e~
e
e

=

L

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIAS DA COMPUTACAO

CYNTHIA MOREIRA MAIA

On Multi-Label Meta-Learning for Automated Pipeline Recommendation

Recife
2025

CYNTHIA MOREIRA MAIA

On Multi-Label Meta-Learning for Automated Pipeline Recommendation

Thesis presented to the Post-graduation Program in
Computer Science - PPGCC of the Centro de Infor-
matica of the Universidade Federal de Pernambuco,
as a partial requirement for obtaining the title of
Doctor in Computer Science.

Concentration Area: Computational Intelligence

Supervisor: George Darmiton da Cunha Cavalcanti

Co-supervisor: Rafael Menelau Oliveira e Cruz

Recife
2025

.Catalogacéo de Publicacdo na Fonte. UFPE - Biblioteca Central

Mai a, Cynthia Mreira.
On Multi-Label Meta-Learning for automated pipeline
recomrendation / Cynthia Mdreira Maia. - Recife, 2025.
159f.: il.

Tese (Doutorado)- Universidade Federal de Pernanbuco, Centro
de Informatica, Programa de POs- Graduagdo em C éncia da
Conput agdo, 2025.

Oientacdo: Ceorge Darnmiton da Cunha Caval canti .

Coori entacdo: Rafael Menelau Oiveira e Cruz.

1. Fluxos; 2. Meta-aprendizagem 3. Miultirroétulo. |I.
Caval canti, George Darmiton da Cunha. |I. Cruz, Rafael Menel au
Qiveirae. Ill. Titulo.

UFPE- Bi bl i ot eca Centr al

Cynthia Moreira Maia

“On Multi-Label Meta-Learning for Automated Pipeline
Recommendation”

Tese de Doutorado apresentada ao Programa
de Pos-Graduagdo em Ciéncia da
Computagdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencao do titulo de Doutor em Ciéncia da
Computagdo. Area de Concentragio:
Inteligéncia Computacional.

Aprovada em: 15/10/2025.

Orientador: Prof. Dr. George Darmiton da Cunha Cavalcanti

BANCA EXAMINADORA

Prof. Dr. Tsang Ing Ren
Centro de Informatica / UFPE

Prof. Dr. Adiel Teixeira de Almeida Filho
Centro de Informatica / UFPE

Prof. Dr. Sylvio Barbon Junior
Departamento de Engenharia e Arquitetura / University of Trieste

Prof. Dr. Rafael Gomes Mantovani
UTFPR / Campus Apucarana

Prof. Dr. . Alceu de Souza Brito Junior
Programa de P6s Graduacdo em Informatica Aplicada /PUC/PR

ACKNOWLEDGEMENTS

Primeiramente, agradeco a Deus por me permitir chegar até este momento. Agradeco
também a mim mesma, pelo esforco continuo e por nunca desistir, mesmo diante de tantas
dificuldades.

Meus agradecimentos especiais ao meu esposo, Julio Cartier, por sempre me incentivar
e compreender os diversos momentos em que ndo pude estar t3o presente devido a dedicacdo
3 tese. A minha familia, que foi meu alicerce: minha avé Maria Moreira, que ao longo deste
processo recebeu o diagnéstico de Alzheimer, mas ainda pude mostrar a ela sua primeira neta
doutora; minha mae, Gerucilania Moreira; meu padrasto, Vlademir Diégenes; e minhas
irmas, Navi Diégenes e Cibelle Diégenes.

Agradeco também aos meus colegas, em especial Lucas Amorim, por toda sua disponibi-
lidade em colaborar nas producdes cientificas. Aos meus orientadores, George Darmiton da
Cunha Cavalcanti e Rafael Menelau Oliveira e Cruz, deixo minha profunda gratiddo pelo
apoio constante, pela dedicacao e paciéncia, que foram fundamentais para a conclusdo deste
trabalho. Com eles, aprendi a me tornar uma pesquisadora melhor, aperfeicoei meu inglés e
desenvolvi minha escrita cientifica.

Por fim, agradeco a CAPES pelo apoio essencial para a realizacio e conclusdo desta etapa.

RESUMO

O Aprendizado de Maquina Automatizado (Automated Machine Learning - AutoML) visa
automatizar etapas do processo de aprendizado de maquina, como selecdo de algoritmos,
pré-processamento e ajuste de hiperparametros. Um de seus principais desafios é projetar um
espaco de busca que atenda a diferentes problemas, garantindo a melhor relacdo entre desem-
penho e custo computacional. As abordagens tradicionais de AutoML exploram principalmente
o espaco de busca em tempo de execucdo (online), aplicando estratégias de otimizacdo como a
Otimizacdo Bayesiana para encontrar a melhor configuracdo dentro de um prazo determinado.
Embora eficazes, tais estratégias frequentemente resultam em altos custos computacionais.
Em contraste, nossa proposta busca evitar estratégias de busca online empregando meta-
aprendizado para abordar tais desafios. Essa abordagem utiliza as meta-caracteristicas dos
problemas para recomendar solucdes apropriadas a sua natureza, eliminando assim a necessi-
dade de busca exaustiva em tempo de execucdo. Dessa forma, propomos o MetaML, primeiro
estudo desta tese, uma abordagem de meta-aprendizado baseada em algoritmos multirrétulos
para recomendacao de pipelines em AutoML. Para tanto, apresentamos um projeto de espaco
de busca com curadoria que reduz automaticamente o nimero de pipelines candidatos, com
base em dados histéricos de repositérios online, incluindo apenas os pipelines mais utilizados
e com melhor desempenho em um ndmero significativo de conjuntos de dados. Além disso,
propomos recomendacoes encadeadas usando algoritmos multirrétulos que consideram as in-
terdependéncias entre as etapas do pipeline. Experimentos em diferentes conjuntos de dados
demonstram a eficacia da abordagem, com o MetaML alcancando resultados satisfatorios e,
em alguns casos, resultados superiores a um custo computacional menor do que os métodos
AutoML atuais. No entanto, os pipelines derivados dos experimentos do repositério online
apresentaram pouca representatividade em relacdo ao uso de técnicas de pré-processamento.
Como alternativa, propomos o meta-dataset PIPES, o segundo estudo da tese, que consiste em
uma colecdo de experimentos envolvendo miultiplos pipelines, projetados para representar to-
das as combinacdes selecionadas de técnicas incluindo diferentes blocos de pré-processamento
e um bloco de classificacdo. Apds a construcdo do PIPES, utilizamos este meta-dataset no
terceiro estudo da tese, o MetaML 2.0, para verificar se é possivel obter resultados ainda me-
Ilhores com uma representatividade mais ampla dos pipelines. Os experimentos demonstraram
que, de fato, a abordagem proporcionou desempenhos melhores em determinados conjuntos

de dados.

Palavras-chave: Fluxos. Meta-Aprendizagem. Multirrétulo. Aprendizado de Maquina Auto-

matizado.

ABSTRACT

Automated Machine Learning (AutoML) aims to automate stages of the machine learn-
ing process, such as algorithm selection, data preprocessing, and hyperparameter tuning. One
of its main challenges is designing a search space that can handle different problems while
ensuring the best trade-off between performance and computational cost. Traditional AutoML
approaches primarily explore the search space online, utilizing optimization strategies such as
Bayesian Optimization to identify the optimal configuration within a specified time budget.
Although effective, such methods often result in high computational costs. In contrast, our
proposal seeks to avoid online search strategies by employing meta-learning to address these
challenges. This approach leverages the meta-features of problems to recommend solutions
appropriate to their nature, thereby eliminating the need for exhaustive search at runtime.
Accordingly, we propose MetaML, the first study of this thesis, a meta-learning approach
based on multi-label algorithms for pipeline recommendation in AutoML. To this end, we
present a curated search space design that automatically reduces the number of candidate
pipelines, based on historical data from online repositories, including only the most frequently
used pipelines with the best performance across a significant number of datasets. Additionally,
we propose chained recommendations utilizing multi-label algorithms that take into account
the interdependencies between pipeline stages. Experiments conducted on different datasets
demonstrate the effectiveness of the approach, with MetaML achieving satisfactory results
and, in some cases, superior outcomes at a lower computational cost compared to current
AutoML methods. However, the pipelines derived from the repository experiments showed
limited representativeness with respect to preprocessing techniques. As an alternative, we pro-
pose the PIPES meta-dataset, the second study of this thesis, which consists of a collection
of experiments involving multiple pipelines, designed to represent all selected combinations
of techniques, including different preprocessing blocks and a classification block. After con-
structing PIPES, we employed this meta-dataset in the third study of the thesis, MetaML
2.0, to investigate whether broader pipeline representativeness could yield even better results.
The experiments demonstrated that this approach indeed achieved improved performance in

specific datasets.

Keywords: Pipeline. Meta-Learning. Multi-Label. Automated Machine Learning.

LIST OF FIGURES

[Figure 1 —

Representation of the four components ASP (RICE, [1976|), adapted from |

(SMITH-MILES, 2009).] 26

[Figure 2 —

Representation of the base and meta levels of Metalearning, adapted from [

(BRAZDIL et al., [2008)).| 27

[Figure 3 —

Transformation of the multi-label problem into a single-label problem using |

the BR method. Adapted from (SOROWER, 2010).] 31

[Figure 4 —

Transformation of the multi-label problem into a single-label problem using [

the CC method. Adapted from (MOYANO et al., [2019).] 33

[Figure 5 —

Transformation of the multi-label problem into a single-label problem using |

the LP method. Adapted from (MOYANO et al., 2019).] 34

[Figure 6 —

Comparison between traditional AutoML (a) and our proposed meta-learning |

based framework MetaML (b).|. 40

[Figure 7 —

Representation of the four components ASP, adapted from (RICE, 1976)).| . 42

[Figure 8 —

Recommendation with Metalearning, adapted from (BRAZDIL et al., [2008)).| . 43

[Figure 9 —

A representation of an example of pipeline as a tuple of blocks. Each block |

is a step in the ML pipeline.| 45

[Figure 10 —

Representation typical AutoML components, adapted from (HUTTER; KOT- |

THOFF; VANSCHOREN, [2019).| 46

[Figure 11 —

The MetaML framework process is divided into four main phases: (A)

Search Space Definition, (B) Meta-Dataset Construction, (C) Training Phase,

and (D) Recommendation Phase. The arrows indicate transitions between

these stages. In phase (A), G represents the selection of the top n exper-

iments for each dataset present in the collection O, while P corresponds |

to the k most frequent pipelines among the experiments in G. From this [

filtering step, the best-performing experiment is selected for each dataset, |

provided that its pipeline belongs to IP. This process defines the search space |

[Figure 12 —

Critical difference diagram of the average ranking of meta-model algorithms [

considering their base-level accuracy,| 64

[Figure 13 — Critical difference diagram of the average ranking of the base-level per-

| formance of the AutoML methods, including (a) MetaML zero-shot, (b)

I MetaML 3-shot.] 68
[Figure 14 — Performance distributions of the pipelines recommended by each AutoML |
| method on the tested datasets.| 69
[Figure 15 — Comparison of AutoML methods using different recommendation time bud- [
| gets.| . .. 70
[Figure 16 — Recommendation frequency of each pipeline for MetaML zero-shot (a) and |
| MetaML 3-shot (b).| 72
[Figure 17 — MetaML's base-level performance the full search space versus when using |
| the curated search space under different values for the parameters k and n.| 75
[Figure 18 — Meta-model inference time of the MetalML when using the full search space [
[versusthecuratedonel. 76
[Figure 19 — Representation of an example of a specific pipeline.| 86
[Figure 20 — Frequency of execution of each technique, per pipeline block, according to |
| OpenML records. Most of the abbreviations for FP and scaling are given [
| in Table |10, Additional abbreviations: Classifiers: LR - LogisticRegression, |
| XGB - XGBoost, NuSVC - Nu-Support Vector Classification, L GBM - Light- |
| GBM, Bag - Bagging, Perc - Perceptron, SE - StackingEstimator, Voting - [
| VotingClassifier. Scaling: Bin - Binarizer| 90
[Figure 21 — Quantity of pipelines that employ each number of preprocessing blocks. |
| Considering all OpenML classification pipelines that use Scikit-learn.|. . . . 91
[Figure 22 — The graphs show how frequently each technique appears in the best pipelines [
| for the 192 datasets in common. Most abbreviations for FP and scaling are |
| given in [able [10, Additional abbreviations: VI - Variance I hreshold, FA |
| - FactorAnalysis, SFM - SelectFromModel. Scaling: MA — Max Absolute [
| Scaler 93
[Figure 23 — PIPES’ datasets organized according to a UMAP representation of their |
| meta-features space.|. 04

[Figure 24 — Pipelines performance on 110 datasets, with and without preprocessing blocks.[101

[Figure 25 — The graphs show the frequency distribution of each meta-target across |

117 datasets of MetaML 2.0 (a) and 290 datasets of MetaML 1.0 (b). |

Additional abbreviations are provided below: S| - Simple Imputer, OHE - |

OneHotEncoder, OE - OrdinalEncoder, PF - PolynomialFeatures, ETP - |

Extra Irees pre, KPCA - KernelPCA, RTE - Random IreesEmbedding, P T [

- Power Transtorme, RS - RobustScaler, QT - Quantile Transformer, MM |

- MinMaxScaler, SS - StandardScaler, HGB - HistGradientBoosting, ET |

- Extralrees, RF - Randomkorest, MLP - Multi-layer Perceptron, SVC - |

Support Vector Classification, VI - Variance I'hreshold, DT - Decision Tree.| 102

[Figure 26 — Representation of the meta-features space with UMAP.|. 129

[Figure 27 — Distribution of 12 complexity measures used in the construction of the |

LIST OF TABLES

[Table 1 —

Types of Meta-features.|.

44

[Table 2 —

Comparison of the most popular open-source AutoML frameworks. FE -

Feature Engineering, MS - Model Selection, HO - Hyperparameters Opti-

mization, DP - Data Preprocessing.|

Table 4 —

T'he five pipelines included in the MetaML's search space.|.

59

[Table 5 —

A base-level analysis of the mean performance (accuracy) of the pipelines

recommended by the AutoML methods, Win/tie/loss of the MetaML zero-

shot (a) and 3-shot (b) against the others, mean ranking, p-value of the

Wilcoxon signed rank test with v = 5.56e-04, and the total recommendation

time taken for datasets for which all methods ran successtully|

[lfable 6 —

All the six different pipelines recommended by the MetaML for the 290 test

datasets.). L s

(Table 7 —

The nineteen pipelines included in the MetaML's full search space. The bi-

nary digits indicate whether or not each technique is present in the pipeline.

SP - SelectPercentile, S| - Simplelmputer, PCA -Principal component analy-

sis, RSC - RobustScaler, PF - PolynomialFeatures, OHE - One-Hot Encoder,

VT - Variance [hreshold, SS - Standard Scaler, DT - Decision Tree, SVC -

Support Vector Classifier, RF - Random Forest, AdaBoost - Adaptive Boost-

ing, LDA - LinearDiscriminantAnalysis, XGB - eXtreme Gradient Boosting,

Extralrees, LR - LogisticRegression, LinearSVC - Linear Support Vector

Classitication, MLP - Multi-layer Perceptron, SGD - Stochastic Gradient

Descent. | s

[Table 8 —

The eight pipelines search space curated (k=8). The binary digits indicate

whether or not each technique is present in the pipeline. OHE - One-Hot

Encoder, VI - Variance [hreshold, SS - Standard Scaler, DT - Decision

Tree, SVC - Support Vector Classifier, RF - Random Forest, LinearSVC -

Linear Support Vector Classification, MLP - Multi-layer Perceptron, SGD -

[Table 9 — A base-level analysis of the mean performance (accuracy), Win/tie/loss of |

| the Curated search space (n=>b and k=b) against the others, mean ranking, |

| p-value of the Wilcoxon signed rank test with o =8.33e-03.| 75

[Table 10 — Pipeline blocks and their possible techniques.| 38

[Table 11 — A analysis of the mean accuracy, Wins/ties/losses of the Mpjpgs against |

| Mopenmt, mean ranking, p-value of the Wilcoxon signed rank test (o = 0.05.)| 93

[Table 12 — A base-level analysis of the mean performance (accuracy) of the pipelines |

| recommended by the AutoML methods, Win/tie/loss of the MetaML 2.0 |

| zero-shot (a) and 3-shot (b) against the others, mean ranking, p-value of the |

| Wilcoxon signed rank test with av = 4.55e-04, and the total recommendation |

| time taken for datasets for which all methods ran successfully.| 103
[Table 13 — Comparison pipelines of OpenML. RSC - RobustScaler, OHE - One-Hot [
| Encoder, VI - Variance Threshold, SS - StandardScale, DT - Decision Tree.| 117

[Table 14 — Datasets used to construct the meta-dataset. DID - Data ID, TID - Task ID. 118

lable 15 — Datasets used to construct the meta-dataset) 131
[Table 16 — Datasets that were used in the comparative analysis. DID - Data ID, TID - [
I Task IDJ 137

[Table 17 — Wins, ties of losses of MetaML using three different multi-label approaches |

| versus single label approaches. The p-values, resulting from a Wilcoxon [

| signed rank test that are lower than oo = 0.004 are highlighted in bold.| . . . 143

[Table 18 — A base-level analysis of the mean performance (accuracy) of the pipelines |

| recommended by the AutoML methods, Win /tie/loss of the MetaML 3-shot |

| in real (a) and artificial (b) datasets against the others, mean ranking, p- |

| value of the Wilcoxon signed rank test with a = 5.56e-04.| 144

AB
AMOEA
ASP
ASHA
AUTOML
Bag

Bin

BNB

BR

CANE
CASH

CC

CF

CNN

DP

DT

ET

ETP
ExtraTrees
FA

FAGG

LIST OF ABBREVIATIONS AND ACRONYMS

AdaBoost

Asynchronous Multi-Objective Evolutionary Algorithm
Algorithm Selection Problem

Asynchronous Successive Halving Algorithm
Automated Machine Learning

Bagging

Binarizer

BernoulliNB

Binary Relevance

Cumulative Average Normalized Error

Combined Algorithm Selection and Hyperparameter Optimization
Classifier Chains

Collaborative Filtering

Convolutional Neural Network

Data Preprocessing

Decision Tree

ExtraTrees

ExtraTrees prep

Extremely Randomized Trees

Factor Analysis

Feature Agglomeration

FE Feature Engineering

FICA FastICA

GAMA General Automated Machine learning Assistant
GLMs Large Language Models

GN GaussianNB

GP Genetic Programming

GU Generic Univariate Select
HGB HistGradient Boosting

HPO Hyperparameter Optimization
KNN K-Nearest Neighbor

KPCA KernelPCA

LDA Linear Discriminant Analysis
LGBM LightGBM

LLMs Large Language Models
LODOCV Leave-one-dataset-out cross-validation
LP Label Powerset

LR Logistic Regression

LSVC LinearSVC

LSVCP LinearSVC prep

MA Max Absolute Scaler

ML Machine Learning

MLP Multilayer Perceptron

MM MinMaxScaler

MNB

MS

MtL

NAS

NN-SMFO

Nor

NuSVC

NY

OE

OHE

PA

PCA

PCC

Perc

PF

POSH

PT

QT

QDA

RBFS

RF

RS

RTE

MultinomialNB
Model Selection
Meta-Learning

Neural Architecture Search

Nearest Neighbor Sequential Model-Free Optimization

Normalizer
Nu-Support Vector Classification
Nystroem

Ordinal Encoder

One-Hot Encoding

Passive Aggressive

Principal Component Analysis
Probabilistic Classifier Chains
Perceptron

Polynomial Features

Portfolio Successive Halving
Power Transformer

Quantile Transformer
Quadratic Discriminant Analysis
Radial Basis Function Sampler
Random Forest

Robust Scaler

Random Trees Embedding

SE Stacking Estimator

SGD Stochastic Gradient Descent

SFM Select From Model

SI Simple Imputer

SMAC Sequential Model-based Algorithm Configuration
SP Select Percentile

SS Standard Scaler

SvC Support Vector Classifier

SVR Support Vector Regressor

SVM Support Vector Machine

TabPFN Tabular Prior-Data Fitted Network

TPOT Tree-based Pipeline Optimization Tool

TPE Tree of Parzen Estimators

TSVD Truncated SVD

UMAP Uniform Manifold Approximation and Projection for Dimension Reduction
VT Variance Threshold

XGB XGBoost

LIST OF SYMBOLS

Original dataset.

Multi-label dataset.

The set of datasets.

Dataset used in experiment e.
An ML experiment.
Meta-features vector.
Meta-dataset.

A new (query) dataset.

Record of past ML experiments.
An ML pipeline.

Recommended pipeline.

Pipeline representation for dataset .
Set of k most frequent pipelines.
Ranking of promising pipelines for IN.
Search space.

Meta-classifier.

Number of meta-classes.
Number of experiments.

Number of pipelines.

Number of meta-features.
Number of datasets.

Number of labels in multi-label dataset.

Yy

Xi

The vector of labels of the i-th instance.

Feature vector of the i-th instance.

The set of imputation techniques.

The set of encoding techniques.

The set of scaling techniques.

The set of feature preprocessing, transformation and feature selection.

The set of classifiers.

SUMMARY

1 INTRODUCTION

1.2 MAIN CONTRIBUTIONS AND THESIS STRUCTURE

22 MULTI-LABEL ALGORITHMS

2.2.1 Binary Relevance (BR)| 30
2.2.2 Classifier Chains (CC) and Probabilistic Classifier Chains (PCC)| . . 31
2.2.3 Label Powerset (LP)| 33

23 AUTOMATED MACHINE [EARNING

| PIPELINE RECOMMENDATION

32 BACKGROUND

(3.2.1 Meta-Learning| 42
3.2.2 Multi-Label Algorithms|, 44
(3.2.3 Automated Machine Learning 00000 45
.............................. 47
(3.3.1 AutoML using Bayesian Optimization| 48
(3.3.2 AutoML using Random Search| 50
3.3.3 AutoML with Genetic Programming 51
(3.3.4 AutoML other optimization types| 51
k3.4 METAML] 53
(3.4.1 Search space definition|o 53
3.4.2 Meta-dataset constructionl 56
(3.4.3 Training| 57

(3.5.1 Datasets and Search Space, 58
3.9.2 Meta-dataset constructionl00 60
353 Meta-Model 60
(3.5.4 Data Preprocessing|. 61
(3.5.5 Evaluation procedure. 61

3.6 RESULTS AND DISCUSSION

3.8 CONCLUSIONI oo 78

4.4 -DATASET CONSTRUCTIONI o o 0 0 o0 0o oo o oo 87
4.4,1 Datasets 87
4.4.2 Pipeline blocks| 0. 87
4.4.3 Meta-Features 88
4.4.4 Hardware and Software 89
4.5 ANALYSISI - . . o 89
4.5.1 Exploratory analysis of the pipelines from OpenML| 89
[4.5.2 Comparing PIPES and OpenML in a meta-learning task| 91
[4.5.3 PIPES" datasets diversity| 94
46— TIMITATIONS, 94
M7 CONCLUSION s, 95
h METAML 200 e e e e e e e e 96
K1 INTRODUCTIONI., 96

b.2.2 Meta-dataset construction and Meta-Model 98
6.2.3 Data Preprocessing]. 98
B2 4 Software and Hardwarel 99
5.2.5 Evaluation procedure. 99
3 RESUITS AND DISCUSSION| 100
5.3.1 Meta-level analysis| 100
6.3.2 The impact of using preprocessing blocks|. 100
5.3.3 Comparing Pipeline Diversity: PIPES vs. OpenML| 101
5.3.4 Comparing the performances of recommended pipelines] 102
54 CONCLUSION| 105

6 CONCLUSION AND FUTURE WORK

- ING DIFFERENT TIME BUDGETS
APPENDIX K - META-FEATURES
APPENDIX L — LIST OF EXCLUDED META-FEATURES]

22

1 INTRODUCTION

A goal of Automated Machine Learning (AutoML) is to streamline the machine learning
pipeline by automating tasks such as data preprocessing, model selection, and hyperparam-
eter optimization, thereby reducing dependency on manual expertise while producing robust
models (ELSHAWI; MAHER; SAKR, [2019; BAHRI et al,, 2022)) (DORES; SOARES; RUIZ, 2018).
However, its use faces challenges (BAHRI et al., [2022; ELSHAWI; MAHER; SAKR, [2019): (1) time
budget allocation, larger budgets increase the system's chances of finding the optimal config-
uration (ELSHAWI; MAHER; SAKR, 2019), but they also lead to longer user waits and higher
computational costs, including memory and CPU usage, which may incur monetary expenses.
Conversely, smaller budgets reduce wait times but decrease the chances of finding an optimal
configuration. (2) search space design: the set of all possible configurations that the system
can explore defines the search space. Its design is challenging because a small search space
may fail to include configurations that achieve good performance for certain types of problems.
In contrast, a large search space increases computational cost due to the greater number of
possibilities that must be evaluated (BRAZDIL et al., [2022b)). Studies show that smaller, but
carefully selected, search spaces (with high-performance classifiers) can achieve comparable
results to a space that encompasses a broad search space (ELDEEB et al., [2022).

The performance of AutoML systems varies, as no single method performs best across
all tasks: it depends on the dataset (GIJSBERS et al.,, 2019)). These systems can be improved
using Meta-Learning (MtL), which leverages dataset characteristics (meta-features) to recom-
mend promising configurations for a given task (HUTTER; KOTTHOFF; VANSCHOREN, [2019)).
Meta-Learning (MtL) enables learning from metadata generated by previous machine learning
experiments. To achieve this, a meta-dataset is constructed, comprising meta-examples. Each
meta-example represents a dataset through its characteristics (meta-features) and is associ-
ated with the performance of configurations on that dataset (meta-targets) (BRAZDIL et al.,
2008). A challenge in using MtL lies in the construction of these metadata, as their generation
entails a high computational cost due to the need to evaluate the performance of multiple con-
figurations across diverse datasets (KHAN et al.,, |2020)). A promising solution to alleviate these
costs involves utilizing available machine learning experiments from public repositories, which
contain hundreds of experiments, thereby enabling reuse and accelerating research progress in

the field (BRAZDIL et al., [2022a)).

23

In this context, we propose MetaML, a meta-learning approach for pipeline recommen-
dation. The primary objective of this work is to address the challenge of selecting the most
suitable machine learning pipeline for a given dataset based on its meta-features. The proposal
brings two main contributions: (1) reducing the search space through the automatic curation
of the most promising pipelines based on historical data from online repositories; and (2) using
multi-label classification as a metamodel to explore label interdependencies and recommend a
set of candidate pipelines, modeling the relationship between blocks composed of classification
algorithms and data preprocessing algorithms. In this way, for example, decision tree-based al-
gorithms can be recommended without the need for a data scaling block, since one is not
necessary. This approach differs from studies (WANG et al, [2014; |ZHANG; SONG, 2015 DAN-
TAS; POZO0, 2018} [KHAN et al/, 2020; |ZHU et al/, 2021; |GOLSHANRAD et al,, 2021; WEGMETH;
BEEL, 2022) in that they do not rely on pipeline recommendations that take into account the
interdependence of the steps.

However, the approach of using results from previous machine learning experiments from
online repositories presented a limitation. While online repositories provide comprehensive ex-
perimental data, they exhibit inconsistent quality and limited representativeness of the recorded
pipelines. A particular concern is that preprocessing techniques are rarely employed, and even
when they are, just a few are explored.

We carried out an analysis of 22,298 machine learning pipelines in OpenML, of these
pipelines and found that only 47.09% included at least one preprocessing block; 23.20% of
the pipelines included a function transformer block, 7.70% included the scaling block; 6.84%
included feature preprocessing; 3.93% applied missing value imputation methods; 3.64% em-
ployed encoding for categorical variables; only 0.16% included data resampling techniques.
Additionally, 1.60% registered the use of preprocessing techniques but did not specify which
methods were applied.

Research has demonstrated their significant impact on model performance (AMORIM; CAV-
ALCANTI; CRUZ, [2023a)) (RAJU et al., 2020) (OBAID; DHEYAB; SABRY, [2019). To address these
challenges, our second study presents PIPES, a meta-dataset of machine learning experiments
that strives for completeness and diversity of pipelines, including several preprocessing blocks
and a classification block.

Building on PIPES and aiming to overcome the limitations observed in the original MetaML
approach, we propose MetaML 2.0. This new version is built upon the PIPES meta-dataset

and aims to identify promising pipelines and recommend rankings of pipelines most suitable for

24

specific datasets. We seek to compare the results of MetaML 2.0 with the original MetaML to
evaluate the impact of this enrichment. MetaML 2.0 introduces greater diversity of pipelines by
incorporating a broader range of preprocessing techniques into the search space. As a result, we

observed improvements in some of the evaluated datasets compared to the original MetaML.

1.1 OBJECTIVE

The main objective of this thesis is to propose an AutoML method based on meta-learning
that automates pipeline recommendation by learning interdependencies between pipeline blocks

from past experience.

1.2 MAIN CONTRIBUTIONS AND THESIS STRUCTURE

The main contributions of this thesis are:

» Algorithm design a curated search space: a novel way to heuristically reduce the
search space by automatically curating the most relevant candidate pipelines based on

historical data.

» Chained recommendations: a method of composing pipelines that is based on the
chained recommendations of their steps in such a way that the interdependence of the

steps is taken into account.

= A meta-dataset of machine learning experiments: collection of experiments in-
volving multiple pipelines, a total of 9,408 combinations, i.e., pipelines, (2 imputation
techniques x 3 categorical encoders x 7 scalers x 14 feature preprocessing techniques x

16 classification algorithms). The meta-dataset includes full details of the experiments.

» Comparative analysis: demonstration of the performance benefits of the proposed

method through comparison with state-of-the-art methods.
This thesis is structured as follows:

= Chapter 2 presents the basic concepts of this thesis.

25

Chapter 3 introduces our first contribution through the paper: "MetaML: A Multi-
Label Meta-Learning Approach for Pipeline Recommendation". This chapter has been

submitted to a Machine Learning journal.

Chapter 4 details our second contribution with paper: "PIPES: A Meta-dataset of Ma-
chine Learning Pipelines". This chapter has been published as a paper in the International

Joint Conference on Neural Networks (IJCNN) 2025.

Chapter 5 presents MetaML 2.0, which integrates contributions from Chapters 3 and
4.

Chapter 6 concludes the thesis with final considerations, limitations, and future works.

26

2 BASIC CONCEPTS

This thesis encompasses three main research areas: meta-learning, multi-label algorithms,
and automated machine learning. Thus, Section addresses meta-learning. Section
presents multi-label algorithms, and Section briefly discusses the concepts of automated

machine learning.

2.1 META-LEARNING

Rice (1976) formulated the Algorithm Selection Problem (ASP), defined as the problem
of mapping algorithm performance to dataset characteristics. This formulation, illustrated in
Figure [1} addresses the issue of selecting the most appropriate algorithm for a given task by
leveraging the dataset properties (RICE, 1976). ASP is one of the research focuses in Meta-
Learning, where the goal is to automate the selection of algorithms for a given dataset based

on its meta-features (BRAZDIL et al/ 2022a)).

Problem Performance
Space Measure

A

Select algorithm
maximize the performance

Feature extraction

Apply algorithm
v
Feature)\ 4 N Algorithm
Space i) ” Space
Selection mapping

Figure 1 — Representation of the four components ASP (RICE, |1976)), adapted from (SMITH-MILES, 2009).

In addition to ASP, another key focus of MtL is Hyperparameter optimization (HPO)
(FEURER; HUTTER, 2019), Combined algorithm selection and hyperparameter optimization
(CASH) (KOTTHOFF et al., 2019)), and Workflow (pipeline) (BRAZDIL et al., 2008). In HPO,
given a dataset, HPO aims to recommend the best hyperparameter settings for a specific
algorithm. CASH extends HPO by simultaneously recommending the best algorithm and its
optimal hyperparameters for a given dataset. Workflow aims to recommend complete ma-
chine learning pipelines, which may include multiple algorithms from the different blocks that
make up the pipeline. One area that has been benefiting from meta-learning is Automated

Machine Learning (AutoML), which refers to the automation of the machine learning pipeline.

27

In AutoML systems, meta-learning has been used to initialize searches, complementing rec-
ommendation approaches (BAHRI et al.,, [2022). For example, in AutoSklearn, meta-learning
is employed as an initial step to identify suitable instantiations in new datasets, which can
then guide searches using the Bayesian optimization technique for optimal recommendations
(FEURER et al., 2020)).

Figure |2| presents a typical architecture in meta-learning that contains a base level and
a meta-level. The base level defines the set of candidate algorithms that the system can
recommend and the evaluation metric used to evaluate the algorithm’s performance. These
definitions guide the construction of the meta-dataset M = {(f;,m), (f2, m2), ..., (£, 7))},
which consists of meta-examples, each representing a given dataset D = {D;,D,,...,D,},
through pairs of (1) f; = {f!, f?,..., f*} with x meta-features, allow the characterization
of data sets by providing information, such as the number of classes, attributes; and (2)
performance data of candidate algorithms on this dataset, m; = {m}, 72, ..., 7"},. At the meta-
level, the metamodel A is trained on this meta-dataset M to learn the relationship between

dataset features and algorithm performance, enabling automated algorithm recommendation

for new datasets N, given N ¢ D.

Base Level

'

1

D >{Meta—features extraction fT‘ :

1

1

Y O 3 .

1

:

1

'

'

>{ Meta-target definition T

:

'

___________________________ J

Meta Level

A

——_— ‘
Meta-Model
N Meta-features extraction }74 ’

‘ Recommendation ’

Figure 2 — Representation of the base and meta levels of Metalearning, adapted from (BRAZDIL et al., [2008]).

Some important decisions when using meta-learning are: what types of meta-features will be
used to represent the datasets, and what type of meta-target will be used for recommendation.

The following subsection describes some of the types of meta-features and meta-targets.

28

2.1.1 Meta-Features

Meta-features allow us to characterize datasets and can be organized into different groups.
The main groups of meta-features are described below (BRAZDIL et al., [2022a]) (CASTIELLO;

CASTELLANO; FANELLI, 2005):

= Simple, Statistical, Information theory: The Simple are meta-features that contain
more general information about the datasets, for example: number of instances, propor-
tion of discrete attributes, and number of classes. Statistical measures take into account
the statistical properties of the datasets, for example: skewness, kurtosis, class proba-
bilities, and correlations between features. Information theory, originating in information
theory, encompasses meta-features such as class and attribute entropy, as well as mutual

information (BRAZDIL; GAMA; HENERY, |1994)).

» Model-based: these are meta-features derived from a model’s properties. For instance,
in the case of a decision tree model, meta-features could include the number of nodes

per feature and the number of leaves per class (PENG et al., [2002).

