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RESUMO

O consumo global de energia tem impulsionado a necessidade de armazenamento subter-
râneo, sendo as cavernas de sal uma solução amplamente utilizada para materiais energéticos.
A construção e o controle dessas cavernas são, portanto, cruciais para garantir sua capacidade
e segurança operacional. Este trabalho apresenta uma metodologia integrada para a análise
e otimização do processo de dissolução para abertura de cavernas. Primeiramente, foram re-
alizadas simulações numéricas do processo de mineração por dissolução em uma rocha de
cloreto de sódio, utilizando o software SALGAS SOLUTION MINING SIMULATION SOFT-
WARE para diferentes métodos de circulação (direta e reversa). Para interpretar a complexa
interação entre as variáveis de entrada e os resultados, foi realizada uma análise estatística
multivariada com as técnicas de redução de dimensionalidade, Principal Component Analysis
(PCA) e t-distributed Stochastic Neighbor Embedding (t-SNE). A análise PCA revelou que a
taxa de produção de salmoura e suas variáveis correlatas constituem o principal componente
de variabilidade do processo, enquanto as variáveis associadas à temperatura e às propriedades
do fluido desempenham um papel secundário, mas significativo. A técnica t-SNE confirmou
esses achados e demonstrou sua capacidade de agrupar cenários com características operaci-
onais similares. Com base nos insights obtidos, o trabalho avança da análise para o design,
implementando um framework de otimização que acopla o simulador SALGAS a Algoritmos
Genéticos (AG). Foram conduzidas otimizações mono-objetivo, para maximizar o volume final,
e multiobjetivo, para explorar os complexos trade-offs entre os objetivos de volume, massa de
Sal, eficiência energética e Tempo de Construção. Os resultados demonstram que o AG é
capaz de identificar vetores de decisão que geram projetos superiores aos cenários de base,
caracterizando a fronteira de Pareto de soluções ótimas. A metodologia proposta, portanto,
oferece uma abordagem sistemática e robusta para o projeto de cavernas salinas.

Palavras-chave: abertura de cavernas; SALGAS; simulações numéricas; análises estatís-
ticas; algoritmos genéticos.



ABSTRACT

Global energy consumption has driven the need for underground storage, with salt caverns
being a widely used solution for energy materials. The construction and control of these cav-
erns are, therefore, crucial to ensure their capacity and operational safety. This work presents
an integrated methodology for the analysis and optimization of the dissolution process for cav-
ern development. First, numerical simulations of the solution mining process were performed
in a sodium chloride rock formation, using the SALGAS SOLUTION MINING SIMULATION
SOFTWARE for different circulation methods (direct and reverse). To interpret the complex
interaction between input variables and results, a multivariate statistical analysis was con-
ducted using dimensionality reduction techniques, Principal Component Analysis (PCA) and
t-distributed Stochastic Neighbor Embedding (t-SNE). The PCA revealed that the brine pro-
duction rate and its correlated variables constitute the main component of process variability,
while variables associated with temperature and fluid properties play a secondary but sig-
nificant role. The t-SNE technique confirmed these findings and demonstrated its ability to
group scenarios with similar operational characteristics. Based on the insights obtained, the
work progresses from analysis to design, implementing an optimization framework that cou-
ples the SALGAS simulator with Genetic Algorithms (GA). Single-objective optimizations were
conducted to maximize the final volume, and multi-objective optimizations were performed to
explore the complex trade-offs between the objectives of Volume, Salt Mass, Energy Efficiency,
and Construction Time. The results demonstrate that the GA is capable of identifying deci-
sion vectors that generate superior designs compared to the base scenarios, characterizing the
Pareto frontier of optimal solutions. The proposed methodology, therefore, offers a systematic
and robust approach for the design of salt caverns.

Keywords: cavern development; SALGAS; numerical simulations; statistical analyses;
genetic algorithms.
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𝜌𝑏 Densidade da solução salina a ser injetada

𝜌𝑤 Densidade da água pura

𝜏𝑖 Desvio padrão da distribuição Gaussiana no t-SNE



𝜙 Símbolo genérico para as funções de temperatura A, B, ..., H

𝜒2 Estatística do teste de esfericidade de Bartlett
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1 INTRODUÇÃO

Segundo Aydin (2014), em 2010, cerca de 90% do consumo mundial de energia primá-
ria foi fornecido por combustíveis fósseis. Esse cenário destaca a importância de se explorar
alternativas para o armazenamento eficiente de energia. De acordo com Yang et al. (2015),
o armazenamento em cavernas de sal possui um papel relevante nas reservas internacionais
de energia. Estudos como o de Ozarslan (2012) indicam que as cavernas de sal subterrâneas
artificiais são utilizadas como reservatórios de ar comprimido e gás hidrogênio, sendo candi-
datas promissoras para aplicações de armazenamento de energia em larga escala. No entanto,
conforme destacado em Małachowska et al. (2022), a implementação dessas tecnologias pode
ser impactada por regulamentações de segurança, especialmente na Europa, onde as normas
variam significativamente.

Esse cenário ressalta a relevância de discutir, de forma mais ampla, os desafios relaciona-
dos à segurança energética e à proteção ambiental, que têm se consolidado como questões
urgentes para a sociedade contemporânea Sovacool et al. (2020), Bradshaw et al. (2021),
Ritchie e Roser (2020). Embora as fontes de energia tradicionais, como o gás natural e o
petróleo, ainda desempenhem um papel central no crescimento econômico global, sua depen-
dência excessiva resulta em altas emissões de dióxido de carbono (dióxido de carbono (CO2)),
agravando problemas ambientais cruciais, como o aquecimento global linemiller2017. Além
disso, a produção desses recursos frequentemente ocorre em regiões distantes dos centros de
consumo, gerando um descompasso entre oferta e demanda. Para mitigar esses impactos, so-
luções de armazenamento de energia, como os reservatórios subterrâneos para gás Succar e
Williams (2015), petróleo Nadimi, Zali e Ahangari (2018) e sistemas de armazenamento de
energia elétrica Zame et al. (2018), Luo et al. (2015), têm se tornado vitais para garantir a
estabilidade e a resiliência das cadeias de suprimento.

A transição para fontes renováveis de energia, como solar, eólica e hidrelétrica, é essencial
para a redução das emissões de carbono Acar e Dincer (2019). Contudo, a intermitência dessas
fontes exige soluções de armazenamento em larga escala para equilibrar a rede elétrica, como
sistemas de Armazenamento de Energia por Ar Comprimido (Compressed Air Energy Storage)
(CAES) Budt et al. (2016), hidrogênio Abe et al. (2019) e hidrelétricas reversíveis Deane,
GallachÓir e McKeogh (2010). Essas tecnologias não só facilitam a integração de energias
renováveis, mas também são fundamentais para o cumprimento de metas globais, como a
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neutralidade de carbono até 2060, estabelecida pela China Mallapaty (2020).
Neste contexto, o Armazenamento Subterrâneo em Cavernas de Sal (SCES) surge como

uma solução promissora devido às propriedades excepcionais do sal-gema: baixa permeabilidade
(≤ 10−21 m2), capacidade de autorregeneração e estabilidade mecânica Yu et al. (2016), Zhang
et al. (2018), Fan et al. (2017). Cavernas formadas por dissolução controlada (método de
solution mining) proporcionam espaços herméticos e duráveis, adequados para armazenar gás
natural, hidrogênio, ar comprimido e até CO2 Cypryjański et al. (2020). Iniciativas pioneiras,
como o armazenamento de hidrogênio em Tees-side (Reino Unido, 1972) Walters (1976) e
a primeira planta comercial de CAES em Huntorf (Alemanha, 1978) Crotogino, Mohmeyer e
Scharf (2001), demonstram a viabilidade técnica dessa abordagem.

No entanto, apesar do potencial, persistem desafios significativos. A falta de revisões
sistemáticas sobre o SCES em escala global limita a compreensão de seu papel estratégico
no setor energético Fan et al. (2021). Além disso, a expansão de tecnologias como CAES
e o armazenamento de hidrogênio exigem um planejamento industrial integrado, avanços em
geomecânica e a gestão de cavernas em formações salinas estratificadas, características comuns
em países como a China e o Reino Unido Li et al. (2020), Bérest et al. (2022).

Contudo, a exploração de domos salinos não é isenta de riscos geomecânicos significativos,
cujo gerenciamento inadequado pode levar a consequências catastróficas. O desastre ambiental
em Maceió, Brasil, onde a extração de sal-gema por décadas resultou na desestabilização do
subsolo e na subsidência severa de bairros inteiros, serve como um alerta contundente Serviço
Geológico do Brasil (CPRM) (2019). Este evento ressalta que o design e a operação de caver-
nas salinas exigem um planejamento rigoroso, que vá além da simples viabilidade econômica.
Neste contexto, a otimização computacional avançada é fundamental. Ferramentas como os
Algoritmos Genéticos (AG) são empregadas na engenharia moderna para determinar a geome-
tria e o espaçamento ótimos de cavernas, com o objetivo explícito de maximizar a estabilidade
de longo prazo e minimizar os riscos de colapso e afundamento da superfície. Portanto, a
aplicação de um AG, como proposto nesta tese, não é apenas uma busca por eficiência, mas
uma metodologia robusta e indispensável para garantir a segurança e a sustentabilidade de
tais projetos.

A partir da análise das propriedades e desafios mencionados, torna-se evidente a necessi-
dade de aprimorar o entendimento sobre o processo de construção de cavernas de sal e seu
potencial como solução de armazenamento de energia. Nesse sentido, a modelagem numérica
se apresenta como uma ferramenta essencial, uma vez que permite a simulação de cenários e a
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otimização do design de cavernas subterrâneas. No entanto, as abordagens tradicionais, como
experimentos laboratoriais, apresentam limitações, principalmente no que se refere à escala e
à precisão dos resultados. Portanto, a aplicação de técnicas de análise estatística multivariada,
como a PCA e o t-SNE, surge como uma estratégia para melhorar a interpretação dos dados
obtidos a partir das simulações e otimizar o processo de construção de cavernas de sal. Essas
técnicas, amplamente utilizadas em áreas como a análise de dados e aprendizado de máquina,
oferecem a vantagem de reduzir a dimensionalidade dos dados e identificar padrões ocultos,
o que pode facilitar a tomada de decisões e o planejamento do desenvolvimento de cavernas
para armazenamento de energia.

1.1 OBJETIVO GERAL

Desenvolver e aplicar uma metodologia integrada de análise e otimização para o processo
de abertura de cavernas subterrâneas, utilizando técnicas de redução de dimensionalidade
(PCA e t-SNE) para a compreensão do sistema e Algoritmos Genéticos para a determinação
de designs ótimos.

1.2 OBJETIVOS ESPECÍFICOS

Para a consecução do objetivo principal, foram propostos os seguintes objetivos específicos:

• Avaliar a evolução geométrica da caverna ao longo do tempo de simulação, identificando
mudanças significativas na forma e na estrutura.

• Comparar os dados gerados pelo software SALGAS em diferentes cenários de simulação
(direto e reverso), analisando padrões e discrepâncias que possam impactar o processo
de abertura da caverna.

• Reduzir a dimensionalidade dos dados numéricos de simulação, preservando a maior
parte das informações relevantes para facilitar a análise dos resultados, com foco nas
variáveis que influenciam o desenvolvimento da caverna.

• Analisar a robustez dos agrupamentos obtidos através do t-SNE, testando diferentes
valores de perplexidade e aplicando técnicas de validação cruzada para verificar a con-
sistência e a qualidade dos grupos formados.



23

• Interpretar os resultados gerados a partir das representações em baixa dimensão obtidas
pelas duas técnicas de redução de dimensionalidade, destacando insights significativos
sobre o comportamento das variáveis.

• Contrastar as duas técnicas de redução de dimensionalidade com base no agrupamento
dos indivíduos (cavernas simuladas), avaliando suas respectivas eficácias na visualização
dos dados.

• Quantificar a influência das variáveis taxa de produção de salmoura e temperatura interna
equivalente (ajustada pelo Fator de Dissolução do SALGAS) no processo de abertura da
caverna por dissolução, utilizando métodos estatísticos apropriados.

• Formular o problema de design da caverna como um problema de otimização matemá-
tica, definindo o vetor de decisão, as funções-objetivo e as restrições físicas e operacio-
nais.

• Implementar um framework computacional que acople o simulador SALGAS a um Al-
goritmo Genético para solucionar o problema de otimização.

• Analisar os resultados da otimização, identificando o design ótimo para o caso mono-
objetivo e caracterizando a fronteira de soluções ótimas para o caso multiobjetivo.
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2 REFERENCIAL TEÓRICO

Neste capítulo, são apresentados os conceitos ligados ao tema da pesquisa, tais como me-
todologias de dissolução em rochas salinas, formulação matemática das equações do software
de SALGAS, e a formulação matemática das duas técnicas da redução de dimensionalidade,
PCA e t-SNE.

2.1 METODOLOGIAS DE DISSOLUÇÃO EM ROCHA SALINAS

A mineração por solução não é uma prática recente, tendo sido utilizada há milênios na
China, onde o sal subterrâneo era dissolvido com água doce por meio de tubos de bambu.
Com o tempo, esse processo evoluiu para uma indústria especializada na extração de minerais
solúveis em água. Em muitos casos, as cavernas de sal resultantes tornaram-se mais valiosas
do que o próprio sal extraído, sendo amplamente empregadas para o armazenamento de gás
natural, petróleo bruto e outros hidrocarbonetos, além de, em algumas situações, servirem
como reservatórios para resíduos. O crescimento dessa indústria pode ser observado no au-
mento do número de membros do Solution Mining Research Institute (SMRI), impulsionado
pelo crescente interesse e investimento em armazenamento de gás.

Cavernas dissolvidas em formações de sal oferecem um método seguro e amplamente aceito
para o armazenamento de gás natural. No Brasil, estudos indicam a viabilidade de utilizar
cavernas em águas ultraprofundas para essa finalidade, especialmente nas formações do pré-
sal, visando tanto a Captura e Armazenamento de Carbono (CCS) quanto a monetização do
gás natural associado Costa et al. (2020), Costa et al. (2015).

O armazenamento de energia em cavernas de sal tem ganhado destaque devido à sua ele-
vada capacidade, segurança, conformidade ambiental e viabilidade econômica. A estabilidade
dos depósitos de sal e sua capacidade de isolar fluidos, como gás e ar comprimido, fazem
dessas estruturas uma alternativa robusta para aplicações em larga escala Tian et al. (2010).
Contudo, há riscos associados, sendo a subsidência superficial um dos mais críticos. Estudos
realizados na Suíça apontam que áreas afetadas podem variar de 100 a 1.500 metros de diâ-
metro, com taxas de subsidência superiores a 100 mm/ano Zechner et al. (2011). Nos Estados
Unidos, casos como o poço Hendrick 10-A demonstram que a circulação de água através de
falhas geológicas pode provocar dissolução do sal e resultar em subsidência em larga escala
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Johnson (2005).
A construção de cavernas de sal exige requisitos básicos, como a presença de um depósito

salino ou de gesso, água não saturada, um mecanismo para extração da salmoura e energia para
manter o fluxo hídrico Johnson (2005). Diferentes arranjos de poços são utilizados, incluindo
configurações de poço único, dois poços para injeção e produção, e arranjos combinados que
interligam duas cavidades por um único poço Tian et al. (2010). Os métodos de dissolução
podem seguir diferentes abordagens, como “fundo para topo”, “topo para fundo” ou métodos
integrais. A circulação de água pode ser direta, com injeção no fundo e extração no topo,
ou reversa, com injeção no topo e extração no fundo, resultando em distintas geometrias de
cavernas.

Estudos experimentais têm contribuído para a compreensão dos processos envolvidos. Weis-
brod et al. (2012) demonstraram, por meio de tomografia computadorizada, a formação de
canais preferenciais em rochas salinas, influenciados pela microestrutura do material. Liu et
al. (2016), com testes dinâmicos e modelagem numérica, identificaram uma relação linear
entre o parâmetro (dissolução/espessura da camada limite) e a velocidade do fluxo, além de
destacarem a influência gravitacional na morfologia das cavernas.

O desenvolvimento de modelos matemáticos tem permitido prever os processos de disso-
lução e a evolução das cavernas. Modelos iniciais, como os de Durie e Jessen (1964), relaci-
onaram a salinidade da água com a taxa de dissolução, enquanto Donat e Haimson (1974)
e Saberian (1974) avançaram em simulações numéricas para controle de pressão e evolução
das cavernas. O modelo UBRO, de Kunstman e Urbanczyk (1990), incorporou previsões sobre
forma, volume e concentração de salmoura, considerando também a sedimentação de insolú-
veis. Modelos mais recentes Huang et al. (2011), Li et al. (2016), Li et al. (2018), Wang et
al. (2018), Wang et al. (2018), Yang et al. (2017), Yang, Liu e Zhang (2017) aprimoraram
essas abordagens, incluindo efeitos acoplados de fluxo, dissolução e sedimentação, essenciais
para otimizar os processos e garantir a segurança operacional.

Apesar dos avanços tecnológicos, desafios persistem na previsão da subsidência, no controle
da morfologia das cavernas e na otimização de processos como a dessalinização. O progresso
em modelagem computacional tem sido crucial para superar essas dificuldades, permitindo
análises mais precisas e melhorias contínuas nos sistemas de armazenamento de energia em
cavernas de sal.

Nesse contexto, compreender os processos físicos envolvidos na formação das cavernas é
essencial para aprimorar as técnicas de construção e garantir sua estabilidade a longo prazo.
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A mineração por solução, principal método utilizado para a criação dessas cavernas, é um
processo de transferência de massa em que ocorre a convecção entre a água e a rocha salina,
promovendo a dissolução do sal Steding et al. (2021).

Existem diferentes métodos para o desenvolvimento e conformação das cavernas. No mé-
todo de circulação direta na Figura 1, o solvente é injetado através da coluna de tubulação
e a salmoura é extraída pelo espaço anular entre a coluna e o revestimento final. No método
de circulação reversa Figura 2, o solvente entra pelo anel e a salmoura é retirada pela coluna
de tubulação. Devido à menor densidade da água doce comparada à salmoura, cavernas em
forma de "cone invertido", com topo mais largo que a base, tendem a se formar na circulação
reversa, especialmente na ausência de um fluido cobertor. Já a circulação direta resulta em
cavernas mais cilíndricas. Durante a escavação, o volume do fluido cobertor pode ser ajustado
para auxiliar na conformação da cavidade.

Figura 1 – Processo de mineração por solução: circulação direta

Fonte: Adaptado Warren (2016)
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Figura 2 – Processo de mineração por solução: circulação reversa

Fonte: Adaptado Warren (2016)

2.2 REDUÇÃO DE DIMENSIONALIDADE

Neste trabalho, a redução de dimensionalidade é aplicada como uma ferramenta para faci-
litar a interpretação dos resultados obtidos nas simulações numéricas do processo de abertura
de cavernas. O objetivo é identificar quais variáveis mais influenciam o comportamento geomé-
trico e dinâmico das cavernas simuladas, a partir de representações compactas que preservam
as informações mais relevantes dos dados originais.

Nesta secção são abordadas duas técnicas de redução de dimensionalidade: PCA e t-SNE,
ambas as técnicas permitem a visualização de dados, mas apresentam diferenças e umas das
diferenças significativas é que o PCA é uma técnica linear, enquanto o t-SNE é uma técnica
não linear. Descrevem-se ambas as técnicas.

2.2.1 PCA

O desenvolvimento da PCA começa com fundamentos matemáticos em álgebra linear e
decomposição matricial, evoluindo para um método estatístico de redução de dimensionalidade.
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No final do século XIX, os trabalhos de Beltrami (1873) e Jordan (1874) estabeleceram as bases
matemáticas ao investigar funções e formas bilineares. Embora esses estudos não tivessem,
à época, a intenção de reduzir a dimensionalidade dos dados, eles introduziram conceitos
que, posteriormente, dariam origem à Decomposição em Valores Singulares (Singular Value
Decomposition) (SVD), uma ferramenta importante para a construção teórica do PCA.

No início do século XX, o foco passou a incluir abordagens geométricas e estatísticas. Em
1901, Pearson (1901) apresentou uma metodologia para ajustar linhas e planos a conjuntos
de pontos em espaços multidimensionais, o que serviu de precursor direto da PCA. Essa fase
também viu a aplicação prática da técnica: em 1923, Fisher e Mackenzie (1923) utilizaram
métodos semelhantes à SVD para estudar variações em culturas agrícolas, e em 1929, Frisch
(1929) aprofundou a análise da correlação e dispersão entre variáveis.

A formalização da PCA como método estatístico ocorreu na década de 1930. Em 1933,
Hotelling (1933) definiu os “componentes principais” e diferenciou a técnica da análise fato-
rial, estabelecendo um marco teórico decisivo. Nos anos seguintes, Girshick (1936) introduziu
estimativas de máxima verossimilhança para os componentes, enquanto Hotelling (1936), no-
vamente em 1936, propôs cálculos simplificados que facilitaram a aplicação prática da meto-
dologia. Em 1939, Girshick (1939) expandiu o conhecimento sobre as distribuições amostrais
associadas às raízes das equações determinantes.

Nas décadas de 1960 a 1980, a PCA ganhou novas dimensões teóricas e aplicações inter-
disciplinares. Anderson (1963) contribuiu com a teoria assintótica, e Rao (1964) ampliou as
interpretações e conexões da técnica com outras abordagens de análise multivariada. Adicio-
nalmente, os estudos de Gower (1966) e Jeffers (1967) evidenciaram a versatilidade da PCA,
culminando na compilação de métodos multivariados por Bryant e Atchley (1975). Por fim, o
trabalho de Preisendorfer e Mobley (1988) sintetizou tanto os fundamentos teóricos quanto
as aplicações práticas da PCA em áreas como a meteorologia e a oceanografia.

Com os fundamentos teóricos consolidados ao longo de décadas, o PCA se apresenta
como uma técnica robusta para a análise de dados. Na prática, seu objetivo é transformar os
dados originais em um novo sistema de coordenadas — os componentes principais — que são
calculados a partir da matriz de covariância dos dados. Estes componentes são orientados de
forma a preservar a maior variabilidade possível, permitindo uma representação dos dados em
um espaço de menor dimensionalidade sem comprometer informações relevantes.
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1. Centralização dos Dados e Matriz de Covariância

Para iniciar o processo de PCA, o primeiro passo é centralizar os dados. Seja X ∈ R𝑛×𝑝

uma matriz de dados com 𝑛 observações e 𝑝 variáveis, onde cada linha x𝑖 representa a i-ésima
observação. A matriz X pode ser representada como:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥11 𝑥12 . . . 𝑥1𝑝

𝑥21 𝑥22 . . . 𝑥2𝑝

... ... . . . ...

𝑥𝑛1 𝑥𝑛2 . . . 𝑥𝑛𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Centralização: O processo de centralização envolve subtrair o vetor de médias x̄ de cada

observação. O vetor de médias x̄, de dimensão 1 × 𝑝, é calculado como:

x̄ = 1
𝑛

𝑛∑︁
𝑖=1

x𝑖

A centralização resulta em uma nova matriz de dados X̃, dada por:

X̃ = X − 1𝑛x̄

Nesta equação, 1𝑛 é um vetor coluna de dimensão 𝑛 × 1 composto por 𝑛 elementos iguais
a 1. A multiplicação de 1𝑛 pelo vetor linha x̄ cria uma matriz 𝑛 × 𝑝 onde cada linha é o vetor
de médias, permitindo a subtração elemento a elemento.

Em seguida, calculamos a Matriz de Covariância S, que descreve como as variáveis do
conjunto de dados estão relacionadas entre si:

S = 1
𝑛 − 1X̃𝑇 X̃ ∈ R𝑝×𝑝

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆11 𝑆12 . . . 𝑆1𝑝

𝑆21 𝑆22 . . . 𝑆2𝑝

... ... . . . ...

𝑆𝑝1 𝑆𝑝2 . . . 𝑆𝑝𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2. Maximização da Variância via Autovalores e Autovetores

O próximo passo no PCA é identificar as direções de máxima variabilidade nos dados. Isso
é feito através da obtenção dos autovetores e autovalores da matriz de covariância dos dados.
Essas direções são aquelas nas quais a variância dos dados projetados é maximizada como
exemplificado na figura 3

Matematicamente, a maximização da variância nas projeções é descrita pela seguinte equa-
ção:

Sw𝑖 = 𝜆𝑖w𝑖

Onde:

• 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑝 ≥ 0 são os autovalores da matriz de covariância, que indicam a
quantidade de variância explicada por cada componente principal.

• w1, w2, . . . , w𝑝 são os autovetores, que são ortogonais entre si. Organizando esses au-
tovetores em uma matriz W, obtemos a matriz de projeção dos dados no espaço de
componentes principais:

W =
[︂
w1 w2 . . . w𝑝

]︂
∈ R𝑝×𝑝

As direções dos componentes principais w𝑖 correspondem às direções nos dados onde ocorre
a maior variabilidade.

Figura 3 – Captura das direções de máxima variância no PCA

Fonte: Modificado Rhys (2020)
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3. Seleção dos 𝑘 Componentes Principais

Após calcular os autovetores e autovalores, selecionam-se os 𝑘 primeiros autovetores, cor-
respondentes aos maiores autovalores 𝜆𝑖, para formar a matriz de projeção W𝑘:

W𝑘 =
[︂
w1 w2 . . . w𝑘

]︂
∈ R𝑝×𝑘

A matriz W𝑘 é usada para projetar os dados originais em um espaço de menor dimen-
sionalidade. A variância explicada pelos 𝑘 primeiros componentes principais VE(k) é dada
por:

VE(𝑘) =
∑︀𝑘

𝑖=1 𝜆𝑖∑︀𝑝
𝑖=1 𝜆𝑖

× 100%

Essa métrica indica a proporção da variância total que é retida pelos 𝑘 componentes
principais selecionados.

