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RESUMO

O consumo global de energia tem impulsionado a necessidade de armazenamento subter-
raneo, sendo as cavernas de sal uma solucao amplamente utilizada para materiais energéticos.
A construcdo e o controle dessas cavernas sdo, portanto, cruciais para garantir sua capacidade
e seguranca operacional. Este trabalho apresenta uma metodologia integrada para a analise
e otimizacdo do processo de dissolucao para abertura de cavernas. Primeiramente, foram re-
alizadas simulacées numéricas do processo de mineracao por dissolucao em uma rocha de
cloreto de sédio, utilizando o software SALGAS SOLUTION MINING SIMULATION SOFT-
WARE para diferentes métodos de circulacdo (direta e reversa). Para interpretar a complexa
interacdo entre as varidveis de entrada e os resultados, foi realizada uma analise estatistica
multivariada com as técnicas de reducao de dimensionalidade, Principal Component Analysis
(PCA) e t-distributed Stochastic Neighbor Embedding (t-SNE). A anélise PCA revelou que a
taxa de producao de salmoura e suas variaveis correlatas constituem o principal componente
de variabilidade do processo, enquanto as varidveis associadas a temperatura e as propriedades
do fluido desempenham um papel secundério, mas significativo. A técnica t-SNE confirmou
esses achados e demonstrou sua capacidade de agrupar cendrios com caracteristicas operaci-
onais similares. Com base nos insights obtidos, o trabalho avanca da analise para o design,
implementando um framework de otimizacdo que acopla o simulador SALGAS a Algoritmos
Genéticos (AG). Foram conduzidas otimizacSes mono-objetivo, para maximizar o volume final,
e multiobjetivo, para explorar os complexos trade-offs entre os objetivos de volume, massa de
Sal, eficiéncia energética e Tempo de Construcdo. Os resultados demonstram que o AG é
capaz de identificar vetores de decisdo que geram projetos superiores aos cendrios de base,
caracterizando a fronteira de Pareto de solucGes 6timas. A metodologia proposta, portanto,

oferece uma abordagem sistematica e robusta para o projeto de cavernas salinas.

Palavras-chave: abertura de cavernas; SALGAS; simulacdes numéricas; analises estatis-

ticas; algoritmos genéticos.



ABSTRACT

Global energy consumption has driven the need for underground storage, with salt caverns
being a widely used solution for energy materials. The construction and control of these cav-
erns are, therefore, crucial to ensure their capacity and operational safety. This work presents
an integrated methodology for the analysis and optimization of the dissolution process for cav-
ern development. First, numerical simulations of the solution mining process were performed
in a sodium chloride rock formation, using the SALGAS SOLUTION MINING SIMULATION
SOFTWARE for different circulation methods (direct and reverse). To interpret the complex
interaction between input variables and results, a multivariate statistical analysis was con-
ducted using dimensionality reduction techniques, Principal Component Analysis (PCA) and
t-distributed Stochastic Neighbor Embedding (t-SNE). The PCA revealed that the brine pro-
duction rate and its correlated variables constitute the main component of process variability,
while variables associated with temperature and fluid properties play a secondary but sig-
nificant role. The t-SNE technique confirmed these findings and demonstrated its ability to
group scenarios with similar operational characteristics. Based on the insights obtained, the
work progresses from analysis to design, implementing an optimization framework that cou-
ples the SALGAS simulator with Genetic Algorithms (GA). Single-objective optimizations were
conducted to maximize the final volume, and multi-objective optimizations were performed to
explore the complex trade-offs between the objectives of Volume, Salt Mass, Energy Efficiency,
and Construction Time. The results demonstrate that the GA is capable of identifying deci-
sion vectors that generate superior designs compared to the base scenarios, characterizing the
Pareto frontier of optimal solutions. The proposed methodology, therefore, offers a systematic

and robust approach for the design of salt caverns.

Keywords: cavern development; SALGAS; numerical simulations; statistical analyses;

genetic algorithms.
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1 INTRODUCAO

Segundo Aydin| (2014)), em 2010, cerca de 90% do consumo mundial de energia prima-
ria foi fornecido por combustiveis fosseis. Esse cenario destaca a importancia de se explorar
alternativas para o armazenamento eficiente de energia. De acordo com |Yang et al| (2015,
0 armazenamento em cavernas de sal possui um papel relevante nas reservas internacionais
de energia. Estudos como o de |Ozarslan| (2012) indicam que as cavernas de sal subterraneas
artificiais sdo utilizadas como reservatérios de ar comprimido e gas hidrogénio, sendo candi-
datas promissoras para aplicacGes de armazenamento de energia em larga escala. No entanto,
conforme destacado em Matachowska et al|(2022)), a implementac3o dessas tecnologias pode
ser impactada por regulamentacGes de seguranca, especialmente na Europa, onde as normas
variam significativamente.

Esse cenario ressalta a relevancia de discutir, de forma mais ampla, os desafios relaciona-
dos a seguranca energética e a protecao ambiental, que tém se consolidado como questdes
urgentes para a sociedade contemporanea (Sovacool et al| (2020)), Bradshaw et al| (2021),
Ritchie e Roser (2020). Embora as fontes de energia tradicionais, como o gas natural e o

petréleo, ainda desempenhem um papel central no crescimento economico global, sua depen-

déncia excessiva resulta em altas emissdes de didxido de carbono (didxido de carbono (CO,))),

agravando problemas ambientais cruciais, como o aquecimento global linemiller2017. Além
disso, a producao desses recursos frequentemente ocorre em regides distantes dos centros de
consumo, gerando um descompasso entre oferta e demanda. Para mitigar esses impactos, so-
lucoes de armazenamento de energia, como os reservatérios subterraneos para gas |Succar e
Williams (2015)), petréleo |Nadimi, Zali e Ahangaril (2018) e sistemas de armazenamento de
energia elétrica |Zame et al|(2018), |Luo et al| (2015), tém se tornado vitais para garantir a
estabilidade e a resiliéncia das cadeias de suprimento.

A transicao para fontes renovaveis de energia, como solar, edlica e hidrelétrica, é essencial
para a reducdo das emissdes de carbono |Acar e Dincer| (2019)). Contudo, a intermiténcia dessas

fontes exige solucoes de armazenamento em larga escala para equilibrar a rede elétrica, como

sistemas de|[Armazenamento de Energia por Ar Comprimido (Compressed Air Energy Storage))

CAES)| Budt et al| (2016), hidrogénio Abe et al.| (2019) e hidrelétricas reversiveis |Deane,

GallachOir e McKeogh| (2010). Essas tecnologias n3o sé facilitam a integracio de energias

renovaveis, mas também s3o fundamentais para o cumprimento de metas globais, como a
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neutralidade de carbono até 2060, estabelecida pela China Mallapaty, (2020).

Neste contexto, o |[Armazenamento Subterrdneo em Cavernas de Sal (SCES)| surge como

uma solucdo promissora devido as propriedades excepcionais do sal-gema: baixa permeabilidade
(< 107" m?), capacidade de autorregenerac3o e estabilidade mecanica|Yu et al| (2016)), Zhang
et al| (2018), |Fan et al| (2017). Cavernas formadas por dissolucdo controlada (método de
solution mining) proporcionam espacos herméticos e duraveis, adequados para armazenar gas
natural, hidrogénio, ar comprimido e até Cypryjanski et al| (2020). Iniciativas pioneiras,
como o armazenamento de hidrogénio em Tees-side (Reino Unido, 1972) Walters (1976) e
a primeira planta comercial de em Huntorf (Alemanha, 1978) |Crotogino, Mohmeyer e
Scharf| (2001)), demonstram a viabilidade técnica dessa abordagem.

No entanto, apesar do potencial, persistem desafios significativos. A falta de revisGes
sistematicas sobre o [SCES| em escala global limita a compreensdo de seu papel estratégico
no setor energético |Fan et al. (2021). Além disso, a expansdo de tecnologias como
e o armazenamento de hidrogénio exigem um planejamento industrial integrado, avancos em
geomecanica e a gestdo de cavernas em formacdes salinas estratificadas, caracteristicas comuns
em paises como a China e o Reino Unido |Li et al|(2020)), |[Bérest et al.| (2022).

Contudo, a exploracdo de domos salinos nado é isenta de riscos geomecanicos significativos,
cujo gerenciamento inadequado pode levar a consequéncias catastréficas. O desastre ambiental
em Maceid, Brasil, onde a extracdo de sal-gema por décadas resultou na desestabilizacdo do
subsolo e na subsidéncia severa de bairros inteiros, serve como um alerta contundente Servico
Geoldgico do Brasil (CPRM) (2019). Este evento ressalta que o design e a operacdo de caver-
nas salinas exigem um planejamento rigoroso, que va além da simples viabilidade econdmica.
Neste contexto, a otimizacao computacional avancada é fundamental. Ferramentas como os
Algoritmos Genéticos (AG) sdo empregadas na engenharia moderna para determinar a geome-
tria e o espacamento 6timos de cavernas, com o objetivo explicito de maximizar a estabilidade
de longo prazo e minimizar os riscos de colapso e afundamento da superficie. Portanto, a
aplicacao de um AG, como proposto nesta tese, ndo é apenas uma busca por eficiéncia, mas
uma metodologia robusta e indispensavel para garantir a seguranca e a sustentabilidade de
tais projetos.

A partir da anélise das propriedades e desafios mencionados, torna-se evidente a necessi-
dade de aprimorar o entendimento sobre o processo de construcdo de cavernas de sal e seu
potencial como solucdo de armazenamento de energia. Nesse sentido, a modelagem numérica

se apresenta como uma ferramenta essencial, uma vez que permite a simulacdo de cenérios e a
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otimizacdo do design de cavernas subterraneas. No entanto, as abordagens tradicionais, como
experimentos laboratoriais, apresentam limitacdes, principalmente no que se refere a escala e
a precisdo dos resultados. Portanto, a aplicacao de técnicas de anélise estatistica multivariada,

como a[PCA e o [t-SNE] surge como uma estratégia para melhorar a interpretacdo dos dados

obtidos a partir das simulacdes e otimizar o processo de construcdo de cavernas de sal. Essas
técnicas, amplamente utilizadas em areas como a analise de dados e aprendizado de maquina,
oferecem a vantagem de reduzir a dimensionalidade dos dados e identificar padrdes ocultos,
o que pode facilitar a tomada de decisdes e o planejamento do desenvolvimento de cavernas

para armazenamento de energia.

1.1 OBJETIVO GERAL

Desenvolver e aplicar uma metodologia integrada de anélise e otimizacao para o processo
de abertura de cavernas subterraneas, utilizando técnicas de reducdo de dimensionalidade
(PCA| e [t-SNE]) para a compreensdo do sistema e Algoritmos Genéticos para a determinagdo

de designs étimos.

1.2 OBJETIVOS ESPECIFICOS

Para a consecucao do objetivo principal, foram propostos os seguintes objetivos especificos:

» Avaliar a evolucdo geométrica da caverna ao longo do tempo de simulacao, identificando

mudancas significativas na forma e na estrutura.

» Comparar os dados gerados pelo software SALGAS em diferentes cenérios de simulacdo
(direto e reverso), analisando padrdes e discrepancias que possam impactar o processo

de abertura da caverna.

» Reduzir a dimensionalidade dos dados numéricos de simulacao, preservando a maior
parte das informacdes relevantes para facilitar a analise dos resultados, com foco nas

variaveis que influenciam o desenvolvimento da caverna.

= Analisar a robustez dos agrupamentos obtidos através do t-SNE| testando diferentes
valores de perplexidade e aplicando técnicas de validacao cruzada para verificar a con-

sisténcia e a qualidade dos grupos formados.
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Interpretar os resultados gerados a partir das representacdoes em baixa dimensao obtidas
pelas duas técnicas de reducao de dimensionalidade, destacando insights significativos

sobre o comportamento das variaveis.

Contrastar as duas técnicas de reducao de dimensionalidade com base no agrupamento
dos individuos (cavernas simuladas), avaliando suas respectivas eficacias na visualizacdo

dos dados.

Quantificar a influéncia das variaveis taxa de producdo de salmoura e temperatura interna
equivalente (ajustada pelo Fator de Dissolucdo do SALGAS) no processo de abertura da

caverna por dissolucao, utilizando métodos estatisticos apropriados.

Formular o problema de design da caverna como um problema de otimizacdo matema-
tica, definindo o vetor de decisdo, as funcdes-objetivo e as restricoes fisicas e operacio-

nais.

Implementar um framework computacional que acople o simulador SALGAS a um Al-

goritmo Genético para solucionar o problema de otimizac3o.

Analisar os resultados da otimizacdo, identificando o design 6timo para o caso mono-

objetivo e caracterizando a fronteira de solucdes 6timas para o caso multiobjetivo.
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2 REFERENCIAL TEORICO

Neste capitulo, sao apresentados os conceitos ligados ao tema da pesquisa, tais como me-
todologias de dissolucdo em rochas salinas, formulacdo matematica das equacoes do software

de SALGAS, e a formulacdo matematica das duas técnicas da reducao de dimensionalidade,

[PCA| e E-SNEL

2.1 METODOLOGIAS DE DISSOLUCAO EM ROCHA SALINAS

A mineracao por solucdo nao é uma pratica recente, tendo sido utilizada hd milénios na
China, onde o sal subterraneo era dissolvido com agua doce por meio de tubos de bambu.
Com o tempo, esse processo evoluiu para uma indistria especializada na extracao de minerais
solliveis em agua. Em muitos casos, as cavernas de sal resultantes tornaram-se mais valiosas
do que o proprio sal extraido, sendo amplamente empregadas para o armazenamento de gas
natural, petréleo bruto e outros hidrocarbonetos, além de, em algumas situacoes, servirem

como reservatorios para residuos. O crescimento dessa indlstria pode ser observado no au-

mento do niimero de membros do [Solution Mining Research Institute (SMRI)| impulsionado

pelo crescente interesse e investimento em armazenamento de gas.
Cavernas dissolvidas em formacGes de sal oferecem um método seguro e amplamente aceito
para o armazenamento de gas natural. No Brasil, estudos indicam a viabilidade de utilizar

cavernas em aguas ultraprofundas para essa finalidade, especialmente nas formacSes do pré-

sal, visando tanto a [Captura e Armazenamento de Carbono (CCS)| quanto a monetizacdo do

gas natural associado |Costa et al| (2020)), |Costa et al.| (2015).

O armazenamento de energia em cavernas de sal tem ganhado destaque devido a sua ele-
vada capacidade, seguranca, conformidade ambiental e viabilidade econémica. A estabilidade
dos depésitos de sal e sua capacidade de isolar fluidos, como gas e ar comprimido, fazem
dessas estruturas uma alternativa robusta para aplicagdes em larga escala Tian et al.| (2010).
Contudo, ha riscos associados, sendo a subsidéncia superficial um dos mais criticos. Estudos
realizados na Suica apontam que areas afetadas podem variar de 100 a 1.500 metros de dia-
metro, com taxas de subsidéncia superiores a 100 mm /ano|Zechner et al|(2011). Nos Estados
Unidos, casos como o poco Hendrick 10-A demonstram que a circulacdo de agua através de

falhas geoldgicas pode provocar dissolucdo do sal e resultar em subsidéncia em larga escala
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Johnson| (2005)).

A construcdo de cavernas de sal exige requisitos basicos, como a presenca de um depdsito
salino ou de gesso, agua ndo saturada, um mecanismo para extracao da salmoura e energia para
manter o fluxo hidrico Johnson| (2005)). Diferentes arranjos de pocos sdo utilizados, incluindo
configuracdes de poco Unico, dois pocos para injecdo e producado, e arranjos combinados que
interligam duas cavidades por um dnico poco [Tian et al|(2010). Os métodos de dissolucdo
podem seguir diferentes abordagens, como “fundo para topo”, “topo para fundo” ou métodos
integrais. A circulacdo de agua pode ser direta, com injecao no fundo e extracdo no topo,
ou reversa, com injecao no topo e extracao no fundo, resultando em distintas geometrias de
cavernas.

Estudos experimentais tém contribuido para a compreensao dos processos envolvidos. Weis-
brod et al| (2012) demonstraram, por meio de tomografia computadorizada, a formacdo de
canais preferenciais em rochas salinas, influenciados pela microestrutura do material. Liu et
al| (2016), com testes dindmicos e modelagem numérica, identificaram uma relacdo linear
entre o pardmetro (dissolugcdo/espessura da camada limite) e a velocidade do fluxo, além de
destacarem a influéncia gravitacional na morfologia das cavernas.

O desenvolvimento de modelos matematicos tem permitido prever os processos de disso-
lugdo e a evolucdo das cavernas. Modelos iniciais, como os de [Durie e Jessen| (1964), relaci-
onaram a salinidade da dgua com a taxa de dissolucdo, enquanto Donat e Haimson| (1974)
e [Saberian| (1974)) avancaram em simulacdes numéricas para controle de pressdo e evolucdo
das cavernas. O modelo UBRO, de [Kunstman e Urbanczyk| (1990), incorporou previsdes sobre
forma, volume e concentracao de salmoura, considerando também a sedimentac3o de insold-
veis. Modelos mais recentes Huang et al| (2011), Li et al.| (2016)), Li et al.| (2018)), Wang et
al| (2018), Wang et al| (2018), Yang et al| (2017), Yang, Liu e Zhang (2017)) aprimoraram
essas abordagens, incluindo efeitos acoplados de fluxo, dissolucdo e sedimentacao, essenciais
para otimizar os processos e garantir a seguranca operacional.

Apesar dos avancos tecnolégicos, desafios persistem na previsdo da subsidéncia, no controle
da morfologia das cavernas e na otimizacdo de processos como a dessalinizacdo. O progresso
em modelagem computacional tem sido crucial para superar essas dificuldades, permitindo
andlises mais precisas e melhorias continuas nos sistemas de armazenamento de energia em
cavernas de sal.

Nesse contexto, compreender os processos fisicos envolvidos na formacdo das cavernas é

essencial para aprimorar as técnicas de construcdo e garantir sua estabilidade a longo prazo.
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A mineracdo por solucao, principal método utilizado para a criacdo dessas cavernas, é um

processo de transferéncia de massa em que ocorre a conveccdo entre a dgua e a rocha salina,

promovendo a dissolu¢do do sal |Steding et al|(2021)).

Existem diferentes métodos para o desenvolvimento e conformacao das cavernas. No mé-
todo de circulacdo direta na Figura [T, o solvente é injetado através da coluna de tubulacgo
e a salmoura é extraida pelo espaco anular entre a coluna e o revestimento final. No método
de circulac3o reversa Figura 2] o solvente entra pelo anel e a salmoura é retirada pela coluna
de tubulacdo. Devido a menor densidade da dgua doce comparada a salmoura, cavernas em
forma de "cone invertido", com topo mais largo que a base, tendem a se formar na circulacao
reversa, especialmente na auséncia de um fluido cobertor. Ja a circulacdo direta resulta em
cavernas mais cilindricas. Durante a escavacao, o volume do fluido cobertor pode ser ajustado

para auxiliar na conformacdo da cavidade.

Figura 1 — Processo de mineracio por solucdo: circulacdo direta

SalMmoura s— =

Solvente de alimentac&o—»—"""1 )
(agua) Invélucro externo

Fluido cobertore—s

Caverna

<~/

-, v

Fonte: Adaptado (2016)
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Figura 2 — Processo de mineracdo por solucdo: circulacdo reversa

Solvente de alimentacao
(Agua)y——7]

Salmoura-s———

Invélucro
externo
Fluido cobertores— //

Caverna

In?:)IL’Jveis N

Fonte: Adaptado (2016)

2.2 REDUCAO DE DIMENSIONALIDADE

Neste trabalho, a reducdo de dimensionalidade é aplicada como uma ferramenta para faci-
litar a interpretacdo dos resultados obtidos nas simulacdes numéricas do processo de abertura
de cavernas. O objetivo ¢ identificar quais variaveis mais influenciam o comportamento geomé-
trico e dinamico das cavernas simuladas, a partir de representacdes compactas que preservam
as informacGes mais relevantes dos dados originais.

Nesta seccdo sdo abordadas duas técnicas de reducio de dimensionalidade: [PCA e [t-SNE]
ambas as técnicas permitem a visualizacdo de dados, mas apresentam diferencas e umas das
diferencas significativas é que o [PCA] é uma técnica linear, enquanto o [t-SNE| é uma técnica

nao linear. Descrevem-se ambas as técnicas.

2.2.1 |PCA

O desenvolvimento da [PCA| comeca com fundamentos matematicos em algebra linear e

decomposicdo matricial, evoluindo para um método estatistico de reducao de dimensionalidade.
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No final do século XIX, os trabalhos de Beltrami|(1873)) e Jordan| ((1874)) estabeleceram as bases
matematicas ao investigar funcdes e formas bilineares. Embora esses estudos n3o tivessem,

a época, a intencao de reduzir a dimensionalidade dos dados, eles introduziram conceitos

que, posteriormente, dariam origem a [Decomposicdo em Valores Singulares (Singular Valug

[Decomposition) (SVD)| uma ferramenta importante para a construcdo teérica do [PCA|

No inicio do século XX, o foco passou a incluir abordagens geométricas e estatisticas. Em
1901, |Pearson| (1901) apresentou uma metodologia para ajustar linhas e planos a conjuntos
de pontos em espacos multidimensionais, o que serviu de precursor direto da[PCA] Essa fase
também viu a aplicacdo pratica da técnica: em 1923, |Fisher e Mackenzie (1923) utilizaram
métodos semelhantes a [SVD] para estudar variagdes em culturas agricolas, e em 1929, [Frisch
(1929)) aprofundou a analise da correlacdo e dispersdo entre variaveis.

A formalizacdo da [PCA] como método estatistico ocorreu na década de 1930. Em 1933,
Hotelling (1933)) definiu os “componentes principais” e diferenciou a técnica da anélise fato-
rial, estabelecendo um marco teérico decisivo. Nos anos seguintes, |Girshick| (1936)) introduziu
estimativas de maxima verossimilhanca para os componentes, enquanto [Hotelling (1936)), no-
vamente em 1936, propos calculos simplificados que facilitaram a aplicacao pratica da meto-
dologia. Em 1939, |Girshick| (1939)) expandiu o conhecimento sobre as distribuices amostrais
associadas as raizes das equacdes determinantes.

Nas décadas de 1960 a 1980, a [PCA| ganhou novas dimensdes tedricas e aplicacdes inter-
disciplinares. |Anderson| (1963) contribuiu com a teoria assintética, e |Rao| (1964) ampliou as
interpretacGes e conexdes da técnica com outras abordagens de analise multivariada. Adicio-
nalmente, os estudos de [Gower| (1966) e [Jeffers| (1967) evidenciaram a versatilidade da [PCA|
culminando na compilacdo de métodos multivariados por Bryant e Atchley| (1975)). Por fim, o
trabalho de |Preisendorfer e Mobley| (1988) sintetizou tanto os fundamentos tedricos quanto
as aplicacdes préticas da [PCA]em 4reas como a meteorologia e a oceanografia.

Com os fundamentos tedricos consolidados ao longo de décadas, o [@] se apresenta
como uma técnica robusta para a andlise de dados. Na pratica, seu objetivo é transformar os
dados originais em um novo sistema de coordenadas — os componentes principais — que sdo
calculados a partir da matriz de covariancia dos dados. Estes componentes s3o orientados de
forma a preservar a maior variabilidade possivel, permitindo uma representacao dos dados em

um espaco de menor dimensionalidade sem comprometer informacoes relevantes.
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1. Centralizacdo dos Dados e Matriz de Covariédncia

Para iniciar o processo de |PCA| o primeiro passo é centralizar os dados. Seja X € R"*?
uma matriz de dados com n observacGes e p variaveis, onde cada linha x; representa a i-ésima

observacdo. A matriz X pode ser representada como:

T11 T2 ... Tip

To1 X2 ... Top
X =

Tn1 Tp2 .. Tpp

Centralizacao: O processo de centralizacdo envolve subtrair o vetor de médias x de cada

observacdo. O vetor de médias x, de dimensdo 1 x p, é calculado como:

A centralizacdo resulta em uma nova matriz de dados X, dada por:

X=X-1,%

Nesta equacao, 1, € um vetor coluna de dimens3o n x 1 composto por n elementos iguais
a 1. A multiplicacdo de 1,, pelo vetor linha X cria uma matriz n X p onde cada linha é o vetor
de médias, permitindo a subtracdo elemento a elemento.

Em seguida, calculamos a Matriz de Covariancia S, que descreve como as variaveis do

conjunto de dados estdo relacionadas entre si:

s— L xt% cmer
n—1
SH 512 Slp
821 SQQ Sgp
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2. Maximizacdo da Variancia via Autovalores e Autovetores

O préximo passo no [PCA| é identificar as direcdes de méxima variabilidade nos dados. Isso
é feito através da obtencdo dos autovetores e autovalores da matriz de covariancia dos dados.
Essas direcGes sdo aquelas nas quais a variancia dos dados projetados é maximizada como
exemplificado na figura

Matematicamente, a maximizac3do da variancia nas projecdes é descrita pela seguinte equa-

cao:

Onde:

= A\ > A > - >\, > 0 sdo os autovalores da matriz de covariancia, que indicam a

quantidade de variancia explicada por cada componente principal.

" Wi, Ws,..., W, S30 0s autovetores, que sdo ortogonais entre si. Organizando esses au-
tovetores em uma matriz W, obtemos a matriz de projecao dos dados no espaco de

componentes principais:
W=lw, wy, ... Wp:| € RP*P

As direcbes dos componentes principais w; correspondem as direcdes nos dados onde ocorre

a maior variabilidade.

