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RESUMO

O presente trabalho abordou o problema de acoplamento hidromecanico e o escoamento
bifasico em meios porosos. O primeiro problema foi resolvido a partir de uma formulagao mista
de elementos finitos, utilizando elementos de Taylor-Hood, garantindo a condi¢do de Lady-
zhenskaya—Babuska—Brezzi. O problema de escoamento bifasico foi resolvido utilizando uma
formulagdo Streamline Upwind Petrov-Galerkin associada a estratégia de estabilizagdo Discon-
tinuity Capturing Operator. Os dois problemas foram resolvidos utilizando malhas ndo-confor-
mes, tratadas pelo método dos elementos de acoplamento, de forma inédita. Essa metodologia
permite o acoplamento entre malhas sem a necessidade da criacdo de graus de liberdade adici-
onais. As formula¢des foram implementadas em ambiente MATLAB® e a geracdo de malha
foi realizada no software livre Gmsh®. Os resultados foram comparados com problemas clas-
sicos da literatura que possuiam solugao analitica ou solugdes de referéncia. No contexto hidro-
mecanico foram resolvidos os problemas classicos de Terzaghi, Terzaghi heterogéneo, Mandel
e Schiffman. Nesses casos foram abordados aspectos como a utilizagdo de malhas com interfa-
ces ndo coincidentes, refinamento em locais com variagdes bruscas nos gradientes de pressdes
e refinamento local do dominio. Para o problema bifasico foram resolvidos os casos classicos
de Buckley-Leverett e ¥4 de cinco pocos. Além dos problemas classicos foram resolvidos 3
casos com solugdes de referéncia apresentadas na literatura, considerando um caso com um
reservatorio com barreiras, um reservatorio fraturado e uma variag@o do problema de 4 de cinco
pogos. Para esses casos foi avaliada a influéncia nos parametros de estabilizag?o, a influéncia
da orienta¢do da malha e da diferenga entre o refinamento das malhas acopladas na estabilidade
do método. A partir dos resultados as duas formulagdes proposta foram validadas com resulta-

dos consistentes.

Palavras-chave: Escoamento bifasico. Acoplamento hidromecénico. Streamline Upwind Pe-

trov-Galerkin. Elementos finitos mistos. Reservatorios de petroleo.



ABSTRACT

This work addressed the hydro-mechanical coupling problem and two-phase flow in porous
media. The first problem was solved using a mixed finite-element formulation with Taylor—
Hood elements, ensuring the Ladyzhenskaya—Babuska—Brezzi condition. The two-phase flow
problem was solved with a Streamline Upwind Petrov—Galerkin formulation combined with a
Discontinuity-Capturing Operator stabilization strategy. Both problems were solved on non-
conforming meshes, handled—in a novel manner—by the coupling-elements method. This ap-
proach enables mesh coupling without introducing additional degrees of freedom. The formu-
lations were implemented in MATLAB®, and the meshes were generated with the open-source
software Gmsh®. Results were compared against classical problems from the literature that
have analytical or reference solutions. In the hydro-mechanical context, the classical Terzaghi,
heterogeneous Terzaghi, Mandel, and Schiftman problems were solved. These cases examined
the use of meshes with noncoincident interfaces, refinement in regions with sharp pressure-
gradient variations, and local mesh refinement. For the two-phase problem, the classical Buck-
ley—Leverett and quarter five-spot cases were solved. In addition to the classical problems, three
cases with reference solutions from the literature were studied: a reservoir with barriers, a frac-
tured reservoir, and a variation of the quarter five-spot problem. For these, we assessed the
influence of stabilization parameters, the effect of mesh orientation, and the impact of differ-
ences in refinement levels between the coupled meshes on the stability of the method. Based

on the results, both proposed formulations were validated and yielded consistent outcomes.

Keywords: Two-phase flow. Hydro-mechanical coupling. Streamline Upwind Petrov—Ga-

lerkin. Mixed finite elements. Petroleum reservoirs.
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1 INTRODUCAO

A simula¢do numérica surgiu como uma ferramenta poderosa para a obten¢@o de modelos
utilizados em diversas areas do conhecimento. Essa ferramenta tornou possivel a modelagem
dos problemas de engenharia sem a necessidade da criagdo de modelos fisicos, como os mode-
los em escala reduzida. A utilizagdo dos modelos computacionais possui vantagens incalcula-
veis, inerentes a vantagem das possibilidades que a simulagdo numérica permite. Apesar dessas
vantagens, um dos fatores que se deve levar em conta é que as formula¢des numéricas devem
ser capazes de capturar os processos fisicos que se desenvolvem no fenomeno que se deseja
simular. Sendo assim, o desenvolvimento das formula¢des numéricas robustas e dos modelos
realistas devem andar em paralelo.

Outra questéo relevante quando se opta pela realiza¢do de simula¢des numéricas em detri-
mento a abordagens experimentais ¢ a obten¢do de uma economia consideravel em termos de
recursos fisicos. No entanto, essa abordagem ¢ acompanhada de um aumento significativo nos
recursos matematicos e computacionais, especialmente quando se deseja obter resultados que
reproduzem comportamentos observados em aplicagdes praticas. Diante desse contexto, a
busca por técnicas que otimizem tais recursos, como a utilizagdo de malhas nido-conformes e
formulagdes estabilizadas de elementos finitos, se torna uma alternativa promissora.

Uma das areas que ha décadas vem sendo alvo de estudos para o desenvolvimento de fer-
ramentas numéricas € a engenharia de reservatorios de petréleo. Essa area possui caracteristicas
impar, envolvendo diversas variaveis e condigdes complexas que precisam ser consideradas nos
modelos para que se tenha robustez nas solucdes. O processo de operagdo de um reservatorio
de petréleo pode estar regido por diversos fenomenos que podem ocorrer simultaneamente ou
ndo, alguns exemplos estdo listados na Tabela 1.

Nesse contexto, a indudstria do petréleo tem um papel notavel no desenvolvimento de tec-
nologia para o entendimento dos processos em meios porosos. Um importante marco nesse
desenvolvimento foi o surgimento dos primeiros simuladores de reservatdrios de petrdleo na
década de 50 do século XX. Eles surgiram a partir dos esfor¢os da industria petrolifera em unir
a analise numérica e os computadores da época (Terry & Rogers, 2015). A escolha dos métodos
numéricos como alvo principal ocorreu, pois, as equagdes envolvidas na modelagem de reser-

vatérios sdo altamente complexas, dificultando a utilizac¢do de solug¢des analiticas (Silva, 2000).
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Tabela 1. Listagem dos fendmenos que ocorrem em um reservatorio de petréleo.

Categoria dos fenémenos

Exemplos

Hidraulicos

Escoamento multifasico (6leo, agua, gas)

Escoamento miscivel

Capilaridade

Segregacdo gravitacional

Escoamento compressivel

Mecénicos

Acoplamento hidromecéanico

Fraturamento hidraulico

Deformagdes e reativago de fraturas naturais

Plastifica¢do dos materiais

Térmicos

Injecdo de calor (vapor, agua quente)

Variag#o de viscosidade com temperatura

Transferéncia de calor por convecc¢do

Gradientes térmicos

Termodindmicos

Mudanga de fase

Equilibrio liquido-vapor

Comportamento de reservatérios condensados retrogrados

Reologicos

Comportamento ndo-newtoniano (polimeros, espumas)

Efeitos de taxa de cisalhamento (shear thinning, Bingham)

Misturas viscosas complexas

Quimicos

Reagdes fluido—rocha

Precipitacdo de asfaltenos/parafinas

Injecdo de surfactantes, polimeros, alcalinos (EOR quimico)

Adsor¢do, troca idnica

Biologicos

Biodegradagio de hidrocarbonetos

Injecdo de microrganismos

Produgdo de biosurfactantes

Apesar da evidéncia dada a area de reservatorios de petrdleo, deve ficar claro que as ferra-

mentas dessa drea podem ser aplicadas nos problemas de meios porosos em geral, que sdo de

interesse de areas como hidrogeologia, geotecnia, biomateriais e tecnologia dos alimentos.

Além da abordagem numérica supracitada as solugdes analiticas e experimentais também séo

metodologias importantes e amplamente utilizadas em conjunto com os experimentos numéri-

COS.

A partir da andlise da Tabela 1, verifica-se a quantidade de fendmenos que podem se de-

senvolver em um reservatorio de petréleo, chegando a conclusdo que a elaboragdo de andlises

acopladas considerando todos eles simultaneamente sdo impraticaveis perante o desenvolvi-

mento cientifico e tecnologico atual. Outro fato que corrobora para essa dificuldade é que os

reservatorios s@o formagdes naturais complexas, com diversas varidveis ambientais que



35

dependem da sua origem, fazendo com que suas propriedades sejam, em muitos casos, alta-
mente anisotropicas, heterogéneas, variaveis no tempo e dependente da escala de andlise. Sendo
assim, as abordagens praticas de simulagfo de reservatério sdo geralmente realizadas de forma
segmentada, focando na analise isolada dos fendmenos e regides que se desejam avaliar.

Uma das préticas adotadas na industria, € a simulagdo do escoamento em reservatério de
petréleo com a adogéo de hipdteses simplificados, tais como a isotermia e a indeformabilidade.
Apesar dessas considerag¢des atenderem a uma gama de situagdes praticas, em outras ocasioes
podem apresentar resultados muito aquém da resposta real, tornando a consideragdo do acopla-
mento multifisico essencial para a obtencao de resultados satisfatdrios.

Outro fator essencial na elaboracdo dos modelos numéricos € a determinagéo da escala em
que se deseja obter as solucdes. Essa defini¢do estd intimamente ligada a qualidade do modelo,
afetando questdes como: influéncia de condi¢des de contorno e propriedades do entorno, quan-
tidade de graus de liberdade e homogeneizagdo das propriedades do meio.

Diante dessa realidade, ¢ fundamental a compreensdo das diferentes escalas ligadas a en-
genharia de reservatoérios. Uma visdo geral é apresentada na Figura 3, onde os quadros de A a
F mostram, respectivamente, as escalas do planeta, de campo, de reservatdrio, de pogo, de tes-
temunho e de grio.

