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ABSTRACT

This work presents a statistical approach to detect heterogeneity in synthetic aperture
radar (SAR) intensity data using entropy-based methods. In SAR data analysis, an accurate
interpretation of the terrain fundamentally depends on the distinction between two main regimes:
homogeneous regions, in which speckle is fully developed and SAR returns are represented by
the Gamma distribution, and heterogeneous areas, which require more flexible distributions
to describe complex scattering, generally represented by the G0

I distribution. Although this
discrimination is essential for remote sensing applications, classical parametric tests are generally
not suitable for this task due to analytical and numerical limitations. To overcome these
challenges, we propose three test statistics to detect heterogeneity in SAR images based on
Shannon, Rényi, and Tsallis entropies. The associated tests employ nonparametric entropy
estimators constructed from sample spacings, avoiding explicit assumptions about the underlying
distribution. To increase the accuracy of the tests, especially for small samples, we incorporate a
bootstrap-based bias correction procedure that improves the stability of the estimators, reduces
bias, and decreases the mean squared error. The proposed tests are evaluated through Monte
Carlo simulations, using test size and power under different speckle and texture conditions
as performance criteria. The results show that the tests based on Rényi and Tsallis entropies
outperform the version based on Shannon entropy, detecting subtler texture variations and
maintaining higher reliability in identifying truly homogeneous regions. Finally, the methodology
is applied to both simulated and real SAR data. The analysis is performed using sliding
windows, generating maps of p-values that allow for visual and quantitative assessment of
spatial heterogeneity. The Rényi-based test consistently identifies fine-scale roughness patterns,
while the Tsallis-based test performs better in detecting homogeneous regions. Together, these
entropy-based tools provide a robust, interpretable, and unsupervised framework for detecting
heterogeneity in SAR data.

Keywords: entropy; heterogeneity; gamma distribution; hypothesis testing; bootstrap.



RESUMO

Este trabalho apresenta uma abordagem estatística para detectar heterogeneidade em dados
de intensidade de radar de abertura sintética (SAR), utilizando métodos baseados em entropia.
Na análise de dados SAR, uma interpretação precisa do terreno depende fundamentalmente da
distinção entre dois regimes principais: regiões homogêneas, em que o speckle está totalmente
desenvolvido, os retornos SAR são representados pela distribuição Gamma, e áreas heterogêneas
requerem distribuições mais flexíveis para descrever o espalhamento complexo, geralmente
representado pela distribuição G0

I . Embora essa discriminação seja essencial para aplicações de
sensoriamento remoto, testes paramétricos clássicos geralmente não são adequados para essa
tarefa devido a limitações analíticas e numéricas. Para superar esses desafios, propomos três
estatísticas de teste para detectar heterogeneidade em imagens SAR, com base nas entropias
de Shannon, Rényi e Tsallis. Os testes associados utilizam estimadores não paramétricos de
entropia construídos a partir de espaçamentos amostrais, evitando suposições explícitas sobre
a distribuição subjacente. Para aumentar a precisão dos testes, especialmente em amostras
pequenas, incorporamos um procedimento de correção de viés via bootstrap, que melhora a
estabilidade dos estimadores, reduz o viés e o erro quadrático médio. Os testes propostos são
avaliados por meio de simulações de Monte Carlo, tendo como critério de avaliação seu tamanho
e poder sob diferentes condições de speckle e textura. Os resultados mostram que os testes
baseados nas entropias de Rényi e Tsallis superam a versão baseada na entropia de Shannon,
detectando variações de textura mais sutis e mantendo maior confiabilidade na identificação
de regiões verdadeiramente homogêneas. Por fim, a metodologia é aplicada tanto a dados
simulados como a dados SAR reais. A análise é realizada com janelas deslizantes, gerando
mapas de valores-p que permitem a avaliação visual e quantitativa da heterogeneidade espacial.
O teste baseado na entropia de Rényi mostra desempenho superior na identificação de padrões
de rugosidade em pequena escala, enquanto o teste baseado em Tsallis é melhor na detecção
de regiões homogêneas. Em conjunto, essas ferramentas baseadas em entropia oferecem uma
estrutura robusta, interpretável e não supervisionada para a detecção de heterogeneidade em
dados SAR.

Palavras-chave: entropia; heterogeneidade; distribuição gama; teste de hipótese; bootstrap.
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1 INTRODUCTION

Synthetic Aperture Radar (SAR) technology has become essential in remote sensing, as it
offers high-resolution imaging capabilities independently of sunlight and weather conditions, thus
facilitating continuous and reliable Earth observation (MONDINI et al., 2021). SAR images are
widely applied in environmental monitoring (AMITRANO et al., 2021), disaster assessment (GE;
GOKON; MEGURO, 2020), agriculture (LIU et al., 2019), urban planning (ESCH et al., 2010;
RATHA et al., 2020), and maritime surveillance (LOPEZ-LOPEZ et al., 2021; CAO et al.,
2024), among other fields (MOREIRA et al., 2013). Despite these advantages, effective
exploitation of SAR data requires a robust understanding of its unique statistical characteristics,
particularly the presence of speckle noise, a granular interference pattern inherent to coherent
imaging systems like SAR (ARGENTI et al., 2013).

Speckle arises from the constructive and destructive interference of backscattered signals
within a resolution cell, manifesting as multiplicative, non-Gaussian noise that severely compli-
cates image analysis (BARAHA; SAHOO, 2023). Hence, accurate processing and interpretation
of SAR data depend critically on appropriate statistical models to describe speckle behavior.

Among the statistical frameworks available, the G0
I distribution has been recognized for

effectively characterizing SAR intensity data across various levels of scene heterogeneity.
Its versatility comes from incorporating a texture parameter that accounts for the spatial
variability of scatterers, thus generalizing the simpler Gamma distribution, which represents fully
developed speckle typically found in homogeneous, textureless regions (FRERY et al., 1997;
DE A. FERREIRA; NASCIMENTO, 2020). In practice, the Gamma model can be considered a
limiting case of the G0

I distribution as scene texture becomes homogeneous.

Parameter estimation for these statistical models, however, presents significant challenges,
especially when using small-sized windows necessary to preserve spatial resolution in SAR images.
Traditional parametric approaches, such as maximum likelihood estimation and moment-based
methods, often become biased or unstable under these practical constraints (VASCONCELLOS;
FRERY; SILVA, 2005; NASCIMENTO; CINTRA; FRERY, 2010). Moreover, likelihood ratio
tests derived from these estimators may exhibit unreliable behavior when applied to small-window
SAR data due to flat likelihood surfaces.

Entropy, introduced by Shannon (1948), quantifies the uncertainty associated with a random
variable and has found extensive application across fields such as pattern recognition (AVVAL et
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al., 2021), statistical physics (PRESSÉ et al., 2013), image processing (MOHAMMAD-DJAFARI,
2015), and particularly in SAR analysis (NASCIMENTO et al., 2014; NOBRE et al., 2016;
NASCIMENTO; FRERY; CINTRA, 2019; CHAN; GAMBINI; FRERY, 2022). Beyond Shannon’s
original formulation, Rényi entropy generalizes the measure through an order parameter (RÉNYI,
1961), while Tsallis entropy offers an alternative non-additive generalization (TSALLIS, 1988).
Recent studies highlight the role of entropy in SAR classification. Cassetti et al. (2022)
evaluated entropy estimators in both supervised and unsupervised models. Gallet et al. (2024)
proposed a Rényi divergence-based framework for explainable classification. Parikh et al. (2019)
discussed challenges in deep learning for SAR, including limited availability of labeled data and
the complexity of tuning hyperparameters. These works motivate lightweight, interpretable
alternatives.

When the underlying distribution of data is unknown, entropy measures must be estimated
non-parametrically. Spacing-based estimators, first proposed by Vasicek (1976) and further
refined in subsequent studies (VAN ES, 1992; EBRAHIMI; PFLUGHOEFT; SOOFI, 1994;
AL-OMARI, 2014), approximate entropy via spacings of order statistics. These estimators have
desirable statistical properties, such as strong consistency and asymptotic normality under mild
assumptions. Recent advancements have extended spacing-based methods to estimate Rényi
entropy (AL-LABADI; CHU; XU, 2024). Importantly, spacing estimators do not rely on any
specific model for the data and do not require choosing parameters, making them simple and
flexible tools for entropy estimation.

1.1 MOTIVATION AND PROBLEM STATEMENT

Typically, SAR data exhibit heterogeneous clutter or fully developed speckle, depending
on terrain characteristics and imaging conditions. Distinguishing between these two cases is
critical for accurate interpretation and analysis.

While the G0
I distribution effectively models heterogeneous SAR intensity data, practitioners

face a significant challenge: choosing between simpler (Gamma-based) and more complex
(G0

I -based) statistical models. Opting for the simpler Gamma model risks losing important
texture information about scatterer variability, encapsulated within the G0

I distribution’s param-
eters (YUE et al., 2021). Conversely, directly applying the G0

I distribution in homogeneous
regions introduces substantial estimation difficulties, such as increased parameter estimation
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bias and computational instability due to flat likelihood surfaces, particularly when analysis win-
dows are small (FRERY; CRIBARI-NETO; SOUZA, 2004; NASCIMENTO; CINTRA; FRERY,
2010).

These estimation issues motivate the development of alternative methodologies that avoid
explicit parametric estimation. In this context, non-parametric statistical tests based on
entropy measures emerge as an appealing alternative. Such tests exploit entropy’s sensitivity
to deviations from homogeneity assumptions without relying on explicit parameter estimates.

This thesis proposes three novel entropy-based statistical tests (using Shannon, Rényi, and
Tsallis entropies) designed specifically to distinguish heterogeneous clutter from fully developed
speckle under the assumption that SAR intensity follows the Gamma SAR distribution in
homogeneous regions. These tests assess whether observed entropy significantly differs from
theoretical expectations under the homogeneity hypothesis, making them highly interpretable
and practically applicable even when ground truth information is limited or unavailable.

To enhance accuracy, particularly within small-window analysis contexts common in practical
SAR scenarios, we further propose a bootstrap-based bias-correction procedure for the entropy
estimators. Overall, our approach provides robust, unsupervised statistical tools well-suited for
operational scenarios, bridging a critical gap in existing methodologies.

1.2 OBJECTIVES

1.2.1 General Objective

To propose and evaluate entropy-based statistical tests for detecting heterogeneity in SAR
imagery, using non-parametric estimation and bootstrap bias-correction to enhance accuracy in
small-sample scenarios.

1.2.2 Specific Objectives

• To derive closed-form expressions for Rényi and Tsallis entropies under the Gamma SAR
and G0

I models, which serve as theoretical benchmarks for hypothesis testing.

• To identify and refine suitable non-parametric estimators of entropy for SAR data,
incorporating bootstrap techniques to reduce bias and improve estimation accuracy.
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• To formulate three entropy-based test statistics that compare the estimated entropy from
observed data with its theoretical value under the homogeneity assumption.

• To evaluate the empirical size and power of the proposed tests via Monte Carlo simulations.

• To apply the proposed tests to both simulated and real SAR data using a sliding window
scheme, and generate p-value maps for visual inspection and quantitative assessment.

1.3 CONTRIBUTIONS

The main contributions of this work are the following:

1. Closed-form entropy derivations. Analytical expressions for Rényi, and Tsallis entropies
under the Gamma SAR and G0

I models are derived, filling a gap in the literature and
enabling hypothesis testing.

2. Non-parametric estimator and bootstrap bias-correction. A new spacing-based
estimator is proposed for Tsallis entropy. A bootstrap bias-correction procedure is
developed to improve the precision of all non-parametric estimators, substantially reducing
bias and mean squared error in small-window analyses.

3. Entropy-based test statistics. Proposal of three entropy-based statistical tests for
heterogeneity detection in SAR imagery, using Shannon, Rényi, and Tsallis entropy
measures.

1.3.1 Related Publications

The following peer-reviewed articles and conference papers have been published as part of
or related to this research:

• (2025): ALPALA, J.; NASCIMENTO, A. D. C.; FRERY, A. C. Quantifying Heterogeneity
in SAR Imagery with the Rényi Entropy. IEEE Geoscience and Remote Sensing Letters,
p. 1–1, 2025.

• (2024): FRERY, A. C.; ALPALA, J.; NASCIMENTO, A. D. C. Identifying Heterogeneity
in SAR Data with New Test Statistics. Remote Sensing, v. 16, n. 11, p. 1973, 2024.

https://openaccess.wgtn.ac.nz/articles/journal_contribution/Quantifying_Heterogeneity_in_SAR_Imagery_with_the_R_nyi_Entropy/29376944?file=55548095
https://openaccess.wgtn.ac.nz/articles/journal_contribution/Quantifying_Heterogeneity_in_SAR_Imagery_with_the_R_nyi_Entropy/29376944?file=55548095
https://openaccess.wgtn.ac.nz/articles/journal_contribution/Quantifying_Heterogeneity_in_SAR_Imagery_with_the_R_nyi_Entropy/29376944?file=55548095
https://www.mdpi.com/2072-4292/16/11/1973
https://www.mdpi.com/2072-4292/16/11/1973
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• (2024): ALPALA, J.; NASCIMENTO, A. D. C.; FRERY, A. C. Identifying departures
from the fully developed speckle hypothesis in intensity SAR data with non-parametric
estimation of the entropy. In: 2024 International Conference on Machine Intelligence for

GeoAnalytics and Remote Sensing (MIGARS), 2024.

• (2023): ALPALA, R. J.; BORBA, A. A. De; FRERY, A. C. Quality Assessment measures
for explainable fusion Of statistical evidences of edges in Polsar images: A First Approach.
In: IGARSS 2023 - IEEE International Geoscience and Remote Sensing Symposium,
2023.

1.4 COMPUTATIONAL SUPPORT AND REPRODUCIBILITY

Simulations, tests, and data analyses presented in this thesis were implemented using the
free, open-source programming language R1 within RStudio (version 2025.09.1+401, R version
4.5.1). The manuscript was written in Quarto2, a dynamic publishing system that integrates
code, output, and narrative to ensure full reproducibility (BAUER; LANDESVATTER, 2023).

The numerical experiments were performed on a workstation equipped with an Intel®

Core™Ultra 9 285 CPU (2.5 GHz, 24 cores), 128 GB RAM, and an NVIDIA® GeForce RTX
5090 GPU (31 GB VRAM), running Windows 11 Pro (version 24H2).

All code and data for this research, including the manuscript source, are available at
https://github.com/rjaneth/Thesis-UFPE, supporting reproducibility. This work follows best
practices recommended by Frery et al. (2020).

1.5 STRUCTURE OF THE THESIS

This thesis is organized into five chapters as follows:

• Chapter 2 presents the theoretical foundations of the work. It includes statistical modeling
of SAR intensity data, entropy measures, and nonparametric estimation techniques based
on order statistics.

1https://www.r-project.org/
2https://quarto.org/

https://ieeexplore.ieee.org/document/10544448
https://ieeexplore.ieee.org/document/10544448
https://ieeexplore.ieee.org/document/10544448
https://ieeexplore.ieee.org/document/10544448
https://ieeexplore.ieee.org/abstract/document/10283263
https://ieeexplore.ieee.org/abstract/document/10283263
https://ieeexplore.ieee.org/abstract/document/10283263
https://ieeexplore.ieee.org/abstract/document/10283263
https://github.com/rjaneth/Thesis-UFPE
https://www.r-project.org/
https://quarto.org/
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• Chapter 3 describes the proposed methodology. It covers the selection and bias correction
of entropy estimators, the construction of the test statistics, and the hypothesis testing
framework based on Shannon, Rényi, and Tsallis entropy.