Figura 3 — Captura das direcSes de maxima variancia no m

P
Q,
[aY]
O
a
@
PC1@ o @ ..
) ° @ '.. L
b ]
Maximiza ®e
variancia

Fonte: Modificado Rhys| (2020))
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3. Selecdo dos k. Componentes Principais

Apés calcular os autovetores e autovalores, selecionam-se os k primeiros autovetores, cor-

respondentes aos maiores autovalores \;, para formar a matriz de projecao Wy:

xk
Wi=1lw, wy ... wy eR?

A matriz W, é usada para projetar os dados originais em um espaco de menor dimen-
sionalidade. A variancia explicada pelos k primeiros componentes principais VE(k) é dada
por:

k
DY
VE(k) = ==L

p
=1 i

x 100%

Essa métrica indica a proporcdo da varidncia total que é retida pelos £ componentes

principais selecionados.

4. Projecao dos Dados

Por fim, a projecdo dos dados originais no novo espaco de componentes principais é feita
multiplicando a matriz centrada X pela matriz de projecdo Wy, resultando em uma nova

matriz Z, de dimensao reduzida n x k:

Z=XW, Rk

A matriz Z é composta pelas projecdes dos dados nos k primeiros componentes principais:

211 R12 ... Rk

221 %22 ... Z2k
7 =

Znl <An2 ... Rnk

O [PCA] portanto, permite ndo sé reduzir a dimensionalidade dos dados, mas também
realizar uma analise das componentes que mais contribuem para a variabilidade, facilitando a

interpretacdo e visualizacdo dos dados em espacos de menor dimensao.
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A anélise matematica completa e rigorosa do [PCA| que detalha todos os aspectos da
metodologia, encontra-se no Apéndice [Al Em seguida, apresenta-se o diagrama de fluxo da

figura[4, que organiza as etapas do processo no calculo do [PCA|

Figura 4 — Fluxograma do algoritmo de Anélise de Componentes Principais (PCA).

[ Matriz de Dados (X) }

v

[ Célculo da Média (x) }

v

[Centralizagéo dos Dados (X = X — 1@2)}

v

EMatriz de Covariancia (S = nllf(Tf()}

v

ECéIcqu de Autovalores e Autovetores}

v

EOrdenagéo dos Autovalores}

v

{Selec;éo dos k£ maiores Autovalores e Autovetores}

v

[ Espaco [PCA| (W) }

Fonte: O autor (2025)

2.2.2 [t-SNE

Segundo [Hinton e Roweis (2002), a técnica |Stochastic Neighbor Embedding (SNE)| (Sto-

chastic Neighbor Embedding) é um método probabilistico que visa representar objetos de um
espaco de alta dimens3o em um espaco de baixa dimens3o (geralmente 2D ou 3D), preser-
vando a estrutura de vizinhanca local dos dados. A ideia central do algoritmo é minimizar
uma funcdo de custo que quantifica a divergéncia entre as distribuicGes de probabilidade que
representam as similaridades entre os pontos nos dois espacos. No entanto, a formulacao ori-
ginal do apresentava um "problema de aglomeracdo"(crowding problem), onde os dados
projetados em dimensdes menores tendiam a se aglomerar excessivamente.

Para solucionar essa limitacdo, [Maaten e Hinton| (2008) propuseram a técnica [t-SNE|, uma
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evolucdo do método original. Conforme descrito em seu artigo "Visualizando dados no t-SNE",
a nova abordagem introduz duas modificacdes cruciais: (1) utiliza uma versdo simétrica da
func3o de custo, simplificando o gradiente para a otimizac3o; e (2) substitui a distribuicdo
Gaussiana por uma distribuicdo t-Student no espaco de baixa dimensdo. O uso de uma dis-
tribuicdo de cauda pesada, como a t-Student, permite que pontos moderadamente distantes
no espaco original sejam mapeados para distancias maiores no espaco de baixa dimensao,
aliviando tanto o problema de aglomeracao quanto otimizando o processo de visualizac3o.

O processo do [t-SNE| pode ser dividido em trés etapas principais. Primeiramente, constréi-
se uma distribuicao de probabilidade sobre os pares de pontos no espaco de alta dimensao,
de tal forma que pontos similares tenham uma alta probabilidade de serem escolhidos um
pelo outro. Para um conjunto de dados {x;},;,, a similaridade do ponto x; em relacéo a
x; € modelada pela probabilidade condicional pj;, calculada sob uma distribuicdo Gaussiana

centrada em x;:

exp (=[x — x| /277)
i oxp (=[x — xel* /277)

A variancia da Gaussiana, 72-2, é determinada com base em um hiper-parametro fundamental

Pjli =

definido pelo usuario: a perplexidade, 7. A perplexidade pode ser interpretada como um ajuste
suave para o nimero de vizinhos préximos que cada ponto considera. Um valor mais alto de
perplexidade leva em conta mais vizinhos, focando na estrutura global dos dados, enquanto
um valor mais baixo foca em aspectos locais. O valor de 7; para cada ponto é encontrado

numericamente resolvendo a seguinte equacdo, onde H(P;) é a entropia de Shannon:

T = QH(Pi) =9~ Zj pjiloga Pl (2,1)

Para a probabilidade conjunta, o utiliza uma versdo simetrizada: p;; = (p;; +
pil;)/2n. A matriz simétrica resultante, P, representa as similaridades no espaco de alta di-
mensao.

A segunda etapa consiste em definir uma distribuicao de probabilidade similar, Q, para os
pontos no espaco de baixa dimensdo, {Yi}1gign- Aqui reside a principal inovacdo do :
em vez de uma Gaussiana, utiliza-se uma distribuicdo t-Student com um grau de liberdade,

que possui caudas mais pesadas. A probabilidade conjunta ¢;; é definida como:
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(vl
4ij = o\ —1
2k (1 + lye — yill )

Na terceira e dltima etapa, o objetivo do [t-SNE| é encontrar um mapeamento de baixa

dimensao {Yi}1§ign que minimize a divergéncia entre as duas distribuicGes de probabilidade,
P e Q. Essa minimizacdo é realizada sobre a divergéncia de Kullback-Leibler (KL), que atua

como a funcdo de custo do algoritmo, conforme a equacéo [2.2]

(Y1,---,¥n) = argminDg 1 (P||Q) = argmin » _ p;; log @ (2.2)

Yi,5Yn Yir¥n iz qij
Para minimizar a fun¢do de custo, o inicia com uma configuracdo aleatéria dos
pontos y; e os atualiza iterativamente usando o método de gradiente descendente. O gradiente

da divergéncia de KL é dado por:

2 _1
by, = 42 (o = i) (v = ) (14 llys = w3 ) (23)
¢ J
Em uma pesquisa posterior, Maaten| (2014) demonstrou que o gradiente pode ser aproxi-
mado eficientemente usando uma variante do algoritmo de Barnes-Hut, o que acelerou signifi-

cativamente a aplicacdo do a grandes conjuntos de dados. Na sequéncia, o fluxograma

da figura [5] resume o processo de calculo do [t-SNE|
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Figura 5 — Fluxo do algoritmo .

Dados de alta dimens3o {x;}

Calcular matriz P

Inicializar {y;}
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Calcular custo D (P||Q)

Atualizar {y;}
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Sim

Resultado {y;}

Fonte: O autor (2025)
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3 ALGORITMOS EVOLUTIVOS E OTIMIZACAO MULTIOBJETIVO

A busca por solucGes 6timas para problemas complexos é um desafio central em diversas
areas da ciéncia e engenharia. Frequentemente, os modelos matematicos que representam sis-
temas do mundo real sdo caracterizados por nao linearidades, descontinuidades e um vasto
espaco de busca, tornando os métodos de otimizacdo classicos, baseados em gradientes, ine-
ficazes ou invidveis. Neste contexto, os algoritmos evolutivos (AEs) surgem como uma classe
de técnicas de busca estocastica, inspiradas nos principios da evolucdo natural, para navegar
por esses espacos complexos. Adicionalmente, muitos problemas praticos ndo se resumem a
otimizar um dnico critério, mas sim a encontrar um balanco entre mdltiplos objetivos, muitas
vezes conflitantes entre si, como custo e eficiéncia, ou risco e retorno. Esta necessidade define
o campo da otimizacdo multiobjetivo. Este capitulo se dedica a explorar os fundamentos dos

algoritmos evolutivos e sua aplicacao na resolucdo de problemas multiobjetivo.

3.1 ALGORITMOS GENETICOS (AGS)

Os AGs representam uma classe de algoritmos de busca heuristica adaptativa, cuja con-
cepcao se inspira diretamente nos principios da selecao natural e da genética mendeliana. Eles
pertencem a uma familia mais ampla de métodos computacionais conhecidos como Compu-
tacdo Evolutiva. A principal virtude dos AGs reside na sua capacidade de explorar espacos de
busca complexos, multidimensionais e multimodais para encontrar soluces de alta qualidade
para problemas de otimizacdo e busca, sem a necessidade de informacGes sobre o gradiente
da func3do-objetivo. Esta caracteristica os torna particularmente adequados para problemas em
que a funcdo-objetivo é descontinua, nao diferenciavel, estocéstica ou altamente ndo linear,

cendrios comuns em desafios de engenharia do mundo real |Sreekanth e Kumar (2019).

A base tedrica dos [Algoritmo Genético (AG)s foi estabelecida na obra seminal de Hol-

land| (1975). Em seu trabalho, Holland ndo apenas propds os mecanismos fundamentais do
algoritmo, mas também forneceu um arcabouco matematico para entender como a adaptacdo
ocorre em sistemas complexos, sejam eles naturais ou artificiais. Ele introduziu um modelo
matematico capaz de lidar com a n3o linearidade de interacdes complexas, demonstrando sua
universalidade em campos t3o diversos quanto a biologia, a economia e a inteligéncia arti-

ficial. A obra de Holland foi pioneira, estabelecendo as fundacdes tedricas que permitiram o
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desenvolvimento subsequente do campo.

Enquanto Holland estabeleceu as fundacdes tedricas, foi David E. Goldberg quem catalisou
a aplicagdo pratica e a ampla ado¢&o dos [AGs com seu livro seminal, "Genetic Algorithms in
Search, Optimization, and Machine Learning"|Goldberg|(1989). Goldberg traduziu os conceitos
tedricos de Holland em uma metodologia acessivel e de aplicacdo direta, com um tom informal
e tutorial que desmistificou o tema para engenheiros e cientistas da computacdo. Sua obra
solidificou 0s[AGs como uma ferramenta robusta e confiavel, ilustrando com exemplos praticos
e cédigos computacionais como aplicar esses algoritmos a problemas de busca, otimizacao e
aprendizado de maquina.

A ascensdo das meta-heuristicas, como os [AGs, marca uma mudanca de paradigma fun-
damental em relacdo aos métodos de otimizacdo classicos. Algoritmos tradicionais, frequen-
temente baseados em célculo de gradientes (como o método do gradiente descendente ou
métodos de Newton), sdo altamente eficientes para problemas bem-comportados, onde a

funcdo-objetivo é convexa e analiticamente diferenciavel. No entanto, eles falham categorica-

mente em problemas de Otimizacdo Black-Box ((Otimizacdo Black-Box (BBO))), nos quais a

funcao-objetivo é avaliada por meio de uma simulacao numérica ou um experimento fisico, sem
que uma expressao matematica explicita esteja disponivel. O problema de otimizacio do design
de cavernas salinas, que acopla um otimizador a um simulador numérico como o SALGAS, é
um exemplo canonico de um problema . A avaliacdo de uma dnica solucdo candidata (um
conjunto de pardmetros de design) requer a execucdo de uma simulacdo computacionalmente
intensiva, cujo resultado (e.g., volume final da caverna) n3o pode ser expresso como uma
funcao derivavel dos parametros de entrada.

Neste contexto, a abordagem dos E}s é fundamentalmente diferente e mais adequada.
Em vez de seguir um (nico caminho deterministico a partir de um ponto inicial, um [AG| opera
sobre uma populacdo de solugdes candidatas em paralelo |Goldberg (1989). A cada iteragdo
(geracdo), ele utiliza operadores estocasticos (selecdo, cruzamento e mutagdo) para gerar
uma nova populacdo. Este processo de busca populacional e estocastico confere aos |AGs
uma robustez intrinseca para navegar por paisagens de adequacdo (fitness landscapes) que
sdo complexas, com multiplos étimos locais, e potencialmente "ruidosas"— caracteristicas
intrinsecas a muitos problemas de engenharia baseados em simulacdo. Portanto, a escolha
de um [AG] para a otimizacdo do design de cavernas salinas ndo é uma mera conveniéncia,
mas uma necessidade metodoldgica imposta pela natureza black-box e pela complexidade do

problema em questdo.
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3.2 A TEORIA DOS SCHEMAS E A HIPOTESE DOS BLOCOS DE CONSTRUCAO

Para compreender a eficacia dos [AGs para além de uma mera analogia biolégica, John
Holland desenvolveu a Teoria dos Schemas, culminando no que é conhecido como o Teorema
Fundamental dos [AGE, ou Teorema do Schema [Holland| (1975)). Esta teoria fornece um ar-
cabouco matematico para explicar como os [AGE realizam uma busca eficiente, processando
implicitamente um vasto nimero de "blocos de construcdo"(building blocks) de solucGes e
combinando-os para formar individuos progressivamente melhores.

Um schema (plural: schemata) é um gabarito ou padrdo que descreve um subconjunto
de cromossomos (solucdes) que compartilham similaridades em certas posicdes de genes. Em
representacdes bindrias, um schema é uma string composta pelos simbolos {0, 1, %}, onde o
asterisco (*) atua como um caractere curinga, significando que naquela posicdo tanto 0 quanto
1 s3o aceitaveis. Por exemplo, para cromossomos de comprimento 6, o schema H = 1% 10x* 1
representa o conjunto de todas as strings que possuem 'l’ nas posicoes 1, 3 e 6, € '0’ na
posicdo 4, enquanto as posicoes 2 e 5 podem ser qualquer valor.

Dois atributos importantes de um schema sdo sua ordem e seu comprimento de definicdo.
A ordem de um schema, denotada por o(H), é o ndmero de posicGes fixas (ndo-curinga) na
string. Para H = 1%10% 1, o(H) = 4. O comprimento de definicdo, §(H), é a distancia entre
a primeira e a ultima posicao fixa. Para H = 1 % 10 * 1, as posicdes fixas sdo 1 e 6, entdo
S(H)=6—-1=5.

O Teorema do Schema fornece um limite inferior para o nimero esperado de instancias de
um determinado schema H na préxima geracdo (t+1), com base em sua presenca e desempenho

na geracdo atual (t). A formulacdo matematica do teorema é a seguinte:

E[m(H,t +1)] > m(H, t)f(ff[) 1 — pd (3.1)

t

Onde:

= E[m(H,t+ 1)] é o nimero esperado de individuos que correspondem ao schema H na

geracao t+1.
= m(H,t) é o nimero de individuos que correspondem ao schema H na geracdo t.

» f(H) é o fitness (adequacdo) médio de todos os individuos na populacdo que corres-

pondem ao schema H.
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» f; é o fitness médio de toda a populacdo na geracdo t.

= py € a probabilidade de disrupcdo do schema H pelos operadores genéticos de cruzamento

(crossover) e mutac3o.

A probabilidade de disrupcao, py, pode ser aproximada por:

pa~ pc(;(_Hf + pmo(H) (3.2)

Onde:
= p. é a probabilidade de cruzamento.
* D, € a probabilidade de mutacao.
» [ é o comprimento total do cromossomo.

A interpretacdo do teorema é profunda: ele postula que schemas com fitness acima da média
da populacio (f(H) > f;), comprimento de definicdo curto (baixo §(H)) e baixa ordem (baixo
o(H)) receberdo um niimero exponencialmente crescente de representantes nas geracdes fu-
turas. Esses schemas curtos, de baixa ordem e alto desempenho s3ao o que Holland chamou de
blocos de construcdo (building blocks). A hipdtese dos blocos de construcdo sugere que um
funciona combinando esses blocos de construcdo de ordem inferior para formar schemas
de ordem superior e fitness ainda maior, convergindo gradualmente para uma solucao 6tima
ou proxima da otima.

O teorema encapsula a estratégia fundamental de um . O termo f(H)/f: representa a
forca da exploitation: schemas que demonstraram bom desempenho s3o explorados, recebendo
mais "ensaios"ou copias na geracdo seguinte. O termo (1 — p,) representa a necessidade de
preservacdo desses blocos de construcdo. Schemas com baixo comprimento de definicdo sdo
menos provaveis de serem rompidos pelo operador de cruzamento, tornando-os blocos de
construcao robustos. A mutacao, por sua vez, embora contribua para a disrupcdo, atua como
uma forca de exploracdo, introduzindo novo material genético e prevenindo a estagnacdo do
algoritmo em étimos locais. Assim, o teorema implica matematicamente que a estratégia de
um [AG  eficaz deve favorecer a recombinacdo de blocos de construcdo de alto desempenho,
enquanto utiliza a mutacdo com parciménia para garantir a diversidade e a exploracdo de
novas areas do espaco de busca. Esta visdo valida a énfase de Goldberg no equilibrio entre

exploracao e exploitation como o pilar central para o sucesso dos Goldberg (1989).
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3.3 O BALANCO CRITICO: EXPLORACAO VERSUS EXPLOITATION

O sucesso de qualquer algoritmo de busca, e em particular dos [AGE, depende de um
delicado equilibrio entre duas forcas antagonicas: exploracao e exploitation [Eiben e Smith
(2015)). Compreender e gerenciar este balanco é talvez o aspecto mais crucial no design e na
aplicacdo de [AGs a problemas complexos de otimizag3o.

A exploracdo refere-se a capacidade do algoritmo de investigar regides amplas e diversas do
espaco de busca. E o processo de visitar areas inteiramente novas, na esperanca de descobrir
regides promissoras que ainda n3o foram examinadas. Um algoritmo com forte viés para a
exploracdo é bom em mapear a paisagem de fitness globalmente, evitando ficar preso em
picos de desempenho subdtimos (étimos locais) Eiben e Smith| (2015).

A exploitation, por outro lado, é o processo de refinar a busca dentro de regides que ja se
mostraram promissoras. Uma vez que uma area com solucoes de alto fitness é identificada,
a exploitation foca em buscar intensivamente na vizinhanca dessas solucdes para encontrar
o pico local com a maior precisdo possivel. Um algoritmo focado em exploitation é eficiente
em convergir rapidamente para uma boa solucdo, desde que a busca inicial tenha ocorrido em
uma regido que contenha o 6timo global.

O dilema fundamental reside no fato de que essas duas forcas sdo concorrentes. Um excesso
de exploracdo pode transformar o [AGlem uma busca puramente aleatdria, ineficiente e incapaz
de convergir para uma solucdo de alta qualidade em um tempo razodvel. Por outro lado, um
excesso de exploitation leva a convergéncia prematura: o algoritmo rapidamente converge para
um 6timo local, perdendo a diversidade genética necessaria na populacdo para escapar desse
pico e explorar outras regides potencialmente melhores do espaco de busca.

Nos[AGE, este balanco é alcancado principalmente através da interacdo entre os operadores

genéticos [Kaur e Kaur| (2017)):

= Operador de cruzamento (Crossover): E primariamente um mecanismo de exploitation.
Ele pega dois individuos pais, que presumivelmente possuem bom fitness e, portanto,
contém blocos de construcao valiosos, e os recombina. A esperanca é que a combinacao
de seus blocos de construcdo possa gerar um filho com fitness ainda maior. O cruzamento
ndo introduz novo material genético; ele apenas rearranja o que ja existe na populacao,

explorando as combinacGes de schemas promissores.

= Operador de mutacdo (Mutation): E o principal motor da exploracdo. A mutac3o altera
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aleatoriamente um ou mais genes de um individuo, introduzindo novo material genético
na populacdo. Este processo é crucial por duas razdes: primeiro, ele pode reintroduzir
alelos que foram perdidos devido a pressao seletiva, restaurando a diversidade genética;
segundo, ele permite que a busca escape de 6timos locais, saltando para novas regides
do espaco de busca que nao seriam acessiveis apenas através do cruzamento Kaur e

Kaur (2017)).

Operador de selecdo (Selection): Atua como o motor que impulsiona a exploitation. Ao
dar preferéncia a individuos com maior fitness para se tornarem pais da préxima geracao,
a selecdo garante que os melhores blocos de construcdo sejam propagados e explorados

mais intensamente.
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Figura 6 — Fluxo de um Algoritmo Genético.

~ Critério de

Fonte: O autor (2025)

3.4 OTIMIZACAO MULTIOBJETIVO E O ALGORITMO [NSGA-II

Muitos problemas de engenharia do mundo real, incluindo o design de cavernas de sal,
ndo podem ser adequadamente formulados com um (nico objetivo. Frequentemente, existem
miultiplos objetivos conflitantes que precisam ser otimizados simultaneamente. Por exemplo,
no projeto de uma caverna, deseja-se maximizar o volume de armazenamento (um objetivo

econémico) €, a0 mesmo tempo, minimizar o tempo de construcao (outro objetivo econémico

que pode conflitar com o primeiro). A [Otimizacao Multiobjetivo (MOO)| lida com esses pro-
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blemas, e os |Algoritmo Evolutivo Multiobjetivo (MOEA)s surgiram como uma das abordagens

mais eficazes para resolvé-los.

O conceito central na [MOQ| é a dominancia de Pareto. Uma solu¢do z; domina outra
solucdo x5 se x; for estritamente melhor que x5 em pelo menos um objetivo e ndo for pior que
x5 em todos os outros objetivos. O objetivo de um [MOEA| ndo é encontrar uma dnica soluggo
"6tima", mas sim identificar o conjunto de todas as solucdes ndo dominadas, conhecido como
fronteira de Pareto ou frente de Pareto |Deb et al.| (2002). Esta fronteira representa o conjunto
de todos os trade-offs 6timos possiveis entre os objetivos conflitantes, fornecendo ao tomador

de decisao um leque de solucbes de alta qualidade para escolher.

Os primeiros MOEAS, como o [Non-dominated Sorting Genetic Algorithm (NSGA), foram

pioneiros, mas enfrentaram criticas significativas que limitavam sua aplicabilidade pratica. As

trés principais dificuldades eram:

» Alta complexidade computacional: O processo de ordenacao por ndo-dominancia tinha
uma complexidade de O(mN?), onde m é o niimero de objetivos e N é o tamanho da po-
pulacdo. Isso tornava o algoritmo proibitivamente lento para problemas com populacées

grandes.

» Falta de elitismo: Os melhores individuos encontrados em uma geracdo nao eram ga-
rantidos de sobreviver para a préxima, o que poderia levar a perda de boas solucdes e

retardar a convergéncia.

= Necessidade de um pardmetro de compartilhamento (Sharing): Para manter a diversidade
ao longo da fronteira de Pareto e evitar a convergéncia para uma (nica regido, esses
algoritmos usavam uma técnica de compartilhamento que exigia a sintonia manual de

um pardmetro de nicho (o gpnare), uma tarefa dificil e sensivel ao problema.

Para superar essas limitacdes, Deb et al| (2002) propuseram o [NSGA-II, que rapidamente
se tornou o padrdo-ouro em [MOEAS e é a base para o solver gamultiobj no MATLAB. O
[NSGA-II| introduziu trés inovacdes principais:

» Algoritmo de ordenacdo rapida por nao-dominancia: Foi proposto um procedimento
de ordenac3o mais eficiente com uma complexidade computacional de O(mN?). Este
algoritmo calcula para cada solu¢do p duas entidades: n,, o nimero de solugdes que
a dominam, e S,, o conjunto de solu¢cdes que p domina. As solu¢des com n, = 0

pertencem a primeira frente. O algoritmo entdo itera sobre os membros de S, para
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cada solucdo da primeira frente, reduzindo suas contagens de dominacao e identificando
subsequentemente as préximas frentes. Esta reducao na complexidade foi um avanco

crucial.

= Mecanismo de elitismo explicito: O [NSGA-I| garante o elitismo de uma maneira ele-
gante. A cada gerac3o t, a populacdo de pais P, (tamanho N) e a populacdo de filhos
@ (tamanho N) s3o combinadas para formar uma populacdo estendida R; de tamanho
2N. A selecdo para a préxima geracao de pais, F,.1, é entao realizada a partir desta
populacdo combinada. As melhores solucdes (pais e filhos) sdo ordenadas em frentes de
ndo-dominancia. As frentes sdo adicionadas a nova populacdo P,,; em ordem, come-
cando pela melhor frente (F}), até que o tamanho da populacdo N seja atingido. Este

procedimento garante que qualquer solucao de elite encontrada nunca seja perdida.

» Preservacdo da diversidade sem pardmetros via distancia de aglomeracdo (Crowding
Distance): Para manter a diversidade, especialmente quando uma frente precisa ser
truncada porque n3o cabe inteiramente na nova populacdo, o [NSGA-II utiliza a distancia
de aglomeracdo. Esta métrica estima a densidade de solucGes em torno de um ponto
especifico na frente de Pareto. Para cada objetivo, as solucoes na frente sdo ordenadas, e
a distancia é calculada como a largura do cubdide formado pelos vizinhos mais préximos
de um ponto ao longo de cada eixo de objetivo. As solucdes em regidoes menos povoadas
(com maior distancia de aglomerac3o) s3o preferidas. Isso promove uma distribuicdo
uniforme das soluces ao longo da fronteira de Pareto, eliminando a necessidade do

parametro opqre-

A sinergia entre o elitismo e a preservacdo da diversidade é uma das maiores forcas do[NSGA-II|
O algoritmo emprega uma estratégia de selecao hierarquica: a dominancia de Pareto é o critério
priméario, garantindo a convergéncia em direcdo a fronteira 6tima (exploitation/elitismo). A
distancia de aglomeracao é usada como um critério secundario, de desempate, para escolher
entre solucdes igualmente boas (na mesma frente), promovendo a cobertura de toda a extensdo
da fronteira (exploration/diversidade). Esta abordagem dupla permite que oencontre
de forma confiavel e eficiente um conjunto bem distribuido de solucdes na fronteira de Pareto

para uma vasta gama de problemas.
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4 SOFTWARE SALGAS: CARACTERISTICAS E LIMITACOES

Este capitulo apresenta os conceitos, funcionalidades e limitacdes do software SALGAS,
desenvolvido na década de 1970 em linguagem FORTRAN pelo [SMRIl O programa foi con-
cebido para simular o desenvolvimento de cavernas subterraneas em formacdes salinas por
meio da técnica de dissolucao, utilizando o método numérico de diferencas finitas aplicado em
malha unidimensional vertical.