Uma das técnicas utilizadas para a solugdo do problema de escala, que aparece corriquei-
ramente em simulagdes de reservatorios, e que sera tema central do presente trabalho, € o em-
prego das malhas ndo-conformes. Essa metodologia permite a discretizagéo de diferentes partes
do dominio com malhas independentes. A Figura 4 apresenta um esquema da utilizacdo de
malhas ndo-conformes em diferentes niveis de discretizagdo, abrangendo uma malha na escala
do reservatdrio, das proximidades do pogo e do pogo. Como pode ser observado esse tipo de
malha € construida a partir da unido de malhas independentes, sem a necessidade de elementos
de transi¢do entre regides de refinamentos distintos. Esse tipo de malha também permite que
barreiras, falhas, fraturas e cavernas sejam discretizadas em escalas distintas da matriz porosa.
Ou seja, a utilizagdo das malhas ndo-conformes permite que o usudrio tenha um modelo onde

pode ser definido o nivel de detalhes em locais especificos de forma independente dos demais.
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Figura 3. Diferentes escalas em problemas de meios porosos.
Fonte: o autor (2025).

Outra aplicag@o para as malhas ndo-conformes € a possibilidade de impor acoplamentos
parciais entre as partes do dominio, controlando os parametros que regem como as variaveis
entre elas se relacionam. Além disso, uma outra vantagem desse tipo de malha € a possibilidade

de acoplar modelos construidos de forma totalmente independente.
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Figura 4. Esquema de malha nfo conforme nas proximidades de um pogo.
Fonte: o autor (2025)

Diante dos desafios apresentados, o presente trabalho ¢ focado em desenvolver uma ferra-
menta robusta para a solugéo de dois problemas da area de engenharia de reservatorios: o aco-
plamento hidromecanico (Biot, 1941; Bernardi et al., 1990 e o escoamento bifasico imiscivel
em meios porosos (Carvalho, 2005; Langtangen, 1990). Ambos sdo resolvidos por propostas
inéditas que combinam técnicas estabilizadas de elementos finitos (Sloan & Abbo, 1999; Men-

donga, 2003) e malhas ndo-conformes (Bitencourt Jr et al.,2015).
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2 JUSTIFICATIVA E MOTIVACAO

A exploragdo do petroleo se tornou, a partir do advento da tecnologia, uma das atividades
responsaveis por moldar o mundo em termos produtivo, governamental e politico. A partir das
descobertas de grandes reservas, espalhadas pelos mais diversos locais, o petrdleo se tornou a
principal matriz energética nos ultimos séculos (Sousa & Gomes, 2022). O Brasil se destaca
como um importante elemento desse cenario, com o petroleo e seus derivados representando
35.1% da matriz energética brasileira no ano de 2023. A cadeia de produgdo do petrdleo brasi-
leiro ¢ fortemente dominada pela Petrobras e, segundo a Agéncia Nacional do Petroleo, Gas
Natural e Biocombustiveis (ANP), a produgéo de petroleo cresceu, no Brasil, 140% nos ultimos
vinte anos (Morais & Oliveira, 2022).

Os desafios na exploragdo do petréleo estdo em constante mudanga, pois cada empreendi-
mento possui caracteristicas singulares em termos tecnoldgicos e operacionais. Na historia re-
cente da exploracdo brasileira, o pré-sal figurou como um importante autor no desenvolvimento
cientifico nacional (Soares & Ferreira, 2024) e atualmente o Brasil passa por discussdes acalo-
radas acerca dos desafios exploratorios da margem equatorial, regido litoranea localizada entre
o Amapa e o Rio Grande do Norte (Filho et al., 2024).

Diante da gama de desafios da industria petrolifera, a simulagdo de meios porosos se des-
taca como um importante tema, pois é uma metodologia amplamente utilizada na tomada de
decisdes estratégicas de exploracdo. Dentro da simulagdo numérica de reservatorios, a conside-
racdo do acoplamento hidromecanico (Ai et al., 2012; Berger et al., 2015; Boni et al.,2020) e
do escoamento bifésico (Souza et al.,2003; Langtangen, 1990) s@o temas centrais que possuem
lacunas a serem preenchidas, como a estabilidade das formulagdes numéricas (Sloan & Abbo,
1999; Phillips & Wheeler, 2007; Berger et al., 2015; Appau & Dankwa, 2019) e a otimizacdo
na constru¢do das malhas (Cheriet et al., 2007 Cerveny et al., 2019; Schéadle et al.,2019)

Nesse contexto, esse trabalho se concentra no preenchimento dessas lacunas a partir da
constru¢do de uma ferramenta robusta de simulacdo de meios porosos, capaz de resolver os

problemas contextualizados com técnicas numéricas avancadas.
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3 OBIJETIVOS E CONTRIBUICOES DO PRESENTE TRABALHO

3.1 OBJETIVOS GERAIS

O presente trabalho tem como objetivo o desenvolvimento de uma ferramenta numérica
voltada a simulagdo em meios porosos utilizando malhas ndo-conformes. Na ferramenta foram
implementadas formulagdes estabilizadas do método dos elementos finitos (MEF), aplicado
tanto ao problema de acoplamento hidromecénico quanto ao de escoamento bifasico imiscivel.

O problema de acoplamento hidromecanico € regido pela teoria de Biot e € de interesse de
areas como geotecnia, hidrogeologia e engenharia de reservatorios de petrdleo. Essas areas li-
dam frequentemente com situagdes em que a utilizagdo de malhas ndo-conformes é adequada,
isso porque esse tipo de malha permite o refinamento local em regides cuja escala de interesse
¢ significativamente menor que a escala global do problema.

Ja o problema de escoamento bifasico imiscivel em meios porosos é de interesse impar na
industria petrolifera, especialmente na simulagdo de processos de recuperag@o secundéria. A
utilizacdo de malhas ndo-conformes permite refinamentos locais em regides proximas de pogos,
em falhas e fraturas, por exemplo.

Outro objetivo do trabalho ¢ a utilizacdo de formulagdes que, além de robustas, sejam con-
solidadas na literatura como eficazes para lidar com as caracteristicas intrinsecas da area de

aplicagdo.
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3.2 OBJETIVOS ESPECIFICOS

Os objetivos especificos do trabalho estdo apresentados a seguir.

e Desenvolvimento de um cddigo in house em ambiente MATLAB® para a solugdo de
problemas de acoplamento hidromecéanico e de escoamento bifasico imiscivel em meios
porosos utilizando malhas ndo-conformes;

e Utilizagdo de uma formulag¢do mista do método dos elementos finitos para a discretiza-
¢do do problema hidromecanico, empregando elementos de Taylor-Hood, de modo que
a condi¢do de Ladyzhenskaya—Babuska—Brezzi (LBB) seja satisfeita;

e Solugdo das equagdes do escoamento bifasico imiscivel pelo método dos elementos fi-
nitos, utilizando as técnicas de estabilizacdo do tipo Streamline Upwind Petrov—Galer-
kin (SUPG) e um operador de captura de descontinuidade (Discontinuity Capturing
Operator — CAU);

e Aplicagdo dos elementos finitos de acoplamento (EFA) como estratégia de tratamento

de malhas ndo-conformes nos dois problemas abordados.

3.3 CONTRIBUICOES DO PRESENTE TRABALHO

O desenvolvimento do codigo foi uma das principais contribui¢des do presente trabalho, se
consolidando com uma nova ferramenta para a simulagdo de meios porosos aplicando formu-
lagdes avangadas de elementos finitos. Além disso, o trabalho tem, como aspecto inovador, as
aplicagoes do EFA mencionadas acima, que apresenta carater inédito na literatura, tanto na sua
aplicagdo com métodos elementos finitos mistos como na solug¢do de problemas bifasicos em
meios porosos.

Outro aspecto relacionado ao presente trabalho, que sera abordado de forma mais sutil, é a
capacidade da ferramenta de acoplamento hidromecanico resolver problemas de interagéo solo-

estrutura. Serd sugerido, como trabalhos futuros, uma abordagem mais incisiva nesse tdpico.
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4 ORGANIZACAO GERAL DA TESE

O capitulo 5 apresenta a revisao bibliografica dos assuntos abordados no presente trabalho,
sendo dividido em 4 partes. Na se¢do 5.1 € abordado o acoplamento hidromecanico em meios
porosos, na se¢do 5.2 o escoamento bifdsico em meios porosos, na se¢do 5.3 os métodos esta-
bilizados de elementos finitos e na se¢do 5.4 as malhas ndo-conformes.

O capitulo 6 e o capitulo 7 apresentam, respectivamente, a formulagdo dos elementos fini-
tos de acoplamento e as fungdes de forma e operadores discretos. Como esses temas sdo comuns
aos dois problemas elas foram apresentadas anteriormente em capitulos especificos.

O capitulo 8 apresenta os aspectos sobre o acoplamento hidromecénico em meios porosos
com escoamento monofasico. As sec¢des 8.1, 8.2, 8.3 e 8.4 tratam, respectivamente, da formu-
lagcdo matematica, formulag@o numérica, avaliag@o de erros e experimentos numéricos. A se¢ao
8.5 se concentra nas conclusdes acerca do problema hidromecénico.

O capitulo 9 apresenta os aspectos sobre o escoamento bifasico em meios porosos. As se-
¢des 9.1, 9.2 e 9.3 tratam, respectivamente, da formulagcdo numérica, formulagdo numérica e os
experimentos numéricos, as conclusdes sobre esse topico sdo apresentadas na se¢do 9.5.

As consideragdes finais e trabalhos futuros sdo apresentados no capitulo 10 e O anexo A

trata dos aspectos relacionados ao cddigo computacional desenvolvido.
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5 REVISAO BIBLIOGRAFICA

A revisdo bibliografica, apresentada nessa secdo, serd dividida nas 4 areas de interesse
dessa tese: o acoplamento hidromecanico em meios porosos, o escoamento bifasico em meios

porosos, as formulagdes numéricas estabilizadas e as malhas ndo-conformes.

5.1 ACOPLAMENTO HIDROMECANICO EM MEIOS POROSOS

O acoplamento hidromecanico em meios porosos tem, como pioneiro, o trabalho de
Terzaghi & Frohlich (1936), que apresenta uma solug@o para o adensamento unidimensional
em solos saturados. Essa teoria foi, posteriormente, generalizada por um conjunto de trabalhos
que compdem a teoria geral do adensamento, desenvolvido pelo engenheiro belga Maurice An-
thony Biot (Biot, 1941; Biot, 1955; Biot, 1956; Biot & Willis, 1957; Biot, 1973). A partir dessa
teoria, os trabalhos de Cryer (1963), Mandel (1953), Shiffman et al. (1969), Ai et al. (2012) e
Armini et al. (2014) formularam solugdes analiticas para casos especificos.

