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RESUMO

Circuitos Quânticos Variacionais (CQV) são uma abordagem promissora para o Processamento
de Linguagem Natural Quântico. Contudo, persiste uma lacuna entre as propriedades teóri-
cas dos circuitos, como expressabilidade e emaranhamento, e seu desempenho empírico. Esta
dissertação investiga sistematicamente essa relação na tarefa de análise de sentimentos, ava-
liando o impacto da representação de entrada e comparando com benchmarks clássicos. Para
tal, foram avaliadas 15 arquiteturas de CQV em baixa (𝐿 = 1) e alta (𝐿 = 10) profundi-
dade, quantificando-se sua expressabilidade e poder de emaranhamento. Os modelos foram
testados em quatro bases de dados (três sintéticas e a pública Stanford Sentiment Treebank

- SST) utilizando diferentes embeddings e dimensionalidades. A performance (métrica F1) foi
comparada a 7 modelos clássicos e 26 configurações de ensembles com validação estatística.
Os resultados confirmam que emaranhamento e profundidade adequada são requisitos para
o desempenho em cenários complexos; o aumento da profundidade de 𝐿 = 1 para 𝐿 = 10

foi fundamental para a performance dos circuitos emaranhadores, que também demonstraram
maior robustez à redução de dimensionalidade. Contudo, os modelos clássicos de referência,
notadamente as Máquinas de Vetores de Suporte, apresentaram desempenho superior na base
SST, não sendo observada uma vantagem quântica. Em contrapartida, nas bases sintéticas, di-
versos modelos quânticos profundos alcançaram desempenho estatisticamente equivalente aos
melhores benchmarks clássicos, evidenciando sua competitividade. Este trabalho estabelece,
portanto, uma ponte empírica entre teoria e prática no projeto de CQVs, validando a relevância
do emaranhamento e da profundidade e fornecendo diretrizes para arquiteturas quânticas mais
eficazes.

Palavras-chaves: aprendizagem de máquina quântica; circuitos quânticos variacionais; pro-
cessamento quântico de linguagem natural; análise de sentimentos; emaranhamento quântico.



ABSTRACT

Variational Quantum Circuits (VQCs) are a promising approach for Quantum Natural Lan-
guage Processing. However, a gap persists between the theoretical properties of circuits, such
as expressibility and entanglement, and their empirical performance. This dissertation system-
atically investigates this relationship in the sentiment analysis task, evaluating the impact of
the input representation and comparing against classical benchmarks. To this end, 15 VQC
architectures were evaluated at low (𝐿 = 1) and high (𝐿 = 10) depth, quantifying their
expressibility and entanglement power. The models were tested on four datasets (three syn-
thetic and the public Stanford Sentiment Treebank - SST) using different embeddings and
dimensionalities. Performance (F1-score) was compared to 7 classical models and 26 ensemble
configurations with rigorous statistical validation. The results confirm that entanglement and
adequate depth are requirements for performance in complex scenarios; the increase in depth
from 𝐿 = 1 to 𝐿 = 10 was fundamental for the performance of entangling circuits, which also
demonstrated greater robustness to dimensionality reduction. However, the classical reference
models, notably Support Vector Machines, showed superior performance on the SST dataset,
and no quantum advantage was observed. In contrast, on the synthetic datasets, several deep
quantum models achieved a performance statistically equivalent to the best classical bench-
marks, showcasing their competitiveness. This work, therefore, establishes an empirical bridge
between theory and practice in VQC design, validating the relevance of entanglement and
depth and providing guidelines for more effective quantum architectures.

Keywords: quantum machine learning; variational quantum circuits. quantum natural lan-
guage processing; sentiment analysis. quantum entanglement.
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1 INTRODUÇÃO

A ascensão da inteligência artificial, impulsionada por avanços exponenciais no poder com-
putacional e pela disponibilidade de vastos volumes de dados, redefiniu as fronteiras da tec-
nologia e da ciência (GOODFELLOW; BENGIO; COURVILLE, 2016). No cerne dessa revolução,
o campo do Processamento de Linguagem Natural (PLN) emergiu como uma das áreas de
maior impacto, capacitando máquinas a interpretar, processar e gerar a linguagem humana com
uma sofisticação crescente. Arquiteturas de redes neurais profundas, notadamente os modelos
Transformer e seus derivados, estabeleceram novos paradigmas de desempenho em uma gama
diversificada de tarefas, desde a tradução automática até a análise de sentimentos, tornando-
se ferramentas indispensáveis em aplicações comerciais, sociais e científicas (VASWANI et al.,
2023).

Paralelamente a essa evolução no domínio clássico, um novo paradigma computacional,
fundamentado nos princípios da mecânica quântica, vem ganhando tração e promete redefinir
os limites do que é computacionalmente tratável (ARUTE et al., 2019). A computação quântica,
que explora fenômenos como a superposição e o emaranhamento, oferece o potencial para
resolver classes específicas de problemas que são intratáveis para os supercomputadores mais
avançados da atualidade (NIELSEN; CHUANG, 2012). A intersecção desses dois campos de
vanguarda dá origem à Aprendizagem de Máquina Quântica – do inglês, Quantum Machine

Learning (QML) –, uma área de pesquisa que investiga como os recursos quânticos podem ser
alavancados para aprimorar algoritmos de aprendizagem de máquina (BIAMONTE et al., 2017).

Dentro do escopo da Quantum Machine Learning (QML), o Circuito Quântico Variaci-
onal (CQV) destaca-se como uma das abordagens mais promissoras (PERUZZO et al., 2014)
para a era atual de computadores quânticos de escala intermediária e suscetíveis a ruído, a
era Noisy Intermediate-Scale Quantum (NISQ) (PRESKILL, 2018). Esses algoritmos híbridos,
que combinam um processador quântico com um otimizador clássico, são análogos às re-
des neurais clássicas, onde um circuito quântico parametrizado, ou ansatz, é treinado para
aprender padrões nos dados. A aplicação desses modelos a tarefas de PLN, um campo emer-
gente conhecido como Processamento Quântico de Linguagem Natural (PQLN), abre uma
nova e fascinante fronteira de investigação, com o potencial de explorar os vastos espaços de
Hilbert para representar e processar a informação linguística de maneiras fundamentalmente
novas (CEREZO et al., 2021).
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Contudo, o desenvolvimento de CQV eficazes para tarefas de PQLN ainda é um campo
em aberto e repleto de desafios, como o fenômeno dos barren plateaus que pode dificultar o
treinamento de tais modelos (MCCLEAN et al., 2018). O projeto de um ansatz é, em grande
parte, um processo heurístico, e a comunidade científica ainda busca compreender quais são
os princípios arquitetônicos que governam o desempenho de um classificador quântico. Ques-
tões sobre como a topologia do circuito, a escolha das portas quânticas e sua profundidade
impactam a capacidade do modelo de aprender e generalizar a partir de dados complexos,
como os embeddings de texto, permanecem sem respostas definitivas. É nesse contexto que
a presente dissertação se insere, buscando investigar a relação entre as propriedades teóri-
cas intrínsecas de um circuito, como sua expressabilidade e poder de emaranhamento (SIM;

JOHNSON; ASPURU-GUZIK, 2019), e seu desempenho empírico.

1.1 CONTEXTUALIZAÇÃO E MOTIVAÇÃO

A investigação de algoritmos quânticos para tarefas de aprendizagem de máquina não
parte de uma premissa puramente teórica, mas é motivada por evidências concretas de que a
computação quântica já demonstrou potencial para superar as melhores abordagens clássicas
conhecidas em domínios específicos. Algoritmos seminais, como o de Shor para a fatoração de
inteiros (SHOR, 1994) e o de Grover para busca em bases de dados não estruturadas (GROVER,
1996), estabeleceram-se como provas de conceito fundamentais. O fato de que problemas de
relevância prática podem ser resolvidos de forma mais eficiente em um computador quântico
do que com os métodos clássicos atuais serve como o principal catalisador que inspira a
comunidade científica a explorar se vantagens análogas podem ser encontradas em outras
áreas complexas, como o Processamento de Linguagem Natural.

Desta forma, a motivação central deste trabalho reside na necessidade de se estabelecer
uma ponte entre a teoria e a prática no projeto de CQV para análise de sentimentos. Enquanto
a literatura teórica sugere que propriedades como a expressabilidade – a capacidade do ansatz

de explorar o espaço de Hilbert – e o poder de emaranhamento – sua habilidade de gerar
correlações quânticas complexas – são indicadores-chave do potencial computacional de um
circuito, poucas pesquisas realizaram uma validação empírica sistemática dessas métricas em
um problema concreto de PLN (SIM; JOHNSON; ASPURU-GUZIK, 2019). A presente pesquisa
é motivada pela hipótese de que uma análise quantitativa dessas propriedades pode fornecer
diretrizes valiosas para o projeto de arquiteturas de redes neurais quânticas mais robustas e
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eficazes.
Adicionalmente, um aspecto fundamental e frequentemente subestimado no desenvolvi-

mento de modelos de PQLN é a interface entre os dados clássicos e o processador quân-
tico (SCHULD; PETRUCCIONE, 2021). A maneira como um vetor de embedding de texto é
codificado em um estado quântico, bem como a escolha do próprio modelo gerador de embed-

dings e a dimensionalidade desse vetor, são fatores que podem influenciar de forma relevante
o desempenho do classificador (HALLER et al., 2022). Este trabalho é motivado, portanto, pela
necessidade de se investigar a sensibilidade dos modelos quânticos a essas escolhas, avaliando
como a resiliência à redução de dimensionalidade e a escolha do modelo Transformer impac-
tam a capacidade de aprendizado, especialmente quando comparados a benchmarks clássicos
consolidados.

A pesquisa justifica-se, assim, pela sua contribuição em três frentes principais. Primeira-
mente, ela oferece uma análise experimental abrangente, correlacionando métricas teóricas
(expressabilidade e emaranhamento) com o desempenho prático (métrica F1) de uma vasta
gama de arquiteturas de circuitos. Essa métrica é escolhida tendo em vista sua robustez em
cenários com desbalanceamento de classes, comuns na análise de sentimentos. Por ser a média
harmônica entre precisão e revocação, ela oferece uma avaliação de desempenho mais fidedigna
do que a acurácia isolada. Em segundo lugar, investiga de forma pormenorizada o impacto
da representação de dados clássicos no desempenho quântico, um passo fundamental para o
desenvolvimento de aplicações práticas. Por fim, ao realizar uma comparação estatisticamente
validada com modelos clássicos, o trabalho busca situar o estado atual dos CQV para análise
de sentimentos, identificando tanto seu potencial quanto os desafios que ainda precisam ser
superados na busca por uma eventual vantagem quântica.

1.2 OBJETIVOS

A presente dissertação delineia um conjunto de metas claras e interdependentes, estrutu-
radas em um objetivo geral que norteia a investigação e em objetivos específicos que detalham
as etapas necessárias para alcançá-lo.
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1.2.1 Objetivo Geral

O objetivo geral desta dissertação é realizar uma investigação sistemática e experimental
sobre a relação entre as propriedades teóricas de expressabilidade e emaranhamento de dife-
rentes arquiteturas de circuitos quânticos variacionais e seu desempenho empírico na tarefa
de classificação de sentimentos, avaliando também o impacto da representação vetorial dos
dados de entrada e estabelecendo uma comparação rigorosa com modelos de aprendizagem
de máquina clássicos.

1.2.2 Objetivos Específicos

Para alcançar o objetivo geral supracitado, foram definidos os seguintes objetivos específi-
cos:

1. Projetar e implementar um conjunto diversificado de 15 arquiteturas de circuitos quân-
ticos variacionais, com diferentes topologias, tipos de portas quânticas e capacidades
de emaranhamento, avaliando cada uma em configurações de baixa (𝐿 = 1) e alta
(𝐿 = 10) profundidade. A avaliação foca deliberadamente nestes dois extremos para
contrastar uma linha de base de recursos mínimos com o limite superior da capaci-
dade representacional investigada. Essa análise nos extremos é a mais informativa para
entender o impacto fundamental da profundidade na performance.

2. Quantificar, para cada arquitetura de circuito proposta, as métricas teóricas de expres-
sabilidade, por meio da divergência de Kullback-Leibler, e de poder de emaranhamento,
utilizando a medida de Meyer-Wallach.

3. Investigar o impacto da representação de dados de entrada no desempenho dos clas-
sificadores, comparando três modelos geradores de embeddings (Matryoshka, Nomic e
MPNet) e avaliando a resiliência dos modelos à redução de dimensionalidade dos vetores
(de 768 para 32 e 16 atributos).

4. Avaliar o desempenho dos modelos quânticos e clássicos em quatro bases de dados de
análise de sentimentos: três bases sintéticas de complexidade crescente e a base de dados
pública SST, utilizando a métrica F1 como principal indicador de desempenho.
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5. Estabelecer uma linha de base robusta por meio da implementação e avaliação de um
conjunto de 7 modelos de aprendizagem de máquina clássicos consolidados, além de 10
configurações de ensembles clássicos, para uma comparação direta com as abordagens
quânticas, incluindo 16 modelos quânticos em formato ensemble.

1.3 ESTRUTURA DA DISSERTAÇÃO

A fim de apresentar a pesquisa de forma clara, lógica e progressiva, esta dissertação foi
organizada na seguinte estrutura de capítulos. O Capítulo 2 estabelece a Fundamentação

Teórica, introduzindo os conceitos essenciais da computação quântica, aprendizagem de má-
quina quântica, as métricas de capacidade de circuitos, as técnicas de processamento de lin-
guagem natural e os métodos de validação estatística que sustentam o trabalho. O Capítulo 3
descreve a Metodologia, detalhando o desenho experimental, a configuração do ambiente,
as bases de dados, os modelos quânticos e clássicos utilizados e os procedimentos de avali-
ação e comparação. O Capítulo 4 discorre sobre os Resultados e Discussão dos achados,
interpretando os resultados à luz da teoria e correlacionando as diferentes variáveis do estudo.
Por fim, o Capítulo 5 apresenta a Conclusão, sintetizando os principais resultados, validando
as hipóteses levantadas, reconhecendo as limitações da pesquisa e apontando direções para
trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo tem como objetivo apresentar os conceitos teóricos que fundamentam o
desenvolvimento desta dissertação. A estrutura do capítulo foi projetada para construir o
conhecimento de forma progressiva, partindo dos princípios da computação quântica e da
aprendizagem de máquina quântica, passando pelas métricas utilizadas para avaliar os circuitos
e pelas técnicas de processamento de linguagem natural, até chegar aos modelos clássicos que
servem como referência de comparação e aos métodos de validação estatística empregados.

2.1 COMPUTAÇÃO QUÂNTICA

A computação clássica, que sustenta a tecnologia digital contemporânea, baseia-se em
princípios da física clássica para processar informações codificadas em bits, unidades que as-
sumem estados discretos de 0 ou 1. Em contrapartida, a computação quântica emerge como
um paradigma computacional que explora os fenômenos da mecânica quântica, como a su-
perposição e o emaranhamento, para processar informações de maneiras fundamentalmente
distintas.

Proposta inicialmente por físicos como Richard Feynman, que vislumbrou a utilização de
sistemas quânticos para simular outros sistemas quânticos de forma mais eficiente (FEYNMAN,
1982), esta área promete soluções para problemas intratáveis aos computadores mais poderosos
da atualidade.

Ganhos de performance teóricos já foram demonstrados em algoritmos canônicos que for-
necem fortes indícios dessa vantagem. O algoritmo de Shor, por exemplo, oferece um ganho
exponencial, em relação aos melhores algoritmos clássicos conhecidos, para a fatoração de nú-
meros primos, um problema no cerne da segurança de dados e da criptografia moderna (SHOR,
1994). De forma análoga, o algoritmo de Grover provê um ganho quadrático frente às soluções
clássicas na busca em bancos de dados não estruturados (GROVER, 1996). Tais algoritmos for-
necem a evidência fundamental que motiva a investigação do potencial quântico em outras
áreas, como a simulação de sistemas moleculares, a otimização de larga escala e, como foco
deste trabalho, a aprendizagem de máquina (NIELSEN; CHUANG, 2012; ARUTE et al., 2019).

A seguir, serão introduzidos os conceitos elementares da computação quântica que são
indispensáveis para a compreensão deste trabalho.
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2.1.1 O qubit: superposição e a esfera de Bloch

A unidade fundamental de informação na computação quântica é o bit quântico, ou qubit.
Diferentemente de um bit clássico, que está restrito aos estados 0 ou 1, um qubit pode
existir em uma combinação linear, ou superposição, desses dois estados. Matematicamente,
o estado de um qubit, denotado por |𝜓⟩ na notação de Dirac, pode ser descrito como um
vetor em um espaço de Hilbert complexo e bidimensional, C2, munido do produto interno
canônico (NIELSEN; CHUANG, 2012). Neste formalismo, a base computacional é formada pelos
estados |0⟩ e |1⟩, que são definidos como ortonormais em relação a este produto interno.
Qualquer estado de um qubit pode, então, ser expresso como uma combinação linear nesta
base:

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , (2.1)

no qual 𝛼 e 𝛽 são números complexos conhecidos como amplitudes de probabilidade. O
princípio da superposição é um dos pilares que distinguem a computação quântica, permitindo
que um qubit explore um contínuo de estados, e não apenas dois valores discretos. O quadrado
dos módulos dessas amplitudes, ‖𝛼‖2 e ‖𝛽‖2, representa, respectivamente, a probabilidade de
se obter o resultado 0 ou 1 ao se realizar uma medição do qubit na base computacional,
conforme a regra de Born (BORN, 1926). Uma condição fundamental é que a soma dessas
probabilidades deve ser igual a 1, o que impõe a restrição de normalização ao estado do qubit:
‖𝛼‖2 + ‖𝛽‖2 = 1. Esta propriedade permite que um único qubit codifique uma quantidade
de informação potencialmente maior do que um bit clássico, uma capacidade que se expande
exponencialmente com o aumento do número de qubits em um sistema.

Para a visualização geométrica do estado de um único qubit, utiliza-se a Esfera de Bloch,
uma representação onde qualquer estado puro pode ser mapeado a um ponto na superfície
de uma esfera de raio unitário (NIELSEN; CHUANG, 2012), no qual uma representação gráfica
pode ser vista na Figura 1. Dessa forma, o estado de um qubit pode ser parametrizado por
dois ângulos reais, 𝜃 (0 ≤ 𝜃 < 𝜋) e 𝜑 (0 ≤ 𝜑 < 2𝜋), da seguinte forma:

|𝜓⟩ = cos
(︃
𝜃

2

)︃
|0⟩ + 𝑒𝑖𝜑 sin

(︃
𝜃

2

)︃
|1⟩, (2.2)

dessa maneira, o polo norte da esfera (𝜃 = 0) corresponde ao estado |0⟩, enquanto o polo sul
(𝜃 = 𝜋) corresponde ao estado |1⟩. Os demais pontos na superfície da esfera representam todos
os possíveis estados de superposição do qubit. O ângulo 𝜑 representa a fase relativa entre os
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estados |0⟩ e |1⟩, um grau de liberdade que não possui análogo direto na computação clássica
e que é fundamental para os fenômenos de interferência quântica (SCHULD; PETRUCCIONE,
2018).

Figura 1 – Representação geométrica do estado de um qubit na Esfera de Bloch. Os polos norte e sul cor-
respondem aos estados da base computacional |0⟩ e |1⟩, respectivamente, enquanto os pontos na
superfície representam os estados de superposição.

