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RESUMO

A Anilise de Dados Simbélicos é uma abordagem que visa desenvolver métodos para dados
descritos por varidveis através de diferentes representaces, como conjuntos de categorias, lista
de valores, intervalos, distribuicao de probabilidade, entre outros. Os métodos de regressdo sao
amplamente estudados neste contexto e diferentes modelos tém sido propostos, inclusive pelo
tipo de representacdo que estes dados podem assumir. Os Modelos Lineares Generalizados
constituem uma classe de modelos de regressao que permite a modelagem de dados proveni-
entes de diferentes distribuicGes da familia exponencial. Esses modelos utilizam uma funcao de
ligacao para relacionar a média da varidvel resposta a uma combinacao linear das varidveis ex-
plicativas, ampliando assim a aplicabilidade dos métodos preditivos a diversos cenarios. Neste
contexto, o objetivo deste trabalho consiste em propor uma extensao de Modelos Lineares
Generalizados para dados simbdlicos do tipo poligonal. Esse tipo de varidvel visa conservar a
variabilidade original presente em dados agrupados por um caminho de agregacdo. Foram con-
siderados modelos com as distribuicoes Gama, Normal Inversa e Binomial. Nos modelos com
distribuicdes continuas, sao propostos residuos poligonais, avaliados por meio de abordagem
grafica e descritiva, além da andlise da funcdo linear predita e definicio de uma medida de
qualidade. Para o modelo Binomial, baseado na regressao logistica, sdo desenvolvidas regras
de classificacdo para os dados poligonais. Os resultados obtidos demonstram a aplicabilidade
e a eficacia dos métodos propostos em cenarios com dados simulados e reais. As discussGes
sao fundamentadas em graficos de diagndstico, testes estatisticos e ganhos relativos com base
no erro de predicdo, acuracia e precisdo. Portanto, esta pesquisa resulta em uma abordagem
de predicao e diagndstico de modelos que contribui para o avanco dos estudos em diversos

cenarios de dados simbdlicos.

Palavras-chaves: Modelos Lineares Generalizados. Regressao. Analise de Dados Simbélicos.

Dados Poligonais. Analise Residual.



ABSTRACT

Symbolic Data Analysis is an approach aimed at developing methods for data described by
variables with different representations, such as sets of categories, lists of values, intervals,
probability distributions, among others. Regression methods are widely studied in this context,
and various models have been proposed, depending on the type of data representation. Gen-
eralized Linear Models (GLMs) constitute a class of regression models that allow modeling
data from different distributions belonging to the exponential family. These models use a link
function to relate the mean of the response variable to a linear combination of explanatory
variables, thus expanding the applicability of predictive methods to various scenarios. In this
context, the objective of this work is to propose an extension of Generalized Linear Models
for symbolic data of the polygonal type. This type of variable aims to preserve the original
variability present in grouped data through an aggregation pathway. Models based on Gamma,
Inverse Gaussian, and Binomial distributions were considered. For models with continuous
distributions, polygonal residuals are proposed and evaluated using graphical and descriptive
approaches, in addition to analyzing the predicted linear function and defining a quality mea-
sure. For the Binomial model, based on logistic regression, classification rules are developed
for the polygonal data. The results demonstrate the applicability and effectiveness of the pro-
posed methods in both simulated and real data scenarios. The discussions are supported by
diagnostic plots, statistical tests, and relative gains based on prediction error, accuracy and
precision. Therefore, this research results in a prediction and diagnostic approach for models,

contributing to the advancement of studies in various symbolic data scenarios.

Keywords: Generalized Linear Models. Regression. Symbolic Data Analysis. Polygonal-valued

Data. Residual Analysis.
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1 INTRODUCAO

Extrair informacao, armazenar e encontrar relacbes em grandes quantidades de dados é
um dos toépicos centrais da atualidade. Processar os dados e obter conhecimento possibilita
aos diferentes setores da sociedade definir estratégias e intervencdes que mitiguem problemas
e expliquem cendrios relacionando varidveis (OUSSOUS et al} 2018). Nas dltimas décadas, a
sociedade tem vivenciado um rapido crescimento na geracao e no uso de dados, impulsionado
por sensores, redes sociais, transacoes digitais e dispositivos conectados, na qual em torno de
98% dos dados armazenados na web ja tinham sido gerados em meados de 2015 (MACHADO,
2018). Esse fenémeno, conhecido como big data, envolve grandes volumes de dados produzidos
em diferentes contextos (RAO et al., 2019).

Diante desse cenério, surgem novos desafios e oportunidades para o armazenamento, pro-
cessamento e analise eficiente desses dados, a fim de extrair conhecimento relevante e apoiar
a tomada de decisGes em tempo real. A complexidade dos dados atuais excede as capacidades
dos métodos tradicionais de armazenamento e andlise, exigindo novas abordagens para captu-
rar, processar e interpretar informacdes de forma eficiente. Estima-se que até 2028 a criacdo
global de dados cresca para mais de 380 zetabytes (STATISTA, [2025)). O desenvolvimento de
novas técnicas é essencial para descobrir novos beneficios para diversas aplicacdes.

Esse movimento impulsiona a demanda por profissionais capazes de lidar com dados com-
plexos, tanto no setor privado quanto no publico e na academia, exigindo competéncias que vao

desde a modelagem de dados e estatistica até o desenvolvimento de solu¢des baseadas em

iteligéncia Artificial (IA)l Além disso, aplicacdes dessas tecnologias ja estdo presentes em areas

como salde, educacao, logistica, financas e gestdo publica, contribuindo diretamente para a
inovacdo, a eficiéncia operacional e a tomada de decisGes baseada em evidéncias. Segundo
o relatério Future of Jobsl|, publicado em 2020 pelo World Economic Forum, o cientista de
dados ocupa o primeiro lugar na lista de carreiras promissoras para os proximos anos, seguido
pelo especialista em [TA] e aprendizado de maquina, além do profissional focado em big data.

Dessa forma a area de ciéncia de dados e big data tem se consolidado como uma das mais
estratégicas e promissoras no cendrio contemporaneo. Entretanto, o crescente volume e a hete-
rogeneidade dos dados coletados apresentam desafios que vao além do simples armazenamento

e processamento em larga escala. Muitas vezes, os dados consistem em informacdes agregadas

L \Future of Jobs 2020 - WEF.
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ou outras estruturas complexas que nao podem ser adequadamente capturadas por técnicas

tradicionais de analise baseadas em valores pontuais, chamados de dados classicos. E nesse

contexto que a |Analise de Dados Simbdlicos (ADS)| destaca-se, permitindo a representagdo

e o tratamento de dados com estruturas internas especificas, preservando suas caracteristicas
originais (BILLARD; DIDAY, 2006)).

Afornece métodos para lidar com variaveis simbdlicas, como intervalos, histogramas,
conjuntos multivalorados e distribuicdes, presentes em diversas areas. Essa abordagem amplia
as possibilidades analiticas, viabilizando a extracao de padrdes e insights que técnicas tradici-
onais ndo capturam (BILLARD; DIDAY, 2006). Assim, a configura—se como uma extensao
necessaria e complementar para mineracao e analise de dados, sobretudo diante da complexi-
dade crescente dos dados contemporaneos. Além disso, oferece ferramentas que permitem o
processamento e analise de grandes volumes, possibilitando a descricao de grupos ou classes,
a reducdo da dimensionalidade e a preservacdo da diversidade e confidencialidade dos dados.

Em diversos contextos reais, os dados sdo coletados originalmente em formatos simbélicos,
como listas, intervalos ou histogramas. Por exemplo, varidveis meteorolégicas, como tempe-
ratura, umidade, precipitacdo e velocidade do vento, sdo frequentemente registradas como
intervalos ao longo do tempo. No cenario educacional, o desempenho individual de alunos
em exames pode ser agregado para representar o desempenho por escolas ou regides, con-
siderando a variabilidade interna dessas agregacdes, o que é fundamental para estudos que
envolvem grupos de interesse (NASCIMENTO et al., 2022).

Portanto, a [ADS]| oferece uma estrutura que incorpora a variabilidade observada na repre-
sentacao dos dados, utilizando métodos que a consideram explicitamente. Além disso, constitui
um conjunto de ferramentas capaz de lidar com dados massivos e heterogéneos. Essa nova
forma de representacao implica que as variaveis assumem formatos distintos, o que tem sido
amplamente estudado na [ADS| gerando técnicas especificas para cada tipo de dado simbé-
lico apresentado. Dessa forma, a andlise exploratéria e a modelagem estatistica classicas sdo
estendidas para os dados simbdlicos (DIDAY, 2016)).

Visando contribuir para os avancos praticos e teéricos da modelagem estatistica e computa-
cional, este trabalho apresenta uma abordagem preditiva e diagndstica para dados simbélicos.
O presente capitulo fundamenta essa abordagem, expde seus objetivos e descreve a organizacio

dos capitulos subsequentes.
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1.1 MOTIVACAO

Com o rapido avanco da ciéncia da informac3do e das tecnologias digitais, novas técnicas
de mineracdo de dados, métodos computacionais e ferramentas de cédigo aberto tém sido
amplamente desenvolvidas e utilizadas para viabilizar o uso de big data (ABDALLA, [2022)).
A crescente disponibilidade de grandes volumes de dados tem ampliado as possibilidades de
atender a demandas empresariais e sociais, tornando-se um recurso essencial em diversos
contextos. Atualmente, o big data é aplicado em sistemas de recomendacao, analise preditiva,
deteccdo de padroes e elaboracdo de relatérios estatisticos, com impacto direto em areas como
gestdo organizacional, meio ambiente, salde, educacdo, redes sociais, cidades inteligentes e
transmissdo de dados (OUSSOUS et al., 2018)). Essas aplicacdes tém se mostrado fundamentais
no suporte a processos de recomendacao, previsdo e tomada de decisdo, fortalecendo préticas
baseadas na anélise e no uso estratégico de dados.

Diante desse cenario, organizacdes de diferentes setores da sociedade estdo cada vez mais
dependentes do conhecimento extraido desses grandes volumes de dados e torna-se necessario
utilizar modelos e algoritmos complexos capazes de produzir decisdes e resultados confiaveis
e repetiveis, além de descobrir insights ocultos por meio de analises de dados correlacionados
(TIEN, 2017). Nesse contexto, a qualidade das decises estad diretamente vinculada a capa-
cidade de compreender os dados disponiveis, integrar fontes diversas de informacao e aplicar
modelos analiticos robustos que possibilitem a geracao de conhecimento (til, estratégico e

aplicavel a diferentes realidades.

Os algoritmos e técnicas da [Mineragdo de Dados (MD)| fornecem algumas das ilustra-

¢des mais claras dos principios da ciéncia de dados, a qual é a intersecao entre ciéncia da
computacido, estatistica e dominios de estudo (SKIENA, [2017)). Da estatistica vém a analise
exploratéria de dados, os testes de significancia e a visualizacdo de dados. Sobre o dominio
do problema, é necessario ter uma sélida compreensao do cenario em que se esta trabalhando
para entender claramente os problemas do negécio e os padroes para avaliar quando eles

forem adequadamente alcancados. E por fim, o conhecimento da ciéncia da computacdo per-

mite o desenvolvimento da aprendizagem estatistica e do |Aprendizado de Maquina (AM)|com

tecnologias de computacao de alto desempenho.
No entanto, quando as entidades em anélise da[MD|n3o sdo elementos isolados, mas grupos
reunidos com base em alguns critérios determinados devendo-se levar em conta a variabilidade

inerente a cada grupo, abordagens especificas sdo necessarias (BRITO, 2014). Assim, a m
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possibilita a agregacao de dados no grau de granularidade definido, mantendo as informacoes
sobre a variabilidade intrinseca dos dados para entdo analisar os dados resultantes a partir de
analises estatisticas e de [MD] especificas.

Os dados presentes em bases de dados simbélicas representam uma extensdo das infor-
macdes contidas em bases de dados cléssicas, apresentando-as de forma agregada. Esta ca-
racteristica alerta para a necessidade de desenvolver metodologias que considerem a comple-
xidade, imprecis3o e variabilidade presentes nas estruturas formadas (BILLARD; DIDAY) 2006).
Os dados podem ser representados de diferentes formas, como listas, intervalos, histogramas,
distribuicGes de frequéncia ou de probabilidade. Neste trabalho, destaca-se também a variavel
poligonal, que sera explorada com maior aprofundamento.

Os dados simbdlicos do tipo poligonal constituem uma nova representacdo de dados em
introduzida por Silva, Souza e Cysneiros (2019a)). Para este tipo de variével, novas
medidas de analise foram propostas como média, variancia, histograma entre outros, assim
como um modelo de regressao linear para dados do tipo poligonos. Em Silva, Souza e Cysneiros
(2020)) os experimentos mostraram a aplicabilidade da variavel poligonal no cenario educacional
para previsdao de desempenho escolar.

Posteriormente, considerando a abordagem n3o supervisionada, Silva et al. [2023 apresen-
taram o primeiro algoritmo de clusterizacdo dindmica para dados simbdlicos poligonais, com
o objetivo de extrair informacdes de perfis de periddicos cientificos. Em Srakar e Vecco [2021,
um algoritmo de agrupamento para dados simbdlicos poligonais é aplicado a analise de regimes
empreendedores, proporcionando insights mais ricos do que os métodos tradicionais baseados
em intervalos. Esses trabalhos demonstraram desempenho superior em relacdo aos métodos
desenvolvidos para dados com valores intervalares, destacando o potencial das representacoes
poligonais e abrindo caminho para novas investigacoes nesta drea emergente.

Dito isto, Diday (2016)) indica as razdes para induzir dados simbélicos: (a) leva em conside-
racdo a variabilidade intrinseca a cada unidade; (b) garante a confidencialidade dos individuos;
(c) agregar dados reduz o nimero de individuos e o nimero de varidveis definidas pelo valor
nico de cada categoria e, (d) transforma dados complexos ndo estruturados em simbélicos
estruturados e possibilita a aplicacdo de ferramentas simbdlicas. Além destas razdes, Silva,
Souza e Cysneiros (2019a)) ressaltam que na agregacdo poligonal mais informacdes sdo arma-
zenadas pois considera-se a média e a variancia dos dados diferentemente da representacao
intervalar, a qual considera os limites inferior e superior de cada classe.

Introduzir uma nova varidvel exige o desenvolvimento de novas ferramentas de anélise,
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pois a maioria dos conceitos e métodos foram projetados principalmente para observacGes de
valor classico (BRITO), [2014)). O desenvolvimento de novas ferramentas para variavel poligonal
se faz necessario, as quais sejam capazes de explorar, analisar e modelar variaveis assim como
dar suporte a verificacao de propriedades estatisticas, diagnéstico de modelos, distribuicdes
tedricas, entre outras. Sabe-se que[ADS|amplia a analise de dados e diversas técnicas tém sido
propostas, em especial as técnicas de regressao.

Na literatura simbdlica mantém-se as suposicoes basicas da literatura classica para regres-
sao linear. No entanto, vale destacar que em muitos contextos de dados reais algumas destas
suposicoes podem ser violadas, e portanto, nao sera apropriado utilizar o modelo de minimos

quadrados ordinarios.

Neste contexto, os [Modelos Lineares Generalizados (MLG)| constituem um conjunto de

modelos de regressao mais flexiveis as suposicdes supracitadas. Os dados podem ser oriundos
de diferentes distribuicdes de probabilidade revelando uma relacao n3o linear entre a variavel
resposta e a explicativa. Assim, os [MLG] utilizam funcdes de ligacdo que possibilitam relaci-
onar a média da varidvel resposta a combinacao linear da varidvel explicativa, estendendo a
aplicabilidade dos métodos preditivos.

Portanto, este trabalho se faz significativo a medida que busca contribuir com a formacao
de uma abordagem de aplicada a dados simbélicos do tipo poligonal. E realizada uma
andlise experimental para avaliacdo das técnicas de predicao e diagnésticos propostas, bus-
cando predizer variaveis de bases de dados simulados e dos atuais cenarios de dados reais. Além

disso, os resultados deste trabalho contribuem para a ampliacdo do acervo de informacdes da

comunidade cientifica de [ADS|

1.2 OBJETIVOS

O objetivo deste trabalho consiste em desenvolver uma abordagem para anélise de Mode-
los Lineares Generalizados aplicados a dados simbdlicos do tipo poligonal. Espera-se que os
resultados obtidos e analisados ajudem a ratificar o desenvolvimento desta abordagem na pre-
dicdo de variaveis simbdlicas nos diferentes cenarios de dados da atualidade. Como objetivos

especificos lista-se:

1. Definir modelos lineares generalizados aplicados a dados tipo poligonal.

2. Verificar a adequacdo de modelos aplicados a dados tipo poligonais através da definicao
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de residuo poligonal.

Introduzir medidas de avaliacao do erro preditivo baseadas em distancia de vértices dos

poligonos.

Criar um ambiente experimental para a avaliacao do modelo proposto, utilizando bases

de dados reais e simuladas.

. Avaliar o desempenho da técnica proposta pelo erro de predicao através do método de

simulagdo Monte Carlo, comparando com técnicas da literatura de [ADS]

Contribuir com a area de [ADS] introduzindo uma modelagem de anélise e predicao de
dados tipo poligonais e estendendo a aplicabilidade das técnicas de regressdo com [MLG

nesta representacdo de dados.

1.3 QUESTOES DE PESQUISA

Neste trabalho sao apresentados métodos, experimentos simulados e aplicacGes em con-

juntos de dados simulados e reais que visam responder as seguintes questoes:

Como Modelos Lineares Generalizados podem ser estendidos para varidveis poligonais

simbdlicas?

Como residuos poligonais podem ser definidos e utilizados na avaliacao da qualidade do

ajuste dos modelos?

Como aplicar regressao logistica em contextos em que os preditores s3o dados poligonais

simbélicos?

Quais regras de classificacdo baseadas em probabilidades a posteriori sdo mais eficazes

nesse contexto?
Os modelos desenvolvidos sao eficazes na analise de conjuntos de dados reais?

Como o desempenho dos modelos poligonais se compara a modelos baseados em inter-

valos em diferentes cenarios de variabilidade e sobreposicdo de classes?
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1.4 ORGANIZACAO DA TESE

Os capitulos restantes desta tese encontram-se estruturados da seguinte forma:

INTRODUCAQ apresenta os principais conceitos relacionados a e diferentes

representacdes de dados, incluindo os dados tipo intervalar e poligonal. Em relacdo as mo-
delagens aplicadas em [ADS] o foco desta pesquisa concentram-se nas técnicas de regressgo,
portanto, definicdes que permeiam estes cenarios sao desenvolvidas. Além disso, apresenta

uma visdo geral sobre os trabalhos relacionados ao tema desta tese.

|INTRODUCAO|: explana sobre os materiais e métodos propostos nesta tese para defini-

c3o da abordagem de para dados simbdlicos tipo poligonais. E descrito uma metodologia
para gerar e descrever dados poligonais e construir MLG| Ainda define o diagnéstico de mo-
delos, a partir dos residuos poligonais e anélise preditiva, a qual descreve medidas de erro de

predicdo e de desempenho a partir de regras de classificac3o.

EI INTRODUCAQO; descreve e discute os resultados dos experimentos efetuados para

analise e avaliacdo dos métodos desenvolvidos utilizando dados simulados. Considera-se dis-

tribuicdes de dados assimétricos, como a Gama e a Normal Inversa.

EI INTRODUCAO; explana sobre os resultados dos métodos propostos nesta tese em

cenarios de dados reais. O capitulo ilustra a aplicabilidade da metodologia desenvolvida em

fazer predicdes de varidvel meteoroldgica.

@llNTRODUCAOl: apresenta e discute os resultados dos experimentos conduzidos para

avaliar os métodos propostos com dados simulados, considerando a distribuicdo binomial ava-
liando cenarios de classificacdo binaria.

7|INTRODUCAQ} explora a aplicacio dos métodos desenvolvidos em dados reais, de-

monstrando sua efetividade na predicao da variavel relacionada a deteccdo de noticias fake.

|INTRODUCAO|: apresenta as consideracdes finais sobre os principais tépicos aborda-

dos, como contribuicdes e direcionamentos para trabalhos futuros.
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2 FUNDAMENTACAO TEORICA

Este Capitulo explana os conceitos fundamentais utilizados como embasamento tedrico

e entendimento da abordagem proposta nesta tese. S3o discutidas definices da literatura

de |Anélise de Dados Simbdlicos (ADS)| as quais permeiam representacdo de dados, métodos

de regressdo e de analise estatisticas para dados simbdlicos do tipo intervalar e poligonal.

Também, relacionam os principais trabalhos referentes ao tema desta pesquisa.

2.1 CONHECIMENTO A PARTIR DOS DADOS

O termo big data define conjuntos de dados grandes, complexos, diversos e heterogéneos
que sao gerados por diferentes fontes. Devido ao rapido avanco das tecnologias de hardware
e das midias de armazenamento digital, estes dados - provenientes de sensores, fluxos de
cliques em sites, transacdes comerciais e economicas e redes sociais - podem ser capturados,
gerenciados, processados e analisados de forma estratégica (RAO et al, 2019). Os setores
da sociedade estdo conscientes de que a anélise de dados esta se tornando cada vez mais um
fator vital para ser competitivo, descobrir novos insights e personalizar servicos (OUSSOUS et al.,

2018). Para isto, técnicas especificas sdo necessarias para lidar com as particularidades de cada

conjunto de dados. Nesse cendrio, as ferramentas de [Mineracdo de Dados (MD)|e |Aprendizado]

lde Maquina (AM)| auxiliam na descoberta de padrdes e na geracdo de conhecimento (til para

diversas organizacdes e aplicacdes.

A [MD)| permite a aquisicdo de conhecimento que pode ser explorado de dngulos diferentes
resultando em tomadas de decisdo consistentes, controle de processos, gerenciamento de in-
formacdo e processamento de consultas (WITTEN et al} 2005). Este conjunto de ferramentas
é um campo que abrange diferentes areas como |AM| estatistica, tecnologias de banco de da-
dos, visualizacdo e recuperacdo de informacdes (WLODARCZAK; ALLY; SOAR, 2015) resultando
em extracdo de padrdes desconhecidos, tendéncias inesperadas ou outras relacGes presentes
(WITTEN et al., 2005). Portanto, é considerada como uma das fronteiras mais importantes em
sistemas de banco de dados e um dos mais promissores desenvolvimentos interdisciplinares na
inddstria da informacdo (HAN; PEI; TONG, 2011)).

Considerando as etapas do processo de descoberta de conhecimento, tem-se: (1) pré-

processamento dos dados, constituindo o entendimento do problema e o tratamento dos dados;
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(2) construcdo de padrdes e modelos através da execucdo de algoritmos para extracdo de
padrdes; e (3) pds-processamento de dados, o qual refere-se a compreens3o das saidas para
geracao de conhecimento. A escolha da técnica mais adequada depende de aspectos como a
area do problema e dos dados disponiveis (FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996).