• Chapter 4 presents the results obtained from simulated and real SAR datasets. This
includes both qualitative and quantitative analyses that demonstrate the effectiveness of
the proposed methods.

• Chapter 5 summarizes the conclusions drawn from the study and outlines potential
directions for future research.
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2 THEORETICAL FOUNDATIONS

2.1 STATISTICAL MODELING OF INTENSITY SAR DATA

Statistical modeling plays a central role in the analysis of SAR imagery, where speckle
is an inherent feature. For SAR intensity data, two main probability models are employed:
the SAR-Gamma distribution (ΓSAR), a reparameterization of the classical Gamma law suited
to fully developed speckle, and the G0

I distribution, which can describe varying levels of
heterogeneity (FRERY et al., 1997).

We denote Z ∼ ΓSAR(L, µ) and Z ∼ G0
I (α, γ, L) when the random variable Z follows the

respective distributions, characterized by the following probability density functions (pdfs):

fΓSAR

(
z;µ, L

)
= LL

Γ(L)µL z
L−1 exp

(
−Lz

µ

)
1R+(z) (2.1)

and

fG0
I

(
z;α, γ, L

)
= LLΓ(L− α)
γαΓ(−α)Γ(L)

zL−1

(γ + Lz)L−α1R+(z), (2.2)

where µ > 0 is the mean intensity, γ > 0 is a scale parameter, α < 0 controls the degree
of texture (roughness), L ≥ 1 is the number of looks (either nominal or estimated, thus not
restricted to integer values), Γ(·) is the gamma function, and 1A(z) is the indicator function
of the set A.

The rth order moments of the G0
I model are

E
(
Zr
)

=
(
γ

L

)r Γ(−α− r)
Γ(−α)

Γ(L+ r)
Γ(L) , (2.3)

provided that α < −r, and infinite otherwise. Therefore, assuming α < −1, its expected value
is

µ =
(
γ

L

) Γ(−α− 1)
Γ(−α)

Γ(L+ 1)
Γ(L) = − γ

α + 1 . (2.4)

Although the G0
I distribution is defined by the parameters α and γ, in the SAR litera-

ture (NASCIMENTO; CINTRA; FRERY, 2010) the texture α and the mean µ are usually used.



22

Reparameterizing (2.2) with µ, and denoting this model as Z ∼ G0
I (α, µ, L) we obtain:

fG0
I

(
z;α, µ, L

)
= LL Γ(L− α)[

−µ(α + 1)
]α

Γ(−α) Γ(L)
zL−1[

−µ(α + 1) + Lz
]L−α1R+(z), (2.5)

The ΓSAR model is a particular case of the G0
I distribution, as demonstrated in (FRERY et al.,

1997). Specifically, for a given µ fixed,

fG0
I

(
z;α, µ, L

)
−→ fΓSAR(z;µ, L) when α → −∞.

In this work, we do not focus on parameter estimation using likelihood-based or moment-
based methods. Instead, we adopt a hypothesis testing framework to detect heterogeneity
in SAR imagery. The analytical expressions of entropy measures derived from the ΓSAR and
G0
I models form the theoretical basis for constructing these statistical tests. In the following

section, we introduce the entropy-based measures, specifically Shannon, Rényi, and Tsallis, on
which our detection strategy is built.

2.2 ENTROPY MEASURES

Entropy stands as a foundational concept in information theory, originally formulated by
Claude Shannon (1948). It provides a formal mechanism for quantifying the uncertainty
or unpredictability of a random variable. More precisely, the entropy of a random variable
can be interpreted as the average amount of information required to describe its outcomes
based on its probability distribution. As such, entropy quantifies the expected information
content of a random event, with higher values indicating more uncertainty or variability in
the distribution. It plays a central role in a wide range of applications, including statistical
physics (PACHTER; YANG; DILL, 2024), complex systems (BASHKIROV, 2006), machine
learning (SEPÚLVEDA-FONTAINE; AMIGÓ, 2024), and remote sensing (JIAO et al., 2021).

This section focuses on three widely used entropy formulations that offer complementary
perspectives on uncertainty: Shannon entropy H, Rényi entropy Rλ, and Tsallis entropy Tλ.
In the context of continuous random variables, these measures take the form of differential

entropies, which are defined using probability density functions. These differential entropies
are not only theoretically grounded but also highly applicable to the statistical modeling of
Synthetic Aperture Radar (SAR) data. Each entropy captures different aspects of distributional
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structure and provides a flexible framework for heterogeneity analysis in SAR imagery.

Shannon entropy is the classical and most widely adopted measure, reflecting the average
information content or uncertainty inherent in a random variable. It assumes statistical
independence and extensivity, and serves as the baseline concept upon which generalizations
are constructed.

Rényi entropy, introduced by Alfréd Rényi (1961), is a one-parameter generalization of
Shannon’s measure. By tuning the parameter λ > 0, the analyst can adjust the sensitivity of
the entropy to the tails of the distribution. This property is particularly relevant in applications
where rare events (e.g., bright scatterers, outliers) carry significant informational weight, such
as in SAR-based texture discrimination or target detection.

Tsallis entropy was first introduced by Havrda and Charvát (1967) in the context of
information theory. Later, Tsallis (1988) extended it by emphasizing its non-extensive features
and placing it in a physical context. The generalized Tsallis entropy of order λ offers an
alternative formulation motivated by non-extensive systems, such as those exhibiting long-range
dependencies, memory effects, or multifractal behavior. Unlike Rényi entropy, it does not obey
the additivity property under independence, making it particularly suitable for modeling complex
spatial structures and textured regions in SAR images.

In the context of SAR imaging, homogeneous areas produce fully developed speckle and are
effectively modeled by the Z ∼ ΓSAR(L, µ) distribution. In contrast, textured or heterogeneous
regions are better represented by the Z ∼ G0

I (α, µ, L) model, where the roughness parameter
α controls the degree of heterogeneity. Across this section, we show that all three entropy
measures applied to G0

I can be decomposed as:

Entropy
(
G0
I

)
= Entropy

(
ΓSAR

)
+ ∆α (2.6)

where ∆α represents the excess entropy induced by the roughness parameter α. Notably, this
excess vanishes in the homogeneous limit (α → −∞), reducing (2.6) to the baseline case.

This decomposition plays a central role in the thesis. It forms the theoretical foundation for
a statistical test to detect heterogeneity: if ∆α ̸= 0, then the observed region departs from the
homogeneous model, signaling the presence of texture. Each entropy measure offers a different
sensitivity profile to such deviations, and their comparative behavior provides valuable insights
into the textural structure of SAR imagery.
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This section details the closed-form expressions for H, Rλ, and Tλ under ΓSAR and G0
I models.

Shannon entropy derivations are taken from literature and adapted to our parametrisation,
whereas the Rényi and Tsallis expressions are original contributions derived as part of this
research. At the end of the chapter, we summarize the common structure shared by all three
measures and illustrate their convergence behavior.

2.2.1 Shannon Entropy

The parametric representation of Shannon entropy for a system described by a continuous
random variable is:

H(Z) = −E
[
ln f(z)

]
= −

∫
B
f(z) ln f(z) dz, (2.7)

where f(·) is the pdf that characterizes the distribution of the real-valued random variable Z
and B ⊆ R denotes the support of f(z).

Using the definition in (2.7), we derive closed-form expressions for the Shannon entropy of
the ΓSAR and G0

I distributions under our parametrization.

Homogeneous case. For the ΓSAR distribution defined in (2.1), we obtain:

H
(
ΓSAR(µ, L)

)
= L− lnL+ ln Γ(L) + (1 − L)ψ(0)(L) + lnµ, (2.8)

where ψ(0)(·) is the digamma function; H(ΓSAR) represents the baseline entropy of fully
developed speckle.

Textured case. In the case of the G0
I distribution (2.5), we adapt existing expressions

reported by De A. Ferreira and Nascimento (2020) to our parametrization, using the relation
µ = −γ/(α + 1). This yields:

H
(
G0
I (α, µ, L)

)
= H

(
ΓSAR(µ, L)

)
+
[
(L−α)ψ(0)(L−α)−(1−α)ψ(0)(−α)+ln(−1−α)

− ln Γ(L− α) + ln Γ(−α) − L
]
. (2.9)

Equation (2.9) can be interpreted as:

H(G0
I ) = H

(
ΓSAR

)
︸ ︷︷ ︸

baseline entropy

+ ∆α︸︷︷︸
excess entropy caused by texture

,

where
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∆α = (L− α)ψ(0)(L− α) − (1 − α)ψ(0)(−α) + ln(−1 − α)

− ln Γ(L− α) + ln Γ(−α) − L, (2.10)

the extra term ∆α captures how much entropy increases due to texture (heterogeneity), caused
by the roughness parameter α. When α → −∞ (fully developed speckle), the excess term
tends to zero, and Equation (2.9) collapses to the homogeneous case in (2.8), i.e.,

lim
α→−∞

H
(
G0
I (α, µ, L)

)
= H

(
ΓSAR(µ, L)

)
.

Appendix A provides a proof of this limiting behavior. In practice, detecting heterogeneity is
equivalent to testing whether ∆α is significantly different from zero.

2.2.2 Rényi Entropy

For a continuous random variable Z with pdf f(z), the Rényi entropy of order λ ∈ R+ \{1}

is defined as:

Rλ(Z) = 1
1 − λ

ln
[
E
(
fλ−1(Z)

)]
= 1

1 − λ
ln
∫

B
[f(z)]λ dz, (2.11)

where B ⊆ R denotes the support of f(z). As λ → 1, Rλ(Z) reduces to the Shannon entropy
H(Z).

Using (2.11), we now derive the closed-form expression for the Rényi entropy under the
homogeneous (ΓSAR) model.

Homogeneous case. Let Z ∼ ΓSAR(µ, L) with pdf given in (2.1). We compute

I =
∫ ∞

0

[
fΓSAR(z;µ, L)

]λ
dz =

(
LL

Γ(L)µL

)λ ∫ ∞

0
zλ(L−1) exp

(
−λL

µ
z
)

dz.

Using the Gamma integral identity

∫ ∞

0
xp−1e−qx dx = Γ(p)

qp
, p, q > 0,

with
p = λ(L− 1) + 1, q = λL

µ
,
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we obtain

I =
(

LL

Γ(L)µL

)λΓ
(
λ(L− 1) + 1

)
(
λL
µ

)λ(L−1)+1 .

Taking logarithms and simplifying gives

ln I = (1 − λ)
(
lnµ− lnL

)
− λ ln Γ(L) + ln Γ

(
λ(L− 1) + 1

)
−
(
λ(L− 1) + 1

)
ln λ.

Substituting into (2.11) yields the closed-form

Rλ

(
ΓSAR(µ, L)

)
= ln µ − ln L + 1

1 − λ

[
−λ ln Γ(L) + ln Γ

(
λ(L − 1) + 1

)
−
(
λ(L − 1) + 1

)
ln λ

]
.

(2.12)

Textured case. Starting from the definition of Rényi entropy in (2.11) and the pdf of
Z ∼ G0

I (α, γ, L) given in (2.2), we define:

I =
∫ ∞

0

[
fG0

I
(z;α, γ, L)

]λ
dz = Cλ

∫ ∞

0

zλ(L−1)

(γ + Lz)λ(L−α) dz, C = LLΓ(L− α)
γαΓ(−α)Γ(L) .

The parameterisation satisfies γ = −µ(α + 1), so the final result will be expressed in terms of
µ.

I =
∫ ∞

0

[
fG0

I
(z;α, γ, L)

]λ
dz = Cλ

∫ ∞

0

zλ(L−1)

(γ + Lz)λ(L−α) dz,

With the change of variable t = Lz/γ ( dz = γ dt/L) we obtain:

I = Cλ γ
1+λ(α−1)

L 1+λ(L−1)

∫ ∞

0

tλ(L−1)

(1 + t)λ(L−α) dt.

Using the Beta–function identity

∫ ∞

0

ta−1

(1 + t)a+b dt = B(a, b), a = λ(L− 1) + 1, b = λ(−α + 1) − 1,

it follows that

I = Cλ γ
1+λ(α−1)

L 1+λ(L−1) B(a, b).

Next, we note that γ 1+λ(α−1) = γ 1−λ+λα and L 1+λ(L−1) = LλL+1−λ. Since

Cλ =
(

LL

γα Γ(−α) Γ(L) Γ(L− α)
)λ

= LλL γ−αλ
(

Γ(L−α)
Γ(−α) Γ(L)

)λ
,

we obtain
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I = γ 1−λ Lλ−1
(

Γ(L−α)
Γ(−α) Γ(L)

)λ
B(a, b).

By (2.11), the Rényi entropy, is given by:

Rλ(Z) = 1
1 − λ

ln I = 1
1 − λ

ln
[
γ 1−λ Lλ−1

(
Γ(L−α)

Γ(−α) Γ(L)

)λ
B(a, b)

]
.

Thus, for Z ∼ G0
I (α, γ, L),

Rλ

(
G0
I (α, γ, L)

)
= ln

(
γ
L

)
+ 1

1 − λ

[
λ
(
ln Γ(L− α) − ln Γ(−α) − ln Γ(L)

)
+ lnB(a, b)

]
.

Using the property
lnB(a, b) = ln Γ(a) + ln Γ(b) − ln Γ(a+ b),

where a+ b = λ(L− α), we have

Rλ

(
G0
I (α, γ, L)

)
= ln

(
γ
L

)
+ 1

1 − λ

[
λ
(
ln Γ(L−α)−ln Γ(−α)−ln Γ(L)

)
+ln Γ(a)+ln Γ(b)

− ln Γ
(
λ(L− α)

)]
. (2.13)

Finally, noting that γ = −µ(α+ 1) from (2.3), and substituting this expression into (2.13), we
obtain:

Rλ

(
G0
I (α, µ, L)

)
= lnµ− lnL+ln(−1−α)+ 1

1 − λ

[
λ
(

ln Γ(L−α)− ln Γ(−α)− ln Γ(L)
)

+ ln Γ
(
λ(L− 1) + 1

)
+ ln Γ

(
λ(−α + 1) − 1

)
− ln Γ

(
λ(L− α)

)]
,

This expression extends the Rényi entropy of the ΓSAR(µ, L) model (2.12) by including additional
terms that depend on the texture parameter α. Specifically:

Rλ

(
G0
I (α, µ, L)

)
= Rλ

(
ΓSAR(µ, L)

)
+ ln(−1 − α)

+ 1
1 − λ

[
λ
(
ln Γ(L − α) − ln Γ(−α)

)
+ ln Γ

(
λ(−α + 1) − 1

)
− ln Γ

(
λ(L − α)

)
+
(
λ(L − 1) + 1

)
ln λ

]
.