4. Projeção dos Dados

Por fim, a projeção dos dados originais no novo espaço de componentes principais é feita
multiplicando a matriz centrada X̃ pela matriz de projeção W𝑘, resultando em uma nova
matriz Z, de dimensão reduzida 𝑛 × 𝑘:

Z = X̃W𝑘 ∈ R𝑛×𝑘

A matriz Z é composta pelas projeções dos dados nos 𝑘 primeiros componentes principais:

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑧11 𝑧12 . . . 𝑧1𝑘

𝑧21 𝑧22 . . . 𝑧2𝑘

... ... . . . ...

𝑧𝑛1 𝑧𝑛2 . . . 𝑧𝑛𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
O PCA, portanto, permite não só reduzir a dimensionalidade dos dados, mas também

realizar uma análise das componentes que mais contribuem para a variabilidade, facilitando a
interpretação e visualização dos dados em espaços de menor dimensão.
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A análise matemática completa e rigorosa do PCA, que detalha todos os aspectos da
metodologia, encontra-se no Apêndice A. Em seguida, apresenta-se o diagrama de fluxo da
figura 4, que organiza as etapas do processo no cálculo do PCA.

Figura 4 – Fluxograma do algoritmo de Análise de Componentes Principais (PCA).

Matriz de Dados (X)

Cálculo da Média (x̄)

Centralização dos Dados (X̃ = X − 1𝑛x̄)

Matriz de Covariância (S = 1
𝑛−1X̃𝑇 X̃)

Cálculo de Autovalores e Autovetores

Ordenação dos Autovalores

Seleção dos 𝑘 maiores Autovalores e Autovetores

Espaço PCA (W𝑘)

Fonte: O autor (2025)

2.2.2 t-SNE

Segundo Hinton e Roweis (2002), a técnica Stochastic Neighbor Embedding (SNE) (Sto-
chastic Neighbor Embedding) é um método probabilístico que visa representar objetos de um
espaço de alta dimensão em um espaço de baixa dimensão (geralmente 2D ou 3D), preser-
vando a estrutura de vizinhança local dos dados. A ideia central do algoritmo é minimizar
uma função de custo que quantifica a divergência entre as distribuições de probabilidade que
representam as similaridades entre os pontos nos dois espaços. No entanto, a formulação ori-
ginal do SNE apresentava um "problema de aglomeração"(crowding problem), onde os dados
projetados em dimensões menores tendiam a se aglomerar excessivamente.

Para solucionar essa limitação, Maaten e Hinton (2008) propuseram a técnica t-SNE, uma
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evolução do método original. Conforme descrito em seu artigo "Visualizando dados no t-SNE",
a nova abordagem introduz duas modificações cruciais: (1) utiliza uma versão simétrica da
função de custo, simplificando o gradiente para a otimização; e (2) substitui a distribuição
Gaussiana por uma distribuição t-Student no espaço de baixa dimensão. O uso de uma dis-
tribuição de cauda pesada, como a t-Student, permite que pontos moderadamente distantes
no espaço original sejam mapeados para distâncias maiores no espaço de baixa dimensão,
aliviando tanto o problema de aglomeração quanto otimizando o processo de visualização.

O processo do t-SNE pode ser dividido em três etapas principais. Primeiramente, constrói-
se uma distribuição de probabilidade sobre os pares de pontos no espaço de alta dimensão,
de tal forma que pontos similares tenham uma alta probabilidade de serem escolhidos um
pelo outro. Para um conjunto de dados {x𝑖}1≤𝑖≤𝑛, a similaridade do ponto x𝑗 em relação a
x𝑖 é modelada pela probabilidade condicional 𝑝𝑗|𝑖, calculada sob uma distribuição Gaussiana
centrada em x𝑖:

𝑝𝑗|𝑖 =
exp

(︁
− ‖x𝑖 − x𝑗‖2 /2𝜏 2

𝑖

)︁
∑︀

𝑘 ̸=𝑖 exp
(︁
− ‖x𝑖 − x𝑘‖2 /2𝜏 2

𝑖

)︁
A variância da Gaussiana, 𝜏 2

𝑖 , é determinada com base em um hiper-parâmetro fundamental
definido pelo usuário: a perplexidade, 𝜋. A perplexidade pode ser interpretada como um ajuste
suave para o número de vizinhos próximos que cada ponto considera. Um valor mais alto de
perplexidade leva em conta mais vizinhos, focando na estrutura global dos dados, enquanto
um valor mais baixo foca em aspectos locais. O valor de 𝜏𝑖 para cada ponto é encontrado
numericamente resolvendo a seguinte equação, onde 𝐻(𝑃𝑖) é a entropia de Shannon:

𝜋 = 2𝐻(𝑃𝑖) = 2−
∑︀

𝑗
𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖 (2.1)

Para a probabilidade conjunta, o t-SNE utiliza uma versão simetrizada: 𝑝𝑖𝑗 = (𝑝𝑗|𝑖 +

𝑝𝑖|𝑗)/2𝑛. A matriz simétrica resultante, P, representa as similaridades no espaço de alta di-
mensão.

A segunda etapa consiste em definir uma distribuição de probabilidade similar, Q, para os
pontos no espaço de baixa dimensão, {y𝑖}1≤𝑖≤𝑛. Aqui reside a principal inovação do t-SNE:
em vez de uma Gaussiana, utiliza-se uma distribuição t-Student com um grau de liberdade,
que possui caudas mais pesadas. A probabilidade conjunta 𝑞𝑖𝑗 é definida como:
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𝑞𝑖𝑗 =

(︁
1 + ‖y𝑖 − y𝑗‖2

)︁−1

∑︀
𝑘 ̸=𝑙

(︁
1 + ‖y𝑘 − y𝑙‖2

)︁−1

Na terceira e última etapa, o objetivo do t-SNE é encontrar um mapeamento de baixa
dimensão {y𝑖}1≤𝑖≤𝑛 que minimize a divergência entre as duas distribuições de probabilidade,
P e Q. Essa minimização é realizada sobre a divergência de Kullback-Leibler (KL), que atua
como a função de custo do algoritmo, conforme a equação 2.2.

(y1, . . . , y𝑛) = arg min
y1,...,y𝑛

𝐷𝐾𝐿(P‖Q) = arg min
y1,...,y𝑛

∑︁
𝑖 ̸=𝑗

𝑝𝑖𝑗 log 𝑝𝑖𝑗

𝑞𝑖𝑗

(2.2)

Para minimizar a função de custo, o t-SNE inicia com uma configuração aleatória dos
pontos y𝑖 e os atualiza iterativamente usando o método de gradiente descendente. O gradiente
da divergência de KL é dado por:

𝛿𝐶

𝛿y𝑖

= 4
∑︁

𝑗

(𝑝𝑖𝑗 − 𝑞𝑖𝑗) (y𝑖 − y𝑗)
(︁
1 + ‖y𝑖 − y𝑗‖2

)︁−1
(2.3)

Em uma pesquisa posterior, Maaten (2014) demonstrou que o gradiente pode ser aproxi-
mado eficientemente usando uma variante do algoritmo de Barnes-Hut, o que acelerou signifi-
cativamente a aplicação do t-SNE a grandes conjuntos de dados. Na sequência, o fluxograma
da figura 5 resume o processo de cálculo do t-SNE.
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Figura 5 – Fluxo do algoritmo t-SNE.

Dados de alta dimensão {x𝑖}

Calcular matriz P

Inicializar {y𝑖}

Calcular matriz Q

Calcular custo 𝐷𝐾𝐿(P||Q)

Atualizar {y𝑖}

Convergência?

Resultado {y𝑖}

Sim

Não

Fonte: O autor (2025)
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3 ALGORITMOS EVOLUTIVOS E OTIMIZAÇÃO MULTIOBJETIVO

A busca por soluções ótimas para problemas complexos é um desafio central em diversas
áreas da ciência e engenharia. Frequentemente, os modelos matemáticos que representam sis-
temas do mundo real são caracterizados por não linearidades, descontinuidades e um vasto
espaço de busca, tornando os métodos de otimização clássicos, baseados em gradientes, ine-
ficazes ou inviáveis. Neste contexto, os algoritmos evolutivos (AEs) surgem como uma classe
de técnicas de busca estocástica, inspiradas nos princípios da evolução natural, para navegar
por esses espaços complexos. Adicionalmente, muitos problemas práticos não se resumem a
otimizar um único critério, mas sim a encontrar um balanço entre múltiplos objetivos, muitas
vezes conflitantes entre si, como custo e eficiência, ou risco e retorno. Esta necessidade define
o campo da otimização multiobjetivo. Este capítulo se dedica a explorar os fundamentos dos
algoritmos evolutivos e sua aplicação na resolução de problemas multiobjetivo.

3.1 ALGORITMOS GENÉTICOS (AGS)

Os AGs representam uma classe de algoritmos de busca heurística adaptativa, cuja con-
cepção se inspira diretamente nos princípios da seleção natural e da genética mendeliana. Eles
pertencem a uma família mais ampla de métodos computacionais conhecidos como Compu-
tação Evolutiva. A principal virtude dos AGs reside na sua capacidade de explorar espaços de
busca complexos, multidimensionais e multimodais para encontrar soluções de alta qualidade
para problemas de otimização e busca, sem a necessidade de informações sobre o gradiente
da função-objetivo. Esta característica os torna particularmente adequados para problemas em
que a função-objetivo é descontínua, não diferenciável, estocástica ou altamente não linear,
cenários comuns em desafios de engenharia do mundo real Sreekanth e Kumar (2019).

A base teórica dos Algoritmo Genético (AG)s foi estabelecida na obra seminal de Hol-
land (1975). Em seu trabalho, Holland não apenas propôs os mecanismos fundamentais do
algoritmo, mas também forneceu um arcabouço matemático para entender como a adaptação
ocorre em sistemas complexos, sejam eles naturais ou artificiais. Ele introduziu um modelo
matemático capaz de lidar com a não linearidade de interações complexas, demonstrando sua
universalidade em campos tão diversos quanto a biologia, a economia e a inteligência arti-
ficial. A obra de Holland foi pioneira, estabelecendo as fundações teóricas que permitiram o
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desenvolvimento subsequente do campo.
Enquanto Holland estabeleceu as fundações teóricas, foi David E. Goldberg quem catalisou

a aplicação prática e a ampla adoção dos AGs com seu livro seminal, "Genetic Algorithms in
Search, Optimization, and Machine Learning" Goldberg (1989). Goldberg traduziu os conceitos
teóricos de Holland em uma metodologia acessível e de aplicação direta, com um tom informal
e tutorial que desmistificou o tema para engenheiros e cientistas da computação. Sua obra
solidificou os AGs como uma ferramenta robusta e confiável, ilustrando com exemplos práticos
e códigos computacionais como aplicar esses algoritmos a problemas de busca, otimização e
aprendizado de máquina.

A ascensão das meta-heurísticas, como os AGs, marca uma mudança de paradigma fun-
damental em relação aos métodos de otimização clássicos. Algoritmos tradicionais, frequen-
temente baseados em cálculo de gradientes (como o método do gradiente descendente ou
métodos de Newton), são altamente eficientes para problemas bem-comportados, onde a
função-objetivo é convexa e analiticamente diferenciável. No entanto, eles falham categorica-
mente em problemas de Otimização Black-Box (Otimização Black-Box (BBO)), nos quais a
função-objetivo é avaliada por meio de uma simulação numérica ou um experimento físico, sem
que uma expressão matemática explícita esteja disponível. O problema de otimização do design
de cavernas salinas, que acopla um otimizador a um simulador numérico como o SALGAS, é
um exemplo canônico de um problema BBO. A avaliação de uma única solução candidata (um
conjunto de parâmetros de design) requer a execução de uma simulação computacionalmente
intensiva, cujo resultado (e.g., volume final da caverna) não pode ser expresso como uma
função derivável dos parâmetros de entrada.

Neste contexto, a abordagem dos AGs é fundamentalmente diferente e mais adequada.
Em vez de seguir um único caminho determinístico a partir de um ponto inicial, um AG opera
sobre uma população de soluções candidatas em paralelo Goldberg (1989). A cada iteração
(geração), ele utiliza operadores estocásticos (seleção, cruzamento e mutação) para gerar
uma nova população. Este processo de busca populacional e estocástico confere aos AGs
uma robustez intrínseca para navegar por paisagens de adequação (fitness landscapes) que
são complexas, com múltiplos ótimos locais, e potencialmente "ruidosas"— características
intrínsecas a muitos problemas de engenharia baseados em simulação. Portanto, a escolha
de um AG para a otimização do design de cavernas salinas não é uma mera conveniência,
mas uma necessidade metodológica imposta pela natureza black-box e pela complexidade do
problema em questão.
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3.2 A TEORIA DOS SCHEMAS E A HIPÓTESE DOS BLOCOS DE CONSTRUÇÃO

Para compreender a eficácia dos AGs para além de uma mera analogia biológica, John
Holland desenvolveu a Teoria dos Schemas, culminando no que é conhecido como o Teorema
Fundamental dos AGs, ou Teorema do Schema Holland (1975). Esta teoria fornece um ar-
cabouço matemático para explicar como os AGs realizam uma busca eficiente, processando
implicitamente um vasto número de "blocos de construção"(building blocks) de soluções e
combinando-os para formar indivíduos progressivamente melhores.

Um schema (plural: schemata) é um gabarito ou padrão que descreve um subconjunto
de cromossomos (soluções) que compartilham similaridades em certas posições de genes. Em
representações binárias, um schema é uma string composta pelos símbolos {0, 1, *}, onde o
asterisco (*) atua como um caractere curinga, significando que naquela posição tanto 0 quanto
1 são aceitáveis. Por exemplo, para cromossomos de comprimento 6, o schema 𝐻 = 1 * 10 * 1

representa o conjunto de todas as strings que possuem ’1’ nas posições 1, 3 e 6, e ’0’ na
posição 4, enquanto as posições 2 e 5 podem ser qualquer valor.

Dois atributos importantes de um schema são sua ordem e seu comprimento de definição.
A ordem de um schema, denotada por 𝑜(𝐻), é o número de posições fixas (não-curinga) na
string. Para 𝐻 = 1 * 10 * 1, 𝑜(𝐻) = 4. O comprimento de definição, 𝛿(𝐻), é a distância entre
a primeira e a última posição fixa. Para 𝐻 = 1 * 10 * 1, as posições fixas são 1 e 6, então
𝛿(𝐻) = 6 − 1 = 5.

O Teorema do Schema fornece um limite inferior para o número esperado de instâncias de
um determinado schema H na próxima geração (t+1), com base em sua presença e desempenho
na geração atual (t). A formulação matemática do teorema é a seguinte:

𝐸[𝑚(𝐻, 𝑡 + 1)] ≥ 𝑚(𝐻, 𝑡)𝑓(𝐻)
𝑓𝑡

[1 − 𝑝𝑑] (3.1)

Onde:

• 𝐸[𝑚(𝐻, 𝑡 + 1)] é o número esperado de indivíduos que correspondem ao schema H na
geração t+1.

• 𝑚(𝐻, 𝑡) é o número de indivíduos que correspondem ao schema H na geração t.

• 𝑓(𝐻) é o fitness (adequação) médio de todos os indivíduos na população que corres-
pondem ao schema H.
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• 𝑓𝑡 é o fitness médio de toda a população na geração t.

• 𝑝𝑑 é a probabilidade de disrupção do schema H pelos operadores genéticos de cruzamento
(crossover) e mutação.

A probabilidade de disrupção, 𝑝𝑑, pode ser aproximada por:

𝑝𝑑 ≈ 𝑝𝑐
𝛿(𝐻)
𝑙 − 1 + 𝑝𝑚𝑜(𝐻) (3.2)

Onde:

• 𝑝𝑐 é a probabilidade de cruzamento.

• 𝑝𝑚 é a probabilidade de mutação.

• 𝑙 é o comprimento total do cromossomo.

A interpretação do teorema é profunda: ele postula que schemas com fitness acima da média
da população (𝑓(𝐻) > 𝑓𝑡), comprimento de definição curto (baixo 𝛿(𝐻)) e baixa ordem (baixo
𝑜(𝐻)) receberão um número exponencialmente crescente de representantes nas gerações fu-
turas. Esses schemas curtos, de baixa ordem e alto desempenho são o que Holland chamou de
blocos de construção (building blocks). A hipótese dos blocos de construção sugere que um
AG funciona combinando esses blocos de construção de ordem inferior para formar schemas
de ordem superior e fitness ainda maior, convergindo gradualmente para uma solução ótima
ou próxima da ótima.

O teorema encapsula a estratégia fundamental de um AG. O termo 𝑓(𝐻)/𝑓𝑡 representa a
força da exploitation: schemas que demonstraram bom desempenho são explorados, recebendo
mais "ensaios"ou cópias na geração seguinte. O termo (1 − 𝑝𝑑) representa a necessidade de
preservação desses blocos de construção. Schemas com baixo comprimento de definição são
menos prováveis de serem rompidos pelo operador de cruzamento, tornando-os blocos de
construção robustos. A mutação, por sua vez, embora contribua para a disrupção, atua como
uma força de exploração, introduzindo novo material genético e prevenindo a estagnação do
algoritmo em ótimos locais. Assim, o teorema implica matematicamente que a estratégia de
um AG eficaz deve favorecer a recombinação de blocos de construção de alto desempenho,
enquanto utiliza a mutação com parcimônia para garantir a diversidade e a exploração de
novas áreas do espaço de busca. Esta visão valida a ênfase de Goldberg no equilíbrio entre
exploração e exploitation como o pilar central para o sucesso dos AGs Goldberg (1989).
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3.3 O BALANÇO CRÍTICO: EXPLORAÇÃO VERSUS EXPLOITATION

O sucesso de qualquer algoritmo de busca, e em particular dos AGs, depende de um
delicado equilíbrio entre duas forças antagônicas: exploração e exploitation Eiben e Smith
(2015). Compreender e gerenciar este balanço é talvez o aspecto mais crucial no design e na
aplicação de AGs a problemas complexos de otimização.

A exploração refere-se à capacidade do algoritmo de investigar regiões amplas e diversas do
espaço de busca. É o processo de visitar áreas inteiramente novas, na esperança de descobrir
regiões promissoras que ainda não foram examinadas. Um algoritmo com forte viés para a
exploração é bom em mapear a paisagem de fitness globalmente, evitando ficar preso em
picos de desempenho subótimos (ótimos locais) Eiben e Smith (2015).

A exploitation, por outro lado, é o processo de refinar a busca dentro de regiões que já se
mostraram promissoras. Uma vez que uma área com soluções de alto fitness é identificada,
a exploitation foca em buscar intensivamente na vizinhança dessas soluções para encontrar
o pico local com a maior precisão possível. Um algoritmo focado em exploitation é eficiente
em convergir rapidamente para uma boa solução, desde que a busca inicial tenha ocorrido em
uma região que contenha o ótimo global.

O dilema fundamental reside no fato de que essas duas forças são concorrentes. Um excesso
de exploração pode transformar o AG em uma busca puramente aleatória, ineficiente e incapaz
de convergir para uma solução de alta qualidade em um tempo razoável. Por outro lado, um
excesso de exploitation leva à convergência prematura: o algoritmo rapidamente converge para
um ótimo local, perdendo a diversidade genética necessária na população para escapar desse
pico e explorar outras regiões potencialmente melhores do espaço de busca.

Nos AGs, este balanço é alcançado principalmente através da interação entre os operadores
genéticos Kaur e Kaur (2017):

• Operador de cruzamento (Crossover): É primariamente um mecanismo de exploitation.
Ele pega dois indivíduos pais, que presumivelmente possuem bom fitness e, portanto,
contêm blocos de construção valiosos, e os recombina. A esperança é que a combinação
de seus blocos de construção possa gerar um filho com fitness ainda maior. O cruzamento
não introduz novo material genético; ele apenas rearranja o que já existe na população,
explorando as combinações de schemas promissores.

• Operador de mutação (Mutation): É o principal motor da exploração. A mutação altera
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aleatoriamente um ou mais genes de um indivíduo, introduzindo novo material genético
na população. Este processo é crucial por duas razões: primeiro, ele pode reintroduzir
alelos que foram perdidos devido à pressão seletiva, restaurando a diversidade genética;
segundo, ele permite que a busca escape de ótimos locais, saltando para novas regiões
do espaço de busca que não seriam acessíveis apenas através do cruzamento Kaur e
Kaur (2017).

• Operador de seleção (Selection): Atua como o motor que impulsiona a exploitation. Ao
dar preferência a indivíduos com maior fitness para se tornarem pais da próxima geração,
a seleção garante que os melhores blocos de construção sejam propagados e explorados
mais intensamente.
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Figura 6 – Fluxo de um Algoritmo Genético.

Fonte: O autor (2025)

3.4 OTIMIZAÇÃO MULTIOBJETIVO E O ALGORITMO NSGA-II

Muitos problemas de engenharia do mundo real, incluindo o design de cavernas de sal,
não podem ser adequadamente formulados com um único objetivo. Frequentemente, existem
múltiplos objetivos conflitantes que precisam ser otimizados simultaneamente. Por exemplo,
no projeto de uma caverna, deseja-se maximizar o volume de armazenamento (um objetivo
econômico) e, ao mesmo tempo, minimizar o tempo de construção (outro objetivo econômico
que pode conflitar com o primeiro). A Otimização Multiobjetivo (MOO) lida com esses pro-
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blemas, e os Algoritmo Evolutivo Multiobjetivo (MOEA)s surgiram como uma das abordagens
mais eficazes para resolvê-los.

O conceito central na MOO é a dominância de Pareto. Uma solução 𝑥1 domina outra
solução 𝑥2 se 𝑥1 for estritamente melhor que 𝑥2 em pelo menos um objetivo e não for pior que
𝑥2 em todos os outros objetivos. O objetivo de um MOEA não é encontrar uma única solução
"ótima", mas sim identificar o conjunto de todas as soluções não dominadas, conhecido como
fronteira de Pareto ou frente de Pareto Deb et al. (2002). Esta fronteira representa o conjunto
de todos os trade-offs ótimos possíveis entre os objetivos conflitantes, fornecendo ao tomador
de decisão um leque de soluções de alta qualidade para escolher.

Os primeiros MOEAs, como o Non-dominated Sorting Genetic Algorithm (NSGA), foram
pioneiros, mas enfrentaram críticas significativas que limitavam sua aplicabilidade prática. As
três principais dificuldades eram:

• Alta complexidade computacional: O processo de ordenação por não-dominância tinha
uma complexidade de 𝑂(𝑚𝑁3), onde m é o número de objetivos e N é o tamanho da po-
pulação. Isso tornava o algoritmo proibitivamente lento para problemas com populações
grandes.

• Falta de elitismo: Os melhores indivíduos encontrados em uma geração não eram ga-
rantidos de sobreviver para a próxima, o que poderia levar à perda de boas soluções e
retardar a convergência.

• Necessidade de um parâmetro de compartilhamento (Sharing): Para manter a diversidade
ao longo da fronteira de Pareto e evitar a convergência para uma única região, esses
algoritmos usavam uma técnica de compartilhamento que exigia a sintonia manual de
um parâmetro de nicho (𝜎𝑠ℎ𝑎𝑟𝑒), uma tarefa difícil e sensível ao problema.

Para superar essas limitações, Deb et al. (2002) propuseram o NSGA-II, que rapidamente
se tornou o padrão-ouro em MOEAs e é a base para o solver gamultiobj no MATLAB. O
NSGA-II introduziu três inovações principais:

• Algoritmo de ordenação rápida por não-dominância: Foi proposto um procedimento
de ordenação mais eficiente com uma complexidade computacional de 𝑂(𝑚𝑁2). Este
algoritmo calcula para cada solução p duas entidades: 𝑛𝑝, o número de soluções que
a dominam, e 𝑆𝑝, o conjunto de soluções que p domina. As soluções com 𝑛𝑝 = 0

pertencem à primeira frente. O algoritmo então itera sobre os membros de 𝑆𝑝 para
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cada solução da primeira frente, reduzindo suas contagens de dominação e identificando
subsequentemente as próximas frentes. Esta redução na complexidade foi um avanço
crucial.

• Mecanismo de elitismo explícito: O NSGA-II garante o elitismo de uma maneira ele-
gante. A cada geração t, a população de pais 𝑃𝑡 (tamanho N) e a população de filhos
𝑄𝑡 (tamanho N) são combinadas para formar uma população estendida 𝑅𝑡 de tamanho
2N. A seleção para a próxima geração de pais, 𝑃𝑡+1, é então realizada a partir desta
população combinada. As melhores soluções (pais e filhos) são ordenadas em frentes de
não-dominância. As frentes são adicionadas à nova população 𝑃𝑡+1 em ordem, come-
çando pela melhor frente (𝐹1), até que o tamanho da população N seja atingido. Este
procedimento garante que qualquer solução de elite encontrada nunca seja perdida.

• Preservação da diversidade sem parâmetros via distância de aglomeração (Crowding
Distance): Para manter a diversidade, especialmente quando uma frente precisa ser
truncada porque não cabe inteiramente na nova população, o NSGA-II utiliza a distância
de aglomeração. Esta métrica estima a densidade de soluções em torno de um ponto
específico na frente de Pareto. Para cada objetivo, as soluções na frente são ordenadas, e
a distância é calculada como a largura do cubóide formado pelos vizinhos mais próximos
de um ponto ao longo de cada eixo de objetivo. As soluções em regiões menos povoadas
(com maior distância de aglomeração) são preferidas. Isso promove uma distribuição
uniforme das soluções ao longo da fronteira de Pareto, eliminando a necessidade do
parâmetro 𝜎𝑠ℎ𝑎𝑟𝑒.

A sinergia entre o elitismo e a preservação da diversidade é uma das maiores forças do NSGA-II.
O algoritmo emprega uma estratégia de seleção hierárquica: a dominância de Pareto é o critério
primário, garantindo a convergência em direção à fronteira ótima (exploitation/elitismo). A
distância de aglomeração é usada como um critério secundário, de desempate, para escolher
entre soluções igualmente boas (na mesma frente), promovendo a cobertura de toda a extensão
da fronteira (exploration/diversidade). Esta abordagem dupla permite que o NSGA-II encontre
de forma confiável e eficiente um conjunto bem distribuído de soluções na fronteira de Pareto
para uma vasta gama de problemas.
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4 SOFTWARE SALGAS: CARACTERÍSTICAS E LIMITAÇÕES

Este capítulo apresenta os conceitos, funcionalidades e limitações do software SALGAS,
desenvolvido na década de 1970 em linguagem FORTRAN pelo SMRI. O programa foi con-
cebido para simular o desenvolvimento de cavernas subterrâneas em formações salinas por
meio da técnica de dissolução, utilizando o método numérico de diferenças finitas aplicado em
malha unidimensional vertical.