Os dados classicos sdo representados por uma estrutura matricial nxp, na qual cada linha
representa uma entidade e cada coluna pertence a uma varidvel que pode ser numérica ou
categérica. Outra caracteristica é que um unico valor é registrado para cada variavel e para
cada registro. No entanto, em algumas situacdes as unidades de interesse estao em um nivel
superior necessitando agregar os valores observados previamente a anélise de dados (BRITO,
2014). Uma abordagem de agregacdo é calcular indicadores (como médias, medianas e desvios)
para que os dados sejam ajustados a matriz nxp e assim, métodos classicos de analises possam
ser aplicados. Quando o tamanho da amostra é pequeno, esta abordagem extrai com facilidade
as informacdes desejadas, porém esta pratica acarreta consideravel perda de informacao, como
a variabilidade intrinseca nos dados.

Dentre as abordagens oriundas da [AM] e da estatistica que d3o suporte a [MD] a [ADS|
apresenta uma extensao dos dados classicos que se da através de representacdo e analise de
dados considerados de nivel superior. Portanto, novos tipos de variaveis foram introduzidas
as quais nao sao representados por valores reais ou categorias Unicas, mas por conjuntos,
intervalos ou distribuicdes de um determinado dominio (BRITO, [2014)). As préximas secdes
abordam as caracteristicas dos dados simbdlicos e as ferramentas de anélise e modelagem

desenvolvidas na literatura.

2.2 DADOS SIMBOLICOS

Os dados presentes em bases de dados simbdlicas representam uma extensio das infor-
macoes contidas em bases de dados classicas, apresentando-as de forma agregada, nas quais
as linhas correspondem aos individuos ou classes e as colunas s3o as variaveis simbélicas que
caracterizam os individuos. Os objetos podem ser representados por conjuntos de categorias,
intervalos, histogramas, distribuicdes de frequéncia entre outros.

Considere como exemplo um conjunto de dados com informacdes sobre pacientes diag-
nosticados com Covid-19 de diferentes cidades de um pais (NASCIMENTO et al., 2022). As
variaveis classicas incluem informacdes pessoais e demograficas, caracteristicas clinicas, resul-

tados laboratoriais e opcoes de tratamento. Assim, as entidades individuais no conjunto de
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dados classico sdao os pacientes e as cidades podem agrega-los para obter um novo conjunto de
dados referente a diferentes varidveis simbdlicas, como mostrada na Tabela[I] As cidades sdo
novas unidades, chamadas classes (DIDAY| [2016)), e a variabilidade entre os pacientes dentro
de suas cidades (classes) é descrita por variaveis simbdlicas que expressam a variabilidade dos

pacientes dentro de cada cidade.

Tabela 1 — Tabela com dados simbdlicos de pacientes com Covid-19.

Cidade Sexo Peso ... Internamento Condicao Clinica
G {(0,6)F,(0,4)M} [25,5; 128,16] [10; 33] {Leve, Urgente, Grave}
Co00  {(0,8)F,(0,2)M} [19,30; 88,34] [2; 55] {Leve, Urgente, Grave}

Seja uma classe, a notacdo que a define é dada por w € S = {wy,...,w,}, onde m
representa o nimero de classes (SILVA; SOUZA; CYSNEIROS, 2019a). Como no exemplo da
Tabela , o registro C4, na varidvel Internamento (em dias), agrupa todos os pacientes que
compde a classe cujo dominio é D = {z|x € [10; 33]}. Esse dominio é chamado de descric3o.

Este paradigma apresenta diversos tipos de representacdes para os dados como variaveis
multivaloradas, intervalares, modais, histogramas de variaveis intervalares (DIDAY, 2016) e mais
recente a variavel poligonal (SILVA; SOUZA; CYSNEIROS, 2019a)). Estes novos tipos de variaveis
exigiram da comunidade cientifica novas ferramentas, por exemplo: medidas descritivas usuais
como média, variancia, correlacdo, distribuicdo de probabilidade, histogramas e outras foram
recriadas para esta nova estrutura de dados (CARVALHO, |1995; BERTRAND; GOUPIL, [2000;
BILLARD; DIDAY, [2003)). A seguir, descreve-se a representacio e ferramentas de anélises para

dados intervalar e poligonal.

2.2.1 Dados Simbdlicos Intervalares

Dados simbdlicos do tipo intervalo sdo geometricamente representados por meio de uma
semi-reta [a,b], com a # b. A combinacdo de p varidveis intervalares é geometricamente
representada por um hiper-retangulo p-dimensional. Por exemplo, para p = 2, obtém-se um
retangulo gerado pela combinacdo de duas varidveis intervalares. Esta representacdo pode ser

vista na Figura
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Figura 1 — Gréfico de dispersdo com p = 2 variaveis do tipo intervalar.

Os dados podem ser naturalmente intervalares, como no caso da medicdo da temperatura
de uma determinada regiao ao longo de um periodo, onde se registram valores minimos e ma-
ximos. Outra forma é a transformacdo de tabelas classicas em tabelas de dados intervalares,
em que os limites inferior e superior do intervalo s3o definidos por a, = min;,cq, ; e b, =
max;cq, *;, onde 2, é o conjunto de valores x; pertencentes a categoria w,. Técnicas para
analise de dados simbdlicos com valores intervalares possuem uma vasta literatura, com des-
taque especial para aplicacdes em modelos de regressdo. Essas abordagens tém se mostrado
eficazes na modelagem de variabilidade interna dos dados intervalares.

O primeiro trabalho no modelo de regressdo para dados simbdlicos tipo intervalar pode ser
encontrado em Billard e Diday (2000)) e Billard e Diday (2002). Lima Neto e De Carvalho (2008)
consideraram uma representacao para intervalo baseada no centro e na amplitude do intervalo.
Além disso, eles desenvolveram um modelo de regressao baseado nesta representacdo. Lima
Neto e De Carvalho (2010) propuseram um modelo de regressdo linear restrito na representacdo
do centro e do intervalo para garantir a coeréncia matematica entre os valores previstos dos
limites inferior e superior dos intervalos.

Ja em Fagundes, Souza e Cysneiros (2013) foi apresentado um método de previsdo robusto
para dados simbdlicos de valor intervalar baseado na metodologia de regressao linear robusta.
Os autores ainda indicam que problemas na escolha do minimo-méximo podem surgir quando
estes valores extremos s3o, de fato, outliers ou quando o conjunto de individuos a generalizar
é composto por subconjuntos de diferentes distribuicdes, definindo o outlier intervalar. Hao e
Guo (2017)) apresentaram o modelo de regress3o restrita para intervalos baseados em minimos

quadrados ordinarios.
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Souza et al. (2017)) introduziu o método parametrizado, um modelo de regressdo linear ba-
seado na representacdo minimo-maximo. Soares e Fagundes (2018) propuseram uma regressdo
quantilica intervalar para dados simbdlicos intervalados representados por centros e intervalos.
Lima Neto e De Carvalho (2018) introduziram um modelo robusto baseado no modelo de
minimos quadrados ponderados. Reyes et al. (2019) propdem um modelo linear para estimar
o risco sistematico na precificacao de ativos de capital e exemplifica a capacidade do modelo
usando os precos diarios de alta e baixa na Microsoft.

Embora existam diferentes abordagens de regressao para dados simbdlicos tipo intervalar
na literatura de[ADS] é importante verificar se 0 modelo funciona bem para os dados coletados.
Para isso, podem ser utilizadas medidas de diagnéstico e ferramentas graficas baseadas em
residuos. Nesse contexto, Lima Neto et al. (2011)) propds o primeiro conceito de residuos para
dados simbdlicos tipo intervalar como um valor continuo Unico e considerou este conceito para
o calculo de medidas diagnésticas. Este conceito foi utilizado em relacdo a um modelo que os
autores também introduziram. Este modelo assumiu a variavel de resposta simbélica com valor
de intervalo como um vetor aleatério bivariado com uma distribuicdo gaussiana bivariada. Os
residuos foram utilizados para fazer inferéncias sobre a distribuicdo das respostas, identificar
outliers, entre outros aspectos.

Ja em Nascimento et al. (2022)) um novo conceito de residuos para dados simbdlicos de va-
lor intervalar é introduzido. Esta definicao considera os limites inferior e superior dos residuos
conjuntamente, diferentemente das definicdes encontradas na literatura (NETO; CORDEIRO;
CARVALHO, [2011; XU, [2010)) as quais consideram o residuo intervalar baseado em residuos
estatisticos para dados classicos. Esta abordagem leva em consideracdo a variabilidade intrin-
seca a cada classe para definir os residuos (limites inferior e superior). Além disso, os autores
consideram a vers3o ordindria e padronizada dos residuos e ferramentas graficas para investigar

a adequacdo dos modelos de regressao linear.

2.2.1.1 Residuo Intervalar

Na literatura classica de modelos de regressdo, as premissas bésicas de regressdo sdo: i) a
relacdo entre a varidvel resposta e explicativas ser aproximadamente linear; ii) erro com média
zero e varidncia constante; iii) erros ndo correlacionados e iv) erros que seguem distribuicdo
aproximadamente normal. No entanto, estas suposicGes também s3o verificadas a partir da

abordagem intervalar (NASCIMENTO et al., 2022).
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Seja 2 =1,...,n um conjunto de dados de n objetos, cada um descrito por um vetor de
intervalo (x;, ;) onde x; = (21, ..., 25,)" com x;; = [ai;, biy] € S = {[a,b] : a,b € R, a < b}
(GJ=1,....p) ey; = [a;, \i] € S ={[a,\] : o, A € R,a < A}. Os objetos sdo descritos
por dados de centro e range dos intervalos. Seja Y = (y¢,...,y5, 47, ..., y")" a varidvel de
resposta simbdlica com valor intervalar com yf = (o + \;)/2 e yf = (A — ).

Considere X = (X, X2, X3, X4) a matriz de varidveis explicativas simbdlicas com valor

intervalar, com X; = (12,027, X, = (07, 11)7, X3 = (,01)T e X, = (0, 2)T onde

_ c c \T c __ _ r r \T' oo
x. = (x§;,...,25;)" com xf; = (ai; + byy)/2, ©, = (x];,...,25;)" com zj; = (b — a)
(j=1,...,p) e 0, e 1, sdo vetores zero e um, respectivamente. Em relacdo ao vetor Y e a

matriz X, a equacdo de regressdo linear pode ser escrita da seguinte forma:

Y = X3 +e, (2.1)
onde B = (535,67, ..., 55 By, Bi, --..3;)" é um vetor de parametros, € = (e°,€") T é um
vetor erros com € = (¢$,...,¢¢) T e € = (e],...,¢")T . Sejam os residuos para o centro e o

range de dados simbélicos com valor intervalar como r{ = y¢ — 95 e v} = y; — ;. Assim, o

residuo ordinario intervalar (A) é definido como:

Ay = [Tz'z,rm] = [(Oéi - 072‘), ()\i - S\z)]
= (v —vi/2) = (@7 — 9:/2), (v§ +vi/2) — (95 + 9;/2)]

= [(vi —97) — (i —97)/2, (i —97) + (yi —9;)/2]. (2.2)

A vers3o padronizada para o residuo A; é definida como

AS:[ Tl Tiu } 5
! DPR’ DPR ( 3)

O elemento [Desvio Padrdo Residual (DPR)|é o desvio padréo para o intervalo residual A, o

qual é mostrado na Equacdo [2.4} seguindo a definicao de desvio padrdo para dados simbélicos
tipo intervalar apresentados em Bertrand e Goupil (2000). Os exemplos mostrados na Figura
(a) e (b) sugerem que os erros sdo homocedasticos e aleatérios para residuos ordinarios
e padronizados, respectivamente, sendo a variancia constante e a suposicdo de linearidade

satisfeita.

2

1 1 Tiu + Til
DPR= | =3 (i, +ruwra+1d) — 5 >~
3n iEQ(Tzu + Tl + Tzl) 4n2 |:ZEQ 2
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Figura 2 — Residuos intervalares quando as suposicdes do modelo de regressdo linear intervalar s3o satisfeitas.

Além disso, Nascimento et al. (2022| propuseram analisar os residuos intervalar a partir do
histograma intervalar. Portanto, medidas descritivas para dados simbélicos de valor intervalar
sao apresentadas. O k-ésimo momento e as medidas descritivas para dados simbélicos tipo in-
tervalar s3o baseados em uma funcdo de densidade empirica para o intervalo como encontrado
em Bock e Diday (2000) e Billard e Diday (2000).

Dada uma variavel simbdlica com valor de intervalo Z, medida por para cada elemento
da amostra aleatéria F = {1,...,n}. Para cada i € F denota-se [a;, b;] um intervalo. Uma

funcdo de distribuicdo empirica de Z é uma funcao de n distribuicdes uniformes dada por

n | eézi \bi — @i
De acordo com Bertrand e Goupil (2000) a funcdo densidade empirica de Z baseada na

Equacao ([2.5)) é definida como:

(2.6)

>

i€ Z (i) bi — a;

1
n

f(&) =

O k-ésimo momento para uma variavel simbdlica intervalar Z é definido na Equacao (2.7)),

onde k =0,1,2,3,4,....

X3 (2.7)

O primeiro e segundo momentos empiricos para dados simbdlicos intervalar s3o definidos
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em Bertrand e Goupil (2000), respectivamente, pelas Equacdes (2.8) e (2.9).

1 bz + a;
M, = — : 2.8
R e
1
My = — > _[b7 + bja; + a3). (2.9)
3N g

O terceiro e o quarto momento empirico foram apresentados em Nascimento et al. (2022

e representados, respectivamente, nas Equacdes (2.10)) e (2.11]).

1

an i
1 b — a?

My=—S 2 "% (2.11)
5n b b—a

De acordo com Bertrand e Goupil (2000) e as Equacdes (2.8)) e (2.9), a média e a varidncia

empirica para dados simbélicos intervalares sdo apresentadas, respectivamente, como:

ME=-Y 2% (2.12)
nice 2
1 1 ?
VA= —3(a?+ab; +b?) — — 0| 2.13
3nieZE(a’+a +0) = 13 LGZE(&+ )] (2.13)

E por fim, a assimetria e a curtose empirica para o dado simbélico intervalar s3o definidas,

respectivamente, como segue as Equacdes (2.14)) e (2.15)).

SK = SK = Mz — 3M, M, + 2M3}. (2.14)

KU = My + 6M:M, — 3M}. (2.15)

2.2.2 Dados Simbadlicos Poligonais

Os dados simbdlicos do tipo poligonal possuem como descricdo um poligono e foram intro-

duzidos por Silva, Souza e Cysneiros 2019al Dessa forma, Z é uma variavel aleatéria simbdlica
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poligonal quando assume valores em um poligono da forma Z = & = (ay, by), ..., (a7, b)) C R?
em que os segmentos de reta que ligam esses pontos formam uma figura poligonal. Outra
forma de representar a varidvel é Z = £ = (£1,&), onde & = ay,...,a; € & = by, ..., by, ou
seja, os valores que a variavel pode assumir no eixo das abcissas e no eixo das ordenadas,
respectivamente.

Para agregar dados classicos e transforma-los dados simbélicas poligonais, cada classe é
transformada em um poligono com nidmero de lados desejada [ < n, onde n é o niimero de
elementos. O método de representacao para dados simbdlicos poligonais é baseado em dois
valores - [centro, raio] -, sendo apta para representar poligonos regulares (SILVA; SOUZA; CYS-
NEIROS)| [2019a)). Esta representacdo transforma uma variavel unidimensional em bidimensional
utilizando coordenadas polares. Para exemplificar a transformacdo de dados em varidveis po-
ligonais, considere a Tabela [2| sendo a descricdo de dados classicos do desempenho de alunos

matriculados em uma determinada cidade.

Tabela 2 — Tabela com dados classicos de alunos de uma cidade.

Aluno Cidade Escola ... Nota; Nota,
Aq C E; 17,7 8,2
Ay C Eq 8,0 6,8
As C E, 8,8 8,6
A4 Gy Es 8,5 7,5

A119999 G Ei3s 9,9 10,0

A120000 G Ei3s 8,9 9,5

Seja n; o nimero de individuos na classe j. Cada individuo é descrito por uma variavel
continua X. Um poligono P;, com L vértices, para L < nj, inscrito em uma circunferéncia,

pode ser definido como:

27l 27l
Pjy = (aje, bje) = <Cj + 7 cos (2) , Cj 4 7jsin (Z)) , (2.16)

em que ¢; representa o centro do poligono da classe j (isto é, a média de X na classe j) e
r; = 2 x dp(x;) é o raio do poligono (ou da circunferéncia), sendo dp(z;) o desvio padrdo de
X na classe j, respectivamente. Cada P}, representa os pares de pontos que formam vértices
do poligono regular P;, com ¢ = 1,2,...,L, onde L € N> 3 é o nimero de vértices do

poligono (SILVA; SOUZA; CYSNEIROS, 2019al).
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Com esta definicdo, a transformacéo dos dados da Tabela[2]em dados simbélicos baseados

em centro e raio é representada na Tabela 3]

Tabela 3 — Tabela com dados de (centro; raio) para dados simbélicos poligonais.

Escola ... Nota; Nota,
S (7,4;,55) (7,8;5,6)
Ea (8,8, 4,6) (9.4;5,0)

E135 (9,7; 2,5) (9,2; 3,3)

Considerando a Tabela [3| pode-se construir os vértices que formam os poligonos definindo

o numero de dados [ e aplicando a Equacdo (2.16]). Agora, a partir dos dados forma-se a

Tabela 4 onde ser visto que cada variavel a descreve um individuo u (escola) por Z,, = &, =

(@y1,bu1), -y (@ur, byy), com I = 3. A Figura [3| reconstréi os poligonos dos objetos E; e Es,

com base nas variaveis Nota; e Notas.

Tabela 4 — Tabela com dados simbélicos poligonais.

Escola ... Nota; Nota,
E; (7,2; 13,4), (2,2; 3,5), (13,4; 1,3)  (7,5;13,2), (13,2; 4,8), (2,2; 5,3)
Es (7,8; 12,6), (12,6; 4,2), (4,2; 7,8) (10,2; 14,4), (14,4; 2,5), (4.4; 8,8)
Eiss (9,3; 12,1), (12,1; 5,5), (6,3; 8,8)  (8,5; 12,5), (12,5; 6,2), (5,9; 6,5)
° 8Dimenséo 110 " - o " Dimen;OE?)1 "
(a) Poligonos Observados para nota 1 (b) Poligonos Observados para nota 2

Figura 3 — Poligonos obtidos para duas classes, representando a nota 1 (a) e nota 2 (b) das escolas.

O modelo linear para dados simbdlicos poligonais baseados é descrito no Algoritmo [1]

Considera-se apenas a relacdo linear entre o centro de y e o centro de z; (j = 1,...,p) assim
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como entre os raio de y e o raio de z; (SILVA; SOUZA; CYSNEIROS, 2019a)). Neste trabalho o

método descrito é referido como |Modelo de Regressdo Linear Poligonal (PRL)|

Algoritmo 1: Método PRL
1: Entrada: Conjunto de dados simbdlicos poligonais com m observacoes e L vértices.

2: Caleule (3)T = (53¢, 57).
3: Calcule § = X

4. Para todo i < 1 até m faca:

5: Se gy < 0 entdo:

6: gr = 0.

7: Fim Para

8: Calculeé =y —y¥.

9: Calcule as métricas de desempenho

10: Construa o poligono predito através da Equacdo [2.16]

Seja (€2, A, P) um espaco arbitrario de probabilidade e seja Z = £ = (£1,£2) uma funcdo
de valor real em €2, define-se Z como uma distribuicdo uniforme no poligono P n3o auto-

intersectavel dada por

0, §1 < ap ou & < by,
F.(€) = %, sea; <& < byeayp <& < by, (2.17)
1, caso contrario.

Sabendo que a distribuicdo segue a hipdtese de equidistribuicdo, nds definimos a mistura

de distribuicdes uniformes poligonais dada por

0, &1 < ay ouy < by,
F.(¢) = % > ues —(éra“’ljfrb“’l), s€ Ayl < T < ayg € by <y < by, (2.18)
1, caso contrario.

A FuncZo de Distribuicdo de Probabilidade (FDP) empirica para a mistura de m distribu-

icdes uniformes num poligono qualquer ndo auto-intersectavel dada por

1 1
EEUESTM7 Se£€P7

f=(€) = (2.19)

0, caso contrario.
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Considerando a Func3o de Distribuicdo Acumulada (FDA) definida na Equacdo e que
o primeiro momento estatistico coincide com o centro de gravidade, Silva, Souza e Cysneiros

(2019a) propdem que a média poligonal empirica (X,,Y,) = (X, X) seja dada por

—~ i iv: Ay Qo 541 (au,ibu,i—l—l - au,z’—i—lbu,i)
6m ues i=1 AU ’ (2 20)
i i\[: bu zbu Ja+1 (au,ibu,i—l—l - au,z’—i—lbu,i) )
6m uesS i=1 Au

Ja a variancia, considerando a FDA e que o segundo momento de area é igual ao segundo
momento estatistico, aplica-se o modelo de mistura de densidades uniformes no poligono e

deriva-se o segundo momento empirico para Z (My(Z) = (Ms(&1), Ma(&2))) dado por

N (q? s 2 P 4
MQ(Z) _ (121771 Z Z (CLu,z + Qg i Qo 41 + auﬂ.z) (au,zbu,z+1 aun-ﬁ-lbu,z)’
- ’ (2.21)
1 N (bi,i + by iby i1 + bft,H—l) (au’ibu’iJrl — au,i+1bu,i)
12m ues i=1 Au )

Seja um super retangulo que contem todos os poligonos R, = [, ] X [Bo, Br]. A frequén-
cia observada para o histograma bivariado no sub-retangulo R, = [a,_1, ag] X [By-1, By], 9 =

1,...r, onde r é o nimero de sub-retangulos que compdem o gride do histograma é dada por

area (Z (u) N Rg).

= 2.22
Ja 1; area (Z (u)) ( )
Além disso, a frequéncia relativa é calculada como
J,
Py =2, (2.23)

m

onde p, é probabilidade de um individuo em S esta no sub-retangulo R,. O histograma para
a variavel poligonal Z é a representacdo grafica de {(Ry, f;),g = 1,...,7}. Dessa forma, para
ilustrar graficamente o histograma com altura f,; sob o sub-retangulo 1z, entdo o volume é p,
dado pela Equacao . Além destas medidas estatisticas, Silva, Souza e Cysneiros (2019a)

também definem a covariancia, correlacdo e coeficiente de variacdo poligonal.

Py = (ag —ag1) X (Bg — By-1) X fy. (2.24)
Considerando esta nova aplicacdo em |ADS}, Silva, Souza e Cysneiros (2020) investigaram

a proficiéncia em portugués e matematica de estudantes brasileiros no dltimo ano do ensino
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fundamental, utilizando o modelo de regressao simbdlica poligonal. Ainda, introduziram um
conjunto de ferramentas para dados simbdlicos poligonais no ambiente R, com a biblioteca
psda (SILVA; SOUZA; CYSNEIROS, [2019b)). Esta biblioteca implementa as medidas descritivas,
o modelo de regressdo e a representacio grafica da variavel poligonal introduzidas por Silva,
Souza e Cysneiros (2019a)).