O SALGAS permite a anélise integrada de parametros hidraulicos, consumo energético e
controle operacional do processo de mineracdo. Um de seus diferenciais é a modelagem do
comportamento do blanket, fluido protetor posicionado sobre a salmoura, cuja funcdo é inibir
a dissolucdo do teto da caverna.

A validacdo do software foi realizada com base em dados experimentais de laboratério e em
campanhas de monitoramento de cavernas localizadas em domos de sal espessos e homogéneos

da Costa do Golfo dos Estados Unidos Eyerman (2008]).

4.1 CARACTERISTICAS DO SOFTWARE SALGAS

O SALGAS destaca-se pelas seguintes funcionalidades principais:

» Interface flexivel com opcdo de entrada e saida de dados em unidades métricas ou

imperiais;

» Aplicacdo do método de diferencas finitas em malha unidimensional vertical, com até

200 células (a versdo original utilizava 60) |[Eyerman| (2008, p. 5);

» Simulacdo de dissolucdo por escoamento turbulento, com transporte reativo unidimen-

sional e acoplamento com balanco hidraulico;

» Controle automético e adaptativo do nivel do blanket, com possibilidade de alternar

entre lavra direta (injecdo superior) e reversa (injecdo inferior);

» Capacidade de reinicializacdo da simulacdo (restart) com alteracdo dos pardmetros ope-

racionais ou geomecanicos;

» Estimativas de consumo energético do sistema de bombeamento e perda de carga nas

tubulacdes;
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» Geracdo de saida detalhada de balancos de massa e sal, permitindo andlises quantitativas

da eficiéncia do processo.

4.2 LIMITACOES DO SOFTWARE

Embora seja uma ferramenta robusta para o seu propdsito, a correta interpretacao dos
resultados exige o conhecimento das premissas e limitacdes do software, que s3o cruciais para

a contextualizacdo desta pesquisa. As restricbes mais significativas s3o:

= Contexto de validacdo: O SALGAS foi originalmente desenvolvido para simular a dissolu-
¢do em domos salinos espessos e predominantemente compostos por halita pura, tipicos
da Costa do Golfo dos Estados Unidos. Segundo o manual, sua faixa de validacao co-
bre cendrios com “taxas de fluxo moderadas de até cerca de 1000 gpm (225 m3/h)”
Eyerman| (2008, p. 9). A aplicagdo do modelo em condicdes que excedem essas vazdes,

como explorado nesta tese, caracteriza-se como uma analise de sensibilidade fora dos

limites originais de validacao, sendo realizada com o devido cuidado interpretativo.

» Simulacdo de temperatura: O modelo numérico SALGAS opera sob uma condic3o iso-
térmica padrdo de 75°F (aproximadamente 24°C), referente a temperatura interna do
ambiente da caverna, conforme descrito no manual do software Eyerman| (2008, p. 9).
O SALGAS n3o simula explicitamente a temperatura da agua injetada; em vez disso,
orienta que diferentes cenarios térmicos sejam representados indiretamente através do
ajuste empirico do Fator de Dissolucdo (CONDIS). Em conformidade com essa orienta-
cdo, a metodologia desta tese considerou cenarios com temperaturas internas hipotéticas

de aproximadamente 40°C, 60°C e 80°C. Para cada cenario, foram calculados os respec-

tivos valores do |[Fator de Dissolucdo (DF)| e das gravidades especificas, posteriormente

inseridos no software. Dessa maneira, a andlise realizada nao constitui uma simulacdo
termodinamica direta, mas sim um estudo de sensibilidade baseado nesse parametro
empirico, que atua como um proxy para representar o impacto indireto da temperatura
sobre a taxa de dissolucao, permitindo avaliar, por exemplo, a aceleracdo da dissolucao

em temperaturas mais elevadas.

» Simplificacdes do modelo: A representacdo da caverna no SALGAS é unidimensional, li-

mitada ao eixo vertical, desconsiderando variacOes laterais e complexidades geométricas



47

tridimensionais. Conforme descrito no manual do software, o SALGAS foi desenvolvido
originalmente para aplicacdo em domos salinos da Costa do Golfo dos Estados Unidos,
compostos majoritariamente por halita pura e com geometrias relativamente simples
Eyerman| (2008, p. 9). O programa n&o simula deformacdes da rocha nem efeitos tér-
micos ou quimicos sobre a matriz salina; ou seja, ndo hd modelagem das propriedades
fisico-mecanicas do macico salino que envolve a cavidade. Assim, limita-se a calcular a
dissolucao da halita por agua injetada, sem considerar a resposta estrutural da formacao

ao processo de mineracao por solucdo.

» Restricoes operacionais: O modelo permite apenas um ponto fixo de injecdo e um de
producdo por vez, operando de forma simultdnea. Qualquer mudanca nesses pontos ao
longo do tempo requer o uso da funcionalidade de reinicio da simulacdo a partir de um
arquivo .SGR, conforme orientado no manual Eyerman (2008, p. 9). Ndo ha suporte
para multiplas zonas ativas de injecao ou producdo em uma Unica execucdo continua do

modelo.

» Observacdo técnica sobre a versdo utilizada: A versao do SALGAS utilizada nesta tese

apresenta potenciais inconsisténcias numéricas ao operar no [Sistema Internacional de]

Unidades (SI), conforme identificado em testes comparativos com os mesmos casos em
unidades imperiais. O manual sugere que o programa foi originalmente desenvolvido com
base no sistema americano, e evidéncias apontam para possiveis erros de convers3o na

rotina.

Apesar dessas restricdes, o software continua sendo uma ferramenta analitica valiosa para
projetos convencionais de cavernas salinas, especialmente em estudos preliminares de geometria

e dinamica de dissolucao.

4.2.1 Descricao das equacdes de alguns parametros de entrada do SALGAS

Os seguintes parametros de entrada para o SALGAS foram obtidos através de equacdes
matematicas: densidade especifica do fluido de injecao, densidade especifica da salmoura pro-
duzida, fator de dissolucdo do sal e pressdo de injecdo. A densidade especifica da solucdo
de injecao salina é a razdo entre a densidade do fluido e a densidade da agua pura a uma

temperatura de 4°C e uma pressao de 1 atm.
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A densidade da soluc3o salina a ser injetada, p;, (kg/m?3), é uma funcdo da temperatura T
(Kelvin), da pressdo do fluido P (bar) e da concentracdo de sal em massa ¢, (adimensional),
sendo determinada, de acordo com a Association Technique de L'Industrie du Gaz en France

(ATG)| (1986), pela equacdo (4.1)):

oy (P, T, cy) = 1000/v (P, T, cp) (4.1)

Onde v (P, T, ¢;) é o volume especifico do fluido de injecdo (cm®/g) e corresponde ao volume
ocupado por unidade de massa, sendo diretamente influenciado pelas condicdes de pressao
(P), temperatura (T") e concentracdo massica de sal (c;). Este pardametro é calculado pela

equacao (4.2):

v(P,T,c,) = A(T) — P'B(T) — P?C(T) + c&,D(T) + &, E(T) — ¢, P'F(T) — ¢, P'G(T)—

;%PH@)
(4.2)

Sendo P’ = P/0.981, com P em bar. As funcdes A, B, ..., H sdo funcdes dependentes da

temperatura do fluido de injecdo, cujas expressdes gerais sdao dadas pela equacdo (4.3)):

¥ = ®o + (,01T + 902T2 + (,011/T + (,012/T2 (43)

Os coeficientes g, 1, ..., @12 para cada uma das funcdes (A a H) estdo apresentados
na tabela[I] e s3o utilizados diretamente na Equacgo ([4.3) para determinar as funcdes termo-

dindmicas A(T), B(T),...,H(T).

Tabela 1 — Coeficientes para célculo das funcdes A, B,C, D, E, F,G e H.

%0 ¥1 P2 P11 P12
A 5.916365 —1.035794 x 1072 9.270048 x 10°¢  —1127.522 100674.1
B 5.204914 x 1072 —1.0482101 x 107° 8.328532 x 107 —1.1702939 102.278
C  1.18547 x 1078  —6.599143 x 10~ 0 0 0
D —2.5166 1.11766 x 1072 —1.70552 x 107° 0 0
E 2.84851 —1.54305 x 1072 2.23982 x 107 0 0
F —1.4814x 1073 8.2969 x 1076 —1.2469 x 1078 0 0
G 27141 x 1073 —1.5391 x 107° 2.2655 x 1078 0 0
H 62158 x 1077 —4.0075 x 107? 6.5972 x 10712 0 0

Fonte: |Association Technique de L’Industrie du Gaz en France (ATG) (1986)
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A densidade da 4gua pura, p,, (kg/m?), de acordo com Patterson e Morris| (1994), é funcdo

da temperatura, T (°C), e da press3o do fluido, P (MPa), sendo dada pela equac&o ({4.4):

(T + a1)* (T + ay)
as (T + ay)

puw(T) = poy |1+ ] [14 (by + boT + 55T2) (P — P )] (4.4)

Onde os coeficientes a; e b; s3o constantes, e P =1 atm = 0.101325MPa. Os parametros

utilizados para o célculo da densidade da dgua pura estdo apresentados na tabela 2|

Tabela 2 — Pardmetros da agua pura.

P2 =999.972 kg/m® a, = 69.348811°C

a; = —3.9830355°C b = 5.074 x 10~*/MPa

as = 301.797°C by = —3.26 x 1075/MPa - °C

az = 522, 528.9°C? by = 4.16 x 1072 /MPa - °C?
Fonte: |Patterson e Morris (1994)

Outro parametro de entrada que requer desenvolvimento matematico é a densidade espe-
cifica da salmoura produzida. Esta é a razdo entre a densidade do fluido em saturacdo e a
densidade da agua pura a 4°C e 1 atm. A concentracdo massica de sal na salmoura saturada,
2, depende da pressdo, P (MPa), e da temperatura, 7' (°C). De acordo com /Association
Technique de L'Industrie du Gaz en France (ATG)| (1986), sua forma é definida pela equacdo

(4.5):
(P, T) = ag + a;T + a;T? 4+ bP (4.5)

Onde a; e b sdo constantes, cujos valores estdo na tabela 3]

Tabela 3 — Valores das constantes a; e b.

a aq as b
0

0.26291 0.7448 x 1074/°C  0.1252 x 1075/°C? 7.5 x 107°/MPa
Fonte: Association Technique de L'Industrie du Gaz en France (ATG) (1986)

A densidade especifica da salmoura produzida é obtida substituindo-se a concentracido de
saturacdo, ¢;**, na equacdo de densidade da agua, (4.4).

O terceiro parametro de entrada a ser determinado é o fator de dissolucdo. Segundo
Saberian| (1983), é possivel estimar a taxa de dissolugdo da halita em fun¢do da temperatura e
da densidade especifica da solucdo. Com base em testes laboratoriais para superficies verticais
de sal em salmouras altamente concentradas (até 96,8% de saturacdo), o autor propds uma

relacdo empirica para a taxa de dissolucdo mz (em cc/cm?/min x 103):
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(4.6)

0.2
1
= 0.22(1.2019 — p)42 . 0119 (== ) AT
mr (12019 = )= - exp [OO (1.2019—;)

Onde p é a densidade da salmoura (adimensional) e AT = T — T é a diferenca entre a
temperatura da salmoura, T, e a temperatura de referéncia, Ty = 75°F.

No entanto, o SALGAS é um modelo isotérmico, fixado a 75°F, e n3o realiza simulacdes
termodinamicas diretas. Por isso, a entrada no modelo ndo é a taxa de dissolucdo, mas sim
o (CONDIS), que atua como parametro de corre¢do da taxa para diferentes condi¢cGes
operacionais.

Esse fator é derivado do termo exponencial da equacao , assumindo como referéncia
uma salmoura saturada ideal com densidade p = 1.2019 a Ty = 75°F. Para simular o efeito

de diferentes temperaturas e salinidades, calcula-se o da seguinte forma:

0.2
p—1
DF|= 0119 (| ———— (T — 4.
exp [O 0119 <1.2019 — ,0> ( 75)] (4.7)

onde:
= T': temperatura da salmoura (°F),
» p: densidade especifica da salmoura (adimensional),
= [DF} Fator de Dissolu¢do (adimensional).

Esse fator é inserido no SALGAS para representar indiretamente o efeito térmico sobre a
taxa de dissolucdo. A metodologia desta tese utiliza a equacao para calcular os valores
de E] permitindo anélises de sensibilidade que simulam, de forma aproximada, os efeitos
térmicos sobre o processo de lixiviacao.

A pressdo de injecdo Py, (MPa) pode ser interpretada como a diferenca de pressdo entre
o ponto de entrada do fluido no sistema (pressdo de bombeamento, P;) e a pressdo interna
na caverna (P,). Essa diferenca ndo é puramente estatica, pois envolve também a energia

cinética e o desnivel entre os pontos, conforme descrito pela equacao de Bernoulli:

P,
==+ =42 (4.8)
g
onde:

= P), Py pressdo nos pontos 1 e 2 (Pa),
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= vy, v9: velocidade do fluido nos pontos 1 e 2 (m/s),
= 2y, 29! cota (altura) dos pontos 1 e 2 (m),

= : peso especifico do fluido (N/m3),

= g: aceleracdo da gravidade (9,81 m/s?).

Admitindo que a diferenca de altura entre os pontos é desprezivel (z; = z3), a equacdo se

reduz a:

Pl—PQZQZJG}g—U%)

Essa expressdo mostra que a diferenca de pressdo entre o ponto de bombeamento (P;) e
o fundo do poco (P;) depende da diferenca entre as velocidades do fluido.
Para estimar a pressdo absoluta P, (MPa) em uma profundidade H; (m), pode-se utilizar

a relacdo hidrostatica:

o (4.9)

onde:

P;: pressdo na vélvula de injecdo (MPa),

H;: profundidade da vélvula de injecdo (m),

~: peso especifico do fluido (N/m3).

4.2.2 Formulacao Matematica do Modelo de Dissolucao 1D

A base matematica do simulador SALGAS, conforme descrito no trabalho de |Saberian
(1974)), modela o processo de dissolucdo como um problema de transporte de massa em uma
dimens3o (vertical). O objetivo é prever a variacdo da concentracdo de sal na salmoura ao
longo da altura da caverna (z) e do tempo (¢). O crescimento do raio da caverna é, ent3o,
uma consequéncia direta da massa de sal removida da parede.

A equacdo governante do processo é a equacdo de conveccdo-difusdo em estado nao

estacionario, que descreve como a concentracdo de sal (C') evolui no sistema:
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— —-D— V= (4.10)
Onde os termos representam:

» (': concentracdo de sal na solucdo,

= {: tempo,

» 2: coordenada espacial vertical,

» D: coeficiente de difusdo molecular do sal na solucao,

V': velocidade do fluido ao longo da coordenada vertical z.

A velocidade do fluido (V') ndo é constante, variando com a altura devido as mudancas
na densidade da salmoura, que aumenta a medida que mais sal é dissolvido. O modelo acopla
esta equacao a balancos de massa e volume para calcular a velocidade em cada ponto.

A taxa na qual a parede de sal se dissolve, determinando o aumento do raio da caverna, é
governada por uma condicao de contorno na interface entre a rocha salina e a salmoura. Esta

taxa de transferéncia de massa é expressa pela seguinte relacdo:
Taxa de dissolucdo = k(Csat — Cinterface) (4.11)

Onde:

= k: é o coeficiente de transferéncia de massa, que depende das condi¢des de fluxo (tur-

buléncia) e das propriedades do fluido,

» (st € a concentracao de saturacdo do sal na solucdo, que é funcao da temperatura e

pressao,
» Clinterface: € @ concentracdo de sal na interface imediata entre a rocha e a salmoura.

O software SALGAS resolve numericamente este sistema de equacdes, utilizando o método
de diferencas finitas, para simular a evolucdo da geometria da caverna ao longo do tempo.
As relacdes empiricas para o fator de dissolucdo, como as propostas por Saberian| (1983),
sdo utilizadas para ajustar o coeficiente de transferéncia de massa (k) e, assim, incorporar os

efeitos da temperatura no modelo, que é inerentemente isotérmico.
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5 METODOLOGIA

Neste capitulo, sdo desenvolvidas as metodologias tanto para a simulacdo dos cenarios de
mineracdo por solucdo para a abertura da caverna subterranea em rocha salina mediante o

software SALGAS, como também o emprego das duas técnicas de reducdo de dimensionalidade,

[PCA| e t-SNE| através da linguagem de programacéo R.

5.1 CENARIOS DE SIMULACAO E MATRIZ DE DADOS DE ENTRADA

Foram considerados dois cenéarios para analise da abertura de uma caverna subterranea em
rocha salina por dissolucdo: o primeiro deles, cenario D, corresponde ao método de circulacao
direta, onde a 4gua foi injetada no fundo da caverna e a salmoura extraida do topo. O segundo,
cenario R, corresponde ao método de circulacdo reversa, onde a agua foi injetada no topo e
a salmoura extraida do fundo. A tabela |4| apresenta as respectivas profundidades de injecao e

producdo para ambos os cenarios, e a figura [7|ilustra sua representacao esquematica.

Tabela 4 — Cotas de Injecdo e Produc3o para os cenarios propostos.

CENARIO Profundidade de Injecio (m) Profundidade de Producéo (m)

Cenario D 914,4 762
Cenério R 762 014 .4

Fonte: O autor (2025)
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Figura 7 — Diagrama esquematico de formas de cavernas de sal resultantes de diferentes modos de circulacao.

Agua Doce _, Salmoura .

Agua Doce —
Diesel—

Profundidade
Producao
762 m

Profundidade
Injecao
762 m

Profundidade
Producéo
914,14 m

Profundidade
Injecao
914,4 m

P J— -
Circulagao Direta Circulagao Reversa

Fonte: Modificado de | Xue et al.| (2020)

Estes dois cenérios sdo modificacbes de um caso de referéncia do Manual de SALGAS

[Eyerman| (2008)), sendo a configuracdo especifica utilizada nesta pesquisa alusiva ao trabalho
de (2022). A matriz de simulacdes foi construida a partir de uma configuracdo inicial

com os seguintes parametros fixos: o colchido de protecdo permanece constante; a construcao

da caverna ¢é iniciada a partir de um poco de raio 1 ft (0,30 m); a rocha salina contém 3%
de insollveis; e o modelo hidraulico possui uma secdo curta de tubulacdo de superficie e
divide cada uma das linhas de tubulacdo em duas secdes, como pode ser visto na figura [g] As
dimensdes detalhadas dos componentes do poco estdo apresentadas na Tabela [5]

A partir dessa configuracdo inicial, foram realizadas novas simulacdes para andlise. As
variacdes nos cenarios foram definidas pela taxa de producdo da salmoura e pela temperatura

interna equivalente que se desejava simular (40°C, 60°C e 80°C).
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Figura 8 — Estrutura esquematica do poco.

e R
T N
100ft
T 200 ft
Inicio da camada de sal 2400 ft
9.9 _|
2800 ft
1000 ft

3000 ft
Fim da camada de sal
Fonte: Adaptado de|Lecampion et al| (2013)
Tabela 5 — Dimensées e profundidades dos componentes do poco.

Componente / Secdo Profundidade / Comprimento Diametro

(ft) (m) (in) (m)
Profundidade da sapata do revestimento 1 2400 731,52 10.75 (OD) 0,273
Profundidade da sapata do revestimento 2 2800 853,44 99 (ID) 0,251
Profundidade total do poco 3000 914,40 - -
Espessura da camada de sal 1000 304,80 - -
Diametro externo da tubulacdo interna - - 7.8 0,198

*OD: Diametro Externo, ID: Didmetro Interno

Fonte: O autor (2025)

5.1.1 Geracao dos Parametros de Entrada Variaveis

Para a obtencdo dos valores da gravidade especifica do fluido de injecdo, da gravidade

especifica da salmoura e do fator de dissolucdo do sal, foi necessario determinar a temperatura
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e a pressao de injecdo para cada uma das taxas de producdo. A pressao foi calculada mediante
a equacao de Bernoulli e a equacao hidrostatica. Com os parametros de temperatura e pressao,
as gravidades especificas foram calculadas na caixa de ferramentas do Brouard| (2008).
O efeito da temperatura foi modelado através do ajuste do Fator de Dissolucdo, cujo célculo
foi detalhado no Capitulo 4. O mdédulo de minerac3o foi ativado em conjunto com o médulo
hidraulico para simular a dissolucdo da rocha por um fluido saturado em 4.05% de NaCl para
120 dias de simulacdo. As equacdes para o calculo da pressao, das gravidades especificas e do
Fator de Dissolucdo estdo detalhadas na Secdo 4.2.1 e no Apéndice C. O procedimento pratico
para a geracao dos dados e execucdo da simulacido no software é apresentado no Apéndice D.

Logo, as tabelas [f] e [7] dos cendrios D e R, respectivamente, apresentam os parametros
calculados anteriormente junto com os valores da temperatura e taxa de producdo. Estas

tabelas foram usadas no arquivo de dados de entrada do SALGAS.

Tabela 6 — Parametros de entrada para o Cenario D.

N° Temp. (°C) Taxa de Producdo (m®/h) Pressdo de Injecdo (MPa) SG da Salmoura SG Fluido Injecio Fator Dissolucédo da Sal

1 40 116,00 9,0500 1,196300 1,023930 2,01959411
2 40 193,33 9,1800 1,196400 1,024030 2,02487103
3 40 348,00 9,6700 1,196500 1,024230 2,03027641
4 40 386,66 9,8300 1,196600 1,024330 2,03581592
5 40 773,33 12,4200 1,197600 1,025430 2,10014863
6 40 1159,99 16,7400 1,199400 1,027130 2,28992273
7 60 116,00 9,0500 1,187400 1,014330 3,63441577
8 60 193,33 9,1800 1,187400 1,014530 3,63441577
9 60 348,00 9,6700 1,187600 1,014630 3,64849256
10 60 386,66 9,8300 1,187600 1,014730 3,64849256
11 60 773,33 12,4200 1,188700 1,015830 3,73123637
12 60 1159,99 16,7400 1,190500 1,017630 3,89033759
13 80 116,00 9,0500 1,179100 1,002830 6,14168842
14 80 193,33 9,1800 1,179100 1,002930 6,14168842
15 80 348,00 9,6700 1,179300 1,003130 6,16388254
16 80 386,66 9,8300 1,179400 1,003230 6,17509104
17 80 773,33 12,4200 1,180400 1,004330 6,29147618
18 80 1159,99 16,7400 1,182300 1,006130 6,53698638

Fonte: O autor (2025)
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Tabela 7 — Parametros de entrada para o Cenério R.

N° Temp. (°C)

Taxa de Producdo (m?/h)

Pressdo de Injecdo (MPa) SG da Salmoura SG Fluido Injecdo Fator Dissolucdo da Sal

1 40
2 40
3 40
4 40
5 40
6 40
7 60
8 60
9 60
10 60
11 60
12 60
13 80
14 80
15 80
16 80
17 80
18 80

116,00
193,33
348,00
386,66
773,33
1159,99
116,00
193,33
348,00
386,66
773,33
1159,99
116,00
193,33
348,00
386,66
773,33
1159,99

7,5600
7,7100
8,2300
8,4100
11,2200
15,9000
7,5600
7,7100
8,2300
8,4100
11,2200
15,9000
7,5600
7,7100
8,2300
8,4100
11,2200
15,9000

1,195700
1,195800
1,196000
1,196000
1,197200
1,199000
1,186800
1,186800
1,187000
1,187100
1,188200
1,190100
1,178500
1,178500
1,178700
1,178800
1,179900
1,181900

1,023330
1,023430
1,023530
1,023630
1,024830
1,026730
1,013730
1,013830
1,014030
1,014130
1,015330
1,017230
1,002230
1,002330
1,002530
1,002630
1,003830
1,005730

1,25822596
1,25850574
1,25878481
1,25906319
1,26235126
1,26737505
1,58127404
1,58240401
1,58464903
1,58576420
1,59878792
1,61821655
1,63097469
1,63810134
1,65174855
1,65829672
1,72622905
1,80920606

Fonte: O autor (2025)

Uma vez preenchido o arquivo de entrada do SALGAS (*.sgi), foram realizadas a execu¢do

para todos os casos.

5.2 DADOS DE ENTRADA PARA O SOFTWARE R

Nesta secdo, detalha-se a metodologia para a anélise de reducao de dimensionalidade,

que foi conduzida utilizando a linguagem de programacdo R R Core Team| (2020) no am-

biente de desenvolvimento integrado RStudio. Foram empregados pacotes especificos para a

implementacdo das técnicas de PCA, conforme descrito a seguir.

