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RESUMO

A Análise de Dados Simbólicos é uma abordagem que visa desenvolver métodos para dados
descritos por variáveis através de diferentes representações, como conjuntos de categorias, lista
de valores, intervalos, distribuição de probabilidade, entre outros. Os métodos de regressão são
amplamente estudados neste contexto e diferentes modelos têm sido propostos, inclusive pelo
tipo de representação que estes dados podem assumir. Os Modelos Lineares Generalizados
constituem uma classe de modelos de regressão que permite a modelagem de dados proveni-
entes de diferentes distribuições da família exponencial. Esses modelos utilizam uma função de
ligação para relacionar a média da variável resposta a uma combinação linear das variáveis ex-
plicativas, ampliando assim a aplicabilidade dos métodos preditivos a diversos cenários. Neste
contexto, o objetivo deste trabalho consiste em propor uma extensão de Modelos Lineares
Generalizados para dados simbólicos do tipo poligonal. Esse tipo de variável visa conservar a
variabilidade original presente em dados agrupados por um caminho de agregação. Foram con-
siderados modelos com as distribuições Gama, Normal Inversa e Binomial. Nos modelos com
distribuições contínuas, são propostos resíduos poligonais, avaliados por meio de abordagem
gráfica e descritiva, além da análise da função linear predita e definição de uma medida de
qualidade. Para o modelo Binomial, baseado na regressão logística, são desenvolvidas regras
de classificação para os dados poligonais. Os resultados obtidos demonstram a aplicabilidade
e a eficácia dos métodos propostos em cenários com dados simulados e reais. As discussões
são fundamentadas em gráficos de diagnóstico, testes estatísticos e ganhos relativos com base
no erro de predição, acurácia e precisão. Portanto, esta pesquisa resulta em uma abordagem
de predição e diagnóstico de modelos que contribui para o avanço dos estudos em diversos
cenários de dados simbólicos.

Palavras-chaves: Modelos Lineares Generalizados. Regressão. Análise de Dados Simbólicos.
Dados Poligonais. Análise Residual.



ABSTRACT

Symbolic Data Analysis is an approach aimed at developing methods for data described by
variables with different representations, such as sets of categories, lists of values, intervals,
probability distributions, among others. Regression methods are widely studied in this context,
and various models have been proposed, depending on the type of data representation. Gen-
eralized Linear Models (GLMs) constitute a class of regression models that allow modeling
data from different distributions belonging to the exponential family. These models use a link
function to relate the mean of the response variable to a linear combination of explanatory
variables, thus expanding the applicability of predictive methods to various scenarios. In this
context, the objective of this work is to propose an extension of Generalized Linear Models
for symbolic data of the polygonal type. This type of variable aims to preserve the original
variability present in grouped data through an aggregation pathway. Models based on Gamma,
Inverse Gaussian, and Binomial distributions were considered. For models with continuous
distributions, polygonal residuals are proposed and evaluated using graphical and descriptive
approaches, in addition to analyzing the predicted linear function and defining a quality mea-
sure. For the Binomial model, based on logistic regression, classification rules are developed
for the polygonal data. The results demonstrate the applicability and effectiveness of the pro-
posed methods in both simulated and real data scenarios. The discussions are supported by
diagnostic plots, statistical tests, and relative gains based on prediction error, accuracy and
precision. Therefore, this research results in a prediction and diagnostic approach for models,
contributing to the advancement of studies in various symbolic data scenarios.

Keywords: Generalized Linear Models. Regression. Symbolic Data Analysis. Polygonal-valued
Data. Residual Analysis.
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1 INTRODUÇÃO

Extrair informação, armazenar e encontrar relações em grandes quantidades de dados é
um dos tópicos centrais da atualidade. Processar os dados e obter conhecimento possibilita
aos diferentes setores da sociedade definir estratégias e intervenções que mitiguem problemas
e expliquem cenários relacionando variáveis (OUSSOUS et al., 2018). Nas últimas décadas, a
sociedade tem vivenciado um rápido crescimento na geração e no uso de dados, impulsionado
por sensores, redes sociais, transações digitais e dispositivos conectados, na qual em torno de
98% dos dados armazenados na web já tinham sido gerados em meados de 2015 (MACHADO,
2018). Esse fenômeno, conhecido como big data, envolve grandes volumes de dados produzidos
em diferentes contextos (RAO et al., 2019).

Diante desse cenário, surgem novos desafios e oportunidades para o armazenamento, pro-
cessamento e análise eficiente desses dados, a fim de extrair conhecimento relevante e apoiar
a tomada de decisões em tempo real. A complexidade dos dados atuais excede as capacidades
dos métodos tradicionais de armazenamento e análise, exigindo novas abordagens para captu-
rar, processar e interpretar informações de forma eficiente. Estima-se que até 2028 a criação
global de dados cresça para mais de 380 zetabytes (STATISTA, 2025). O desenvolvimento de
novas técnicas é essencial para descobrir novos benefícios para diversas aplicações.

Esse movimento impulsiona a demanda por profissionais capazes de lidar com dados com-
plexos, tanto no setor privado quanto no público e na academia, exigindo competências que vão
desde a modelagem de dados e estatística até o desenvolvimento de soluções baseadas em In-
teligência Artificial (IA). Além disso, aplicações dessas tecnologias já estão presentes em áreas
como saúde, educação, logística, finanças e gestão pública, contribuindo diretamente para a
inovação, a eficiência operacional e a tomada de decisões baseada em evidências. Segundo
o relatório Future of Jobs1 , publicado em 2020 pelo World Economic Forum, o cientista de
dados ocupa o primeiro lugar na lista de carreiras promissoras para os próximos anos, seguido
pelo especialista em IA e aprendizado de máquina, além do profissional focado em big data.

Dessa forma a área de ciência de dados e big data tem se consolidado como uma das mais
estratégicas e promissoras no cenário contemporâneo. Entretanto, o crescente volume e a hete-
rogeneidade dos dados coletados apresentam desafios que vão além do simples armazenamento
e processamento em larga escala. Muitas vezes, os dados consistem em informações agregadas
1 Future of Jobs 2020 - WEF.

https://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf


17

ou outras estruturas complexas que não podem ser adequadamente capturadas por técnicas
tradicionais de análise baseadas em valores pontuais, chamados de dados clássicos. É nesse
contexto que a Análise de Dados Simbólicos (ADS) destaca-se, permitindo a representação
e o tratamento de dados com estruturas internas específicas, preservando suas características
originais (BILLARD; DIDAY, 2006).

A ADS fornece métodos para lidar com variáveis simbólicas, como intervalos, histogramas,
conjuntos multivalorados e distribuições, presentes em diversas áreas. Essa abordagem amplia
as possibilidades analíticas, viabilizando a extração de padrões e insights que técnicas tradici-
onais não capturam (BILLARD; DIDAY, 2006). Assim, a ADS configura-se como uma extensão
necessária e complementar para mineração e análise de dados, sobretudo diante da complexi-
dade crescente dos dados contemporâneos. Além disso, oferece ferramentas que permitem o
processamento e análise de grandes volumes, possibilitando a descrição de grupos ou classes,
a redução da dimensionalidade e a preservação da diversidade e confidencialidade dos dados.

Em diversos contextos reais, os dados são coletados originalmente em formatos simbólicos,
como listas, intervalos ou histogramas. Por exemplo, variáveis meteorológicas, como tempe-
ratura, umidade, precipitação e velocidade do vento, são frequentemente registradas como
intervalos ao longo do tempo. No cenário educacional, o desempenho individual de alunos
em exames pode ser agregado para representar o desempenho por escolas ou regiões, con-
siderando a variabilidade interna dessas agregações, o que é fundamental para estudos que
envolvem grupos de interesse (NASCIMENTO et al., 2022).

Portanto, a ADS oferece uma estrutura que incorpora a variabilidade observada na repre-
sentação dos dados, utilizando métodos que a consideram explicitamente. Além disso, constitui
um conjunto de ferramentas capaz de lidar com dados massivos e heterogêneos. Essa nova
forma de representação implica que as variáveis assumem formatos distintos, o que tem sido
amplamente estudado na ADS, gerando técnicas específicas para cada tipo de dado simbó-
lico apresentado. Dessa forma, a análise exploratória e a modelagem estatística clássicas são
estendidas para os dados simbólicos (DIDAY, 2016).

Visando contribuir para os avanços práticos e teóricos da modelagem estatística e computa-
cional, este trabalho apresenta uma abordagem preditiva e diagnóstica para dados simbólicos.
O presente capítulo fundamenta essa abordagem, expõe seus objetivos e descreve a organização
dos capítulos subsequentes.
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1.1 MOTIVAÇÃO

Com o rápido avanço da ciência da informação e das tecnologias digitais, novas técnicas
de mineração de dados, métodos computacionais e ferramentas de código aberto têm sido
amplamente desenvolvidas e utilizadas para viabilizar o uso de big data (ABDALLA, 2022).
A crescente disponibilidade de grandes volumes de dados tem ampliado as possibilidades de
atender a demandas empresariais e sociais, tornando-se um recurso essencial em diversos
contextos. Atualmente, o big data é aplicado em sistemas de recomendação, análise preditiva,
detecção de padrões e elaboração de relatórios estatísticos, com impacto direto em áreas como
gestão organizacional, meio ambiente, saúde, educação, redes sociais, cidades inteligentes e
transmissão de dados (OUSSOUS et al., 2018). Essas aplicações têm se mostrado fundamentais
no suporte a processos de recomendação, previsão e tomada de decisão, fortalecendo práticas
baseadas na análise e no uso estratégico de dados.

Diante desse cenário, organizações de diferentes setores da sociedade estão cada vez mais
dependentes do conhecimento extraído desses grandes volumes de dados e torna-se necessário
utilizar modelos e algoritmos complexos capazes de produzir decisões e resultados confiáveis
e repetíveis, além de descobrir insights ocultos por meio de análises de dados correlacionados
(TIEN, 2017). Nesse contexto, a qualidade das decisões está diretamente vinculada à capa-
cidade de compreender os dados disponíveis, integrar fontes diversas de informação e aplicar
modelos analíticos robustos que possibilitem a geração de conhecimento útil, estratégico e
aplicável a diferentes realidades.

Os algoritmos e técnicas da Mineração de Dados (MD) fornecem algumas das ilustra-
ções mais claras dos princípios da ciência de dados, a qual é a interseção entre ciência da
computação, estatística e domínios de estudo (SKIENA, 2017). Da estatística vêm a análise
exploratória de dados, os testes de significância e a visualização de dados. Sobre o domínio
do problema, é necessário ter uma sólida compreensão do cenário em que se está trabalhando
para entender claramente os problemas do negócio e os padrões para avaliar quando eles
forem adequadamente alcançados. E por fim, o conhecimento da ciência da computação per-
mite o desenvolvimento da aprendizagem estatística e do Aprendizado de Máquina (AM) com
tecnologias de computação de alto desempenho.

No entanto, quando as entidades em análise da MD não são elementos isolados, mas grupos
reunidos com base em alguns critérios determinados devendo-se levar em conta a variabilidade
inerente a cada grupo, abordagens específicas são necessárias (BRITO, 2014). Assim, a ADS
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possibilita a agregação de dados no grau de granularidade definido, mantendo as informações
sobre a variabilidade intrínseca dos dados para então analisar os dados resultantes a partir de
análises estatísticas e de MD específicas.

Os dados presentes em bases de dados simbólicas representam uma extensão das infor-
mações contidas em bases de dados clássicas, apresentando-as de forma agregada. Esta ca-
racterística alerta para a necessidade de desenvolver metodologias que considerem a comple-
xidade, imprecisão e variabilidade presentes nas estruturas formadas (BILLARD; DIDAY, 2006).
Os dados podem ser representados de diferentes formas, como listas, intervalos, histogramas,
distribuições de frequência ou de probabilidade. Neste trabalho, destaca-se também a variável
poligonal, que será explorada com maior aprofundamento.

Os dados simbólicos do tipo poligonal constituem uma nova representação de dados em
ADS introduzida por Silva, Souza e Cysneiros (2019a). Para este tipo de variável, novas
medidas de análise foram propostas como média, variância, histograma entre outros, assim
como um modelo de regressão linear para dados do tipo polígonos. Em Silva, Souza e Cysneiros
(2020) os experimentos mostraram a aplicabilidade da variável poligonal no cenário educacional
para previsão de desempenho escolar.

Posteriormente, considerando a abordagem não supervisionada, Silva et al. 2023 apresen-
taram o primeiro algoritmo de clusterização dinâmica para dados simbólicos poligonais, com
o objetivo de extrair informações de perfis de periódicos científicos. Em Srakar e Vecco 2021,
um algoritmo de agrupamento para dados simbólicos poligonais é aplicado à análise de regimes
empreendedores, proporcionando insights mais ricos do que os métodos tradicionais baseados
em intervalos. Esses trabalhos demonstraram desempenho superior em relação aos métodos
desenvolvidos para dados com valores intervalares, destacando o potencial das representações
poligonais e abrindo caminho para novas investigações nesta área emergente.

Dito isto, Diday (2016) indica as razões para induzir dados simbólicos: (a) leva em conside-
ração a variabilidade intrínseca a cada unidade; (b) garante a confidencialidade dos indivíduos;
(c) agregar dados reduz o número de indivíduos e o número de variáveis definidas pelo valor
único de cada categoria e, (d) transforma dados complexos não estruturados em simbólicos
estruturados e possibilita a aplicação de ferramentas simbólicas. Além destas razões, Silva,
Souza e Cysneiros (2019a) ressaltam que na agregação poligonal mais informações são arma-
zenadas pois considera-se a média e a variância dos dados diferentemente da representação
intervalar, a qual considera os limites inferior e superior de cada classe.

Introduzir uma nova variável exige o desenvolvimento de novas ferramentas de análise,
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pois a maioria dos conceitos e métodos foram projetados principalmente para observações de
valor clássico (BRITO, 2014). O desenvolvimento de novas ferramentas para variável poligonal
se faz necessário, as quais sejam capazes de explorar, analisar e modelar variáveis assim como
dar suporte à verificação de propriedades estatísticas, diagnóstico de modelos, distribuições
teóricas, entre outras. Sabe-se que ADS amplia a análise de dados e diversas técnicas têm sido
propostas, em especial as técnicas de regressão.

Na literatura simbólica mantém-se as suposições básicas da literatura clássica para regres-
são linear. No entanto, vale destacar que em muitos contextos de dados reais algumas destas
suposições podem ser violadas, e portanto, não será apropriado utilizar o modelo de mínimos
quadrados ordinários.

Neste contexto, os Modelos Lineares Generalizados (MLG) constituem um conjunto de
modelos de regressão mais flexíveis às suposições supracitadas. Os dados podem ser oriundos
de diferentes distribuições de probabilidade revelando uma relação não linear entre a variável
resposta e a explicativa. Assim, os MLG utilizam funções de ligação que possibilitam relaci-
onar a média da variável resposta à combinação linear da variável explicativa, estendendo a
aplicabilidade dos métodos preditivos.

Portanto, este trabalho se faz significativo à medida que busca contribuir com a formação
de uma abordagem de MLG aplicada a dados simbólicos do tipo poligonal. É realizada uma
análise experimental para avaliação das técnicas de predição e diagnósticos propostas, bus-
cando predizer variáveis de bases de dados simulados e dos atuais cenários de dados reais. Além
disso, os resultados deste trabalho contribuem para a ampliação do acervo de informações da
comunidade científica de ADS.

1.2 OBJETIVOS

O objetivo deste trabalho consiste em desenvolver uma abordagem para análise de Mode-
los Lineares Generalizados aplicados a dados simbólicos do tipo poligonal. Espera-se que os
resultados obtidos e analisados ajudem a ratificar o desenvolvimento desta abordagem na pre-
dição de variáveis simbólicas nos diferentes cenários de dados da atualidade. Como objetivos
específicos lista-se:

1. Definir modelos lineares generalizados aplicados a dados tipo poligonal.

2. Verificar a adequação de modelos aplicados a dados tipo poligonais através da definição
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de resíduo poligonal.

3. Introduzir medidas de avaliação do erro preditivo baseadas em distância de vértices dos
polígonos.

4. Criar um ambiente experimental para a avaliação do modelo proposto, utilizando bases
de dados reais e simuladas.

5. Avaliar o desempenho da técnica proposta pelo erro de predição através do método de
simulação Monte Carlo, comparando com técnicas da literatura de ADS.

6. Contribuir com a área de ADS, introduzindo uma modelagem de análise e predição de
dados tipo poligonais e estendendo a aplicabilidade das técnicas de regressão com MLG
nesta representação de dados.

1.3 QUESTÕES DE PESQUISA

Neste trabalho são apresentados métodos, experimentos simulados e aplicações em con-
juntos de dados simulados e reais que visam responder as seguintes questões:

• Como Modelos Lineares Generalizados podem ser estendidos para variáveis poligonais
simbólicas?

• Como resíduos poligonais podem ser definidos e utilizados na avaliação da qualidade do
ajuste dos modelos?

• Como aplicar regressão logística em contextos em que os preditores são dados poligonais
simbólicos?

• Quais regras de classificação baseadas em probabilidades a posteriori são mais eficazes
nesse contexto?

• Os modelos desenvolvidos são eficazes na análise de conjuntos de dados reais?

• Como o desempenho dos modelos poligonais se compara a modelos baseados em inter-
valos em diferentes cenários de variabilidade e sobreposição de classes?
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1.4 ORGANIZAÇÃO DA TESE

Os capítulos restantes desta tese encontram-se estruturados da seguinte forma:
2 INTRODUÇÃO: apresenta os principais conceitos relacionados à ADS e diferentes

representações de dados, incluindo os dados tipo intervalar e poligonal. Em relação às mo-
delagens aplicadas em ADS, o foco desta pesquisa concentram-se nas técnicas de regressão,
portanto, definições que permeiam estes cenários são desenvolvidas. Além disso, apresenta
uma visão geral sobre os trabalhos relacionados ao tema desta tese.

3 INTRODUÇÃO: explana sobre os materiais e métodos propostos nesta tese para defini-
ção da abordagem de MLG para dados simbólicos tipo poligonais. É descrito uma metodologia
para gerar e descrever dados poligonais e construir MLG. Ainda define o diagnóstico de mo-
delos, a partir dos resíduos poligonais e análise preditiva, a qual descreve medidas de erro de
predição e de desempenho a partir de regras de classificação.

4 INTRODUÇÃO: descreve e discute os resultados dos experimentos efetuados para
análise e avaliação dos métodos desenvolvidos utilizando dados simulados. Considera-se dis-
tribuições de dados assimétricos, como a Gama e a Normal Inversa.

5 INTRODUÇÃO: explana sobre os resultados dos métodos propostos nesta tese em
cenários de dados reais. O capítulo ilustra a aplicabilidade da metodologia desenvolvida em
fazer predições de variável meteorológica.

6 INTRODUÇÃO: apresenta e discute os resultados dos experimentos conduzidos para
avaliar os métodos propostos com dados simulados, considerando a distribuição binomial ava-
liando cenários de classificação binária.

7 INTRODUÇÃO: explora a aplicação dos métodos desenvolvidos em dados reais, de-
monstrando sua efetividade na predição da variável relacionada à detecção de notícias fake.

8 INTRODUÇÃO: apresenta as considerações finais sobre os principais tópicos aborda-
dos, como contribuições e direcionamentos para trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

Este Capítulo explana os conceitos fundamentais utilizados como embasamento teórico
e entendimento da abordagem proposta nesta tese. São discutidas definições da literatura
de Análise de Dados Simbólicos (ADS) as quais permeiam representação de dados, métodos
de regressão e de análise estatísticas para dados simbólicos do tipo intervalar e poligonal.
Também, relacionam os principais trabalhos referentes ao tema desta pesquisa.

2.1 CONHECIMENTO A PARTIR DOS DADOS

O termo big data define conjuntos de dados grandes, complexos, diversos e heterogêneos
que são gerados por diferentes fontes. Devido ao rápido avanço das tecnologias de hardware
e das mídias de armazenamento digital, estes dados - provenientes de sensores, fluxos de
cliques em sites, transações comerciais e econômicas e redes sociais - podem ser capturados,
gerenciados, processados e analisados de forma estratégica (RAO et al., 2019). Os setores
da sociedade estão conscientes de que a análise de dados está se tornando cada vez mais um
fator vital para ser competitivo, descobrir novos insights e personalizar serviços (OUSSOUS et al.,
2018). Para isto, técnicas específicas são necessárias para lidar com as particularidades de cada
conjunto de dados. Nesse cenário, as ferramentas de Mineração de Dados (MD) e Aprendizado
de Máquina (AM) auxiliam na descoberta de padrões e na geração de conhecimento útil para
diversas organizações e aplicações.

A MD permite a aquisição de conhecimento que pode ser explorado de ângulos diferentes
resultando em tomadas de decisão consistentes, controle de processos, gerenciamento de in-
formação e processamento de consultas (WITTEN et al., 2005). Este conjunto de ferramentas
é um campo que abrange diferentes áreas como AM, estatística, tecnologias de banco de da-
dos, visualização e recuperação de informações (WLODARCZAK; ALLY; SOAR, 2015) resultando
em extração de padrões desconhecidos, tendências inesperadas ou outras relações presentes
(WITTEN et al., 2005). Portanto, é considerada como uma das fronteiras mais importantes em
sistemas de banco de dados e um dos mais promissores desenvolvimentos interdisciplinares na
indústria da informação (HAN; PEI; TONG, 2011).

Considerando as etapas do processo de descoberta de conhecimento, tem-se: (1) pré-
processamento dos dados, constituindo o entendimento do problema e o tratamento dos dados;
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(2) construção de padrões e modelos através da execução de algoritmos para extração de
padrões; e (3) pós-processamento de dados, o qual refere-se a compreensão das saídas para
geração de conhecimento. A escolha da técnica mais adequada depende de aspectos como a
área do problema e dos dados disponíveis (FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996).

Os dados clássicos são representados por uma estrutura matricial 𝑛×𝑝, na qual cada linha
representa uma entidade e cada coluna pertence a uma variável que pode ser numérica ou
categórica. Outra característica é que um único valor é registrado para cada variável e para
cada registro. No entanto, em algumas situações as unidades de interesse estão em um nível
superior necessitando agregar os valores observados previamente à análise de dados (BRITO,
2014). Uma abordagem de agregação é calcular indicadores (como médias, medianas e desvios)
para que os dados sejam ajustados à matriz 𝑛×𝑝 e assim, métodos clássicos de análises possam
ser aplicados. Quando o tamanho da amostra é pequeno, esta abordagem extrai com facilidade
as informações desejadas, porém esta prática acarreta considerável perda de informação, como
a variabilidade intrínseca nos dados.

Dentre as abordagens oriundas da AM e da estatística que dão suporte à MD, a ADS
apresenta uma extensão dos dados clássicos que se dá através de representação e análise de
dados considerados de nível superior. Portanto, novos tipos de variáveis foram introduzidas
as quais não são representados por valores reais ou categorias únicas, mas por conjuntos,
intervalos ou distribuições de um determinado domínio (BRITO, 2014). As próximas seções
abordam as características dos dados simbólicos e as ferramentas de análise e modelagem
desenvolvidas na literatura.

2.2 DADOS SIMBÓLICOS

Os dados presentes em bases de dados simbólicas representam uma extensão das infor-
mações contidas em bases de dados clássicas, apresentando-as de forma agregada, nas quais
as linhas correspondem aos indivíduos ou classes e as colunas são as variáveis simbólicas que
caracterizam os indivíduos. Os objetos podem ser representados por conjuntos de categorias,
intervalos, histogramas, distribuições de frequência entre outros.

Considere como exemplo um conjunto de dados com informações sobre pacientes diag-
nosticados com Covid-19 de diferentes cidades de um país (NASCIMENTO et al., 2022). As
variáveis clássicas incluem informações pessoais e demográficas, características clínicas, resul-
tados laboratoriais e opções de tratamento. Assim, as entidades individuais no conjunto de
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dados clássico são os pacientes e as cidades podem agregá-los para obter um novo conjunto de
dados referente a diferentes variáveis simbólicas, como mostrada na Tabela 1. As cidades são
novas unidades, chamadas classes (DIDAY, 2016), e a variabilidade entre os pacientes dentro
de suas cidades (classes) é descrita por variáveis simbólicas que expressam a variabilidade dos
pacientes dentro de cada cidade.

Tabela 1 – Tabela com dados simbólicos de pacientes com Covid-19.