A principal vantagem de agregar os dados através desta abordagem é a quantidade de
informacdo armazenada se comparada com o método tradicional de agregacdo intervalar

[min, mazx] (BILLARD; DIDAY, 2006; SILVA; SOUZA; CYSNEIROS, 2019a)).

2.3 MODELOS LINEARES GENERALIZADOS

Os modelos de regressdo linear baseados nos minimos quadrados ordinarios possuem su-
posicoes, como normalidade dos erros associados ao modelo, varidvel resposta numérica e
variancia constante, a qual n3o é verdadeira para todos os dados (MONTGOMERY; PECK; VI-
NING, 2012). Além disso, pode-se facilmente violar as suposicdes quando a variavel resposta é

binaria ou relacionada a processos de contagem.

Os [Modelos Lineares Generalizados (MLG)| ampliam as possibilidades de modelagem da

variavel resposta ao contemplar distribuicGes pertencentes a familia exponencial, flexibilizando
a relacdo funcional entre a varidvel resposta e as varidveis explicativas (PAULA, [2013). Assu-
mindo que as respostas seguem uma distribuicdo pertencente a familia exponencial, os [MLG
permitem componentes sistematicos mais gerais para o0 modelo (DUNN; SMYTH, 2018).

A funcdo densidade de uma variavel aleatéria Y pertencente a familia exponencial pode

ser expressa como:
f(y;0,0) =explp{yd —b(0)} +c(y,9)] . (2.25)

De acordo com Paula (2013), E(Y) = u = V/(0), Var(Y) = 071" (0) = ¢~'V, em que
V =V (u) = du/df é a funcio de varidnciae ¢~ > 0 é o pardmetro de dispers3o ou precisio,
tém-se ainda ¢ que serd o parametro de localizacdo. A funcdo de variancia desempenha um
papel importante na familia exponencial, uma vez que a mesma caracteriza a distribuicdo e
para algumas distribuicSes a varidncia muda conforme a sua média (PAULA| 2013)).

Os componentes aleatdrios e sistematicos especificam formas para os [MLG| e fazem parte

dos seguintes elementos que os definem:

1. A distribuicdo de probabilidade da variavel resposta Y;, com ¢ = 1,...,n, pertencendo
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a familia exponencial dada pela Equacdo determina o componente do aleatério
do modelo. Esta distribuicdo pode ser sugerida pela variavel resposta (como exemplo,
proporcdes sugerem uma distribuicdo Binomial) ou por conhecer como a varidncia muda

com a média.

2. O componente sistemético, sendo g(u;) = n; sendo,
ni = Po+ BiXa + BiXioa + ... + B Xk, (2.26)

onde 7); é o preditor linear que pode ser utilizado para fazer predicGes e se relacionam

com a média da variadvel resposta ;.

3. Os [MLG| assumem uma funcdo monétona e diferenciavel que liga o preditor linear 7;
a média p;, cuja funcdo é adequada para relacionar os componentes aleatérios e sis-
tematicos do modelo, denominada funcdo de ligacdo g(.). A funcdo de ligacdo por ser
invertivel, transforma a esperanca da varidvel resposta no preditor linear, como mostra

Equaca funcdo de ligacdo i -t bém é chamada de funca
a Equacdo (2.27). A funcio de ligacdo inversa g~!(.) também é chamada de funcio

média.
E(Y;) =pi =g "(m) =9 (Bo+ BiXar + BiXio + .. + BuXar). (2.27)

Os casos particulares e mais conhecidos da distribuicdo exponencial sdo os modelos conti-
nuos os quais incluem distribuicGes Normal, Gama e Normal Inversa. J& os modelos discretos
incluem as distribuicGes de Poisson e Binomial. Portanto, a familia de distribuicdes exponen-
cial permite que os [MLG| sejam ajustados a vérios de tipos de dados, incluindo dados binérios,
proporcdes, contagens e dados continuos assimétricos e positivos (DUNN; SMYTH), 2018)), como
mostrado na Tabela Al

Em relacao as ligacdes canonicas, sua utilizacdo implica em algumas interessantes proprie-
dades pois simplifica as estimativas de maxima verossimilhanca dos parametros do modelo, mas
também o calculo do intervalo de confianca para a média da resposta (MYERS et al., 2002).
Contudo, isto ndo implica em qualidade do ajuste de modelo, sendo apropriadas diferentes

funcdes de ligacdo diferentes das candnicas.
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Tabela 5 — DistribuicGes para a variavel resposta Y e a natureza dos dados.

Distribuicao Tipo de Dados
Binomial Proporcado
Poisson Contagem
Normal Continuos

Normal Inversa Continuos Assimétricos
Gama Continuos Assimétricos

A Tabela [f] apresenta as funcdes 6, ¢, b(0) e c(y, ¢) especificas para cada uma destas

distribuicGes, assim como suas respectivas ligacdes canonicas.

Tabela 6 — Funcdes da familia exponencial.

Distribuicao b(0) 0 0] V(i) g(0)
Binomial nlog(l—p) log{p/(1—p)} 1 p(l—p) log{n/(1—p)}
Poisson e log s 1 I log
Normal 62/2 1 o2 1 1
Normal Inversa 1/ —1/2u2 62 w? 1/p?
Gama -log(—0) —1/p 1/a 2 1/p

Em modelos de regressdo é importante verificar possiveis afastamentos de pontos observa-
dos com os pontos do modelo estimado, levando em consideracao a parte aleatéria e a parte
sistematica do modelo. Os residuos no contexto dos [MLG]sdo utilizados para explorar a ade-
quacao do modelo ajusta no que diz respeito a escolha da distribuicao proposta para a variavel
resposta. A importancia é verificar desvios sistematicos, ocasionado pela escolha inadequada

da funcao de ligacdo e da funcao de variancia.

2.3.1 Modelos Lineares Generalizados na Analise de Dados Simbélicos

Assim como nos classicos (DUNN; SMYTH), 2018), o modelo BGLM estudado por
Neto et al. (2009) para dados intervalar também é formado por um componente aleatério e

um componente sistematico. A abordagem foi construida a partir do modelo cléssico [Bivariatd

|Generalized Linear Model (BGLM)| proposto por lwasaki e Tsubak 2005, No componente

aleatério, considera-se o vetor bivariado
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Y = ,
Y,

pertencente a familia exponencial bivariada. No contexto de[ADS| com variaveis tipo intervalar,
pode-se considerar as varidveis aleatérias Y7 e Y5 como, por exemplo, limites inferior e superior
ou no centro e range dos intervalos, respectivamente. Lima Neto et al. (2009) indicam que o

componente sistematico, formado pelas variaveis explicativas responsaveis pela variabilidade

de Y7 e Y5 , é definido por

m = g1() = 51 X1 e 2 = ga(p2) = PaXa, (2.28)

em que X; e X3 sdo sdo matrizes formadas por varidveis explicativas, 5, e (35 sdo os vetores
de pardmetros e g1 (p1) e g2(p2) sdo as funcdes de ligacdo. Os experimentos desenvolvidos por
Lima Neto et al. (2009) consideram que o vetor aleatério Y para os limites inferior e superior
segue a distribuicdo normal e as funcdes de ligacdo g1(p1) e ga(o) sdo identidade (n = ).
Os resultados foram comparados com os métodos introduzidos por Bilard e Diday (2000)) e
Lima Neto e De Carvalho (2008)).

No contexto da representacdo centro-range, Lima Neto, Cordeiro e Carvalho (2011)) pro-
puseram modelos de regressdo simbdlica bivariada baseadas em [MLG Com este trabalho os
autores ampliaram as possibilidades de lidar com a variavel resposta com dados simbdlicos tipo
intervalar, que agora podem constituir diferente distribuicGes. Aplicacoes em dados simulados
ilustraram a usabilidade da abordagem proposta.

Como parte das abordagens baseadas nos voltadas a regressao logistica, classifica-
dores tipicos para dados intervalares realizam predicOes, em geral, a partir das estimativas dos
limites inferior e superior (SOUZA; QUEIROZ; CYSNEIROS, 2011; BARROS; CARVALHO; NETO,
2012). Em (SOUZA; QUEIROZ; CYSNEIROS, [2011)), foi proposta quatro regras de classificacdo

que combina as previsdes derivadas desses limites da representacao intervalar:

» IDPC-CSP: O classificador IDPC-CSP estima a probabilidade de um padr3o pertencer a
classe k utilizando como covariaveis os centros dos intervalos, calculados pela média dos
limites inferior e superior. Um modelo de regressao logistica multinomial é ajustado com

base nesse vetor de centros, e os parametros sdo estimados por maxima verossimilhanca.

» IDPC-SP: O classificador IDPC-SP estima a probabilidade de classe considerando con-

juntamente os limites inferior e superior de cada intervalo como covariaveis. O vetor de
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entrada possui 2p componentes, e um modelo logistico multinomial é ajustado para cada
classe com base nesse vetor. Os parametros sdo estimados por maxima verossimilhanca,

utilizando K transformaces logisticas no caso multiclasse.

» IDPC-VSP: O classificador IDPC-VSP estima a probabilidade de classe utilizando os
vértices dos hipercubos definidos pelos limites inferior e superior dos intervalos. Cada
padrdo intervalar é representado por 2P vértices, e um modelo de regressao logistica
multinomial é ajustado com base nesses vértices. Os parametros do modelo sdo estimados

por maxima verossimilhanca.

= |IDPC-PP: O dltimo classificador proposto, [Modelo de Classificacao Intervalar baseado]

lem Probabilidade a Posteriori Combinada (IDPC-PP)| estima a probabilidade de classe

combinando duas regressoes logisticas multinomiais ajustadas separadamente aos limi-
tes inferior e superior dos intervalos. A probabilidade a posteriori final é obtida pela
média das probabilidades estimadas por cada modelo. Os parametros sdo estimados por
maxima verossimilhanca. Os autores demonstraram, com experimentos em bases reais e
sintéticas, que o IDPC-PP apresentou menores erros de classificacdo em relacdo a outros

classificadores intervalares propostos.

Com base nos estudos apresentados, observa-se que os classificadores intervalares, em
especial o [DPC-PP}, tém se mostrado eficazes na modelagem de dados simbdlicos intervalares.
Tal abordagem fundamenta a proposta deste trabalho, que visa estender esses conceitos para
dados poligonais por meio de regras de classificacdo baseadas em regressao logistica. A préxima

secao apresenta em detalhes a metodologia adotada para essa extensao.
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3 MODELOS LINEARES GENERALIZADOS PARA DADOS SIMBOLICOS DO
TIPO POLIGONAL

Este capitulo introduz a abordagem de|Modelos Lineares Generalizados (MLG)| para dados

simbdlicos tipo poligonal, referenciada nesta tese como [Modelo Linear Generalizado Poligonall

(PMLG)| Conforme discutido no Capitulo , esse conjunto de modelos foi previamente explo-

rado na 4rea da [Analise de Dados Simbélicos (ADS)| apenas para dados simbdlicos do tipo

intervalar (NETO et al., [2009; NETO; CORDEIRO; CARVALHO, [2011)). Para dados poligonais, os
estudos anteriores se restringiram a aplicacao do método dos minimos quadrados ordinarios
(SILVA; SOUZA; CYSNEIROS, [2019a] SILVA; SOUZA; CYSNEIRQS, 2019b).

Este capitulo descreve o modelo proposto para dados oriundos de diferentes distribuicdes.
Define-se o conceito de residuo poligonal, uma vez que a literatura atual ainda se apoia
em estatisticas classicas para a andlise de residuos em modelagens poligonais. Também sao
apresentadas métricas de desempenho baseadas nos erros de predicao, as quais ampliam a
aplicabilidade dos modelos lineares no contexto da @ No caso da distribuicao Binomial,

sao estabelecidas regras de classificacao fundamentadas na regressao logistica.

3.1 MODELO LINEAR GENERALIZADO POLIGONAL

O [PMLG] possui um componente aleatério Y pertencente a familia exponencial, sendo
um vetor de varidveis Y¢ e Y7 para valores de centros e de raios com médias u¢ e u”,

respectivamente. O componente sistematico é definido por um preditor linear 7, onde

n°=xTp% e (3.1)
T]T — XrTBr7 (32)
sendo 3¢ e /3* vetores de pardmetros com p < m, x°T = (5, .0, 75,) € x'T = (515 ey 7T

sendo matrizes formadas por varidveis explicativas com j = 1, ..., m. Ainda, funcdes de ligacao
g°(n¢) = n°e g"(u") = n". Em [MLG] a solu¢do para o vetor de pardmetros desconhecidos
B = (B,p) = Wl/ZX(XTWX)_lXTWI/Q, sendo W o elemento de reponderacio da
matriz.

A predicao de um novo exemplo é calculada a partir dos preditores lineares para o centro e o

AT

. A ~C A - Ve - ~
raio, dados por ¢ = X3 e 7" = X" , respectivamente, e as médias correspondentes sdo
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obtidas pela funcdo inversa da ligacdo: ¢ = (¢°) " (7€) e A" = (¢") " (#"). O Algoritmo
descreve os passos do PMLG

Algoritmo 2: PMLG: Modelos Lineares Generalizados para Dados Poligonais
1: Entrada: Conjunto de dados simbdlicos poligonais com m observacoes e L vértices.

2: Saida: Preditores de centros e raios 7§ e 1)/, respectivamente.

3: Inicio

4: Defina as funcdes de ligacdo ¢°(-) e ¢"(:) conforme a distribuicdo da variavel
resposta.

5: Estime os parametros dos modelos para centro e raio:

6: BC < estimac3do via maxima verossimilhanca para o centro;

7 B’" < estimacao via maxima verossimilhanca para o raio;

8: Para i = 1 até m faca:

9: Calcule os preditores lineares: 7¢ = x73° e 7 = xT 37

10: Aplique as funcdes de ligacdo inversas:

1L i = (g°) 1 (05),  Ar = (g")~ ()

12: Fim Para

13: Aplique a métrica de avaliacao do modelo.

14: Fim

Dependendo do tipo da varidvel resposta, diferentes distribuicoes pertencentes a familia ex-
ponencial podem ser consideradas no escopo do [PMLG| Dessa forma, o [PMLG] generaliza a
abordagem tradicional dos ao permitir a modelagem de variaveis simbdlicas poligonais

em diferentes contextos:

» DistribuicGes continuas: modelagem de medidas reais de centro e raio, adequada para
problemas de regressdo com distribuicdes continuas. O poligono P; (i = 1,...,m) com

L vértices é obtido a partir da Equacdo ((3.3)):

A 2 , 2
Py = (ﬂf + reos(T0), it +g;sm(7l”">) Condel—1,..L.  (33)

Desta forma, obtém-se os pares de vértices preditos da i-ésima observacdo que reconstroi

o poligono. Se fi; < 0, entdo fij = 0, configurando um poligono degenerado.

= Distribuicdes discretas (Binomial): modelagem de dados categdricos, adequada para

problemas de classificacdo, em que se busca prever a categoria ou rétulo a que pertence
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cada observacdo. Podem ser aplicadas regras de classificacao para uma resposta discreta

com base em i e fif da i-ésima observacgdo.

3.2 PMLG PARA DISTRIBUICOES CONTINUAS

Nesta secdo, apresenta-se a formalizacdo do [PMLG] para distribuicdes continuas, com foco
na definicdo de residuos e nas métricas utilizadas para avaliacdo preditiva. Introduz-se um
residuo poligonal baseado na diferenca entre os vértices dos poligonos observados e preditos.
Também s3o discutidas diferentes métricas de desempenho que permitem comparar a qualidade

preditiva de modelos e estratégias de regressao aplicados a dados poligonais.

3.2.1 Residuo Poligonal baseado nos Vértices

Em regressdo linear classica, um residuo é definido como a diferenca entre o valor obser-
vado e o valor predito baseado na equacdo de regressao. A andlise de residuos é um passo
essencial para identificar os efeitos de desvios de suposicdes de um modelo de regressdo. Uma
analise residual comum para dados simbdlicos com valor de intervalo é construida a partir da
representacao centro e intervalo, ou seja, é baseada na analise de residuos para dados classicos.

Em Nascimento et al. (2022), s3o investigadas as premissas do modelo de regressdo li-
near a partir dos residuos intervalares. Esta abordagem considera os centros e os intervalos
dos residuos resultando em uma medida Gnica. Além disso, um estudo foi realizado a partir
da definicdo de residuo padronizado. Na abordagem poligonal introduzida por Silva, Souza
e Cysneiros (2019a)) a diferenca entre observados e preditos é calculada a partir das areas
poligonais. No entanto, ainda nao ha um estudo detalhado acerca dos residuos.

Assim, este trabalho prop&e o residuo poligonal ordinario, ou seja, a forma poligonal da
diferenca entre os poligonos observados e preditos, tendo como base a Equacdo [2.16] Seja
Q) um espaco de poligonos e Z uma variavel aleatéria Z : Q — R? que assume valores no
poligono P com L vértices. Entdo Z = & = {(ay,by), ..., (ar,br)} C R2. Ele pode ser reescrito
como Z = & = (£1,&), onde & = {ay,...,ar} e & = {by, ...,br}. Define-se a diferenca de
residuos pela Equacdo ([3.4, onde ¢ é o centro observado e ¢ é o predito, r é o raio observado
e 7 é o predito. Essa métrica quantifica a discrepancia entre o poligono observado e o predito
em termos das componentes estruturais que o definem, centro e raio. Valores maiores indicam

maior divergéncia entre o poligono gerado pelo modelo e aquele observado nos dados.
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~

A, = [(Giz — aq), (bil - bil)}
= [(Ci—s—ricos(%ﬂ))—(éi—l—ﬂ-cos(%ﬂ)),(ci—l—rism(%ﬂ—l) —(éi-l—ﬂ-sin(%ﬂl)
= [((ciféi)Jrn’ COS(%]—I))7<6¢+1% COS(%)),(QﬁF?@ sin(%ﬂ))f(érﬁi sin(fl))} (34)

3.2.2 Métricas de Desempenho

A avaliacao da qualidade preditiva de modelos é uma etapa essencial em qualquer abor-
dagem estatistica ou de aprendizado de maquina, especialmente em contextos que envolvem
representacoes simbélicas, como os dados poligonais. A escolha das métricas de avaliacdo
influencia diretamente a interpretacao dos resultados, podendo ressaltar ou ocultar caracteris-
ticas relevantes do modelo. Nesse contexto, o trabalho de Silva, Souza e Cysneiros (2019a))
desenvolveu um método de avaliacdo de performance de modelos denominado
IQuadratico da Area (EMQA), o qual é dado por:

T
EQMA = E > {(area(Pu) — aTeaf’u)r , (3.5)
r u=1

onde P, é o poligono observado e P, o poligono predito. Observa-se que essa medida considera
apenas a area dos poligonos, desconsiderando a posicdo que eles ocupam no espaco R2. A
implicacdo disso é que os poligonos podem ter valores de raio semelhantes, resultando em
areas préximas ou equivalentes, mas apresentar grande dispersao em relacdo aos centros e,

consequentemente, em suas posicoes, tornando essa medida de qualidade incompleta.
A Figura (4] ilustra essa discussdo. Em (a), apresenta-se a representacdo de dois poligonos
que possuem formas semelhantes e areas proximas. Com base na diferenca de éareas, o resi-
duo calculado é pequeno. Contudo, ao considerar a posicdo dos poligonos, observa-se que a

diferenca entre seus centros é mais significativa. J4 em (b), estd apresentada a proposta de

residuo, que representa a diferenca entre os vértices dos poligonos.
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Figura 4 — Representacdo da diferenca entre vértices dos Poligonos.

Dito isto, este trabalho propée uma medida de performance baseada nos vértices dos

poligonos. Com base no residuo poligonal proposto na Equacdo [3.4] define-se o
|Quadratico da Distancia dos Vértices (EMQDV)|

r

EMQDV = 2170 Z [(aul - é\Lul) + (bul - Bul)}2 ) (36)

u=1
onde a e a constituem os valores do eixo das abcissas,b e b os valores do eixo das coordenadas e
l=1,..., L. Adistancia Euclideana é considerada, na qual obtém-se o somatério das diferencas

de cada par de vértice.
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Neste trabalho, ainda se considera a avaliacdo dos erros de predicao sob dois métodos de

desempenho. O primeiro definido como [Erro Médio Quadratico da Area e Centro Conjunta-|

Imente (EMQAC)|, é uma adaptacdo do modelo proposto por Silva, Souza e Cysneiros (2019a))

o qual é acrescido do valor de centro, ou posicdo como definido na Equacao [3.7]

EMQAC = \l 21 > {(area(Pu) — areaP,) + (centro, — ceﬁtrou)}2 . (3.7)
r

u=1

O segundo é baseado apenas em valores de centro e raio, definido na Equacdo (3.8 e

referenciado por|Erro Médio Quadratico do Centro e Raio Conjuntamente (EMQCR)| Portanto,

avaliam-se os modelos de regressao e o resultado das quatro medidas métricas do erro definidas.

Os cendrios de avaliacao consideram bases de dados simuladas e reais.

T

EMQCR = \l 1 > [(centrou — centroy,) + (raio, — rd@'ou)r . (3.8)

2r =

3.3 PMLG PARA DISTRIBUICOES DISCRETAS

A modelagem de varidveis categdricas é uma etapa central em diversos problemas de
classificacdo. Nesse contexto, distribuicdes da familia exponencial, como a Binomial, fornecem
uma base probabilistica para a construcao de modelos preditivos. Quando a varidvel resposta
segue uma distribuicao Binomial, uma abordagem comum ¢ utilizar a regressao logistica. Por

exemplo, um [MLG| com funcdo de ligagdo logit para uma varidvel Binomial é dado por:

logit(p) = In <1p> — X3,

-P
onde p é a probabilidade de sucesso, X sdo as variaveis explicativas, e 3 sdo os coeficientes do
modelo. Esse modelo é amplamente utilizado para prever probabilidades de eventos binarios.

A func3o inversa do logit transforma o preditor linear X3 no intervalo (0, 1), sendo expressa

por:

GX’B

p

No contexto do[PMLG] essa abordagem é estendida para representar uma variavel resposta
simbdlica poligonal, modelada por meio de dois componentes aleatérios Y e Y, que represen-
tam, respectivamente, o centro e o raio do poligono. Ambos os componentes sao considerados

pertencentes a familia exponencial. Sejam p* = P(Y =1 | z) ep" = P(Y =1 | 2") as
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probabilidades de sucesso associadas as componentes de centro e raio das varidveis preditoras,

respectivamente. Os modelos logisticos sao definidos por:

C

n° = logit(p®) = In < b

:XC (&
T

7 = logit(p) = In ( P ) - X8,

onde X¢ e X" s3o as variaveis explicativas para o centro e o raio, 8 e 8" os sdo os respectivos

T 1

. c __ 1
coeficientes, e p° = Trape € P = Trempory-

Dessa forma, nesta secdo apresentam-se trés regras de classificacdo baseadas no PMLG
com distribuicdo Binomial: a primeira é baseada na média aritmética das predicGes; a segunda
utiliza uma média ponderada otimizada por meio de um algoritmo de otimizacdo; e a terceira
baseia-se em uma representacao por protétipos e probabilidades. Essas regras sao aplicadas
considerando que a predicao de um novo exemplo é calculada a partir das predicoes do centro e
do raio, dadas por 7 = (Xfﬁ;) e N = (X[@;) resultando nas probabilidades a posteriori
o= =g () e B =i

estendida para problemas com mais de duas classes por meio da técnica “um contra todos”

=g (ﬁ;) Além disso, essa abordagem pode ser
(one-vs-all).