Fonte: KOCKUM; NORI (2019)

2.1.2 Portas quânticas

De forma análoga às portas lógicas na computação clássica, as portas quânticas são as
operações elementares que manipulam o estado dos qubits. Matematicamente, uma porta
quântica que atua sobre 𝑛 qubits é representada por uma matriz unitária 𝑈 de dimensão
2n×2n. Sua aplicação sobre um estado |𝜓⟩ resulta em um novo estado |𝜓′⟩ = 𝑈 |𝜓⟩. A
condição de unitariedade (𝑈Ď𝑈 = 𝑈𝑈Ď = 𝐼, onde 𝑈Ď é a transposta conjugada de 𝑈 e 𝐼
é a matriz identidade) garante que a operação seja reversível e preserve a norma do vetor de
estado, uma característica fundamental da evolução quântica, conforme descrito pela equação
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de Schrödinger (NIELSEN; CHUANG, 2012). Foi demonstrado por Deutsch que um conjunto
finito de portas quânticas, conhecido como conjunto universal, é suficiente para aproximar
qualquer operação unitária com precisão arbitrária (NADA, 1992).

As portas utilizadas neste trabalho podem ser divididas em portas de um e de dois qubits.
Dentre as portas de um qubit, a porta de Hadamard (𝐻) é uma das mais importantes, sendo
responsável por criar superposições uniformes a partir dos estados da base. As portas de Pauli
(𝑋, 𝑌 , 𝑍) correspondem a rotações de 𝜋 radianos em torno dos eixos x, y e z da Esfera de
Bloch, respectivamente, sendo a porta 𝑋 o análogo quântico da porta NOT clássica.

As portas de rotação (𝑅𝑋(𝜃), 𝑅𝑌 (𝜃), 𝑅𝑍(𝜃)) generalizam as portas de Pauli, permitindo
rotações de um ângulo arbitrário 𝜃 em torno dos respectivos eixos. Além destas, a porta de rota-
ção genérica (𝑅(𝜃, 𝜑, 𝜆)) permite uma transformação unitária arbitrária sobre um único qubit.
A combinação de portas de rotação é de particular relevância para os circuitos quânticos variaci-
onais, pois os seus ângulos podem ser parametrizados e otimizados classicamente (BERGHOLM

et al., 2022).
Para que a computação quântica seja universal, são necessárias também portas que atuem

sobre múltiplos qubits, pois estas são as responsáveis pela criação de emaranhamento. A porta
CNOT (Controlled-NOT) é um exemplo canônico de porta de dois qubits: ela possui um
qubit de controle e um qubit alvo, e aplica uma porta 𝑋 no alvo se, e somente se, o controle
estiver no estado |1⟩. De forma análoga, a porta CZ (Controlled-Z) aplica uma porta 𝑍 no
alvo se o controle for |1⟩, introduzindo uma fase condicional no sistema. A capacidade de criar
correlações condicionais por meio destas portas é o que permite a construção de algoritmos
quânticos complexos e o aproveitamento do emaranhamento como recurso computacional.

2.1.3 Emaranhamento quântico

O emaranhamento é um dos fenômenos mais característicos da mecânica quântica, descrito
por Schrödinger como a propriedade definidora que a distingue da física clássica (SCHRöDINGER,
1935). Um sistema de múltiplos qubits é dito emaranhado quando o estado quântico do sistema
como um todo não pode ser fatorado como um produto tensorial dos estados individuais de
seus qubits constituintes (NIELSEN; CHUANG, 2012). Em outras palavras, os qubits perdem
sua descrição individual e passam a existir em um estado correlacionado, onde o resultado da
medição de um deles está intrinsecamente ligado ao resultado da medição dos outros.

Estas correlações, que Einstein, Podolsky e Rosen questionaram em seu famoso para-
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doxo Einstein-Podolsky-Rosen (EPR) como uma “ação fantasmagórica à distância” (EINSTEIN;

PODOLSKY; ROSEN, 1935), foram posteriormente confirmadas como uma propriedade funda-
mental da natureza pelos experimentos baseados nas desigualdades de Bell (BELL, 1964).
Hoje, entende-se que o emaranhamento não viola a causalidade, mas representa correlações
não-locais que são um recurso computacional essencial. Um exemplo canônico de um estado
emaranhado de dois qubits é o estado de Bell |Φ+⟩ = 1√

2(|00⟩ + |11⟩), onde a medição de um
qubit determina instantaneamente o estado do outro, independentemente da distância física
que os separe.

No contexto da aprendizagem de máquina quântica, o emaranhamento é fundamental
para a capacidade dos circuitos de aprender padrões complexos nos dados. A aplicação de
portas de múltiplos qubits, como CNOT e CZ, é o mecanismo pelo qual o emaranhamento
é gerado e manipulado dentro de um circuito. A capacidade de um ansatz variacional de
explorar o vasto espaço de Hilbert de um sistema de múltiplos qubits e de criar correlações
complexas que podem não estar explícitas nos dados de entrada está intrinsecamente ligada à
sua capacidade de gerar emaranhamento. Esta propriedade é uma das hipóteses centrais para
explicar as diferenças de desempenho entre as arquiteturas de circuitos quânticos analisadas
neste trabalho.

2.1.4 Medição

O processo de medição constitui a interface entre o domínio quântico, onde a informação é
processada, e o mundo clássico, onde os resultados são observados. De acordo com os postula-
dos da mecânica quântica, a medição é um processo inerentemente probabilístico e irreversível
que projeta o estado quântico sobre um conjunto de estados de base ortogonais (NIELSEN;

CHUANG, 2012). Quando um qubit em um estado de superposição |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ é
medido na base computacional (|0⟩, |1⟩), seu estado quântico colapsa para um dos estados
base.

Este colapso da função de onda ocorre com probabilidades definidas pela Regra de Born,
ao estabelecer que a probabilidade de se obter o resultado clássico 0 ser de 𝑃 (0) = ‖𝛼‖2, e a
probabilidade de se obter o resultado 1 é 𝑃 (1) = ‖𝛽‖2 (BORN, 1926). Uma vez que a medição
é realizada, a informação sobre as amplitudes 𝛼 e 𝛽 é perdida, e o qubit permanece no estado
clássico para o qual colapsou. Este processo é fundamental para a extração de resultados de
um algoritmo quântico e representa a fonte de aleatoriedade intrínseca à computação quântica.
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No contexto dos circuitos quânticos variacionais, é comum não apenas medir os estados
finais, mas calcular o valor esperado de um observável. Um observável é uma propriedade
física do sistema representada por um operador Hermitiano, como os operadores de Pauli (𝑋,
𝑌 , 𝑍). O valor esperado de um observável Ô para um sistema no estado |𝜓⟩ é dado por
Ô = ⟨𝜓| Ô |𝜓⟩. Este valor esperado é um número real clássico, que pode ser estimado por
meio da amostragem repetida do circuito (preparando o estado e medindo múltiplas vezes)
e do cálculo da média dos resultados. Na aprendizagem de máquina quântica, este valor é
frequentemente utilizado como a saída do modelo, que é então processada por uma função de
custo clássica para guiar o processo de otimização dos parâmetros do circuito. Para consolidar
os conceitos de qubit, portas quânticas e medição, a Figura 2 ilustra um circuito elementar
que integra essas operações para gerar e medir um estado emaranhado.

Figura 2 – Exemplo de um circuito quântico elementar que gera um estado de Bell, um dos estados maxima-
mente emaranhados de dois qubits. O circuito opera sobre dois qubits, |𝑞0⟩ e |𝑞1⟩, e um bit clássico,
𝑐0. Uma porta de Hadamard (H) é aplicada ao primeiro qubit para criar uma superposição, seguida
por uma porta CNOT, que emaranha os dois qubits. Por fim, uma medição na base do observável
Z é realizada no primeiro qubit, e o resultado clássico é armazenado no bit 𝑐0.

|𝑞0⟩ 𝐻 ∙ 𝑍

|𝑞1⟩
𝑐0

Fonte: elaborada pelo autor (2025)

2.2 APRENDIZAGEM DE MÁQUINA QUÂNTICA

A intersecção entre a computação quântica e a aprendizagem de máquina dá origem ao
campo do QML. Este campo investiga como os princípios quânticos podem ser utilizados para
aprimorar ou desenvolver novos algoritmos de aprendizagem, bem como a aplicação de técnicas
de aprendizagem de máquina clássica para controlar e analisar sistemas quânticos (BIAMONTE

et al., 2017). Na era atual de computadores quânticos com um número intermediário de qu-

bits e suscetíveis a ruído (a era NISQ), uma das abordagens mais promissoras e ativamente
pesquisadas é a que se baseia em algoritmos quânticos variacionais (CEREZO et al., 2021).
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2.2.1 Circuitos quânticos Variacionais

Os CQV, também conhecidos como algoritmos quânticos híbridos, representam uma classe
de algoritmos projetados para alavancar o poder computacional dos processadores quânticos
atuais em conjunto com os otimizadores clássicos (PERUZZO et al., 2014). A arquitetura de um
CQV é inerentemente híbrida e opera em um ciclo de otimização iterativo, conforme ilustrado
a seguir:

1. Preparação de parâmetros: um computador clássico inicializa um conjunto de parâme-
tros 𝜃.

2. Execução quântica: estes parâmetros são enviados a um processador quântico para con-
figurar um Circuito Quântico Parametrizado (CQP), também conhecido como ansatz.
O circuito é executado, geralmente com um estado de entrada que codifica os dados do
problema. Também é possível simular esta execução quântica utilizando computadores
clássicos.

3. Medição: o estado de saída do circuito quântico é medido, gerando resultados clássicos
(bits). Este processo é repetido múltiplas vezes para se obter uma estimativa estatística
do valor esperado de um ou mais observáveis.

4. Cálculo da função de custo: o computador clássico utiliza os resultados das medições
para calcular o valor de uma função de custo, C(𝜃), que quantifica o quão bem o circuito
está resolvendo a tarefa desejada.

5. Otimização clássica: um algoritmo de otimização clássico utiliza o valor da função de
custo para propor um novo conjunto de parâmetros 𝜃′ com o objetivo de minimizar C(𝜃).

6. Iteração: os passos 2 a 5 são repetidos até que um critério de convergência seja atingido.

O coração da parte quântica deste ciclo é o ansatz, ou CQP. Trata-se de um circuito
quântico de topologia fixa, composto por portas fixas (como CNOT e Hadamard) e portas
parametrizadas (como as de rotação 𝑅𝑋(𝜃𝑖), 𝑅𝑌 (𝜃𝑖) e 𝑅𝑍(𝜃𝑖). O conjunto de parâmetros
𝜃 = {𝜃1, 𝜃2, · · · , 𝜃𝑀} constitui os graus de liberdade do modelo, análogos aos pesos e vieses
de uma rede neural clássica (BENEDETTI et al., 2019). A capacidade de um CQV de aprender
um determinado padrão de dados está diretamente ligada à capacidade representacional de
seu ansatz, que, por sua vez, é determinada pela escolha das portas, sua conectividade e sua
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profundidade. A concepção de ansatze eficazes é um dos principais focos de pesquisa na área,
sendo o objeto central da investigação experimental desta dissertação.

A notável flexibilidade dos CQV reside em sua capacidade de atuar como aproximadores
de funções, de forma análoga às redes neurais clássicas. Foi demonstrado que os CQP po-
dem ser expressos como uma forma de Série de Fourier generalizada, o que lhes confere o
potencial para modelar funções complexas e não-lineares (SCHULD; PETRUCCIONE, 2021). De
fato, investigações sobre o poder de expressividade desses modelos sugerem que, para um
mesmo número de parâmetros, as redes neurais quânticas podem alcançar uma "dimensão
efetiva"maior do que suas contrapartes clássicas, indicando uma capacidade representacional
potencialmente superior (ABBAS et al., 2021).

Uma das mais promissoras vias para se obter uma vantagem quântica com estes modelos
é através da perspectiva dos kernels quânticos. Proposto em trabalhos seminais como o de
Havlíček et al. (2019), este método utiliza um circuito quântico para mapear os dados de
entrada clássicos para um espaço de características quântico de alta dimensionalidade. Se este
mapeamento for difícil de ser simulado classicamente, um classificador linear nesse novo espaço
pode superar os melhores classificadores clássicos. A natureza e as condições exatas para que
essa vantagem quântica se manifeste, contudo, são um tópico de intensa pesquisa e debate
na comunidade (SCHULD, 2021).

Apesar de seu potencial teórico, o sucesso prático de um CQV depende crucialmente do pro-
jeto de sua arquitetura e de sua treinabilidade. Pesquisas recentes indicam que mesmo ansatze

de profundidade rasa podem ser poderosos, contanto que possuam capacidade de emaranha-
mento suficiente (GILI et al., 2023), um achado que ressoa diretamente com os objetivos desta
dissertação. No entanto, a treinabilidade desses circuitos é desafiada pelo fenômeno dos barren

plateaus. Foi demonstrado que a topografia da paisagem de custo, incluindo a presença de
platôs, é fortemente dependente não apenas da arquitetura, mas também da escolha da função
de custo, com custos "locais"oferecendo um caminho para mitigar o problema (CEREZO et al.,
2020).

Essa interação entre expressividade, capacidade de emaranhamento e treinabilidade moti-
vou o desenvolvimento de diversas arquiteturas e metodologias. No contexto de classificadores,
propostas pioneiras como a de Farhi e Neven (2018) estabeleceram as bases para a aplicação de
CQV em problemas de aprendizagem supervisionada. O avanço da área tem inspirado também
trabalhos que exploram, por exemplo, o uso de otimização evolucionária para os parâmetros de
classificadores quânticos variacionais (COSTA; NETO, 2025), o desenvolvimento de neurônios
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quânticos parametrizados de profundidade constante (CARVALHO; NETO, 2023), a recomen-
dação de arquiteturas de circuitos com base em medidas de complexidade dos dados (NETO,
2025) e a aplicação de classificadores baseados em sistemas quânticos abertos (BRITO; NETO;

BERNARDES, 2024). Tais avanços reforçam a posição dos CQV como uma das mais ativas e
promissoras frentes da QML.

2.2.2 Codificação de dados clássicos em estados quânticos

Um pré-requisito fundamental para a aplicação de algoritmos quânticos a problemas de
aprendizagem de máquina é a capacidade de codificar dados clássicos em estados quânticos.
Este processo, conhecido como preparação de estado ou mapeamento de características quân-
ticas, consiste em mapear um vetor de características clássico 𝑥 ∈ R𝑛 para um estado quântico
|𝜓(𝑥)⟩ em um espaço de Hilbert (SCHULD; PETRUCCIONE, 2021). A escolha da estratégia de
codificação é de relevância central, pois ela define como a informação do problema é apresen-
tada ao processador quântico, influenciando diretamente a geometria do espaço de estados e,
consequentemente, a capacidade do modelo de aprender fronteiras de decisão eficazes.

Existem diversas estratégias de codificação, cada uma com suas próprias vantagens e des-
vantagens em termos de recursos (número de qubits e profundidade do circuito) e capacidade
expressiva. Exemplos incluem o basis embedding, que associa cada vetor de entrada a um es-
tado da base computacional, e o angle embedding, que codifica as características nos ângulos
de rotação de portas quânticas.

Neste trabalho, adota-se a estratégia de amplitude embedding. Este método é particu-
larmente eficiente em termos de número de qubits, pois permite codificar um vetor de ca-
racterísticas 𝑥 com 𝑁 elementos no vetor de amplitudes de um estado quântico de apenas
𝑛 = ⌈log2(𝑁)⌉ qubits. O estado resultante é da forma:

|𝜓(𝑥)⟩ = 1
‖𝑥‖

𝑁−1∑︁
𝑖=0

𝑥𝑖|𝑖⟩ (2.3)

onde ‖𝑥‖ é a norma euclidiana do vetor, que garante a normalização do estado quântico, e
|𝑖⟩ representa os estados da base computacional. Embora o Amplitude Embedding seja ex-
ponencialmente eficiente no uso de qubits, a preparação de um estado arbitrário com esta
técnica pode, em geral, exigir um circuito de profundidade exponencial (NIELSEN; CHUANG,
2012). Contudo, existem métodos eficientes para a construção destes circuitos. A implemen-
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tação utilizada nesta dissertação se baseia no trabalho de Mottonen et al. (2004), que propõe
um método sistemático para decompor a preparação de um estado quântico arbitrário em
uma sequência de portas de rotação uniformemente controladas, otimizando a construção do
circuito de codificação.

2.2.3 Otimização e a paisagem de custo

O treinamento de um CQV é, em sua essência, um problema de otimização: encontrar o
conjunto de parâmetros 𝜃* que minimiza uma função de custo C(𝜃) definida classicamente. A
função de custo é tipicamente avaliada a partir das medições do circuito quântico, o que intro-
duz um ruído de amostragem inerente ao processo. Este ruído, combinado com a complexidade
da própria arquitetura quântica, pode tornar a otimização uma tarefa desafiadora (CEREZO et

al., 2021).
A caracterização da função de custo em relação aos parâmetros do circuito define a pai-

sagem de custo. O sucesso de um algoritmo de otimização, especialmente os baseados em
gradiente, como o Adam, depende da topografia desta paisagem. Um dos maiores desafios
identificados no treinamento de CQV é o fenômeno dos barren plateaus. Formalizado por Mc-
Clean et al. (2018), este fenômeno descreve como, em vastas regiões da paisagem de custo, a
magnitude esperada dos gradientes diminui exponencialmente à medida que mais qubits são
adicionados ao circuito. Na prática, isso significa que para um sistema com um número ainda
modesto de qubits, os gradientes já são tão pequenos que se tornam indistinguíveis do ruído
estatístico, impedindo que um otimizador como o Adam encontre uma direção para aprimorar
os parâmetros do modelo.

A presença de um barren plateau implica que a paisagem de custo é extremamente plana
em quase toda a sua extensão. Para um otimizador baseado em gradiente, a ausência de uma
“descida” clara torna a busca por um mínimo local uma tarefa intratável, pois as atualiza-
ções dos parâmetros se tornam aleatórias e ineficazes. Foi demonstrado que a ocorrência de
barren plateaus está correlacionada com diversos fatores, incluindo a profundidade do ansatz

(circuitos muito profundos tendem a apresentar o problema), a natureza global da função de
custo e o nível de emaranhamento gerado aleatoriamente pelo circuito. Compreender e miti-
gar este fenômeno é um dos campos de pesquisa mais ativos em QML, sendo crucial para o
desenvolvimento de algoritmos quânticos variacionais escaláveis e treináveis.
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2.3 MÉTRICAS DE CAPACIDADE DE CIRCUITOS QUÂNTICOS

O desempenho de um CQV em uma tarefa de aprendizagem de máquina não depende
apenas do algoritmo de otimização clássico, mas é intrinsecamente governado pelo projeto
de seu ansatz. A topologia do circuito, a escolha das portas quânticas e sua profundidade
determinam as propriedades fundamentais do modelo. A fim de caracterizar e comparar dife-
rentes ansatze de uma maneira que transcenda o seu desempenho em uma única tarefa, foram
propostas métricas quantitativas para avaliar sua capacidade computacional intrínseca. Dentre
estas, a expressabilidade e o poder de emaranhamento se destacam como indicadores-chave
do potencial de um circuito. Estas métricas, sistematicamente estudadas por Sim, Johnson e
Aspuru-Guzik (2019), oferecem uma metodologia para analisar e projetar arquiteturas de CQV
de forma mais fundamentada, uma abordagem que tem sido explorada em trabalhos recentes,
como o de Maouaki et al. (2025), para o desenvolvimento de modelos quânticos robustos.