O trabalho pioneiro envolvendo a aplicacdo do MEF na teoria do adensamento unidimen-
sional foi desenvolvido por Sandhu et al. (1977), que apresentou uma analise comparativa entre
4 tipos de elementos. Ja se tratando da teoria geral do adensamento o primeiro grande trabalho,
onde foram avaliadas 8 formulagdes distintas do MEF, foi desenvolvido por Zienkiewicz &
Shiomi (1984). Settari & Mourits (1998) apresentaram um trabalho precursor na area de geo-
mecanica de reservatorios, desenvolvendo uma iteracdo modular, parcialmente acoplada, entre
um simulador de fluxo comercial, um software para o problema mecanico e um modelo de
propagacdo de fraturas. Outras abordagens mais avangadas foram desenvolvidas a partir desses
trabalhos, utilizando formulag¢des numéricas mais robustas para capturar as caracteristicas dos
problemas em meios porosos.

Berger et al. (2015) formularam um modelo de elementos finitos mistos de 3 campos, uti-
lizando a menor ordem de aproximagdo possivel (1* ordem para pressdo e 2% ordem para fluxo
e deslocamento). Esse modelo foi associado a um termo de estabilizag@o para evitar oscilagdes
no campo de pressdes.

O problema do acoplamento hidromecanico foi resolvido por Phillips & Wheeler (2007)
utilizando uma formula¢do do MEF Bubnov-Galerkin. Uma extensdo desse trabalho € apresen-
tada por Phillips & Wheeler (2008) onde o campo dos deslocamentos € aproximado pelo espago
de Hilbert descontinuo por partes, conhecido como descontinuo Galerkin (DG). Uma analise

comparativa entre as duas propostas apresentou taxas de convergéncia iguais entre elas, porém
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a formulagdo descontinua apresentou uma melhor capacidade em lidar com malhas néo estru-
turadas, ja que as suas fung¢des de aproximacdo sdo descontinuas elemento-a-elemento. Além
disso, a formulag@o descontinua eliminou o problema de “/ocking” (travamento) que causa os-
cilagdes ndo fisicas no campo de pressdes em formulag¢des continuas. Esse problema também ¢
discutido por Oyarzua & Ruiz-Baier (2016). Outras propostas para a solu¢do do acoplamento
hidromecanico pelo MEF mistos sdo apresentadas por Phillips (2005), Sloan & Abbo (1999.a)
e Sloan & Abbo (1999.b).

Uma formulagdo de quatro campos (tensdo total, fluxo, deslocamento e pressdo) foi pro-
posta por Yi & Bean (2017), nessa proposta realizou-se o acoplamento de duas formulagdes
mistas independentes, uma para o problema mecanico e outra para o problema hidraulico. Xia-
obing et al. (2018) propuseram uma formulacdo em que as equacdes hidraulicas e mecanicas
foram desacopladas em cada passo de tempo, gerando dois problemas distintos a serem resol-
vidos: o problema de Stokes (mecanico) e um campo de pseudo pressoes (hidraulico), discreti-
zados pelo MEF mistos com elementos de Taylor-Hood e MEF P1-conformes. Um esquema
hibrido do MEF mistos estabilizados foi proposto por Niu et al. (2021), solucionando problemas
de convergéncia que ocorrem em fung¢do da relagdo entre a permeabilidade e o tamanho dos
elementos em formulagdes convencionais.

Além da vasta gama de trabalhos utilizando o MEF, outros métodos também foram aplica-
dos na solugdo do acoplamento hidromecéanico, a exemplo do método dos elementos de con-
torno utilizado por Cheng & Predeleanu (1987) e o método dos volumes finitos baseados em
elementos (Hondrio et al., 2018)

As aplicag¢des do acoplamento hidromecanico estdo presentes nas mais diversas areas do
conhecimento, tais como a escavacao de tineis (Song et al., 2021; Zhou et al., 2018), subsidén-
cia (Tzampoglou & Loupasakis, 2019; Tessitore et al., 2016; Pham et al., 2019), medicina (Wei
et al., 2014), hidrogeologia (Boni et al., 2020; Woodman et al., 2019; Gambolati & Teatini,
2015), engenharia de barragens (Yin et al., 2020; Bretas et al., 2013; Wang et al., 2015; Hu et
al., 2014), produgdo de areia (Fetrati & Pak, 2020; Li et al., 2018), armazenamento geoloégico
de CO2 (Bao et al., 2014; Lucier & Zoback, 2008), recuperagdo de metano por ataque acido
(Fan, et al., 2019) e fraturamento hidraulico (Chen & Wang, 2017).

Uma técnica recente aplicada a problemas hidromecanicos com grandes deformagdes foi
proposta por Karimi et al. (2022), onde os principios variacionais sdo aplicados diretamente nas
equacdes de energia, diferente dos métodos classicos que utilizando o principio variacional nas

equacdes de conservacdo. Uma formulagdo estabilizada do método do ponto material foi
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proposta por Tang et al. (2025), onde as estabiliza¢des sdo obtidas a partir de um método de
suavizac¢do de deformagdes combinado ao principio variacional de multiplos campos.

Um enriquecimento das fun¢des de forma do MEF a partir das fun¢des face bubble foi
proposta por Niu et al. (2021) para a solucdo de problemas hidromecanicos. Esse enriqueci-
mento minimizou a instabilidade numérica presente no MEF mistos hibridos. Uma abordagem

hierarquica para o mesmo problema foi apresentada por Yan et al. (2021).

5.2 ESCOAMENTO BIFASICO EM MEIOS POROSOS

Um dos processos que envolve o escoamento bifasico em reservatorios de petroleo € a in-
jecdo de agua ou gas com a finalidade de deslocar o fluido a ser recuperado. Durante a realiza-
cdo desse processo espera-se que os fluidos permanecam imisciveis, aumentando a eficiéncia
da recuperacdo de 6leo. Diante desse contexto e de varias outras aplicagdes do escoamento
bifasico, a literatura aborda diversas formulac¢des para a solugdo de problemas de escoamentos
multifasicos em meios porosos que serdo abordadas a seguir:

O trabalho de Muskat & Wyckoft (1946) é considerado o marco fundador da literatura dos
escoamentos em meios porosos e engenharia de reservatdrios de petréleo. Nele foi desenvolvida
a formulagdo para escoamentos multifasicos, além da defini¢do dos conceitos de permeabili-
dade relativa e fun¢des de mobilidade.

A solugdo para o problema de escoamento bifasico imiscivel 6leo-dgua unidimensional, em
meio homogéneo, desconsiderando os efeitos gravitacionais e capilares foi apresentada de
forma pioneira no trabalho de Buckley & Leverett (1942), que se tornou um cléssico da litera-
tura. O impacto do trabalho foi tdo significativo que o problema passou a ser conhecido pelo
nome dos seus autores. Apesar do trabalho de Muskat & Wyckoff (1946) ndo apresentar a sua
solugéo ele contribuiu fortemente com suas bases matematicas.

A introdugdo dos efeitos capilares no problema de Buckley-Leverett foi realizada por Su-
nada (1990), que também apresentou uma solugéo analitica para os escoamentos bifésicos ra-
diais.

Presho & Galvis (2016) abordaram a forma de avanco da frente de saturacdo em fungéo
das propriedades do escoamento. Esse trabalho possui carater numérico e experimental e utili-
zou o conceito de diagramas de fases para definir a forma da frente avaliada, que ¢ fun¢do do
numero capilar (razéo entre forgas viscosas e forgas capilares) e da razdo entre as viscosidades

das fases.
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Coutinho et al. (2003) apontaram que popularmente sdo utilizados métodos hibridos para o
tratamento das equacdes de fluxo em meios porosos, realizando a combinagdo de métodos como
o MEF e o método dos volumes finitos (MVF).

A solugéo do escoamento bifasico a partir de uma formulag¢do DG utilizando malhas adap-
tativas foi proposta por Dedner et al. (2019). Langtangen (1990) realizou, também para esse
problema, uma andlise de convergéncia de um esquema do MEF baseados em volumes de con-
trole. Uma comparacdo entre os esquemas estabilizados SUPG e Algebraic Subgrid-Scale
(ASGS) em escoamentos bifasicos e misciveis em meios porosos foi realizada por Silva (2000),
a formulacdo SUPG também foi abordada por Langtangen (1990) e Souza et al. (2003) em um
contexto diferente.

Silva (2000) estudou a eficiéncia do método multigrid para a solug@o de escoamentos bifa-
sicos em meios poroso utilizando a formulag¢do de Galerkin para a equagdo de pressdo e a for-
mulag@o de Petrov-Galerkin com operador de captura de descontinuidade para a equagdo de
saturacdo.

Fucik et al. (2019) propuseram um esquema multidimensional hibrido-misto do MEF para
0 escoamento composicional bifasico em meios porosos heterogéneos. No trabalho foram uti-
lizadas abordagens de programacéo paralelizada e sequencial utilizando GPU.

Kovariik et al. (2016) aplicaram um método sem malha baseado em Petrov-Galerkin para a
solugdo do escoamento bifasico em meios porosos, que € ndo-linear e requer malhas refinadas
e um alto custo computacional, mesmo em exemplos de validagdo. Esse método também foi
utilizado por Durlofsky (1993).

O problema de escoamento bifasico foi resolvido por Kou & Sun (2014) com uma formu-
lagdo DG. Um esquema upwind dependente da velocidade aplicado ao método dos elementos
finitos com volumes de controle nodal foi proposto por Adb & Abushaikha (2020).

Outras abordagens alternativas para a melhoria na eficiéncia das formulagdes sdo as técni-
cas de linearizagdo, como, por exemplo, os esquemas de diferencas finitas propostos por Abd
et al. (2024).