O SALGAS permite a análise integrada de parâmetros hidráulicos, consumo energético e
controle operacional do processo de mineração. Um de seus diferenciais é a modelagem do
comportamento do blanket, fluido protetor posicionado sobre a salmoura, cuja função é inibir
a dissolução do teto da caverna.

A validação do software foi realizada com base em dados experimentais de laboratório e em
campanhas de monitoramento de cavernas localizadas em domos de sal espessos e homogêneos
da Costa do Golfo dos Estados Unidos Eyerman (2008).

4.1 CARACTERÍSTICAS DO SOFTWARE SALGAS

O SALGAS destaca-se pelas seguintes funcionalidades principais:

• Interface flexível com opção de entrada e saída de dados em unidades métricas ou
imperiais;

• Aplicação do método de diferenças finitas em malha unidimensional vertical, com até
200 células (a versão original utilizava 60) Eyerman (2008, p. 5);

• Simulação de dissolução por escoamento turbulento, com transporte reativo unidimen-
sional e acoplamento com balanço hidráulico;

• Controle automático e adaptativo do nível do blanket, com possibilidade de alternar
entre lavra direta (injeção superior) e reversa (injeção inferior);

• Capacidade de reinicialização da simulação (restart) com alteração dos parâmetros ope-
racionais ou geomecânicos;

• Estimativas de consumo energético do sistema de bombeamento e perda de carga nas
tubulações;
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• Geração de saída detalhada de balanços de massa e sal, permitindo análises quantitativas
da eficiência do processo.

4.2 LIMITAÇÕES DO SOFTWARE

Embora seja uma ferramenta robusta para o seu propósito, a correta interpretação dos
resultados exige o conhecimento das premissas e limitações do software, que são cruciais para
a contextualização desta pesquisa. As restrições mais significativas são:

• Contexto de validação: O SALGAS foi originalmente desenvolvido para simular a dissolu-
ção em domos salinos espessos e predominantemente compostos por halita pura, típicos
da Costa do Golfo dos Estados Unidos. Segundo o manual, sua faixa de validação co-
bre cenários com “taxas de fluxo moderadas de até cerca de 1000 gpm (225 m3/h)”
Eyerman (2008, p. 9). A aplicação do modelo em condições que excedem essas vazões,
como explorado nesta tese, caracteriza-se como uma análise de sensibilidade fora dos
limites originais de validação, sendo realizada com o devido cuidado interpretativo.

• Simulação de temperatura: O modelo numérico SALGAS opera sob uma condição iso-
térmica padrão de 75°F (aproximadamente 24°C), referente à temperatura interna do
ambiente da caverna, conforme descrito no manual do software Eyerman (2008, p. 9).
O SALGAS não simula explicitamente a temperatura da água injetada; em vez disso,
orienta que diferentes cenários térmicos sejam representados indiretamente através do
ajuste empírico do Fator de Dissolução (CONDIS). Em conformidade com essa orienta-
ção, a metodologia desta tese considerou cenários com temperaturas internas hipotéticas
de aproximadamente 40°C, 60°C e 80°C. Para cada cenário, foram calculados os respec-
tivos valores do Fator de Dissolução (DF) e das gravidades específicas, posteriormente
inseridos no software. Dessa maneira, a análise realizada não constitui uma simulação
termodinâmica direta, mas sim um estudo de sensibilidade baseado nesse parâmetro
empírico, que atua como um proxy para representar o impacto indireto da temperatura
sobre a taxa de dissolução, permitindo avaliar, por exemplo, a aceleração da dissolução
em temperaturas mais elevadas.

• Simplificações do modelo: A representação da caverna no SALGAS é unidimensional, li-
mitada ao eixo vertical, desconsiderando variações laterais e complexidades geométricas
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tridimensionais. Conforme descrito no manual do software, o SALGAS foi desenvolvido
originalmente para aplicação em domos salinos da Costa do Golfo dos Estados Unidos,
compostos majoritariamente por halita pura e com geometrias relativamente simples
Eyerman (2008, p. 9). O programa não simula deformações da rocha nem efeitos tér-
micos ou químicos sobre a matriz salina; ou seja, não há modelagem das propriedades
físico-mecânicas do maciço salino que envolve a cavidade. Assim, limita-se a calcular a
dissolução da halita por água injetada, sem considerar a resposta estrutural da formação
ao processo de mineração por solução.

• Restrições operacionais: O modelo permite apenas um ponto fixo de injeção e um de
produção por vez, operando de forma simultânea. Qualquer mudança nesses pontos ao
longo do tempo requer o uso da funcionalidade de reinício da simulação a partir de um
arquivo .SGR, conforme orientado no manual Eyerman (2008, p. 9). Não há suporte
para múltiplas zonas ativas de injeção ou produção em uma única execução contínua do
modelo.

• Observação técnica sobre a versão utilizada: A versão do SALGAS utilizada nesta tese
apresenta potenciais inconsistências numéricas ao operar no Sistema Internacional de
Unidades (SI), conforme identificado em testes comparativos com os mesmos casos em
unidades imperiais. O manual sugere que o programa foi originalmente desenvolvido com
base no sistema americano, e evidências apontam para possíveis erros de conversão na
rotina.

Apesar dessas restrições, o software continua sendo uma ferramenta analítica valiosa para
projetos convencionais de cavernas salinas, especialmente em estudos preliminares de geometria
e dinâmica de dissolução.

4.2.1 Descrição das equações de alguns parâmetros de entrada do SALGAS

Os seguintes parâmetros de entrada para o SALGAS foram obtidos através de equações
matemáticas: densidade específica do fluido de injeção, densidade específica da salmoura pro-
duzida, fator de dissolução do sal e pressão de injeção. A densidade específica da solução
de injeção salina é a razão entre a densidade do fluido e a densidade da água pura a uma
temperatura de 4∘C e uma pressão de 1 atm.
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A densidade da solução salina a ser injetada, 𝜌𝑏 (kg/m3), é uma função da temperatura 𝑇

(Kelvin), da pressão do fluido 𝑃 (bar) e da concentração de sal em massa 𝑐𝑏 (adimensional),
sendo determinada, de acordo com a Association Technique de L’Industrie du Gaz en France
(ATG) (1986), pela equação (4.1):

𝜌𝑏 (𝑃, 𝑇, 𝑐𝑏) = 1000/𝑣 (𝑃, 𝑇, 𝑐𝑏) (4.1)

Onde 𝑣 (𝑃, 𝑇, 𝑐𝑏) é o volume específico do fluido de injeção (cm3/g) e corresponde ao volume
ocupado por unidade de massa, sendo diretamente influenciado pelas condições de pressão
(𝑃 ), temperatura (𝑇 ) e concentração mássica de sal (𝑐𝑏). Este parâmetro é calculado pela
equação (4.2):

𝑣 (𝑃, 𝑇, 𝑐𝑏) = 𝐴(𝑇 ) − 𝑃 ′𝐵(𝑇 ) − 𝑃 ′2𝐶(𝑇 ) + 𝑐𝑏𝐷(𝑇 ) + 𝑐𝑏
2𝐸(𝑇 ) − 𝑐𝑏𝑃

′𝐹 (𝑇 ) − 𝑐𝑏
2𝑃 ′𝐺(𝑇 )−

1
2𝑐𝑏𝑃

′𝐻(𝑇 )
(4.2)

Sendo 𝑃 ′ = 𝑃/0.981, com 𝑃 em bar. As funções 𝐴, 𝐵, . . . , 𝐻 são funções dependentes da
temperatura do fluido de injeção, cujas expressões gerais são dadas pela equação (4.3):

𝜙 = 𝜙0 + 𝜙1𝑇 + 𝜙2𝑇
2 + 𝜙11/𝑇 + 𝜙12/𝑇 2 (4.3)

Os coeficientes 𝜙0, 𝜙1, . . . , 𝜙12 para cada uma das funções (𝐴 a 𝐻) estão apresentados
na tabela 1 e são utilizados diretamente na Equação (4.3) para determinar as funções termo-
dinâmicas 𝐴(𝑇 ), 𝐵(𝑇 ), . . . , 𝐻(𝑇 ).

Tabela 1 – Coeficientes para cálculo das funções 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺 e 𝐻.

𝜙0 𝜙1 𝜙2 𝜙11 𝜙12

𝐴 5.916365 −1.035794 × 10−2 9.270048 × 10−6 −1127.522 100674.1
𝐵 5.204914 × 10−3 −1.0482101 × 10−5 8.328532 × 10−9 −1.1702939 102.278
𝐶 1.18547 × 10−8 −6.599143 × 10−11 0 0 0
𝐷 −2.5166 1.11766 × 10−2 −1.70552 × 10−5 0 0
𝐸 2.84851 −1.54305 × 10−2 2.23982 × 10−5 0 0
𝐹 −1.4814 × 10−3 8.2969 × 10−6 −1.2469 × 10−8 0 0
𝐺 2.7141 × 10−3 −1.5391 × 10−5 2.2655 × 10−8 0 0
𝐻 6.2158 × 10−7 −4.0075 × 10−9 6.5972 × 10−12 0 0

Fonte: Association Technique de L’Industrie du Gaz en France (ATG) (1986)
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A densidade da água pura, 𝜌𝑤 (kg/m3), de acordo com Patterson e Morris (1994), é função
da temperatura, 𝑇 (∘C), e da pressão do fluido, 𝑃 (MPa), sendo dada pela equação (4.4):

𝜌𝑤(𝑇 ) = 𝜌0
𝑤

[︃
1 + (𝑇 + 𝑎1)2 (𝑇 + 𝑎2)

𝑎3 (𝑇 + 𝑎4)

]︃ [︁
1 +

(︁
𝑏1 + 𝑏2𝑇 + 𝑏3𝑇

2
)︁ (︁

𝑃 − 𝑃 ref
)︁]︁

(4.4)

Onde os coeficientes 𝑎𝑖 e 𝑏𝑖 são constantes, e 𝑃 ref = 1 atm = 0.101325MPa. Os parâmetros
utilizados para o cálculo da densidade da água pura estão apresentados na tabela 2.

Tabela 2 – Parâmetros da água pura.

𝜌0
𝑤 = 999.972 kg/m3 𝑎4 = 69.348811∘C

𝑎1 = −3.9830355∘C 𝑏1 = 5.074 × 10−4/MPa
𝑎2 = 301.797∘C 𝑏2 = −3.26 × 10−6/MPa · ∘C
𝑎3 = 522, 528.9∘C2 𝑏3 = 4.16 × 10−9/MPa · ∘C2

Fonte: Patterson e Morris (1994)

Outro parâmetro de entrada que requer desenvolvimento matemático é a densidade espe-
cífica da salmoura produzida. Esta é a razão entre a densidade do fluido em saturação e a
densidade da água pura a 4∘C e 1 atm. A concentração mássica de sal na salmoura saturada,
𝑐sat

𝑏 , depende da pressão, 𝑃 (MPa), e da temperatura, 𝑇 (∘C). De acordo com Association
Technique de L’Industrie du Gaz en France (ATG) (1986), sua forma é definida pela equação
(4.5):

𝑐sat
𝑏 (𝑃, 𝑇 ) = 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇

2 + 𝑏𝑃 (4.5)

Onde 𝑎𝑖 e 𝑏 são constantes, cujos valores estão na tabela 3.

Tabela 3 – Valores das constantes 𝑎𝑖 e 𝑏.

𝑎0 𝑎1 𝑎2 𝑏

0.26291 0.7448 × 10−4/∘C 0.1252 × 10−5/∘C2 7.5 × 10−5/MPa
Fonte: Association Technique de L’Industrie du Gaz en France (ATG) (1986)

A densidade específica da salmoura produzida é obtida substituindo-se a concentração de
saturação, 𝑐sat

𝑏 , na equação de densidade da água, (4.4).
O terceiro parâmetro de entrada a ser determinado é o fator de dissolução. Segundo

Saberian (1983), é possível estimar a taxa de dissolução da halita em função da temperatura e
da densidade específica da solução. Com base em testes laboratoriais para superfícies verticais
de sal em salmouras altamente concentradas (até 96,8% de saturação), o autor propôs uma
relação empírica para a taxa de dissolução 𝑚𝑇 (em cc/cm2/min × 103):
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𝑚̇𝑇 = 0.22(1.2019 − 𝜌)1.42 · exp
⎡⎣0.0119

(︃
𝜌 − 1

1.2019 − 𝜌

)︃0.2

· Δ𝑇

⎤⎦ (4.6)

Onde 𝜌 é a densidade da salmoura (adimensional) e Δ𝑇 = 𝑇 − 𝑇0 é a diferença entre a
temperatura da salmoura, 𝑇 , e a temperatura de referência, 𝑇0 = 75∘F.

No entanto, o SALGAS é um modelo isotérmico, fixado a 75∘F, e não realiza simulações
termodinâmicas diretas. Por isso, a entrada no modelo não é a taxa de dissolução, mas sim
o DF (CONDIS), que atua como parâmetro de correção da taxa para diferentes condições
operacionais.

Esse fator é derivado do termo exponencial da equação (4.6), assumindo como referência
uma salmoura saturada ideal com densidade 𝜌 = 1.2019 a 𝑇0 = 75∘F. Para simular o efeito
de diferentes temperaturas e salinidades, calcula-se o DF da seguinte forma:

𝐷𝐹 = exp
⎡⎣0.0119

(︃
𝜌 − 1

1.2019 − 𝜌

)︃0.2

· (𝑇 − 75)
⎤⎦ (4.7)

onde:

• 𝑇 : temperatura da salmoura (∘F),

• 𝜌: densidade específica da salmoura (adimensional),

• DF: Fator de Dissolução (adimensional).

Esse fator é inserido no SALGAS para representar indiretamente o efeito térmico sobre a
taxa de dissolução. A metodologia desta tese utiliza a equação (4.7) para calcular os valores
de DF, permitindo análises de sensibilidade que simulam, de forma aproximada, os efeitos
térmicos sobre o processo de lixiviação.

A pressão de injeção 𝑃inj (MPa) pode ser interpretada como a diferença de pressão entre
o ponto de entrada do fluido no sistema (pressão de bombeamento, 𝑃1) e a pressão interna
na caverna (𝑃2). Essa diferença não é puramente estática, pois envolve também a energia
cinética e o desnível entre os pontos, conforme descrito pela equação de Bernoulli:

𝑃1

𝛾
+ 𝑣2

1
2𝑔

+ 𝑧1 = 𝑃2

𝛾
+ 𝑣2

2
2𝑔

+ 𝑧2 (4.8)

onde:

• 𝑃1, 𝑃2: pressão nos pontos 1 e 2 (Pa),
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• 𝑣1, 𝑣2: velocidade do fluido nos pontos 1 e 2 (m/s),

• 𝑧1, 𝑧2: cota (altura) dos pontos 1 e 2 (m),

• 𝛾: peso específico do fluido (N/m3),

• 𝑔: aceleração da gravidade (9,81 m/s2).

Admitindo que a diferença de altura entre os pontos é desprezível (𝑧1 = 𝑧2), a equação se
reduz a:

𝑃1 − 𝑃2 = 𝛾

2𝑔

(︁
𝑣2

2 − 𝑣2
1

)︁
Essa expressão mostra que a diferença de pressão entre o ponto de bombeamento (𝑃1) e

o fundo do poço (𝑃2) depende da diferença entre as velocidades do fluido.
Para estimar a pressão absoluta 𝑃𝑖 (MPa) em uma profundidade 𝐻𝑖 (m), pode-se utilizar

a relação hidrostática:

𝑃𝑖 = 𝛾 · 𝐻𝑖

106 (4.9)

onde:

• 𝑃𝑖: pressão na válvula de injeção (MPa),

• 𝐻𝑖: profundidade da válvula de injeção (m),

• 𝛾: peso específico do fluido (N/m3).

4.2.2 Formulação Matemática do Modelo de Dissolução 1D

A base matemática do simulador SALGAS, conforme descrito no trabalho de Saberian
(1974), modela o processo de dissolução como um problema de transporte de massa em uma
dimensão (vertical). O objetivo é prever a variação da concentração de sal na salmoura ao
longo da altura da caverna (𝑧) e do tempo (𝑡). O crescimento do raio da caverna é, então,
uma consequência direta da massa de sal removida da parede.

A equação governante do processo é a equação de convecção-difusão em estado não
estacionário, que descreve como a concentração de sal (𝐶) evolui no sistema:
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𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑧2 − 𝑉
𝜕𝐶

𝜕𝑧
(4.10)

Onde os termos representam:

• 𝐶: concentração de sal na solução,

• 𝑡: tempo,

• 𝑧: coordenada espacial vertical,

• 𝐷: coeficiente de difusão molecular do sal na solução,

• 𝑉 : velocidade do fluido ao longo da coordenada vertical 𝑧.

A velocidade do fluido (𝑉 ) não é constante, variando com a altura devido às mudanças
na densidade da salmoura, que aumenta à medida que mais sal é dissolvido. O modelo acopla
esta equação a balanços de massa e volume para calcular a velocidade em cada ponto.

A taxa na qual a parede de sal se dissolve, determinando o aumento do raio da caverna, é
governada por uma condição de contorno na interface entre a rocha salina e a salmoura. Esta
taxa de transferência de massa é expressa pela seguinte relação:

Taxa de dissolução = 𝑘(𝐶sat − 𝐶interface) (4.11)

Onde:

• 𝑘: é o coeficiente de transferência de massa, que depende das condições de fluxo (tur-
bulência) e das propriedades do fluido,

• 𝐶sat: é a concentração de saturação do sal na solução, que é função da temperatura e
pressão,

• 𝐶interface: é a concentração de sal na interface imediata entre a rocha e a salmoura.

O software SALGAS resolve numericamente este sistema de equações, utilizando o método
de diferenças finitas, para simular a evolução da geometria da caverna ao longo do tempo.
As relações empíricas para o fator de dissolução, como as propostas por Saberian (1983),
são utilizadas para ajustar o coeficiente de transferência de massa (𝑘) e, assim, incorporar os
efeitos da temperatura no modelo, que é inerentemente isotérmico.
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5 METODOLOGIA

Neste capítulo, são desenvolvidas as metodologias tanto para a simulação dos cenários de
mineração por solução para a abertura da caverna subterrânea em rocha salina mediante o
software SALGAS, como também o emprego das duas técnicas de redução de dimensionalidade,
PCA e t-SNE, através da linguagem de programação R.

5.1 CENÁRIOS DE SIMULAÇÃO E MATRIZ DE DADOS DE ENTRADA

Foram considerados dois cenários para análise da abertura de uma caverna subterrânea em
rocha salina por dissolução: o primeiro deles, cenário D, corresponde ao método de circulação
direta, onde a água foi injetada no fundo da caverna e a salmoura extraída do topo. O segundo,
cenário R, corresponde ao método de circulação reversa, onde a água foi injetada no topo e
a salmoura extraída do fundo. A tabela 4 apresenta as respectivas profundidades de injeção e
produção para ambos os cenários, e a figura 7 ilustra sua representação esquemática.

Tabela 4 – Cotas de Injeção e Produção para os cenários propostos.

CENÁRIO Profundidade de Injeção (m) Profundidade de Produção (m)

Cenário D 914,4 762
Cenário R 762 914,4

Fonte: O autor (2025)
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Figura 7 – Diagrama esquemático de formas de cavernas de sal resultantes de diferentes modos de circulação.

Fonte: Modificado de Xue et al. (2020)

Estes dois cenários são modificações de um caso de referência do Manual de SALGAS
Eyerman (2008), sendo a configuração específica utilizada nesta pesquisa alusiva ao trabalho
de Silva (2022). A matriz de simulações foi construída a partir de uma configuração inicial
com os seguintes parâmetros fixos: o colchão de proteção permanece constante; a construção
da caverna é iniciada a partir de um poço de raio 1 ft (0,30 m); a rocha salina contém 3%
de insolúveis; e o modelo hidráulico possui uma seção curta de tubulação de superfície e
divide cada uma das linhas de tubulação em duas seções, como pode ser visto na figura 8. As
dimensões detalhadas dos componentes do poço estão apresentadas na Tabela 5.

A partir dessa configuração inicial, foram realizadas novas simulações para análise. As
variações nos cenários foram definidas pela taxa de produção da salmoura e pela temperatura
interna equivalente que se desejava simular (40∘C, 60∘C e 80∘C).
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Figura 8 – Estrutura esquemática do poço.

Fonte: Adaptado de Lecampion et al. (2013)

Tabela 5 – Dimensões e profundidades dos componentes do poço.

Componente / Seção Profundidade / Comprimento Diâmetro

(ft) (m) (in) (m)

Profundidade da sapata do revestimento 1 2400 731,52 10.75 (OD) 0,273
Profundidade da sapata do revestimento 2 2800 853,44 9.9 (ID) 0,251
Profundidade total do poço 3000 914,40 - -
Espessura da camada de sal 1000 304,80 - -
Diâmetro externo da tubulação interna - - 7.8 0,198

*OD: Diâmetro Externo, ID: Diâmetro Interno
Fonte: O autor (2025)

5.1.1 Geração dos Parâmetros de Entrada Variáveis

Para a obtenção dos valores da gravidade específica do fluido de injeção, da gravidade
específica da salmoura e do fator de dissolução do sal, foi necessário determinar a temperatura
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e a pressão de injeção para cada uma das taxas de produção. A pressão foi calculada mediante
a equação de Bernoulli e a equação hidrostática. Com os parâmetros de temperatura e pressão,
as gravidades específicas foram calculadas na caixa de ferramentas do SMRI Brouard (2008).
O efeito da temperatura foi modelado através do ajuste do Fator de Dissolução, cujo cálculo
foi detalhado no Capítulo 4. O módulo de mineração foi ativado em conjunto com o módulo
hidráulico para simular a dissolução da rocha por um fluido saturado em 4.05% de NaCl para
120 dias de simulação. As equações para o cálculo da pressão, das gravidades específicas e do
Fator de Dissolução estão detalhadas na Seção 4.2.1 e no Apêndice C. O procedimento prático
para a geração dos dados e execução da simulação no software é apresentado no Apêndice D.

Logo, as tabelas 6 e 7 dos cenários D e R, respectivamente, apresentam os parâmetros
calculados anteriormente junto com os valores da temperatura e taxa de produção. Estas
tabelas foram usadas no arquivo de dados de entrada do SALGAS.

Tabela 6 – Parâmetros de entrada para o Cenário 𝐷.

N∘ Temp. (∘C) Taxa de Produção (m3/h) Pressão de Injeção (MPa) SG da Salmoura SG Fluido Injeção Fator Dissolução da Sal

1 40 116,00 9,0500 1,196300 1,023930 2,01959411
2 40 193,33 9,1800 1,196400 1,024030 2,02487103
3 40 348,00 9,6700 1,196500 1,024230 2,03027641
4 40 386,66 9,8300 1,196600 1,024330 2,03581592
5 40 773,33 12,4200 1,197600 1,025430 2,10014863
6 40 1159,99 16,7400 1,199400 1,027130 2,28992273
7 60 116,00 9,0500 1,187400 1,014330 3,63441577
8 60 193,33 9,1800 1,187400 1,014530 3,63441577
9 60 348,00 9,6700 1,187600 1,014630 3,64849256
10 60 386,66 9,8300 1,187600 1,014730 3,64849256
11 60 773,33 12,4200 1,188700 1,015830 3,73123637
12 60 1159,99 16,7400 1,190500 1,017630 3,89033759
13 80 116,00 9,0500 1,179100 1,002830 6,14168842
14 80 193,33 9,1800 1,179100 1,002930 6,14168842
15 80 348,00 9,6700 1,179300 1,003130 6,16388254
16 80 386,66 9,8300 1,179400 1,003230 6,17509104
17 80 773,33 12,4200 1,180400 1,004330 6,29147618
18 80 1159,99 16,7400 1,182300 1,006130 6,53698638

Fonte: O autor (2025)
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Tabela 7 – Parâmetros de entrada para o Cenário 𝑅.

N∘ Temp. (∘C) Taxa de Produção (m3/h) Pressão de Injeção (MPa) SG da Salmoura SG Fluido Injeção Fator Dissolução da Sal

1 40 116,00 7,5600 1,195700 1,023330 1,25822596
2 40 193,33 7,7100 1,195800 1,023430 1,25850574
3 40 348,00 8,2300 1,196000 1,023530 1,25878481
4 40 386,66 8,4100 1,196000 1,023630 1,25906319
5 40 773,33 11,2200 1,197200 1,024830 1,26235126
6 40 1159,99 15,9000 1,199000 1,026730 1,26737505
7 60 116,00 7,5600 1,186800 1,013730 1,58127404
8 60 193,33 7,7100 1,186800 1,013830 1,58240401
9 60 348,00 8,2300 1,187000 1,014030 1,58464903
10 60 386,66 8,4100 1,187100 1,014130 1,58576420
11 60 773,33 11,2200 1,188200 1,015330 1,59878792
12 60 1159,99 15,9000 1,190100 1,017230 1,61821655
13 80 116,00 7,5600 1,178500 1,002230 1,63097469
14 80 193,33 7,7100 1,178500 1,002330 1,63810134
15 80 348,00 8,2300 1,178700 1,002530 1,65174855
16 80 386,66 8,4100 1,178800 1,002630 1,65829672
17 80 773,33 11,2200 1,179900 1,003830 1,72622905
18 80 1159,99 15,9000 1,181900 1,005730 1,80920606

Fonte: O autor (2025)

Uma vez preenchido o arquivo de entrada do SALGAS (*.sgi), foram realizadas a execução
para todos os casos.

5.2 DADOS DE ENTRADA PARA O SOFTWARE R

Nesta seção, detalha-se a metodologia para a análise de redução de dimensionalidade,
que foi conduzida utilizando a linguagem de programação R R Core Team (2020) no am-
biente de desenvolvimento integrado RStudio. Foram empregados pacotes específicos para a
implementação das técnicas de PCA, conforme descrito a seguir.