(2.14)

Equation (2.14) can be read as:

Rλ(G0
I ) = Rλ

(
ΓSAR

)
︸ ︷︷ ︸

baseline entropy

+ ∆R
α︸︷︷︸

excess entropy caused by texture

,
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where

∆R
α = ln(−1 − α) + 1

1 − λ

[
λ
(
ln Γ(L− α) − ln Γ(−α)

)
+ ln Γ

(
λ(−α + 1) − 1

)
− ln Γ

(
λ(L− α)

)
+
(
λ(L− 1) + 1

)
ln λ

]
, (2.15)

the excess term ∆R
α depends on the heterogeneity parameter α, and ∆R

α → 0 when α → −∞,
validating the decomposition, i.e.,

lim
α→−∞

Rλ

(
G0
I (α, µ, L)

)
= Rλ

(
ΓSAR(L, µ)

)
.

Appendix A provides proof of this limiting behavior.

2.2.3 Tsallis Entropy

For a continuous random variable Z with pdf f(z), the Tsallis entropy of order λ ∈ R+ \{1}

is defined as:

Tλ(Z) = 1
λ− 1E

[
1 − (f(Z))λ−1

]
= 1
λ− 1

[
1 −

∫
B

(
f(z)

)λ
dz
]
, (2.16)

where B ⊆ R denotes the support of f(z). In the limit λ → 1, Tλ(Z) → H(Z), making Tsallis
a one-parameter generalization of Shannon entropy.

Using (2.16), we derive closed-form expressions for the Tsallis entropy of the ΓSAR and the
G0
I distributions.

Homogeneous case. Let Z ∼ ΓSAR(µ, L) with pdf given by (2.1). Define the integral:

I =
∫ ∞

0
[fΓSAR(z;µ, L)]λ dz.

Substituting the density function and simplifying constants, we get

I =
(

LL

Γ(L)µL

)λ ∫ ∞

0
zλ(L−1) exp

(
−λL

µ
z

)
dz.

Using the Gamma integral identity

∫ ∞

0
xp−1e−qx dx = Γ(p)

qp
, p, q > 0,



29

with p = λ(L− 1) + 1 and q = λL
µ

. This leads to

I =
(

LL

Γ(L)µL

)λ
·

Γ
(
λ(L− 1) + 1

)
(
λL
µ

)λ(L−1)+1 .

After rearranging powers of L, µ and λ, we obtain

I =
Lλ−1 µ1−λ Γ

(
λ(L− 1) + 1

)
λλ(L−1)+1 [Γ(L)]λ

. (2.17)

Substituting Equation (2.17) into the Tsallis entropy definition (2.16), we have:

Tλ
(
ΓSAR(µ, L)

)
= 1
λ− 1

1 −
Lλ−1 µ1−λ Γ

(
λ(L− 1) + 1

)
λλ(L−1)+1 [Γ(L)]λ

 . (2.18)

This expression can also be written in an equivalent form:

Tλ
(
ΓSAR(µ, L)

)
= 1

λ − 1
{

1 − exp
[
(1 − λ) ln µ + (λ − 1) ln L + ln Γ

(
λ(L − 1) + 1

)
−λ ln Γ(L) − (λ(L − 1) + 1) ln λ

]}
.

(2.19)

Textured case. Starting from the Tsallis definition in (2.16) and the pdf of Z ∼ G0
I (α, γ, L)

in (2.2), define:
I =

∫ ∞

0

[
fG0

I
(z)
]λ

dz,

which, upon substitution of the density, becomes

I =
[
LLΓ(L− α)
γαΓ(−α)Γ(L)

]λ ∫ ∞

0

zλ(L−1)

(γ + Lz)λ(L−α) dz.

Introducing the change of variables t = Lz
γ

(so that z = γt
L

and dz = γ
L

dt), we obtain

I =
[
LLΓ(L− α)
γαΓ(−α)Γ(L)

]λ
γ

L

∫ ∞

0

(
γt
L

)λ(L−1)

[γ(1 + t)]λ(L−α) dt

=
[
LLΓ(L− α)
γαΓ(−α)Γ(L)

]λ
γ1+λ(α−1)

L1+λ(L−1)

∫ ∞

0
tλ(L−1)(1 + t)−λ(L−α) dt. (2.20)
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This integral matches the Beta function identity

∫ ∞

0

ta−1

(1 + t)a+b dz = B(a, b) = Γ(a)Γ(b)
Γ(a+ b) ,

for parameters
a = λ(L− 1) + 1, b = λ(−α + 1) − 1.

Using this, we simplify (2.20) to

I =
[

Γ(L− α)
Γ(−α)Γ(L)

]λ
γ1−λ

L1−λ · Γ(a)Γ(b)
Γ(a+ b) . (2.21)

To express I in terms of the mean µ, we use the relation γ = −µ(α + 1) valid for α < −1.
Substituting into (2.21) gives

I = [−µ(α + 1)]1−λLλ−1
[

Γ(L− α)
Γ(−α)Γ(L)

]λ Γ(a)Γ(b)
Γ(λ(L− α)) .

Finally, substituting this expression into (2.16), we obtain:

Tλ
(
G0
I (α, µ, L)

)
= 1
λ− 1

{
[−µ(α + 1)]1−λLλ−1

[
Γ(L− α)

Γ(−α)Γ(L)

]λ Γ(a)Γ(b)
Γ(λ(L− α))

}
.

This expression extends the Tsallis entropy of the ΓSAR(µ, L) model (2.19) by including
additional terms that depend on the texture parameter α. It can be written in an exponential-
logarithmic form as:

Tλ
(
G0
I (µ, α, L)

)
= Tλ

(
ΓSAR(µ, L)

)
+ 1

λ − 1 exp
[
(1 − λ) ln µ + (λ − 1) ln L + ln Γ

(
λ(L − 1) + 1

)
−λ ln Γ(L)

]{
1 − exp

[
(1 − λ) ln(−α − 1) + λ ln Γ(L − α) − λ ln Γ(−α)

+ ln Γ
(
λ(1 − α) − 1

)
− ln Γ

(
λ(L − α)

)]}
.

(2.22)

Equation (2.22) can be interpreted as:

Tλ(G0
I ) = Tλ

(
ΓSAR

)
︸ ︷︷ ︸

baseline entropy

+ ∆T
α︸︷︷︸

excess entropy caused by texture

,

where
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∆T
α = 1

λ− 1 exp
[
(1 − λ) lnµ+ (λ− 1) lnL+ ln Γ

(
λ(L− 1) + 1

)
− λ ln Γ(L)

]
{

1 − exp
[
(1 − λ) ln(−α− 1) + λ ln Γ(L− α) − λ ln Γ(−α)

+ ln Γ
(
λ(1 − α) − 1

)
− ln Γ

(
λ(L− α)

)]}
, (2.23)

the excess term ∆T
α depends on the heterogeneity parameter α, and ∆T

α → 0 when α → −∞,
validating the decomposition, i.e.,

lim
α→−∞

Tλ
(
G0
I (α, µ, L)

)
= Tλ

(
ΓSAR(L, µ)

)
.

Appendix A provides proof of this limiting behavior.

Figure 1 provides a conceptual overview of the decomposition structure of the differential
entropy for the heterogeneous model G0

I . This entropy is expressed as the sum of a baseline term
corresponding to the homogeneous ΓSAR distribution and an excess term ∆α that reflects the
contribution of texture. The decomposition applies to the three entropy measures considered in
this study: Shannon (2.9), Rényi (2.14), and Tsallis (2.22). In all cases, the excess term depends
on the roughness parameter α and vanishes as α → −∞, thus recovering the homogeneous
case.

Figure 1 – Conceptual diagram of entropy decomposition.
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Source: The author (2025)
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To conclude this section, we illustrate the convergence behavior of each entropy measure.

Figures 2–4 illustrate the Shannon (H), Rényi (Rλ), and Tsallis (Tλ) entropies for the G0
I

model under different texture levels (α) and numbers of looks (L). In every case the coloured
dashed curves converge to the solid black baseline of the homogeneous ΓSAR distribution as
α → −∞, confirming the limiting behavior.

For the Shannon entropy (Figure 2), when L = 5 the entropy curves for different α values
are more concentrated. This is due to the higher speckle noise present in a low number of
looks, which dominates the uncertainty and masks texture effects. When L = 18, speckle is
reduced and the entropy better reflects texture variation, resulting in more separated curves.

In the case of Rényi entropy (Figure 3), for λ = 0.6 and λ = 0.9, the general shape and
separation of the curves are similar. However, increasing L leads to a slight decrease in entropy
values across all α, consistent with reduced speckle. The convergence pattern toward the
Gamma baseline remains stable in both settings.

For Tsallis entropy (Figure 4), the separation between curves is most noticeable for λ = 0.6

and L = 5, where texture has more influence. When λ increases to 0.9 or when L is increased,
the curves become more compact and approach the Gamma entropy faster, indicating lower
sensitivity to texture variation and confirming that λ controls the influence of the tail behavior.

Figure 2 – Shannon entropy H(G0
I ) converges to H(ΓSAR) as α decreases.
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Figure 3 – Rényi entropy Rλ(G0
I ) converges to Rλ(ΓSAR) as α decreases.
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Figure 4 – Tsallis entropy Tλ(G0
I ) converges to Tλ(ΓSAR) as α decreases.
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2.3 ORDER STATISTICS AND NONPARAMETRIC ESTIMATORS

Parametric estimation of entropy begins by assuming a family for f(z) (e.g. exponential,
Gaussian). The data are used to estimate the parameters of this family (for example, sample
mean and variance for a normal). These parameter estimates are then substituted into the
corresponding analytical expression for entropy H(f).
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While parametric methods can be very efficient if the assumption is correct, they suffer
when the true distribution deviates from the chosen model. In such cases, parametric estimates
of entropy can be heavily biased or misleading.

Nonparametric estimation, by contrast, tries to approximate H(f) without assuming any
specific form for the underlying distribution. A common approach is the plug-in method, where
the density f̂(z) is first estimated from the data, using tools like histograms or kernel methods.
This estimated density is then used in the entropy formula. However, estimating the density
accurately can be difficult, especially when the data are limited or high-dimensional.

An alternative route, which we pursue here, is to avoid explicit density estimation and
instead use properties of the sorted sample (order statistics) to estimate entropy. This spacing-
based approach is appealing because it directly targets the entropy functional, often achieving
consistency and good convergence rates without the intermediate step of full density estimation.

In the following, we introduce the concept of order statistics and sample spacings, and
derive how the entropy integral can be transformed into a convenient form involving the quantile
function. This will set the stage for constructing entropy estimators based on sample spacings.

2.3.1 Order Statistics and Sample Spacings

Let Z = (Z1, Z2, . . . , Zn) be an independent and identically distributed (i.i.d.) random
sample of size n from drawn from a continuous distribution with cumulative distribution
function (cdf) F (z), let Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) denote the ordered sample, known as the
order statistics.

Sample spacings refer to the differences between ordered observations. More generally, an
m-spacing is defined as the difference between two order statistics that are m positions apart
in the sorted sample. For instance, a 1-spacing corresponds to the gap between consecutive
order statistics: Z(i+1) − Z(i). In general, an m-spacing can be written as Z(i+m) − Z(i), for
indices i such that i+m ≤ n.

These spacings are inversely related to the underlying density: where the density is high,
observations tend to cluster and spacings are small; where the density is low, spacings are
typically larger. This relationship forms the basis for using spacings to estimate the density
function or related functionals like entropy.

A key probabilistic property that supports this idea arises when considering the transformed
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values Ui = F (Z(i)), which follow the order statistics of a uniform distribution on [0, 1]. For
i = 1, . . . , n− 1, the expected spacing in the transformed domain is:

E[F (Z(i+1)) − F (Z(i))] = 1
n+ 1 .

This result suggests that, under the true cdf, the transformed spacings are uniformly spread
in expectation. Consequently, a simple density estimate around the point Z(i) can be motivated
by the approximation:

f(Z(i)) ≈ mass
length ≈ 1/(n+ 1)

Z(i+1) − Z(i)
,

where 1/(n+ 1) serves as an estimate of the probability mass between Z(i) and Z(i+1).

2.3.2 Nonparametric Estimators for Shannon Entropy

Let F−1(p) denote the quantile function (inverse cdf) of the distribution. We use Q(p) as
shorthand for F−1(p), so Q : (0, 1) → R satisfies Q(p) = z if and only if F (z) = p.

Since F (z) is monotonic, Q(p) is differentiable wherever f(z) is positive, with derivative
Q′(p) = d

dpF
−1(p). By the inverse function theorem, Q′(p) = 1

f(Q(p)) .

Starting from the definition of Shannon entropy in Equation (2.7), a change of variables
p = F (z) can be applied. When z = Q(p), it follows that dz = Q′(p) dp. Substituting into
the integral:

H(Z) = −
∫ 1

0
f(Q(p)) ln f(Q(p)) ·Q′(p) dp

= −
∫ 1

0
ln f(Q(p)) dp.

Now using f(Q(p)) = 1/Q′(p), we have ln f(Q(p)) = − lnQ′(p). Thus:

H(Z) =
∫ 1

0
lnQ′(p) dp =

∫ 1

0
ln
(
d

dpF
−1(p)

)
dp. (2.24)

This is the foundation of spacing estimators: entropy as the integral of the log quantile
derivative.

In practice, we estimate Q′(p) using order statistics. Consider:

Q′(p) ≈ n+ 1
2m (Z(i+m) − Z(i−m)), m ≤ i ≤ n−m. (2.25)
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By taking logarithms and averaging over i, Vasicek’s estimator becomes:

ĤV(Z) = 1
n

n∑
i=1

ln
[
n

2m(Z(i+m) − Z(i−m))
]
. (2.26)

Vasicek (1976) showed that under regularity conditions (m → ∞, m/n → 0), ĤV → H(f)

in probability.

Nonparametric estimators using order statistics and spacings, such as Vasicek’s m-spacing
estimator, provide a flexible alternative to model-based entropy estimation. By converting the
entropy integral into a quantile-based form (see Appendix B), these estimators offer robust,
consistent estimation of Shannon entropy without requiring explicit density estimation.

Subsequent extensions and refinements (not detailed here) further improve bias, variance,
and performance at the boundaries, forming a robust toolkit for entropy estimation in continuous
distributions.

We consider the following entropy estimators variants as discussed by Cassetti et al. (2022).

Van Es (1992) proposed a new estimator of entropy given by:

ĤVE(Z) = 1
n−m

n−m∑
i=1

ln
[
n+ 1
m

(
Z(i+m) − Z(i)

)]
+

n∑
k=m

1
k

+ ln m

n+ 1 . (2.27)

Under some conditions, Van Es proved asymptotic normality of this estimator.

Ebrahimi et al. (1994) adjusted the weights of Vasicek’s estimator, in order to take into
account the fact that the differences are truncated around the smallest and the largest data
points. Specifically, Z(i+m) − Z(i−m) is substituted with Z(i+m) − Z(1) when i ≤ m and
Z(i+m) −Z(i−m) is replaced by Z(n) −Z(i−m) when i ≥ n−m+ 1. Their estimator is given by:

ĤE(Z) = 1
n

n∑
i=1

ln
[
n

cim

(
Z(i+m) − Z(i−m)

)]
, (2.28)

where

ci =



1 + (i− 1)/m if 1 ≤ i ≤ m,

2 if m+ 1 ≤ i ≤ n−m,

1 + (n− i)/m if n−m+ 1 ≤ i ≤ n.