2.3.1 Expressabilidade

A expressabilidade de um CQP quantifica a sua capacidade de gerar um conjunto de
estados que seja representativo do espaço de Hilbert. Em outras palavras, um circuito com
alta expressabilidade é capaz de explorar uma porção maior e mais diversificada do espaço de
todos os possíveis estados quânticos (SIM; JOHNSON; ASPURU-GUZIK, 2019). Esta propriedade
é desejável, pois, em teoria, um modelo mais expressivo tem o potencial de aproximar uma
classe mais ampla de funções e, consequentemente, de aprender fronteiras de decisão mais
complexas.

Para quantificar a expressabilidade, (SIM; JOHNSON; ASPURU-GUZIK, 2019) propuseram
uma metodologia que compara a distribuição de estados gerados pelo CQP com a distribuição
de estados uniformemente aleatórios, conhecida como distribuição de Haar. O procedimento
consiste em:

1. Gerar um conjunto de estados |𝜓𝑖⟩ aplicando o CQP 𝑈(𝑖) com parâmetros 𝑖 amostrados
aleatoriamente a partir de uma distribuição uniforme. O estado inicial é tipicamente o
estado |0⟩⊗𝑛.

2. Gerar um segundo conjunto de estados |𝜓𝑗⟩ amostrados diretamente da distribuição de
Haar, que representa o conjunto dos estados quânticos de forma também uniforme.
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3. Calcular a fidelidade,𝐹 = ‖ ⟨𝜓𝑖| |𝜓𝑗⟩ ‖2, entre pares de estados, um de cada conjunto,
para construir uma distribuição de probabilidades de fidelidade, 𝑃𝐶𝑄𝑃 (𝐹 ).

4. Comparar esta distribuição com a distribuição teórica de fidelidade para estados aleató-
rios de Haar, que para um sistema de 𝑛 qubits é dada por 𝑃𝐻𝑎𝑎𝑟(𝐹 ) = (2𝑛1)(1𝐹 )2𝑛2.

A métrica de expressabilidade, denotada por Expr, é então definida como a divergência de
Kullback-Leibler (KL) entre a distribuição gerada pelo CQP e a distribuição de Haar:

Expr = 𝐷𝐾𝐿 (𝑃𝐶𝑄𝑃 ‖𝑃Haar ) =
∫︁
𝑃𝐶𝑄𝑃 (𝐹 ) log

(︃
𝑃𝐶𝑄𝑃 (𝐹 )
𝑃Haar (𝐹 )

)︃
𝑑𝐹. (2.4)

Um valor de 𝐷𝐾𝐿 próximo de zero indica que a distribuição de estados gerada pelo cir-
cuito é muito similar à distribuição uniforme de Haar, significando que o circuito possui alta
expressabilidade. Por outro lado, um valor elevado de 𝐷𝐾𝐿 sugere que o circuito só consegue
gerar estados em uma sub-região restrita do espaço de Hilbert, possuindo baixa expressabili-
dade. É relevante notar, contudo, que uma expressabilidade excessivamente alta nem sempre
é benéfica, pois pode estar associada a paisagens de custo mais complexas e ao fenômeno dos
barren plateaus, tornando a otimização do circuito mais desafiadora (HOLMES et al., 2022).

2.3.2 Emaranhamento

O poder de emaranhamento, ou capacidade de emaranhamento, de um circuito quanti-
fica a sua habilidade de gerar estados emaranhados a partir de estados iniciais que não são
emaranhados (estados produto). Uma vez que o emaranhamento é um recurso quântico fun-
damental e uma propriedade que não possui análogo clássico, a capacidade de um circuito
de gerá-lo é considerada um indicador crucial de seu potencial para alcançar uma vantagem
computacional (SIM; JOHNSON; ASPURU-GUZIK, 2019).

Para quantificar esta propriedade, Sim, Johnson e Aspuru-Guzik (2019) utilizam a medida
de emaranhamento de Meyer-Wallach, que oferece uma forma computacionalmente tratável
de avaliar o grau de emaranhamento de um estado puro de múltiplos qubits. Para um estado
puro |𝜓⟩ de um sistema de 𝑛 qubits, a medida de Meyer-Wallach, 𝑄(|𝜓⟩), é definida a partir
da pureza média dos subsistemas de um único qubit:

𝑄(|𝜓⟩) = 2
(︃

1 − 1
𝑛

𝑛∑︁
𝑘=1

Tr
(︁
𝜌2

𝑘

)︁)︃
, (2.5)
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onde 𝜌𝑘 = Tr ̸=𝑘(|𝜓⟩⟨𝜓|) é a matriz de densidade reduzida do k-ésimo qubit, obtida ao se
traçar sobre todos os outros qubits do sistema. O valor de Q varia de 0, para um estado
completamente separável (produto), a 1, para um estado que é, em média, maximamente
emaranhado, como os estados de Grafo (HEIN; EISERT; BRIEGEL, 2004).

A capacidade de emaranhamento do CQP, denotada por Ent, é então calculada como o
valor médio da medida de Meyer-Wallach sobre o conjunto de estados de saída, gerados a partir
da aplicação do circuito 𝑈(𝜃) sobre o estado inicial não emaranhado |0⟩⊗𝑛, para diferentes
conjuntos de parâmetros 𝜃 amostrados aleatoriamente. Matematicamente, a capacidade de
emaranhamento é a média sobre o espaço de parâmetros:

Ent =
∫︁
𝑄
(︁
𝑈(𝜃)|0⟩⊗𝑛

)︁
𝑝(𝜃)𝑑𝜃, (2.6)

no qual 𝑝(𝜃) é a distribuição de probabilidade dos parâmetros. Um valor de Ent próximo de 1
indica que o circuito é um emaranhador poderoso, enquanto um valor próximo de 0 indica que
ele possui pouca ou nenhuma capacidade de gerar correlações quânticas. Como destacado por
Maouaki et al. (2025), a análise conjunta da expressabilidade e do poder de emaranhamento
oferece um panorama mais completo da capacidade de um circuito, sendo uma ferramenta
valiosa para o projeto de arquiteturas de redes neurais quânticas mais robustas e eficazes.

2.3.3 Arquitetura e profundidade do ansatz

O projeto do ansatz é um fator crítico que determina a capacidade de um CQV. Duas
de suas características mais importantes são a profundidade e a topologia. A profundidade do
circuito, aqui denotada por 𝐿, refere-se ao número de vezes que um bloco fundamental de
portas é repetido sequencialmente. Um circuito com 𝐿 = 1 é considerado “raso”, enquanto
um com 𝐿 maior (por exemplo, 𝐿 = 10) é considerado “profundo”. Em geral, o aumento da
profundidade eleva a capacidade expressiva do circuito, permitindo-lhe, em teoria, aproximar
funções mais complexas. Contudo, esta vantagem vem com um compromisso: circuitos mais
profundos são mais suscetíveis aos efeitos do ruído em hardware quântico real e, como será
discutido, podem ser mais propensos ao fenômeno dos barren plateaus, dificultando o seu
treinamento (CEREZO et al., 2021). A análise comparativa entre configurações de circuitos
rasos (𝐿 = 1) e profundos (𝐿 = 10) é, portanto, uma investigação central desta dissertação.

A topologia do ansatz diz respeito ao padrão de conectividade estabelecido pelas portas
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de múltiplos qubits (emaranhadoras). Esta arquitetura define quais qubits interagem entre si,
influenciando diretamente a forma como as correlações são criadas e propagadas pelo circuito.
Diferentes topologias podem ser mais adequadas para diferentes estruturas de problemas. As
estratégias de conectividade investigadas neste trabalho incluem a de vizinhos próximos (li-
near), onde cada qubit interage apenas com seus adjacentes; a de anel, onde o qubit controle
pode estar não-adjacente ao qubit alvo; e a de todos-para-todos, onde cada qubit interage
com todos os outros. A escolha da topologia é um fator determinante para o poder de ema-
ranhamento do circuito.

2.4 PROCESSAMENTO DE LINGUAGEM NATURAL E ANÁLISE DE SENTIMENTO

O PLN é um campo da inteligência artificial e da ciência da computação que se dedica a
capacitar as máquinas a compreender, interpretar e gerar a linguagem humana de forma útil e
significativa (JURAFSKY; MARTIN, 2008). Dentre as inúmeras tarefas abrangidas pelo PLN, a
análise de sentimentos se destaca como uma das mais relevantes para aplicações comerciais e
sociais. Esta tarefa consiste na identificação e extração de informações subjetivas em textos,
como opiniões e emoções, classificando-as tipicamente em categorias de polaridade: positiva,
negativa ou neutra (LIU, 2012). Para que um algoritmo de aprendizagem de máquina, seja ele
clássico ou quântico, possa realizar tal tarefa, é indispensável que o texto, uma forma de dado
não estruturado, seja primeiramente convertido em uma representação numérica estruturada
que possa ser processada computacionalmente.

2.4.1 Representação vetorial de texto (embeddings)

Os modelos de aprendizagem de máquina não operam diretamente sobre o texto em sua
forma bruta. Portanto, o passo inicial e fundamental em qualquer pipeline de PLN moderno
é a transformação do texto em vetores de números reais, um processo conhecido como repre-
sentação vetorial de texto ou, mais comumente, embedding de texto. As abordagens iniciais
para esta tarefa, como Bag-of-Words ou TF-IDF, representavam documentos como vetores
esparsos e de alta dimensionalidade, onde cada dimensão correspondia a uma palavra do vo-
cabulário. Embora úteis, essas representações falhavam em capturar as relações semânticas e
sintáticas entre as palavras (JURAFSKY; MARTIN, 2008).

A revolução no PLN veio com a introdução de embeddings de palavras densos, populariza-
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dos por modelos como o Word2Vec (MIKOLOV et al., 2013). Estes modelos aprendem a mapear
cada palavra para um vetor denso de baixa dimensionalidade, com a propriedade fundamental
de que palavras com significados contextuais similares são representadas por vetores próximos
no espaço vetorial. Esta noção de que a semântica pode ser capturada pela geometria do
espaço de embeddings permitiu que os modelos de aprendizagem de máquina generalizassem
o conhecimento a partir das relações entre as palavras, em vez de tratá-las como símbolos
isolados. Esta mesma lógica se estende da representação de palavras para a de sentenças e
documentos inteiros, que é o foco deste trabalho.

2.4.2 Modelos Transformer e Sentence-BERT

A arquitetura Transformer, introduzida por Vaswani et al. (2023), representou um marco
no campo do PLN, superando as limitações das arquiteturas de redes neurais recorrentes
(RNNs) e convolucionais (CNNs) que dominavam a área até então. O componente central e
inovador do Transformer é o mecanismo de autoatenção, que permite ao modelo ponderar
a importância de todas as palavras em uma sequência de entrada ao processar cada palavra
individualmente. Isso capacita o modelo a capturar dependências de longo alcance e relações
contextuais complexas de forma mais eficaz e paralelizável do que as abordagens sequenciais
anteriores. Modelos pré-treinados de larga escala baseados na arquitetura Transformer, como
o Bidirectional Encoder Representations from Transformers (BERT), estabeleceram novos
estados da arte em uma vasta gama de tarefas de PLN.

Contudo, modelos como o BERT foram primariamente projetados para produzir embed-

dings de tokens (palavras ou subpalavras) que são sensíveis ao contexto. Derivar uma repre-
sentação vetorial de alta qualidade para uma sentença inteira a partir destes embeddings de
token não é uma tarefa trivial; estratégias simples, como a média dos vetores dos tokens,
frequentemente produzem resultados subótimos para tarefas que exigem uma compreensão
semântica fina, como a comparação de similaridade entre sentenças. Para solucionar esta
questão, Reimers e Gurevych (2019a) propuseram o Sentence-BERT (SBERT), uma modi-
ficação da arquitetura BERT. O SBERT utiliza uma rede siamesa para refinar um modelo
Transformer pré-treinado em tarefas de comparação de pares de sentenças. Este processo oti-
miza o modelo para gerar embeddings de sentenças em um espaço vetorial onde sentenças
semanticamente similares possuam uma alta similaridade de cosseno, tornando-as adequadas
para tarefas de classificação, agrupamento e busca semântica. O modelo all-mpnet-base-v2,
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utilizado nesta dissertação, é um exemplo de SBERT que se baseia na robusta arquitetura
MPNet, uma técnica de pré-treinamento que combina as vantagens do BERT e do XLNet

para uma compreensão de linguagem mais aprofundada (SONG et al., 2020).

2.4.3 Matryoshka representation learning

Apesar do sucesso dos grandes modelos de linguagem na geração de embeddings de alta
qualidade, a sua dimensionalidade elevada (tipicamente 768, 1024 ou mais dimensões) pode
impor desafios práticos em termos de armazenamento, custo computacional e latência em
aplicações do mundo real. Para endereçar esta questão, Kusupati et al. (2024) introduziram
o conceito de Matryoshka Representation Learning (MRL). A técnica se inspira nas bonecas-
russas, onde uma boneca menor se aninha dentro de uma maior. De forma análoga, o MRL
treina um único vetor de embedding de alta dimensionalidade de tal forma que seus prefixos
(as primeiras 32, 64, 128, ... dimensões) também funcionem como representações de menor
dimensão e de alta qualidade para o mesmo dado.

Este aninhamento de representações é alcançado por meio de uma modificação na função
de custo durante o treinamento do modelo. Em vez de otimizar o desempenho apenas para a
dimensionalidade final, a função de custo do MRL é uma soma ponderada das perdas calcu-
ladas para um conjunto de dimensionalidades pré-definidas. Isso força o modelo a aprender a
concentrar a informação mais relevante nas dimensões iniciais do vetor, enquanto as dimensões
subsequentes adicionam refinamentos progressivos.

A principal vantagem do MRL é a flexibilidade e a eficiência adaptativa que ele oferece. Com
um único modelo treinado, é possível extrair embeddings de diferentes tamanhos, permitindo
que o usuário escolha a dimensionalidade que oferece o melhor equilíbrio entre desempenho e
custo computacional para uma determinada aplicação, sem a necessidade de treinar múltiplos
modelos. O modelo Nomic Embed Text, da Nomic AI, bem como o modelo tomaarsen/mpnet-

base-nli-matryoshka, são exemplos práticos de arquiteturas que implementam os princípios do
MRL (NUSSBAUM et al., 2024). A capacidade destes modelos de fornecer vetores de dimensi-
onalidade variável é uma característica central explorada nos experimentos desta dissertação,
especialmente na análise do impacto da redução da dimensionalidade do vetor de entrada no
desempenho dos classificadores.
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2.5 MODELOS DE APRENDIZAGEM DE MÁQUINA CLÁSSICOS

Para avaliar de forma criteriosa o desempenho e o potencial dos , é indispensável esta-
belecer uma linha de base sólida a partir de modelos de aprendizagem de máquina clássicos
consolidados. A comparação com estes modelos, que representam o estado da prática em
diversas tarefas de classificação, permite contextualizar os resultados obtidos e identificar ce-
nários onde as abordagens quânticas podem, eventualmente, oferecer uma vantagem. Esta
seção descreve brevemente os algoritmos clássicos utilizados como benchmarks nesta disser-
tação, abrangendo modelos lineares, métodos baseados em instâncias, máquinas de vetores de
suporte e técnicas de ensemble.

2.5.1 Modelos lineares

Modelos lineares constituem uma das classes mais fundamentais de algoritmos em apren-
dizagem de máquina. Sua premissa central é a de que a relação entre as características de
entrada e a saída pode ser modelada por meio de uma combinação linear. Para tarefas de
classificação, isso se traduz na busca por uma fronteira de decisão linear (um hiperplano) que
separe as classes no espaço de características (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

A Regressão Logística, apesar de seu nome, é um modelo de classificação binária. Ela
utiliza a função sigmoide para mapear a saída de uma função linear dos dados de entrada
para um valor entre 0 e 1, que é interpretado como a probabilidade de a amostra pertencer à
classe positiva. Uma vez que as probabilidades são obtidas, um limiar de decisão (tipicamente
0,5) é utilizado para atribuir a classe final. Sua simplicidade, interpretabilidade e eficiência
computacional a tornam um dos modelos de referência mais utilizados (HASTIE; TIBSHIRANI;

FRIEDMAN, 2009).
O Perceptron, proposto por Rosenblatt (1958), é um dos algoritmos de aprendizagem

supervisionada mais antigos e representa a forma mais simples de uma rede neural artificial.
Ele calcula uma soma ponderada das características de entrada e aplica uma função de ativação
do tipo degrau para produzir uma saída binária. O algoritmo de aprendizado do Perceptron é
iterativo e atualiza os pesos apenas quando uma amostra é classificada incorretamente. Sua
principal limitação teórica é a garantia de convergência apenas para casos em que os dados
são linearmente separáveis.
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2.5.2 K-vizinhos Mais Próximos

O algoritmo dos K-vizinhos Mais Próximos - do inglês, K-Nearest Neighbors (KNN) - é
um método de aprendizagem não-paramétrico e baseado em instâncias. Diferentemente de
modelos como a Regressão Logística, que aprendem uma função de mapeamento explícita,
o KNN é considerado um algoritmo de “aprendizagem preguiçosa”, pois não constrói um
modelo geral durante a fase de treinamento, mas simplesmente armazena todas as amostras
do conjunto de dados (ALTMAN, 1992).

O processo de classificação para uma nova amostra é direto: o algoritmo identifica os
𝑘 pontos de dados do conjunto de treinamento que estão mais próximos da nova amostra
no espaço de características, utilizando uma métrica de distância (comumente a distância
euclidiana). A classe da nova amostra é então determinada pela votação majoritária entre as
classes de seus 𝑘 vizinhos. A simplicidade de seu princípio, aliada à sua capacidade de formar
fronteiras de decisão altamente não-lineares e locais, o torna um benchmark eficaz, embora
seu custo computacional na fase de predição possa ser elevado para grandes conjuntos de
dados.

2.5.3 Máquinas de Vetores de Suporte

As Máquinas de Vetores de Suporte - do inglês, Support Vector Machines (SVM) - são uma
classe de algoritmos de aprendizagem supervisionada particularmente poderosos para tarefas
de classificação. Propostos por Cortes e Vapnik (1995), o princípio fundamental de um SVM,
no caso linearmente separável, é encontrar o hiperplano que não apenas separa as classes, mas
que o faz com a maior margem de separação possível . Esta margem é a distância entre o
hiperplano e os pontos de dados mais próximos de cada classe, conhecidos como vetores de
suporte. A maximização da margem confere ao modelo uma boa capacidade de generalização.

Para lidar com dados que não são linearmente separáveis, os SVM utilizam a “artimanha
do kernel”. Esta técnica permite que o algoritmo opere em um espaço de características de alta
dimensionalidade, onde os dados podem se tornar linearmente separáveis, sem a necessidade
de calcular explicitamente as coordenadas dos dados neste novo espaço. Isso é feito por meio
de uma função de kernel, 𝐾(𝑥𝑖, 𝑥𝑗), que calcula o produto escalar entre as amostras em um
espaço transformado. Os kernels utilizados neste trabalho incluem:
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• Linear: o caso mais simples, que resulta em uma fronteira de decisão linear no espaço
original.

• Polinomial: permite a criação de fronteiras de decisão polinomiais, cuja complexidade é
controlada pelo grau do polinômio.

• Rede de base basial: Um kernel popular e flexível, que mapeia as amostras para um
espaço de dimensão infinita, sendo capaz de criar fronteiras de decisão não-lineares e
complexas.

2.5.4 Métodos de ensemble

Métodos de ensemble são técnicas que combinam as predições de múltiplos modelos de
aprendizagem (estimadores base) para produzir um classificador final mais robusto e preciso
do que qualquer um de seus componentes individuais. A premissa central é que, ao agregar
as “opiniões” de diversos modelos, os erros de um estimador podem ser compensados pelos
acertos de outros.

