de um's # Matriz de um's
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D = diag (x = 1, nrow=S, ncol=S8) # Matriz diagonal
D_1j = matrix(c(0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0),5,8)

# Matriz de acessibilidade

Ji = matrix(c(0,1,1,1,0,0,0,0,
1,0,1,1,0,0,0,0,
1,1,0,1,0,0,0,0,
1,1,1,0,0,0,0,0,
0,0,0,0,0,1,1,1,
0,0,0,0,1,0,1,1,
0,0,0,0,1,1,0,1,
0,0,0,0,1,1,1,0),S,8)

Jj = matrix(c(0,0,0,0,1,0,0,0,
0,0,0,0,0,1,0,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
1,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,
0,0,0,1,0,0,0,0),8,S)

B oo m o o e -
# CASO 1 - Intuition Phase

B o o o D oo
# Matriz de preferencia - DM i

#Pi_plus = matrix(c(0,1,1,1,1,1,1,1,

# 0,0,0,1,0,1,1,1,
# 0,1,0,1,0,1,1,1,
# 0,0,0,0,0,1,1,1,
# 0,1,1,1,0,1,1,1,
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# 0,0,0,0,0,0,0,1,

# 0,0,0,0,0,1,0,1,

# 0,0,0,0,0,0,0,0),S,8)
# Matriz de preferencia - DM j

#Pj_plus = matrix(c(0,1,1,1,1,1,1,1,

# 0,0,0,1,0,1,1,1,

# 0,1,0,1,0,1,1,1,

# 0,0,0,0,0,1,1,1,

# 0,1,1,1,0,1,1,1,

# 0,0,0,0,0,0,0,1,

# 0,0,0,0,0,1,0,1,

# 0,0,0,0,0,0,0,0),S,8)

B o L __________
# CASO 2 - Emotion Phase

B m e e e e —
# Matriz de preferencia - DM i

#Pi_plus = matrix(c(0,0,0,0,1,0,0,0,

H O OH OH O OH O H O OH

1,0,0,0,1,1,1,0,
1,1,0,0,1,1,1,0,
1,1,1,0,1,1,1,1,
0,0,0,0,0,0,0,0,
1,0,0,0,1,0,0,0,
1,0,0,0,1,1,0,0,
1,1,1,0,1,1,1,0),S,S)

# Matriz de preferencia - DM j

#Pj_plus = matrix(c(0,0,0,0,1,1,1,1,

= OH #H O OH O H O H

1,0,1,0,1,1,1,1,
1,0,0,0,1,1,1,1,
1,1,1,0,1,1,1,1,
0,0,0,0,0,0,0,0,
0,0,0,0,1,0,1,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,1,1,0),S,8)
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92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

# CASO 3 - Small-Scale Rationality Phase
S
# Matriz de preferencia - DM i

#Pi_plus = matrix(c(0,1,0,1,1,1,1,1,

= OH O#H O OH O H

0,0,0,0,1,1,1,1,
1,1,0,1,1,1,1,1,
0,1,0,0,1,1,1,1,
0,0,0,0,0,0,0,1,
0,0,0,0,1,0,0,1,
0,0,0,0,1,1,0,1,
0,0,0,0,0,0,0,0),S,8)

# Matriz de preferencia - DM j

#Pj_plus = matrix(c(0,0,0,0,0,0,0,0,

# 1,0,1,0,1,0,1,0,

# 1,0,0,0,1,0,1,0,

# 1,1,1,0,1,0,1,0,

# 1,0,0,0,0,0,0,0,

# 1,1,1,1,1,0,1,0,

# 1,0,0,0,1,0,0,0,

# 1,1,1,1,1,1,1,0),S8,8)

B o o o o o oo
# CASO 4 - Large-Scale Rationality Phase
S
# Matriz de preferencia - DM i

Pi_plus = matrix(c(0,1,1,1,1,1,1,1,

0,0,0,0,1,1,0,1,
0,1,0,1,1,1,1,1,
0,1,0,0,1,1,1,1,
0,0,0,0,0,1,0,1,
0,0,0,0,0,0,0,1,
0,1,0,0,1,1,0,1,
0,0,0,0,0,0,0,0),S8,8)

# Matriz de preferencia - DM j

Pj_plus = matrix(c(0,0,0,0,0,0,0,0,
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139