» Landmarkers: are measures of the predictive performance of models on datasets. For
example, the performance of the linear discriminant algorithm, characterizing linear sep-

arability (BENSUSAN; GIRAUD-CARRIER, 2000).

» Complexity-based: enable the analysis of data set complexity, including non-linearity
of a linear classifier, the average number of features per dimension, and the volume of

the overlapping region (HO; BASU, 2002).

2.1.2 Meta-Target

Meta-targets define the type of recommendation in a meta-learning problem (BRAZDIL et

al., 2008). The main types include:

= (i) Best algorithm, which returns the single algorithm expected to perform best on
the dataset. For example, given a search space A = {ay,...,a4}, the meta-model may
recommend ay if it is expected to yield the highest performance, rather than the others

that make up the space;

29

= (ii) Ranking, which provides an ordered list of algorithms. A complete linear ranking,
often used in meta-learning systems, implies that all algorithms are ordered with distinct

ranks, e.g., 1° — a9, 2° — a3, 3° — a1, and 4° — ay;

= (iii) Algorithm subset selection, more than one algorithm is indicated, for example:
{a1,as,as}. In the event of a tie with other best algorithms, the first one is selected in

the order in which they appear.

The choice of the meta-target also affects the choice of the meta-model. Thus, to recommend
multiple algorithms simultaneously, some studies use multi-label classification algorithms as

meta-models (ZHU et al., 2021)) (KHAN et al., [2020).

2.2 MULTI-LABEL ALGORITHMS

Single-label classification associates each instance with a unique label, whereas multi-
label classification allows an instance to be associated with multiple labels simultaneously
(TSOUMAKAS; KATAKIS; VLAHAVAS, [2009). An example would be the semantic annotation of an
image, which may have multiple related labels, such as trees, people, animals, grass, and clouds.
Another example is the categorization of a news story. The story may be associated with several
topics, for example, engineering, statistics, and biology. The multi-label problem is present in
various segments, including text classification (BAKER; KORHONEN, 2017)), image classification
(DIMITROVSKI et al., 2011)), musical data (TROHIDIS et al., 2008), and bioinformatics (TANG et
al, 2019), among others.

Multi-label classification can be grouped into two approaches: problem transformation and
algorithm adaptation (HERRERA et al., 2016). Algorithm adaptation is algorithm-dependent;
machine learning algorithm methods that address single-label problems are extended to address
multi-label classification. Examples of algorithm adaptation include (CLARE; KING| 2001)), which
modified the C4.5 decision tree algorithm to address multi-label classification by modifying
the entropy measure. In (ZHANG; ZHOU, [2007)), the k-nearest neighbors (kNN) algorithm is
extended, called ML-kNN. In ML-kNN, the labels of a test instance are determined via the
maximum a posteriori, which is based on the a priori and a posteriori probabilities for each
label of the k nearest neighbors.

In problem transformation, the multi-label classification problem is transformed into a

single-label problem, independent of the (TSOUMAKAS; KATAKIS; VLAHAVAS, 2009)) algorithm.

30

Some problem transformation algorithms are described below, as this approach is used in this
thesis. To illustrate the transformations in different algorithms, we will consider the following
notation.

Let
D = {(Xz‘,}%’) ?:1

be a multi-label dataset, where:

XZ‘ERd

is the feature vector of the i-th instance, and

yi € {07 1}l

is the vector of labels of the i-th instance, with [possible labels.
For the case with [= 3 labels, we denote by Y; the column vector corresponding to the

label j, for j € {1,2,3}.

2.2.1 Binary Relevance (BR)

Binary Relevance (BR) consists of transforming the multi-label problem into binary single-

label problems. Suppose there is an original dataset:

D= {(:Ezayz) ?:17

that contains three labels j € {1,2,3}. Then, three binary datasets are created, each corre-

sponding to a label 7, denoted by

Dj = {(%4,Yij) bie1,

where y; ; is the value of label j for instance ¢. Each dataset D; is treated independently.

31

Figure 3 — Transformation of the multi-label problem into a single-label problem using the BR method. Adapted
from (SOROWER, [2010)).

These datasets contain the same instances as the original dataset, but each dataset will
be labeled according to its corresponding label. Thus, if an instance belongs to the label, it
will be labeled 1, meaning relevant; if not, it will be labeled 0, meaning irrelevant. After being
labeled, a binary classifier is trained with the dataset. Finally, for a new instance, the method
generates as output the union of the labels generated by the classifiers. This method checks
the relevant labels in each binary classifier and then performs the combination ((TSOUMAKAS;
KATAKIS|, 2007 (SANTOS, 2012)) (SOROWER, 2010). It is considered a simple and quite popular
strategy, but one disadvantage is that it does not consider the correlation between the labels

((LUACES et al., 2012)).

2.2.2 Classifier Chains (CC) and Probabilistic Classifier Chains (PCC)

To capture dependencies between labels in multi-label classification, one effective approach
is the Classifier Chains (CC) method. Instead of predicting each label independently, CC links
a sequence of binary classifiers so that the output of one becomes part of the input for the

next. For example, given an original multi-label dataset:

D = {(z;,y:) }im1, where y; = (vi1,Yi2, vi3) € {0, 1}

32

three binary models are generated, one for each label. However, the predictions of a previous
model are used for new predictions by a subsequent model, where each model (except the
first) incorporates predictions from preceding steps as additional features.

Classifier for Y;: Trained on the dataset

Dy = {(%i, yi1) bis

fi:RY—{0,1}.

Classifier for Ys: Uses the original features x; and the true label ¥, ; as an additional feature.

Trained on the dataset

D, = {(l’z, yi,l)a 3/@',2};;1

fo i R — {0, 1}.

Classifier for Y3: Uses x; and the true labels y; 1 and y; » as additional features. Trained on

the dataset

D3 = {(%7 Yi1, yi,2)7 yi,3}?:1

fz: R¥2 — 10,1},
Prediction Phase: For a new instance x, predictions are made sequentially:
= fi(x), G2=foz,), G5= fs(@, 01, 02).
The final prediction is the vector:
(915 92, G3)-

For new instances, the three label predictions are considered (MOYANO et al., 2019)) (TIDAKE;

SANE, 2018). This process is illustrated in Figure E]

33

Instances| Y] Instances @] (7)) Instances @1 @2 Y3
1 1 1 1 1 1 1 1 0
2 0 | 2 0 1 = 2 0 1 1
3 1 3 1 0 3 1 0 1
4 1 4 1 0 4 1 0 1

Figure 4 — Transformation of the multi-label problem into a single-label problem using the CC method. Adapted
from (MOYANO et al., [2019).

PCC is a probabilistic extension of the multi-label CC algorithm, in which the conditional
probability of each label combination is computed. As an extension of CC, PCC models label
dependencies, where each classifier predicts a label using the original features along with the
probabilistic predictions of the previous labels as additional inputs (CHEKINA et al., 2013).

For example, given original multi-label dataset:

D = {(z;,y:)}1-, where y; = (yi1,Yi0,vi3) € {0,1}°

For a new instance x, the prediction of the label combination (y1, ¥z, y3) is done via:

P(y17y27y3 | .Z') = P(yl ‘ 'I) P(yQ | ‘rayl) P<y3 ‘ I7y17y2)'

The final prediction can be obtained by the label combination that maximizes the joint

probability:

J = ar max P , 7 2).
Y g(yl7y2,y3)€{0’1}3 (yl Y2,Ys |)

This approach explicitly calculates the joint probability using the probabilistic chain rule,
capturing the dependencies between labels. One disadvantage is computational complexity,

and a larger number of labels will result in higher computational costs (HERRERA et al., |2016)).

2.2.3 Label Powerset (LP)

The Label Powerset (LP) method formulates multi-label classification as a multi-class

problem, where each unique label combination constitutes a class, as illustrated in Figure [5]

34

For example, given an original multi-label dataset:
D = {(zs,y:) }iz1, where y; = (yi1,¥i2,vi3) € {0, 1}
each unique combination of labels is considered a class:
C={yi|li=1,...,n} C{0,1}

For a new instance, the classifier predicts a class that corresponds to a set of labels

(SOROWER, 2010)).

Instances| Y] Yo Y3 Instances| Class

1 1| 1| o 1 [Cho

> 2 0 1 1 > 2 OO 11
3 1 0 1 3 C1o1

4 1| o0 | o1 2 | Cro1

Figure 5 — Transformation of the multi-label problem into a single-label problem using the LP method. Adapted
from (MOYANO et al., 2019).

One advantage is that it considers the correlation between labels. Still, a disadvantage is
that if the problem has a large number of label sets, many classes may be associated with a

small number of examples (GANDA; BUCH, [2018)).

2.3 AUTOMATED MACHINE LEARNING

In (ZOLLER; HUBER, |2021)), AutoML is defined as a way to favor the use of machine learning
by domain experts, without them having extensive knowledge of the area itself. Domain experts
are individuals with extensive knowledge in the domain where machine learning will be applied
(KARMAKER et al., [2021).

In the AutoML approach, when considering the task of selecting the best pipeline for a given
dataset, the process typically contains the following components: a predefined computational
budget (which limits the computational cost of the search) and an evaluation metric, which
allows for comparing different pipeline configurations during the search for the best solution.

AutoML explores a search space composed of all possible combinations. To navigate this space,

35

optimization strategies such as Grid Search, Random Search, and Bayesian optimization are
applied, aiming to find the best configuration within the established constraints (NGUYEN et
al., 2022)).

There are different optimization techniques for finding optimal pipelines. These strategies
include: Grid and Random Search, Bayesian Optimization, and Genetic Programming. Each of

these strategies is briefly described below.

= Grid and Random Search: Grid search is a foundational technique for exploring a prede-
fined configuration space through an exhaustive search (ZOLLER; HUBER), 2021)). It works
by evaluating all possible combinations, checking each one until the best-performing con-
figuration is identified. In random search, combinations are not analyzed in the order in

which they were predefined; that is, they are analyzed randomly (ALSHAREF et al., 2022).

= Bayesian optimization: This is one of the most popular strategies in AutoML systems
(CELIK; VANSCHOREN, 2021)), which is based on the Bayes theorem. It involves exploring
the search configuration space by building a model that takes previous evaluations into
account. The model then makes decisions about where to explore, based on previous
evaluations, evaluating new regions and promising configurations. There are two im-
portant decisions when using Bayesian optimization: the first involves selecting a prior
function that makes assumptions about the function being optimized. The second in-
volves choosing an acquisition function that will allow deciding which configuration to

evaluate next, based on the posterior model. (SNOEK; LAROCHELLE; ADAMS, 2012).

= Genetic programming: based on Charles Darwin's theory of evolution. (ALSHAREF et al/|
2022). Initially, a population of random pipelines, also called a population of individuals,
is created. This population of pipelines is evaluated at each generation, and in each
generation, crossovers and mutations are selected and performed to achieve the best

solution at the end (OLSON et al, 2016]) (GIJSBERS, [2022).

AutoML systems are designed with robust approaches to find the best solutions to problems.
Despite efforts to build efficient AutoML systems, these systems face limitations that hinder
their use. A comparative study evaluated the performance of various AutoML tools under
different time limits, revealing that memory and time issues are among the main causes of
failure (GIJSBERS et al., 2022)). It was observed that the more time available for the search,

the greater the tendency for failures to occur. This is partly because AutoML systems often

36

store a large number of candidate models during the search process, which can exceed the
available memory constraints. Additionally, the size of the dataset represents another challenge.
Large datasets require more computational resources, potentially leading to interruptions in the
optimization process, as they tend to demand more computational resources, such as memory

(ERICKSON et al., 2020).

2.4 FINAL CONSIDERATIONS

The objective of this chapter is to provide a basis for the main concepts of this work.
The concepts of Meta-Learning, Multi-Label Algorithms, and Automated Machine Learning
(AutoML) were discussed.

Meta-learning was introduced as an approach that enables learning from past machine
learning experiences through metadata, supporting tasks such as algorithm selection and hy-
perparameter optimization. Multi-label algorithms were presented as strategies for dealing with
problems in which each instance can be associated with multiple labels, illustrating transfor-
mation and adaptation methods such as Binary Relevance (BR), Classifier Chains (CC), and
Label Powerset (LP). Finally, AutoML was described as a method to automate the entire
machine learning pipeline, aiming to make model development more accessible and efficient.

The integration of these three areas provides the foundation for this work, enabling the
development of an AutoML method based on meta-learning that automates pipeline recom-

mendation through the use of multi-label algorithms to suggest a set of candidate pipelines.

37

3 METAML: A MULTI-LABEL META-LEARNING APPROACH FOR PIPELINE
RECOMMENDATION

Cynthia Moreira Maia, Lucas B. V. de Amorim, George D. C. Cavalcanti, Rafael
M. O. Cruz

This chapter has been submitted Machine Learning journal.

Abstract

In the machine learning (ML) literature, AutoML refers to the automated definition of
a sequence of necessary steps to achieve an ML task, such as classification. Each of these
steps of the ML pipeline, involving data preprocessing and algorithm selection, normally allows
extensive variation, leading to large search spaces which makes it hard to find optimal pipelines
for a certain problem. Most of the approaches so far presented to carry out AutoML rely on
Bayesian optimization methods that have shown to be successful, albeit at high computational
costs. Therefore, we propose a method that employs meta-learning (MtL) for recommending
pipelines, taking into account the interdependence of its steps. MtL allows us to shift the
computational complexity to an offline training phase. At the same time, we approach the
search space complexity problem by designing an algorithm that carefully curates the pipeline
candidates based on past ML experiments, optimizing the training and effective performance
of the pipeline recommendation model. An analysis using 152 datasets shows that MetaML
achieves final classification performance equivalent or superior to state-of-the-art methods but
incurs much lower computational times. The source code for the experiments is available at
the project'’s repositoryﬂ.
Keywords: Meta-Learning, Pipeline, Multi-Label, AutoML.

3.1 INTRODUCTION

When machine learning (ML) practitioners are faced with a new task, they must develop
a pipeline for dealing with all the steps necessary to extract useful insights from the data.
This includes data preprocessing procedures (ALASADI; BHAYA, 2017)), such as data balancing

(AVELINO; CAVALCANTI; CRUZ, [2024), scaling (AMORIM; CAVALCANTI; CRUZ, [2023b)), feature

1 https://github.com /cynthiamaia/MetaML

38

selection (ZEBARI et al., [2020)) and the choice and configuration of the ML algorithm to use
(KOTSIANTIS; ZAHARAKIS; PINTELAS), 2006)). This can be a time-consuming task that frequently
demands expert knowledge. Consequently, researchers have invested in ways to automatize
this task, giving rise to the area of automated machine learning (AutoML), which aims at
generating effective machine learning pipelines with little to no user interaction and without
requiring ample domain knowledge (ELSHAWI; MAHER; SAKR, 2019; BAHRI et al., 2022).

Traditionally, AutoML has been approached via optimization techniques, including genetic
programming (OLSON; MOORE, 2016)), Bayesian optimization (THORNTON et al., [2013; |KOT-
THOFF et al, 2017)), and random search (LEDELL; POIRIER, 2020). For every new dataset, these
techniques iteratively search for good pipelines within a search space defined by all possible
configurations of pipelines to be searched. While they have been successful in finding useful, if
not optimal, pipelines, these techniques often take a blind or naive approach, using a broad set
of configurations without prior study to identify the most effective ones, which leads to a costly
optimization procedure with redundant or irrelevant configurations. Although researchers have
also employed collaborative filtering to avoid the cost of more robust and extensive optimiza-
tion techniques (YANG et al, 2019), it has the limitation of still relying on past results of some
of the pipeline candidates on the query dataset, which is a computationally demanding task
to overcome during the recommendation phase.

Defining a wide and yet viable search space and the time budget for an AutoML process
is still a challenge (BAHRI et al., 2022; [ELSHAWI; MAHER; SAKR, [2019). While a more compre-
hensive search space increases the chances of finding an optimal solution, it demands a greater
time budget and more computational resources such as memory, CPU and GPU (ELSHAWI;
MAHER; SAKR, 2019; BRAZDIL et al., 2022b)). Nonetheless, this trade-off can be circumvented,
as a small search space, with carefully curated configurations, can lead to superior performance
than a wider search space under the same time constraint (ELDEEB et al., 2022).

Therefore, the design of an AutoML system that is effective in finding good pipelines and
still computationally efficient is a challenge. A desired solution to the problem is to find an
algorithm that, given a query dataset, can instantly recommend one or more suitable pipelines
after efficiently probing its characteristics. For this purpose, meta-learning is a reasonable
solution (BRAZDIL et al., 2008)). It learns predictive models that can quickly recommend pipelines
based on dataset characteristics (a.k.a. meta-features) (HUTTER; KOTTHOFF; VANSCHOREN,
2019). To do this, it models the relationship between past datasets’ meta-features and a

meta-target, e.g., the performances achieved by all candidate pipelines on these datasets.

39

Meta-learning leverages knowledge from previously observed meta-examples stored in a
meta-dataset to provide informed initial solutions, reducing the number of evaluations needed
during the search. This allows optimization algorithms to explore the space more efficiently,
accelerating convergence to suitable settings. Some studies have proposed the use of meta-
learning to guide the optimization process by recommending an initial population of promising
configurations. For example, Gomes et al.| (2012) and Miranda et al.| (2014) combined meta-
learning with optimization algorithms to recommend parameters for predictor algorithms. Other
studies use meta-learning to predict whether or not a hyperparameter optimization approach
is likely to improve a classifier (MANTOVANI et al., 2019). |Probst, Boulesteix e Bischl (2019)
and Rijn e Hutter (2018) investigate the importance of hyperparameter tuning through meta-
learning. The studies highlighted above use metamodels based on classical machine learning
algorithms (such as k-Nearest Neighbors or Random Forest) to recommend specific hyperpa-
rameters or decide whether tuning is necessary.

On the other hand, works such as (WANG et al., [2014; ZHANG; SONG, 2015} DANTAS; POZO),
2018; [KHAN et al} 2020; [ZHU et al., [2021; IGOLSHANRAD et al., 2021 WEGMETH; BEEL|, 2022)
expand this scope by adopting multi-label models, where each label encodes the option of
each hyperparameter and the algorithm. These applications have performed well both in terms
of recommendation quality and computational cost. However, the literature has not shown a
significant trend in utilizing meta-learning as the primary process in an AutoML system that
recommends an entire ML pipeline. In particular, when it comes to learning the relationship
between multiple steps in a pipeline, such as data preprocessing, feature selection, and the
predictive algorithm.

Considering the described context, we hypothesize that by (i) designing a carefully cu-
rated, reduced search space and (ii) using meta-learning with multi-label meta-models that
take into account the interdependence of pipeline steps, it is possible to recommend pipelines
that are equivalent or superior to the ones generated by state-of-the-art AutoML systems
but incurring much smaller computational cost. Using these two main directives, we therefore
propose the MetaML framework, a meta-learning approach based on probabilistic multi-label
classification algorithms for recommending rankings of full machine-learning pipelines. Multi-
label classifiers are ideal for this application because they can learn the relationships between
the steps of a pipeline, e.g., a pipeline that uses random forest as its classifier will not need
data scaling. By learning these relationships, MetaML is able to perform well by focusing only

on the relevant configurations.

40

Figure@contrasts traditional optimization-based AutoML methods (a) with our proposal
(b). While traditional methods rely on wide and generalist search spaces, our method curates
the search space based on previously executed ML experiments, taking only the most relevant

pipeline configurations.

LARGE SEARCH SPACE CURATED SEARCH SPACE

Steps Pipeline —> Fe_we_r —> Less
: : combinations noise
12 3 4 5 6

Pipeline[;| | | | | | » Several _, More DDDH

combinations = noise

: i | Search M onl :
: ! ; y the most :
BEEEE P Space @ relevant options
omen) EEEEE e

i Sspace Too many P ;

: HEEEEE options 8= (@ =98, ottine

| - P {+ - H+ D} training
;'ﬁéééﬁﬁéﬁékﬁé;-'-@::-'-‘-':-':-'-'-':-'-'-':-'-'-':-'-‘-'-:'-'-:'-'-'-:'-'-'-:'-‘-'-‘-'-'-‘:-'-'-:'-"@ RECOMMENDATION _________________________
| PHASE (ONLINE) i ! PHASE (ONLINE)

Ranking

Wm mr F =[] i

New Recommended New Multi-label Recommended
dataset Optimization Pipeline : : dataset Meta-model pipelines
‘ Complex online procedure ‘ Quick and simple online inference
(a) Traditional optimization-based AutoML methods (b) MetaML

Figure 6 — Comparison between traditional AutoML (a) and our proposed meta-learning based framework
MetaML (b).

As search spaces grow, as in Figure [0} the likelihood of generating redundant pipelines
can increase (FEURER et al} 2020). This is analogous to hyperparameter optimization, where
small variations in certain hyperparameters often do not significantly affect performance on
certain datasets, which can lead to redundant configurations (BERGSTRA; BENGIO), [2012)). The
idea behind search space curation is focusing on less, but statistically more relevant pipelines
that are expected to be complimentary. This also enables a clearer, less noisy meta-dataset
to train the meta-model. For a new dataset, traditional methods perform a search for the
optimal pipeline within their wide search space. This is done online during the recommendation
phase, which delays the system's response. On the other hand, our method learns offline the
relationships between dataset features and their optimal pipelines. For a new dataset, our
method extracts dataset features and performs a quick meta-model inference to recommend
a ranking of n pipelines based on class probabilities obtained from the multi-label meta-
model, where the n is user-defined and can be set to just one pipeline or multiple pipelines

to be evaluated through a cross-validation procedure to select the best one. This difference in

41

approaches directly impacts the performance that can be achieved with limited time budgets.
When comparing the performance achieved by the MetaML versus the performance of the
state-of-the-art AutoML methods with various time budgets, our analysis shows that MetaML
achieves high performance in a short time, while, on average, the other methods require more
time to find good pipelines.

The main contributions of this paper are:

= A new approach to AutoML, using meta-learning with multi-label algorithms recommend-

ing a set of n candidate pipelines.

= A novel way to heuristically reduce the search space by automatically curating the most
relevant candidate pipelines based on historical data. This allows for more efficient meta-

model training and more effective pipeline recommendations.

» A method of composing pipelines that is based on the chained recommendations of their

steps in such a way that the interdependence of the steps is taken into account.

» A comparative performance analysis, using 152 datasets, in terms of accuracy and com-
putational time of the proposed framework against several state-of-the-art AutoML meth-

ods.

» We show that MetaML recommends pipelines with performance comparable to or better

than state-of-the-art methods while requiring significantly less computational time.

This paper is organized as follows: Section presents an overview of the main concepts
of automated machine learning (AutoML), meta-learning, and multi-label classification algo-
rithms; Section exhibits a review of the related works. Section presents the proposed
framework. The experimental methodology is detailed in Section [5.2] Sections [5.3] and

discuss the results, threats to validity and conclude this research, respectively.

3.2 BACKGROUND

This work involves three main research areas: meta-learning, multi-label algorithms, and
automated machine learning. Therefore, this section briefly discusses these main areas of

research.

42

3.2.1 Meta-Learning

The Algorithm Selection Problem (ASP) was formulated by Rice in 1976 and refers to the
challenge of choosing the most appropriate algorithm to solve a specific problem, considering
that there are several algorithms available. Rice’s model for representing the ASP is composed
of four basic components (KHAN et al, 2020 (RICE, [1976)), as illustrated in Figure [7]

Problem Feature Algorithm >
Space Feature Space Selection Space Performance

extraction mapping mapping

Performance
Measure

Figure 7 — Representation of the four components ASP, adapted from (RICE, |1976)).

Figure [7| provides a representation of the relationships between the components of the

ASP. The four components are described below:

» Problem space refers to the domain of the problem that needs to be solved, e.g.,

classification task.

» Feature space corresponds to the characteristics that describe the problem, such as the

number of instances.
» Algorithm space involves the set of algorithms that can be applied to solve the problem.

» Performance measure represents the metric used to evaluate the performance of each

algorithm in the context of the specific problem, e.g., accuracy.

ASP is one of the focuses of research in the area of Meta-Learning (MtL) (SMITH-MILES,
2009) (SONG; WANG; WANG, 2012) (SOUTO et al., 2008)) (PIMENTEL; CARVALHO, 2019)) (FER-
RARI; CASTRO) 2015)). Another key focus of MtL is CASH (Combined Algorithm Selection
and Hyperparameter Optimization) (BRAZDIL et al., 2022a), which integrates the algorithm
selection problem with hyperparameter optimization.

MtL makes it possible to learn from previous machine-learning experiences (HUTTER;
KOTTHOFF; VANSCHOREN, 2019). For example, considering the algorithm recommendation
problem, the approach contains a base-level and a meta-level task. The representation of
algorithm recommendation is illustrated in Figure . At the base level (A) of Figure , it is
decided which algorithms the system can recommend and the performance metric that will
be used to evaluate the performance of the algorithms on the datasets. Subsequently, the

meta-dataset, which is composed of meta-examples, is built. Meta-examples are datasets,

43

represented by their characteristics (meta-features), associated with the performances of the
algorithms on those datasets (meta-targets). At the meta-level (B) of Figure 8 a predictive
algorithm is employed to build a meta-model, which recommends the base-level algorithm.
The type of meta-model algorithm depends on the type of meta-target that will be used for
recommendation (BRAZDIL et al., 2008), but classification and regression algorithms are among
the most commonly used. Thus, given a new dataset, its meta-features are extracted and the
meta-model is used to recommend the base-level algorithms that are more likely to perform

well on this dataset.

(A) Base level
[— D j »>| Meta-Features }—“>
| }—(:
»| Performance of the G EHPEIEREE
l_ - _J Algorithms
(B) Meta level

—»{ Meta-Features }—»‘ Meta-Model ’
New dataset

A

‘ Recommendation ’

Figure 8 — Recommendation with Metalearning, adapted from (BRAZDIL et al., |2008]).

Meta-features are a collection of measures designed to characterize datasets. They can
be organized into different groups (BRAZDIL et al., [2022a)): simple and statistical, information
theory, model-based, complexity-based and landmarkers. Table (1] summarizes these groups,
providing a brief description and examples of each. Simple meta-features provide general in-
formation about datasets, such as the number of classes, attributes, and instances. Statistical
meta-features collect statistical measures from datasets, such as standard deviation, mean, and
coefficient of variation. The information theory group includes measures such as entropy of
the class and attributes (CASTIELLO; CASTELLANO; FANELLI, 2005). Model-based are measure-
ments that reflect the properties of a specific model; for example, the number of leaf nodes of
a simple decision tree trained on the dataset (BRAZDIL et al., | 2008). Performance-based meta-
features, also known as landmarking, are predictive performance measures of specific models
on the dataset; for example, the performance of the Naive Bayes (BRAZDIL et al., [2022a)) algo-

rithm. Finally, complexity meta-features allow analyzing the complexity of datasets in different

44

aspects, such as class separability and attribute overlap (RIVOLLI et al., 2022).

Table 1 — Types of Meta-features.

Group Description Examples
Simple General information about the datasets. Number of classes, attributes.
Statistical Statistical measures of the together of datasets. Skewness, kurtosis.
Info-theory Measures based on information theory. Class entropy and mutual information.
Model-based Measures based on the properties of a model. Number of leaf nodes (decision tree).

Landmarking Measures predictive performance of the algorithm on the datasets. Performance of the naive bayes algorithm.

Complexity ~ Allow analyzing the complexity of sets of data in different aspects. The separability of classes.

A meta-target is the predicted variable in the meta-level problem. It can be formed by
different approaches: best algorithm, ranking, and a subset of algorithms (BRAZDIL et al.,
2008). If the best algorithm approach is considered, a single algorithm will be returned as
the meta-model prediction, the one that is expected to perform better on the dataset than
the others in the search space. When using the ranking approach, a ranking of the best-
performing algorithms w.r.t their probabilities is returned, whereas when you want to return a
subset of algorithms, more than one algorithm with equivalent performances is indicated. The
choice of meta-target also affects the choice of the meta-model, thus, to recommend several
algorithms simultaneously, some studies make use of multi-label classification algorithms such

as meta-models (ZHU et al., 2021)) (KHAN et al., [2020).

3.2.2 Multi-Label Algorithms

Multi-label classification allows an instance to be associated with more than one label
simultaneously (TSOUMAKAS; KATAKIS; VLAHAVAS, 2009). It can be grouped into two ap-
proaches: problem transformation and algorithm adaptation. In algorithm adaptation, which is
algorithm-dependent, the methods of machine learning algorithms that deal with single-label
problems are extended so that they address the multi-label classification problem. In problem
transformation, the multi-label classification problem is transformed into one or more single-
label problems, being independent of the algorithm (TSOUMAKAS; KATAKIS; VLAHAVAS, [2009)).
Some problem transformation algorithms are Label Powerset (LP) (TSOUMAKAS; KATAKIS; VLA-
HAVAS, 2010)), Classifier Chains (CC) (READ et al., |2009), and Probabilistic Classifier Chains
(PCC) (CHENG; HULLERMEIER; DEMBCZYNSKI, [2010).

In the Label Powerset approach, the multi-label problem is transformed into a multi-class
problem where the target can be any unique combination of the original labels, and then, for a

new instance, the classifier predicts a set of labels (SOROWER, 2010). In the Classifier Chains

45

(CC) method, a chain of classifiers is formed in a way that each classifier predicts one of the
multiple class labels, such that previous label predictions are considered to predict subsequent
labels in the chain. First, a classifier is trained using only the original meta-features. Then,
the first output label is added as a new input feature, forming a new input space composed of
the original meta-features and the previous label prediction. As an extension of the classifier
chain approach, Probabilistic Classifier Chains (PCC) considers the correlation between labels
and employs Bayesian methods to optimize the chaining order of the classifiers (HERRERA et

al], [2016)).

3.2.3 Automated Machine Learning

AutoML can be described as the automatic definition of machine learning pipelines, avoid-
ing manual efforts for pipeline configuration by machine learning experts as well as non-experts
(BAHRI et al}, [2022). A pipeline is illustrated in Figure[9] It consists of a tuple of blocks, where
each block belongs to a specific category, such as Data Preprocessing (DP), Feature Engineer-
ing (FE), and Model Selection (MS). For example, a pipeline may include a Simple Imputer
(S1) belonging to the set of imputation techniques, One-Hot Encoding (OHE) as part of the
categorical encoding techniques, and a Standard Scaler (SS) included in the set of scaling
techniques. All these techniques fall under the Data Preprocessing (DP) category. In the Fea-
ture Engineering (FE) category, methods such as Principal Component Analysis (PCA) belong
to the set of Feature Transformation techniques. Meanwhile, the Model Selection (MS) cate-
gory consists of a set of classifiers, which may include algorithms such as the Support Vector

Classifier (SVC).

Sl OHE SS PCA SVC

Figure 9 — A representation of an example of pipeline as a tuple of blocks. Each block is a step in the ML
pipeline.

Some of the objectives of AutoML are: reducing human effort for applying machine learn-
ing, improving model performance, and reproducibility of scientific studies (HUTTER; KOT-
THOFF; VANSCHOREN| 2019). Furthermore, high computational efficiency is sought to ensure
favorable performance within a limited computational budget (YAO et al., 2018).

The typical components of an AutoML system are search space, metrics, computational

budget, and optimization technique. These components are illustrated in Figure [10] Given a

46

dataset, the AutoML system performs a search process to find the best pipeline. All possible
pipelines that the AutoML system can recommend are contained in its search space. The
computational budget is the time and computational power allocated to the AutoML sys-
tem so that it searches for the optimal pipeline within that budget (ELSHAWI; MAHER; SAKR,
2019). Optimization techniques allow finding the best pipeline in the search space according
to the defined evaluation metric (NGUYEN et al [2022)), that is, the metric allows evaluating
the pipelines found so that it can recommend the best one in the end. There are different
optimization techniques in the search for optimal pipelines. These strategies include grid and
random searches (ZOLLER; HUBER, 2021)), bayesian optimization (CELIK; VANSCHOREN, [2021)),
and genetic programming (ALSHAREF et al., [2022) (GIJSBERS| 2022)) .

Grid search performs an exhaustive search in a predefined space. The combinations are
analyzed in the order in which they were predefined. All these combinations are checked
individually until the best one is returned. In random search, the combinations are not analyzed
in the order in which they were predefined; that is, they are analyzed randomly (ZOLLER;
HUBER, 2021). Bayesian optimization (CELIK; VANSCHOREN, 2021)) is one of the most popular
strategies in AutoML systems, which is based on Bayes' theorem. It involves exploring the
search space using probabilistic models that consider previous evaluations. Then, the model
decides where to explore, evaluating new regions and promising configurations, focusing on the
most likely to produce good results to determine the optimal pipeline configuration. Genetic
Programming (GIJSBERS, 2022), is a kind of evolutionary algorithm, which is based on Charles
Darwin's theory of evolution (ALSHAREF et al., [2022)). Initially, a population of random pipelines
is created, also called a population of individuals. This population of pipelines is evaluated at
each generation, and in each generation, crossovers and mutations are carried out on the

individuals, which are then selected to achieve the best solution in the end.

Best Pipeline

Performance Metric

‘ Search Space ’—‘ Optimization }’—
Dataset Computational Technique
Budget

Figure 10 — Representation typical AutoML components, adapted from (HUTTER; KOTTHOFF; VANSCHOREN,
2019).

In addition to the typical components listed above, some AutoML systems complement

47

their approaches by using meta-learning to “warm-start” the search process, thus reducing
overall complexity. That is, instead of starting the optimization by randomly selecting config-
urations, they start the search process using past performances of configurations on similar

datasets to define an initial configuration to be further optimized (KARMAKER et al., [2021)).

3.3 RELATED WORK

This section contrasts the state-of-the-art AutoML frameworks with the proposed MetaML.
There are several studies in the literature that have explored meta-learning to automate spe-
cific steps of the machine-learning pipeline, focusing primarily on isolated components rather
than end-to-end pipeline recommendations.

For example, in Gomes et al. (GOMES et al, [2012)), meta-learning was combined with two
search algorithms, Particle Swarm Optimization and Tabu Search to recommend two param-
eters for Support Vector Regressor (SVR): the RBF kernel parameter and the regularization
constant C. In Miranda et al. (MIRANDA et al,, [2014)), a hybrid architecture that combines
meta-learning with multi-objective optimization (MOO) techniques is used to select the and
C' parameters, the success rate and number of support vectors (which indicate complexity), of
an Support Vector Machine (SVM) classifier. In Mantovani et al. (MANTOVANI et al., [2019)), a
meta-learning-based recommendation system is proposed to predict whether tuning will bring
significant performance gains for SVM, in which it avoids unnecessary optimizations without
compromising predictive performance.