5.2.1 Analise de Componentes Principais com R

Apds a realizacdo das simulaces no SALGAS para os cendrios D e R, foi conduzida

uma analise sobre os dados de entrada e saida. Para esta anélise, o conjunto de dados foi

estruturado em dois grupos principais. O primeiro grupo, de variaveis de entrada, corresponde

aos parametros operacionais controlados em cada simulacao: temperatura do cenario, taxa de

producdo de salmoura, pressao de injecdo, gravidade especifica inicial da salmoura, gravidade

especifica do fluido de injecdo e fator de dissolucdo do sal. O segundo grupo, de variaveis

de saida, representa os principais resultados calculados pelo simulador ao final de 120 dias:

poténcia da bomba, energia acumulada, perdas na tubulacao, salmoura produzida, pressao da
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bomba, além do volume e raio da caverna.

Os dados de saida para os cendrios D e R estdo detalhados nas tabelas [§] a [I1]

Tabela 8 — Resultados da simulagdo (dados de saida) para o do cenério D.

N° Temp. (°C) Taxa de prod. (m3/h)  Raio (m)  Volume (m3) Poténcia da bomba (kW)
1 40 116,00 8,4815233  41384,70098 69,35162123
2 40 193,33 10,1243922 64977,88993 150,0948167
3 40 348,00 12,9358796 107985,0077 479,9898047
4 40 386,66 13,5319465 118130,4367 610,3281201
5 40 773,33 18,0928945 210546,8649 3543,051524
6 40 1159,99 21,5553646 297725,8378 10881,81472
7 60 116,00 0,37688244 47798,02484 75,62417372
8 60 193,33 11,3415623 76518,13933 161,4826027
9 60 348,00 14,3688664 130838,4693 503,873569
10 60 386,66 15,0620242 143839,6173 637,7167415
11 60 773,33 20,4725412 266268,5084 3619,96816
12 60 1159,99 24,4236057 378841,1501 11033,15905
13 80 116,00 10,2039847 53401,78831 81,48838835
14 80 193,33 12,3364173 86638,43293 172,1319668
15 80 348,00 15,7673253 150454,9643 524,9347246
16 80 386,66 16,474062 166003,7545 661,769377
17 80 773,33 22,4124439 314677,9596 3682,872839
18 80 1159,99 26,9037786 454376,837 11158,60476

Fonte: O autor (2025)
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Tabela 9 — Resultados da simulacdo (dados de saida, continuag¢do) para o do cenério D.

N° Energia cumulativa (J) Perda de tubulacdo (MPa) Salmoura produzida (m3) Pressdo da bomba (MPa)

1 7,07426E+11 0,151044266 334083,1111 1,877511889
2 1,53251E+12 0,38376179 556805,1852 2,440216488
3 4,92057E+12 1,132083119 1002247,32 4,340674207
4 6,26193E+12 1,375908446 1113610,313 4,968665288
5 3,65067E+13 5,013018728 2227214,085 14,44934384
6 1,1228E+14 10,78227224 3340824,399 29,61839362
7 7,75713E+11 0,151004345 334083,1111 2,038940628
8 1,65758E+12 0,383827704 556805,1852 2,613999741
9 5,18354E+12 1,132913937 1002247,32 4,535153875
10 6,56377E+12 1,377048219 1113610,313 5,16682462
11 3,73623E+13 5,020753821 2227214,085 14,68605405
12 1,13974E+-14 10,79822948 3340824,399 29,87526115
13 8,38823E+11 0,15075772 334083,1111 2,187742167
14 1,77226E+12 0,383280812 556805,1852 2,773871437
15 5,41312E+12 1,131692668 1002247,32 4,702727224
16 6,82639E+12 1,375658028 1113610,313 5,336485083
17 3,80577E+13 5,017673035 2227214,085 14,86660017
18 1,15379E+14 10,79353104 3340824,399 30,05975134

Fonte: O autor (2025)



60

Tabela 10 — Resultados da simulagdo (dados de saida) para o do cendrio R.

N° Temp. (°C) Taxa de prod. (m3/h)  Raio (m)  Volume (m3) Poténcia da bomba (kW)
1 40 116,00 10,5560683 45041,04639 64,14827577
2 40 193,33 12,8845788 71511,51758 143,6295902
3 40 348,00 16,2241901  120021,52 477,5601426
4 40 386,66 16,8938997 131330,9497 610,4115863
5 40 773,33 22,0228759  234701,064 3619,319431
6 40 1159,99 22,0228759  234701,064 3619,319431
7 60 116,00 11,7554258 50428,89788 68,18619653
8 60 193,33 14,4205818 81612,43657 151,202293
9 60 348,00 18,3731733 140939,9536 494,1020728
10 60 386,66 19,1935181 155241,9248 629,9281586
11 60 773,33 25,5436177 289757,148 3686,488656
12 60 1159,99 30,1478716 413365,7451 11318,65003
13 80 116,00 12,8243381 54978,27937 72,13088987
14 80 193,33 15,7257933 89867,37527 158,1342307
15 80 348,00 20,1169311 157578,1459 508,4429874
16 80 386,66 21,0404537 174118,7867 646,4878364
17 80 773,33 28,3183523 333077,6071 3736,180009
18 80 1159,99 33,6982003 482909,6543 11431,7722

Fonte: O autor (2025)



61

Tabela 11 — Resultados da simulagdo (dados de saida, continuac3o) para o do cendrio R.

N° Energia cumulativa (J) Perda de tubulacdo (MPa) Salmoura produzida (m3) Pressdo da bomba (MPa)

1 6,60392E+11 0,161226792 334083,1111 1,733942439
2 1,47759E+412 0,409806815 556805,1852 2,331043548
3 4,91624E+12 1,20936476 1002249,333 4,309977908
4 6,28537E+12 1,469766056 1113610,37 4,959177064
5 3,73211E+13 5,351425683 2227216,515 14,72807348
6 1,1514E+14 11,50081504 3340826,886 30,31462911
7 7,04946E+11 0,161708184 334083,1111 1,836688911
8 1,56229E+12 0,41146073 556805,1852 2,444840252
9 5,1048E+12 1,216036681 1002249,333 4,44139424
10 6,50832E+12 1,478493856 1113610,37 5,096759518
11 3,8107E+13 5,39738705 2227216,515 14,93186094
12 1,17013E+14 11,61008216 3340826,886 30,59706916
13 7,47251E+11 0,161916544 334083,1111 1,935635819
14 1,63791E+12 0,412151723 556805,1852 2,547067066
15 5,26315E+12 1,219137186 1002249,333 4,551803203
16 6,69103E+12 1,48257059 1113610,37 5,209343364
17 3,86733E+13 5,420276274 2227216,515 15,06683483
18 1,18336E+14 11,66974086 3340826,886 30,76282574

Fonte: O autor (2025)

Para realizar a andlise estatistica, foram desenvolvidas rotinas no ambiente R. Foram uti-

lizados os pacotes FactoMineR |L&, Josse e Husson| (2008) para a execugdo da analise e

factoextra |[Kassambaral (2017 para a visualizagdo dos dados. A abordagem metodolégica

consistiu em unificar os dados de entrada e os resultados da simulacdo em uma Gnica matriz,
permitindo que o [PCA| capturasse a variabilidade do sistema de forma holistica. Esta matriz
combinada, cujo esquema é apresentado na figura 9 foi ent&o utilizada como entrada para a
funcdo [PCA| Os scripts completos utilizados nesta anélise estdo disponiveis neste repositdrio

online para garantir a reprodutibilidade da pesquisa.

Figura 9 — Esquema da matriz de dados de entrada do m

Dados de Dados de
entrada do saida do
cenario D cenarioD
Dados de
entrada do

cenarioR

Fonte: O autor (2025)


https://github.com/OscarMelgar40/analise-pca-tsne-cavernas
https://github.com/OscarMelgar40/analise-pca-tsne-cavernas
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5.2.2 Analise t-SNE com R

A implementacdo da técnica[t-SNE|foi realizada com o auxilio do pacote Rtsne no ambiente
de software R |Krijthe (2015). O procedimento iniciou-se com a instalacdo do pacote no console
do RStudio, utilizando o comando install.packages(”"Rtsne"). Em seguida, em cada script
de andlise, a biblioteca foi carregada com o comando library(Rtsne).

A funcao Rtsne possui diversos hiperpardmetros que permitem ajustar sua execucdo. Os

principais, conforme a descricdo de |Rhys| (2020), s3o:

» perplexity: Este parametro controla a largura das distribuicoes de probabilidade usadas
para converter distancias. De forma simplificada, pode ser entendido como o nimero
de vizinhos préximos que cada ponto considera. Valores altos focam mais na estrutura
global, enquanto valores pequenos focam na estrutura local. Os valores tipicos estdo no

intervalo de 5 a 50.

» theta: Controla a compensacdo entre velocidade e precisdo na implementacdo Barnes-
Hut [t-SNE[ Maaten| (2014). Um valor de theta=0 corresponde a implementacdo exata,
que é mais lenta. Valores maiores aceleram o céalculo com alguma perda de precisao.

Neste trabalho, foi escolhido theta=0 para garantir a maxima precisdo nos resultados.

» eta: Corresponde a taxa de aprendizado, determinando a magnitude do ajuste da posicao
dos pontos em cada iteracdo. Valores mais baixos podem levar a uma incorporacao mais

precisa, mas exigem mais iteracdes. O valor padrdo é 200.

= max_iter: Define o nimero maximo de iteracdes que o algoritmo executara. O valor

padrao é 1.000.

Os hiperparametros mais importantes para o ajuste fino do resultado sdo, geralmente, a
perplexidade (perplexity) e o nimero de iteracdes (max_iter).

Adicionalmente, foi realizado um ajuste crucial no pré-processamento dos dados. O argu-
mento pca da funcdo Rtsne, cujo valor padrao é TRUE, executa uma analise PCA inicial antes
do [t-SNE| Nesta pesquisa, essa opcdo foi explicitamente desativada, definindo pca = FALSE.
Tal decisdo foi tomada para garantir que a analise fosse aplicada diretamente sobre a
matriz de dados original, permitindo uma avaliacdo de seu desempenho sem a influéncia de

uma etapa prévia de reducao de dimensionalidade linear.
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Finalmente, foram executadas as rotinas que envolvem a funcdo Rtsne com a matriz de

dados para gerar as figuras apresentadas na analise de resultados.

53 METODOLOGIA DE OTIMIZACAO DO DESIGN

Com as metodologias de andlise do sistema definidas, esta secdo detalha a abordagem
utilizada para a otimizacdo do design da caverna. O objetivo é transitar da compreensio do
fendmeno para a determinacdo de estratégias operacionais 6timas. Para isso, a metodologia
de otimizacdo foi estruturada em duas etapas fundamentais, que serdo descritas a seguir:
primeiramente, a formulacao matematica do problema e, em segundo lugar, a implementacao

computacional do framework de otimizac3o.

5.3.1 Formulaciao Matematica do Problema

O planejamento de uma campanha de mineracdo por dissolucdo é modelado como um
problema de otimizacdo, em que se busca o vetor de decisao 6timo * que maximize um
conjunto de indicadores de desempenho, sujeito a um sistema de restricGes fisicas, operacionais

e geomecanicas. Formalmente, o problema é expresso como:

Otimizar  F/(Z) = [f1(Z), f2(Z), ..., fu(Z)]
Sujeitoa ¢;(Z) <0, j=1,..m
fmin S f S fmax
onde F'(Z) é o vetor de funcdes-objetivo que quantifica o desempenho (por exemplo, maximizar
volume e minimizar tempo), g(Z) representa as restricdes de seguranca e estabilidade, e 7 é o

vetor de decisdo, cujos limites operacionais sdo definidos por T'min € Tmax. O vetor & pertence

ao espac¢o de solugdes admissiveis (vidveis), D.

5.3.2 Vetor de Decisao

Para uma campanha de mineracdo com N=2 estagios de dissolucdo, o vetor de decisdo ¥

é um ponto no espaco R!?, definido como:

‘f: [thlth[laPlaQQatZa827127P2] (51)
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Os componentes deste vetor representam as variaveis de controle do processo, cujos limites

praticos definem o espaco de busca. Para i = 1,2, tem-se que:
» (Q;: Vazdo de injec3o de salmoura no estégio i [m3/h].

= t;: Duragdo do estagio i [dias].

B;: Profundidade do blanket (definindo o teto da caverna) no estégio i [m].

I;: Profundidade de injecdo da tubulagdo no estagio i [m].

P;: Profundidade de producdo da tubula¢do no estégio i [m].

A escolha de modelar a campanha de mineracdo com N = 2 estagios representa uma sim-
plificacdo estratégica do problema. Embora projetos reais possam envolver mdltiplos estagios
para um controle geométrico mais fino, a limitacdo a dois estagios foi adotada por duas razées
principais. Primeiramente, o custo computacional: cada estagio adicional insere cinco novas
variaveis no vetor de decisdo, aumentando exponencialmente a complexidade do espaco de
busca e o tempo necessario para a convergéncia do algoritmo genético. Em segundo lugar, o
objetivo deste trabalho é demonstrar a viabilidade e a eficacia da metodologia de acoplamento
do otimizador ao simulador. Um modelo de dois estagios é suficientemente complexo para
validar o framework como uma prova de conceito robusta, que pode ser estendida para um

nimero maior de estagios em trabalhos futuros.

5.3.3 Sistema Hierarquico de Restricoes e Espaco de Busca

O sucesso de um projeto de caverna salina é medido por um duplo imperativo que equilibra
objetivos econdmicos com mandatos geomecanicos intransigentes. A otimizacdo nao busca o
maximo volume absoluto, mas o maximo volume seguro e estavel, refletindo uma filosofia de
"Otimizacdo de Design Robusto"(RDO).

As fronteiras dos parametros operacionais, definidas como restricdes de caixa (box cons-
traints), constituem a primeira e mais fundamental camada deste framework. Estas restricdes
definem o hipercubo de busca inicial, cujos limites foram estabelecidos com base em praticas
da inddstria e na necessidade de garantir a viabilidade de campanhas de lixiviacdo de longo

prazo.
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Vazido de injecdo (Q;):
50 < Q; <300 [m®/h]

Duracdo dos estagios (;): Para refletir cronogramas realistas, a duracdo de cada um dos

dois estagios foi limitada a um periodo entre 6 meses e 2 anos, ou seja, de 180 a 720 dias.
180 < t; <720 [dias]

Profundidades operacionais (B;, I;, P;): As profundidades foram restringidas a faixas espe-
cificas, em metros, para garantir a coeréncia fisica da circulacdo direta e respeitar as margens
de seguranca geotécnica. Para maior clareza, os limites em pés (ft), conforme implementados

no codigo, sao detalhados a seguir:

720.8 < B; < 780.3 [m] (Blanket: 2365-2560 ft)
781.8 < P, <839.7 [m] (Produgdo: 2565-2755 ft)

841.2 < I; < 862.6 [m] (Injecdo: 2760-2830 ft)

5.3.4 Justificativa dos Parametros do Espaco de Busca

A selecdo dos limites para as variaveis de controle é uma decisao deliberada, fundamentada
na fisica da dissolucao, em limitacdes de software, em precedentes da indistria e em principios

geomecanicos.

5.3.4.1 Vazido de injecdo (Q;): 50 a 300 m*/h

A faixa de vazao representa um balanco entre eficiéncia e seguranca. Vazbes mais altas
induzem maior turbuléncia, acelerando a taxa de dissolucdo. A faixa selecionada esta ancorada

em projetos analogos e no envelope de validacdo do software:

= Praticas conservadoras (50-100 m3/h): Taxas mais baixas sdo usadas para melhor con-
trole geométrico, especialmente em formacdes de sal estratificadas, como no projeto

Jintan na China Wang et al.| (2019), lLi et al.| (2022).

= Préticas modernas (150-300 m3/h): O programa INDOROCK na india planeja fases
com taxas de 150 e 300 m3/h Raju, Murthy e Kumar (2017)). O limite superior do
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SALGAS foi validado para "taxas de fluxo moderadas de até cerca de 1000 gpm (225
m3/h)"Eyerman| (2008)) e o limite de 300 m3/h representa uma extrapola¢do consciente

para alinhar o estudo com praticas de engenharia atuais.

A faixa de busca selecionada é, portanto, robusta, abrangendo desde operacdes comprovadas

até os limites superiores da pratica moderna.

5.3.4.2 Duracdo dos estagios (t;): 180 a 720 dias

A duracgdo de cada estagio (¢;) € um pardmetro critico que afeta a economia e a geomeca-
nica do projeto. A literatura estabelece que a criacdo de uma caverna é um processo de longo
prazo, podendo levar "um ano ou mais"Al-Halaf e Khazzan| (2023)). Modelagens detalhadas
chegam a simular a fase de lixiviacdo por periodos de 700 dias antes da operacdo |Speirs,
Bere e Roberts (2022). A duracdo também é fundamental para a estabilidade, pois governa
a histéria inicial de fluéncia (creep) da rocha salina |Seright e Brattekas| (1991). Portanto, o
intervalo de busca de 180 a 720 dias (6 meses a 2 anos) por estagio foi adotado para permitir

a exploracdo de estratégias de lixiviacdo realistas.

5.3.4.3 Profundidades operacionais (B;, I;, P;): 609.6 a 914.4 m

O intervalo de 609.6 a 914.4 m (equivalente a 2000-3000 pés) é uma préatica padrdo da
industria, posicionando a caverna em domos salinos geomecanicamente competentes. Esta
profundidade garante que a rocha salina esteja sob um estado de tensGes confinantes sufi-
ciente para exibir seu comportamento dictil e auto-cicatrizante, ao mesmo tempo que evita
as pressdes e temperaturas excessivas de profundidades maiores, que poderiam acelerar a

convergéncia por fluéncia [Li et al.| (2022).

5.3.4.4 Abordagem de modelagem da temperatura

A temperatura é um fator cinético crucial, mas sua implementac3o na otimizacao expde
uma limitacdo do SALGAS e a solucdo metodolégica adotada. O software opera sob uma
condi¢do isotérmica de 75°F (=~ 24°C) e n3do simula a transferéncia de calor [Eyerman| (2008).

Para incorporar o efeito da temperatura, a metodologia adota uma abordagem de proxy,
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utilizando o Fator de Dissolucdo (CONDIS), que se baseia em relacdes empiricas Saberian
(1983).

Para a otimizacao, foi definido um caso de temperatura base de 40°C. Esta escolha é funda-
mentada em analises geoldgicas: para as profundidades de caverna consideradas, a temperatura
de formacdo in-situ é tipicamente de 30°C a 70°C, com base em gradientes geotérmicos de
25-30°C/km |Bérest et al| (2020). O valor de 40°C é um representante realista e defensavel.
Embora casos de 60°C e 80°C tenham sido investigados na analise de sensibilidade, eles nao
fizeram parte do espaco de busca do AG, que operou sob a condicdo de temperatura fixa de
40°C para garantir a consisténcia dos resultados. Na implementacdo, a "temperatura"é uma
variavel acoplada: a definicdo de 40°C resulta em modificacdes no CONDIS e nas densidades
do fluido, cuja interdependéncia foi confirmada pela Analise de Componentes Principais (PCA)

desta tese.

5.3.5 Restricdes Nao-Lineares (Coeréncia Fisica e Seguranca Geomecanica)

Estas restricGes garantem que cada solucao candidata gerada pelo AG corresponda a um

caso fisicamente realizavel e geomecanicamente seguro.

= Hierarquia de circulacdo direta: A operacdo em modo de circulagdo direta (injecdo pro-
funda, producdo rasa) exige uma ordem geométrica especifica das tubulacdes e do teto
da caverna. Uma margem de seguranca € (um valor pequeno, e.g., 1 m) é usada para

evitar singularidades numéricas e garantir separacdo fisica:

Bi—P+¢<0 (5.2)

A primeira inequacdo garante que o ponto de producdo esta abaixo do teto da caverna
(definido pelo blanket), e a segunda garante que o ponto de injecdo estd abaixo do

ponto de producao.

» Espessura minima do teto de sal: Para assegurar a integridade estrutural a longo prazo
e prevenir o colapso do teto da caverna, uma espessura minima de sal deve ser man-
tida acima do ponto mais alto da cavidade (B;). A literatura técnica recomenda uma
espessura minima de sal de 150 m como uma diretriz segura para garantir a estabilidade

Seright e Brattekas (1991). A restricdo utilizada neste trabalho, de 100 m, representa
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um limite minimo absoluto, abaixo do qual os riscos se tornam inaceitaveis.
Bi 2 Ztopo_sal + 100 (54)
Onde Ziopo_sal € @ profundidade do topo da formacdo salina.

A tabela a seguir consolida as principais restricoes geomecanicas derivadas da literatura,
que fundamentam a formulacao do problema de otimizacao e a avaliacdo da seguranca das

solucdes geradas.

Tabela 12 — Restricoes geomecanicas consideradas na otimizac3o.

Parametro de design Valor Considerado Justificativa Técnica

Espessura minima do teto de sal >100 m Garante a integridade estrutural
e o isolamento da caverna em
relacdo a formacdes superiores,
conforme diretrizes conservadoras
da literatura Seright e Brattekas
(1991).

Razido altura/didmetro (H/D) Faixa ideal: 1.5 a 5.0 Equilibra a estabilidade e o apro-
veitamento volumétrico, evitando
tanto geometrias achatadas (H/D
< 1) quanto cavidades excessi-
vamente estreitas (“tipo lapis”)
Seright e Brattekas| (1991).

Raio méximo do teto da caverna < 9.1 m (30 ft) Controla o vao ndo suportado no
topo da caverna, o que é crucial
para reduzir o risco de colapso
associado a fluéncia plastica do
sal Seright e Brattekas (1991).

Profundidade maxima de injecao < 1000 m Limita a extensao vertical da ca-
verna para respeitar a base da
camada de sal e garantir a viabi-
lidade das condicoes operacionais
do poco.

Margem a base do sal >50m Impede que o processo de dissolu-
c3o avance para préximo da base
da formacao salina, evitando ris-
cos estruturais e o contato com
camadas geoldgicas indesejadas.
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5.3.6 Funcao-Objetivo e Métricas de Desempenho

A avaliacdo de cada solucao candidata gerada pelo algoritmo genético é governada por uma
funcdo-objetivo. A formulacao desta funcao difere fundamentalmente entre a otimizacao mono-
objetivo (SOO) e a multiobjetivo (MOO), refletindo a natureza distinta de cada abordagem
de busca. Ambas, no entanto, dependem de um conjunto comum de quatro métricas de

desempenho chave, calculadas a partir dos resultados da simulacao SALGAS:
= Volume maximo (MV): O volume total da caverna ao final da simulacdo (em m?).
= Massa de sal extraida (MS): A massa total de sal dissolvido (em ton).

= Eficiéncia energética (ME): A raz3o entre a massa de sal extraida e a energia consumida

(em ton/kWh).
= Tempo total de construcdo (MT): A duracdo total da campanha de lixiviacdo (em dias).

A selecdo destas quatro métricas ndo é arbitraria; cada uma representa um pilar funda-
mental que define o sucesso técnico e econdmico de um projeto de mineracdo por dissolucdo.
O volume maximo (MV) é a principal métrica de valor para projetos de armazenamento, pois
o espaco Util criado constitui o ativo que gera receita. Maximizar o MV, portanto, instrui o
algoritmo a encontrar estratégias que criem o maior espaco de armazenamento possivel dentro
das restricdes de seguranca. A massa de sal extraida (MS) é a métrica priméria para projetos
focados na producdo de salmoura como matéria-prima para a indistria quimica, representando
o produto principal a ser comercializado.

As outras duas métricas governam a viabilidade econémica e operacional do projeto. O
tempo total de construcdo (MT) é um indicador direto do custo de capital (CAPEX) e da
exposicao ao risco. Projetos mais longos incorrem em maiores custos operacionais, de financia-
mento e postergam o inicio da geracdo de receita, impactando negativamente o Valor Presente
Liquido (VPL) do ativo. Por fim, a eficiéncia energética (ME) é um indicador chave do custo
operacional (OPEX), medindo a quantidade de sal extraido por unidade de energia consu-
mida. Uma maior eficiéncia reduz os custos diretos de lixiviacdo e alinha o projeto a préticas
de engenharia mais sustentaveis.

A otimizacao simultanea destas métricas forca o algoritmo a navegar pelos compromissos
(trade-offs) intrinsecos ao design de engenharia do mundo real, como o balanco entre a

velocidade de construcdo (aumentando a vazdo) e a eficiéncia energética.
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Para garantir que estas métricas, que possuem escalas e unidades distintas, possam ser
comparadas e combinadas de forma matematicamente consistente, elas sao normalizadas para
um intervalo adimensional de [0, 1] com base em limites minimos e maximos realistas definidos

na configuracdo do sistema.

5.3.6.1 Formulacdo para Otimizacdo Mono-Objetivo (ga)

Na otimiza¢do mono-objetivo (SOO), o desafio é consolidar os multiplos critérios de de-
sempenho de um projeto em um Unico indicador numérico que possa guiar o algoritmo. Esse
indicador, no contexto dos Algoritmos Genéticos, é conhecido como aptiddo (fitness), um valor
escalar que quantifica a "qualidade"de uma determinada solucdo candidata.

Para esta tarefa, foi utilizado o solver ga do Global Optimization Toolbox do MATLAB, uma
implementacao computacional de um Algoritmo Genético projetada para problemas com um
inico objetivo. Uma caracteristica fundamental do solver ga é que ele opera como um mini-
mizador: seu propdsito é encontrar a solucao que resulta no menor valor de aptidao possivel.