131 1,0,1,0,1,0,0,0,

132 1,0,0,0,1,0,0,0,

133 1,1,1,0,1,0,0,0,

134 1,0,0,0,0,0,0,0,

135 1,1,1,1,1,0,1,0,

136 1,1,1,1,1,0,0,0,

137 1,1,1,1,1,1,1,0),8,8)
138

139 |# Matrizes K_i e K_j

140 | K_1i t(E %*% Pi_plus) # Encontrar o valor de K_i(s)

141 | K_j t(E %*% Pj_plus) # Encontrar o valor de K_j(s)
142
143
14 | o #
145 | # CASO h=1

146 | # - - — - m s m s e o e e — - #
147
148 |[# - --------"---—--- Para o DM 1 ----------"-------
149
150 | # Calculando B_11i

151 |B_1i = (hadamard.prod(Ji, (t(K_i%*%E)))) + (hadamard.prod(D, (t(K_i%*
HE))))

152
153 |# Calculando C_1i = Max(B_11i)
154 |C_1i = cbind(apply(B_1i,1,max))
155
156 |# Calculando (K_i - C_1i) e depois o sinal da diff - dif de quanto
tenho se permanecer e quanto terei se eu me mover

157 |Dif _1_i = (K_i - C_11i)

158 | Sign_Dif_1_i = sign(Dif_1_1)

159
160
161 |[# —----mmm oo - Para o DM j -----------------
162
163 |# Calculando B_1j

164 |B_1j = (hadamard.prod(Jj, (t(K_j%*%E))) + hadamard.prod(D, (t(K_j%*%E
))))

165

166 |# Calculando C_1j = Max(B_1j)




167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

C_1j= cbind(apply(B_1j,1,max))

# Calculando (K_i - C_1i) e sinal da diff
Dif _1_j = (K_j - C_1j)
Sign_Dif_1_j = sign(Dif_1_j)

# Funcao Argmax

Argmax <- function ( mat ) {
result <- mat
for (i in 1: nrow ( mat ) ) {
row <- mat [i , ]
max_index <- which.max ( row )
if (row [max_index] > rowl[i]){
row [max_index] <- 1

row [-max_index] <- 0

}
else {
row [i] <- 1
row [-i] <- 0
}
result [i , ] <- row
}
return ( result )
}
# Exemplo

#matriz <- matrix(c(1, 2, 3, 4, 8, 6, 7, 8, 9), nrow = 3)
#resultado <- Argmax(matriz)

#print (resultado)

140




206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

# Calculando B_2i

y=(E-D)

g=hadamard.prod (Argmax (B_13j), y)
p=hadamard.prod (Argmax(B_1j), D)

r= (q %*% K_i) + (p %*% K_i)

v=t(r %*% E)

I=hadamard.prod(Ji, v)

II = (hadamard.prod(D, (t(K_i%*%E))))

B_2i = (I + II)

# Calculando C_2i = Max(B_2i)
C_2i = cbind(apply(B_2i,1,max))

# Calculando (K_2 - C_2i) e depois o sinal da diff -
tenho se permanecer e quanto terei se eu me mover
Dif _2_1i = (K_i - C_2i)

Sign_Dif_2_i = sign(Dif_2_1i)

# Calculando B_2j

y=(E-D)

g=hadamard.prod (Argmax (B_1i), y)
p=hadamard.prod (Argmax(B_1i), D)

r= (q %*% K_j) + (p %*%h K_j)

v=t(r %*% E)

I=hadamard.prod(Jj, v)

II = (hadamard.prod(D, (t(K_j%*%E))))

B_2j = (I + II)

# Calculando C_2j = Max(B_2j)

C_2j= cbind(apply(B_2j,1,max))

dif de quanto
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244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

142

# Calculando (K_j - C_2j) e sinal da diff
Dif _2_j = (K_j - C_2j)

Sign_Dif_2_j = sign(Dif_2_j)