3.3.1 Regra de Classificacao Baseada na Média Aritmética das Predicoes

Nesta regra a ideia é assumir que os dados de centro e raio das varidveis preditoras possuem
0 mesmo peso na obtencdo da probabilidade a posteriori associada a x. Seja P(Y =1 | x)
a probabilidade a posteriori associada a x. O modelo logistico para dados poligonais combina
as predicdes para o centro e o raio tomando a média de suas probabilidades a posteriori. A

probabilidade a posteriori combinada para Y = 1 é dada por:

PY =1|x)=

onde p° e p" representam as probabilidades a posteriori estimadas a partir dos modelos logisticos
ajustados para o centro e o raio, respectivamente. A decis3o final de classificacdo é obtida

comparando P(Y =1 | x) com um limiar 7, fixado em 0,5. Assim, a classe predita ¢ é definida

por:
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1, seP(Y =1]|x)>T,

Ny
I

0, caso contrario.

Essa estratégia de combinacdo é comumente utilizada em problemas de classificacao que

envolvem dados simbdlicos ou intervalares, nos quais modelos separados s3o construidos para

diferentes componentes do intervalo, tipicamente os limites inferior e superior (SOUZA; QUEI-

ROZ; CYSNEIROS, [2011)). O Algoritmo 3| apresenta os passos da regra de classificacio.

Algoritmo 3: Regra de classificacdo para o PMLG baseado na média aritmética

1: Entrada: Conjunto de dados poligonais com m observaces e L vértices.

2: Saida: Probabilidade a posteriori P(Y =1 | x).

3: Inicio

4.

10:
11:
12:
13:
14:
15:

16: Fim

Defina as funcdes de ligacdo ¢°(-) e ¢"(-) como logit.
Estime os parametros dos modelos para centro e raio:
BC < estimac3do via maxima verossimilhanca para o centro;
B”” < estimacao via maxima verossimilhanca para o raio;
Para i = 1 até m faca:
Calcule os preditores lineares: 7¢ = x73° e 77 = x'T 37
Aplique as funcdes de ligacdo inversas:
pi=i5=(9°)" () e By =g = (g") " (n));
Fim Para
Para cada nova observacao x faca:
Compute P(Y =1 |x) = e

Fim Para

3.3.2 Regra de Classificacao Baseada na Média Otimizada das Predicoes

O processo de ponderacdo na representacdo de dados em tem sido abordado em

alguns trabalhos. Em (ARAUJO et al., 2017)), o objetivo foi ajustar a influéncia relativa dos limites

inferior e superior dos intervalos na medida de distancia utilizada para a classificacdo. Para isso,

foi considerado um pardmetro de controle 7 € [0, 1], avaliado por meio da variacdo de seus

valores a fim de analisar o impacto dos limites na performance do classificador. Diferentemente
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da média aritmética simples, que atribui o mesmo peso fixo aos extremos do intervalo (ou seja,
trata os limites inferior e superior como igualmente relevantes), o processo de ponderacdo
possibilita controlar a influéncia de cada limite conforme as caracteristicas do problema.

Por sua vez, a regra de classificacao baseada na média ponderada das predicGes proposta

utiliza o algoritmo |Particle Swarm Optmization (PSO)| (KENNEDY; EBERHART, 1995), no por-

tugués Otimizacdo por Enxame de Particulas, uma metaheuristica populacional inspirada na
inteligéncia coletiva de enxames, para determinar o valor étimo do parametro A, que atua
como um fator de ponderacdo responsavel por equilibrar as contribuicdes das predicoes as-
sociadas ao centro e ao raio. O [PSO|tem recebido grande atencdo na comunidade cientifica
devido ao seu desempenho em resolver problemas complexos de otimizacdo sem a necessidade
de suposicdes sobre a fungdo objetivo (GAD| |2022). Um enxame de particulas atualiza suas
posicoes de uma iteracdo para a préxima, permitindo que o algoritmo PSO realize efetivamente
o processo de busca. Para encontrar a solucao 6tima, cada particula se move em direcdo a sua
melhor posicdo anterior e a melhor posicdo global identificada dentro do enxame (KENNEDY;
EBERHART, |1995; |GAD) 2022).

Neste contexto, a otimizacdo de )\ é realizada para maximizar a acuracia da classificac3o,
definida como:

Y L(yi = 0i)

Acuracia = ,
n

onde I(y; = 4;) é a funcdo indicadora que vale 1 se y; for igual a §J;, e 0 caso contrério. Apés
a otimizacdo, o valor de A é usado na regra final de classificacdo. A probabilidade a posteriori

combinada para a classe é dada por:

PY =1]x)=Axp+(1—=X) %,

onde p° e p" sdo as probabilidades a posteriori estimadas pelos modelos logisticos para o centro
e o raio, respectivamente, e A\ é um peso obtido por meio de um processo de otimizacdo que
equilibra as contribuicdes dessas duas representacdes. Esse elemento permite ajustar dinamica-
mente a influéncia relativa de centro e raio no modelo final. A otimizacdo de A visa maximizar
a acurdcia, tornando o modelo mais flexivel e mais robusto, principalmente em casos onde
uma das representacées pode ser mais informativa que a outra. O Algoritmo |4 apresenta os

passos da regra de classificacao.
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Algoritmo 4: Regra de classificacdo do PMLG baseada em Otimizacdo da Média

1: Entrada: Conjunto de dados poligonais com m observacées e L vértices.

2

3

4:

10:
11:
12:
13:
14:
15:
16:

17:

. Saida: Probabilidade a posteriori P(Y =1 | x).

. Inicio

Para ;: = 1 até m faca:

Fim Para

Para cada nova observacao x faca:

Fim Para

Fim

Aplique as funcoes de ligacdo inversas:

Calcule P(Y =1|x) = A x p°+ (1 —\) x §.

Defina as funcdes de ligacdo ¢°(-) e g"(-) como logit.
Estime os parametros dos modelos para centro e raio:
B¢ < estimac3do via maxima verossimilhanca para o centro;

B" < estimacao via maxima verossimilhanca para o raio;

Calcule os preditores lineares: ¢ = x57 3¢ e 7 = x/T3";

=05 =(g9)7' () e BF = p7 = (9") ()

Aplique PSO para encontrar o valor 6timo A* que maximiza a acuracia;

Nesta tese, a otimizacdo do parametro \ foi realizada utilizando o algoritmo PSO, implemen-

tado na funcdo psoptim do pacote pso em R. Com o objetivo de garantir a reprodutibilidade,

os principais pardmetros do algoritmo foram explicitamente documentados na Tabela[7] Ape-

nas o ndmero maximo de iteracdes (maxit) foi modificado, sendo aumentado do valor padrdo

de 100 para 500, a fim de assegurar a convergéncia.

Tabela 7 — Configuragcdes dos pardmetros do algoritmo PSO.

Parametro Valor padrao Valor utilizado
Tamanho do enxame (s) 40 40

Ndmero maximo de iteracdes (maxit) 100 500

Ndmero maximo de avaliagdes (mazf) oo 00

Peso de inércia (w) 0.721 0.721
Coeficiente cognitivo (c.p) 1.193 1.193
Coeficiente social (c.g) 1.193 1.193
Tolerancia absoluta (abstol) —00 —00

Nivel de rastreamento (trace) 0 0

Frequéncia de relatério (report) 10 10
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3.3.3 Regra de Classificacao Baseada em Protétipos Poligonais

Em aprendizagem de maquina, um protétipo refere-se a uma representacdo simplificada
das caracteristicas centrais ou tipicas de uma classe ou grupo de dados. Ele serve como
referéncia para a comparacao e classificacao de novas observacdes, geralmente com base em
uma medida de distancia. Com base nessa abordagem, propde-se uma regra de classificacdo
baseada em protétipos para dados poligonais, na qual uma nova observacdo é atribuida a
classe do protétipo poligonal mais préximo.

O procedimento de construcdo dos protétipos é descrito a seguir. Dado um conjunto de
dados rotulado com duas classes distintas, k& € {0,1}, define-se um total de z protétipos
para cada classe com base nos valores ajustados de centro e raio observados no conjunto
de treinamento. Esses protétipos sao determinados a partir dos quantis empiricos dos valores
ordenados de centro e raio da respectiva classe.

A partir dos z pares representativos de centro e raio, é possivel reconstruir os poligonos
correspondentes utilizando a Equacdo [2.16] Especificamente, para o j-ésimo protétipo da

classe k, os valores de centro e raio sao definidos como:

Cg@) _ q%(C(k)), R® — q%(R(k)), (3.10)

onde ¢; (-) denota o quantil Z-ésimo dos valores ajustados na classe k, com j =1,2,...,z e

k € {0,1}. O Algoritmo [5| descreve as etapas desse processo.
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Algoritmo 5: Construcdo de Protétipos Poligonais por Classe

Entrada: Conjunto de valores ajustados de centro Cj, raio R; e rétulo y; € {0,1}.
Nimero de protétipos por classe: z.

Saida: Protétipos (Cgk),Rj(k)) para cada classe k € {0,1}, j=1,...,z2.

1: Inicio

2: Para cada classe k € {0,1} faca:

3: Ordenar os vetores C¥) e R(*),

4: Para cada j =1 até z faca:

5: Calcular o quantil % para o centro: C;“ = q%(C(k)).

6: Calcular o quantil £ para o raio: R](-k) = q%(R(k)).

7 Reconstruir o poligono correspondente utilizando a Equacao [2.16]
8: Fim Para

9: Fim Para

10: Retorne os z protétipos e seus respectivos poligonos para cada classe k.
11: Fim

A regra de classificacdo é baseada na proximidade entre uma nova observacao predita e os
protoétipos das classes 0 e 1, considerando a distancia euclidiana entre os centros e os raios.

Seja x = (x¢,xg) a nova observacdo, onde p° e p” sdo as probabilidades a posteriori
estimadas pelos modelos logisticos para o centro e o raio, respectivamente. Esta entrada sera

atribuida a classe k£ € {0, 1} cujo protétipo for mais préximo, segundo a seguinte regra:

— 1 AC (k) 2 o~ (k) 2
g argke{0,1ﬂ1£{1,...,z} (\/(p CJ ) +(p RJ ) ) (3-11)

O Algoritmo [6] apresenta os passos da regra de classificacdo baseada em protétipos. Essa
abordagem considera a proximidade de uma nova observacdo predita aos protétipos, os quais
sdo representados por poligonos especificos de cada classe. Considerando as classes k € {0, 1},
espera-se que os protétipos poligonais associados a classe 0 possuam centros e raios proximos

de 0, enquanto aqueles da classe 1 apresentem centros e raios préximos de 1.
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Algoritmo 6: Regra de classificacio do PMLG baseado em Protétipos Poligonais
1: Entrada: Conjunto de dados poligonais com m observacées e L vértices.

2: Saida: Probabilidade a posteriori para a classe k.

3: Inicio
4: Defina as funcdes de ligacdo ¢°(-) e g"(-) como logit.
5: Estime os parametros dos modelos para centro e raio:
6: Bc <+ estimacdo via maxima verossimilhanca para o centro;
7: B« estimacao via maxima verossimilhanca para o raio;
8: Para i = 1 até m faca:
9: Calcule os preditores lineares: 7¢ = x73° e 77 = x'T 37
10: Aplique as funcdes inversas da ligacao:
1L P =g = (g°) 7 (5) e B = A7 = (¢") " (A});
12: Fim Para
13: Para cada classe k faca:
14: Calcule z protétipos (Cﬁ»k), R§k)) usando os quantis de p° e p" na classe k,
para j =1,...,2;
15: Fim Para
16: Para cada observacdo x = (z¢, zg) faca:
17: Atribua a classe
k = arg mingego1y, jeq1,....2} (\/(ﬁc - Cg-k))2 + (P — R§k))2> .
18: Fim Para
19: Fim

Para representar esta ultima regra de classificacdo, a Figura |5/ mostra dois exemplos da atuacao
da regra, com um protétipo e trés protdtipos, para um mesmo cenério de dados. Pode ser
observado que aumentar o niimero de protétipos ocasiona mudanca na classificacdo de algumas

entrada de dados.
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Figura 5 — Representacdo da classificacdo usando a regra baseada em protétipos.

3.4 ABORDAGEM DE MODELAGEM POLIGONAL

Este capitulo apresentou uma estrutura unificada para modelagem estatistica de dados
poligonais, abordando tanto varidveis respostas continuas quanto discretas. Partindo de uma
base de dados poligonal representada por centro e raio, o capitulo desenvolve abordagens
distintas conforme a natureza da variavel de interesse.

Para variaveis resposta com distribuicdo continua e assimétrica (como distribuices Gama
e Normal Inversa), é proposto o uso do Modelo Linear Generalizado Poligonal (PMLG) com
a anélise de residuos poligonais ordinarios. A avaliacdo dos modelos é realizada através de
quatro métricas de erro médio quadratico. Para varidveis discretas com distribuicao Binomial,
o mesmo framework PMLG é adaptado com trés regras de predicdo: média aritmética das

predicdes, média otimizada via Otimizacdo por Enxame de Particulas e método baseado em
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protétipos poligonais. O desempenho preditivo é avaliado através de acuracia e precisdo.
O fluxo metodoldgico resultante é ilustrado na Figura[f] A figura fornece um guia para ané-
lise preditiva de dados poligonais, estabelecendo padrdes de avaliacdo para diferentes contextos

estatisticos.

Base de Dados Poligonal

I— Representacdo de centro e raio —l

Y com distribuigao Y com distribui¢do
continua e assimétrica discreta
(Gama e Normal Inversa) (Binomial)

PMLG PMLG
Regras de predigéao:
l * Média aritmética das predicoes
- — * Média otimizada das predigbes (PSO)

| Residuo poligonal ordinario | *  Protétipos poligonais (Proto)
Métricas de avaliagao de erro médio quadratico: Métricas de avaliacdo:

Distancia de vértices (EMQDV) « Acuricia
» Area e centro conjuntamente (EMQAC) « Precisdo

* Centro e raio conjuntamente (EMQCR)
* Area (EMQA)

Figura 6 — Fluxo metodolégico para modelagem poligonal com diferentes distribuicGes de Y, mostrando téc-
nicas de predicdo e métricas de avaliacdo propostas.
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4 AVALIACAO EXPERIMENTAL COM DADOS POLIGONAIS GERADOS A
PARTIR DE DISTRIBUICOES CONTINUAS ASSIMETRICAS

A andlise experimental inicia-se com a geracdo dos conjuntos de dados poligonais e técni-
cas de visualizacdo para estes conjuntos. A metodologia segue uma sequéncia de algoritmos

organizados em simulacdes Monte Carlo (MC) para avaliacdo da proposta em dois contextos:

Diagnéstico e Preditivo. A abordagem proposta neste trabalho, denominada [Modelo Linear|

|Generalizado Poligonal (PMLG), é comparada aos métodos introduzidos em Silva, Souza e

Cysneiros (2019a) e Neto, Cordeiro e Carvalho (2011), referenciados como [Modelo de Re-|

lgressado Linear Poligonal (PRL)|e|Modelo de Regressdo Linear Bivariado (PBIVAR)| respecti-

vamente. O modelo PBIVAR foi adaptado para operar com os dados em termos de centro e
raio, possibilitando a comparacao com os modelos baseados em representacdes poligonais. Os

experimentos desta pesquisa foram realizados na linguagem R (R Core Team, [2020)).

4.1 CONFIGURACOES DOS DADOS SIMULADOS

4.1.1 Cendrio 1: Distribuicao Gama

O primeiro cendrio de dados simulados considera a distribuicio Gama. O Algoritmo
descreve o processo de geracdo de dados, considerando a funcdo de ligacdo candnica da
distribuicio Gama, a reciproca. A representacdo dos dados de centro e raio é mostrado na
Figura[7| para uma amostra de dados. Os histogramas da variavel resposta revelam assimetria
a direita, e os graficos de dispersdo da varidvel resposta em funcdo da variavel explicativa

revela que a variancia nao é constante.

Algoritmo 7: Geracao de conjuntos simulados com distribuicao Gama
1: Requerer n = 100 .

2: Defina a funcdo de ligac3do reciproca para a distribuicido Gama.
3: Defina z{ obtido de uma distribuicdo U(a = 0;b = 10).
4: Defina z] obtido de uma distribuicdo U(a = 0;b = 5).

5: Calcule yf = 1,0+ 0, 5x¢ obtido de uma distribuicdo G(u =

7: Compute os vértices dos poligonos com a Equacdo ([2.16)).




56

A Figura (8| descreve a variavel resposta poligonal (centro, raio) dos dados gerados, aplicando

a Equacdo (2.16) implementada na biblioteca psda (SILVA; SOUZA; CYSNEIROS, [2020)). Para

o cendrio de dados com distribuicio Gama, gera-se duas bases dados poligonais, com 5 e 10
vértices. Percebem-se os centros dos poligonos destacados em azul, os quais possuem maior
concentracao no inicio da distribuicdo, revelando maior proximidade entre os poligonos. Em
relacdo aos raios, ha uma variacao quanto a area formada pelos poligonos, no entanto, este
aspecto foi controlado na geracao dos valores de raio oriundos da distribuicio Gama para que

n3o houvesse valores extremos.
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Figura 7 — Representacdo do centro e raio da varidvel resposta com distribuicdo Gama.

O
N
V'Y

Dimenséo 2

Dimer

Dimenséo 1
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Figura 8 — Representacdo da variavel resposta poligonal com (a) 5 e (b) 10 vértices no cendrio de distribuicdo
Gama.



57

Na Figura [J] observa-se a dispersdo da varidvel resposta poligonal com 5 vértices. Pelo
histograma (a), percebe-se distribuicdo unimodal e assimetria, com concentrac3o de frequéncia
entre 0,2 e 0,5 (b). As seguintes medidas poligonais foram calculadas a partir da biblioteca
psda (SILVA; SOUZA; CYSNEIROS, 2020)) definidas nas Equacdes e (2.21): média poligonal
empirica (0,31; 0,31)7 e desvio padrdo poligonal empirico (0,35; 0,35)T.
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(a) Histograma de frequéncia relativa da varivel resposta.
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(b) Concentracdo de frequéncia da variavel resposta poligonal.

Figura 9 — Variavel resposta poligonal com 5 vértices e distribuicio Gama.

Jé na Figura[10]observa-se o comportamento da variavel resposta poligonal com 10 vértices.

Lembrando que a configuracao que origina os dados classicos de centro e raio é o mesma,
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independente da quantidade de vértices definida. Pelo histograma (a) também percebe-se
distribuicdo com assimetria a direita e concentracdo de frequéncia entre 0,2 e 0,5 (b). As
seguintes medidas poligonais foram calculadas: média poligonal empirica (0,31; O,31)T; desvio

padrio poligonal empirico (0,37; 0,37)7.
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(b) Concentracdo de frequéncia da variavel resposta poligonal.

Figura 10 — Variavel resposta poligonal com 10 vértices e distribuicio Gama.



4.1.2

O segundo cenério de dados simulados considera a distribuicio Normal Inversa. O Algo-
ritmo [8] descreve o processo de geracdo, considerando a funcdo de ligacdo candnica reciproca
quadrética. A representacdo dos dados de centro e raio é mostrada na Figura [11] para uma
amostra que representa o cenario gerado. Os histogramas revelam assimetria a direita, e os

graficos de dispersdo da variavel resposta em funcdo da varidvel explicativa revelam que a

Cenario 2: Distribuicao Normal Inversa

variancia n3o é constante.

Algoritmo 8: Geracdo de conjuntos simulados com distribuicdo Normal Inversa

1:

2:

Requerer n = 100 .

Defina a func3do de ligacdo como reciproca quadratica.

Defina z{ obtido de uma distribuicdo U(a = 0;b = 4).

Defina 2] obtido de uma distribuicdo U(a = 0;b = 3).

Calcule yf = 0,5 + 2, 5x¢ obtido de uma distribuicdo NI(u = 0,5; ¢ = 7).
Calcule y; = 2,5+ 1,5z obtido de uma distribuicdo NI(x = 0,5; ¢ = 23).

Compute os vértices usando a Equacao ([2.16)).

Figura 11 — Representacao do centro e raio da varidvel resposta com distribuicdo Normal Inversa.
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A Figura representa a varidvel poligonal construida a partir dos dados gerados para o
centro e para o raio. Observa-se que os centros dos poligonos, destacados em azul, apresen-
tam maior proximidade no inicio da distribuicdo, afastando-se progressivamente ao longo da
amostra. Dessa forma, a maior concentracdo dos dados poligonais encontra-se no intervalo
entre 0 e 5, refletindo uma distribuicao mais densa nas primeiras observaces da série..

Com relac3o aos raios, nota-se a presenca de observacdes com maior variacdo de area.
Diferentemente do cenario com distribuicdo Gama, o intervalo de valores adotado neste caso

é menor, o que torna os raios mais sensiveis a variacoes nos dados.

25
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Dimenséo 2
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Dimensdo 1 Dimenséo 1
(a) 3 vértices. (b) 10 vértices.

Figura 12 — Representacido da varidvel resposta poligonal com (a) 5 e (b) 10 vértices no cenério de distribuicdo
Normal Inversa.

As medidas poligonais da varidvel resposta com 3 vértices foram obtidas a partir dos
valores dos centros e raios estimados, resultando em uma média poligonal empirica igual a
(0,52; 0,52)T e um desvio padrio poligonal empirico de (0,13; 0,13)". Esses valores refletem
uma distribuicdo centrada em torno do ponto médio da escala considerada, com moderada
dispersao. A Figura|l3|apresenta a distribuicdo da varidvel resposta poligonal simulada segundo
uma distribuicao Normal Inversa.

No histograma da Figura a), observa-se que a distribuicdo é unimodal, com o pico
de frequéncia bem definido. Ja na subfigura (b), nota-se uma assimetria na distribuicdo,
com concentracdo mais acentuada de frequéncias no intervalo entre 0,1 e 0,3. Esses padrdes
reforcam o comportamento assimétrico e concentrado da variavel resposta poligonal nesse

cenario de distribuicdo Normal Inversa com 3 vértices.
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Na Figura observa-se a dispersao da varidvel resposta poligonal com 10 vértices. Pelo
histograma (a) percebe-se distribuicdo unimodal e assimetria e concentracdo de frequéncia
entre 0,2 € 0,5 (b). As seguintes medidas poligonais foram calculadas: média poligonal empirica
(0,31; 0,31)" e desvio padrio poligonal empirico (0,35; 0,35)T. Ao comparar os dois cenérios,

nota-se que o desvio padrao aumentou com a variavel poligonal com 10 vértices.
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Figura 13 — Variavel resposta poligonal com 3 vértices e distribuicdo Normal Inversa.
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Figura 14 — Variavel resposta poligonal com 10 vértices e distribuicio Normal Inversa.