Cidade Sexo Peso ... Internamento Condição Clínica
C1 {(0,6)F,(0,4)M} [25,5; 128,16] [10; 33] {Leve, Urgente, Grave}
...

...
...

...
...

C200 {(0,8)F,(0,2)M} [19,30; 88,34] [2; 55] {Leve, Urgente, Grave}

Seja uma classe, a notação que a define é dada por 𝑤 ∈ 𝑆 = {𝑤1, ..., 𝑤𝑚}, onde 𝑚

representa o número de classes (SILVA; SOUZA; CYSNEIROS, 2019a). Como no exemplo da
Tabela 1, o registro 𝐶1, na variável Internamento (em dias), agrupa todos os pacientes que
compõe a classe cujo domínio é 𝐷 = {𝑥|𝑥 ∈ [10; 33]}. Esse domínio é chamado de descrição.

Este paradigma apresenta diversos tipos de representações para os dados como variáveis
multivaloradas, intervalares, modais, histogramas de variáveis intervalares (DIDAY, 2016) e mais
recente a variável poligonal (SILVA; SOUZA; CYSNEIROS, 2019a). Estes novos tipos de variáveis
exigiram da comunidade científica novas ferramentas, por exemplo: medidas descritivas usuais
como média, variância, correlação, distribuição de probabilidade, histogramas e outras foram
recriadas para esta nova estrutura de dados (CARVALHO, 1995; BERTRAND; GOUPIL, 2000;
BILLARD; DIDAY, 2003). A seguir, descreve-se a representação e ferramentas de análises para
dados intervalar e poligonal.

2.2.1 Dados Simbólicos Intervalares

Dados simbólicos do tipo intervalo são geometricamente representados por meio de uma
semi-reta [𝑎, 𝑏], com 𝑎 ̸= 𝑏. A combinação de 𝑝 variáveis intervalares é geometricamente
representada por um hiper-retângulo 𝑝-dimensional. Por exemplo, para 𝑝 = 2, obtém-se um
retângulo gerado pela combinação de duas variáveis intervalares. Esta representação pode ser
vista na Figura 1
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Figura 1 – Gráfico de dispersão com 𝑝 = 2 variáveis do tipo intervalar.

Os dados podem ser naturalmente intervalares, como no caso da medição da temperatura
de uma determinada região ao longo de um período, onde se registram valores mínimos e má-
ximos. Outra forma é a transformação de tabelas clássicas em tabelas de dados intervalares,
em que os limites inferior e superior do intervalo são definidos por 𝑎𝑢 = min𝑖∈Ω𝑢 𝑥𝑖 e 𝑏𝑢 =

max𝑖∈Ω𝑢 𝑥𝑖, onde Ω𝑢 é o conjunto de valores 𝑥𝑖 pertencentes à categoria 𝑤𝑢. Técnicas para
análise de dados simbólicos com valores intervalares possuem uma vasta literatura, com des-
taque especial para aplicações em modelos de regressão. Essas abordagens têm se mostrado
eficazes na modelagem de variabilidade interna dos dados intervalares.

O primeiro trabalho no modelo de regressão para dados simbólicos tipo intervalar pode ser
encontrado em Billard e Diday (2000) e Billard e Diday (2002). Lima Neto e De Carvalho (2008)
consideraram uma representação para intervalo baseada no centro e na amplitude do intervalo.
Além disso, eles desenvolveram um modelo de regressão baseado nesta representação. Lima
Neto e De Carvalho (2010) propuseram um modelo de regressão linear restrito na representação
do centro e do intervalo para garantir a coerência matemática entre os valores previstos dos
limites inferior e superior dos intervalos.

Já em Fagundes, Souza e Cysneiros (2013) foi apresentado um método de previsão robusto
para dados simbólicos de valor intervalar baseado na metodologia de regressão linear robusta.
Os autores ainda indicam que problemas na escolha do mínimo-máximo podem surgir quando
estes valores extremos são, de fato, outliers ou quando o conjunto de indivíduos a generalizar
é composto por subconjuntos de diferentes distribuições, definindo o outlier intervalar. Hao e
Guo (2017) apresentaram o modelo de regressão restrita para intervalos baseados em mínimos
quadrados ordinários.
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Souza et al. (2017) introduziu o método parametrizado, um modelo de regressão linear ba-
seado na representação mínimo-máximo. Soares e Fagundes (2018) propuseram uma regressão
quantílica intervalar para dados simbólicos intervalados representados por centros e intervalos.
Lima Neto e De Carvalho (2018) introduziram um modelo robusto baseado no modelo de
mínimos quadrados ponderados. Reyes et al. (2019) propõem um modelo linear para estimar
o risco sistemático na precificação de ativos de capital e exemplifica a capacidade do modelo
usando os preços diários de alta e baixa na Microsoft.

Embora existam diferentes abordagens de regressão para dados simbólicos tipo intervalar
na literatura de ADS, é importante verificar se o modelo funciona bem para os dados coletados.
Para isso, podem ser utilizadas medidas de diagnóstico e ferramentas gráficas baseadas em
resíduos. Nesse contexto, Lima Neto et al. (2011) propôs o primeiro conceito de resíduos para
dados simbólicos tipo intervalar como um valor contínuo único e considerou este conceito para
o cálculo de medidas diagnósticas. Este conceito foi utilizado em relação a um modelo que os
autores também introduziram. Este modelo assumiu a variável de resposta simbólica com valor
de intervalo como um vetor aleatório bivariado com uma distribuição gaussiana bivariada. Os
resíduos foram utilizados para fazer inferências sobre a distribuição das respostas, identificar
outliers, entre outros aspectos.

Já em Nascimento et al. (2022) um novo conceito de resíduos para dados simbólicos de va-
lor intervalar é introduzido. Esta definição considera os limites inferior e superior dos resíduos
conjuntamente, diferentemente das definições encontradas na literatura (NETO; CORDEIRO;

CARVALHO, 2011; XU, 2010) as quais consideram o resíduo intervalar baseado em resíduos
estatísticos para dados clássicos. Esta abordagem leva em consideração a variabilidade intrín-
seca a cada classe para definir os resíduos (limites inferior e superior). Além disso, os autores
consideram a versão ordinária e padronizada dos resíduos e ferramentas gráficas para investigar
a adequação dos modelos de regressão linear.

2.2.1.1 Resíduo Intervalar

Na literatura clássica de modelos de regressão, as premissas básicas de regressão são: i) a
relação entre a variável resposta e explicativas ser aproximadamente linear; ii) erro com média
zero e variância constante; iii) erros não correlacionados e iv) erros que seguem distribuição
aproximadamente normal. No entanto, estas suposições também são verificadas a partir da
abordagem intervalar (NASCIMENTO et al., 2022).
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Seja Ω = 1, . . . , 𝑛 um conjunto de dados de 𝑛 objetos, cada um descrito por um vetor de
intervalo (x𝑖, 𝑦𝑖) onde x𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝)𝑇 com 𝑥𝑖𝑗 = [𝑎𝑖𝑗, 𝑏𝑖𝑗] ∈ ℑ = {[𝑎, 𝑏] : 𝑎, 𝑏 ∈ ℜ, 𝑎 ≤ 𝑏}

(𝑗 = 1, . . . , 𝑝) e 𝑦𝑖 = [𝛼𝑖, 𝜆𝑖] ∈ ℑ = {[𝛼, 𝜆] : 𝛼, 𝜆 ∈ ℜ, 𝛼 ≤ 𝜆}. Os objetos são descritos
por dados de centro e range dos intervalos. Seja Y = (𝑦𝑐

1, . . . , 𝑦𝑐
𝑛, 𝑦𝑟

1, . . . , 𝑦𝑟
𝑛)𝑇 a variável de

resposta simbólica com valor intervalar com 𝑦𝑐
𝑖 = (𝛼𝑖 + 𝜆𝑖)/2 e 𝑦𝑟

𝑖 = (𝜆𝑖 − 𝛼𝑖).
Considere X = (𝑋1, 𝑋2, 𝑋3, 𝑋4) a matriz de variáveis explicativas simbólicas com valor

intervalar, com 𝑋1 = (1𝑇
𝑛 , 0𝑇

𝑛 )𝑇 , 𝑋2 = (0𝑇
𝑛 , 1𝑇

𝑛 )𝑇 , 𝑋3 = (𝑥𝑇
𝑐 , 0𝑇

𝑛 )𝑇 e 𝑋4 = (0𝑇
𝑛 , 𝑥𝑇

𝑟 )𝑇 onde
𝑥𝑐 = (𝑥𝑐

1𝑗, . . . , 𝑥𝑐
𝑛𝑗)𝑇 com 𝑥𝑐

𝑖𝑗 = (𝑎𝑖𝑗 + 𝑏𝑖𝑗)/2, 𝑥𝑟 = (𝑥𝑟
1𝑗, . . . , 𝑥𝑟

𝑛𝑗)𝑇 com 𝑥𝑟
𝑖𝑗 = (𝑏𝑖𝑗 − 𝑎𝑖𝑗)

(𝑗 = 1, . . . , 𝑝) e 0𝑛 e 1𝑛 são vetores zero e um, respectivamente. Em relação ao vetor Y e à
matriz X, a equação de regressão linear pode ser escrita da seguinte forma:

Y = X𝛽 + 𝜖, (2.1)

onde 𝛽 = (𝛽𝑐
0, 𝛽𝑐

1, . . . , 𝛽𝑐
𝑝, 𝛽𝑟

0 , 𝛽𝑟
1 , . . . , 𝛽𝑟

𝑝)𝑇 é um vetor de parâmetros, 𝜖 = (𝜖𝑐, 𝜖𝑟) 𝑇 é um
vetor erros com 𝜖𝑐 = (𝜖𝑐

1, . . . , 𝜖𝑐
𝑛)𝑇 e 𝜖𝑟 = (𝜖𝑟

1, . . . , 𝜖𝑟
𝑛)𝑇 . Sejam os resíduos para o centro e o

range de dados simbólicos com valor intervalar como 𝑟𝑐
𝑖 = 𝑦𝑐

𝑖 − 𝑦𝑐
𝑖 e 𝑟𝑟

𝑖 = 𝑦𝑟
𝑖 − 𝑦𝑟

𝑖 . Assim, o
resíduo ordinário intervalar (Δ) é definido como:

Δ𝑖 = [𝑟𝑖𝑙, 𝑟𝑖𝑢] = [(𝛼𝑖 − 𝛼̂𝑖), (𝜆𝑖 − 𝜆̂𝑖)]

= [(𝑦𝑐
𝑖 − 𝑦𝑟

𝑖 /2)− (𝑦𝑐
𝑖 − 𝑦𝑟

𝑖 /2), (𝑦𝑐
𝑖 + 𝑦𝑟

𝑖 /2)− (𝑦𝑐
𝑖 + 𝑦𝑟

𝑖 /2)]

= [(𝑦𝑐
𝑖 − 𝑦𝑐

𝑖 )− (𝑦𝑟
𝑖 − 𝑦𝑟

𝑖 )/2, (𝑦𝑐
𝑖 − 𝑦𝑐

𝑖 ) + (𝑦𝑟
𝑖 − 𝑦𝑟

𝑖 )/2]. (2.2)

A versão padronizada para o resíduo Δ𝑖 é definida como

Δ𝑆
𝑖 =

[︂
𝑟𝑖𝑙

𝐷𝑃𝑅
,

𝑟𝑖𝑢

𝐷𝑃𝑅

]︂
. (2.3)

O elemento Desvio Padrão Residual (DPR) é o desvio padrão para o intervalo residual Δ, o
qual é mostrado na Equação 2.4, seguindo a definição de desvio padrão para dados simbólicos
tipo intervalar apresentados em Bertrand e Goupil (2000). Os exemplos mostrados na Figura
2b (a) e (b) sugerem que os erros são homocedásticos e aleatórios para resíduos ordinários
e padronizados, respectivamente, sendo a variância constante e a suposição de linearidade
satisfeita.

𝐷𝑃𝑅 =

⎯⎸⎸⎸⎷ 1
3𝑛

∑︁
𝑖∈Ω

(𝑟2
𝑖𝑢 + 𝑟𝑖𝑢𝑟𝑖𝑙 + 𝑟2

𝑖𝑙)−
1

4𝑛2

⎡⎣∑︁
𝑖∈Ω

𝑟𝑖𝑢 + 𝑟𝑖𝑙

2

⎤⎦2

. (2.4)
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Figura 2 – Resíduos intervalares quando as suposições do modelo de regressão linear intervalar são satisfeitas.

Além disso, Nascimento et al. (2022 propuseram analisar os resíduos intervalar a partir do
histograma intervalar. Portanto, medidas descritivas para dados simbólicos de valor intervalar
são apresentadas. O 𝑘-ésimo momento e as medidas descritivas para dados simbólicos tipo in-
tervalar são baseados em uma função de densidade empírica para o intervalo como encontrado
em Bock e Diday (2000) e Billard e Diday (2000).

Dada uma variável simbólica com valor de intervalo 𝑍, medida por para cada elemento
da amostra aleatória 𝐸 = {1, . . . , 𝑛}. Para cada 𝑖 ∈ 𝐸 denota-se [𝑎𝑖, 𝑏𝑖] um intervalo. Uma
função de distribuição empírica de 𝑍 é uma função de 𝑛 distribuições uniformes dada por

𝐹𝑍(𝜉) = 1
𝑛

⎧⎨⎩ ∑︁
𝜉∈𝑍(𝑖)

(︃
𝜉 − 𝑎𝑖

𝑏𝑖 − 𝑎𝑖

)︃
+ #{𝑖| 𝜉 ≥ 𝑏𝑖}

𝑛

⎫⎬⎭ . (2.5)

De acordo com Bertrand e Goupil (2000) a função densidade empírica de 𝑍 baseada na
Equação (2.5) é definida como:

𝑓(𝜉) = 1
𝑛

∑︁
𝑖:𝜉∈𝑍(𝑖)

1
𝑏𝑖 − 𝑎𝑖

. (2.6)

O 𝑘-ésimo momento para uma variável simbólica intervalar 𝑍 é definido na Equação (2.7),
onde 𝑘 = 0, 1, 2, 3, 4, . . ..

𝑀𝑘 =
∫︁ +∞

−∞
𝜉𝑘 1

𝑛

∑︁
𝑖:𝜉∈𝑍(𝑖)

1
𝑏𝑖 − 𝑎𝑖

𝑑𝜉. (2.7)

O primeiro e segundo momentos empíricos para dados simbólicos intervalar são definidos
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em Bertrand e Goupil (2000), respectivamente, pelas Equações (2.8) e (2.9).

𝑀1 = 1
𝑛

∑︁
𝑖∈𝐸

𝑏𝑖 + 𝑎𝑖

2 . (2.8)

𝑀2 = 1
3𝑛

∑︁
𝑖∈𝐸

[𝑏2
𝑖 + 𝑏𝑖𝑎𝑖 + 𝑎2

𝑖 ]. (2.9)

O terceiro e o quarto momento empírico foram apresentados em Nascimento et al. (2022
e representados, respectivamente, nas Equações (2.10) e (2.11).

𝑀3 = 1
4𝑛

∑︁
𝑖∈𝐸

(𝑏3
𝑖 + 𝑎3

𝑖 + 𝑎2
𝑖 𝑏𝑖 + 𝑎𝑖𝑏

2
𝑖 ). (2.10)

𝑀4 = 1
5𝑛

∑︁
𝑖∈𝐸

𝑏5
𝑖 − 𝑎5

𝑖

𝑏− 𝑎
. (2.11)

De acordo com Bertrand e Goupil (2000) e as Equações (2.8) e (2.9), a média e a variância
empírica para dados simbólicos intervalares são apresentadas, respectivamente, como:

𝑀𝐸 = 1
𝑛

∑︁
𝑖∈𝐸

𝑏𝑖 + 𝑎𝑖

2 , (2.12)

𝑉 𝐴 = 1
3𝑛

∑︁
𝑖∈𝐸

(𝑎2
𝑖 + 𝑎𝑖𝑏𝑖 + 𝑏2

𝑖 )−
1

4𝑛2

[︃∑︁
𝑖∈𝐸

(𝑎𝑖 + 𝑏𝑖)
]︃2

. (2.13)

E por fim, a assimetria e a curtose empírica para o dado simbólico intervalar são definidas,
respectivamente, como segue as Equações (2.14) e (2.15).

𝑆𝐾 = 𝑆𝐾 = 𝑀3 − 3𝑀1𝑀2 + 2𝑀3
1 . (2.14)

𝐾𝑈 = 𝑀4 + 6𝑀2
1 𝑀2 − 3𝑀4

1 . (2.15)

2.2.2 Dados Simbólicos Poligonais

Os dados simbólicos do tipo poligonal possuem como descrição um polígono e foram intro-
duzidos por Silva, Souza e Cysneiros 2019a. Dessa forma, 𝑍 é uma variável aleatória simbólica
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poligonal quando assume valores em um polígono da forma 𝑍 = 𝜉 = (𝑎1, 𝑏1), ..., (𝑎𝑙, 𝑏𝑙) ⊂ R2

em que os segmentos de reta que ligam esses pontos formam uma figura poligonal. Outra
forma de representar a variável é 𝑍 = 𝜉 = (𝜉1, 𝜉2), onde 𝜉1 = 𝑎1, ..., 𝑎𝑙 e 𝜉2 = 𝑏1, ..., 𝑏𝑙, ou
seja, os valores que a variável pode assumir no eixo das abcissas e no eixo das ordenadas,
respectivamente.

Para agregar dados clássicos e transformá-los dados simbólicas poligonais, cada classe é
transformada em um polígono com número de lados desejada 𝑙 ≤ 𝑛, onde 𝑛 é o número de
elementos. O método de representação para dados simbólicos poligonais é baseado em dois
valores - [𝑐𝑒𝑛𝑡𝑟𝑜, 𝑟𝑎𝑖𝑜] -, sendo apta para representar polígonos regulares (SILVA; SOUZA; CYS-

NEIROS, 2019a). Esta representação transforma uma variável unidimensional em bidimensional
utilizando coordenadas polares. Para exemplificar a transformação de dados em variáveis po-
ligonais, considere a Tabela 2 sendo a descrição de dados clássicos do desempenho de alunos
matriculados em uma determinada cidade.

Tabela 2 – Tabela com dados clássicos de alunos de uma cidade.

Aluno Cidade Escola ... Nota1 Nota2

A1 C1 E1 7,7 8,2
A2 C1 E1 8,0 6,8
A3 C1 E2 8,8 8,6
A4 C1 E2 8,5 7,5
...

...
...

...
...

A119999 C1 E135 9,9 10,0
A120000 C1 E135 8,9 9,5

Seja 𝑛𝑗 o número de indivíduos na classe 𝑗. Cada indivíduo é descrito por uma variável
contínua 𝑋. Um polígono 𝑃𝑗, com 𝐿 vértices, para 𝐿 ≤ 𝑛𝑗, inscrito em uma circunferência,
pode ser definido como:

𝑃𝑗ℓ = (𝑎𝑗ℓ, 𝑏𝑗ℓ) =
(︃

𝑐𝑗 + 𝑟𝑗 cos
(︃

2𝜋ℓ

𝐿

)︃
, 𝑐𝑗 + 𝑟𝑗 sin

(︃
2𝜋ℓ

𝐿

)︃)︃
, (2.16)

em que 𝑐𝑗 representa o centro do polígono da classe 𝑗 (isto é, a média de 𝑋 na classe 𝑗) e
𝑟𝑗 = 2× dp(𝑥𝑗) é o raio do polígono (ou da circunferência), sendo dp(𝑥𝑗) o desvio padrão de
𝑋 na classe 𝑗, respectivamente. Cada 𝑃𝑗ℓ representa os pares de pontos que formam vértices
do polígono regular 𝑃𝑗, com ℓ = 1, 2, . . . , 𝐿, onde 𝐿 ∈ N≥ 3 é o número de vértices do
polígono (SILVA; SOUZA; CYSNEIROS, 2019a).
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Com esta definição, a transformação dos dados da Tabela 2 em dados simbólicos baseados
em centro e raio é representada na Tabela 3.

Tabela 3 – Tabela com dados de (centro; raio) para dados simbólicos poligonais.

Escola ... Nota1 Nota2

E1 (7,4; 5,5) (7,8; 5,6)
E2 (8,8; 4,6) (9,4; 5,0)
...

...
...

E135 (9,7; 2,5) (9,2; 3,3)

Considerando a Tabela 3 pode-se construir os vértices que formam os polígonos definindo
o número de dados 𝑙 e aplicando a Equação (2.16). Agora, a partir dos dados forma-se a
Tabela 4 onde ser visto que cada variável a descreve um indivíduo 𝑢 (escola) por 𝑍𝜔𝑢 = 𝜉𝑢 =

(𝑎𝑢1, 𝑏𝑢1), ..., (𝑎𝑢𝑙, 𝑏𝑢𝑙), com 𝑙 = 3. A Figura 3 reconstrói os polígonos dos objetos E1 e E2,
com base nas variáveis Nota1 e Nota2.

Tabela 4 – Tabela com dados simbólicos poligonais.

Escola ... Nota1 Nota2

E1 (7,2; 13,4), (2,2; 3,5), (13,4; 1,3) (7,5;13,2), (13,2; 4,8), (2,2; 5,3)
E2 (7,8; 12,6), (12,6; 4,2), (4,2; 7,8) (10,2; 14,4), (14,4; 2,5), (4,4; 8,8)
...

...
...

E135 (9,3; 12,1), (12,1; 5,5), (6,3; 8,8) (8,5; 12,5), (12,5; 6,2), (5,9; 6,5)

(a) Polígonos Observados para nota 1 (b) Polígonos Observados para nota 2

Figura 3 – Polígonos obtidos para duas classes, representando a nota 1 (a) e nota 2 (b) das escolas.

O modelo linear para dados simbólicos poligonais baseados é descrito no Algoritmo 1.
Considera-se apenas a relação linear entre o centro de 𝑦 e o centro de 𝑥𝑗 (𝑗 = 1, ..., 𝑝) assim
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como entre os raio de 𝑦 e o raio de 𝑥𝑗 (SILVA; SOUZA; CYSNEIROS, 2019a). Neste trabalho o
método descrito é referido como Modelo de Regressão Linear Poligonal (PRL).

Algoritmo 1: Método PRL
1: Entrada: Conjunto de dados simbólicos poligonais com 𝑚 observações e 𝐿 vértices.
2: Calcule (𝛽)𝑇 = (𝛽𝑐, 𝛽𝑟).

3: Calcule ŷ = 𝛽X

4: Para todo 𝑖← 1 até m faça:

5: Se 𝑦𝑟
𝑖 < 0 então:

6: 𝑦𝑟
𝑖 = 0.

7: Fim Para

8: Calcule 𝑒 = y− ŷ.
9: Calcule as métricas de desempenho

10: Construa o polígono predito através da Equação 2.16.

Seja (Ω,A, 𝑃 ) um espaço arbitrário de probabilidade e seja 𝑍 = 𝜉 = (𝜉1, 𝜉2) uma função
de valor real em Ω, define-se 𝑍 como uma distribuição uniforme no polígono 𝑃 não auto-
intersectável dada por

𝐹𝑧(𝜉) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝜉1 < 𝑎1 𝑜𝑢 𝜉2 < 𝑏1,

(𝜉1−𝑎1)(𝜉2−𝑏1)
𝐴

, se 𝑎1 ≤ 𝜉1 ≤ 𝑏2 𝑒 𝑎1 ≤ 𝜉2 ≤ 𝑏2,

1, caso contrario.

(2.17)

Sabendo que a distribuição segue a hipótese de equidistribuição, nós definimos a mistura
de distribuições uniformes poligonais dada por

𝐹𝑧(𝜉) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝜉1 < 𝑎1 𝑜𝑢 𝑦 < 𝑏1,

1
𝑚

∑︀
𝑢∈𝑆

(𝜉1−𝑎𝑢,1)(𝜉2−𝑏𝑢,1)
𝐴𝑢

, se 𝑎𝑢1 ≤ 𝑥 ≤ 𝑎𝑢2 𝑒 𝑏𝑢1 ≤ 𝑦 < 𝑏𝑢2,

1, caso contrario.

(2.18)

A Função de Distribuição de Probabilidade (FDP) empírica para a mistura de 𝑚 distribu-
ições uniformes num polígono qualquer não auto-intersectável dada por

𝑓𝑧(𝜉) =

⎧⎪⎪⎨⎪⎪⎩
1
𝑚

∑︀
𝑢∈𝑆

1
𝐴𝑢

, se 𝜉 ∈ 𝑃,

0, caso contrario.