Ci Function - DM i Imicia

Ci <- function(h){

if (h==1){
B_1i = (hadamard.prod(Ji, (t(X_i%*%E)))) + (hadamard.prod(D, (t(X
_i%*%E))))
C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha
Ci = C_11i
}
if (h==2){
B_2i = ((hadamard.prod(Ji, (t((((hadamard.prod(Argmax(B_1j), (E-D
))) %*% K_i) + ((hadamard.prod(Argmax(B_1j), D)) %*% K_i)) %x*%
E)))) + (hadamard.prod(D, (t(K_i%*%E)))))
C_2i = cbind(apply(B_2i,1,max)) # Max de cada linha
Ci = C_21i
}
if (h>2){
for (g in 3:h){
B_3i = ((hadamard.prod(Ji, (t((((hadamard.prod(Argmax(B_2j), (E
-D))) %*% K_i) + ((hadamard.prod(Argmax(B_2j), D)) %*% K_i))
%*% E)))) + (hadamard.prod(D, (t(K_i%*%E)))))
C_3i = cbind(apply(B_3i,1,max)) # Max de cada linha
Ci = C_31i

}

Dif _h = (K_i - Ci) # dif de quanto tenho se permanecer e quanto
terei se eu me mover

Sign_Dif_h = sign(Dif_h)

if (h==1){

lista_resultados <- list(B_1i, Sign_Dif_h)




271

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309
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if (h==2){

lista_resultados <- list(B_2i, Sign_Dif_h)
}
if (h>2){

lista_resultados <- 1list(B_3i, Sign_Dif_h)
}

return(lista_resultados)

# Cj Function - DM j Inicia

Cj <- function(h){

if (h==1){

B_1j =
i %*%E))))

-]
C_1j
cj =

(hadamard.prod(Jj, (t(K_j%*%E)))) + (hadamard.prod(D, (t(K

cbind (apply(B_1j,1,max)) # Max de cada linha
C_1j

}
if (h==2){
B_2j =
)))
E)))) + (hadamard.prod(D,

((hadamard.prod(Jj,

C_2j =
Cj = C_2j
}
if (h>2){
for (g in 3:h){
B_3j =

-D)))

((hadamard.prod(Jj,

%*% E)))) + (hadamard.prod(D,

Cc_3j =

Cj = C_3j

(t((((hadamard.prod (Argmax (B_11i),
%*% K_j) + ((hadamard.prod(Argmax(B_1i), D))

(t ((((hadamard.prod (Argmax (B_2i),
%*% K_j) + ((hadamard.prod(Argmax(B_2i), D))

(E-D
hxh K_3)) h*h

(£ (K_j%*%E)))))

cbind (apply(B_2j,1,max)) # Max de cada linha

(E
h*% K_3))
(¢ (K_j%*%hE)DDD)

cbind (apply (B_3j,1,max)) # Max de cada linha




310

311

312

313

314

315

316

317

318

319

320

321

322

Dif _J_h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto
terei se eu me mover

Sign_J_Dif _h = sign(Dif_J_h)

if (h==1){

lista_resultados <- 1list(B_1j, Sign_J_Dif_h)

}
if (h==2){

lista_resultados <- list( B_2j, Sign_J_Dif_h)
}
if (h>2){

lista_resultados <- 1list(B_3j, Sign_J_Dif_h)
}

return(lista_resultados)
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A.6

10

11

13

14

16

17

18

20

21

SCRIPT DO R - CICLOS TABELA 2X2 - CODIGO L,

#

Codigo para obter os resultados do DM i

library (matrixcalc)

+*

Ji

I3

=4 # Quantidade de estados

rep(1,8) # Vetor de um's # Matriz de um's

diag (x = 1, nrow=S, ncol=S) # Matriz diagonal

Matriz de acessibilidade

= matrix(c(0,0,1,0,
0,0,0,1,
1,0,0,0,
0,1,0,0),s,8)

= matrix(c(0,1,0,0,

1,0,0,0,




22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

0,0,

0,1,

0,0,1,0),8,8)

I e #

# Jogo 1 - ChNc | NcCh

#K_i = matrix(c(2, 3, 1, 4), ncol
#K_j = matrix(c(3, 4, 1, 2), ncol
# Jogo 2 - ChHa | HaCh

#K_i = matrix(c(2,3,1,4), ncol =
#K_j = matrix(c(2,4,1,3), ncol =
# Jogo 3 - ChPc | PcCh

#K_i = matrix(c(2,3,1,4), ncol =
#K_j = matrix(c(1,4,2,3), ncol =
# Jogo 4 - ChCo | CoCh