Uma analise do desenvolvimento historico de técnicas para simulagdo de fluxo bifasico foi
realizada por Liu et al. (2024). Esse trabalho apresenta os avancos de técnicas como o método
dos elementos de contorno, método dos elementos finitos estendidos e método do campo de
fases. O trabalho também aborda as recentes técnicas de aprendizado de maquina que vem

sendo alvo de aplicagdes em diversas areas do conhecimento.
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5.3 METODOS ESTABILIZADOS DE ELEMENTOS FINITOS

O método padréo de elementos finitos, dado pela formulagao classica de Galerkin, funciona
bem em problemas difusivos, porém, quando ha a predominancia da advecgéo, tal como no
escoamento multifasico em meios porosos, no transporte de contaminantes, na transferéncia de
calor e na solu¢éo das equagdes de Navier-Stokes, esse método apresenta resultados com osci-
lagdes espurias e com taxas de convergéncia lentas.

Diante desse contexto, as formulagdes estabilizadas de elementos finitos surgiram como
solucdo para tais dificuldades, adicionando termos nas equagdes discretas, que podem ser in-
terpretados como uma mudanga na forma das fun¢des de interpolacdo. Esses termos adicionais
sdo determinados em fung¢éo de condigdes fisicas da solugdo.

Uma das técnicas utilizadas para a estabilizag¢do é a formulagdo SUPG (Silva, 2000; Ko-
varik et al., 2016; Durlofsky, 1993), amplamente utilizada no transporte convectivo e que esta-
biliza a solugdo na dire¢@o do escoamento. O termo estabilizador dessa formulagédo é proporci-
onal ao residuo da equacéo na forma fraca.

Outra técnica de estabilizagdo é o CAU (Coutinho et al., 2003), que penaliza as fungdes de
forma com uma difusdo numérica proporcional a diferenga entre os gradientes da solugdo e da
funcdo de forma. Essa técnica age de maneira localizada em regides onde o gradiente apresenta
variagdes bruscas. O método DG (Kou & Shuyu, 2014) também € uma alternativa estabilizada
do método de Galerkin classico.

O método dos elementos finitos mistos (Sloan & Abbo, 1999.a; Sloan & Abbo, 1999.b;
Phillips, 2005; Phillips & Wheeler, 2007; Phillips & Wheeler, 2008; Oyarzua & Ruiz-Baier,
2016; Yi & Bean, 2017; Xiaobing, et al., 2018; Niu, et al., 2021) ¢ utilizado em situagdes que
duas ou mais variaveis precisam ser calculadas simultaneamente, de forma acoplada, preser-
vando a conservacdo local. Geralmente esse método trata a variavel primaria e o seu fluxo, que
sdo aproximadas por func¢des de forma diferentes. Essa situacdo ocorre, por exemplo, na teoria
geral do adensamento.

O trabalho de Raviart & Thomas (2006) é um cléssico na literatura dos elementos finitos
mistos, eles introduziram os elementos de Raviar-Thomas, que sdo compostos por aproxima-
coes de ordens distintas entre a varidvel analisada e seu fluxo. Apesar de outros trabalhos na
década de 70 apresentarem os conceitos dos elementos finitos misto, esse trabalho ¢ conside-
rado o consolidador do método.

Outros métodos estabilizados utilizados na simulagdo de problemas em meios porosos sdo:

método dos elementos finitos baseado em volumes de controle (Langtangen, 1990) esquema
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hibrido misto do método dos elementos finitos (Fucik et al., 2019) e método sem malha baseado

em Petrov Galerkin (Kovatik et al., 2016).

5.4 MALHAS NAO-CONFORMES

As malhas ndo-conformes surgiram como alternativas para situagdes em que a discretiza-
¢do do problema a partir de uma malha conforme se mostra restrito, ou quando se deseja otimi-
zar o nimero e graus de liberdade do modelo. Uma dessas situagdes é quando as caracteristicas
da simula¢do podem impor a necessidade de refinamentos locais. Segundo Bitencourt Jr. et al.
(2015), quando o refinamento ocorre em malhas conformes, ha a possibilidade do surgimento
de elementos distorcidos que comprometem a solu¢do. Sendo assim, a utilizacdo das malhas
ndo-conformes surge como uma solugdo alternativa para essa problematica.

O método de Mortar (Bernardi et al., 1990) ¢ um método classico para acoplamento de
malhas, que utiliza multiplicadores de Lagrange para a construgédo das equagdes de compatibi-
lidade. Para que essas equagdes sejam formuladas é necessaria a criagdo de superficies inter-
medidrias que satisfacam a condi¢@o de inf-sup (ponto de sela), sendo essa escolha um fator
determinante na solugéo. A criag@o das superficies intermediarias implica no aumento dos graus
de liberdade do problema, aumentando assim o custo computacional, conforme discutido por
Zhou et al. (2020), que apresenta uma proposta para a minimizagao desse custo.

O método de Mortar é amplamente utilizado em problemas de diversas naturezas tais como
o problema de contato (Belgacem et al., 1998; Temizer, 2012; Farah et al., 2017; Svétlik et al.,
2023), eletromagnetismo (Cheriet et al., 2007), geomecanica (Francisco & Carol, 2020) e fluxo
em meios porosos (Schédle, et al., 2019).

A utilizacdo do método de Mortar com uma formulagéo estabilizada do MEF foi proposta
por Kim et al. (2016). Laughton et al. (2021) realizaram um estudo comparativo da performance
numérica do método de Mortar e do método ponto-a-ponto em interfaces nao-conformes apli-
cados a uma formulag¢do descontinuo Galerkin. O método ponto-a-ponto possui conceitos e
implementa¢do mais simples que o método de Mortar, pois a compatibilizagdo € realizada in-
terpolando diretamente os valores das variaveis entre as malhas.

Outros métodos para o tratamento de malhas ndo-conformes sdo o método das células (Wil-
son et al., 2021; Surendran et al., 2021) e o método dos elementos virtuais (Xin et al., 2017).
Uma aplicag@o interessante no contexto das malhas ndo-conformes € o seu refinamento adap-

tativo ao longo da simulagdo (Cerveny et al., 2019).
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A metodologia do EFA foi proposta por Bitencourt Jr. et al. (2015) onde a construgéo das
equacdes de compatibilidade ¢ realizada utilizando os graus de liberdade das malhas a serem
acopladas, sem a necessidade da criacdo de graus de liberdade adicionais. A validagéo da téc-
nica foi realizada para acoplamentos rigidos e ndo rigidos em problemas mecanicos utilizando
diversos tipos de malhas.

Outra vantagem do EFA ¢ a possibilidade de simular materiais heterogéneos com a sobre-
posicdo das malhas que definem cada um dos materiais constituintes, uma dessas aplicag¢des é
apresentada por Bitencourt Jr. et al. (2018) para a modelagem de pegas de concreto armado.
Essa abordagem considerou as armaduras como elementos de uma malha reticulada, inserida
em elementos planos para o caso bidimensional e volumétricos para o caso tridimensional, que
representam o concreto, para os respectivos casos.

Outros exemplos de aplicagdes do EFA foram propostos por Manzoli et al. (2021), Cleto
et al. (2022) e Damirchi et al. (2022) para a modelagem do fluxo em meios porosos fraturados.
Eles consideraram as fraturas como elementos lineares sobrepostas & malha da matriz porosa.
Nesses trabalhos também foram avaliadas as influéncias dos parametros de penalidade na con-
tinuidade do campo de pressdes entre 0 meio poroso ¢ as fraturas.

O EFA foi utilizado por Rodrigues et al. (2017) para problemas de fissuragdo em pegas de
concreto utilizando uma proposta multiescala simultdnea, onde o concreto foi modelado em
duas escalas distintas, uma para o agregado e outra para a matriz, apresentando resultados ani-

madores.
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6 ELEMENTOS FINITOS DE ACOPLAMENTO

A presente se¢do apresenta o método dos EFA, propostos por Bitencourt Jr. et al. (2015).
O EFA ¢ utilizado para o tratamento das malhas ndo-conformes e ¢ utilizado tanto no problema
hidromecénico quanto no problema de escoamento bifasico.

Esse método possui caracteristicas que o torna bastante interessante quando confrontado

com outros métodos da literatura. Essas caracteristicas estdo citadas a seguir.

e As equacdes de compatibilidade entre as variaveis das malhas sdo construidas sem a
necessidade da criagdo de graus de liberdade adicionais;

¢ O método permite que sejam modelados acoplamentos semirrigidos com facilidade;

¢ O método permite o acoplamento de malhas com elementos de qualquer dimenséo e
qualquer tipo;

e A formulagdo permite o acoplamento de malhas sobrepostas e adjacentes;

e Nio ha a necessidade da criagdo de uma regido intermedidria entre as malhas a serem

acopladas para a imposi¢ao das condi¢des de compatibilidade.

A compatibilidade entre as malhas serd imposta a partir da adicdo de um termo de acopla-
mento nas matrizes do sistema discretizado. Esse termo impde uma rigidez relativa entre as
variaveis da malha grossa e da malha fina. A determinagdo desses termos sera apresentada a
seguir.

A Figura 5 ilustra a subdivisio do dominio avaliado nos subdominios 2! e 22 onde o sub-
dominio 2? ¢ discretizado, na interface, por uma malha menos refinada que o subdominio 022.
Para efeitos praticos a malha do subdominio £ sera denominada malha grossa e a malha do
subdominio 027 sera denominada malha fina. Os contornos dos subdominios sdo dados por I'*
e I'? e a interface entre eles é definida como I'? = I'* N I"2. Nessa interface 0os nds nio pre-
cisam ser compartilhados, como pode ser observado na Figura 5.

As equagdes de acoplamento dos subdominios citados serdo construidas utilizando os ele-
mentos finitos de acoplamento, ilustrado na Figura 5. Para cada n6 de acoplamento c,, sera
criado um elemento finito de acoplamento (EFA;), constituido por este n6 mais os nos do ele-

mento correspondente da malha grossa.



EFA,

Figura 5. Esquema de acoplamento de malhas ndo-conforme com destaque para os elementos finitos de

acoplamento.
Fonte: O autor (2025).
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O estabelecimento do acoplamento da varidvel analisada (pressdo, saturagdo ou desloca-

mento) € feito anulando a diferenga do seu valor no né de acoplamento c,, € no ponto material

de coordenadas x,. Essa diferen¢a ¢ chamada de deslocamento relativo (ug) para o problema

mecanico e para o problema hidraulico presséo relativa (pg) e saturagio relativa (sg).