(2.19)
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Considerando a Função de Distribuição Acumulada (FDA) definida na Equação 2.18 e que
o primeiro momento estatístico coincide com o centro de gravidade, Silva, Souza e Cysneiros
(2019a) propõem que a média poligonal empírica (𝑋𝑔, 𝑌𝑔) = (𝑋̄, 𝑋̄) seja dada por

𝑍 = ( 1
6𝑚

∑︁
𝑢∈𝑆

𝑁∑︁
𝑖=1

(𝑎𝑢,𝑖𝑎𝑢,𝑖+1) (𝑎𝑢,𝑖𝑏𝑢,𝑖+1 − 𝑎𝑢,𝑖+1𝑏𝑢,𝑖)
𝐴𝑢

,

1
6𝑚

∑︁
𝑢∈𝑆

𝑁∑︁
𝑖=1

(𝑏𝑢,𝑖𝑏𝑢,𝑖+1) (𝑎𝑢,𝑖𝑏𝑢,𝑖+1 − 𝑎𝑢,𝑖+1𝑏𝑢,𝑖)
𝐴𝑢

).
(2.20)

Já a variância, considerando a FDA e que o segundo momento de área é igual ao segundo
momento estatístico, aplica-se o modelo de mistura de densidades uniformes no polígono e
deriva-se o segundo momento empírico para 𝑍 (𝑀2(𝑍) = (𝑀2(𝜉1), 𝑀2(𝜉2))) dado por

𝑀2(𝑍) = ( 1
12𝑚

∑︁
𝑢∈𝑆

𝑁∑︁
𝑖=1

(︁
𝑎2

𝑢,𝑖 + 𝑎𝑢,𝑖𝑎𝑢,𝑖+1 + 𝑎2
𝑢,𝑖+1

)︁
(𝑎𝑢,𝑖𝑏𝑢,𝑖+1 − 𝑎𝑢,𝑖+1𝑏𝑢,𝑖)

𝐴𝑢

,

1
12𝑚

∑︁
𝑢∈𝑆

𝑁∑︁
𝑖=1

(︁
𝑏2

𝑢,𝑖 + 𝑏𝑢,𝑖𝑏𝑢,𝑖+1 + 𝑏2
𝑢,𝑖+1

)︁
(𝑎𝑢,𝑖𝑏𝑢,𝑖+1 − 𝑎𝑢,𝑖+1𝑏𝑢,𝑖)

𝐴𝑢

).

(2.21)

Seja um super retângulo que contem todos os polígonos 𝑅0
𝑑𝑒𝑓= [𝛼0, 𝛼𝑟]×[𝛽0, 𝛽𝑟]. A frequên-

cia observada para o histograma bivariado no sub-retângulo 𝑅𝑔 = [𝛼𝑔−1, 𝛼𝑔]× [𝛽𝑔−1, 𝛽𝑔], 𝑔 =

1, ...𝑟, onde 𝑟 é o número de sub-retângulos que compõem o gride do histograma é dada por

𝑓𝑔 =
∑︁
𝑢∈𝑆

area (𝑍 (𝑢) ∩𝑅𝑔)
area (𝑍 (𝑢)) . (2.22)

Além disso, a frequência relativa é calculada como

𝑝𝑔 = 𝑓𝑔

𝑚
, (2.23)

onde 𝑝𝑔 é probabilidade de um indivíduo em 𝑆 está no sub-retângulo 𝑅𝑔. O histograma para
a variável poligonal 𝑍 é a representação gráfica de {(𝑅𝑔, 𝑓𝑔), 𝑔 = 1, ..., 𝑟}. Dessa forma, para
ilustrar graficamente o histograma com altura 𝑓𝑔 sob o sub-retângulo 𝑅𝑔, então o volume é 𝑝𝑔

dado pela Equação (2.24). Além destas medidas estatísticas, Silva, Souza e Cysneiros (2019a)
também definem a covariância, correlação e coeficiente de variação poligonal.

𝑝𝑔 = (𝛼𝑔 − 𝛼𝑔−1)× (𝛽𝑔 − 𝛽𝑔−1)× 𝑓𝑔. (2.24)

Considerando esta nova aplicação em ADS, Silva, Souza e Cysneiros (2020) investigaram
a proficiência em português e matemática de estudantes brasileiros no último ano do ensino
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fundamental, utilizando o modelo de regressão simbólica poligonal. Ainda, introduziram um
conjunto de ferramentas para dados simbólicos poligonais no ambiente R, com a biblioteca
psda (SILVA; SOUZA; CYSNEIROS, 2019b). Esta biblioteca implementa as medidas descritivas,
o modelo de regressão e a representação gráfica da variável poligonal introduzidas por Silva,
Souza e Cysneiros (2019a).

A principal vantagem de agregar os dados através desta abordagem é a quantidade de
informação armazenada se comparada com o método tradicional de agregação intervalar
[𝑚𝑖𝑛, 𝑚𝑎𝑥] (BILLARD; DIDAY, 2006; SILVA; SOUZA; CYSNEIROS, 2019a).

2.3 MODELOS LINEARES GENERALIZADOS

Os modelos de regressão linear baseados nos mínimos quadrados ordinários possuem su-
posições, como normalidade dos erros associados ao modelo, variável resposta numérica e
variância constante, a qual não é verdadeira para todos os dados (MONTGOMERY; PECK; VI-

NING, 2012). Além disso, pode-se facilmente violar as suposições quando a variável resposta é
binária ou relacionada à processos de contagem.

Os Modelos Lineares Generalizados (MLG) ampliam as possibilidades de modelagem da
variável resposta ao contemplar distribuições pertencentes à família exponencial, flexibilizando
a relação funcional entre a variável resposta e as variáveis explicativas (PAULA, 2013). Assu-
mindo que as respostas seguem uma distribuição pertencente à família exponencial, os MLG
permitem componentes sistemáticos mais gerais para o modelo (DUNN; SMYTH, 2018).

A função densidade de uma variável aleatória 𝑌 pertencente à família exponencial pode
ser expressa como:

𝑓 (𝑦; 𝜃, 𝜑) = exp [𝜑 {𝑦𝜃 − 𝑏 (𝜃)}+ 𝑐 (𝑦, 𝜑)] . (2.25)

De acordo com Paula (2013), 𝐸(𝑌 ) = 𝜇 = 𝑏′(𝜃), 𝑉 𝑎𝑟(𝑌 ) = 𝜃−1𝑏′′(𝜃) = 𝜑−1𝑉 , em que
𝑉 = 𝑉 (𝜇) = 𝑑𝜇/𝑑𝜃 é a função de variância e 𝜑−1 > 0 é o parâmetro de dispersão ou precisão,
têm-se ainda 𝜑 que será o parâmetro de localização. A função de variância desempenha um
papel importante na família exponencial, uma vez que a mesma caracteriza a distribuição e
para algumas distribuições a variância muda conforme a sua média (PAULA, 2013).

Os componentes aleatórios e sistemáticos especificam formas para os MLG, e fazem parte
dos seguintes elementos que os definem:

1. A distribuição de probabilidade da variável resposta 𝑌𝑖, com 𝑖 = 1, ..., 𝑛, pertencendo
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à família exponencial dada pela Equação 2.25 determina o componente do aleatório
do modelo. Esta distribuição pode ser sugerida pela variável resposta (como exemplo,
proporções sugerem uma distribuição Binomial) ou por conhecer como a variância muda
com a média.

2. O componente sistemático, sendo 𝑔(𝜇𝑖) = 𝜂𝑖 sendo,

𝜂𝑖 = 𝛽0 + 𝛽𝑖𝑋𝑖1 + 𝛽𝑖𝑋𝑖2 + ... + 𝛽𝑘𝑋𝑖𝑘, (2.26)

onde 𝜂𝑖 é o preditor linear que pode ser utilizado para fazer predições e se relacionam
com a média da variável resposta 𝜇𝑖.

3. Os MLG assumem uma função monótona e diferenciável que liga o preditor linear 𝜂𝑖

à média 𝜇𝑖, cuja função é adequada para relacionar os componentes aleatórios e sis-
temáticos do modelo, denominada função de ligação 𝑔(.). A função de ligação por ser
invertível, transforma a esperança da variável resposta no preditor linear, como mostra
a Equação (2.27). A função de ligação inversa 𝑔−1(.) também é chamada de função
média.

𝐸(𝑌𝑖) = 𝜇𝑖 = 𝑔−1(𝜂𝑖) = 𝑔−1(𝛽0 + 𝛽𝑖𝑋𝑖1 + 𝛽𝑖𝑋𝑖2 + ... + 𝛽𝑘𝑋𝑖𝑘). (2.27)

Os casos particulares e mais conhecidos da distribuição exponencial são os modelos contí-
nuos os quais incluem distribuições Normal, Gama e Normal Inversa. Já os modelos discretos
incluem as distribuições de Poisson e Binomial. Portanto, a família de distribuições exponen-
cial permite que os MLG sejam ajustados a vários de tipos de dados, incluindo dados binários,
proporções, contagens e dados contínuos assimétricos e positivos (DUNN; SMYTH, 2018), como
mostrado na Tabela 5.

Em relação as ligações canônicas, sua utilização implica em algumas interessantes proprie-
dades pois simplifica as estimativas de máxima verossimilhança dos parâmetros do modelo, mas
também o cálculo do intervalo de confiança para a média da resposta (MYERS et al., 2002).
Contudo, isto não implica em qualidade do ajuste de modelo, sendo apropriadas diferentes
funções de ligação diferentes das canônicas.
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Tabela 5 – Distribuições para a variável resposta 𝑌 e a natureza dos dados.

Distribuição Tipo de Dados
Binomial Proporção
Poisson Contagem
Normal Contínuos

Normal Inversa Contínuos Assimétricos
Gama Contínuos Assimétricos

A Tabela 6 apresenta as funções 𝜃, 𝜑, 𝑏(𝜃) e 𝑐(𝑦, 𝜑) específicas para cada uma destas
distribuições, assim como suas respectivas ligações canônicas.

Tabela 6 – Funções da família exponencial.

Distribuição 𝑏(𝜃) 𝜃 𝜑 𝑉 (𝜇𝑖) 𝑔(𝜃)
Binomial 𝑛log(1− 𝜇) log{𝜇/(1− 𝜇)} 1 𝜇(1− 𝜇) log{𝜇/(1− 𝜇)}
Poisson 𝜖𝜃 log𝜇 1 𝜇 log𝜇

Normal 𝜃2/2 𝜇 𝜎−2 1 𝜇

Normal Inversa 1/𝜇 −1/2𝜇2 𝜃2 𝜇3 1/𝜇2

Gama -log(−𝜃) −1/𝜇 1/𝛼 𝜇2 1/𝜇

Em modelos de regressão é importante verificar possíveis afastamentos de pontos observa-
dos com os pontos do modelo estimado, levando em consideração a parte aleatória e a parte
sistemática do modelo. Os resíduos no contexto dos MLG são utilizados para explorar a ade-
quação do modelo ajusta no que diz respeito a escolha da distribuição proposta para a variável
resposta. A importância é verificar desvios sistemáticos, ocasionado pela escolha inadequada
da função de ligação e da função de variância.

2.3.1 Modelos Lineares Generalizados na Análise de Dados Simbólicos

Assim como nos MLG clássicos (DUNN; SMYTH, 2018), o modelo BGLM estudado por
Neto et al. (2009) para dados intervalar também é formado por um componente aleatório e
um componente sistemático. A abordagem foi construída a partir do modelo clássico Bivariate

Generalized Linear Model (BGLM) proposto por Iwasaki e Tsubak 2005. No componente
aleatório, considera-se o vetor bivariado
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Y =

⎡⎢⎢⎣𝑌1

𝑌2

⎤⎥⎥⎦ ,

pertencente à família exponencial bivariada. No contexto de ADS com variáveis tipo intervalar,
pode-se considerar as variáveis aleatórias 𝑌1 e 𝑌2 como, por exemplo, limites inferior e superior
ou no centro e range dos intervalos, respectivamente. Lima Neto et al. (2009) indicam que o
componente sistemático, formado pelas variáveis explicativas responsáveis pela variabilidade
de 𝑌1 e 𝑌2 , é definido por

𝜂1 = 𝑔1(𝜇1) = 𝛽1X1 e 𝜂2 = 𝑔2(𝜇2) = 𝛽2X2, (2.28)

em que X1 e X2 são são matrizes formadas por variáveis explicativas, 𝛽1 e 𝛽2 são os vetores
de parâmetros e 𝑔1(𝜇1) e 𝑔2(𝜇2) são as funções de ligação. Os experimentos desenvolvidos por
Lima Neto et al. (2009) consideram que o vetor aleatório Y para os limites inferior e superior
segue a distribuição normal e as funções de ligação 𝑔1(𝜇1) e 𝑔2(𝜇2) são identidade (𝜂 = 𝜇).
Os resultados foram comparados com os métodos introduzidos por Bilard e Diday (2000) e
Lima Neto e De Carvalho (2008).

No contexto da representação centro-range, Lima Neto, Cordeiro e Carvalho (2011) pro-
puseram modelos de regressão simbólica bivariada baseadas em MLG. Com este trabalho os
autores ampliaram as possibilidades de lidar com a variável resposta com dados simbólicos tipo
intervalar, que agora podem constituir diferente distribuições. Aplicações em dados simulados
ilustraram a usabilidade da abordagem proposta.

Como parte das abordagens baseadas nos MLG voltadas à regressão logística, classifica-
dores típicos para dados intervalares realizam predições, em geral, a partir das estimativas dos
limites inferior e superior (SOUZA; QUEIROZ; CYSNEIROS, 2011; BARROS; CARVALHO; NETO,
2012). Em (SOUZA; QUEIROZ; CYSNEIROS, 2011), foi proposta quatro regras de classificação
que combina as previsões derivadas desses limites da representação intervalar:

• IDPC-CSP: O classificador IDPC-CSP estima a probabilidade de um padrão pertencer à
classe 𝑘 utilizando como covariáveis os centros dos intervalos, calculados pela média dos
limites inferior e superior. Um modelo de regressão logística multinomial é ajustado com
base nesse vetor de centros, e os parâmetros são estimados por máxima verossimilhança.

• IDPC-SP: O classificador IDPC-SP estima a probabilidade de classe considerando con-
juntamente os limites inferior e superior de cada intervalo como covariáveis. O vetor de
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entrada possui 2𝑝 componentes, e um modelo logístico multinomial é ajustado para cada
classe com base nesse vetor. Os parâmetros são estimados por máxima verossimilhança,
utilizando 𝐾 transformações logísticas no caso multiclasse.

• IDPC-VSP: O classificador IDPC-VSP estima a probabilidade de classe utilizando os
vértices dos hipercubos definidos pelos limites inferior e superior dos intervalos. Cada
padrão intervalar é representado por 2𝑝 vértices, e um modelo de regressão logística
multinomial é ajustado com base nesses vértices. Os parâmetros do modelo são estimados
por máxima verossimilhança.

• IDPC-PP: O último classificador proposto, Modelo de Classificação Intervalar baseado
em Probabilidade a Posteriori Combinada (IDPC-PP), estima a probabilidade de classe
combinando duas regressões logísticas multinomiais ajustadas separadamente aos limi-
tes inferior e superior dos intervalos. A probabilidade a posteriori final é obtida pela
média das probabilidades estimadas por cada modelo. Os parâmetros são estimados por
máxima verossimilhança. Os autores demonstraram, com experimentos em bases reais e
sintéticas, que o IDPC-PP apresentou menores erros de classificação em relação a outros
classificadores intervalares propostos.

Com base nos estudos apresentados, observa-se que os classificadores intervalares, em
especial o IDPC-PP, têm se mostrado eficazes na modelagem de dados simbólicos intervalares.
Tal abordagem fundamenta a proposta deste trabalho, que visa estender esses conceitos para
dados poligonais por meio de regras de classificação baseadas em regressão logística. A próxima
seção apresenta em detalhes a metodologia adotada para essa extensão.
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3 MODELOS LINEARES GENERALIZADOS PARA DADOS SIMBÓLICOS DO

TIPO POLIGONAL

Este capítulo introduz a abordagem de Modelos Lineares Generalizados (MLG) para dados
simbólicos tipo poligonal, referenciada nesta tese como Modelo Linear Generalizado Poligonal
(PMLG). Conforme discutido no Capítulo 2, esse conjunto de modelos foi previamente explo-
rado na área da Análise de Dados Simbólicos (ADS) apenas para dados simbólicos do tipo
intervalar (NETO et al., 2009; NETO; CORDEIRO; CARVALHO, 2011). Para dados poligonais, os
estudos anteriores se restringiram à aplicação do método dos mínimos quadrados ordinários
(SILVA; SOUZA; CYSNEIROS, 2019a; SILVA; SOUZA; CYSNEIROS, 2019b).

Este capítulo descreve o modelo proposto para dados oriundos de diferentes distribuições.
Define-se o conceito de resíduo poligonal, uma vez que a literatura atual ainda se apoia
em estatísticas clássicas para a análise de resíduos em modelagens poligonais. Também são
apresentadas métricas de desempenho baseadas nos erros de predição, as quais ampliam a
aplicabilidade dos modelos lineares no contexto da ADS. No caso da distribuição Binomial,
são estabelecidas regras de classificação fundamentadas na regressão logística.

3.1 MODELO LINEAR GENERALIZADO POLIGONAL

O PMLG possui um componente aleatório Y pertencente à família exponencial, sendo
um vetor de variáveis 𝑌 𝑐 e 𝑌 𝑟 para valores de centros e de raios com médias 𝜇𝑐 e 𝜇𝑟,
respectivamente. O componente sistemático é definido por um preditor linear 𝜂, onde

𝜂𝑐 = xcT𝛽c e (3.1)

𝜂𝑟 = xrT𝛽r, (3.2)

sendo 𝛽c e 𝛽r vetores de parâmetros com 𝑝 < 𝑚, xcT = (𝑥𝑐
𝑗1, ..., 𝑥𝑐

𝑗𝑝) e xrT = (𝑥𝑟
𝑗1, ..., 𝑥𝑟

𝑗𝑝)

sendo matrizes formadas por variáveis explicativas com 𝑗 = 1, ..., 𝑚. Ainda, funções de ligação
𝑔𝑐(𝜇𝑐) = 𝜂𝑐 e 𝑔𝑟(𝜇𝑟) = 𝜂𝑟. Em MLG, a solução para o vetor de parâmetros desconhecidos
𝛽 = (𝛽𝑐, 𝛽𝑟) = W1/2X(XTWX)−1XTW1/2, sendo W o elemento de reponderação da
matriz.

A predição de um novo exemplo é calculada a partir dos preditores lineares para o centro e o
raio, dados por 𝜂𝑐 = X𝑐𝛽̂

𝑐 e 𝜂𝑟 = X𝑟𝛽̂
𝑟, respectivamente, e as médias correspondentes são
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obtidas pela função inversa da ligação: 𝜇̂𝑐 = (𝑔𝑐)−1 (𝜂𝑐) e 𝜇̂𝑟 = (𝑔𝑟)−1 (𝜂𝑟). O Algoritmo
2 descreve os passos do PMLG.

Algoritmo 2: PMLG: Modelos Lineares Generalizados para Dados Poligonais
1: Entrada: Conjunto de dados simbólicos poligonais com 𝑚 observações e 𝐿 vértices.
2: Saída: Preditores de centros e raios 𝜂𝑐

𝑖 e 𝜂𝑟
𝑖 , respectivamente.

3: Início

4: Defina as funções de ligação 𝑔𝑐(·) e 𝑔𝑟(·) conforme a distribuição da variável
resposta.

5: Estime os parâmetros dos modelos para centro e raio:
6: 𝛽𝑐 ← estimação via máxima verossimilhança para o centro;
7: 𝛽𝑟 ← estimação via máxima verossimilhança para o raio;
8: Para 𝑖 = 1 até 𝑚 faça:
9: Calcule os preditores lineares: 𝜂𝑐

𝑖 = x𝑐𝑇
𝑖 𝛽𝑐 e 𝜂𝑟

𝑖 = x𝑟𝑇
𝑖 𝛽𝑟;

10: Aplique as funções de ligação inversas:
11: 𝜇̂𝑐

𝑖 = (𝑔𝑐)−1(𝜂𝑐
𝑖 ), 𝜇̂𝑟

𝑖 = (𝑔𝑟)−1(𝜂𝑟
𝑖 );

12: Fim Para

13: Aplique a métrica de avaliação do modelo.
14: Fim

Dependendo do tipo da variável resposta, diferentes distribuições pertencentes à família ex-
ponencial podem ser consideradas no escopo do PMLG. Dessa forma, o PMLG generaliza a
abordagem tradicional dos MLG ao permitir a modelagem de variáveis simbólicas poligonais
em diferentes contextos:

• Distribuições contínuas: modelagem de medidas reais de centro e raio, adequada para
problemas de regressão com distribuições contínuas. O polígono 𝑃𝑖 (𝑖 = 1, ..., 𝑚) com
𝐿 vértices é obtido a partir da Equação (3.3):

𝑃𝑖𝑙 =
(︂

𝜇̂𝑐
𝑖 + 𝜇̂𝑟

𝑖 𝑐𝑜𝑠(2𝜋𝑟

𝑙
), 𝜇̂𝑐

𝑖 + 𝜇̂𝑟
𝑖 𝑠𝑖𝑛(2𝜋𝑟

𝑙
)
)︂

, onde 𝑙 = 1, ..., 𝐿. (3.3)

Desta forma, obtêm-se os pares de vértices preditos da 𝑖-ésima observação que reconstrói
o polígono. Se 𝜇̂𝑟

𝑖 < 0, então 𝜇̂𝑟
𝑗 = 0, configurando um polígono degenerado.

• Distribuições discretas (Binomial): modelagem de dados categóricos, adequada para
problemas de classificação, em que se busca prever a categoria ou rótulo a que pertence
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cada observação. Podem ser aplicadas regras de classificação para uma resposta discreta
com base em 𝜇̂𝑐

𝑖 e 𝜇̂𝑟
𝑖 da 𝑖-ésima observação.

3.2 PMLG PARA DISTRIBUIÇÕES CONTÍNUAS

Nesta seção, apresenta-se a formalização do PMLG para distribuições contínuas, com foco
na definição de resíduos e nas métricas utilizadas para avaliação preditiva. Introduz-se um
resíduo poligonal baseado na diferença entre os vértices dos polígonos observados e preditos.
Também são discutidas diferentes métricas de desempenho que permitem comparar a qualidade
preditiva de modelos e estratégias de regressão aplicados a dados poligonais.

3.2.1 Resíduo Poligonal baseado nos Vértices

Em regressão linear clássica, um resíduo é definido como a diferença entre o valor obser-
vado e o valor predito baseado na equação de regressão. A análise de resíduos é um passo
essencial para identificar os efeitos de desvios de suposições de um modelo de regressão. Uma
análise residual comum para dados simbólicos com valor de intervalo é construída a partir da
representação centro e intervalo, ou seja, é baseada na análise de resíduos para dados clássicos.

Em Nascimento et al. (2022), são investigadas as premissas do modelo de regressão li-
near a partir dos resíduos intervalares. Esta abordagem considera os centros e os intervalos
dos resíduos resultando em uma medida única. Além disso, um estudo foi realizado a partir
da definição de resíduo padronizado. Na abordagem poligonal introduzida por Silva, Souza
e Cysneiros (2019a) a diferença entre observados e preditos é calculada a partir das áreas
poligonais. No entanto, ainda não há um estudo detalhado acerca dos resíduos.