#K_i = matrix(c(2,3,1,4), ncol =
#K_j = matrix(c(1,4,3,2), ncol =
# Jogo 5 - ChAs

#K_i = matrix(c(2,3,1,4), ncol =
#K_j = matrix(c(2,4,3,1), ncol =
# Jogo 6 - ChSh

#K_i = matrix(c(2,3,1,4), ncol =
#K_j = matrix(c(3,4,2,1), ncol =
# Jogo 7 - ChPd

#K_i = matrix(c(2,3,1,4), ncol =
#K_j = matrix(c(4,3,2,1), ncol =
# Jogo 8 - ChD1

#K_i = matrix(c(2,3,1,4), ncol =
#K_j = matrix(c(4,2,3,1), ncol =

] ]
=
s S

1)
1)

1)
1)

1)
1

1
1

1
1

1)
'y

1)
1)
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61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

# Jogo
#K_1i =

#K_j

# Jogo
#K_1i =

#K_j

# Jogo
#K_1i =
#K_j

# Jogo
#K_1i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_1i =

#K_j

# Jogo
#K_1i =

#K_j

# Jogo
#K_i =
#K_

.
]

# Jogo
#K_1i =
#K_

.
Il

9 - ChCm
matrix(c(2,3,1,4),
matrix(c(4,1,3,2),

10 - ChHr
matrix(c(2,3,1,4),
matrix(c(4,1,2,3),

11 - ChBa
matrix(c(2,3,1,4),
matrix(c(4,2,1,3),

12 - ChCh - Chicken Game

matrix(c(2,3,1,4),
matrix(c(4,3,1,2),

13 - BalNc
matrix(c(3,2,1,4),

matrix(c(3,4,1,2),

14 - BaHa
matrix(c(3,2,1,4),

matrix(c(2,4,1,3),

15 - BaPc
matrix(c(3,2,1,4),

matrix(c(1,4,2,3),

16 - BaCo
matrix(c(3,2,1,4),

matrix(c(1,4,3,2),

17 - Bals
matrix(c(3,2,1,4),
matrix(c(2,4,3,1),

18 - BaSh
matrix(c(3,2,1,4),
matrix(c(3,4,2,1),

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

1)
1)

1)
1)

1)
1)

1)
1

1)
1

1
1

1)
1)

1)
1)

1)
1)

1)
1)
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100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

# Jogo
#K_1i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_1i =

#K_j

# Jogo

# Jogo
#K_i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_1i =

#K_j

# Jogo
#K_1i =

#K_j

19 - BaPd
matrix(c(3,2,1,4),

matrix(c(4,3,2,1),

20 - BaDl
matrix(c(3,2,1,4),

matrix(c(4,2,3,1),

21 - BaCm
matrix(c(3,2,1,4),

matrix(c(4,1,3,2),

22 - BaHr
matrix(c(3,2,1,4),
matrix(c(4,1,2,3),

23 - BaBa - Battle
matrix(c(3,2,1,4),

matrix(c(4,2,1,3),

24 = Jogo 11

25 - HrNc
matrix(c(3,1,2,4),

matrix(c(3,4,1,2),

26 - HrHa
matrix(c(3,1,2,4),

matrix(c(2,4,1,3),

27 - HrPc
matrix(c(3,1,2,4),

matrix(c(1,4,2,3),

28 - HrCo
matrix(c(3,1,2,4),

matrix(c(1,4,3,2),

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

Game
ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

1)
1

1)
1

1)
1

1)
1)

1

1)

1

1

1
1

1)
1)

1)
1)
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139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

# Jogo
#K_1i =

#K_j

# Jogo
#K_1i =
#K_j

# Jogo
#K_1i =
#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
# Jogo

# Jogo
#K_i =

#K_j

# Jogo
#K_1i =

#K_j

# Jogo
#K_1i =

#K_j

29

matrix(c(3,1,2,4),
matrix(c(2,4,3,1),

30

matrix(c(3,1,2,4),
matrix(c(3,4,2,1),

31

matrix(c(3,1,2,4),
matrix(c(4,3,2,1),

32

matrix(c(3,1,2,4),

matrix(c(4,2,3,1),

33

matrix(c(3,1,2,4),

matrix(c(4,1,3,2),

34

matrix(c(3,1,2,4),
matrix(c(4,1,2,3),

35
36

37

matrix(c(2,1,3,4),

matrix(c(3,4,1,2),

38

matrix(c(2,1,3,4),

matrix(c(2,4,1,3),

39

matrix(c(2,1,3,4),

matrix(c(1,4,2,3),

- HrAs

- HrSh

- HrPd

- HrD1

- HrCm

- HrHr -

Jogo 22

Jogo 10

- CmNc

- CmHa

- CmPc

Hero

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

1)
1)