4.2 DIAGNOSTICO DO MODELO: ANALISE DE RESIDUOS

Nesta secao, sdo apresentadas as analises de residuos dos modelos avaliados nos cenarios
com dados simulados. O residuo poligonal estd definido na Equagdo [3.4] Medidas descritivas

e representacoes graficas sao fornecidas para auxiliar na interpretacdo dos resultados.

4.2.1 Cendrio 1: Distribuicao Gama

Antes de fazer a reapresentacdo grafica e analise dos residuos, é necessario observar a

varidvel poligonal predita pelos modelos [PMLG| [PRL] e [PBIVAR] revelando distribuicées com
algumas particularidades. A Figura [I5 mostra que o modelo [PMLG] apresenta poligonos com
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centros acumulados no inicio da distribuicGes, e mais dispersos ao final, diferentemente do
[PRL], o qual percebe-se uma distribuicdo de objetos mais préxima. O modelo [PBIVAR| além

de exibir uma distribuicao igualitaria entre os objetos, obtém menor valor de raios.

PMLG PRL PBIVAR

Dimenséo 2
Dimenséo 2
Dimenséo 2

(a) Variavel resposta predita com 5 vértices.

PRL PBEIVAR

Dinensio 2

(b) Variavel resposta predita com 10 vértices.

Figura 15 — Representacao da variavel predita poligonal no cenério de distribuicio Gama.

Como definido no Capitulo [3] o residuo poligonal é calculado a partir das diferencas entre
os Vvértices observados e os vértices preditos. Espera-se que os poligonos residuais sejam, em
sua maioria, degenerados e préximos a coordenada (0, 0) do espaco representado. Dito isto,
analisa-se os residuos do cenario de dados Gama com poligonos de 5 vértices.

Percebe-se na Figura[16{(a) que os modelos[PMLG| e [PRL| apresentam menor &rea residual
e maior proximidade ao ponto (0, 0), indicando menores residuos tanto para a posi¢cdo (centro)
quanto para a érea (raio). A Figura [16[b) detalha os residuos de centro e raio, evidenciando
que o modelo [PMLG] concentra maiores frequéncias no valor zero e exibe menor assimetria.
A dispersdo dos residuos é apresentada na Figura c). Ja na Figura [I7] os histogramas
permitem analisar a distribuicdo de frequéncias dos residuos, destacando que o modelo[PBIVAR|
possui maior ocupacdo da area, o que indica residuos mais dispersos.

Em relacdo ao cenario Gama com poligonos de 10 vértices, a Figura[18(a) apresenta menor
area residual dos modelos e [PRL} que estdo mais préximos das coordenadas (0, 0),
indicando pequenos residuos para centro e raio. As Figuras b) e (c) exibem os residuos de
centro e raio, evidenciando assimetria nos histogramas devido a valores mais altos de residuos.

Ja a Figura[l9|mostra a concentracdo de frequéncias desses residuos por meio dos histogramas.
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Figura 18 — Representacdo dos residuos para poligonos com 10 vértices e distribuicio Gama.
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4.2.2 Cendrio 2: Distribuicao Normal Inversa

A Figura mostra os poligonos preditos pelos trés modelos implementados. Percebe-se
que, com (a) 3 ou (b) 10 vértices, o [PMLG| obteve mais dispersdo em relacio aos valores de
centro do que as demais técnicas. Em relagdo aos raios, o modelo [PBIVAR| obteve valores mais
baixos mostrado pela distribuicdo dos poligonos em uma distribuicdo menor. Comparado esses
graficos com a varidvel resposta poligonal observada, percebe-se, geometricamente, maior

proximidade do modelo [PMLG
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Figura 20 — Representacdo da variavel predita poligonal no cenério de distribuicdo Normal Inversa.

Em relacao aos residuos poligonais, a Figura exibe a variavel poligonal resultante de
cada modelo. Os modelos [PMLG| e [PRL possuem menor area, sendo poligonos distribuidos
entre (0,5; -0,5) em maioria, e com valores pequenos de raio formando pequenos poligonos.

Pode-se notar alguns poligonos residuais degenerados formando pontos e retas nos poligonos

dos trés modelos.
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Figura 21 — Representacdo dos residuos poligonais com 3 vértices no cenério de distribuicdo Normal Inversa.

Na Figura a), observa-se que a representacdo dos residuos poligonais associados ao
centro apresenta um histograma assimetrico. Além disso, destaca-se que o modelo PMLG
concentra maior frequéncia de residuos em torno do zero, indicando melhor ajuste central
em relacdo aos demais modelos. A distribuicao dos residuos associados ao raio é assimétrica
nos modelos [PMLG] e [PRL, enquanto o modelo [PBIVAR| apresenta um comportamento mais
simétrico, com predominancia de valores positivos.

Essas caracteristicas também s3o evidenciadas na Figura b), a qual representa a dis-
persdo dos residuos nas duas componentes (centro e raio). Ja na Figura [23 verifica-se a
concentracao de frequéncias dos residuos, sendo notavel que a regiao ocupada pelos residuos
do modelo [PBIVAR]| é mais extensa, indicando maior variabilidade residual.

A Figura[24{a) apresenta a representacdo dos residuos poligonais considerando 10 vértices.
Assim como na andlise com 3 vértices, os modelos e continuam exibindo menor
area residual, com os poligonos concentrando-se majoritariamente entre as coordenadas (0,5;
-0,5). Nota-se ainda a ocorréncia de poligonos degenerados, com formagdes que se aproximam
de pontos, retas ou outras representacoes poligonais ndo regulares, indicando possiveis residuos
nulos ou extremos.

Na Figura b), observa-se que a representacdo dos residuos do centro mantém o padrao
assimétrico, com destaque para a presenca de residuos discrepantes positivos. O modelo[PMLG
novamente concentra a maior frequéncia de residuos no valor zero. A distribuicdo dos residuos
de raio apresenta assimetria nos trés modelos, embora o [PBIVAR|evidencie maior concentracdo
de valores nulos. A dispersdo dos residuos pode ser analisada com maior clareza na Figura[24(c),

enquanto a Figura revela a concentracao de frequéncias residuais, com destaque para o
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Figura 24 — Representacao dos residuos para poligonos com 10 vértices e distribuicdo Normal Inversa.
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4.3 ANALISE PREDITIVA

O desempenho dos métodos de predicdo serd mensurado por meio de quatro métricas:
[Erro Médio Quadratico da Area (EMQA), [Erro Médio Quadratico da Distancia dos Vértices|
I(EMQDV), [Erro Médio Quadrético da Area e Centro Conjuntamente (EMQAC)|e [Erro Médio|
[Quadrético do Centro e Raio Conjuntamente (EMQCR)| definidas na subsec3o [3.2.2] Para

avaliar a abordagem proposta, utiliza-se o método de Monte Carlo (MC) com 100 iteracdes, em
que, a cada repeticdo, os dados s3o particionados aleatoriamente em 75% para o treinamento

dos modelos e 25% para o teste, conforme descrito no Algoritmo [9]

Algoritmo 9: Método Monte Carlo Para Dados Simulados
1: Requerer MC = 100.

2: Requerer tamanho da base de treino n1 = 150.
3: Requerer tamanho da base de teste n2 = 50.

4: Se cenario de dados com distribuicio Gama Entao:

5: Requerer nimero de vértices L = 5 ou L = 10.
6: Senao:
7 Requerer nimero de vértices L = 3 ou L = 10.

8: Para todo i < 1 até MC faca:

9: Gere uma base de treino de tamanho n1.

10: Gere uma base de teste de tamanho n2.

11: Aplique os métodos [PMLG| [PRL] e [PBIVAR| nos dados de treino.
12: Aplique a regra de predicdo nos dados de teste.

13: Calcule as medidas de desempenho usando as Equacdes (3.5 [3.6] [3.7] ¢ [3.9)).

14: Fim Para

15: Calcule a média e desvio padrdo das medidas de desempenho.

Outra forma de medicdo de desempenho é através do [Ganho Relativo (GR)| O GR é aplicado

para mensurar o ganho em relacdo a minimizacao do erro de predicao, dado em porcentagem.
O célculo é mostrado na Equaco[4.1] onde Medida_a é o resultado de maior valor e Medida_b

o valor de interesse. Ainda sao abordadas avaliacdes por meio de testes estatisticos.

Medi — Med:
GR:100< edida, edzdab>

Medida,
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4.3.1 Distribuicao Gama

Considerando os dados simulados a partir da distribuicdo Gama, a Tabela 8] concentra-se
nos resultados obtidos. Os valores destacados (em negrito) enfatizam que o método
apresentou a menor média e erro padrdo em todos os casos. Os testes de Wilcoxon realizados
para as amostras de erro indicaram, por meio do p-valor, a rejeicao da hipdtese nula. Estatis-
ticamente, os erros médios do modelo s30 inferiores aos dos demais. A tabela também

informa o [GR] do [PMLG| em relagdo aos outros modelos.

Tabela 8 — Resultados para o cenério de dados Gama: dados simulados com 5 vértices.

Medida PMLG PRL PBIVAR
,672 704 742

EMQDV 0,67 0,70 0,7
(0,065)  (0,071) (0,066)
p-valor:  52x10714  22x10716
GR: 4.5% 9,4%

EMQA 0,595 0,613 0,664
(0,180)  (0,199) (0,217)
p-valor:  1,65x10™3  4,78x10~12
GR: 2,9% 10,4%

EMQAC 0,642 0,662 0,712
(0,171)  (0,187) (0,204)
p-valor: 1,64x103 2,49x10~13
GR: 3,0% 9,8%

EMQCR 0,293 0,305 0,319
(0,035)  (0,038) (0,034)
p-valor:  1,35x1071'  2,2x10716
GR: 3,8% 8,1%

A Tabela[9)apresenta os resultados dos experimentos considerando os dados da distribuicdo

Gama com 10 vértices. Os valores em negrito indicam que o modelo [PMLG| obteve os menores

erros médios e desvios padrdo em todas as medidas avaliadas: [EMQDV| EMQA| [EMQAC|

e EMQCR]| Os testes estatisticos de Wilcoxon, aplicados as amostras de erro, confirmam a

superioridade do modelo [PMLG] ao apresentarem p-valores significativamente baixos em todas
as comparacdes, indicando rejeicao da hipoétese nula de igualdade entre os métodos.

Além disso, a Tabela [9] também apresenta o [GR|do [PMLG| em relacdo aos outros métodos.
Observa-se que o alcancou reducdes de erro variando entre 2,9% e 10,4%, a depender
da medida analisada, reforcando a efetividade do modelo na tarefa de predicao poligonal no

cendrio de dados Gama com maior nimero de vértices.
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Tabela 9 — Resultados para o cenario de dados Gama: dados simulados com 10 vértices.

Medida  PMLG PRL PBIVAR
EMQDV 0,951 0,996 0,988
(0,092)  (0,100) (0,102)

p-valor:  5,21x10~'4 1,09x10~!1

GR: 4,5% 9,4%
EMQA 0,736 0,757 0,762
(0,223)  (0,246) (0,252)
p-valor:  1,65x1073  4,78x10~!2
GR: 2,9% 10,4%
774 , ,804
EMQAC 0,77 0,798 0,80
(0,215)  (0,242) (0,236)
p-valor:  4,28x10~*  8,7x107°
GR: 3,0% 9,8%
2 , 31
EMQCR 0,293 0,305 0,319
(0,035)  (0,038) (0,039)

p-valor:  1,35x10~!1  6,46x10~ 11
GR: 3,8% 8,1%

4.3.2 Distribuicio Normal Inversa

As Tabelas [10] e [11] apresentam os valores médios das métricas de desempenho obtidas
para os dados poligonais segundo a distribuicio Normal Inversa, com 5 e 10 vértices, respec-
tivamente. Os valores destacados evidenciam que o método [PMLG| obteve os menores valores
médios e desvios padrdo de erro em todas as métricas avaliadas.

A andlise estatistica realizada por meio do teste de Wilcoxon revelou, com base nos p-
valores extremamente baixos (inferiores a 107'% em todos os casos), a rejeicio da hipétese
nula de igualdade de distribuicdes de erro. Isso reforca que, estatisticamente, o[PMLG]apresenta
desempenho superior em relacdo aos demais métodos avaliados. Além disso, dGR| mostra que,
em comparacdo aos métodos [PRL| e [PBIVAR| o [PMLG| reduziu significativamente os erros,
em especial na métrica[EMQA), com ganhos de até 56,3% no cenrio com 5 vértices.

Ao comparar os cenarios com 5 e 10 vértices, observa-se que o aumento na complexidade
geométrica dos dados resultou, de modo geral, a maiores valores médios e desvios padrao nas

métricas EMQDV| e EMQA)] indicando menor estabilidade e precisdo dos modelos. Essa maior

variabilidade também reduziu os ganhos relativos obtidos, especialmente nos cenarios mais

complexos. Ainda assim, os resultados confirmam a robustez do método [PMLG], que manteve
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desempenho superior aos demais, mesmo diante do aumento do nimero de vértices dos dados

poligonais.

Tabela 10 — Resultados para o cenério de dados Normal Inversa: dados simulados com 5 vértices.

Medida PMLG PRL PBIVAR
,454 ) )
EMQDV 0,45 0,503 0,739
(0,065) (0,079) (0,071)
p-valor:  2,2x10716 2 2x10716
GR: 9,7% 38,5%
EMQA 0,093 0,095 0,213
(0,017) (0,017) (0,018)
p-valor: 4,56x10713 2 2x10~16
GR: 2,1% 56,3%
12 ' 1 '4
EMQAC 0,297 0,318 0,400
(0,090) (0,093) (0,073)
p-valor:  22x10716  22x10716
GR: 6,6% 25,7%
EMQCR 0,289 0,310 0,395
(0,092) (0,095) (0,075)
p-valor:  2,2x10716 2 2x10716
GR: 6,7% 26,8%

Tabela 11 — Resultados para o cenério de dados Normal Inversa: dados simulados com 10 vértices.

Medida PMLG PRL PBIVAR
72 781 :

EMQDM 0,728 0,78 0,785
(0,138)  (0,151) (0,154)
p-valor:  2,2x10716  22x10716
GR: 6.7% 7.2%

EMQA 0,196 0,200 0,206
(0,032)  (0,033) (0,035)
p-valor:  2,37x10712  2,77x10716
GR: 2,0% 4,8%

EMQAC 0,328 0,343 0,349
(0,115)  (0,121) (0,122)
p-valor: 2,2x10716 2,2x10716
GR: 4,4% 6,0%

EMQCR 0,264 0,280 0,283
(0,126)  (0,132) (0,133)
p-valor:  2,2x10716  22x10716
GR: 5,7% 6,7%
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4.4 CONSIDERACOES SOBRE O CAPITULO

Este capitulo apresentou uma avaliacdo experimental de conjuntos de dados poligonais
gerados a partir de distribuicoes continuas assimétricas, especificamente as distribuicoes Gama
e Normal Inversa. A anélise focou na aplicacdo do PMLG, comparando-o com os métodos PRL
e PBIVAR, tanto no contexto de diagndstico quanto no preditivo.

No cenério da distribuicio Gama, observou-se que os dados poligonais exibiram assimetria
a direita e variancia nao constante, caracteristicas consistentes com a natureza da distribuicao.
O PMLG demonstrou maior eficacia na predicdo dos centros e raios, com residuos menores e
mais préximos de zero, especialmente em comparacao ao PBIVAR, que apresentou residuos
mais dispersos. A representacdo poligonal com 5 e 10 vértices revelou que o aumento no
nimero de vértices pode influenciar a dispersao dos dados, ainda que a estrutura dos centros
e raios tenha sido mantida.

No cenério da distribuicao Normal Inversa, os resultados corroboraram a presenca de assi-
metria com os centros dos poligonos concentrados nas primeiras observacdes. O PMLG obteve
destaque, mostrando menor area residual e maior precisdao na predicdao. Notou-se também que
o desvio padrdo poligonal aumentou com a representacdo de 10 vértices, sugerindo que a
complexidade da forma poligonal pode introduzir maior variabilidade nos dados.

A andlise de residuos foi fundamental para avaliar a qualidade dos modelos. Em ambos
os cenarios, o PMLG e o PRL apresentaram residuos mais concentrados préximos a zero,
indicando um ajuste mais adequado aos dados. Por outro lado, o PBIVAR exibiu residuos com
maior dispersdo, o que pode limitar sua aplicacdo em contextos demaior complexidade.

No préximo capitulo, os modelos sdo aplicados a um conjunto de dados reais, com o objetivo

de avaliar sua eficacia pratica e demonstrar sua aplicabilidade em situacdes concretas.
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5 APLICACAO EM DADOS REAIS DE DISTRIBUICAO CONTINUA ASSIME-
TRICA

Os resultados dos experimentos apresentados no Capitulo [4] ratificam a aplicabilidade da
abordagem proposta em conjuntos de dados simulados provenientes de distribuicGes continuas
assimétricas, como Gama e Normal Inversa. Neste capitulo, amplia-se a analise com o objeito
de verificar sua aplicabilidade em cenéario de dados reais

A aplicacao do modelo em contextos reais permite avaliar seu desempenho em situacoes
complexas e menos controladas, oferecendo evidéncias sobre sua robustez e potencial de uso
pratico. Sabe-se que diversos problemas da sociedade originam variaveis de distribuicGes posi-

tivas, continuas e assimétricas, como exemplo:

= Salde: Estudo do tempo de sobrevivéncia de pacientes em funcdo de idade, estagio da

doenca, tipo de tratamento, entre outros fatores.

» Meteorologia: Predicdo de varidveis climaticas como precipitacao, velocidade do vento,

temperatura e umidade relativa do ar.

= Social: Andlise da renda populacional com base em caracteristicas como escolaridade,

ocupacao, localizacdo e idade.

= Inddstria e Producdo: Avaliacdo da resisténcia de materiais (exemplo: pecas de aluminio)
conforme a forca aplicada ou composicdo; ou ainda, tempo até a falha de componentes

eletronicos em funcdo do uso ou da temperatura ambiente.

» Mercado Imobilidrio: Estimativa do valor de aluguel ou venda de imédveis com base no

ano de construcdo, niumero de comodos, localizacdo, entre outras caracteristicas.

Portanto, pode-se considerar os [Modelos Lineares Generalizados (MLG)| em funcdo da

caracteristica da varidvel de interesse possuirem distribuicdo continua assimétrica, ou uma
variancia em funcdo média, exemplificando, tem-se a distribuicdo gama e normal inversa. A

metodologia deste capitulo cumpre a descricao e analise dos dados, além uma sequéncia de

simulages [Monte Carlo (MC)| para avaliagdo diagnéstica e preditiva dos modelos.
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5.1 CENARIO DE APLICACAO: DADOS DA METEOROLOGIA

O conjunto de dados contém caracteristicas de trés importantes cidades do Panama -
Tocumen, San Miguelito e David - , as quais incluem eletricidade utilizada, varidveis meteo-
rolégicas, além de informacgdes do calendario escolar, como ser dia util ou feriado (MADRID;
ANTONIO, 2021)). Os valores s3o de 2021, coletados diariamente e a cada hora, formando uma
base de dados com 8,760 registros. Para este estudo, considera-se as varidveis meteoroldgicas

da cidade Tocumen as quais podem ser definidas na Tabela [12]

Tabela 12 — Variaveis meteoroldgicas presentes na andlise.

Data Precipitacdao Temperatura Umidade Velocidade do vento

01/01 0,007 24,9 0,017 22,6
01/01 0,009 24,8 0,017 23,2
01/01 0,011 24,9 0,017 23,2
31/12 0.007 29.09 0.017 20.7
31/12 0.004 28.11 0.017 17.6
31/12 0.005 26.99 0.018 13.7

O pré-processamento realizado consiste em transformar as variaveis data e hora, tornando-
as caracteristicas de agregacdo dos dados no contexto poligonal. Portanto, esta atividade
resulta em um conjunto de dados agregados por dia, com 365 observacdes.

A Tabela |13 exibe os valores de centro e raio das quatro varidveis e a Figura [26] mostra
a distribuicao de centro e range, assim como a representacdo grafica da variavel poligonal
precipitacdo de 10 vértices, sendo a variavel resposta deste estudo. Percebe-se assimetria nos
histogramas de centro e raio, e em relacdo a varidvel poligonal, alguns poligonos com de valores
extremos para o raio. As medidas descritivas da variavel resposta poligonal: média empirica

poligonal (0,07; 0,07)7 e desvio padrio empirico poligonal (0,06; 0,06)".

Tabela 13 — Tabela com valores de centro e raio da base de dados de meteorologia.

Dia Precipitacao Temperatura Umidade Velocidade do Vento
D; (0,008; 0,010) (26,845; 4,213) (0,017; 0,001) (22,787; 3,998)
D2  (0,032; 0,038) (26,368; 3,980) (0,015; 0,001) (18,128; 4,137)

Dsgs  (0,051; 0,063) (27,439; 3,278) (0,018; 0,001) (17,291; 7,376)
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Figura 26 — Variavel resposta poligonal com 10 vértices e distribuicido gama.

5.2 ANALISE DE RESIDUOS

Na anélise residual, executam-se os trés modelos para obtencdo dos valores preditos e
respectivos residuos. A Figura[27] apresenta a variavel predita, destacando que o modelo[PMLG|
demonstra maior proximidade geométrica a variavel observada.

Quanto aos residuos, a Figura [28(a) exibe sua representacio poligonal. Observa-se que os
modelos apresentaram algumas predicGes insatisfatérias para o raio, resultando em poligonos
com areas mais amplas. Os histogramas da Figura b) revelam maior simetria dos residuos
no modelo [PMLG] com alta concentragdo de valores préximos de zero e ocorréncia reduzida
de pontos extremos, tanto para o centro quanto para o raio. A Figura c) apresenta os

residuos dos centros e dos raios, evidenciando uma maior dispersao em torno do zero para o

modelo PMLGI
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Figura 27 — Variavel resposta poligonal com 10 vértices e distribuicido gama.



82

Dimenséo 2

-0.14

Frequéncia

©

Frequénci

Residuos Centro

1

e

S
L

Residuos Raio

0.3 1

0.2

0.1+

0.0 1

2004

1504

=

o

o
L

2001

1504

1004

o

o

I

o

o
L

Dimenséo 2

éncia

Frequ

.©
o

«@

S 100

Fre

PRL

o
o
|

-0.14

01 02 03

Dimenséo 1

(a) Residuo Poligonal.

PRL

200+

1504

=

o

o
1

al
o
f

o
f

10 -005 000 005 0.10
(b) residuos centro

|
o

2004

1504

50+

0-

0.0 0.1 0.2

(b) residuos raio

-0.1

(b) Histograma dos residuos de centro e

PMLG
01 00 01 02 03
Dimenséo 1
PMLG
504
O -
-0.1 0.0 0.1
(a) residuos centro
504
O -
-02 -01 00 0.1 0.2
(a) residuos raio
0.14
0.0
e
0 100 200 300
Index
PMLG
0
0.2
14
oA
)
0 100 200 300
Index

Residuos Centro

Residuos Raio

—0.05+

PLR

e

[

o
!