Correa (1995) suggested another modification of Vasicek’s estimator. In estimation the
density f of F in the interval

(
Z(i−m), Z(i+m)

)
he used a local linear model based on 2m+ 1
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points: F
(
Z(j)

)
= a+ bZ(j) + ε, j = m− i, . . . ,m+ i. This yields a following estimator:

ĤC(Z) = − 1
n

n∑
i=1

ln
∑i+m
j=i−m(j − i)

(
Z(j) − Z(i)

)
n
∑i+m
j=i−m

(
Z(j) − Z(i)

)2 , (2.29)

where Z(i) = (2m+ 1)−1∑i+m
j=i−m Z(j), m < n

2 , Z(i) = Z(1) for i < 1 and Z(i) = Z(n) for i > n.
Based on simulations, he showed that his estimator has a smaller mean square error than
Vasicek’s approach.

Noughabi and Arghami (2010) modify the coefficients of Ebrahimi et al. (1994) as:

ĤN(Z) = 1
n

n∑
i=1

ln
[
n

aim

(
Z(i+m) − Z(i−m)

)]
, (2.30)

where

ai =



1 if 1 ≤ i ≤ m,

2 if m+ 1 ≤ i ≤ n−m,

1 if n−m+ 1 ≤ i ≤ n,

and Z(i−m) = Z(1) for i ≤ m and Z(i+m) = Z(n) for i ≥ n−m.

Al-Omari (2014) suggested the following estimator:

ĤAO(Z) = 1
n

n∑
i=1

ln
[
n

ωim

(
Z(i+m) − Z(i−m)

)]
, (2.31)

where

ωi =



3/2 if 1 ≤ i ≤ m,

2 if m+ 1 ≤ i ≤ n−m,

3/2 if n−m+ 1 ≤ i ≤ n,

in which Z(i−m) = Z(1) for i ≤ m, and Z(i+m) = Z(n) for i ≥ n−m.

These estimators are asymptotically consistent, i.e., they converge in probability to the true
value when m,n → ∞ and m/n → 0.

2.3.3 A Nonparametric Estimator of Rényi Entropy

The Rényi entropy of order λ > 0, with λ ̸= 1, is defined in Equation (2.11) as a
generalization of Shannon entropy. It introduces an adjustable parameter λ that controls the
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sensitivity of the entropy measure to the tails of the distribution.

To facilitate nonparametric estimation, the expression in Equation (2.11) can be reformulated
using the quantile function Q(p) = F−1(p), with p ∈ (0, 1). Applying the change of variable
z = Q(p) and noting that f(Q(p)) = Q′(p) yields:

∫
fλ(z) dz =

∫ 1

0
[f(Q(p))]λ ·Q′(p) dp

=
∫ 1

0
[Q′(p)]1−λ dp.

Substituting this into the original expression gives the quantile-based representation:

Rλ(Z) = 1
1 − λ

ln
(∫ 1

0
[Q′(p)]1−λ dp

)
. (2.32)

A nonparametric estimator can be constructed by approximating the quantile derivative
Q′(p) using m-spacings, following the methodology proposed by Al-Labadi, Chu and Xu (2024).
Given a sample Z = (Z1, . . . , Zn) drawn i.i.d. from F , let Z(1) ≤ · · · ≤ Z(n) denote the
order statistics. For a spacing parameter m ∈ {1, . . . , ⌊n/2⌋}, define the boundary-corrected
m-spacing as:

Di,m = Z(i+m) − Z(i−m), Z(i−m) := Z(1) if i ≤ m, Z(i+m) := Z(n) if i ≥ n−m.

To mitigate boundary bias, the position-dependent correction factor introduced by Ebrahimi
et al. (1994) is used:

ci =



m+ i− 1
m

, 1 ≤ i ≤ m,

2, m+ 1 ≤ i ≤ n−m,

n+m− i

m
, n−m+ 1 ≤ i ≤ n.

The corresponding m-spacing density estimate at the ith order statistic is given by:

f̂n(Z(i)) = cim/n

Di,m

, i = 1, . . . , n. (2.33)
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Substituting (2.33) into the quantile form (2.32) and approximating the integral by a
Riemann sum yields the nonparametric plug-in estimator for Rényi entropy:

R̂λ(Z) = 1
1 − λ

ln
 1
n

n∑
i=1

(
cim/n

Z(i+m) − Z(i−m)

)λ−1
 . (2.34)

This estimator extends the m-spacing approach originally introduced for Shannon entropy
to the broader Rényi family, enabling consistent nonparametric estimation without requiring
direct estimation of the density function.

2.3.4 A Nonparametric Estimator of Tsallis Entropy

Following the approach of Vasicek (1976) and Ebrahimi et al. (1994) for Shannon entropy,
and the methodology for Rényi entropy proposed by Al-Labadi, Chu and Xu (2024), we derive
a nonparametric estimator for Tsallis entropy.

A detailed derivation of this estimator, including the quantile-based transformation and
spacing approximation, is provided in Appendix B.

The definition of Tsallis entropy is given in Equation (2.16), this expression can be
reformulated using the quantile function Q(p) = F−1(p), defined for p ∈ (0, 1). Since
f(Q(p)) = 1/Q′(p), the expectation in (2.16) becomes

E
[
fλ−1(Z)

]
=
∫ 1

0

(
Q′(p)

)1−λ
dp,

leading to the alternative representation:

Tλ(Z) = 1
λ− 1

{
1 −

∫ 1

0

(
Q′(p)

)1−λ
dp
}
. (2.35)

To estimate Tλ(Z) nonparametrically, consider an i.i.d. sample Z1, . . . , Zn ∼ F , with
associated order statistics Z(1) ≤ · · · ≤ Z(n). Let m ∈ {1, . . . , ⌊n/2⌋} be an integer spacing
parameter. For each i = 1, . . . , n, define the m-spacing

Di,m = Z(i+m) − Z(i−m), Z(i−m) := Z(1) if i ≤ m, Z(i+m) := Z(n) if i ≥ n−m.
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Since the empirical distribution satisfies Fn(Z(i±m)) = i±m
n

, the length of the interval is 2m
n

,
and Vasicek’s plug-in estimator of the density is given by

f̃i,m = 2m
n
D−1
i,m.

To reduce boundary bias, Ebrahimi et al. (1994) proposed a position-dependent correction
factor

ci =



1 + i− 1
m

, 1 ≤ i ≤ m,

2, m+ 1 ≤ i ≤ n−m,

1 + n− i

m
, n−m+ 1 ≤ i ≤ n,

resulting in the boundary-corrected m-spacing density estimator

f̂n
(
Z(i)

)
= cim/n

Di,m

, i = 1, . . . , n. (2.36)

Approximating the integral in (2.35) with a Riemann sum centered at pi ≈ i
n

and replacing
Q′(p) with the estimator in (2.36), we obtain the nonparametric plug-in estimator

T̂λ(Z) = 1
λ− 1

{
1 − 1

n

n∑
i=1

[
f̂n(Z(i))

]λ−1
}

= 1
λ− 1

1 − 1
n

n∑
i=1

(
cim/n

Z(i+m) − Z(i−m)

)λ−1
 . (2.37)
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3 METHODOLOGY

3.1 SELECTION OF THE BEST SHANNON ENTROPY ESTIMATORS

Although several nonparametric estimators have been proposed for Shannon entropy, their
performance depends on factors such as sample size and the underlying distribution. We evaluate
the six estimators described in Section 2.3.2: the Vasicek (2.26), Van Es (2.27), Ebrahimi et
al. (2.28), Correa (2.29), Noughabi–Arghami (2.30), and Al–Omari (2.31) estimators. Their
performance is evaluated through a simulation study under fixed conditions. The selection is
based on two standard criteria: bias and mean squared error (MSE).

The goal of this analysis is to identify the estimators with the best overall performance,
which will then be used in the subsequent stages of the methodology, including bootstrap
correction and hypothesis testing. This selection process is exclusive to Shannon entropy, as
only a single estimator was considered for Rényi and Tsallis entropies.

Our experimental setup involves the analysis of bias and MSE for each estimator through a
Monte Carlo study. For each sample size n ∈ {9, 25, 49, 81, 121}, we generate 1000 independent
synthetic samples from Z ∼ ΓSAR(5, 1). The results are consistent across other values of µ
and L. We adopt the heuristic spacing m = [

√
n+ 0.5], a choice commonly recommended in

the literature (WIECZORKOWSKI; GRZEGORZEWSKI, 1999).

Figure 5 presents the bias and MSE for each of the non-parametric estimators of Shannon
entropy. The results are summarized in Table 1.

As shown in the simulation results, the estimators ĤC, ĤE, and ĤAO show low bias and
achieve convergence for sample sizes larger than 81. These estimators exhibit good behavior in
terms of bias and MSE across various parameter combinations.

In contrast, estimator ĤN displays the lowest MSE across all scenarios. However, the bias
remains unchanged and high for sample sizes larger than 25, indicating that the convergence is
not very fast. Additionally, we observe that both ĤV and ĤVE estimators exhibit larger bias
and slower convergence compared to their counterparts. Notably, the ĤV estimator shows the
highest MSE.

Although the estimators ĤC, ĤE, and ĤAO demonstrate good performance in terms of
bias and MSE for sufficiently large samples (e.g., n ≥ 81), practical scenarios in SAR image
processing often involve much smaller sample sizes. In particular, local texture analysis is
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Figure 5 – Performance of Shannon entropy estimators under ΓSAR(5, 1).
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Table 1 – Bias and MSE of Shannon entropy estimators under ΓSAR(5, 1)

Bias MSE

µ n ĤV ĤVE ĤE ĤC ĤN ĤAO ĤV ĤVE ĤE ĤC ĤN ĤAO

9 −0.636 −0.224 −0.284 −0.219 −0.020 −0.380 0.498 0.156 0.174 0.144 0.094 0.238

25 −0.300 −0.216 −0.125 −0.082 0.032 −0.162 0.119 0.075 0.044 0.036 0.030 0.055

49 −0.180 −0.189 −0.065 −0.039 0.046 −0.086 0.046 0.049 0.017 0.015 0.015 0.021

81 −0.112 −0.162 −0.027 −0.010 0.059 −0.041 0.020 0.034 0.009 0.008 0.011 0.009

1

121 −0.078 −0.145 −0.012 −0.001 0.059 −0.021 0.011 0.026 0.005 0.005 0.008 0.005

Source: The author (2025)

typically performed on small windows, such as 7 × 7, which correspond to n = 49. Under these
conditions, bias can become significant, and convergence is slower or incomplete.

To address this issue and improve estimation accuracy in small-sample regimes, we introduce
a bootstrap-based correction methodology. The next subsection presents the bias-reduction
procedure and the definition of the corrected entropy estimator.

3.2 BOOTSTRAP BIAS CORRECTION FOR ENTROPY ESTIMATORS

The nonparametric estimators of entropy considered in this work include the Shannon
entropy Ĥ(Z), the Rényi entropy R̂λ(Z), and the Tsallis entropy T̂λ(Z). We assume that
these estimators are inherently biased; that is, their expected value does not coincide with the
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true entropy, as shown in Equation (3.1):

Bias(θ̂) = E[θ̂] − θ ̸= 0, (3.1)

where θ̂ denotes any of the estimators listed above, and θ is the corresponding true entropy
value.

To reduce this bias, we apply a bootstrap correction method. Let Z = (Z1, Z2, . . . , Zn)

be a random sample of size n from an unknown distribution. Using bootstrap resampling, we
generate B new samples Z(1),Z(2), . . . ,Z(B) by sampling with replacement from Z. For each
bootstrap sample Z(b), we compute the corresponding estimator θ̂(Z(b)).

The bias is then estimated using Equation (3.2), which calculates the difference between
the average of the bootstrap estimates and the original estimate:

B̂ias = 1
B

B∑
b=1

θ̂(Z(b)) − θ̂(Z). (3.2)

A bias-corrected estimator is then defined by subtracting the estimated bias from the original
estimator, as expressed in Equation (3.3):

θ̃ = θ̂ − B̂ias. (3.3)

Substituting the estimate from Equation (3.2) into Equation (3.3) yields the explicit formula
for the corrected estimator:

θ̃ = 2θ̂(Z) − 1
B

B∑
b=1

θ̂(Z(b)). (3.4)

Thus, θ̃ is an approximately unbiased estimator of θ. The effectiveness of the correction
depends on the number of bootstrap replicates B and the characteristics of the underlying
distribution, but it systematically reduces bias, particularly when working with small sample
sizes.

To distinguish the bootstrap-improved estimators from their original forms, we adopt the
following notation: H̃V, H̃VE, H̃E, H̃C, H̃N, and H̃AO, respectively. For the other entropy
types, we denote the bootstrap-corrected estimators as R̃λ for Rényi entropy and T̃λ for Tsallis
entropy.

In order to assess the effectiveness of the bootstrap technique, we present comparisons
of the bias and MSE between each original non-parametric Shannon entropy estimator and
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its respective bootstrap-enhanced version, using samples from the ΓSAR(5, 1), with B = 100

bootstrap replicates and varying n, as shown in Figures 6a–6f.

Figure 6 – Comparing Bias and MSE: original vs. bootstrap estimators, with, µ = 1 and L = 5.
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The estimators H̃V and H̃VE show consistent bias reduction, though convergence remains
slow. For H̃E, the correction improves bias only for small n, while its MSE steadily decreases.
In contrast, the bootstrap technique did not improve the H̃N estimator. This might occur
because the original estimator overestimates the entropy values, showing a positive bias. This
tendency to overestimate persists with the use of bootstrap, contributing to an increase in bias
and MSE. The most notable improvements are observed with H̃C and H̃AO, which achieve
both low bias and MSE even for small sample sizes, demonstrating faster convergence.
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While the bias-corrected estimator θ̃ is theoretically motivated to reduce bias, its effectiveness
is not guaranteed for all entropy estimators. In practice, the performance of the bootstrap
correction varies depending on the characteristics of the original estimator and the sample size.

To finalize the selection of the non-parametric Shannon entropy estimator used in the
following simulations, we consider the execution time of the bootstrap versions of H̃C and H̃AO.

Table 2 shows the processing time of each estimator across different settings of L and
n. The results indicate that H̃AO consistently achieves lower computational times compared
to H̃C. This makes it the more efficient option, particularly relevant for large datasets, such
as SAR images discussed in Chapter 4. Consequently, H̃AO is selected as the representative
non-parametric Shannon entropy estimator in the simulations presented in the following sections.

Table 2 – Processing time for bootstrap-improved estimators H̃C and H̃AO

Estimator L n Time (s)

25 4.94
49 8.62
81 14.77

5

121 27.97
25 10.72
49 20.26
81 32.98

H̃C

18

121 48.56

25 2.46
49 2.73
81 3.18

5

121 3.83
25 2.39
49 2.75
81 3.20

H̃AO

18

121 3.74

Source: The author (2025)

3.2.1 Optimal λ Selection

We aim to determine the optimal order λ for the nonparametric entropy estimators of
Rényi (R̃λ) and Tsallis (T̃λ), using simulated samples of size n = 49 from Z ∼ ΓSAR(5, 1)

distribution.
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To assess estimator performance, we conducted a Monte Carlo simulation with R = 1000

replications. For each value of λ, independent samples were generated, and entropy was
estimated for each sample using the bootstrap bias-corrected version with B = 100 resamples
to reduce bias. The resulting estimates were compared to the theoretical entropy to compute
the bias and MSE. This simulation-based procedure allows us to evaluate how the choice of λ
affects estimation accuracy, and whether the bootstrap improves performance.