Dada essa caracteristica, a funcdo de aptidao, implementada na funcao fitnessFunction.m,
foi formulada para que valores menores indiquem solucdes melhores. Para isso, as métricas de
desempenho normalizadas (M},) sdo agregadas através de uma funcdo de soma ponderada. A
funcdo-objetivo é definida como o negativo da soma ponderada dos objetivos que se deseja
maximizar, acrescida do complemento para o objetivo de minimizacao e de uma funcdo de

penalidade (Iliota) que desencoraja solucdes que violem as restricdes:

Fitness(z) = — Z wip M, + wyr(1 — My7) | + ol () (5.5)
ke{MV,MS,ME}

onde wy sdo os pesos que refletem a importancia relativa de cada objetivo e Il (7)

representa a soma de todas as penalidades. As principais penalidades implementadas incluem:

= Penalidade da razdo altura/didmetro (II,p): Garante a estabilidade geomecanica da
caverna, penalizando geometrias fora da faixa ideal (e.g., [1.5, 5.0]). Matematicamente,

é expressa como:
Hpy/p(Z) = puyp - (max(0, H/Dmyin — H/D(Z)) + max(0, H/D(&) — H/Dmax))

onde pg/p é um coeficiente de penalidade, e H/Dpin € H/Dpax sdo os limites da faixa

ideal Seright e Brattekas (1991)), Chen e Li (2024).
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= Penalidade de intervencdo (ITyorkover): Adiciona um custo fixo se ocorrer alteracdo nas
profundidades de operacdo (B;, I;, P;) entre os estagios, o que na pratica exigiria uma

intervencdo de sonda (workover) com custo significativo.

5.3.6.2 Formulacdo para Otimizacdo Multiobjetivo (NSGA-Il/gamultiobj)

Diferentemente da abordagem mono-objetivo, a otimizacao multiobjetivo com o solver
gamultiobj, que implementa o algoritmo NSGA-II, n3o utiliza uma funcao de soma ponde-
rada. Em vez disso, ele trata cada métrica de desempenho como um objetivo independente a
ser otimizado simultaneamente. A formulacdo busca encontrar um conjunto de solucoes que
formam a Fronteira de Pareto, representando os melhores compromissos (trade-offs) possiveis

entre os quatro objetivos de engenharia definidos:
1. Maximizar o volume méaximo (MV)
2. Maximizar a massa de sal extraida (MS)
3. Maximizar a eficiéncia energética (ME)
4. Minimizar o tempo total de construcdo (MT)

Por convencdo, o solver gamultiobj minimiza todos os objetivos. Portanto, as métricas
que desejamos maximizar (MV, MS, ME) sdo retornadas com sinal negativo. A funcdo-objetivo,
conforme implementada em fitnessFunctionMulti.m, retorna o seguinte vetor de quatro

objetivos, onde cada um j3 inclui as penalidades (I1;,,;) por violacdo de restricdes:

- M]/\/[V + Htotal

—M; + Htotal
Vetor de Objetivos = s (5.6)

!
_MME + Htotal

/
MMT + Htotal
Nesta formulac3do, as penalidades garantem que solucdes que violam restricGes sejam con-
sideradas dominadas por solucdes viaveis, guiando a busca em direcdo a regido factivel do

espaco de busca.
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5.4 IMPLEMENTACAO COMPUTACIONAL E ARQUITETURA DO OTIMIZADOR

A solucdo do problema de otimizacdo formulado requer um framework computacional que
integre, de forma eficiente, o processo de busca do Algoritmo Genético com as avaliacoes da
funcao-objetivo, que sdo fornecidas pelo simulador de lixiviacdo SALGAS. Esta secdo detalha
a arquitetura deste sistema e justifica a configuracao dos operadores genéticos utilizados no
ambiente MATLAB.

Para garantir a total reprodutibilidade e permitir a analise detalhada da metodologia,
o cédigo-fonte completo deste framework, incluindo os scripts para as otimizacGes mono e
multiobjetivo, foi disponibilizado em um repositério piblico no GitHub, que pode ser acessado

em:

<https://github.com/OscarMelgar40 /tese-otimizacao-cavernas-salinas>

5.4.1 O framework de Otimizacao: Acoplando SALGAS e AG

A arquitetura do otimizador é construida em torno de um laco iterativo onde o Algoritmo
Genético (AG) e o simulador SALGAS se comunicam. O processo, implementado nos scripts
iniciar_otimizacao.me iniciar_otimizacao_multiobjetivo.m, pode ser descrito da se-

guinte forma. A figura [L0] ilustra este fluxo de trabalho, detalhando cada passo do processo.


https://github.com/OscarMelgar40/tese-otimizacao-cavernas-salinas
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Figura 10 — Fluxograma do processo de otimizacdo acoplando o AG ao SALGAS.
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1. geracdo da populacdo: o AG inicia criando uma populacdo de individuos. Cada individuo
é um vetor de decisdo & (conforme a Equacdo 7.2), representando um design completo

da campanha de lixiviacdo em dois estagios.

2. avaliacdo da aptiddo (fitness): para cada individuo na populacdo, o framework executa
uma avaliacdo da func3o-objetivo. Este é o passo mais critico e computacionalmente

intensivo do processo.

= o vetor de decisdo & é traduzido em um arquivo de entrada (.sgi) para o SALGAS,
contendo todos os pardmetros operacionais (vazdes, tempos, profundidades, etc.)

para os dois estagios de simulacdo |Warren| (2016)).

» o simulador SALGAS é executado como um processo black-box. O framework in-
voca o simulador, aguarda a conclusdo da simulacdo e entdo extrai os resultados

relevantes do arquivo de saida.

= os resultados da simulacdo (e.g., volume final da caverna, tempo total, etc.) sdo
usados para calcular as métricas de desempenho e, consequentemente, a aptidao
do individuo. As restricGes geomecanicas e operacionais s3o verificadas através da

funcdo restricoes.m, e as penalidades correspondentes s3o aplicadas.

3. operadores genéticos: com base na aptiddo de toda a populacao, o AG aplica seus ope-
radores estocasticos para criar a proxima geracdo. As escolhas especificas dos operadores

sao cruciais para a eficiéncia da busca:

» selecdo: o mecanismo de escolha dos "pais"difere entre as abordagens. Para a
otimizacdo mono-objetivo (ga), utiliza-se a selecdo por torneio baseada no valor
de fitness escalar. Para a multiobjetivo (gamultiobj), o critério é a dominancia

de Pareto e a distancia de aglomeracdo, conforme o algoritmo NSGA-II.

= cruzamento (crossover): pares de pais sdo recombinados usando o operador
crossoverintermediate, ideal para varidveis continuas. Este operador cria "fi-
lhos"que herdam uma mistura ponderada das caracteristicas dos progenitores, pro-

movendo a exploitation.

» mutacao: uma pequena porcao dos filhos sofre alteracOes aleatédrias através do
operador @mutationadaptfeasible. Esta escolha é fundamental, pois o operador

adapta-se ao problema e garante que as mutacdes sempre respeitem as restricoes
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de contorno (Ib e ub), aumentando drasticamente a eficiéncia da busca ao evitar

a geracao de individuos inviaveis.

4. convergéncia: o ciclo de avaliacao e aplicacao de operadores genéticos é repetido até que
um critério de parada seja atingido, como o ndmero maximo de geracdes (MaxGenerations)

ou a estagnacdo da melhor solugdo por um niimero definido de geracdes (MaxStallGenerations).

O principal desafio desta abordagem é o custo computacional. Em nosso ambiente de
testes, uma Unica avaliacdo da funcdo-objetivo, que envolve uma simulacdo completa dos dois
estagios no SALGAS, levou em média 45 segundos para ser concluida. Consequentemente, para
uma populacdo de 25 individuos, executada por 10 geracdes, o nimero total de avaliacGes é de
250 simulacoes, demandando um tempo de execucdo consideravel que justifica a otimizac3o
do processo.

Isso torna imperativo o uso de algoritmos eficientes e a implementacdo de técnicas de
computacio paralela. E importante esclarecer que a paralelizacio n3o ocorre dentro do simu-
lador SALGAS, que é executado como um processo serial individual. Em vez disso, o framework
de otimizacdo acelera a busca ao paralelizar as avaliacdes da funcdo de aptiddo. Com a op-
cdo UseParallel = true, o solver ga do MATLAB distribui os diferentes individuos de uma
mesma geracao para serem avaliados simultaneamente em miltiplos nicleos de processamento.
Cada nlcleo executa uma instancia independente do SALGAS, o que reduz significativamente

o tempo total necessério para avaliar uma populac3o inteira Mello, Lacerda e Pozo| (2023).

5.4.2 Estratégia de Aceleracao Computacional: Modelos Substitutos para Propri-

edades de Fluidos

Um dos principais gargalos computacionais no acoplamento de um otimizador ao SALGAS é
a determinacdo dos parametros de entrada para cada avaliacao da funcdo-objetivo. Conforme
detalhado no Apéndice D, o calculo da gravidade especifica (SG) do fluido de injecdo e da
salmoura saturada utilizando ferramentas externas como o Toolbox do SMRI é um processo
manual e lento, invidvel para as milhares de iteracdes exigidas por um Algoritmo Genético.

Para superar essa limitacdo e viabilizar a otimizacdao, uma estratégia de modelagem de
substitutos (surrogate modeling) foi implementada. Em vez de recalcular as propriedades dos
fluidos a cada chamada, modelos de regressdo polinomial de segunda ordem (poly22 no

MATLAB) foram pré-ajustados com base nos dados experimentais apresentados na Tabela |§]
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Esses modelos foram implementados na funcao calcular_parametros_fluido.m e seus co-
eficientes armazenados na estrutura de configuracdo do otimizador.

Essa abordagem proporciona uma aproximac3do de alta fidelidade e computacionalmente
instantanea das propriedades dos fluidos, eliminando um dos principais gargalos do processo.
Ao substituir uma etapa lenta e externa por um modelo matematico local, a avaliacdo da
funcao-objetivo torna-se significativamente mais eficiente, permitindo a exploracdo de um

numero muito maior de solucdes candidatas dentro de um tempo computacional viavel.

5.4.3 Configuracdao dos Operadores Genéticos no Ambiente MATLAB

A implementacdo da otimizacdo nesta tese abrange tanto a otimizacdo mono-objetivo
(SO0), focada em encontrar uma dnica solucdo 6tima, quanto a otimizacdo multiobjetivo
(MOO), que busca um conjunto de solu¢cdes de compromisso (fronteira de Pareto). Ambas as
abordagens foram implementadas utilizando o Global Optimization Toolbox 'The MathWorks,
Inc.| (2024a) do MATLAB, respectivamente com os solvers ga e gamultiobj.

Embora os mecanismos de avaliacdo e selecdo dos individuos sejam fundamentalmente
diferentes entre as duas abordagens, o motor evolutivo central — que governa a geracdo de
novas solucdes através de cruzamento e mutacdo — compartilha uma base de parametros

comum. A principal distincdo reside no critério de selecdo:

= No caso mono-objetivo (ga), os individuos s3o avaliados e selecionados com base em

um UGnico valor de aptidao escalar, que agrega todos os objetivos e penalidades.

= No caso multiobjetivo (gamultiobj), a selecdo é governada pelos principios da dominan-
cia de Pareto e pela manutencdo da diversidade. O algoritmo utiliza a ordenacdo rapida
por ndo dominancia para classificar as solucGes em "frentes"e a distancia de aglomeracao

para garantir uma distribuicdo uniforme ao longo da fronteira de Pareto.

A tabela a seguir consolida os parametros de configuracao utilizados, detalhando sua fun-
cdo e justificativa em ambos os casos de otimizacao. Esta abordagem unificada destaca as
similaridades no nicleo do processo evolutivo, ao mesmo tempo que esclarece as nuances

especificas de cada método.
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Tabela 14 — Pardmetros de configuracdo do Algoritmo Genético (solvers ga e gamultiobj).

Parametro (Propriedade MA-  Valor Utilizado

TLAB)

Justificativa e Consideracdes (SO0 &
MOO)

Configuracdo da populacio e duracdo

Tamanho da populacao 25
(PopulationSize)
Maximo de geracdes 10
(MaxGenerations)

Mecanismos de selecao e sobrevivéncia

Essencial para a diversidade genética.
Na MOQO, é critico para bem repre-
sentar a fronteira de Pareto.

Nimero maximo de iteracGes, ba-
lanceando a convergéncia da solucao
com o custo computacional.

Mecanismo de selecdo Especifico do solver

Elitismo Especifico do solver

Operadores de geracdo de solucdes

ga: Selecdo por torneio (baseada em
fitness (nico).

gamultiobj: Ordenacdo por n3o do-
minancia e distancia de aglomeracao
(NSGA-II).

ga: EliteCount (10%) preserva os
melhores individuos.

gamultio-bj: Inerente ao meca-
nismo, que sempre preserva as melho-
res frentes nao dominadas.

Fracdo de cruzamento 0.8
(CrossoverFraction)

Operador de mutacao
(MutationFcn)

Configuracdo da execucao e restricoes

@mutationadaptfeasible

Principal motor da exploitation, ge-
rando 80% dos novos individuos a
partir de pais promissores.

Principal motor da exploracdo. Ga-
rante que as solucdes geradas respei-
tem as restricdes de contorno.

Funcado de restricoes nao li- @restricoes
neares
Uso de paralelismo true

(UseParallel)

Garante a viabilidade fisica e a segu-
ranca dos projetos, aplicando restri-
¢Bes geomecanicas (e.g., razdo H/D).

Acelera a otimizacao ao distribuir as
avaliacdes de fitness, sendo crucial
para a viabilidade computacional do
estudo.
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6 RESULTADOS E DISCUSSAO

Este capitulo apresenta e discute os principais resultados gerados ao longo desta tese. A
apresentacdo é dividida em duas partes principais, seguindo a légica da pesquisa. Primeira-
mente, sdo detalhados os resultados da fase de analise, que incluem as simulacdes numéricas
do processo de lixiviacdo com o software SALGAS e a subsequente andlise estatistica multiva-
riada dos dados com as técnicas PCA e t-SNE. Em seguida, sdo apresentados os resultados da
fase de otimizacdo, demonstrando as solucdes de design obtidas pelo framework que acopla
algoritmos genéticos ao simulador, tanto para o caso mono-objetivo quanto para o multiobje-

tivo.

6.1 RESULTADOS COM SALGAS

Com base nas simulacdes realizadas no software SALGAS, foram feitas comparacdes dos
contornos finais das cavernas e dos volumes ao final da simulac3o para os casos D (direto) e
R (reverso). Com as informacdes obtidas, foram geradas superficies de resposta que ilustram
visualmente o comportamento do volume em ambos os casos, mediante a técnica discutida em
Amidror (2002). Outra analise realizada foi a comparagdo dos volumes entre os dois métodos
de dissolucdo.

O comportamento da caverna foi analisado considerando a variacdo da taxa de producdo
de salmoura e das temperaturas de referéncia (40°C, 60°C e 80°C) ao longo de 120 dias. As
figuras de [11] a [L7] apresentam os resultados para as simulacées do caso D.

A comparacdo entre os contornos finais da caverna para o tempo de 120 dias no caso D,
considerando cada caso analisado, é apresentada nas figuras de [11] a [I3] Nelas, foi possivel
verificar a geometria e o valor do raio atingido. Para uma mesma condicao de temperatura,
observa-se que, quanto maior a taxa de producdo, maior o raio da caverna. O valor maximo
alcancado em 120 dias foi de 26,90 m de raio no caso com temperatura de 80°C e taxa de
producdo de 1200 m3/h. Analisando a mesma taxa de producio, o raio da caverna também
aumenta com o aumento da temperatura de referéncia, devido a maior solubilidade do cloreto
de sédio em temperaturas elevadas, o que acelera a dissolucdo. Contudo, a magnitude dessa
variacdo é visivelmente menor do que a observada ao se alterar a taxa de producao, como

se pode constatar pela maior separacdo entre as curvas de vazdo nas figuras. Isso indica
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que, dentro das faixas analisadas, a taxa de producdo é a varidvel dominante no controle do

didmetro final da caverna.

Figura 11 — Comparac3o dos contornos finais da caverna para o caso de referéncia T = 40°C no caso D.
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Figura 12 — Comparacdo dos contornos finais da caverna para o caso de referéncia T = 60°C no caso D.
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Figura 13 — Comparacdo dos contornos finais da caverna para o caso de referéncia T = 80°C no caso D.
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As figuras de [14] a[16] apresentam os resultados de evoluc3o do volume, agrupados por caso
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de temperatura de referéncia. A andlise mostra que, para uma mesma condicao de temperatura,
o volume da caverna cresce mais rapidamente com o aumento da taxa de producdo. Isso
ocorre pois uma maior vazao intensifica a turbuléncia no interior da cavidade, o que eleva o
coeficiente de transferéncia de massa e, consequentemente, acelera a taxa de dissolucdo do
sal. Além disso, analisando a influéncia dos diferentes casos de temperatura, observa-se que,
para uma mesma taxa de producdo, quanto maior a temperatura de referéncia, maior é o
volume final da caverna. Isso se deve ao aumento da solubilidade do cloreto de sédio com a

temperatura, fazendo com que o solvente dissolva a rocha salina de forma mais efetiva.

Figura 14 — Evolucao do volume da caverna para o caso T = 40°C no caso D.
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Fonte: O autor (2025)
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Figura 15 — Evolucao do volume da caverna para o caso T = 60°C no caso D.
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Figura 16 — Evolucao do volume da caverna para o caso T = 80°C no caso D.
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Fonte: O autor (2025)

Com base nos resultados das analises para as diferentes vazdes e temperaturas ao final de
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120 dias, foi gerada uma superficie de resposta para ilustrar visualmente o comportamento do
volume. Nessa superficie, as varidveis independentes s3o a vazdo e a temperatura, enquanto a
variavel dependente é o volume, conforme ilustrado na figura[I7] A técnica utilizada para criar
esta superficie foi a interpolacao linear baseada em triangulacdo, uma metodologia para dados
esparsos descrita em Amidror| (2002)). Este método consiste em criar uma rede de tridangulos
a partir dos pontos de dados simulados €, em seguida, interpolar linearmente o volume dentro

de cada triangulo para gerar uma superficie continua, conforme detalhado no Apéndice B.

Figura 17 — Superficie de resposta para o volume no caso D.
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Fonte: O autor (2025)

De modo semelhante, foram feitas as analises para o caso R, cujos resultados sdo expostos
nas figuras de [18] a [24]

A comparacdo entre os contornos finais da caverna para o tempo de 120 dias no caso R
é apresentada nas figuras de [18 a 20 onde foi possivel verificar a geometria e o valor do raio
atingido. Similarmente ao caso D, para uma mesma condicdo de temperatura, quanto maior a
taxa de producdo, maior o raio da caverna. O valor maximo alcancado em 120 dias foi de 33,70
m de raio no caso com temperatura de 80°C e taxa de producdo de 1200 m3/h. Analisando
a mesma taxa de producao, o raio da caverna aumenta com o aumento da temperatura, uma
vez que a maior temperatura eleva a solubilidade do sal, acelerando o processo de dissolucao.

Contudo, a andlise visual das figuras demonstra que a magnitude desta variacao é menor do
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que a causada pela alteracdo da taxa de producdo, sugerindo que esta dltima variavel tem

maior influéncia no didmetro final obtido.

Figura 18 — Comparacdo dos contornos finais da caverna para o caso de referéncia T = 40°C no caso R.
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Figura 19 — Comparacdo dos contornos finais da caverna para o caso de referéncia T = 60°C no caso R.
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Fonte: O autor (2025)

Figura 20 — Comparacdo dos contornos finais da caverna para o caso de referéncia T = 80°C no caso R.
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Fonte: O autor (2025)

As figuras de [21] a [23] apresentam os resultados de evolucio do volume para cada tempe-
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ratura de referéncia. Para uma mesma condicdo de temperatura, o volume cresce mais rapi-
damente com taxas de producdo mais altas. De igual modo ao ocorrido no caso D, observa-se
que, para uma mesma taxa de producdo, quanto maior a temperatura de referéncia, maior o

volume da caverna, devido ao aumento da solubilidade do sal.

Figura 21 — Evolucdo do volume da caverna para o caso T = 40°C no caso R.
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Figura 22 — Evolucdo do volume da caverna para o caso T = 60°C no caso R.
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Figura 23 — Evolucdo do volume da caverna para o caso T = 80°C no caso R.
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De forma similar ao que foi feito para o caso D, uma superficie de resposta foi criada para
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o caso R. Considerando as diferentes vazdes, temperaturas e o tempo final de 120 dias, a
superficie foi extrapolada com os dados de saida do SALGAS. As variaveis independentes sao

a vazdo e a temperatura, e a varidvel dependente é o volume, como mostrado na figura .

Figura 24 — Superficie de resposta para o volume no caso R.
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Fonte: O autor (2025)

A tabela [15| apresenta a diferenca percentual de volume entre os casos R (reverso) e D
(direto). Em todos os casos analisados, o caso R resulta em um volume final consistentemente
maior. A principal razdo para essa maior eficiéncia reside na dindmica dos fluidos: na circulacdo
reversa, a agua doce (menos densa) é injetada no topo e desce pelas paredes, enquanto a
salmoura (mais densa) se acumula naturalmente no fundo para ser extraida. Isso cria uma
célula de conveccao estadvel que aproveita toda a altura da caverna para a dissolucdo. Em
contraste, na circulacdo direta, a dgua doce injetada no fundo tende a subir rapidamente, o
que pode causar um "curto-circuito"no fluxo, reduzindo o contato efetivo com as paredes da
caverna e, consequentemente, a eficiéncia do processo.

Observa-se também na tabela uma relacdo decrescente entre a temperatura e a vantagem
percentual do caso R. Ou seja, a superioridade do método reverso é mais pronunciada em
temperaturas mais baixas. Isso pode ser explicado pelo fato de que, em temperaturas mais
altas, a taxa de reacdo quimica (solubilidade do sal) se torna tdo elevada que passa a dominar

sobre os efeitos da eficiéncia da circulacao. Mesmo o método D, menos eficiente, torna-se
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muito mais reativo com o aumento do calor, o que diminui a diferenca relativa de performance
entre os dois casos.

Finalmente, nota-se uma particularidade no caso de 40°C, onde a tendéncia de aumento
da diferenca percentual se inverte na maior vazdo (1200 m3/h), sugerindo interacdes mais

complexas entre vazao e temperatura em regimes de menor energia térmica.

Tabela 15 — Diferenca percentual dos volumes entre os casos Direto e Reverso.

Vazdo (m3/h) Volume Direta (m3) Volume Reversa (m3) Diferenca (%)

caso de Temperatura = 40°C

120 41384,70 45041,05 8,84
200 64977,89 71511,52 10,06
360 107985,01 120021,52 11,15
400 118130,44 131330,95 11,17
800 210546,86 234701,06 11,47
1200 297725,84 329164,61 10,56
caso de Temperatura = 60°C
120 47798,02 50428,90 5,50
200 76518,14 81612,44 6,66
360 130838,47 140939,95 7,72
400 143839,62 155241,92 7,93
800 266268,51 289757,15 8,82
1200 378841,15 413365,75 9,11
caso de Temperatura = 80°C
120 53401,79 54978,28 2,95
200 86638,43 89867,38 3,73
360 150454,96 157578,15 4,73
400 166003,75 174118,79 4,89
800 314677,96 333077,61 5,85
1200 454376,84 482909,65 6,28

Fonte: O autor (2025)

A tabela e a figura ilustram as diferencas percentuais de volume entre os casos.
Uma analise particular da figura revela um comportamento andmalo na curva de 40°C,
que, ao contrario das outras, apresenta uma queda no final. Isso sugere que, em temperaturas
mais baixas onde a cinética da dissolucao é mais lenta, o aumento extremo da vazado para

1200 m3/h gera uma turbuléncia t3o intensa que pode melhorar a eficiéncia do método de
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circulacdo direta (D) de forma desproporcional, reduzindo assim sua diferenca percentual em

relagdo ao ja eficiente método reverso (R).

Figura 25 — Diferenca porcentual dos volumes entre os casos direto e reverso.
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Fonte: O autor (2025)

A figura [26] serve como uma confirmac3o visual da tendéncia discutida anteriormente. Ao
plotar os resultados de ambos os casos (esferas pretas para Direto, vermelhas para Reverso)
sobre uma Unica superficie de referéncia, a figura destaca a magnitude da diferenca de perfor-
mance entre os métodos. Fica evidente que a separacao vertical entre os pontos de cada par
de simulagdo (mesma vaz&o e temperatura) é maior em temperaturas mais baixas (40°C) e
diminui progressivamente em temperaturas mais altas (80°C). Essa representacdo grafica re-
forca a conclusao de que a eficiéncia superior do método reverso é mais acentuada em regimes

de menor temperatura.
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Figura 26 — Superficie de Resposta - volume comparado
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Fonte: O autor (2025)

6.2 RESULTADOS COM PCA

Nesta secdo, é apresentada a anélise estatistica multivariada da matriz de dados conso-
lidada, cuja estrutura foi mostrada na figura [9] A abordagem adotada neste trabalho difere
daquela utilizada por [Silval (2022), que realizou uma anélise sobre a matriz de dados de cada
cendrio separadamente. Em contrapartida, neste estudo, optou-se por realizar a analise em
uma matriz tnica contendo os dados de ambos os cenarios, a fim de obter uma visdo global
do sistema.

A analise dos dados seguiu uma sequéncia metodoldgica rigorosa. Inicialmente, foi realizada
uma andlise descritiva das varidveis. Em seguida, para validar a aplicabilidade da [PCA] foi
realizado o teste de esfericidade de ao nivel de significancia de 1%. Este teste
verifica se as varidveis s3o correlacionadas entre si, uma condicdo necessaria para que uma
técnica de reducio de dados, como a[PCA| possa compactar os dados de maneira significativa.
Como o resultado do teste confirmou a existéncia de correlacdes, aplicou-se finalmente a
Andlise de Componentes Principais a matriz.

Para permitir a comparacdo direta entre varidveis com diferentes escalas e unidades, os
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dados foram previamente padronizados através da normalizacdo z-score, um processo que
consiste em subtrair a média e dividir pelo desvio padrdo de cada varidvel. A tabela|l6{apresenta
a analise descritiva dos dados ja padronizados, resumindo a média, o desvio padrao, a mediana,

os valores minimo e maximo, o primeiro quartil e o terceiro quartil para cada variavel.