Assim, este trabalho propõe o resíduo poligonal ordinário, ou seja, a forma poligonal da
diferença entre os polígonos observados e preditos, tendo como base a Equação 2.16. Seja
Ω um espaço de polígonos e 𝑍 uma variável aleatória 𝑍 : Ω → R2 que assume valores no
polígono 𝑃 com L vértices. Então 𝑍 = 𝜉 = {(𝑎1, 𝑏1), ..., (𝑎𝐿, 𝑏𝐿)} ⊂ R2. Ele pode ser reescrito
como 𝑍 = 𝜉 = (𝜉1, 𝜉2), onde 𝜉1 = {𝑎1, ..., 𝑎𝐿} e 𝜉2 = {𝑏1, ..., 𝑏𝐿}. Define-se a diferença de
resíduos pela Equação (3.4, onde 𝑐 é o centro observado e 𝑐 é o predito, 𝑟 é o raio observado
e 𝑟 é o predito. Essa métrica quantifica a discrepância entre o polígono observado e o predito
em termos das componentes estruturais que o definem, centro e raio. Valores maiores indicam
maior divergência entre o polígono gerado pelo modelo e aquele observado nos dados.
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Δ𝑖 =
[︁
(𝑎𝑖𝑙 − 𝑎̂𝑖𝑙) ,

(︁
𝑏𝑖𝑙 − 𝑏̂𝑖𝑙

)︁]︁
=

[︁(︁
𝑐𝑖+𝑟𝑖 cos

(︁
2𝜋𝑙
𝐿

)︁)︁
−
(︁

𝑐𝑖+𝑟𝑖 cos
(︁

2𝜋𝑙
𝐿

)︁)︁
,

(︁
𝑐𝑖+𝑟𝑖 sin

(︁
2𝜋𝑙
𝐿

)︁)︁
−
(︁

𝑐𝑖+𝑟𝑖 sin
(︁

2𝜋𝑙
𝐿

)︁)︁]︁
=

[︁(︁
(𝑐𝑖−𝑐𝑖)+𝑟𝑖 cos

(︁
2𝜋𝑙
𝐿

)︁)︁
−
(︁

𝑐𝑖+𝑟𝑖 cos
(︁

2𝜋𝑙
𝐿

)︁)︁
,

(︁
𝑐𝑖+𝑟𝑖 sin

(︁
2𝜋𝑙
𝐿

)︁)︁
−
(︁

𝑐𝑖+𝑟𝑖 sin
(︁

2𝜋𝑙
𝐿

)︁)︁]︁
(3.4)

3.2.2 Métricas de Desempenho

A avaliação da qualidade preditiva de modelos é uma etapa essencial em qualquer abor-
dagem estatística ou de aprendizado de máquina, especialmente em contextos que envolvem
representações simbólicas, como os dados poligonais. A escolha das métricas de avaliação
influencia diretamente a interpretação dos resultados, podendo ressaltar ou ocultar caracterís-
ticas relevantes do modelo. Nesse contexto, o trabalho de Silva, Souza e Cysneiros (2019a)
desenvolveu um método de avaliação de performance de modelos denominado Erro Médio
Quadrático da Área (EMQA), o qual é dado por:

𝐸𝑄𝑀𝐴 =
⎯⎸⎸⎷1

𝑟

𝑟∑︁
𝑢=1

[︁
(𝑎𝑟𝑒𝑎(𝑃𝑢)− 𝑎𝑟𝑒𝑎𝑃𝑢)

]︁2
, (3.5)

onde 𝑃𝑢 é o polígono observado e 𝑃𝑢 o polígono predito. Observa-se que essa medida considera
apenas a área dos polígonos, desconsiderando a posição que eles ocupam no espaço R2. A
implicação disso é que os polígonos podem ter valores de raio semelhantes, resultando em
áreas próximas ou equivalentes, mas apresentar grande dispersão em relação aos centros e,
consequentemente, em suas posições, tornando essa medida de qualidade incompleta.

A Figura 4 ilustra essa discussão. Em (a), apresenta-se a representação de dois polígonos
que possuem formas semelhantes e áreas próximas. Com base na diferença de áreas, o resí-
duo calculado é pequeno. Contudo, ao considerar a posição dos polígonos, observa-se que a
diferença entre seus centros é mais significativa. Já em (b), está apresentada a proposta de
resíduo, que representa a diferença entre os vértices dos polígonos.
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Figura 4 – Representação da diferença entre vértices dos Polígonos.

Dito isto, este trabalho propõe uma medida de performance baseada nos vértices dos
polígonos. Com base no resíduo poligonal proposto na Equação 3.4, define-se o Erro Médio
Quadrático da Distância dos Vértices (EMQDV).

𝐸𝑀𝑄𝐷𝑉 =
⎯⎸⎸⎷ 1

2𝑟

𝑟∑︁
𝑢=1

[︁
(𝑎𝑢𝑙 − 𝑎̂𝑢𝑙) + (𝑏𝑢𝑙 − 𝑏̂𝑢𝑙)

]︁2
, (3.6)

onde 𝑎 e 𝑎̂ constituem os valores do eixo das abcissas,𝑏 e 𝑏̂ os valores do eixo das coordenadas e
𝑙 = 1, ..., 𝐿. A distância Euclideana é considerada, na qual obtém-se o somatório das diferenças
de cada par de vértice.
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Neste trabalho, ainda se considera a avaliação dos erros de predição sob dois métodos de
desempenho. O primeiro definido como Erro Médio Quadrático da Área e Centro Conjunta-
mente (EMQAC), é uma adaptação do modelo proposto por Silva, Souza e Cysneiros (2019a)
o qual é acrescido do valor de centro, ou posição como definido na Equação 3.7.

𝐸𝑀𝑄𝐴𝐶 =
⎯⎸⎸⎷ 1

2𝑟

𝑟∑︁
𝑢=1

[︁
(𝑎𝑟𝑒𝑎(𝑃𝑢)− 𝑎𝑟𝑒𝑎𝑃𝑢) + (𝑐𝑒𝑛𝑡𝑟𝑜𝑢 − ^𝑐𝑒𝑛𝑡𝑟𝑜𝑢)

]︁2
. (3.7)

O segundo é baseado apenas em valores de centro e raio, definido na Equação 3.8 e
referenciado por Erro Médio Quadrático do Centro e Raio Conjuntamente (EMQCR). Portanto,
avaliam-se os modelos de regressão e o resultado das quatro medidas métricas do erro definidas.
Os cenários de avaliação consideram bases de dados simuladas e reais.

𝐸𝑀𝑄𝐶𝑅 =
⎯⎸⎸⎷ 1

2𝑟

𝑟∑︁
𝑢=1

[︁
(𝑐𝑒𝑛𝑡𝑟𝑜𝑢 − ^𝑐𝑒𝑛𝑡𝑟𝑜𝑢) + (𝑟𝑎𝑖𝑜𝑢 − ^𝑟𝑎𝑖𝑜𝑢)

]︁2
. (3.8)

3.3 PMLG PARA DISTRIBUIÇÕES DISCRETAS

A modelagem de variáveis categóricas é uma etapa central em diversos problemas de
classificação. Nesse contexto, distribuições da família exponencial, como a Binomial, fornecem
uma base probabilística para a construção de modelos preditivos. Quando a variável resposta
segue uma distribuição Binomial, uma abordagem comum é utilizar a regressão logística. Por
exemplo, um MLG com função de ligação logit para uma variável Binomial é dado por:

logit(𝑝) = ln
(︃

𝑝

1− 𝑝

)︃
= X𝛽,

onde 𝑝 é a probabilidade de sucesso, X são as variáveis explicativas, e 𝛽 são os coeficientes do
modelo. Esse modelo é amplamente utilizado para prever probabilidades de eventos binários.
A função inversa do logit transforma o preditor linear X𝛽 no intervalo (0, 1), sendo expressa
por:

𝑝 = 𝑒𝑋𝛽

1 + 𝑒𝑋𝛽
. (3.9)

No contexto do PMLG, essa abordagem é estendida para representar uma variável resposta
simbólica poligonal, modelada por meio de dois componentes aleatórios 𝑌 𝑐 e 𝑌 𝑟, que represen-
tam, respectivamente, o centro e o raio do polígono. Ambos os componentes são considerados
pertencentes à família exponencial. Sejam 𝑝𝑐 = 𝑃 (𝑌 = 1 | 𝑥𝑐) e 𝑝𝑟 = 𝑃 (𝑌 = 1 | 𝑥𝑟) as
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probabilidades de sucesso associadas às componentes de centro e raio das variáveis preditoras,
respectivamente. Os modelos logísticos são definidos por:

𝜂𝑐 = logit(𝑝𝑐) = ln
(︃

𝑝𝑐

1− 𝑝𝑐

)︃
= X𝑐𝛽𝑐,

𝜂𝑟 = logit(𝑝𝑟) = ln
(︃

𝑝𝑟

1− 𝑝𝑟

)︃
= X𝑟𝛽𝑟,

onde X𝑐 e X𝑟 são as variáveis explicativas para o centro e o raio, 𝛽𝑐 e 𝛽𝑟 os são os respectivos
coeficientes, e 𝑝𝑐 = 1

1+exp(𝜂𝑐) e 𝑝𝑟 = 1
1+exp(𝜂𝑟) .

Dessa forma, nesta seção apresentam-se três regras de classificação baseadas no PMLG
com distribuição Binomial: a primeira é baseada na média aritmética das predições; a segunda
utiliza uma média ponderada otimizada por meio de um algoritmo de otimização; e a terceira
baseia-se em uma representação por protótipos e probabilidades. Essas regras são aplicadas
considerando que a predição de um novo exemplo é calculada a partir das predições do centro e
do raio, dadas por 𝜂𝑐

𝑖 =
(︁
𝑋𝑐

𝑖 𝛽𝑐
𝑝

)︁
e 𝜂𝑟

𝑖 =
(︁
𝑋𝑟

𝑖 𝛽𝑟
𝑝

)︁
resultando nas probabilidades a posteriori

𝑝𝑐
𝑖 = 𝜇̂𝑐

𝑖 = 𝑔𝑐−1
(︁
𝜂𝑐

𝑝

)︁
e 𝑝𝑟

𝑖 = 𝜇̂𝑟
𝑖 = 𝑔𝑟−1

(︁
𝜂𝑟

𝑝

)︁
. Além disso, essa abordagem pode ser

estendida para problemas com mais de duas classes por meio da técnica “um contra todos”
(one-vs-all).

3.3.1 Regra de Classificação Baseada na Média Aritmética das Predições

Nesta regra a ideia é assumir que os dados de centro e raio das variáveis preditoras possuem
o mesmo peso na obtenção da probabilidade a posteriori associada a x. Seja 𝑃 (𝑌 = 1 | x)

a probabilidade a posteriori associada a x. O modelo logístico para dados poligonais combina
as predições para o centro e o raio tomando a média de suas probabilidades a posteriori. A
probabilidade a posteriori combinada para 𝑌 = 1 é dada por:

𝑃 (𝑌 = 1 | x) = 𝑝𝑐 + 𝑝𝑟

2 ,

onde 𝑝𝑐 e 𝑝𝑟 representam as probabilidades a posteriori estimadas a partir dos modelos logísticos
ajustados para o centro e o raio, respectivamente. A decisão final de classificação é obtida
comparando 𝑃 (𝑌 = 1 | x) com um limiar 𝜏 , fixado em 0,5. Assim, a classe predita 𝑦 é definida
por:
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𝑦 =

⎧⎪⎪⎨⎪⎪⎩
1, se 𝑃 (𝑌 = 1 | x) ≥ 𝜏,

0, caso contrário.

Essa estratégia de combinação é comumente utilizada em problemas de classificação que
envolvem dados simbólicos ou intervalares, nos quais modelos separados são construídos para
diferentes componentes do intervalo, tipicamente os limites inferior e superior (SOUZA; QUEI-

ROZ; CYSNEIROS, 2011). O Algoritmo 3 apresenta os passos da regra de classificação.

Algoritmo 3: Regra de classificação para o PMLG baseado na média aritmética
1: Entrada: Conjunto de dados poligonais com 𝑚 observações e 𝐿 vértices.
2: Saída: Probabilidade a posteriori 𝑃 (𝑌 = 1 | x).
3: Início

4: Defina as funções de ligação 𝑔𝑐(·) e 𝑔𝑟(·) como logit.
5: Estime os parâmetros dos modelos para centro e raio:
6: 𝛽𝑐 ← estimação via máxima verossimilhança para o centro;
7: 𝛽𝑟 ← estimação via máxima verossimilhança para o raio;
8: Para 𝑖 = 1 até 𝑚 faça:
9: Calcule os preditores lineares: 𝜂𝑐

𝑖 = x𝑐𝑇
𝑖 𝛽𝑐 e 𝜂𝑟

𝑖 = x𝑟𝑇
𝑖 𝛽𝑟;

10: Aplique as funções de ligação inversas:
11: 𝑝𝑐

𝑖 = 𝜇̂𝑐
𝑖 = (𝑔𝑐)−1(𝜂𝑐

𝑖 ) e 𝑝𝑟
𝑖 = 𝜇̂𝑟

𝑖 = (𝑔𝑟)−1(𝜂𝑟
𝑖 );

12: Fim Para

13: Para cada nova observação x faça:

14: Compute 𝑃 (𝑌 = 1 | x) = 𝑝𝑐+𝑝𝑟

2 .

15: Fim Para

16: Fim

3.3.2 Regra de Classificação Baseada na Média Otimizada das Predições

O processo de ponderação na representação de dados em ADS tem sido abordado em
alguns trabalhos. Em (ARAÚJO et al., 2017), o objetivo foi ajustar a influência relativa dos limites
inferior e superior dos intervalos na medida de distância utilizada para a classificação. Para isso,
foi considerado um parâmetro de controle 𝜏 ∈ [0, 1], avaliado por meio da variação de seus
valores a fim de analisar o impacto dos limites na performance do classificador. Diferentemente
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da média aritmética simples, que atribui o mesmo peso fixo aos extremos do intervalo (ou seja,
trata os limites inferior e superior como igualmente relevantes), o processo de ponderação
possibilita controlar a influência de cada limite conforme as características do problema.

Por sua vez, a regra de classificação baseada na média ponderada das predições proposta
utiliza o algoritmo Particle Swarm Optmization (PSO) (KENNEDY; EBERHART, 1995), no por-
tuguês Otimização por Enxame de Partículas, uma metaheurística populacional inspirada na
inteligência coletiva de enxames, para determinar o valor ótimo do parâmetro 𝜆, que atua
como um fator de ponderação responsável por equilibrar as contribuições das predições as-
sociadas ao centro e ao raio. O PSO tem recebido grande atenção na comunidade científica
devido ao seu desempenho em resolver problemas complexos de otimização sem a necessidade
de suposições sobre a função objetivo (GAD, 2022). Um enxame de partículas atualiza suas
posições de uma iteração para a próxima, permitindo que o algoritmo PSO realize efetivamente
o processo de busca. Para encontrar a solução ótima, cada partícula se move em direção à sua
melhor posição anterior e à melhor posição global identificada dentro do enxame (KENNEDY;

EBERHART, 1995; GAD, 2022).
Neste contexto, a otimização de 𝜆 é realizada para maximizar a acurácia da classificação,

definida como:

Acurácia =
∑︀𝑛

𝑖=1 𝐼(𝑦𝑖 = 𝑦𝑖)
𝑛

,

onde 𝐼(𝑦𝑖 = 𝑦𝑖) é a função indicadora que vale 1 se 𝑦𝑖 for igual à 𝑦𝑖, e 0 caso contrário. Após
a otimização, o valor de 𝜆 é usado na regra final de classificação. A probabilidade a posteriori

combinada para a classe é dada por:

𝑃 (𝑌 = 1 | x) = 𝜆× 𝑝𝑐 + (1− 𝜆)× 𝑝𝑟,

onde 𝑝𝑐 e 𝑝𝑟 são as probabilidades a posteriori estimadas pelos modelos logísticos para o centro
e o raio, respectivamente, e 𝜆 é um peso obtido por meio de um processo de otimização que
equilibra as contribuições dessas duas representações. Esse elemento permite ajustar dinamica-
mente a influência relativa de centro e raio no modelo final. A otimização de 𝜆 visa maximizar
a acurácia, tornando o modelo mais flexível e mais robusto, principalmente em casos onde
uma das representações pode ser mais informativa que a outra. O Algoritmo 4 apresenta os
passos da regra de classificação.
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Algoritmo 4: Regra de classificação do PMLG baseada em Otimização da Média
1: Entrada: Conjunto de dados poligonais com 𝑚 observações e 𝐿 vértices.
2: Saída: Probabilidade a posteriori 𝑃 (𝑌 = 1 | x).
3: Início

4: Defina as funções de ligação 𝑔𝑐(·) e 𝑔𝑟(·) como logit.
5: Estime os parâmetros dos modelos para centro e raio:
6: 𝛽𝑐 ← estimação via máxima verossimilhança para o centro;
7: 𝛽𝑟 ← estimação via máxima verossimilhança para o raio;
8: Para 𝑖 = 1 até 𝑚 faça:
9: Calcule os preditores lineares: 𝜂𝑐

𝑖 = x𝑐𝑇
𝑖 𝛽𝑐 e 𝜂𝑟

𝑖 = x𝑟𝑇
𝑖 𝛽𝑟;

10: Aplique as funções de ligação inversas:
11: 𝑝𝑐

𝑖 = 𝜇̂𝑐
𝑖 = (𝑔𝑐)−1(𝜂𝑐

𝑖 ) e 𝑝𝑟
𝑖 = 𝜇̂𝑟

𝑖 = (𝑔𝑟)−1(𝜂𝑟
𝑖 );

12: Fim Para

13: Aplique PSO para encontrar o valor ótimo 𝜆* que maximiza a acurácia;
14: Para cada nova observação x faça:

15: Calcule 𝑃 (𝑌 = 1 | x) = 𝜆× 𝑝𝑐 + (1− 𝜆)× 𝑝𝑟.

16: Fim Para

17: Fim

Nesta tese, a otimização do parâmetro 𝜆 foi realizada utilizando o algoritmo PSO, implemen-
tado na função psoptim do pacote pso em R. Com o objetivo de garantir a reprodutibilidade,
os principais parâmetros do algoritmo foram explicitamente documentados na Tabela 7. Ape-
nas o número máximo de iterações (maxit) foi modificado, sendo aumentado do valor padrão
de 100 para 500, a fim de assegurar a convergência.

Tabela 7 – Configurações dos parâmetros do algoritmo PSO.

Parâmetro Valor padrão Valor utilizado
Tamanho do enxame (𝑠) 40 40
Número máximo de iterações (𝑚𝑎𝑥𝑖𝑡) 100 500
Número máximo de avaliações (𝑚𝑎𝑥𝑓) ∞ ∞
Peso de inércia (𝑤) 0.721 0.721
Coeficiente cognitivo (𝑐.𝑝) 1.193 1.193
Coeficiente social (𝑐.𝑔) 1.193 1.193
Tolerância absoluta (𝑎𝑏𝑠𝑡𝑜𝑙) −∞ −∞
Nível de rastreamento (𝑡𝑟𝑎𝑐𝑒) 0 0
Frequência de relatório (𝑟𝑒𝑝𝑜𝑟𝑡) 10 10
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3.3.3 Regra de Classificação Baseada em Protótipos Poligonais

Em aprendizagem de máquina, um protótipo refere-se a uma representação simplificada
das características centrais ou típicas de uma classe ou grupo de dados. Ele serve como
referência para a comparação e classificação de novas observações, geralmente com base em
uma medida de distância. Com base nessa abordagem, propõe-se uma regra de classificação
baseada em protótipos para dados poligonais, na qual uma nova observação é atribuída à
classe do protótipo poligonal mais próximo.

O procedimento de construção dos protótipos é descrito a seguir. Dado um conjunto de
dados rotulado com duas classes distintas, 𝑘 ∈ {0, 1}, define-se um total de 𝑧 protótipos
para cada classe com base nos valores ajustados de centro e raio observados no conjunto
de treinamento. Esses protótipos são determinados a partir dos quantis empíricos dos valores
ordenados de centro e raio da respectiva classe.

A partir dos 𝑧 pares representativos de centro e raio, é possível reconstruir os polígonos
correspondentes utilizando a Equação 2.16. Especificamente, para o 𝑗-ésimo protótipo da
classe 𝑘, os valores de centro e raio são definidos como:

C(𝑘)
𝑗 = 𝑞 𝑗

𝑧
(C(𝑘)), R(𝑘)

𝑗 = 𝑞 𝑗
𝑧
(R(𝑘)), (3.10)

onde 𝑞 𝑗
𝑧
(·) denota o quantil 𝑗

𝑧
-ésimo dos valores ajustados na classe 𝑘, com 𝑗 = 1, 2, . . . , 𝑧 e

𝑘 ∈ {0, 1}. O Algoritmo 5 descreve as etapas desse processo.
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Algoritmo 5: Construção de Protótipos Poligonais por Classe
Entrada: Conjunto de valores ajustados de centro 𝐶𝑖, raio 𝑅𝑖 e rótulo 𝑦𝑖 ∈ {0, 1}.

Número de protótipos por classe: 𝑧.
Saída: Protótipos (C(𝑘)

𝑗 , R(𝑘)
𝑗 ) para cada classe 𝑘 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑧.

1: Início

2: Para cada classe 𝑘 ∈ {0, 1} faça:
3: Ordenar os vetores C(𝑘) e R(𝑘).
4: Para cada 𝑗 = 1 até 𝑧 faça:
5: Calcular o quantil 𝑗

𝑧
para o centro: C(𝑘)

𝑗 = 𝑞 𝑗
𝑧
(C(𝑘)).

6: Calcular o quantil 𝑗
𝑧

para o raio: R(𝑘)
𝑗 = 𝑞 𝑗

𝑧
(R(𝑘)).

7: Reconstruir o polígono correspondente utilizando a Equação 2.16.
8: Fim Para

9: Fim Para

10: Retorne os 𝑧 protótipos e seus respectivos polígonos para cada classe 𝑘.
11: Fim

A regra de classificação é baseada na proximidade entre uma nova observação predita e os
protótipos das classes 0 e 1, considerando a distância euclidiana entre os centros e os raios.

Seja x = (𝑥𝐶 , 𝑥𝑅) a nova observação, onde 𝑝𝑐 e 𝑝𝑟 são as probabilidades a posteriori
estimadas pelos modelos logísticos para o centro e o raio, respectivamente. Esta entrada será
atribuída à classe 𝑘 ∈ {0, 1} cujo protótipo for mais próximo, segundo a seguinte regra:

𝑘 = arg min
𝑘∈{0,1}, 𝑗∈{1,...,𝑧}

(︃√︂
(𝑝𝑐 −C(𝑘)

𝑗 )2 + (𝑝𝑟 −R(𝑘)
𝑗 )2

)︃
. (3.11)

O Algoritmo 6 apresenta os passos da regra de classificação baseada em protótipos. Essa
abordagem considera a proximidade de uma nova observação predita aos protótipos, os quais
são representados por polígonos específicos de cada classe. Considerando as classes 𝑘 ∈ {0, 1},
espera-se que os protótipos polígonais associados à classe 0 possuam centros e raios próximos
de 0, enquanto aqueles da classe 1 apresentem centros e raios próximos de 1.
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Algoritmo 6: Regra de classificação do PMLG baseado em Protótipos Poligonais
1: Entrada: Conjunto de dados poligonais com 𝑚 observações e 𝐿 vértices.
2: Saída: Probabilidade a posteriori para a classe 𝑘.
3: Início

4: Defina as funções de ligação 𝑔𝑐(·) e 𝑔𝑟(·) como logit.
5: Estime os parâmetros dos modelos para centro e raio:
6: 𝛽𝑐 ← estimação via máxima verossimilhança para o centro;
7: 𝛽𝑟 ← estimação via máxima verossimilhança para o raio;
8: Para 𝑖 = 1 até 𝑚 faça:
9: Calcule os preditores lineares: 𝜂𝑐

𝑖 = x𝑐𝑇
𝑖 𝛽𝑐 e 𝜂𝑟

𝑖 = x𝑟𝑇
𝑖 𝛽𝑟;

10: Aplique as funções inversas da ligação:
11: 𝑝𝑐

𝑖 = 𝜇̂𝑐
𝑖 = (𝑔𝑐)−1(𝜂𝑐

𝑖 ) e 𝑝𝑟
𝑖 = 𝜂𝑟

𝑖 = (𝑔𝑟)−1(𝜂𝑟
𝑖 );

12: Fim Para

13: Para cada classe 𝑘 faça:

14: Calcule 𝑧 protótipos (C(𝑘)
𝑗 , R(𝑘)

𝑗 ) usando os quantis de 𝑝𝑐 e 𝑝𝑟 na classe 𝑘,
para 𝑗 = 1, . . . , 𝑧;

15: Fim Para

16: Para cada observação x = (𝑥𝐶 , 𝑥𝑅) faça:

17: Atribua à classe
𝑘 = arg min𝑘∈{0,1}, 𝑗∈{1,...,𝑧}

(︂√︁
(𝑝𝑐 −C(𝑘)

𝑗 )2 + (𝑝𝑟 −R(𝑘)
𝑗 )2

)︂
.

18: Fim Para

19: Fim

Para representar esta última regra de classificação, a Figura 5 mostra dois exemplos da atuação
da regra, com um protótipo e três protótipos, para um mesmo cenário de dados. Pode ser
observado que aumentar o número de protótipos ocasiona mudança na classificação de algumas
entrada de dados.
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(a) Representação Protótipos únicos das clas-
ses 0 e 1

(b) Classes após aplicar a regra do protótipo
único

(c) Representação de três protótipos das clas-
ses 0 e 1

(d) Classes após aplicar a regra dos três pro-
tótipos

Figura 5 – Representação da classificação usando a regra baseada em protótipos.