1)
1)

1)
1)

1)
1

1)
1

1
1

1
1

1)
1)

1)
1)
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178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

# Jogo
#K_1i =

#K_j

# Jogo
#K_1i =
#K_j

# Jogo
#K_1i =
#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
# Jogo
# Jogo

# Jogo
#K_1i =

#K_j

# Jogo
#K_i =
#K_

.
]

# Jogo
#K_1i =
#K_

.
Il

40 -

matrix(c(2,1,3,4),
matrix(c(1,4,3,2),

41 -

matrix(c(2,1,3,4),
matrix(c(2,4,3,1),

42 -

matrix(c(2,1,3,4),

matrix(c(3,4,2,1),

43 -

matrix(c(2,1,3,4),

matrix(c(4,3,2,1),

44 -

matrix(c(2,1,3,4),

matrix(c(4,2,3,1),

45 -

matrix(c(2,1,3,4),
matrix(c(4,1,3,2),

46

a7

48

49 -

matrix(c(1,2,3,4),

matrix(c(3,4,1,2),

50 -

matrix(c(1,2,3,4),
matrix(c(2,4,1,3),

51 -

matrix(c(1,2,3,4),
matrix(c(1,4,2,3),

CmCo

CmAs

CmSh

CmPd

CmD1

CmCm -

Jogo 33
Jogo 21

Jogo 9

D1Nc

D1Ha

D1Pc

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

1)
1)

1)
1)

1)
1)

1)
1

1)
1

Compromise Game

1
1

1)
1)

1)
1)

1)
1)
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217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

# Jogo
#K_1i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_i =

#K_j

# Jogo
#K_1i =

#K_j

Jogo
Jogo
Jogo

H O OH O O

Jogo

# Jogo
#K_1i =
#K_j

# Jogo
#K_i =
#K_j =

# Jogo
#K_i =

#K_j

# Jogo

52 - D1Co

matrix(c(1,2,3,4),
matrix(c(1,4,3,2),

53 - DI1As

matrix(c(1,2,3,4),

matrix(c(2,4,3,1),

54 - D1Sh

matrix(c(1,2,3,4),

matrix(c(3,4,2,1),

55 - DI1Pd

matrix(c(1,2,3,4),
matrix(c(4,3,2,1),

56 - D1D1

matrix(c(1,2,3,4),

matrix(c(4,2,3,1),

57 = Jogo
58 = Jogo
59 = Jogo
60 = Jogo
61 - PdNc

matrix(c(1,3,2,4),
matrix(c(3,4,1,2),

62 - PdHa

matrix(c(1,3,2,4),

matrix(c(2,4,1,3),

63 - PdPc

matrix(c(1,3,2,4),

matrix(c(1,4,2,3),

64 - PdCo

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

Deadlock

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

1)
1

1)
1

1)
1

1)
1)

1)
1)

1)
1

1)
1

1
1
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256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

271

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

#K_1i =

#K_j

# Jogo
#K_1i =

#K_j

# Jogo
#K_1i =

#K_j

Jogo
Jogo

#
#
# Jogo
# Jogo
# Jogo
# Jogo

#K_i =
#K _

.
]

# Jogo
#K_i =
#K_

.
]