In Zhang and Song (ZHANG; SONG, 2015)), a method was proposed for recommending the
Kernel hyperparameter of the SVM algorithm, which used meta-learning. In the work of Zhu
et al. (ZHU et al| [2021)), the use of meta-learning was proposed to recommend classification
algorithms. While these works focus on deciding whether hyperparameter tuning is necessary,
or on recommending algorithms, they do not seek the recommendation of various pipeline
steps, which is the main focus of this work.

Thus, we now discuss AutoML frameworks that address multiple pipeline steps, such as
FE - Feature Engineering, MS - Model Selection, HO - Hyperparameters Optimization, and DP
- Data Preprocessing, which is similar to our goal of providing recommendations at different
steps of the ML pipeline.

Data Preprocessing (DP) refers to the transformations applied to raw data to prepare

it for modeling, such as imputing missing values, scaling, and encoding categorical. Feature

48

Engineering (FE), on the other hand, involves transformations aimed at creating new features
or selecting the most informative features.

Table [2| lists the most popular open-source AutoML frameworks and their characteristics
and includes MetaML for comparison.

The optimization methods employed by the various AutoML frameworks exhibit a di-
verse range of strategies. Bayesian optimization (FEURER et al., [2015; THORNTON et al., 2013;
KOTTHOFF et al., 2017), random search (MOHR; WEVER, 2023} |GIJSBERS; VANSCHOREN, 2020;
LEDELL; POIRIER, 2020), genetic programming (OLSON; MOORE, 2016), and collaborative fil-
tering (YANG et al} [2019)) are among the techniques employed to navigate extensive search
spaces and identify optimal machine learning pipelines. We organized the section according to

the optimization types used in AutoML frameworks.

Table 2 — Comparison of the most popular open-source AutoML frameworks. FE - Feature Engineering, MS -
Model Selection, HO - Hyperparameters Optimization, DP - Data Preprocessing.

AutoML o Search Space (SS) SS) Online
Optimization i Meta-Learning

Framework FE MS HO DP Curation Search
Auto-WEKA(THORNTON et al.[[2013][KOTTHOFF et al.[[2017] SMAC v v v x x x v
AutoSklearn 1.0(FEURER et al.|[2015) SMAC v V4 V4 X V4 V4
AutoSklearn 2.0(FEURER et al.|[2022) SMAC v vV VA v vV v Vv
GAMA(GIJSBERS; VANSCHOREN][2020) RS;ASHAAMOEA /v v x x v
Hyperopt-Sklearn(KOMER; BERGSTRA; ELIASMITH|{2019) RS;TPE;Annealing / / 4 4 x x 4
ML-Plan(MOHR; WEVER; HULLERMEIER|[2018) PHRT v v vV x x v
Naive AutoML(MOHR; WEVER|[2023} RS v v v Y x x v
TPOT(OLSON; MOORE|[2016) GP v v v Y x x v
TABPFN(HOLLMANN et al.||2025) Transformer-based / / vV v X vV X
AutoGluon(ERICKSON et al.|[2020) Multi-Layer Stack X 4 Vv X X X X
FLAML-Zero(KAYALI; WANG||2022) Meta-learning only X v IV X iV VA X
H20 AutoML(LEDELL; POIRIER|[2020} RS x v X x x i
OBOE(YANG et al.| [2010) CF x o o % x v x
MetaML Meta-learning only / / X v v Vv X

3.3.1 AutoML using Bayesian Optimization

The frameworks Auto-WEKA (THORNTON et al|, 2013; KOTTHOFF et al., 2017)), Au-
toSklearn 1.0 (FEURER et al., 2015) and AutoSklearn 2.0 (FEURER et al., 2022)) are examples that
uses Bayesian Optimization with Sequential Model-based Algorithm Configuration (SMAC).
Auto-Weka pioneered the use of Bayesian optimization in the search for the optimal pipeline,
for which it uses the SMAC. AutoSklearn 1.0 uses it only to warm start a SMAC optimization
procedure, which constitutes the bulk of its recommendation strategy. It uses meta-learning to
initialize the bayesian optimizer SMAC, in which the meta-learner selects the k configurations
to be used by optimization. Thus, when dealing with a new dataset, its meta-features are

evaluated, and the instances are selected considering the k closest datasets for evaluation.

49

Autosklearn 2.0 is an extension of Autosklearn 1.0, with improvements focused on reduc-
ing the search space and improving the efficiency of the results. The main changes include: a)
the use of iterative learning algorithms, limiting preprocessing techniques (feature preprocess-
ing); b) an improved meta-learning strategy, in which a fixed portfolio of pipelines is formed.
Instead of using the Auto-sklearn 1.0 approach, where the hot search is initialized based on the
meta-features of a new dataset (evaluating the k closest instances to choose the best configu-
ration), Auto-sklearn 2.0 uses POSH (Portfolio Successive Halving). This strategy uses a static
portfolio of pipelines generated offline. This portfolio is calculated from multiple datasets to
ensure the initial set covers many potential problems. The SH strategy is used to efficiently
allocate the budget between different configurations, progressively adjusting the resource allo-
cation in order to focus more on promising pipelines while discarding the less promising ones.
The idea of using a portfolio is in line with the proposal by Wistuba et al. (WISTUBA; SCHILLING;
SCHMIDT-THIEME, [2015)), an approach for hyperparameter tuning based on a portfolio of hy-
perparameter configurations. The idea is to reduce the computational cost of exploring the
hyperparameter space on new problems. To achieve this, the NN-SMFO (Nearest Neighbor
Sequential Model-Free Optimization) strategy is used to optimize the hyperparameter search
considering the similarity between datasets. Instead of evaluating all hyperparameter configu-
rations, it possible focuses on those that are most similar to the data already evaluated, using
the KTRC distance function to measure this similarity. In addition, the CANE (Cumulative
Average Normalized Error) metric measures how efficiently a strategy converges quickly to
the best hyperparameter configuration. This combination of techniques makes the search for
hyperparameter configurations more efficient.

Autosklearn 2.0 has similar goals to MetaML in curating search spaces that address a
wide range of problems. Autosklearn 2.0 focuses on building a portfolio of pipelines based
on evaluations on different datasets. In contrast, our goal is not to build a portfolio through
pipeline evaluations. Instead, we leverage historical data from repositories that provide results
from machine learning experiments. This allows us to identify more representative pipelines
that are capable of covering a wide of problems without the need for extensive evaluations. In
this way, we aim to reduce the computational overhead associated with evaluating different
pipelines, which we highlight as a unique contribution of our work.

These methods perform an online search. The pipeline steps considered within the search
space by the AutoML frameworks vary in their inclusiveness. The frameworks Auto-WEKA (THORN-

TON et al.,2013; KOTTHOFF et al., 2017)), AutoSklearn 1.0 (FEURER et al., 2015)) and AutoSklearn

50

2.0 (FEURER et al., 2022) address the full machine learning pipeline, encompassing DPE], FE,
MS, and HO.

3.3.2 AutoML using Random Search

Frameworks like General Automated Machine learning Assistant (GAMA) (GIJSBERS;
VANSCHOREN, 2020), Hyperopt-Sklearn (KOMER; BERGSTRA; ELIASMITH, [2019)), Naive Au-
toML (MOHR; WEVER, [2023)), and H20 AutoML (LEDELL; POIRIER, [2020) use the Random
Search (RS) technique.

In the GAMA three optimization techniques are available, which are: RS, Asynchronous
Successive Halving Algorithm (ASHA) and Asynchronous Multi-Objective Evolutionary Algo-
rithm (AMOEA) (GIJSBERS; VANSCHOREN, 2020). Finally, a post-processing technique can be
used to create a committee of the evaluated pipelines. In Hyperopt-Sklearn, there are different
search strategies, such as: RS, TPE (Tree of Parzen Estimators) and Annealing.

The idea behind Naive AutoML is to propose a simple baseline method to which the more
complex ones can be compared. While most methods consider the steps of a pipeline to be
interdependent, Naive AutoML proposes a “naive” approach where each step is independently
optimized via RS, and the final pipeline is built by simply using the best algorithm for each
step. The greatest advantage of this approach is that it reduces the search space considerably,
making it more efficient in terms of computational cost. Surprisingly, this simpler approach
has been shown to achieve comparable and sometimes better results than more complex
methods (MOHR; WEVER), 2023). Instead of assuming inter-independence within the steps to
reduce the search space, MetaML focuses on a strategy to automatically curate the instances
in the search space, leaving only the most relevant pipelines based on historical data. This
optimizes MetaML'’s training and effective performance, allowing quick recommendations of
full ML pipelines that take into account the relationship between the steps of the pipeline.

Instead of assuming inter-independence within the steps to reduce the search space,
MetaML focuses on a strategy to automatically curate the instances in the search space,
leaving only the most relevant pipelines based on historical data. This optimizes MetaML's
training and effective performance, allowing quick recommendations of full ML pipelines that
take into account the relationship between the steps of the pipeline.

H20 AutoML makes use of RS technique and its framework encompasses the use of

2 Except Auto-WEKA.

51

stacked for post-processing, i.e., Stacked involves training a high-level model to combine the
predictions of lower-level models to obtain a better final prediction (TING; WITTEN, [1999).

The frameworks GAMA (GIJSBERS; VANSCHOREN, [2020), Hyperopt-Sklearn (KOMER; BERGSTRA;
ELIASMITH, 2019)) and Naive AutoML (MOHR; WEVER, 2023)) cover the entire machine learning
pipeline, including DP, FE, MS, and HO. In contrast, H20 AutoML (LEDELL; POIRIER, 2020)

focuses specifically on MS and HO. All these methods perform an online search.

3.3.3 AutoML with Genetic Programming

Tree-based Pipeline Optimization Tool (TPOT) (OLSON; MOORE, [2016) uses Genetic
Programming (GP) as the method for optimizing tree-based pipeline operators. There are
three operators: the supervised classification algorithm, the attribute preprocessing algorithm,
and the attribute selection algorithm. It addresses the entire machine learning pipeline and

performs an online search.

3.3.4 AutoML other optimization types

In ML-Plan (MOHR; WEVER; HULLERMEIER, [2018)), the strategy is through Hierarchical
Task Network Planning, in which it explores a graph, through a best-first algorithm to identify
good pipelines. The Tabular Prior-Data Fitted Network (TabPFN) (HOLLMANN et al., |2025)
uses a transformer-based generative architecture. Initially, synthetic tabular datasets are gener-
ated, with different relationships between features and targets (meta-learning). Then, a trans-
former model is trained to predict the targets from these synthetic datasets. The transformer
training is performed offline; it is done only once on these synthetic data. After this training,
the model can make predictions for new datasets without additional training. However, it has
limitations that correspond to the size of small to medium-sized datasets with limits of up to
10,000 samples and 500 features. Another limitation corresponds to the fact that although
TabPFN is fast for training, it may not be ideal for real-time inference.

AutoGluon (ERICKSON et al., [2020) uses a multi-layer stack strategy, i.e., the first layer
consists of several trained base models, then the predictions of the base models are con-
catenated and serve as input to the next layer, which is composed of stackers models. The
predictions of the second layer are fed to the last layer, where they are aggregated into an

ensemble to produce the final output in a weighted form.

52

The framework FLAML-Zero (KAYALI; WANG, 2022) uses meta-learning as its main rec-
ommendation strategy. Similarly to MetaML, FLAML-Zero is a zero-shot approach, hence it
does not need to perform an online search. During its offline stage, it builds a set of candidate
pipeline configurations, which are evaluated for performance on various tasks. After this phase,
the search space is reduced to form a smaller portfolio of configurations that meet a predefined
performance criteria on all of its training tasks. During the online stage, given a new test task,
a decision function is used to select which portfolio configuration to apply. For this selection, a
kNN meta-classifier is used. The main drawback of this approach is that it is evaluated with a
search space that only includes variations of decision tree-based classifiers and their hyperpa-
rameters, neglecting the importance of preprocessing techniques. Additionally, its meta-model
relies on only four simple meta-features: the number of instances, the number of features,
the number of classes, and the percentage of numeric features. These simple meta-features
are unlikely to provide enough predictive power if a wider search space focusing on the full
pipeline was to be considered. In contrast to the FLAML approach, which relies on evaluating
candidate configurations to find effective solutions, MetaML adopts a search space curation
strategy based on historical data. Instead of trying out new configurations, it uses the knowl-
edge gained from previous experiments to focus on options that have already demonstrated
promising results.

AutoGluon (ERICKSON et al., 2020) and FLAML-Zero (KAYALI; WANG) 2022), focus specif-
ically on MS and HO. OBOE (YANG et al., [2019)), which is also concerned only with MS and
HO, employs Collaborative Filtering (CF) as its main search strategy. However, OBOE still
requires executing part of the pipelines in its search space for every new query dataset to
predict the remaining pipelines’ performance using CF and recommend the optimal one. This
impacts its responsiveness during the recommendation phase. On the other hand, MetaML's
use of meta-learning ensures that, given a query dataset, a ranking of ¢ complete pipelines can
be recommended in a fraction of the recommendation times required by these other methods.

In summary, we highlight some key points from the discussion:

= Notice that other frameworks also use meta-learning to some extent: AutoSklearn 1.0 (FEURER

et al, 2015), AutoSklearn 2.0 (FEURER et al., [2022) and OBOE (YANG et al., 2019).

= Notably, most frameworks adopt online search strategies, conducting computationally
intensive searches during the recommendation phase. In contrast, MetaML uses meta-

learning as its main and only recommendation strategy, delegating much of the compu-

53

tational complexity to an offline meta-model training phase, allowing for an efficient and

responsive recommendation phase.

» MetaML focuses on the entire pipeline and could include hyperparameter optimization
(HO). However, HO is not considered in its current version, evaluated in this study,
as we prioritized the broader stages of the pipeline due to the added complexities HO

introduces.

» It is important to note that none of the discussed approaches can learn a search space
from historical data, as highlighted in Table 2] While FLAML-Zero Shot builds a curated
search space, it initially evaluates many candidate configurations to form its final port-
folio. In contrast, our approach reduces the computational cost of evaluating numerous
configurations by utilizing results from previous OpenML experiments to build a more
efficient curated search space. Furthermore, this approach can help to avoid biases in the
meta-learning system by ensuring that the meta-level selection of pipelines is based on a

diverse set of experiments.

3.4 METAML

The proposed framework, MetaML (Figure , comprises four phases that are detailed
in the following subsections: search space definition, meta-dataset construction, training, and

recommendation. The mathematical notation used in this section is listed in Table 3

3.4.1 Search space definition

For the search space definition, we propose an algorithm that considers a historical record,
with results of previous ML experiments on different datasets, to automatically design a curated
search space with reduced complexity. The goal is that the search space is composed only of
frequently used and high-performing pipelines in past experiments to form a more effective
search space.

The rationale behind the algorithm is that in the space of all possible pipelines, there
is (i) redundancy, i.e., different pipelines that achieve similar results, (i) lots of naive and
unnecessary pipelines, such as pipelines composed of combinations of steps that do not make

sense (e.g., algorithms based on decision trees preceded of a data scaling step) and even (iii)

54

Select the top n
experiments for each
dataset

Select the k most
frequent pipelines

(0)

Record of ML
experiments

For each dataset, select
best experiment IF its
pipeline is in P

Final set of
experiments
(search space)

Select all datasets Define
usedin S meta-targets

Extract
meta-features

Meta-dataset (f1,m1)

1 (C) TRAINING PHASE

offline |
: Train meta-model
online

Extract v /\ st.....
N meta-features 2nd.....

I —

New dataset Ranking of pipelines for N

Figure 11 — The MetaML framework process is divided into four main phases: (A) Search Space Definition,
(B) Meta-Dataset Construction, (C) Training Phase, and (D) Recommendation Phase. The arrows
indicate transitions between these stages. In phase (A), G represents the selection of the top n
experiments for each dataset present in the collection @, while P corresponds to the k& most
frequent pipelines among the experiments in G. From this filtering step, the best-performing
experiment is selected for each dataset, provided that its pipeline belongs to P. This process

defines the search space S.

pipelines that make sense but are almost never used in practice because they are only applicable

to niche cases. Therefore, by selecting only the most frequent and high-performing pipelines

from historical data, we avoid adding unnecessary noise to the search space and, consequently,

to the training of the recommendation model. An analysis was performed on OpenML tasks

to support these assumptions, and the results are presented in Appendix [Al

The steps performed within the algorithm are described in the component A of Figure

. We start with a collection, denoted as O, which contains records of past machine learning

55

Table 3 — Mathematical notation.

Notation Description

D A matrix representing one dataset.

D The set of the datasets used in S.

D, The dataset used in the experiment e.

e; = (D,m,p) A tuple that represents an ML experiment.

£ ={ff3 ..., f*} A meta-feature vector with = meta-features.

G The set of the top n experiments (w.r.t. performance) for every
unique dataset in O.

k Number of most frequent pipelines.

M = {(f,71), (b, 2), . (£, 7))} The meta-dataset. Each pair (f;, 7;) represents the meta-features
and the meta-classes of the dataset D;.

m Number of meta-classes.

N A new (query) dataset.

n Number of experiments.

O The record of previously executed ML experiments.

P The set of the k most frequent pipelines in G.

D A scalar representing the value of a performance metric.

q Number of pipelines.

RN A ranking of the ¢ most promising pipelines for N.

S The search space.

x Number of meta-features.

z Number of datasets.

T An ML pipeline.

0 Recommended pipeline.

XIEREE

The best pipeline for dataset D;, where y is the number of

meta-classes, and each component 7/ can be either 0 or 1, representing

whether or not a certain preprocessing step is included.

The meta-classifier.

experiments. Each experiment, represented as e;, comprises three components: a dataset D, a

pipeline 7, and its corresponding performance measure p. In other words, e; = (D, 7, p). From

this collection, we construct another set, G, which contains the top n performing experiments

for each unique dataset present in Q.

Formally, we can define G as in Eq. 3.1}

where top(n, Q) is a function that returns the set of the top n experiments, in terms of

G ={e| e € top(n,0)}

(3.1)

performance, for every unique dataset in Q. Therefore, if there are d unique datasets in O,

then |G| =n x d.

Then, to form the search space S, for each unique dataset in the tuples of G, the experi-

56

ment with the highest performance p in G is selected only if its pipeline is in a set IP of the &
most frequent pipelines in G, else, the experiment is discarded. Consequently, S contains only

one experiment record for each dataset.

Then, P can be defined by Eq. [3.2;

P = {n | 7 € most_freq(k,G)} (3.2)

where most_freq(k, G) is a function that returns the k£ most frequent pipelines in G. Finally,

the search space can be obtained from Eq. 3.3
S={e|m€PAe € best_exps(G)} (3.3)

where best_exps(G) is a function that returns a set with the best experiment for every unique
dataset in G. Note that, the traditional concept of search space, as a set of pipelines, can
be obtained by taking every unique pipeline from S, that is {m.|e € S}, where 7. is the
pipeline used in the experiment e. However, we consider S our search space because, as a
precursor for the construction of the meta-dataset, it contains not only a set of pipelines but
the association of each dataset with its best pipeline. This information is necessary for the

training of the proposed meta-model.

3.4.2 Meta-dataset construction

This phase, represented in component B of Figure [I] takes as input the set of experi-
ments, S, defined in the previous phase (Search space definition), from which it obtains the
datasets and the associated best pipeline. All the datasets used in the experiments in S are
selected, i.e., D = {D.|le € S} = {Dy,D,,...,D.}. The Meta-features extraction module
represents each dataset D; using a meta-feature vector f; = {f!, f2, ..., f*} with x meta-
features. In parallel, the Meta-target definition module associates each dataset D; with a
target vector, a pipeline, m; = {n}, 7% ..., 7"}, where m is the number of meta-classes, and
7/ can be either 0 or 1, representing whether or not a certain preprocessing step is included.
m; is the best pipeline for dataset D;, according to the associations in S. As a result, this

phase outputs the meta-dataset M = {(f}, m), (f5, m2), ..., (f., 7.)}, where each pair (f;, ;)

represents the meta-features and the meta-classes of the dataset D,.

57

3.4.3 Training

In this phase, represented by component C of Figure [11] the meta-classifier X is trained
using the meta-dataset M. A is a multi-label classifier capable of modeling the relationship
between the meta-features and each step of the pipeline while also considering the correla-
tions between the steps by chaining the individual predictions. By learning from the described
curated meta-dataset, which contains only high-performing and historically relevant pipelines,
we hypothesize that it is possible to predict good pipelines for any new dataset. It represents a
robust alternative to optimization processes in terms of computational cost and performance

for recommending pipelines.

3.4.4 Recommendation

The recommendation phase, depicted in component D of Figure [11} is the only online
step of our approach. It is when the trained meta-classifier (A) recommends a set of promising
pipelines for a new dataset N. Given a new dataset N ¢ D, the first step is to extract its
meta-features composing the vector fn. The vector fy is provided as input to the multi-
label meta-classifier X\. This way, A generates an ordered list (ranking) Ry of the ¢ most
promising pipelines for N, where, Ry = (71, 72, ..., 7@,). The pipelines in Ry are ranked in
the descending order of their class probabilities calculated by the trained meta-model. The
rationale is to provide a few options that the user can choose from instead of predicting a
single pipeline that may not be the best performing or, even if it is, it may not be the best
option for the user due to other requirements such as computational complexity or model
interpretability.

As a final step, the user can choose to use MetaML's recommendation as a zero-shot
approach, where no further pipeline evaluation is necessary, or a few-shot approach, where the
few recommended pipelines are compared prior to selection. The zero-shot approach can be
achieved either by setting ¢ = 1 or by selecting the 1st pipeline in the ranking when ¢ > 1.
In the few-shot (g-shot in this case) approach, the recommended pipelines in the ranking are

tested on the query dataset using a cross-validation procedure in order to elect the best one.

58

3.5 EXPERIMENTAL SETUP

In this section, we present the experimental setup in detail. First, we describe how the
search space design and the datasets used to construct the meta-dataset (Section [3.5.1)).
Then, the entire meta-dataset creation process is described (Section [3.5.2)), followed by the
process employed to select the meta-model algorithm to be used by the MetaML (Section
3.5.3). Furthermore, the data preprocessing step is detailed (Section [3.5.4). Finally, in Section
[3.5.5] the research questions are presented and the evaluation procedure designed to answer

them is explained.

3.56.1 Datasets and Search Space

The search space is based on historical record, consisting only of frequently used and
high-performing pipelines from past experiments. In this first version, we use OpenML as our
main source of historical data. It is important to note that our approach is not limited to
OpenML and can be applied to any repository of historical ML experiments. The datasets and
the record of previously executed experiments O used in the experiments were collected from
the OpenML open-source platformP|in April 2024. This record served as input to the procedure
described in Section , using parameters n = 5 and k = 5 (the choice of these parameters
was empirically defined, as is explained in Section ; however, we applied a few filtering
criteria as follows. We selected only experiments using datasets with a number of instances in
the interval [100, 8000000], number of classes in [2, 100], number of attributes in [4, 100], and
no missing values. From these experiments, only the ones that performed a classification task,
reported performance in accuracy, applied 10-fold cross-validation, and used the Scikit-learn
library (PEDREGOSA et al), 2011a])*| were included.

Initially, the procedure resulted in a total of 11,435 experiments in G using 329 unique
datasets and a variety of classification algorithms used in the pipelines, as K-Nearest Neigh-
bor (KNN), Decision Tree (DT), Support Vector Classifier (SVC), Random Forest (RF),
Multilayer Perceptron (MLP) and Extremely Randomized Trees (ExtraTrees), and an equally
diverse list of preprocessing techniques, e.g., Principal Components Analysis (PCA), OneHo-

tEnconder, Variance Threshold, Standard Scaler and Polynomial Features.

https://www.openml.org/

4 For ease of implementation.

59

However, after the last filtering step of the search space definition, to select only the
most frequent pipelines, the final number of experiments in S is 296, and the number of
unique datasets was consequently the same since we selected only one (the best) experiment
for each dataset. Some complexity meta-features could not be calculated for six of these
datasets, which were then removed. Therefore, our final number of instances in the meta-
dataset was 290. Appendix |B| presents the final list of datasets used in the meta-dataset. To
ensure the diversity of this selection, we performed an analysis presented in Appendix [C} For
example, for the complexity meta-features, which describe the difficulty of the problems, the
analysis reveals a heterogeneous distribution covering a wide range of scenarios. Thus, there
are datasets of different complexity.

The pipelines included in the search space are detailed in Table [4l The binary digits in-
dicate whether or not each technique is present in the pipeline. OHE - One-Hot Encoder,
VT - Variance Threshold, SS - Standard Scaler, DT - Decision Tree, SVC - Support Vector
Classifier, RF - Random Forest. From the 290 datasets selected, 222 are binary, and 68 are

4 and 7 were the top-performing solutions in 117, 89,

multi-class problems. Pipelines 73, 7
and 84 experiments, respectively, and the preprocessing techniques were only employed in
26 experiments. No pipeline employing RF applied preprocessing techniques. Note that these
numbers indicate an imbalanced, multi-label meta-dataset. The resulting search space consists
of three classification algorithms (DT, SVC, and RF) and three preprocessing techniques (One-
HotEncoder, Variance Threshold, and Standard Scaler). All algorithms were used with their

default hyperparameter configurations. We prioritized on the broader stages of the pipeline,

due to the complexities introduced by HO.

Table 4 — The five pipelines included in the MetaML's search space.

o Preprocessing Classifier
Pipeline
OHE VT SS SvC RF DT
ml 1 1 1 1 0 0
2 1 1 1 0 0 1
73 0 0 0 1 0 0
m 0 0 0 0 1 0
7o 0 0 O 0 0 1

60

3.5.2 Meta-dataset construction

This step consists of extracting the dataset's meta-features and associating them with
a meta-target. In this case, the meta-target is the best-performing pipeline for each dataset,
which is obtained from the set of experiments in the search space S. A summary of the 86 meta-
features used to represent each dataset is presented in Appendix|D] They belong to five groups:
simple, info-theory, statistical, model-based, and complexity. Simple, info-theory, and statistical
measures are commonly used (RIVOLLI et al,, 2022), requiring low computational effort to
calculate them (KHAN et al., 2020). Model-based measures are a robust way of characterizing
the datasets with information from predictive models (RIVOLLI et al., [2022), but they yield
significantly higher computational costs than the previous measures (KOTLAR et al| 2021).
Complexity measures aim to describe a meta-learning task in terms of how intricate they
are (LORENA et al,, 2019; PARMEZAN; LEE; WU, [2017)). They allow analyzing the complexity
of datasets in different aspects, such as feature-based complexity measures, which evaluate
how informative attributes are to separate classes, and linearity measures, which evaluate how
linearly classes can be separated, which can contribute to improving the recommendation. The
simple, info-theory, and statistical meta-features were fetched from OpenML (VANSCHOREN
et al), 2014) records, and the PyMFE (ALCOBACA et al., 2020) package was used to extract
the model-based and complexity ones. Overall, the set of meta-features employed in MetaML
is diverse, which is desirable since it allows for capturing different and relevant information

about the tasks.

3.5.3 Meta-Model

To select an algorithm to use as MetaML's meta-model, three candidate multi-label classi-
fiers were considered: Label Powerset (LP), Classifier Chains (CC), and Probabilistic Classifier
Chains (PCC). The advantage of these three algorithms is that they take the relationship
between labels into account (HERRERA et al., 2016). This property allows MetaML to predict
pipelines taking into account the relationships between its steps. We compared these three
candidates, as seen in Section [3.6.1] and PCC presents the best base-level performance and,
therefore, is the one we selected and employed in all remaining analyses. PCC is an extension of
the Classifier Chains algorithm and uses Bayesian optimization to find the best chaining order

of the classifiers. It also enables predictions of a ranking of ¢ pipelines for a query dataset. This

61

is done by ranking the probabilities computed for the classifier chain. As the base estimator
for the PCC, we used a Decision Tree classifier, with entropy as its splitting criterion and a

minimum of 10 samples in a leaf node.

3.5.4 Data Preprocessing

The values of the meta-features used in this study vary in different intervals and may
present outliers, therefore the Quantile Transformer scaling algorithm was employed because
of its robustness to outliers (PEDREGOSA et al., 2011a) (AMORIM; CAVALCANTI; CRUZ, 2023b)).

Of the 120 meta-features initially considered, we excluded those with more than 10% of
missing values, resulting in 86 meta-features. Then, it was observed among these 86 meta-
features, 24 meta-features related to the number of numerical attributes still presented missing
values on 7.5% of the datasets, those without numerical attributes. Thus, we decided to impute
their value as zero for these cases. Other meta-features with fewer missing values were fixed by
a KNN imputation (ZHANG, [2012) (k = 5), namely, f2.mean (5.52%), fl.sd (3.79%), f1.mean
(3.79%), nodes_repeated.sd (3.45%), nodes_per_level.sd (3.10%), and tree_imbalance.sd
(3.10%).

3.5.5 Evaluation procedure

The experiments described in this section are designed to answer the following research

questions:i

RQ1 Can a meta-learning based AutoML system, that takes into account the interdependence
of pipeline steps, achieve pipeline recommendation performances equivalent to the state

of the art but incurring much less computational time?

RQ2 Is it possible to obtain better pipeline recommendations using an algorithmically curated

search space instead of a larger superset of such space?

For all the experimental analyses in this paper, the MetaML is trained and tested using
a leave-one-dataset-out cross-validation procedure (LODOCV), where from the 290 datasets,
289 are used for training the meta-model, and one is left for testing. This procedure is repeated
290 times so that each dataset is the test instance exactly once. From this, the meta-model

performance is calculated by taking the mean of the meta-classifier performances (in terms of

62

the F1, Accuracy, and Precision metrics) over the 290 test instances. The base-level perfor-
mances are calculated by taking the pipeline recommended for each test dataset and evaluating
its accuracy on such dataset using a 10-fold cross-validation procedure. Therefore, a final set
of 290 base-level performances is obtained, one for each dataset.

However, for the analysis required to answer RQ1, only a subset of 152 of the MetaML's
base-level performances is considered to compare it against the state of the art. This subset is
presented in Appendix [E] It was necessary to use this subset to maintain fairness in the com-
parison and dataset diversity. From the original 290 datasets, 85 were used in the AutoSklearn
1.0 meta-learning training procedure and were therefore removed. Other 47 datasets were ex-
cluded to reduce the number of datasets belonging to the same family, hence increasing the
diversity within the test bed. Another 6 datasets were excluded because some methods failed
to interpret them due to formatting issues, leading to 152 datasets. Some of the methods also
failed to execute for less than 11.68% of the datasets due to memory errors or due to exceeding
the computational time limit. TABPFN presented limitations when dealing with datasets with
a high number of classes and instances, exceeding its maximum supported capacity. It was
only capable of dealing with problems that had up to 10,000 training examples, 500 variables,
and 10 classes. Thus, it presented errors in about 20% of the datasets. Hence, we imputed the
missing results for this method using a Constant Predictor. The baseline, Constant Predictor,
predicts the empirical class probabilities from the training data.

Using this subset of 152 datasets, the proposed MetaML is compared, at the base level,
with the following frameworks: Auto-WEKA, AutoSklearn 1.0, AutoSklearn 2.0, AutoGluon,
FLAML-Zero, H20 AutoML, Naive AutoML, TabPFN and TPOT. Since Auto-sklearn 2.0
does not support the accuracy metric, we configured it to use balanced accuracy. However, to
enable a fair performance comparison across the 152 datasets with other AutoML methods,
we computed the standard accuracy metric based on the predictions obtained from all cross-
validation folds. FLAML-Zero was included because it is a method that can operate in zero-
shot mode, akin to MetaML. Naive AutoML was included because it was proposed as a
baseline method for AutoML studies and because, unlike MetaML, it does not consider the
interdependence of the pipeline steps, which, therefore, helps us validate our hypothesis on the
relationship between pipeline steps. The remaining frameworks were included because of their
popularity, as shown by their large number of citations. To facilitate the comparison of the
existing frameworks, we used the AutoML benchmark tool (GIJSBERS et al., [2019)) ((GIJSBERS et

al., |2024) setting a runtime limit (i.e., time budget) of 3 hours per dataset for each compared

63

method. The software implementation details of the MetaML and the hardware used in the
experiments are described in Section W and the source code for the experiments is available

at the project’s repositoryﬂ.

3.5.6 Software and Hardware

The MetaML was implemented using the Python language (version 3.9.1) and the fol-
lowing packages: Scikit-Learn (PEDREGOSA et al., [2011a)) (version 1.2.2), Pandas (MCKINNEY,
2010) (version 1.5.3), Scikit-Multilearn (SZYMANSKI; KAJDANOWICZ, [2017) (version 0.2.0),
OpenML (FEURER et al|, 2020)) (version 0.10.2), and PyMFE (ALCOBACA et al. [2020) (ver-
sion 0.4.2). The experiments for the comparative analysis were performed using the AutoML
Benchmark on the Linux operating system, using an eight-core, 3.7GHz AMD Ryzen 7 2700X
processor with 16 GB of RAM for the lager datasets, and a six-core, 3.4GHz AMD Ryzen 5

processor with 16 GB of RAM for the smaller datasets.

3.6 RESULTS AND DISCUSSION

In this section we detail the experiments designed to evaluate MetaML and answer the
research questions. We present a comparative analysis of the base-level performance of MetaML
and the state of the art in Section [3.6.2] Section compares their recommendation times.
An analysis of the pipelines recommended by MetaML is presented in Section [3.6.4] Details
on the effects of our search space curation method are presented in Section [3.6.5] Finally, in
Section [3.6.1 we present the experiment where we compared three multi-label classification

algorithms before adopting PCC as MetaML's meta-model.

3.6.1 Comparing meta-model algorithms

To decide on the choice of meta-classifier algorithm to be employed in the MetaML, we
considered three multi-label algorithms as described in Section 3.5.3; LP, CC, and PCC. As
previously discussed, PCC is the only one that gives us the possibility of recommending a
ranking of pipelines (sorted according to their probabilities) and, because of this, MetaML can

be used as a few-shot approach when using PCC. Therefore, we compared the average rankings

5 https://github.com /cynthiamaia/MetaML

64

on base-level accuracy of these five options: MetaML-LP (zero-shot only), MetaML-CC (zero-
shot only), MetaML-PCC zero-shot, MetaML-PCC two-shot and MetaML-PCC three-shot.

Figure [12| illustrates these rankings in a CD diagram.

MetaML-PCC 3-shot MetaML-CC
MetaML-PCC 2-shot MetaML-PCC zero-shot
MetaML-LP

Figure 12 — Critical difference diagram of the average ranking of meta-model algorithms considering their
base-level accuracy.