3.4 ABORDAGEM DE MODELAGEM POLIGONAL

Este capítulo apresentou uma estrutura unificada para modelagem estatística de dados
poligonais, abordando tanto variáveis respostas contínuas quanto discretas. Partindo de uma
base de dados poligonal representada por centro e raio, o capítulo desenvolve abordagens
distintas conforme a natureza da variável de interesse.

Para variáveis resposta com distribuição contínua e assimétrica (como distribuições Gama
e Normal Inversa), é proposto o uso do Modelo Linear Generalizado Poligonal (PMLG) com
a análise de resíduos poligonais ordinários. A avaliação dos modelos é realizada através de
quatro métricas de erro médio quadrático. Para variáveis discretas com distribuição Binomial,
o mesmo framework PMLG é adaptado com três regras de predição: média aritmética das
predições, média otimizada via Otimização por Enxame de Partículas e método baseado em
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protótipos poligonais. O desempenho preditivo é avaliado através de acurácia e precisão.
O fluxo metodológico resultante é ilustrado na Figura 6. A figura fornece um guia para aná-

lise preditiva de dados poligonais, estabelecendo padrões de avaliação para diferentes contextos
estatísticos.

Figura 6 – Fluxo metodológico para modelagem poligonal com diferentes distribuições de Y, mostrando téc-
nicas de predição e métricas de avaliação propostas.
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4 AVALIAÇÃO EXPERIMENTAL COM DADOS POLIGONAIS GERADOS A

PARTIR DE DISTRIBUIÇÕES CONTÍNUAS ASSIMÉTRICAS

A análise experimental inicia-se com a geração dos conjuntos de dados poligonais e técni-
cas de visualização para estes conjuntos. A metodologia segue uma sequência de algoritmos
organizados em simulações Monte Carlo (MC) para avaliação da proposta em dois contextos:
Diagnóstico e Preditivo. A abordagem proposta neste trabalho, denominada Modelo Linear
Generalizado Poligonal (PMLG), é comparada aos métodos introduzidos em Silva, Souza e
Cysneiros (2019a) e Neto, Cordeiro e Carvalho (2011), referenciados como Modelo de Re-
gressão Linear Poligonal (PRL) e Modelo de Regressão Linear Bivariado (PBIVAR), respecti-
vamente. O modelo PBIVAR foi adaptado para operar com os dados em termos de centro e
raio, possibilitando a comparação com os modelos baseados em representações poligonais. Os
experimentos desta pesquisa foram realizados na linguagem R (R Core Team, 2020).

4.1 CONFIGURAÇÕES DOS DADOS SIMULADOS

4.1.1 Cenário 1: Distribuição Gama

O primeiro cenário de dados simulados considera a distribuição Gama. O Algoritmo 7
descreve o processo de geração de dados, considerando a função de ligação canônica da
distribuição Gama, a recíproca. A representação dos dados de centro e raio é mostrado na
Figura 7 para uma amostra de dados. Os histogramas da variável resposta revelam assimetria
à direita, e os gráficos de dispersão da variável resposta em função da variável explicativa
revela que a variância não é constante.

Algoritmo 7: Geração de conjuntos simulados com distribuição Gama
1: Requerer 𝑛 = 100 .
2: Defina a função de ligação recíproca para a distribuição Gama.
3: Defina 𝑥𝑐

𝑖 obtido de uma distribuição 𝑈(𝑎 = 0; 𝑏 = 10).
4: Defina 𝑥𝑟

𝑖 obtido de uma distribuição 𝑈(𝑎 = 0; 𝑏 = 5).
5: Calcule 𝑦𝑐

𝑖 = 1, 0 + 0, 5𝑥𝑐
𝑖 obtido de uma distribuição 𝐺(𝜇 = 0,3; 𝜑 = 3).

6: Calcule 𝑦𝑟
𝑖 = 1, 0 + 0, 5𝑥𝑟

𝑖 obtido de uma distribuição 𝐺(𝜇 = 0,5; 𝜑 = 8).
7: Compute os vértices dos polígonos com a Equação (2.16).
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A Figura 8 descreve a variável resposta poligonal (centro, raio) dos dados gerados, aplicando
a Equação (2.16) implementada na biblioteca psda (SILVA; SOUZA; CYSNEIROS, 2020). Para
o cenário de dados com distribuição Gama, gera-se duas bases dados poligonais, com 5 e 10
vértices. Percebem-se os centros dos polígonos destacados em azul, os quais possuem maior
concentração no início da distribuição, revelando maior proximidade entre os polígonos. Em
relação aos raios, há uma variação quanto à área formada pelos polígonos, no entanto, este
aspecto foi controlado na geração dos valores de raio oriundos da distribuição Gama para que
não houvesse valores extremos.
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Figura 7 – Representação do centro e raio da variável resposta com distribuição Gama.
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Figura 8 – Representação da variável resposta poligonal com (a) 5 e (b) 10 vértices no cenário de distribuição
Gama.
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Na Figura 9 observa-se a dispersão da variável resposta poligonal com 5 vértices. Pelo
histograma (a), percebe-se distribuição unimodal e assimetria, com concentração de frequência
entre 0,2 e 0,5 (b). As seguintes medidas poligonais foram calculadas a partir da biblioteca
psda (SILVA; SOUZA; CYSNEIROS, 2020) definidas nas Equações (2.20) e (2.21): média poligonal
empírica (0,31; 0,31)T e desvio padrão poligonal empírico (0,35; 0,35)T.
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(a) Histograma de frequência relativa da variável resposta.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dimensão 1

D
im

e
n
s
ã
o
 2

0.0000

0.0005

0.0010

0.0015

(b) Concentração de frequência da variável resposta poligonal.

Figura 9 – Variável resposta poligonal com 5 vértices e distribuição Gama.

Já na Figura 10 observa-se o comportamento da variável resposta poligonal com 10 vértices.
Lembrando que a configuração que origina os dados clássicos de centro e raio é o mesma,
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independente da quantidade de vértices definida. Pelo histograma (a) também percebe-se
distribuição com assimetria a direita e concentração de frequência entre 0,2 e 0,5 (b). As
seguintes medidas poligonais foram calculadas: média poligonal empírica (0,31; 0,31)T; desvio
padrão poligonal empírico (0,37; 0,37)T.

Dimensão 10.0
0.2

0.4
0.6

0.8
1.0

Dim
ensão 2

0.0

0.2

0.4

0.6

0.8

1.0

Frequência R
elativa 

0.0000

0.0005

0.0010

0.0015

0.0020

(a) Histograma de frequência relativa da variável resposta.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dimensão 1

D
im

e
n

sã
o

 2

0.0000

0.0005

0.0010

0.0015

0.0020

(b) Concentração de frequência da variável resposta poligonal.

Figura 10 – Variável resposta poligonal com 10 vértices e distribuição Gama.
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4.1.2 Cenário 2: Distribuição Normal Inversa

O segundo cenário de dados simulados considera a distribuição Normal Inversa. O Algo-
ritmo 8 descreve o processo de geração, considerando a função de ligação canônica recíproca
quadrática. A representação dos dados de centro e raio é mostrada na Figura 11 para uma
amostra que representa o cenário gerado. Os histogramas revelam assimetria à direita, e os
gráficos de dispersão da variável resposta em função da variável explicativa revelam que a
variância não é constante.

Algoritmo 8: Geração de conjuntos simulados com distribuição Normal Inversa
1: Requerer 𝑛 = 100 .
2: Defina a função de ligação como recíproca quadrática.
3: Defina 𝑥𝑐

𝑖 obtido de uma distribuição 𝑈(𝑎 = 0; 𝑏 = 4).
4: Defina 𝑥𝑟

𝑖 obtido de uma distribuição 𝑈(𝑎 = 0; 𝑏 = 3).
5: Calcule 𝑦𝑐

𝑖 = 0, 5 + 2, 5𝑥𝑐
𝑖 obtido de uma distribuição 𝑁𝐼(𝜇 = 0,5; 𝜑 = 7).

6: Calcule 𝑦𝑟
𝑖 = 2, 5 + 1, 5𝑥𝑟

𝑖 obtido de uma distribuição 𝑁𝐼(𝜇 = 0,5; 𝜑 = 23).
7: Compute os vértices usando a Equação (2.16).
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Figura 11 – Representação do centro e raio da variável resposta com distribuição Normal Inversa.
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A Figura 12 representa a variável poligonal construída a partir dos dados gerados para o
centro e para o raio. Observa-se que os centros dos polígonos, destacados em azul, apresen-
tam maior proximidade no início da distribuição, afastando-se progressivamente ao longo da
amostra. Dessa forma, a maior concentração dos dados poligonais encontra-se no intervalo
entre 0 e 5, refletindo uma distribuição mais densa nas primeiras observações da série..

Com relação aos raios, nota-se a presença de observações com maior variação de área.
Diferentemente do cenário com distribuição Gama, o intervalo de valores adotado neste caso
é menor, o que torna os raios mais sensíveis a variações nos dados.
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Figura 12 – Representação da variável resposta poligonal com (a) 5 e (b) 10 vértices no cenário de distribuição
Normal Inversa.

As medidas poligonais da variável resposta com 3 vértices foram obtidas a partir dos
valores dos centros e raios estimados, resultando em uma média poligonal empírica igual a
(0,52; 0,52)T e um desvio padrão poligonal empírico de (0,13; 0,13)T. Esses valores refletem
uma distribuição centrada em torno do ponto médio da escala considerada, com moderada
dispersão. A Figura 13 apresenta a distribuição da variável resposta poligonal simulada segundo
uma distribuição Normal Inversa.

No histograma da Figura 13(a), observa-se que a distribuição é unimodal, com o pico
de frequência bem definido. Já na subfigura (b), nota-se uma assimetria na distribuição,
com concentração mais acentuada de frequências no intervalo entre 0,1 e 0,3. Esses padrões
reforçam o comportamento assimétrico e concentrado da variável resposta poligonal nesse
cenário de distribuição Normal Inversa com 3 vértices.
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Na Figura 14 observa-se a dispersão da variável resposta poligonal com 10 vértices. Pelo
histograma (a) percebe-se distribuição unimodal e assimetria e concentração de frequência
entre 0,2 e 0,5 (b). As seguintes medidas poligonais foram calculadas: média poligonal empírica
(0,31; 0,31)T e desvio padrão poligonal empírico (0,35; 0,35)T. Ao comparar os dois cenários,
nota-se que o desvio padrão aumentou com a variável poligonal com 10 vértices.
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(a) Histograma de frequência relativa da variável resposta.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dimensão 1

D
im

en
sã

o 
2

0.0000

0.0005

0.0010

0.0015

0.0020

(b) Concentração de frequência da variável resposta poligonal.

Figura 13 – Variável resposta poligonal com 3 vértices e distribuição Normal Inversa.
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(a) Histograma de frequência relativa da variável resposta.
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Figura 14 – Variável resposta poligonal com 10 vértices e distribuição Normal Inversa.

4.2 DIAGNÓSTICO DO MODELO: ANÁLISE DE RESÍDUOS

Nesta seção, são apresentadas as análises de resíduos dos modelos avaliados nos cenários
com dados simulados. O resíduo poligonal está definido na Equação 3.4. Medidas descritivas
e representações gráficas são fornecidas para auxiliar na interpretação dos resultados.

4.2.1 Cenário 1: Distribuição Gama

Antes de fazer a reapresentação gráfica e análise dos resíduos, é necessário observar a
variável poligonal predita pelos modelos PMLG, PRL e PBIVAR, revelando distribuições com
algumas particularidades. A Figura 15 mostra que o modelo PMLG apresenta polígonos com
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centros acumulados no início da distribuições, e mais dispersos ao final, diferentemente do
PRL, o qual percebe-se uma distribuição de objetos mais próxima. O modelo PBIVAR, além
de exibir uma distribuição igualitária entre os objetos, obtém menor valor de raios.
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Figura 15 – Representação da variável predita poligonal no cenário de distribuição Gama.

Como definido no Capítulo 3, o resíduo poligonal é calculado a partir das diferenças entre
os vértices observados e os vértices preditos. Espera-se que os polígonos residuais sejam, em
sua maioria, degenerados e próximos à coordenada (0, 0) do espaço representado. Dito isto,
analisa-se os resíduos do cenário de dados Gama com polígonos de 5 vértices.

Percebe-se na Figura 16(a) que os modelos PMLG e PRL apresentam menor área residual
e maior proximidade ao ponto (0, 0), indicando menores resíduos tanto para a posição (centro)
quanto para a área (raio). A Figura 16(b) detalha os resíduos de centro e raio, evidenciando
que o modelo PMLG concentra maiores frequências no valor zero e exibe menor assimetria.
A dispersão dos resíduos é apresentada na Figura 16(c). Já na Figura 17, os histogramas
permitem analisar a distribuição de frequências dos resíduos, destacando que o modelo PBIVAR
possui maior ocupação da área, o que indica resíduos mais dispersos.

Em relação ao cenário Gama com polígonos de 10 vértices, a Figura 18(a) apresenta menor
área residual dos modelos PMLG e PRL, que estão mais próximos das coordenadas (0, 0),
indicando pequenos resíduos para centro e raio. As Figuras 16(b) e (c) exibem os resíduos de
centro e raio, evidenciando assimetria nos histogramas devido a valores mais altos de resíduos.
Já a Figura 19 mostra a concentração de frequências desses resíduos por meio dos histogramas.
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Figura 16 – Representação dos resíduos para polígonos com 5 vértices no cenário de distribuição Gama.
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Figura 17 – Histogramas dos resíduos poligonais com 5 vértices no cenário de distribuição Gama.
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Figura 18 – Representação dos resíduos para polígonos com 10 vértices e distribuição Gama.
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Figura 19 – Histogramas dos resíduos poligonais com 10 vértices no cenário de distribuição Gama.
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4.2.2 Cenário 2: Distribuição Normal Inversa

A Figura 20 mostra os polígonos preditos pelos três modelos implementados. Percebe-se
que, com (a) 3 ou (b) 10 vértices, o PMLG obteve mais dispersão em relação aos valores de
centro do que as demais técnicas. Em relação aos raios, o modelo PBIVAR obteve valores mais
baixos mostrado pela distribuição dos polígonos em uma distribuição menor. Comparado esses
gráficos com a variável resposta poligonal observada, percebe-se, geometricamente, maior
proximidade do modelo PMLG.
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Figura 20 – Representação da variável predita poligonal no cenário de distribuição Normal Inversa.

Em relação aos resíduos poligonais, a Figura 21 exibe a variável poligonal resultante de
cada modelo. Os modelos PMLG e PRL possuem menor área, sendo polígonos distribuídos
entre (0,5; -0,5) em maioria, e com valores pequenos de raio formando pequenos polígonos.
Pode-se notar alguns polígonos residuais degenerados formando pontos e retas nos polígonos
dos três modelos.
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Figura 21 – Representação dos resíduos poligonais com 3 vértices no cenário de distribuição Normal Inversa.

Na Figura 22(a), observa-se que a representação dos resíduos poligonais associados ao
centro apresenta um histograma assimetrico. Além disso, destaca-se que o modelo PMLG
concentra maior frequência de resíduos em torno do zero, indicando melhor ajuste central
em relação aos demais modelos. A distribuição dos resíduos associados ao raio é assimétrica
nos modelos PMLG e PRL, enquanto o modelo PBIVAR apresenta um comportamento mais
simétrico, com predominância de valores positivos.

Essas características também são evidenciadas na Figura 22(b), a qual representa a dis-
persão dos resíduos nas duas componentes (centro e raio). Já na Figura 23, verifica-se a
concentração de frequências dos resíduos, sendo notável que a região ocupada pelos resíduos
do modelo PBIVAR é mais extensa, indicando maior variabilidade residual.

A Figura 24(a) apresenta a representação dos resíduos poligonais considerando 10 vértices.
Assim como na análise com 3 vértices, os modelos PMLG e PRL continuam exibindo menor
área residual, com os polígonos concentrando-se majoritariamente entre as coordenadas (0,5;
-0,5). Nota-se ainda a ocorrência de polígonos degenerados, com formações que se aproximam
de pontos, retas ou outras representações poligonais não regulares, indicando possíveis resíduos
nulos ou extremos.

Na Figura 24(b), observa-se que a representação dos resíduos do centro mantém o padrão
assimétrico, com destaque para a presença de resíduos discrepantes positivos. O modelo PMLG
novamente concentra a maior frequência de resíduos no valor zero. A distribuição dos resíduos
de raio apresenta assimetria nos três modelos, embora o PBIVAR evidencie maior concentração
de valores nulos. A dispersão dos resíduos pode ser analisada com maior clareza na Figura 24(c),
enquanto a Figura 25 revela a concentração de frequências residuais, com destaque para o



70

PBIVAR, cuja área ocupada é mais ampla, sugerindo maior variabilidade em comparação aos
demais modelos.
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(a) Representação dos Resíduos dos centros e raios.
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Figura 22 – Representação dos resíduos para polígonos com 3 vértices e distribuição Normal Inversa.
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Figura 23 – Concentração de frequência dos resíduos poligonais com 3 vértices para dados com distribuição
Normal Inversa.
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(a) Representação dos resíduos poligonais.

0

10

20

30

40

−0.5 0.0 0.5 1.0

y centro

Fr
eq

uê
nc

ia

PMLG

0

10

20

30

40

−0.5 0.0 0.5 1.0

y centro

Fr
eq

uê
nc

ia

PRL

0

10

20

30

40

−0.5 0.0 0.5 1.0

y centro

Fr
eq

uê
nc

ia

PBIVAR

0

10

20

30

40

−0.2 −0.1 0.0 0.1 0.2

y raio

Fr
eq

uê
nc

ia

0

10

20

30

40

−0.2 −0.1 0.0 0.1 0.2

y raio

Fr
eq

uê
nc

ia

0

10

20

30

40

−0.10 −0.05 0.00 0.05 0.10

y raio

Fr
eq

uê
nc

ia

(b) Histograma dos Resíduos de centro e raio.
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Figura 24 – Representação dos resíduos para polígonos com 10 vértices e distribuição Normal Inversa.
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Figura 25 – Concentração de frequência dos resíduos poligonais com 10 vértices para dados com distribuição
Normal Inversa.
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4.3 ANÁLISE PREDITIVA

O desempenho dos métodos de predição será mensurado por meio de quatro métricas:
Erro Médio Quadrático da Área (EMQA), Erro Médio Quadrático da Distância dos Vértices
(EMQDV), Erro Médio Quadrático da Área e Centro Conjuntamente (EMQAC) e Erro Médio
Quadrático do Centro e Raio Conjuntamente (EMQCR), definidas na subseção 3.2.2. Para
avaliar a abordagem proposta, utiliza-se o método de Monte Carlo (MC) com 100 iterações, em
que, a cada repetição, os dados são particionados aleatoriamente em 75% para o treinamento
dos modelos e 25% para o teste, conforme descrito no Algoritmo 9.

Algoritmo 9: Método Monte Carlo Para Dados Simulados
1: Requerer MC = 100.
2: Requerer tamanho da base de treino 𝑛1 = 150.
3: Requerer tamanho da base de teste 𝑛2 = 50.
4: Se cenário de dados com distribuição Gama Então:

5: Requerer número de vértices 𝐿 = 5 ou 𝐿 = 10.
6: Senão:
7: Requerer número de vértices 𝐿 = 3 ou 𝐿 = 10.
8: Para todo 𝑖← 1 até MC faça:

9: Gere uma base de treino de tamanho 𝑛1.
10: Gere uma base de teste de tamanho 𝑛2.
11: Aplique os métodos PMLG, PRL e PBIVAR nos dados de treino.
12: Aplique a regra de predição nos dados de teste.
13: Calcule as medidas de desempenho usando as Equações (3.5, 3.6, 3.7 e 3.8).
14: Fim Para

15: Calcule a média e desvio padrão das medidas de desempenho.

Outra forma de medição de desempenho é através do Ganho Relativo (GR). O GR é aplicado
para mensurar o ganho em relação a minimização do erro de predição, dado em porcentagem.
O cálculo é mostrado na Equação 4.1, onde Medida_a é o resultado de maior valor e Medida_b
o valor de interesse. Ainda são abordadas avaliações por meio de testes estatísticos.

𝐺𝑅 = 100
(︃

𝑀𝑒𝑑𝑖𝑑𝑎𝑎 −𝑀𝑒𝑑𝑖𝑑𝑎𝑏

𝑀𝑒𝑑𝑖𝑑𝑎𝑎

)︃
(4.1)
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4.3.1 Distribuição Gama

Considerando os dados simulados a partir da distribuição Gama, a Tabela 8 concentra-se
nos resultados obtidos. Os valores destacados (em negrito) enfatizam que o método PMLG
apresentou a menor média e erro padrão em todos os casos. Os testes de Wilcoxon realizados
para as amostras de erro indicaram, por meio do p-valor, a rejeição da hipótese nula. Estatis-
ticamente, os erros médios do modelo PMLG são inferiores aos dos demais. A tabela também
informa o GR do PMLG em relação aos outros modelos.

Tabela 8 – Resultados para o cenário de dados Gama: dados simulados com 5 vértices.

Medida PMLG PRL PBIVAR

EMQDV
0,672

(0,065)
0,704

(0,071)
0,742

(0,066)
p-valor:
GR:

5,2x10−14

4,5%
2,2x10−16

9,4%

EMQA
0,595

(0,180)
0,613

(0,199)
0,664

(0,217)
p-valor:
GR:

1,65x10−3

2,9%
4,78x10−12

10,4%

EMQAC
0,642

(0,171)
0,662

(0,187)
0,712

(0,204)
p-valor:
GR:

1,64x10−3

3,0%
2,49x10−13

9,8%

EMQCR
0,293

(0,035)
0,305

(0,038)
0,319

(0,034)
p-valor:
GR:

1,35x10−11

3,8%
2,2x10−16

8,1%

A Tabela 9 apresenta os resultados dos experimentos considerando os dados da distribuição
Gama com 10 vértices. Os valores em negrito indicam que o modelo PMLG obteve os menores
erros médios e desvios padrão em todas as medidas avaliadas: EMQDV, EMQA, EMQAC
e EMQCR. Os testes estatísticos de Wilcoxon, aplicados às amostras de erro, confirmam a
superioridade do modelo PMLG ao apresentarem p-valores significativamente baixos em todas
as comparações, indicando rejeição da hipótese nula de igualdade entre os métodos.

Além disso, a Tabela 9 também apresenta o GR do PMLG em relação aos outros métodos.
Observa-se que o PMLG alcançou reduções de erro variando entre 2,9% e 10,4%, a depender
da medida analisada, reforçando a efetividade do modelo na tarefa de predição poligonal no
cenário de dados Gama com maior número de vértices.
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Tabela 9 – Resultados para o cenário de dados Gama: dados simulados com 10 vértices.

Medida PMLG PRL PBIVAR

EMQDV
0,951

(0,092)
0,996

(0,100)
0,988

(0,102)
p-valor:
GR:

5,21x10−14

4,5%
1,09x10−11

9,4%

EMQA
0,736

(0,223)
0,757

(0,246)
0,762

(0,252)
p-valor:
GR:

1,65x10−3

2,9%
4,78x10−12

10,4%

EMQAC
0,774

(0,215)
0,798

(0,242)
0,804

(0,236)
p-valor:
GR:

4,28x10−4

3,0%
8,7x10−5

9,8%

EMQCR
0,293

(0,035)
0,305

(0,038)
0,319

(0,039)
p-valor:
GR:

1,35x10−11

3,8%
6,46x10−11

8,1%

4.3.2 Distribuição Normal Inversa

As Tabelas 10 e 11 apresentam os valores médios das métricas de desempenho obtidas
para os dados poligonais segundo a distribuição Normal Inversa, com 5 e 10 vértices, respec-
tivamente. Os valores destacados evidenciam que o método PMLG obteve os menores valores
médios e desvios padrão de erro em todas as métricas avaliadas.

A análise estatística realizada por meio do teste de Wilcoxon revelou, com base nos p-
valores extremamente baixos (inferiores a 10−12 em todos os casos), a rejeição da hipótese
nula de igualdade de distribuições de erro. Isso reforça que, estatisticamente, o PMLG apresenta
desempenho superior em relação aos demais métodos avaliados. Além disso, oGR mostra que,
em comparação aos métodos PRL e PBIVAR, o PMLG reduziu significativamente os erros,
em especial na métrica EMQA, com ganhos de até 56,3% no cenário com 5 vértices.