# Jogo
#K_1i =
#K_

.
Il

# Jogo
#K_1i =
#K_j

# Jogo

matrix(c(1,3,2,4),

matrix(c(1,4,3,2),

65

matrix(c(1,3,2,4),

matrix(c(2,4,3,1),

66

matrix(c(1,3,2,4),
matrix(c(3,4,2,1),

67

matrix(c(1,3,2,4),
matrix(c(4,3,2,1),

68
69
70
71
72

73

matrix(c(1,4,2,3),
matrix(c(3,4,1,2),

74

matrix(c(1,4,2,3),
matrix(c(2,4,1,3),

75

matrix(c(1,4,2,3),
matrix(c(1,4,2,3),

76

matrix(c(1,4,2,3),
matrix(c(1,4,3,2),

77

matrix(c(1,4,2,3),

PdAs

PdSh

PdPd

Jogo
Jogo
Jogo
Jogo
Jogo

ShNc

ShHa

ShPc

ShCo

ShAs

55
43
31
19

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

1)
1)

1)
1)

1)
1)

Prisoner Dilema

1)
1)

1)
1)

1)
1)

1)
1)

1)
1)

1)
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295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

#K

#

#

#K_
#K_

#

#K_

#K

#

#K_
#K_

#

-]

-j =

Jogo

.
]

Jogo
Jogo
Jogo
Jogo
Jogo
Jogo

Jogo

.
]

Jogo

Jogo

.
]

Jogo

|
.
]

Jogo
Jogo
Jogo
Jogo
Jogo
Jogo

matrix(c(2,4,3,1), ncol
78 - ShSh - Stag Hunt
matrix(c(1,4,2,3), ncol

matrix(c(3,4,2,1), ncol

79

Jogo 66
80 = Jogo 54
81 = Jogo 42
82 = Jogo 30
83 = Jogo 18
84 = Jogo 6

85 - AsNc
matrix(c(1,4,3,2), ncol

matrix(c(3,4,1,2), ncol

86 - AsHa
matrix(c(1,4,3,2), ncol

matrix(c(2,4,1,3), ncol

87 - AsPc
matrix(c(1,4,3,2), ncol

matrix(c(1,4,2,3), ncol

88 - AsCo
matrix(c(1,4,3,2), ncol

matrix(c(1,4,3,2), ncol

89 - AsAs - Assurance
matrix(c(1,4,3,2), ncol

matrix(c(2,4,3,1), ncol

90 = Jogo 77
91 = Jogo 65
92 = Jogo 53
93 = Jogo 41
94 = Jogo 29
95 = Jogo 17

1

1
1

1)
'y

1)
1)

1)
1)

)
1)

1)
1)
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334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

# Jogo

# Jogo
#K_i =
#K_

.
]

# Jogo
#K_1i =

#K_j

# Jogo
#K_1i =
#K_

.
]

# Jogo
#K_i =

Jogo
Jogo
Jogo

#

#

#

# Jogo
# Jogo
# Jogo
# Jogo
#

Jogo

# Jogo
#K_i =

#K_j

# Jogo
#K_1i =

#K_j

# Jogo
#K_1i =

#K_j

96 = Jogo 5

97 - CoNc

matrix(c(2,4,3,1),

matrix(c(3,4,1,2),

98 - CoHa

matrix(c(2,4,3,1),

matrix(c(2,4,1,3),

99 - CoPc

matrix(c(2,4,3,1),

matrix(c(1,4,2,3),

100 - CoCo
matrix (c(2

matrix (c (1

101 = Jogo
102 = Jogo
103 = Jogo
104 = Jogo
105 = Jogo
106 = Jogo
107 = Jogo
108 = Jogo
109 - PcNc

matrix (c (3

matrix (c (3

110 - PcHa

matrix (c (3

matrix (c(2

111 - PcPc

’4,
:4,

88
76
64
52
40
28
16

:4’
s4,

)43
54)

ncol

ncol

ncol

ncol

ncol

ncol

Coordination

3,1),
3,2),

2,1,
1,2),

2,1),
1,3),

Peace

matrix(c(3,4,2,1),

matrix(c(1,4,2,3),

ncol

ncol

ncol

ncol

ncol

ncol

ncol

ncol

1
1

1)
1)

1)
1)

1)
1)

1
1

1)
1)

1)
1)
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373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

Jogo
Jogo
Jogo
Jogo
Jogo
Jogo
Jogo
Jogo

= OH O#H O HF OH OH OH O H O #®

Jogo

# Jogo
#K_1i =
#K_

.
]

# Jogo
#K_i =

#K_j =

# Jogo
# Jogo
# Jogo
# Jogo
# Jogo
# Jogo
# Jogo
# Jogo
# Jogo
# Jogo

# Jogo

K_i

K_j]