0.05+

0.00+

0.101

°

o

a
L

°

o

s}
L

200
Index

(c) Dispersdo Centro e Raio.

PBIVAR

Dimens&o 2

Dimenséo 1

PBIVAR

2004

1501

100

Frequéncia

504

0.
-0.10 -0.05 0.00 0.05 0.10
(c) residuos centro

0.15

2001

1504

100

Frequéncia

504

0 -
—-0.05

0.00 0.05 0.10

(c) residuos raio

raio.

PBIVAR

Residuos Centro
o o o
> o i
o v o

—0.05 1

PBIVAR

0.10+

Residuos Raio
o
°
(5]

°
<}
s}

200
Index

Figura 28 — Representacdo dos residuos no cenario de dados reais e distribuicdo Gama.



83

5.3 ANALISE PREDITIVA

A configuracdo da anélise preditiva é apresentada no Algoritmo [I0] Aplica-se particdes
aleatérias hold-out no conjunto de dados para mensurar o desempenho dos modelos segundo

as métricas de erro EMQA| e EMQDV]| Neste cenério, forma-se uma modelo gama com funcdo

de ligacdo inversa. Os resultados sdo apresentados na Tabela [I4]

Algoritmo 10: Método Monte Carlo para Dados Reais
1: Requerer MC = 100.

2: Requerer nimero de vértices L = 10.

3: Para todo i <~ 1 até MC faca:

4: Particione aleatoriamente a base de dados em conjunto de treinamento
(75% dos dados) e de teste (25% dos dados).

5: Aplique os métodos de regressdo (PMLG|PRL| e [PBIVAR)) nos dados de
treino.

6: Aplique a regra de predicdo nos dados de teste.

7 Calcule as medidas de desempenho usando as Equacdes e[3.6]

8: Fim Para

9: Calcule a média e desvio padrao das medidas de desempenho.

Como pode ser visto, as duas métricas analisadas diferem quanto o desempenho dos modelos.
A métrica EMQDV] indica que o modelo PMLG, o qual é baseado em diferenca dos vértices,
possui menor diferenca entre os poligonos observados e preditos com ganho de 5,2% e 8,4%

em relacdo ao [PBIVAR| e [PRL] respectivamente.

Por outro lado, a métrica baseia-se exclusivamente na diferenca de 4rea entre os

poligonos, desconsiderando sua posicdo espacial. Como ilustrado na Figura [27], do ponto de

vista geométrico, os modelos [PRL] e [PBIVAR] apresentaram maior discrepAncia, enquanto o

modelo [PMLG| manteve maior aderéncia a forma observada.

Tabela 14 — Desempenho dos modelos de predicdo no cendrio de dados de meteorologia.

Medida PMLG PRL PBIVAR

EMQDV 0,109 0,119 0,115
(0,066) (0,069)  (0,069)

EMQA 0024 0019 0,019
(0,019) (0,014) (0,014)
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5.4 CONSIDERACOES SOBRE O CAPITULO

Este capitulo explorou a aplicacdo do PMLG em dados reais de meteorologia, consolidando
a analise iniciada com conjuntos simulados no capitulo anterior. A utilizacdo de varidveis como
precipitacdo, temperatura, umidade e velocidade do vento permitiu avaliar o desempenho do
modelo em um contexto pratico.

Os resultados demonstraram que o PMLG manteve sua eficicia mesmo em cenarios me-
nos controlados, destacando-se na predicdo de variaveis com distribuicdo assimétrica, como a
precipitacdo. A andlise de residuos revelou que o modelo apresentou maior proximidade geomé-
trica em relacao aos dados observados, com residuos mais simétricos e concentrados préximos
de zero. Isso reforca sua robustez na predicao de centros e raios.

Na avaliacdo preditiva, o PMLG superou os modelos PRL e PBIVAR na métrica EMQDV,
que considera a diferenca entre vértices. Embora a métrica EMQA, baseada em éareas, tenha
mostrado desempenho semelhante entre os modelos, a analise visual confirmou que o PMLG
preservou melhor a forma e a posicdo dos poligonos preditos.

A transformacao desses dados em representacdes poligonais mostrou-se eficiente para cap-
turar tendéncias e variacdes, mesmo na presenca de valores extremos. Em sintese, os resultados
deste capitulo validam a aplicabilidade do PMLG em problemas reais, por exemplo na meteo-

rologia, onde variaveis assimétricas sdo comuns.
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6 AVALIACAO EXPERIMENTAL COM DADOS POLIGONAIS GERADOS A
PARTIR DE DISTRIBUICAO BINOMIAL

Neste Capitulo diferentes cenarios de conjuntos de dados poligonais sdo considerados com

o objetivo de avaliar o desempenho do [Modelo Linear Generalizado Poligonal (PMLG)| ao

estimar variaveis com distribuicdo Binomial. A comparac3o envolve trés regras de classificacdo:
a primeira baseia-se na média aritmética das predices, denominada [PMLG| a segunda utiliza
a média ponderada otimizada das predicdes, denotada por PMLGpsg; € a terceira emprega

prototipos poligonais, referida como PMLGp,o, utilizando trés protétipos nesses experimentos.

Foi conduzido um experimento de[Monte Carlo (MC)|com 1000 iteragdes para gerar conjuntos

de dados com valores poligonais e avaliar o desempenho dos modelos.

O [Modelo de Classificacao Intervalar baseado em Probabilidade a Posteriori Combinada]

(IDPC-PP)[ (SOUZA; QUEIROZ; CYSNEIROS, [2011) foi comparado com as propostas poligonais.
Para avaliar o desempenho dos modelos, foram utilizadas métricas de classificacdo, como
a acuracia e a precisdao por classe. A acuracia é calculada pela razdo entre o nimero de

classificacGes corretas e o total de observacdes, dada por:

TP+TN

Acuricia —
e = b Y TN+ FP+ FN'

onde TP, TN, FP e FFN sao, respectivamente, os verdadeiros positivos, verdadeiros

negativos, falsos positivos e falsos negativos. Ja a precisdo para a classe positiva é:

TP

Precisdo = W .

Além disso, é calculado o percentual de vitérias de cada modelo, definido como a propor-
cdo de execucdes nas quais um modelo obteve o melhor desempenho em relacdo aos demais,
com base nas métricas avaliadas. A comparacdo entre os algoritmos foi realizada por meio do
teste de Friedman, utilizado para detectar diferencas significativas no desempenho entre mul-
tiplos métodos, e do teste de Wilcoxon para amostras pareadas, empregado para comparacdes

estatisticas entre pares de modelos.

6.1 CONFIGURACOES DOS DADOS SIMULADOS

Para demonstrar a aplicabilidade da abordagem proposta, foram inicialmente construidos

dois conjuntos de dados semente distintos, cada um contendo 500 observacdes distribuidas
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em duas classes. Esses conjuntos foram gerados a partir de distribuicoes normais bivariadas
com caracteristicas especificas. Para cada conjunto de dados semente, foram aplicadas quatro
configuracoes distintas de parametros, com o intuito de gerar conjuntos de dados simbdlicos
com diferentes niveis de complexidade e variabilidade. A Figura apresenta os padrdes de

dispersdo dos conjuntos semente, cujas configuracoes estao detalhadas a seguir:

1. Conjunto Semente |: Classes Balanceadas e Bem Separadas:

» Classe 1 (n =250): p = (15,5)7, 02 =64, 02 =9 e 012 = 0.

» Classe 2 (n = 250): = (30,10)", 02 =25, 02 = 36 e 715 = 0.

2. Conjunto Semente Il: Classes Desbalanceadas e Sobrepostas:

» Classe 1 (n =350): = (20,38)7, 07 =9, 02 =9e 0y, =0.

» Classe 2 (n =150): p = (25,35)T, 03 =2, 02 =2 e 012 = 0.

A partir de cada semente bivariada (s, s9)”, é gerada uma classe de dados bivariados. O
tamanho n de cada classe é definido segundo uma distribuicdo uniforme U[15, 20]. As unidades
de cada classe {uy, ..., u,} sdo geradas a partir de uma distribuicdo de probabilidade bivariada
com componentes independentes. Dado um n ~ U[15,20], um vetor bivariado (u1,us) pode

ser definido da seguinte forma:

= Normal: os componentes u; e uy seguem, respectivamente, N(sq1,0) e N(sz,9).

= Gama: ambos os componentes u; e uy seguem I'(d1, ).
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Figura 29 — Cendrios de dados semente: (a) classes balanceadas e bem separadas; (b) classes desbalanceadas
e sobrepostas.
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A Tabela apresenta os parametros utilizados para a geracao das classes de acordo
com cada distribuicdo de probabilidade. Esses valores de parametros sdo validos tanto para
os conjuntos sintéticos de sementes 1 quanto 2. Cada classe corresponde a um subconjunto
de unidades agregadas, que pode ser descrito por dados poligonais, cujos centro e raio sdo
utilizados na representacao simbdlica.

Assim, essa abordagem permite a geracdo de conjuntos de dados simbdlicos com varia-
bilidade controlada, possibilitando a avaliacio comparativa de modelos de classificacdo sob
diferentes condicdes, como classes bem separadas e classes com sobreposicdo. Nesse experi-

mento cada poligono foi representado com vértices ¢ = 5.

Tabela 15 — Parametros das Distribuicdes que geram as classes.

Normal (¢) Gama (k, 6)

§=1 161,85 = [1,1]
§=2 (61, 85] = [1,2]
§=3 16, 85] = [1,3]
§=4 161, 85] = [4, 2]
5=6 [61,85) = [9,2]
§=38 [61,85] = [16,2]
§=9 161, 85] = [81,1]
§ =10 [01, 6] = [25, 2]

6.2 ANALISE PREDITIVA

A Tabela [16| resume o desempenho dos modelos avaliados sob diferentes niveis crescentes
de variabilidade (¢ = 1 a 10) em cenério de gerac3do de dados com distribuicdo normal e classes
balanceadas. Os resultados apresentados incluem a média e o desvio padrao da acuracia, bem
como as médias de precisdo por classe, calculadas a partir das réplicas de [MC|

O modelo PMLGpso obteve as maiores médias de acuracia, variando de 0,985 (0,010) para
o =1 até 0,962 (0,016) para ¢ = 10, superando tanto o modelo PMLG original quanto a
variante baseada em protétipos, PMLGp,103. Essa superioridade também se reflete nas taxas
de vitdria, especialmente em cenarios com maior variabilidade, nas quais o modelo PMLGpso
ultrapassa 70% de vitérias para o > 8. Embora o modelo PMLG padr3o apresente desempenho
estavel com acuracia inferior, o modelo PMLGp,.t03 destaca-se pela elevada precisdo na classe

0. O modelo intervalar [DPC-PP] obteve os menores valores de desempenho, com acuricia
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inferior a 0,91 e taxas de vitéria abaixo de 2% nos cendrios com o > 9. Pode-se observar que,
a medida que a variabilidade dos dados aumenta, o modelo intervalar reduz sua proporcao de
vitorias, enquanto o modelo PMLGpso apresenta um aumento correspondente.

A analise estatistica realizada por meio do teste de Friedman confirma diferencas significa-
tivas entre os modelos avaliados (p-valor < 10715%). Os testes pos-hoc de Wilcoxon reforcam
essas evidéncias, indicando significancia estatistica em praticamente todas as comparacdes
pareadas. Em poucos casos a diferenca entre os modelos PMLGp,4103 € [DPC-PP| foi pequena,
ficando préxima ao limite de significancia estatistica. De modo geral, os resultados evidenciam
que o modelo PMLGpso apresenta maior robustez e capacidade de generalizacdo diante de
diferentes niveis de variabilidade nos dados, consolidando-se como a abordagem mais confiavel

entre os modelos considerados.



Tabela 16 — Normal: Média e Desvio Padrao da Acurécia e da Precisdo para Cenéario de Dados 1.

o Modelo Acuracia Precisdo 0 Precisdo 1 Vitérias (%)
PMLG 0,9774 (0,0130)  0,9776 (0,0176) 0,9778 (0,0179) 29,4%
. PMLGeso 0,9851 (0,0101)  0,9851 (0,0142) 0,9854 (0,0142) 25,0%
PMLGprotos ~ 0,9796 (0,0122)  0,9894 (0,0127)  0,9707 (0,0203) 10,5%
IDPC-PP 0,9815 (0,0113)  0,9815 (0,0164) 0,9822 (0,0154) 35,1%
Teste de Friedman: p = 3,37 x 10~154 Post-hoc Wilcoxon: todas comparacdes p-valor < 0,001
PMLG 0,9763 (0,0132)  0,9764 (0,0186) 0,9769 (0,0180) 25,2%
,  PMLGeso 0,9843 (0,0104)  0,9843 (0,0151) 0,9847 (0,0143) 35,1%
PMLGprotos ~ 0,9787 (0,0120)  0,9888 (0,0128)  0,9696 (0,0201) 9,5%
IDPC-PP 0,9794 (0,0115)  0,9792 (0,0165) 0,9802 (0,0162) 30,2%
Teste de Friedman: p-valor = 8,99 x 10~154
Post-hoc Wilcoxon: todas comparagdes p-valor < 0,001 exceto IDPC-PP vs PMLGp,ot03 (p-valor= 0,0353)
PMLG 0,9746 (0,0134)  0,9748 (0,0189) 0,9751 (0,0185) 23,1%
5 PMLGeso 0,9832 (0,0104)  0,9834 (0,0151) 0,9835 (0,0149) 43,1%
PMLGprotos ~ 0,9770 (0,0126)  0,9882 (0,0133)  0,9671 (0,0218) 9,9%
IDPC-PP 0,9760 (0,0130)  0,9761 (0,0186) 0,9766 (0,0177) 23,9%
Teste de Friedman: p = 2,89 x 10167
Post-hoc Wilcoxon: todas comparagdes p-valor< 0,001 exceto IDPC-PP vs PMLGpot03 (p-valor= 0,0072)
PMLG 0,9735 (0,0136)  0,9744 (0,0188) 0,9735 (0,0194) 22,4%
, PMLGeso 0,9822 (0,0109)  0,9825 (0,0155) 0,9823 (0,0154) 49,7%
PMLGprotos ~ 0,9756 (0,0130)  0,9880 (0,0132)  0,9645 (0,0225) 10,7%
IDPC-PP 0,9715 (0,0133)  0,9717 (0,0189) 0,9721 (0,0188) 17,2%
Teste de Friedman: p = 3,13 x 10194 Post-hoc Wilcoxon: todas comparacées p-valor< 0,001
PMLG 0,9677 (0,0148)  0,9676 (0,0208) 0,9686 (0,0198) 18,8%
s PMLGeso 0,9780 (0,0117)  0,9781 (0,0171) 0,9784 (0,0158) 62,8%
PMLGprotos 0,969 (0,0143)  0,9860 (0,0141)  0,9557 (0,0236) 12,0%
IDPC-PP 0,9555 (0,0174)  0,9562 (0,0238) 0,9560 (0,0230) 6,4%
Teste de Friedman: p-valor< 1 x 107390 Post-hoc Wilcoxon: todas comparacdes p-valor< 0,001
PMLG 0,9591 (0,0167)  0,9602 (0,0228) 0,9592 (0,0241) 15,4%
g PMLGeso 0,9714 (0,0136)  0,9722 (0,0191) 0,9714 (0,0200) 71,5%
PMLGprotos ~ 0,9614 (0,0158)  0,9824 (0,0160) 0,9433 (0,0271) 11,3%
IDPC-PP 0,9337 (0,0201)  0,9347 (0,0268) 0,9343 (0,0281) 1,8%
Teste de Friedman: p-valor< 1 x 107390 Post-hoc Wilcoxon: todas comparacdes p-valor< 0,001
PMLG 0,9541 (0,0179)  0,9549 (0,0248) 0,9545 (0,0246) 14,9%
g PMLGeso 0,9670 (0,0148)  0,9678 (0,0209) 0,9671 (0,0212) 71,8%
PMLGprotos  0,9556 (0,0175)  0,9800 (0,0173)  0,9348 (0,0287) 12,3%
IDPC-PP 0,9204 (0,0225)  0,9219 (0,0300) 0,9209 (0,0298) 1,0%
Teste de Friedman: p-valor< 1 x 10300
Post-hoc Wilcoxon: todas comparacdes p < 0,001 exceto PMLG vs PMLGpq03 (p-valor= 0,00248)
PMLG 0,0477 (0,0196)  0,9480 (0,0264) 0,9486 (0,0251) 13,2%
1o PMLGeso 0,9621 (0,0162)  0,9622 (0,0224)  0,9629 (0,0216) 74,0%
PMLGprotos  0,9500 (0,0180)  0,9771 (0,0186)  0,9270 (0,0287) 12,2%
IDPC-PP 0,0078 (0,0242)  0,9088 (0,0309) 0,9088 (0,0321) 0,6%

Teste de Friedman: p-valor< 1 x 10~300

Post-hoc Wilcoxon: todas comparag¢des p < 0,001 exceto PMLG vs PMLGpg03 (p-valor= 0,00009)
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A Tabela [17] resume o desempenho dos modelos avaliados em cenarios com classes desba-
lanceadas e sobrepostas. A medida que a variabilidade aumenta (0 = 1 até ¢ = 10), todos
os modelos apresentam queda no desempenho. Contudo, o modelo PMLGpso alcanca a maior
acuracia e domina as taxas de vitdria, ultrapassando 93% nos casos mais dificeis, confirmando
sua capacidade de generalizacao neste cenario.

Em contraste, o modelo padrdo PMLG mantém uma acuracia moderada, porém é superado
pelo PMLGpsg. O PMLGp,o103 Obtém alta precisdo para a classe 0, mas sofre uma queda na
precisdo para a classe 1. O método intervalar IDPC-PP apresenta o pior desempenho geral,
com quedas significativas em acuracia e precisao a medida que o aumenta. Testes estatisticos
(Friedman e Wilcoxon) confirmam diferencas significativas entre os métodos, ressaltando a
vantagem de estratégias otimizadas como o PMLGpso em problemas de classificacao comple-
xos e desbalanceados.

A Tabela apresenta os resultados de classificacdo para conjuntos simbélicos gerados
a partir de distribuicdes Gama sob diferentes cendrios de dispersdo [07,05]. Em todas as
configuracdes, o modelo PMLGpso apresenta a maior acuracia, com valores variando de 0,9850
(0,0099) para [1,1] até 0,9626 (0,0154) para [25, 2]. Sua superioridade é reforcada pelas taxas
de vitéria, que ultrapassam 70% nos cendrios com variancias altamente desbalanceadas entre
classes, como [25,2], [8,1] e [16, 2].

O modelo PMLG demonstra desempenho estavel, com pequena reducdo na acuracia con-
forme a dispersdo aumenta, embora se mantenha inferior ao PMLGpso em todos os cenarios.
O PMLGp,t03 mantém a melhor precisdo para a classe 0 em quase todas as configuracdes, mas
apresenta queda na precisao para a classe 1 a medida que a variabilidade das classes aumenta,
indicando sensibilidade ao ruido assimétrico e menor robustez em cendrios mais complexos.

O método IDPC-PP tem desempenho inferior aos demais, especialmente em configuracoes
de alta variancia, com acurdcias abaixo de 0,92 e taxas de vitéria inferiores a 3% nos cendrios
mais complexos. Os testes de Friedman revelam diferencas significativas entre os modelos
(p-valor< 1071%%), enquanto os testes post-hoc de Wilcoxon confirmam a significAncia na
quase totalidade das comparacdes. As excecdes ocorrem em comparacdes entre IDPC-PP
e PMLGp03 para configuracdes de baixa dispersdo (ex.: [1,3], [4,2]). De modo geral, o
PMLGpso demonstra o comportamento mais robusto e preciso, validando sua eficacia para

lidar com dados simbdlicos de distribuicao Gama e dispersdes variadas entre classes.
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Tabela 17 — Normal:

Média e Desvio Padrdo da Acuracia e da Precisdo para Cenério de Dados 2.

o Modelo Acuracia Precisdo 0 Precisdo 1 Vitérias (%)
PMLG 0,8815 (0,0258) 0,9030 (0,0268) 0,8305 (0,0522) 3,1%
| PMLGeso 0,9071 (0,0234) 0,9341 (0,0243)  0,8482 (0,0480) 53,1%
PMLGprotos 0,8894 (0,0258) 0,9820 (0,0145)  0,7472 (0,0487) 16,8%
IDPC-PP 0,8991 (0,0245) 0,9333 (0,0244) 0,8263 (0,0492) 27,0%
Teste de Friedman: p-valor= 2,31 x 107267  Post-hoc Wilcoxon: todas comparacdes p-valor< 0, 001
PMLG 0,8786 (0,0265) 0,8988 (0,0261) 0,8304 (0,0566) 2,7%
,  PMLGeso 0,9049 (0,0233) 0,9311 (0,0238) 0,8479 (0,0515) 65,1%
PMLGproto3 0,8847 (0,0273) 0,9807 (0,0152) 0,7396 (0,0512) 13,5%
IDPC-PP 0,8902 (0,0251) 0,9230 (0,0240)  0,8189 (0,0538) 18,7%
Teste de Friedman: p-valor= 3,68 x 107259  Post-hoc Wilcoxon: todas comparacdes p-valor< 0, 001
PMLG 0,8719 (0,0279) 0,8922 (0,0274) 0,8222 (0,0577) 2,5%
5 PMLGeso 0,8989 (0,0240) 0,9247 (0,0245) 0,8412 (0,0503) 72,0%
PMLGpyoto3 0,8779 (0,0278) 0,9789 (0,0155) 0,7279 (0,0496) 15,5%
IDPC-PP 0,8753 (0,0260) 0,9057 (0,0251)  0,8057 (0,0538) 10,0%
Teste de Friedman: p-valor= 7,75 x 10266
Post-hoc Wilcoxon: todas comparagdes p-valor< 0,001 exceto IDPC-PP vs PMLGp,ot03 (p-valor= 0,00207)
PMLG 0,8649 (0,0287) 0,8843 (0,0274) 0,8160 (0,0592) 3,8%
. PMLGeso 0,8923 (0,0260) 0,9187 (0,0253)  0,8330 (0,0538) 78,6%
PMLGproto3 0,8664 (0,0298) 0,9768 (0,0166) 0,7086 (0,0500) 11,9%
IDPC-PP 0,8563 (0,0282) 0,8834 (0,0268) 0,7891 (0,0574) 5,7%
Teste de Friedman: p-valor= 1,83 x 10—310
Post-hoc Wilcoxon: todas comparac¢des p-valor< 0,001 exceto PMLG vs PMLGp,ot03 (p-valor= 0,10205)
PMLG 0,8487 (0,0279) 0,8676 (0,0272) 0,7992 (0,0626) 3,6%
s PMLGeso 0,8771 (0,0259) 0,9028 (0,0264) 0,8174 (0,0544) 84.2%
PMLGprotos 0,8431 (0,0325) 0,9721 (0,0186)  0,6724 (0,0506) 10,7%
IDPC-PP 0,8191 (0,0303) 0,8370 (0,0275)  0,7651 (0,0700) 1,5%
Teste de Friedman: p-valor< 1 x 10300
Post-hoc Wilcoxon: todas comparag¢des p-valor< 0,001 exceto PMLG vs PMLGp,ot03 (p-valor= 0,00001)
PMLG 0,8257 (0,0289) 0,8441 (0,0267) 0,7716 (0,0649) 2,6%
g PMLGeso 0,8553 (0,0271) 0,8814 (0,0285) 0,7910 (0,0558) 89,4%
PMLGpyoto3 0,8109 (0,0342) 0,9630 (0,0219)  0,6276 (0,0478) 7,5%
IDPC-PP 0,7825 (0,0278) 0,7934 (0,0234) 0,7385 (0,0794) 0,5%
Teste de Friedman: p-valor< 1 x 10~390 Post-hoc Wilcoxon: todas comparagdes p-valor< 0,001
PMLG 0,8154 (0,0291) 0,8334 (0,0270)  0,7606 (0,0687) 3,4%
g PMLGeso 0,8457 (0,0275) 0,8712 (0,0274) 0,7811 (0,0602) 89,5%
PMLGproto3 0,7935 (0,0359) 0,9600 (0,0222) 0,6046 (0,0468) 6,1%
IDPC-PP 0,7699 (0,0281) 0,7786 (0,0236)  0,7304 (0,0898) 1,0%
Teste de Friedman: p-valor< 1 x 10—390 Post-hoc Wilcoxon: todas comparacdes p-valor< 0,001
PMLG 0,8062 (0,0308) 0,8246 (0,0273) 0,7470 (0,0728) 3,0%
Lo PMLGeso 0,8369 (0,0294) 0,8630 (0,0286) 0,7686 (0,0623) 93,8%
PMLGpyoto3 0,7763 (0,0367) 0,9573 (0,0235)  0,5830 (0,0443) 2,8%
IDPC-PP 0,7558 (0,0263) 0,7631 (0,0206) 0,7187 (0,1045) 0,4%

Teste de Friedman:

p-valor< 1 x 107300

Post-hoc Wilcoxon: todas comparagdes p-valor< 0,001




Tabela 18 — Gama: Média e Desvio Padrao da Acuracia e da Precisdo para Cenério de Dados 1.