Ao comparar os cenários com 5 e 10 vértices, observa-se que o aumento na complexidade
geométrica dos dados resultou, de modo geral, a maiores valores médios e desvios padrão nas
métricas EMQDV e EMQA, indicando menor estabilidade e precisão dos modelos. Essa maior
variabilidade também reduziu os ganhos relativos obtidos, especialmente nos cenários mais
complexos. Ainda assim, os resultados confirmam a robustez do método PMLG, que manteve
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desempenho superior aos demais, mesmo diante do aumento do número de vértices dos dados
poligonais.

Tabela 10 – Resultados para o cenário de dados Normal Inversa: dados simulados com 5 vértices.

Medida PMLG PRL PBIVAR

EMQDV
0,454

(0,065)
0,503

(0,079)
0,739

(0,071)
p-valor:
GR:

2,2x10−16

9,7%
2,2x10−16

38,5%

EMQA
0,093

(0,017)
0,095

(0,017)
0,213

(0,018)
p-valor:
GR:

4,56x10−13

2,1%
2,2x10−16

56,3%

EMQAC
0,297

(0,090)
0,318

(0,093)
0,400

(0,073)
p-valor:
GR:

2,2x10−16

6,6%
2,2x10−16

25,7%

EMQCR
0,289

(0,092)
0,310

(0,095)
0,395

(0,075)
p-valor:
GR:

2,2x10−16

6,7%
2,2x10−16

26,8%

Tabela 11 – Resultados para o cenário de dados Normal Inversa: dados simulados com 10 vértices.

Medida PMLG PRL PBIVAR

EMQDV
0,728

(0,138)
0,781

(0,151)
0,785

(0,154)
p-valor:
GR:

2,2x10−16

6,7%
2,2x10−16

7,2%

EMQA
0,196

(0,032)
0,200

(0,033)
0,206

(0,035)
p-valor:
GR:

2,37x10−12

2,0%
2,77x10−16

4,8%

EMQAC
0,328

(0,115)
0,343

(0,121)
0,349

(0,122)
p-valor:
GR:

2,2x10−16

4,4%
2,2x10−16

6,0%

EMQCR
0,264

(0,126)
0,280

(0,132)
0,283

(0,133)
p-valor:
GR:

2,2x10−16

5,7%
2,2x10−16

6,7%
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4.4 CONSIDERAÇÕES SOBRE O CAPÍTULO

Este capítulo apresentou uma avaliação experimental de conjuntos de dados poligonais
gerados a partir de distribuições contínuas assimétricas, especificamente as distribuições Gama
e Normal Inversa. A análise focou na aplicação do PMLG, comparando-o com os métodos PRL
e PBIVAR, tanto no contexto de diagnóstico quanto no preditivo.

No cenário da distribuição Gama, observou-se que os dados poligonais exibiram assimetria
à direita e variância não constante, características consistentes com a natureza da distribuição.
O PMLG demonstrou maior eficácia na predição dos centros e raios, com resíduos menores e
mais próximos de zero, especialmente em comparação ao PBIVAR, que apresentou resíduos
mais dispersos. A representação poligonal com 5 e 10 vértices revelou que o aumento no
número de vértices pode influenciar a dispersão dos dados, ainda que a estrutura dos centros
e raios tenha sido mantida.

No cenário da distribuição Normal Inversa, os resultados corroboraram a presença de assi-
metria com os centros dos polígonos concentrados nas primeiras observações. O PMLG obteve
destaque, mostrando menor área residual e maior precisão na predição. Notou-se também que
o desvio padrão poligonal aumentou com a representação de 10 vértices, sugerindo que a
complexidade da forma poligonal pode introduzir maior variabilidade nos dados.

A análise de resíduos foi fundamental para avaliar a qualidade dos modelos. Em ambos
os cenários, o PMLG e o PRL apresentaram resíduos mais concentrados próximos a zero,
indicando um ajuste mais adequado aos dados. Por outro lado, o PBIVAR exibiu resíduos com
maior dispersão, o que pode limitar sua aplicação em contextos demaior complexidade.

No próximo capítulo, os modelos são aplicados a um conjunto de dados reais, com o objetivo
de avaliar sua eficácia prática e demonstrar sua aplicabilidade em situações concretas.
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5 APLICAÇÃO EM DADOS REAIS DE DISTRIBUIÇÃO CONTÍNUA ASSIMÉ-

TRICA

Os resultados dos experimentos apresentados no Capítulo 4 ratificam a aplicabilidade da
abordagem proposta em conjuntos de dados simulados provenientes de distribuições contínuas
assimétricas, como Gama e Normal Inversa. Neste capítulo, amplia-se a análise com o objeito
de verificar sua aplicabilidade em cenário de dados reais

A aplicação do modelo em contextos reais permite avaliar seu desempenho em situações
complexas e menos controladas, oferecendo evidências sobre sua robustez e potencial de uso
prático. Sabe-se que diversos problemas da sociedade originam variáveis de distribuições posi-
tivas, contínuas e assimétricas, como exemplo:

• Saúde: Estudo do tempo de sobrevivência de pacientes em função de idade, estágio da
doença, tipo de tratamento, entre outros fatores.

• Meteorologia: Predição de variáveis climáticas como precipitação, velocidade do vento,
temperatura e umidade relativa do ar.

• Social: Análise da renda populacional com base em características como escolaridade,
ocupação, localização e idade.

• Indústria e Produção: Avaliação da resistência de materiais (exemplo: peças de alumínio)
conforme a força aplicada ou composição; ou ainda, tempo até a falha de componentes
eletrônicos em função do uso ou da temperatura ambiente.

• Mercado Imobiliário: Estimativa do valor de aluguel ou venda de imóveis com base no
ano de construção, número de cômodos, localização, entre outras características.

Portanto, pode-se considerar os Modelos Lineares Generalizados (MLG) em função da
característica da variável de interesse possuírem distribuição contínua assimétrica, ou uma
variância em função média, exemplificando, tem-se a distribuição gama e normal inversa. A
metodologia deste capitulo cumpre a descrição e análise dos dados, além uma sequência de
simulações Monte Carlo (MC) para avaliação diagnóstica e preditiva dos modelos.
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5.1 CENÁRIO DE APLICAÇÃO: DADOS DA METEOROLOGIA

O conjunto de dados contém características de três importantes cidades do Panamá -
Tocumen, San Miguelito e David - , as quais incluem eletricidade utilizada, variáveis meteo-
rológicas, além de informações do calendário escolar, como ser dia útil ou feriado (MADRID;

ANTONIO, 2021). Os valores são de 2021, coletados diariamente e a cada hora, formando uma
base de dados com 8,760 registros. Para este estudo, considera-se as variáveis meteorológicas
da cidade Tocumen as quais podem ser definidas na Tabela 12.

Tabela 12 – Variáveis meteorológicas presentes na análise.

Data Precipitação Temperatura Umidade Velocidade do vento
01/01 0,007 24,9 0,017 22,6
01/01 0,009 24,8 0,017 23,2
01/01 0,011 24,9 0,017 23,2
...

...
...

...
...

31/12 0.007 29.09 0.017 20.7
31/12 0.004 28.11 0.017 17.6
31/12 0.005 26.99 0.018 13.7

O pré-processamento realizado consiste em transformar as variáveis data e hora, tornando-
as características de agregação dos dados no contexto poligonal. Portanto, esta atividade
resulta em um conjunto de dados agregados por dia, com 365 observações.

A Tabela 13 exibe os valores de centro e raio das quatro variáveis e a Figura 26 mostra
a distribuição de centro e range, assim como a representação gráfica da variável poligonal
precipitação de 10 vértices, sendo a variável resposta deste estudo. Percebe-se assimetria nos
histogramas de centro e raio, e em relação a variável poligonal, alguns polígonos com de valores
extremos para o raio. As medidas descritivas da variável resposta poligonal: média empírica
poligonal (0,07; 0,07)𝑇 e desvio padrão empírico poligonal (0,06; 0,06)𝑇 .

Tabela 13 – Tabela com valores de centro e raio da base de dados de meteorologia.

Dia Precipitação Temperatura Umidade Velocidade do Vento
D1 (0,008; 0,010) (26,845; 4,213) (0,017; 0,001) (22,787; 3,998)
D2 (0,032; 0,038) (26,368; 3,980) (0,015; 0,001) (18,128; 4,137 )
...

...
...

...
...

D365 (0,051; 0,063) (27,439; 3,278) (0,018; 0,001) (17,291; 7,376)
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Figura 26 – Variável resposta poligonal com 10 vértices e distribuição gama.

5.2 ANÁLISE DE RESÍDUOS

Na análise residual, executam-se os três modelos para obtenção dos valores preditos e
respectivos resíduos. A Figura 27 apresenta a variável predita, destacando que o modelo PMLG
demonstra maior proximidade geométrica à variável observada.

Quanto aos resíduos, a Figura 28(a) exibe sua representação poligonal. Observa-se que os
modelos apresentaram algumas predições insatisfatórias para o raio, resultando em polígonos
com áreas mais amplas. Os histogramas da Figura 28(b) revelam maior simetria dos resíduos
no modelo PMLG, com alta concentração de valores próximos de zero e ocorrência reduzida
de pontos extremos, tanto para o centro quanto para o raio. A Figura 28(c) apresenta os
resíduos dos centros e dos raios, evidenciando uma maior dispersão em torno do zero para o
modelo PMLG.
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Figura 27 – Variável resposta poligonal com 10 vértices e distribuição gama.



82

−0.1

0.0

0.1

0.2

0.3

−0.1 0.0 0.1 0.2 0.3

Dimensão 1

D
im

en
sã

o 
2

PMLG

−0.1

0.0

0.1

0.2

0.3

−0.1 0.0 0.1 0.2 0.3

Dimensão 1

D
im

en
sã

o 
2

PRL

0.0

0.2

0.4

0.0 0.2 0.4

Dimensão 1

D
im

en
sã

o 
2

PBIVAR

(a) Resíduo Poligonal.

0

50

100

150

200

−0.1 0.0 0.1

(a) resíduos centro

F
re

qu
ên

ci
a

PMLG

0

50

100

150

200

−0.10 −0.05 0.00 0.05 0.10 0.15

(b) resíduos centro

F
re

qu
ên

ci
a

PRL

0

50

100

150

200

−0.10 −0.05 0.00 0.05 0.10 0.15

(c) resíduos centro

F
re

qu
ên

ci
a

PBIVAR

0

50

100

150

200

−0.2 −0.1 0.0 0.1 0.2

(a) resíduos raio

F
re

qu
ên

ci
a

0

50

100

150

200

−0.1 0.0 0.1 0.2

(b) resíduos raio

F
re

qu
ên

ci
a

0

50

100

150

200

−0.05 0.00 0.05 0.10

(c) resíduos raio

F
re

qu
ên

ci
a

(b) Histograma dos resíduos de centro e raio.

−0.1

0.0

0.1

0 100 200 300

Index

R
es

id
uo

s 
C

en
tro

PMLG

−0.05

0.00

0.05

0.10

0 100 200 300

Index

R
es

id
uo

s 
C

en
tro

PLR

−0.05

0.00

0.05

0.10

0 100 200 300

Index

R
es

id
uo

s 
C

en
tro

PBIVAR

−0.1

0.0

0.1

0.2

0 100 200 300

Index

R
es

id
uo

s 
R

ai
o

PMLG

0.00

0.05

0.10

0 100 200 300

Index

R
es

id
uo

s 
R

ai
o

PLR

0.00

0.05

0.10

0 100 200 300

Index

R
es

id
uo

s 
R

ai
o

PBIVAR

(c) Dispersão Centro e Raio.

Figura 28 – Representação dos resíduos no cenário de dados reais e distribuição Gama.
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5.3 ANÁLISE PREDITIVA

A configuração da análise preditiva é apresentada no Algoritmo 10. Aplica-se partições
aleatórias hold-out no conjunto de dados para mensurar o desempenho dos modelos segundo
as métricas de erro EMQA e EMQDV. Neste cenário, forma-se uma modelo gama com função
de ligação inversa. Os resultados são apresentados na Tabela 14.

Algoritmo 10: Método Monte Carlo para Dados Reais
1: Requerer MC = 100.
2: Requerer número de vértices 𝐿 = 10.
3: Para todo 𝑖← 1 até MC faça:

4: Particione aleatoriamente a base de dados em conjunto de treinamento
(75% dos dados) e de teste (25% dos dados).

5: Aplique os métodos de regressão (PMLG,PRL e PBIVAR) nos dados de
treino.

6: Aplique a regra de predição nos dados de teste.
7: Calcule as medidas de desempenho usando as Equações 3.5 e 3.6.
8: Fim Para

9: Calcule a média e desvio padrão das medidas de desempenho.

Como pode ser visto, as duas métricas analisadas diferem quanto o desempenho dos modelos.
A métrica EMQDV indica que o modelo PMLG, o qual é baseado em diferença dos vértices,
possui menor diferença entre os polígonos observados e preditos com ganho de 5,2% e 8,4%
em relação ao PBIVAR e PRL, respectivamente.

Por outro lado, a métrica EMQA baseia-se exclusivamente na diferença de área entre os
polígonos, desconsiderando sua posição espacial. Como ilustrado na Figura 27, do ponto de
vista geométrico, os modelos PRL e PBIVAR apresentaram maior discrepância, enquanto o
modelo PMLG manteve maior aderência à forma observada.

Tabela 14 – Desempenho dos modelos de predição no cenário de dados de meteorologia.

Medida PMLG PRL PBIVAR

EMQDV
0,109

(0,066)
0,119

(0,069)
0,115

(0,069)

EMQA
0,024

(0,019)
0,019

(0,014)
0,019

(0,014)
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5.4 CONSIDERAÇÕES SOBRE O CAPÍTULO

Este capítulo explorou a aplicação do PMLG em dados reais de meteorologia, consolidando
a análise iniciada com conjuntos simulados no capítulo anterior. A utilização de variáveis como
precipitação, temperatura, umidade e velocidade do vento permitiu avaliar o desempenho do
modelo em um contexto prático.

Os resultados demonstraram que o PMLG manteve sua eficácia mesmo em cenários me-
nos controlados, destacando-se na predição de variáveis com distribuição assimétrica, como a
precipitação. A análise de resíduos revelou que o modelo apresentou maior proximidade geomé-
trica em relação aos dados observados, com resíduos mais simétricos e concentrados próximos
de zero. Isso reforça sua robustez na predição de centros e raios.

Na avaliação preditiva, o PMLG superou os modelos PRL e PBIVAR na métrica EMQDV,
que considera a diferença entre vértices. Embora a métrica EMQA, baseada em áreas, tenha
mostrado desempenho semelhante entre os modelos, a análise visual confirmou que o PMLG
preservou melhor a forma e a posição dos polígonos preditos.

A transformação desses dados em representações poligonais mostrou-se eficiente para cap-
turar tendências e variações, mesmo na presença de valores extremos. Em síntese, os resultados
deste capítulo validam a aplicabilidade do PMLG em problemas reais, por exemplo na meteo-
rologia, onde variáveis assimétricas são comuns.
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6 AVALIAÇÃO EXPERIMENTAL COM DADOS POLIGONAIS GERADOS A

PARTIR DE DISTRIBUIÇÃO BINOMIAL

Neste Capítulo diferentes cenários de conjuntos de dados poligonais são considerados com
o objetivo de avaliar o desempenho do Modelo Linear Generalizado Poligonal (PMLG) ao
estimar variáveis com distribuição Binomial. A comparação envolve três regras de classificação:
a primeira baseia-se na média aritmética das predições, denominada PMLG; a segunda utiliza
a média ponderada otimizada das predições, denotada por PMLGPSO; e a terceira emprega
protótipos poligonais, referida como PMLGProto, utilizando três protótipos nesses experimentos.
Foi conduzido um experimento de Monte Carlo (MC) com 1000 iterações para gerar conjuntos
de dados com valores poligonais e avaliar o desempenho dos modelos.

O Modelo de Classificação Intervalar baseado em Probabilidade a Posteriori Combinada
(IDPC-PP) (SOUZA; QUEIROZ; CYSNEIROS, 2011) foi comparado com as propostas poligonais.
Para avaliar o desempenho dos modelos, foram utilizadas métricas de classificação, como
a acurácia e a precisão por classe. A acurácia é calculada pela razão entre o número de
classificações corretas e o total de observações, dada por:

Acurácia = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
,

onde 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 e 𝐹𝑁 são, respectivamente, os verdadeiros positivos, verdadeiros
negativos, falsos positivos e falsos negativos. Já a precisão para a classe positiva é:

Precisão = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
.

Além disso, é calculado o percentual de vitórias de cada modelo, definido como a propor-
ção de execuções nas quais um modelo obteve o melhor desempenho em relação aos demais,
com base nas métricas avaliadas. A comparação entre os algoritmos foi realizada por meio do
teste de Friedman, utilizado para detectar diferenças significativas no desempenho entre múl-
tiplos métodos, e do teste de Wilcoxon para amostras pareadas, empregado para comparações
estatísticas entre pares de modelos.

6.1 CONFIGURAÇÕES DOS DADOS SIMULADOS

Para demonstrar a aplicabilidade da abordagem proposta, foram inicialmente construídos
dois conjuntos de dados semente distintos, cada um contendo 500 observações distribuídas
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em duas classes. Esses conjuntos foram gerados a partir de distribuições normais bivariadas
com características específicas. Para cada conjunto de dados semente, foram aplicadas quatro
configurações distintas de parâmetros, com o intuito de gerar conjuntos de dados simbólicos
com diferentes níveis de complexidade e variabilidade. A Figura 29 apresenta os padrões de
dispersão dos conjuntos semente, cujas configurações estão detalhadas a seguir:

1. Conjunto Semente I: Classes Balanceadas e Bem Separadas:

• Classe 1 (𝑛 = 250): 𝜇 = (15, 5)⊤, 𝜎2
1 = 64, 𝜎2

2 = 9 e 𝜎12 = 0.

• Classe 2 (𝑛 = 250): 𝜇 = (30, 10)⊤, 𝜎2
1 = 25, 𝜎2

2 = 36 e 𝜎12 = 0.

2. Conjunto Semente II: Classes Desbalanceadas e Sobrepostas:

• Classe 1 (𝑛 = 350): 𝜇 = (20, 38)⊤, 𝜎2
1 = 9, 𝜎2

2 = 9 e 𝜎12 = 0.

• Classe 2 (𝑛 = 150): 𝜇 = (25, 35)⊤, 𝜎2
1 = 2, 𝜎2

2 = 2 e 𝜎12 = 0.

A partir de cada semente bivariada (𝑠1, 𝑠2)𝑇 , é gerada uma classe de dados bivariados. O
tamanho 𝑛 de cada classe é definido segundo uma distribuição uniforme 𝑈 [15, 20]. As unidades
de cada classe {𝑢1, . . . , 𝑢𝑛} são geradas a partir de uma distribuição de probabilidade bivariada
com componentes independentes. Dado um 𝑛 ∼ 𝑈 [15, 20], um vetor bivariado (𝑢1, 𝑢2) pode
ser definido da seguinte forma:

• Normal: os componentes 𝑢1 e 𝑢2 seguem, respectivamente, 𝑁(𝑠1, 𝛿) e 𝑁(𝑠2, 𝛿).

• Gama: ambos os componentes 𝑢1 e 𝑢2 seguem Γ(𝛿1, 𝛿2).

(a) Semente 1 (b) Semente 2

Figura 29 – Cenários de dados semente: (a) classes balanceadas e bem separadas; (b) classes desbalanceadas
e sobrepostas.
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A Tabela 15 apresenta os parâmetros utilizados para a geração das classes de acordo
com cada distribuição de probabilidade. Esses valores de parâmetros são válidos tanto para
os conjuntos sintéticos de sementes 1 quanto 2. Cada classe corresponde a um subconjunto
de unidades agregadas, que pode ser descrito por dados poligonais, cujos centro e raio são
utilizados na representação simbólica.

Assim, essa abordagem permite a geração de conjuntos de dados simbólicos com varia-
bilidade controlada, possibilitando a avaliação comparativa de modelos de classificação sob
diferentes condições, como classes bem separadas e classes com sobreposição. Nesse experi-
mento cada polígono foi representado com vértices ℓ = 5.

Tabela 15 – Parâmetros das Distribuições que geram as classes.

Normal (𝜎) Gama (𝑘, 𝜃)

𝛿 = 1 [𝛿1, 𝛿2] = [1, 1]
𝛿 = 2 [𝛿1, 𝛿2] = [1, 2]
𝛿 = 3 [𝛿1, 𝛿2] = [1, 3]
𝛿 = 4 [𝛿1, 𝛿2] = [4, 2]
𝛿 = 6 [𝛿1, 𝛿2] = [9, 2]
𝛿 = 8 [𝛿1, 𝛿2] = [16, 2]
𝛿 = 9 [𝛿1, 𝛿2] = [81, 1]
𝛿 = 10 [𝛿1, 𝛿2] = [25, 2]

6.2 ANÁLISE PREDITIVA

A Tabela 16 resume o desempenho dos modelos avaliados sob diferentes níveis crescentes
de variabilidade (𝜎 = 1 a 10) em cenário de geração de dados com distribuição normal e classes
balanceadas. Os resultados apresentados incluem a média e o desvio padrão da acurácia, bem
como as médias de precisão por classe, calculadas a partir das réplicas de MC.

O modelo PMLGPSO obteve as maiores médias de acurácia, variando de 0,985 (0,010) para
𝜎 = 1 até 0,962 (0,016) para 𝜎 = 10, superando tanto o modelo PMLG original quanto a
variante baseada em protótipos, PMLGProto3. Essa superioridade também se reflete nas taxas
de vitória, especialmente em cenários com maior variabilidade, nas quais o modelo PMLGPSO

ultrapassa 70% de vitórias para 𝜎 ≥ 8. Embora o modelo PMLG padrão apresente desempenho
estável com acurácia inferior, o modelo PMLGProto3 destaca-se pela elevada precisão na classe
0. O modelo intervalar IDPC-PP, obteve os menores valores de desempenho, com acurácia
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inferior a 0,91 e taxas de vitória abaixo de 2% nos cenários com 𝜎 ≥ 9. Pode-se observar que,
à medida que a variabilidade dos dados aumenta, o modelo intervalar reduz sua proporção de
vitórias, enquanto o modelo PMLGPSO apresenta um aumento correspondente.

A análise estatística realizada por meio do teste de Friedman confirma diferenças significa-
tivas entre os modelos avaliados (p-valor < 10−150). Os testes pos-hoc de Wilcoxon reforçam
essas evidências, indicando significância estatística em praticamente todas as comparações
pareadas. Em poucos casos a diferença entre os modelos PMLGProto3 e IDPC-PP foi pequena,
ficando próxima ao limite de significância estatística. De modo geral, os resultados evidenciam
que o modelo PMLGPSO apresenta maior robustez e capacidade de generalização diante de
diferentes níveis de variabilidade nos dados, consolidando-se como a abordagem mais confiável
entre os modelos considerados.
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Tabela 16 – Normal: Média e Desvio Padrão da Acurácia e da Precisão para Cenário de Dados 1.