Os valores avaliados em x, sdo determinados pela interpolacdo das fun¢des de forma dos

elementos (N, ; para os deslocamentos € Nj, ; para as pressoes e saturagdes) aplicada aos vetores

das variaveis nodais (u;, p;, s;). As variaveis avaliadas no n6 de acoplamento s3o identificadas

pelo subindice cn.

As condi¢des de compatibilidade descritas estdo apresentadas nas equagdes 1, 2 e 3 para os

deslocamentos, pressdes e saturagdes, respectivamente.

nnu

— — RC 4,C
Ug = Uep — z Nu,i(xD)ui - Bu u
i=1

nnp

Pen — Z Np,i(XD)pi = Bg pC
i=1

Pr

nnp

_ _ nC C
SR = Sen — Z N, i(xp)s; =By s
i=1
sendo:

Bg = [_Nu,l(XD) _Nu,nnu(xD) I]

u® =[u;y .. Uppy Ugy]

@)

)

3)

“
)
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Bg = [_Np,l(xD) _Np,nnp(xD) 1] (6)
pC = [p1 «o DPnnp pcn] (7)
s¢ = [51 o Snnp Scn] (8)

Os vetores u, p¢ e s¢ armazenam os deslocamentos, pressdes e saturagdes nos elementos
de acoplamento. Os valores de nnu e nnp sdo, respectivamente, o nimero de nds do elemento
mecanico e do elemento hidraulico, e a matriz I € a identidade. Os vetores de fungdes de forma
dos deslocamentos sdo dados por N,,; = Ny ;I, sendo u; = [Wi V;] corresponde ao vetor de
deslocamentos nodais.

As formas fracas das equagdes de compatibilidade para os problemas mecanicos, de fluxo

e de saturagfo s@o obtidos de forma analoga ao realizado por Bitencourt Jr. et al. (2015), e dados

por:
SWint = Sug” f(ug) 9)
5Q, = 6pr" qs(pg) (10)
SFE, = 8sp" f(sg) (11)

onde Sug’ é um deslocamento virtual arbitrario, Spg’ ¢ uma pressdo virtual arbitraria e 5sg "
uma saturagdo virtual arbitraria e seus conjugados sio f(ug). qs(pg) € f;(sg), respectivamente.

As forcas internas f™, os fluxos hidraulicos internos @™ e os fluxos de saturagfo internos
fint s3o obtidos a partir da interpolagdo das variaveis conjugadas utilizando as matrizes com as

fungdes de forma B e BS.

fint = BE" f(uy) (12)
q™ = BS q,(pp) (13)
fint = BE' f,(sp) (14)

As matrizes tangentes de cada problemas sdo dadas por:

afint

T
e B¢ C,BS (15)

kC
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he =5 = BS' C,BS (16)
e int 1

o ofint BTGB (17)
ds¢

onde C,,. C,. e C; sdo, respectivamente, as varidveis constitutivas de cada problema. Um modelo

de compatibilidade pode ser utilizado de acordo com as equagdes abaixo.

f = Cyup = C,BSu® (18)
q = C,pp = C,B;p° (19)
f, = Cssp = CngsC (20)

onde a matriz C,, ¢ formada pelos parametros de penalidade mecanicos de acordo com a equa-
¢d0 21, ja C, e C, slo valores escalares que controlam o grau de acoplamento entre as pressoes

e saturagdes das malhas acopladas.

Cux 0 ]

“=lo ¢,

@

Para a considerag¢do do acoplamento rigido os valores de C,, . € C,, 5, devero ser nimeros
grandes, semelhante as técnicas numéricas de imposi¢do de condi¢des de indeslocabilidade em
problemas estruturas. De forma analoga, para que haja o acoplamento total dos fluxos entre os
subdominios 0 mesmo critério € imposto aos pardmetros C, e C,. Entdo, a escolha desse nimero
¢ fun¢éo da ordem de grandeza dos elementos da matriz do problema, que ¢ fun¢do das propri-
edades dos materiais envolvidos e das condigdes de contorno. Entdo, é natural que problemas
distintos tenham diferentes valores dos parametros de acoplamento pela necessidade da sua
calibragao.

Caso haja o interesse de que ndo haja acoplamento ou que esse acoplamento seja parcial,
como apresentado por Bitencourt Jr. et al. (2015), pode-se aplicar um valor intermediario entre

0s extremos ou até mesmo uma lei constitutiva entre os dominios.
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7 FUNCOES DE FORMA E OPERADORES DISCRETOS

Essa secdo apresenta o desenvolvimento das fun¢des de forma e dos operadores discretos

utilizados nas formula¢des de elementos finitos do presente trabalho.
7.1 ELEMENTOS TRIANGULARES LINEARES

A equagdo 22 apresenta a expressdo para a interpolagdo da pressdo (p) a partir da fungio
de forma hidréaulica (Np) e do vetor de pressdes nodais (p). As pressdes, no contexto do esco-
amento bifésico, recebem o subscrito n, referente a fase ndo-molhante e as saturagdes o subs-

crito w referente a fase molhante.
p=Npp.ondeN, =[Np:1 Npp Npslep=[p1 P2 P3]” (22)

onde Np; e p; sdo, respectivamente, a fun¢do de forma e a pressdo no no i.
A mesma func¢éo de forma também ¢ utilizada para a interpolagédo das satura¢des da fase
molhante, da sua derivada temporal e da fun¢do de forma w, apresentadas, respectivamente,

nas equacdes 23.a, 23.b e 23.c.

sy =N,ses=[S1 5 s3]T (23.2)
Isw

% =Nyaea=[a1 ar az]” (23.b)
w=N,cec= [c1 ¢z c3]T (23.0)

Os termos s;, a; € ¢; sdo, respectivamente, a saturacdo, a derivada temporal da saturagéo e
a funcdo de forma avaliada no no i.

Para a defini¢do dos operadores discretos serd utilizado o processo de mapeamento do ele-
mento. Esse processo estd ilustrado na Figura 6 e consiste em escrever as coordenadas no espago
mapeado (&,71), que possui coordenadas conhecidas, em fun¢do das coordenadas do espago
fisico (x,y). Os valores das varidveis mapeadas variam da seguinte forma: 0 <& <1e 0 <

n<1.
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n61 (x4,y1)
(0,00 1,00)(

®,
n62 (xz,y7) (0,00 0,00) (1,00 0,00)
Espago real(x,y) Espaco mapeado (§,1)

Figura 6. Mapeamento de elemento triangular linear.
Fonte: o autor (2025)

As relacdes entre as coordenadas do espaco fisico e mapeado, entdo, podem ser escritas

como:
3
X(Em = ) Ny (42)
i=1
3
) = N [ \S)» [
y(&,m) ; pi(§, MY (24.b)
onde as fung¢des de forma no espago mapeado sdo dadas por:
Np.(§m) = ¢ (25.2)
Np2(§m) =n (25.b)
Npz(§m)=1-§—n (25.¢)

A partir das defini¢des apresentadas, pode-se obter as seguintes derivadas parciais:

3
aX(E, 77) _ Z aNp,i(gi 77)

F L (26
3
0x(&,n) O O0Nyi(€m)
o ; " (26.b)
3
ay(En) " o0Ny:i(€m)

i=1
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3

ay(&mn) O O0N:i(€,m)
an —Z oV (26.d)

i=1
Define-se MN como:

aNp,l(fi 77) aNp,Z (6! 77) aNp,3 (6! 77)

ez o7 ot
MN=1on,,(&m) ON, (&) ON,a(Em) 27
an an on

e CC como a matriz que contém as coordenadas elementares, dada por:

X, Xz x31T
= 28
ce [3’1 Y2 J’3] (28)

A partir da equagio 27 e da equagdo 28 ¢ possivel obter a matriz jacobiana, dada por:

dx 0y

9§ 0¢

dy dy (29)
dn O0n

J=MN.CC=

Agora € possivel definir a matriz B, associada ao operador gradiente no espago fisico como:

ONp1(&,m) ONp,(E,m) INy3(E1m)

0¢ 0¢ 0¢ (30)
ONp1(&E,m) ONp,(E,m) INy3(E1m)

an an an

B=]J!

onde:

¢ 0n

= G1)
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_| ox dx dx
B=lon,, oN,, 0N, (32)

dy dy dy

Aplicando as relagdes acima ao tridngulo linear, pode-se obter a matriz B de forma expli-
cita:

1 y23 Y31 3’12] (33)

B=—
24 X322 Xq13  Xpq

onde xij =X;i— xj c le =Y _yj

Essa matriz pode ser escrita em termos de suas coordenadas como.

B,
B = [By] (34)
onde
B, = —[V2s Y1 Yio] (35)
x =5l Vs Yz
B, = ! [X32 X13 X21] (36)
y =5z Xz X

De posse das derivadas parciais das fungdes de forma € possivel escrever o operador diver-

gente como:
ON,; ONp; ON,, ON,, ON,3 ONp3
Dy = ] G7)
ox dy 9ox 9y  oOx  dy
escrito explicitamente como:
(38)

1
de:ﬂD’B X32 Y31 X13 Y1z X21]
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7.2 ELEMENTOS TRIANGULARES QUADRATICOS

O elemento triangular quadratico esta apresentado na Figura 7, contendo 6 nds onde serdo
definidos, em cada né, um vetor bidimensional (deslocamento). A equacéo 39 apresenta a ex-
pressdo de interpolagéo do deslocamento (d) no elemento a partir da fungéo de forma mecanica

(N,,) e do vetor de deslocamentos nodais (u).
d = Nou (39)

onde d = [u v]T é o vetor de deslocamentos e a matriz N,, engloba as func¢des de forma do

elemento como:

N,

[Nu1 0 Ny 0 Nys 0 Nys 0 Nys 0 Nyg 0 (40)
- [ 0 Nv,l 0 Nv,2 0 Nv,3 0 Nv,4 0 Nv,S 0 Nv,6]

O vetor u ¢ dado por:
u= [u1 Vi U UV, Uz V3 Uy Vg Us Vs Ug v6]T (41)

onde u; e v; sdo, respectivamente, os deslocamentos horizontais e verticais do né i.