[01,02] Modelo Acuracia Precisao 0 Precisdo 1 Wins (%)
PMLG 0,9776 (0,0129) 0,9786 (0,0167) 0,9772 (0,0181) 31,6%
11 PMLGrso 0,9850 (0,0099) 0,9855 (0,0137)  0,9849 (0,0144) 29,5%
’ PMLGpyoto3 0,9796 (0,0117) 0,9896 (0,0120)  0,9706 (0,0202) 10,2%
IDPC-PP 0,9807 (0,0109) 0,9808 (0,0154) 0,9813 (0,0163) 28,7%
Teste de Friedman: p-valor= 5,02 x 10143
Post-hoc Wilcoxon: todas compara¢des p-valor< 0,001 exceto IDPC-PP vs PMLGp,ot03 (p-valor= 0,0019)
PMLG 0,9762 (0,0135) 0,9762 (0,0181) 0,9770 (0,0187) 25,9%
12 PMLGrso 0,9844 (0,0104) 0,9843 (0,0147)  0,9850 (0,0149) 39,0%
’ PMLGpyoto3 0,9786 (0,0124) 0,9888 (0,0128) 0,9695 (0,0212) 10,6%
IDPC-PP 0,9783 (0,0119) 0,9782 (0,0171)  0,9790 (0,0170) 24.5%
Teste de Friedman: p-valor= 3,61 x 10162
Post-hoc Wilcoxon: todas compara¢des p-valor< 0,001 exceto IDPC-PP vs PMLGp,ot03 (p-valor= 0,7624)
PMLG 0,9750 (0,0132) 0,9756 (0,0179)  0,9751 (0,0189) 21,7%
13  PMLGrso 0,9837 (0,0104) 0,9840 (0,0145) 0,9838 (0,0153) 40,0%
’ PMLGpyoto3 0,9774 (0,0129) 0,9893 (0,0122)  0,9669 (0,0225) 9,3%
IDPC-PP 0,9779 (0,0121) 0,9790 (0,0163)  0,9774 (0,0179) 29,0%
Teste de Friedman: p-valor= 2,58 x 10160
Post-hoc Wilcoxon: todas comparagdes p-valor< 0,001 exceto IDPC-PP vs PMLGp,ot03 (p-valor= 1,0000)
PMLG 0,9734 (0,0139) 0,9740 (0,0197)  0,9735 (0,0187) 24,6%
42 PMLGrso 0,9823 (0,0109) 0,9827 (0,0156) 0,9824 (0,0151) 42,2%
’ PMLGpyoto3 0,9752 (0,0126) 0,9880 (0,0134) 0,9638 (0,0212) 8,4%
IDPC-PP 0,9752 (0,0127) 0,9755 (0,0184)  0,9755 (0,0173) 24.8%
Teste de Friedman: p-valor= 7,15 x 10166
Post-hoc Wilcoxon: todas comparagdes p-valor< 0,001 exceto IDPC-PP vs PMLGp,ot03 (p-valor= 1,0000)
PMLG 0,9666 (0,0153) 0,9668 (0,0214) 0,9674 (0,0210) 16,8%
0.2 PMLGrso 0,9774 (0,0123) 0,9775 (0,0179)  0,9780 (0,0172) 56,4%
’ PMLGpyoto3 0,9696 (0,0148) 0,9854 (0,0147) 0,9557 (0,0250) 12,5%
IDPC-PP 0,9630 (0,0158) 0,9636 (0,0220) 0,9634 (0,0221) 14,3%
Teste de Friedman: p-valor= 5,38 x 10231 Post-hoc Wilcoxon: todas comparacdes p-valor< 0, 001
PMLG 0,9592 (0,0166) 0,9598 (0,0231) 0,9598 (0,0229) 15,2%
16,2 PMLGpso 0,9716 (0,0134) 0,9721 (0,0187) 0,9718 (0,0194) 65,7%
’ PMLGpyroto3 0,9621 (0,0160) 0,9826 (0,0154) 0,943 (0,0266) 12,7%
IDPC-PP 0,9453 (0,0189) 0,9463 (0,0257)  0,9456 (0,0260) 6,4%
Teste de Friedman: p-valor< 1 x 107300 Post-hoc Wilcoxon: todas comparagdes p-valor< 0,001
PMLG 0,9534 (0,0180) 0,9534 (0,0250)  0,9546 (0,0243) 14,0%
81 PMLGrso 0,9664 (0,0146) 0,9667 (0,0208) 0,9671 (0,0207) 69.7%
’ PMLGpyoto3 0,9557 (0,0173) 0,9798 (0,0169) 0,9351 (0,0281) 13,9%
IDPC-PP 0,9250 (0,0221) 0,9260 (0,0300) 0,9260 (0,0299) 2,4%
Teste de Friedman: p-valor< 1 x 10300
Post-hoc Wilcoxon: todas compara¢des p-valor< 0,001 exceto PMLG vs PMLGp,ot03 (p-valor= 0,0000)
PMLG 0,9488 (0,0185) 0,9492 (0,0239)  0,9496 (0,0255) 14,8%
25,9 PMLGrso 0,9626 (0,0154) 0,9631 (0,0212)  0,9630 (0,0222) 72,4%
’ PMLGpyoto3 0,9503 (0,0183) 0,9775 (0,0177)  0,9273 (0,0296) 11,4%
IDPC-PP 0,9199 (0,0220) 0,9208 (0,0297)  0,9210 (0,0298) 1,4%

Teste de Friedman:
Post-hoc Wilcoxon:

p-valor< 1 x 10—300

todas comparacdes p-valor< 0,001 exceto PMLG vs PMLGp o103 (p-valor= 0,0156)
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A Tabela[19| apresenta o desempenho dos modelos avaliados sob condicdes de classes com
sobreposicao e desbalanceamento, oriundas da distribuicio Gama. Em todos os cenérios, o
modelo PMLGpso supera os demais métodos, atingindo as maiores acuracias (por exemplo,
0,9069 (0,0232) para [1,1] e 0,8372 (0,0286) para [25,2]) e dominando na taxa de vitdrias,
superando 80% nos casos de maior varidncia como [8,1] e [25,2]. Seus valores de precisdo
equilibrada entre as classes indicam melhor capacidade de generalizacdo e robustez frente a
dados ruidosos e desbalanceados.

Em contraste, os modelos PMLG e IDPC-PP apresentam desempenho relativamente es-
tavel, porém inferior, com taxas de vitéria raramente superiores a 4% em cendrios com alta
variancia. O modelo PMLGp,o103 continua obtendo as maiores precisdes para a classe 0 (por
exemplo, acima de 0,96 em todos os cenérios), mas sofre reducdo da precisdo da classe 1
(caindo para menos de 0,60 em [25,2]), o que compromete a acuracia geral. Testes estatisti-
cos (Friedman e Wilcoxon) confirmam diferencas significativas entre os modelos em todos os
cenérios (p-valor< 1073%), reforcando a superioridade do PMLGpso na abordagem de dados
simbdlicos desbalanceados e com sobreposicdo. Observa-se também que, com o aumento da
variabilidade, os ganhos obtidos em dados poligonais com distribuicdo assimétrica sdo maiores

do que os observados no cenario de distribuicao normal.



94

Tabela 19 — Gama: Média e Desvio Padrdo da Acurécia e da Precisdo para Cenario de Dados 2.

[01,02] Modelo Acuracia Precisdo 0 Precisdo 1 Vitérias (%)
PMLG 0,8819 (0,0260) 0,9033 (0,0267) 0,8314 (0,0545) 3,4%
1, 1] PMLGpso 0,9069 (0,0232) 0,9337 (0,0243) 0,8487 (0,0496) 59,4%
' PMLGp(ot03 0,8901 (0,0262) 0,9818 (0,0148) 0,7487 (0,0491) 17,5%
IDPC-PP 0,8958 (0,0246) 0,9291 (0,0241) 0,8244 (0,0519) 19,7%
Teste de Friedman: p-valor= 1,68 x 107258 Post-hoc Wilcoxon: todas comparacdes p-valor< 0,001
PMLG 0,8803 (0,0266) 0,9017 (0,0271)  0,8293 (0,0542) 2,8%
1,2] PMLGpso 0,9060 (0,0234) 0,9327 (0,0238) 0,8474 (0,0493) 65,7%
’ PMLGp(ot03 0,8856 (0,0269) 0,9817 (0,0142) 0,7401 (0,0494) 16,9%
IDPC-PP 0,8887 (0,0251) 0,9171 (0,0253) 0,8248 (0,0516) 14,6%
Teste de Friedman: p-valor= 6,94 x 10—257
Post-hoc Wilcoxon: todas comparagdes p-valor< 0,001 exceto IDPC-PP vs PMLGp,o03 (p-valor= 0,0044)
PMLG 0,8723 (0,0278) 0,8935 (0,0280) 0,8207 (0,0565) 3,4%
1,3] PMLGpso 0,8992 (0,0247) 0,9264 (0,0251) 0,8393 (0,0512) 65,0%
’ PMLGp(ot03 0,8780 (0,0271) 0,9796 (0,0154) 0,7277 (0,0495) 15,1%
IDPC-PP 0,8821 (0,0268) 0,9040 (0,0275) 0,8304 (0,0542) 16,5%
Teste de Friedman: p-valor= 1,91 x 10—259
Post-hoc Wilcoxon: todas compara¢des p-valor< 0,001 exceto IDPC-PP vs PMLGp,o03 (p-valor= 0,00001)
PMLG 0,8646 (0,0277) 0,8850 (0,0278)  0,8131 (0,0558) 2,5%
[4,2] PMLGpso 0,8927 (0,0248) 0,9198 (0,0257) 0,8319 (0,0502) 67,5%
’ PMLGp(ot03 0,8687 (0,0283) 0,9782 (0,0160) 0,7114 (0,0484) 14,5%
IDPC-PP 0,8718 (0,0265) 0,8943 (0,0257) 0,8167 (0,0552) 15,5%
Teste de Friedman: p-valor= 4,91 x 10—250
Post-hoc Wilcoxon: todas compara¢des p-valor< 0,001 exceto PMLG vs PMLGp,ot03 (p-valor= 0,00029)
PMLG 0,8441 (0,0284) 0,8642 (0,0278)  0,7903 (0,0606) 2,7%
[9,2] PMLGpso 0.,8736 (0,0252) 0,9002 (0,0268) 0,8116 (0,0528) 80,6%
’ PMLGp(oto3 0,8420 (0,0313) 0,9718 (0,0182) 0,6708 (0,0492) 11,8%
IDPC-PP 0,8326 (0,0269) 0,8491 (0,0262)  0,7851 (0,0606) 4,9%
Teste de Friedman: p-valor= 7,21 x 10313
Post-hoc Wilcoxon: todas compara¢des p-valor< 0,001 exceto PMLG vs PMLGp,ot03 (p-valor= 0, 36082)
PMLG 0,8271 (0,0299) 0,8446 (0,0276) 0,7756 (0,0667) 3,0%
(16, 2] PMLGpso 0,8569 (0,0273) 0,8819 (0,0275) 0,7951 (0,0581) 88,0%
’ PMLGp(oto3 0,8123 (0,0343) 0,9651 (0,0212) 0,6288 (0,0479) 8,0%
IDPC-PP 0,7953 (0,0292) 0,8065 (0,0261) 0,7548 (0,0755) 1,0%
Teste de Friedman: p-valor< 1 x 10—300 Post-hoc Wilcoxon: todas comparagdes p-valor< 0,001
PMLG 0.8157 (0.0303) 0.8339 (0.0265) 0.7602 (0.0718) 3.7%
s1]  PMLGrso 0.8462 (0.0278) 0.8719 (0.0278)  0.7816 (0.0602) 91.9%
' PMLGp(ot03 0.7941 (0.0356) 0.9602 (0.0218)  0.6053 (0.0466) 4.0%
IDPC-PP 0.7704 (0.0279) 0.7799 (0.0228) 0.7272 (0.0871) 0.4%
Teste de Friedman: p-valor< 1 x 107300 Post-hoc Wilcoxon: todas comparagdes p-valor< 0.001
PMLG 0.8079 (0.0303) 0.8254 (0.0267) 0.7524 (0.0737) 3.8%
(25, 2] PMLGpso 0.8372 (0.0286) 0.8621 (0.0281) 0.7724 (0.0639) 91.9%
’ PMLGp(ot03 0.7777 (0.0373) 0.9577 (0.0234)  0.5850 (0.0458) 3.5%
IDPC-PP 0.7654 (0.0284) 0.7729 (0.0232)  0.7293 (0.0956) 0.8%

Teste de Friedman:

p-valor< 1 x 10300

Post-hoc Wilcoxon:

todas comparagdes p-valor< 0.001

6.3 CONSIDERACOES SOBRE O CAPITULO

Este capitulo apresentou uma avaliacdo experimental abrangente do PMLG e suas vari-

antes em cendrios de classificacdo com dados poligonais, baseados na regressdo logistica. Os
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resultados obtidos destacam o seu bom desempenho, especialmente em sua versao otimizada
(PMLGpso), que demonstrou superioridade em termos de acuracia, precisdo e capacidade de
generalizacao em comparacdo aos demais métodos testados.

Nos cenarios com classes balanceadas e bem separadas, o PMLGpso manteve altas taxas
de acuracia mesmo com o aumento da variabilidade dos dados. Essa capacidade de adaptacao
a diferentes niveis de dispersdo é um destaque, superando n3o apenas o PMLG padr3o, mas
também o modelo baseado em protétipos (PMLGp,o103) € 0 método de comparacdo intervalar
(IDPC-PP)). Essa vantagem foi confirmada por testes estatisticos. Em situacdes com classes
desbalanceadas e sobrepostas, 0 PMLGpso manteve os melhores valores de desempenho.

Em sintese, os experimentos realizados neste capitulo validam o PMLGpso como uma
ferramenta para classificacdo de dados poligonais, especialmente em contextos onde a vari-
abilidade e o desbalanceamento estad presente. Os resultados obtidos também abrem novas
perspectivas para o desenvolvimento de métodos avancados de analise de dados simbélicos.

No capitulo seguinte, os modelos desenvolvidos s3o aplicados a um conjunto de dados reais
com o objetivo de avaliar sua capacidade de generalizacao fora do ambiente simulado. Essa
etapa é fundamental para verificar a utilidade pratica das abordagens propostas, especialmente

em cenarios com variabilidade e complexidade inerentes aos dados classicos.
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7 APLICACAO EM DADOS REAIS DE DISTRIBUICAO BINOMIAL

Noticias falsas (fake news) s3o informacdes que n3o correspondem a realidade, mas circu-
lam amplamente na internet devido a seu conteldo sensacionalista, apelativo e controverso.
Dada a crescente disseminacdo desse tipo de contelido, torna-se essencial identificar padroes
linguisticos e estilisticos que possam auxiliar em sua deteccdo. Utiliza-se a base de dados
Fake.BR Corpus, apresentada em (MONTEIRO et al, [2018)), que oferece um conjunto de textos
rotulados como Noticias Fake e Noticias Reais. Essa base foi utilizada em (SILVA et al., 2020)
para ampliar sua aplicac3do e relatar experimentos envolvendo técnicas classicas de aprendizado
de maquina, incluindo diversas estratégias como combinacdo de modelos (ensemble).

Em (LIMA et al, |2023), o objetivo é caracterizar o comportamento das Noticias Fake e
mitigar seu impacto social por meio do desenvolvimento de um modelo estatistico parcimonioso
e preditivo. A abordagem baseia-se em dados estruturados e técnicas de regressao para avaliar a
significancia das variaveis envolvidas na deteccdo de noticias fake. Neste trabalho, considera-se
os resultados apresentados por (LIMA et al., |2023)) para definir as variaveis relevantes para este
estudo. Utiliza-se a Anélise de Dados Simbdlicos (SDA) para aplicar técnicas de aprendizado

estatistico e extrair conhecimento relevante.

7.1 CENARIO DE APLICACAO: DADOS DE NOTICIAS FAKE

O conjunto de dados cléssico é composto por 7.200 noticias (3.600 Noticias Fake e 3.600
noticias verdadeiras) publicadas entre janeiro de 2016 e janeiro de 2018 em sete fontes jorna-
listicas brasileiras. A base de dados original possui 26 variaveis, das quais (LIMA et al., 2023)
indicam as mais relevantes, resultando em um modelo parcimonioso contendo quatro variaveis
explicativas: Tipos, Verbos no subjuntivo e imperativo (Sl), Verbos modais e Comprimento
médio das sentencas.

Para transformar o conjunto de dados classico — em que cada registro representa uma
nica noticia — em um conjunto de dados simbdlico, identificaram-se inicialmente variaveis de
agregacao para definir as classes simbdlicas. Duas variaveis principais foram selecionadas para
construir a variavel poligonal: a categoria da noticia e a data de publicacdo (més/ano). Cada
classe simbdlica, portanto, corresponde a um grupo de noticias que compartilham a mesma

categoria e periodo de publicac3o.
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Para cada grupo j, atribui-se a classe mais frequente (Noticias Fake - 1 ou Noticias
Verdadeiras - 0) entre os registros agregados. Em seguida, foi gerada a variavel poligonal da
classe j, onde o centro do poligono corresponde a média da variavel aleatéria Z dentro da
classe j, e o raio é definido como 2 X sd(Z;), sendo sd(Z;) o desvio padrdo de Z na classe
J, conforme proposto em (SILVA; SOUZA; CYSNEIROS, 2019a)). Os vértices ¢ do poligono j sdo
calculados pela Equacdo [2.16]

Apbs essa transformacdo, o conjunto de dados simbdlico resultante contém 178 classes
simbdlicas (89 de Noticias Fake e 89 de Noticias Verdadeiras), em que cada registro poligonal
representa um grupo de noticias agregadas por categoria e periodo de publicacdo, com niimero

de vértices ¢ = 5.

7.2 ANALISE DESCRITIVA

A Tabela 20| apresenta as medidas descritivas das varidveis explicativas poligonais definidas

em (SILVA; SOUZA; CYSNEIROS, 2019a)).

Tabela 20 — Estatisticas descritivas das variaveis poligonais de noticias por classe.

Variavel Média Desvio Padrao
Noticias Fake(1)

Comprimento médio da sentenca  (15,55; 15,55) (34,03; 34,03)
Tipos (125,68; 125,68)  (3692,01; 3692,01)
Verbos modais (4,80; 4,80) (15,66; 15,66)
Verbos SI (1,40; 1,40) (2,91; 2,91)
Noticias Verdadeiras (0)

Comprimento médio da sentenca  (21,07; 21,07) (22,29; 22,29)
Tipos (511,29; 511,29) (58317,66; 58317,66)
Verbos modais (23,30; 23,30) (247,63; 247,63)
Verbos SI (6,89; 6,89) (35,03; 35,03)

As informacdes extraidas dos dados revelam diferencas importantes entre Noticias Fake e

Noticias Verdadeiras:

= Sobre a varidvel Comprimento médio da sentenca, as noticias verdadeiras apresentam
uma média poligonal maior (21,07; 21,07) em comparacdo as noticias fake (15,55;
15,55). A menor variabilidade nas noticias reais indica maior consisténcia no tamanho

das sentencas.
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= A variavel Tipos indica que as noticias reais exibem uma média poligonal mais elevada
(511,29;511,29) em relacdo as noticias fake (125,68;125,68). A alta varidncia obser-
vada na classe 0 sugere maior heterogeneidade no uso de vocabulario, refletindo um
repertério lexical mais diverso e complexo. Essas caracteristicas podem ser observadas

na Figura 30(a)-(b), onde a escala das dimensdes apresenta valores mais altos.

» A varidvel Verbos Modais apresenta maior média na classe Noticias Verdadeiras (23,30;
23,30), indicando construcdes mais frequentes que expressam possibilidade, necessidade
ou permissdo, tipicas de textos jornalisticos formais. A Figura [30(c)-(d) mostra a dis-
tribuicdo poligonal com 5 vértices da variavel em ambas as classes. Por fim, os Verbos
Sl também s3o mais comuns nas noticias reais (6,89; 6,89), reforcando a tendéncia das

noticias falsas de evitar nuances modais e focar em declaracdes diretas.

A Tabela[21] apresenta os coeficientes estimados para dois modelos logisticos ajustados as
representacdes simbdlicas dos dados: um baseado nos centros e outro nos raios. O intercepto
significativamente alto no modelo baseado nos centros indica uma forte tendéncia inicial para
a predicdo da classe 1 (noticias fake), sugerindo que ha uma alta probabilidade de classificacdo
como noticia falsa mesmo sem considerar os efeitos das variaveis explicativas.

Todos os coeficientes apresentam sinal negativo, indicando que o aumento das variaveis
linguisticas reduz a probabilidade de que um texto pertenca a classe 1. Os coeficientes do
modelo com base nos centros tém magnitude maior que os do modelo baseado nos raios, o
que sugere que as médias das caracteristicas linguisticas (representadas pelos centros) pos-
suem maior influéncia na classificacdo do que suas dispersdes (representadas pelos raios). Esse
resultado reforca que, neste contexto, a posicdo central das varidveis é mais informativa para

a tarefa de classificacdo nesta base de dados.