𝜎 Modelo Acurácia Precisão 0 Precisão 1 Vitórias (%)

1

PMLG 0,9774 (0,0130) 0,9776 (0,0176) 0,9778 (0,0179) 29,4%
PMLGPSO 0,9851 (0,0101) 0,9851 (0,0142) 0,9854 (0,0142) 25,0%
PMLGProto3 0,9796 (0,0122) 0,9894 (0,0127) 0,9707 (0,0203) 10,5%
IDPC-PP 0,9815 (0,0113) 0,9815 (0,0164) 0,9822 (0,0154) 35,1%
Teste de Friedman: 𝑝 = 3, 37 × 10−154 Post-hoc Wilcoxon: todas comparações p-valor < 0,001

2

PMLG 0,9763 (0,0132) 0,9764 (0,0186) 0,9769 (0,0180) 25,2%
PMLGPSO 0,9843 (0,0104) 0,9843 (0,0151) 0,9847 (0,0143) 35,1%
PMLGProto3 0,9787 (0,0120) 0,9888 (0,0128) 0,9696 (0,0201) 9,5%
IDPC-PP 0,9794 (0,0115) 0,9792 (0,0165) 0,9802 (0,0162) 30,2%
Teste de Friedman: p-valor = 8, 99 × 10−154

Post-hoc Wilcoxon: todas comparações p-valor < 0, 001 exceto IDPC-PP vs PMLGProto3 (p-valor= 0, 0353)

3

PMLG 0,9746 (0,0134) 0,9748 (0,0189) 0,9751 (0,0185) 23,1%
PMLGPSO 0,9832 (0,0104) 0,9834 (0,0151) 0,9835 (0,0149) 43,1%
PMLGProto3 0,9770 (0,0126) 0,9882 (0,0133) 0,9671 (0,0218) 9,9%
IDPC-PP 0,9760 (0,0130) 0,9761 (0,0186) 0,9766 (0,0177) 23,9%
Teste de Friedman: 𝑝 = 2, 89 × 10−167

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto IDPC-PP vs PMLGProto3 (p-valor= 0, 0072)

4

PMLG 0,9735 (0,0136) 0,9744 (0,0188) 0,9735 (0,0194) 22,4%
PMLGPSO 0,9822 (0,0109) 0,9825 (0,0155) 0,9823 (0,0154) 49,7%
PMLGProto3 0,9756 (0,0130) 0,9880 (0,0132) 0,9645 (0,0225) 10,7%
IDPC-PP 0,9715 (0,0133) 0,9717 (0,0189) 0,9721 (0,0188) 17,2%
Teste de Friedman: 𝑝 = 3, 13 × 10−194 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

6

PMLG 0,9677 (0,0148) 0,9676 (0,0208) 0,9686 (0,0198) 18,8%
PMLGPSO 0,9780 (0,0117) 0,9781 (0,0171) 0,9784 (0,0158) 62,8%
PMLGProto3 0,9699 (0,0143) 0,9860 (0,0141) 0,9557 (0,0236) 12,0%
IDPC-PP 0,9555 (0,0174) 0,9562 (0,0238) 0,9560 (0,0230) 6,4%
Teste de Friedman: p-valor< 1 × 10−300 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

8

PMLG 0,9591 (0,0167) 0,9602 (0,0228) 0,9592 (0,0241) 15,4%
PMLGPSO 0,9714 (0,0136) 0,9722 (0,0191) 0,9714 (0,0200) 71,5%
PMLGProto3 0,9614 (0,0158) 0,9824 (0,0160) 0,9433 (0,0271) 11,3%
IDPC-PP 0,9337 (0,0201) 0,9347 (0,0268) 0,9343 (0,0281) 1,8%
Teste de Friedman: p-valor< 1 × 10−300 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

9

PMLG 0,9541 (0,0179) 0,9549 (0,0248) 0,9545 (0,0246) 14,9%
PMLGPSO 0,9670 (0,0148) 0,9678 (0,0209) 0,9671 (0,0212) 71,8%
PMLGProto3 0,9556 (0,0175) 0,9800 (0,0173) 0,9348 (0,0287) 12,3%
IDPC-PP 0,9204 (0,0225) 0,9219 (0,0300) 0,9209 (0,0298) 1,0%
Teste de Friedman: p-valor< 1 × 10−300

Post-hoc Wilcoxon: todas comparações 𝑝 < 0, 001 exceto PMLG vs PMLGProto3 (p-valor= 0, 00248)

10

PMLG 0,9477 (0,0196) 0,9480 (0,0264) 0,9486 (0,0251) 13,2%
PMLGPSO 0,9621 (0,0162) 0,9622 (0,0224) 0,9629 (0,0216) 74,0%
PMLGProto3 0,9500 (0,0180) 0,9771 (0,0186) 0,9270 (0,0287) 12,2%
IDPC-PP 0,9078 (0,0242) 0,9088 (0,0309) 0,9088 (0,0321) 0,6%
Teste de Friedman: p-valor< 1 × 10−300

Post-hoc Wilcoxon: todas comparações 𝑝 < 0, 001 exceto PMLG vs PMLGProto3 (p-valor= 0, 00009)
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A Tabela 17 resume o desempenho dos modelos avaliados em cenários com classes desba-
lanceadas e sobrepostas. À medida que a variabilidade aumenta (𝜎 = 1 até 𝜎 = 10), todos
os modelos apresentam queda no desempenho. Contudo, o modelo PMLGPSO alcança a maior
acurácia e domina as taxas de vitória, ultrapassando 93% nos casos mais difíceis, confirmando
sua capacidade de generalização neste cenário.

Em contraste, o modelo padrão PMLG mantém uma acurácia moderada, porém é superado
pelo PMLGPSO. O PMLGProto3 obtém alta precisão para a classe 0, mas sofre uma queda na
precisão para a classe 1. O método intervalar IDPC-PP apresenta o pior desempenho geral,
com quedas significativas em acurácia e precisão à medida que 𝜎 aumenta. Testes estatísticos
(Friedman e Wilcoxon) confirmam diferenças significativas entre os métodos, ressaltando a
vantagem de estratégias otimizadas como o PMLGPSO em problemas de classificação comple-
xos e desbalanceados.

A Tabela 18 apresenta os resultados de classificação para conjuntos simbólicos gerados
a partir de distribuições Gama sob diferentes cenários de dispersão [𝜎1, 𝜎2]. Em todas as
configurações, o modelo PMLGPSO apresenta a maior acurácia, com valores variando de 0,9850
(0,0099) para [1, 1] até 0,9626 (0,0154) para [25, 2]. Sua superioridade é reforçada pelas taxas
de vitória, que ultrapassam 70% nos cenários com variâncias altamente desbalanceadas entre
classes, como [25, 2], [8, 1] e [16, 2].

O modelo PMLG demonstra desempenho estável, com pequena redução na acurácia con-
forme a dispersão aumenta, embora se mantenha inferior ao PMLGPSO em todos os cenários.
O PMLGProto3 mantém a melhor precisão para a classe 0 em quase todas as configurações, mas
apresenta queda na precisão para a classe 1 à medida que a variabilidade das classes aumenta,
indicando sensibilidade ao ruído assimétrico e menor robustez em cenários mais complexos.

O método IDPC-PP tem desempenho inferior aos demais, especialmente em configurações
de alta variância, com acurácias abaixo de 0,92 e taxas de vitória inferiores a 3% nos cenários
mais complexos. Os testes de Friedman revelam diferenças significativas entre os modelos
(p-valor< 10−140), enquanto os testes post-hoc de Wilcoxon confirmam a significância na
quase totalidade das comparações. As exceções ocorrem em comparações entre IDPC-PP
e PMLGProto3 para configurações de baixa dispersão (ex.: [1, 3], [4, 2]). De modo geral, o
PMLGPSO demonstra o comportamento mais robusto e preciso, validando sua eficácia para
lidar com dados simbólicos de distribuição Gama e dispersões variadas entre classes.
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Tabela 17 – Normal: Média e Desvio Padrão da Acurácia e da Precisão para Cenário de Dados 2.

𝜎 Modelo Acurácia Precisão 0 Precisão 1 Vitórias (%)

1

PMLG 0,8815 (0,0258) 0,9030 (0,0268) 0,8305 (0,0522) 3,1%
PMLGPSO 0,9071 (0,0234) 0,9341 (0,0243) 0,8482 (0,0480) 53,1%
PMLGProto3 0,8894 (0,0258) 0,9820 (0,0145) 0,7472 (0,0487) 16,8%
IDPC-PP 0,8991 (0,0245) 0,9333 (0,0244) 0,8263 (0,0492) 27,0%
Teste de Friedman: p-valor= 2, 31 × 10−267 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

2

PMLG 0,8786 (0,0265) 0,8988 (0,0261) 0,8304 (0,0566) 2,7%
PMLGPSO 0,9049 (0,0233) 0,9311 (0,0238) 0,8479 (0,0515) 65,1%
PMLGProto3 0,8847 (0,0273) 0,9807 (0,0152) 0,7396 (0,0512) 13,5%
IDPC-PP 0,8902 (0,0251) 0,9230 (0,0240) 0,8189 (0,0538) 18,7%
Teste de Friedman: p-valor= 3, 68 × 10−259 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

3

PMLG 0,8719 (0,0279) 0,8922 (0,0274) 0,8222 (0,0577) 2,5%
PMLGPSO 0,8989 (0,0240) 0,9247 (0,0245) 0,8412 (0,0503) 72,0%
PMLGProto3 0,8779 (0,0278) 0,9789 (0,0155) 0,7279 (0,0496) 15,5%
IDPC-PP 0,8753 (0,0260) 0,9057 (0,0251) 0,8057 (0,0538) 10,0%
Teste de Friedman: p-valor= 7, 75 × 10−266

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto IDPC-PP vs PMLGProto3 (p-valor= 0, 00207)

4

PMLG 0,8649 (0,0287) 0,8843 (0,0274) 0,8160 (0,0592) 3,8%
PMLGPSO 0,8923 (0,0260) 0,9187 (0,0253) 0,8330 (0,0538) 78,6%
PMLGProto3 0,8664 (0,0298) 0,9768 (0,0166) 0,7086 (0,0500) 11,9%
IDPC-PP 0,8563 (0,0282) 0,8834 (0,0268) 0,7891 (0,0574) 5,7%
Teste de Friedman: p-valor= 1, 83 × 10−310

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto PMLG vs PMLGProto3 (p-valor= 0, 10205)

6

PMLG 0,8487 (0,0279) 0,8676 (0,0272) 0,7992 (0,0626) 3,6%
PMLGPSO 0,8771 (0,0259) 0,9028 (0,0264) 0,8174 (0,0544) 84,2%
PMLGProto3 0,8431 (0,0325) 0,9721 (0,0186) 0,6724 (0,0506) 10,7%
IDPC-PP 0,8191 (0,0303) 0,8370 (0,0275) 0,7651 (0,0700) 1,5%
Teste de Friedman: p-valor< 1 × 10−300

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto PMLG vs PMLGProto3 (p-valor= 0, 00001)

8

PMLG 0,8257 (0,0289) 0,8441 (0,0267) 0,7716 (0,0649) 2,6%
PMLGPSO 0,8553 (0,0271) 0,8814 (0,0285) 0,7910 (0,0558) 89,4%
PMLGProto3 0,8109 (0,0342) 0,9630 (0,0219) 0,6276 (0,0478) 7,5%
IDPC-PP 0,7825 (0,0278) 0,7934 (0,0234) 0,7385 (0,0794) 0,5%
Teste de Friedman: p-valor< 1 × 10−300 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

9

PMLG 0,8154 (0,0291) 0,8334 (0,0270) 0,7606 (0,0687) 3,4%
PMLGPSO 0,8457 (0,0275) 0,8712 (0,0274) 0,7811 (0,0602) 89,5%
PMLGProto3 0,7935 (0,0359) 0,9600 (0,0222) 0,6046 (0,0468) 6,1%
IDPC-PP 0,7699 (0,0281) 0,7786 (0,0236) 0,7304 (0,0898) 1,0%
Teste de Friedman: p-valor< 1 × 10−300 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

10

PMLG 0,8062 (0,0308) 0,8246 (0,0273) 0,7470 (0,0728) 3,0%
PMLGPSO 0,8369 (0,0294) 0,8630 (0,0286) 0,7686 (0,0623) 93,8%
PMLGProto3 0,7763 (0,0367) 0,9573 (0,0235) 0,5830 (0,0443) 2,8%
IDPC-PP 0,7558 (0,0263) 0,7631 (0,0206) 0,7187 (0,1045) 0,4%
Teste de Friedman: p-valor< 1 × 10−300 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001
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Tabela 18 – Gama: Média e Desvio Padrão da Acurácia e da Precisão para Cenário de Dados 1.

[𝜎1, 𝜎2] Modelo Acurácia Precisão 0 Precisão 1 Wins (%)

[1, 1]

PMLG 0,9776 (0,0129) 0,9786 (0,0167) 0,9772 (0,0181) 31,6%
PMLGPSO 0,9850 (0,0099) 0,9855 (0,0137) 0,9849 (0,0144) 29,5%
PMLGProto3 0,9796 (0,0117) 0,9896 (0,0120) 0,9706 (0,0202) 10,2%
IDPC-PP 0,9807 (0,0109) 0,9808 (0,0154) 0,9813 (0,0163) 28,7%
Teste de Friedman: p-valor= 5, 02 × 10−143

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto IDPC-PP vs PMLGProto3 (p-valor= 0, 0019)

[1, 2]

PMLG 0,9762 (0,0135) 0,9762 (0,0181) 0,9770 (0,0187) 25,9%
PMLGPSO 0,9844 (0,0104) 0,9843 (0,0147) 0,9850 (0,0149) 39,0%
PMLGProto3 0,9786 (0,0124) 0,9888 (0,0128) 0,9695 (0,0212) 10,6%
IDPC-PP 0,9783 (0,0119) 0,9782 (0,0171) 0,9790 (0,0170) 24,5%
Teste de Friedman: p-valor= 3, 61 × 10−162

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto IDPC-PP vs PMLGProto3 (p-valor= 0, 7624)

[1, 3]

PMLG 0,9750 (0,0132) 0,9756 (0,0179) 0,9751 (0,0189) 21,7%
PMLGPSO 0,9837 (0,0104) 0,9840 (0,0145) 0,9838 (0,0153) 40,0%
PMLGProto3 0,9774 (0,0129) 0,9893 (0,0122) 0,9669 (0,0225) 9,3%
IDPC-PP 0,9779 (0,0121) 0,9790 (0,0163) 0,9774 (0,0179) 29,0%
Teste de Friedman: p-valor= 2, 58 × 10−160

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto IDPC-PP vs PMLGProto3 (p-valor= 1, 0000)

[4, 2]

PMLG 0,9734 (0,0139) 0,9740 (0,0197) 0,9735 (0,0187) 24,6%
PMLGPSO 0,9823 (0,0109) 0,9827 (0,0156) 0,9824 (0,0151) 42,2%
PMLGProto3 0,9752 (0,0126) 0,9880 (0,0134) 0,9638 (0,0212) 8,4%
IDPC-PP 0,9752 (0,0127) 0,9755 (0,0184) 0,9755 (0,0173) 24,8%
Teste de Friedman: p-valor= 7, 15 × 10−166

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto IDPC-PP vs PMLGProto3 (p-valor= 1, 0000)

[9, 2]

PMLG 0,9666 (0,0153) 0,9668 (0,0214) 0,9674 (0,0210) 16,8%
PMLGPSO 0,9774 (0,0123) 0,9775 (0,0179) 0,9780 (0,0172) 56,4%
PMLGProto3 0,9696 (0,0148) 0,9854 (0,0147) 0,9557 (0,0250) 12,5%
IDPC-PP 0,9630 (0,0158) 0,9636 (0,0220) 0,9634 (0,0221) 14,3%
Teste de Friedman: p-valor= 5, 38 × 10−231 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

[16, 2]

PMLG 0,9592 (0,0166) 0,9598 (0,0231) 0,9598 (0,0229) 15,2%
PMLGPSO 0,9716 (0,0134) 0,9721 (0,0187) 0,9718 (0,0194) 65,7%
PMLGProto3 0,9621 (0,0160) 0,9826 (0,0154) 0,9443 (0,0266) 12,7%
IDPC-PP 0,9453 (0,0189) 0,9463 (0,0257) 0,9456 (0,0260) 6,4%
Teste de Friedman: p-valor< 1 × 10−300 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

[8, 1]

PMLG 0,9534 (0,0180) 0,9534 (0,0250) 0,9546 (0,0243) 14,0%
PMLGPSO 0,9664 (0,0146) 0,9667 (0,0208) 0,9671 (0,0207) 69,7%
PMLGProto3 0,9557 (0,0173) 0,9798 (0,0169) 0,9351 (0,0281) 13,9%
IDPC-PP 0,9250 (0,0221) 0,9260 (0,0300) 0,9260 (0,0299) 2,4%
Teste de Friedman: p-valor< 1 × 10−300

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto PMLG vs PMLGProto3 (p-valor= 0, 0000)

[25, 2]

PMLG 0,9488 (0,0185) 0,9492 (0,0239) 0,9496 (0,0255) 14,8%
PMLGPSO 0,9626 (0,0154) 0,9631 (0,0212) 0,9630 (0,0222) 72,4%
PMLGProto3 0,9503 (0,0183) 0,9775 (0,0177) 0,9273 (0,0296) 11,4%
IDPC-PP 0,9199 (0,0220) 0,9208 (0,0297) 0,9210 (0,0298) 1,4%
Teste de Friedman: p-valor< 1 × 10−300

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto PMLG vs PMLGProto3 (p-valor= 0, 0156)
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A Tabela 19 apresenta o desempenho dos modelos avaliados sob condições de classes com
sobreposição e desbalanceamento, oriundas da distribuição Gama. Em todos os cenários, o
modelo PMLGPSO supera os demais métodos, atingindo as maiores acurácias (por exemplo,
0,9069 (0,0232) para [1, 1] e 0,8372 (0,0286) para [25, 2]) e dominando na taxa de vitórias,
superando 80% nos casos de maior variância como [8, 1] e [25, 2]. Seus valores de precisão
equilibrada entre as classes indicam melhor capacidade de generalização e robustez frente a
dados ruidosos e desbalanceados.

Em contraste, os modelos PMLG e IDPC-PP apresentam desempenho relativamente es-
tável, porém inferior, com taxas de vitória raramente superiores a 4% em cenários com alta
variância. O modelo PMLGProto3 continua obtendo as maiores precisões para a classe 0 (por
exemplo, acima de 0,96 em todos os cenários), mas sofre redução da precisão da classe 1
(caindo para menos de 0,60 em [25, 2]), o que compromete a acurácia geral. Testes estatísti-
cos (Friedman e Wilcoxon) confirmam diferenças significativas entre os modelos em todos os
cenários (p-valor< 10−300), reforçando a superioridade do PMLGPSO na abordagem de dados
simbólicos desbalanceados e com sobreposição. Observa-se também que, com o aumento da
variabilidade, os ganhos obtidos em dados poligonais com distribuição assimétrica são maiores
do que os observados no cenário de distribuição normal.
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Tabela 19 – Gama: Média e Desvio Padrão da Acurácia e da Precisão para Cenário de Dados 2.

[𝜎1, 𝜎2] Modelo Acurácia Precisão 0 Precisão 1 Vitórias (%)

[1, 1]

PMLG 0,8819 (0,0260) 0,9033 (0,0267) 0,8314 (0,0545) 3,4%
PMLGPSO 0,9069 (0,0232) 0,9337 (0,0243) 0,8487 (0,0496) 59,4%
PMLGProto3 0,8901 (0,0262) 0,9818 (0,0148) 0,7487 (0,0491) 17,5%
IDPC-PP 0,8958 (0,0246) 0,9291 (0,0241) 0,8244 (0,0519) 19,7%
Teste de Friedman: p-valor= 1, 68 × 10−258 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

[1, 2]

PMLG 0,8803 (0,0266) 0,9017 (0,0271) 0,8293 (0,0542) 2,8%
PMLGPSO 0,9060 (0,0234) 0,9327 (0,0238) 0,8474 (0,0493) 65,7%
PMLGProto3 0,8856 (0,0269) 0,9817 (0,0142) 0,7401 (0,0494) 16,9%
IDPC-PP 0,8887 (0,0251) 0,9171 (0,0253) 0,8248 (0,0516) 14,6%
Teste de Friedman: p-valor= 6, 94 × 10−257

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto IDPC-PP vs PMLGProto3 (p-valor= 0, 0044)

[1, 3]

PMLG 0,8723 (0,0278) 0,8935 (0,0280) 0,8207 (0,0565) 3,4%
PMLGPSO 0,8992 (0,0247) 0,9264 (0,0251) 0,8393 (0,0512) 65,0%
PMLGProto3 0,8780 (0,0271) 0,9796 (0,0154) 0,7277 (0,0495) 15,1%
IDPC-PP 0,8821 (0,0268) 0,9040 (0,0275) 0,8304 (0,0542) 16,5%
Teste de Friedman: p-valor= 1, 91 × 10−259

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto IDPC-PP vs PMLGProto3 (p-valor= 0, 00001)

[4, 2]

PMLG 0,8646 (0,0277) 0,8850 (0,0278) 0,8131 (0,0558) 2,5%
PMLGPSO 0,8927 (0,0248) 0,9198 (0,0257) 0,8319 (0,0502) 67,5%
PMLGProto3 0,8687 (0,0283) 0,9782 (0,0160) 0,7114 (0,0484) 14,5%
IDPC-PP 0,8718 (0,0265) 0,8943 (0,0257) 0,8167 (0,0552) 15,5%
Teste de Friedman: p-valor= 4, 91 × 10−250

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto PMLG vs PMLGProto3 (p-valor= 0, 00029)

[9, 2]

PMLG 0,8441 (0,0284) 0,8642 (0,0278) 0,7903 (0,0606) 2,7%
PMLGPSO 0,8736 (0,0252) 0,9002 (0,0268) 0,8116 (0,0528) 80,6%
PMLGProto3 0,8420 (0,0313) 0,9718 (0,0182) 0,6708 (0,0492) 11,8%
IDPC-PP 0,8326 (0,0269) 0,8491 (0,0262) 0,7851 (0,0606) 4,9%
Teste de Friedman: p-valor= 7, 21 × 10−313

Post-hoc Wilcoxon: todas comparações p-valor< 0, 001 exceto PMLG vs PMLGProto3 (p-valor= 0, 36082)

[16, 2]

PMLG 0,8271 (0,0299) 0,8446 (0,0276) 0,7756 (0,0667) 3,0%
PMLGPSO 0,8569 (0,0273) 0,8819 (0,0275) 0,7951 (0,0581) 88,0%
PMLGProto3 0,8123 (0,0343) 0,9651 (0,0212) 0,6288 (0,0479) 8,0%
IDPC-PP 0,7953 (0,0292) 0,8065 (0,0261) 0,7548 (0,0755) 1,0%
Teste de Friedman: p-valor< 1 × 10−300 Post-hoc Wilcoxon: todas comparações p-valor< 0, 001

[8, 1]

PMLG 0.8157 (0.0303) 0.8339 (0.0265) 0.7602 (0.0718) 3.7%
PMLGPSO 0.8462 (0.0278) 0.8719 (0.0278) 0.7816 (0.0602) 91.9%
PMLGProto3 0.7941 (0.0356) 0.9602 (0.0218) 0.6053 (0.0466) 4.0%
IDPC-PP 0.7704 (0.0279) 0.7799 (0.0228) 0.7272 (0.0871) 0.4%
Teste de Friedman: p-valor< 1 × 10−300 Post-hoc Wilcoxon: todas comparações p-valor< 0.001

[25, 2]

PMLG 0.8079 (0.0303) 0.8254 (0.0267) 0.7524 (0.0737) 3.8%
PMLGPSO 0.8372 (0.0286) 0.8621 (0.0281) 0.7724 (0.0639) 91.9%
PMLGProto3 0.7777 (0.0373) 0.9577 (0.0234) 0.5850 (0.0458) 3.5%
IDPC-PP 0.7654 (0.0284) 0.7729 (0.0232) 0.7293 (0.0956) 0.8%
Teste de Friedman: p-valor< 1 × 10−300 Post-hoc Wilcoxon: todas comparações p-valor< 0.001

6.3 CONSIDERAÇÕES SOBRE O CAPÍTULO

Este capítulo apresentou uma avaliação experimental abrangente do PMLG e suas vari-
antes em cenários de classificação com dados poligonais, baseados na regressão logística. Os
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resultados obtidos destacam o seu bom desempenho, especialmente em sua versão otimizada
(PMLGPSO), que demonstrou superioridade em termos de acurácia, precisão e capacidade de
generalização em comparação aos demais métodos testados.

Nos cenários com classes balanceadas e bem separadas, o PMLGPSO manteve altas taxas
de acurácia mesmo com o aumento da variabilidade dos dados. Essa capacidade de adaptação
a diferentes níveis de dispersão é um destaque, superando não apenas o PMLG padrão, mas
também o modelo baseado em protótipos (PMLGProto3) e o método de comparação intervalar
(IDPC-PP). Essa vantagem foi confirmada por testes estatísticos. Em situações com classes
desbalanceadas e sobrepostas, o PMLGPSO manteve os melhores valores de desempenho.

Em síntese, os experimentos realizados neste capítulo validam o PMLGPSO como uma
ferramenta para classificação de dados poligonais, especialmente em contextos onde a vari-
abilidade e o desbalanceamento está presente. Os resultados obtidos também abrem novas
perspectivas para o desenvolvimento de métodos avançados de análise de dados simbólicos.