Para a definicdo das func¢des de forma e de suas derivadas € necessaria a realizacdo do
mapeamento dos elementos, como esquematizado na Figura 7. De forma analoga aos elementos
lineares, 0 mapeamento consiste em escrever as coordenadas no espago mapeado (£,1) em
fungdo do espago fisico (x,y). As coordenadas mapeadas variam de acordo com: 0 < ¢é < 1le
0 <1n < 1. Para que as expressdes sejam obtidas de forma mais elegante, define-se a variavel

a=1—-§&—n.
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) n
no6l (xy,y1)
, (0,00
no6 (xq, ys)
n64 (x4, Ys) né3 (x3,y3)
O
no65 (xs,ys)
n62 (x3,5,) (0,00 0,00) n64 (1,00 0,00)

Espago real(x,y) Espaco mapeado (,7)

Figura 7. Mapeamento de elemento triangular quadratico.
Fonte: o autor (2025).

As fungdes de forma no espaco mapeado sdo dadas por:

Ny1(€,m) = —a(1l — 2a) (42.2)
Ny 2(§,m) = —=§(1—2¢) (42.b)
Nys3(&m) = —n(1—2n) (42.c)
Ny4(§,m) = 4a (42.d)
Nys5(§,m) = 4én (42.e)
Ny6(§,m) = 4na (42.9)

As relagdes entre as coordenadas mapeadas e as coordenadas fisicas sdo dadas por:

6
X = ) NugE (“3.)
i=1
6
YEM = ) Ny, (#31)
i=1

A partir desse mapeamento, obtém-se as derivadas parciais como:

6

6x(f, 77) _ aNu,i(fl 77)
Pl ‘2 FrE

(44.2)

i=1
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0x(£m) _ i ONuGm) i)
om &L o '
ay(f 1) Ny, (, n)
. (44.¢)
-5
6
ay(f; 77) aNu L(fﬁ 77)
= : ; 44.d
an L. o Vi (44.d)

Define-se a matriz MN, que contém as derivadas das fun¢des de forma em relacéo as coor-

denadas do espago mapeado como:

ONy1(§m) Ny (Em)  ONy3(§m)  ONwa(§m)  ONus(Em)  ONye(E 1)

3 P P I3 0§ 0 0
MN = 10N (Em) ONa(E) ONga(Em) ONus(E) ONusEm) NgsEm| 4
on on on on on on

Define-se a matriz CC contém as coordenadas dos nos do elemento como:

Xy X3 X4 Xg xS]T (46)

cc=[x1
Yi Y2 Y3 YVa Vs Ve

De posse das duas matrizes definidas na equagdo 45 e na equacéo 46, é possivel obter a

matriz jacobiana pela equacdo 47.

dx 0y
0§ 0§
dy dy 47
an 0dn

] = MN.CC =

Define-se, entdo, a matriz B, que € composta pelas derivadas das fun¢des de forma como:

ON,; ONy, ONyu3 0Ny, ON,s ONyg

_ | ox 0x 0x 0x 0x 0x 48
=|oN,: 0Ny, 0Nz 0Ny, ON,s 0Ny (48)

ay ay ay ay ay ay
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Essa matriz pode ser obtida pela seguinte operagao:

Ny 1(Em) ONyo(Em) ONy3(§,m) ONwa(§m) ONys(Em) ONyue(E,m)

B=J1 0 0 0 0 0§ 0§
aNu,l(S' 77) aNu,Z (fl 77) aNu,3 (fl 77) aNu,‘l—(fl 77) aNu,S (S' 77) aNu,G (S' 77)

on on on on on on

(49)

sendo:

a§  on

=9 (50)

dy dy

A partir da obtengdo da matriz B é possivel definir a matriz B,,, utilizada para escrever a

relacdo entre as deformacdes e deslocamentos do problema mecanico como:

B,
0N, 1 0N, , 0N, 3 0N, 4 ON, s 0N, ¢
ox 0 ox 0 ox 0 ox 0 ox 0 ox 0
3 0Ny 1 0 0Ny, 0 0Ny 3 0 ONy 4 0 ONy s 0 ONy¢ (&29)]
- oy oy oy oy dy dy

ON,, ON,, ON,, ON,, ON,3 ON,3 ON,, ON,, ON,s5 ON,s ON,s ONyg
dy 0x ady 0x dy 0x dy 0x dy 0x dy 0x
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8 ACOPLAMENTO HIDROMECANICO EM MEIOS POROSOS COM ESCOA-
MENTO MONOFASICO

A presente capitulo apresenta a formulagdo matematica e numérica para a solugéo do aco-

plamento hidromecanico com escoamento monofésico em meios porosos.
8.1 FORMULACAO MATEMATICA

A teoria geral do adensamento (Biot, 1941), consiste na formulagdo matematica que des-
creve o acoplamento hidromecanico em meios porosos. Um dos casos particulares dessa teoria
¢ a poroelasticidade plana, que sera introduzida nesta segao.

As hipdteses simplificadoras adotadas para esse problema sdo: escoamento monofasico,
meio totalmente saturado, processo isotérmico e grios e fluidos incompressiveis. Além disso,
o problema mecanico ¢ abordado utilizando as considerag¢des do estado plano de deformagdes

(EPD) (Silva, 2018) e regime elastico linear.
8.1.1 Equacio de equilibrio mecinico

Para que um determinado corpo esteja em equilibrio mecénico € necessario que a equagio

52 seja satisfeita.
V.o+b'=0 (52)

onde 0 = [0 0]7, b ¢ o vetor de forgas de corpo, dado por b = [by by]T e G € o tensor de

tensdes, definidos como:

Oy Txy]

5= [
Tyx O'y

Sendo oy € 0, as tensdes normais na dire¢do x € y, respectivamente. Ja as tensdes Ty, €

Tyx S0 as tensdes cisalhantes.
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8.1.2 Rela¢ao tensao-deformacio

A relag@o constitutiva entre a tens@o e a deformacdo dos meios elasticos € dada pela lei de

Hooke, apresentada na equacdo 54.

G = D¢ (54)

sendo P a matriz constitutiva do material e € o tensor de deformacdes.
Utilizando da seguinte relagdo: 7, = T, que € garantida quando um corpo se encontra
em equilibrio estatico, pode-se escrever de forma simplificada o tensor de tensdes como um

vetor, conforme a equagdo 55.
6=[0x Oy Txy]" (55)
De forma analoga, define-se o vetor de deformagdes como:
e=[& & Vayl" (56)
Levando em conta as caracteristicas dos problemas de interesse desse trabalho, que se de-
senvolvem ao longo de duas dire¢des coordenadas e que a outra dire¢do € consideravelmente

maior que essas duas, serd utilizado o estado plano de deformagdes para a descricdo da matriz

constitutiva, que é definida na equagéo 57.

(1 — 0
_ E1-v) vV
“Tiva-m|i=v 0 7
0 0 1-2v
| 2(1—v)]

onde E e v sdo, respectivamente, o modulo de elasticidade e o coeficiente de Poisson do meio.
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8.1.3 Equacio de conservacio de massa do fluido
A equacdo 58 ¢ a equagdo de conservagdo de massa em meios porosos.
Vv+q=0 (58)

onde v o vetor de velocidade do escoamento e g o termo de fonte ou sumidouro. O vetor v ¢

dado por:
v=[% W] (39)
8.1.4 Leide Darcy

A lei de Darcy (Darcy, 1856) ¢ uma equagdo constitutiva, apresentada na equagéo 60, que
rege o escoamento de um fluido em meio poroso. Nesse contexto sera apresentada a lei de

Darcy para um escoamento monofésico, desprezando os efeitos capilares e gravitacionais.

%
V= —K—p (60)
Yr

Nesse contexto, k € o tensor de permeabilidades, definido na equacdo 61, p a presséo e yy

a densidade do fluido.

Ky ny]

Kyw Ky (61)

|

8.1.5 Principio das tensoes efetivas

O principio das tensdes efetivas relaciona as variaveis mecanicas e hidraulicas de um meio
poroso durante o processo de adensamento. Esse principio foi desenvolvido por Terzaghi (Ter-

zaghi, 1943) e é dado por:
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=0 +1Ip (62)

onde @' € o tensor de tensdes efetivas, que € escrito como:

o, T
G = l x nyl (63)
Tyx Oy

onde ¢’, e ¢’} sdo as tensdes efetivas normais na diregdo x e y.

JaI¢ amatriz identidade, que para o caso bidimensional € igual a:
_[1 o
=] (64)

Realizando uma analogia com a simplificagdo do tensor de tensdes, pode-se definir o vetor

de tensdes efetivas simplificado como:
I __ ! ! T
¢ =[0yx 0y Ty (65)
Desta forma, o principio das tensdes efetivas pode ser reescrito da seguinte forma:
0 =0 +mg,p (66)
ondemg, =[1 1 0]
8.1.6 Sistema de equacdes do acoplamento hidromecanico em meios porosos
O problema de acoplamento hidromecéanico em meios porosos € regido por um sistema de
equacdes diferenciais. Para a obteng@o do respectivo sistema sdo utilizados os conceitos supra-
citados. Outras consideragdes tomadas no presente trabalho € que o coeficiente de Biot-Willis
possui valor a;, = 1 e o coeficiente de armazenamento especifico € nulo, ou seja ¢, = 0. A

Figura 8 apresenta um esquema de um meio poroso arbitrario com a definicdo do dominio e

contornos.
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Figura 8. Dominios e contornos no problema de acoplamento hidromecanico.
Fonte: O autor (2025).