Note that the PCC with a 3-shot approach is the best choice of meta-model strategy for
the MetaML, presenting the lowest (best) ranking and being significantly different from the
3 other approaches. This suggests that including more options in the recommendation allows
for greater robustness, as it enables greater exploration of the set of candidate pipelines and
increases the flexibility, the power of generalization and thus the chances of recommending the
best pipeline for a given query dataset. Furthermore, recommending more than one pipeline
allows the users to choose based on other criteria, such as interpretability or computational
cost, according to their particular needs.

In addition to the three multi-label algorithms, we also studied the use of single-label meta-
models through the decomposition of the multi-label problem in several, individual, single-label
problems. The results of this analysis can be seen in Appendix[F| While some of the single-label
approaches were able to achieve slightly better performance than the chosen PCC approach,
we emphasize that the motivation behind employing this multi-label algorithm is due to its
ability to exploit label inter-dependencies. This capability is particularly valuable in pipeline
recommendation tasks, where preprocessing and classification steps may have meaningful inter-
dependencies. As the meta-dataset is enriched with a broader spectrum of pipelines, it is
expected that this characteristic of the PCC algorithm will demonstrate its value and its

advantages will become more evident.

3.6.2 Comparing the performances of recommended pipelines

Table |5 presents the results of the state-of-the-art methods and the MetaML regarding

the performance (accuracy) of the recommended pipelines. Here we evaluate MetaML both

as zero-shot, in Table a), and as a 3-shot method, in Table b). Recall that, in the zero-

65

shot approach, the first pipeline in the recommended ranking is selected, while in the 3-shot
approach, the 3 pipelines in the ranking are tested on the dataset, using 10-fold cross-validation,
and the one with maximum accuracy is selected. A comparative analysis was also performed
considering the division between artificial and real datasets. This analysis is illustrated in
Appendix [G|

Table 5 — A base-level analysis of the mean performance (accuracy) of the pipelines recommended by the
AutoML methods, Win/tie/loss of the MetaML zero-shot (a) and 3-shot (b) against the others, mean
ranking, p-value of the Wilcoxon signed rank test with o = 5.56e-04, and the total recommendation
time taken for datasets for which all methods ran successfully.

Mean acc. Win/tie/loss Mean rank p-value Time (hours)

Auto-WEKA 0.743 76/9/67 6.447 0.594 356
AutoSklearn 1.0 0.774 48/15/89 5.098 0.020 371
AutoSklearn 2.0 0.792 47/13/92 4.171 4.13e-06 361
AutoGluon 0.830 50/8/94 5.457 2.60e-08 13
H20 AutoML 0.789 72/3/77 6.388 0.211 366
Naive AutoML 0.811 50/16/86 4.763 4.13e-05 59
TPOT 0.746 61/13/78 5.447 0.275 357
FLAML-Zero 0.759 91/25/36 7.013 1.48e-08 0.001
TabPEN 0.767 57/13/82 4.223 0.060 23
MetaML Zero-shot 0.798 - 5.990 - 0.056
(a)
Mean acc. Win/tie/loss Mean rank p-value Time (hours)
Auto-WEKA 0.743 100/11/41 6.611 1.39e-05 356
AutoSklearn 1.0 0.774 70/15/67 5.243 0.303 371
AutoSklearn 2.0 0.792 64/14/74 4.286 0.073 361
AutoGluon 0.830 74/9/69 5.618 0.176 13
H20 AutoML 0.789 92/2/58 6.516 0.017 366
Naive AutoML 0.811 66/22/64 4.888 0.646 59
TPOT 0.746 76,/15/61 5.552 0.047 357
FLAML-Zero 0.759 107/23/22 7.111 6.19e-17 0.001
TabPFN 0.767 74/19/59 4.355 0.458 23
MetaML 3-shot 0.821 - 4.815 - 0.108
(b)

For this analysis, a time budget of 3 hours per dataset was imposed. In its last column,
Table 5| also compares the total recommendation time elapsed, which for MetaML includes
the time for feature extraction, meta-model inference, and, in the case of MetaML 3-shot,

the selection of one of the 3 recommended pipelines, by evaluating them with 10-fold CV on

66

the query datasets. Most methods failed to execute for a few datasets. For fairness, the time
reported here considers the recommendation time taken only for the 124 datasets for which all
methods ran successfully. The p-values, from a Wilcoxon signed-rank test, that are under the
a = 5.56e-04 significance level, indicate cases where there is a significant difference between
the compared method and MetaML's performance. This value for o was obtained by applying
a Bonferroni correction to the typical value of 0.05 to control for family-wise Type | error
(BENAVOLI; CORANI; MANGILI, [2016)).

In Table |5 although AutoSklearn 2.0 had a slightly lower average rank (4.286) than
MetaML 3-shot (4.815), however, this difference was not statistically significant (p-value =
0.073), while MetaML achieved a higher average accuracy (0.821 vs. 0.792). In terms of
win/tie/loss, Auto-sklearn 2.0 achieved more wins, but the difference does not indicate a
dominant advantage.

Another relevant point is time, while Auto-sklearn 2.0 required 361 hours, MetaML
achieved competitive results in a few minutes. This contrast can be attributed to each ap-
proach’s different strategies in the online phase. Auto-sklearn 2.0 sequentially evaluates all
pipelines in its fixed portfolio of pipelines (built offline) using the Successive Halving technique,
which progressively allocates time to the most promising pipelines. If time is still available,
an additional Bayesian Optimization step is triggered to refine the solution further. In con-
trast, MetaML uses a curated search space composed exclusively of the most frequent and
best-performing pipelines extracted from publicly available experiments (such as OpenML).
Auto-sklearn 2.0 uses approximately 100 pipelines, while MetaML includes only 5 candidate
pipelines. This avoids redundant execution of configurations in the online phase. Thus, even
though Auto-sklearn 2.0 shows an advantage in terms of average ranking, the results indicate
that MetaML is capable of achieving competitive performance with reduced computational
cost.

TabPFN, which ranks second in terms of mean ranking, exhibits lower mean accuracy and
slower prediction speed compared to MetaML zero-shot and 3-shot. Additionally, with MetaML
3-shot, we achieved a higher number of wins. Furthermore, we note that TabPFN has some
limitations. Its training time is low, but the prediction time is significantly higher; for example,
for a dataset with 9285 instance and 4 features, TabPFN took 1.02 seconds to predict a single
sample. This means the total time to predict all samples would be approximately 2.6 hours,
as emphasized in the paper, TabPFN's inference speed is slower (HOLLMANN et al., 2025)).

Note that MetaML 3-shot presented the second-best mean accuracy and third-best rank-

67

ing, consistently achieved higher number of wins (exception of Auto-sklearn 2.0), and the
second-lowest recommendation time of all methods. MetaML zero-shot achieved numbers
that, while inferior to the 3-shot variant, are still competitive for the amount of computational
time it requires, since it presented the third-best mean accuracy and a mean ranking that is
statistically equivalent to the other zero-shot technique, FLAML-Zero, and even to the tech-
nique with the best mean accuracy, AutoGluon. That said, in terms of base-level performance,
this indicates that MetaML 3-shot has a better performance/cost balance than MetaML zero-
shot, as its time penalty of just 1.51 seconds per dataset when compared to zero-shot method
can be justified by its superior performance.

AutoGluon was the only method that presented a better mean accuracy than the MetaML
3-shot. However, the p-value indicates that their difference is not statistically significant.
AutoGluon employs a neural network to stack and ensemble a few predefined models, including
some high-performing classifiers, with a pre-defined sequence of pre-processing steps. Unlike
the other methods, it does not recommend a pipeline for a query dataset, but instead uses the
time budget to train and apply as many as possible of its base models on the specific query
dataset, combining their outputs. This explains its shorter recommendation time as it does not
need to search for an optimal pipeline. The downside is that its fixed predefined models may
not specialize well for some problems (hence presenting only the 7th best mean ranking) which
can lead to low performances for some datasets, even for bigger time budgets. In other words,
even though AutoGluon numerically achieves higher mean performance, MetaML 3-shot still
wins for 74 (48.7%) of the datasets against 69 (45.4%) wins for the AutoGluon. MetaML
3-shot also reaches a better mean ranking than AutoGluon (4.815 against 5.618).

When compared to Naive AutoML, MetaML 3-shot presents a lower (better) mean rank-
ing, and the p-value indicates that this method's results are equivalent to MetaML's. MetaML
3-shot also presents higher mean accuracy at a much lower computational time of 0.108h
against 59h for Naive AutoML.

FLAML-zero presents the lowest computational time, as expected due to its zero-shot
meta-learning approach, which uses just a few simple meta-features. However, it presents a
lower mean accuracy, losing for 91 (67.9%) and winning for only 36 (26.9%) datasets against
the MetaML zero-shot. When compared to MetaML 3-shot it loses for 107 (70.4%) and wins
for only 22 (14.5%). It also presents the worst mean ranking of all methods. Its simple pipelines,
focusing only on the selection of DT-based models and the tuning of their hyperparameters,

coupled with its choice of search space reduction strategy and the few and simple meta-features

68

it relies on, may be the culprits for its lower performances.

When compared to the remaining methods, which employ the traditional optimization
technique, MetaML 3-shot presents even larger advantages in terms of either the win/loss
ratio or the mean accuracy and rankings. This reiterates our assumption that using meta-
learning and our heuristically curated search space it is possible to reduce costs and increase
performance. The better win/loss ratio, mean accuracy, and ranking objectively show that
MetaML 3-shot is the best option for most datasets, especially when considering its balance
between performance and computational time.

Figure [13| presents a critical difference diagram comparing the rankings of the AutoML
methods reported in Table [5] the post-hoc Nemenyi test was applied. In this type of dia-
gram, the horizontal lines connect statistically equivalent methods. Note that MetaML 3-shot
performs equivalently to robust AutoML methods such as AutoSklearn 2.0, AutoSklearn 1.0,
TabPFN, Naive AutoML, AutoGluon while being significantly superior to FLAML-Zero, Auto-
WEKA, and H20 AutoML. MetaML zero-shot presents an inferior result, but is still significantly
better than FLAML-Zero.

CD
A
1 2 3 4 5 6 7 8 9 10
AutoSklearn 2.0 FLAML-Zero
TabPFN Auto-WEKA
Naive AutoML H20 AutoML
AutoSKlearn 1.0 MetaML Zero-shot
TPOT AutoGluon
(a)
CcD
1 2 3 4 5 6 7 8 9 10
L 1 1 1 1 1 1 1 1 1
AutoSklearn 2.0 FLAML-Zero
TabPFN Auto-WEKA
MetaML 3-shot H20 AutoML
Naive AutoML AutoGluon
AutoSKlearn 1.0 TPOT

(b)
Figure 13 — Critical difference diagram of the average ranking of the base-level performance of the AutoML
methods, including (a) MetaML zero-shot, (b) MetaML 3-shot.

Additionally, the violin plot in Figure [14] show that the distribution of the base-level ac-
curacy achieved with MetaML 3-shot’s recommended pipelines is equivalent, and sometimes
superior to that of the state-of-the-art methods, even though it used a much smaller recom-

mendation time than almost all the methods. Note that MetaML zero-shot is visibly superior

69

to FLAML-Zero, albeit with lower marks than MetaML 3-shot. We highlight that MetaML 3-
shot presents a concentration in higher accuracy values and smaller variability than the other
methods, as shown by the interquartile distances. This lower variability indicates a better

generalization power that, in practice, translates to superior results in unseen datasets.

1.2 4

1.04

0.8 1

0.6

Accuracy

0.4 4

0.2 1

0.0

—-0.2

Figure 14 — Performance distributions of the pipelines recommended by each AutoML method on the tested
datasets.

To further investigate the scenarios where MetaML outperforms or underperforms other
AutoML methods, a comparison was conducted and is illustrated through heatmaps (Appendix
. This analysis considers specific dataset characteristics, such as the number of classes and
instances, and provides an overview of how MetaML compares to other AutoML methods
across various scenarios.

It is important to emphasize that, because of its curation technique, MetaML's search
space is much smaller than the ones used by the other methods. The fact that its performance
is on par with the competition demonstrates the benefit of employing our curation technique
to reduce the search space. Note that MetaML was able to perform well even without tackling
hyper-parameter optimization or using post-processing techniques such as ensembling (used by
AutoSklearn 1.0 and H20-AutoML). This shows that metaML is promising and can get even
better as more meta-data becomes available. A more extensive meta-data collection procedure,
such as using results from other libraries such as Weka and R, may make this possible. Figure
6] in Appendix [illustrates the representation of the pipelines. It displays the recommendations

for four datasets, highlighting how the blocks significantly differ in quantity and, mainly, in

70

the adjusting of hyperparameters.

3.6.3 Comparing recommendation times

Figure presents the mean accuracy of the recommended pipelines (base-level perfor-
mance) of the state-of-the-art methods versus the MetaML, when applied to two example
datasets under different time budgets, graphs from other datasets are included in Appendix [J|
Here, the star symbol represents the few-shot methods (MetaML Zero-shot, MetaML 3-shot,
TabPFN and FLAML-zero) [

0.8001 ¥

081 0.775 A

® Auto-Weka

* MetaML 3-shot
MetaML Zero-shot

® AutoSklearn 1.0

® AutoSklearn 2.0

® AutoGluon

® H20 AutoML
Naive AutoML

@ TPOT

* FLAML-Zero

% TabPFN

0.750 4

o
o
L

0.725 4

o
£~y
L
e
N
o
S

Accuracy
Accuracy

0.675 1
0.2 4 0.650

0.625

0.0 4

T T T T T T 0.600 ~— T T T T T
0 2 4 6 8 10 0 2 4 6 8 10

Recommendation Time (h) Recommendation Time (h)
(a) BNG_lymph dataset with 1,000,000 instances. (b) Tae dataset with 151 instances.

Figure 15 — Comparison of AutoML methods using different recommendation time budgets.

MetaML is positioned as a viable and advantageous method, achieving top performances
in the shortest time budget on both zero-shot and three-shot variants. In Figure a), for
which a large dataset was used, we can see how most methods only improve their accuracy
when using longer time budgets. Two of the methods, AutoSklearn 1.0 and H20 AutoML,
sometimes even decrease their performance when given more time. AutoGluon, on the other
hand, performed well for this dataset, with a high, constant accuracy, with a 30-minute time
budget. FLAML-Zero has also achieved a high performance under low computational time for
this larger dataset. However, when we look at Figure b), using a small dataset, AutoGluon's
performance is among the lowest, even using longer time budgets, and FLAML-Zero presents
the lowest performance, while MetaML achieved the best performance in less than 3 seconds on
both datasets. It is possible that FLAML-Zero's approach to search space complexity reduction,
that keeps just a few portfolio pipelines based on their previously sampled performances, is not

generalizing well, hence the contrasting results it obtained in our two example datasets. In the

6 Figure[15(a) does not include Auto-WEKA and TABPFN because it failed for this dataset.

71

Tae dataset (151 instances), TabPFN performed competitively compared to other methods,
highlighting its efficiency in smaller datasets. However, it showed limitations in dealing with
problems with more than 10,000 instances, failing on the BNG_lymph dataset (1,000,000
instances), for instance.

This analysis reinforces our hypothesis that a focus on heuristically curating the search
space and employing a meta-learning method that is aware of the interdependence of pipeline
steps is a good direction for a holistic AutoML solution. Finally, this discussion enables us to

answer RQ1 as follows:

RQ1 Can a meta-learning based AutoML system, that takes into account the interdependence
of pipeline steps, achieve pipeline recommendation performances equivalent to the state
of the art but incurring much less computational time?

By employing meta-learning, based on a multi-label classification algorithm, MetaML
provides pipeline recommendations that consider the interdependencies between pipeline
steps, achieving performances comparable to the state of the art while incurring a lower
computational cost. MetaML consistently achieves high performance on datasets of var-
ious domains and sizes. In short, MetaML balances performance and computational cost
across different domains, offering an adaptable approach to a wide range of problems

that achieves state-of-the-art performances, as demonstrated in the analyses throughout

Sections [3.6.2] and 3.6.3]

3.6.4 Pipeline Recommendation Analysis

The resulting six pipelines, 7! to 7%, recommended by the MetaML during its evaluation
on the 290 datasets are listed in the Table [0} The binary digits indicate whether or not each
technique is present in the pipeline. OHE - One-Hot Encoder, VT - Variance Threshold, SS -
Standard Scaler, DT - Decision Tree, SVC - Support Vector Classifier, RF - Random Forest.
Notice how this set of pipelines differs from that of the search space (Table , as the meta-
model was able to learn a pipeline 742 that was not explicitly in the search space. This is
because MetaML uses Probabilistic Classifier Chains (PCC), which capture the correlation
between steps. This allows the model to explore interdependencies that are not explicit in the
original search space.

In Figure [I6] we analyze how frequently each of these pipelines is recommended by the

72

Table 6 — All the six different pipelines recommended by the MetaML for the 290 test datasets.

o Preprocessing Models
Pipeline

OHE VT SS SVC RF DT
#t 1 1 1 1 0 0
72 1 1 1 0 1 0
73 1 1 1 0 0 1
7t 0 0 0 1 0 0
7® 0 0 O 0 1 0
7® 0 0 O 0 0 1

MetaML under two different approaches: zero-shot and 3-shot.

5035 8085
5 &
< 0.30 5030
[} [0
£ £0.25
£ 0.25 £
30.20 30.20
S ks
5015 20.15

=
80.10 g0.10

o
g T 0.05
= 0.05 w V.
[T

0.00"—, - 0007576 ~4 ~1 ~2 =
78 24 A5 A1 ~2 0 23 ™ @ 7 a7 73
Pipeline Pipeline
(a) (b)

Figure 16 — Recommendation frequency of each pipeline for MetaML zero-shot (a) and MetaML 3-shot (b).

Note that, overall, MetaML's recommendations are diverse, as for example, pipelines 7,

> and 7% are well represented, each being recommended for a significant portion of the

7
datasets. Instead of learning a default pipeline to recommend to most datasets, MetaML takes
into account relevant meta-features in its decision process and seeks to recommend the most
suitable pipeline for each dataset. The recommendation of less frequent pipelines (7!, #2
and #3) that include preprocessing techniques is a testament of the MetaML's flexibility to
specialize when necessary.

Additionally, when we compare Figures[16|(a) and [16{b), we observe that, the three most
frequent pipelines switch places. While for the zero-shot approach, the pipeline with the DT
model was the most recommended, for the 3-shot approach, it was the one with the RF
model. This suggests that the two approaches can really yield different recommendations

and that relying only on a zero-shot method can lead to missing the opportunity for better

recommendations that occur when we consider the 3-shot approach.

73

3.6.5 The effect of search space curation

To verify the contribution of the search space curation procedure described in Section
3.4.1), we conducted an analysis of the base-level performance by comparing the accuracies of
the pipelines recommended by the MetaML when using a larger, unfiltered search space that
we call “full search space”, versus our proposed algorithmically curated search space. For the
full search space, we started with 11,435 experiments in G, covering 329 unique datasets and
various classification algorithms. Due to errors in meta-feature extraction, six datasets were
excluded, resulting in a final meta-dataset of 323 instances. This dataset includes 19 distinct

pipelines, listed in Table [7]

Table 7 — The nineteen pipelines included in the MetaML's full search space. The binary digits indicate whether
or not each technique is present in the pipeline. SP - SelectPercentile, SI - Simplelmputer, PCA
-Principal component analysis, RSC - RobustScaler, PF - PolynomialFeatures, OHE - One-Hot
Encoder, VT - Variance Threshold, SS - Standard Scaler, DT - Decision Tree, SVC - Support Vector
Classifier, RF - Random Forest, AdaBoost - Adaptive Boosting, LDA - LinearDiscriminantAnalysis,
XGB - eXtreme Gradient Boosting, ExtraTrees, LR - LogisticRegression, LinearSVC - Linear Support
Vector Classification, MLP - Multi-layer Perceptron, SGD - Stochastic Gradient Descent.

Preprocessing

Pipeline Classifier
SP SI PCA RSC PF OHE VT SS

it 0 O 0 0 0 1 1 1 SVC

2 0 O 0 0 0 1 1 1 DT

3 0 O 0 0 0 0 0 0 SVC

i 0 O 0 0 0 0 0 0 RF

7o 0 O 0 0 0 0 0 0 DT

6 1 1 0 0 0 0 0 0 RF

i 0 1 0 0 0 1 1 1 ExtraTrees
8 0 1 0 0 0 0 0 0 XGB
7iad 0 O 1 0 0 0 0 0 DT
7t0 0 0 O 1 0 1 0 0 AdaBoost
it 0 0 0 0 1 0 0 0 AdaBoost
i2 0 O 0 0 1 0 0 0 LDA
i3 0 0 O 0 0 1 0 0 AdaBoost
T4 0 O 0 0 0 1 1 0 RF
mts 0 0 O 0 0 1 1 1 ExtraTrees
16 0 0 0 0 0 1 1 1 LinearSVC
7l7 0 O 0 0 0 1 1 1 MLP
18 0 O 0 0 0 1 1 1 SGD
19 0 O 0 0 0 0 0 0 LR

74

In the search space definition phase, the values of k and n'| were empirically adjusted
by evaluating these two different settings: (i) n = 3 or n = 5 and k = 8, resulting in 309
instances (n = 3 and n = 5 yields the same performance when k is fixed at 8); (i) n = 5
and k£ = 5, resulting in a curated meta-dataset of 290 instances. The pipelines resulting from
the choice of k = 5 in the curated search space were previously listed in Table |4, while the

pipelines resulting from k = 8 are detailed in Table[g]

Table 8 — The eight pipelines search space curated (k=8). The binary digits indicate whether or not each
technique is present in the pipeline. OHE - One-Hot Encoder, VT - Variance Threshold, SS - Standard
Scaler, DT - Decision Tree, SVC - Support Vector Classifier, RF - Random Forest, LinearSVC - Linear
Support Vector Classification, MLP - Multi-layer Perceptron, SGD - Stochastic Gradient Descent.

Preprocessing

Pipeline Classifier
OHE VT SS

it 1 1 1 SVC
2 1 1 1 DT
i 0 0 O SVC
il 0 0 O RF
o 0 0 O DT
0 1 1 1 LinearSVC
m’ 1 1 1 MLP
78 1 1 1 SGD

We compared these two versions of the curated search space with each other and with the
full search space. For fairness in comparison, only the 290 datasets that are present in all search
spaces were taken into account for measuring the mean base-level accuracy. The box plots in
Figure|L7|show the distribution of these base-level accuracies. In the first curated search space
(n=3|n=2>5and k= 8) and in the full search space, represented by the box plots on the
left and on the right, respectively, the values highlighted in red indicate invalid pipelines, e.g.,
pipelines including only preprocessing techniques without an associated classification model or
two classification models in the same pipeline. Although they present a similar median, it is
clear that the curated search space (n = 5 and k = 5) presents a greater concentration of

values with higher accuracy, indicating superior performance compared to the others.

7 Recall that k controls how many of the most frequent pipelines are selected, and n, the number of top

experiments for each dataset. In other words, these two parameters control the degree of curation of the
search space (see Section [3.4)

75

0.8 1
5. 0.6
[}
I PR S
2 (]
<]
0.4 - o
o 8 _1t
o
o o]
0.2 A 8]
o o o
0.0)4 -4
Curated search space (n=3|n=5, k=8) Curated search space (n=5, k=5) Full search space

Figure 17 — MetaML's base-level performance the full search space versus when using the curated search space
under different values for the parameters k£ and n.

Table [9] presents the average accuracy, ranking, and p-values of a Wilcoxon signed-rank
test, again using the corrected significance level of & =8.33e-03. It can be seen that the curated
search space (with n=5 and k=5) obtained the best average accuracy and ranking, presenting
a higher number of wins compared to the others. The low performance observed in the search
space with k=8 or the full search space can be attributed to the increased number of less

common pipelines, which leads to a higher degree of class imbalance, hindering performance.

Table 9 — A base-level analysis of the mean performance (accuracy), Win/tie/loss of the Curated search space
(n=5 and k=5) against the others, mean ranking, p-value of the Wilcoxon signed rank test with

o =8.33e-03.
Mean acc. Win/tie/loss Mean rank p-value
Full search space 0.755 67/170/53 2.036 0.008
Curated search space (n=3|n=>5 and k=8) 0.770 60/178/52 2.001 0.077
Curated search space (n=>5 and k=5) 0.814 - 1.962 -

The box plot in Figure [18] compares the curated search space (n=5 and k=5) with the
full search space with regards to meta-model inference time. The curated search space not
only achieves better performance, as already highlighted in Figure [I7] but also significantly

reduces computational cost.

76

3000+

2500+

Time (seconds)
= = N
o 0 o
o =) o
o o o

0

é

5001

0

Curated search §pace (n=5, k=5) Full seafch space

Figure 18 — Meta-model inference time of the MetaML when using the full search space versus the curated
one.

For the full search space, the median of the meta-model inference time taken per dataset
is 653.8 seconds, with outliers beyond 2000 seconds, while for the curated search space that
time is drastically reduced to 0.085 seconds and is virtually uniform for all datasets. The
larger number of labels in the full search space (18 pipelines) explains the extra complexity, as
MetaML models the dependencies between the labels. This reinforces that a curated search
space allows for a better representation of the space of possible pipelines enabling greater
performance at lower computational complexity.

The clear boost in performance achieved by using the proposed curated search space
when compared to the full search space (seen in Table |§] and Figures and reiterate
the importance of such procedure in AutoML systems. This component of our proposal has a
clear contribution in enabling its performance to be equivalent or superior to state-of-the-art
AutoML approaches. The traditional approaches typically explore a wide range of possibilities,
which makes the process challenging due to the vast number of options in the search for
the best configuration. This not only increases computational demands but also risks diluting
efforts in less promising configurations. Furthermore, expansive and complex search spaces can
significantly increase the likelihood of overfitting, impairing the generalization ability (ELDEEB
et al., 2022). With this in mind, we can answer RQ2:

RQ2 Is it possible to obtain better pipeline recommendations using an algorithmically curated
search space instead of a larger superset of such space?
Yes. The results show that our proposed curated search space led to higher base-level
performances and lower computational costs. Therefore, the algorithm is able to learn
from historical data to reduce search space complexity while keeping the most relevant

pipelines, which ultimately leads to the recommendation of better pipelines within shorter

77

times compared to the full search space. Note that the multi-label approach allowed
MetaML to learn a new pipeline #2 that was not present in the search space. This tells
us that, even when using a reduced search space, the method has the potential to adapt

and recombine steps when necessary.

3.7 THREATS TO VALIDITY

As with any meta-learning system, no matter how solid the approach is, MetaML's output
quality strongly depends on the quality of the meta-data provided. In this study, MetaML was
evaluated by using historical data from machine learning experiments available from OpenML,
one of the largest public machine learning repositories. Although this repository offers a wide
range of datasets, the quality and representativeness of the experiments logged there may vary.
For instance, we have noticed a strong imbalance in the choice of classification models. Another
problem is that preprocessing techniques are rarely employed, and even when they are, just a
few are explored. It is possible that users perform custom preprocessing and model choosing in
their pipelines but do not log that information on OpenML. This may have affected the diversity
and comprehensiveness of pipeline configurations available for further curation by MetaML's
search space curation component, ultimately degrading the meta-model performance. Even
so, MetaML achieves performances close to or even superior to current AutoML systems, with
a lower computational cost.

We highlight that this is a data-related issue that can be fixed by future investments in
building better meta-datasets covering a wider range of preprocessing techniques and machine
learning models. Additionally, it is important to note that only scikit-learn datasets were used,
and experiments performed with Weka or R, for example, were not considered and may be
included in future analyses.

Another issue is that meta-learning approaches always have a costly offline phase. How-
ever, note that, unlike optimization procedures, this high cost only has to be paid once. For
every new recommendation, only the online (fast) phase of the meta-learning process has to
be performed. In practice, MetaML can be (costly) built once from a collection of previously
run meta-learning experiments and then it is ready to be employed as many times as needed
in a fast and efficient way. Additionally, to reduce the cost of the offline phase, we use previ-
ously performed machine learning experiments stored in OpenML, which include hundreds of

experiments ready for reuse. This significantly reduces the computational cost associated with

78

evaluating algorithm performance on different datasets, a common limitation in the field, as
highlighted in the paper by Khan et al., (KHAN et al., [2020)).
Furthermore, another limitation is that the datasets used do not present missing values,

which was a methodological choice we adopted during the process.

3.8 CONCLUSION

We proposed MetaML, a multi-label meta-learning method for recommending machine-
learning pipelines. Using information from previous machine-learning experiments, a technique
was devised to reduce search space complexity by selecting only the most relevant pipelines.
For this particular instantiation of the MetaML method, we opted to use OpenML; however,
MetaML is designed to learn from historical data across any repository, not limited to OpenML.
MetaML can recommend a ranking of pipelines, which the user can then assess. Experiments
performed on 152 datasets of different sizes and domains demonstrated the effectiveness of
the proposed method. We evaluated MetaML both as a zero-shot and as a 3-shot approach. In
terms of base-level performance MetaML 3-shot has a better performance/cost balance than
MetaML zero-shot. Overall, MetaML 3-shot achieved classification performance better than
or equivalent to the state of the art, but requiring much less computational time.

MetaML's multi-label approach, using the PCC meta-model, which considers the depen-
dency between the steps of the pipeline, allowed recommendations of rankings of pipelines
based on their probabilities. This expands the available options, which can be an important
criterion for users who want to select, for example, a pipeline based on the interpretability
of the model. Additionally, when this is used in tandem with a few-shot approach, it enables
efficient selection of the pipeline candidates.

The proposed search space curation technique proved to be an important component
of the MetaML, providing a boost in performance while at the same time reducing its com-
putational complexity. By learning from historical data, the technique was able to select the
most relevant pipelines reducing the search space drastically, without leading to the loss of
generalization power by the meta-model.

Future work can focus on improving the set of meta-features, on the diversity of historical
records of ML experiments, identifying/generating unrepresented areas of the search space to
build a stronger meta-dataset, on exploring the interpretability of the meta-model, and on using

stacking, ensembling, and other approaches to combine the outputs of the top ¢ pipelines to

79

produce the final prediction. We can also explore integrating Large Language Models (LLMs)
with MetaML to enhance pipeline recommendations optimization and interpretability. More-
over, we plan to explore efficient ways of integrating hyperparameter optimization into future
versions of the method. Furthermore, incorporating datasets with varying percentages of miss-

ing values will be adopted for further analyses.

80

4 PIPES: A META-DATASET OF MACHINE LEARNING PIPELINES

Cynthia Moreira Maia, Lucas B.V. de Amorim, George D. C. Cavalcanti, Rafael
M. O. Cruz

This chapter has been published as a paper in International Joint Conference on Neural

Networks (IJCNN) 2025.

Abstract

Solutions to the Algorithm Selection Problem (ASP) in machine learning face the chal-
lenge of high computational costs associated with evaluating various algorithms’ performances
on a given dataset. To mitigate this cost, the meta-learning field can leverage previously
executed experiments shared in online repositories such as OpenML. OpenML provides an ex-
tensive collection of machine learning experiments. However, an analysis of OpenML's records
reveals limitations. It lacks diversity in pipelines, specifically when exploring data preprocessing
steps/blocks, such as scaling or imputation, resulting in limited representation. Its experiments
are often focused on a few popular techniques within each pipeline block, leading to an im-
balanced sample. To overcome the observed limitations of OpenML, we propose PIPES, a
collection of experiments involving multiple pipelines designed to represent all combinations of
the selected sets of techniques, aiming at diversity and completeness. PIPES stores the results
of experiments performed applying 9,408 pipelines to 300 datasets. It includes detailed infor-
mation on the pipeline blocks, training and testing times, predictions, performances, and the
eventual error messages. This comprehensive collection of results allows researchers to perform
analyses across diverse and representative pipelines and datasets. PIPES also offers potential
for expansion, as additional data and experiments can be incorporated to support the meta-
learning community further. The data, code, supplementary material, and all experiments can

be found at https://github.com/cynthiamaia/PIPES git.

Keywords: Meta-Learning, Pipelines, Meta-Dataset.

4.1 INTRODUCTION

The Algorithm Selection Problem (ASP) was formulated by Rice in 1976 and refers to the

challenge of choosing the most appropriate algorithm to solve a specific problem, considering

81

several algorithms available (RICE, (1976). ASP is one of the research focuses in the area of
Meta-Learning (MtL) (SMITH-MILES, 2009; SONG; WANG; WANG, 2012; [SOUTO et al., 2008;
PIMENTEL; CARVALHO| 2019; FERRARI; CASTRO, [2015} [KHAN et al., 2020), a field that allows
to learn from previous machine learning experiences and transfer the acquired knowledge to
new (HUTTER; KOTTHOFF; VANSCHOREN, [2019)) tasks. MtL achieves this by mapping the
characteristics (meta-features) of datasets with information describing the performance of
algorithms. However, a limitation in this field is the high computational cost associated with
evaluating algorithms’ performances on datasets and extracting meta-features (KHAN et al.,
2020). A promising approach to alleviate these costs is to use machine learning experiments
available in public online repositories, where hundreds of experiments are released to the
community, with a large set of machine learning techniques, which can be used to facilitate
reuse and provide faster advancement in the area (BRAZDIL et al., 2022a)). The effectiveness of
these repositories depends heavily on community contributions, mainly through complete and
efficient experiment registries. These shared registries help reduce the computational burden
associated with individual experimentation.

One of the largest public repositories that enable sharing of experiments in machine
learning is OpenML. It offers a wide range of datasets, experiments, and results. It makes
the datasets available and provides detailed information about the experiments performed on
this data, including descriptions of the pipeline blocks — such as scaling, encoding, feature
preprocessing, imputation, class balancing, classification, clustering and regression algorithms,
along with their corresponding hyperparameters and the evaluation metrics employed. This
makes OpenML a rich metadata source, allowing researchers to explore, reproduce, and analyze
results (BISCHL et al.,[2017). OpenML offers a web API that makes it easy to submit new results
by integrating it into popular machine learning tools (RIIN et al., [2013)).