Tabela 21 — Coeficientes estimados dos modelos logisticos ajustados aos dados de centro e raio.

Variavel Coeficiente (centro) Coeficiente (raio)
Intercepto 147,7853 12,1272
Tipos -0,1312 -0,0330
Verbos SI -11,2930 -0,3653
Verbos modais -2,1549 -0,1128

Comprimento médio das sentencas -2,3634 -0,1084
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7.3 ANALISE PREDITIVA

Com o objetivo de avaliar a capacidade preditiva do modelo [PMLG| proposto, foi de-
senvolvido um ambiente experimental, onde foi comparado o desempenho de trés regras de
classificacdo para baseados em regressao logistica para dados poligonais: PMLG, PMLGpso €
PMLGp,ot0. Para o modelo PMLGp,o, varia-se o nimero de prototipos com base em diferentes
niveis de quantis: a mediana (PMLGpqt01), 0s quartis (PMLGp,ot03) € 0s quintis (PMLGp,oto04)-

Além disso, foi incluido o método tradicional para dados intervalares, o [DPC-PP] como
base para comparacao. A avaliacdo considera acuracia e precisdo, buscando compreender o
impacto dos diferentes modelos na tarefa de classificacdo. Foi realizado 100 iteracdes de [MC|
com 75% dos dados para treino e 25% para teste.

A Tabela apresenta os resultados de desempenho dos modelos, com o PMLGpso apre-
sentando a melhor acuracia (0,9944 + 0,0134) e precis3o tanto para noticias reais (Classe 0:
0,9905 + 0,0257) quanto para noticias fake (Classe 1: 0,9976 + 0,0112), superando o modelo
intervalar (p-valor < 0,001). A menor variabilidade (menores desvios padrdo) do
PMLGpso sugere maior consisténcia nas previsOes, especialmente para noticias fake (Classe
1). O modelo que utiliza otimizacdo, o PMLGpso, supera o modelo padrao, que se

baseia na média aritmética direta das representacoes poligonais.

Tabela 22 — Média e Desvio Padrdo da Acurécia e Precisdo nas Classes 0 e 1 no cenério de noticias fake.

Modelo Acuracia Precisiao 0 Precisao 1

PMLG 0,9891 (0,0202)  0,9849 (0,0298

PMLGpso  0,9944 (0,0134) 0,9905 (0,0257

PMLGpoo1  0,6823 (0,4414)  0,6664 (0,4572

PMLGprors  0,9274 (0,2351)  0,9205 (0,2510

PMLGproros  0,9935 (0,0124)  0,9926 (0,0155
( )

~—

0,9929 (0,0218
0,9976 (0,0112
0,6958 (0,4310
0,9208 (0,2571
(
(

~—

~—
~—

0,9941 (0,0178
IDPC-PP 0,9847 (0,0179) 0,9802 (0,0323) 0,9887 (0,0183

Teste de Friedman: p-valor< 1 x 10~17
Post-hoc Wilcoxon: PMLGpso vs IDPC-PP p-valor< 1 x 10~6

—~~ ~~ —~
~— — — ~—
~— — — —

Para investigar o impacto do nimero de protétipos no desempenho da classificacdo,
avaliam-se trés variantes do modelo baseado em protétipos: PMLGp,ot01, PMLGp o103 € PMLGPp,ot04-
Conforme mostrado na Tabela |22 o aumento do niimero de protétipos resulta em melhorias
de desempenho em todas as métricas. Especificamente, o PMLGp,01 alcanca uma acura-

cia moderada e apresenta alta variabilidade (0,6823 + 0,4414). Ao utilizar trés protétipos
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(PMLGpyot03), 0 desempenho do modelo aumenta, atingindo uma acuracia média de 0,9274 +
0,2351. Os melhores resultados sdo obtidos com quatro protétipos (PMLGp,ot04), que alcancam

alta acuracia e minima variabilidade (0,9935 + 0,0124).

7.4 CONSIDERACOES SOBRE O CAPITULO

Este capitulo explorou a aplicacado do PMLG e suas variantes na classificacdo de noti-
cias fakes, utilizando dados reais. Os resultados obtidos comprovam a eficacia da abordagem
simbélica em problemas de classificacao complexos e de impacto na sociedade.

A anélise descritiva revelou diferencas consistentes entre as classes. Noticias verdadeiras
apresentaram maior diversidade lexical (variavel Tipos), uso mais frequente de verbos modais
e subjuntivos/imperativos (Verbos Sl), além de sentencas mais longas e consistentes. Essas
caracteristicas refletem a natureza formal e elaborada do jornalismo de qualidade, enquanto
as noticias fakes tenderam a simplificacGes e estruturas mais diretas, necessitando apelo emo-
cional e grande compartilhamento.

Na anélise preditiva, o modelo PMLGpso destacou-se alcancando acurécia préxima a 99,5%
e precisao equilibrada entre as classes. Pode ser observado na etapa descritiva que nessa base
de dados os centros possuem maior capacidade discriminativa do que os raios, portanto, o
método baseado na média ponderada superou o modelo que utiliza como regra de predicao
a média aritmética (PMLG). Essa superioridade em relacdo ao método intervalar IDPC-PP
também foi estatisticamente comprovada. A versdo baseada em protétipos apresentou resul-
tados promissores, sugerindo que a representacdo por multiplos protétipos pode melhorar a

predicdo, especialmente nesse cenario com alta variabilidade interna.
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8 CONCLUSAO

Esta secao tem como objetivo apresentar as consideracdes finais sobre os principais topicos

abordados, incluindo as contribuicdes alcancadas e indicacdes para trabalhos futuros.

8.1 CONSIDERACOES FINAIS

Para obter conhecimento a partir de grandes e complexos conjuntos de dados de diferentes

contextos da sociedade, é necessario desenvolver ferramentas especificas. A |Analise de Dados|

ISimbdlicos (ADS)| fornece ferramentas que permitem o processamento e andlise de grandes

volumes de dados, podendo descrever um grupo ou classes, reduzir a dimens3o e manter a
confidencialidade dos dados mantendo a diversidade original. Esta abordagem tem desenvolvido
diferentes métodos de predicdo, anélise e representacdo de dados.

Em relacdo a métodos preditivos, trabalhos introduziram diferentes métodos de regressdo

linear em diferentes representacdes de dados. No entanto, consideraram-se apenas os

ldelos Lineares Generalizados (MLG)| para dados simbdlicos tipo intervalar. Percebe-se assim

a necessidade de estudos que abordem diferentes distribuicdes de dados, visto que em mui-
tos contextos os dados ndo satisfazem as suposicGes do modelo linear baseado em minimos
quadrados ordinarios. As variaveis podem apresentar distribuicoes assimétricas, continuas e
discretas. Portanto os [MLG ampliam a aplicacdo dos modelo linear a partir de funcdes de
ligacdo que relacionam a variavel resposta com as explicativas.

A representacio de dados simbdlicos tipo poligonal é introduzida por (SILVA; SOUZA; CYS-
NEIROS, |2019al), desenvolvendo um modelo linear poligonal além de medidas descritivas como
média, desvio padrao e histogramas para as variaveis poligonais. Uma medida de desempenho
foi introduzida, a qual é baseada na diferenca de areas dos poligonos observados e preditos.
No entanto, esta métrica apresenta-se incompleta pois nao considera outras caracteristicas,
como a posicao que pode constituir um grande residuo de centro.

Portanto, a abordagem desenvolvida neste trabalho utiliza os [MLG no contexto da [ADS]
com a variavel simbdlica tipo poligonal chamada de método [PMLG. Os experimentos fo-
ram conduzidos utilizando dados de dois conjuntos de distribuicdes oriundas da exponencial:
(a) distribuicdes continuas assimétricas, como a Normal Inversa e Gama, e (b) distribuicdo

Binomial.
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No primeiro grupo de distribuicdes, além do [PMLG|, também é introduzido o residuo poli-

gonal, baseado na diferenca entre os vértices dos poligonos e sendo referéncia para a definicao

da métrica de desempenho [Erro Médio Quadratico da Distancia dos Vértices (EMQDV), que

foi comparada com métricas baseadas em centro e raio e area de poligonos. Para avaliar o
método [PMLG] bases de dados simuladas foram geradas e considerou-se distribui¢des de dados

assimétricos e continuos, sendo a Gama e Normal Inversa.

Os resultados foram comparados aos métodos[Modelo de Regressdo Linear Poligonal (PRL)|

(SILVA; SOUZA; CYSNEIROS, 2019a)) e [Modelo de Regressio Linear Bivariado (PBIVAR)| (NETO;

CORDEIRO; CARVALHO), [2011)). Os resultados mostraram menores valores de erro de predicdo
do [PMLG| em todos os cenérios abordados. Além disso, a métrica[EMQDV] aumentou o ganho
relativo, ou seja, evidenciou a diferenca entre os modelos avaliados.

Apds a avaliacao experimental, considera-se dados da meteorologia que possui como vari-
avel resposta a precipitacdo da chuva. A partir do histograma da varidvel resposta, percebe-se
uma distribuicdo assimétrica positiva dos centros e os raios dos poligonos formados, portanto,
considera-se modelos Gama e funcéo de ligacdo inversa. Os resultados indicam que o PMLG
obteve menor valor de erro na medidas de desempenho [EMQDV]

O método poligonal proposto aplicado a cenarios com variavel resposta de distribuicdo
Binomial, baseia-se na regressao logistica e define as regras de classificacdo por meio da
modelagem das probabilidades associadas a varidvel poligonal do centro e do raio. A primeira
abordagem utiliza a média das predicdes; a segunda implementa uma média baseada em um
algoritmo de otimizacdo, denominado PMLGpsq; € a terceira propGe uma representacao de
classe a partir de protétipos e probabilidades, denominada PMLGp,oto.

A abordagem proposta foi validada por meio de uma série de experimentos realizados
com dados sintéticos e reais. Nas simulacdes, foram considerados cenarios com classes bem
separadas e sobrepostas, geradas a partir de pontos provenientes de distribuicoes Gama e
Normal Inversa. No cenario com dados reais, aplicou-se 0 método a base de noticias fake.
Para a avaliacio do desempenho, foram utilizadas as métricas de acuracia e precisao e o
modelo intervalar [DPC-PP| (SOUZA; QUEIROZ; CYSNEIROS, [2011) foi usado como comparacdo
com as abordagens poligonais. Os resultados demonstram a eficicia dos métodos poligonais
em comparacao com o modelo intervalar. O PMLGpso apresentou desempenho superior nos
cenarios com dados simulados e reais, evidenciando bom ajuste a variabilidade presente nos
dados.

De modo geral, os métodos propostos, aplicados a dados simbdlicos poligonais, mostraram-
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se eficazes na modelagem e avaliacao dos modelos. Esta pesquisa contribui para o avanco da
[ADS), ao explorar estratégias capazes de lidar com representacdes poligonais oriundas de[MLG
Os conhecimentos desenvolvidos podem ser aplicados a diferentes cenéarios, nos quais os dados

sdo representados por poligonos e as varidveis resposta se originam de distintas distribuicdes.

8.2 PRINCIPAIS CONTRIBUICOES

Em anélise aos resultados obtidos, sdo elencadas as principais contribuicoes:

1. Elaboracdo de uma abordagem em|[ADS| de[MLG] para dados tipo poligonal. A motivacdo
desta contribuicdo se deu, principalmente, por estender a aplicabilidade de modelos

preditivos nesta representacao de dados simbdlicos.

2. Introducao do residuo poligonal ordinario, o qual pode ser aplicado para verificar a
adequacao de modelos aplicados a dados simbdlicos tipo poligonal. Os residuos podem

ser analisados a partir de representacdo grafica.

3. Introduzir uma medida de avaliacdo do erro preditivo baseada na diferenca entre vértices
dos poligonos. Além disso, compara-se os resultados a métricas baseadas em area e em

valores de centro e raio.

4. Com os resultados dos cendrios de dados reais para dados de distribuicdes continuas e
assimétricas (Capitulo |5) evidencia-se a importancia de analisar diferentes problemas e
questionamentos da sociedade. O cenério estudado considerou dados meteorolégicos, no
entanto, exemplifica-se outras areas que possuem dados assimétricos positivos relevantes

para estudo.

5. Introduzir e comparar regras de classificacdo baseadas na probabilidade a posteriori,

obtidas por meio do modelo logistico, em cenarios com dados de distribuicao Binomial.

6. Destaca-se que os setores da sociedade tornam-se dependentes do conhecimento oriundo
de imensos e complexos conjuntos de dados, portanto a[ADS] torna-se uma ferramenta
de solucdo. Entdo introduzir novas representacdes de dados e dar novos significados a

variaveis, torna-se uma das principais contribuicdes.
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8.3 TRABALHOS FUTUROS

Para dar continuidade ao trabalho de pesquisa descrito nesta tese, lista-se, nesta secao,

atividades de trabalhos futuros a serem realizadas:

» Introduzir as medidas descritivas para a distribuicdo de dados poligonais que ndo foram

definidas ou exploradas na tese, como curtose e assimetria empirica.

= Os resultados apresentados mostram a analise poligonal a variaveis continuas e discretas,
os quais compreendem a familia de distribuicdes exponenciais. Como exemplo o estudo
considerou a distribuicdo Gama, Normal Inversa e Binomial. No entanto, outros tipos
de distribuicoes podem ser analisadas, como Poisson. Assim, pode-se introduzir outras

ferramentas de analises de dados poligonais.

» Investigar a definicao do residuo padronizado para a abordagem PMLG, visto que foi

introduzido a analise a partir dos residuos ordinarios.

» Ampliar o estudo da regra baseada em protétipos, incluindo outras distancias e estatégias

de representacdo do protétipo.

» Verificar a formacao de poligonos irregulares e a aplicacdo de outras distancias na equa-

cdo da EMQDV.

» Ampliar o estudo em dados reais, assim como variar funcdes de ligacGes e quantidade

de vértices na geracao de poligonos.

8.4 ARTIGOS PUBLICADOS DURANTE A TESE

Esta tese estd associada a seguinte publicacdo cientifica, resultante da pesquisa desen-
volvida ao longo do curso de doutorado, na qual foi proposto e analisado o Modelo Linear
Generalizado Poligonal (PMLG), com experimentos realizados para dados continuos assimé-

tricos (ver Anexo |A)):

= do Nascimento, R.L.S., Souza, R.M.C.R., & Cysneiros, F.J.A. (2024). Generalized linear
models for symbolic polygonal data. Knowledge-Based Systems.

doi.org/10.1016/j.knosys.2024.111569.


https://doi.org/10.1016/j.knosys.2024.111569
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A proposta desta tese também foi apresentada em congressos da area de Estatistica e

Andlise de Dados Simbélicos:

» do Nascimento, R.L.S., Souza, RM.C.R., & Cysneiros, F.J.A. Stacked Logistic Re-
gression for Interval Data Classification. In: Symbolic Data Analysis Workshop, 2025,

Varazdin - Croatia.

» do Nascimento, R.L.S., Souza, R.M.C.R., & Cysneiros, F.J.A. GLM For Symbolic Poly-
gonal Data Applied To School Failure Indicator. In: SINAPE - Simpésio Brasileiro de
Probabilidade e Estatistica, 2024, Fortaleza - CE.

» do Nascimento, R.L.S., Souza, R.M.C.R., & Cysneiros, F.J.A. PGLM:A Regression Mo-
del Class for Symbolic Polygonal Data. In: Symbolic Data Analysis Workshop, 2023,

Paris - France.

Algumas das contribuicdes e resultados apresentados no Capitulo [2, foram publicadas
em periddico internacional. A publicacao referenciada resultou de um estudo sobre dados
simbolicos do tipo intervalar, introduzindo os residuos intervalar ordinarios e padronizados
(ver Anexo . Vale salientar que os dados tipo intervalar é um caso particular dos dados tipo

poligonal, os quais serviram como base tedrica para definicGes nesta tese.

= do Nascimento, R.L.S., Fagundes, R.A.A., Souza, RM.C.R., & Cysneiros, F.J.A. (2022).
Interval regression model adequacy checking and its application to estimate school dro-
pout in Brazilian municipality educational scenario. Pattern Analysis and Applications.

doi.org/10.1007 /s10044-022-01093-0.

Outra publicacdo realizada durante o periodo da tese (ver Anexo |C|) avaliou o uso de

métodos de regressio comumente empregados na literatura para estimar a evasdo escolar:

= do Nascimento, R.L.S., Fagundes, R.A.A., Souza, R.M.C.R., & Cysneiros, F.J.A. (2021).
Statistical Learning for Predicting School Dropout in Elementary Education: A Compa-
rative Study. Annals of Data Science. doi.org/10.1007 /s40745-021-00321-4.


https://doi.org/10.1007/s10044-022-01093-0
https://doi.org/10.1007/s40745-021-00321-4
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symbolic variable. Due to the advantages of using symbolic polygonal data, this paper introduces a linear
regression approach for polygonal data based on the generalize linear model theory that provides a unified
method to broad range of modeling problems for different types of response as asymmetric continuous and
discrete. Ordinary polygonal residuals and a way for finding model inadequacies are presented. Moreover, a

quality measure of fit for polygons is also proposed in this paper. Experimental evaluation results illustrate
the usefulness of the proposed approach regarding synthetic and real polygonal data.

1. Introduction

Data sets are generated daily in various social contexts (e.g., health,
government, education, finance) [1,2] and organizations from differ-
ent sectors of society are increasingly dependent on the knowledge
extracted from these large volumes of data. It becomes necessary to use
complex models and algorithms to produce reliable and repeatable de-
cisions and results besides discovering hidden insights through analysis
of correlated data [3].

Data mining techniques provide some of the most explicit illustra-
tions of data science principles, which is the intersection of computer
science, statistics, and domains of study [4]. When the entities under
analysis are aggregated units based on a specific criteria, the variability
between the members of each entity may to be effectively considered
and better expressed by intervals, histograms, probability distributions,
lists of categorical or numerical values. In symbolic data analysis
(SDA) [5] these kinds of data are called symbolic and the aggregated
units are called classes.

SDA aims to extract new knowledge from data that allow to take
into account variability by extending data science methods and tools
to symbolic data. In this context, polygonal data have been considered
as symbolic in [6] due to valuable advantages such as open new
possibilities for grain change in data mining through a structure able to
store more information and preserve internal variability of the entities
in analysis.

Studies involving regression techniques have been widely devel-
oped in SDA, considering different types of symbolic data: interval-
valued [7-16] and histogram-valued [17-20]. Most of these regression
models in SDA are fitted based on the ordinary least squares method.

* Corresponding author.

Concerning polygonal-valued data, [6] introduced the first regression
model that also uses the least squares method applied to center and
radius of the polygons and this model is evaluated with Brazilian
educational data [21].

It is known in the classic literature of regression analysis that the
assumptions considered by the least squares method can be violated in
many data behavior contexts and some of them are: homoscedastic and
continuous response variable. The theory of generalized linear models
(GLM) consists a class of regression models that permit to fit a linear
model for response variable following different distributions [22] as,
Binomial, Normal, Gamma, Poisson, Inverse Gaussian, among others.

GLM can be suitable in situations such as medical expense data
(continuous data with nonconstant variance), presence of disease (bi-
nary response), degree of severity of disease (ordinal data), number
of recorded disease cases (count values), and treatment duration data
(skewed and positive data). These situations of response variable can be
also found when using symbolic data. In this context, the main goal of
this paper is to introduce a regression approach applied to polygonal
data that allows an appropriate choice for modeling continuous and
discrete symbolic polygonal response.

The contributions of this work are: (i) to propose a linear regression
model for polygons that takes into account the random nature of the
response variable; (ii) to present a definition of ordinary polygonal
residual and a way for finding the model inadequacies since residual
analysis plays an essential role in validating regression models; (iii) to
introduce a prediction quality measure of the model for polygonal data
based on the Euclidean distance between the vertices of the residual
polygons. (iv) to conduct an experimental analysis to evaluate the
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Abstract

Interval-valued data have been commonly encountered in practice, and Symbolic Data Analysis provides a solution to the
statistical treatment of these data. Regression analysis for interval-valued symbolic data is a topic that has been widely
investigated in the literature of symbolic data analysis, and several models from different paradigms have been proposed.
There are basic regression assumptions, and it is essential to validate them. This paper introduces an approach to check
interval regression model adequacy based on residual analysis. Concepts of ordinary and standardized interval residual are
presented, and graphical analysis of these residuals is also proposed. To show the usefulness of the proposed approach, an
application for estimating school dropout in the scenario of Brazilian municipalities is performed. We observed some outliers
from the interval residuals analysis, and interval robust regression models are more suitable for estimating school dropout.

Keywords Symbolic data analysis - Educational data - Residual - Interval-valued symbolic data - Regression

1 Introduction

In many real experiences, data can have internal variation.
These data can arise in two situations. First, the original
data may be naturally collected as lists, intervals or histo-
grams. For example, by recording air temperature changes
in meteorological stations throughout the day, the result is
not a single value but a range of values, i.e., an interval.
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Second, original data can be processed, and lists, intervals
or histograms can be produced. With the advent of modern
computer science, the ability to generate, store and collect
massive size data sets is expected in the most varied scenar-
ios. Often, the importance of analyze these massive data sets
can require the use of specific methodologies. A example is
to aggregate individual observations into groups of inter-
ests, especially when characteristics of groups are of higher
interest to an analyst than those of individual observations.
For example, data about scientific production for analyz-
ing research groups and not individual researchers [23]. The
result is not a single value as mean or median but can also be
an interval for each variable. To represent data taking into
account internal variability within each observation, vari-
ables have allowed assuming new forms.

Symbolic data analysis (SDA) provides a framework
where the variability observed may effectively be consid-
ered in the data representation, and methods that take it into
account. Symbolic data values can be intervals, histograms,
distributions, lists of values, taxonomies, etc. This kind of
data is called symbolic because it is not purely numerical
to express the internal variation of each concept. Symbolic
data can be induced from classical data, and this type of
data allows to take into account more complete and complex
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Abstract

School dropout is a significant challenge for the education system. This phenomenon
is present in different environments, modalities, and stages of education. In the Bra-
zilian scenario, despite advances in some respects as a reduction of indexes, combat-
ing evasion is still one of the significant efforts. Identifying the factors that involve
school dropout is supported by different decision support techniques such as Statisti-
cal Learning. Statistical learning consists of a method set for exploring and under-
standing data to establish an association between explanatory and response variables
and develop an accurate model. We propose to examine the use of some regression
methods commonly used in the Statistical Learning literature for estimating school
dropout in the context of elementary school from the state of Pernambuco. The data
involves educational indicators, and we defined phases in the study to understand,
prepare, and model the data. For prediction, we apply models for estimating school
dropout using kernel-based and linear regression methods. We measured the perfor-
mance by the prediction error from the test data set using Mean Absolute Error and
Root Mean Square Error. We considered Statistical tests to confirm the results. The
findings show that kernel-based models are effective alternatives to provide greater
precision in the estimation of school dropout in scope studied. The reason to explore
more accurate predictive models is supporting intervening and targeting the most
at-risk students of scholar dropout. The study provides knowledge about the applied
scenario supporting policies to mitigate the problem.
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