Aplicando o principio das tensdes efetivas na equacdo de equilibrio mecanico, obtém-se:
V.o’ +b" =0 (67)

No presente contexto o fluido escoante no meio poroso € incompressivel e ocupa todos os
espacos vazios dos poros, ou seja, saturando totalmente o meio. Sendo assim, a variacdo de
massa do fluido € igual a variagdo volumétrica do meio, hipdtese que pode ser escrita matema-

ticamente como:

de,

V.V=E

(68)

sendo &, a deformacdo volumétrica, dada por &, = &, + &,,.
Desta forma, o sistema de equagdes que rege o problema hidromecénico com as hipdteses

apresentadas anteriormente ¢ dado por:

(VT(G’ + my,,p) + b=0,em 2 x (0,t]

de
V.v+ mauxTa—: =0,em x (0,t]

o' = Pg (Teoria da elasticidade)

L vV=-— y£ (Vp — b,,) (Lei de Darcy)

w

(69)
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8.1.6.1 Condig¢des de contorno e iniciais

As condi¢des de contorno, aplicadas conforme o esquema da Figura 8, sdo dadas por:

u = up sobre I, X [0, t] (70.a)
o.n = ty sobre Iy x [0, t] (70.b)
p = pp sobre I, X [0, t] (70.¢)
vl.n = qy sobre I X [0, t] (70.d)

e as condigdes iniciais sdo:

u(ty) = uem O (71.a)
p(ty) = p’em Q (71.b)

No conjunto de equagdes de acoplamento 6’ € o tensor de tensdes efetivas, p € a poropres-
sdo € mg,,,, definido anteriormente, ¢ um vetor auxiliar. A velocidade de Darcy € expressa por
Vv e a variagdo temporal da deformada volumétrica é dada por de/dt. Os deslocamentos (u)
possuem valor up ao longo de I, e as tensdes (6) possuem valores prescritos de ty ao longo
de Iy. As pressdes (p) possuem valores prescritos pp ao longo de Iy e o fluxo (vI.n = q)
possui valor prescrito gy ao longo de I. As condi¢des iniciais, definidas no tempo (t,) sdo
dadas por u® e p° para o campo de deslocamentos e pressdes, respectivamente. O tensor da
relacdo constitutiva da teoria da elasticidade € dado por B, k € o tensor de permeabilidades, y,,
¢ o peso especifico do fluido, b € o vetor de for¢as de corpo mecanico e b,, ¢ o vetor de forgas

de corpo hidraulico.

8.2 FORMULACAO NUMERICA

Essa se¢@o apresenta a formulag@o numérica utilizada para a discretizag@o das equacdes de
acoplamento hidromecanico apresentadas no sistema de equacdes 69, sujeito com as condigdes
iniciais e de contornos supracitadas. A discretizacdo espacial foi realizada pelo método dos

elementos finitos mistos e a discretiza¢do temporal pelo método 6 (Sloan & Abbo, 1999).
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8.2.1 Discretizacio espacial pelo método dos elementos finitos mistos

Para a realizacdo da discretizacdo das equagdes avaliadas pelo método dos elementos fini-
tos ¢ necessario definir a subdivisdo do dominio {1 em um conjunto de subdominios, denomi-
nados elementos finitos, ,. A divisdo apresentada segue as seguintes propriedades 1 =
Ul Q, e N2 Q, = @. Os termos nel e e sdo, respectivamente, o niimero de elementos da
malha e o e-nésimo elemento avaliado.

O conjunto de fungdes admissiveis para a pressdo e deslocamento sdo definidas abaixo.

P = {p"/p" e H"(Q),p"(x,t) = pg em Ip} (72.a)
Ut = {ul/ul e H"(Q),u(x,t) = uy em I} (72.b)
wh ={wh/wh e H"(Q),wt = 0em T}, @ I} (72.¢)

onde h indica a discretizagdo em elementos finitos, sendo H"(Q) ¢ H*(Q) um espago de di-
mensdes finitas sobre Q. O espago H(£) ¢ o espago de fung¢des no qual as primeiras derivadas

sdo quadradas integraveis, ou seja:
dfy?
feHY(Q) = f (%) aa <o (73)
o \dx

No presente trabalho os elementos utilizados s@o de Taylor-Hood, de forma que a condigéo
inf-sup de LBB (Babuska, 1971; Brezzi, 1974) seja satisfeita. A discretizagdo ¢ feita por ele-
mentos triangulares com as pressdes definidas nos vértices do tridngulo (fungdes de interpola-
¢éo e ponderagdo lineares, segundo o espaco de Hilbert continuo por partes, H (P;)) e os des-
locamentos nos vértices e nos centro das arestas (fungdes de interpolacéo e ponderagdo quadra-
ticas, de ordem 2, segundo espago de Hilbert continuo por partes, H (P,)). O esquema da defi-

nicdo dessas variaveis no elemento esta apresentado na Figura 9.
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LEGENDA

Né com grau de
liberdade de
deslocamento

O Né com grau de
liberdade da presséo

Figura 9. Graus de liberdade do problema hidromecanico.
Fonte: O autor (2025).

Aplicando o método dos residuos ponderados de Galerkin e o teorema de Green-Gauss nas
2 primeiras equagdes do sistema 69 e derivando a primeira em relacdo ao tempo, obtém-se as
suas formas fracas, definidas nas equagdes 74.a e 74.b e escritas, de forma compacta, nas equa-

coes 74.c e 74.d.

do’ op ot ob
IBEEdv+fBﬂmauxEdV—fNﬂﬁdS—fNEEdV=O (74.2)
ve ve Se ve

ou K K
f NgmauxTBudV_ - f Bgy—deVp + f NquS + f B;y—bde =0 (74.b)
w w

dat

ve ve se ve

ou _odp ofext

i —_— 74.c
k Jt +1 Jt at (74.)

Ju

T = 74.d
1 5t hp=q (74.d)
sendo:
k= f BIDB,dV (75.2)

Ve

= f B au, "N, dV (75.b)

Ve
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K
h=- j B —B,dV (75.¢)
Yw
Ve
ot db
ext — T "~ T _— 75.d
f fNuatd5+fNuatdv (75.d)
se ve
K
q=-— f NTqds — j B} b, v (75.€)
se ve w

O conjunto de equagdes 75 descreve as matrizes e vetores locais dos elementos, sendo k a
matriz de rigidez mecanica, I a matriz de acoplamento, h a matriz de condutividade hidraulica,
feXt o vetor de forcas externas e q o vetor de termo fonte.

Para a construgdo da matriz global do problema ¢ necessaria a contribui¢do dos elementos

de acoplamento definidos na se¢@o subsequente.

8.2.2 Construcio das matrizes globais do problema hidromecanico para malhas nio

conformes

As matrizes globais do sistema sdo construidas com a contribui¢@o das matrizes locais dos

elementos finitos e as matrizes dos elementos de acoplamento, conforme apresentado abaixo.

nelc nel0?! nel? nelc
K= Z K+ z KC = z f BIPB,dV + Z j BTPB,dV + z BS C B (76.2)
elem n=1 n=1 ye n=1 ye n=1
nel0t neln?
L= Z 1= Z f BTmu "N, dV + Z f BTm "N, dV (76.b)
elem n=1 ye n=1 ye
nelc nel0?! neln?
K K
H= ) h+ Y hi==) fB,T,—deV— > fBg;—deV
elem n=1 n=1 ye Yw n=1 ye Yw (76 C)
nelc ’

- ) B§'C,Bf
n=1
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1

l.Q
Fext — f— Z jNﬂadS— jNT—dV z fNﬂEdS

elem n=1 ge n=1 ye n=1 ge
(76.d)

neln?

ob
- Z fNuEdV

n=1 ye

nelnt nelnt neln?

Q=Zq=—z jN},‘qu—z fBTy de—z fNquS+

elem n=1 ge n=1 ye n=1 ge
(76.e)

neln?

- Z fBTib dv
Pyw "

n=1 ye

As matrizes K, L e H sdo, respectivamente, as matrizes globais de rigidez, de acoplamento
e de condutividade hidraulica. Os vetores Fé*t e Q introduzem no sistema as tensdes e fluxos
prescritos.

Sendo assim, o sistema global é dado pela equacdo 77, onde o problema hidraulico e o

mecanico sio resolvidos simultaneamente totalmente acoplados.

au

LS e+ 10 ab =T ] (77)
at

Os vetores U e P contém as incdgnitas mecanicas (deslocamentos) e hidraulicas (pres-

sdes), respectivamente.
8.2.3 Discretizacido temporal pelo método das diferencas finitas

Para a discretizacdo temporal da equacdo 77 sera utilizado o método 8 (Sloan & Abbo,
1999). O valor do parametro 8 podera ser ajustado de modo que a discretizagéo seja implicita,
explicita ou intermedidria. Para a aplicacdo da discretizacdo a equagdo 77 serd escrita de forma

compacta como:

)¢
M, o+ M X = F(t) (78)
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sendo
K L

M, = [LT 0] (79.2)
0 0

M=y o (79.b)

comX=[U P]TeF(t) =[F*t Q.

Discretizando os termos temporais de equagdo 78 pelo método das diferencas finitas ob-

tém-se:

(M, + OAtM,)X™ = [M; — (1 — §)AtM,]X™ ! + At[(1 — 8)F"1 + gF™] (80)

onde 8 ¢ um parametro que define o tipo de aproximagdo a ser usada, como citado anterior-
mente, e pode variar de 0 < 8 < 1 e os sobrescritos n e n + 1 correspondem aos valores nos
tempos t,, e t,,,1, respectivamente. O intervalo de tempo € dado por At, obtendo assim a relagdo
tne1 = ty + At

De acordo com o valor de 8 esse método corresponde a trés casos particulares definidos a
seguir:

e 0 =1,0-M¢étodo de Euler implicito;

e 0 = 0,0 — Método de Euler explicito;

e 6 =0,5-Método de Cranck-Nicolson.

8.3 AVALIACAO DOS ERROS

Para o presente trabalho foram utilizados 4 métricas de erros para a comparacdo entre 0s
resultados numéricos e as solu¢des analiticas. As métricas estdo apresentadas nas subsegdes
posteriores e sdo determinadas para um conjunto com N resultados numéricos (y;"*™) asso-

ciados aos respectivos resultados analiticos (y{"*%).
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8.3.1 Erro médio absoluto (MAE — Mean absolute error)

O erro MAE (Eyag Vana Ynum)) Possui a mesma unidade dos dados avaliados e seu valor
apresenta a média que a solugdo analitica esta se desfalcando em relacdo a solugdo numérica.
O MAE tem melhor resultados em situa¢des que os erros proximos da mediana sdo mais im-

portantes que os extremos, e sua determinag¢éo ¢ dada por:

N
1
EMAE(yana' Ynum) = NZD’EIM - ylnuml (81)
i=1

8.3.2 Erro percentual absoluto médio (MAPE — Mean Absolute percentual error)

O erro MAPE (EpapE Vana Ynum)) @presenta a porcentagem do erro numérico em relagio

ao analitico, correspondente a média dos erros relativos. Sua determinag¢éo ¢ dada por.