5.2.1 Análise de Componentes Principais com R

Após a realização das simulações no SALGAS para os cenários D e R, foi conduzida
uma análise sobre os dados de entrada e saída. Para esta análise, o conjunto de dados foi
estruturado em dois grupos principais. O primeiro grupo, de variáveis de entrada, corresponde
aos parâmetros operacionais controlados em cada simulação: temperatura do cenário, taxa de
produção de salmoura, pressão de injeção, gravidade específica inicial da salmoura, gravidade
específica do fluido de injeção e fator de dissolução do sal. O segundo grupo, de variáveis
de saída, representa os principais resultados calculados pelo simulador ao final de 120 dias:
potência da bomba, energia acumulada, perdas na tubulação, salmoura produzida, pressão da
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bomba, além do volume e raio da caverna.
Os dados de saída para os cenários D e R estão detalhados nas tabelas 8 a 11.

Tabela 8 – Resultados da simulação (dados de saída) para o PCA do cenário D.

N° Temp. (°C) Taxa de prod. (m3/h) Raio (m) Volume (m3) Potência da bomba (kW)

1 40 116,00 8,4815233 41384,70098 69,35162123
2 40 193,33 10,1243922 64977,88993 150,0948167
3 40 348,00 12,9358796 107985,0077 479,9898047
4 40 386,66 13,5319465 118130,4367 610,3281201
5 40 773,33 18,0928945 210546,8649 3543,051524
6 40 1159,99 21,5553646 297725,8378 10881,81472
7 60 116,00 9,37688244 47798,02484 75,62417372
8 60 193,33 11,3415623 76518,13933 161,4826027
9 60 348,00 14,3688664 130838,4693 503,873569
10 60 386,66 15,0620242 143839,6173 637,7167415
11 60 773,33 20,4725412 266268,5084 3619,96816
12 60 1159,99 24,4236057 378841,1501 11033,15905
13 80 116,00 10,2039847 53401,78831 81,48838835
14 80 193,33 12,3364173 86638,43293 172,1319668
15 80 348,00 15,7673253 150454,9643 524,9347246
16 80 386,66 16,474062 166003,7545 661,769377
17 80 773,33 22,4124439 314677,9596 3682,872839
18 80 1159,99 26,9037786 454376,837 11158,60476

Fonte: O autor (2025)
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Tabela 9 – Resultados da simulação (dados de saída, continuação) para o PCA do cenário D.

N° Energia cumulativa (J) Perda de tubulação (MPa) Salmoura produzida (m3) Pressão da bomba (MPa)

1 7,07426E+11 0,151044266 334083,1111 1,877511889
2 1,53251E+12 0,38376179 556805,1852 2,440216488
3 4,92057E+12 1,132083119 1002247,32 4,340674207
4 6,26193E+12 1,375908446 1113610,313 4,968665288
5 3,65067E+13 5,013018728 2227214,085 14,44934384
6 1,1228E+14 10,78227224 3340824,399 29,61839362
7 7,75713E+11 0,151004345 334083,1111 2,038940628
8 1,65758E+12 0,383827704 556805,1852 2,613999741
9 5,18354E+12 1,132913937 1002247,32 4,535153875
10 6,56377E+12 1,377048219 1113610,313 5,16682462
11 3,73623E+13 5,020753821 2227214,085 14,68605405
12 1,13974E+14 10,79822948 3340824,399 29,87526115
13 8,38823E+11 0,15075772 334083,1111 2,187742167
14 1,77226E+12 0,383280812 556805,1852 2,773871437
15 5,41312E+12 1,131692668 1002247,32 4,702727224
16 6,82639E+12 1,375658028 1113610,313 5,336485083
17 3,80577E+13 5,017673035 2227214,085 14,86660017
18 1,15379E+14 10,79353104 3340824,399 30,05975134

Fonte: O autor (2025)
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Tabela 10 – Resultados da simulação (dados de saída) para o PCA do cenário R.

N° Temp. (°C) Taxa de prod. (m3/h) Raio (m) Volume (m3) Potência da bomba (kW)

1 40 116,00 10,5560683 45041,04639 64,14827577
2 40 193,33 12,8845788 71511,51758 143,6295902
3 40 348,00 16,2241901 120021,52 477,5601426
4 40 386,66 16,8938997 131330,9497 610,4115863
5 40 773,33 22,0228759 234701,064 3619,319431
6 40 1159,99 22,0228759 234701,064 3619,319431
7 60 116,00 11,7554258 50428,89788 68,18619653
8 60 193,33 14,4205818 81612,43657 151,202293
9 60 348,00 18,3731733 140939,9536 494,1020728
10 60 386,66 19,1935181 155241,9248 629,9281586
11 60 773,33 25,5436177 289757,148 3686,488656
12 60 1159,99 30,1478716 413365,7451 11318,65003
13 80 116,00 12,8243381 54978,27937 72,13088987
14 80 193,33 15,7257933 89867,37527 158,1342307
15 80 348,00 20,1169311 157578,1459 508,4429874
16 80 386,66 21,0404537 174118,7867 646,4878364
17 80 773,33 28,3183523 333077,6071 3736,180009
18 80 1159,99 33,6982003 482909,6543 11431,7722

Fonte: O autor (2025)
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Tabela 11 – Resultados da simulação (dados de saída, continuação) para o PCA do cenário R.

N° Energia cumulativa (J) Perda de tubulação (MPa) Salmoura produzida (m3) Pressão da bomba (MPa)

1 6,60392E+11 0,161226792 334083,1111 1,733942439
2 1,47759E+12 0,409806815 556805,1852 2,331043548
3 4,91624E+12 1,20936476 1002249,333 4,309977908
4 6,28537E+12 1,469766056 1113610,37 4,959177064
5 3,73211E+13 5,351425683 2227216,515 14,72807348
6 1,1514E+14 11,50081504 3340826,886 30,31462911
7 7,04946E+11 0,161708184 334083,1111 1,836688911
8 1,56229E+12 0,41146073 556805,1852 2,444840252
9 5,1048E+12 1,216036681 1002249,333 4,44139424
10 6,50832E+12 1,478493856 1113610,37 5,096759518
11 3,8107E+13 5,39738705 2227216,515 14,93186094
12 1,17013E+14 11,61008216 3340826,886 30,59706916
13 7,47251E+11 0,161916544 334083,1111 1,935635819
14 1,63791E+12 0,412151723 556805,1852 2,547067066
15 5,26315E+12 1,219137186 1002249,333 4,551803203
16 6,69103E+12 1,48257059 1113610,37 5,209343364
17 3,86733E+13 5,420276274 2227216,515 15,06683483
18 1,18336E+14 11,66974086 3340826,886 30,76282574

Fonte: O autor (2025)

Para realizar a análise estatística, foram desenvolvidas rotinas no ambiente R. Foram uti-
lizados os pacotes FactoMineR Lê, Josse e Husson (2008) para a execução da análise e
factoextra Kassambara (2017) para a visualização dos dados. A abordagem metodológica
consistiu em unificar os dados de entrada e os resultados da simulação em uma única matriz,
permitindo que o PCA capturasse a variabilidade do sistema de forma holística. Esta matriz
combinada, cujo esquema é apresentado na figura 9, foi então utilizada como entrada para a
função PCA. Os scripts completos utilizados nesta análise estão disponíveis neste repositório
online para garantir a reprodutibilidade da pesquisa.

Figura 9 – Esquema da matriz de dados de entrada do PCA.

Fonte: O autor (2025)

https://github.com/OscarMelgar40/analise-pca-tsne-cavernas
https://github.com/OscarMelgar40/analise-pca-tsne-cavernas
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5.2.2 Análise t-SNE com R

A implementação da técnica t-SNE foi realizada com o auxílio do pacote Rtsne no ambiente
de software R Krijthe (2015). O procedimento iniciou-se com a instalação do pacote no console
do RStudio, utilizando o comando install.packages("Rtsne"). Em seguida, em cada script
de análise, a biblioteca foi carregada com o comando library(Rtsne).

A função Rtsne possui diversos hiperparâmetros que permitem ajustar sua execução. Os
principais, conforme a descrição de Rhys (2020), são:

• perplexity: Este parâmetro controla a largura das distribuições de probabilidade usadas
para converter distâncias. De forma simplificada, pode ser entendido como o número
de vizinhos próximos que cada ponto considera. Valores altos focam mais na estrutura
global, enquanto valores pequenos focam na estrutura local. Os valores típicos estão no
intervalo de 5 a 50.

• theta: Controla a compensação entre velocidade e precisão na implementação Barnes-
Hut t-SNE Maaten (2014). Um valor de theta=0 corresponde à implementação exata,
que é mais lenta. Valores maiores aceleram o cálculo com alguma perda de precisão.
Neste trabalho, foi escolhido theta=0 para garantir a máxima precisão nos resultados.

• eta: Corresponde à taxa de aprendizado, determinando a magnitude do ajuste da posição
dos pontos em cada iteração. Valores mais baixos podem levar a uma incorporação mais
precisa, mas exigem mais iterações. O valor padrão é 200.

• max_iter: Define o número máximo de iterações que o algoritmo executará. O valor
padrão é 1.000.

Os hiperparâmetros mais importantes para o ajuste fino do resultado são, geralmente, a
perplexidade (perplexity) e o número de iterações (max_iter).

Adicionalmente, foi realizado um ajuste crucial no pré-processamento dos dados. O argu-
mento pca da função Rtsne, cujo valor padrão é TRUE, executa uma análise PCA inicial antes
do t-SNE. Nesta pesquisa, essa opção foi explicitamente desativada, definindo pca = FALSE.
Tal decisão foi tomada para garantir que a análise t-SNE fosse aplicada diretamente sobre a
matriz de dados original, permitindo uma avaliação de seu desempenho sem a influência de
uma etapa prévia de redução de dimensionalidade linear.
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Finalmente, foram executadas as rotinas que envolvem a função Rtsne com a matriz de
dados para gerar as figuras apresentadas na análise de resultados.

5.3 METODOLOGIA DE OTIMIZAÇÃO DO DESIGN

Com as metodologias de análise do sistema definidas, esta seção detalha a abordagem
utilizada para a otimização do design da caverna. O objetivo é transitar da compreensão do
fenômeno para a determinação de estratégias operacionais ótimas. Para isso, a metodologia
de otimização foi estruturada em duas etapas fundamentais, que serão descritas a seguir:
primeiramente, a formulação matemática do problema e, em segundo lugar, a implementação
computacional do framework de otimização.

5.3.1 Formulação Matemática do Problema

O planejamento de uma campanha de mineração por dissolução é modelado como um
problema de otimização, em que se busca o vetor de decisão ótimo 𝑥⃗* que maximize um
conjunto de indicadores de desempenho, sujeito a um sistema de restrições físicas, operacionais
e geomecânicas. Formalmente, o problema é expresso como:

Otimizar 𝐹 (𝑥⃗) = [𝑓1(𝑥⃗), 𝑓2(𝑥⃗), ..., 𝑓𝑘(𝑥⃗)]

Sujeito a 𝑔𝑗(𝑥⃗) ≤ 0, 𝑗 = 1, ..., 𝑚

𝑥⃗min ≤ 𝑥⃗ ≤ 𝑥⃗max

onde 𝐹 (𝑥⃗) é o vetor de funções-objetivo que quantifica o desempenho (por exemplo, maximizar
volume e minimizar tempo), 𝑔(𝑥⃗) representa as restrições de segurança e estabilidade, e 𝑥⃗ é o
vetor de decisão, cujos limites operacionais são definidos por 𝑥⃗min e 𝑥⃗max. O vetor 𝑥⃗ pertence
ao espaço de soluções admissíveis (viáveis), 𝐷.

5.3.2 Vetor de Decisão

Para uma campanha de mineração com N=2 estágios de dissolução, o vetor de decisão 𝑥⃗

é um ponto no espaço R10, definido como:

𝑥⃗ = [𝑄1, 𝑡1, 𝐵1, 𝐼1, 𝑃1, 𝑄2, 𝑡2, 𝐵2, 𝐼2, 𝑃2] (5.1)
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Os componentes deste vetor representam as variáveis de controle do processo, cujos limites
práticos definem o espaço de busca. Para 𝑖 = 1, 2, tem-se que:

• 𝑄𝑖: Vazão de injeção de salmoura no estágio i [m3/h].

• 𝑡𝑖: Duração do estágio i [dias].

• 𝐵𝑖: Profundidade do blanket (definindo o teto da caverna) no estágio i [m].

• 𝐼𝑖: Profundidade de injeção da tubulação no estágio i [m].

• 𝑃𝑖: Profundidade de produção da tubulação no estágio i [m].

A escolha de modelar a campanha de mineração com 𝑁 = 2 estágios representa uma sim-
plificação estratégica do problema. Embora projetos reais possam envolver múltiplos estágios
para um controle geométrico mais fino, a limitação a dois estágios foi adotada por duas razões
principais. Primeiramente, o custo computacional: cada estágio adicional insere cinco novas
variáveis no vetor de decisão, aumentando exponencialmente a complexidade do espaço de
busca e o tempo necessário para a convergência do algoritmo genético. Em segundo lugar, o
objetivo deste trabalho é demonstrar a viabilidade e a eficácia da metodologia de acoplamento
do otimizador ao simulador. Um modelo de dois estágios é suficientemente complexo para
validar o framework como uma prova de conceito robusta, que pode ser estendida para um
número maior de estágios em trabalhos futuros.

5.3.3 Sistema Hierárquico de Restrições e Espaço de Busca

O sucesso de um projeto de caverna salina é medido por um duplo imperativo que equilibra
objetivos econômicos com mandatos geomecânicos intransigentes. A otimização não busca o
máximo volume absoluto, mas o máximo volume seguro e estável, refletindo uma filosofia de
"Otimização de Design Robusto"(RDO).

As fronteiras dos parâmetros operacionais, definidas como restrições de caixa (box cons-
traints), constituem a primeira e mais fundamental camada deste framework. Estas restrições
definem o hipercubo de busca inicial, cujos limites foram estabelecidos com base em práticas
da indústria e na necessidade de garantir a viabilidade de campanhas de lixiviação de longo
prazo.
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Vazão de injeção (𝑄𝑖):

50 ≤ 𝑄𝑖 ≤ 300 [m3/h]

Duração dos estágios (𝑡𝑖): Para refletir cronogramas realistas, a duração de cada um dos
dois estágios foi limitada a um período entre 6 meses e 2 anos, ou seja, de 180 a 720 dias.

180 ≤ 𝑡𝑖 ≤ 720 [dias]

Profundidades operacionais (𝐵𝑖, 𝐼𝑖, 𝑃𝑖): As profundidades foram restringidas a faixas espe-
cíficas, em metros, para garantir a coerência física da circulação direta e respeitar as margens
de segurança geotécnica. Para maior clareza, os limites em pés (ft), conforme implementados
no código, são detalhados a seguir:

720.8 ≤ 𝐵𝑖 ≤ 780.3 [m] (Blanket: 2365–2560 ft)

781.8 ≤ 𝑃𝑖 ≤ 839.7 [m] (Produção: 2565–2755 ft)

841.2 ≤ 𝐼𝑖 ≤ 862.6 [m] (Injeção: 2760–2830 ft)

5.3.4 Justificativa dos Parâmetros do Espaço de Busca

A seleção dos limites para as variáveis de controle é uma decisão deliberada, fundamentada
na física da dissolução, em limitações de software, em precedentes da indústria e em princípios
geomecânicos.

5.3.4.1 Vazão de injeção (𝑄𝑖): 50 a 300 m3/h

A faixa de vazão representa um balanço entre eficiência e segurança. Vazões mais altas
induzem maior turbulência, acelerando a taxa de dissolução. A faixa selecionada está ancorada
em projetos análogos e no envelope de validação do software:

• Práticas conservadoras (50–100 m3/h): Taxas mais baixas são usadas para melhor con-
trole geométrico, especialmente em formações de sal estratificadas, como no projeto
Jintan na China Wang et al. (2019), Li et al. (2022).

• Práticas modernas (150–300 m3/h): O programa INDOROCK na Índia planeja fases
com taxas de 150 e 300 m3/h Raju, Murthy e Kumar (2017). O limite superior do
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SALGAS foi validado para "taxas de fluxo moderadas de até cerca de 1000 gpm (225
m3/h)"Eyerman (2008) e o limite de 300 m3/h representa uma extrapolação consciente
para alinhar o estudo com práticas de engenharia atuais.

A faixa de busca selecionada é, portanto, robusta, abrangendo desde operações comprovadas
até os limites superiores da prática moderna.

5.3.4.2 Duração dos estágios (𝑡𝑖): 180 a 720 dias

A duração de cada estágio (𝑡𝑖) é um parâmetro crítico que afeta a economia e a geomecâ-
nica do projeto. A literatura estabelece que a criação de uma caverna é um processo de longo
prazo, podendo levar "um ano ou mais"Al-Halaf e Khazzan (2023). Modelagens detalhadas
chegam a simular a fase de lixiviação por períodos de 700 dias antes da operação Speirs,
Bere e Roberts (2022). A duração também é fundamental para a estabilidade, pois governa
a história inicial de fluência (creep) da rocha salina Seright e Brattekas (1991). Portanto, o
intervalo de busca de 180 a 720 dias (6 meses a 2 anos) por estágio foi adotado para permitir
a exploração de estratégias de lixiviação realistas.

5.3.4.3 Profundidades operacionais (𝐵𝑖, 𝐼𝑖, 𝑃𝑖): 609.6 a 914.4 m

O intervalo de 609.6 a 914.4 m (equivalente a 2000-3000 pés) é uma prática padrão da
indústria, posicionando a caverna em domos salinos geomecanicamente competentes. Esta
profundidade garante que a rocha salina esteja sob um estado de tensões confinantes sufi-
ciente para exibir seu comportamento dúctil e auto-cicatrizante, ao mesmo tempo que evita
as pressões e temperaturas excessivas de profundidades maiores, que poderiam acelerar a
convergência por fluência Li et al. (2022).

5.3.4.4 Abordagem de modelagem da temperatura

A temperatura é um fator cinético crucial, mas sua implementação na otimização expõe
uma limitação do SALGAS e a solução metodológica adotada. O software opera sob uma
condição isotérmica de 75°F (≈ 24°C) e não simula a transferência de calor Eyerman (2008).
Para incorporar o efeito da temperatura, a metodologia adota uma abordagem de proxy,
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utilizando o Fator de Dissolução (CONDIS), que se baseia em relações empíricas Saberian
(1983).

Para a otimização, foi definido um caso de temperatura base de 40°C. Esta escolha é funda-
mentada em análises geológicas: para as profundidades de caverna consideradas, a temperatura
de formação in-situ é tipicamente de 30°C a 70°C, com base em gradientes geotérmicos de
25-30°C/km Bérest et al. (2020). O valor de 40°C é um representante realista e defensável.
Embora casos de 60°C e 80°C tenham sido investigados na análise de sensibilidade, eles não
fizeram parte do espaço de busca do AG, que operou sob a condição de temperatura fixa de
40°C para garantir a consistência dos resultados. Na implementação, a "temperatura"é uma
variável acoplada: a definição de 40°C resulta em modificações no CONDIS e nas densidades
do fluido, cuja interdependência foi confirmada pela Análise de Componentes Principais (PCA)
desta tese.

5.3.5 Restrições Não-Lineares (Coerência Física e Segurança Geomecânica)

Estas restrições garantem que cada solução candidata gerada pelo AG corresponda a um
caso fisicamente realizável e geomecanicamente seguro.

• Hierarquia de circulação direta: A operação em modo de circulação direta (injeção pro-
funda, produção rasa) exige uma ordem geométrica específica das tubulações e do teto
da caverna. Uma margem de segurança 𝜖 (um valor pequeno, e.g., 1 m) é usada para
evitar singularidades numéricas e garantir separação física:

𝐵𝑖 − 𝑃𝑖 + 𝜖 ≤ 0 (5.2)

𝑃𝑖 − 𝐼𝑖 + 𝜖 ≤ 0 (5.3)

A primeira inequação garante que o ponto de produção está abaixo do teto da caverna
(definido pelo blanket), e a segunda garante que o ponto de injeção está abaixo do
ponto de produção.

• Espessura mínima do teto de sal: Para assegurar a integridade estrutural a longo prazo
e prevenir o colapso do teto da caverna, uma espessura mínima de sal deve ser man-
tida acima do ponto mais alto da cavidade (𝐵𝑖). A literatura técnica recomenda uma
espessura mínima de sal de 150 m como uma diretriz segura para garantir a estabilidade
Seright e Brattekas (1991). A restrição utilizada neste trabalho, de 100 m, representa



68

um limite mínimo absoluto, abaixo do qual os riscos se tornam inaceitáveis.

𝐵𝑖 ≥ 𝑍topo_sal + 100 (5.4)

Onde 𝑍topo_sal é a profundidade do topo da formação salina.

A tabela 12 a seguir consolida as principais restrições geomecânicas derivadas da literatura,
que fundamentam a formulação do problema de otimização e a avaliação da segurança das
soluções geradas.

Tabela 12 – Restrições geomecânicas consideradas na otimização.

Parâmetro de design Valor Considerado Justificativa Técnica

Espessura mínima do teto de sal ≥100 m Garante a integridade estrutural
e o isolamento da caverna em
relação a formações superiores,
conforme diretrizes conservadoras
da literatura Seright e Brattekas
(1991).

Razão altura/diâmetro (H/D) Faixa ideal: 1.5 a 5.0 Equilibra a estabilidade e o apro-
veitamento volumétrico, evitando
tanto geometrias achatadas (H/D
≪ 1) quanto cavidades excessi-
vamente estreitas (“tipo lápis”)
Seright e Brattekas (1991).

Raio máximo do teto da caverna ≤ 9.1 m (30 ft) Controla o vão não suportado no
topo da caverna, o que é crucial
para reduzir o risco de colapso
associado à fluência plástica do
sal Seright e Brattekas (1991).

Profundidade máxima de injeção ≤ 1000 m Limita a extensão vertical da ca-
verna para respeitar a base da
camada de sal e garantir a viabi-
lidade das condições operacionais
do poço.

Margem à base do sal ≥ 50 m Impede que o processo de dissolu-
ção avance para próximo da base
da formação salina, evitando ris-
cos estruturais e o contato com
camadas geológicas indesejadas.
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5.3.6 Função-Objetivo e Métricas de Desempenho

A avaliação de cada solução candidata gerada pelo algoritmo genético é governada por uma
função-objetivo. A formulação desta função difere fundamentalmente entre a otimização mono-
objetivo (SOO) e a multiobjetivo (MOO), refletindo a natureza distinta de cada abordagem
de busca. Ambas, no entanto, dependem de um conjunto comum de quatro métricas de
desempenho chave, calculadas a partir dos resultados da simulação SALGAS:

• Volume máximo (MV): O volume total da caverna ao final da simulação (em 𝑚3).

• Massa de sal extraída (MS): A massa total de sal dissolvido (em ton).

• Eficiência energética (ME): A razão entre a massa de sal extraída e a energia consumida
(em 𝑡𝑜𝑛/𝑘𝑊ℎ).

• Tempo total de construção (MT): A duração total da campanha de lixiviação (em dias).

A seleção destas quatro métricas não é arbitrária; cada uma representa um pilar funda-
mental que define o sucesso técnico e econômico de um projeto de mineração por dissolução.
O volume máximo (MV) é a principal métrica de valor para projetos de armazenamento, pois
o espaço útil criado constitui o ativo que gera receita. Maximizar o MV, portanto, instrui o
algoritmo a encontrar estratégias que criem o maior espaço de armazenamento possível dentro
das restrições de segurança. A massa de sal extraída (MS) é a métrica primária para projetos
focados na produção de salmoura como matéria-prima para a indústria química, representando
o produto principal a ser comercializado.

As outras duas métricas governam a viabilidade econômica e operacional do projeto. O
tempo total de construção (MT) é um indicador direto do custo de capital (CAPEX) e da
exposição ao risco. Projetos mais longos incorrem em maiores custos operacionais, de financia-
mento e postergam o início da geração de receita, impactando negativamente o Valor Presente
Líquido (VPL) do ativo. Por fim, a eficiência energética (ME) é um indicador chave do custo
operacional (OPEX), medindo a quantidade de sal extraído por unidade de energia consu-
mida. Uma maior eficiência reduz os custos diretos de lixiviação e alinha o projeto a práticas
de engenharia mais sustentáveis.

A otimização simultânea destas métricas força o algoritmo a navegar pelos compromissos
(trade-offs) intrínsecos ao design de engenharia do mundo real, como o balanço entre a
velocidade de construção (aumentando a vazão) e a eficiência energética.
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Para garantir que estas métricas, que possuem escalas e unidades distintas, possam ser
comparadas e combinadas de forma matematicamente consistente, elas são normalizadas para
um intervalo adimensional de [0, 1] com base em limites mínimos e máximos realistas definidos
na configuração do sistema.

5.3.6.1 Formulação para Otimização Mono-Objetivo (ga)

Na otimização mono-objetivo (SOO), o desafio é consolidar os múltiplos critérios de de-
sempenho de um projeto em um único indicador numérico que possa guiar o algoritmo. Esse
indicador, no contexto dos Algoritmos Genéticos, é conhecido como aptidão (fitness), um valor
escalar que quantifica a "qualidade"de uma determinada solução candidata.

Para esta tarefa, foi utilizado o solver ga do Global Optimization Toolbox do MATLAB, uma
implementação computacional de um Algoritmo Genético projetada para problemas com um
único objetivo. Uma característica fundamental do solver ga é que ele opera como um mini-
mizador: seu propósito é encontrar a solução que resulta no menor valor de aptidão possível.