2.5.4.1 Bagging e Florestas Randômicas

O Bootstrap Aggregating (ou Bagging), é uma técnica de ensemble projetada principal-
mente para reduzir a variância de um estimador (BREIMAN, 1996). O processo consiste em
criar múltiplos subconjuntos de dados a partir do conjunto de treinamento original por meio de
amostragem com reposição (bootstrap). Um estimador base é treinado de forma independente
em cada um desses subconjuntos. A predição final é obtida pela agregação das predições de
todos os estimadores, geralmente por votação majoritária (para classificação) ou pela média
(para regressão).

As Florestas Randômicas são uma aplicação específica e poderosa do Bagging, utilizando
árvores de decisão como estimadores base (BREIMAN, 2001). Além da amostragem de dados
do Bagging, as Florestas Randômicas introduzem uma segunda camada de aleatoriedade: ao
construir cada árvore, em cada nó de decisão, apenas um subconjunto aleatório de carac-
terísticas é considerado para determinar a melhor divisão. Este processo descorrelaciona as
árvores do ensemble, reduzindo ainda mais a variância e tornando o modelo final robusto ao
sobreajuste.
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2.5.4.2 Boosting e o AdaBoost

Diferentemente do Bagging, onde os modelos são treinados em paralelo, o Boosting é uma
técnica de ensemble sequencial. Os estimadores base são construídos um após o outro, e cada
novo modelo é treinado para corrigir os erros cometidos pelos seus predecessores. O objetivo
principal do Boosting é reduzir o viés do modelo final.

O Adaptive Boosting (ou AdaBoost), proposto por Freund e Schapire (1997), é um dos
algoritmos de Boosting mais conhecidos. Ele funciona ajustando iterativamente os pesos das
amostras de treinamento. Inicialmente, todas as amostras têm o mesmo peso. Após cada
iteração, o algoritmo aumenta o peso das amostras que foram classificadas incorretamente
pelo estimador atual, fazendo com que o próximo estimador foque mais nestes casos errôneos.
A predição final é uma votação ponderada de todos os estimadores, onde os modelos com
menor taxa de erro recebem um peso maior.

2.5.5 Agregação por votação

A agregação por votação é uma maneira simples e eficaz de combinar as predições de um
conjunto de classificadores diversos. Existem duas abordagens principais:

• Votação majoritária (hard voting): A predição final é a classe que recebe a maioria dos
votos dos classificadores base. Cada modelo tem um voto, e a classe mais votada é a
escolhida.

• Votação ponderada (soft Voting): Este método agrega as probabilidades preditas por
cada classificador para cada classe. A classe final é aquela que possui a maior probabili-
dade média. Este tipo de votação é frequentemente preferível quando os classificadores
individuais são bem calibrados e fornecem estimativas de probabilidade confiáveis.

2.6 AVALIAÇÃO DE MODELOS E VALIDAÇÃO ESTATÍSTICA

A construção e o treinamento de modelos de aprendizagem de máquina, sejam eles clás-
sicos ou quânticos, representam apenas uma parte do ciclo de desenvolvimento. Uma etapa
igualmente crucial consiste na avaliação rigorosa de seu desempenho e na validação estatística
das comparações entre diferentes arquiteturas. Não é suficiente apenas observar os valores de
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uma métrica de desempenho; é necessário garantir que a métrica escolhida seja apropriada para
o problema em questão e que as diferenças de desempenho observadas sejam estatisticamente
significativas, e não meros artefatos de flutuações aleatórias no processo de treinamento e
teste. Esta seção descreve o arcabouço metodológico utilizado neste trabalho para a avaliação
e a comparação dos modelos propostos.

2.6.1 Métrica F1

A escolha de uma métrica de avaliação adequada é fundamental para se obter uma com-
preensão fidedigna do desempenho de um classificador. Embora a acurácia — a proporção
de predições corretas — seja uma métrica intuitiva, ela pode ser enganosa em cenários com
classes desbalanceadas. Por exemplo, em um conjunto de dados com 95% de amostras da
classe A e 5% da classe B, um classificador trivial que sempre prediz a classe A alcançaria
uma acurácia de 95%, embora seja completamente inútil para identificar a classe minoritária.
Para contornar esta limitação, utilizam-se métricas baseadas na matriz de confusão, como a
precisão e a revocação.

A precisão mede a exatidão das predições positivas, sendo definida como a razão entre os
verdadeiros positivos (TP) e o total de predições positivas (TP + FP, onde FP são os falsos
positivos). Ela responde à pergunta: “Dentre todas as instâncias que o modelo classificou
como positivas, quantas eram de fato positivas?”.

Precisão = TP
TP + FP (2.7)

A revocação, também conhecida como sensibilidade, mede a completude das predições,
sendo definida como a razão entre os verdadeiros positivos (TP) e o total de instâncias
que são de fato positivas (TP + FN, onde FN são os falsos negativos). Ela responde à
pergunta: “Dentre todas as instâncias que eram de fato positivas, quantas o modelo conseguiu
identificar?”.

Revocação = TP
TP + FN (2.8)

Frequentemente, existe um trade-off entre a precisão e a revocação. A métrica F1 foi
concebida para agregar estas duas medidas em um único valor, sendo definida como a média
harmônica entre elas. A média harmônica penaliza valores extremos de forma mais severa que
a média aritmética, de modo que um F1 elevado só é alcançado quando tanto a precisão
quanto a revocação são altas (RIJSBERGEN, 1979).
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𝐹1 = 2 · Precisão · Revocação
Precisão + Revocação (2.9)

Devido à sua robustez em cenários com desbalanceamento de classes, a métrica F1 é a
métrica principal utilizada nesta dissertação para avaliar e comparar o desempenho dos modelos
de classificação de sentimentos.

2.6.2 Testes de hipótese para comparação de classificadores

Ao comparar o desempenho de dois ou mais classificadores, observar uma diferença no valor
médio de uma métrica como a métrica F1 não é suficiente para declarar a superioridade de um
modelo sobre o outro. Essa diferença pode ser resultado de flutuações estocásticas inerentes ao
processo experimental (como inicialização aleatória de parâmetros ou amostragem de dados).
Para determinar se a diferença observada é estatisticamente significativa, recorre-se a testes
de hipótese (DEMsAR, 2006).

Neste trabalho, adota-se o teste pareado de Wilcoxon. Trata-se de um teste de hipótese
não-paramétrico utilizado para comparar duas amostras pareadas e determinar se suas media-
nas populacionais diferem. A escolha de um teste não-paramétrico é particularmente adequada
para a comparação de classificadores, uma vez que as distribuições de suas métricas de desem-
penho frequentemente não seguem uma distribuição normal, uma suposição fundamental para
testes paramétricos como o teste t-pareado (DEMsAR, 2006). No contexto desta pesquisa, as
amostras pareadas são os conjuntos de 30 valores de F1 obtidos para cada par de modelos sob
as mesmas condições experimentais (mesmas 30 seeds iniciais).

Quando múltiplas comparações de hipóteses são realizadas simultaneamente, surge o pro-
blema das comparações múltiplas. Se cada teste individual for realizado com um nível de
significância 𝛼, a probabilidade de se cometer ao menos um erro do Tipo I (rejeitar incorreta-
mente uma hipótese nula verdadeira) em toda a família de testes aumenta consideravelmente.
Para controlar esta taxa de erro familiar, é necessário aplicar um procedimento de correção
dos p-valores.

Para este fim, emprega-se a correção de Holm-Bonferroni, proposta por Holm (1979).
Este método é um procedimento sequencial que ajusta o nível de significância para cada teste
de forma menos conservadora que a correção de Bonferroni tradicional, oferecendo maior
poder estatístico. O método ordena os p-valores do menor para o maior e os compara com
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níveis de significância sequencialmente ajustados (𝛼
𝑘
, 𝛼

𝑘−1 , · · · , 𝛼; sendo 𝑘 o número de p-
valores avaliados), proporcionando um controle rigoroso da taxa de erro familiar supracitada.
A utilização do teste de Wilcoxon em conjunto com a correção de Holm-Bonferroni estabelece,
portanto, um arcabouço estatístico robusto para validar as conclusões sobre as diferenças de
desempenho entre os modelos analisados nesta dissertação.
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3 MÉTODO PROPOSTO E DESENHO EXPERIMENTAL

Este capítulo é dedicado à apresentação do método central investigado nesta dissertação
e ao detalhamento do desenho experimental concebido para sua validação e análise. Primei-
ramente, na seção 3.1, descreve-se o modelo de classificação quântica proposto, detalhando
sua arquitetura, os componentes variacionais e as estratégias de treinamento. Em seguida, na
seção 3.2, é apresentado o desenho experimental, que engloba a configuração do ambiente,
as bases de dados utilizadas, os modelos clássicos de comparação e o arcabouço estatístico
empregado para garantir a robustez das conclusões.

3.1 MODELO HÍBRIDO QUÂNTICO-CLÁSSICO PROPOSTO

Esta seção descreve a arquitetura e os componentes do classificador quântico variacional
que constitui o objeto de estudo desta pesquisa. O modelo segue um fluxo híbrido quântico-
clássico, onde dados textuais são pré-processados e codificados em estados quânticos, que são
então manipulados por um circuito parametrizado para realizar a tarefa de classificação de
sentimentos.

3.1.1 Arquitetura geral do classificador

O classificador quântico proposto opera em três estágios fundamentais, conforme o esque-
mático exibido na Figura 3.

1. PE: o vetor de características clássico, proveniente do embedding de uma sentença, é
codificado em um estado quântico. Neste trabalho, utiliza-se a técnica de amplitude

embedding (MOTTONEN et al., 2004), que codifica um vetor normalizado de 𝑁 caracte-
rísticas nas amplitudes de um estado de 𝑙𝑜𝑔2(𝑁) qubits.

2. Ansatz variacional: O estado quântico preparado é então processado por um CQP, ou
ansatz. Este circuito é composto por uma sequência de portas quânticas cujas rotações
são definidas por um conjunto de parâmetros clássicos otimizáveis, 𝜃. O projeto deste
ansatz é o foco central da investigação.

3. Medição: Ao final do circuito, uma medição é realizada sobre os qubits. Para esta tarefa
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de classificação, mede-se o valor esperado do observável Pauli 𝑍 em todos os qubits, o
que produz uma saída clássica no intervalo [-1,1]. Este valor é então mapeado para as
classes do problema, onde -1 representa o sentimento negativo e +1, o positivo.

Figura 3 – Template de circuito com preparação de estado por amplitude (PE), o bloco de ansatz variável
através das possibilidades da Figura 4 e medição pelo observável 𝑍.

|0⟩
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sa

tz

Z
|0⟩

... ... ...

|0⟩

Fonte: elaborada pelo autor (2025)

3.1.2 Catálogo de ansatze investigados

Para investigar sistematicamente a relação entre a arquitetura do CQP e seu desempe-
nho, este trabalho propõe e analisa 15 ansatze distintos, cujos diagramas são apresentados
na Figura 4. A seleção destes circuitos foi projetada para cobrir uma gama diversificada de
topologias e capacidades de emaranhamento, permitindo uma análise incremental de sua com-
plexidade. Diversas arquiteturas foram inspiradas em propostas da literatura, notavelmente do
estudo comparativo de (SIM; JOHNSON; ASPURU-GUZIK, 2019). A justificativa para a proposição
de cada circuito é detalhada a seguir:

• Circuitos 1, 2 e 3: Representam as arquiteturas mais fundamentais, servindo como
linhas de base não-emaranhadoras. Cada circuito utiliza uma única camada de portas de
rotação em torno de um dos eixos cartesianos da Esfera de Bloch: 𝑅𝑋 para o circuito
1, 𝑅𝑌 para o circuito 2 e 𝑅𝑍 para o circuito 3.

• Circuito 4: Propõe um incremento em relação aos anteriores ao combinar duas camadas
de rotação em eixos não comutáveis (𝑅𝑋 e 𝑅𝑍). Esta arquitetura é inspirada no “Circuito
1” do estudo de Sim, Johnson e Aspuru-Guzik (2019) e visa testar se a capacidade de
gerar rotações arbitrárias sobre um qubit melhora o desempenho.
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• Circuito 5: Utiliza uma camada de portas de rotação genéricas (𝑅), que são, por
definição, universais para um único qubit. Este circuito é proposto para uma comparação
direta com o circuito 4, avaliando se uma parametrização mais explícita da rotação
oferece vantagens sobre a composição de rotações em eixos fixos.

• Circuitos 6: Adiciona uma camada de portas CNOT em topologia circular ao circuito
5. O objetivo é introduzir emaranhamento de forma explícita e avaliar o impacto da
adição de correlações quânticas a um ansatz já expressivo em termos de operações de
um qubit.

• Circuitos 7 a 11: Formam um bloco de estudo para uma análise incremental do ema-
ranhamento.

– O circuito 7 inicia com uma estrutura simples, combinando portas Hadamard (𝐻)
e rotações 𝑅𝑋 .

– O circuito 8 adiciona portas de emaranhamento CZ ao circuito 7. Sua arquitetura
é inspirada no “Circuito 9” de Sim, Johnson e Aspuru-Guzik (2019), que por sua
vez se baseia no conceito de Quantum Kitchen Sinks de Wilson et al. (2018).

– O circuito 9 substitui as portas 𝑅𝑋 do circuito 8 por rotações genéricas 𝑅, para
testar o efeito de uma parametrização mais rica.

– O circuito 10 e o circuito 11 são análogos aos circuitos 8 e 9, respectivamente,
mas substituem as portas CZ por CNOTs, permitindo uma comparação direta entre
diferentes tipos de portas de controle.

• Circuitos 12 e 13: Investigam arquiteturas com conectividade de vizinhos próximos.
O circuito 12 implementa um padrão simples de rotações controladas. O circuito 13,
inspirado no “Circuito 7” de (SIM; JOHNSON; ASPURU-GUZIK, 2019) e utilizado no algo-
ritmo QVECTOR (JOHNSON et al., 2017), intercala camadas de rotações não controladas
entre as portas de emaranhamento.

• Circuitos 14 e 15: São propostos para avaliar o impacto de topologias de conectividade
mais complexas.

– O circuito 14 emprega uma construção em blocos de circuito, conforme proposto
por Schuld et al. (2020), que combina interações de vizinhos próximos com in-
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terações de longo alcance, sendo análogo ao “Circuito 15” de Sim, Johnson e
Aspuru-Guzik (2019).

– O circuito 15, inspirado no “Circuito 6” de Sim, Johnson e Aspuru-Guzik (2019) e
originalmente proposto por Sousa e Ramos (2006), implementa uma conectividade
do tipo “todos-para-todos”, representando o mais alto grau de interação entre os
qubits dentre os modelos testados.

3.1.3 Agregação de modelos quânticos via ensemble

Além da análise de circuitos individuais, este trabalho propõe a construção e avaliação
de ensembles de modelos quânticos. O objetivo é investigar se a combinação de múltiplos
classificadores pode levar a umo desempenho mais robusta e precisa. As estratégias de ensemble
e os circuitos base utilizados estão listados no Quadro 1. Para os ensembles do tipo AdaBoost

e Bagging, foram selecionados os circuitos 6, 9 e 14 devido às suas topologias que, embora
relativamente enxutas, apresentam um alto potencial de emaranhamento e expressabilidade.
Adicionalmente, são propostos ensembles baseados em votação (hard e soft voting) para
analisar o comportamento agregado de circuitos com diferentes níveis de complexidade e
topologias de conectividade.
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Figura 4 – Conjunto de ansatze utilizados com seus códigos identificação única.
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𝐻 ∙ 𝑅𝑋

(i) Circuito 9

𝐻 ∙ 𝑅

𝐻 ∙ 𝑅

𝐻 ∙ 𝑅

𝐻 ∙ 𝑅

(j) Circuito 10

𝐻 ∙ 𝑅𝑋

𝐻 ∙ 𝑅𝑋

𝐻 ∙ 𝑅𝑋

𝐻 ∙ 𝑅𝑋

(k) Circuito 11

𝐻 ∙ 𝑅

𝐻 ∙ 𝑅

𝐻 ∙ 𝑅

𝐻 ∙ 𝑅

(l) Circuito 12

𝑅𝑋 𝑅𝑍 ∙

𝑅𝑋 𝑅𝑍 𝑅𝑍 ∙

𝑅𝑋 𝑅𝑍 ∙ 𝑅𝑍

𝑅𝑋 𝑅𝑍 𝑅𝑍

(m) Circuito 13

𝑅𝑋 𝑅𝑍 ∙ 𝑅𝑋 𝑅𝑍

𝑅𝑋 𝑅𝑍 𝑅𝑍 𝑅𝑋 𝑅𝑍 ∙

𝑅𝑋 𝑅𝑍 ∙ 𝑅𝑋 𝑅𝑍 𝑅𝑍

𝑅𝑋 𝑅𝑍 𝑅𝑍 𝑅𝑋 𝑅𝑍

(n) Circuito 14

𝑅𝑌 ∙ 𝑅𝑌 ∙

𝑅𝑌 ∙ 𝑅𝑌 ∙

𝑅𝑌 ∙ 𝑅𝑌 ∙

𝑅𝑌 ∙ 𝑅𝑌 ∙
(o) Circuito 15

𝑅𝑋 𝑅𝑍 𝑅𝑋 𝑅𝑋 𝑅𝑋 ∙ ∙ ∙ 𝑅𝑋 𝑅𝑍

𝑅𝑋 𝑅𝑍 𝑅𝑋 𝑅𝑋 ∙ ∙ ∙ 𝑅𝑋 𝑅𝑋 𝑅𝑍

𝑅𝑋 𝑅𝑍 𝑅𝑋 ∙ ∙ ∙ 𝑅𝑋 𝑅𝑋 𝑅𝑋 𝑅𝑍

𝑅𝑋 𝑅𝑍 ∙ ∙ ∙ 𝑅𝑋 𝑅𝑋 𝑅𝑋 𝑅𝑋 𝑅𝑍

Fonte: elaborada pelo autor (2025)



62

Quadro 1 – Ensemble de modelos quânticos utilizados

ID Descrição
16 AdaBoost do circuito 6
17 Bagging do circuito 6
18 AdaBoost do circuito 9
19 Bagging do circuito 9
20 AdaBoost do circuito 14
21 Bagging do circuito 14
22 Soft voting dos circuitos 1, 2 e 3
23 Hard voting dos circuitos 1, 2 e 3
24 Soft voting dos circuitos 1, 2, 3 e 5
25 Hard voting dos circuitos 1, 2, 3 e 5
26 Soft voting dos circuitos 1, 2, 3, 5 e 6
27 Hard voting dos circuitos 1, 2, 3, 5 e 6
28 Soft voting dos circuitos 7–11
29 Hard voting dos circuitos 7–11
30 Soft voting dos circuitos 12, 14 e 15
31 Hard voting dos circuitos 12, 14 e 15

Fonte: Elaborada pelo autor (2025)

3.2 DESENHO EXPERIMENTAL PARA VALIDAÇÃO

Esta seção descreve o desenho experimental utilizado para treinar, avaliar e comparar os
modelos quânticos propostos na seção anterior, bem como os modelos clássicos de referência.
O fluxo geral do processo experimental é apresentado no diagrama da Figura 5.