For the Rényi estimator (see Figure 7), λ = 0.9 minimizes the MSE while keeping the bias
low, achieving a favorable bias-variance trade-off. Although λ = 0.85 yields slightly lower bias,
it produces a higher MSE, supporting the choice of λ = 0.9 as optimal.

Similarly, for the Tsallis estimator (Figure 8), λ = 0.85 results in the lowest MSE with
moderate bias, making it the most suitable choice.

The estimators remained numerically stable and converged smoothly to Shannon entropy
as λ → 1. Outside this range (λ < 0.7 or λ > 1), bias and MSE increased, indicating reduced
numerical precision. These results confirm that the selected λ values ensure stable and reliable
entropy estimates under typical SAR conditions.

Figure 7 – Bias and MSE as a function of λ, for the Rényi entropy estimator, with n = 49, L = 5.
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In the case of L = 1, the bootstrap procedure does not provide meaningful improvement
and often leads to unstable estimates. Therefore, we omit bootstrap in this setting. Under
these conditions, higher values of λ yield better results: λ = 3 is preferred for the Rényi
estimator, and λ = 1.2 for the Tsallis estimator.
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Figure 8 – Bias and MSE as a function of λ, for the Tsallis entropy estimator, with n = 49, L = 5.
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3.2.2 Bootstrap Bias Correction in Rényi and Tsallis Entropy Estimation

Building upon the previous Monte Carlo setup, we further assess the performance of the
Rényi and Tsallis entropy estimators by analyzing their behavior across varying sample sizes
n ∈ {9, 25, 49, 81, 121}. Using the optimal values of the order parameter (λ = 0.9 for Rényi
and λ = 0.85 for Tsallis) already identified in the earlier analysis, we compute the bias and
MSE for both the original and bootstrap-corrected versions of the estimators. As illustrated in
Figures 9 and 10, the bootstrap estimators consistently show improved performance for small
samples.

Figure 9 – Bias and MSE of the Rényi entropy estimators for ΓSAR, with L = 5
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Figure 10 – Bias and MSE of the Tsallis entropy estimators for ΓSAR, with L = 5
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In particular, at n = 49, both estimators exhibit low bias and MSE, confirming their
robustness in moderate sample regimes and supporting their use in practical applications.

From this point forward, all subsequent simulations and comparisons will be based on the
improved bootstrap estimators: H̃AO for Shannon, R̃λ for Rényi, and T̃λ for Tsallis entropy.

3.3 HYPOTHESIS TESTING

We aim to determine whether a local region in a SAR intensity image is statistically
homogeneous or heterogeneous. This is done by comparing a nonparametric entropy estimator
θ̃ computed from the observed data to the theoretical entropy θ(ΓSAR) expected under the
assumption of fully developed speckle.

Formally, the hypothesis test is:


H0 : E[θ̃] = θ(ΓSAR) (homogeneous region),

H1 : E[θ̃] = θ(G0
I ) (heterogeneous region),

(3.5)

where θ denotes a generic entropy function (Shannon entropy H, Rényi entropy Rλ, or
Tsallis entropy Tλ), and θ̃ is the corresponding nonparametric estimator (H̃AO, R̃λ and T̃λ ).

This formulation allows us to construct specific test statistics for each entropy measure. The
null hypothesis H0 assumes that the data follow the Gamma distribution (homogeneous texture),
while the alternative H1 considers the presence of texture modeled by the G0

I distribution.
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As in the parametric setting it is not possible to define the null hypothesis as H0 : α = −∞,
classical inference techniques such as the likelihood ratio, score, gradient, or Wald tests cannot
be applied. To address this, we construct non-parametric entropy-based test statistics as
described below.

3.3.1 The Proposed Test Based on Shannon Entropy

Given a random sample Z = (Z1, Z2, . . . , Zn) from a distribution D, we define a test
statistic based on the difference between a non-parametric estimator of Shannon entropy,
H̃AO(Z), and the analytical Shannon entropy of the Gamma SAR model (ΓSAR) in (2.8), which
depends on the known number of looks L ≥ 1 and the sample mean µ̂.

The test statistic is given by:

S
H̃AO

(Z;L) = H̃AO −
{
L− lnL+ ln Γ(L) + (1 − L)ψ(0)(L) + ln µ̂

}
, (3.6)

where µ̂ = 1
n

∑n
i=1 Zi is the sample mean.

This statistic can be interpreted as:

S
H̃AO

= H̃AO︸ ︷︷ ︸
estimated

− H(ΓSAR)︸ ︷︷ ︸
expected under H0

,

that is, the discrepancy between the estimated entropy and the theoretical value assuming
homogeneity. Values close to zero indicate consistency with the fully developed speckle model,
while large positive values suggest higher entropy and therefore, heterogeneity.

3.3.2 The Proposed Test Based on Rényi Entropy

To assess deviations from homogeneity in SAR data, we define a test statistic based on
Rényi entropy. The statistic contrasts the non-parametric estimator R̃λ(Z) with the theoretical
Rényi entropy of the ΓSAR model in (2.12), assuming that the number of looks L ≥ 1 is known.
The proposed statistic is defined as:

S
R̃λ

(Z; L) = R̃λ−
{

ln µ̂ − ln L + 1
1 − λ

[
−λ ln Γ(L) + ln Γ

(
λ(L − 1) + 1

)
−
(
λ(L − 1) + 1

)
ln λ

]}
,

(3.7)

where µ̂ = 1
n

∑n
i=1 Zi is the sample mean.
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This test statistic measures the discrepancy between the empirical entropy and the value
expected under the fully developed speckle assumption and can be interpreted as:

S
R̃λ

= R̃λ︸︷︷︸
estimated

− Rλ(ΓSAR)︸ ︷︷ ︸
expected under H0

,

the difference between the estimated entropy and the expected value under homogeneity. Values
of S

R̃λ
near zero suggest that the observed region is statistically homogeneous, while large

deviations indicate the presence of texture or roughness.

3.3.3 The Proposed Test Based on Tsallis Entropy

To evaluate heterogeneity in SAR imagery, we define a test statistic using Tsallis entropy.
This statistic contrasts the non-parametric estimator T̃λ(Z) with the analytical Tsallis entropy
under the ΓSAR model, as derived in Equation (2.19). We assume the number of looks L ≥ 1

is known and use the following formulation:

S
T̃λ

(Z;L) = T̃λ −
{

1
λ− 1

[
1 − exp

(
(1 − λ) ln µ̂+ (λ− 1) lnL+ ln Γ

(
λ(L− 1) + 1

)
− λ ln Γ(L) −

(
λ(L− 1) + 1

)
ln λ

)]}
, (3.8)

where µ̂ = 1
n

∑n
i=1 Zi is the sample mean.

As in the previous cases, this test statistic measures the difference between the empirical
entropy and its theoretical counterpart under the assumption of fully developed speckle:

S
T̃λ

= T̃λ︸︷︷︸
estimated

− Tλ(ΓSAR)︸ ︷︷ ︸
expected under H0

.

Values of S
T̃λ

close to zero indicate that the observed region aligns with the homogeneous
model. In contrast, significantly positive values suggest the presence of structural variations or
texture, signaling statistical heterogeneity in the scene.

An important advantage shared by all three proposed test statistics ((3.6), (3.7) and (3.8))
is that they avoid the need to estimate parameters from the alternative G0

I distribution, such
as the roughness parameter α. This leads to a simpler, more interpretable, and statistically
grounded testing procedure.

Additionally, the tests are computationally efficient and suitable for practical applications,
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including large-scale image processing. This robustness is especially evident in small sample
sizes, where bootstrap correction improves the reliability of the entropy estimates and stabilizes
the resulting p-values used for decision-making.

3.3.4 Empirical Behaviour of the Three Statistics

Figures 11-13 display the empirical distributions of the three entropy-based statistics:Shannon
S
H̃

(Z;L), Rényi S
R̃λ

(Z;L) (with λ = 0.9) and Tsallis S
T̃λ

(Z;L) (λ = 0.85) obtained from
104 Monte Carlo replications of ΓSAR data for window sizes n ∈ {49, 81, 121} and looks
L ∈ {5, 18}.

All three empirical densities are tightly concentrated around zero, confirming that under
H0 the test statistic has mean approximately 0; at the same time, their moderately heavy
tails reveal sensitivity to departures from homogeneity, which is desirable for detecting subtle
texture.

Figure 11 – Empirical densities of S
H̃AO

(Z; L) under H0.
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Figure 12 – Empirical densities of S
R̃λ

(Z; L) under H0, with λ = 0.9.
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Figure 13 – Empirical densities of S
T̃λ

(Z; L) under H0, with λ = 0.85.
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Under the asymptotic properties of the entropy estimators (VASICEK, 1976; VAN ES,
1992), for sufficiently large samples, S

θ̃
(Z;L) follows an asymptotic normal distribution:

S
θ̃
(Z;L) D−→

n→∞
N
(
µS, σ

2
S

)
,

where θ̃ ∈ {H̃, R̃λ, T̃λ} and D−→ denotes convergence in distribution.

Here, µS = E[S
θ̃
(Z;L)] and σ2

S = Var[S
θ̃
(Z;L)] are the theoretical mean and variance

of the test statistic under H0. This asymptotic normality can be explained by noting that
the entropy estimator (and hence S

θ̃
) can be expressed as a sum or average of numerous
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observations; therefore, by the Central Limit Theorem and the delta method, its sampling
distribution approaches a Gaussian form for large n.

In practice, we estimate µ̂S and σ̂S via Monte Carlo under H0.

ε =
S
θ̃
(Z;L) − µ̂S

σ̂S
,

which is asymptotically standard normal distributed for large n. Consequently, two-sided
p-values are obtained as 2Φ(−|ε|), where Φ(·) is the cumulative distribution function of the
standard normal distribution.

Because all three test statistics share the same asymptotic distribution, the practical
procedure is identical. First, the test statistic S

θ̃
(Z;L) is computed for the observed data.

Then, it is standardized using the estimated mean and standard deviation (µ̂S, σ̂S). Finally,
the p-value is computed as 2Φ(−|ε|). As shown in Figure 14.

Figure 14 – Workflow of the entropy-based hypothesis test: calculate test statistic, standardize,
derive p-value, and make a decision by threshold 0.05.
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Importantly, no parameters from the alternative G0
I model are needed, which simplifies

implementation and avoids complex estimation procedures.

3.3.5 Size and Power Analysis of the Proposed Tests

The statistical validity and effectiveness of the proposed tests based on Shannon, Rényi,
and Tsallis entropies were assessed through the analysis of two key properties: size and power.
These properties provide insight into the probability of making incorrect decisions during
hypothesis testing.

The size of a statistical test, also known as the Type I error rate, refers to the probability
of incorrectly rejecting the null hypothesis H0 when it is in fact true. In hypothesis testing,
practitioners typically specify a nominal significance level, commonly set at 1 %, 5 %, and 10 %.
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These values define the acceptable probability of committing a Type I error. A well-calibrated
test should exhibit empirical Type I error rates that closely match the nominal levels across
different sample sizes and conditions.

To evaluate this, we performed a Monte Carlo simulation with 1000 replications for each
combination of sample size and number of looks L, under the null hypothesis H0, where the
data follow a ΓSAR distribution with mean µ = 1. For each replication, the corresponding test
statistic was computed using a bootstrap-based entropy estimator with B = 100 resamples. In
the case of the Rényi and Tsallis entropy-based tests, we used order parameters λ = 0.9 and
λ = 0.85, respectively. The empirical size was then estimated as the proportion of replications
in which the null hypothesis was incorrectly rejected.

The observed Type I error rates for the three entropy-based tests were consistently close to
the nominal levels (0.01, 0.05, 0.10), thereby confirming the validity and proper calibration
of the procedures. These results are summarized in Tables 3–5, and are visualized in the top
panel of Figure 15.

The power of a statistical test is defined as the probability of correctly rejecting the
null hypothesis when it is false, that is, when the data are generated under the alternative
hypothesis H1. It is mathematically given by 1 − β, where β represents the Type II error rate
(the probability of failing to reject a false null hypothesis). In other words, high power indicates
low probability of committing a Type II error, and reflects the test’s sensitivity to deviations
from H0.

To assess this property, we simulated data under the alternative hypothesis H1, assuming
the G0

I distribution with µ = 1 and α = −2. For each combination of sample size and number
of looks L, we performed 1000 Monte Carlo replications. In each replication, the corresponding
test statistic was computed using a bootstrap-based entropy estimator with B = 100 resamples.
For the Rényi and Tsallis entropy-based tests, we used order parameters λ = 0.9 and λ = 0.85,
respectively. Power was estimated as the proportion of replications in which the null hypothesis
H0 was correctly rejected.

As expected, power increased with both the sample size and the number of looks. This
trend was consistent across all three entropic measures, demonstrating the effectiveness of the
tests in identifying departures from the null hypothesis under heterogeneous conditions. The
results are shown in Tables 3–5, with graphical representations provided in the lower panel
of Figure 15.
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Table 3 – Size and Power of the S
H̃

(Z) test statistic (Shannon)

Size Power

L n 1 % 5 % 10 % 1 % 5 % 10 %

25 0.015 0.056 0.107 0.796 0.924 0.932
49 0.010 0.051 0.106 0.832 0.963 0.963
81 0.012 0.058 0.101 0.823 0.964 0.978

5

121 0.015 0.062 0.119 0.824 0.955 0.974

25 0.013 0.058 0.114 0.981 0.990 0.996
49 0.008 0.054 0.108 0.994 0.995 0.998
81 0.013 0.048 0.096 0.991 0.997 0.994

8

121 0.015 0.068 0.120 0.991 0.992 0.996

25 0.018 0.049 0.121 1.000 0.999 1.000
49 0.014 0.045 0.098 0.999 0.999 1.000
81 0.010 0.042 0.103 0.998 1.000 0.999

18

121 0.014 0.062 0.107 0.999 0.997 1.000

Source: The author (2025)

Table 4 – Size and Power of the S
R̃λ

(Z) test statistic (Rényi)

Size Power

L n 1 % 5 % 10 % 1 % 5 % 10 %

25 0.014 0.050 0.100 0.978 0.994 0.993
49 0.011 0.048 0.109 0.994 1.000 0.999
81 0.012 0.057 0.103 0.998 0.998 0.999

5

121 0.013 0.061 0.116 0.999 0.999 0.997

25 0.010 0.051 0.105 0.996 0.999 1.000
49 0.008 0.056 0.109 1.000 0.999 1.000
81 0.012 0.052 0.097 0.999 0.999 0.999

8

121 0.016 0.070 0.116 0.998 1.000 0.999

25 0.016 0.051 0.111 1.000 1.000 1.000
49 0.014 0.047 0.098 1.000 1.000 1.000
81 0.013 0.048 0.106 1.000 1.000 1.000

18

121 0.012 0.066 0.110 1.000 1.000 1.000

Source: The author (2025)
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Table 5 – Size and Power of the S
T̃λ

(Z) test statistic (Tsallis)

Size Power

L n 1 % 5 % 10 % 1 % 5 % 10 %

25 0.014 0.051 0.103 0.958 0.991 0.990

49 0.011 0.048 0.107 0.990 1.000 0.999

81 0.012 0.057 0.101 0.997 0.998 0.999

5

121 0.014 0.060 0.116 0.999 0.999 0.997

25 0.010 0.049 0.108 0.992 1.000 1.000

49 0.008 0.055 0.108 1.000 0.999 1.000

81 0.012 0.052 0.097 0.998 1.000 0.999

8

121 0.016 0.072 0.116 0.998 1.000 0.999

25 0.015 0.052 0.111 1.000 1.000 1.000

49 0.013 0.046 0.099 1.000 1.000 1.000

81 0.013 0.047 0.105 1.000 1.000 1.000

18

121 0.012 0.065 0.109 1.000 1.000 1.000

Source: The author (2025)
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Figure 15 – Comparative performance of test statistics based on Shannon, Rényi and Tsallis
entropies. Size and Power for different sample sizes and L values.
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3.4 FIXED AND ADAPTIVE WINDOWS

This section outlines the two local windowing strategies that will be used in the next chapter
to evaluate the proposed entropy-based tests on both simulated and real SAR intensity data.