Although this repository offers a wide range of datasets, the quality and representativeness
of recorded experiments may vary. One problem observed is the low usage of preprocessing
blocks in pipelines. Even when these blocks are applied, limited exploration of their possible
techniques is observed. This happens possibly because users can perform custom preprocess-
ing and model selection in their pipelines without logging this information to OpenML. The
experiments are typically not executed on OpenML's servers and may instead be run locally
(BRAZDIL et al., | 2022a), which hinders the creation of complete experiment registries. OpenML
currently presents data about 22,298 machine learning pipelines. We carried out an analysis of

these pipelines and found that only 47.09% included at least one preprocessing block; 23.20%

82

of the pipelines included function transformer block, 7.70% included the scaling block; 6.84%
included feature preprocessing; 3.93% applied missing value imputation methods; 3.64% em-
ployed encoding for categorical variables; only 0.16% included data resampling techniques.
Additionally, 1.60% registered the use of preprocessing techniques but did not specify which
methods were applied. This indicates that most of the records in OpenML are focused on the
classifier, neglecting the preprocessing steps of the pipeline (KUHN et al., [2018), (PERRONE et
al, 2018). This imbalance can induce bias in meta-learning systems that rely on OpenML for
its meta-data.

Previous studies highlight the importance of preprocessing techniques (OBAID; DHEYAB;
SABRY, 2019), (RAJU et al, 2020). A recent study investigated the impact of scaling techniques
on the performance of classification algorithms, for example, (AMORIM; CAVALCANTI; CRUZ,
2023a)). Its results show the importance of this preprocessing step and how it can significantly
influence model performance. While the use of preprocessing techniques is beneficial, it is
essential to have a diverse dataset that covers a wide range of scenarios for preprocessing
algorithms. However, building such a comprehensive and diverse collection is challenging (PIO
et al., 2024).

In this context, the main goal of this paper is to present PIPES, a meta-dataset for meta-
learning that we are making available to the community. PIPES aims to support meta-learning
by providing researchers with a comprehensive and representative collection of results covering
different pipeline blocks (classifiers and data preprocessing) evaluated on multiple datasets. To
this end, several pipelines are evaluated on datasets of various sizes. By incorporating multiple
preprocessing blocks, each including many possible techniques in a representative way, PIPES
aims to overcome the limitations observed in OpenML and provide a more complete collection
of pipelines along with their results when applied to diverse datasets, facilitating machine
learning and meta-learning research.

This comprehensive evaluation results in a set of records that can be used to advance
meta-learning research, better understand the outcomes of different combinations of machine
learning models and preprocessing techniques on different datasets and allow for important

insights. The main contributions of this paper are:

= We present PIPES, a meta-dataset of machine learning experiments seeking completeness
and diversity of the pipelines, including several preprocessing blocks and a classification

block. The meta-dataset includes full details of the experiment setups and outcomes to

83

ensure easy replication by researchers aiming to advance research in meta-learning.

= We provide an API through which the user can fetch the meta-data and also expand

PIPES. Easing interaction with the repositoryﬂ.
= We exemplify a use of PIPES in meta-learning research for pipeline recommendation.

» We analyze and compare the representativeness and completeness of pipelines from

PIPES with those obtained from OpenML, one of the largest public repositories.

4.2 BACKGROUND AND RELATED WORK

Meta-Learning enables learning from prior machine learning experiences to tackle tasks like
algorithm recommendation (HUTTER; KOTTHOFF; VANSCHOREN, 2019)). This process involves
two levels: base level and meta level. At the base level, algorithms and evaluation metrics
are defined to evaluate their performance on datasets. At the meta level, a meta-model is
trained using meta-datasets that comprise meta-examples — datasets represented by meta-
features (characteristics of the dataset) and meta-targets (e.g., algorithm performances on
the dataset). This trained meta-model can be used to recommend the most suitable base-level
algorithm for new datasets. The type of meta-model depends on the meta-target (BRAZDIL et
al., [2008).

Meta-features, which describe datasets, fall into categories like simple, statistical, informa-
tion theory, model-based, complexity-based, and performance-based (landmarking) (BRAZDIL et
al., [2022a)). Simple meta-features capture general dataset properties (e.g., number of classes),
while statistical ones focus on measures like mean and standard deviation. Information theory
meta-features assess attributes like entropy (CASTIELLO; CASTELLANO; FANELLI, 2005), and
model-based ones reflect properties of trained models (e.g., decision tree leaf count) (BRAZDIL
et al}, 2008). Landmarking meta-features evaluate the performance of simple, fast-to-train algo-
rithms (such as Naive Bayes) on a dataset, providing an indication of the dataset’s properties
through the relative success of these algorithms (BRAZDIL et al., 2022a). Complexity meta-
features analyze aspects like class separability and attribute overlap (RIVOLLI et al} 2022).
Together, these meta-features enable effective algorithm recommendations for new datasets.

In meta-learning, most of the studies have focused on recommending predictive models,

such as classifiers and regressors (ZHU et al., [2018} |[MISIR; SEBAG, |2017} |PIMENTEL; CARVALHO,

1 <https://github.com /cynthiamaia/PIPES.git>

https://github.com/cynthiamaia/PIPES.git

84

2019; WANG et al., [2014; DANTAS; POZO), [2018)). On the other hand, only a few studies have fo-
cused on recommending preprocessing algorithms (PIO et al., 2024; KHAN et al, [2023} |AVELINO;
CAVALCANTI; CRUZ, 2024} AMORIM; CAVALCANTI; CRUZ, 2024), and recommending hyperpa-
rameters for classifiers (ZHANG; SONG, 2015)). Studies agree that one of the limitations of
the meta-learning area is the computational cost associated with the meta-base construction
phase. This cost arises because algorithms need to be executed on multiple datasets, making
the process expensive (PIO et al|, [2024)), (KHAN et al., [2020)). However, collaborative structures
that allow sharing of experimental results can help reduce computational costs. Investigating
how these tools are used in practice can significantly contribute to advances in the area. This
type of analysis is crucial to understanding how the results obtained can effectively promote
reproducibility and drive advances in meta-learning.

Vanschoren et al. (VANSCHOREN et al., 2012) present a structure aimed at facilitating the
sharing of experiments in machine learning. Experiments were carried out on 84 datasets, eval-
uating 54 Weka algorithms. Fifty-six meta-features were calculated for each dataset, although
the study does not explicitly state the types of meta-features considered. Furthermore, the
experiments are not accessible, despite the link being provided in the study, they do not allow
access to the structure. Nonetheless, this study was the precursor to the design of OpenML
(VANSCHOREN et al., 2014)). OpenML is an open-source platform that allows the sharing of
datasets and experiment meta-data. It is integrated into popular platforms such as Weka, R,
MOA, and Scikit-learn. It offers a website with access to 5,866 datasets and 22,298 machine
learning pipelines, and also provides access to some kinds of meta-features, such as simple
measures, statistics, information theory, and landmarking.

Kaggle is also an open-source platform that strives for reproducibility, but focuses on
machine learning competitions and challenges (BOJER; MELDGAARD, 2021)). Unlike OpenML,
which offers a robust system for recording metadata in a standardized way, Kaggle doesn't
provide standardization in describing and sharing experiments, limiting its application to struc-
tured analysis and reproducibility.

NAS-Bench-101 (YING et al, [2019) is an architecture meta-dataset designed for Neural
Architecture Search (NAS). This dataset includes a comprehensive record of training and
evaluation results for a wide range of Convolutional Neural Network (CNN) algorithms. The
publicly available meta-dataset covers data, search space, and training code, aiming to promote
reproducibility. However, unlike OpenML, which supports various machine learning tasks and

pipelines, NAS-Bench-101 is focused on CNN architectures.

85

While OpenML is a comprehensive repository that supports a variety of machine learning
tasks, its results have limitations. One is a lack of representativeness, especially when using
pipeline blocks encompassing data preprocessing techniques. Many users perform experiments
locally and may not log each step of the pipeline, compromising the integrity of the model
performances provided and ultimately hindering progress in the meta-learning field. Less than
half (47.09%) of the pipelines currently available in OpenML employ at least one preprocessing
block. Among these, 23.20% uses function transformers, 7.70% uses scaling techniques, 6.84%
uses feature preprocessing, 3.93% applies missing value imputation and 3.64% uses encoding
strategies for categorical variables. The statistics highlight the need for greater exploration
of data preprocessing techniques in experiments since many are little applied (or logged)
regardless of their known importance to classification performance.

PIPES aims to provide large-scale record of machine learning experiments covering a
diverse range of pipelines and datasets. It is therefore expected that it enables advances in
meta-learning research, especially with regards to the effects of previously underrepresented

pipeline blocks and techniques.

4.3 PROPOSED META-DATASET

A meta-dataset is an indispensable input in a meta-learning process. In the context of the
algorithm selection problem, for example, a meta-learning process consists of recommending
the most suitable algorithm for a specific task based on metadata from previous experiments in
machine learning. In this sense, this study proposes a meta-dataset that enables the sharing of
well-structured experiments, taking into account the interactions among the several pipeline
blocks and on different datasets. Therefore, the proposed PIPES meta-dataset consists of
a comprehensive collection of pipeline details associated with their outcomes for different
datasets.

The goal is to provide the machine learning research community with a valuable meta-
dataset, which can be used to train models in a holistic way, to recommend complete pipelines
(i.e., including the predictive model and the data preprocessing blocks). Since the models will
be trained on a large meta-dataset that is built with a focus on completeness, it is expected
that they will present a high generalization power. This way, PIPES can help the community
identify the most promising pipelines to solve specific problems based on frequency of use and

performance in previous experiments. This knowledge can help in designing more effective and

86

targeted search spaces.

Formally, the construction of the PIPES meta-dataset is defined as follows. Consider the
set of datasets used, D = {Dy,D,,...,D,}. For each dataset D; € D, all the different
pipelines are applied, with each pipeline consisting of a chain of blocks (steps) that each have

several possible techniques. Given the following set definitions:

T = {t1,ta,...,t;}: The set of imputation techniques.

E = {ey,eq,...,e}: The set of encoding techniques.

P = {p1,p2,...,pm}: The set of scaling techniques.

A ={ay,a9,...,a,}: The set of feature preprocessing, transformation and feature selection.

C = {c1,¢c,...,¢p}: The set of classifiers.

A pipeline is a tuple containing five elements (blocks). The first block is populated by an
imputation technique ¢t € T, the second block corresponds to a categorical encoding technique
e € E, then comes the pipeline block responsible for data scaling with a technique p € P,
followed by a feature preprocessing techinique a € A, and, finally a classification algorithm

¢ € C. In Fig.[19] we illustrate an example of a specific pipeline.

to | e1 | p3 | a3 | ¢

Blocks

Figure 19 — Representation of an example of a specific pipeline.

Thus, for each dataset D; € D, the set of possible pipelines S is given by the combination

of all elements of the sets T, [E, P, A and C, that is:

S=TxExPxAxC (4.1)

Finally, considering that each dataset D); is represented by a vector f; = {fi(l), fi(g), ey fi(x)},
with meta-features that characterize its properties, the meta-dataset S* is generated, bring-
ing together all pipelines and the results of each dataset in each fold, covering all possibilities,

not limited to just the best performance. Thus, we have the following formulation:

Vie{l1,2,3,...,z2},
§* = (fi,S]-,H, 7'trainﬂ'testaﬁ) ‘ VS]- €S, (4_2)

H, Tirain, Ttest € R

87

Where R is the set of real numbers. Therefore, the set S* contains a detailed collection
of experiments using different pipelines, including dataset characteristics f;, the achieved per-
formance H, the training and testing times Tiain and Tiest and a text field with information
about errors (€) occurred during processing, if any. These errors may refer, for example, to
situations where a dataset contains missing values and, in certain pipelines, the imputation

technique is absent.

4.4 META-DATASET CONSTRUCTION

In this section, we detail the procedure performed to build the proposed meta-dataset

according to the formal description in Section [4.3]

4.4.1 Datasets

The datasets were collected from the open-source OpenML platform in September 2024.
We selected only datasets with the number of instances in the range [100, 100000], the number
of classes in [2, 100], and the number of attributes in [5, 100]. Initially, the procedure resulted
in a total of 1,248 datasets. From these datasets, 867 were excluded to reduce the number of
datasets belonging to the same family and to remove repeated datasets the had been logged
with different names, resulting in 381 distinct datasets. From the 381 datasets selected, 273
are binary-class problems, and 108 are multi-class problems. The final list of datasets used is

presented in the supplementary material.

4.4.2 Pipeline blocks

Given the wide variety of different classification algorithms and preprocessing methods, we
limited the selection of the techniques to populate the pipeline blocks based on the methods
used in Auto-Sklearn (FEURER et al., 2015), which uses the Scikit-learn package (PEDREGOSA
et al|, [2011b). The pipelines’ blocks and their possible techniques are presented in Table .
Note that each preprocessing block includes an option of not being executed (None), while
the classification block is the only one that is mandatory.

This results in a total of 9,408 combinations, i.e., pipelines, (2 imputation techniques x

3 categorical encoders x 7 scalers x 14 feature preprocessing techniques x 16 classification

88

Table 10 — Pipeline blocks and their possible techniques.
Imputation (T) Encoding (E)

Simplelmputer(Sl), None. OrdinalEncoder (OE), OneHotEncoder (OHE), None.

Scaling (P)

MinMaxScaler (MM), StandardScaler (SS), PowerTransformer (PT),
QuantileTransformer (QT), RobustScaler (RS), Normalizer (Nor), None.

Feature Preprocessing (A)

ExtraTrees prep (ETP), FastICA (FICA), Nystroem (NY),
FeatureAgglomeration (FAGG), GenericUnivariateSelect (GU),
LinearSVC prep (LSVCP), Principal component analysis (PCA),
KernelPCA (KPCA), Radial Basis Function Sampler (RBFS),
PolynomialFeatures (PF),RandomTreesEmbedding (RTE),
SelectPercentile (SP), TruncatedSVD (TSVD), None.

Classification (C)

AdaBoost (AB), BernoulliNB (BNB), DecisionTree (DT),
ExtraTrees (ET), GaussianNB (GNB), HistGradientBoosting (HGB),
K-Nearest Neighbors (KNN), LinearDiscriminantAnalysis (LDA),
LinearSVC (LSVC), Multi-layer Perceptron (MLP),

MultinomialNB (MNB), QuadraticDiscriminantAnalysis (QDA),
PassiveAggressive (PA), Support Vector Classification (SVC),
Stochastic Gradient Descent (SGD), RandomForest (RF).

algorithms). We consider the hyperparameters in their default values for this first analysis;
however, we highlight the potential to extend our meta-dataset in future work to also address
hyperparameter variations. Apart from these techniques, Auto-sklearn also incorporates a class
balancing method that is embedded within AutoML system and not as easy to replicate.
Therefore, we focus on techniques and algorithms that are easily accessible and configurable
in Scikit-learn.

Following the definition in Eq. [4.1] all pipeline possibilities are explored. Some of these
pipelines may be invalid or lead to errors for some datasets. Nonetheless, all of them were
documented and included in the meta-dataset. The meta-dataset, therefore, covers all results,
not just the best one for each dataset, allowing analyses of the performance of all pipelines

across all datasets.

4.4.3 Meta-Features

The extracted meta-features belong to six groups: simple (12 features), information theory
(13 features), statistics (48 features), model-based (24 features), landmarking (14 features),
and complexity (34 features), with a total of 145 meta-features, which are detailed in the

supplementary material.

89

4.4.4 Hardware and Software

We employed three computing clusters and ran all the pipelines on 300 datasets through
several parallelized jobs, each job running a fraction of the pipelines on a given dataset. After
the executions were completed, the results were combined into a structured table containing
the various details necessary for composing the meta-dataset. We used the Python language
(version 3.9.1) and the following packages: Scikit-Learn (version 1.2.2) (PEDREGOSA et al.,
2011b)), (version 1.5.3), OpenML (version 0.15.0) (FEURER et al., 2021)), and PyMFE (version
0.4.2) (ALCOBACA et al., 2020) .

4.5 ANALYSIS

This section details the experiment performed and seeks to answer the following research

questions:

RQ1 Does PIPES overcome OpenML's limitations regarding the biases and data imbalance

of pipelines and contribute to the advancement of meta-learning?

RQ2 Are the datasets selected in PIPES diverse?

To answer RQ1, we perform two analyses that we present in subsections [4.5.1f and [4.5.2]

First, we perform an exploratory analysis of the pipelines available in OpenML (subsection
. The idea is to study how frequently each technique is used within each pipeline block.
Then, in subsection [4.5.2, we present an example of using PIPES for a meta-learning task
to recommend the optimal techniques for Feature Preprocessing and Scaling, given a fixed
classifier, the SVC. These two particular blocks and the classifier were chosen because of
their high frequency in OpenML data, based on the outcomes of the exploratory analysis
in subsection [4.5.1] We compare the classification performance achieved using the optimal
pipeline from OpenML data versus PIPES data. Finally, in subsection we answer RQ2 by

studying the diversity of the PIPE’s datasets according to their meta-feature representations.

4.5.1 Exploratory analysis of the pipelines from OpenML

In this first analysis, we explore the pipelines recorded in OpenML w.r.t. the frequencies

of each block’s techniques. In Fig.[20] the bar plots show these frequencies for all five pipeline

90

blocks covered in our study. These graphs consider 6,729,117 classification experiments using

Scikit-learn present in OpenML records.

10°

10°

Frequency
Frequency
5

& & W« o <

4,
%

CEL PRI RO P LELOR S OL LTS F R o
@%oowv@%é&* ‘1@@5\§§\&@$§&§@(}°@°Q& N

a) Classifiers b) Scaling
107 10

7
3
10° "
10¢
"
10°
3
102
2
10t
10° "
& B ¥ & &

e O & F & P N S
<@ & o MRS < < S S s &

H
2
S5 5

Frequency
Frequency
5 &5

5

5

¢) Feature Preprocessing d) Imputation and Encoding
Figure 20 — Frequency of execution of each technique, per pipeline block, according to OpenML records. Most
of the abbreviations for FP and scaling are given in Table[I0] Additional abbreviations: Classifiers:
LR - LogisticRegression, XGB - XGBoost, NuSVC - Nu-Support Vector Classification, LGBM -
LightGBM, Bag - Bagging, Perc - Perceptron, SE - StackingEstimator, Voting - VotingClassifier.
Scaling: Bin - Binarizer.

In Fig. a), we observe that a large number of classifiers have been logged to OpenML,
but their frequencies show that while some models have been used more than 100,000 times
(SVC, RF, DT, GB), the majority of the models appear for less than 1,000 times, with some
extreme cases presenting less than 100 examples. There is clearly a preference for SVM and
decision-tree-based algorithms. The same kind of imbalance can be observed for the remaining
blocks. We highlight the scaling block, where StandardScaler is employed approximately 1
million times, while the remaining techniques appear less than 1,000 times, with PowerTrans-
former being used less than 10 times. Moreover, upon further inspection of the data, we note
that 87% of the examples using MinMaxScaler use only six datasets, 83% of RobustScaler’s
appearances occur using only seven datasets, and 100% of PowerTransformer’'s examples use
just one single dataset. This concentration means that, although there are many experiments
available in OpenML's records, there is a limitation in the diversity of contexts in which these
techniques are applied. This imbalance in the representativeness of machine learning pipeline
blocks can induce bias and negatively affect the quality of meta-learning models that rely on
this repository for meta-data.

Another important aspect is the lack of diversity in the combinations of preprocessing
techniques in the pipelines. Fig. shows that most of the classification pipelines recorded

on OpenML use only one or no preprocessing block at all. As the number of preprocessing

91

blocks used increases, the number of pipelines decreases. Only 2.74% of the pipelines employ
all four pipeline blocks. This leads to bias in the way the blocks are combined. For example,
VarianceThreshold, which is the most frequent Feature Preprocessing technique is, in most
cases, associated with the StandardScaler scaling technique, while FeatureAgglomeration is
only used with StandardScaler in two examples, and KernelPCA, Nystroem, FastICA and
TruncatedSVD are never combined with scaling techniques. These observations reflect a limited
exploration of different combinations of techniques within pipelines and the use of preprocessing

techniques in OpenML records.

fary
w
o
o

1000 A

w
o
o

Number of Pipelines

0 m
None One prep. block Two prep. block Three prep. block Four prep. block

Figure 21 — Quantity of pipelines that employ each number of preprocessing blocks. Considering all OpenML
classification pipelines that use Scikit-learn.

Therefore, the main limitations observed in OpenML records include a large concentration
of examples using a few of the techniques within each block, the lack of exploration of the
possible combinations of pipeline blocks, and a large portion of the examples using just a few
datasets. PIPES addresses these limitations by exploring pipeline blocks in depth, with greater
representation and diversity in use. In our proposed PIPES meta-dataset, every possible pipeline
is applied to every dataset. All the techniques within each pipeline block are equally explored,
providing a balanced meta-dataset, which allows for an unbiased training of recommendation

meta-models.

4.5.2 Comparing PIPES and OpenML in a meta-learning task

In this subsection, we present an example comparing the use of PIPES and OpenML in
a meta-learning task, contributing to answering RQ1. The meta-learning task in this example
is to automatically recommend the optimal feature preprocessing and scaling techniques for
the SVC classifier, given a particular dataset represented by its meta-features vector. In this
example, two meta-datasets are built: one based on PIPES’ results and the other using OpenML
results. Subsequently, these meta-data sets are compared to assess their representativeness.
The goal is to examine the registered pipelines and their representativeness in using feature

preprocessing and scaling blocks. These two preprocessing blocks and the SVC classifier were

92

selected based on the analysis outcomes in subsection [4.5.1] choosing the most commonly
used blocks in OpenML to retain a substantial amount of learning data, maintaining a fair
comparison. We also restrict the datasets to only the 192 that appear in both PIPES and
OpenML.

The OpenML meta-dataset, Mopenmi, used for this analysis is composed as follows. First,
Dgelected contains all 192 datasets in common with PIPES. After, given the set IF of pipelines
that use SVC as the classifier, defined as F = {01, 09, ...,0,}, we take only the pipelines that
are the best for each selected dataset to form Fy, defined in Eq. [4.3] which constitutes our

meta-target.

IFbest - {Ubest(Di)|VDi S]D)selected} (43)

Then, the meta-features vectors f; representing each dataset D; are merged with the
meta-targets. The resulting meta-dataset Mopenmi is composed of the tuples (f;, opest(D;)),

allowing the recommendation of pipeline based on the datasets’ meta-features, as shown in

Eq.[4.4

1\/[OpenML = {(f1, 0pest(D1)), (f2, Opest (D2)), - - -, (£2, Opest (D)) } (4.4)

We define Mppgs following the same procedure described for OpenML but using PIPES’

best pipelines for each dataset.

Mpipes = {(f1, Thest(D1)), (f2; Thest(D2)); - - -, (£2, Thest (D)) } (4.5)

Where each pair (f;, mpest(D;) represents the meta-features of the dataset D; and the
pipeline mp, which provided the best performance for dataset D,.

In Fig. 22} the frequency with which each FP and Scaling technique appear in the pipelines
from the meta-datasets is presented. Fig. and Fig. show the results for Mopenme and
Fig. and Fig. for Mppes. Notice how the best technique indicated using OpenML data
is much less varied and distributed than indicated by PIPES results. The careful analysis of the
results from meta-dataset Mpjpes can also reinforce the use of certain techniques over others
according to the selected algorithm, which can help create curated search spaces for optimiza-
tion processes, reducing computational cost and increasing performance for recommending

pipelines.

93

@
S
w
S

Frequency
Frequency
s
8 3
Frequency
Frequency

»
S
N
5}

104

~
o
N
S
=
°

o
o

0 0

]) & Q NP & L 5 o
@\e < {g(y «\(’? &(\e & & & & ‘{\Q\%‘dﬁde éz&a(g & Q&éoq({voo & & @‘z » L ¢
a) Best FP - OpenML b) Best Scaling - OpenML c) Best FP - Pipes d) Best Scaling - Pipes

Figure 22 — The graphs show how frequently each technique appears in the best pipelines for the 192 datasets
in common. Most abbreviations for FP and scaling are given in Table[I0] Additional abbreviations:
VT - VarianceThreshold, FA - FactorAnalysis, SFM - SelectFromModel. Scaling: MA — Max
Absolute Scaler.

One possible explanation for the pipeline imbalance obtained from OpenML is incomplete
pipeline reporting. Many users run experiments locally, and many may not report each step of
the pipeline, harming the reliability of the records.

Considering the accuracy obtained by each pipeline on the 192 datasets using 5-fold cross-
validation, we compare the two meta-datasets in Table |1;I| where we also show the number
of wins, ties, and losses of PIPES versus OpenML, the mean ranking, and the p-value from a
Wilcoxon signed-rank test comparing these rankings. Notice how the PIPES pipelines obtain a
higher accuracy of 0.84 versus 0.73 from the OpenML pipelines. Additionally, PIPES only lost
3 times against OpenML, winning in 93% of the datasets. Consequently, the mean ranking of
PIPES is 1.04, against 1.96 for OpenML (lower is better). The p-value obtained refutes the

hypothesis that Mpipes and Mopenme have similar average rankings.

Table 11 — A analysis of the mean accuracy, Wins/ties/losses of the Mppgs against MopenmL, mean ranking,
p-value of the Wilcoxon signed rank test (o = 0.05.)

MPIPES MOpenML
Mean acc. 0.840 0.735

Win/tie/loss 180/9/3
Mean rank 1.039 1.960
p-value 1.021e-31

Now, answering RQ1: Does PIPES overcome OpenML'’s limitations regarding the
biases and data imbalance of pipelines and contribute to the advancement of meta-
learning? Yes, PIPES’ strategy of completeness-oriented meta-dataset construction, which
gives each technique the same opportunity in the records, allows for less biased and more
balanced meta-model learning that can potentially lead to new insights, contributing to the

advancement of meta-learning.

94

4.5.3 PIPES’ datasets diversity

To answer RQ2: Are the datasets selected in PIPES diverse?, in Fig. 23] the 280
datasets from PIPES are represented in terms of all their meta-features after a transformation
to a bi-dimensional space using Uniform Manifold Approximation and Projection for Dimension
Reduction (UMAP)(MCINNES; HEALY; MELVILLE, 2018), configured with k£ = 3 neighbors. Due
to computational failures during the execution process, only 280 datasets could be successfully
processed and included in the analysis. We observe that the datasets tend to cover the extent
of the space rather than appearing in a cluster, which indicates diversity. A meta-dataset
composed of diverse pipelines contributes to the meta-learning area, as it allows the exploration
of different combinations of pipeline blocks, taking into account the specific characteristics of

each dataset, representing different possible real-life scenarios.

201 o
o
15 Q ®
Q
0] ° o @ .
8 P 4 e ? e
< °
z ° - @
=) ° Vy®
0 °
® o® “~
_5< .
Q@
-10] &° ®
- i 0 —' 5 6 é 1‘0 1‘5 2‘0 2‘5
UMAP1

Figure 23 — PIPES’ datasets organized according to a UMAP representation of their meta-features’ space.

4.6 LIMITATIONS

PIPES offers a broad meta-dataset but is not without limitations. The main drawbacks are:
(i) it does not take hyperparameters into account, (ii) it misses some other common pipeline
blocks, such as data balancing. Additionally, its current architecture is not yet completely
finalized, and improvements are needed, mainly in integration, to facilitate user visualization

and metadata access.

95

4.7 CONCLUSION

We proposed PIPES, a meta-dataset for meta-learning. PIPES is designed for the ma-
chine learning community to enable meta-learning experimentation on a rich collection of
experiments that does not neglect important pipeline blocks, particularly preprocessing, such
as scaling, feature preprocessing, imputation, and encoding. Given the difficulty of obtaining
collections of representative experiments from OpenML, one of the most significant learn-
ing and machine repositories, the idea is that PIPES can contribute to the reproducibility of
experiments on a representative meta-dataset covering a wide range of techniques.

PIPES can be used in the meta-learning area for tasks such as recommending the most
suitable pipeline for specific datasets, analyzing the impact of different block combinations
across various scenarios, and identifying promising pipelines to refine search spaces in rec-
ommendation systems. Its main advantages include broad coverage of problem domains, rep-
resentative pipeline blocks (covering classifiers and preprocessing techniques), and detailed
training/testing time data for cost-benefit analysis. In addition, it provides all predictions, al-
lowing researchers to apply various evaluation metrics. For future work, we intend to optimize
the algorithms' hyperparameters, complete the execution of the datasets, add more data and
pipeline blocks, and also create an accessible tool to facilitate users’ insertion and retrieval of

data.

96

5 METAML 2.0

Abstract

The original MetaML was developed using historical machine learning experiments avail-
able on OpenML; however, OpenML exhibited limited diversity in pipeline use, with low records
of the use of preprocessing techniques. To overcome this limitation, we propose MetaML 2.0,
which improves the original version by utilizing experiments available in PIPES to identify
promising pipelines, covering a broader diversity of preprocessing blocks, and providing recom-
mendations for datasets with specific characteristics. The meta-dataset comprises 117 datasets,
and a comparative analysis was conducted on 78 of these datasets, demonstrating the effective-
ness of the proposed method. This work aims to address the main research questions related
to the performance of MetaML 2.0 following the inclusion of more diverse preprocessing blocks
of PIPES.

Keywords: Meta-Learning, Multi-Label, Pipeline, Preprocessing.

5.1 INTRODUCTION

The idea of MetaML in Chapter (3| was constructed using historical data from machine
learning experiments available from OpenML, one of the largest public machine learning repos-
itories. One of the problems is that preprocessing techniques are rarely employed, and even
when they are, just a few are explored. It is possible that users perform custom preprocessing
and model choosing in their pipelines, but do not log that information on OpenML. This
may have affected the diversity and comprehensiveness of pipeline configurations available
for further curation by MetaML's search space curation component, ultimately degrading the
meta-model performance. Given the difficulty of obtaining collections of representative ex-
periments from OpenML, one of the most significant learning and machine repositories, we
constructed PIPES, a meta-dataset of machine learning experiments seeking completeness
and diversity of the pipelines, including several preprocessing blocks and a classification block.
Building on PIPES and aiming to overcome the limitations observed in MetaML, we improve
upon the version presented in Chapter [3 of this thesis, with Metaml 2.0. MetaML 2.0's primary
objective is to improve the quality of metadata provided in the original version by expanding

the set of available preprocessing techniques and machine learning algorithms. The Search

97

space definition, Meta-dataset construction, Training and Recommendation phases follow the
same approach described in Chapter 3| Section [3.4, maintaining the methodological consis-
tency presented previously. The core algorithmic Search space principle remains, designed to
learn from historical data; the modification is that the new version expands this step by us-
ing a different metadata repository. The specific details of this extension are discussed in the
following subsections. This new version is built upon the PIPES meta-dataset and aims to
identify promising pipelines and recommend rankings of pipelines most suitable for specific
This study is organized as follows: Section presents the experimental setup; Section
discusses the results and addresses the research questions; and Section [5.4] concludes the

study.

5.2 EXPERIMENTAL SETUP

5.2.1 Datasets and Search Space

The datasets used in the experiments were collected from PIPES, as described in Chapter
. Initially, 320 datasets were retrieved from the repository; however, 27 of them failed during
execution, leaving 293 datasets for analysis. These datasets were used as input for the procedure
described in Section [3.4.1] with the algorithm parameters set to n = 800 and & = 500. During
the search space definition phase, we empirically tested two parameter configurations:(i) n = 5,
k =5 and (ii) n = 800, k = 500, to evaluate the effect on search space curation.

When analyzing the configuration with (i) n = 5 and k = 5, we observed that the final
number of datasets available for analysis was limited to only 16 datasets. This small sample
restricts the construction of the meta-dataset. To address this limitation and increase diversity,
we decided to adjust configurations with larger values of n = 800 and k£ = 500. This decision
was also motivated by the presence of many tied results in the experiments, where different
pipeline combinations yield identical performance, making broader sampling.

However, after the last filtering step of the search space definition, which selects only
the most frequent pipelines, the final number of experiments in S is 146, and consequently,
the number of unique datasets is the same, as we selected only one (the best) experiment
for each dataset. Some complexity meta-features could not be calculated for twenty-nine of
these datasets, which were then removed. Therefore, our final number of instances in the

meta-dataset was 117. The resulting search space consists of five classification algorithms

98

(Multilayer Perceptron, Extremely Randomized Trees, Histogram-Based Gradient Boosting,
Support Vector Classifier, and Random Forest) and twelve preprocessing techniques (Simple
Imputer, One-Hot Encoder, Ordinal Encoder, Extra Trees Preprocessor, Polynomial Features,
Kernel Principal Component Analysis, Random Trees Embedding, Power Transformer, Robust

Scaler, Quantile Transformer, Min-Max Scaler, and Standard Scaler).

5.2.2 Meta-dataset construction and Meta-Model

This step extracts meta-features for each dataset and maps them to the best-performing
pipeline in the search space S. The meta-features are grouped into five categories: simple,
information-theoretic, statistical, model-based, and complexity, and are summarized in the
Appendix[K] To select an algorithm to use as MetaML's 2.0 meta-model, Probabilistic Classifier
Chains (PCC) were considered. As the base estimator for the PCC, we used a Decision Tree

classifier, with entropy as its splitting criterion and a minimum of 10 samples in a leaf node.

5.2.3 Data Preprocessing

The values of the meta-features used in this study vary across different intervals and may
present outliers. Therefore, the Quantile Transformer scaling algorithm was employed due to
its robustness to outliers (PEDREGOSA et al., 2011a)) (AMORIM; CAVALCANTI; CRUZ, [2023b).

From the 130 meta-features initially considered, we excluded those with more than
10% of missing values, resulting in 81 meta-features. The list of the 49 excluded fea-
tures can be found in Appendix [l Other meta-features with fewer missing values were
imputed using KNN (ZHANG, 2012) (k = 5), namely, flv.mean (9.40cov.sd (7.69%),
cov.mean (7.69%), gravity (7.69%), iq_range.mean (7.69%), 11.mean (7.69%), 12.mean
(7.69%), 13.mean (7.69%), eigenvalues.sd (7.69%), n3.mean (7.69%), n4.mean (7.69%), n4.sd
(7.69%), iq_range.sd (7.69%), t2 (7.69%), mad.mean (7.69%), t4 (7.69%), mad.sd (7.69%),
n3.sd (7.69%), nodes_repeated.sd (5.98%), nodes_per_level.sd (5.13%), tree_imbalance.sd
(5.13%), cat_to_num (3.42%), t_mean.sd (0.85%), t_mean.mean (0.85%).

99

5.2.4 Software and Hardware

The MetaML was implemented using the Python language (version 3.9.1) and the fol-
lowing packages: Scikit-Learn (PEDREGOSA et al., [2011a)) (version 1.2.2), Pandas (MCKINNEY,
2010) (version 1.5.3), Scikit-Multilearn (SZYMANSKI; KAJDANOWICZ, 2017 (version 0.2.0),
and PyMFE (ALCOBACA et al.,, [2020) (version 0.4.2). The experiments for the comparative
analysis were performed using the AutoML Benchmark on the Linux operating system, utiliz-
ing an eight-core, 3.7 GHz AMD Ryzen 7 2700X processor with 16 GB of RAM for the larger
datasets, and a six-core, 3.4 GHz AMD Ryzen 5 processor with 16 GB of RAM for the smaller

datasets.