Tabela 16 — Andlise descritiva das variaveis

Variaveis Média Desvio Padrao Mediana Minimo Maximo Primeiro Quartil Terceiro Quartil
Temperatura 60 16,56157 60 40 80 40 80
Taxa de producao 496,1753 367,4294 367,299 115,9891 1159,891 193,3143 773,2596
Raio 17,76206 6,359494 16,34913 8,481523 33,6982 12,86952 21,67224
Volume 179612,6 125374,1 142389,8  41384,7 482909,7 80338,86 272140,7
Pressao de Injecao 10,49333 2,974654 9,425 7,56 16,74 8,365 11,52
SG da salmoura 1,188156 0,007232 1,1875 1,1785 1,1994 1,180275 1,196
SG do fluido de injecao 1,014344 0,00882 1,01458  1,00223  1,02713 1,004205 1,023555
Fator dissolucdo do sal  3,985223 1,733602 3,641454 1,990351 6,536986 2,093171 6,100862
Poténcia da bomba 2695,161 4037,188 567,6314 64,14828 11431,77 156,4012 3635,694
Energia cumulativa 2,78E+13 4,17E4+13 584E+12 6,6E+11 1,18E+14 1,62E+12 3,75E+13
Perda de tubulacao 3,258273 3,98094 1,297398 0,150758 11,66974 0,403312 5,103422
Salmoura produzida 1429131 1058304 1057930 334083,1 3340827 556805,2 2227215
Pressdao da bomba 9,8427 10,19622 4,830952 1,733942 30,76283 2,52151 14,76271

Fonte: O autor (2025)

Para a andlise estatistica foram renomeadas as 13 variaveis a seguir:
» X1 - Temperatura

» X2 - Taxa de producao

= X3 - Raio

= X4 - Volume

» X5 - Pressao da injecdo

» X6 - SG da salmoura

» X7 - SG do fluido da injecdo
» X8 - Fator dissolucao do sal
» X9 - Poténcia da bomba

» X10 - Energia cumulativa

» X11 - Perda da tubulacao

= X12 - Salmoura produzida
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= X13 - Press3o da bomba

Daqui por diante, podem ser usadas tanto esta nova nomenclatura quanto os nomes originais
das variaveis, segundo seja o caso.

Em seguida apresenta-se a tabela [17| da correlagdo entre as variaveis.

Tabela 17 — Correlacdo entre as variaveis.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

X1 1 0 025 0,21 0 -099 -099 099 001 001 O 0 0,01
X2 0 1 089 09 09 016 0,13 006 09 09 098 1 098
X3 025 0,89 1 09% 07 -013 -0,14 03 081 081 086 089 085
X4 021 096 0,95 1 09 -005 -008 02 09 091 094 09 0,94
X5 0 09 0,75 09 1 0,17 0,14 0,06 0,97 097 097 095 0,97
X6 -099 0,16 -0,13 -0,06 0,17 1 1 -0,96 0,15 0,15 0,16 0,16 0,15
X7 -099 013 -0,14 -0,08 0,14 1 1 -0,96 0,13 0,13 0,13 0,13 0,12
X8 099 006 03 026 006 -096 -098 1 0,07 0,07 0,07 0,06 0,08
X9 001 09 08 09 097 015 013 0,07 1 1 099 095 0,99
X10 o001 09 081 091 097 015 0,13 0,07 1 1 099 09 0,99
X11 0 098 086 094 097 0,16 0,13 0,07 0,99 0,99 1 098 1

X12 0 1 089 09 09 016 0,13 006 09 09 098 1 098
X13 o001 098 085 094 097 015 0,12 0,08 099 0,99 1 098 1

Fonte: O autor (2025)

A figura 27| que representa a matriz de correlacdo entre as varidveis apresentadas na tabela
anterior. Para uma anélise mais visual, como solicitado, esta figura (correlograma) utiliza cores
e tamanhos para indicar a forca e a direcdo da correlacdo. Pode-se observar que a variavel
da temperatura (X1) tem uma forte correlacdo positiva com o fator de dissolucdo do sal
(X8) e negativa com as gravidades especificas (X6 e X7). Nota-se também um grande bloco
de correlacBes positivas entre as varidveis de operacdo (como X2 - Taxa de producdo) e as

varidveis de resultado (como X4 - Volume e X9 - Poténcia da bomba).
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Figura 27 — Matriz de correlacdo entre as varidveis (Correlograma).
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Fonte: O autor (2025)

Para validar a aplicabilidade da andlise de componentes principais, foi utilizado o teste
de esfericidade de Bartlett (1950). Este teste de hipdtese verifica se as variéveis na
matriz de dados sao correlacionadas, o que é uma premissa fundamental para o uso do PCA.
A hipétese nula (Hy) postula que a matriz de correlagdo é uma matriz identidade (ou seja,
as variaveis ndo s3o correlacionadas), tornando a aplicacdo do PCA inadequada. A hipdtese
alternativa (Hp), por sua vez, é de que a matriz de correlacdo ndo é uma matriz identidade,
indicando que a aplicacdo do PCA ¢é apropriada.

A estatistica do teste segue uma distribuicdo x? com p(p — 1)/2 graus de liberdade e é
calculada pela seguinte férmula:

2
X2:—(n—1—p;5)ln|R|

onde n é o nimero de amostras, p é o nimero de variaveis e |R| é o determinante da matriz
de correlacao.

O resultado do teste foi x? = 2950, 687 com um p-valor de 0,0, o que leva a rejeicio da
hipétese nula com um nivel de significancia de 1%. Conclui-se, portanto, que as varidveis s3o
correlacionadas e que a aplicacdo do PCA ¢ justificada.

Na Tabela [I8] sdo apresentados os autovalores obtidos mediante o PCA, a porcentagem

da variancia total explicada por cada componente, e a porcentagem acumulada.



95

Tabela 18 — PCA - Autovalores, porcentagem da variancia total e a porcentagem acumulada da explicacdo da
variancia total.

Componentes principais Autovalor Porcentagem (%) Porcentagem Acumulada (%)

Compl 8,55 65,75 65,75
Comp2 4,04 31,07 96,82
Comp3 0,30 2,30 99,12
Comp4 0,08 0,60 99,72
Compb 0,02 0,14 99,86
Compb 0,01 0,10 99,96
Comp7 0,00 0,03 99,99
Comp8 0,00 0,01 100,00
Comp9 0,00 0,00 100,00
Compl0 0,00 0,00 100,00
Compll 0,00 0,00 100,00
Comp12 0,00 0,00 100,00
Compl13 0,00 0,00 100,00

Fonte: O autor (2025)

A tabela[18]apresentou os autovalores de cada componente principal. A figura[28] conhecida
como Scree Plot, representa graficamente esses mesmos autovalores em ordem decrescente,

evidenciando a dominancia dos primeiros componentes.

Figura 28 — PCA - Autovalores (Scree Plot).
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Fonte: O autor (2025)

Para quantificar essa importancia, a figura 29 mostra a porcentagem da varidncia total

explicada por cada componente. Nela, observa-se que os dois primeiros componentes principais



96

sdo suficientes para explicar aproximadamente 96,8% da variabilidade total dos dados, sendo

65,7% contribuidos pelo primeiro componente e 31,1% pelo segundo.

Figura 29 — PCA - Porcentagem da varidncia total explicada por componente.
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Fonte: O autor (2025)

A andlise da contribuicdo das variaveis, detalhada na tabela permite interpretar o
significado fisico de cada componente principal. A metodologia para nomear cada componente
consiste em identificar o grupo de varidveis com maior peso (contribuicdo) para aquele eixo e, a
partir do tema que as une, atribuir um nome conceitual. Seguindo este método, a anélise revela
uma clara separacdo dos fatores que governam o processo de dissolucdo em eixos ortogonais
de variacdo. O primeiro componente principal (Compl) esté fortemente associado a variaveis
como taxa de producado, poténcia da bomba e volume, representando o eixo de intensidade
operacional do sistema. O segundo componente (Comp2), por sua vez, é dominado pela
temperatura, pelas gravidades especificas (SG) e pelo fator de dissolucdo, definindo o eixo
termodinamico que descreve as condicOes fisico-quimicas do processo. Esta dicotomia é um
dos principais resultados da analise, pois quantifica a independéncia entre a escala da operacdo
e as propriedades do fluido. Para facilitar a visualizac3o, as figuras[30|e[31]ilustram graficamente

os aportes das varidveis nesses dois primeiros componentes.
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Tabela 19 — Contribuicdo das varidveis nos componentes

Variaveis Compl Comp2 Comp3 Comp4 Compb
Temperatura 0,00 0,42 0,01 0,00 0,00
Taxa de producao 0,20 0,00 0,03 0,19 0,27
Raio 0,16 0,02 0,85 0,19 0,00
Volume 0,19 0,01 0,15 0,09 1,00
Pressao de Injecao 0,19 0,00 0,26 0,40 0,07
SG da Salmoura 0,00 0,42 0,00 0,00 0,01

SG do fluido de Injecao 0,00 0,42 0,00 0,00 0,01
Fator Dissolucao da Sal 0,00 0,42 0,03 0,01 0,00

Poténcia da bomba 0,19 0,00 0,15 0,28 0,01
Energia cumulativa 0,19 0,00 0,15 0,28 0,01
Perda de tubulacao 0,20 0,00 0,02 0,05 0,03
Salmoura produzida 0,20 0,00 0,03 0,19 0,27
Pressao da bomba 0,20 0,00 0,03 0,02 0,03

Fonte: O autor (2025)

Nas figuras e 31} sdo apresentados os aportes das varidveis no primeiro e segundo
componentes, respectivamente, facilitando a visualizacdo dos resultados desta tabela. A linha
tracejada vermelha no gréfico indica a contribuicdo média esperada. Se a contribuicdo das
variveis for uniforme, o valor esperado seria 1/ndmero de varidveis = 1/13 ~ 7.7% onde p
é o nimero de varidveis. Para um determinado componente, uma variavel com contribuicdo
maior que esse limite pode ser considerada importante na contribuicao do componente. Assim
no primeiro componente as variaveis de pressao da bomba, perda de tubulacdo, salmoura
produzida, taxa de producado, energia cumulativa, potencia da bomba, volume, pressao de
injecao e raio sdo as que mais contribuem. J& no segundo componente, as variaveis que
mais contribuem s3o a temperatura, a gravidade especifica do fluido de injecdo, a gravidade

especifica da salmoura e o fator de dissolucao do sal.
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Contribuicdo (%)

Contribuicao (%)

Figura 30 — PCA - Contribuicdo das varidveis no primeiro componente

Fonte: O autor (2025)

Figura 31 — PCA - Contribuicdo das variaveis no segundo componente

Fonte: O autor (2025)
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A figura[32] apresenta um resumo visual da contribuicdo das varidveis para os cinco primeiros
componentes principais, complementando os dados da tabela 17 (apresentada anteriormente).
O grafico reforca a interpretacdo dos dois eixos principais: o Componente 1 agrupa as variaveis
operacionais, enquanto o Componente 2 agrupa as variaveis termodinamicas. Adicionalmente,
a figura revela que os componentes de menor ordem capturam varidncias mais especificas.
Notavelmente, o Componente 3 é quase que exclusivamente dominado pela variavel "raio",

e o Componente 5 é similarmente dominado pelo "volume", indicando que estas geometrias

possuem aspectos de variabilidade Gnicos ndo totalmente explicados pelos dois primeiros eixos.

Figura 32 — PCA - Contribuigdo das varidveis nos cinco primeiros componentes.
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Fonte: O autor (2025)

Enquanto a tabela anterior mostrou a contribuicdo de cada variavel para a formacdo dos
componentes, a tabela a seguir detalha a correlacdo entre as variaveis e estes mesmos
componentes. Os valores de correlacdo (entre -le 1) sao importantes para interpretar a

direcdo (positiva ou negativa) da influéncia de cada varidvel em cada eixo principal.
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Tabela 20 — Correlacdo entre as varidveis e os componentes.

Variaveis Compl Comp2 Comp3 Comp4 Compb
Temperatura 0,05 1,00 0,05 0,01 0,00
Taxa de producao 0,99 -0,05 -0,08 0,09 -0,05
Raio 0,89 0,23 -0,39 -0,09 0,00
Volume 0,97 0,17 -0,16 0,06 0,10
Pressao de Injecao 0,97 -0,06 0,21 0,14 0,03
SG da Salmoura 0,11 -0,99 -0,01 0,01 0,01
SG do fluido de Injecao 0,09 -1,00 -0,02 0,01 0,01
Fator Dissolucao da Sal 0,11 0,99 0,07 0,02 0,00
Poténcia da bomba 0,98 -0,05 0,16 -0,11 0,01
Energia cumulativa 0,98 -0,04 0,16 -0,11 0,01
Perda de tubulacao 1,00 -0,05 0,05 -0,05 -0,02
Salmoura produzida 0,99 -0,05 -0,08 0,09 -0,05
Pressao da bomba 1,00 -0,04 0,07 -0,03 -0,02

Fonte: O autor (2025)

A figura [33| apresenta o circulo de correlacdo, projetando as variaveis nos dois eixos prin-

cipais. Conforme a andlise de contribuicdo, interpretamos estes eixos da seguinte forma: o

componente 1 (horizontal) representa o "eixo de intensidade operacional"(ligado a producdo

e volume), enquanto o componente 2 (vertical) representa o "eixo termodindmico"(ligado a

temperatura e propriedades do fluido). Com base nisso, observamos:

= As varidveis de saida do SALGAS — raio, volume, poténcia da bomba, energia cumu-

lativa, perda de tubulacdo, salmoura produzida e pressio da bomba — formam um

agrupamento coeso alinhado ao eixo de intensidade operacional, indicando a forte cor-

relacdo positiva entre si.

= A correlaco negativa entre o grupo de varidveis termodindmicas (temperatura e fator de

dissolucdo) e o de gravidades especificas (SG) é confirmada, uma vez que seus vetores

se posicionam em quadrantes opostos ao longo do Eixo Termodinamico.

» Adicionalmente, a baixa correlacdo entre a temperatura e as variaveis de saida é eviden-

ciada pela quase ortogonalidade (dngulo de aproximadamente 902) entre seus vetores

representativos.
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Figura 33 — Circulo de correlacdo
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Fonte: O autor (2025)

A figura|34 apresenta um biplot da analise de componentes principais, que permite a inter-
pretacdo simultanea das variveis (vetores) e dos individuos (casos simulados). A nomenclatura
dos casos segue o formato D/R(temp)(vazdo), onde D indica circulacdo direta e R, reversa.

A interpretacdo da projecao dos individuos em relacdo aos vetores confirma a estrutura fisica

do problema:

» Individuos como D600800 e R600800, caracterizados por vazdes elevadas, projetam-se
fortemente na mesma direcdo dos vetores das varidveis de saida (raio, volume, etc.),

indicando que estes casos resultam em valores elevados para tais métricas.

= Em contraste, individuos como D800400 e R800400 alinham-se com os vetores de tem-
peratura e fator de dissolucdo, o que é consistente com suas altas temperaturas de

referéncia, mas os posiciona em oposicao as varidveis de gravidade especifica.

» Casos de menor vazao, como D400400 e R400400, posicionam-se em oposicao aos

vetores de maior producao, validando a correlacao ja observada.
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Figura 34 — PCA - biplot
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6.2.1 Resultados com t-SNE

Esta secdo apresenta os resultados da técnica n3o linear t-SNE aplicada a mesma matriz

de dados utilizada na anélise PCA. A definicdo dos hiperpardametros, como a perplexidade e o

numero de iteracGes, seguiu os critérios propostos por |Wattenberg, Viégas e Johnson (2016)).

Conforme ilustrado nas figuras e para 500 iteracdes e valores de perplexidade (7) de 5

ou 6, a divergéncia de Kullback-Leibler torna-se insignificante.
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Figura 35 — Divergéncia vs. Perplexidade (7 = 5)
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Figura 36 — Divergéncia vs. Perplexidade (7 = 6)
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A anélise comparativa das figuras [37) e 38} que exibem a mesma projecdo de dados gerada
pelo t-SNE, confirma a forte correlacdo entre a taxa de producdo e o volume. A correspondéncia
visual é direta: os agrupamentos de individuos coloridos para representar altos valores de taxa
de producdo (figura|37]) sdo os mesmos que representam altos valores de volume (figura [38)),

validando a correlacao positiva entre as variaveis.

Figura 37 — t-SNE - Taxa de producdo
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Fonte: O autor (2025)




105

100

50

t-SNE-2

-50

-100

R80¥{)0

D801200

D401200
deo,
° D601200

0 .\
R401200 “R601200

Figura 38 — Volume

D800200 .R’600200
R “.2‘0\0600200
D400200" 900200

R600120 Volume
D400120@ $D600120
R400120® ,.\R800120 46405

D800120
3e+05

R400800\|:600800

D4008002.g 2e+05

D400360

D600360 ./ R400360 800800
D800360@® g ®R600360 D600800 1e+05

R800360 R800800

R400400 .06400400

R600400@ @D600400

® ®R300400
D800400

T
-50

0 50
t-SNE-1

Fonte: O autor (2025)

Nas figuras [39) observa-se que para a mesma perplexidade, os agrupamentos dos in-

dividuos e a distribuicdo das cores nos grupos também compartilham semelhancas em ambas

as figuras. Isto confirma a correlacdo entre estas variaveis,
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Figura 39 — Densidade especifica da salmoura
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Figura 40 — Densidade especifica do fluido injetado
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Finalmente, a analise comparativa das figuras [41] e [42| para uma perplexidade de 5 revela
que os padrdes de agrupamento e coloracdo sdo analogos. Essa semelhanca visual ratifica a
forte correlacdo positiva entre a temperatura de referéncia e o Fator de Dissolucdo do Sal.
Em termos praticos, isso significa que o aumento da temperatura do fluido injetado acelera
diretamente o processo de dissolucdo, sendo uma varidvel chave para o controle da velocidade

de construcdo da caverna.

Figura 41 — Agrupamento t-SNE com coloracdo por caso de temperatura de referéncia
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Figura 42 — Agrupamento t-SNE com coloracdo pela varidvel Fator de Dissolucdo da Sal.

100

50

t-SNE-2

-50

-100

D801200

R8°‘.”6° D401200

.‘33601200
R401200 “R601200

D800200 R600200

R ".2“\0600200
D400200” R%00200

R600120
D400120@ 600120
R400120® .\R800120
D800120

R400800\.RG()0800
D4008002.g
D800800 D/G&IBOO

R800800

D400360
D600360, @ R400360

D800360@® o ©®R600360
R800360

R400400 .0300400

R600400@ @D600400

® ®R300400
D800400

T
-50

0 50
t-SNE-1

Fonte: O autor (2025)

FD sal

Por dltimo, as figuras e apresentam uma comparacio visual entre as projecdes

tridimensionais dos dados, obtidas pelos métodos PCA e t-SNE. A projecdo do PCA (figura

utiliza os trés primeiros componentes principais, que capturam 99,10% da variancia total. Em

contraste, o t-SNE (figura otimiza os eixos para preservar a topologia local do espaco de

dados original, formando agrupamentos visualmente mais distintos.

A eficacia do t-SNE em agrupar casos funcionalmente similares é evidente. Isso é exemplifi-

cado pelo agrupamento dos casos D400400 e R800400. Embora estes casos possuam condicoes

operacionais distintas, como gravidades especificas diferentes (conforme a figura [39)), o t-SNE

os agrupa. A justificativa é que o resultado principal de interesse — o volume final da caverna

— & muito semelhante para ambos, como pode ser verificado na figura [38] Portanto, o agru-

pamento indica que o t-SNE prioriza a similaridade nos resultados de maior impacto (saida)

em vez de apenas a proximidade dos parametros operacionais (entrada).
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Figura 43 — PCA 3D
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Figura 44 — t-SNE 3D
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7 OTIMIZACAO DO DESIGN DE CAVERNAS SALINAS VIA ALGORITMOS
GENETICOS

Os capitulos precedentes desta tese dedicaram-se a analise dos fendmenos fisicos que
governam a dissolucdo de cavernas em domos salinos. Por meio da simulacdo numérica com o
software SALGAS e da aplicagdo de técnicas de reducdo de dimensionalidade (PCA e t-SNE),
foi possivel dissecar a interacdo entre as varidveis de controle e os resultados geométricos e de
producdo. A andlise estatistica multivariada respondeu a pergunta fundamental "quais variaveis
sdo mais influentes?", revelando que a taxa de producdo de salmoura se manifesta como o
principal motor do desenvolvimento volumétrico, enquanto o grupo de varidveis associado
a temperatura desempenha um papel secundario, porém critico e inter-relacionado Warren
(2016)).

A conexdo entre a andlise precedente e a otimizacdo subsequente é, portanto, direta e
sinérgica. A anélise t-SNE atuou como uma ferramenta de diagnéstico em larga escala, mape-
ando o espaco de design e confirmando que ele se organiza em regimes operacionais distintos.
Com base neste mapa, os critérios de engenharia fundamentados na literatura técnica, deta-
lhados na secdo de formulacdo do problema, justificaram a restricdo do espaco de busca da
otimizacdo a faixa de 50 a 300 m3/h. Finalmente, o Algoritmo Genético foi empregado como
uma ferramenta de design de precisdo, realizando uma busca exaustiva dentro deste regime
pré-selecionado para encontrar a combinacao étima de parametros.

Com base nesses insights, este capitulo marca uma transicdo metodoldgica da anélise para
o design de engenharia. A validacdo das variaveis de maior impacto permite agora formular de
maneira robusta o problema de otimizacdo, cuja finalidade é responder a pergunta subsequente:
"quais sdo os valores 6timos para essas varidveis?". O escopo, portanto, transcende a mera
observacdo de casos pré-definidos para, de forma sisteméatica e automatizada, determinar a
estratégia de construcdo 6tima que satisfaca um conjunto de objetivos técnicos, econdmicos
e, crucialmente, de seguranca.

O problema de otimizacdo do design de uma caverna de sal, quando acoplado a um simu-
lador numérico como o SALGAS, enquadra-se na categoria de Otimizagdo black-box (BBO).
Nesta classe de problemas, a funcdo-objetivo (por exemplo, o volume final da caverna) n3o
possui uma forma analitica explicita e seu valor sé pode ser obtido através da execucdo de uma
simulacdo computacionalmente dispendiosa Mello, Lacerda e Pozo (2023). A natureza black-

box do simulador impede o uso de métodos de otimizacao classicos baseados em gradiente,
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que requerem a derivada da funcao-objetivo. Em tais casos, meta-heuristicas populacionais,
como os Algoritmos Genéticos (AG), emergem como a ferramenta de escolha devido a sua
capacidade de navegar eficientemente por espacos de busca complexos sem depender de in-
formacdes de gradiente Al-Tashi, Rais e Abdulkadir| (2023)). O custo computacional associado
a cada avaliacdo da funcdo-objetivo (uma simulacdo completa do SALGAS) torna a eficién-
cia do algoritmo de otimizacdo um fator critico |Al-Sa’ary| (2022). Embora outras abordagens
populacionais como a Otimizacdo por enxame de particulas (PSO) ou algoritmos de evolu-
¢do diferencial (DE) também sejam aplicaveis, a escolha pelo algoritmo genético nesta tese é
fundamentada em sua robustez comprovada e, crucialmente, na existéncia de extensGes pode-
rosas e bem estabelecidas para problemas multiobjetivo, como o algoritmo NSGA-II, que sera
empregado posteriormente neste trabalho.

A abordagem de acoplar os AG a simuladores de subsuperficie é uma metodologia bem
estabelecida e validada em diversas areas da engenharia de petréleo e geomecanica. Aplicacoes
notaveis incluem o ajuste de histérico de producdo de reservatérios (history matching), onde
os parametros do modelo de reservatério sdo ajustados para minimizar a discrepancia entre a
producdo simulada e a histérica |Zhang e Zhang (2023), e a otimizac&o de trajetérias de pocos
para maximizar a taxa de penetracao e garantir a estabilidade do poco |Pramudyo, Latief e Raj
(2017)). A aplicacdo de um AG para otimizar o processo de lixiviacdo de cavernas, portanto,
alinha-se com praticas da inddstria e da academia para resolver problemas de design baseados
em simulacao.

Para solucionar este problema — que é, por sua natureza, multivariado, n3o-linear e sujeito
a miultiplas restricoes — foi concebido e implementado um framework computacional que
acopla o simulador SALGAS a um algoritmo genético (AG), implementado através do Global

Optimization Toolbox do MATLAB The MathWorks, Inc.| (2024b).

7.1 ANALISE DOS RESULTADOS DA OTIMIZACAO

A execucao do framework de otimizacdo produziu um conjunto de solucdes que represen-
tam designs 6timos para a caverna de sal, tanto para o caso mono-objetivo quanto para o

multiobjetivo.
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7.1.1 Otimizacao Mono-Objetivo: Maximizacao do Volume Final

No caso de otimizacdo mono-objetivo, a funcdo-objetivo foi configurada para maximizar o
volume final da caverna ao término da campanha de lixiviacao, sujeita a todas as restricbes
operacionais e geomecanicas. O Algoritmo Genético convergiu para uma solucdo Unica que
representa a melhor estratégia de mineracdo encontrada para atingir este objetivo.

A estratégia 6tima, detalhada na tabela |21} consiste em uma campanha de dois estagios
com parametros operacionais distintos.