3.4.1 Fixed Sliding Windows

The first strategy uses a fixed sliding window of size 7 × 7 pixels. For each window, the
test statistics S

H̃AO
, S

R̃λ
, and S

T̃λ
will be computed, and the associated p-values derived. The

p-value measures evidence against the null hypothesis of homogeneity (fully developed speckle
under the ΓSAR model). High values (e.g., p > 0.05) will be interpreted as no significant
deviation from homogeneity, whereas low p-values (e.g., p < 0.05) will be taken as evidence of

heterogeneity. These p-values will later be visualized as maps to enable spatial assessment.

3.4.2 Adaptive Windows

The second strategy, used only with the Tsallis-entropy test S
T̃λ

, builds on the adaptive
windowing algorithm by Park et al. (1999). The analysis window size is adjusted according to
the local homogeneity of the scene. For each pixel (i, j), let wij be the window centered at
(i, j) with radius Nij, defined as
wij = {(i′, j′) / i−Nij ≤ i′ ≤ i+Nij ∧ j −Nij ≤ j′ ≤ j +Nij}.
The border of this window is given by
bij = {(i′, j′) ∈ wij / i

′ = i−Nij ∨ i′ = i+Nij ∨ j′ = j −Nij ∨ j′ = j +Nij}.

The coefficient of variation is computed over the border of the current window as Cij = σij

µij
,

where the mean µij and the standard deviation σij are calculated using only the border pixels
bij of wij.

For SAR intensity images (fully developed speckle with L looks), the coefficient of variation
in homogeneous areas satisfies

Cij ≈ σn := 1√
L
.

The homogeneity criterion is defined by comparing Cij with an adaptive threshold Uij:

Uij = η

1 +

√√√√ 1 + 2σ2
n

8 (Wij − 1)

σn,
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where Wij = 2Nij +1 is the current window side length, and η is a tuning parameter controlling
the degree of smoothing. Values close to η = 1 provide limited speckle suppression, while
larger values increase smoothing and yield stronger noise reduction.

The window radius Nij is updated dynamically and locally as follows:

Nupdated
i,j =


min{Nij + 1, Nmax}, if Cij ≤ Uij,

max{Nij − 1, Nmin}, if Cij > Uij,

where Nmax and Nmin denote the maximum and minimum allowed window radius, respectively.
Since Wij = 2Nij + 1, these bounds on the radius induce the corresponding minimum and
maximum window sides Wmin = 2Nmin + 1 and Wmax = 2Nmax + 1. Hence, windows grow

in homogeneous regions (stabilizing estimates) and shrink in heterogeneous areas (preserving
edges and avoiding class mixing).

Once the window radius Nij has been determined for pixel (i, j), the corresponding full
window is extracted and the proposed test in (3.8) is applied to obtain the local test statistic.
This produces two outputs: (i) a map of test statistics over the image, and (ii) a window-size
map Wij that records the locally selected window side (larger in homogeneous regions, smaller
in heterogeneous ones). For inference, each value of the test statistic is standardized using the
empirical mean and standard deviation of the image, and two-sided p-values are then computed.

In the experiments presented in the next chapter, the Tsallis-based test statistic S
T̃ λ

will
be applied to both simulated and real SAR images using adaptive windows with side lengths
ranging from 5 × 5 (Wmin = 5) to 11 × 11 (Wmax = 11), with the smoothing parameter set to
η = 3. For comparison, a fixed 7 × 7 window configuration will also be evaluated.
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4 RESULTS

4.1 ANALYSIS WITH SIMULATED DATA

Figure 16a presents the structural design of the synthetic phantom with dimensions of
500 × 500 pixels, proposed by Gomez et al. (2017) as a tool to assess the performance of
speckle-reduction filters. This layout serves as a base template to generate the simulated
images shown in Figures 16b–16c. Each region is filled with data simulated from the G0

I

distribution (2.5), using different combinations of the roughness parameter α and the mean µ,
as indicated by the labels in each quadrant of the image. Light regions correspond to textured
observations (heterogeneous), while darker regions represent textureless areas (homogeneous).

Figure 16 – Synthetic dataset.

(a) Phantom. (b) Simulated image, varying α and µ, with L = 5.

α = −1.5
µ = 20

α = −2.5
µ = 50

α = −8, µ = 2α = −6, µ = 1

α = −10, µ = 3 α = −3, µ = 100

α = −2
µ = 30

α = −20
µ = 4

(c) Simulated image, varying α and µ, with L = 9.

α = −100
µ = 1

α = −10
µ = 5

α = −3, µ = 30α = −1.8, µ = 100

α = −4, µ = 20 α = −50, µ = 5

α = −20
µ = 3

α = −6
µ = 40

Source: The author (2025)
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The first simulated image uses L = 5, and the second uses L = 9, to evaluate how the
test statistics behave as the number of looks increases and speckle noise is reduced.

The α parameter of the G0
I distribution is essential for interpreting texture characteristics.

Values near zero greater than −3 suggest extremely textured targets, such as urban zones (FR-
ERY; GAMBINI, 2019). As the value decreases, it indicates regions with moderate texture (in
the [−6,−3] region), related to forest zones, while values below −6 correspond to textureless
regions, such as pasture, agricultural fields, and water bodies (NETO; RODRIGUES, 2023).

We evaluated the three test statistics S
H̃AO

, S
R̃λ

, and S
T̃λ

on simulated images using fixed
sliding windows of size 7 × 7 and, for Tsallis only, the adaptive windowing strategy with side
lengths from 5 × 5 (Wmin = 5) to 11 × 11 (Wmax = 11) and smoothing parameter η = 3.
Figures 17 and 18 present, respectively for L = 5 and L = 9, the p-value maps (top row) and
the corresponding binary decision maps (bottom row).

The p-value maps (Figures 17a–17d and 18a–18d) are shown with a continuous color scale:
dark red (p≈0) indicates strong evidence of heterogeneity, while dark blue (p≈1) corresponds
to homogeneous areas. Intermediate colors follow a smooth progression orange (p≈0.2–0.4) for
transitional textures and yellow–green to cyan (p≈0.4–0.8) for increasingly near-homogeneous
regions.

The binary maps (Figures 17e–17h and 18e–18h) simplify these results using a threshold
of 0.05. Pixels with p-values below this threshold are shown in black, indicating statistically
significant deviations and, therefore, heterogeneity. In contrast, pixels with p ≥ 0.05 are
displayed in white, showing no evidence to reject the null hypothesis of homogeneity.

When the number of looks increases to L = 9 (Figure 18), the maps become cleaner due
to reduced speckle. All tests successfully detect areas with different texture levels, although
some differences remain. The Rényi-based statistic S

R̃λ
is more sensitive to texture variations,

highlighting fine patterns of heterogeneity, while the Tsallis-based S
T̃λ

produces cleaner results
in uniform areas by reducing false detections. This behavior reflects their formulations: Rényi
entropy emphasizes variability, whereas Tsallis entropy is more robust to noise, helping to
preserve homogeneous regions.

The adaptive Tsallis version further improves visual quality, larger windows in homogeneous
areas yield smoother estimates, and smaller windows in heterogeneous regions enhance detail
preservation.
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Figure 17 – Results on simulated data (L = 5) using S
H̃AO

, S
R̃λ

, and S
T̃λ

. (a-c) p-value maps with
a fixed 7 × 7 window. (d) p-value map with adaptive windows (Wmin = 5, Wmax = 11)
for η = 3.0. (e-h) Binary decision maps at 0.05 significance level.

(a) p-value map S
H̃AO

(7 × 7) (b) p-value map S
R̃λ

(7 × 7) (c) p-value map S
T̃λ

(7 × 7) (d) p-value map S
T̃λ

(adapt.)

(e) Binary map S
H̃AO

(7 × 7) (f) Binary map S
R̃λ

(7 × 7) (g) Binary map S
T̃λ

(7 × 7) (h) Binary map S
T̃λ

(adapt.)

Source: The author (2025)

Figure 18 – Results on simulated data (L = 9) using S
H̃AO

, S
R̃λ

, and S
T̃λ

. (a-c) p-value maps with
a fixed 7 × 7 window. (d) p-value map with adaptive windows (Wmin = 5, Wmax = 11)
for η = 3.0. (e-h) Binary decision maps at 0.05 significance level.

(a) p-value map S
H̃AO

(7 × 7) (b) p-value map S
R̃λ

(7 × 7) (c) p-value map S
T̃λ

(7 × 7) (d) p-value map S
T̃λ

(adapt.)

(e) Binary map S
H̃AO

(7 × 7) (f) Binary map S
R̃λ

(7 × 7) (g) Binary map S
T̃λ

(7 × 7) (h) Binary map S
T̃λ

(adapt.)

Source: The author (2025)
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4.2 APPLICATIONS TO SAR DATA

4.2.1 SAR Dataset and Preprocessing

We evaluated the proposed test statistics using a set of five SAR images acquired from
different radar missions. These images cover diverse locations: the surroundings of London
(United Kingdom), the outskirts of Munich, the city of New Orleans (USA), Dublin Port
(Ireland), and the coast of Jalisco (Mexico), as shown in Figures 19a–23a. The selected scenes
include a variety of land types, such as urban areas, mountainous regions, agricultural zones,
and water bodies. This diversity allows us to assess the performance of the proposed statistical
tests under different texture conditions.

To facilitate interpretation, we also included the corresponding optical images (Figures 19b–
23b) obtained from Sentinel-2 Level-2A products. These optical scenes were acquired on dates
close to those of the SAR acquisitions to ensure visual consistency. The optical data were
downloaded from the Copernicus Data Space platform1.

The SAR images come from TanDEM-X (X-band), UAVSAR (L-band), and Sentinel-1B
(C-band). The two UAVSAR images were obtained from the Alaska Satellite Facility (ASF)2,
which provides airborne and satellite SAR data. The X-band images were downloaded from
ESA’s Third Party Missions (ESA TPM)3, and the C-band image from Copernicus Data Space.
All images use single polarization (HH or VV), and their acquisition settings differ in resolution,
scene size, and number of looks. Table 6 lists the main characteristics of each SAR image.

Table 6 – Parameters of selected SAR images

Site Mission Band Polarization Size (pixels) L Resolution [m] Acquisition Date

London TanDEM-X X HH 2000 × 2000 1 0.99/0.99 12-11-2021
Munich UAVSAR L HH 1024 × 1024 12 4.9/7.2 16-04-2015

New Orleans UAVSAR L HH 1400 × 1400 12 4.9/7.2 13-03-2016
Dublin TanDEM-X X HH 1100 × 1100 16 1.35/1.35 03-09-2017

Coast of
Jalisco

Sentinel-1B C VV 512 × 512 18 40/40 29-08-2021

Source: The author (2025)

1https://dataspace.copernicus.eu/
2https://search.asf.alaska.edu/
3https://tpm-ds.eo.esa.int/collections/

https://dataspace.copernicus.eu/
https://search.asf.alaska.edu/
https://tpm-ds.eo.esa.int/collections/
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For each SAR image, the number of looks L was obtained from the product of azimuth
and range looks provided in the metadata of SNAP. We validated this nominal value with
the equivalent number of looks (ENL) from manually selected homogeneous areas using the
classical formula ENL = 1/ĈV2, based on the sample coefficient of variation. The results
were consistent with the metadata. We also verified that moderate deviations in L did not
significantly impact the outcome of the test, confirming the robustness of the proposed method.

The SAR images were preprocessed using the SNAP (Sentinel Application Platform) toolbox.
The standard steps included terrain correction and multilooking (when necessary) to produce
intensity images. UAVSAR scenes were also reprojected to align them with standard geographic
coordinates. Finally, the resulting images were exported in ENVI format and used as input for
statistical analysis in R, where the proposed tests were applied.

4.2.2 Qualitative Inspection

We applied the three bootstrap statistics, S
H̃AO

, S
R̃λ

, and S
T̃λ

, to the five SAR intensity
images in Figures 19a–23a. The fixed approach uses local sliding windows of size 7 × 7. The
adaptive approach (used with Tsallis) varies the window side from 5 × 5 (Wmin = 5) to 11 × 11

(Wmax = 11), with smoothing parameter η = 3, and B = 100 bootstrap replications per
window. Each figure is organized in three rows: (i) SAR scene and a matching Sentinel-2
optical image, (ii) p-value maps for the three tests, and (iii) binary maps at the 5% level (black
= heterogeneous, white = homogeneous).

Across all scenes, the three tests detect the main textured elements (urban blocks, port
facilities, roads, crop boundaries, mountains, and river banks). In the p-value maps, dark red
(p≈0) concentrates on heterogeneous areas such as urban blocks, harbor structures, and field
edges, while blue (p≈1) dominates open water and other uniform surfaces. Intermediate colors
mark transitional textures.

The adaptive Tsallis results are visually better than the fixed windows: in homogeneous
regions, the maps look smoother and more stable, while in heterogeneous regions the edges are
sharper and fine details are preserved. The binary maps make this clear: the adaptive strategy
keeps thin structures (roads, levees, dock lines) that are partly lost with the fixed window.

The number of looks also matters. With fewer looks (stronger speckle), the adaptive
scheme improves urban and boundary detection compared with the fixed window. As L
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increases, speckle decreases and all methods improve, yet the adaptive maps still show cleaner
homogeneous areas and crisper boundaries in textured zones.

Comparing statistics, the Rényi-based S
R̃λ

is more sensitive to texture changes and often
highlights fine-scale heterogeneity. The Tsallis-based S

T̃λ
is more conservative in uniform areas,

reducing false alarms and producing cleaner homogeneous regions. The adaptive Tsallis variant
combines these benefits with data-driven window sizes, which explains its overall better visual
quality across the five scenes.