5.2.5 Evaluation procedure

The final comparative analysis used 78 test datasets to evaluate MetaML 2.0 against the
following frameworks: Auto-WEKA, Auto-Sklearn 1.0, Auto-Sklearn 2.0, AutoGluon, FLAML-
Zero, H20 AutoML, Naive AutoML, TabPFN, and TPOT, using the accuracy metric. Initially,
a subset of 152 test datasets was considered (as discussed in the Evaluation Procedure 3.5.5]
Section [3.5.5, Chapter [3)); however, some datasets were removed because they either appeared
in or belonged to the same family as those used to construct the MetaML 2.0 meta-dataset.

The experiments described in this section are designed to answer the following research

questions:

RQ1 How does including preprocessing blocks (e.g., scaling, feature selection) impact clas-
sification algorithm performance compared to classifier-only pipelines across different

datasets in PIPES?

RQ2 Does PIPES significantly improve the diversity of pipeline configurations in MetaML
2.0 compared to OpenML-derived meta-datasets (MetaML), particularly regarding pre-
processing techniques?

RQ3 Does incorporating MetaML 2.0 preprocessing blocks allow for recommending pipelines
that achieve better predictive performance with lower computational cost compared to

state-of-the-art methods?

The MetaML 2.0 is trained and tested using a leave-one-dataset-out cross-validation

procedure (LODOCV) (see Chapter 3] Section [3.5.5)).

100

5.3 RESULTS AND DISCUSSION

5.3.1 Meta-level analysis

The meta-model performance is calculated by taking the mean of the meta-model perfor-
mances (in terms of the F1 and Precision metrics) over the 117 test instances. The meta-model

achieved an F1l-score of 0.224 and a Precision of 0.255.

5.3.2 The impact of using preprocessing blocks

The formation of the meta-targets in the meta-dataset, which corresponds to the results
from the performance of the pipelines, demonstrates the impact of preprocessing blocks. We
observed that of the 117 datasets in the meta-base, only seven datasets (6%) had the best
pipeline, which consisted solely of the classifier without any preprocessing steps. This indicates
a low number of cases where the classifier achieves better performance without the combina-
tion of preprocessing blocks. To investigate whether there is a significant difference in using
preprocessing blocks versus using a classifier alone, we applied the paired Wilcoxon signed-rank
test to determine whether the observed performance difference is statistically significant.

To focus the analysis on the impact of preprocessing blocks, we excluded these seven
datasets from this analysis. For the remaining 110 datasets (where preprocessing was a com-
ponent of the best pipeline), we compared the performance of the best pipeline (with prepro-
cessing) with the performance of the classifier pipeline used alone (without preprocessing) on
the same dataset. We present the results in a Figure 24] This approach allows us to analyze
the effect of preprocessing on performance.

We define the two approaches compared as follows: Pipeline with preprocessing: the
best-performing configuration for a dataset, which includes at least one preprocessing block.
Classifier-only pipeline: performance of the classifier used alone, without any preprocessing
blocks. In the Figure [24] pipelines that include preprocessing blocks show a higher concentra-
tion of higher accuracy values. The Wilcoxon test revealed statistically significant differences
between pipelines with and without preprocessing (p-value = 2.657e-18). Pipelines with pre-
processing blocks showed a higher average accuracy of 0.879, compared to 0.686 for pipelines
without preprocessing.

These results allow us to answer the research question: [RQ1] How does including pre-

101

1.01 N
0.81
a 0.6 1
e o
>
9
0.4 °
< o]
C]
0.2
0.0 -4
Pipeline with preprocessing Pipeline Classifier only

Figure 24 — Pipelines performance on 110 datasets, with and without preprocessing blocks.

processing blocks (e.g., scaling, feature selection) impact classification algorithm performance
compared to classifier-only pipelines across different datasets in PIPES?

The inclusion of preprocessing blocks impacts significant classifier performance, resulting
in higher accuracy compared to pipelines that use only the classifier. In some cases, their
absence, such as imputation and encoding blocks, renders performance unfeasible for pipelines
that use only the classifier, as indicated by the boxplot in Figure [24] marked by the red dots

in pipelines that use only the classifier.

5.3.3 Comparing Pipeline Diversity: PIPES vs. OpenML

To answer the research question [RQ2] Does PIPES significantly improve the diver-
sity of pipeline configurations in MetaML 2.0 compared to OpenML-derived meta-datasets
(MetaML), particularly regarding preprocessing techniques? We illustrate in Figurethe fre-
quency of meta-targets in MetaML 1.0, built with OpenML, and in MetaML 2.0 with PIPES,
to represent their diversity.

We observed greater diversity in the preprocessing blocks of MetaML 2.0 (a) compared
to MetaML 1.0 (b). For example, in the Feature Preprocessing block, MetaML 2.0 uses dif-
ferent techniques, while in MetaML 1.0, VarianceThreshold predominated. We also identified
differences in the distribution of Scaling methods and Classifiers. In MetaML 1.0, the most
frequent classifiers were tree-based (Decision Tree and Random Forest), followed by SVC. In
MetaML 2.0, we observed the use of tree-based classifiers (HistGradientBoosting, ExtraTrees,
and Random Forest), followed by MLP and SVC. The distribution among classifiers was more

diverse, indicating a more exploration of the pipelines. Therefore, PIPES significantly improved

102

the diversity of pipeline configurations in MetaML, particularly in the preprocessing blocks.

Imputation Encoding Feature Preprocessing Scaling Classifier

©
o

o
o
w
o
w
o

Frequency
N
S
Frequency
N
o
Frequency
N
]

N
o
—
o
—
o

0 0 0
@ w w w] a << w QL 0 = = W 1] [w o (S}
s &5 ° = 5§k § E L g * % =3
=4 =4 ¥ =4
(a)
Encoding Feature Preprocessing Scaling Classifier
120
250 250 250
100
200 200 200
> > > > 80
2 2 2 2
o 150 @ 150 o 150 @
=] =] =] > 60
o o o o
13 o o o
& 100 & 100 & 100 I 40
50 50 50 20
0 0 0 0
S A 5 & g
%]

None

OHE
None
None

(b)

Figure 25 — The graphs show the frequency distribution of each meta-target across 117 datasets of MetaML
2.0 (a) and 290 datasets of MetaML 1.0 (b). Additional abbreviations are provided below: SI -
Simple Imputer, OHE - OneHotEncoder, OE - OrdinalEncoder, PF - PolynomialFeatures, ETP
- ExtraTrees pre, KPCA - KernelPCA, RTE - RandomTreesEmbedding, PT - PowerTransforme,
RS - RobustScaler, QT - QuantileTransformer, MM - MinMaxScaler, SS - StandardScaler, HGB -
HistGradientBoosting, ET - ExtraTrees, RF - RandomForest, MLP - Multi-layer Perceptron, SVC
- Support Vector Classification, VT - VarianceThreshold, DT - Decision Tree.

5.3.4 Comparing the performances of recommended pipelines

To address item [RQ3] Does incorporating MetaML 2.0 preprocessing blocks allow for
the recommendation of pipelines that achieve better predictive performance with lower com-
putational cost compared to state-of-the-art methods? Table[12] compares the accuracy of the
pipelines recommended by MetaML and the state-of-the-art methods. In Table a), we evalu-
ate MetaML 2.0 as a zero-shot method, and in Tableb), we evaluate it as a 3-shot method,
using 10-fold cross-validation. In the zero-shot approach, the first recommended pipeline in
the classification is selected. In contrast, the 3-shot approach tests all three pipelines on the
dataset using 10-fold cross-validation and selects the one with the highest accuracy. A time
budget of 3 hours per dataset was considered.

When comparing MetaML 2.0 in zero-shot mode (a) with MetaML 2.0 in 3-shot mode
(b), a consistent performance improvement is observed with the use of 3-shot. This difference
occurs because, in zero-shot mode, the metamodel sometimes generates structurally invalid

pipelines, for example, by simultaneously recommending two preprocessing techniques. In these

103

Table 12 — A base-level analysis of the mean performance (accuracy) of the pipelines recommended by the
AutoML methods, Win/tie/loss of the MetaML 2.0 zero-shot (a) and 3-shot (b) against the
others, mean ranking, p-value of the Wilcoxon signed rank test with @ = 4.55e-04, and the total
recommendation time taken for datasets for which all methods ran successfully.

Mean acc. Win/tie/loss Mean rank p-value Time (hours)

Auto-WEKA 0.657 41/4/33 7.141 0.437 138
AutoSklearn 1.0 0.717 30/5/43 5.762 0.269 154
AutoSklearn 2.0 0.738 27/7/44 4.576 0.024 152
AutoGluon 0.817 21/4/53 5.237 0.000 4
H20 AutoML 0.744 40/4/34 7.006 0.865 152
Naive AutoML 0.785 32/2/44 4.762 0.080 24
TPOT 0.656 36/3/39 6.743 0.985 151
FLAML-Zero 0.744 41/4/33 6512 0.420 0.001
TabPFN 0.674 35/4/39 5.846 0.907 18
MetaML Zero-shot 0.786 42/2/34 6.083 0.499 0.013
MetaML 2.0 Zero-shot 0.684 - 6.326 - 1.133
(a)
Mean acc. Win/tie/loss Mean rank p-value Time (hours)
Auto-WEKA 0.657 53/6/19 7.512 5.47e-06 138
AutoSklearn 1.0 0.717 43/9/26 6.064 0.003 154
AutoSklearn 2.0 0.738 42/9/27 4.858 0.134 152
AutoGluon 0.817 34/12/32 5.602 0.541 4
H20 AutoML 0.744 53/5/20 7.256 2.302e-05 152
Naive AutoML 0.785 43/5/30 5.038 0.028 24
TPOT 0.656 50/6/22 7.044 6.603e-05 151
FLAML-Zero 0.744 55/5/18 6.955 1.286e-07 0.001
TabPFN 0.674 49/7/22 6.224 0.000 18
MetaML 3-shot 0.804 44/8/26 4.878 0.009 0.035
MetaML 2.0 3-shot 0.825 - 4.564 - 1.222
(b)

situations, a default performance value of zero was assigned, which impacted the results of
MetaML zero-shot.

In MetaML 2.0 3-shot, the availability of additional options allowed for each block of the
pipeline, resulting in only one valid strategy being recommended, which in turn led to exe-
cutable pipelines. Furthermore, MetaML 2.0 3-shot explored a larger set of options compared
to zero-shot.

Another relevant factor to consider is the increased complexity of the problem: the increase

in the number of labels increases the difficulty of the classifier chain, with greater complexity.

104

Strategies can be used to improve such metamodel results, such as testing different label
orders and experimenting with new base classifiers, like Random Forest.

When comparing the results of the original MetaML with MetaML 2.0 in the 3-shot
configuration, we observed improvements on specific datasets. For example, on the Poker
Hand dataset (data ID: 1567), the original MetaML presented the best pipeline using the
Decision Tree classifier, achieving an average accuracy of 0.644. In contrast, in MetaML 2.0,
the best pipeline was the combination of ExtraTrees + MLP preprocessing, which achieved an
average accuracy of 0.977. Another example is the House 8L dataset (data ID: 843), where
the best pipeline recommended by the original MetaML was again a Decision Tree, with a
score of 0.843. In contrast, MetaML 2.0 proposed a pipeline consisting of PolynomialFeatures
and HistGradientBoostingClassifier preprocessing, producing a better result of 0.893. These
cases illustrate the improvement in specific datasets.

Regarding runtime, a significant increase was observed: while the original MetaML re-
quired 0.035 hours, MetaML 2.0 required approximately 1.133 hours. This increase is directly
associated with the increased complexity of the problem, as the number of labels and the
depth of the classifier chain increase, resulting in increased time for metamodel inference.

The results show that incorporating preprocessing blocks into MetaML 2.0 enabled it to
recommend pipelines with improved predictive performance, with the MetaML 3-shot version
emerging as the best performer.

In a direct comparison with AutoSklearn 2.0 in Table b), MetaML 2.0 3-shot demon-
strated superiority with a higher average precision (0.825 vs. 0.738) and a better average
rank (lower average rank, 4.564 vs. 4.858), indicating better overall performance across all
datasets. In terms of Win/Tie/Loss, MetaML 2.0 won on more datasets (42) than it lost (27)
to AutoSklearn 2.0.

Regarding AutoGluon, MetaML 2.0 also performed better, with a higher average accuracy
(0.825 vs. 0.817) and a lower average rank (4.564 vs. 5.602). Furthermore, it had a significantly
lower computational cost, with an average time of 1.222 hours, while AutoGluon took 4 hours
to complete the tasks.

It is worth noting that the zero-shot version of MetaML underperformed the other meth-

ods, which reinforces the effectiveness of the 3-shot approach in achieving superior results.

105

5.4 CONCLUSION

We propose MetaML 2.0 to overcome the limitations observed in MetaML 1.0. This new
version is built upon the PIPES meta-dataset and is designed to identify promising pipelines
and recommend rankings of the most suitable pipelines for datasets. Experiments demonstrated
the effectiveness of the proposed method, and MetaML was evaluated in both zero-shot and
3-shot settings. In terms of base-level performance, the 3-shot approach achieves a better
balance between performance and computational cost compared to the zero-shot approach.

Future work can focus on further experiments with adjustments to the parameters n and
k to generate new meta-datasets and evaluate their performance. Additionally, incorporating
hyperparameter optimization into future versions of the method could further enhance the

predictive power and efficiency of MetaML 2.0.

106

6 CONCLUSION AND FUTURE WORK

This thesis aimed to present a meta-learning approach for pipeline recommendation, ca-
pable of handling various types of problems with lower computational cost compared to current
AutoML methods. The three studies presented in this thesis, MetaML, PIPES, and MetaML
2.0, address a distinct layer of this objective, contributing complementary advances that, when
combined, establish a comprehensive methodological framework. The first study designed a
curated search space based on historical data from the online repository (OpenML), aiming to
identify high-performance pipelines across a comprehensive set of datasets, ensuring diversity
and representativeness. Based on the analysis of the investigated pipelines, it was found that
a curated search space allows performance equivalent to that of the state-of-the-art, with
significantly reduced computational time. A limitation observed in this study was the difficulty
in building a balanced meta-dataset regarding the use of preprocessing techniques, due to
the low representation of these techniques in the experiments made available by OpenML.
To overcome this limitation, the second study proposed the construction of the PIPES meta-
dataset, a collection of experiments involving multiple pipelines, with different combinations
of preprocessing techniques and classification blocks. The goal was to create a more represen-
tative meta-dataset that could contribute to the diversity of experiments. Based on the PIPES
meta-dataset, we present the third study, which uses PIPES to form a more comprehensive
search space, resulting in MetaML 2.0. The experiments demonstrated the effectiveness of the
proposed method, with greater diversity in the use of preprocessing techniques, enabling the
recommendation of more comprehensive pipelines and with lower computational costs than
current AutoML methods. Thus, this thesis demonstrates that a well-designed search space
with high-performance pipelines on different datasets allows for performance equivalent to the
state-of-the-art, while significantly reducing computational cost, thereby demonstrating the ef-
ficiency of the approach. Future directions include improving the metamodel's performance by
introducing new metafeatures or reordering labels in the chain, testing new ranking algorithms,
such as XGBoost Rank, and exploring new strategies for hyperparameter recommendation to
evaluate their impact on performance. Future work also aims to investigate the importance
and influence of the meta-features used in the metamodel’s performance further. A promising
possibility is to retrain the meta-classifier, considering only the most relevant meta-features, to

evaluate the impact of this selection on the metamodel’'s recommendations. It is also intended

107

to assess in greater depth the cases where the recommendation was not the best, seeking to

understand the reasons for this.

108

REFERENCES

ALASADI, S. A.; BHAYA, W. S. Review of data preprocessing techniques in data mining.
Journal of Engineering and Applied Sciences, v. 12, n. 16, p. 4102-4107, 2017.

ALCOBACA, E.; SIQUEIRA, F.; RIVOLLI, A.; GARCIA, L. P.; OLIVA, J. T.; CARVALHO,
A. C. D. Mfe: Towards reproducible meta-feature extraction. The Journal of Machine
Learning Research, JMLRORG, v. 21, n. 1, p. 4503-4507, 2020.

ALSHAREF, A.; AGGARWAL, K.; KUMAR, M.; MISHRA, A. et al. Review of ml and automl|
solutions to forecast time-series data. Archives of Computational Methods in Engineering,
Springer, p. 1-15, 2022.

AMORIM, L. B. de; CAVALCANTI, G. D.; CRUZ, R. M. The choice of scaling technique
matters for classification performance. Applied Soft Computing, Elsevier, v. 133, p. 109924,
2023.

AMORIM, L. B. de; CAVALCANTI, G. D.; CRUZ, R. M. The choice of scaling technique
matters for classification performance. Applied Soft Computing, Elsevier, v. 133, p. 109924,
2023.

AMORIM, L. B. de; CAVALCANTI, G. D.; CRUZ, R. M. Meta-scaler: A meta-learning
framework for the selection of scaling techniques. IEEE Transactions on Neural Networks and
Learning Systems, |IEEE, v. 36, n. 3, p. 4805-4819, 2024.

AVELINO, J. G.; CAVALCANTI, G. D.; CRUZ, R. M. Resampling strategies for imbalanced
regression: a survey and empirical analysis. Artificial Intelligence Review, Springer, v. 57, n. 4,
p. 82, 2024.

BAHRI, M.; SALUTARI, F.; PUTINA, A.; SOZIO, M. Automl; state of the art with a focus
on anomaly detection, challenges, and research directions. International Journal of Data
Science and Analytics, Springer, p. 1-14, 2022.

BAKER, S.; KORHONEN, A. Initializing neural networks for hierarchical multi-label text
classification. In: BioNLP 2017. [S.l.: s.n.], 2017. p. 307-315.

BENAVOLI, A.; CORANI, G.; MANGILI, F. Should we really use post-hoc tests based on
mean-ranks? The Journal of Machine Learning Research, JMLR. org, v. 17, n. 1, p. 152-161,
2016.

BENSUSAN, H.; GIRAUD-CARRIER, C. Discovering task neighbourhoods through landmark
learning performances. In: SPRINGER. European Conference on Principles of Data Mining
and Knowledge Discovery. [S.1.], 2000. p. 325-330.

BERGSTRA, J.; BENGIO, Y. Random search for hyper-parameter optimization. The journal
of machine learning research, JMLR. org, v. 13, n. 1, p. 281-305, 2012.

BISCHL, B.; CASALICCHIO, G.; FEURER, M.; GIJSBERS, P.; HUTTER, F.: LANG, M;
MANTOVANI, R. G.; RIJN, J. N. van; VANSCHOREN, J. Openml| benchmarking suites.
arXiv preprint arXiv:1708.03731, 2017.

BOJER, C. S.; MELDGAARD, J. P. Kaggle forecasting competitions: An overlooked learning
opportunity. International Journal of Forecasting, Elsevier, v. 37, n. 2, p. 587-603, 2021.

BRAZDIL, P.; CARRIER, C. G.; SOARES, C.; VILALTA, R. Metalearning: Applications to
data mining. [S.1.]: Springer Science & Business Media, 2008.

109

BRAZDIL, P.; GAMA, J.; HENERY, B. Characterizing the applicability of classification
algorithms using meta-level learning. In: SPRINGER. European conference on machine
learning. [S.1.], 1994. p. 83-102.

BRAZDIL, P.; RIJN, J. N. van; SOARES, C.; VANSCHOREN, J. Metalearning: Applications
to Automated Machine Learning and Data Mining. [S.l.]: Springer Nature, 2022.

BRAZDIL, P.; RIJN, J. N. van; SOARES, C.; VANSCHOREN, J. Setting up configuration
spaces and experiments. In: Metalearning: Applications to Automated Machine Learning and
Data Mining. Cham: Springer Nature, 2022. p. 143-168.

CASTIELLO, C.; CASTELLANO, G.; FANELLI, A. M. Meta-data: Characterization of input
features for meta-learning. In: SPRINGER. International Conference on Modeling Decisions
for Artificial Intelligence. [S..], 2005. p. 457-468.

CELIK, B.; VANSCHOREN, J. Adaptation strategies for automated machine learning on
evolving data. IEEE Transactions on Pattern Analysis and Machine Intelligence, |IEEE, v. 43,
n. 9, p. 3067-3078, 2021.

CHEKINA, L.; GUTFREUND, D.; KONTOROVICH, A.; ROKACH, L.; SHAPIRA, B.
Exploiting label dependencies for improved sample complexity. Machine learning, Springer,
v. 91, n. 1, p. 1-42, 2013.

CHENG, W.; HULLERMEIER, E.; DEMBCZYNSKI, K. J. Bayes optimal multilabel
classification via probabilistic classifier chains. In: Proceedings of the 27th international
conference on machine learning (ICML-10). [S.l.: s.n.], 2010. p. 279-286.

CLARE, A.; KING, R. D. Knowledge discovery in multi-label phenotype data. In: SPRINGER.
European conference on principles of data mining and knowledge discovery. [S.l.], 2001. p.
42-53.

DANTAS, A. L.; POZO, A. T. R. Selecting algorithms for the quadratic assignment problem
with a multi-label meta-learning approach. In: IEEE. 2018 7th Brazilian Conference on
Intelligent Systems (BRACIS). [S.l.], 2018. p. 175-180.

DIMITROVSKI, I.: KOCEV, D.; LOSKOVSKA, S.: DZEROSKI, S. Hierarchical annotation of
medical images. Pattern Recognition, Elsevier, v. 44, n. 10-11, p. 2436-2449, 2011.

DORES, S. C. N. das; SOARES, C.; RUIZ, D. Bandit-based automated machine learning.
In: IEEE. 2018 7th Brazilian Conference on Intelligent Systems (BRACIS). [S.l.], 2018. p.
121-126.

ELDEEB, H.; MAHER, M.; MATSUK, O.; ALDALLAL, A.; ELSHAWI, R.; SAK, S.
Automlbench: A comprehensive experimental evaluation of automated machine learning
frameworks. arXiv preprint arXiv:2204.08358, 2022.

ELSHAWI, R.; MAHER, M.; SAKR, S. Automated machine learning: State-of-the-art and
open challenges. arXiv preprint arXiv:1906.02287, 2019.

ERICKSON, N.; MUELLER, J.; SHIRKQOV, A.; ZHANG, H.; LARRQY, P.; LI, M.; SMOLA,
A. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

FERRARI, D. G.; CASTRO, L. N. D. Clustering algorithm selection by meta-learning
systems: A new distance-based problem characterization and ranking combination methods.
Information Sciences, Elsevier, v. 301, p. 181-194, 2015.

FEURER, M.; EGGENSPERGER, K.; FALKNER, S.; LINDAUER, M.; HUTTER, F.
Auto-sklearn 2.0: Hands-free automl via meta-learning. arXiv preprint arXiv:2007.04074,
2020.

110

FEURER, M.; EGGENSPERGER, K.; FALKNER, S.; LINDAUER, M.; HUTTER, F.
Auto-sklearn 2.0: Hands-free automl| via meta-learning. Journal of Machine Learning
Research, v. 23, n. 261, p. 1-61, 2022.

FEURER, M.; HUTTER, F. Hyperparameter optimization. In: Automated machine learning:
Methods, systems, challenges. [S.l.]: Springer International Publishing Cham, 2019. p. 3-33.

FEURER, M.: KLEIN, A.; EGGENSPERGER, K.; SPRINGENBERG, J.; BLUM, M;
HUTTER, F. Efficient and robust automated machine learning. Advances in neural
information processing systems, v. 28, 2015.

FEURER, M.; RIJN, J. N. V.; KADRA, A_; GIJSBERS, P.; MALLIK, N.; RAVI, S.; MULLER,
A.; VANSCHOREN, J.; HUTTER, F. Openml-python: an extensible python api for openml.
Journal of Machine Learning Research, v. 22, n. 100, p. 1-5, 2021.

FEURER, M.; RIJN, J. N. van; KADRA, A.; GIJSBERS, P.; MALLIK, N.; RAVI, S.; MUELLER,
A.; VANSCHOREN, J.; HUTTER, F. Openml-python: an extensible python api for openml.
arXiv, v. 1911.02490, 2020. Disponivel em: <https://arxiv.org/pdf/1911.02490.pdf>.

GANDA, D.; BUCH, R. A survey on multi label classification. Recent Trends in Programming
Languages, v. 5, n. 1, p. 19-23, 2018.

GIJSBERS, P. Systems for automl research. 2022.

GIJSBERS, P.; BUENO, M. L.; COORS, S.; LEDELL, E.; POIRIER, S.; THOMAS,
J.; BISCHL, B.; VANSCHOREN, J. Amlb: an automl| benchmark. arXiv preprint
arXiv:2207.12560, 2022.

GIJSBERS, P.; BUENO, M. L.; COORS, S.; LEDELL, E.; POIRIER, S.; THOMAS, J.;
BISCHL, B.; VANSCHOREN, J. Amlb: an automl benchmark. Journal of Machine Learning
Research, v. 25, n. 101, p. 1-65, 2024.

GIJSBERS, P.; LEDELL, E.; THOMAS, J.; POIRIER, S.; BISCHL, B.; VANSCHOREN, J. An
open source automl benchmark. arXiv preprint arXiv:1907.00909, 2019.

GIJSBERS, P.; VANSCHOREN, J. Gama: A general automated machine learning assistant.
In: SPRINGER. Joint European Conference on Machine Learning and Knowledge Discovery
in Databases. [S.l.], 2020. p. 560-564.

GOLSHANRAD, P.; RAHMANI, H.; KARIMIAN, B.; KARIMKHANI, F.; WEISS, G. Mega:
Predicting the best classifier combination using meta-learning and a genetic algorithm.
Intelligent Data Analysis, 10S Press, v. 25, n. 6, p. 1547-1563, 2021.

GOMES, T. A.; PRUDENCIO, R. B.; SOARES, C.; ROSSI, A. L.; CARVALHO, A. Combining
meta-learning and search techniques to select parameters for support vector machines.
Neurocomputing, Elsevier, v. 75, n. 1, p. 3-13, 2012.

HERRERA, F.; CHARTE, F.; RIVERA, A. J.; JESUS, M. J. del. Multilabel classification:
problem analysis, metrics and techniques. Cham: Springer International Publishing, 2016.

HO, T. K.; BASU, M. Complexity measures of supervised classification problems. IEEE
transactions on pattern analysis and machine intelligence, |EEE, v. 24, n. 3, p. 289-300,
2002.

HOLLMANN, N.; MULLER, S.; PURUCKER, L.; KRISHNAKUMAR, A.; KORFER, M ;
HOOQO, S. B.; SCHIRRMEISTER, R. T.; HUTTER, F. Accurate predictions on small data with
a tabular foundation model. Nature, Nature Publishing Group UK London, v. 637, n. 8045,
p. 319-326, 2025.

https://arxiv.org/pdf/1911.02490.pdf

111

HUTTER, F.; KOTTHOFF, L.; VANSCHOREN, J. Automated machine learning: methods,
systems, challenges. [S..]: Springer Nature, 2019.

KARMAKER, S. K.; HASSAN, M. M.; SMITH, M. J.; XU, L.; ZHAI, C.; VEERAMACHANENI,
K. Automl to date and beyond: Challenges and opportunities. ACM Computing Surveys
(CSUR), ACM New York, NY, v. 54, n. 8, p. 1-36, 2021.

KAYALI, M.; WANG, C. Mining robust default configurations for resource-constrained
automl. arXiv preprint arXiv:2202.09927, 2022.

KHAN, I.; ZHANG, X.; AYYASAMY, R. K.; ALI, R. Autofe-sel: A meta-learning based
methodology for recommending feature subset selection algorithms. 2023.

KHAN, |.; ZHANG, X.; REHMAN, M.; ALI, R. A literature survey and empirical study of
meta-learning for classifier selection. IEEE Access, |IEEE, v. 8, p. 10262-10281, 2020.

KOMER, B.; BERGSTRA, J.; ELIASMITH, C. Hyperopt-sklearn. In: Automated Machine
Learning. [S.l.]: Springer, Cham, 2019. p. 97-111.

KOTLAR, M.; PUNT, M.; RADIVOJEVIC, Z.; CVETANOVIC, M.; MILUTINOVIC, V. Novel
meta-features for automated machine learning model selection in anomaly detection. /EEE
Access, IEEE, v. 9, p. 89675-89687, 2021.

KOTSIANTIS, S. B.; ZAHARAKIS, I. D.; PINTELAS, P. E. Machine learning: a review of
classification and combining techniques. Artificial Intelligence Review, Springer, v. 26, p.
159-190, 2006.

KOTTHOFF, L.; THORNTON, C.; HOQOS, H. H.; HUTTER, F.; LEYTON-BROWN, K.
Auto-weka 2.0: Automatic model selection and hyperparameter optimization in weka.
Journal of Machine Learning Research, v. 18, n. 25, p. 1-5, 2017. Disponivel em:
<http://jmlr.org/papers/v18/16-261.html>.

KOTTHOFF, L.; THORNTON, C.; HOQOS, H. H.; HUTTER, F.; LEYTON-BROWN,
K. Auto-weka: Automatic model selection and hyperparameter optimization in weka. In:
Automated machine learning. [S.l.]: Springer, Cham, 2019. p. 81-95.

KUHN, D.; PROBST, P.; THOMAS, J.; BISCHL, B. Automatic exploration of machine
learning experiments on openml. arXiv preprint arXiv:1806.10961, 2018.

LEDELL, E.; POIRIER, S. H20 automl: Scalable automatic machine learning. In: Proceedings
of the AutoML Workshop at ICML. [S.l.: s.n.], 2020. v. 2020.

LORENA, A. C.; GARCIA, L. P.; LEHMANN, J.; SOUTO, M. C,; HO, T. K. How complex is
your classification problem? a survey on measuring classification complexity. ACM Computing
Surveys (CSUR), ACM New York, NY, USA, v. 52, n. 5, p. 1-34, 2019.

LUACES, O.; DIEZ, J.; BARRANQUERO, J.; COZ, J. J. del: BAHAMONDE, A. Binary
relevance efficacy for multilabel classification. Progress in Artificial Intelligence, Springer,
v. 1, n. 4, p. 303313, 2012.

MANTOVANI, R. G.; ROSSI, A. L.; ALCOBACA, E.; VANSCHOREN, J.; CARVALHO, A. C.
de. A meta-learning recommender system for hyperparameter tuning: Predicting when tuning
improves svm classifiers. Information Sciences, Elsevier, v. 501, p. 193-221, 20109.

MCINNES, L.; HEALY, J.; MELVILLE, J. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

MCKINNEY Wes. Data Structures for Statistical Computing in Python. In: WALT Stéfan
van der; MILLMAN Jarrod (Ed.). Proceedings of the 9th Python in Science Conference. [S.l.:
s.n.], 2010. p. 56 — 61.

http://jmlr.org/papers/v18/16-261.html

112

MIRANDA, P. B.; PRUDENCIO, R. B.; CARVALHO, A. P. D.; SOARES, C. A hybrid meta-
learning architecture for multi-objective optimization of svm parameters. Neurocomputing,
Elsevier, v. 143, p. 27-43, 2014.

MISIR, M.; SEBAG, M. Alors: An algorithm recommender system. Artificial Intelligence,
Elsevier, v. 244, p. 291-314, 2017.

MOHR, F.; WEVER, M. Naive automated machine learning. Machine Learning, Springer,
v. 112, n. 4, p. 1131-1170, 2023.

MOHR, F.; WEVER, M.; HULLERMEIER, E. Ml-plan: Automated machine learning via
hierarchical planning. Machine Learning, Springer, v. 107, n. 8, p. 1495-1515, 2018.

MOYANO, J. M.; GIBAJA, E. L.; CIOS, K. J.; VENTURA, S. An evolutionary approach to
build ensembles of multi-label classifiers. Information Fusion, Elsevier, v. 50, p. 168-180,
2019.

NGUYEN, D. A.; KONONOVA, A. V.: MENZEL, S.: SENDHOFF, B.: BACK, T. An efficient
contesting procedure for automl optimization. IEEE Access, |IEEE, v. 10, p. 75754-75771,
2022.

OBAID, H. S.; DHEYAB, S. A.; SABRY, S. S. The impact of data pre-processing techniques
and dimensionality reduction on the accuracy of machine learning. In: IEEE. 2019 9th annual

information technology, electromechanical engineering and microelectronics conference
(iemecon). [S.1.], 2019. p. 279-283.

OLSON, R. S.; BARTLEY, N.; URBANOWICZ, R. J.; MOORE, J. H. Evaluation of a
tree-based pipeline optimization tool for automating data science. In: Proceedings of the
genetic and evolutionary computation conference 2016. [S.l.: s.n.], 2016. p. 485-492.

OLSON, R. S.; MOORE, J. H. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In: PMLR. Workshop on automatic machine learning. [S.l.], 2016. p. 66-74.

PARMEZAN, A. R. S.; LEE, H. D.; WU, F. C. Metalearning for choosing feature selection
algorithms in data mining: Proposal of a new framework. Expert Systems with Applications,
Elsevier, v. 75, p. 1-24, 2017.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL,
O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VANDERPLAS,
J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, v. 12, p.
2825-2830, 2011.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL,
O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V. et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, JMLR. org, v. 12, p.
2825-2830, 2011.

PENG, Y.; FLACH, P. A.; SOARES, C.; BRAZDIL, P. Improved dataset characterisation for
meta-learning. In: SPRINGER. International conference on discovery science. [S.1.], 2002. p.
141-152.

PERRONE, V.; JENATTON, R.; SEEGER, M. W.; ARCHAMBEAU, C. Scalable
hyperparameter transfer learning. Advances in neural information processing systems, v. 31,
2018.

PIMENTEL, B. A.; CARVALHO, A. C. D. A new data characterization for selecting clustering
algorithms using meta-learning. Information Sciences, Elsevier, v. 477, p. 203-219, 2019.

113

PIO, P. B.; RIVOLLI, A.; CARVALHO, A. C. d.; GARCIA, L. P. A review on preprocessing
algorithm selection with meta-learning. Knowledge and Information Systems, Springer, v. 66,
n. 1, p. 1-28, 2024.

PROBST, P.; BOULESTEIX, A.-L.; BISCHL, B. Tunability: Importance of hyperparameters
of machine learning algorithms. Journal of Machine Learning Research, v. 20, n. 53, p. 1-32,
2019.

RAJU, V. G.; LAKSHMI, K. P.; JAIN, V. M.; KALIDINDI, A.; PADMA, V. Study the
influence of normalization /transformation process on the accuracy of supervised classification.