Dada essa característica, a função de aptidão, implementada na função fitnessFunction.m,
foi formulada para que valores menores indiquem soluções melhores. Para isso, as métricas de
desempenho normalizadas (𝑀 ′

𝑘) são agregadas através de uma função de soma ponderada. A
função-objetivo é definida como o negativo da soma ponderada dos objetivos que se deseja
maximizar, acrescida do complemento para o objetivo de minimização e de uma função de
penalidade (Πtotal) que desencoraja soluções que violem as restrições:

Fitness(𝑥⃗) = −

⎛⎝ ∑︁
𝑘∈{𝑀𝑉,𝑀𝑆,𝑀𝐸}

𝑤𝑘𝑀 ′
𝑘 + 𝑤𝑀𝑇 (1 − 𝑀 ′

𝑀𝑇 )
⎞⎠+ Πtotal(𝑥⃗) (5.5)

onde 𝑤𝑘 são os pesos que refletem a importância relativa de cada objetivo e Πtotal(𝑥⃗)

representa a soma de todas as penalidades. As principais penalidades implementadas incluem:

• Penalidade da razão altura/diâmetro (Π𝐻/𝐷): Garante a estabilidade geomecânica da
caverna, penalizando geometrias fora da faixa ideal (e.g., [1.5, 5.0]). Matematicamente,
é expressa como:

Π𝐻/𝐷(𝑥⃗) = 𝑝𝐻/𝐷 · (max(0, 𝐻/𝐷min − 𝐻/𝐷(𝑥⃗)) + max(0, 𝐻/𝐷(𝑥⃗) − 𝐻/𝐷max))

onde 𝑝𝐻/𝐷 é um coeficiente de penalidade, e 𝐻/𝐷min e 𝐻/𝐷max são os limites da faixa
ideal Seright e Brattekas (1991), Chen e Li (2024).
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• Penalidade de intervenção (Πworkover): Adiciona um custo fixo se ocorrer alteração nas
profundidades de operação (𝐵𝑖, 𝐼𝑖, 𝑃𝑖) entre os estágios, o que na prática exigiria uma
intervenção de sonda (workover) com custo significativo.

5.3.6.2 Formulação para Otimização Multiobjetivo (NSGA-II/gamultiobj)

Diferentemente da abordagem mono-objetivo, a otimização multiobjetivo com o solver
gamultiobj, que implementa o algoritmo NSGA-II, não utiliza uma função de soma ponde-
rada. Em vez disso, ele trata cada métrica de desempenho como um objetivo independente a
ser otimizado simultaneamente. A formulação busca encontrar um conjunto de soluções que
formam a Fronteira de Pareto, representando os melhores compromissos (trade-offs) possíveis
entre os quatro objetivos de engenharia definidos:

1. Maximizar o volume máximo (MV)

2. Maximizar a massa de sal extraída (MS)

3. Maximizar a eficiência energética (ME)

4. Minimizar o tempo total de construção (MT)

Por convenção, o solver gamultiobj minimiza todos os objetivos. Portanto, as métricas
que desejamos maximizar (MV, MS, ME) são retornadas com sinal negativo. A função-objetivo,
conforme implementada em fitnessFunctionMulti.m, retorna o seguinte vetor de quatro
objetivos, onde cada um já inclui as penalidades (Π𝑡𝑜𝑡𝑎𝑙) por violação de restrições:

Vetor de Objetivos =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑀 ′
𝑀𝑉 + Π𝑡𝑜𝑡𝑎𝑙

−𝑀 ′
𝑀𝑆 + Π𝑡𝑜𝑡𝑎𝑙

−𝑀 ′
𝑀𝐸 + Π𝑡𝑜𝑡𝑎𝑙

𝑀 ′
𝑀𝑇 + Π𝑡𝑜𝑡𝑎𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.6)

Nesta formulação, as penalidades garantem que soluções que violam restrições sejam con-
sideradas dominadas por soluções viáveis, guiando a busca em direção à região factível do
espaço de busca.
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5.4 IMPLEMENTAÇÃO COMPUTACIONAL E ARQUITETURA DO OTIMIZADOR

A solução do problema de otimização formulado requer um framework computacional que
integre, de forma eficiente, o processo de busca do Algoritmo Genético com as avaliações da
função-objetivo, que são fornecidas pelo simulador de lixiviação SALGAS. Esta seção detalha
a arquitetura deste sistema e justifica a configuração dos operadores genéticos utilizados no
ambiente MATLAB.

Para garantir a total reprodutibilidade e permitir a análise detalhada da metodologia,
o código-fonte completo deste framework, incluindo os scripts para as otimizações mono e
multiobjetivo, foi disponibilizado em um repositório público no GitHub, que pode ser acessado
em:

<https://github.com/OscarMelgar40/tese-otimizacao-cavernas-salinas>

5.4.1 O framework de Otimização: Acoplando SALGAS e AG

A arquitetura do otimizador é construída em torno de um laço iterativo onde o Algoritmo
Genético (AG) e o simulador SALGAS se comunicam. O processo, implementado nos scripts
iniciar_otimizacao.m e iniciar_otimizacao_multiobjetivo.m, pode ser descrito da se-
guinte forma. A figura 10 ilustra este fluxo de trabalho, detalhando cada passo do processo.

https://github.com/OscarMelgar40/tese-otimizacao-cavernas-salinas
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Figura 10 – Fluxograma do processo de otimização acoplando o AG ao SALGAS.

Fonte: O autor (2025)
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1. geração da população: o AG inicia criando uma população de indivíduos. Cada indivíduo
é um vetor de decisão 𝑥⃗ (conforme a Equação 7.2), representando um design completo
da campanha de lixiviação em dois estágios.

2. avaliação da aptidão (fitness): para cada indivíduo na população, o framework executa
uma avaliação da função-objetivo. Este é o passo mais crítico e computacionalmente
intensivo do processo.

• o vetor de decisão 𝑥⃗ é traduzido em um arquivo de entrada (.sgi) para o SALGAS,
contendo todos os parâmetros operacionais (vazões, tempos, profundidades, etc.)
para os dois estágios de simulação Warren (2016).

• o simulador SALGAS é executado como um processo black-box. O framework in-
voca o simulador, aguarda a conclusão da simulação e então extrai os resultados
relevantes do arquivo de saída.

• os resultados da simulação (e.g., volume final da caverna, tempo total, etc.) são
usados para calcular as métricas de desempenho e, consequentemente, a aptidão
do indivíduo. As restrições geomecânicas e operacionais são verificadas através da
função restricoes.m, e as penalidades correspondentes são aplicadas.

3. operadores genéticos: com base na aptidão de toda a população, o AG aplica seus ope-
radores estocásticos para criar a próxima geração. As escolhas específicas dos operadores
são cruciais para a eficiência da busca:

• seleção: o mecanismo de escolha dos "pais"difere entre as abordagens. Para a
otimização mono-objetivo (ga), utiliza-se a seleção por torneio baseada no valor
de fitness escalar. Para a multiobjetivo (gamultiobj), o critério é a dominância
de Pareto e a distância de aglomeração, conforme o algoritmo NSGA-II.

• cruzamento (crossover): pares de pais são recombinados usando o operador
crossoverintermediate, ideal para variáveis contínuas. Este operador cria "fi-
lhos"que herdam uma mistura ponderada das características dos progenitores, pro-
movendo a exploitation.

• mutação: uma pequena porção dos filhos sofre alterações aleatórias através do
operador @mutationadaptfeasible. Esta escolha é fundamental, pois o operador
adapta-se ao problema e garante que as mutações sempre respeitem as restrições
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de contorno (lb e ub), aumentando drasticamente a eficiência da busca ao evitar
a geração de indivíduos inviáveis.

4. convergência: o ciclo de avaliação e aplicação de operadores genéticos é repetido até que
um critério de parada seja atingido, como o número máximo de gerações (MaxGenerations)
ou a estagnação da melhor solução por um número definido de gerações (MaxStallGenerations).

O principal desafio desta abordagem é o custo computacional. Em nosso ambiente de
testes, uma única avaliação da função-objetivo, que envolve uma simulação completa dos dois
estágios no SALGAS, levou em média 45 segundos para ser concluída. Consequentemente, para
uma população de 25 indivíduos, executada por 10 gerações, o número total de avaliações é de
250 simulações, demandando um tempo de execução considerável que justifica a otimização
do processo.

Isso torna imperativo o uso de algoritmos eficientes e a implementação de técnicas de
computação paralela. É importante esclarecer que a paralelização não ocorre dentro do simu-
lador SALGAS, que é executado como um processo serial individual. Em vez disso, o framework
de otimização acelera a busca ao paralelizar as avaliações da função de aptidão. Com a op-
ção UseParallel = true, o solver ga do MATLAB distribui os diferentes indivíduos de uma
mesma geração para serem avaliados simultaneamente em múltiplos núcleos de processamento.
Cada núcleo executa uma instância independente do SALGAS, o que reduz significativamente
o tempo total necessário para avaliar uma população inteira Mello, Lacerda e Pozo (2023).

5.4.2 Estratégia de Aceleração Computacional: Modelos Substitutos para Propri-

edades de Fluidos

Um dos principais gargalos computacionais no acoplamento de um otimizador ao SALGAS é
a determinação dos parâmetros de entrada para cada avaliação da função-objetivo. Conforme
detalhado no Apêndice D, o cálculo da gravidade específica (SG) do fluido de injeção e da
salmoura saturada utilizando ferramentas externas como o Toolbox do SMRI é um processo
manual e lento, inviável para as milhares de iterações exigidas por um Algoritmo Genético.

Para superar essa limitação e viabilizar a otimização, uma estratégia de modelagem de
substitutos (surrogate modeling) foi implementada. Em vez de recalcular as propriedades dos
fluidos a cada chamada, modelos de regressão polinomial de segunda ordem (poly22 no
MATLAB) foram pré-ajustados com base nos dados experimentais apresentados na Tabela 6.
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Esses modelos foram implementados na função calcular_parametros_fluido.m e seus co-
eficientes armazenados na estrutura de configuração do otimizador.

Essa abordagem proporciona uma aproximação de alta fidelidade e computacionalmente
instantânea das propriedades dos fluidos, eliminando um dos principais gargalos do processo.
Ao substituir uma etapa lenta e externa por um modelo matemático local, a avaliação da
função-objetivo torna-se significativamente mais eficiente, permitindo a exploração de um
número muito maior de soluções candidatas dentro de um tempo computacional viável.

5.4.3 Configuração dos Operadores Genéticos no Ambiente MATLAB

A implementação da otimização nesta tese abrange tanto a otimização mono-objetivo
(SOO), focada em encontrar uma única solução ótima, quanto a otimização multiobjetivo
(MOO), que busca um conjunto de soluções de compromisso (fronteira de Pareto). Ambas as
abordagens foram implementadas utilizando o Global Optimization Toolbox The MathWorks,
Inc. (2024a) do MATLAB, respectivamente com os solvers ga e gamultiobj.

Embora os mecanismos de avaliação e seleção dos indivíduos sejam fundamentalmente
diferentes entre as duas abordagens, o motor evolutivo central — que governa a geração de
novas soluções através de cruzamento e mutação — compartilha uma base de parâmetros
comum. A principal distinção reside no critério de seleção:

• No caso mono-objetivo (ga), os indivíduos são avaliados e selecionados com base em
um único valor de aptidão escalar, que agrega todos os objetivos e penalidades.

• No caso multiobjetivo (gamultiobj), a seleção é governada pelos princípios da dominân-
cia de Pareto e pela manutenção da diversidade. O algoritmo utiliza a ordenação rápida
por não dominância para classificar as soluções em "frentes"e a distância de aglomeração
para garantir uma distribuição uniforme ao longo da fronteira de Pareto.

A tabela a seguir consolida os parâmetros de configuração utilizados, detalhando sua fun-
ção e justificativa em ambos os casos de otimização. Esta abordagem unificada destaca as
similaridades no núcleo do processo evolutivo, ao mesmo tempo que esclarece as nuances
específicas de cada método.
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Tabela 14 – Parâmetros de configuração do Algoritmo Genético (solvers ga e gamultiobj).

Parâmetro (Propriedade MA-
TLAB)

Valor Utilizado Justificativa e Considerações (SOO &
MOO)

Configuração da população e duração

Tamanho da população
(PopulationSize)

25 Essencial para a diversidade genética.
Na MOO, é crítico para bem repre-
sentar a fronteira de Pareto.

Máximo de gerações
(MaxGenerations)

10 Número máximo de iterações, ba-
lanceando a convergência da solução
com o custo computacional.

Mecanismos de seleção e sobrevivência

Mecanismo de seleção Específico do solver ga: Seleção por torneio (baseada em
fitness único).
gamultiobj: Ordenação por não do-
minância e distância de aglomeração
(NSGA-II).

Elitismo Específico do solver ga: EliteCount (10%) preserva os
melhores indivíduos.
gamultio-bj: Inerente ao meca-
nismo, que sempre preserva as melho-
res frentes não dominadas.

Operadores de geração de soluções

Fração de cruzamento
(CrossoverFraction)

0.8 Principal motor da exploitation, ge-
rando 80% dos novos indivíduos a
partir de pais promissores.

Operador de mutação
(MutationFcn)

@mutationadaptfeasible Principal motor da exploração. Ga-
rante que as soluções geradas respei-
tem as restrições de contorno.

Configuração da execução e restrições

Função de restrições não li-
neares

@restricoes Garante a viabilidade física e a segu-
rança dos projetos, aplicando restri-
ções geomecânicas (e.g., razão H/D).

Uso de paralelismo
(UseParallel)

true Acelera a otimização ao distribuir as
avaliações de fitness, sendo crucial
para a viabilidade computacional do
estudo.
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6 RESULTADOS E DISCUSSÃO

Este capítulo apresenta e discute os principais resultados gerados ao longo desta tese. A
apresentação é dividida em duas partes principais, seguindo a lógica da pesquisa. Primeira-
mente, são detalhados os resultados da fase de análise, que incluem as simulações numéricas
do processo de lixiviação com o software SALGAS e a subsequente análise estatística multiva-
riada dos dados com as técnicas PCA e t-SNE. Em seguida, são apresentados os resultados da
fase de otimização, demonstrando as soluções de design obtidas pelo framework que acopla
algoritmos genéticos ao simulador, tanto para o caso mono-objetivo quanto para o multiobje-
tivo.

6.1 RESULTADOS COM SALGAS

Com base nas simulações realizadas no software SALGAS, foram feitas comparações dos
contornos finais das cavernas e dos volumes ao final da simulação para os casos D (direto) e
R (reverso). Com as informações obtidas, foram geradas superfícies de resposta que ilustram
visualmente o comportamento do volume em ambos os casos, mediante a técnica discutida em
Amidror (2002). Outra análise realizada foi a comparação dos volumes entre os dois métodos
de dissolução.

O comportamento da caverna foi analisado considerando a variação da taxa de produção
de salmoura e das temperaturas de referência (40°C, 60°C e 80°C) ao longo de 120 dias. As
figuras de 11 a 17 apresentam os resultados para as simulações do caso D.

A comparação entre os contornos finais da caverna para o tempo de 120 dias no caso D,
considerando cada caso analisado, é apresentada nas figuras de 11 a 13. Nelas, foi possível
verificar a geometria e o valor do raio atingido. Para uma mesma condição de temperatura,
observa-se que, quanto maior a taxa de produção, maior o raio da caverna. O valor máximo
alcançado em 120 dias foi de 26,90 m de raio no caso com temperatura de 80°C e taxa de
produção de 1200 m3/h. Analisando a mesma taxa de produção, o raio da caverna também
aumenta com o aumento da temperatura de referência, devido à maior solubilidade do cloreto
de sódio em temperaturas elevadas, o que acelera a dissolução. Contudo, a magnitude dessa
variação é visivelmente menor do que a observada ao se alterar a taxa de produção, como
se pode constatar pela maior separação entre as curvas de vazão nas figuras. Isso indica
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que, dentro das faixas analisadas, a taxa de produção é a variável dominante no controle do
diâmetro final da caverna.

Figura 11 – Comparação dos contornos finais da caverna para o caso de referência T = 40°C no caso D.

Fonte: O autor (2025)
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Figura 12 – Comparação dos contornos finais da caverna para o caso de referência T = 60°C no caso D.

Fonte: O autor (2025)

Figura 13 – Comparação dos contornos finais da caverna para o caso de referência T = 80°C no caso D.

Fonte: O autor (2025)

As figuras de 14 a 16 apresentam os resultados de evolução do volume, agrupados por caso
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de temperatura de referência. A análise mostra que, para uma mesma condição de temperatura,
o volume da caverna cresce mais rapidamente com o aumento da taxa de produção. Isso
ocorre pois uma maior vazão intensifica a turbulência no interior da cavidade, o que eleva o
coeficiente de transferência de massa e, consequentemente, acelera a taxa de dissolução do
sal. Além disso, analisando a influência dos diferentes casos de temperatura, observa-se que,
para uma mesma taxa de produção, quanto maior a temperatura de referência, maior é o
volume final da caverna. Isso se deve ao aumento da solubilidade do cloreto de sódio com a
temperatura, fazendo com que o solvente dissolva a rocha salina de forma mais efetiva.

Figura 14 – Evolução do volume da caverna para o caso T = 40°C no caso D.

Fonte: O autor (2025)
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Figura 15 – Evolução do volume da caverna para o caso T = 60°C no caso D.

Fonte: O autor (2025)

Figura 16 – Evolução do volume da caverna para o caso T = 80°C no caso D.

Fonte: O autor (2025)

Com base nos resultados das análises para as diferentes vazões e temperaturas ao final de
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120 dias, foi gerada uma superfície de resposta para ilustrar visualmente o comportamento do
volume. Nessa superfície, as variáveis independentes são a vazão e a temperatura, enquanto a
variável dependente é o volume, conforme ilustrado na figura 17. A técnica utilizada para criar
esta superfície foi a interpolação linear baseada em triangulação, uma metodologia para dados
esparsos descrita em Amidror (2002). Este método consiste em criar uma rede de triângulos
a partir dos pontos de dados simulados e, em seguida, interpolar linearmente o volume dentro
de cada triângulo para gerar uma superfície contínua, conforme detalhado no Apêndice B.

Figura 17 – Superfície de resposta para o volume no caso D.

Fonte: O autor (2025)

De modo semelhante, foram feitas as análises para o caso R, cujos resultados são expostos
nas figuras de 18 a 24.

A comparação entre os contornos finais da caverna para o tempo de 120 dias no caso R
é apresentada nas figuras de 18 a 20, onde foi possível verificar a geometria e o valor do raio
atingido. Similarmente ao caso D, para uma mesma condição de temperatura, quanto maior a
taxa de produção, maior o raio da caverna. O valor máximo alcançado em 120 dias foi de 33,70
m de raio no caso com temperatura de 80°C e taxa de produção de 1200 m3/h. Analisando
a mesma taxa de produção, o raio da caverna aumenta com o aumento da temperatura, uma
vez que a maior temperatura eleva a solubilidade do sal, acelerando o processo de dissolução.
Contudo, a análise visual das figuras demonstra que a magnitude desta variação é menor do
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que a causada pela alteração da taxa de produção, sugerindo que esta última variável tem
maior influência no diâmetro final obtido.

Figura 18 – Comparação dos contornos finais da caverna para o caso de referência T = 40°C no caso R.

Fonte: O autor (2025)
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Figura 19 – Comparação dos contornos finais da caverna para o caso de referência T = 60°C no caso R.

Fonte: O autor (2025)

Figura 20 – Comparação dos contornos finais da caverna para o caso de referência T = 80°C no caso R.

Fonte: O autor (2025)

As figuras de 21 a 23 apresentam os resultados de evolução do volume para cada tempe-
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ratura de referência. Para uma mesma condição de temperatura, o volume cresce mais rapi-
damente com taxas de produção mais altas. De igual modo ao ocorrido no caso D, observa-se
que, para uma mesma taxa de produção, quanto maior a temperatura de referência, maior o
volume da caverna, devido ao aumento da solubilidade do sal.

Figura 21 – Evolução do volume da caverna para o caso T = 40°C no caso R.

Fonte: O autor (2025)
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Figura 22 – Evolução do volume da caverna para o caso T = 60°C no caso R.

Fonte: O autor (2025)

Figura 23 – Evolução do volume da caverna para o caso T = 80°C no caso R.

Fonte: O autor (2025)

De forma similar ao que foi feito para o caso D, uma superfície de resposta foi criada para
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o caso R. Considerando as diferentes vazões, temperaturas e o tempo final de 120 dias, a
superfície foi extrapolada com os dados de saída do SALGAS. As variáveis independentes são
a vazão e a temperatura, e a variável dependente é o volume, como mostrado na figura 24.

Figura 24 – Superfície de resposta para o volume no caso R.

Fonte: O autor (2025)

A tabela 15 apresenta a diferença percentual de volume entre os casos R (reverso) e D
(direto). Em todos os casos analisados, o caso R resulta em um volume final consistentemente
maior. A principal razão para essa maior eficiência reside na dinâmica dos fluidos: na circulação
reversa, a água doce (menos densa) é injetada no topo e desce pelas paredes, enquanto a
salmoura (mais densa) se acumula naturalmente no fundo para ser extraída. Isso cria uma
célula de convecção estável que aproveita toda a altura da caverna para a dissolução. Em
contraste, na circulação direta, a água doce injetada no fundo tende a subir rapidamente, o
que pode causar um "curto-circuito"no fluxo, reduzindo o contato efetivo com as paredes da
caverna e, consequentemente, a eficiência do processo.

Observa-se também na tabela uma relação decrescente entre a temperatura e a vantagem
percentual do caso R. Ou seja, a superioridade do método reverso é mais pronunciada em
temperaturas mais baixas. Isso pode ser explicado pelo fato de que, em temperaturas mais
altas, a taxa de reação química (solubilidade do sal) se torna tão elevada que passa a dominar
sobre os efeitos da eficiência da circulação. Mesmo o método D, menos eficiente, torna-se
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muito mais reativo com o aumento do calor, o que diminui a diferença relativa de performance
entre os dois casos.

Finalmente, nota-se uma particularidade no caso de 40°C, onde a tendência de aumento
da diferença percentual se inverte na maior vazão (1200 m3/h), sugerindo interações mais
complexas entre vazão e temperatura em regimes de menor energia térmica.

Tabela 15 – Diferença percentual dos volumes entre os casos Direto e Reverso.

Vazão (m3/h) Volume Direta (m3) Volume Reversa (m3) Diferença (%)

caso de Temperatura = 40°C

120 41384,70 45041,05 8,84
200 64977,89 71511,52 10,06
360 107985,01 120021,52 11,15
400 118130,44 131330,95 11,17
800 210546,86 234701,06 11,47
1200 297725,84 329164,61 10,56

caso de Temperatura = 60°C

120 47798,02 50428,90 5,50
200 76518,14 81612,44 6,66
360 130838,47 140939,95 7,72
400 143839,62 155241,92 7,93
800 266268,51 289757,15 8,82
1200 378841,15 413365,75 9,11

caso de Temperatura = 80°C

120 53401,79 54978,28 2,95
200 86638,43 89867,38 3,73
360 150454,96 157578,15 4,73
400 166003,75 174118,79 4,89
800 314677,96 333077,61 5,85
1200 454376,84 482909,65 6,28

Fonte: O autor (2025)

A tabela 15 e a figura 25 ilustram as diferenças percentuais de volume entre os casos.
Uma análise particular da figura 25 revela um comportamento anômalo na curva de 40°C,
que, ao contrário das outras, apresenta uma queda no final. Isso sugere que, em temperaturas
mais baixas onde a cinética da dissolução é mais lenta, o aumento extremo da vazão para
1200 m3/h gera uma turbulência tão intensa que pode melhorar a eficiência do método de
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circulação direta (D) de forma desproporcional, reduzindo assim sua diferença percentual em
relação ao já eficiente método reverso (R).

Figura 25 – Diferença porcentual dos volumes entre os casos direto e reverso.

Fonte: O autor (2025)

A figura 26 serve como uma confirmação visual da tendência discutida anteriormente. Ao
plotar os resultados de ambos os casos (esferas pretas para Direto, vermelhas para Reverso)
sobre uma única superfície de referência, a figura destaca a magnitude da diferença de perfor-
mance entre os métodos. Fica evidente que a separação vertical entre os pontos de cada par
de simulação (mesma vazão e temperatura) é maior em temperaturas mais baixas (40°C) e
diminui progressivamente em temperaturas mais altas (80°C). Essa representação gráfica re-
força a conclusão de que a eficiência superior do método reverso é mais acentuada em regimes
de menor temperatura.
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Figura 26 – Superfície de Resposta - volume comparado

Fonte: O autor (2025)

6.2 RESULTADOS COM PCA

Nesta seção, é apresentada a análise estatística multivariada da matriz de dados conso-
lidada, cuja estrutura foi mostrada na figura 9. A abordagem adotada neste trabalho difere
daquela utilizada por Silva (2022), que realizou uma análise sobre a matriz de dados de cada
cenário separadamente. Em contrapartida, neste estudo, optou-se por realizar a análise em
uma matriz única contendo os dados de ambos os cenários, a fim de obter uma visão global
do sistema.

A análise dos dados seguiu uma sequência metodológica rigorosa. Inicialmente, foi realizada
uma análise descritiva das variáveis. Em seguida, para validar a aplicabilidade da PCA, foi
realizado o teste de esfericidade de Bartlett (1950) ao nível de significância de 1%. Este teste
verifica se as variáveis são correlacionadas entre si, uma condição necessária para que uma
técnica de redução de dados, como a PCA, possa compactar os dados de maneira significativa.
Como o resultado do teste confirmou a existência de correlações, aplicou-se finalmente a
Análise de Componentes Principais à matriz.

Para permitir a comparação direta entre variáveis com diferentes escalas e unidades, os
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dados foram previamente padronizados através da normalização z-score, um processo que
consiste em subtrair a média e dividir pelo desvio padrão de cada variável. A tabela 16 apresenta
a análise descritiva dos dados já padronizados, resumindo a média, o desvio padrão, a mediana,
os valores mínimo e máximo, o primeiro quartil e o terceiro quartil para cada variável.