Figure 19 – Detection of heterogeneous areas in a SAR image over London, UK: comparison of test
statistics S

H̃AO
, S

R̃λ
, and S

T̃λ
. Top: (a-b) input images (SAR and optical). Middle:

(c-e) p-value maps with a fixed 7 × 7 window. (f) p-value map with adaptive windows
(Wmin = 5, Wmax = 11) for η = 3.0. Bottom: (g-j) Binary decision maps at 0.05
significance level.

(a) SAR image (b) Optical image

(c) p-value map S
H̃AO

(7 × 7) (d) p-value map S
R̃λ

(7 × 7) (e) p-value map S
T̃λ

(7 × 7) (f) p-value map S
T̃λ

(adapt.)

(g) Binary map S
H̃AO

(7 × 7) (h) Binary map S
R̃λ

(7 × 7) (i) Binary map S
T̃λ

(7 × 7) (j) Binary map S
T̃λ

(adapt.)

Source: The author (2025)
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Figure 20 – Detection of heterogeneous areas in a SAR image over the outskirts of Munich, Germany:
comparison of test statistics S

H̃AO
, S

R̃λ
, and S

T̃λ
. Top: (a-b) input images (SAR and

optical). Middle: (c-e) p-value maps with a fixed 7 × 7 window. (f) p-value map with
adaptive windows (Wmin = 5, Wmax = 11) for η = 3.0. Bottom: (g-j) Binary decision
maps at 0.05 significance level.

(a) SAR image (b) Optical image

(c) p-value map S
H̃AO

(7 × 7) (d) p-value map S
R̃λ

(7 × 7) (e) p-value map S
T̃λ

(7 × 7) (f) p-value map S
T̃λ

(adapt.)

(g) Binary map S
H̃AO

(7 × 7) (h) Binary map S
R̃λ

(7 × 7) (i) Binary map S
T̃λ

(7 × 7) (j) Binary map S
T̃λ

(adapt.)

Source: The author (2025)
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Figure 21 – Detection of heterogeneous areas in a SAR image over New Orleans city, USA: compar-
ison of test statistics S

H̃AO
, S

R̃λ
, and S

T̃λ
. Top: (a-b) input images (SAR and optical).

Middle: (c-e) p-value maps with a fixed 7 × 7 window. (f) p-value map with adaptive
windows (Wmin = 5, Wmax = 11) for η = 3.0. Bottom: (g-j) Binary decision maps at
0.05 significance level.

(a) SAR image (b) Optical image

(c) p-value map S
H̃AO

(7 × 7) (d) p-value map S
R̃λ

(7 × 7) (e) p-value map S
T̃λ

(7 × 7) (f) p-value map S
T̃λ

(adapt.)

(g) Binary map S
H̃AO

(7 × 7) (h) Binary map S
R̃λ

(7 × 7) (i) Binary map S
T̃λ

(7 × 7) (j) Binary map S
T̃λ

(adapt.)

Source: The author (2025)
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Figure 22 – Detection of heterogeneous areas in a SAR image over Dublin Port, Ireland: comparison
of test statistics S

H̃AO
, S

R̃λ
, and S

T̃λ
. Top: (a-b) input images (SAR and optical).

Middle: (c-e) p-value maps with a fixed 7 × 7 window. (f) p-value map with adaptive
windows (Wmin = 5, Wmax = 11) for η = 3.0. Bottom: (g-j) Binary decision maps at
0.05 significance level.

(a) SAR image (b) Optical image

(c) p-value map S
H̃AO

(7 × 7) (d) p-value map S
R̃λ

(7 × 7) (e) p-value map S
T̃λ

(7 × 7) (f) p-value map S
T̃λ

(adapt.)

(g) Binary map S
H̃AO

(7 × 7) (h) Binary map S
R̃λ

(7 × 7) (i) Binary map S
T̃λ

(7 × 7) (j) Binary map S
T̃λ

(adapt.)

Source: The author (2025)
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Figure 23 – Detection of heterogeneous areas in a SAR image over the Coast of Jalisco, Mexico:
comparison of test statistics S

H̃AO
, S

R̃λ
, and S

T̃λ
. Top: (a-b) input images (SAR and

optical). Middle: (c-e) p-value maps with a fixed 7 × 7 window. (f) p-value map with
adaptive windows (Wmin = 5, Wmax = 11) for η = 3.0. Bottom: (g-j) Binary decision
maps at 0.05 significance level.

(a) SAR image (b) Optical image
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T̃λ

(7 × 7) (j) Binary map S
T̃λ

(adapt.)

Source: The author (2025)

In addition to the visual analysis presented above, we measured execution times to assess
the computational cost of the proposed methods. Table 7 reports the processing times for
the three entropy-based tests (Shannon, Rényi, and Tsallis) with fixed 7 × 7 windows and, for
comparison, the adaptive Tsallis variant with window sizes from 5 × 5 (Wmin = 5) to 11 × 11

(Wmax = 11). Times are reported in minutes and seconds (mm:ss) with B = 100 bootstrap
replications per window.

Overall, Shannon is the fastest across scenes, which is consistent with its simpler analytical
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form. Rényi and Tsallis are slightly slower due to the evaluation of additional terms. As
expected, the adaptive Tsallis approach takes the longest because it evaluates multiple window
sizes per pixel.

Table 7 – Execution times for the heterogeneity detection using fixed 7 × 7 and adaptive windows
(Wmin = 5, Wmax = 11), with B = 100 bootstrap replications per scenario. Times are
given in minutes and seconds (mm:ss). Rényi entropy uses λ = 0.9 and Tsallis entropy
uses λ = 0.85

Scene Shannon Rényi Tsallis Adaptive Tsallis

Image Simulated 1 01:12 01:17 01:25 01:50

Image Simulated 2 01:16 01:27 01:38 02:05

London 12:10 13:28 14:10 16:22

Munich 07:02 8:54 10:02 11:49

New Orleans 10:20 13:39 14:39 15:48

Dublin 8:39 9:44 10:48 12:51

Coast of Jalisco 01:59 02:39 02:54 03:20

Source: The author (2025)

All experiments were executed on the workstation described in Section 1.4, using 8–16
CPU cores. This setup allowed the entropy-based heterogeneity detection tests to process
medium-sized SAR scenes within a few minutes, as reported in Table 7.

The total runtime also depends on the number of bootstrap replications (B), since each
replication recomputes the test statistic to approximate its sampling distribution under the null
hypothesis.
In our simulations, we used B = 100, which provides stable and reliable estimates with moderate
computational cost. Stable results can already be achieved with B ≥ 50, whereas larger values
of B yield smoother p-value distributions at the expense of longer processing times.

The window size also plays an important role in the heterogeneity detection process. This
is particularly evident in the case of the Adaptive Tsallis test, where alternative sliding windows
ranging from 5×5 to 11×11 were explored for both simulated and real SAR datasets. Although
the observed differences were subtle, the adaptive approach exhibited the expected behavior:
larger windows in homogeneous areas produced smoother and more stable estimates, whereas
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smaller windows in heterogeneous regions effectively preserved structural details and texture
transitions.

For the single-look case (L = 1), the adaptive Tsallis test using larger windows yielded more
consistent detections, enhancing sensitivity to textural variations without generating excessive
false alarms. This confirms that adaptive windowing improves the balance between detection
accuracy and spatial smoothness, especially under strong speckle conditions.

Regarding the decision threshold, a significance level of α = 0.05 was adopted for the
binary classification of the p-value maps. Additional experiments with alternative levels showed
the expected trade-offs: a stricter threshold (α = 0.01) reduces false alarms but may overlook
weak texture variations, while a more relaxed threshold (α = 0.10) increases sensitivity to
subtle heterogeneity at the expense of a higher false-positive rate, particularly in highly speckled
regions. Therefore, α = 0.05 represents a balanced and robust choice for most SAR imaging
scenarios.

4.2.3 Quantitative Evaluation

Eight polygonal regions of interest (ROIs) were manually selected for each of the three SAR
scenes used in the quantitative study—London, Munich, and Dublin (Figures 24a–24c). ROIs
labeled in red correspond to heterogeneous areas (class 1) and those in blue to homogeneous
areas (class 0). The polygons were rasterized to the image grid to form a partial ground truth.
We thresholded the p-value maps at α = 0.05, labeling each pixel as heterogeneous (1) or
homogeneous (0), and compared the resulting decisions with the ground truth to compute
the F1-score (F1), the Kappa coefficient (κ), and the overall accuracy (OA). Results are
summarized in Table 8.
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Figure 24 – Selected ROIs for the quantitative evaluation. Red polygons indicate heterogeneous
areas (class 1), and blue polygons indicate homogeneous areas (class 0).

(a) London SAR image with selected
ROIs.

(b) Munich SAR image with selected
ROIs.

(c) Dublin SAR image with selected
ROIs.

Source: The author (2025)

Table 8 – Quantitative measures of heterogeneity detection

Scene Test F1 κ OA

SH̃AO
0.617 0.542 0.854

SR̃λ
0.695 0.626 0.877

ST̃λ
0.603 0.528 0.850London

ST̃λ
adapt. 0.757 0.697 0.897

SH̃AO
0.883 0.794 0.897

SR̃λ
0.924 0.861 0.931

ST̃λ
0.930 0.871 0.936Munich

ST̃λ
adapt. 0.935 0.880 0.940

SH̃AO
0.645 0.464 0.858

SR̃λ
0.865 0.753 0.875

ST̃λ
0.879 0.776 0.887Dublin

ST̃λ
adapt. 0.901 0.844 0.926

Source: The author (2025)

When comparing the three entropy-based tests, distinct patterns emerge depending on the
scene characteristics.

In London, the adaptive Tsallis test achieves the highest scores across metrics (F1 = 0.757,
κ = 0.697, OA = 0.897), followed by the Rényi-based statistic (F1 = 0.695, κ = 0.626, OA =
0.877). Both outperform Shannon (F1 = 0.617, κ = 0.542, OA = 0.854) and fixed-window
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Tsallis (F1 = 0.603, κ = 0.528, OA = 0.850). These results suggest that adaptive windowing
is helpful under stronger speckle by smoothing homogeneous areas while preserving edges.

In Munich, all methods perform well, but the adaptive Tsallis variant is slightly superior
(F1 = 0.935, κ = 0.880, OA = 0.940), with fixed Tsallis close behind (F1 = 0.930, κ = 0.871,
OA = 0.936) and Rényi competitive (F1 = 0.924, κ = 0.861, OA = 0.931). Shannon shows
lower but still strong values (F1 = 0.883, κ = 0.794, OA = 0.897).

In Dublin, the adaptive approach yields the largest gains: adaptive Tsallis leads with
F1 = 0.901, κ = 0.844, and OA = 0.926, followed by fixed Tsallis (F1 = 0.879, κ = 0.776,
OA = 0.887) and Rényi (F1 = 0.865, κ = 0.753, OA = 0.875). Shannon again records the
lowest figures (F1 = 0.645, κ = 0.464, OA = 0.858).

Overall, the adaptive Tsallis test provides the most accurate classification across the three
scenes, with consistent improvements in F1, κ, and OA. Rényi remains a strong fixed-window
alternative, while Shannon is the least effective under the tested conditions. These findings
align with the qualitative inspection: adaptive windowing improves the balance between detail
preservation in heterogeneous regions and stability in homogeneous areas.

4.3 INTERACTIVE SHINY APP FOR HETEROGENEITY DETECTION

Shiny is an R package (version 1.9.1) developed by RStudio (now Posit) that makes it
possible to build interactive web applications directly from R code, without requiring knowledge
of HTML, CSS or JavaScript. Users can manipulate inputs (e.g. sliders, file uploads, dropdowns)
and see results update instantly in the browser.

To facilitate reproducibility and allow exploration of the heterogeneity-detection pipeline on
both simulated and real SAR images, we have developed a Shiny web application.

The app supports three data-loading modes:

• Simulated image examples: Choose one of two simulated images (e.g. L = 5 or
L = 9).

• ENVI sample images: Select one of three small SAR samples in ENVI format
(e.g. Dublin L = 16, London L = 1, or New Orleans L = 12).

• Upload ENVI: Upload any custom .img/.hdr pair to process your own data.
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Once the image is loaded, the user can select one of three entropy estimators (Shannon,
Rényi, or Tsallis), set the order λ (for Rényi and Tsallis), specify the number of looks L,
enable or disable bootstrap resampling (and choose the number of replicates), and fix the
sliding-window size n× n. By clicking Run Detection, the app performs the sliding-window
test and displays the resulting p-value heat-map in color.

Figure 25 – Shiny application interface. The left panel shows the data-loading and parameter
controls; the right panel displays the colorized p-value map and elapsed runtime.

Source: The author (2025)

This interactive tool complements the results presented in Sections 4.1 and 4.2 by enabling
real-time parameter tuning and direct comparison across estimators.

The application is publicly accessible at: https://janeth-alpala.shinyapps.io/heterogeneity_
detection_app/

https://janeth-alpala.shinyapps.io/heterogeneity_detection_app/
https://janeth-alpala.shinyapps.io/heterogeneity_detection_app/
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5 CONCLUSIONS

This thesis presented a statistical framework for detecting heterogeneity in SAR images,
offering both theoretical and practical insights into a fundamental question: How can one
effectively distinguish heterogeneous clutter from fully developed speckle, assuming SAR
intensity is modeled by the Gamma SAR (ΓSAR) distribution?

To address this, we proposed three novel hypothesis tests based on entropy measures:
Shannon, Rényi, and Tsallis entropies. A key theoretical contribution was the derivation of
closed-form analytical expressions for the Rényi and Tsallis entropies under both the ΓSAR and
G0
I distributions, which were previously unavailable in the literature. Using these expressions,

we developed bootstrap-based statistical tests corresponding to each entropy measure.

A comprehensive Monte Carlo simulation study was conducted to evaluate the performance
of the proposed tests, assessing both their size (Type I error rate) and power (probability of
correctly rejecting the null hypothesis under the alternative). The results demonstrated that the
methods maintained reliable control over false alarms while significantly improving detection
performance as the sample size and number of looks increased.

These theoretical findings were further validated with experiments on both simulated and real
SAR data acquired by various radar missions (TanDEM-X, PAZ, ICEYE, UAVSAR, Sentinel-1B),
covering a range of resolutions, polarizations, and look numbers. Visual analysis using p-value
heatmaps and binary decision maps revealed notable distinctions among the entropy-based
tests. In particular, the Rényi-based test exhibited the highest sensitivity in detecting subtle
textural variations, effectively identifying heterogeneity even under high-speckle conditions.
The Tsallis-based test provided complementary advantages by reliably identifying homogeneous
regions, thereby minimizing false alarms (i.e., incorrectly classifying homogeneous areas as
heterogeneous). In contrast, the Shannon-based test displayed intermediate performance and
lower robustness at low numbers of looks.

Quantitative evaluations using ground truth regions of interest (ROIs) and standard classifi-
cation metrics further confirmed the superior overall performance of both Rényi and Tsallis-based
tests across all tested scenes.

Compared to conventional classification methods, the proposed entropy-based statistical
tests offer practical advantages: they provide interpretable, analytical significance measures and
require no training data or manual labeling, facilitating rapid analysis suitable for environments
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with limited data availability. Typical computations are efficient, generally taking only a few
minutes depending on the image size and number of bootstrap replications. Since the three
tests share a common computational structure, their execution times are comparable, making
the proposed methods particularly attractive for quick screening and exploratory analysis.