3.2.1 Configuração de ambiente

Esta pesquisa foi executada em um ambiente Linux com sistema operacional Ubuntu 24.04
dentro do Windows 11 utilizando o Windows Subsystem for Linux (WSL). O computador no
qual este ambiente foi montado possui uma CPU Intel® Core™ i9-10900F e 128 gigabtyes de
RAM. Somado a isso, utilizou-se a linguagem de programação Python (ROSSUM; JR, 1995) na
versão 3.12.8 com as seguintes bibliotecas:

• Aeon (MIDDLEHURST et al., 2024) versão 1.1.0;

• Matplotlib (HUNTER, 2007) versão 3.10.3;
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Figura 5 – Fluxo geral do método experimental, detalhando as etapas sequenciais: (a) seleção e preparação
das bases de dados; (b) conversão do texto em vetores numéricos (embeddings); (c) análise da
dimensionalidade do vetor de entrada; e (d) treinamento e avaliação dos modelos de classificação
quânticos e clássicos, incluindo seus ensembles.

Fonte: elaborada pelo autor (2025)

• Numpy (HARRIS et al., 2020) versão 2.0.2;

• Pandas (TEAM, 2024) versão 2.2.3;

• PennyLane (BERGHOLM et al., 2022) versão 0.41.1;

• PyTreeBank (RAIMAN, 2020) versão 0.2.7;

• Scikit-Learn (PEDREGOSA et al., 2018) versão 1.6.1;

• Sentence Transformers (REIMERS; GUREVYCH, 2019b) versão 4.1.0;

• Statsmodels (SEABOLD; PERKTOLD, 2010) versão 0.14.4;

• Weights and Biases (BIEWALD, 2020) versão 0.19.11.

Todos os códigos pertinentes a esta pesquisa podem ser encontrados em (FILHO, 2025).

3.2.2 Base de dados

Quatro bases de dados sustentam esta pesquisa, sendo três delas sintéticas a partir de Kart-
saklis et al. (2021) para distinguir frases de tom alegre ou triste, e a quarta correspondendo ao
corpus público SST (SOCHER et al., 2013) através da biblioteca PyTreeBank (RAIMAN, 2020).
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Para criar os conjuntos sintéticos, empregou-se o ChatGPT (OPENAI, 2025) com um
prompt desenvolvido especificamente para este trabalho. Obtiveram-se três níveis de com-
plexidade:

• Fácil: frases curtas (5–7 palavras), sem nomes próprios;

• Médio: maior número de termos e grau de ambiguidade lexical;

• Difícil: inclusão de nomes próprios, coletivos e outros elementos que elevam a ambigui-
dade.

Cada conjunto contém 100 frases por classe (alegre/triste) para treinamento e 25 por
classe para teste, todas geradas em inglês para garantir compatibilidade com as ferramentas
de pré-processamento e com os modelos de embeddings.

O SST complementa esses dados, reunindo 11.855 sentenças de críticas de filmes pré-
processadas pelo parser da Stanford e anotadas por três avaliadores humanos, totalizando
215.154 frases únicas. Neste estudo, adota-se a classificação binária, agrupando as sentenças
negativas (ou levemente negativas) em uma classe e as levemente positivas (ou positivas) em
outra, descartando-se as sentenças neutras.

3.2.3 Processamento e Representação dos Dados

A conversão do texto em vetores numéricos é uma etapa fundamental do pipeline. Para esta
tarefa, serão empregados três modelos geradores de embeddings: sentence-transformers/all-
mpnet-base-v2, a ser chamado apenas de modelo MPNet, tomaarsen/mpnet-base-nli-matryoshka,
modelo Matryoshka, e nomic-ai/nomic-embed-text-v1.5, modelo Nomic. A utilização de múl-
tiplos geradores visa avaliar a sensibilidade dos classificadores à representação de entrada.

Adicionalmente, será conduzido um estudo sobre o impacto da dimensionalidade do vetor
de entrada no desempenho dos modelos. Utilizando o modelo Matryoshka, que permite a
geração de vetores de tamanhos variados, serão testadas as dimensionalidades de 768, 32 e 16
atributos. O objetivo principal desta etapa é investigar a resiliência dos modelos à redução de
dimensionalidade e justificar a escolha de uma representação de entrada mais compacta (16
atributos) para os experimentos principais, o que, no caso quântico, impacta diretamente na
largura (número de qubits) do circuito.
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3.2.4 Modelos Clássicos para Comparação

Para estabelecer uma linha de base de desempenho e contextualizar os resultados dos
modelos quânticos, serão utilizados sete algoritmos de aprendizagem de máquina clássicos,
conforme listados no Quadro 2. Estes modelos foram obtidos através da biblioteca Scikit-
Learn e utilizados com seus parâmetros padrão, a fim de garantir um benchmark justo e
reprodutível. Adicionalmente, serão construídos e avaliados ensembles de modelos clássicos,
detalhados no Quadro 3, para permitir uma comparação direta com as estratégias de ensemble
quânticas.

Quadro 2 – Modelos clássicos utilizados

ID Descrição
32 Regressão logística
33 Perceptron
34 K-vizinhos mais próximos
35 Floresta randômica
36 SVM com kernel linear
37 SVM com kernel polinomial
38 SVM com kernel RBF
Fonte: Elaborada pelo autor (2025)

Quadro 3 – Ensemble de modelos clássicos utilizados

ID Descrição
39 AdaBoost da regressão logística
40 Bagging da regressão logística
41 Soft voting de SVM (linear, polinomial, RBF)
42 Hard voting de SVM (linear, polinomial, RBF)
43 Soft voting de regressão logística, perceptron e KNN
44 Hard voting de regressão logística, perceptron e KNN

Fonte: Elaborada pelo autor (2025)

3.2.5 Estratégia de Otimização e Treinamento

Para todos os modelos quânticos, a otimização dos parâmetros 𝜃 do ansatz é realizada
pelo otimizador Adam (KINGMA; BA, 2017). O treinamento se utiliza de um tamanho de batch
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de 20 amostras para as bases sintéticas e 512 para a base SST, sendo executado por 40 épocas
em todos os cenários. A métrica final para avaliação de desempenho é a F1.

3.2.6 Análise de Propriedades Intrínsecas e Desempenho

Parte central deste trabalho é a investigação da relação entre as propriedades intrínsecas
dos circuitos e seu desempenho prático. Para tanto, serão calculadas as métricas de expressa-
bilidade e poder de emaranhamento para cada um dos 15 ansatze propostos, tanto com uma
(𝐿 = 1) quanto com dez (𝐿 = 10) camadas de profundidade. Adicionalmente, investiga-se
como a etapa de preparação de estados (amplitude embedding) afeta estas mesmas medidas.
Os valores obtidos para estas métricas serão então correlacionados com o desempenho F1
alcançada pelos respectivos circuitos em cada base de dados, buscando identificar padrões e
dependências.

3.2.7 Validação Estatística

Para garantir a robustez das conclusões, cada experimento será repetido 30 vezes com
diferentes sementes de aleatoriedade (seeds). A comparação de desempenho entre os modelos
será realizada por meio do teste pareado de Wilcoxon (WILCOXON, 1945), aplicado sobre as
distribuições dos 30 valores da métrica F1. Para controlar o erro do Tipo I decorrente das
múltiplas comparações, os p-valores obtidos serão corrigidos utilizando o método de Holm-
Bonferroni (HOLM, 1979). Um resultado será considerado estatisticamente significativo se o
p-valor ajustado for inferior a 0.05. Adicionalmente, serão construídos diagramas de diferença
crítica para visualização dos agrupamentos de modelos com desempenho estatisticamente
equivalente.
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4 RESULTADOS E DISCUSSÃO

Neste capítulo, procede-se à análise e interpretação dos resultados experimentais obtidos à
luz da metodologia delineada no capítulo 3. O objetivo é contextualizar os achados, correlacio-
nando o desempenho empírico dos modelos com suas propriedades teóricas e arquitetônicas. A
análise subsequente está estruturada em seções que buscam, de forma progressiva, destrinchar
os fatores que influenciaram o desempenho dos classificadores. Inicialmente, a discussão se
aprofunda no papel das propriedades quânticas intrínsecas dos circuitos, como o emaranha-
mento e a expressabilidade. Em seguida, investiga-se a influência da representação vetorial
de entrada, abordando a sensibilidade dos modelos à escolha do gerador de embeddings e à
redução de dimensionalidade. Por fim, realiza-se uma análise comparativa detalhada entre os
modelos quânticos e os benchmarks clássicos, situando os resultados obtidos no panorama
atual da área e discutindo as implicações para a busca por uma vantagem quântica em tarefas
de processamento de linguagem natural.

4.1 PAPEL DO EMARANHAMENTO, PROFUNDIDADE E EXPRESSABILIDADE NA CA-
PACIDADE REPRESENTACIONAL

A análise minuciosa dos resultados obtidos nos experimentos revela uma hierarquia clara de
fatores que governam o desempenho dos classificadores quânticos variacionais na tarefa de aná-
lise de sentimentos. Dentre estes, a capacidade intrínseca do ansatz de gerar emaranhamento,
a profundidade do circuito e a sua expressabilidade emergem não como meros otimizadores de
desempenho, mas como elementos fundamentais que ditam a capacidade representacional do
modelo. Esta seção dedica-se a interpretar os resultados sob a ótica dessas propriedades, de-
monstrando como sua interação é determinante para o sucesso da classificação, especialmente
ao transitar de cenários sintéticos para dados do mundo real.

Observa-se, primeiramente, um agrupamento natural de circuitos com desempenho limi-
tado, notadamente os de natureza não-emaranhadora. Através da Figura 6, percebe-se que os
circuitos 1 a 5 e 7, cujas arquiteturas se baseiam exclusivamente em portas de rotação de um
único qubit, compartilham uma limitação fundamental: sua incapacidade de criar ou manipu-
lar ativamente as correlações quânticas entre os qubits. Embora demonstrem desempenhos
variáveis nas bases sintéticas, frequentemente influenciados pela qualidade do embedding de
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Figura 6 – Resultados das medidas de expressabilidade e emaranhamento e a métrica F1 na base SST. Utilizou-
se o eixo logarítmico da Divergência KL para melhor visualização dos dados. Cada subíndice no
canto inferior direito refere-se ao código do circuito equivalente.
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Fonte: Elaborada pelo autor (2025)

entrada, seu desempenho na base SST é consistentemente modesta. Esta falha considerável
em um cenário de dados complexo e ruidoso sugere que a capacidade de processamento local,
ainda que sofisticada, é insuficiente para a tarefa.

Para quantificar esta limitação, nota-se que mesmo os ansatze não-emaranhadores mais
performáticos neste grupo não alcançam resultados expressivos na base SST, tendo em vista
os resultados consolidados através das Figuras 7, 8, 9, 10, 11, 12, 13 e 14. O circuito 5, que
utiliza uma porta de rotação genérica (𝑅), atinge uma mediana de F1 de aproximadamente
0.16 com 𝐿 = 1. De forma similar, o circuito 2 (𝑅𝑌 ) alcança uma mediana de F1 perto de
0.28 com 𝐿 = 1. Em contrapartida, o circuito 1 (𝑅𝑋) e o circuito 4 (𝑅𝑋 , 𝑅𝑍) apresentam
um desempenho residual, com medianas de F1 de aproximadamente 0.03 para 𝐿 = 1. O
aumento da profundidade para 𝐿 = 10 nestes circuitos não produziu ganhos estatisticamente
relevantes na maioria dos casos, e em nenhuma situação foi capaz de elevá-los a um patamar
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competitivo. Este comportamento reforça a hipótese de que a mera adição de parâmetros em
uma arquitetura não-emaranhadora não expande sua capacidade representacional de forma a
capturar a complexidade semântica de dados do mundo real.

Em contraposição, os circuitos projetados com capacidade de emaranhamento intrínseco
(6, 8, 9, 11, 12, 13, 14 e 15) exibem uma dinâmica fundamentalmente distinta. Para este grupo,
a profundidade do circuito atua como um fator habilitador. A transição da profundidade de
𝐿 = 1 para 𝐿 = 10 resulta, quase invariavelmente, em um salto de desempenho expressivo e
estatisticamente relevante na base SST. O caso mais emblemático é o do circuito 6, que passa
de uma mediana de F1 nula para aproximadamente 0.45. De forma análoga, o circuito 14 eleva
seu desempenho de uma mediana de F1 de cerca de 0.15 para perto de 0.50, estabelecendo-se
como um dos melhores estimadores individuais. O circuito 9, por sua vez, transita de uma
mediana de 0.04 para aproximadamente 0.44.

Esta melhora de desempenho evidencia que, para ansatze emaranhadores, o aumento do
número de camadas não é um simples refinamento, mas um requisito para destravar seu
potencial computacional. As camadas adicionais de portas de múltiplos qubits, como CNOT

ou CZ, permitem ao modelo construir correlações mais complexas e explorar um subespaço de
Hilbert mais vasto, uma capacidade que se mostra indispensável para navegar a paisagem de
otimização de um problema com dados do mundo real. Enquanto a configuração com 𝐿 = 1

destes circuitos muitas vezes falha em convergir para uma solução útil, a configuração com
𝐿 = 10 demonstra uma capacidade de aprendizado robusta.

Em contrapartida, nota-se um comportamento destoante em comparação com bases sin-
téticas. Com um exemplo de frases sintéticas visto pelo Quadro 4, é possível compreender os
comportamentos da métrica F1 nas basesChatGPT Fácil, Médio e Difícil pelas Figuras 15, 16
e 17. Apesar da escala variar conforme as bases, entende-se um comportamento similar entre
elas: circuitos emaranhadores, no geral, obtiveram melhores resultados em comparação com
os circuitos sem tal capacidade.

Uma análise teórica das propriedades dos circuitos, apresentada nas Figuras 18 e 19, ofe-
rece um embasamento para estes achados empíricos. A etapa de preparação de estados (PE)
por amplitude, por si só, já introduz um emaranhamento inicial no sistema, com um valor
medido de aproximadamente 0.39. Os circuitos não-emaranhadores (1 a 5 e 7) meramente
herdam este emaranhamento, sendo incapazes de manipulá-lo ou ampliá-lo. Seus valores de
emaranhamento, quando combinados com a PE, permanecem em um patamar próximo ao da
preparação isolada. Isso indica que seu processamento subsequente não explora ativamente as
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Figura 7 – Resultados do desempenho F1 dos circuitos 1 ao 6 na base SST. Esses algoritmos classificadores
demonstram a crescente complexidade ao utilizar portas quânticas e portas CNOT. As marcações
que indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Fonte: Elaborada pelo autor (2025)
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Figura 8 – Resultados do desempenho F1 dos circuitos 7 ao 11 na base SST. Esses algoritmos classificadores
implementam diferentes formas de emaranhamento quântico. As marcações que indicam seme-
lhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 9 – Resultados do desempenho F1 dos circuitos 12 ao 15 na base SST. Esses algoritmos classificadores
implementam diferentes tipos de conectividade entre qubits. As marcações que indicam semelhança
estatística são advindas do teste pareado de Wilcoxon.

0.0 0.1 0.2 0.3 0.4 0.5
F1

12

13

14

15

Ci
rc

ui
to

ID

Legenda
1 camada
10 camadas
Sem diferença entre camadas

Fonte: Elaborada pelo autor (2025)



73

Figura 10 – Resultados do desempenho F1 dos circuitos 32, 33 e 36 na base SST. Esses algoritmos classifica-
dores implementam modelos clássicos lineares. As marcações que indicam semelhança estatística
são advindas do teste pareado de Wilcoxon.
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Figura 11 – Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 na base SST. Esses algoritmos
classificadores implementam modelos clássicos não-lineares. As marcações que indicam semelhança
estatística são advindas do teste pareado de Wilcoxon.
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Figura 12 – Resultados do desempenho F1 dos circuitos 16 ao 21 na base SST. Esses algoritmos classificadores
implementam modelos de ensemble através de AdaBoost ou Bagging de circuitos quânticos. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 13 – Resultados do desempenho F1 dos circuitos 22 ao 31 na base SST. Esses algoritmos classificadores
implementam modelos de ensemble através de hard ou soft voting de circuitos quânticos. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 14 – Resultados do desempenho F1 dos circuitos 39 ao 44 na base SST. Esses algoritmos classificadores
implementam modelos de ensemble clássicos. As marcações que indicam semelhança estatística
são advindas do teste pareado de Wilcoxon.
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Quadro 4 – Exemplo de frases criadas através do ChatGPT. É possível perceber um aumento na complexidade
lexical das palavras utilizadas.

Nível Classe Frase

Fácil Positiva She was glad to help her colleagues.
Negativa She was mournful after the farewell.

Médio Positiva They were optimistic about the future.
Negativa He felt disillusioned by the broken promises.

Difícil Positiva Jessica relished the challenge of the demanding role.
Negativa William pondered the meaning behind the cryptic message.

Fonte: Elaborada pelo autor (2025)

Figura 15 – Resultados das medidas de expressabilidade e emaranhamento e a métrica F1 na base ChatGPT -
Fácil. Utilizou-se o eixo logarítmico da Divergência KL para melhor visualização dos dados. Cada
subíndice no canto inferior direito refere-se ao código do circuito equivalente.

0.4 0.5 0.6 0.7 0.8
Emaranhamento

10−2

10−1

100

101

Di
ve

rg
ên

cia
KL

1

6

12

13

14

1

14

Baixa Exp.

Alta Exp.

Legenda
1 camada
10 camadas

0.70

0.75

0.80

0.85

0.90

0.95

F1

0.80 0.82

3 × 10−3

4 × 10−3

15

6
15

12

13

8

10

11

9

0.382 0.384 0.386

10−1
2

3

5

4
8 710

119

2

3

54
7

Fonte: Elaborada pelo autor (2025)



79

Figura 16 – Resultados das medidas de expressabilidade e emaranhamento e a métrica F1 na base ChatGPT
- Médio. Utilizou-se o eixo logarítmico da Divergência KL para melhor visualização dos dados.
Cada subíndice no canto inferior direito refere-se ao código do circuito equivalente.
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correlações quânticas presentes no estado de entrada.
Em contraste, os circuitos com capacidade de emaranhamento intrínseco demonstram um

comportamento distinto. Arquiteturas como as dos circuitos 6, 9, 11 e 15, especialmente na
configuração com 𝐿 = 10, apresentam valores de emaranhamento próximos, em torno de 0.82,
que são substancialmente superiores ao valor herdado da PE. Isso comprova que o ansatz está
ativamente gerando e acumulando correlações entre os qubits, uma característica que se cor-
relaciona diretamente com seu desempenho superior. A capacidade de gerar emaranhamento,
e não apenas de recebê-lo como entrada, parece ser a propriedade distintiva que confere poder
de classificação a estas arquiteturas.

A expressabilidade, embora seja uma métrica relevante, parece atuar como um fator secun-
dário quando não acompanhada da capacidade de emaranhamento. O circuito 5, por exemplo,
quando combinado com a PE e com 𝐿 = 1, exibe uma das melhores métricas de expressa-
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Figura 17 – Resultados das medidas de expressabilidade e emaranhamento e a métrica F1 na base ChatGPT -
Difícil. Utilizou-se o eixo logarítmico da Divergência KL para melhor visualização dos dados. Cada
subíndice no canto inferior direito refere-se ao código do circuito equivalente.
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bilidade (divergência KL de aproximadamente 0.03), superando, em teoria, outros modelos.
Contudo, seu desempenho na base SST (mediana de F1 em torno de 0.16) é modesto. Esta
divergência sugere que uma alta capacidade de explorar o espaço de estados de um único qubit,
por si só, é insuficiente. Uma hipótese para este fenômeno é que uma expressabilidade muito
elevada, sem a estrutura conferida por um emaranhamento robusto, pode levar a paisagens de
custo complexas e suscetíveis ao fenômeno de barren plateaus, dificultando a otimização em
cenários com dados ruidosos.