Tabela 16 – Análise descritiva das variáveis

Variáveis Média Desvio Padrão Mediana Mínimo Máximo Primeiro Quartil Terceiro Quartil

Temperatura 60 16,56157 60 40 80 40 80
Taxa de produção 496,1753 367,4294 367,299 115,9891 1159,891 193,3143 773,2596
Raio 17,76206 6,359494 16,34913 8,481523 33,6982 12,86952 21,67224
Volume 179612,6 125374,1 142389,8 41384,7 482909,7 80338,86 272140,7
Pressão de Injeção 10,49333 2,974654 9,425 7,56 16,74 8,365 11,52
SG da salmoura 1,188156 0,007232 1,1875 1,1785 1,1994 1,180275 1,196
SG do fluido de injeção 1,014344 0,00882 1,01458 1,00223 1,02713 1,004205 1,023555
Fator dissolução do sal 3,985223 1,733602 3,641454 1,990351 6,536986 2,093171 6,100862
Potência da bomba 2695,161 4037,188 567,6314 64,14828 11431,77 156,4012 3635,694
Energia cumulativa 2,78E+13 4,17E+13 5,84E+12 6,6E+11 1,18E+14 1,62E+12 3,75E+13
Perda de tubulação 3,258273 3,98094 1,297398 0,150758 11,66974 0,403312 5,103422
Salmoura produzida 1429131 1058304 1057930 334083,1 3340827 556805,2 2227215
Pressão da bomba 9,8427 10,19622 4,830952 1,733942 30,76283 2,52151 14,76271

Fonte: O autor (2025)

Para a análise estatística foram renomeadas as 13 variáveis a seguir:

• X1 - Temperatura

• X2 - Taxa de produção

• X3 - Raio

• X4 - Volume

• X5 - Pressão da injeção

• X6 - SG da salmoura

• X7 - SG do fluido da injeção

• X8 - Fator dissolução do sal

• X9 - Potência da bomba

• X10 - Energia cumulativa

• X11 - Perda da tubulação

• X12 - Salmoura produzida
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• X13 - Pressão da bomba

Daqui por diante, podem ser usadas tanto esta nova nomenclatura quanto os nomes originais
das variáveis, segundo seja o caso.

Em seguida apresenta-se a tabela 17 da correlação entre as variáveis.

Tabela 17 – Correlação entre as variáveis.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

X1 1 0 0,25 0,21 0 -0,99 -0,99 0,99 0,01 0,01 0 0 0,01
X2 0 1 0,89 0,96 0,95 0,16 0,13 0,06 0,95 0,95 0,98 1 0,98
X3 0,25 0,89 1 0,95 0,75 -0,13 -0,14 0,3 0,81 0,81 0,86 0,89 0,85
X4 0,21 0,96 0,95 1 0,9 -0,05 -0,08 0,26 0,9 0,91 0,94 0,96 0,94
X5 0 0,95 0,75 0,9 1 0,17 0,14 0,06 0,97 0,97 0,97 0,95 0,97
X6 -0,99 0,16 -0,13 -0,05 0,17 1 1 -0,96 0,15 0,15 0,16 0,16 0,15
X7 -0,99 0,13 -0,14 -0,08 0,14 1 1 -0,98 0,13 0,13 0,13 0,13 0,12
X8 0,99 0,06 0,3 0,26 0,06 -0,96 -0,98 1 0,07 0,07 0,07 0,06 0,08
X9 0,01 0,95 0,81 0,9 0,97 0,15 0,13 0,07 1 1 0,99 0,95 0,99
X10 0,01 0,95 0,81 0,91 0,97 0,15 0,13 0,07 1 1 0,99 0,95 0,99
X11 0 0,98 0,86 0,94 0,97 0,16 0,13 0,07 0,99 0,99 1 0,98 1
X12 0 1 0,89 0,96 0,95 0,16 0,13 0,06 0,95 0,95 0,98 1 0,98
X13 0,01 0,98 0,85 0,94 0,97 0,15 0,12 0,08 0,99 0,99 1 0,98 1

Fonte: O autor (2025)

A figura 27 que representa a matriz de correlação entre as variáveis apresentadas na tabela
anterior. Para uma análise mais visual, como solicitado, esta figura (correlograma) utiliza cores
e tamanhos para indicar a força e a direção da correlação. Pode-se observar que a variável
da temperatura (X1) tem uma forte correlação positiva com o fator de dissolução do sal
(X8) e negativa com as gravidades específicas (X6 e X7). Nota-se também um grande bloco
de correlações positivas entre as variáveis de operação (como X2 - Taxa de produção) e as
variáveis de resultado (como X4 - Volume e X9 - Potência da bomba).
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Figura 27 – Matriz de correlação entre as variáveis (Correlograma).

Fonte: O autor (2025)

Para validar a aplicabilidade da análise de componentes principais, foi utilizado o teste
de esfericidade de Bartlett Bartlett (1950). Este teste de hipótese verifica se as variáveis na
matriz de dados são correlacionadas, o que é uma premissa fundamental para o uso do PCA.
A hipótese nula (𝐻0) postula que a matriz de correlação é uma matriz identidade (ou seja,
as variáveis não são correlacionadas), tornando a aplicação do PCA inadequada. A hipótese
alternativa (𝐻1), por sua vez, é de que a matriz de correlação não é uma matriz identidade,
indicando que a aplicação do PCA é apropriada.

A estatística do teste segue uma distribuição 𝜒2 com 𝑝(𝑝 − 1)/2 graus de liberdade e é
calculada pela seguinte fórmula:

𝜒2 = −
(︂

𝑛 − 1 − 2𝑝 + 5
6

)︂
ln |𝑅|

onde 𝑛 é o número de amostras, 𝑝 é o número de variáveis e |𝑅| é o determinante da matriz
de correlação.

O resultado do teste foi 𝜒2 = 2950, 687 com um p-valor de 0,0, o que leva à rejeição da
hipótese nula com um nível de significância de 1%. Conclui-se, portanto, que as variáveis são
correlacionadas e que a aplicação do PCA é justificada.

Na Tabela 18, são apresentados os autovalores obtidos mediante o PCA, a porcentagem
da variância total explicada por cada componente, e a porcentagem acumulada.
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Tabela 18 – PCA - Autovalores, porcentagem da variância total e a porcentagem acumulada da explicação da
variância total.

Componentes principais Autovalor Porcentagem (%) Porcentagem Acumulada (%)

Comp1 8,55 65,75 65,75
Comp2 4,04 31,07 96,82
Comp3 0,30 2,30 99,12
Comp4 0,08 0,60 99,72
Comp5 0,02 0,14 99,86
Comp6 0,01 0,10 99,96
Comp7 0,00 0,03 99,99
Comp8 0,00 0,01 100,00
Comp9 0,00 0,00 100,00
Comp10 0,00 0,00 100,00
Comp11 0,00 0,00 100,00
Comp12 0,00 0,00 100,00
Comp13 0,00 0,00 100,00

Fonte: O autor (2025)

A tabela 18 apresentou os autovalores de cada componente principal. A figura 28, conhecida
como Scree Plot, representa graficamente esses mesmos autovalores em ordem decrescente,
evidenciando a dominância dos primeiros componentes.

Figura 28 – PCA - Autovalores (Scree Plot).

Fonte: O autor (2025)

Para quantificar essa importância, a figura 29 mostra a porcentagem da variância total
explicada por cada componente. Nela, observa-se que os dois primeiros componentes principais
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são suficientes para explicar aproximadamente 96,8% da variabilidade total dos dados, sendo
65,7% contribuídos pelo primeiro componente e 31,1% pelo segundo.

Figura 29 – PCA - Porcentagem da variância total explicada por componente.

Fonte: O autor (2025)

A análise da contribuição das variáveis, detalhada na tabela 19, permite interpretar o
significado físico de cada componente principal. A metodologia para nomear cada componente
consiste em identificar o grupo de variáveis com maior peso (contribuição) para aquele eixo e, a
partir do tema que as une, atribuir um nome conceitual. Seguindo este método, a análise revela
uma clara separação dos fatores que governam o processo de dissolução em eixos ortogonais
de variação. O primeiro componente principal (Comp1) está fortemente associado a variáveis
como taxa de produção, potência da bomba e volume, representando o eixo de intensidade
operacional do sistema. O segundo componente (Comp2), por sua vez, é dominado pela
temperatura, pelas gravidades específicas (SG) e pelo fator de dissolução, definindo o eixo
termodinâmico que descreve as condições físico-químicas do processo. Esta dicotomia é um
dos principais resultados da análise, pois quantifica a independência entre a escala da operação
e as propriedades do fluido. Para facilitar a visualização, as figuras 30 e 31 ilustram graficamente
os aportes das variáveis nesses dois primeiros componentes.
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Tabela 19 – Contribuição das variáveis nos componentes

Variáveis Comp1 Comp2 Comp3 Comp4 Comp5

Temperatura 0,00 0,42 0,01 0,00 0,00
Taxa de produção 0,20 0,00 0,03 0,19 0,27
Raio 0,16 0,02 0,85 0,19 0,00
Volume 0,19 0,01 0,15 0,09 1,00
Pressão de Injeção 0,19 0,00 0,26 0,40 0,07
SG da Salmoura 0,00 0,42 0,00 0,00 0,01
SG do fluido de Injeção 0,00 0,42 0,00 0,00 0,01
Fator Dissolução da Sal 0,00 0,42 0,03 0,01 0,00
Potência da bomba 0,19 0,00 0,15 0,28 0,01
Energia cumulativa 0,19 0,00 0,15 0,28 0,01
Perda de tubulação 0,20 0,00 0,02 0,05 0,03
Salmoura produzida 0,20 0,00 0,03 0,19 0,27
Pressão da bomba 0,20 0,00 0,03 0,02 0,03

Fonte: O autor (2025)

Nas figuras 30 e 31, são apresentados os aportes das variáveis no primeiro e segundo
componentes, respectivamente, facilitando a visualização dos resultados desta tabela. A linha
tracejada vermelha no gráfico indica a contribuição média esperada. Se a contribuição das
variáveis for uniforme, o valor esperado seria 1/número de variáveis = 1/13 ≈ 7.7% onde p
é o número de variáveis. Para um determinado componente, uma variável com contribuição
maior que esse limite pode ser considerada importante na contribuição do componente. Assim
no primeiro componente as variáveis de pressão da bomba, perda de tubulação, salmoura
produzida, taxa de produção, energia cumulativa, potencia da bomba, volume, pressão de
injeção e raio são as que mais contribuem. Já no segundo componente, as variáveis que
mais contribuem são a temperatura, a gravidade especifica do fluido de injeção, a gravidade
especifica da salmoura e o fator de dissolução do sal.
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Figura 30 – PCA - Contribuição das variáveis no primeiro componente

Fonte: O autor (2025)

Figura 31 – PCA - Contribuição das variáveis no segundo componente

Fonte: O autor (2025)



99

A figura 32 apresenta um resumo visual da contribuição das variáveis para os cinco primeiros
componentes principais, complementando os dados da tabela 17 (apresentada anteriormente).
O gráfico reforça a interpretação dos dois eixos principais: o Componente 1 agrupa as variáveis
operacionais, enquanto o Componente 2 agrupa as variáveis termodinâmicas. Adicionalmente,
a figura revela que os componentes de menor ordem capturam variâncias mais específicas.
Notavelmente, o Componente 3 é quase que exclusivamente dominado pela variável "raio",
e o Componente 5 é similarmente dominado pelo "volume", indicando que estas geometrias
possuem aspectos de variabilidade únicos não totalmente explicados pelos dois primeiros eixos.

Figura 32 – PCA - Contribuição das variáveis nos cinco primeiros componentes.

Fonte: O autor (2025)

Enquanto a tabela anterior mostrou a contribuição de cada variável para a formação dos
componentes, a tabela 20 a seguir detalha a correlação entre as variáveis e estes mesmos
componentes. Os valores de correlação (entre -1 e 1) são importantes para interpretar a
direção (positiva ou negativa) da influência de cada variável em cada eixo principal.
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Tabela 20 – Correlação entre as variáveis e os componentes.

Variáveis Comp1 Comp2 Comp3 Comp4 Comp5

Temperatura 0,05 1,00 0,05 0,01 0,00
Taxa de produção 0,99 -0,05 -0,08 0,09 -0,05
Raio 0,89 0,23 -0,39 -0,09 0,00
Volume 0,97 0,17 -0,16 0,06 0,10
Pressão de Injeção 0,97 -0,06 0,21 0,14 0,03
SG da Salmoura 0,11 -0,99 -0,01 0,01 0,01
SG do fluido de Injeção 0,09 -1,00 -0,02 0,01 0,01
Fator Dissolução da Sal 0,11 0,99 0,07 0,02 0,00
Potência da bomba 0,98 -0,05 0,16 -0,11 0,01
Energia cumulativa 0,98 -0,04 0,16 -0,11 0,01
Perda de tubulação 1,00 -0,05 0,05 -0,05 -0,02
Salmoura produzida 0,99 -0,05 -0,08 0,09 -0,05
Pressão da bomba 1,00 -0,04 0,07 -0,03 -0,02

Fonte: O autor (2025)

A figura 33 apresenta o círculo de correlação, projetando as variáveis nos dois eixos prin-
cipais. Conforme a análise de contribuição, interpretamos estes eixos da seguinte forma: o
componente 1 (horizontal) representa o "eixo de intensidade operacional"(ligado à produção
e volume), enquanto o componente 2 (vertical) representa o "eixo termodinâmico"(ligado à
temperatura e propriedades do fluido). Com base nisso, observamos:

• As variáveis de saída do SALGAS — raio, volume, potência da bomba, energia cumu-
lativa, perda de tubulação, salmoura produzida e pressão da bomba — formam um
agrupamento coeso alinhado ao eixo de intensidade operacional, indicando a forte cor-
relação positiva entre si.

• A correlação negativa entre o grupo de variáveis termodinâmicas (temperatura e fator de
dissolução) e o de gravidades específicas (SG) é confirmada, uma vez que seus vetores
se posicionam em quadrantes opostos ao longo do Eixo Termodinâmico.

• Adicionalmente, a baixa correlação entre a temperatura e as variáveis de saída é eviden-
ciada pela quase ortogonalidade (ângulo de aproximadamente 90º) entre seus vetores
representativos.
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Figura 33 – Círculo de correlação

Fonte: O autor (2025)

A figura 34 apresenta um biplot da análise de componentes principais, que permite a inter-
pretação simultânea das variáveis (vetores) e dos indivíduos (casos simulados). A nomenclatura
dos casos segue o formato D/R(temp)(vazão), onde D indica circulação direta e R, reversa.
A interpretação da projeção dos indivíduos em relação aos vetores confirma a estrutura física
do problema:

• Indivíduos como D600800 e R600800, caracterizados por vazões elevadas, projetam-se
fortemente na mesma direção dos vetores das variáveis de saída (raio, volume, etc.),
indicando que estes casos resultam em valores elevados para tais métricas.

• Em contraste, indivíduos como D800400 e R800400 alinham-se com os vetores de tem-
peratura e fator de dissolução, o que é consistente com suas altas temperaturas de
referência, mas os posiciona em oposição às variáveis de gravidade específica.

• Casos de menor vazão, como D400400 e R400400, posicionam-se em oposição aos
vetores de maior produção, validando a correlação já observada.
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Figura 34 – PCA - biplot

Fonte: O autor (2025)

6.2.1 Resultados com t-SNE

Esta seção apresenta os resultados da técnica não linear t-SNE aplicada à mesma matriz
de dados utilizada na análise PCA. A definição dos hiperparâmetros, como a perplexidade e o
número de iterações, seguiu os critérios propostos por Wattenberg, Viégas e Johnson (2016).
Conforme ilustrado nas figuras 35 e 36, para 500 iterações e valores de perplexidade (𝜋) de 5
ou 6, a divergência de Kullback-Leibler torna-se insignificante.
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Figura 35 – Divergência vs. Perplexidade (𝜋 = 5)

Fonte: O autor (2025)

Figura 36 – Divergência vs. Perplexidade (𝜋 = 6)

Fonte: O autor (2025)
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A análise comparativa das figuras 37 e 38, que exibem a mesma projeção de dados gerada
pelo t-SNE, confirma a forte correlação entre a taxa de produção e o volume. A correspondência
visual é direta: os agrupamentos de indivíduos coloridos para representar altos valores de taxa
de produção (figura 37) são os mesmos que representam altos valores de volume (figura 38),
validando a correlação positiva entre as variáveis.

Figura 37 – t-SNE - Taxa de produção

Fonte: O autor (2025)
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Figura 38 – Volume

Fonte: O autor (2025)

Nas figuras 39 e40 observa-se que para a mesma perplexidade, os agrupamentos dos in-
divíduos e a distribuição das cores nos grupos também compartilham semelhanças em ambas
as figuras. Isto confirma a correlação entre estas variáveis,
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Figura 39 – Densidade especifica da salmoura

Fonte: O autor (2025)

Figura 40 – Densidade especifica do fluido injetado

Fonte: O autor (2025)
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Finalmente, a análise comparativa das figuras 41 e 42 para uma perplexidade de 5 revela
que os padrões de agrupamento e coloração são análogos. Essa semelhança visual ratifica a
forte correlação positiva entre a temperatura de referência e o Fator de Dissolução do Sal.
Em termos práticos, isso significa que o aumento da temperatura do fluido injetado acelera
diretamente o processo de dissolução, sendo uma variável chave para o controle da velocidade
de construção da caverna.

Figura 41 – Agrupamento t-SNE com coloração por caso de temperatura de referência

Fonte: O autor (2025)
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Figura 42 – Agrupamento t-SNE com coloração pela variável Fator de Dissolução da Sal.

Fonte: O autor (2025)

Por último, as figuras 43 e 44 apresentam uma comparação visual entre as projeções
tridimensionais dos dados, obtidas pelos métodos PCA e t-SNE. A projeção do PCA (figura 43)
utiliza os três primeiros componentes principais, que capturam 99,10% da variância total. Em
contraste, o t-SNE (figura 44) otimiza os eixos para preservar a topologia local do espaço de
dados original, formando agrupamentos visualmente mais distintos.

A eficácia do t-SNE em agrupar casos funcionalmente similares é evidente. Isso é exemplifi-
cado pelo agrupamento dos casos D400400 e R800400. Embora estes casos possuam condições
operacionais distintas, como gravidades específicas diferentes (conforme a figura 39), o t-SNE
os agrupa. A justificativa é que o resultado principal de interesse — o volume final da caverna
— é muito semelhante para ambos, como pode ser verificado na figura 38. Portanto, o agru-
pamento indica que o t-SNE prioriza a similaridade nos resultados de maior impacto (saída)
em vez de apenas a proximidade dos parâmetros operacionais (entrada).
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Figura 43 – PCA 3D

Fonte: O autor (2025)

Figura 44 – t-SNE 3D

Fonte: O autor (2025)
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7 OTIMIZAÇÃO DO DESIGN DE CAVERNAS SALINAS VIA ALGORITMOS

GENÉTICOS

Os capítulos precedentes desta tese dedicaram-se à análise dos fenômenos físicos que
governam a dissolução de cavernas em domos salinos. Por meio da simulação numérica com o
software SALGAS e da aplicação de técnicas de redução de dimensionalidade (PCA e t-SNE),
foi possível dissecar a interação entre as variáveis de controle e os resultados geométricos e de
produção. A análise estatística multivariada respondeu à pergunta fundamental "quais variáveis
são mais influentes?", revelando que a taxa de produção de salmoura se manifesta como o
principal motor do desenvolvimento volumétrico, enquanto o grupo de variáveis associado
à temperatura desempenha um papel secundário, porém crítico e inter-relacionado Warren
(2016).

A conexão entre a análise precedente e a otimização subsequente é, portanto, direta e
sinérgica. A análise t-SNE atuou como uma ferramenta de diagnóstico em larga escala, mape-
ando o espaço de design e confirmando que ele se organiza em regimes operacionais distintos.
Com base neste mapa, os critérios de engenharia fundamentados na literatura técnica, deta-
lhados na seção de formulação do problema, justificaram a restrição do espaço de busca da
otimização à faixa de 50 a 300 m3/h. Finalmente, o Algoritmo Genético foi empregado como
uma ferramenta de design de precisão, realizando uma busca exaustiva dentro deste regime
pré-selecionado para encontrar a combinação ótima de parâmetros.

Com base nesses insights, este capítulo marca uma transição metodológica da análise para
o design de engenharia. A validação das variáveis de maior impacto permite agora formular de
maneira robusta o problema de otimização, cuja finalidade é responder à pergunta subsequente:
"quais são os valores ótimos para essas variáveis?". O escopo, portanto, transcende a mera
observação de casos pré-definidos para, de forma sistemática e automatizada, determinar a
estratégia de construção ótima que satisfaça um conjunto de objetivos técnicos, econômicos
e, crucialmente, de segurança.

O problema de otimização do design de uma caverna de sal, quando acoplado a um simu-
lador numérico como o SALGAS, enquadra-se na categoria de Otimização black-box (BBO).
Nesta classe de problemas, a função-objetivo (por exemplo, o volume final da caverna) não
possui uma forma analítica explícita e seu valor só pode ser obtido através da execução de uma
simulação computacionalmente dispendiosa Mello, Lacerda e Pozo (2023). A natureza black-
box do simulador impede o uso de métodos de otimização clássicos baseados em gradiente,
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que requerem a derivada da função-objetivo. Em tais casos, meta-heurísticas populacionais,
como os Algoritmos Genéticos (AG), emergem como a ferramenta de escolha devido à sua
capacidade de navegar eficientemente por espaços de busca complexos sem depender de in-
formações de gradiente Al-Tashi, Rais e Abdulkadir (2023). O custo computacional associado
a cada avaliação da função-objetivo (uma simulação completa do SALGAS) torna a eficiên-
cia do algoritmo de otimização um fator crítico Al-Sa’ary (2022). Embora outras abordagens
populacionais como a Otimização por enxame de partículas (PSO) ou algoritmos de evolu-
ção diferencial (DE) também sejam aplicáveis, a escolha pelo algoritmo genético nesta tese é
fundamentada em sua robustez comprovada e, crucialmente, na existência de extensões pode-
rosas e bem estabelecidas para problemas multiobjetivo, como o algoritmo NSGA-II, que será
empregado posteriormente neste trabalho.

A abordagem de acoplar os AG a simuladores de subsuperfície é uma metodologia bem
estabelecida e validada em diversas áreas da engenharia de petróleo e geomecânica. Aplicações
notáveis incluem o ajuste de histórico de produção de reservatórios (history matching), onde
os parâmetros do modelo de reservatório são ajustados para minimizar a discrepância entre a
produção simulada e a histórica Zhang e Zhang (2023), e a otimização de trajetórias de poços
para maximizar a taxa de penetração e garantir a estabilidade do poço Pramudyo, Latief e Raj
(2017). A aplicação de um AG para otimizar o processo de lixiviação de cavernas, portanto,
alinha-se com práticas da indústria e da academia para resolver problemas de design baseados
em simulação.

Para solucionar este problema — que é, por sua natureza, multivariado, não-linear e sujeito
a múltiplas restrições — foi concebido e implementado um framework computacional que
acopla o simulador SALGAS a um algoritmo genético (AG), implementado através do Global

Optimization Toolbox do MATLAB The MathWorks, Inc. (2024b).

7.1 ANÁLISE DOS RESULTADOS DA OTIMIZAÇÃO

A execução do framework de otimização produziu um conjunto de soluções que represen-
tam designs ótimos para a caverna de sal, tanto para o caso mono-objetivo quanto para o
multiobjetivo.
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7.1.1 Otimização Mono-Objetivo: Maximização do Volume Final

No caso de otimização mono-objetivo, a função-objetivo foi configurada para maximizar o
volume final da caverna ao término da campanha de lixiviação, sujeita a todas as restrições
operacionais e geomecânicas. O Algoritmo Genético convergiu para uma solução única que
representa a melhor estratégia de mineração encontrada para atingir este objetivo.

A estratégia ótima, detalhada na tabela 21, consiste em uma campanha de dois estágios
com parâmetros operacionais distintos.

A análise dos parâmetros na tabela 21 revela uma estratégia de lixiviação bifásica sofisti-
cada, que seria de difícil concepção manual. O Algoritmo Genético convergiu para uma solução
que pode ser interpretada da seguinte forma:

1. Estágio 1:Criação de volume bruto (alta vazão). O primeiro estágio, com duração de
414 dias, utiliza uma vazão elevada de 272.73 m3/h. O objetivo aqui é "atacar"a rocha
salina de forma agressiva para criar o volume principal da caverna o mais rápido possível,
aproveitando a alta taxa de dissolução proporcionada pela turbulência.

2. Estágio 2: Refinamento e controle geométrico (vazão reduzida). O segundo estágio tran-
sita para uma fase de 370 dias com uma vazão significativamente menor, de 128.80 m3/h.
Esta redução na vazão permite um processo de dissolução mais controlado, focando no
refinamento da forma da caverna. A mudança nas profundidades de operação (elevação
do blanket e ajuste dos pontos de injeção/produção) nesta fase é crucial para alargar
a porção superior da cavidade e garantir que a geometria final atenda às restrições de
estabilidade, como a razão H/D, sem ultrapassar os limites de um design seguro.

Em suma, o otimizador não buscou simplesmente a maior vazão pelo maior tempo, mas
descobriu uma estratégia ótima que equilibra a velocidade de criação de volume com o controle
fino da geometria final, demonstrando a capacidade da metodologia em encontrar soluções de
engenharia complexas e eficientes.
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Tabela 21 – Vetor de decisão ótimo da otimização mono-objetivo.

Parâmetro Estágio 1 Estágio 2
Vazão de injeção (Q) [m3/h] 272.73 128.80
Duração do estágio (t) [dias] 414.46 370.39
Profundidade do blanket (B) [m] 734.62 723.37
Profundidade de injeção (I) [m] 856.21 850.77
Profundidade de produção (P) [m] 804.21 795.66

Fonte: O autor (2025)

A execução desta estratégia otimizada resulta nas métricas de desempenho apresentadas
na tabela 22. O tempo total de construção da campanha é de 784.85 dias (soma das durações
t1 e t2), resultando em um volume final de 544,251 m3.

Tabela 22 – Métricas de desempenho da solução otimizada.