In: IEEE. 2020 third international conference on smart systems and inventive technology
(icssit). [S.1.], 2020. p. 729-735.

READ, J.; PFAHRINGER, B.; HOLMES, G.; FRANK, E. Classifier chains for multi-label
classification. In: SPRINGER. Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2009, Bled, Slovenia, September 7-11, 2009,
Proceedings, Part 11 20. [S.l.], 2009. p. 254-269.

RICE, J. R. The algorithm selection problem. In: . [S.l.]: Elsevier, 1976. v. 15, p. 65-118.

RIJN, J. N. V.; BISCHL, B.; TORGO, L.; GAO, B.; UMAASHANKAR, V.; FISCHER,

S.; WINTER, P.; WISWEDEL, B.; BERTHOLD, M. R.; VANSCHOREN, J. Openml: A
collaborative science platform. In: SPRINGER. Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September
23-27, 2013, Proceedings, Part Il 13. [S.l.], 2013. p. 645-649.

RIJN, J. N. V.; HUTTER, F. Hyperparameter importance across datasets. In: Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data mining.
[S.l.: s.n.], 2018. p. 2367-2376.

RIVOLLI, A.; GARCIA, L. P.; SOARES, C.; VANSCHOREN, J.; CARVALHO, A. C. de.
Meta-features for meta-learning. Knowledge-Based Systems, Elsevier, v. 240, p. 108101,
2022.

SANTQOS, A. d. M. Investigando a combinacao de técnicas de aprendizado semissupervisionado
e classificacdo hierarquica multirrétulo. Universidade Federal do Rio Grande do Norte, 2012.

SMITH-MILES, K. A. Cross-disciplinary perspectives on meta-learning for algorithm selection.
ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 41, n. 1, p. 1-25, 20009.

SNOEK, J.; LAROCHELLE, H.; ADAMS, R. P. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, v. 25, 2012.

SONG, Q.; WANG, G.; WANG, C. Automatic recommendation of classification algorithms
based on data set characteristics. Pattern recognition, Elsevier, v. 45, n. 7, p. 2672-2689,
2012.

SOROWER, M. S. A literature survey on algorithms for multi-label learning. Oregon State
University, Corvallis, v. 18, n. 1, p. 25, 2010.

SOUTO, M. C. D.; PRUDENCIO, R. B.; SOARES, R. G.; ARAUJO, D. S. D.; COSTA,
I. G.; LUDERMIR, T. B.; SCHLIEP, A. Ranking and selecting clustering algorithms using
a meta-learning approach. In: IEEE. 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence). [S.1.], 2008. p. 3729-3735.

SZYMANSKI, P.; KAJDANOWICZ, T. A scikit-based python environment for performing
multi-label classification. arXiv preprint arXiv:1702.01460, 2017.

114

TANG, H.; WANG, Y.; TANG, S.; CHU, D.; LI, C. A randomized clustering forest approach
for efficient prediction of protein functions. IEEE Access, |IEEE, v. 7, p. 12360-12372, 2019.

THORNTON, C.; HUTTER, F.; HOOS, H. H.; LEYTON-BROWN, K. Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms. In: Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining. [S.l.:
s.n.], 2013. p. 847-855.

TIDAKE, V. S.; SANE, S. S. Multi-label classification: a survey. International Journal of
Engineering and Technology, v. 7, n. 4.19, p. 1045-1054, 2018.

TING, K. M.; WITTEN, I. H. Issues in stacked generalization. Journal of artificial intelligence
research, v. 10, p. 271-289, 1999.

TROHIDIS, K.;: TSOUMAKAS, G.; KALLIRIS, G.; VLAHAVAS, I. P. et al. Multi-label
classification of music into emotions. In: ISMIR. [S..: s.n.], 2008. v. 8, p. 325-330.

TSOUMAKAS, G.: KATAKIS, I. Multi-label classification: An overview. International Journal
of Data Warehousing and Mining (IJDWM), |Gl Global, v. 3, n. 3, p. 1-13, 2007.

TSOUMAKAS, G.; KATAKIS, I.; VLAHAVAS, I. Mining multi-label data. Data mining and
knowledge discovery handbook, Springer, p. 667-685, 2009.

TSOUMAKAS, G.; KATAKIS, I.; VLAHAVAS, |. Mining multi-label data. In: . Data
Mining and Knowledge Discovery Handbook. Boston, MA: Springer US, 2010. p. 667-685.
Disponivel em: <https://doi.org/10.1007 /978-0-387-09823-4_34>.

VANSCHOREN, J.; BLOCKEEL, H.; PFAHRINGER, B.; HOLMES, G. Experiment databases:
A new way to share, organize and learn from experiments. Machine Learning, Springer, v. 87,
n. 2, p. 127-158, 2012.

VANSCHOREN, J.; RN, J. N. V.; BISCHL, B.; TORGO, L. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, ACM New York, NY, USA, v. 15,
n. 2, p. 49-60, 2014.

WANG, G.; SONG, Q.; ZHANG, X.; ZHANG, K. A generic multilabel learning-based
classification algorithm recommendation method. ACM Transactions on Knowledge Discovery
from Data (TKDD), ACM New York, NY, USA, v. 9, n. 1, p. 1-30, 2014.

WEGMETH, L.; BEEL, J. Camels: Cooperative meta-learning service for recommender
systems. 2022.

WISTUBA, M.; SCHILLING, N.; SCHMIDT-THIEME, L. Sequential model-free
hyperparameter tuning. In: IEEE. 2015 IEEE international conference on data mining. [S.l],
2015. p. 1033-1038.

YANG, C.; AKIMOTO, Y.; KIM, D. W.; UDELL, M. Oboe: Collaborative filtering for automl
model selection. In: Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining. [S.l.: s.n.], 2019. p. 1173-1183.

YAO, Q.; WANG, M.; CHEN, Y.; DAI, W.; LI, Y.-F.; TU, W.-W_; YANG, Q.; YU, Y. Taking
human out of learning applications: A survey on automated machine learning. arXiv preprint
arXiv:1810.13306, 2018.

YING, C.; KLEIN, A.; CHRISTIANSEN, E.; REAL, E.; MURPHY, K.; HUTTER, F.
Nas-bench-101: Towards reproducible neural architecture search. In: PMLR. International
conference on machine learning. [S..], 2019. p. 7105-7114.

https://doi.org/10.1007/978-0-387-09823-4_34

115

ZEBARI, R.; ABDULAZEEZ, A.; ZEEBAREE, D.; ZEBARI, D.; SAEED, J. A comprehensive
review of dimensionality reduction techniques for feature selection and feature extraction.
Journal of Applied Science and Technology Trends, v. 1, n. 1, p. 56-70, 2020.

ZHANG, M.-L.; ZHOU, Z.-H. MI-knn: A lazy learning approach to multi-label learning.
Pattern recognition, Elsevier, v. 40, n. 7, p. 2038-2048, 2007.

ZHANG, S. Nearest neighbor selection for iteratively knn imputation. Journal of Systems and
Software, Elsevier, v. 85, n. 11, p. 2541-2552, 2012.

ZHANG, X.; SONG, Q. A multi-label learning based kernel automatic recommendation
method for support vector machine. PloS one, Public Library of Science San Francisco, CA
USA, v. 10, n. 4, p. 0120455, 2015.

ZHU, X.; YANG, X.; YING, C.; WANG, G. A new classification algorithm recommendation
method based on link prediction. Knowledge-Based Systems, Elsevier, v. 159, p. 171-185,
2018.

ZHU, X.; YING, C.; WANG, J.; LI, J.; LAI, X.; WANG, G. Ensemble of ml-knn for
classification algorithm recommendation. Knowledge-Based Systems, Elsevier, v. 221, p.
106933, 2021.

ZOLLER, M.-A.; HUBER, M. F. Benchmark and survey of automated machine learning
frameworks. Journal of artificial intelligence research, v. 70, p. 409-472, 2021.

116

APPENDIX A - PIPELINE REDUNDANCY ANALYSIS

To illustrate the redundancy of certain pipelines, we selected some OpenML flows, as
presented in Table [I3] The comparison was performed on 323 datasets, to verify whether
the pipelines are really redundant in a large proportion of datasets. The metric used for the
comparison was the accuracy. We observed that, for Decision Trees and algorithms based on
decision trees, such as Random Forest, and AdaBoost, the employment of scaling techniques
does not significantly impact performance. This highlights the redundancy of certain pipelines,
since these transformations are unnecessary for these models.

For example, when analyzing the execution frequency of the OHE-VT-DT pipeline, we
found 206 executions, while the OHE-VT-SS-DT pipeline was executed 595 times. Since SS
does not influence the performance of Decision Trees, this difference highlights the redundancy
in using pipelines that include this unnecessary transformation. Furthermore, our analysis sug-
gests that eliminating redundant pipelines could significantly reduce the search space. This
result supports the existence of (i) redundancy, where different pipelines lead to similar re-
sults, and (ii) naive or unnecessary pipelines, as specific preprocessing steps (such as scaling
for tree-based algorithms) do not contribute to performance improvement. Finally, we also
identified (iii) rare and niche-specific pipelines. One example is a pipeline that first applies
data imputation to handle missing values, then removes outliers using Isolation Forest, and
finally classifies using Quadratic Discriminant Analysis (QDA), Flow ID 9678. When analyzed
in OpenML, this pipeline was executed only 10 times for a single dataset (Autos, Data ID 9),

indicating that it is rarely used in practice.

117

Table 13 — Comparison pipelines of OpenML. RSC - RobustScaler, OHE - One-Hot Encoder, VT - Variance
Threshold, SS - StandardScale, DT - Decision Tree.

RandomForest (RF)

Flow ID Pipeline Mean acc Mean rank
4830 RF 0.839 1.517
17801 SS-RF 0.839 1.482

Decision Tree (DT)

Flow ID Pipeline Mean acc Mean rank
6946 OHE-VT-DT 0.801 1.473
7725 OHE-VT-SS-DT 0.800 1.526

Adaboost

Flow ID Pipeline Mean acc Mean rank

18144 OHE-RSC-Adaboost 0.796 1.504

18146 OHE-Adaboost 0.796 1.495

APPENDIX B -

Tables [14] shows the 290 datasets used to construct the meta-dataset.

Table 14 — Datasets used to construct the meta-dataset. DID - Data ID, TID - Task ID.

118

DATASETS USED IN META-DATASET CONSTRUCTION

N? of N? of N? of Real or
DID TID Dataset

class attributes instances Artificial
965 3828 zoo 2 17 101 Real
181 2073 yeast 10 9 1484 Real
753 3619 wisconsin 2 33 194 Real
187 2382 wine 3 14 178 Real
847 3712 wind 2 15 6574 Real
1511 9988 wholesale-customers 2 9 440 Real
979 3842 waveform-5000 2 41 5000 Artificial
1526 9942 wall-robot-navigation 4 5 5456 Real
1509 9945 walking-activity 22 5 149332 Real
1016 3879 vowel 2 14 990 Real
1546 9919 volcanoes-€5 5 4 1112 Artificial
1545 9918 volcanoes-e4 5 4 1252 Artificial
1544 9917 volcanoes-e3 5 4 1277 Avrtificial
1543 9916 volcanoes-e2 5 4 1080 Artificial
1542 9915 volcanoes-el 5 4 1183 Artificial
1541 9923 volcanoes-d4 5 4 8654 Artificial
1540 9922 volcanoes-d3 5 4 9285 Artificial
1539 9921 volcanoes-d2 5 4 9172 Artificial
1538 9920 volcanoes-d1 5 4 8753 Artificial
1537 9933 volcanoes-cl 5 4 28626 Artificial
1536 9932 volcanoes-b6 5 4 10130 Artificial
1535 9931 volcanoes-b5 5 4 9989 Artificial
1534 9930 volcanoes-b4 5 4 10190 Artificial

119

N? of N? of N? of Real or
DID TID Dataset

class attributes instances Artificial
1533 9929 volcanoes-b3 5 4 10386 Artificial
1532 9928 volcanoes-b2 5 4 10668 Artificial
1531 9927 volcanoes-bl 5 4 10176 Artificial
1530 9926 volcanoes-a4 5 4 1515 Artificial
1529 9925 volcanoes-a3 5 4 1521 Artificial
1528 9924 volcanoes-a2 5 4 1623 Artificial
1527 10103 volcanoes-al 5 4 3252 Artificial
923 3786 visualizing_ soil 2 5 8641 Real
736 3602 visualizing_environmental 2 4 111 Real
719 3585 veteran 2 8 137 Real
994 3857 vehicle 2 19 846 Real
1508 9944 user-knowledge 5 6 403 Real
1507 9943 twonorm 2 21 7400 Artificial
788 3653 triazines 2 61 186 Real
885 3748 transplant 2 4 131 Real
1506 9969 thoracic-surgery 2 17 470 Real
1115 3949 teachingAssistant 3 7 151 Real
955 3818 tae 2 6 151 Real
1004 3867 synthetic_control 2 61 600 Artificial
770 3636 strikes 2 7 625 Real
841 3706 stock 2 10 950 Real
1503 9966 spoken-arabic-digit 10 15 263256 Real
953 3816 splice 2 61 3190 Real
737 3603 space_ga 2 7 3107 Artificial
902 3765 sleuth__case2002 2 7 147 Real
1502 9965 skin-segmentation 2 4 245057 Real
826 3691 sensory 2 12 576 Real

120

N? of N? of N¢ of Real or
DID TID Dataset

class attributes instances Artificial
958 3821 segment 2 20 2310 Real
1498 9961 sa-heart 2 10 462 Real
1520 9938 robot-failures-Ip5 5 91 164 Real
717 3583 rmftsa_ladata 2 11 508 Artificial
1496 9959 ringnorm 2 21 7400 Artificial
816 3681 puma8NH 2 9 8192 Artificial
752 3618 puma32H 2 33 8192 Artificial
996 3859 prnn_fglass 2 10 214 Artificial
722 3588 pol 2 49 15000 Artificial
155 223 pokerhand 10 11 829201 Artificial
1567 9890 poker-hand 10 11 1025009 Real
354 3506 poker 2 11 1025010 Real
750 3616 pml0 2 8 500 Real
1490 9953 planning-relax 2 13 182 Real
1019 3882 pendigits 2 17 10992 Real
1069 3919 pc2 2 37 5589 Real
1167 4001 pcl_req 2 9 320 Real
1488 9951 parkinsons 2 23 195 Real
1021 3884 page-blocks 2 11 5473 Real
980 3843 optdigits 2 65 5620 Real
959 3822 nursery 2 9 12960 Real
886 3749 no2 2 8 500 Real
784 3649 newton_hema 2 4 140 Real
881 3745 mv 2 11 40768 Artificial
880 3744 mu284 2 11 284 Artificial
164 2373 molecular-biology_ promoters 2 58 106 Real
995 3858 mfeat-zernike 2 48 2000 Real

121

N? of N? of N? of Real or
DID TID Dataset

class attributes instances Artificial
962 3825 mfeat-morphological 2 7 2000 Real
1020 3883 mfeat-karhunen 2 65 2000 Real
971 3834 mfeat-fourier 2 77 2000 Real
1056 3907 mcl 2 39 9466 Real
733 3599 machine_cpu 2 7 209 Real
10 10 lymph 4 19 148 Real
941 3804 lowbwt 2 10 189 Real
977 3840 letter 2 17 20000 Real
1483 9974 Idpa 11 8 164860 Real
184 2076 kropt 18 7 28056 Real
1481 9972 kr-vs-k 18 7 28056 Real
807 3672 kin8nm 2 9 8192 Artificial
1045 3898 kcl-tops 2 95 145 Real
1066 3916 kcl-binary 2 95 145 Real
1048 3901 jEdit_4.2_4.3 2 9 369 Real
1073 3921 jEdit_4.0_4.2 2 9 274 Real
969 3832 iris 2 5 150 Real
823 3688 houses 2 9 20640 Real
843 3708 house_8L 2 9 22784 Real
821 3686 house_16H 2 17 22784 Real
1513 9948 heart-switzerland 5 13 123 Real
53 52 heart-statlog 2 14 270 Real
1565 9894 heart-h 5 14 294 Real
1026 3888 grub-damage 2 9 155 Real
1005 3868 glass 2 10 214 Real
714 3580 fruitfly 2 5 125 Real
901 3764 fried 2 11 40768 Artificial

122

N? of N? of N? of Real or
DID TID Dataset

class attributes instances Artificial
805 3670 fri_c4_500_50 2 51 500 Artificial
838 3703 fri_c4_500_25 2 26 500 Artificial
855 3720 fri_c4_500_10 2 11 500 Artificial
918 3781 fri_c4_250_50 2 51 250 Artificial
933 3796 fri_c4_250_25 2 26 250 Artificial
863 3727 fri_c4_250_10 2 11 250 Artificial
932 3795 fri_c4_100_50 2 51 100 Artificial
868 3732 fri_c4_100_25 2 26 100 Artificial
878 3742 fri_c4_100_10 2 11 100 Artificial
797 3662 fri_c4_1000_50 2 51 1000 Avrtificial
723 3589 fri_c4_1000_25 2 26 1000 Artificial
751 3617 fri_c4_1000_10 2 11 1000 Artificial
937 3800 fri_c3_500_50 2 51 500 Artificial
749 3615 fri_c3_500_5 2 6 500 Artificial
896 3759 fri_c3_500_25 2 26 500 Artificial
936 3799 fri_c3_500_10 2 11 500 Artificial
873 3737 fri_c3_250_50 2 51 250 Artificial
744 3610 fri_c3_250_5 2 6 250 Artificial
832 3697 fri_c3_250_25 2 26 250 Artificial
793 36568 fri_c3_250_10 2 11 250 Artificial
716 3582 fri_c3_100_50 2 51 100 Artificial
916 3779 fri_c3_100_5 2 6 100 Artificial
768 3634 fri_c3_100_25 2 26 100 Artificial
783 3648 fri_c3_100_10 2 11 100 Artificial
806 3671 fri_c3_1000_50 2 51 1000 Artificial
813 3678 fri_c3_1000_5 2 6 1000 Artificial
715 3581 fri_c3_1000_25 2 26 1000 Artificial

123

N? of N? of N? of Real or
DID TID Dataset

class attributes instances Artificial
740 3606 fri_c3_1000_10 2 11 1000 Artificial
920 3783 fri_c2_500_50 2 51 500 Artificial
792 3657 fri_c2_500_5 2 6 500 Artificial
879 3743 fri_c2_500_25 2 26 500 Artificial
869 3733 fri_c2_500_10 2 11 500 Artificial
877 3741 fri_c2_250_50 2 51 250 Artificial
911 3774 fri_c2_250_5 2 6 250 Artificial
794 3659 fri_c2_250_25 2 26 250 Artificial
830 3695 fri_c2_250_10 2 11 250 Artificial
922 3785 fri_c2_100_50 2 51 100 Artificial
726 3592 fri_c2_100_5 2 6 100 Artificial
775 3641 fri_c2_100_25 2 26 100 Artificial
762 3628 fri_c2_100_10 2 11 100 Artificial
866 3730 fri_c2_1000_50 2 51 1000 Artificial
912 3775 fri_c2_1000_5 2 6 1000 Artificial
903 3766 fri_c2_1000_25 2 26 1000 Artificial
913 3776 fri_c2_1000_10 2 11 1000 Artificial
766 3632 fri_cl1_500_50 2 51 500 Artificial
870 3734 fri_cl1_500_5 2 6 500 Artificial
779 3645 fri_cl_500_25 2 26 500 Artificial
824 3689 fri_cl_500_10 2 11 500 Artificial
769 3635 fri_cl_250_50 2 51 250 Artificial
730 3596 fri_cl_250_5 2 6 250 Artificial
746 3612 fri_cl_250_25 2 26 250 Artificial
935 3798 fri_cl1_250_10 2 11 250 Artificial
876 3740 fri_cl_100_50 2 51 100 Artificial
829 3694 fri_cl_100_5 2 6 100 Artificial

124

N? of N? of N? of Real or
DID TID Dataset

class attributes instances Artificial
812 3677 fri_cl_100_25 2 26 100 Artificial
789 3654 fri_cl_100_10 2 11 100 Artificial
837 3702 fri_c1_1000_50 2 51 1000 Artificial
743 3609 fri_cl_1000_5 2 6 1000 Artificial
917 3780 fri_cl_1000_25 2 26 1000 Artificial
910 3773 fri_c1_1000_10 2 11 1000 Artificial
888 3751 fri_c0_500_50 2 51 500 Artificial
884 3747 fri_c0_500_5 2 6 500 Artificial
926 3789 fri_c0_500_25 2 26 500 Artificial
943 3806 fri_c0_500_10 2 11 500 Artificial
732 3598 fri_c0_250_50 2 51 250 Artificial
776 3642 fri_c0_250_5 2 6 250 Artificial
773 3639 fri_c0_250_25 2 26 250 Artificial
763 3629 fri_c0_250_10 2 11 250 Artificial
850 3715 fri_c0_100_50 2 51 100 Artificial
754 3620 fri_c0_100_5 2 6 100 Artificial
889 3752 fri_c0_100_25 2 26 100 Artificial
808 3673 fri_c0_100_10 2 11 100 Artificial
904 3767 fri_c0_1000_50 2 51 1000 Artificial
799 3664 fri_c0_1000_5 2 6 1000 Artificial
849 3714 fri_c0_1000_25 2 26 1000 Artificial
845 3710 fri_c0_1000_10 2 11 1000 Artificial
1012 3875 flags 2 29 194 Real
1473 9984 fertility 2 10 100 Real
1044 3897 eye_movements 3 28 10936 Real
1011 3874 ecoli 2 8 336 Real
931 3794 disclosure_z 2 4 662 Artificial

125

N? of N? of N? of Real or
DID TID Dataset

class attributes instances Artificial
795 3660 disclosure_x_tampered 2 4 662 Artificial
827 3692 disclosure_x_noise 2 4 662 Artificial
774 3640 disclosure_x_ bias 2 4 662 Artificial
818 3683 diggle_table_a2 2 9 310 Artificial
819 3684 delta_elevators 2 7 9517 Artificial
803 3668 delta_ailerons 2 6 7129 Artificial
1075 3923 datatrieve 2 9 130 Real
735 3601 cpu_small 2 13 8192 Real
761 3627 cpu_act 2 22 8192 Real
796 3661 cpu 2 8 209 Real
150 218 covertype 7 55 581012 Real
987 3850 collins 2 23 500 Real
351 3505 codrna 2 9 488565 Real
983 3846 cmc 2 10 1473 Real
890 3753 cloud 2 8 108 Real
900 3763 chscase_census6 2 7 400 Artificial
906 3769 chscase_censusb 2 8 400 Artificial
907 3770 chscase_census4 2 8 400 Artificial
908 3771 chscase_census3 2 8 400 Artificial
909 3772 chscase_census2 2 8 400 Artificial
1560 9898 cardiotocography 3 36 2126 Real
991 3854 car 2 7 1728 Real
23499 52945 breast-cancer-dropped 2 10 277 Real
825 3690 boston_corrected 2 21 506 Real
853 3718 boston 2 14 506 Real
778 3644 bodyfat 2 15 252 Real
1463 10094 blogger 2 6 100 Real

126

N? of N? of N? of Real or
DID TID Dataset

class attributes instances Artificial
725 3591 bank8FM 2 9 8192 Real
833 3698 bank32nh 2 33 8192 Real
997 3860 balance-scale 2 5 625 Real
1121 3955 badges2 2 11 294 Artificial
463 3554 backache 2 32 180 Real
745 3611 auto_price 2 16 159 Real
1553 9905 autoUniv-au7-700 3 13 700 Artificial
1554 9903 autoUniv-au7-500 5 13 500 Artificial
1552 9906 autoUniv-au7-1100 5 13 1100 Artificial
1549 9904 autoUniv-au6-750 8 41 750 Artificial
1551 9907 autoUniv-au6-400 8 41 400 Artificial
1555 9902 autoUniv-au6-1000 8 41 1000 Artificial
1547 9909 autoUniv-aul-1000 2 21 1000 Artificial
756 3622 autoPrice 2 16 159 Real
951 3814 arsenic-male-lung 2 5 559 Real
947 3810 arsenic-male-bladder 2 5 559 Real
950 3813 arsenic-female-lung 2 5 559 Real
949 3812 arsenic-female-bladder 2 5 559 Real
1061 3911 ar4 2 30 107 Real
1059 3909 arl 2 30 121 Real
748 3614 analcatdata_wildcat 2 6 163 Real
724 3590 analcatdata_vineyard 2 4 468 Real
728 3594 analcatdata_supreme 2 8 4052 Real
921 3784 analcatdata_seropositive 2 4 132 Real
771 3637 analcatdata_michiganacc 2 4 108 Real
450 3542 analcatdata_lawsuit 2 5 264 Real
1025 3887 analcatdata_germangss 2 6 400 Real

127

N? of N? of N? of Real or
DID TID Dataset

class attributes instances Artificial
1014 3877 analcatdata_dmft 2 5 797 Real
461 3552 analcatdata_ creditscore 2 7 100 Real
875 3739 analcatdata_chlamydia 2 4 100 Real
444 3538 analcatdata_boxing?2 2 4 132 Artificial
448 3540 analcatdata_boxingl 2 4 120 Avrtificial
970 3833 analcatdata_authorship 2 71 841 Real
764 3630 analcatdata_apnea3 2 4 450 Artificial
765 3631 analcatdata_apnea2 2 4 475 Artificial
767 3633 analcatdata_apneal 2 4 475 Artificial
734 3600 ailerons 2 41 13750 Real
1556 9901 acute-inflammations 2 7 120 Real
720 3586 abalone 2 9 4177 Real
337 3496 SPECTF 2 45 349 Real
336 3495 SPECT 2 23 267 Real
160 228 RandomRBF_50_1E-4 5 11 1000000 Artificial
159 227 RandomRBF_50_1E-3 5 11 1000000 Artificial
158 226 RandomRBF_10_1E-4 5 11 1000000 Artificial
157 225 RandomRBF_10_1E-3 5 11 1000000 Artificial
156 224 RandomRBF_0_0 5 11 1000000 Artificial
1100 3937 PopularKids 3 11 478 Real
1444 7559 PizzaCutter3 2 38 1043 Artificial
1443 7558 PizzaCutterl 2 38 661 Artificial
1453 10099 PieChart3 2 38 1077 Artificial
1452 10098 PieChart2 2 37 745 Artificial
1451 10097 PieChartl 2 38 705 Artificial
1442 7556 MegaWattl 2 38 253 Real
1113 3947 KDDCup99 23 42 494020 Real

128

N¢ of N¢ of N¢ of Real or
DID TID Dataset

class attributes instances Artificial
976 3839 JapaneseVowels 2 15 9961 Real
1446 7557 CostaMadrel 2 38 296 Artificial
1447 10096 CastMetall 2 38 327 Artificial
272 2267 BNG(z00) 7 17 1000000 Artificial
271 2266 BNG(waveform-5000) 3 41 1000000 Artificial
141 210 BNG(vehicle,nominal, 1000000) 4 19 1000000 Artificial
268 2263 BNG(vehicle) 4 19 1000000 Artificial
264 2259 BNG(sonar) 2 61 1000000 Artificial
130 156 BNG(segment) 7 20 1000000 Artificial
261 2256 BNG(pendigits) 10 17 1000000 Artificial
125 151 BNG(page-blocks,nominal,295245) 5 11 205245 Artificial
259 2254 BNG(page-blocks) 5 11 295245 Artificial
123 149 BNG(optdigits) 10 65 1000000 Avrtificial
254 2145 BNG(mfeat-zernike) 10 48 1000000 Artificial
252 2143 BNG(mfeat-karhunen) 10 65 1000000 Artificial
250 2141 BNG(mfeat-fourier) 10 77 1000000 Artificial
249 2140 BNG(lymph) 4 19 1000000 Artificial
74 136 BNG(letter,nominal,1000000) 26 17 1000000 Artificial
72 134 BNG(kr-vs-kp) 2 37 1000000 Artificial
146 215 BNG(ionosphere) 2 35 1000000 Artificial
267 2262 BNG(heart-statlog) 2 14 1000000 Artificial
265 2260 BNG(glass) 7 10 137781 Artificial
119 145 BNG(cmc,nominal,55296) 3 10 55296 Artificial
727 3593 2dplanes 2 11 40768 Artificial

129

APPENDIX C - METAML DATASETS DIVERSITY

In Figure 26} we illustrate the use of Uniform Manifold approximation and Projection for Di-
mension Reduction (UMAP) (MCINNES; HEALY; MELVILLE, 2018) on the 290 datasets used in building
MetaML, configured with k = 3 neighbors, to visualize the datasets across different types of meta-
features in a two-dimensional space. The distribution indicates diversity, reinforcing the representa-

tiveness of the selected datasets.

(a) General and Info-Theory (b) Statistics
4 [}
20 °® 15
L 4 @
151 b 10 PY i ° °
° . S ° °
101 °®) ° °
~ ~ []
= @ ® 2 54 [}
g 5 o ® ° A g \.’
[=} o
2 . o Qa 3 AN X
S 01 ®) Co ' S ,
5 ° ° °R
3) 4 ° ® s ® ° oo ®
10 L ° el o ° L4
B °
«© ° -10 o L)
—~15 L] [J
T T T T T T T T T T T T T T
-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
Component 1 Component 1
(c) Model-Based (d) Complexity
20) [_J
15
15] ° o
S ¢ : 1] ‘4-. .
~ 1019 [) ~ a [Y
2 b .
g oo °® g s
o [) ‘ o \
E ’° [elte g §
© 0 [] ® © o0 ’ ®
‘ o e ® = Q’. ‘
_5 - [s
() of ° hd
-10 [[] [}
-15 -10 -5 0 5 10 15 20 -10 -5 0 5 10 15
Component 1 Component 1

Figure 26 — Representation of the meta-features space with UMAP.

Complementing the analyses, the Figure illustrates some meta-features of the complexity
measure only. The complexity measure describes the difficulty of the problems. We observed a het-

erogeneous distribution of these measures covering different scenarios.

130

Frequency Frequency

Frequency

c2 flv.mean f2.mean f4.mean
? ? 100 + L:>; 100
100 9 50 -] s
o o o
o o o
0 . w 0 . w 0 . w 0 .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
I1.mean 12.mean I13.mean n3.mean
100 > T S — > T] 1007
S 50 A S 50 A g
3 =) =)
o o o
1 o o
0 . [0 . w 0 . [0 .
00 01 02 0.3 0.0 0.2 0.4 0.0 0.2 0.4 0.00 0.25 0.50 0.75
n3.sd nd.mean nd.sd t4
100 - g 1001 g g
J 50
g $50]
o o o
o 0 o
0 m w 0 m w 0 m w 0 m
0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.5 1.0

Figure 27 — Distribution of 12 complexity measures used in the construction of the meta-dataset.

APPENDIX D

- META-FEATURES

Table [15 shows the eighty-six meta-features used to represent each dataset.

Table 15 — Datasets used to construct the meta-dataset.

131

Meta-feature Description Group

Dimensionality Number of attributes divided by the simple
number of instances.

NumberOfBinaryFeatures Number of binary attributes. simple

NumberOfClasses Number of distinct values of the target simple
attribute (if it is nominal).

NumberOfFeatures Number of attributes (columns) of the simple
dataset.

NumberOflnstances Number of instances (rows) of the simple
dataset.

NumberOflnstancesWithMissingValues Number of instances with at least one simple
value missing.

NumberOfMissingValues Number of missing values in the dataset. simple

NumberOfNumericFeatures Number of numeric attributes. simple

NumberOfSymbolicFeatures Number of nominal attributes. simple

PercentageOfBinaryFeatures Percentage of binary attributes. simple

PercentageOflnstancesWithMissingValues Percentage of instances having missing simple
values.

PercentageOfMissingValues Percentage of missing values. simple

PercentageOfNumericFeatures Percentage of numeric attributes. simple

PercentageOfSymbolicFeatures Percentage of nominal attributes. simple

ClassEntropy Entropy of the target attribute values. info-theory

AutoCorrelation Average class difference between consec- statistical
utive instances.

Quartile1KurtosisOfNumericAtts First quartile of kurtosis among at- statistical

tributes of the numeric type.

132

Meta-feature Description Group
QuartilelMeansOfNumericAtts First quartile of means among attributes statistical
of the numeric type.
Quartile1SkewnessOfNumericAtts First quartile of skewness among at- statistical
tributes of the numeric type.
Quartile1StdDevOfNumericAtts First quartile of standard deviation of at- statistical
tributes of the numeric type.
Quartile2KurtosisOfNumericAtts Second quartile (Median) of kurtosis statistical
among attributes of the numeric type.
Quartile2MeansOfNumericAtts Second quartile (Median) of means statistical
among attributes of the numeric type.
Quartile2SkewnessOfNumericAtts Second quartile (Median) of skewness statistical
among attributes of the numeric type.
Quartile2StdDevOfNumericAtts Second quartile (Median) of standard statistical
deviation of attributes of the numeric
type.
Quartile3KurtosisOfNumericAtts Third quartile of kurtosis among at- statistical
tributes of the numeric type.
Quartile3AMeansOfNumericAtts Third quartile of means among at- statistical
tributes of the numeric type.
Quartile3SkewnessOfNumericAtts Third quartile of skewness among at- statistical
tributes of the numeric type.
Quartile3StdDevOfNumericAtts Third quartile of standard deviation of statistical
attributes of the numeric type.
StdvNominalAttDistinctValues Standard deviation of the number of statistical
distinct values among attributes of the
nominal type.
MajorityClassPercentage Percentage of instances belonging to the statistical
most frequent class.
MajorityClassSize Number of instances belonging to the statistical

most frequent class.

133

Meta-feature Description Group

MaxKurtosisOfNumericAtts Maximum kurtosis among attributes of statistical
the numeric type.

MaxMeansOfNumericAtts Maximum of means among attributes of statistical
the numeric type.

MaxNominalAttDistinctValues The maximum number of distinct values statistical
among attributes of the nominal type.

MaxSkewnessOfNumericAtts Maximum skewness among attributes of statistical
the numeric type.

MaxStdDevOfNumericAtts Maximum standard deviation of at- statistical
tributes of the numeric type.

MeanKurtosisOfNumericAtts Mean kurtosis among attributes of the statistical
numeric type.

MeanMeansOfNumericAtts Mean of means among attributes of the statistical
numeric type.

MeanNominalAttDistinctValues Average number of distinct values statistical
among the attributes of the nominal
type.

MeanSkewnessOfNumericAtts Mean skewness among attributes of the statistical
numeric type.

MeanStdDevOfNumericAtts Mean standard deviation of attributes of statistical
the numeric type.