# Jogo
# Jogo
# Jogo
# Jogo
# Jogo

# Jogo

112
113
114
115
116
117
118
119
120

121

Jogo
Jogo
Jogo
Jogo
Jogo
Jogo
Jogo
Jogo
Jogo

HaNc

matrix (c (3

matrix (c (3

122

HaHa

matrix (c(3

matrix (c(2

123
124
125
126
127
128
129
130
131
132

133

matrix(c(2,4,1,3),
matrix(c(3,4,1,2),

134
135
136
137
138
139

Jogo
Jogo
Jogo
Jogo
Jogo
Jogo
Jogo
Jogo
Jogo
Jogo

NcNc

Jogo
Jogo
Jogo
Jogo
Jogo
Jogo

99
87
75
63
51
39
27
15

4,1,2),
,4,1,2),

ncol

ncol

- Harmony

’4:1,2):
,4,1,3),

110
98
86
74
62
50
38
26
14

ncol

ncol

- Concord

121
109
97
85
73
61

ncol

ncol

1)
1)

1)
1)

1)
1)
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412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

Jogo 140 = Jogo 49
Jogo 141 = Jogo 37
Jogo 142 = Jogo 25
Jogo 143 = Jogo 13

H O OH O H OH O #®

Jogo 144 = Jogo 1

Bommm - #
# Funcao Argmax
I #

Argmax <- function ( mat ) {
result <- mat
for (i in 1: nrow ( mat ) ) {
row <- mat [i , ]
max_index <- which.max ( row )
if (row [max_index] > rowl[i]){
row [max_index] <- 1

row [-max_index] <- 0

}
else {
row [i] <- 1
row [-i] <- 0
}
result [i , ] <- row
}
return ( result )
}
B oo e #
# Ci Function - DM i Imicia
B o #

Ci <- function(h){
B_1i = (hadamard.prod(Ji, (t(X_i%*%E)))) + (hadamard.prod(D,
t(K_1i%*%E))))
C_1i = cbind(apply(B_1i,1,max)) # Max de cada linha
Ci=C_11
if (h==1){
Ci=C_11
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450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

471

156

Dif _h = (K_i - Ci) # dif de quanto tenho se permanecer e
quanto terei se eu me mover
Sign_Dif _h = sign(Dif_h)
#lista_resultados <- list(B_1i, Sign_Dif_h)
lista_resultados <- list(Sign_Dif_h)
}
if (h>1){
B_1j = (hadamard.prod(Jj, (t(K_j%+*%E)))) + (hadamard.prod(D,
(t(K_j%*%hE))))
C_1j = cbind(apply(B_1j,1,max)) # Max de cada linha
B_2i = ((hadamard.prod(Ji, (t((((hadamard.prod(Argmax(B_1j),
(E-D))) %x*% K_i) + ((hadamard.prod(Argmax(B_1j), D)) %x*%
K_i)) %*% E)))) + (hadamard.prod(D, (t(K_i%*%E)))))
C_2i = cbind(apply(B_2i,1,max)) # Max de cada linha
if (h==2){Ci=C_2i
Dif _h = (K_i - Ci) # dif de quanto tenho se permanecer e
quanto terei se eu me mover
Sign_Dif_h = sign(Dif_h)
#lista_resultados <- list(B_2i, Sign_Dif_h)
lista_resultados <- list(Sign_Dif_h)
}
if (h>2){
C_0j <- K_j
for (g in 3:h){
B_2j = ((hadamard.prod(Jj, (t((((hadamard.prod(Argmax (
B_1i), (E-D))) %x*% C_0j) + ((hadamard.prod(Argmax (B
_1i), D)) %*% K_j)) %*% E)))) + (hadamard.prod(D, (
t (K_j%*%hE)))))
C_2j

cbind (apply(B_2j,1,max)) # Max de cada linha

B_3i ((hadamard.prod(Ji, (t((((hadamard.prod (Argmax (
B_2j), (E-D))) %x% C_1i) + ((hadamard.prod(Argmax (B
_23), D)) %*% K_1i)) %*% E)))) + (hadamard.prod(D, (
t(K_i%*%E)))))