A andlise dos parametros na tabela 21| revela uma estratégia de lixiviacao bifasica sofisti-
cada, que seria de dificil concepcao manual. O Algoritmo Genético convergiu para uma soluc3o

que pode ser interpretada da seguinte forma:

1. Estagio 1:Criacdo de volume bruto (alta vazdo). O primeiro estagio, com duracdo de
414 dias, utiliza uma vaz3o elevada de 272.73 m3/h. O objetivo aqui é "atacar"a rocha
salina de forma agressiva para criar o volume principal da caverna o mais rapido possivel,

aproveitando a alta taxa de dissolucdo proporcionada pela turbuléncia.

2. Estagio 2: Refinamento e controle geométrico (vaz3o reduzida). O segundo estagio tran-
sita para uma fase de 370 dias com uma vaz3o significativamente menor, de 128.80 m3/h.
Esta reducdo na vazao permite um processo de dissolucdo mais controlado, focando no
refinamento da forma da caverna. A mudanca nas profundidades de operacdo (elevacdo
do blanket e ajuste dos pontos de injecdo/producdo) nesta fase é crucial para alargar
a porcao superior da cavidade e garantir que a geometria final atenda as restricoes de

estabilidade, como a razdo H/D, sem ultrapassar os limites de um design seguro.

Em suma, o otimizador n3ao buscou simplesmente a maior vazao pelo maior tempo, mas
descobriu uma estratégia 6tima que equilibra a velocidade de criacdo de volume com o controle
fino da geometria final, demonstrando a capacidade da metodologia em encontrar solucdes de

engenharia complexas e eficientes.
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Tabela 21 — Vetor de decisdo étimo da otimizagdo mono-objetivo.

Parametro Estagio 1 Estagio 2
Vazdo de inje¢do (Q) [m3/h] 272.73 128.80
Durac3o do estagio (t) [dias] 414.46 370.39
Profundidade do blanket (B) [m] 734.62 723.37
Profundidade de injecdo () [m] 856.21 850.77

Profundidade de produc¢do (P) [m] 804.21

795.66

Fonte: O autor (2025)

A execucdo desta estratégia otimizada resulta nas métricas de desempenho apresentadas

na tabela[22] O tempo total de constru¢do da campanha é de 784.85 dias (soma das duragdes

tl e t2), resultando em um volume final de 544,251 m3,

Tabela 22 — Métricas de desempenho da solucdo otimizada.

Métrica de desempenho Valor
Volume méximo (MV) 544,251.49 m3
Massa de sal extraida (MS) 352,027.25 ton

Tempo total de construgdo (MT) 784.85 dias

Eficiéncia energética (ME)

0.4662

Fonte: O autor (2025)

A analise da solucdo étima revela que o algoritmo tende a explorar os limites do espaco

de busca viavel para atingir o objetivo. A configuracdo das profundidades (B, I, P) é ajustada

para criar uma geometria que maximize a area de superficie de contato entre a 4gua doce e a

rocha salina, respeitando as restricdes de estabilidade, como a razdo H/D.

A figura[45traduz a estratégia operacional étima, detalhada na tabela2I] em um resultado

geométrico. O grafico ilustra a evolucido da caverna ao longo dos dois estagios da campanha

de mineracao.
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Figura 45 — Evolucdo geométrica e perfil final da caverna otimizada.
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O processo otimizado consiste em dois estagios distintos. O estagio 1, com duracdo de
4145 dias, foca em desenvolver a geometria inicial da caverna. As posicdes dos equipamentos
sdo definidas com injecao a 856 m e producdo a 804 m, estabelecendo um teto inicial em 735
m. Subsequentemente, o estagio 2, com 370.4 dias, tem como objetivo refinar a forma: as
profundidades de operacdo sdo ajustadas, o que resulta em uma expansdo predominantemente
lateral e na elevacao do teto final para 723 m. Na figura, os marcadores triangulares sdo
utilizados apenas como um auxilio visual para indicar as diferentes profundidades de injecdo e
producdo em cada um dos dois estagios. A area cinza representa o perfil final preenchido. A
geometria resultante, com um topo largo e uma base expandida, é uma consequéncia direta da
combinacao de parametros otimizados pelo Algoritmo Genético, demonstrando a capacidade
da metodologia de projetar formas complexas para maximizar o volume.

Um critério fundamental para a viabilidade de longo prazo de uma caverna salina é a sua
estabilidade geomecanica, frequentemente avaliada pela razdo entre sua altura e didmetro

(H/D). A figura apresenta a analise de estabilidade para a geometria da caverna otimizada.

Figura 46 — Verificacdo da estabilidade geomecénica da solucdo otimizada.

Perfil da Caverna HID = 1.763

——— Critico (< 0.5)
Minimo Recom. (= 0.67)
=== Ideal (= 1.5)

-650

-700

-750
H=137.2m

Profundidade (m)
Razao H/D
w

800 D=778m

-850

-900

-25 0 25
Raio (m)

Fonte: O autor (2025)
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A analise dimensional, apresentada no painel esquerdo da figura[46) indica uma altura total
(H) de 137.2 m e um didmetro maximo (D) de 77.8 m. Como detalhado no painel direito,
isso resulta em uma razdo H/D de 1.763. Este valor situa-se confortavelmente dentro da faixa
considerada ideal (> 1.5) para a estabilidade, conforme as restricGes geomecanicas implemen-
tadas no framework de otimizacdo. Esta verificacdo confirma que a solucdo encontrada pelo
Algoritmo Genético n3o é apenas 6tima em termos de volume, mas também representa um
design de engenharia robusto e seguro.

Finalmente, para quantificar o valor agregado pela otimizacao, a figura contrasta o

desempenho da solucdo 6tima com os resultados do melhor caso de base analisado previamente.
Figura 47 — Anélise normalizada de desempenho comparativo (referéncia = 1.0).

——- Referéncia
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Fonte: O autor (2025)

O desempenho do caso de base foi normalizado para 1.0 (linha tracejada), servindo como
referéncia. Valores acima de 1.0 representam uma melhoria, enquanto valores abaixo indicam
um desempenho inferior. A analise do grafico revela o compromisso estratégico encontrado

pelo algoritmo: as métricas de maximizagdo, como volume maximo (MV), massa de sal (MS) e
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eficiéncia energética (ME), apresentam scores de 2.00, 2.00 e 1.29, respectivamente, indicando
uma melhoria substancial sobre o caso base. Em contrapartida, a métrica de minimizacao,
tempo de construcdo (MT), apresenta um score de 0.54, quantificando o custo em tempo
necessario para alcancar tal desempenho. Enquanto as métricas de engenharia mostraram
melhorias significativas, a métrica de processo AR (razdo de aceitacdo), com um score de
0.39, indica a natureza altamente restrita do espaco de busca, onde muitas solucdes candidatas
geradas foram descartadas por inviabilidade. Isso destaca a complexidade do problema resolvido
pelo algoritmo. Esta visualizacdo valida a superioridade da solucao otimizada e evidencia o

trade-off fundamental entre volume e tempo, que serad explorado na anélise multiobjetivo.

7.1.2 Otimizacao multiobjetivo: Analise da fronteira de Pareto

A otimizacdo multiobjetivo, utilizando o algoritmo NSGA-II, foi configurada para explorar
os complexos compromissos (trade-offs) entre quatro objetivos de engenharia conflitantes: a
maximizacdo do volume (MV), da massa de sal extraida (MS) e da eficiéncia energética (ME),
e a minimizacdo do tempo total de construcdo (MT).

Um dos resultados mais significativos da otimizacao foi a convergéncia de todas as solucdes
na fronteira de Pareto para um Unico valor méximo de volume, indicando que o algoritmo
resolveu de forma absoluta este objetivo. Como o volume se tornou uma constante, os trade-
offs que definem a tomada de decisao ocorrem entre os trés objetivos restantes: massa de sal,

tempo e eficiéncia. A figura [48| visualiza esta fronteira de compromisso tridimensional.
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Figura 48 — Fronteira
constante

de pareto 3D ilustrando o trade-off entre massa de sal, tempo e eficiéncia. O volume é
para todas as solucées. As estrelas destacam as solucdes notaveis.
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A anilise da figura revela insights valiosos para o tomador de decisdo. A superficie

formada pelos pontos demonstra a natureza dos conflitos entre os objetivos. SolucGes de

baixo tempo de execucdo tendem a apresentar menor eficiéncia e extrair menos sal (indicado

pelas cores mais escuras). Inversamente, para alcancar uma maior eficiéncia energética (cores

mais claras), geralmente é necessario incorrer em tempos de construcdo mais elevados.

O framework de otimizacdo identifica automaticamente as solucGes notaveis, que servem

como pontos de referéncia estratégicos:

= Extremos da

(Sol. #4) e

fronteira: A solucdo de massa de sal méaxima (Sol. #14), a de tempo minimo

a de eficiéncia maxima (Sol. #18). Cada uma representa a otimizaco de

um dnico critério, geralmente em detrimento dos outros.

= Solucdo de compromisso (knee): A solucdo balanceada (knee, Sol. #4) é de particular
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interesse. Neste caso, o algoritmo identificou que a solugdo mais rapida (tempo mi-

nimo) também representa o ponto de melhor equilibrio geral, onde qualquer tentativa

de melhorar outro objetivo (e.g., aumentar a massa de sal) resultaria em uma perda

desproporcional no tempo.

Para uma andlise quantitativa dos compromissos, foi gerada uma matriz de trade-offs,

apresentada na figura [49] Este grafico permite um exame aprofundado da correlac3o entre os

objetivos e da distribuicao das solucdes.
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A observacao mais notavel na figura |49| reside no comportamento do objetivo volume. O
histograma correspondente (painel superior esquerdo) exibe uma tnica barra, confirmando que
todas as solucoes na fronteira de Pareto alcancaram o mesmo valor maximo de volume. A forte
correlacdo positiva entre volume e massa de sal também é evidente. A analise dos graficos de

dispersao restantes revela a natureza dos compromissos:

» Massa de sal vs. eficiéncia: Revela uma correlacdo negativa, quantificando o compromisso

de que projetos que extraem mais sal tendem a demandar menor eficiéncia energética.

» Tempo vs. massa de sal: A tendéncia negativa observada confirma que a reducdo do

tempo de construcdo acarreta uma menor extracdo total de sal.

» Tempo vs. eficiéncia: A dispersdo sugere uma correlacao negativa, indicando que a

otimizacdo da eficiéncia pode requerer um tempo de construcdo maior.

Esta analise detalhada dos trade-offs é fundamental para a selecao de uma solucao final. A
tabela [23] extraida diretamente dos resultados computacionais, resume as caracteristicas das
solucdes mais representativas de forma normalizada. E importante notar que os valores para
volume, massa de sal e eficiéncia sdo apresentados como negativos. Isso ocorre por convencao
do otimizador gamultiobj do MATLAB, que foi projetado para minimizar todos os objetivos.
Para forcar a maximizacdo destas métricas, seus valores normalizados foram multiplicados por
-1 durante a otimizacdo. Portanto, um valor de -1.00 na tabela representa, na verdade, o

desempenho méaximo (100%) para aquele objetivo.

Tabela 23 — Caracteristicas das solu¢des notaveis na fronteira de Pareto (valores normalizados).

Tipo de solucao Solucdo # Volume Massa de sal Eficiéncia Tempo
Volume méaximo 1 -1.00 -0.74 -0.64 0.22
Massa de sal maxima 14 -1.00 -0.20 -0.99 0.17
Eficiéncia maxima 18 -1.00 -0.97 -0.33 0.22
Tempo minimo / knee 4 -1.00 -0.49 -0.57 0.06

Fonte: O autor (2025)

A tabela [23] funciona como um guia para a tomada de decis3o. A linha destacada corres-
ponde a solucdo balanceada (knee, Sol. #4), que emerge como a escolha estrategicamente
superior. Ela foi selecionada por representar o melhor ponto de compromisso na fronteira de

Pareto, oferecendo o menor tempo de construcdo possivel (valor normalizado de 0.06) e, ao
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mesmo tempo, mantendo um desempenho competitivo nos outros objetivos. Esta caracteris-
tica define a solucdo mais robusta e eficiente do ponto de vista pratico, sendo, portanto, a
recomendada por este estudo.

O perfil de desempenho desta solucdo é visualizado no grafico de radar da figura 50

Figura 50 — Perfil de desempenho normalizado da solucdo recomendada (#4).
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Fonte: O autor (2025)

A analise do perfil de desempenho na figura 50| vai além da simples observacao de equilibrio.
O grafico de radar ilustra o compromisso da Solucdo #4 entre os trés objetivos de trade-off:
Massa de sal, eficiéncia energética e tempo de construcdo. Do ponto de vista da engenharia, a
grande area triangular indica uma alta performance global. Observa-se um excelente desempe-
nho no eixo do tempo (valor normalizado de 0.94, préximo ao ideal), o que era esperado para
a solucdo de "tempo minimo". Mais importante, a auséncia de vértices recuados em direcdo
ao centro do grafico significa que a solucdo n3o possui fraquezas criticas; ela mantém um
desempenho competitivo em massa de Sal (0.49) e eficiéncia (0.57) ao mesmo tempo que
otimiza o tempo. Esta caracteristica define um design robusto, capaz de satisfazer multiplos
critérios de projeto simultaneamente.

Este perfil de desempenho superior é a consequéncia de uma estratégia operacional com-
plexa e ndo-intuitiva, descoberta pelo Algoritmo Genético. Os pardmetros exatos que definem

este plano de engenharia estdo detalhados na tabela [24]
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Tabela 24 — Pardmetros operacionais (vetor de decisdo) para a implementacéo da solucdo #4.

Estagio Parametro Valor

Estagio 1 Vazdo de injecdo, 1 (m3/h) 137.54
Duracdo, t; (dias) 526.77
Profundidade blanket, By (m)  727.16
Profundidade injecdo, I; (m) 844.95
Profundidade producdo, P, (m) 789.52

)

Estagio 2 Vazdo de injecdo, Q2 (m3/h 155.13
Duracdo, ¢, (dias) 223.79
Profundidade blanket, By (m)  723.34
Profundidade injecdo, I (m) 848.28
Profundidade producdo, P, (m) 791.31

Fonte: O autor (2025)

A anélise dos parametros operacionais na tabela revela uma estratégia de lixiviacdo

bifasica altamente sofisticada, que seria extremamente dificil de conceber manually:

= Fase 1: Criacdo de volume (Estégio 1). O otimizador aloca a maior parte do tempo do
projeto (527 dias) a uma fase com vazdo moderada (137.54 m3/h). O objetivo aqui é

criar o volume bruto da caverna de forma controlada.

» Fase 2: Refino e aceleracdo (Estagio 2). Em seguida, a estratégia transita para uma fase
mais curta (224 dias) com uma vaz&o ligeiramente maior (155.13 m3/h). Esta aceleracdo
no final, combinada com o ajuste fino das profundidades (como a elevacdo do blanket
para 723 m), permite finalizar a forma, maximizar o volume util e concluir o projeto no

menor tempo possivel sem comprometer a estabilidade.
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8 CONCLUSOES E RECOMENDACOES PARA TRABALHOS FUTUROS

A presente tese desenvolveu e aplicou com sucesso uma metodologia integrada para a
andlise e otimizacdo do processo de abertura de cavernas subterraneas em rochas salinas. A
abordagem combinou simulacdo numérica, analise estatistica multivariada e otimizacdo por
algoritmos evolutivos, fornecendo uma ferramenta poderosa para o design e engenharia de
estruturas de armazenamento de energia.

A anélise estatistica multivariada foi fundamental para decifrar a complexidade do processo
de lixiviacdo. A técnica do revelou-se eficaz, e os dois primeiros componentes principais
representaram cerca de 96.8% da variabilidade total dos dados originais. Quanto a influéncia
no processo, o primeiro componente demonstrou que a taxa de producao de salmoura foi a
variavel que mais contribuiu. O segundo componente, por sua vez, foi associado as variaveis
termodindmicas (temperatura do caso e propriedades dos fluidos), que, embora tenham um
papel secundario, mostraram um peso significativo. A técnica do ndo sé validou os
resultados do [PCA] mas também demonstrou uma capacidade de agrupamento notavelmente
superior.

As simulacdes numéricas permitiram concluir que, mantidas as demais condicdes, o maior
raio e volume da caverna sdo obtidos com a maior taxa de producdo (1200 m3/h) e no caso
de maior temperatura de referéncia (80°C). Adicionalmente, foi verificado que o método de
circulacao reversa produz uma porcentagem maior de volume em todos os casos.

Com base nestes insights, o trabalho avancou da anélise para o design de engenharia,
implementando um framework de otimizacao. O sucesso desta fase foi fundamentado em
uma formulacao matematica rigorosa do problema, definindo o vetor de decisdo, as funcdes-
objetivo e, crucialmente, um sistema hierarquico de restricGes geomecanicas e operacionais, o
que conferiu um alto grau de realismo e relevancia de engenharia ao modelo.

O framework computacional que acoplou o simulador SALGAS a um Algoritmo Genético

demonstrou ser uma ferramenta de otimizacao altamente eficaz:

= Na otimizacdo mono-objetivo, focada em maximizar o volume, o AG identificou uma
estratégia que resultou em uma caverna de 544,251 m3, superando todos os casos de

base e quantificando o valor da otimizacdo sistematica.

= Na otimizacdo multiobjetivo, o algoritmo NSGA-II mapeou com sucesso a fronteira de

Pareto, revelando o complexo trade-off entre os quatro objetivos: volume maximo, massa
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de sal extraida, eficiéncia energética e tempo de construcao. A solucao #4 foi identifi-
cada como a mais robusta, representando n3o apenas o tempo minimo de construcao,
mas também a solucdo de melhor compromisso geral (knee), oferecendo um plano de

engenharia bifasico completo, acionavel e estrategicamente superior.

A metodologia validada nesta tese, que transita da anélise (compreensdo do sistema via
PCA/t-SNE) para o design (otimizacdo do sistema via AG), representa uma abordagem holis-
tica para problemas complexos de engenharia. Ela ndo apenas permite entender as relacdes de
causa e efeito dentro do sistema, mas também utiliza esse entendimento para gerar ativamente

designs superiores.

8.1 RECOMENDACOES PARA TRABALHOS FUTUROS

Com base nos resultados e na metodologia desenvolvida, recomendam-se as seguintes

direcoes para futuras pesquisas:

» Integracdo com analise geomecanica: Acoplar o framework de otimizacao a um simu-
lador geomecénico (e.g., via elementos finitos) para incluir a fluéncia (creep) do sal
e a estabilidade de longo prazo como objetivos ou restricbes diretas no processo de

otimizacao.

» Exploracdo de outras meta-heuristicas: Comparar o desempenho do Algoritmo Genético
com outras meta-heuristicas populacionais, como Otimizacdo por Enxame de Particulas
(PSO) ou Algoritmos de Evolu¢do Diferencial (DE), para avaliar a eficiéncia de diferentes

estratégias de busca no espaco de solucdes.

» Aplicacdo a geologias complexas: Adaptar a metodologia para otimizar a lixiviacdo em
formacdes salinas estratificadas, que contém camadas de insoluveis (e.g., anidrita), adi-

cionando complexidade ao controle morfolégico da caverna.

» Incorporacdo de andlise econémica: Expandir a funcao-objetivo para incluir métricas
econdmicas diretas, como o Valor Presente Liquido (VPL) do projeto, considerando
CAPEX (associado ao tempo) e OPEX (associado a eficiéncia energética e a venda de

sal).
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APENDICE A - ANALISE DE COMPONENTES PRINCIPAIS (PCA):
ABORDAGEM MATEMATICA

Nesta secdo, abordaremos a definicdo e as propriedades dos espacos de produto interno.
Em um espaco de produto interno, é possivel definir os conceitos de "distancia"e "angulo"entre
vetores, o que nos permite trabalhar com projecGes ortogonais.

Com base nas propriedades desses espacos, podemos decompor a matriz de dados em
componentes principais ortogonais, ou seja, em direcdes independentes que maximizam a
variancia dos dados. Isso possibilita a reducdo de dimensionalidade, representando os dados
de forma mais compacta, mas preservando a maior parte da informacdo. A ortogonalidade
entre os componentes principais assegura a auséncia de redundancia nas direcoes escolhidas,

facilitando a interpretacao dos dados.

Espacos de Produto Interno

Um espaco de produto interno é um espaco vetorial } equipado com uma operacdo (-, -) :

Y x V — R que satisfaz:
1. Simetria: (u,v) = (v, u).
2. Linearidade: (au + bv, w) = a{u, w) + b{v, w).

3. Positividade: (u,u) > 0 para u # 0.

Operadores Auto-Adjuntos

Um operador linear A : YV — V é auto-adjunto se, para quaisquer vetores u,v € V,
(Au,v) = (u, Av),

condicdo que reflete simetria. Quando representado em uma base ortonormal por uma matriz
T, essa propriedade se materializa como T = T7', tornando-a imediatamente reconhecivel em
aplicacOes estatisticas — especialmente como matrizes de covariancia, pecas-chave na Analise
de Componentes Principais (PCA).

A auto-adjuncdo garante a matriz duas caracteristicas decisivas:
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» Autovalores reais, que evitam inconsisténcias interpretativas em dados do mundo real
= Autovetores ortogonais, que definem direcoes de maxima varidncia n3o correlacionadas

Essas propriedades ndo sdo meramente tedricas: elas permitem que a PCA decompda dados
multivariados em componentes independentes, transformando colinearidades complexas em
eixos interpretaveis. A simetria da matriz de covariancia assegura que essa decomposicao exista
e seja computacionalmente estavel, razdo pela qual operadores auto-adjuntos sdo fundamentais

em reducdo de dimensionalidade.

Teorema Espectral
Enunciado do Teorema

Seja A :V — V um operador auto-adjunto em um espaco vetorial real de dimensao finita
com produto interno. Ent3do, existe uma base ortonormal de V formada por autovetores de A,

todos com autovalores reais.

Demonstracao:

1. Autovalores Reais:

= Seja A autovalor de A com autovetor v # 0. Pela auto-adjuncdo:
Mv,v) = (Av,v) = (v, Av) = X(v,v) = A=)

» Logo, A € R, excluindo autovalores complexos.
2. Inducdo na Dimensao:

» Base (dimV = 1): Toda transformacio é trivialmente diagonalizavel.
» Passo Indutivo: Suponha vélido para dimens3o n. Para dimV =n + 1:

a) Escolha um autovetor vy unitério (garantido por (1))

b) Defina W ={u € V| (u,vy) =0}, subespaco invariante sob A:
ueW — <A11, V1> = <U,AV1> = )\1<11,V1> =0

c) Aplique a hipétese indutiva a Alyy, obtendo base {va, ..., v,,11} ortonormal
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d) A unido {vy,...,v,41} diagonaliza A

Este teorema explica por que matrizes de covaridncia (auto-adjuntas) sempre admitem
decomposicdo em autovetores ortogonais - a fundacdo matemética para extracdo de compo-

nentes principais.

Decomposicado Espectral

O Teorema Espectral materializa-se na decomposicao espectral: para toda matriz simé-

trica T € RP*P, existe

T = VAVT,

onde a estrutura revela a geometria subjacente dos dados:

= Matriz ortogonal V: Colunas {vi,...,v,} formam uma base ortonormal de autovetores

— 0s eixos privilegiados dos dados.

— Ortogonalidade: V'V =1, (preserva angulos e normas)
— Interpretacao: Cada v; define uma direcdo de maxima variancia residual

= Matriz diagonal A: A = diag(\y, ..., \,), com Ay > Ay > --- > )\, (autovalores reais).
— )\; quantifica a variancia ao longo de v;

— Ordenacao: Garante hierarquia de importancia para reducao dimensional

A identidade T = Y7 ; \;v;v] mostra que T é uma combinacdo de projetores ortogonais

— cada termo )\iviviT representa a contribuicdo da direcdo v; a estrutura global.

Essa decomposicao € a etapa central — ao descartar os \; menores, obtemos a melhor apro-
ximacdo de baixa dimensao preservando a covariancia original. A ordenacio dos autovalores

define a importancia dos componentes principais.

Matriz de Covariéncia

Centralizacao dos Dados

Toda analise multivariada comeca por centralizar os dados - processo que elimina desloca-

mentos arbitrarios e revela padroes de variacdo genuinos. Dada a matriz de dados X € R"*P
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(n observagdes, p variaveis):

- 1
_T —
X=X-1,x", ondex:—ZXi
n <
=1
= Operacdo: Subtrair o vetor de médias x de cada observacao
» Efeito Geométrico: Translada a nuvem de dados para a origem sem alterar sua forma
A Matriz de Covariancia
A matriz S € RP*P sintetiza como as variaveis co-variam:

1 <~
S = 1XTX (estimador n3o-enviesado)
n_

= Entrada S;:
1 L 5
Sij = > (Thi) ()

n—lkz1

- Mede sincronia entre variaveis i e j - Positiva se altos valores de i associam-se a altos

de j

» Traco Total:
p

Tr(S) = ) _ Si; = Varidncia total dos dados

=1

- Invariante sob rotacdes: crucial para PCA
S é simétrica e semi-definida positiva, garantindo:
» Autovalores reais nao-negativos
» Autovetores ortogonais

Diagonalizar S via decomposicdo espectral é equivalente a encontrar os eixos de maxima

variancia - os componentes principais

Maximizacao da Variancia

Formulacao do Problema

A esséncia da PCA reside em encontrar direcoes de maxima variancia nos dados. Formal-

mente, buscamos o vetor unitario w; € RP que maximize a variancia das projecoes Zy = Xwy:
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max wi Sw,
lfwall=1

» Geometricamente: Procura-se a reta pela origem onde os dados projetados tém maior

"dispersao"

= Estatisticamente: maximizar w! Sw, equivale a capturar a méxima informac3o (varian-

cia) possivel em uma dimens3o

Solucao Otima via Autovalores

A maximizacao restrita resolve-se com multiplicadores de Lagrange:

L(wi,\) = wiSw; —A(w]w; — 1)
—— ~————
Variancia Restricdo

Derivando e igualando a zero:

oL

28 osw, - 2w =0 = [Swi = hw

A solucdo 6tima w; é o autovetor de S associado ao maior autovalor \;. A varidncia

maxima é exatamente ;.