A expressabilidade, portanto, torna-se mais eficaz quando associada a um ansatz que
pode gerar correlações. O circuito 15 com 𝐿 = 1 ilustra este ponto: ele possui a melhor
expressabilidade entre todos os circuitos (KL de próximo de 0.0037) e já possui um poder de
emaranhamento relevante (0.73), o que se traduz em um desempenho superior na base SST
(mediana de F1 perto de 0.31) em comparação ao circuito 5. Isso indica que a capacidade de
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Figura 18 – Resultados da medida de expressabilidade dos circuitos e o impacto da interferência da PE.
Utilizou-se o eixo logarítmico da Divergência KL para melhor visualização dos dados.
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Figura 19 – Resultados da medida de emaranhamento dos circuitos e o impacto da interferência da PE.
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explorar o espaço de Hilbert é mais bem aproveitada quando o modelo também pode estruturar
a informação de forma complexa através das correlações quânticas.

A análise do impacto da profundidade também reforça esta conclusão. Para os circuitos
não-emaranhadores, como o 1 e o 2, o aumento de 𝐿 = 1 para 𝐿 = 10 não gera diferença
estatística na base SST. Teoricamente, isso ocorre porque múltiplas rotações sequenciais no
mesmo eixo são redutíveis a uma única rotação, não expandindo a capacidade fundamental
do circuito. Por outro lado, para os circuitos emaranhadores, cada camada adicional introduz
uma nova oportunidade de criar correlações, o que se traduz em um ganho de desempenho
relevante. O circuito 8, por exemplo, salta de uma mediana de F1 de aproximadamente 0.03
para 0.38 ao passar de 𝐿 = 1 para 𝐿 = 10.

Em síntese, os resultados convergem para uma conclusão central: a combinação de um
ansatz com capacidade de emaranhamento intrínseco e uma profundidade adequada é um
requisito para o sucesso na tarefa de classificação de sentimentos em cenários de dados do
mundo real. Os circuitos não-emaranhadores, independentemente de sua complexidade em
termos de rotações de um único qubit, mostraram-se fundamentalmente limitados, com seu
desempenho sendo dominado pela qualidade dos embeddings de entrada e pela simplicidade
da tarefa. Em contrapartida, os circuitos emaranhadores, ao serem dotados de profundidade
suficiente, demonstraram a capacidade de superar as limitações de uma representação de en-
trada menos otimizada e de aprender as fronteiras de decisão complexas exigidas pela base
SST. Este achado não apenas valida a importância teórica do emaranhamento, mas também
oferece uma diretriz prática para o desenho de futuros classificadores quânticos para tarefas
de processamento de linguagem natural, indicando que o investimento em arquiteturas pro-
fundas e com alta capacidade de gerar correlações é um caminho promissor. Somado a isso, a
expressabilidade, embora relevante, não é um preditor suficiente de sucesso, podendo levar a
desafios de otimização quando não acompanhada de outros fatores.

4.2 INFLUÊNCIA DA REPRESENTAÇÃO VETORIAL DE ENTRADA

Uma vez estabelecida a relevância das propriedades intrínsecas dos circuitos quânticos na
seção anterior, a análise volta-se para a interface entre o domínio clássico e o quântico: a
representação vetorial de entrada. Esta etapa, responsável por traduzir a informação textual
em um formato numérico, constitui um pilar fundamental cujo impacto no desempenho dos
classificadores, tanto quânticos quanto clássicos, é de relevância central para os objetivos desta
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pesquisa. A maneira como os dados são estruturados no espaço de atributos pode facilitar
ou dificultar a tarefa de aprendizado, influenciando diretamente a capacidade dos modelos
de encontrar fronteiras de decisão eficazes. Desta forma, as subseções a seguir dedicam-se
a dissecar, de maneira pormenorizada, a influência de duas facetas desta representação: a
resiliência dos modelos à redução de dimensionalidade do vetor de embeddings e a sensibilidade
de seu desempenho à escolha do modelo gerador.

4.2.1 Resiliência dos modelos classificatórios e redução de dimensionalidade

A transição de vetores de embeddings de alta dimensionalidade para representações mais
compactas é uma etapa de relevância prática e teórica, especialmente no contexto da com-
putação quântica na era NISQ, onde o número de qubits disponíveis constitui uma limitação
fundamental. A investigação de como diferentes arquiteturas, tanto clássicas quanto quânti-
cas, respondem a essa perda de informação explícita oferece insights valiosos sobre a robustez,
a eficiência e a capacidade de aprendizado de cada modelo. Esta subseção dedica-se a analisar
comparativamente a resiliência dos classificadores propostos, interpretando a variação de seu
desempenho F1 quando a dimensionalidade do vetor de entrada, gerado pelo modelo Ma-

tryoshka, é reduzida de 768 para 16 atributos. Tendo isso em vista, tais interpretações são
oriundas das Figuras 20, 21, 22, 23 e 24 para a base ChatGPT - Fácil, Figuras 25, 26, 27, 28 e
29 para a base ChatGPT - Médio e Figuras 30, 31, 32, 33 e 34 para a base ChatGPT - Difícil
que exibem o comportamento dos circuitos ao utilizarem diferentes tamanhos de vetores de
entrada.

Uma das observações mais diretas que emergem da análise é a notável robustez exibida
pelos principais modelos clássicos. Classificadores como a Regressão Logística (modelo 32) e as
SVM com kernels linear (modelo 36) e RBF (modelo 38) demonstram uma resiliência à redução
de dimensionalidade nas bases sintéticas. Na base ChatGPT Difícil, por exemplo, o SVM com
kernel RBF apresentou uma queda de desempenho de apenas 2% ao transitar de 768 para 16
atributos, passando de uma mediana de F1 de 1.0 para 0.98. De forma similar, a Regressão
Logística, na mesma base, registrou uma redução de desempenho de aproximadamente 2%,
com a mediana caindo de 1.0 para 0.98.

Este comportamento, consistente também nas bases ChatGPT Fácil e Médio, onde a de-
gradação de desempenho foi frequentemente nula ou estatisticamente irrelevante, sugere uma
conclusão importante sobre a natureza da representação de entrada: a informação essencial
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Figura 20 – Resultados do desempenho F1 dos circuitos 1 ao 6 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Fácil. Esses modelos demonstram a crescente complexidade ao utilizar portas
quânticas e portas CNOT. As barras comparativas do lado direito exibem a diferença percentual
da métrica F1 ao se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de
cada circuito. As marcações que indicam semelhança estatística são advindas do teste pareado de
Wilcoxon com correção de p-valor de Holm.
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Figura 21 – Resultados do desempenho F1 dos circuitos 7 ao 11 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Fácil. Esses modelos implementam diferentes formas de emaranhamento
quântico. As barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 22 – Resultados do desempenho F1 dos circuitos 12 ao 15 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Fácil. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 23 – Resultados do desempenho F1 dos circuitos 32, 33 e 36 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Fácil. Esses modelos implementam modelos clássicos lineares. As
barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcações
que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de
p-valor de Holm.
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Figura 24 – Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Fácil. Esses modelos implementam modelos clássicos não-lineares.
As barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcações
que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de
p-valor de Holm.
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Figura 25 – Resultados do desempenho F1 dos circuitos 1 ao 6 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Médio. Esses modelos demonstram a crescente complexidade ao utilizar portas
quânticas e portas CNOT. As barras comparativas do lado direito exibem a diferença percentual
da métrica F1 ao se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de
cada circuito. As marcações que indicam semelhança estatística são advindas do teste pareado de
Wilcoxon com correção de p-valor de Holm.
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Figura 26 – Resultados do desempenho F1 dos circuitos 7 ao 11 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Médio. Esses modelos implementam diferentes formas de emaranhamento
quântico. As barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 27 – Resultados do desempenho F1 dos circuitos 12 ao 15 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Médio. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 28 – Resultados do desempenho F1 dos circuitos 32, 33 e 36 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Médio. Esses modelos implementam modelos clássicos lineares. As
barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcações
que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de
p-valor de Holm.
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Figura 29 – Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Médio. Esses modelos implementam modelos clássicos não-lineares.
As barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcações
que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de
p-valor de Holm.
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Figura 30 – Resultados do desempenho F1 dos circuitos 1 ao 6 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Difícil. Esses modelos demonstram a crescente complexidade ao utilizar portas
quânticas e portas CNOT. As barras comparativas do lado direito exibem a diferença percentual
da métrica F1 ao se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de
cada circuito. As marcações que indicam semelhança estatística são advindas do teste pareado de
Wilcoxon com correção de p-valor de Holm.
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Figura 31 – Resultados do desempenho F1 dos circuitos 7 ao 11 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Difícil. Esses modelos implementam diferentes formas de emaranhamento
quântico. As barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 32 – Resultados do desempenho F1 dos circuitos 12 ao 15 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Difícil. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 33 – Resultados do desempenho F1 dos circuitos 32, 33 e 36 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Difícil. Esses modelos implementam modelos clássicos lineares. As
barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcações
que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de
p-valor de Holm.
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Figura 34 – Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Difícil. Esses modelos implementam modelos clássicos não-lineares.
As barras comparativas do lado direito exibem a diferença percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcações
que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de
p-valor de Holm.
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para a tarefa de classificação, ao menos nos cenários sintéticos, parece estar altamente con-
centrada nos primeiros 16 atributos gerados pelo embedding Matryoshka. A eficiência dos
modelos clássicos em capturar este sinal concentrado, seja por meio de uma fronteira de de-
cisão linear ou de um mapeamento não-linear para um espaço de maior dimensão, evidencia
sua adequação para este tipo de problema quando a informação classificatória é bem definida.

Em contrapartida, os circuitos quânticos não-emaranhadores demonstram uma sensibili-
dade consideravelmente maior à perda de informação. A análise do circuito 1, que emprega
apenas portas 𝑅𝑋 , revela uma queda de desempenho relevante em todas as bases sintéticas.
Na base ChatGPT Fácil, a redução de dimensionalidade de 768 para 16 atributos resultou em
uma diminuição da mediana de F1 de 0.96 para 0.76 (𝐿 = 1), o que representa uma perda
de desempenho de aproximadamente 27%. De forma análoga, para o circuito 2, baseado em
portas 𝑅𝑌 , a mesma transição na base ChatGPT Médio provocou uma redução de cerca de
26% em seu desempenho, com a mediana de F1 caindo de 0.94 para 0.75.

Este comportamento indica que as arquiteturas quânticas mais simples, desprovidas de
capacidade de emaranhamento intrínseco, são fortemente dependentes da informação explí-
cita contida nos vetores de alta dimensão. Sua limitada capacidade representacional, que se
restringe a operações locais em cada qubit, mostra-se insuficiente para aprender as correla-
ções implícitas entre os atributos restantes e, assim, compensar a informação descartada. O
aumento da profundidade para 𝐿 = 10 nestes circuitos não foi capaz de mitigar de forma
consistente essa perda, reforçando a ideia de que, para arquiteturas não-emaranhadoras, a
mera adição de parâmetros não expande sua capacidade de aprendizado de forma a superar
uma representação de entrada mais pobre.

Um comportamento peculiar e revelador é observado em alguns circuitos quânticos rasos,
que parecem ser suscetíveis a um certo “ruído” introduzido por um excesso de atributos. O
caso mais emblemático é o do circuito 6 na base ChatGPT Difícil, que, em sua configuração
com 𝐿 = 1, apresentou uma melhora de desempenho com a redução da dimensionalidade.
Ao passar de 768 para 16 atributos, sua mediana de F1 aumentou de 0.70 para 0.78, um
ganho de aproximadamente 10%. Este fenômeno contraintuitivo sugere que, para um ansatz

com capacidade de aprendizado limitada pela baixa profundidade, um número excessivo de
atributos pode complicar a paisagem de otimização, introduzindo ruído que o modelo não
consegue filtrar eficazmente. A apresentação de um sinal mais conciso, com 16 atributos,
parece ter facilitado a convergência para uma solução de melhor qualidade, evidenciando uma
interação sutil entre a capacidade do modelo e a complexidade da representação dos dados.
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A profundidade, contudo, emerge como um poderoso mecanismo de mitigação da perda
de informação, especialmente nos circuitos com capacidade de emaranhamento. A análise
comparativa entre as configurações com 𝐿 = 1 e 𝐿 = 10 revela que as arquiteturas quânticas
profundas podem, de fato, aprender a compensar a ausência de atributos explícitos. O circuito
10, na base ChatGPT Difícil, ilustra este ponto de forma clara. Com 𝐿 = 1, a redução de
768 para 16 atributos provoca uma queda de desempenho de cerca de 39% (mediana de F1
de 0.98 para 0.71). No entanto, com 𝐿 = 10, essa mesma redução resulta em uma queda de
apenas 5% (de 1.0 para 0.96).

De forma ainda mais expressiva, o circuito 8 na base ChatGPT Fácil, ao passar de 768 para
16 atributos, sofre uma queda de desempenho de aproximadamente 16% em sua configuração
com 𝐿 = 1 (de 0.89 para 0.76). Contudo, na configuração com 𝐿 = 10, essa diferença é
completamente eliminada, com o modelo alcançando o desempenho máxima (mediana de 1.0)
em ambas as dimensionalidades. Este comportamento se repete em outros circuitos emara-
nhadores, como o 11 e o 14, e fornece uma forte evidência de que a profundidade adequada
permite a estas arquiteturas aprender as correlações implícitas e complexas entre os atributos
remanescentes.

Esta capacidade de compensação é uma característica fundamental que distingue os cir-
cuitos quânticos profundos e emaranhadores. Enquanto os circuitos quânticos rasos dependem
da informação explícita presente nos atributos, os ansatze profundos demonstram uma capaci-
dade de aprendizado mais abstrata. Eles não apenas processam a informação de entrada, mas
são capazes de inferir relações latentes para reconstruir, de forma efetiva, o sinal classificatório
que foi perdido na etapa de redução dimensional.

Em síntese, a análise da resiliência à redução de dimensionalidade revela uma clara hi-
erarquia de capacidade entre os modelos. Os classificadores clássicos de ponta demonstram
uma robustez excepcional, indicando que, para as bases sintéticas, a tarefa pode ser resolvida
com um sinal concentrado em poucos atributos. Os circuitos quânticos não-emaranhadores,
por sua vez, mostram-se frágeis, com seu desempenho sendo degradado pela perda de infor-
mação. Finalmente, os circuitos quânticos emaranhadores e profundos se destacam por sua
capacidade única de mitigar essa perda, utilizando a profundidade como um mecanismo para
aprender correlações complexas e compensar a ausência de atributos. Este achado, embora
reforce a dependência do desempenho quântico da profundidade do circuito, aponta para um
potencial de aprendizado mais sofisticado, sugerindo que arquiteturas quânticas com capaci-
dade representacional suficiente podem ser particularmente adequadas para problemas onde
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o sinal classificatório reside não apenas nos atributos explícitos, mas nas intrincadas relações
entre eles.

4.2.2 Sensibilidade do desempenho classificatória à escolha do modelo gerador de

embeddings

A etapa de geração de embeddings constitui a interface fundamental entre o domínio
da linguagem natural e o espaço vetorial no qual os modelos classificatórios, tanto clássicos
quanto quânticos, operam. A escolha do modelo responsável por esta transformação não
é uma mera tecnicalidade de pré-processamento, mas uma decisão que pode influenciar de
forma relevante a estrutura do espaço de características e, consequentemente, a capacidade
dos classificadores de encontrar uma fronteira de decisão eficaz. Esta subseção se dedica a
analisar a sensibilidade do desempenho dos modelos propostos à escolha entre os três geradores
de embeddings investigados — Matryoshka, Nomic e MPNet —, utilizando os 16 atributos
iniciais como base de comparação. Tal análise é feita se debruçando sobre as Figuras 35, 36, 37,
38 e 39 para a base ChatGPT - Fácil, Figuras 40, 41, 42, 43 e 44 para a base ChatGPT - Médio
e Figuras 45, 46, 47, 48 e 49 para a base ChatGPT - Difícil, no qual é possível compreender
o desempenho dos circuitos tendo em vista diferentes modelos geradores de embeddings.

Uma das observações mais consistentes, ao se analisar as arquiteturas quânticas mais sim-
ples, é sua acentuada dependência da qualidade da representação de entrada. Os circuitos
não-emaranhadores, cuja capacidade representacional é inerentemente limitada a operações
locais, mostram-se particularmente suscetíveis às sutilezas de cada modelo gerador de embed-

dings. O circuito 2 (𝑅𝑌 ), com 𝐿 = 1, na base ChatGPT Médio, exemplifica esta dependência:
sua mediana de F1 com o embedding Matryoshka foi de 0.75, um resultado cerca de 17% infe-
rior ao obtido com o MPNet, que alcançou uma mediana de 0.90. Tal disparidade sugere que,
na ausência de mecanismos quânticos para criar correlações complexas, o desempenho do clas-
sificador torna-se um reflexo direto de quão linearmente separáveis os dados são apresentados
pelo embedding.

Esta vulnerabilidade não é um fenômeno isolado. Na base ChatGPT Difícil, o circuito 1
(𝑅𝑋) com 𝐿 = 1 obteve uma mediana de F1 de 0.92 com o embedding do modelo Nomic,
enquanto seu desempenho com o Matryoshka foi de 0.82, aproximadamente 11% inferior. De
forma similar, o circuito 4 (𝑅𝑋 , 𝑅𝑍), na mesma base e com 𝐿 = 1, também apresentou um
desempenho cerca de 11% inferior ao utilizar o Matryoshka em comparação com o Nomic. Estes
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Figura 35 – Resultados do desempenho F1 dos circuitos 1 ao 6 com os modelos geradores de embeddings na
base ChatGPT - Fácil. Esses modelos demonstram a crescente complexidade ao utilizar portas
quânticas e portas CNOT. As barras comparativas do lado direito exibem a diferença percentual
da métrica F1 entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela
profundidade de cada circuito. As barras de diferença são coloridas com a mesma cor do melhor
modelo em questão. As marcações que indicam semelhança estatística são advindas do teste
pareado de Wilcoxon com correção de p-valor de Holm.
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Figura 36 – Resultados do desempenho F1 dos circuitos 7 ao 11 com os modelos geradores de embeddings
na base ChatGPT - Fácil. Esses modelos implementam diferentes formas de emaranhamento
quântico. As barras comparativas do lado direito exibem a diferença percentual da métrica F1
entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de
cada circuito. As barras de diferença são coloridas com a mesma cor do melhor modelo em questão.
As marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
F1

7

8

9

10

11

Ci
rc

ui
to

ID

Legenda
tomaarsen/mpnet-base-nli-matryoshka
nomic-ai/nomic-embed-text-v1.5
all-mpnet-base-v2
1 camada
10 camadas
Sem diferença entre camadas
Sem diferença entre transformers

−5 0
F1 (%)

(Melhor → Matryoshka)

-3

-5

-7

0

0

-4

0

0

0

0

Fonte: Elaborada pelo autor (2025)



105

Figura 37 – Resultados do desempenho F1 dos circuitos 12 ao 15 com os modelos geradores de embeddings
na base ChatGPT - Fácil. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferença percentual da métrica F1 entre
o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada
circuito. As barras de diferença são coloridas com a mesma cor do melhor modelo em questão. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 38 – Resultados do desempenho F1 dos circuitos 32, 33 e 36 com os modelos geradores de embeddings
na base ChatGPT - Fácil. Esses modelos implementam modelos clássicos lineares. As barras
comparativas do lado direito exibem a diferença percentual da métrica F1 entre o modelo com a
maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As barras
de diferença são coloridas com a mesma cor do melhor modelo em questão. As marcações que
indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de p-valor
de Holm.
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Figura 39 – Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com os modelos geradores de embed-
dings na base ChatGPT - Fácil. Esses modelos implementam modelos clássicos não-lineares. As
barras comparativas do lado direito exibem a diferença percentual da métrica F1 entre o modelo
com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As
barras de diferença são coloridas com a mesma cor do melhor modelo em questão. As marcações
que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de
p-valor de Holm.
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Figura 40 – Resultados do desempenho F1 dos circuitos 1 ao 6 com os modelos geradores de embeddings na
base ChatGPT - Médio. Esses modelos demonstram a crescente complexidade ao utilizar portas
quânticas e portas CNOT. As barras comparativas do lado direito exibem a diferença percentual
da métrica F1 entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela
profundidade de cada circuito. As barras de diferença são coloridas com a mesma cor do melhor
modelo em questão. As marcações que indicam semelhança estatística são advindas do teste
pareado de Wilcoxon com correção de p-valor de Holm.
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Figura 41 – Resultados do desempenho F1 dos circuitos 7 ao 11 com os modelos geradores de embeddings
na base ChatGPT - Médio. Esses modelos implementam diferentes formas de emaranhamento
quântico. As barras comparativas do lado direito exibem a diferença percentual da métrica F1
entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de
cada circuito. As barras de diferença são coloridas com a mesma cor do melhor modelo em questão.
As marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 42 – Resultados do desempenho F1 dos circuitos 12 ao 15 com os modelos geradores de embeddings
na base ChatGPT - Médio. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferença percentual da métrica F1 entre
o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada
circuito. As barras de diferença são coloridas com a mesma cor do melhor modelo em questão. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 43 – Resultados do desempenho F1 dos circuitos 32, 33 e 36 com os modelos geradores de embeddings
na base ChatGPT - Médio. Esses modelos implementam modelos clássicos lineares. As barras
comparativas do lado direito exibem a diferença percentual da métrica F1 entre o modelo com a
maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As barras
de diferença são coloridas com a mesma cor do melhor modelo em questão. As marcações que
indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de p-valor
de Holm.