C_3i = cbind(apply(B_3i,1,max)) # Max de cada linha

B_1i <- B_2i

B_2i <- B_3i

C_1i <- C_2i

C_2i <- C_3i

C_0j <- C_1j




478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510
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C_1j <- C_2j
}
Ci = C_31
Dif _h = (K_i - Ci) # dif de quanto tenho se permanecer e
quanto terei se eu me mover
Sign_Dif _h = sign(Dif_h)
#lista_resultados <- 1list(B_3i, Sign_Dif_h)
lista_resultados <- list(Sign_Dif _h)
}
}
return(lista_resultados)
¥
B C o ____ #
# Cj Function - DM j Inicia
R #
Cj <- function(h){

B_1j = (hadamard.prod(Jj, (t(K_j%*%E)))) + (hadamard.prod(D, (t(K_j
h*%E)) D)
C_1j = cbind(apply(B_1j,1,max)) # Max de cada linha
Cj=C_1j
if (h==1){
Cj=C_1j
Dif _h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto

terei se eu me mover
Sign_Dif_h = sign(Dif_h)
#lista_resultados <- 1list(B_1j, Sign_Dif_h)
lista_resultados <- list(Sign_Dif_h)
X
if (h>1){

B_1i = (hadamard.prod(Ji, (t(K_i%*%E)))) + (hadamard.prod(D, (t(K

~1%*%E)) D)
C_1i

cbind (apply(B_1i,1,max)) # Max de cada linha

B_2j = ((hadamard.prod(Jj, (t((((hadamard.prod(Argmax(B_1i), (E-D

))) %*% K_j) + ((hadamard.prod(Argmax (B_1i), D)) %*% K_j)) %x*%

E)))) + (hadamard.prod(D, (t(XK_j%*%E)))))




511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543
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C_2j = cbind(apply(B_2j,1,max)) # Max de cada linha

if (h==2){Cj=C_2j
Dif _h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto
terei se eu me mover
Sign_Dif_h = sign(Dif_h)
#lista_resultados <- 1list(B_2j, Sign_Dif_h)
lista_resultados <- list(Sign_Dif_h)
}
if (h>2){
C_0i <- K_1i
for (g in 3:h){
B_2i = ((hadamard.prod(Ji, (t((((hadamard.prod(Argmax(B_1j),
(E-D))) %*% C_0i) + ((hadamard.prod(Argmax(B_1j), D)) %x¥
K_i)) %*% E)))) + (hadamard.prod(D, (t(K_i%*%E)))))
C_2i = cbind(apply(B_2i,1,max)) # Max de cada linha
B_3j = ((hadamard.prod(Jj, (t((((hadamard.prod(Argmax(B_2i),
(E-D))) %*% C_1j) + ((hadamard.prod(Argmax(B_2i), D)) %x*¥
K_j)) %*% E)))) + (hadamard.prod(D, (t(K_j%*%E)))))
C_3j = cbind(apply(B_3j,1,max)) # Max de cada linha
B_1j <- B_2j
B_2j <- B_3j
C_1j <- C_2j
C_2j <- C_3j
C_0i <- C_1i
C_1i <- C_2i
}
Cj = C_3j
Dif _h = (K_j - Cj) # dif de quanto tenho se permanecer e quanto
terei se eu me mover
Sign_Dif_h = sign(Dif_h)
#lista_resultados <- 1list(B_3j, Sign_Dif_h)
lista_resultados <- list(Sign_Dif_h)
}
}
return(lista_resultados)
}
result_i <- list()




544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

result_j <- list()

# Matriz Resultados

0)
0)

matriz_resultados_i <- matrix(nrow = length(K_i), ncol

matriz_resultados_j <- matrix(nrow = length(K_j), ncol

#result <- 1list ()
for (h in 1:20){
result_i[h] <- Ci(h) [1]
result_j[h]l <- Cj(h)[1]
vetor_atual_i <- result_i[[h]]
vetor _atual_j <- result_j[[h]]
matriz_resultados_i <- cbind(matriz_resultados_i, vetor_atual_i)
matriz_resultados_j <- cbind(matriz_resultados_j, vetor_atual_j)
lista_matriz_resultados <- list(matriz_resultados_i, matriz_
resultados_j)}

print(lista_matriz_resultados)
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