Métrica de desempenho Valor
Volume máximo (MV) 544,251.49 m3
Massa de sal extraída (MS) 352,027.25 ton
Tempo total de construção (MT) 784.85 dias
Eficiência energética (ME) 0.4662

Fonte: O autor (2025)

A análise da solução ótima revela que o algoritmo tende a explorar os limites do espaço
de busca viável para atingir o objetivo. A configuração das profundidades (B, I, P) é ajustada
para criar uma geometria que maximize a área de superfície de contato entre a água doce e a
rocha salina, respeitando as restrições de estabilidade, como a razão H/D.

A figura 45 traduz a estratégia operacional ótima, detalhada na tabela 21, em um resultado
geométrico. O gráfico ilustra a evolução da caverna ao longo dos dois estágios da campanha
de mineração.
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Figura 45 – Evolução geométrica e perfil final da caverna otimizada.

Fonte: O autor (2025)
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O processo otimizado consiste em dois estágios distintos. O estágio 1, com duração de
414.5 dias, foca em desenvolver a geometria inicial da caverna. As posições dos equipamentos
são definidas com injeção a 856 m e produção a 804 m, estabelecendo um teto inicial em 735
m. Subsequentemente, o estágio 2, com 370.4 dias, tem como objetivo refinar a forma: as
profundidades de operação são ajustadas, o que resulta em uma expansão predominantemente
lateral e na elevação do teto final para 723 m. Na figura, os marcadores triangulares são
utilizados apenas como um auxílio visual para indicar as diferentes profundidades de injeção e
produção em cada um dos dois estágios. A área cinza representa o perfil final preenchido. A
geometria resultante, com um topo largo e uma base expandida, é uma consequência direta da
combinação de parâmetros otimizados pelo Algoritmo Genético, demonstrando a capacidade
da metodologia de projetar formas complexas para maximizar o volume.

Um critério fundamental para a viabilidade de longo prazo de uma caverna salina é a sua
estabilidade geomecânica, frequentemente avaliada pela razão entre sua altura e diâmetro
(H/D). A figura 46 apresenta a análise de estabilidade para a geometria da caverna otimizada.

Figura 46 – Verificação da estabilidade geomecânica da solução otimizada.

Fonte: O autor (2025)
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A análise dimensional, apresentada no painel esquerdo da figura 46, indica uma altura total
(H) de 137.2 m e um diâmetro máximo (D) de 77.8 m. Como detalhado no painel direito,
isso resulta em uma razão H/D de 1.763. Este valor situa-se confortavelmente dentro da faixa
considerada ideal (≥ 1.5) para a estabilidade, conforme as restrições geomecânicas implemen-
tadas no framework de otimização. Esta verificação confirma que a solução encontrada pelo
Algoritmo Genético não é apenas ótima em termos de volume, mas também representa um
design de engenharia robusto e seguro.

Finalmente, para quantificar o valor agregado pela otimização, a figura 47 contrasta o
desempenho da solução ótima com os resultados do melhor caso de base analisado previamente.

Figura 47 – Análise normalizada de desempenho comparativo (referência = 1.0).

Fonte: O autor (2025)

O desempenho do caso de base foi normalizado para 1.0 (linha tracejada), servindo como
referência. Valores acima de 1.0 representam uma melhoria, enquanto valores abaixo indicam
um desempenho inferior. A análise do gráfico revela o compromisso estratégico encontrado
pelo algoritmo: as métricas de maximização, como volume máximo (MV), massa de sal (MS) e
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eficiência energética (ME), apresentam scores de 2.00, 2.00 e 1.29, respectivamente, indicando
uma melhoria substancial sobre o caso base. Em contrapartida, a métrica de minimização,
tempo de construção (MT), apresenta um score de 0.54, quantificando o custo em tempo
necessário para alcançar tal desempenho. Enquanto as métricas de engenharia mostraram
melhorias significativas, a métrica de processo AR (razão de aceitação), com um score de
0.39, indica a natureza altamente restrita do espaço de busca, onde muitas soluções candidatas
geradas foram descartadas por inviabilidade. Isso destaca a complexidade do problema resolvido
pelo algoritmo. Esta visualização valida a superioridade da solução otimizada e evidencia o
trade-off fundamental entre volume e tempo, que será explorado na análise multiobjetivo.

7.1.2 Otimização multiobjetivo: Análise da fronteira de Pareto

A otimização multiobjetivo, utilizando o algoritmo NSGA-II, foi configurada para explorar
os complexos compromissos (trade-offs) entre quatro objetivos de engenharia conflitantes: a
maximização do volume (MV), da massa de sal extraída (MS) e da eficiência energética (ME),
e a minimização do tempo total de construção (MT).

Um dos resultados mais significativos da otimização foi a convergência de todas as soluções
na fronteira de Pareto para um único valor máximo de volume, indicando que o algoritmo
resolveu de forma absoluta este objetivo. Como o volume se tornou uma constante, os trade-
offs que definem a tomada de decisão ocorrem entre os três objetivos restantes: massa de sal,
tempo e eficiência. A figura 48 visualiza esta fronteira de compromisso tridimensional.



118

Figura 48 – Fronteira de pareto 3D ilustrando o trade-off entre massa de sal, tempo e eficiência. O volume é
constante para todas as soluções. As estrelas destacam as soluções notáveis.

Fonte: O autor (2025)

A análise da figura 48 revela insights valiosos para o tomador de decisão. A superfície
formada pelos pontos demonstra a natureza dos conflitos entre os objetivos. Soluções de
baixo tempo de execução tendem a apresentar menor eficiência e extrair menos sal (indicado
pelas cores mais escuras). Inversamente, para alcançar uma maior eficiência energética (cores
mais claras), geralmente é necessário incorrer em tempos de construção mais elevados.

O framework de otimização identifica automaticamente as soluções notáveis, que servem
como pontos de referência estratégicos:

• Extremos da fronteira: A solução de massa de sal máxima (Sol. #14), a de tempo mínimo
(Sol. #4) e a de eficiência máxima (Sol. #18). Cada uma representa a otimização de
um único critério, geralmente em detrimento dos outros.

• Solução de compromisso (knee): A solução balanceada (knee, Sol. #4) é de particular
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interesse. Neste caso, o algoritmo identificou que a solução mais rápida (tempo mí-
nimo) também representa o ponto de melhor equilíbrio geral, onde qualquer tentativa
de melhorar outro objetivo (e.g., aumentar a massa de sal) resultaria em uma perda
desproporcional no tempo.

Para uma análise quantitativa dos compromissos, foi gerada uma matriz de trade-offs,
apresentada na figura 49. Este gráfico permite um exame aprofundado da correlação entre os
objetivos e da distribuição das soluções.

Figura 49 – Análise de trade-offs entre os quatro objetivos da otimização.

Fonte: O autor (2025)
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A observação mais notável na figura 49 reside no comportamento do objetivo volume. O
histograma correspondente (painel superior esquerdo) exibe uma única barra, confirmando que
todas as soluções na fronteira de Pareto alcançaram o mesmo valor máximo de volume. A forte
correlação positiva entre volume e massa de sal também é evidente. A análise dos gráficos de
dispersão restantes revela a natureza dos compromissos:

• Massa de sal vs. eficiência: Revela uma correlação negativa, quantificando o compromisso
de que projetos que extraem mais sal tendem a demandar menor eficiência energética.

• Tempo vs. massa de sal: A tendência negativa observada confirma que a redução do
tempo de construção acarreta uma menor extração total de sal.

• Tempo vs. eficiência: A dispersão sugere uma correlação negativa, indicando que a
otimização da eficiência pode requerer um tempo de construção maior.

Esta análise detalhada dos trade-offs é fundamental para a seleção de uma solução final. A
tabela 23, extraída diretamente dos resultados computacionais, resume as características das
soluções mais representativas de forma normalizada. É importante notar que os valores para
volume, massa de sal e eficiência são apresentados como negativos. Isso ocorre por convenção
do otimizador gamultiobj do MATLAB, que foi projetado para minimizar todos os objetivos.
Para forçar a maximização destas métricas, seus valores normalizados foram multiplicados por
-1 durante a otimização. Portanto, um valor de -1.00 na tabela representa, na verdade, o
desempenho máximo (100%) para aquele objetivo.

Tabela 23 – Características das soluções notáveis na fronteira de Pareto (valores normalizados).

Tipo de solução Solução # Volume Massa de sal Eficiência Tempo

Volume máximo 1 -1.00 -0.74 -0.64 0.22
Massa de sal máxima 14 -1.00 -0.20 -0.99 0.17
Eficiência máxima 18 -1.00 -0.97 -0.33 0.22
Tempo mínimo / knee 4 -1.00 -0.49 -0.57 0.06

Fonte: O autor (2025)

A tabela 23 funciona como um guia para a tomada de decisão. A linha destacada corres-
ponde à solução balanceada (knee, Sol. #4), que emerge como a escolha estrategicamente
superior. Ela foi selecionada por representar o melhor ponto de compromisso na fronteira de
Pareto, oferecendo o menor tempo de construção possível (valor normalizado de 0.06) e, ao
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mesmo tempo, mantendo um desempenho competitivo nos outros objetivos. Esta caracterís-
tica define a solução mais robusta e eficiente do ponto de vista prático, sendo, portanto, a
recomendada por este estudo.

O perfil de desempenho desta solução é visualizado no gráfico de radar da figura 50.

Figura 50 – Perfil de desempenho normalizado da solução recomendada (#4).

Fonte: O autor (2025)

A análise do perfil de desempenho na figura 50 vai além da simples observação de equilíbrio.
O gráfico de radar ilustra o compromisso da Solução #4 entre os três objetivos de trade-off :
Massa de sal, eficiência energética e tempo de construção. Do ponto de vista da engenharia, a
grande área triangular indica uma alta performance global. Observa-se um excelente desempe-
nho no eixo do tempo (valor normalizado de 0.94, próximo ao ideal), o que era esperado para
a solução de "tempo mínimo". Mais importante, a ausência de vértices recuados em direção
ao centro do gráfico significa que a solução não possui fraquezas críticas; ela mantém um
desempenho competitivo em massa de Sal (0.49) e eficiência (0.57) ao mesmo tempo que
otimiza o tempo. Esta característica define um design robusto, capaz de satisfazer múltiplos
critérios de projeto simultaneamente.

Este perfil de desempenho superior é a consequência de uma estratégia operacional com-
plexa e não-intuitiva, descoberta pelo Algoritmo Genético. Os parâmetros exatos que definem
este plano de engenharia estão detalhados na tabela 24.
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Tabela 24 – Parâmetros operacionais (vetor de decisão) para a implementação da solução #4.

Estágio Parâmetro Valor

Estágio 1 Vazão de injeção, 𝑄1 (m3/h) 137.54
Duração, 𝑡1 (dias) 526.77
Profundidade blanket, 𝐵1 (m) 727.16
Profundidade injeção, 𝐼1 (m) 844.95
Profundidade produção, 𝑃1 (m) 789.52

Estágio 2 Vazão de injeção, 𝑄2 (m3/h) 155.13
Duração, 𝑡2 (dias) 223.79
Profundidade blanket, 𝐵2 (m) 723.34
Profundidade injeção, 𝐼2 (m) 848.28
Profundidade produção, 𝑃2 (m) 791.31

Fonte: O autor (2025)

A análise dos parâmetros operacionais na tabela 24 revela uma estratégia de lixiviação
bifásica altamente sofisticada, que seria extremamente difícil de conceber manually:

• Fase 1: Criação de volume (Estágio 1). O otimizador aloca a maior parte do tempo do
projeto (527 dias) a uma fase com vazão moderada (137.54 m3/h). O objetivo aqui é
criar o volume bruto da caverna de forma controlada.

• Fase 2: Refino e aceleração (Estágio 2). Em seguida, a estratégia transita para uma fase
mais curta (224 dias) com uma vazão ligeiramente maior (155.13 m3/h). Esta aceleração
no final, combinada com o ajuste fino das profundidades (como a elevação do blanket
para 723 m), permite finalizar a forma, maximizar o volume útil e concluir o projeto no
menor tempo possível sem comprometer a estabilidade.
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8 CONCLUSÕES E RECOMENDAÇÕES PARA TRABALHOS FUTUROS

A presente tese desenvolveu e aplicou com sucesso uma metodologia integrada para a
análise e otimização do processo de abertura de cavernas subterrâneas em rochas salinas. A
abordagem combinou simulação numérica, análise estatística multivariada e otimização por
algoritmos evolutivos, fornecendo uma ferramenta poderosa para o design e engenharia de
estruturas de armazenamento de energia.

A análise estatística multivariada foi fundamental para decifrar a complexidade do processo
de lixiviação. A técnica do PCA revelou-se eficaz, e os dois primeiros componentes principais
representaram cerca de 96.8% da variabilidade total dos dados originais. Quanto à influência
no processo, o primeiro componente demonstrou que a taxa de produção de salmoura foi a
variável que mais contribuiu. O segundo componente, por sua vez, foi associado às variáveis
termodinâmicas (temperatura do caso e propriedades dos fluidos), que, embora tenham um
papel secundário, mostraram um peso significativo. A técnica do t-SNE não só validou os
resultados do PCA, mas também demonstrou uma capacidade de agrupamento notavelmente
superior.

As simulações numéricas permitiram concluir que, mantidas as demais condições, o maior
raio e volume da caverna são obtidos com a maior taxa de produção (1200 m3/h) e no caso
de maior temperatura de referência (80°C). Adicionalmente, foi verificado que o método de
circulação reversa produz uma porcentagem maior de volume em todos os casos.

Com base nestes insights, o trabalho avançou da análise para o design de engenharia,
implementando um framework de otimização. O sucesso desta fase foi fundamentado em
uma formulação matemática rigorosa do problema, definindo o vetor de decisão, as funções-
objetivo e, crucialmente, um sistema hierárquico de restrições geomecânicas e operacionais, o
que conferiu um alto grau de realismo e relevância de engenharia ao modelo.

O framework computacional que acoplou o simulador SALGAS a um Algoritmo Genético
demonstrou ser uma ferramenta de otimização altamente eficaz:

• Na otimização mono-objetivo, focada em maximizar o volume, o AG identificou uma
estratégia que resultou em uma caverna de 544,251 m3, superando todos os casos de
base e quantificando o valor da otimização sistemática.

• Na otimização multiobjetivo, o algoritmo NSGA-II mapeou com sucesso a fronteira de
Pareto, revelando o complexo trade-off entre os quatro objetivos: volume máximo, massa
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de sal extraída, eficiência energética e tempo de construção. A solução #4 foi identifi-
cada como a mais robusta, representando não apenas o tempo mínimo de construção,
mas também a solução de melhor compromisso geral (knee), oferecendo um plano de
engenharia bifásico completo, acionável e estrategicamente superior.

A metodologia validada nesta tese, que transita da análise (compreensão do sistema via
PCA/t-SNE) para o design (otimização do sistema via AG), representa uma abordagem holís-
tica para problemas complexos de engenharia. Ela não apenas permite entender as relações de
causa e efeito dentro do sistema, mas também utiliza esse entendimento para gerar ativamente
designs superiores.

8.1 RECOMENDAÇÕES PARA TRABALHOS FUTUROS

Com base nos resultados e na metodologia desenvolvida, recomendam-se as seguintes
direções para futuras pesquisas:

• Integração com análise geomecânica: Acoplar o framework de otimização a um simu-
lador geomecânico (e.g., via elementos finitos) para incluir a fluência (creep) do sal
e a estabilidade de longo prazo como objetivos ou restrições diretas no processo de
otimização.

• Exploração de outras meta-heurísticas: Comparar o desempenho do Algoritmo Genético
com outras meta-heurísticas populacionais, como Otimização por Enxame de Partículas
(PSO) ou Algoritmos de Evolução Diferencial (DE), para avaliar a eficiência de diferentes
estratégias de busca no espaço de soluções.

• Aplicação a geologias complexas: Adaptar a metodologia para otimizar a lixiviação em
formações salinas estratificadas, que contêm camadas de insolúveis (e.g., anidrita), adi-
cionando complexidade ao controle morfológico da caverna.

• Incorporação de análise econômica: Expandir a função-objetivo para incluir métricas
econômicas diretas, como o Valor Presente Líquido (VPL) do projeto, considerando
CAPEX (associado ao tempo) e OPEX (associado à eficiência energética e à venda de
sal).
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APÊNDICE A – ANÁLISE DE COMPONENTES PRINCIPAIS (PCA):

ABORDAGEM MATEMÁTICA

Nesta seção, abordaremos a definição e as propriedades dos espaços de produto interno.
Em um espaço de produto interno, é possível definir os conceitos de "distância"e "ângulo"entre
vetores, o que nos permite trabalhar com projeções ortogonais.

Com base nas propriedades desses espaços, podemos decompor a matriz de dados em
componentes principais ortogonais, ou seja, em direções independentes que maximizam a
variância dos dados. Isso possibilita a redução de dimensionalidade, representando os dados
de forma mais compacta, mas preservando a maior parte da informação. A ortogonalidade
entre os componentes principais assegura a ausência de redundância nas direções escolhidas,
facilitando a interpretação dos dados.

Espaços de Produto Interno

Um espaço de produto interno é um espaço vetorial 𝒱 equipado com uma operação ⟨·, ·⟩ :

𝒱 × 𝒱 → R que satisfaz:

1. Simetria: ⟨u, v⟩ = ⟨v, u⟩.

2. Linearidade: ⟨𝑎u + 𝑏v, w⟩ = 𝑎⟨u, w⟩ + 𝑏⟨v, w⟩.

3. Positividade: ⟨u, u⟩ > 0 para u ̸= 0.

Operadores Auto-Adjuntos

Um operador linear 𝐴 : 𝒱 → 𝒱 é auto-adjunto se, para quaisquer vetores u, v ∈ 𝒱 ,

⟨𝐴u, v⟩ = ⟨u, 𝐴v⟩,

condição que reflete simetria. Quando representado em uma base ortonormal por uma matriz
T, essa propriedade se materializa como T = T𝑇 , tornando-a imediatamente reconhecível em
aplicações estatísticas – especialmente como matrizes de covariância, peças-chave na Análise
de Componentes Principais (PCA).

A auto-adjunção garante à matriz duas características decisivas:
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• Autovalores reais, que evitam inconsistências interpretativas em dados do mundo real

• Autovetores ortogonais, que definem direções de máxima variância não correlacionadas

Essas propriedades não são meramente teóricas: elas permitem que a PCA decompõa dados
multivariados em componentes independentes, transformando colinearidades complexas em
eixos interpretáveis. A simetria da matriz de covariância assegura que essa decomposição exista
e seja computacionalmente estável, razão pela qual operadores auto-adjuntos são fundamentais
em redução de dimensionalidade.

Teorema Espectral

Enunciado do Teorema

Seja 𝐴 : 𝒱 → 𝒱 um operador auto-adjunto em um espaço vetorial real de dimensão finita
com produto interno. Então, existe uma base ortonormal de 𝒱 formada por autovetores de 𝐴,
todos com autovalores reais.

Demonstração:

1. Autovalores Reais:

• Seja 𝜆 autovalor de 𝐴 com autovetor v ̸= 0. Pela auto-adjunção:

𝜆⟨v, v⟩ = ⟨𝐴v, v⟩ = ⟨v, 𝐴v⟩ = 𝜆⟨v, v⟩ =⇒ 𝜆 = 𝜆

• Logo, 𝜆 ∈ R, excluindo autovalores complexos.

2. Indução na Dimensão:

• Base (dim 𝒱 = 1): Toda transformação é trivialmente diagonalizável.

• Passo Indutivo: Suponha válido para dimensão 𝑛. Para dim 𝒱 = 𝑛 + 1:

a) Escolha um autovetor v1 unitário (garantido por (1))

b) Defina 𝒲 = {u ∈ 𝒱 | ⟨u, v1⟩ = 0}, subespaço invariante sob 𝐴:

u ∈ 𝒲 =⇒ ⟨𝐴u, v1⟩ = ⟨u, 𝐴v1⟩ = 𝜆1⟨u, v1⟩ = 0

c) Aplique a hipótese indutiva a 𝐴|𝒲 , obtendo base {v2, ..., v𝑛+1} ortonormal
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d) A união {v1, ..., v𝑛+1} diagonaliza 𝐴

Este teorema explica por que matrizes de covariância (auto-adjuntas) sempre admitem
decomposição em autovetores ortogonais - a fundação matemática para extração de compo-
nentes principais.

Decomposição Espectral

O Teorema Espectral materializa-se na decomposição espectral: para toda matriz simé-
trica T ∈ R𝑝×𝑝, existe

T = VΛV𝑇 ,

onde a estrutura revela a geometria subjacente dos dados:

• Matriz ortogonal V: Colunas {v1, ..., v𝑝} formam uma base ortonormal de autovetores
– os eixos privilegiados dos dados.

– Ortogonalidade: V𝑇 V = I𝑝 (preserva ângulos e normas)

– Interpretação: Cada v𝑖 define uma direção de máxima variância residual

• Matriz diagonal Λ: Λ = diag(𝜆1, ..., 𝜆𝑝), com 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑝 (autovalores reais).

– 𝜆𝑖 quantifica a variância ao longo de v𝑖

– Ordenação: Garante hierarquia de importância para redução dimensional

A identidade T = ∑︀𝑝
𝑖=1 𝜆𝑖v𝑖v𝑇

𝑖 mostra que T é uma combinação de projetores ortogonais
– cada termo 𝜆𝑖v𝑖v𝑇

𝑖 representa a contribuição da direção v𝑖 à estrutura global.

Essa decomposição é a etapa central – ao descartar os 𝜆𝑖 menores, obtemos a melhor apro-
ximação de baixa dimensão preservando a covariância original. A ordenação dos autovalores
define a importância dos componentes principais.

Matriz de Covariância

Centralização dos Dados

Toda análise multivariada começa por centralizar os dados - processo que elimina desloca-
mentos arbitrários e revela padrões de variação genuínos. Dada a matriz de dados X ∈ R𝑛×𝑝
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(𝑛 observações, 𝑝 variáveis):

X̃ = X − 1𝑛x̄𝑇 , onde x̄ = 1
𝑛

𝑛∑︁
𝑖=1

x𝑖

• Operação: Subtrair o vetor de médias x̄ de cada observação

• Efeito Geométrico: Translada a nuvem de dados para a origem sem alterar sua forma

A Matriz de Covariância

A matriz S ∈ R𝑝×𝑝 sintetiza como as variáveis co-variam:

S = 1
𝑛 − 1X̃𝑇 X̃ (estimador não-enviesado)

• Entrada 𝑆𝑖𝑗:
𝑆𝑖𝑗 = 1

𝑛 − 1

𝑛∑︁
𝑘=1

(𝑥̃𝑘𝑖)(𝑥̃𝑘𝑗)

- Mede sincronia entre variáveis 𝑖 e 𝑗 - Positiva se altos valores de 𝑖 associam-se a altos
de 𝑗

• Traço Total:
Tr(S) =

𝑝∑︁
𝑖=1

𝑆𝑖𝑖 = Variância total dos dados

- Invariante sob rotações: crucial para PCA

S é simétrica e semi-definida positiva, garantindo:

• Autovalores reais não-negativos

• Autovetores ortogonais

Diagonalizar S via decomposição espectral é equivalente a encontrar os eixos de máxima
variância - os componentes principais

Maximização da Variância

Formulação do Problema

A essência da PCA reside em encontrar direções de máxima variância nos dados. Formal-
mente, buscamos o vetor unitário w1 ∈ R𝑝 que maximize a variância das projeções Z1 = X̃w1:
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max
‖w1‖=1

w𝑇
1 Sw1

• Geometricamente: Procura-se a reta pela origem onde os dados projetados têm maior
"dispersão"

• Estatisticamente: maximizar w𝑇
1 Sw1 equivale a capturar a máxima informação (variân-

cia) possível em uma dimensão

Solução Ótima via Autovalores

A maximização restrita resolve-se com multiplicadores de Lagrange:

ℒ(w1, 𝜆) = w𝑇
1 Sw1⏟  ⏞  

Variância

−𝜆(w𝑇
1 w1 − 1⏟  ⏞  
Restrição

)

Derivando e igualando a zero:

𝜕ℒ
𝜕w1

= 2Sw1 − 2𝜆w1 = 0 =⇒ Sw1 = 𝜆w1

A solução ótima w1 é o autovetor de S associado ao maior autovalor 𝜆1. A variância
máxima é exatamente 𝜆1.

• Interpretação física: Autovetores são eixos naturais de variação dos dados

Componentes Principais Sequenciais

Ortogonalidade e Maximização Iterativa

Após determinar w1, os componentes subsequentes w2, w3, ... resolvem:

max
‖w𝑘‖=1

w𝑇
𝑘 Sw𝑘 com w𝑘 ⊥ {w1, ..., w𝑘−1}

• Restrição: Ortogonalidade w𝑇
𝑘 w𝑖 = 0 (∀𝑖 < 𝑘) garante componentes não correlaciona-

dos

• Mecanismo: Cada novo componente captura a máxima variância residual não explicada
pelos anteriores
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Solução Recursiva via Decomposição Espectral

A solução emerge diretamente do Teorema Espectral:

1. Ordene os autovalores 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑝 ≥ 0

2. Selecione os autovetores correspondentes w1, w2, ..., w𝑝

3. O 𝑘-ésimo componente principal é Z𝑘 = X̃w𝑘

A sequência {w𝑘} forma uma base ortonormal que diagonaliza S:

S =
𝑝∑︁

𝑖=1
𝜆𝑖w𝑖w𝑇

𝑖

A escolha de 𝑘 componentes (𝑘 ≪ 𝑝) reduz dimensionalidade preservando ∑︀𝑘
𝑖=1 𝜆𝑖/Tr(S)

da variância total A ortogonalidade dos w𝑖 garante eficiência computacional na projeção

Projeção e Redução de Dimensionalidade

Transformação para o Espaço dos Componentes

PCA concretiza-se na projeção dos dados para o espaço reduzido. Seja W = [w1| · · · |w𝑘]

a matriz de projeção com os 𝑘 primeiros autovetores, a transformação é:

Z = X̃W ∈ R𝑛×𝑘

• Geometricamente: Rotaciona os dados para os eixos de máxima variância

• Estatisticamente: Colunas de Z são não correlacionadas, com Var(𝑍𝑖) = 𝜆𝑖

Variância Explicada

A eficácia da redução quantifica-se pela variância retida:

VE(𝑘) =
∑︀𝑘

𝑖=1 𝜆𝑖∑︀𝑝
𝑖=1 𝜆𝑖

× 100%

• Interpretação: A porcentagem de informação original preservada no espaço reduzido após
a projeção dos dados.
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• Compensação: Um trade-off entre a simplicidade do modelo (𝑘 ↓) e a quantidade de
informação explicada (VE ↑).