No capítulo seguinte, os modelos desenvolvidos são aplicados a um conjunto de dados reais
com o objetivo de avaliar sua capacidade de generalização fora do ambiente simulado. Essa
etapa é fundamental para verificar a utilidade prática das abordagens propostas, especialmente
em cenários com variabilidade e complexidade inerentes aos dados clássicos.
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7 APLICAÇÃO EM DADOS REAIS DE DISTRIBUIÇÃO BINOMIAL

Notícias falsas (fake news) são informações que não correspondem à realidade, mas circu-
lam amplamente na internet devido a seu conteúdo sensacionalista, apelativo e controverso.
Dada a crescente disseminação desse tipo de conteúdo, torna-se essencial identificar padrões
linguísticos e estilísticos que possam auxiliar em sua detecção. Utiliza-se a base de dados
Fake.BR Corpus, apresentada em (MONTEIRO et al., 2018), que oferece um conjunto de textos
rotulados como Notícias Fake e Notícias Reais. Essa base foi utilizada em (SILVA et al., 2020)
para ampliar sua aplicação e relatar experimentos envolvendo técnicas clássicas de aprendizado
de máquina, incluindo diversas estratégias como combinação de modelos (ensemble).

Em (LIMA et al., 2023), o objetivo é caracterizar o comportamento das Notícias Fake e
mitigar seu impacto social por meio do desenvolvimento de um modelo estatístico parcimonioso
e preditivo. A abordagem baseia-se em dados estruturados e técnicas de regressão para avaliar a
significância das variáveis envolvidas na detecção de notícias fake. Neste trabalho, considera-se
os resultados apresentados por (LIMA et al., 2023) para definir as variáveis relevantes para este
estudo. Utiliza-se a Análise de Dados Simbólicos (SDA) para aplicar técnicas de aprendizado
estatístico e extrair conhecimento relevante.

7.1 CENÁRIO DE APLICAÇÃO: DADOS DE NOTÍCIAS FAKE

O conjunto de dados clássico é composto por 7.200 notícias (3.600 Notícias Fake e 3.600
notícias verdadeiras) publicadas entre janeiro de 2016 e janeiro de 2018 em sete fontes jorna-
lísticas brasileiras. A base de dados original possui 26 variáveis, das quais (LIMA et al., 2023)
indicam as mais relevantes, resultando em um modelo parcimonioso contendo quatro variáveis
explicativas: Tipos, Verbos no subjuntivo e imperativo (SI), Verbos modais e Comprimento

médio das sentenças.
Para transformar o conjunto de dados clássico — em que cada registro representa uma

única notícia — em um conjunto de dados simbólico, identificaram-se inicialmente variáveis de
agregação para definir as classes simbólicas. Duas variáveis principais foram selecionadas para
construir a variável poligonal: a categoria da notícia e a data de publicação (mês/ano). Cada
classe simbólica, portanto, corresponde a um grupo de notícias que compartilham a mesma
categoria e período de publicação.
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Para cada grupo 𝑗, atribui-se a classe mais frequente (Notícias Fake - 1 ou Notícias
Verdadeiras - 0) entre os registros agregados. Em seguida, foi gerada a variável poligonal da
classe 𝑗, onde o centro do polígono corresponde à média da variável aleatória 𝑍 dentro da
classe 𝑗, e o raio é definido como 2 × 𝑠𝑑(𝑍𝑗), sendo 𝑠𝑑(𝑍𝑗) o desvio padrão de 𝑍 na classe
𝑗, conforme proposto em (SILVA; SOUZA; CYSNEIROS, 2019a). Os vértices ℓ do polígono 𝑗 são
calculados pela Equação 2.16.

Após essa transformação, o conjunto de dados simbólico resultante contém 178 classes
simbólicas (89 de Notícias Fake e 89 de Notícias Verdadeiras), em que cada registro poligonal
representa um grupo de notícias agregadas por categoria e período de publicação, com número
de vértices ℓ = 5.

7.2 ANÁLISE DESCRITIVA

A Tabela 20 apresenta as medidas descritivas das variáveis explicativas poligonais definidas
em (SILVA; SOUZA; CYSNEIROS, 2019a).

Tabela 20 – Estatísticas descritivas das variáveis poligonais de notícias por classe.

Variável Média Desvio Padrão
Notícias Fake(1)
Comprimento médio da sentença (15,55; 15,55) (34,03; 34,03)
Tipos (125,68; 125,68) (3692,01; 3692,01)
Verbos modais (4,80; 4,80) (15,66; 15,66)
Verbos SI (1,40; 1,40) (2,91; 2,91)
Notícias Verdadeiras (0)
Comprimento médio da sentença (21,07; 21,07) (22,29; 22,29)
Tipos (511,29; 511,29) (58317,66; 58317,66)
Verbos modais (23,30; 23,30) (247,63; 247,63)
Verbos SI (6,89; 6,89) (35,03; 35,03)

As informações extraídas dos dados revelam diferenças importantes entre Notícias Fake e
Notícias Verdadeiras:

• Sobre a variável Comprimento médio da sentença, as notícias verdadeiras apresentam
uma média poligonal maior (21,07; 21,07) em comparação às notícias fake (15,55;
15,55). A menor variabilidade nas notícias reais indica maior consistência no tamanho
das sentenças.
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• A variável Tipos indica que as notícias reais exibem uma média poligonal mais elevada
(511,29; 511,29) em relação às notícias fake (125,68; 125,68). A alta variância obser-
vada na classe 0 sugere maior heterogeneidade no uso de vocabulário, refletindo um
repertório lexical mais diverso e complexo. Essas características podem ser observadas
na Figura 30(a)-(b), onde a escala das dimensões apresenta valores mais altos.

• A variável Verbos Modais apresenta maior média na classe Notícias Verdadeiras (23,30;
23,30), indicando construções mais frequentes que expressam possibilidade, necessidade
ou permissão, típicas de textos jornalísticos formais. A Figura 30(c)-(d) mostra a dis-
tribuição poligonal com 5 vértices da variável em ambas as classes. Por fim, os Verbos

SI também são mais comuns nas notícias reais (6,89; 6,89), reforçando a tendência das
notícias falsas de evitar nuances modais e focar em declarações diretas.

A Tabela 21 apresenta os coeficientes estimados para dois modelos logísticos ajustados às
representações simbólicas dos dados: um baseado nos centros e outro nos raios. O intercepto
significativamente alto no modelo baseado nos centros indica uma forte tendência inicial para
a predição da classe 1 (notícias fake), sugerindo que há uma alta probabilidade de classificação
como notícia falsa mesmo sem considerar os efeitos das variáveis explicativas.

Todos os coeficientes apresentam sinal negativo, indicando que o aumento das variáveis
linguísticas reduz a probabilidade de que um texto pertença à classe 1. Os coeficientes do
modelo com base nos centros têm magnitude maior que os do modelo baseado nos raios, o
que sugere que as médias das características linguísticas (representadas pelos centros) pos-
suem maior influência na classificação do que suas dispersões (representadas pelos raios). Esse
resultado reforça que, neste contexto, a posição central das variáveis é mais informativa para
a tarefa de classificação nesta base de dados.

Tabela 21 – Coeficientes estimados dos modelos logísticos ajustados aos dados de centro e raio.

Variável Coeficiente (centro) Coeficiente (raio)
Intercepto 147,7853 12,1272
Tipos -0,1312 -0,0330
Verbos SI -11,2930 -0,3653
Verbos modais -2,1549 -0,1128
Comprimento médio das sentenças -2,3634 -0,1084
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(a) Tipos (1) (b) Tipos (0)

(c) Verbos Modais (1) (d) Verbos Modais (0)

(e) Verbos SI (1) (f) Verbos SI (0)

(g) Comprimento médio das sentenças (1) (h) Comprimento médio das sentenças (0)

Figura 30 – Representação das variáveis poligonais Tipos, Verbos modais, Verbos SI e Comprimento médio
das sentenças nas classes de Notícias Fake (1) e Notícias Verdadeiras (0).
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7.3 ANÁLISE PREDITIVA

Com o objetivo de avaliar a capacidade preditiva do modelo PMLG proposto, foi de-
senvolvido um ambiente experimental, onde foi comparado o desempenho de três regras de
classificação para baseados em regressão logística para dados poligonais: PMLG, PMLGPSO e
PMLGProto. Para o modelo PMLGProto, varia-se o número de protótipos com base em diferentes
níveis de quantis: a mediana (PMLGProto1), os quartis (PMLGProto3) e os quintis (PMLGProto4).

Além disso, foi incluído o método tradicional para dados intervalares, o IDPC-PP, como
base para comparação. A avaliação considera acurácia e precisão, buscando compreender o
impacto dos diferentes modelos na tarefa de classificação. Foi realizado 100 iterações de MC,
com 75% dos dados para treino e 25% para teste.

A Tabela 22 apresenta os resultados de desempenho dos modelos, com o PMLGPSO apre-
sentando a melhor acurácia (0,9944 ± 0,0134) e precisão tanto para notícias reais (Classe 0:
0,9905 ± 0,0257) quanto para notícias fake (Classe 1: 0,9976 ± 0,0112), superando o modelo
intervalar IDPC-PP (p-valor < 0,001). A menor variabilidade (menores desvios padrão) do
PMLGPSO sugere maior consistência nas previsões, especialmente para notícias fake (Classe
1). O modelo que utiliza otimização, o PMLGPSO, supera o modelo PMLG padrão, que se
baseia na média aritmética direta das representações poligonais.

Tabela 22 – Média e Desvio Padrão da Acurácia e Precisão nas Classes 0 e 1 no cenário de notícias 𝑓𝑎𝑘𝑒.

Modelo Acurácia Precisão 0 Precisão 1

PMLG 0,9891 (0,0202) 0,9849 (0,0298) 0,9929 (0,0218)
PMLGPSO 0,9944 (0,0134) 0,9905 (0,0257) 0,9976 (0,0112)
PMLGProto1 0,6823 (0,4414) 0,6664 (0,4572) 0,6958 (0,4310)
PMLGProto3 0,9274 (0,2351) 0,9205 (0,2510) 0,9208 (0,2571)
PMLGProto4 0,9935 (0,0124) 0,9926 (0,0155) 0,9941 (0,0178)
IDPC-PP 0,9847 (0,0179) 0,9802 (0,0323) 0,9887 (0,0183)
Teste de Friedman: p-valor< 1 × 10−17

Post-hoc Wilcoxon: PMLGPSO vs IDPC-PP p-valor< 1 × 10−6

Para investigar o impacto do número de protótipos no desempenho da classificação,
avaliam-se três variantes do modelo baseado em protótipos: PMLGProto1, PMLGProto3 e PMLGProto4.
Conforme mostrado na Tabela 22, o aumento do número de protótipos resulta em melhorias
de desempenho em todas as métricas. Especificamente, o PMLGProto1 alcança uma acurá-
cia moderada e apresenta alta variabilidade (0,6823 ± 0,4414). Ao utilizar três protótipos
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(PMLGProto3), o desempenho do modelo aumenta, atingindo uma acurácia média de 0,9274 ±
0,2351. Os melhores resultados são obtidos com quatro protótipos (PMLGProto4), que alcançam
alta acurácia e mínima variabilidade (0,9935 ± 0,0124).

7.4 CONSIDERAÇÕES SOBRE O CAPÍTULO

Este capítulo explorou a aplicação do PMLG e suas variantes na classificação de notí-
cias fakes, utilizando dados reais. Os resultados obtidos comprovam a eficácia da abordagem
simbólica em problemas de classificação complexos e de impacto na sociedade.

A análise descritiva revelou diferenças consistentes entre as classes. Notícias verdadeiras
apresentaram maior diversidade lexical (variável Tipos), uso mais frequente de verbos modais
e subjuntivos/imperativos (Verbos SI), além de sentenças mais longas e consistentes. Essas
características refletem a natureza formal e elaborada do jornalismo de qualidade, enquanto
as notícias fakes tenderam a simplificações e estruturas mais diretas, necessitando apelo emo-
cional e grande compartilhamento.

Na análise preditiva, o modelo PMLGPSO destacou-se alcançando acurácia próxima a 99,5%
e precisão equilibrada entre as classes. Pode ser observado na etapa descritiva que nessa base
de dados os centros possuem maior capacidade discriminativa do que os raios, portanto, o
método baseado na média ponderada superou o modelo que utiliza como regra de predição
a média aritmética (PMLG). Essa superioridade em relação ao método intervalar IDPC-PP
também foi estatisticamente comprovada. A versão baseada em protótipos apresentou resul-
tados promissores, sugerindo que a representação por múltiplos protótipos pode melhorar a
predição, especialmente nesse cenário com alta variabilidade interna.
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8 CONCLUSÃO

Esta seção tem como objetivo apresentar as considerações finais sobre os principais tópicos
abordados, incluindo as contribuições alcançadas e indicações para trabalhos futuros.

8.1 CONSIDERAÇÕES FINAIS

Para obter conhecimento a partir de grandes e complexos conjuntos de dados de diferentes
contextos da sociedade, é necessário desenvolver ferramentas específicas. A Análise de Dados
Simbólicos (ADS) fornece ferramentas que permitem o processamento e análise de grandes
volumes de dados, podendo descrever um grupo ou classes, reduzir a dimensão e manter a
confidencialidade dos dados mantendo a diversidade original. Esta abordagem tem desenvolvido
diferentes métodos de predição, análise e representação de dados.

Em relação a métodos preditivos, trabalhos introduziram diferentes métodos de regressão
linear em diferentes representações de dados. No entanto, consideraram-se apenas os Mo-
delos Lineares Generalizados (MLG) para dados simbólicos tipo intervalar. Percebe-se assim
a necessidade de estudos que abordem diferentes distribuições de dados, visto que em mui-
tos contextos os dados não satisfazem as suposições do modelo linear baseado em mínimos
quadrados ordinários. As variáveis podem apresentar distribuições assimétricas, contínuas e
discretas. Portanto os MLG ampliam a aplicação dos modelo linear a partir de funções de
ligação que relacionam a variável resposta com as explicativas.

A representação de dados simbólicos tipo poligonal é introduzida por (SILVA; SOUZA; CYS-

NEIROS, 2019a), desenvolvendo um modelo linear poligonal além de medidas descritivas como
média, desvio padrão e histogramas para as variáveis poligonais. Uma medida de desempenho
foi introduzida, a qual é baseada na diferença de áreas dos polígonos observados e preditos.
No entanto, esta métrica apresenta-se incompleta pois não considera outras características,
como a posição que pode constituir um grande resíduo de centro.

Portanto, a abordagem desenvolvida neste trabalho utiliza os MLG no contexto da ADS,
com a variável simbólica tipo poligonal chamada de método PMLG. Os experimentos fo-
ram conduzidos utilizando dados de dois conjuntos de distribuições oriundas da exponencial:
(a) distribuições contínuas assimétricas, como a Normal Inversa e Gama, e (b) distribuição
Binomial.
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No primeiro grupo de distribuições, além do PMLG, também é introduzido o resíduo poli-
gonal, baseado na diferença entre os vértices dos polígonos e sendo referência para a definição
da métrica de desempenho Erro Médio Quadrático da Distância dos Vértices (EMQDV), que
foi comparada com métricas baseadas em centro e raio e área de polígonos. Para avaliar o
método PMLG, bases de dados simuladas foram geradas e considerou-se distribuições de dados
assimétricos e contínuos, sendo a Gama e Normal Inversa.

Os resultados foram comparados aos métodos Modelo de Regressão Linear Poligonal (PRL)
(SILVA; SOUZA; CYSNEIROS, 2019a) e Modelo de Regressão Linear Bivariado (PBIVAR) (NETO;

CORDEIRO; CARVALHO, 2011). Os resultados mostraram menores valores de erro de predição
do PMLG em todos os cenários abordados. Além disso, a métrica EMQDV aumentou o ganho
relativo, ou seja, evidenciou a diferença entre os modelos avaliados.

Após a avaliação experimental, considera-se dados da meteorologia que possui como vari-
ável resposta a precipitação da chuva. A partir do histograma da variável resposta, percebe-se
uma distribuição assimétrica positiva dos centros e os raios dos polígonos formados, portanto,
considera-se modelos Gama e função de ligação inversa. Os resultados indicam que o PMLG
obteve menor valor de erro na medidas de desempenho EMQDV.

O método poligonal proposto aplicado a cenários com variável resposta de distribuição
Binomial, baseia-se na regressão logística e define as regras de classificação por meio da
modelagem das probabilidades associadas à variável poligonal do centro e do raio. A primeira
abordagem utiliza a média das predições; a segunda implementa uma média baseada em um
algoritmo de otimização, denominado PMLGPSO; e a terceira propõe uma representação de
classe a partir de protótipos e probabilidades, denominada PMLGProto.

A abordagem proposta foi validada por meio de uma série de experimentos realizados
com dados sintéticos e reais. Nas simulações, foram considerados cenários com classes bem
separadas e sobrepostas, geradas a partir de pontos provenientes de distribuições Gama e
Normal Inversa. No cenário com dados reais, aplicou-se o método à base de notícias fake.
Para a avaliação do desempenho, foram utilizadas as métricas de acurácia e precisão e o
modelo intervalar IDPC-PP (SOUZA; QUEIROZ; CYSNEIROS, 2011) foi usado como comparação
com as abordagens poligonais. Os resultados demonstram a eficácia dos métodos poligonais
em comparação com o modelo intervalar. O PMLGPSO apresentou desempenho superior nos
cenários com dados simulados e reais, evidenciando bom ajuste à variabilidade presente nos
dados.

De modo geral, os métodos propostos, aplicados a dados simbólicos poligonais, mostraram-
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se eficazes na modelagem e avaliação dos modelos. Esta pesquisa contribui para o avanço da
ADS, ao explorar estratégias capazes de lidar com representações poligonais oriundas de MLG.
Os conhecimentos desenvolvidos podem ser aplicados a diferentes cenários, nos quais os dados
são representados por polígonos e as variáveis resposta se originam de distintas distribuições.

8.2 PRINCIPAIS CONTRIBUIÇÕES

Em análise aos resultados obtidos, são elencadas as principais contribuições:

1. Elaboração de uma abordagem em ADS de MLG para dados tipo poligonal. A motivação
desta contribuição se deu, principalmente, por estender a aplicabilidade de modelos
preditivos nesta representação de dados simbólicos.

2. Introdução do resíduo poligonal ordinário, o qual pode ser aplicado para verificar a
adequação de modelos aplicados a dados simbólicos tipo poligonal. Os resíduos podem
ser analisados a partir de representação gráfica.

3. Introduzir uma medida de avaliação do erro preditivo baseada na diferença entre vértices
dos polígonos. Além disso, compara-se os resultados a métricas baseadas em área e em
valores de centro e raio.

4. Com os resultados dos cenários de dados reais para dados de distribuições contínuas e
assimétricas (Capítulo 5) evidencia-se a importância de analisar diferentes problemas e
questionamentos da sociedade. O cenário estudado considerou dados meteorológicos, no
entanto, exemplifica-se outras áreas que possuem dados assimétricos positivos relevantes
para estudo.

5. Introduzir e comparar regras de classificação baseadas na probabilidade a posteriori,
obtidas por meio do modelo logístico, em cenários com dados de distribuição Binomial.

6. Destaca-se que os setores da sociedade tornam-se dependentes do conhecimento oriundo
de imensos e complexos conjuntos de dados, portanto a ADS torna-se uma ferramenta
de solução. Então introduzir novas representações de dados e dar novos significados a
variáveis, torna-se uma das principais contribuições.
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8.3 TRABALHOS FUTUROS

Para dar continuidade ao trabalho de pesquisa descrito nesta tese, lista-se, nesta seção,
atividades de trabalhos futuros a serem realizadas:

• Introduzir as medidas descritivas para a distribuição de dados poligonais que não foram
definidas ou exploradas na tese, como curtose e assimetria empírica.

• Os resultados apresentados mostram a análise poligonal a variáveis contínuas e discretas,
os quais compreendem a família de distribuições exponenciais. Como exemplo o estudo
considerou a distribuição Gama, Normal Inversa e Binomial. No entanto, outros tipos
de distribuições podem ser analisadas, como Poisson. Assim, pode-se introduzir outras
ferramentas de análises de dados poligonais.

• Investigar a definição do resíduo padronizado para a abordagem PMLG, visto que foi
introduzido a análise a partir dos resíduos ordinários.

• Ampliar o estudo da regra baseada em protótipos, incluindo outras distâncias e estatégias
de representação do protótipo.

• Verificar a formação de polígonos irregulares e a aplicação de outras distâncias na equa-
ção da EMQDV.

• Ampliar o estudo em dados reais, assim como variar funções de ligações e quantidade
de vértices na geração de polígonos.

8.4 ARTIGOS PUBLICADOS DURANTE A TESE

Esta tese está associada à seguinte publicação científica, resultante da pesquisa desen-
volvida ao longo do curso de doutorado, na qual foi proposto e analisado o Modelo Linear
Generalizado Poligonal (PMLG), com experimentos realizados para dados contínuos assimé-
tricos (ver Anexo A):

• do Nascimento, R.L.S., Souza, R.M.C.R., & Cysneiros, F.J.A. (2024). Generalized linear
models for symbolic polygonal data. Knowledge-Based Systems.
doi.org/10.1016/j.knosys.2024.111569.

https://doi.org/10.1016/j.knosys.2024.111569
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A proposta desta tese também foi apresentada em congressos da área de Estatística e
Análise de Dados Simbólicos:

• do Nascimento, R.L.S., Souza, R.M.C.R., & Cysneiros, F.J.A. Stacked Logistic Re-
gression for Interval Data Classification. In: Symbolic Data Analysis Workshop, 2025,
Varazdin - Croatia.

• do Nascimento, R.L.S., Souza, R.M.C.R., & Cysneiros, F.J.A. GLM For Symbolic Poly-
gonal Data Applied To School Failure Indicator. In: SINAPE - Simpósio Brasileiro de
Probabilidade e Estatística, 2024, Fortaleza - CE.

• do Nascimento, R.L.S., Souza, R.M.C.R., & Cysneiros, F.J.A. PGLM:A Regression Mo-
del Class for Symbolic Polygonal Data. In: Symbolic Data Analysis Workshop, 2023,
Paris - France.

Algumas das contribuições e resultados apresentados no Capítulo 2, foram publicadas
em periódico internacional. A publicação referenciada resultou de um estudo sobre dados
simbólicos do tipo intervalar, introduzindo os resíduos intervalar ordinários e padronizados
(ver Anexo B). Vale salientar que os dados tipo intervalar é um caso particular dos dados tipo
poligonal, os quais serviram como base teórica para definições nesta tese.

• do Nascimento, R.L.S., Fagundes, R.A.A., Souza, R.M.C.R., & Cysneiros, F.J.A. (2022).
Interval regression model adequacy checking and its application to estimate school dro-
pout in Brazilian municipality educational scenario. Pattern Analysis and Applications.
doi.org/10.1007/s10044-022-01093-0.

Outra publicação realizada durante o período da tese (ver Anexo C) avaliou o uso de
métodos de regressão comumente empregados na literatura para estimar a evasão escolar:

• do Nascimento, R.L.S., Fagundes, R.A.A., Souza, R.M.C.R., & Cysneiros, F.J.A. (2021).
Statistical Learning for Predicting School Dropout in Elementary Education: A Compa-
rative Study. Annals of Data Science. doi.org/10.1007/s40745-021-00321-4.

https://doi.org/10.1007/s10044-022-01093-0
https://doi.org/10.1007/s40745-021-00321-4
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Abstract
School dropout is a significant challenge for the education system. This phenomenon 
is present in different environments, modalities, and stages of education. In the Bra-
zilian scenario, despite advances in some respects as a reduction of indexes, combat-
ing evasion is still one of the significant efforts. Identifying the factors that involve 
school dropout is supported by different decision support techniques such as Statisti-
cal Learning. Statistical learning consists of a method set for exploring and under-
standing data to establish an association between explanatory and response variables 
and develop an accurate model. We propose to examine the use of some regression 
methods commonly used in the Statistical Learning literature for estimating school 
dropout in the context of elementary school from the state of Pernambuco. The data 
involves educational indicators, and we defined phases in the study to understand, 
prepare, and model the data. For prediction, we apply models for estimating school 
dropout using kernel-based and linear regression methods. We measured the perfor-
mance by the prediction error from the test data set using Mean Absolute Error and 
Root Mean Square Error. We considered Statistical tests to confirm the results. The 
findings show that kernel-based models are effective alternatives to provide greater 
precision in the estimation of school dropout in scope studied. The reason to explore 
more accurate predictive models is supporting intervening and targeting the most 
at-risk students of scholar dropout. The study provides knowledge about the applied 
scenario supporting policies to mitigate the problem.
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