0.0 0.2 0.4 0.6 0.8 1.0
F1

32

33

36

Ci
rc

ui
to

ID

Legenda
tomaarsen/mpnet-base-nli-matryoshka
nomic-ai/nomic-embed-text-v1.5
all-mpnet-base-v2
1 camada
10 camadas
Sem diferença entre camadas
Sem diferença entre transformers

−0.05 0.00 0.05
F1 (%)

(Melhor → Matryoshka)

0

0

0

Fonte: Elaborada pelo autor (2025)



112

Figura 44 – Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com os modelos geradores de embed-
dings na base ChatGPT - Médio. Esses modelos implementam modelos clássicos não-lineares. As
barras comparativas do lado direito exibem a diferença percentual da métrica F1 entre o modelo
com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As
barras de diferença são coloridas com a mesma cor do melhor modelo em questão. As marcações
que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de
p-valor de Holm.
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Figura 45 – Resultados do desempenho F1 dos circuitos 1 ao 6 com os modelos geradores de embeddings na
base ChatGPT - Difícil. Esses modelos demonstram a crescente complexidade ao utilizar portas
quânticas e portas CNOT. As barras comparativas do lado direito exibem a diferença percentual
da métrica F1 entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela
profundidade de cada circuito. As barras de diferença são coloridas com a mesma cor do melhor
modelo em questão. As marcações que indicam semelhança estatística são advindas do teste
pareado de Wilcoxon com correção de p-valor de Holm.
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Figura 46 – Resultados do desempenho F1 dos circuitos 7 ao 11 com os modelos geradores de embeddings
na base ChatGPT - Difícil. Esses modelos implementam diferentes formas de emaranhamento
quântico. As barras comparativas do lado direito exibem a diferença percentual da métrica F1
entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de
cada circuito. As barras de diferença são coloridas com a mesma cor do melhor modelo em questão.
As marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 47 – Resultados do desempenho F1 dos circuitos 12 ao 15 com os modelos geradores de embeddings
na base ChatGPT - Difícil. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferença percentual da métrica F1 entre
o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada
circuito. As barras de diferença são coloridas com a mesma cor do melhor modelo em questão. As
marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com
correção de p-valor de Holm.
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Figura 48 – Resultados do desempenho F1 dos circuitos 32, 33 e 36 com os modelos geradores de embeddings
na base ChatGPT - Difícil. Esses modelos implementam modelos clássicos lineares. As barras
comparativas do lado direito exibem a diferença percentual da métrica F1 entre o modelo com a
maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As barras
de diferença são coloridas com a mesma cor do melhor modelo em questão. As marcações que
indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de p-valor
de Holm.
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Figura 49 – Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com os modelos geradores de embed-
dings na base ChatGPT - Difícil. Esses modelos implementam modelos clássicos não-lineares. As
barras comparativas do lado direito exibem a diferença percentual da métrica F1 entre o modelo
com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As
barras de diferença são coloridas com a mesma cor do melhor modelo em questão. As marcações
que indicam semelhança estatística são advindas do teste pareado de Wilcoxon com correção de
p-valor de Holm.
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resultados reforçam a conclusão de que, para ansatze de baixa capacidade representacional,
a escolha do modelo gerador de embeddings não é apenas um fator de otimização, mas um
determinante crítico do desempenho final.

Em contraposição a este cenário, os modelos clássicos de ponta demonstram uma robustez
notável. A Regressão Logística (modelo 32) e as Máquinas de Vetores de Suporte com kernels

linear (modelo 36) e RBF (modelo 38) exibem umo desempenho consistentemente elevada em
todas as bases sintéticas, com uma sensibilidade reduzida à escolha do embedding. Na base
ChatGPT Difícil, por exemplo, o SVM com kernel linear alcançou uma mediana de F1 de
0.98 com o Matryoshka, um resultado estatisticamente equivalente ao obtido com os demais
embeddings.

A estabilidade destes modelos clássicos sugere que, para a tarefa proposta e com os dados
sintéticos, a informação classificatória fundamental é preservada em todas as representações
vetoriais testadas e é acessível por meio de fronteiras de decisão (lineares ou não-lineares)
que estes modelos são eficientes em encontrar. O Perceptron (modelo 33), no entanto, atua
como um contraponto, exibindo uma volatilidade considerável e reforçando que nem todos os
modelos clássicos compartilham da mesma robustez, sendo seu desempenho mais dependente
de uma representação de entrada que favoreça uma separação linear ideal.

A introdução de profundidade e, de forma mais relevante, de capacidade de emaranha-
mento intrínseco nos ansatze quânticos atua como um poderoso mecanismo mitigador desta
dependência. Para os circuitos emaranhadores, o aumento do número de camadas de 𝐿 = 1

para 𝐿 = 10 não apenas aprimora o desempenho, mas também confere ao modelo uma maior
robustez em relação à escolha do embedding. O circuito 6, na base ChatGPT Difícil, é um
exemplo emblemático desta dinâmica. Com 𝐿 = 1, o desempenho com o embedding Nomic

(mediana de 0.88) é superior à obtida com o Matryoshka (mediana de 0.78). Contudo, com
𝐿 = 10, ambos os modelos convergem para umo desempenho de excelência, com medianas
de 0.98, eliminando a disparidade inicial.

De forma análoga, o circuito 8, na base ChatGPT Fácil, demonstra uma inversão de de-
sempenho. Com 𝐿 = 1, o MPNet se mostra a melhor opção, mas com 𝐿 = 10, é o Matryoshka

que alcança o desempenho máxima (mediana de 1.0), superando os demais. Este comporta-
mento sugere que a capacidade representacional expandida do circuito profundo permite-lhe
aprender a extrair o sinal classificatório de forma eficaz, mesmo a partir de uma representação
de entrada que, para um ansatz mais simples, seria subótima.

O circuito 9, na base ChatGPT Difícil, reforça esta conclusão. o desempenho com o
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embedding Matryoshka para 𝐿 = 1 (mediana de 0.86) é aproximadamente 13% inferior à do
Nomic (mediana de 0.98). No entanto, ao se aumentar a profundidade para 𝐿 = 10, o modelo
com Matryoshka eleva sua mediana para 0.98, alcançando um desempenho estatisticamente
equivalente ao do Nomic. Fica evidente que a profundidade e o emaranhamento conferem
ao classificador quântico uma relativa robustez, tornando-o menos suscetível às variações na
etapa de pré-processamento clássico.

Esta robustez adquirida pelos circuitos quânticos profundos e emaranhadores os aproxima,
em comportamento, dos modelos clássicos mais estáveis. Enquanto um circuito quântico raso
atua como um processador sensível, cujo sucesso depende de uma entrada de dados “ideal”,
um circuito profundo torna-se um aprendiz mais autônomo, capaz de inferir e construir as
correlações necessárias para a tarefa, mesmo a partir de uma representação de entrada menos
otimizada.

A interação entre a complexidade do problema e a escolha do embedding também se mos-
tra relevante. Nas bases ChatGPT Fácil e Difícil, o modelo Nomic frequentemente favorece
os circuitos mais simples, enquanto na base ChatGPT Médio, o MPNet por vezes assume a
liderança. O Matryoshka, por sua vez, embora nem sempre seja o melhor para os circuitos
rasos, demonstra ser uma escolha de excelência quando combinado com arquiteturas profun-
das e emaranhadoras, como os circuitos 6 e 11, que alcançam desempenho máxima nesta
configuração.

Esta variação sugere que não existe um modelo gerador de embeddings universalmente
superior, mas sim uma interação complexa entre a forma como cada modelo estrutura o
espaço vetorial e a capacidade de cada classificador de explorar essa estrutura. A escolha
ótima do embedding é, portanto, dependente tanto da arquitetura do classificador quanto da
natureza intrínseca dos dados.

Em síntese, a análise da sensibilidade dos classificadores à escolha do modelo gerador de em-

beddings revela uma clara hierarquia. Os circuitos quânticos não-emaranhadores posicionam-se
como os mais frágeis, com seu desempenho sendo fortemente condicionado pela qualidade da
representação de entrada. Os modelos clássicos de ponta, em contrapartida, exibem uma no-
tável estabilidade, alcançando alto desempenho de forma consistente. Por fim, os circuitos
quânticos profundos e emaranhadores emergem como as arquiteturas mais sofisticadas, que
utilizam sua capacidade representacional expandida não apenas para aprimorar o desempenho,
mas também para mitigar a dependência de uma representação de entrada específica. Este
achado sublinha uma conclusão fundamental: o investimento em arquiteturas quânticas com
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alta capacidade de emaranhamento e profundidade adequada é um caminho promissor não
apenas para alcançar um desempenho superior, mas também para desenvolver classificadores
mais robustos e versáteis, menos suscetíveis às variações nas etapas de pré-processamento
clássico.

4.3 COMPARAÇÃO ENTRE MODELOS QUÂNTICOS E CLÁSSICOS E SEUS ENSEM-
BLES

Uma análise criteriosa do desempenho dos modelos propostos revela uma distinção clara
entre os resultados obtidos nas bases de dados sintéticas e no cenário de maior complexidade
da base SST. A comparação direta com os benchmarks clássicos estabelece um panorama
factual sobre o estado atual dos classificadores quânticos variacionais para a tarefa de análise
de sentimentos, permitindo uma discussão aprofundada sobre suas potencialidades e os desafios
que ainda persistem na busca por uma vantagem quântica. Esta seção se dedica a dissecar
essa comparação, contextualizando os achados e explorando as razões por trás das lacunas
de desempenho observadas. Sendo assim, utiliza-se as Figuras 50, 51, 52, 53, 54, 55, 56 e 57
para a base ChatGPT - Fácil, Figuras 58, 59, 60, 61, 62, 63, 64 e 65 para a base ChatGPT

- Médio e Figuras 66, 67, 68, 69, 70, 71, 72 e 73 para a base ChatGPT - Difícil de modo a
criar uma compreensão conjunta dos modelos quânticos e clássicos dentro dos experimentos
com 16 atributos e modelo Matryoshka como gerador de embeddings.

Observa-se, primeiramente, uma superioridade notável dos modelos clássicos mais robustos
na base de dados SST. Classificadores como as SVM com kernels linear (modelo 36) e RBF
(modelo 38), bem como a Regressão Logística (modelo 32), estabeleceram uma linha de base
de alto desempenho, alcançando medianas da métrica F1 em torno de 0.73. Este patamar
de desempenho supera consistentemente todos os circuitos quânticos individuais testados,
incluindo as arquiteturas mais complexas e profundas. Este achado é de relevância central,
pois evidencia que, para a tarefa de análise de sentimentos com os 16 atributos de embedding

extraídos do modelo Matryoshka, uma solução clássica e relativamente simples não apenas
é viável, mas também mais eficaz, indicando que uma possível vantagem quântica não foi
alcançada neste cenário experimental específico.

A existência desta lacuna de desempenho merece uma análise multifatorial, cujas raízes
podem ser traçadas a partir de desafios teóricos e práticos inerentes aos modelos quânticos
variacionais. Uma das hipóteses centrais reside na dificuldade de otimização desses circuitos.
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Figura 50 – Resultados do desempenho F1 dos circuitos 1 ao 6 na base ChatGPT - Fácil. Esses algoritmos
classificadores demonstram a crescente complexidade ao utilizar portas quânticas e portas CNOT.
As marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 51 – Resultados do desempenho F1 dos circuitos 7 ao 11 na base ChatGPT - Fácil. Esses algoritmos
classificadores implementam diferentes formas de emaranhamento quântico. As marcações que
indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 52 – Resultados do desempenho F1 dos circuitos 12 ao 15 na base ChatGPT - Fácil. Esses algoritmos
classificadores implementam diferentes tipos de conectividade entre qubits. As marcações que
indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 53 – Resultados do desempenho F1 dos circuitos 32, 33 e 36 na base ChatGPT - Fácil. Esses algoritmos
classificadores implementam modelos clássicos lineares. As marcações que indicam semelhança
estatística são advindas do teste pareado de Wilcoxon.
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Figura 54 – Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 na base ChatGPT - Fácil. Esses
algoritmos classificadores implementam modelos clássicos não-lineares. As marcações que indicam
semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 55 – Resultados do desempenho F1 dos circuitos 16 ao 21 na base ChatGPT - Fácil. Esses algoritmos
classificadores implementam modelos de ensemble através de AdaBoost ou Bagging de circuitos
quânticos. As marcações que indicam semelhança estatística são advindas do teste pareado de
Wilcoxon.
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Figura 56 – Resultados do desempenho F1 dos circuitos 22 ao 31 na base ChatGPT - Fácil. Esses algoritmos
classificadores implementam modelos de ensemble através de hard ou soft voting de circuitos
quânticos. As marcações que indicam semelhança estatística são advindas do teste pareado de
Wilcoxon.
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Figura 57 – Resultados do desempenho F1 dos circuitos 39 ao 44 na base ChatGPT - Fácil. Esses algo-
ritmos classificadores implementam modelos de ensemble clássicos. As marcações que indicam
semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 58 – Resultados do desempenho F1 dos circuitos 1 ao 6 na base ChatGPT - Médio. Esses algoritmos
classificadores demonstram a crescente complexidade ao utilizar portas quânticas e portas CNOT.
As marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 59 – Resultados do desempenho F1 dos circuitos 7 ao 11 na base ChatGPT - Médio. Esses algoritmos
classificadores implementam diferentes formas de emaranhamento quântico. As marcações que
indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 60 – Resultados do desempenho F1 dos circuitos 12 ao 15 na base ChatGPT - Médio. Esses algoritmos
classificadores implementam diferentes tipos de conectividade entre qubits. As marcações que
indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 61 – Resultados do desempenho F1 dos circuitos 32, 33 e 36 na base ChatGPT - Médio. Esses algo-
ritmos classificadores implementam modelos clássicos lineares. As marcações que indicam seme-
lhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 62 – Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 na base ChatGPT - Médio. Esses
algoritmos classificadores implementam modelos clássicos não-lineares. As marcações que indicam
semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 63 – Resultados do desempenho F1 dos circuitos 16 ao 21 na base ChatGPT - Médio. Esses algoritmos
classificadores implementam modelos de ensemble através de AdaBoost ou Bagging de circuitos
quânticos. As marcações que indicam semelhança estatística são advindas do teste pareado de
Wilcoxon.
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Figura 64 – Resultados do desempenho F1 dos circuitos 22 ao 31 na base ChatGPT - Médio. Esses algoritmos
classificadores implementam modelos de ensemble através de hard ou soft voting de circuitos
quânticos. As marcações que indicam semelhança estatística são advindas do teste pareado de
Wilcoxon.
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Figura 65 – Resultados do desempenho F1 dos circuitos 39 ao 44 na base ChatGPT - Médio. Esses algo-
ritmos classificadores implementam modelos de ensemble clássicos. As marcações que indicam
semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 66 – Resultados do desempenho F1 dos circuitos 1 ao 6 na base ChatGPT - Difícil. Esses algoritmos
classificadores demonstram a crescente complexidade ao utilizar portas quânticas e portas CNOT.
As marcações que indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 67 – Resultados do desempenho F1 dos circuitos 7 ao 11 na base ChatGPT - Difícil. Esses algoritmos
classificadores implementam diferentes formas de emaranhamento quântico. As marcações que
indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 68 – Resultados do desempenho F1 dos circuitos 12 ao 15 na base ChatGPT - Difícil. Esses algoritmos
classificadores implementam diferentes tipos de conectividade entre qubits. As marcações que
indicam semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 69 – Resultados do desempenho F1 dos circuitos 32, 33 e 36 na base ChatGPT - Difícil. Esses algoritmos
classificadores implementam modelos clássicos lineares. As marcações que indicam semelhança
estatística são advindas do teste pareado de Wilcoxon.
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Figura 70 – Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 na base ChatGPT - Difícil. Esses
algoritmos classificadores implementam modelos clássicos não-lineares. As marcações que indicam
semelhança estatística são advindas do teste pareado de Wilcoxon.
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Figura 71 – Resultados do desempenho F1 dos circuitos 16 ao 21 na base ChatGPT - Difícil. Esses algoritmos
classificadores implementam modelos de ensemble através de AdaBoost ou Bagging de circuitos
quânticos. As marcações que indicam semelhança estatística são advindas do teste pareado de
Wilcoxon.
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Figura 72 – Resultados do desempenho F1 dos circuitos 22 ao 31 na base ChatGPT - Difícil. Esses algoritmos
classificadores implementam modelos de ensemble através de hard ou soft voting de circuitos
quânticos. As marcações que indicam semelhança estatística são advindas do teste pareado de
Wilcoxon.
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Figura 73 – Resultados do desempenho F1 dos circuitos 39 ao 44 na base ChatGPT - Difícil. Esses algo-
ritmos classificadores implementam modelos de ensemble clássicos. As marcações que indicam
semelhança estatística são advindas do teste pareado de Wilcoxon.
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As paisagens de custo associadas aos são frequentemente complexas, repletas de mínimos
locais e regiões de gradientes evanescentes, os supracitados barren plateaus. Embora o uso de
otimizadores avançados como o Adam e o treinamento em múltiplos seeds busquem mitigar
esse problema, a sua presença pode impedir que os circuitos convirjam para uma solução
ótima, uma dificuldade que é exacerbada pela maior complexidade e pelo ruído intrínseco aos
dados do mundo real da base SST.