Critérios de Seleção de Componentes

Três Perspectivas Clássicas

1. Critério de Kaiser (1958):

• Regra: 𝜆𝑖 ≥ 1 (para dados padronizados)

• Lógica: Um componente deve explicar mais variância do que uma variável isolada.

• Limitação: Subestima o valor de 𝑘 quando muitos 𝜆𝑖 estão próximos de 1.

2. Scree Plot (Cattell, 1966):

• Técnica: Gráfico dos autovalores versus o número de componentes.

• Heurística: Selecionar 𝑘 no ponto onde a curva de autovalores se estabiliza.

3. Variância Acumulada:

• Estratégia: Escolher o 𝑘 mínimo tal que VE(𝑘) ≥ 95%.

• Vantagem: Adaptável ao contexto (85% de variância para análise exploratória, 99%
para modelos críticos).

• Consideração adicional: Autovalores pequenos podem codificar padrões sutis, mas
importantes, que podem ser negligenciados em uma análise mais superficial.

A determinação ótima de 𝑘 envolve um trade-off entre critérios quantitativos (e.g., vari-
ância explicada, autovalores residuais) e exigências do problema aplicado (e.g., custos com-
putacionais, interpretabilidade), demandando validação cruzada entre heurísticas estatísticas
e restrições do domínio.
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APÊNDICE B – COEFICIENTES DOS POLINÔMIOS QUE GERAM A

SUPERFÍCIE DE RESPOSTA E SUA DERIVAÇÃO

Os coeficientes apresentados nas tabelas 25 e 26 são utilizados na construção das superfícies
de resposta para os cenários de circulação direta e reversa mostrados nas figuras 17 e 24. Essas
superfícies são geradas a partir de modelos polinomiais que relacionam a vazão de entrada (x)
e a temperatura (y) com o volume resultante (z) ao final de um período de 120 dias.

Tabela 25 – Coeficientes para obter a superfície de resposta do volume da caverna ao final de 120 dias para
o cenário com circulação direta.

Nº Equação Coef. da vazão 𝑎𝑖 Coef. da temperatura 𝑏𝑖 término Independente

1 232.896 811.274 -25792.291
2 317.584 269.587 -14833.664
3 247.397 1192.921 -67593.888
4 261.677 269.587 -3652.100
5 232.896 481.406 -6000.161
6 248.253 219.301 -1280.894
7 289.886 158.795 -2646.540
8 289.886 385.834 -16268.885
9 219.138 385.834 -2119.313
10 288.154 481.406 -25893.072
11 261.677 726.138 -31045.184
12 190.328 726.138 -5359.601
13 198.747 1989.044 -92363.811
14 261.098 537.811 -20665.517
15 166.034 811.274 952.284
16 214.642 537.811 -2082.823
17 158.941 2633.679 -83274.527
18 214.642 1783.421 -76819.414
19 116.428 1783.421 1751.335
20 158.941 1192.921 3170.942

Fonte: O autor (2025)
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Tabela 26 – Coeficientes para obter a superfície de resposta do volume da caverna ao final de 120 dias para
o cenário reverso.

Nº Equação Coef. da vazão 𝑎𝑖 Coef. da temperatura 𝑏𝑖 término independente

1 263.279 841.217 -25917.156
2 356.817 261.665 -14859.358
3 269.238 1149.323 -59250.373
4 294.579 261.665 -2411.665
5 263.279 469.951 -3641.187
6 285.215 212.906 -1157.564
7 329.517 152.466 -2847.448
8 329.517 390.116 -17106.462
9 250.111 390.116 -1225.159
10 320.614 469.951 -24281.724
11 294.579 745.859 -31463.295
12 215.600 745.859 -3031.093
13 229.191 1975.532 -93309.209
14 291.380 526.153 -18253.580
15 190.318 841.217 3267.547
16 238.080 526.153 3066.686
17 187.880 2809.501 -93774.784
18 238.080 1796.454 -73151.408
19 137.228 1796.454 7529.937
20 187.880 1149.323 5835.907

Fonte: O autor (2025)

Após a apresentação dos coeficientes utilizados na construção das superfícies de resposta
para os cenários de circulação direta e reversa, passamos a analisar o processo de triangulação
e interpolação que serve de base para esses modelos.

Dado um conjunto de pontos dispersos (𝑥𝑖, 𝑦𝑖) localizados no plano 𝑥𝑦, onde seus valores
podem ser interpretados como altitudes 𝑧𝑖 sobre esse plano. A partir desses pontos, é realizada
uma triangulação que resulta em uma superfície triangular por partes sobre o plano. Esta é
uma superfície contínua composta de peças triangulares planas que são unidas ao longo das
arestas. Tal superfície é frequentemente chamada de rede triangular irregular.

Na figura 51, é apresentado o triângulo 𝑃1𝑃2𝑃3 com o ponto de interpolação 𝑃 localizado
dentro dele. Ao conectarmos o ponto 𝑃 a cada um dos vértices 𝑃1, 𝑃2 e 𝑃3, obtemos uma
subdivisão do triângulo em três subtriângulos: 𝑃𝑃2𝑃3, 𝑃1𝑃𝑃3 e 𝑃1𝑃2𝑃 . Esta figura ilustra
visualmente a relação entre os vértices do triângulo e o ponto de interpolação.
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Agora, definiremos formalmente cada triângulo da rede triangular irregular, denotado por
△𝑖.

Para cada triângulo da rede triangular irregular, denotado por △𝑖, definimos a área do
triângulo com vértices 𝐴, 𝐵 e 𝐶 como 𝑆(𝐴, 𝐵, 𝐶). Então, o i-ésimo triângulo △𝑖 pode ser
definido como o conjunto de pontos 𝑃 no plano 𝑥𝑦 tal que:

△𝑖 = {𝑃 ∈ R2 : 𝑆(𝑃 𝑖
1, 𝑃 𝑖

2, 𝑃 𝑖
3) = 𝑆(𝑃, 𝑃 𝑖

1, 𝑃 𝑖
2) + 𝑆(𝑃, 𝑃 𝑖

1, 𝑃 𝑖
3) + 𝑆(𝑃, 𝑃 𝑖

2, 𝑃 𝑖
3)}

Onde 𝑃 𝑖
1, 𝑃 𝑖

2 e 𝑃 𝑖
3 são os vértices do triângulo △𝑖.

Figura 51 – Subdivisão do triângulo

Fonte: O autor (2025)

Para realizar essa triangulação, consideramos os triângulos pertencentes à rede triangular
irregular, como mostrado na figura 52. Observa-se que cada triângulo é numerado com uma
etiqueta correspondente aos polinômios descritos nas tabelas 25 e 26, os quais variam de
acordo com o cenário (direto ou reverso).
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Figura 52 – Rede triangular irregular de vazões e temperaturas

Fonte: O autor (2025)

Com vértices 𝑃 𝑖
1 = (𝑥1, 𝑦1), 𝑃 𝑖

2 = (𝑥2, 𝑦2) e 𝑃 𝑖
3 = (𝑥3, 𝑦3), onde cada vértice é associado

a uma coordenada 𝑧, representada por 𝑧1, 𝑧2 e 𝑧3, respectivamente, como exemplificado na
Figura 53.

Figura 53 – Pontos de dados de vazão, temperatura e volume

Fonte: O autor (2025)
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Estes pontos definem um plano no espaço tridimensional, determinado pelas coordenadas
(𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2) e (𝑥3, 𝑦3, 𝑧3). Esse plano pode ser expresso pela equação:

𝜋𝑖 : 𝑧 = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖 (B.1)

.
Como os vértices 𝑣𝑖

1 = (𝑥1, 𝑦1, 𝑧1), 𝑣𝑖
2 = (𝑥2, 𝑦2, 𝑧2) e 𝑣𝑖

3 = (𝑥3, 𝑦3, 𝑧3) pertencem ao plano
𝜋𝑖, eles satisfazem a equação (B.1):

𝑧1 = 𝑎𝑖𝑥1 + 𝑏𝑖𝑦1 + 𝑐𝑖 (B.2)

𝑧2 = 𝑎𝑖𝑥2 + 𝑏𝑖𝑦2 + 𝑐𝑖 (B.3)

𝑧3 = 𝑎𝑖𝑥3 + 𝑏𝑖𝑦3 + 𝑐𝑖 (B.4)

Em termos matriciais, podemos escrever:⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑥1 𝑦1 1

𝑥2 𝑦2 1

𝑥3 𝑦3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑎𝑖

𝑏𝑖

𝑐𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑧1

𝑧2

𝑧3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (B.5)

Resolvendo essa equação, encontramos os coeficientes 𝑎𝑖, 𝑏𝑖 e 𝑐𝑖:⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑎𝑖

𝑏𝑖

𝑐𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑥1 𝑦1 1

𝑥2 𝑦2 1

𝑥3 𝑦3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑧1

𝑧2

𝑧3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (B.6)

Assim, determinamos um triângulo de vértices 𝑣𝑖
1 = (𝑥1, 𝑦1, 𝑧1), 𝑣𝑖

2 = (𝑥2, 𝑦2, 𝑧2), 𝑣𝑖
3 =

(𝑥3, 𝑦3, 𝑧3) incluído no plano 𝜋𝑖.
A união desses triângulos forma a superfície contínua 𝐹 , como mostrado na figura 54,

que representa a interpolação da superfície sobre o plano 𝑥𝑦 a partir dos pontos dispersos
iniciais. Ao considerar um ponto 𝑃 = (𝑥, 𝑦) na superfície formada pelas peças triangulares
planas, podemos determinar em qual triângulo △𝑖 ele está contido. Isso nos permite utilizar
a equação do plano 𝜋𝑖 associada a esse triângulo para calcular o valor de 𝑧 para o ponto 𝑃 .
Em outras palavras, 𝐹 (𝑃 ) é dado por:

𝐹 (𝑃 ) = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖

para este triângulo. Essa abordagem fornece uma maneira eficaz de interpolar os valores
de 𝑧 para pontos dentro de cada triângulo da rede triangular irregular, resultando na superfície
contínua 𝐹 .
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Figura 54 – Superfície de resposta triangulada para o volume da caverna em função da temperatura e da
vazão.

Fonte: O autor (2025)
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APÊNDICE C – CÁLCULO DE PRESSÕES COM BASE NA EQUAÇÃO DE

BERNOULLI

Neste apêndice, são apresentadas as equações do calculo da pressão total em um sistema
de injeção vertical, utilizando a equação de Bernoulli. Na sequencia detalhamos os passos do
processo.

DEFINIÇÕES DE CONSTANTES

Primeiro, precisamos definir algumas constantes que serão usadas nos cálculos:

• Diâmetro da válvula de injeção (𝑑valvula): 0.0508 metros.

• Diâmetro do tubo interno de injeção (𝑑tubo_interno): 0.1778 metros.

• Peso específico do fluido injetado (𝛾fluido): 10300.0 N/m3.

DEFINIÇÃO DAS CONSTANTES DE CONVERSÃO

Em seguida, vamos definir algumas constantes de conversão que serão úteis para transfor-
mação de unidades:

• Conversão de pés para metros: 1 pé = 0.3048 metros.

• Conversão de MPa para kPa: 1 MPa = 1000 kPa.

• Conversão de MPa para metros de coluna d’água (mca): 1 MPa = 101.97 mca.

• Conversão de kPa para PSI: 1 kPa = 0.145038 PSI.

DADOS FORNECIDOS

Para os cálculos realizados neste apêndice, foram considerados os seguintes parâmetros
para os cenários de mineração por dissolução:

• Profundidade de injeção (ℎinjecao):

– Cenário Direto: 3000 pés (914,4 metros).
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– Cenário Reverso: 2500 pés (762 metros).

• Vazão de injeção (𝑄m3_por_h): Foram avaliados seis níveis de vazão: 120, 200, 360, 400,
800 e 1200 m3/h.

CONVERSÃO DE PROFUNDIDADE

Primeiro, para converter a profundidade de injeção de pés para metros:

ℎinjecao_m = ℎinjecao × 0.3048
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APÊNDICE D – CÁLCULO DA PRESSÃO DE INJEÇÃO NO FUNDO DO

POÇO

Neste apêndice, detalha-se a metodologia de cálculo para determinar a pressão de injeção
no fundo do poço (𝑃inj). Este valor, crucial para as simulações, é composto pela soma de
duas componentes principais: a pressão hidrostática, devido à coluna de fluido, e a pressão
dinâmica, associada à velocidade do escoamento, conforme a Equação de Bernoulli.

A equação fundamental que guia este cálculo é:

𝑃inj = 𝑃hidrostática + 𝑃dinâmica

PARÂMETROS E CONSTANTES DO MODELO

Os cálculos baseiam-se nos seguintes parâmetros e constantes:

• Constantes geométricas:

– Diâmetro do canhoneio (𝑑canhoneio): 0.0508 metros.

– Diâmetro do tubo interno de injeção (𝑑tubo_interno): 0.1778 metros.

– Número de canhoneios (𝑛canhoneios): 4.

• Propriedades do fluido:

– Peso específico do fluido injetado (𝛾fluido): 10300.0 N/m3.

• Parâmetros dos cenários:

– Profundidade de injeção (ℎinjecao): 3000 pés (914,4 m) para o cenário direto e 2500
pés (762 m) para o cenário reverso.

– Vazão de injeção (𝑄m3_por_h): Foram avaliados seis níveis de vazão: 120, 200, 360,
400, 800 e 1200 m3/h.

METODOLOGIA DE CÁLCULO

A pressão de injeção total é obtida seguindo uma sequência de cálculos para determinar
cada componente.
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Cálculo da Componente Hidrostática

A pressão hidrostática (𝑃hidrostática) é a pressão exercida pelo peso da coluna de fluido. Ela
é calculada a partir da profundidade de injeção em metros (ℎinjecao_m) e convertida para MPa:

𝑃hidrostática (MPa) = ℎinjecao_m

101.97

onde a constante 101.97 converte metros de coluna de água (mca) para MPa.

Cálculo da Componente Dinâmica

A componente dinâmica da pressão (𝑃dinâmica) surge da variação de velocidade do fluido.
O cálculo é feito em etapas:

1. Cálculo das áreas de escoamento: As áreas de saída total pelos canhoneios e a área do
tubo são calculadas:

𝐴canhoneio = 𝑛canhoneios × 𝜋

(︃
𝑑canhoneio

2

)︃2

e 𝐴tubo = 𝜋

(︃
𝑑tubo_interno

2

)︃2

2. Conversão da vazão: A vazão é convertida de m3/h para m3/s:

𝑄m3_por_s = 𝑄m3_por_h

3600

3. Cálculo da pressão dinâmica (Bernoulli): A pressão devido à diferença de velocidades é
dada pela Equação de Bernoulli. Usando a relação 𝜌 = 𝛾/𝑔, a equação fica:

𝑃dinâmica (kPa) =
(︃

𝛾fluido

2𝑔

)︃(︃(︂
𝑄m3_por_s

𝐴canhoneio

)︂2
−
(︂

𝑄m3_por_s

𝐴tubo

)︂2)︃
· 10−3

onde os termos entre parênteses representam as velocidades quadradas na saída dos
canhoneios e no interior do tubo, respectivamente.

A figura 55 ilustra a configuração dos canhoneios no tubo de injeção.
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Figura 55 – Esquema de um tubo com quatro canhoneios a 90 graus.

Fonte: O autor (2025)

CÁLCULO DA PRESSÃO DE INJEÇÃO FINAL

Finalmente, a pressão de injeção total em MPa, que é o valor utilizado como entrada nas
simulações do SALGAS, é a soma das duas componentes:

𝑃inj (MPa) = 𝑃hidrostática (MPa) + 𝑃dinâmica (kPa)

1000

Este valor corresponde à "Pressão de injeção"reportada nas tabelas da tese para cada cenário
de vazão.
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Figura 56 – Fluxograma do processo de cálculo da pressão total em PSI.

Definições de
Constantes
(d_válvula,

d_tubo, 𝜌fluido)

Constantes
de Conversão
(ft → m, MPa

→ kPa, MPa →
mca, kPa → PSI)

Dados Fornecidos
(Profundidade, Vazão)

Conversão de
Profundidade

(ft → m)

Pressão da Co-
luna de Água

(𝑃mca_MPa = ℎm
101.97)

Cálculo de Áreas
(válvula e tubo)

Conversão da Vazão
(m3/h → m3/s)

Pressão Adicio-
nal (Bernoulli)
(diferença de
velocidades)

Pressão Total
(Bernoulli + Co-
luna de Água)

Conversão para PSI

Fonte: O autor (2025)
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APÊNDICE E – GERAÇÃO DE DADOS DE ENTRADA E EXECUÇÃO DA

SIMULAÇÃO

Neste apêndice, detalha-se o processo de cálculo dos parâmetros de entrada variáveis e o
procedimento de execução das simulações no software SALGAS Eyerman (2008). Com base
no valor da pressão total calculada no Apêndice C e na temperatura de referência de cada
cenário (e.g., 40∘𝐶, 60∘𝐶 ou 80∘𝐶), as informações foram processadas para gerar os dados
de entrada necessários.

CÁLCULO DOS PARÂMETROS DE ENTRADA VARIÁVEIS

Conforme explicado na dissertação de Silva (2022), os arquivos de entrada (.sgi) para todos
os casos simulados possuem uma estrutura similar, com exceção de quatro parâmetros chave:
taxa de produção de salmoura, gravidade específica do fluido de injeção, gravidade específica
da salmoura e fator de dissolução do sal. O cálculo destes parâmetros seguiu uma metodologia
sequencial:

1. Cálculo da pressão de injeção: A pressão foi calculada para cada vazão utilizando a
equação de Bernoulli (Equação 4.8) e a equação hidrostática (Equação 4.9). Como a
altura da válvula injetora é a mesma, a pressão de entrada no SALGAS varia de acordo
com a vazão. O detalhamento completo deste cálculo encontra-se no Apêndice C.

2. Cálculo da gravidade específica (SG) do Fluido de Injeção: Com os parâmetros de tem-
peratura e pressão, a gravidade específica do fluido de injeção foi calculada utilizando
a caixa de ferramentas do SMRI Brouard (2008), na guia Fluidos > Salmoura > Guia
Calculadora de salmoura subsaturada, conforme mostrado na figura 57.
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Figura 57 – Guia calculadora de salmoura subsaturada no Toolbox do SMRI.

Fonte: Silva (2022)

3. Cálculo da gravidade específica (SG) da salmoura: De forma similar, a gravidade es-
pecífica da salmoura foi calculada na guia Fluidos > Salmoura > Guia Calculadora de
salmoura saturada, como ilustrado na Figura 58.

Figura 58 – Guia calculadora de salmoura saturada no Toolbox do SMRI.

Fonte: Silva (2022)

4. Cálculo do fator de dissolução (DF): Para cada taxa de produção, o Fator de Dissolução
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foi calculado utilizando a temperatura do cenário e a gravidade específica da salmoura
(obtida na etapa anterior) na Equação 4.7.

EXECUÇÃO DA SIMULAÇÃO NO SALGAS

Após a geração do arquivo de entrada (.sgi) com os parâmetros calculados, cada caso foi
executado no software SALGAS for Windows Eyerman (2008). A sequência de figuras 59, 60,
61 e 62 a seguir ilustra o processo padrão de execução, desde a abertura do arquivo até a
verificação da conclusão bem-sucedida da simulação.

Figura 59 – Executando o caso no SALGAS: Abriu-se o arquivo de entrada.

Fonte: Silva (2022)
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Figura 60 – Executando o caso no SALGAS: Foi dado o comando de partida.

Fonte: Silva (2022)

Figura 61 – Executando o caso no SALGAS: Aguardou-se a conclusão da simulação.

Fonte: Silva (2022)
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Figura 62 – Executando o caso no SALGAS: Verificou-se se rodou até o final sem erro.

Fonte: Silva (2022)
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APÊNDICE E – DESCRIÇÃO DO ARQUIVO DE ENTRADA (.SGI) DO SALGAS

Este apêndice descreve um exemplo específico de configuração para uma simulação para
um cenário de referência de 40°C e vazão de 360 m3/h, utilizando o método de circulação
direta e o sistema de medidas americano. Cada linha e parâmetro do arquivo de entrada .sgi

são detalhados abaixo, com a nomenclatura oficial da variável do software SALGAS Eyerman
(2008)(conforme o manual do SMRI) indicada entre parênteses para referência.

DADOS DO ARQUIVO .SGI

0 D 360m³/h 40C

0 20 2 60 0 0 0 3 3000.000000 2500.000000

1000.000000 2000.000000 2.160000 10.750000 7.000000 2100.000000 1.300000 0.000000

60.000000 1532.220000 1.000000 1.196500 1.024230 1.260719 0.030000

1 2 2 1 15.000000 0.000130 0.900000

100 8

2800 6

200 6

2400 9.9 7.0

100 9.9 7.8

100 8

Descrição Detalhada do Arquivo .sgi

Linha 1: Sistema de medidas e título

• Unidade de medida utilizada (MSYS): Sistema americano (valor 0).

• Campo alfanumérico para o título da execução: D 360m³/h 40C.

Linha 2: Configurações Gerais da Simulação

• Direção inicial da mineração (ICODE): 0 (Circulação Direta).
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• Número de células computacionais (N): 20.

• Número de intervalos de tempo (M): 2.

• Frequência de impressão dos dados de produção (IDT): A cada 60 dias.

• Presença de colchão de proteção (IPAD): 0 (Sim, há um blanket presente).

• Mudança de direção da mineração (ISOR): 0 (Não).

• Tipo de colchão de proteção (ICON): 0 (Líquido incompressível).

• Seletor de simulação (ISHORT): 3 (Módulos de mineração e hidráulica ativados).

• Profundidade de injeção (DEPINJ): 3000.0 ft (914,40 m).

• Profundidade de produção (DEPPRD): 2500.0 ft (762,00 m).

Linha 3: Propriedades da Rocha Salina e Geometria do Poço

• Altura da seção de sal modelada (H): 1000.0 ft (304,80 m).

• Profundidade do topo do intervalo modelado (DEPT): 2000.0 ft (609,60 m).

• Gravidade específica do sal (DENSAL): 2.16.

• Diâmetro externo da tubulação externa/rasa (DP): 10.75 in (273,05 mm).

• Diâmetro externo da tubulação interna/profunda (DPT): 7.0 in (177,80 mm).

• Profundidade do colchão de proteção (DEPPAD): 2100.0 ft (640,08 m).

• Fator de volume de formação de insolúveis (BULK): 1.3.

• Profundidade inicial do topo dos insolúveis (DPINS): 0.0 (Ausência de insolúveis no
início).

Linha 4: Parâmetros de Operação e Propriedades dos Fluidos

• Intervalo para impressão dos dados da cavidade (CONTPD): 60.0 dias.

• Taxa de produção de salmoura (CONQUE): 1532.22 bbl/h.
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• Raio inicial da caverna (CONRAD): 1.0 ft (0,3048 m).

• Gravidade específica inicial da salmoura (CONSGB): 1.1965.

• Gravidade específica do fluido de injeção (CONISG): 1.024230.

• Fator de dissolução do sal (CONDIS): 1.260719. Este fator ajusta a taxa de dissolução
para simular o efeito de uma temperatura (40°C) diferente da temperatura base do
software (75°F / 24°C).

• Porcentagem de insolúveis no sal (VINSL): 0.03 (3.0%).

Linha 5: Configurações do Módulo Hidráulico

• Seções na linha de salmoura superficial (II): 1.

• Seções na tubulação interna da caverna (J1): 2.

• Seções na tubulação externa da caverna (K1): 2.

• Seções na linha de água superficial (L1): 1.

• Pressão de entrega da salmoura na superfície (PDEL): 15.0 psi (0,1034214 MPa).

• Rugosidade da superfície do tubo (ROUGH): 0.000130 in/in (0,000130 mm/mm).

• Eficiência da bomba d’água (EPUMP): 0.90 (90%).

Linhas 6 a 11: Comprimentos e Diâmetros das Seções dos Tubos

Estas linhas fornecem os comprimentos e diâmetros para cada uma das seções de tubulação
definidas na Linha 5. O módulo hidráulico utiliza esses dados para calcular as perdas de carga
por atrito em cada segmento do sistema e, consequentemente, determinar os requisitos de
energia da bomba.

• Linha de salmoura superficial (Linha 6): Descreve a tubulação que transporta a salmoura
da cabeça do poço até o ponto de entrega.

– Comprimento: 100 ft (30,48 m)
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– Diâmetro interno: 8 in (203,20 mm)

• Coluna de tubulação interna (Linhas 7 e 8): Representa o tubo mais profundo, usado
para injeção de água neste cenário de circulação direta. Está dividido em duas seções.

– Seção 1: Comprimento: 2800 ft (853,44 m), Diâmetro interno: 6 in (152,40 mm).

– Seção 2: Comprimento: 200 ft (60,96 m), Diâmetro interno: 6 in (152,40 mm).

• Anular da coluna de tubulação externa (Linhas 9 e 10): Modela o espaço anular entre a
tubulação interna e a externa, por onde a salmoura é produzida neste cenário.

– Seção 1: Comprimento: 2400 ft (731,52 m), Diâmetro interno do anular: 9.9 in
(251,46 mm), Diâmetro externo do tubo interno nesta seção: 7 in (177,80 mm).

– Seção 2: Comprimento: 100 ft (30,48 m), Diâmetro interno do anular: 9.9 in
(251,46 mm), Diâmetro externo do tubo interno nesta seção: 7.8 in (198,12 mm).

• Linha de água superficial (Linha 11): Descreve a tubulação que transporta a água de
injeção da bomba até a cabeça do poço.

– Comprimento: 100 ft (30,48 m)

– Diâmetro interno: 8 in (203,20 mm)
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