» Interpretacdo fisica: Autovetores sdo eixos naturais de variacao dos dados

Componentes Principais Sequenciais

Ortogonalidade e Maximizacao Iterativa

Apos determinar wy, os componentes subsequentes wy, W3, ... resolvem:
max wiSwy, com wi L {wy, ..., wi_1}
llwill=1
= Restricdo: Ortogonalidade wiw; = 0 (Vi < k) garante componentes n3o correlaciona-

dos

» Mecanismo: Cada novo componente captura a maxima variancia residual nao explicada

pelos anteriores
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Solucao Recursiva via Decomposicao Espectral

A solucdo emerge diretamente do Teorema Espectral:
1. Ordene os autovalores Ay > Xy > --- > X\, >0
2. Selecione os autovetores correspondentes wy, Wa, ..., W,

3. O k-ésimo componente principal é Z;, = Xw;,

A sequéncia {wy} forma uma base ortonormal que diagonaliza S:

p
=1

A escolha de k componentes (k < p) reduz dimensionalidade preservando 3%, \;/Tr(S)

da variancia total A ortogonalidade dos w; garante eficiéncia computacional na projecao

Projecdo e Reducdo de Dimensionalidade

Transformacao para o Espaco dos Componentes

PCA concretiza-se na projecdo dos dados para o espaco reduzido. Seja W = [w| - - - |wy]

a matriz de projecao com os k primeiros autovetores, a transformacao é:

Z=XW R
= Geometricamente: Rotaciona os dados para os eixos de maxima variancia

= Estatisticamente: Colunas de Z sdo n&o correlacionadas, com Var(Z;) = \;

Variancia Explicada

A eficacia da reducao quantifica-se pela variancia retida:
2?21 )\z
i=1 /i

» Interpretacdo: A porcentagem de informacao original preservada no espaco reduzido apés

a projecao dos dados.
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= Compensacdo: Um trade-off entre a simplicidade do modelo (k |) e a quantidade de

informacdo explicada (VE 7).

Critérios de Selecdo de Componentes

Trés Perspectivas Classicas

1. Critério de Kaiser (1958):

» Regra: \; > 1 (para dados padronizados)
» Loégica: Um componente deve explicar mais varidncia do que uma variavel isolada.

» Limitacdo: Subestima o valor de k& quando muitos \; estao préximos de 1.
2. Scree Plot (Cattell, 1966):

» Técnica: Grafico dos autovalores versus o nimero de componentes.

» Heuristica: Selecionar k no ponto onde a curva de autovalores se estabiliza.
3. Variancia Acumulada:

» Estratégia: Escolher o k minimo tal que VE(k) > 95%.

= Vantagem: Adaptavel ao contexto (85% de variancia para analise exploratéria, 99%

para modelos criticos).

» Consideracdo adicional: Autovalores pequenos podem codificar padrdes sutis, mas

importantes, que podem ser negligenciados em uma analise mais superficial.

A determinacdo 6tima de k envolve um trade-off entre critérios quantitativos (e.g., vari-
ancia explicada, autovalores residuais) e exigéncias do problema aplicado (e.g., custos com-
putacionais, interpretabilidade), demandando validac3o cruzada entre heuristicas estatisticas

e restrices do dominio.



140

APENDICE B - COEFICIENTES DOS POLINOMIOS QUE GERAM A
SUPERFICIE DE RESPOSTA E SUA DERIVACAO

Os coeficientes apresentados nas tabelas[25]e[26]sdo utilizados na construcdo das superficies
de resposta para os cendrios de circulacdo direta e reversa mostrados nas figuras[17]e[24] Essas
superficies s3o geradas a partir de modelos polinomiais que relacionam a vaz&o de entrada (x)

e a temperatura (y) com o volume resultante (z) ao final de um periodo de 120 dias.

Tabela 25 — Coeficientes para obter a superficie de resposta do volume da caverna ao final de 120 dias para
o cenario com circulac3o direta.

N2 Equacdao Coef. da vazdao a; Coef. da temperatura b; término Independente

1 232.896 811.274 -25792.291
2 317.584 269.587 -14833.664
3 247.397 1192.921 -67593.888
4 261.677 269.587 -3652.100
5 232.896 481.406 -6000.161
6 248.253 219.301 -1280.894
7 289.886 158.795 -2646.540
8 289.886 385.834 -16268.885
9 219.138 385.834 -2119.313
10 288.154 481.406 -25893.072
11 261.677 726.138 -31045.184
12 190.328 726.138 -5359.601
13 198.747 1989.044 -02363.811
14 261.098 537.811 -20665.517
15 166.034 811.274 052.284

16 214.642 537.811 -2082.823
17 158.941 2633.679 -83274.527
18 214.642 1783.421 -76819.414
19 116.428 1783.421 1751.335

20 158.941 1192.921 3170.942

Fonte: O autor (2025)
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Tabela 26 — Coeficientes para obter a superficie de resposta do volume da caverna ao final de 120 dias para
o cendrio reverso.

N? Equacao Coef. da vazao a; Coef. da temperatura b; término independente

1 263.279 841.217 -25917.156
2 356.817 261.665 -14859.358
3 269.238 1149.323 -59250.373
4 294.579 261.665 -2411.665

5 263.279 469.951 -3641.187
6 285.215 212.906 -1157.564
7 329.517 152.466 -2847.448
8 329.517 390.116 -17106.462
9 250.111 390.116 -1225.159
10 320.614 469.951 -24281.724
11 294.579 745.859 -31463.295
12 215.600 745.859 -3031.093
13 229.191 1975.532 -93309.209
14 291.380 526.153 -18253.580
15 190.318 841.217 3267.547

16 238.080 526.153 3066.686

17 187.880 2809.501 -03774.784
18 238.080 1796.454 -73151.408
19 137.228 1796.454 7529.937

20 187.880 1149.323 5835.907

Fonte: O autor (2025)

Apbs a apresentacao dos coeficientes utilizados na construcao das superficies de resposta
para os cenarios de circulacdo direta e reversa, passamos a analisar o processo de triangulacao
e interpolacdo que serve de base para esses modelos.

Dado um conjunto de pontos dispersos (x;,y;) localizados no plano zy, onde seus valores
podem ser interpretados como altitudes z; sobre esse plano. A partir desses pontos, ¢ realizada
uma triangulacdo que resulta em uma superficie triangular por partes sobre o plano. Esta é
uma superficie continua composta de pecas triangulares planas que s3o unidas ao longo das
arestas. Tal superficie é frequentemente chamada de rede triangular irregular.

Na figura[51] é apresentado o tridngulo P, P, Py com o ponto de interpolacdo P localizado
dentro dele. Ao conectarmos o ponto P a cada um dos vértices P, P, e P3, obtemos uma
subdivisdo do tridngulo em trés subtridngulos: PP, P3;, PLPP; e PP, P. Esta figura ilustra

visualmente a relacdo entre os vértices do tridangulo e o ponto de interpolacao.
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Agora, definiremos formalmente cada tridngulo da rede triangular irregular, denotado por
N

Para cada tridangulo da rede triangular irregular, denotado por A\;, definimos a area do
tridangulo com vértices A, B e C' como S(A, B,C'). Ent3o, o i-ésimo tridngulo A; pode ser

definido como o conjunto de pontos P no plano xy tal que:
A ={P eR*: S(P{, P;, Py) = S(P, P}, P;) + S(P, P, P;) + S(P, Py, P})}
Onde P}, Pj e Pi sio os vértices do tridngulo A\;.

Figura 51 — Subdivisdo do tridngulo

Fonte: O autor (2025)

Para realizar essa triangulacdo, consideramos os tridangulos pertencentes a rede triangular
irregular, como mostrado na figura 52| Observa-se que cada tridngulo é numerado com uma
etiqueta correspondente aos polindmios descritos nas tabelas 25 e [26] os quais variam de

acordo com o cenario (direto ou reverso).
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Figura 52 — Rede triangular irregular de vazdes e temperaturas

Temperatura (°C ) Vazio (malh)

Fonte: O autor (2025)

Com vértices P} = (z1,y1), Pi = (12,92) e Py = (x3,y3), onde cada vértice é associado

a uma coordenada z, representada por z1, 22 e 23, respectivamente, como exemplificado na

Figura [b3]

Figura 53 — Pontos de dados de vazdo, temperatura e volume

x 10

N
»
>

»

L

Volume (m3)
P

Temperatura (°C ) Vazso (m3/h)

Fonte: O autor (2025)
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Estes pontos definem um plano no espaco tridimensional, determinado pelas coordenadas

(x1,y1, 21), (22,92, 22) e (x3,y3, 23). Esse plano pode ser expresso pela equacio:

T2 = a;x + by + ¢ (B.1)

Como os vértices v = (1, y1, 21), V5 = (T2, Y2, 22) € vi = (3, Y3, 23) pertencem ao plano

m;, eles satisfazem a equacdo (|B.1)):

21 = a;x1 + by + ¢ (B.2)
Z9 = ;T2 + bz'yz + C; (B3)
23 = ;T3 + biys + ¢ (B.4)

Em termos matriciais, podemos escrever:

T oy 1 a; 21
T2 Y2 L[ [0i| = |2 (B.5)
3 ys 1] \¢ 23

Resolvendo essa equacdo, encontramos os coeficientes a;, b; € ¢;:
-1

a; ry oy 1 21
bl' = T2 Yo 1 Z9 ( B 6)
Ci r3 ys 1 23

Assim, determinamos um tridngulo de vértices v} = (z1,y1,21), V5 = (T9, Y2, 22), Vs =
(x3,ys, 23) incluido no plano ;.

A unido desses triangulos forma a superficie continua F', como mostrado na figura [54]
que representa a interpolacdo da superficie sobre o plano zy a partir dos pontos dispersos
iniciais. Ao considerar um ponto P = (z,y) na superficie formada pelas pecas triangulares
planas, podemos determinar em qual tridngulo /\; ele estd contido. Isso nos permite utilizar
a equacdo do plano 7; associada a esse triangulo para calcular o valor de z para o ponto P.

Em outras palavras, F'(P) é dado por:

F(P)=ax+by+c
para este tridngulo. Essa abordagem fornece uma maneira eficaz de interpolar os valores

de z para pontos dentro de cada tridngulo da rede triangular irregular, resultando na superficie

continua F.
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Figura 54 — Superficie de resposta triangulada para o volume da caverna em func3o da temperatura e da

vazao.

x 10

w

N
&)

N

Volume (m3)
o
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Fonte: O autor (2025)
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APENDICE C - CALCULO DE PRESSOES COM BASE NA EQUACAO DE
BERNOULLI

Neste apéndice, s3o apresentadas as equacdes do calculo da pressdo total em um sistema
de injecao vertical, utilizando a equacao de Bernoulli. Na sequencia detalhamos os passos do

Processo.

DEFINICOES DE CONSTANTES

Primeiro, precisamos definir algumas constantes que serao usadas nos calculos:
= Didmetro da vélvula de injecdo (dyawuia): 0.0508 metros.
= Didmetro do tubo interno de inje¢do (diubo_intemno): 0.1778 metros.

= Peso especifico do fluido injetado (Yfiuido): 10300.0 N/m3.

DEFINICAO DAS CONSTANTES DE CONVERSAO

Em seguida, vamos definir algumas constantes de convers3o que serdo (teis para transfor-

macao de unidades:

Conversdo de pés para metros: 1 pé = 0.3048 metros.
» Conversdo de MPa para kPa: 1 MPa = 1000 kPa.
= Conversdo de MPa para metros de coluna d'dgua (mca): 1 MPa = 101.97 mca.

= Convers3do de kPa para PSI: 1 kPa = 0.145038 PSI.

DADOS FORNECIDOS

Para os calculos realizados neste apéndice, foram considerados os seguintes parametros

para os cenarios de mineracao por dissoluc3o:

= Profundidade de inje¢do (Rinjecao):

— Cendrio Direto: 3000 pés (914,4 metros).
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— Cendrio Reverso: 2500 pés (762 metros).

= Vazdo de injecdo (Qm3s_por_n): Foram avaliados seis niveis de vaz&o: 120, 200, 360, 400,

800 e 1200 m3/h.

CONVERSAO DE PROFUNDIDADE

Primeiro, para converter a profundidade de injecao de pés para metros:

hinjecao_m = hinjecao x 0.3048
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APENDICE D - CALCULO DA PRESSAO DE INJECAO NO FUNDO DO
POCO

Neste apéndice, detalha-se a metodologia de calculo para determinar a pressao de injecdo
no fundo do poco (P,;). Este valor, crucial para as simulagdes, é composto pela soma de
duas componentes principais: a pressdo hidrostatica, devido a coluna de fluido, e a pressao
dinamica, associada a velocidade do escoamento, conforme a Equacdo de Bernoulli.

A equacdo fundamental que guia este calculo é:

Pinj - Phidrostética + Pdinémica

PARAMETROS E CONSTANTES DO MODELO

Os calculos baseiam-se nos seguintes parametros e constantes:

» Constantes geométricas:

— Didmetro do canhoneio (dcanhoneio): 0.0508 metros.
— Diametro do tubo interno de inje¢do (diubo_interno): 0.1778 metros.

— Nimero de canhoneios (7.canhoneios): 4-
» Propriedades do fluido:

— Peso especifico do fluido injetado (7iido): 10300.0 N/m3.
» Pardmetros dos cenarios:

— Profundidade de inje¢do (hinjecao): 3000 pés (914,4 m) para o cenario direto e 2500

pés (762 m) para o cenario reverso.

— Vaz&o de inje¢do (Qm3_por_n): Foram avaliados seis niveis de vaz&o: 120, 200, 360,

400, 800 e 1200 m3/h.

METODOLOGIA DE CALCULO

A pressao de injecdo total é obtida seguindo uma sequéncia de calculos para determinar

cada componente.
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Calculo da Componente Hidrostatica

A pressdo hidrostatica (Phidrostatica) € @ pressdo exercida pelo peso da coluna de fluido. Ela

é calculada a partir da profundidade de injecdo em metros (Rinjecao_m) € convertida para MPa:

hinjecao_m

Phidrostatica (MPa) = 101.97

onde a constante 101.97 converte metros de coluna de dgua (mca) para MPa.

Calculo da Componente Dinamica

A componente dindmica da pressdo (Pyinsmica) Surge da variacdo de velocidade do fluido.

O célculo é feito em etapas:

1. Célculo das areas de escoamento: As areas de saida total pelos canhoneios e a area do

tubo s3o calculadas:

d ? d ?
A o canhoneio A o tubo_interno
canhoneio = "canhoneios X T 9 € tubo = T 9

2. Conversdo da vazdo: A vaz3o é convertida de m3/h para m3/s:

@m3_por_n

Qm3_por_s - 3600

3. Célculo da pressdo dinadmica (Bernoulli): A pressdo devido a diferenca de velocidades é

dada pela Equacdo de Bernoulli. Usando a relacdo p = 7/g, a equacio fica:

Vfluido Qm3_por_s ) 2 ( Qm3_por_s ) 2 -3
Pyinsmica a) — - ——=== .10
i (o < 29 > << Acanhoneio Atubo

onde os termos entre parénteses representam as velocidades quadradas na saida dos

canhoneios e no interior do tubo, respectivamente.

A figura [b5|ilustra a configuracdo dos canhoneios no tubo de injec3o.
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Figura 55 — Esquema de um tubo com quatro canhoneios a 90 graus.

Fonte: O autor (2025)

CALCULO DA PRESSAO DE INJECAO FINAL

Finalmente, a pressdo de injecdo total em MPa, que é o valor utilizado como entrada nas

simulacdes do SALGAS, é a soma das duas componentes:

Pinamica (kPa)

Binj (MPa) = Phidroststica (MPa) + 1000

Este valor corresponde a "Pressdo de injecdo"reportada nas tabelas da tese para cada cenario

de vazao.
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Figura 56 — Fluxograma do processo de calculo da pressdo total em PSI.
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Fonte: O autor (2025)
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APENDICE E - GERACAO DE DADOS DE ENTRADA E EXECUCAO DA
SIMULACAO

Neste apéndice, detalha-se o processo de calculo dos pardmetros de entrada variaveis e o
procedimento de execucdo das simulacdes no software SALGAS [Eyerman (2008). Com base
no valor da pressao total calculada no Apéndice C e na temperatura de referéncia de cada
cenario (e.g., 40°C, 60°C ou 80°C'), as informac¢des foram processadas para gerar os dados

de entrada necessérios.

CALCULO DOS PARAMETROS DE ENTRADA VARIAVEIS

Conforme explicado na dissertacdo de Silval (2022)), os arquivos de entrada (.sgi) para todos
os casos simulados possuem uma estrutura similar, com excecdo de quatro parametros chave:
taxa de producdo de salmoura, gravidade especifica do fluido de injecdo, gravidade especifica
da salmoura e fator de dissolucdo do sal. O calculo destes parametros seguiu uma metodologia

sequencial:

1. Célculo da pressdo de injecdo: A pressao foi calculada para cada vazao utilizando a
equacdo de Bernoulli (Equagdo 4.8) e a equacdo hidrostatica (Equacdo 4.9). Como a
altura da valvula injetora é a mesma, a pressdo de entrada no SALGAS varia de acordo

com a vazdo. O detalhamento completo deste calculo encontra-se no Apéndice C.

2. Célculo da gravidade especifica (SG) do Fluido de Injecdo: Com os pardmetros de tem-
peratura e pressao, a gravidade especifica do fluido de injecdo foi calculada utilizando
a caixa de ferramentas do SMRI Brouard| (2008)), na guia Fluidos > Salmoura > Guia

Calculadora de salmoura subsaturada, conforme mostrado na figura [57]
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Figura 57 — Guia calculadora de salmoura subsaturada no Toolbox do SMRI.

2025 %sat

o
U

Brine mass-volume concentration

[ 233 kgsatm3bine)

Brine density
(m] 11506 g/m3)

] 1.15063

Fonte:

3. Célculo da gravidade especifica (SG) da salmoura: De forma similar, a gravidade es-
pecifica da salmoura foi calculada na guia Fluidos > Salmoura > Guia Calculadora de

salmoura saturada, como ilustrado na Figura

Figura 58 — Guia calculadora de salmoura saturada no Toolbox do SMRI.

) 0264 |
] 2649 |

] 31325

) 12014 |

) 12014 |

Fonte:

4. Calculo do fator de dissolucdo (DF): Para cada taxa de producido, o Fator de Dissolucdo
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foi calculado utilizando a temperatura do cenério e a gravidade especifica da salmoura

(obtida na etapa anterior) na Equacdo 4.7.

EXECUCAO DA SIMULACAO NO SALGAS

Apds a geracdo do arquivo de entrada (.sgi) com os parametros calculados, cada caso foi

executado no software SALGAS for Windows [Eyerman| (2008)). A sequéncia de figuras |59} [60]

e a seguir ilustra o processo padrao de execucdo, desde a abertura do arquivo até a

verificacdo da conclusdao bem-sucedida da simulac3o.

Figura 59 — Executando o caso no SALGAS: Abriu-se o arquivo de entrada.
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Figura 60 — Executando o caso no SALGAS: Foi dado o comando de partida.
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Figura 61 — Executando o caso no SALGAS: Aguardou-se a

Fonte:

conclusdo da simulac3o.
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Figura 62 — Executando o caso no SALGAS: Verificou-se se rodou até o final sem erro.
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APENDICE E - DESCRICAO DO ARQUIVO DE ENTRADA (.SGI) DO SALGAS

Este apéndice descreve um exemplo especifico de configuracao para uma simulacdo para
um cenario de referéncia de 40°C e vazdo de 360 m3/h, utilizando o método de circulagdo
direta e o sistema de medidas americano. Cada linha e parametro do arquivo de entrada .sgi
sao detalhados abaixo, com a nomenclatura oficial da varidvel do software SALGAS [Eyerman

(2008))(conforme o manual do SMRI) indicada entre parénteses para referéncia.

DADOS DO ARQUIVO .SGl

0 D 360m3/h 40C

0 20 2 60 0 0 @ 3 3000.000000 2500.000000

1000.000000 2000.000000 2.160000 10.750000 7.000000 2100.000000 1.300000 0.000000
60.000000 1532.220000 1.000000 1.196500 1.024230 1.260719 0.030000
1221 15.000000 0.000130 0.900000

100 8

2800 6

200 6

2400 9.9 7.0

100 9.9 7.8

100 8

Descricdao Detalhada do Arquivo .sgi
Linha 1: Sistema de medidas e titulo

= Unidade de medida utilizada (MSYS): Sistema americano (valor ).

» Campo alfanumérico para o titulo da execucido: D 360m3/h 40C.

Linha 2: Configuracbes Gerais da Simulacdo

= Direc3o inicial da mineracdo (ICODE): @ (Circulacdo Direta).
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= Nimero de células computacionais (N): 20.

= Ndmero de intervalos de tempo (M): 2.

» Frequéncia de impressdo dos dados de producdo (IDT): A cada 60 dias.

= Presenca de colchdo de protecdo (IPAD): @ (Sim, hd um blanket presente).

» Mudanca de direcdo da mineracdo (ISOR): @ (NZo).

= Tipo de colchdo de protecdo (ICON): @ (Liquido incompressivel).

= Seletor de simulagcdo (ISHORT): 3 (Mddulos de mineracdo e hidraulica ativados).
= Profundidade de injecdo (DEPINJ): 3000.0 ft (914,40 m).

= Profundidade de producdo (DEPPRD): 2500.0 ft (762,00 m).

Linha 3: Propriedades da Rocha Salina e Geometria do Poco

= Altura da se¢do de sal modelada (H): 1000.0 ft (304,80 m).

= Profundidade do topo do intervalo modelado (DEPT): 2000.0 ft (609,60 m).

= Gravidade especifica do sal (DENSAL): 2.16.

= Didmetro externo da tubulacdo externa/rasa (DP): 10.75 in (273,05 mm).

= Didmetro externo da tubulacdo interna/profunda (DPT): 7.0 in (177,80 mm).

» Profundidade do colch3o de protecdo (DEPPAD): 2100.90 ft (640,08 m).

= Fator de volume de formacdo de insoldveis (BULK): 1. 3.

= Profundidade inicial do topo dos insoltveis (DPINS): @.0 (Auséncia de insollveis no

inicio).

Linha 4: Pardmetros de Operacdo e Propriedades dos Fluidos

= Intervalo para impressdo dos dados da cavidade (CONTPD): 60.0 dias.

= Taxa de producdo de salmoura (CONQUE): 1532.22 bbl/h.
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= Raio inicial da caverna (CONRAD): 1.0 ft (0,3048 m).
= Gravidade especifica inicial da salmoura (CONSGB): 1.1965.
= Gravidade especifica do fluido de inje¢do (CONISG): 1.024230.

= Fator de dissolucdo do sal (CONDIS): 1.260719. Este fator ajusta a taxa de dissolucdo

para simular o efeito de uma temperatura (40°C) diferente da temperatura base do

software (75°F / 24°C).

= Porcentagem de insoliveis no sal (VINSL): 0.03 (3.0%).

Linha 5: Configuracdes do Médulo Hidraulico

= Secdes na linha de salmoura superficial (II): 1.

= Secdes na tubulacdo interna da caverna (J1): 2.

= Secdes na tubulacdo externa da caverna (K1): 2.

= Secdes na linha de agua superficial (L1): 1.

= Pressdo de entrega da salmoura na superficie (PDEL): 15.0 psi (0,1034214 MPa).
= Rugosidade da superficie do tubo (ROUGH): ©.00013@ in/in (0,000130 mm/mm).

» Eficiéncia da bomba d’agua (EPUMP): 0.90 (90%).

Linhas 6 a 11: Comprimentos e Didmetros das Secées dos Tubos

Estas linhas fornecem os comprimentos e diametros para cada uma das secoes de tubulacdo
definidas na Linha 5. O médulo hidraulico utiliza esses dados para calcular as perdas de carga
por atrito em cada segmento do sistema e, consequentemente, determinar os requisitos de

energia da bomba.

= Linha de salmoura superficial (Linha 6): Descreve a tubulacdo que transporta a salmoura

da cabeca do poco até o ponto de entrega.

— Comprimento: 100 ft (30,48 m)
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— Didmetro interno: 8 in (203,20 mm)

= Coluna de tubulagdo interna (Linhas 7 e 8): Representa o tubo mais profundo, usado
para injecdo de agua neste cenario de circulacao direta. Esta dividido em duas secGes.
— Secdo 1: Comprimento: 2800 ft (853,44 m), Didmetro interno: 6 in (152,40 mm).
— Sec&o 2: Comprimento: 200 ft (60,96 m), Didmetro interno: 6 in (152,40 mm).

= Anular da coluna de tubulagdo externa (Linhas 9 e 10): Modela o espacgo anular entre a

tubulacdo interna e a externa, por onde a salmoura é produzida neste cenério.
— Secdo 1: Comprimento: 2400 ft (731,52 m), Didmetro interno do anular: 9.9 in
(251,46 mm), Didmetro externo do tubo interno nesta secdo: 7 in (177,80 mm).
— Secdo 2: Comprimento: 100 ft (30,48 m), Didmetro interno do anular: 9.9 in

(251,46 mm), Didmetro externo do tubo interno nesta secdo: 7.8 in (198,12 mm).

= Linha de agua superficial (Linha 11): Descreve a tubulacdo que transporta a agua de

injecao da bomba até a cabeca do poco.

— Comprimento: 100 ft (30,48 m)

— Didmetro interno: 8 in (203,20 mm)
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