Adicionalmente, a forma como a informação clássica é codificada no estado quântico é
um fator que não pode ser subestimado. A estratégia de amplitude embedding utilizada neste
trabalho, embora eficiente em termos de número de qubits, pode não ser a ideal para capturar
as nuances semânticas contidas nos vetores de embeddings. É possível que esta codificação
não estruture os dados de uma forma que permita ao circuito quântico explorar plenamente
fenômenos como a superposição e o emaranhamento para a tarefa de classificação. A busca por
métodos de codificação de dados mais intrinsecamente “quânticos”, que mapeiem o problema
de forma a maximizar o potencial computacional do algoritmo, permanece como uma área de
investigação ativa e relevante.

As características intrínsecas da base de dados SST também se apresentam como um fator
contribuinte relevante para a dificuldade enfrentada pelos modelos quânticos. Conforme se
pode observar na Tabela 1, a base SST possui um desbalanceamento de classes considerável,
com um número de exemplos da classe negativa sendo aproximadamente quatro vezes maior
que o da classe positiva. Modelos sensíveis à paisagem de otimização, como os circuitos
quânticos variacionais, podem ter sua convergência prejudicada por esse desequilíbrio, tendendo
a favorecer a classe majoritária e, consequentemente, resultando em valores mais baixos para
a métrica F1, que é sensível tanto à precisão quanto à revocação. Os modelos clássicos, por
sua vez, frequentemente incorporam mecanismos de regularização ou são inerentemente mais
robustos a este tipo de desafio.

Em contrapartida ao desempenho na base SST, os resultados obtidos nas bases sintéticas
ChatGPT oferecem uma perspectiva mais otimista e revelam que os modelos quânticos, sob
certas condições, são altamente competitivos. Os diagramas de diferença crítica demonstram
que, nestes cenários com dados mais estruturados e balanceados, a lacuna de desempenho entre
os melhores modelos quânticos e os melhores modelos clássicos se estreita consideravelmente,
e em muitos casos, desaparece.

Na base ChatGPT Fácil, por exemplo, o diagrama de diferença crítica posiciona o ensemble
quântico 28 (soft voting dos circuitos 7 ao 11) com 𝐿 = 10 na mesma clique de desempenho
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Tabela 1 – Número de exemplos e média de palavras por exemplo por base de dados

Base Tipo de base Classe N° de exemplos Média do n° de palavras
ChatGPT - Fácil Treino Positiva 100 6,95
ChatGPT - Fácil Treino Negativa 100 7,02
ChatGPT - Fácil Teste Positiva 25 7,48
ChatGPT - Fácil Teste Negativa 25 8,00
ChatGPT - Médio Treino Positiva 100 7,80
ChatGPT - Médio Treino Negativa 100 7,79
ChatGPT - Médio Teste Positiva 25 8,00
ChatGPT - Médio Teste Negativa 25 7,68
ChatGPT - Difícil Treino Positiva 100 9,48
ChatGPT - Difícil Treino Negativa 100 10,11
ChatGPT - Difícil Teste Positiva 25 9,88
ChatGPT - Difícil Teste Negativa 25 10,24
SST Treino Positiva 1.288 18,84
SST Treino Negativa 4.934 18,95
SST Teste Positiva 399 18,74
SST Teste Negativa 1.301 19,04

Fonte: Elaborada pelo autor (2025)

que os modelos clássicos de ponta, como o KNN (34), o SVM Linear (36) e o SVM RBF
(38), indicando que seus desempenhos são estatisticamente indistinguíveis. De forma similar,
na base ChatGPT Médio, diversos circuitos quânticos profundos, como o modelo 28, 29
(hard voting dos circuitos 7 ao 11) e 31 (hard voting dos circuitos 12, 14 e 15), todos com
10 camadas, compartilham a clique de melhor desempenho com os modelos clássicos mais
robustos, incluindo a Regressão Logística (32) e as diferentes variações do SVM. Essas e
outras constatações são advindas das Figuras 74, 75, 76 e 77.

Este padrão de competitividade se estende à base ChatGPT Difícil, onde o ensemble
quântico 31 e 𝐿 = 10 e o SVM Linear (36) se encontram no grupo de melhor desempenho,
superando outros modelos clássicos e quânticos. A capacidade dos circuitos emaranhadores
e profundos de igualar, e por vezes superar, modelos clássicos consolidados em cenários de
dados sintéticos sugere que sua capacidade representacional é, de fato, elevada. Isso indica
que a dificuldade observada na base SST não advém de uma incapacidade fundamental de
aprendizado, mas sim de uma maior sensibilidade a fatores como ruído, desbalanceamento e
a complexidade da fronteira de decisão de dados do mundo real.

Apesar da superioridade geral dos benchmarks clássicos na base SST, seria um equívoco
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Figura 74 – Diagrama de diferença crítica da performance F1 na base ChatGPT - Fácil. Foram exibidos apenas
cliques que contenham modelos clássicos, de forma ensemble ou isolada, e os modelos quânticos
envolvidos (nas suas versões 𝐿 = 1 e 𝐿 = 10).
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Fonte: Elaborada pelo autor (2025)

desconsiderar o potencial dos melhores modelos quânticos. Circuitos individuais como o 14
e o 15, na sua configuração com 𝐿 = 10, alcançaram medianas de F1 de aproximadamente
0.50 e 0.47, respectivamente. De forma análoga, o ensemble quântico 21 (bagging do circuito
14) obteve uma mediana de F1 próxima a 0.48. Embora estes valores sejam inferiores aos
obtidos pelos SVMs, eles são relevantes e se aproximam do desempenho de outros modelos
clássicos, como o Perceptron (modelo 33, mediana de 0.69) e o KNN (modelo 34, mediana
de 0.69). Isso indica que a abordagem quântica não é inviável, mas sim que exige arquiteturas
sofisticadas e recursos computacionais (representados aqui pela profundidade) para se tornar
competitiva.

Este desempenho dos melhores circuitos quânticos na base SST reforça um dos temas
centrais desta dissertação, já explorado na seção 4.1: a combinação de um ansatz com ca-
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Figura 75 – Diagrama de diferença crítica da performance F1 na base ChatGPT - Médio. Foram exibidos
apenas cliques que contenham modelos clássicos, de forma ensemble ou isolada, e os modelos
quânticos envolvidos (nas suas versões 𝐿 = 1 e 𝐿 = 10).
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pacidade intrínseca de gerar emaranhamento e uma profundidade adequada é um requisito
indispensável para o sucesso em tarefas de classificação de sentimentos com dados do mundo
real. Os modelos que se destacaram (14, 15, 6, 9 e 11) são precisamente aqueles que, em
suas configurações com 𝐿 = 10, exibem as melhores métricas de expressabilidade e emaranha-
mento. O seu desempenho, ainda que não supere a dos melhores modelos clássicos, está em
uma ordem de magnitude superior à dos circuitos não-emaranhadores, validando a hipótese
de que estas propriedades quânticas são cruciais para o aprendizado de padrões complexos.

A análise comparativa com os modelos clássicos que utilizam técnicas de ensemble também
oferece insights valiosos. Modelos como o 41 e o 42, que combinam diferentes kernels de
SVM, alcançaram um desempenho de ponta na base SST (mediana de 0.73), igualando-se aos
seus melhores componentes individuais. Isso demonstra a eficácia de agregar modelos clássicos
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Figura 76 – Diagrama de diferença crítica da performance F1 na base ChatGPT - Difícil. Foram exibidos
apenas cliques que contenham modelos clássicos, de forma ensemble ou isolada, e os modelos
quânticos envolvidos (nas suas versões 𝐿 = 1 e 𝐿 = 10).
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diversos e robustos. Em contraste, os ensembles quânticos, como o 28 e o 30, embora também
compostos por estimadores diversos, tiveram seu desempenho final limitada pelo desempenho
do seu componente mais fraco na tarefa, um fenômeno atribuído à diluição das predições de
maior confiança. Este comportamento sugere que a construção de ensembles quânticos eficazes
pode requerer não apenas a diversidade, mas também uma consistência de alto desempenho
entre seus componentes.

Em síntese, o confronto entre os classificadores quânticos e os benchmarks clássicos esta-
belece um panorama claro e honesto. Para a tarefa de análise de sentimentos na base SST com
a representação de dados utilizada, os modelos clássicos, especialmente os baseados em SVM
e Regressão Logística, demonstram uma superioridade em termos de desempenho F1. Essa
lacuna pode ser atribuída a uma combinação de fatores, incluindo os desafios de otimização
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Figura 77 – Diagrama de diferença crítica da performance F1 na base SST. Foram exibidos apenas cliques que
contenham modelos clássicos, de forma ensemble ou isolada, e os modelos quânticos envolvidos
(nas suas versões 𝐿 = 1 e 𝐿 = 10).
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dos circuitos quânticos, a natureza da codificação dos dados e as características da própria
base SST. Contudo, o desempenho competitivo dos modelos quânticos em bases sintéticas
e o desempenho relevante das arquiteturas quânticas mais complexas e profundas no cenário
real indicam um caminho promissor. O trabalho posiciona o emaranhamento e a profundidade
como condições necessárias, embora não suficientes, para que os modelos quânticos possam,
futuramente, se tornar competitivos e, eventualmente, superar as abordagens clássicas em
domínios de problemas de crescente complexidade.
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5 CONCLUSÃO

Este trabalho se propôs a realizar uma investigação sistemática e experimental sobre a
expressividade e o emaranhamento de circuitos quânticos variacionais aplicados à tarefa de
classificação de sentimentos. Diante do crescente interesse no campo do Processamento de
Linguagem Natural Quântico, buscou-se preencher uma lacuna na literatura, transitando de
análises puramente teóricas para uma avaliação empírica que correlaciona as propriedades
arquitetônicas dos circuitos — como topologia, profundidade e capacidade de emaranhamento
— com seu desempenho prático em cenários de complexidade crescente.

Para alcançar este objetivo, delineou-se uma metodologia abrangente, detalhada no capí-
tulo 3, que envolveu a análise de 15 arquiteturas de circuitos distintas, comparadas a 7 modelos
clássicos e avaliadas em 22 configurações de ensembles. O estudo foi fundamentado em quatro
bases de dados: três conjuntos de dados sintéticos de dificuldade crescente (ChatGPT Fácil,
Médio e Difícil) e uma base de dados do mundo real, o SST. A investigação foi aprofundada
pela análise do impacto de três modelos geradores de embeddings (Matryoshka, Nomic e
MPNet) e pela avaliação da resiliência dos classificadores à redução da dimensionalidade do
vetor de entrada. Todos os resultados foram validados por meio de testes estatísticos rigorosos,
garantindo a robustez das conclusões subsequentes, que foram interpretadas em detalhe no
Capítulo 4.

5.1 SÍNTESE DOS RESULTADOS E VALIDAÇÃO DOS OBJETIVOS

A análise agregada dos resultados, apresentada e discutida no Capítulo 4, permite validar
o cumprimento dos objetivos delineados para esta dissertação. A seguir, detalha-se como cada
meta específica foi alcançada, sintetizando os principais achados do estudo.

O primeiro objetivo, referente ao projeto e implementação de um conjunto diversificado
de 15 arquiteturas de circuitos quânticos variacionais, foi integralmente cumprido através da
metodologia descrita na seção 3.1.2. Cada uma das arquiteturas, que variaram em topologia,
tipo de portas e capacidade de emaranhamento, foi avaliada em configurações de baixa (𝐿 = 1)
e alta (𝐿 = 10) profundidade, formando a base para toda a análise empírica subsequente.

Em atendimento ao segundo objetivo, quantificaram-se as métricas teóricas para cada uma
das arquiteturas propostas. A expressabilidade foi medida por meio da divergência de Kullback-
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Leibler em relação à distribuição de Haar, enquanto o poder de emaranhamento foi avaliado
utilizando a medida de Meyer-Wallach, conforme detalhado na seção 2.3.2. Estes cálculos
foram fundamentais para a posterior correlação entre a teoria e o desempenho prático dos
circuitos.

O terceiro objetivo, que visava investigar o impacto da representação de dados de entrada,
foi sistematicamente investigado. Compararam-se três modelos geradores de embeddings (Ma-

tryoshka, Nomic e MPNet) e avaliou-se a resiliência dos modelos à redução de dimensionali-
dade (de 768 para 32 e 16 atributos), conforme a análise na seção 4.2.1. A análise demonstrou
que, embora modelos clássicos e circuitos quânticos profundos exibam relevante resiliência à
redução de dimensionalidade, os circuitos quânticos rasos mostraram-se mais sensíveis a essa
perda de informação.

Para o quarto objetivo, avaliou-se o desempenho dos 44 modelos (quânticos e clássicos)
em quatro bases de dados: as três bases sintéticas de complexidade crescente (ChatGPT Fácil,
Médio e Difícil) e a base de dados pública SST. A métrica F1, utilizada como principal indicador
de desempenho, permitiu uma comparação quantitativa e rigorosa do poder de classificação
de cada abordagem nos diferentes cenários propostos.

Em cumprimento ao quinto objetivo, estabeleceu-se uma linha de base robusta por meio
da implementação e avaliação de 7 modelos de aprendizagem de máquina clássicos e 10
configurações de ensembles clássicos. A comparação direta com as 15 arquiteturas quânticas
individuais e os 16 ensembles quânticos, discutida na seção 4.3, revelou que os modelos
clássicos, notadamente as Máquinas de Vetores de Suporte (modelos 36 e 38) e a Regressão
Logística (modelo 32), apresentaram um desempenho superior na base SST, estabelecendo
um benchmark de desempenho que não foi superado pelas abordagens quânticas investigadas.

A correlação entre o desempenho empírico e as métricas teóricas, cerne do sexto objetivo,
revelou uma dependência fundamental do emaranhamento e da profundidade para o sucesso
dos classificadores quânticos, conforme a discussão na seção 4.1. Circuitos não-emaranhadores
(1 a 5 e 7) tiveram performance limitada, especialmente na base SST. Em contrapartida, os
circuitos emaranhadores (como os modelos 6, 9, 11, 14 e 15), especialmente na configuração
com 𝐿 = 10, foram os únicos a alcançar resultados relevantes, validando a hipótese de que
a capacidade de gerar correlações quânticas complexas é um requisito para a classificação de
dados do mundo real.

Finalmente, o sétimo objetivo, que demandava uma validação estatística rigorosa, foi cum-
prido por meio da repetição de cada experimento com 30 sementes de aleatoriedade e da apli-



153

cação do teste pareado de Wilcoxon com a correção de Holm-Bonferroni. Esta metodologia,
utilizada em todas as análises comparativas, garantiu que as conclusões sobre as diferenças de
desempenho entre os modelos fossem estatisticamente significativas e confiáveis, conferindo
robustez aos achados da dissertação.

5.2 LIMITAÇÕES DA PESQUISA

O reconhecimento das limitações de um estudo é um passo fundamental para a contextu-
alização de seus achados e para o delineamento de futuras investigações. A presente pesquisa,
embora abrangente em seu escopo, possui certas restrições que merecem ser explicitadas.

Primeiramente, no que tange à representação dos dados, a análise principal de desempenho
e o estudo de redução de dimensionalidade concentraram-se nos vetores gerados pelo modelo
Matryoshka. Embora a comparação com os modelos Nomic e MPNet tenha fornecido insights

valiosos sobre a sensibilidade dos classificadores, uma investigação mais aprofundada com
outros modelos de embeddings de ponta poderia revelar dinâmicas distintas. Adicionalmente,
o trabalho se limitou ao uso da codificação por amplitude embedding, sendo esta apenas
uma das múltiplas estratégias possíveis para mapear dados clássicos em estados quânticos.
Métodos alternativos poderiam interagir de maneiras diferentes com os ansatze propostos e,
consequentemente, alterar os resultados.

Outra limitação relevante reside nas características da base de dados SST, que possui
um desbalanceamento considerável entre as classes positiva e negativa, conforme detalhado
na Tabela 1. Embora a métrica F1 seja adequada para lidar com tal situação, sabe-se que
o desbalanceamento pode dificultar o processo de treinamento e a convergência de modelos
sensíveis à paisagem de custo, como é o caso dos circuitos variacionais. A aplicação de técnicas
de reamostragem, como SMOTE ou undersampling, não foi contemplada no escopo deste
trabalho, mas poderia potencialmente alterar o desempenho dos modelos.

Adicionalmente, todos os experimentos foram conduzidos em um simulador quântico ideal,
que não leva em consideração os efeitos do ruído. O desempenho dos circuitos em um hardware
quântico da era NISQ, sujeito a erros de portas, decoerência e outros fenômenos, representaria
um desafio adicional e, provavelmente, resultaria em um desempenho inferior. A implementação
e a avaliação de técnicas de mitigação de erro, embora cruciais para a aplicação prática, fugiram
ao escopo desta dissertação, que se concentrou na capacidade representacional intrínseca das
arquiteturas.
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Por fim, a otimização de hiperparâmetros, tanto para os modelos quânticos (por exem-
plo, taxa de aprendizado, otimizador, número de épocas) quanto para os modelos clássicos
(parâmetros de regularização, grau do polinômio do kernel, entre outros), foi mantida com
configurações fixas ou padrão para garantir uma comparação justa entre as arquiteturas. Uma
busca exaustiva por hiperparâmetros ótimos para cada modelo poderia, potencialmente, alte-
rar os rankings de desempenho, mas representaria um custo computacional custoso e desviaria
o foco da análise arquitetônica central deste trabalho.

5.3 TRABALHOS FUTUROS

As limitações identificadas nesta pesquisa abrem caminho para diversas e promissoras ave-
nidas de investigação futura, que podem aprofundar e expandir os achados aqui apresentados.
Uma direção natural consiste na validação experimental dos resultados em hardware quântico
real. A execução dos circuitos mais promissores, como os modelos 14 e 15 com 𝐿 = 10,
em diferentes plataformas de computadores quânticos, aliada à incorporação de técnicas de
mitigação de erro, permitiria uma avaliação mais realista de sua viabilidade e desempenho em
um ambiente com ruído.

Outra vertente de pesquisa relevante reside na exploração de outras estratégias de codifi-
cação de dados. A investigação de métodos alternativos, como o Angle Embedding ou o Dense

Angle Embedding, e a análise de sua interação com as métricas de expressabilidade e ema-
ranhamento poderiam revelar combinações de codificação e ansatz mais eficazes para tarefas
de processamento quântico de análise de sentimento, potencialmente alterando a hierarquia
de desempenho observada neste trabalho.

Além disso, a análise dos ensembles revelou que as abordagens de votação simples podem
ser prejudicadas pela presença de estimadores de menor desempenho. Isso sugere a necessidade
de desenvolver métodos de ensemble quânticos mais sofisticados. Uma proposta de trabalho
futuro seria o desenvolvimento de esquemas de votação ponderada, nos quais a contribuição de
cada estimador base, seja no Soft ou no Hard Voting, é ajustada por seu desempenho individual
ou por uma métrica de confiança, a fim de evitar a diluição do desempenho final pelos modelos
mais fracos. Além disso, uma análise da quantidade de atributos também é interessante,
tendo em vista modelos quânticos com performances similares a modelos clássicos. Isso pode
indicar uma superioridade quântica no que tange à necessidade de complexidade, sabendo que
esses algoritmos quânticos requisitaram menos parâmetros treináveis para atingir o mesmo
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desempenho.
Por fim, a metodologia de análise sistemática de circuitos aqui desenvolvida pode ser apli-

cada a um escopo mais amplo de problemas de processamento de texto. Trabalhos futuros
poderiam investigar o desempenho destas e de outras arquiteturas quânticas em tarefas mais
complexas, como a classificação de textos com múltiplas classes, o reconhecimento de entidade
nomeada ou a inferência de linguagem natural. Tais estudos seriam fundamentais para se obter
uma compreensão mais completa do domínio de problemas em que os classificadores quân-
ticos variacionais podem, eventualmente, oferecer uma vantagem em relação às abordagens
clássicas.
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