Future directions

Future research directions identified from this thesis include integrating the improved
bootstrap-based Rényi and Tsallis estimators into broader SAR classification frameworks, both
supervised and unsupervised, to expand their applicability beyond heterogeneity detection. This
integration could enable the development of multi-level texture classification schemes (e.g.,
low, moderate, high heterogeneity) that go beyond binary discrimination and provide a more
detailed understanding of the scene, without requiring labeled training data.

Additionally, extending the proposed methodology to polarimetric SAR (PolSAR) data
represents a promising avenue. One approach could involve analyzing the intensity chan-
nels independently and fusing the resulting entropy information using multivariate models.
Alternatively, a fully polarimetric analysis could be pursued by testing deviations from the
scaled complex Wishart distribution. In this context, exploring the asymptotic behavior of the
generalized variance (i.e., the determinant of the covariance matrix) under the complex Wishart
model may offer valuable theoretical insights for detecting structural changes in polarimetric
data.
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APPENDIX A – LIMIT BEHAVIOR OF ENTROPY FUNCTIONS

LIMIT BEHAVIOR OF H
(
G0
I

)
AS α → −∞

To verify that H
(
G0
I (α, µ, L)

)
converges to H

(
ΓSAR(µ, L)

)
as α → −∞, we show that

the additional terms in H
(
G0
I

)
cancel in the limit.

The Shannon entropy for the G0
I distribution is given by:

H
(
G0
I (α, µ, L)

)
= H(ΓSAR)+

[
(L−α)ψ(0)(L−α)−(1−α)ψ(0)(−α)+ln(−1−α)−ln Γ(L−α)

+ ln Γ(−α) − L
]
. (5.1)

We aim to show that

lim
α→−∞

H
(
G0
I (α, µ, L)

)
= H

(
ΓSAR(µ, L)

)
.

The additional terms in H
(
G0
I

)
compared to H

(
ΓSAR

)
are:

lim
α→−∞

[
(L− α)ψ(0)(L− α) − (1 − α)ψ(0)(−α) + ln(−1 − α) − ln Γ(L− α) + ln Γ(−α)

]
−L.

(5.2)

For L = 1, this becomes:

lim
α→−∞

[
− ln Γ(1 − α) + ln(−1 − α) + ln Γ(−α)︸ ︷︷ ︸

A

+ (1 − α)ψ(0)(1 − α) − (1 − α)ψ(0)(−α)︸ ︷︷ ︸
B

]
− 1.

(5.3)

Simplifying A and B:

A = ln (−1 − α)Γ(−α)
Γ(1 − α) = ln (−1 − α)Γ(−α)

−αΓ(−α) = ln −1 − α

−α
= ln

(
1 + 1

α

)
.
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B = (1 − α)
[
ψ(0)(1 − α) − ψ(0)(−α)

]
= (1 − α)

ψ(0) (1 − α− 1) + 1
1 − α− 1︸ ︷︷ ︸

Because ψ(0)(x+1)=ψ(0)(x)+ 1
x

−ψ(0)(−α)


= (1 − α)
[
ψ(0)(−α) − 1

α
− ψ(0)(−α)

]
= − 1

α
+ 1.

Replacing A and B into (5.3) and taking the limit, we obtain:

lim
α→−∞

ln
(

1 + 1
α

)
︸ ︷︷ ︸

approaches 0

− lim
α→−∞

1
α︸ ︷︷ ︸

approaches 0

+ lim
α→−∞

1 − 1 = 0.

For the general case L > 1, we use Stirling’s approximation for large z:

Γ(z) ∼
√

2πz
(
z

e

)z
,

and
ψ(0)(z) ∼ ln(z) − 1

2z .

Therefore, the terms of Equation (5.2) approximate to:

− ln Γ(L− α) ∼ −1
2 ln (2π(L− α)) − (L− α) ln(L− α) + (L− α),

(L− α)ψ(0)(L− α) ∼ (L− α) ln(L− α) − 1
2 ,

−(1 − α)ψ(0)(−α) ∼ −(1 − α) ln(−α) − 1 − α

2α ,

ln Γ(−α) ∼ 1
2 ln(−2πα) − α ln(−α) + α.

Then, replacing these in (5.2), we get:

lim
α→−∞

[
− 1

2 ln (2π(L− α)) − L ln(L− α) + α ln(L− α) + L− α

+ L ln(L− α) − α ln(L− α) − 1
2 − ln(−α) + α ln(−α) − 1 − α

2α

+ ln(−1 − α) + 1
2 ln(−2πα) − α ln(−α) + α

]
− L.
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We then simplify:

lim
α→−∞

[
− 1

2 ln(2π(L−α))+L− 1
2 − ln(−α)− 1 − α

2α +ln(−(1+α))+ 1
2 ln(−2πα)

]
−L.

Group terms:

lim
α→−∞

[1
2 ln −α

L− α
+ L− 1

2 + α− 1
2α + ln 1 + α

α

]
− L = 1

2 ln 1 + L− 1
2 + 1

2 + ln 1 − L = 0.

Therefore,
lim

α→−∞
H
(
G0
I (α, µ, L)

)
= H

(
ΓSAR(µ, L)

)
.

which concludes the proof.

LIMIT BEHAVIOR OF Rλ(G0
I ) AS α → −∞

We want to show that

lim
α→−∞

Rλ

(
G0
I

)
(α, µ, L) = Rλ

(
ΓSAR

)
(µ, L).

We can express (2.14) as follows:

Rλ

(
G0
I

)
(µ, α, L) = Rλ

(
ΓSAR

)
(µ, L) + ln

(
−1 − α

)
+ 1

1 − λ
ln
Γ(L− α)λ Γ

(
λ(−α + 1) − 1

)
λλ(L−1)+1

Γ(−α)λ Γ
(
λ(L− α)

)
.

Set

∆α = Rλ

(
G0
I

)
(µ, α, L) −Rλ

(
ΓSAR

)
(µ, L).

Then

∆α = ln(−1 − α) + 1
1 − λ

ln
[Γ(L− α)λ Γ

(
λ(−α + 1) − 1

)
λλ(L−1)+1

Γ(−α)λ Γ
(
λ(L− α)

) ]
. (5.4)
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As α → −∞, we have −1 − α ≈ |α|, so

ln(−1 − α) ∼ ln |α|.

Note that for large |α|, we can the asymptotic relation Γ(x+ a)/Γ(x+ b) ∼ x a−b. Specifically:

Γ(L− α)/Γ(−α) ∼ |α|L, Γ
(
λ(−α + 1) − 1

)
/Γ
(
λ(L− α)

)
∼

(
λ|α|

) (λ−1)−λL
.

Thus, inside the logarithm in (5.4),

Γ(L− α)λ Γ
(
λ(−α + 1) − 1

)
Γ(−α)λ Γ

(
λ(L− α)

) ∼ |α|λL × |α|(λ−1)−λL = |α|λ−1.

Since λλ(L−1)+1 does not depend on α, multiplying by this constant factor does not alter the
asymptotic behavior in α. Therefore,

1
1 − λ

ln
[
. . .
]

∼ 1
1 − λ

ln
(
|α|λ−1

)
= λ− 1

1 − λ
ln |α| = − ln |α|.

Hence
∆α ∼ ln |α| − ln |α| = 0 asα → −∞.

This shows ∆(α) → 0, and consequently

lim
α→−∞

Rλ

(
G0
I

)
(µ, α, L) = Rλ

(
ΓSAR

)
(µ, L).

LIMIT BEHAVIOR OF Tλ(G0
I ) AS α → −∞

We want to show that

lim
α→−∞

Tλ
(
G0
I

)
(α, µ, L) = Tλ

(
ΓSAR

)
(µ, L).

Write the Tsallis entropy of G0
I in the compact form

Tλ
(
G0
I (µ, α, L)

)
= Tλ

(
ΓSAR(µ, L)

)
+ ∆T

α , ∆T
α = C

λ− 1

(
1 − eΦα

)
,
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with the constant (independent of α)

C = exp
[
(1 − λ) lnµ+ (λ− 1) lnL+ ln Γ

(
λ(L− 1) + 1

)
− λ ln Γ(L)

]

and

Φα = (1 − λ) ln(−α− 1) + λ lnΓ(L− α)
Γ(−α) + ln

Γ
(
λ(1 − α) − 1

)
Γ
(
λ(L− α)

) .

If Φα → 0 as α → −∞, then exp[Φα] → 1 and, therefore, ∆T
α → 0. Hence the goal reduces

to showing Φα → 0.

For large |x| and fixed c, Γ(x+ c)
Γ(x) ∼ x c.

Set A := −α (> 0); then α → −∞ means A → ∞. Applying the rule we have

Γ(L+ A)
Γ(A) ∼ AL,

Γ(λA+ λ− 1)
Γ(λA+ λL) ∼ (λA) (λ−1)−λL.

Using ln xc = c ln x and ln(λA) = lnλ+ lnA,

Φα ∼ (1 − λ) lnA+ λL lnA+
[
λ(1 − L) − 1

](
ln λ+ lnA

)
.

The coefficient of lnA is

(1 − λ) + λL+ λ(1 − L) − 1 = 0.

so every logarithm in A disappears.
The remaining constant is

[
λ− 1 − λL

]
ln λ. But λ− 1 − λL = −

[
λ(L− 1) + 1

]
, and the

opposite factor λ(L− 1) + 1 already appears with the opposite sign inside C; therefore this
constant term vanishes as well. Consequently Φα → 0 and thus ∆T

α −→ 0.
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APPENDIX B – DERIVATIONS OF SPACING ESTIMATORS

This appendix mirrors the derivation given for Vasicek’s estimator of Shannon entropy, and
the Tsallis estimator.

FROM QUANTILE FUNCTION TO VASICEK ESTIMATOR

The differential entropy of a continuous random variable Z with density f(z) is given by:

H(Z) = −
∫ ∞

−∞
f(z) ln f(z) dz.

We now perform a change of variables using the cdf of F (z) and its inverse, the quantile
function Q(p) = F−1(p).

• Let p = F (z) so that z = Q(p).
• Then, using the change of variables:

dz = Q′(p) dp, and f(z) = F ′(z) = 1
Q′(p) .

Substituting into the integral:

H(Z) = −
∫ ∞

−∞
f(z) ln f(z) dz

= −
∫ 1

0
f(Q(p)) ln f(Q(p)) ·Q′(p) dp

= −
∫ 1

0
ln f(Q(p)) dp.

Now, since f(Q(p)) = 1
Q′(p) , we get:

ln f(Q(p)) = − lnQ′(p),

thus,
H(Z) =

∫ 1

0
lnQ′(p) dp.

Entropy can be expressed without needing the explicit density f(z). It is sufficient to
integrate the logarithm of the derivative of the quantile function over p ∈ (0, 1).
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In practice, the quantile function Q is unknown, but we have access to a sample
{Z1, . . . , Zn}, whose ordered values are:

Z(1) ≤ Z(2) ≤ · · · ≤ Z(n).

Each order statistic Z(i) serves as an empirical quantile:

Z(i) ≈ Q
(

i

n+ 1

)
.

To approximate Q′(p) at pi ≈ i
n+1 , we use a symmetric finite difference:

Q′(pi) ≈ Q(pi+m) −Q(pi−m)
pi+m − pi−m

= Z(i+m) − Z(i−m)
i+m
n+1 − i−m

n+1

= n+ 1
2m (Z(i+m) − Z(i−m)).

This is a symmetric window of width 2m, valid for m < i < n−m.

The integral over p ∈ [0, 1] is approximated by a Riemann sum:

∫ 1

0
lnQ′(p) dp ≈ 1

n

n∑
i=1

lnQ′(pi).

Substituting the approximation of Q′(pi):

ĤV(Z) = 1
n

n∑
i=1

ln
[
n+ 1
2m

(
Z(i+m) − Z(i−m)

)]
.

This is the Vasicek estimator of Shannon entropy.

TSALLIS ENTROPY AND THE QUANTILE FUNCTION

For a continuous random variable Z with pdf f and cdf F , the Tsallis entropy is defined by:

Tλ(Z) = 1
λ− 1

(
1 − E

[
f λ−1(Z)

])
= 1

λ− 1

(
1 −

∫
R
fλ(z) dz

)
. (5.5)
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To express Tλ in terms of the quantile function Q(p) = F−1(p) for p ∈ (0, 1), note that
F
(
Q(p)

)
= p. Differentiating with respect to p yields:

f
(
Q(p)

)
Q′(p) = 1 =⇒ Q′(p) = 1

f
(
Q(p)

) . (5.6)

Using the change of variables z = Q(p) (dz = Q′(p) dp) in the integral of (5.5) and
applying (5.6),

E
[
f λ−1(Z)

]
=
∫ 1

0

[
f(Q(p))

]λ−1
dp =

∫ 1

0

[
Q′(p)

]1−λ
dp.

Hence the entropy can be written solely in terms of the quantile derivative:

Tλ(Z) = 1
λ− 1

{
1 −

∫ 1

0

[
Q′(p)

]1−λ
dp
}
. (5.7)

Equation (5.7) dispenses with the pdf itself; once we can estimate Q′(p), we obtain an
estimator of Tλ.

Draw an i.i.d. sample Z1, . . . , Zn ∼ F and sort it, Z(1) ≤ · · · ≤ Z(n). Fix an integer window
m ∈ {1, . . . , ⌊n/2⌋}. For every index i = 1, . . . , n define the (centred) m–spacing:

Di,m = Z(i+m) − Z(i−m),

with the conventions Z(i−m) := Z(1) when i ≤ m and Z(i+m) := Z(n) when i ≥ n−m.

Because Z(i) ≈ Q
(
i/n

)
, the points Z(i−m) and Z(i+m) correspond roughly to the probabilities

(i − m)/n and (i+m)/n, so that, ∆p = 2m/n. A centred finite–difference therefore gives
the quantile-slope estimator:

Q̂′
(
pi
)

= Z(i+m) − Z(i−m)
2m
n

= n

2m Di,m, pi := i

n
. (5.8)
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To reduce edge bias Ebrahimi et al. (1994) suggest position-dependent correction factors

ci =



1 + i− 1
m

, 1 ≤ i ≤ m,

2, m+ 1 ≤ i ≤ n−m,

1 + n− i

m
, n−m+ 1 ≤ i ≤ n.

The resulting boundary-corrected m-spacing density estimator is

f̂n
(
Z(i)

)
= cim/n

Di,m

, i = 1, . . . , n.

By construction f̂n
(
Z(i)

)
≈ f

(
Z(i)

)
, while its reciprocal gives an improved estimate of

Q′(pi):
Q̂′
(
pi
)

= 1
f̂n
(
Z(i)

) = Di,m

cim/n
. (5.9)

Approximating the integral in (5.7) by the Riemann sum over the grid pi = i/n and inserting
Q̂′
(
pi
)

of (5.9) yields the non-parametric Tsallis entropy estimator:

T̂λ(Z) = 1
λ− 1

1 − 1
n

n∑
i=1

[
Q̂′
(
pi
)]1−λ

 = 1
λ− 1

1 − 1
n

n∑
i=1

(
cim/n

Di,m

)λ−1
. (5.10)
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