MinKurtosisOfNumericAtts Minimum kurtosis among attributes of statistical
the numeric type.

MinMeansOfNumericAtts Minimum of means among attributes of statistical
the numeric type.

MinNominalAttDistinctValues The minimal number of distinct values statistical
among attributes of the nominal type.

MinSkewnessOfNumericAtts Minimum skewness among attributes of statistical

the numeric type.

134

Meta-feature Description Group

MinStdDevOfNumericAtts Minimum standard deviation of at- statistical
tributes of the numeric type.

MinorityClassPercentage Percentage of instances belonging to the statistical
least frequent class.

MinorityClassSize Number of instances belonging to the statistical
least frequent class.

leaves Number of leaf nodes in the DT model. model-based

leaves__branch.mean
leaves__branch.sd
leaves__corrob.mean
leaves_corrob.sd

leaves__homo.mean

leaves__homo.sd

leaves__per_class.mean

leaves_ per__class.sd

nodes

nodes_ per_attr

nodes__per_inst

nodes_ per_level.mean

nodes_ per__level.sd

nodes_ repeated.mean

Size of branches in the DT model.
Size of branches in the DT model.
Leaves corroboration of the DT model.
Leaves corroboration of the DT model.

DT model Homogeneity for every leaf

node.

DT model Homogeneity for every leaf

node.

Proportion of leaves per class in DT

model.

Proportion of leaves per class in DT

model.
Number of non-leaf nodes in DT model.

Ratio of nodes per number of attributes

in DT model.

Ratio of non-leaf nodes per number of

instances in DT model.

Ratio of number of nodes per tree level

in DT model.

Ratio of number of nodes per tree level

in DT model.

Number of repeated nodes in DT model.

model-based
model-based
model-based
model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

135

Meta-feature

Description

Group

nodes_ repeated.sd
tree_depth.mean
tree_depth.sd
tree_imbalance.mean
tree_imbalance.sd
tree_shape.mean
tree_shape.sd

var_importance.mean

var_importance.sd

cl

c2

fl.mean

fl.sd

flv.mean

f2.mean

f3.mean

f4.mean

|1.mean

|12.mean

|13.mean

t2

t3

Number of repeated nodes in DT model.
Depth of every node in the DT model.
Depth of every node in the DT model.
Tree imbalance for each leaf node.
Tree imbalance for each leaf node.
Tree shape for every leaf node.

Tree shape for every leaf node.

Features importance of the DT model

for each attribute.

Features importance of the DT model

for each attribute.

Entropy of class proportions.
Imbalance ratio.

Maximum Fisher’s discriminant ratio.
Maximum Fisher’s discriminant ratio.

Directional-vector maximum Fisher's

discriminant ratio.

Volume of the overlapping region.
Feature maximum individual efficiency.
Collective feature efficiency.

Sum of error distance by linear program-

ming.

OVO subsets error rate of linear classi-

fier.
Non-Linearity of a linear classifier.

Average number of features per dimen-

sion.

Average number of PCA dimensions per

points.

model-based
model-based
model-based
model-based
model-based
model-based
model-based

model-based

model-based

complexity
complexity
complexity
complexity

complexity

complexity
complexity
complexity

complexity

complexity

complexity

complexity

complexity

136

Meta-feature Description Group

t4 Ratio of the PCA dimension to the orig- complexity

inal dimension.

APPENDIX E -

137

DATASETS USED IN COMPARATIVE EXPERIMENTS

Table [16] shows the 152 datasets that were used in the experiments for comparative analysis of

AutoML methods.

Table 16 — Datasets that were used in the comparative analysis. DID - Data ID, TID - Task ID.

N? of N? of
DID TID Dataset

class attributes instances
965 3828 zoo 2 17 101
753 3619 wisconsin 2 33 194
187 2382 wine 3 14 178
1511 9988 wholesale-customers 2 9 440
1546 9919 volcanoes-e5 5 4 1112
1545 9918 volcanoes-e4 5 4 1252
1544 9917 volcanoes-e3 5 4 1277
1543 9916 volcanoes-e2 5 4 1080
1540 9922 volcanoes-d3 5 4 0285
1539 9921 volcanoes-d2 5 4 9172
1537 9933 volcanoes-cl 5 4 28626
1534 9930 volcanoes-b4 5 4 10190
1533 9929 volcanoes-b3 5 4 10386
1527 10103 volcanoes-al 5 4 3252
736 3602 visualizing_environmental 2 4 111
719 3585 veteran 2 8 137
994 3857 vehicle 2 19 846
1508 9944 user-knowledge 5 6 403
788 3653 triazines 2 61 186
885 3748 transplant 2 4 131
1506 9969 thoracic-surgery 2 17 470
1115 3949 teachingAssistant 3 7 151

138

N? of N? of N? of
DID TID Dataset

class attributes instances
955 3818 tae 2 6 151
902 3765 sleuth__case2002 2 7 147
958 3821 segment 2 20 2310
1498 9961 sa-heart 2 10 462
1520 9938 robot-failures-Ip5 5 91 164
996 3859 prnn_fglass 2 10 214
1567 9890 poker-hand 10 11 1025009
1490 9953 planning-relax 2 13 182
1167 4001 pcl_req 2 9 320
1488 9951 parkinsons 2 23 195
784 3649 newton_hema 2 4 140
880 3744 mu284 2 11 284
164 2373 molecular-biology_promoters 2 58 106
995 3858 mfeat-zernike 2 48 2000
962 3825 mfeat-morphological 2 7 2000
1020 3883 mfeat-karhunen 2 65 2000
971 3834 mfeat-fourier 2 77 2000
733 3599 machine_cpu 2 7 209
10 10 lymph 4 19 148
941 3804 lowbwt 2 10 189
1045 3898 kcl-topb 2 95 145
1066 3916 kcl-binary 2 95 145
1048 3901 jEdit_4.2_43 2 9 369
1073 3921 jEdit_4.0_4.2 2 9 274
969 3832 iris 2 5 150
843 3708 house_8L 2 9 22784
1513 9948 heart-switzerland 5 13 123

139

N? of N? of N? of
DID TID Dataset

class attributes instances

53 52 heart-statlog 2 14 270
1565 9894 heart-h 5 14 294
1026 3888 grub-damage 2 9 155
1005 3868 glass 2 10 214
714 3580 fruitfly 2 5 125
805 3670 fri_c4_500_50 2 51 500
838 3703 fri_c4_500_25 2 26 500
855 3720 fri_c4_500_10 2 11 500
918 3781 fri_c4_250_50 2 51 250
749 3615 fri_c3_500_5 2 6 500
896 3759 fri_c3_500_25 2 26 500
873 3737 fri_c3_250_50 2 51 250
744 3610 fri_c3_250_5 2 6 250
792 3657 fri_c2_500_5 2 6 500
879 3743 fri_c2_500_25 2 26 500
869 3733 fri_c2_500_10 2 11 500
877 3741 fri_c2_250_50 2 51 250
766 3632 fri_c1_500_50 2 51 500
870 3734 fri_cl_500_5 2 6 500
779 3645 fri_cl_500_25 2 26 500
824 3689 fri_cl_500_10 2 11 500
888 3751 fri_c0_500_50 2 51 500
926 3789 fri_c0_500_25 2 26 500
943 3806 fri_c0_500_10 2 11 500
732 3598 fri_c0_250_50 2 51 250
1012 3875 flags 2 29 194

1473 9984 fertility 2 10 100

140

N? of N? of N? of
DID TID Dataset

class attributes instances

1011 3874 ecoli 2 8 336
931 3794 disclosure_z 2 4 662
795 3660 disclosure_x_tampered 2 4 662
827 3692 disclosure_x_ noise 2 4 662
774 3640 disclosure_x_bias 2 4 662
818 3683 diggle_table_a2 2 9 310
1075 3923 datatrieve 2 9 130
796 3661 cpu 2 8 209
150 218 covertype 7 55 581012
890 3753 cloud 2 8 108
900 3763 chscase_census6 2 7 400
906 3769 chscase_censusb 2 8 400
907 3770 chscase_census4 2 8 400
908 3771 chscase_census3 2 8 400
909 3772 chscase_census?2 2 8 400
991 3854 car 2 7 1728
23499 52945 breast-cancer-dropped 2 10 277
853 3718 boston 2 14 506
778 3644 bodyfat 2 15 252
1463 10094 blogger 2 6 100
1121 3955 badges2 2 11 294
463 3554 backache 2 32 180
745 3611 auto_price 2 16 159
1554 9903 autoUniv-au7-500 5 13 500
1551 9907 autoUniv-au6-400 8 41 400
1555 9902 autoUniv-au6-1000 8 41 1000

756 3622 autoPrice 2 16 159

141

N? of N? of N? of
DID TID Dataset

class attributes instances

1061 3911 ar4 2 30 107
1059 3909 arl 2 30 121

748 3614 analcatdata_wildcat 2 6 163

724 3590 analcatdata_vineyard 2 4 468

921 3784 analcatdata_seropositive 2 4 132

771 3637 analcatdata_ michiganacc 2 4 108

450 3542 analcatdata_lawsuit 2 5 264
1025 3887 analcatdata_germangss 2 6 400

461 3552 analcatdata_ creditscore 2 7 100

875 3739 analcatdata_chlamydia 2 4 100

444 3538 analcatdata_boxing?2 2 4 132

448 3540 analcatdata_boxingl 2 4 120

764 3630 analcatdata_apnea3 2 4 450

765 3631 analcatdata_apnea2 2 4 475

767 3633 analcatdata_apneal 2 4 475
1556 9901 acute-inflammations 2 7 120

337 3496 SPECTF 2 45 349

336 3495 SPECT 2 23 267

160 228 RandomRBF_50_1E-4 5 11 1000000
159 227 RandomRBF_50_1E-3 5 11 1000000
158 226 RandomRBF_10_1E-4 5 11 1000000
157 225 RandomRBF_10_1E-3 5 11 1000000
156 224 RandomRBF_0_0 5 11 1000000
1100 3937 PopularKids 3 11 478
1444 7559 PizzaCutter3 2 38 1043
1443 7558 PizzaCutterl 2 38 661

1453 10099 PieChart3 2 38 1077

142

N¢ of N¢ of N¢ of
DID TID Dataset

class attributes instances
1452 10098 PieChart2 2 37 745
1451 10097 PieChartl 2 38 705
1442 7556 MegaWattl 2 38 253
1113 3947 KDDCup99 23 42 494020
1446 7557 CostaMadrel 2 38 296
1447 10096 CastMetall 2 38 327
272 2267 BNG(zoo) 7 17 1000000
271 2266 BNG(waveform-5000) 3 41 1000000
268 2263 BNG(vehicle) 4 19 1000000
264 2259 BNG(sonar) 2 61 1000000
130 156 BNG(segment) 7 20 1000000
261 2256 BNG(pendigits) 10 17 1000000
259 2254 BNG(page-blocks) 5 11 205245
123 149 BNG(optdigits) 10 65 1000000
254 2145 BNG(mfeat-zernike) 10 48 1000000
252 2143 BNG(mfeat-karhunen) 10 65 1000000
250 2141 BNG(mfeat-fourier) 10 77 1000000
249 2140 BNG(lymph) 4 19 1000000
72 134 BNG(kr-vs-kp) 2 37 1000000
146 215 BNG(ionosphere) 2 35 1000000
267 2262 BNG(heart-statlog) 2 14 1000000
265 2260 BNG(glass) 7 10 137781

143

APPENDIX F - COMPARATIVE PERFORMANCE OF META-MODELS:
MULTI-LABEL VS. SINGLE-LABEL APPROACHES

An analysis was conducted comparing our multi-label approach (PCC in the zero-shot setting)
with traditional single-label models (RF, SVC, and DT). Table [17| compares MetaML using three
different multi-label approaches (LP, CC, and PCC) versus three single-label approaches (RF, DT,
and SVC). The statistical significance was evaluated using the Wilcoxon signed-rank test, and p-
values were adjusted using a Bonferroni correction to control for family-wise Type | error, with a
corrected significance level of a = 0.004, indicating cases where there is a significant difference

between the compared method and MetaML's performance.

Table 17 — Wins, ties of losses of MetaML using three different multi-label approaches versus single label
approaches. The p-values, resulting from a Wilcoxon signed rank test that are lower than o = 0.004
are highlighted in bold.

Win/tie/loss p-value
MetaML-LP
MetaML-RF 31/208/51 0.038
MetaML-SVC 54/168/68 0.161
MetaML-DT 52/189/49 0.437
MetaML-CC
MetaML-RF ~ 31/189/70 5.54e-05
MetaML-SVC 50/152/88 0.000
MetaML-DT 43/182/65 0.083
MetaML-PCC zero-shot
MetaML-RF 33/186/71 3.65e-05
MetaML-SVC 52/148/90 0.000
MetaML-DT 45/179/66 0.062

The results indicate no statistically significant difference between the multi-label models and
MetaML-DT. However, significant differences were observed when comparing RF and SVC with
multi-label models CC and PCC. These results suggest that single-label approaches, particularly RF
and SVC, achieved slightly better performance than the multi-label. Despite the somewhat better per-
formance, we emphasize that the core motivation for adopting multi-label meta-models, particularly

PCC, lies in their ability to capture the interdependence of pipeline steps.

144

APPENDIX G - PERFORMANCE ANALYSIS: REAL VS. ARTIFICIAL
DATASETS

In Table , we present the mean performance, mean rank, and Win/Tie/Loss analyses of
MetaML 3-shot. The results are analyzed separately for the 73 real datasets (48.03%) and the 79
artificial datasets (51.97%), considering the 152 datasets used for comparison with the state of the

art.

Table 18 — A base-level analysis of the mean performance (accuracy) of the pipelines recommended by the
AutoML methods, Win/tie/loss of the MetaML 3-shot in real (a) and artificial (b) datasets against
the others, mean ranking, p-value of the Wilcoxon signed rank test with a = 5.56e-04.

Mean acc. Win/tie/loss Mean rank p-value

Auto-WEKA 0.830 51/4/18 6.178 0.002
AutoSklearn 1.0 0.832 37/10/26 5.136 0.062
AutoSklearn 2.0 0.847 33/9/31 3.863 0.488
AutoGluon 0.841 48/7/18 6.363 0.005
H20 AutoML 0.813 53/1/19 6.815 5.728e-05
Naive AutoML 0.830 36/14/23 5.089 0.060
TPOT 0.819 35/12/26 5.260 0.125
FLAML-Zero 0.770 55/11/7 7.856 4.275e-10
TabPFN 0.835 31/17/25 4.212 0.607
MetaML 3-shot 0.845 - 4.226 -
(a) Real

Mean acc. Win/tie/loss Mean rank p-value
Auto-WEKA 0.663 49/7/23 7.018 0.000
AutoSklearn 1.0 0.721 33/5/41 5.373 0.820
AutoSklearn 2.0 0.741 29/7/43 4.588 0.161
AutoGluon 0.819 26/2/51 4.943 5.18e-05
H20 AutoML 0.766 39/1/39 6.240 0.873
Naive AutoML 0.794 30/8/41 4.740 0.044
TPOT 0.679 41/3/35 5.860 0.109
FLAML-Zero 0.749 52/12/15 6.468 9.23e-08
TabPFN 0.704 40/5/34 4.373 0.399
MetaML 3-shot 0.799 - 5.392 -

(b) Artificial

Considering the real datasets, MetaML 3-shot achieved the highest mean accuracy (0.845).
Although it did not obtain the best ranking, its average rank (4.226) was very close to that of
AutoSklearn 2.0 (3.863) and TabPFN (4.212). We observed that the AutoML methods had a superior
performance, with more wins than losses in the real data, with FLAML-Zero standing out as the one
with the worst performance. In the artificial datasets, AutoGluon achieved the best average accuracy,
followed by MetaML 3-shot, while TabPFN obtained the best average ranking. The method that
presented the worst performance was Auto-WEKA. In general, all methods performed better on real

datasets.

145

APPENDIX H - COMPARISON OF AUTOMLS CONSIDERING DATASETS
CLASSES AND INSTANCES

An analysis was performed considering the characteristics of the datasets, such as more classes,
fewer classes, more instances, and fewer instances, comparing MetaML and AutoML methods per

dataset in terms of accuracy, illustrated in a heatmap in Figure [28]

146

AT OT N
RNDo~oN~O
coo~ -3

Datasets

(a) Binary datasets.

AutoSklearn 1.0 - l l l
AutoGluon Il ll l l
H20 AutoML - l

Naive AutoML
TPOT
Flaml-Zero
TabPFN
AutoSklearn 2.0

MetaML 3-shot

s | | | [

o o
8 0
N A

1551 -
1533 -
1115 -
1100 -
1534 -
1554 -

Datasets

(b) Multiclass datasets.

1446
1463
1059

(c) Datasets with less than 10000 instances.

Autorvieka -- - -

AutoSklearn 1.0 -

TPOT -
Flaml-Zero --
- [-
AutoSklearn 2. 0 - ----- -- --
e -- ------ HEEEENEE.

= =3 @ o~
o R © ° ~
~ - 1

157

IN
N

S
n
=

Datasets

(d) Datasets with more than 1000000 instances.

Figure 28 — Accuracy comparison of AutoMLs considering specific dataset characteristics.

Rank

Rank

Rank

Rank

147

The key findings from these heatmaps are highlighted below:

For binary classification (a) and datasets with up to 10,000 instances (c), AutoML methods and
MetaML 3-shot generally achieve better ranks (indicated by darker colors), with few cases of
low performance (indicated by lighter shades in the heatmaps).

For multiclass tasks (b) and datasets with more than 1 million instances (d), the performance
of several methods, such as Auto-Weka, AutoSklearn 1.0, TPOT, TabPFN, and H20 AutoML,
drops significantly, as seen by the prevalence of lighter shades (worse ranks).

AutoGluon stands out for maintaining strong performance even in challenging scenarios (multi-
class and large datasets), showing a behavior similar to MetaML 3-shot.

MetaML 3-shot consistently performs well across all scenarios, including binary, multiclass, small,
and large datasets, evident from the consistent presence of darker regions in all heatmaps.
Although TabPFN performs well in binary tasks (a), it underperforms in multiclass (b) and

large-scale (d) datasets compared to MetaML 3-shot.

148

APPENDIX | — EXAMPLES OF PIPELINES RECOMMENDED BY METAML

AND NAIVE AUTOML

Figure showcases the recommendations for four datasets by MetaML and Naive AutoML.
The pipelines are represented by a tuple of blocks. We observe that each method presents distinct

search spaces and number of pipeline blocks, with Naive AutoML also including hyperparameter

settings.
r - - - - - - - - - I
Data ID: 994 i
vehicle |
Naive AutoML
MetaML aive Auto
Pipeline None None None RF Pipeline ‘ PT
|
max_leaf_nodes max_depth n_estimators |
|
| Search Space OHE VI SS svC Search Space SS hyperparameters
None None None DT PCA . MLP - . 200
" o] - =]
|
|
I
I
| o o o o L o o o o o o o |
— - - — - [- - - - - - - -1
|
! Data ID: 1506
! thoracic-surgery
MetaML Naive AutoML
|
} Pipeline B sve Pipe"ne ‘ -
|
class_weight C probability ‘
|
hyperparameters |
T T e
|
I Data ID: 1511
wholesale-customers !
|
1
1 MetaML Naive AutoML
| Pipeline None None None RF Pipeline E .
| max_features min_samples_split n_estimators ‘
I hyperparameters
|
Data ID: 885
transplant
MetaML Naive AutoML !
|
max_features min_samples_split n_estimators
hyperparameters

Figure 29 — Representation of the pipelines.

149

Furthermore, on the vehicle (data ID: 994) and wholesale customer (data ID: 1511) datasets,
MetaML recommends Random Forest (RF), while Naive AutoML applies Power Transform (PT) fol-
lowed by Extremely Randomized Trees (ET). This highlights how the Naive AutoML naive approach,
where each step pipeline is independent, can introduce redundancies. For example, preprocessing

steps like PT (a scaling technique) do not improve the performance of tree-based algorithms.

150

APPENDIX J - COMPARISON OF AUTOML METHODS USING DIFFERENT

TIME BUDGETS

Figure presents a comparison (base-level) of AutoML methods versus the MetaML's in

datasets of different sizes and time budgets.

0.55

0.50

0.45

Accuracy

0.40 1

0.354

0.30

2 4 6
Recommendation Time (h)

10

® Auto-Weka

* MetaML 3-shot
MetaML Zero-shot

@ AutoSklearn 1.0

@ AutoSklearn 2.0

@ AutoGluon

® H20 AutoML
Naive AutoML

® TPOT

* FLAML-Zero

% TabPFN

(a) chscase_census3 dataset with 400 instances.

0.90

0.88 -

0.86

Accuracy

o o o

® ® ®

3 N S
|) 1

0.78

0.76

2 4 6
Recommendation Time (h)

(b) boston dataset with 506 instances.

10

@ Auto-Weka

* MetaML 3-shot
MetaML Zero-shot

® AutoSklearn 1.0

® AutoSklearn 2.0

® AutoGluon

® H20 AutoML
Naive AutoML

® TPOT

* FLAML-Zero

% TabPFN

151

0.800
*
0.775 1
0.750 4 ® Auto-Weka
* MetaML 3-shot
MetaML Zero-shot
0.725 7 ® AutoSklearn 1.0
g ® AutoSklearn 2.0
5 0.700 q ® AutoGluon
$ ® H20 AutoML
0.675 4 Naive AutoML
® TPOT
* FLAML-Zero
0.650 - % TabPFN
0.625 4
0.600 ™ ™ ™ ™ ™ ™
0 2 4 6 8 10
Recommendation Time (h)
(a) veteran dataset with 137 instances.
0.600
0.575 4
0.550 4 ® Auto-Weka
* MetaML 3-shot
MetaML Zero-shot
05259 ® AutoSklearn 1.0
g @ AutoSklearn 2.0
5 0.500 1 @ AutoGluon
g ® H20 AutoML
0.475 4 Naive AutoML
® TPOT
* FLAML-Zero
0.450 1 * TabPFN
0.425 4
0.400 T T T T ™ ™
0 2 4 6 8 10
Recommendation Time (h)
(b) disclosure_x_noise dataset with 662 instances.
0.86
0.84 1
® Auto-Weka
* MetaML 3-shot
0.82 1 MetaML Zero-shot
@ AutoSklearn 1.0
9 ® AutoSklearn 2.0
e e
3 ~—r » ® AutoGluon
2 0.80 q S~ 7/ ® H20 AutoML
~. /
- Vs Naive AutoML
Tl V4 e TPOT
~. /
0.78 S~ y % FLAML-Zero
~~o * TabPFN
S~ 7/
~
0.76
o 2 4 6 8 10
Recommendation Time (h)
(c) thoracic-surgery dataset with 470 instances.
0.98
0.96
@ Auto-Weka
* MetaML 3-shot
MetaML Zero-shot
0.94 4 / ® AutoSklearn 1.0
E / ® AutoSklearn 2.0
5 / @ AutoGluon
g * / ® H20 AutoML
0.92 1 / Naive AutoML
/ ® TPOT
/7 * FLAML-Zero
/ % TabPFN
0.90 q /
‘¢
0.88 T T T T T ™
o 2 4 6 8 10

Recommendation Time (h)

(d) ecoli dataset with 336 instances.
Figure 30 — Comparison of AutoML methods using different recommendation time budgets.

152

APPENDIX K - META-FEATURES

Table 20| shows the eighty-one meta-features used to represent each dataset.

Table 19 — Meta-features used to construct the meta-dataset MetaMl 2.0.

Meta-feature Description Group

attr_conc.mean Concentration coef. of each pair of dis- info-theory
tinct attributes.

attr_conc.sd Concentration coef. of each pair of dis- info-theory
tinct attributes.

attr_ent.mean Shannon’s entropy for each predictive info-theory
attribute.

attr_ent.sd Shannon’s entropy for each predictive info-theory
attribute.

class_conc.mean Concentration coefficient between each info-theory
attribute and class.

class_conc.sd Concentration coefficient between each info-theory
attribute and class.

class_ent Target attribute Shannon's entropy. info-theory

eq__num_attr Number of attributes equivalent for a info-theory
predictive task.

joint_ent.mean Joint entropy between each attribute info-theory
and class.

joint_ent.sd Joint entropy between each attribute info-theory
and class.

mut__inf.mean Mutual information between each at- info-theory
tribute and target.

mut_inf.sd Mutual information between each at- info-theory
tribute and target.

ns_ratio Noisiness of attributes. info-theory

leaves Number of leaf nodes in the DT model. model-based

153

Meta-feature Description Group
leaves__branch.mean Size of branches in the DT model. model-based
leaves__branch.sd Size of branches in the DT model. model-based

leaves__corrob.mean
leaves__corrob.sd

leaves_homo.mean

leaves__homo.sd

leaves__per__class.mean

leaves_ per_class.sd

nodes

nodes_ per_attr

nodes_ per_inst

nodes_ per_level.mean

nodes__per_level.sd

nodes_ repeated.mean
nodes_ repeated.sd
tree_depth.mean
tree_ depth.sd
tree_imbalance.mean
tree_imbalance.sd
tree_shape.mean

tree_shape.sd

Leaves corroboration of the DT model.
Leaves corroboration of the DT model.

DT model Homogeneity for every leaf

node.

DT model Homogeneity for every leaf

node.

Proportion of leaves per class in DT

model.

Proportion of leaves per class in DT

model.
Number of non-leaf nodes in DT model.

Ratio of nodes per number of attributes

in DT model.

Ratio of non-leaf nodes per number of

instances in DT model.

Ratio of number of nodes per tree level

in DT model.

Ratio of number of nodes per tree level

in DT model.

Number of repeated nodes in DT model.
Number of repeated nodes in DT model.
Depth of every node in the DT model.
Depth of every node in the DT model.
Tree imbalance for each leaf node.
Tree imbalance for each leaf node.
Tree shape for every leaf node.

Tree shape for every leaf node.

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

model-based

154

Meta-feature

Description

Group

var_importance.mean

var_importance.sd

cov.mean

cov.sd

eigenvalues.mean

eigenvalues.sd

gravity

iq_range.mean

ig_range.sd

mad.mean

mad.sd

nr_cor_attr

nr_norm

nr_outliers

sparsity.mean

sparsity.sd

Features importance of the DT model

for each attribute.

Features importance of the DT model

for each attribute.

Absolute value of the covariance of dis-

tinct dataset attribute pairs.

Absolute value of the covariance of dis-

tinct dataset attribute pairs.

Eigenvalues of covariance matrix from

dataset.

Eigenvalues of covariance matrix from

dataset.

Distance between minority and majority

classes center of mass.

Interquartile range (IQR) of each at-

tribute.

Interquartile range (IQR) of each at-

tribute.

Median Absolute Deviation (MAD) ad-

justed by a factor.

Median Absolute Deviation (MAD) ad-

justed by a factor.

Number of distinct highly correlated pair

of attributes.

Number of attributes normally dis-

tributed based in a given method.

Number of attributes with at least one

outlier value.
Sparsity metric for each attribute.

Sparsity metric for each attribute.

model-based

model-based

statistical

statistical

statistical

statistical

statistical

statistical

statistical

statistical

statistical

statistical

statistical

statistical

statistical

statistical

155

Meta-feature Description Group
t_mean.mean Trimmed mean of each attribute. statistical
t_mean.sd Trimmed mean of each attribute. statistical
attr_to_inst Ratio between the number of attributes. simple
cat_to_num Ratio between the number of categoric simple
and numeric features.
freq__class.mean Relative frequency of each distinct class. simple
freq_class.sd Relative frequency of each distinct class. simple
inst_to_ attr Ratio between the number of instances simple
and attributes.
nr_attr Total number of attributes. simple
nr_bin Number of binary attributes. simple
nr_cat Number of categorical attributes. simple
nr_class Number of distinct classes. simple
nr_inst Number of instances (rows) in the simple
dataset.
nr_num Number of numeric features. simple
cl Entropy of class proportions. complexity
c2 Imbalance ratio. complexity
cls_coef Clustering coefficient. complexity
density Average density of the network. complexity
flv.mean Maximum Fisher's discriminant ratio. complexity
f3.mean Feature maximum individual efficiency. ~ complexity
f4.mean Collective feature efficiency. complexity
[1.mean Sum of error distance by linear program- complexity
ming.
[2.mean OVO subsets error rate of linear classi- complexity
fier.
[3.mean Non-Linearity of a linear classifier. complexity

156

Meta-feature Description Group

n3.mean Mean error rate of the nearest neighbor complexity
classifier.

n3.sd Error rate of the nearest neighbor classi- complexity
fier.

n4.mean Non-linearity of the k-NN Classifier. complexity

n4.sd Compute the non-linearity of the k-NN complexity
Classifier.

t2 Average number of features per dimen- complexity
sion.

t3 Average number of PCA dimensions per complexity
points.

t4 Ratio of the PCA dimension to the orig- complexity

inal dimension.

APPENDIX L

— LIST OF EXCLUDED META-FEATURES

157

The list of the 49 meta-features excluded for having more than 10% missing values is presented

in Table 20

Table 20 — Meta-features excluded.

Meta-feature Description Group

range.mean Range (max - min) of each attribute. statistical
range.sd Range (max - min) of each attribute. statistical
mean.mean Mean value of each attribute. statistical
mean.sd Mean value of each attribute. statistical
min.mean Minimum value from each attribute. statistical
min.sd Minimum value from each attribute. statistical
roy_root Roy's largest root. statistical
median.mean Median value from each attribute. statistical
median.sd Median value from each attribute. statistical
nr_disc Number of canonical correlation be- statistical

tween each attribute and class.
max.sd Maximum value from each attribute. statistical
max.mean Maximum value from each attribute. statistical
w__lambda Wilks' Lambda value. statistical
Ih_trace Lawley-Hotelling trace. statistical
sd.mean Standard deviation of each attribute. statistical
can__cor.sd Canonical correlations of data. statistical
can_cor.mean Canonical correlations of data. statistical
sd.sd Standard deviation of each attribute. statistical
sd__ratio Statistical test for homogeneity of co- statistical
variances.

var.mean Variance of each attribute. statistical
var.sd Variance of each attribute. statistical

158

Meta-feature Description Group

p_trace Pillai’s trace. statistical

g_mean.mean Geometric mean of each attribute. statistical

g_mean.sd Geometric mean of each attribute. statistical

h_mean.sd Harmonic mean of each attribute. statistical

h_mean.mean Harmonic mean of each attribute. statistical

cor.mean Absolute value of the correlation of dis- statistical
tinct dataset column pairs.

cor.sd Absolute value of the correlation of dis- statistical
tinct dataset column pairs.

kurtosis.sd kurtosis of each attribute. statistical

kurtosis.mean kurtosis of each attribute. statistical

skewness.sd Skewness for each attribute. statistical

skewness.mean Skewness for each attribute. statistical

num_to_cat Number of numerical and categorical simple
features.

flv.sd Maximum Fisher’s discriminant ratio. complexity

13.sd Non-Linearity of a linear classifier. complexity

I1.sd Sum of error distance by linear program- complexity
ming.

12.sd OVO subsets error rate of linear classi- complexity
fier.

f4.sd Collective feature efficiency. complexity

f3.sd Feature maximum individual efficiency. ~ complexity

f2.mean Volume of the overlapping region. complexity

n2.sd Ratio of intra and extra class nearest complexity
neighbor distance.

n2.mean Ratio of intra and extra class nearest complexity
neighbor distance.

fl.sd Maximum Fisher's discriminant ratio. complexity

159

Meta-feature Description Group

fl.mean Maximum Fisher’s discriminant ratio. complexity
2.sd Volume of the overlapping region. complexity
nl Fraction of borderline points. complexity
Isc Local set average cardinality. complexity
hubs.sd Hub score. complexity
hubs.mean Hub score. complexity

	Folha de rosto
	ACKNOWLEDGEMENTS
	Resumo
	Abstract
	List of Figures
	Lista de quadros
	List of Tables
	LIST OF ABBREVIATIONS AND ACRONYMS
	List of Abbreviations and Acronyms
	List of symbols
	Summary
	INTRODUCTION
	OBJECTIVE
	MAIN CONTRIBUTIONS AND THESIS STRUCTURE

	Basic Concepts
	Meta-Learning
	Meta-Features
	Meta-Target

	MULTI-LABEL ALGORITHMS
	Binary Relevance (BR)
	Classifier Chains (CC) and Probabilistic Classifier Chains (PCC)
	Label Powerset (LP)

	Automated Machine Learning
	Final Considerations

	MetaML: A Multi-Label Meta-Learning Approach for Pipeline Recommendation
	Introduction
	Background
	Meta-Learning
	Multi-Label Algorithms
	Automated Machine Learning

	Related Work
	AutoML using Bayesian Optimization
	AutoML using Random Search
	AutoML with Genetic Programming
	AutoML other optimization types

	MetaML
	Search space definition
	Meta-dataset construction
	Training
	Recommendation

	Experimental Setup
	Datasets and Search Space
	Meta-dataset construction
	Meta-Model
	Data Preprocessing
	Evaluation procedure
	Software and Hardware

	Results and Discussion
	Comparing meta-model algorithms
	Comparing the performances of recommended pipelines
	Comparing recommendation times
	Pipeline Recommendation Analysis
	The effect of search space curation

	Threats to validity
	Conclusion

	PIPES: A Meta-dataset of Machine Learning Pipelines
	Introduction
	Background and Related Work
	Proposed Meta-Dataset
	Meta-dataset Construction
	Datasets
	Pipeline blocks
	Meta-Features
	Hardware and Software

	Analysis
	Exploratory analysis of the pipelines from OpenML
	Comparing PIPES and OpenML in a meta-learning task
	PIPES' datasets diversity

	Limitations
	Conclusion

	MetaML 2.0
	Introduction
	Experimental Setup
	Datasets and Search Space
	Meta-dataset construction and Meta-Model
	Data Preprocessing
	Software and Hardware
	Evaluation procedure

	Results and Discussion
	Meta-level analysis
	The impact of using preprocessing blocks
	Comparing Pipeline Diversity: PIPES vs. OpenML
	Comparing the performances of recommended pipelines

	Conclusion

	CONCLUSION AND FUTURE WORK
	References
	Pipeline Redundancy Analysis
	Datasets used in meta-dataset construction
	MetaML datasets diversity
	Meta-features
	Datasets used in comparative experiments
	Comparative performance of meta-models: multi-label vs. single-label approaches
	Performance Analysis: Real vs. Artificial Datasets
	Comparison of AutoMLs considering datasets classes and instances
	Examples of pipelines recommended by MetaML and Naive AutoML
	Comparison of AutoML methods using different time budgets
	Meta-features
	List of Excluded Meta-Features