N
ana num
1 lyi

—y!
Envape(Yana> Ynum) = N n;ax(lya;al) (82)
i=1 L

8.3.3 Erro quadratico médio (MSE — Mean square error)

O erro MSE (Eysg Vana» Ynum)) apresenta a diferenga entre o valor numérico e o real com
a métrica MAE elevada ao quadrado. A interpretagdo dos resultados obtidos através desse erro
se torna as vezes dificeis de serem interpretados por conta da unidade do erro, que corresponde
ao quadrado da unidade das variaveis analisadas. A diferenca entre 0 MSE e o MAE € que o
MSE eleva os erros absolutos ao quadrado, fazendo com que os erros maiores sejam mais im-

portantes, penalizando mais os maiores erros absolutos.

N
1
Evse (yana: ynum) = ﬁZ(yiana - yinum)z (83)
i=1



73

8.3.4 Raiz do erro quadratico médio (RMSE — Root mean squared error)

O erro RMSE (Eysg Vana» Ynum)) possui a mesma filosofia do MSE, porém, para lidar
com a diferenca de unidades entre o erro e as variaveis analisadas, € introduzido a sua determi-

nag¢do a radicia¢do, conforme a equagdo abaixo.

N
1
Ermse Yanar Ynum) = NZ(yiana - yinum z (84)
i=1

8.4 EXPERIMENTOS NUMERICOS

Para a avaliag@o da formulagdo foram realizados 4 experimentos numéricos consagrados
na literatura, cada um a fim de verificar a capacidade da formulag@o proposta em resolver situ-
acdes especificas inerentes ao problema em questio. Todos os problemas possuem solugéo ana-
litica, que foram confrontadas com as solu¢cdes numéricas. Durante a valida¢do os exemplos
foram modelados utilizando malhas conformes e ndo-conformes.

A formulagdo apresentada possui o termo de carregamento mecanico em termos de deri-
vada temporal, sendo assim, a imposi¢do do carregamento ¢ realizada a partir de uma fungao
bilinear com uma parcela crescente até seu valor final, conforme apresentado na Figura 10. O

carregamento € imposto de forma linear com valor nulo a partir do instante ¢ = 0,00 até g7 no

instante t.

Carregamento

1L

L J

ty=Afxn, , o =AO0xn,

Figura 10. Carregamento ao longo do tempo no problema hidromecanico.
Fonte: O autor (2025).
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8.4.1 Adensamento unidimensional — Problema de Terzaghi

O problema do adensamento unidimensional de Terzaghi (Terzaghi, 1943) é um classico
da mecéanica dos solos e consiste no adensamento de uma coluna onde o carregamento é apli-
cado no topo drenante. Nas faces laterais sdo aplicadas condi¢des de simetria com fluxo e des-
locamento na dire¢do x com valores nulos. A face inferior € impermeével, ou seja, com fluxo
nulo, e indeslocavel na dire¢do y. A descri¢do do problema € apresentada na Figura 11.

O experimento numérico foi realizado utilizando trés malhas, uma conforme, apresentada
na Figura 11 e duas ndo-conformes com caracteristicas distintas. A primeira malha ndo-con-
forme, denominada malha 1, foi proposta para que o refinamento ocorra nos locais onde ha a
presenga de variagdes bruscas no gradiente das pressdes e tensdes ao longo da direcéo y. Essas
variagdes sdo previstas a partir do conhecimento da solugdo analitica. A segunda malha, deno-
minada malha 2, foi proposta para a avalia¢do da capacidade do método em acoplar malhas com
interfaces ndo coincidentes. Esse tipo de situacdo pode ocorrer quando hé a necessidade da
discretizagdo de furos circulares, como apresentado na Figura 12.

A malha 1 e a malha 2 sdo apresentadas, respectivamente, na Figura 12 e na Figura 13. Os
parametros da simulagdo sdo apresentados na Tabela 2.

Esse problema ¢ adimensionalizado pelo fator tempo T}, avaliado em um tempo t para uma

altura da camada igual a H que € dado por:

Cvt
sendo o coeficiente de adensamento dado por:
kE(1—v
(1-v) (86)

v A+ v)(1—2v)

onde k € o coeficiente de permeabilidade vertical e v o coeficiente de Poisson do material.
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Figura 11. Problema de Terzaghi: (a) descrigdo do caso; (b) malha conforme.
Fonte: O autor (2023).

Os resultados numéricos das pressdes foram confrontados com a solugéo analitica proposta
por Terzaghi (1943). Os resultados sdo apresentados na Figura 14 para Ty, = 0,001, T, = 0,01
,Ty =0,10, T, = 0,50 e T, = 1,00. As solugdes analiticas estdo plotadas em linha continua
e as solugdes numéricas de acordo com a legenda. A sobreposi¢do entre as solugdes aponta a

capacidade da formulagdo em resolver o problema de forma satisfatéria para as pressdes.

Tabela 2. Problema de Terzaghi: pardmetros fisicos.

Parametro Valor
E 1,00 X 10’ MPa
v 0,20
k
Yw 1.000,00%97/
K 1076 0 1em
| 0 10-el /s
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-

(b)

Figura 12. Problema de Terzaghi: (a) malha 1; (b) detalhe do refinamento da malha.
Fonte: O autor (2025).

el | -_—eem e s o Ee e o e EE B Ee Ee Em Ee = =

(a) (b)

Figura 13. Problema de Terzaghi: (a) malha 2; (b) detalhe do refinamento da malha.
Fonte: O autor (2025).

A Figura 15 apresenta os resultados numéricos e analiticos do deslocamento vertical no
topo do dominio, que s@o consistentes. O que se pode observar ¢ uma pequena diferenga entre
os resultados analiticos e numéricos que aumenta gradativamente, com os resultados numéricos
menores que os analiticos.

Para uma andlise quantitativa foram aplicados os erros definidos anteriormente (MAE,
MAPE, MSE e RMSE). Esses erros sdo apresentados, respectivamente, nas Tabelas 3,4, 5¢ 6

para as pressoes.
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Figura 14. Problema de Terzaghi: solu¢fo analitica e numéricas das pressdes.
Fonte: O autor (2025).

Analisando a Tabela 3 verifica-se que os erros diminuem com o avango do tempo. Esse
fato é verificado devido a suavizagdo nos gradientes das pressdes ao longo da simula¢do. Nos
tempos iniciais as diferengas entre os gradientes de tensdes induzem oscilagdes esptrias na
parte superior do dominio, o que justifica essa observacao.

Ao analisar os erros, percebe-se que 0s erros nos tempos iniciais possuem valores seme-
lhantes nos instantes iniciais, quando se compara a malha 1 com a malha 2. Com o avangar do
tempo os erros da malha 2 caem com uma taxa maior que os da malha 1.

Quando se analisa a Tabela 4, relativa aos erros MAPE, verifica-se que todos os erros pos-
suem valores na ordem de 10,072, apresentando resultados satisfatérios. Esses resultados sdo

corroborados com os erros MSE e RMSE, que sao apresentados na Tabela 5 e 6.
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Figura 15. Problema de Terzaghi: solugdo analitica e numéricas dos deslocamentos.
Fonte: o autor (2025).

A partir dos resultados qualitativos e quantitativos obtidos, verifica-se a consisténcia da

formulagdo em simular problemas unidimensionais de acoplamento hidromecéanico.

Tabela 3. Problema de Terzaghi: erros MAE da presséo.

Ewmae

malha malha 1 malha 2
fator tempo

conforme (ndo-conforme) (ndo-conforme)

T, = 0.001 13.5268 18.8865 21.4098
T, = 0.01 11.9975 13.8409 14.2267
Ty = 0.10 8.8052 9.8836 9.8191
Ty = 0.50 29119 4.0702 2.8545

Ty = 1.00 0.7181 2.1657 0.2035




Tabela 4. Problema de Terzaghi: erros MAPE da presséo.

Evape
Fator tempo malha malha 1 malha 2
conforme  (ndo-conforme) (ndo-conforme)
T, = 0.001 0.0130 0.0182 0.0206
T, = 0.01 0.0121 0.0140 0.0144
Ty = 0.10 0.0104 0.0116 0.0116
Ty = 0.50 0.0115 0.0162 0.0113
Ty = 1.00 0.0130 0.0407 0.0036
Tabela 5. Problema de Terzaghi: erros MSE da pressdo.
Evse
fator empo malha malha 1 malha 2
conforme  (ndo-conforme) (ndo-conforme)
T, = 0.001 366.9823 503.7843 534.9548
T, = 0.01 152.3583 198.0108 206.0281
Ty = 0.10 85.6819 103.3004 98.6267
Ty =0.50 9.4700 17.6622 8.3582
Ty = 1.00 0.5751 5.0181 0.0431
Tabela 6. Problema de Terzaghi: erros RMSE da pressdo.
Eruse
Fator tempo malha malha 1 malha 2
conforme (ndo-conforme) (ndo-conforme)
T, = 0.001 19.1568 22.4451 23.1291
T, = 0.01 12.3433 14.0716 14.3537
Ty =0.10 9.2565 10.1637 9.9311
Ty = 0.50 3.0773 42026 2.8911
Ty = 1.00 0.7584 2.2401 0.2077

79
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8.4.2 Adensamento unidimensional heterogéneo — Problema de Terzaghi heterogéneo

O presente problema é uma variagdo do anterior, possuindo as mesmas condi¢des iniciais,
de contorno e a mesma geometria. Entretanto, ele € constituido por um meio heterogéneo, di-
vidido em duas camadas que possuem permeabilidades diferentes, conforme apresentado na
Figura 16. Os parametros fisicos e numéricos utilizados na simulagdo estdo apresentados na
Tabela 7.
1

0, = 0,00MPa
a, = —1.000,00MPa

Nl

2,0m
u, = 0,00m
gy = 0,00MPa Y
m S
=0,00—
a N
3,0m

u, = 0,00m o, =0,00MPa q = 0,00
S

2,0m

Figura 16. Problema de Terzaghi heterogéneo: descrigéo do caso.
Fonte: o autor (2025).

Este problema foi solucionado a partir de 3 malhas ndo-conformes, denominadas malha 1,
malha 2 e malha 3, apresentadas na Figura 17. Essas malhas foram propostas a fim de verificar
como a formulagdo se comporta com malhas onde a interface entre elas ndo é regular, ocorrendo
sobreposi¢do dos elementos da malha grossa com os elementos da malha fina. Essa situagéo ¢
corrente em malhas ndo-conformes com interfaces curvas, semelhante a situagédo abordada no
experimento anterior. O nimero de graus de liberdade de cada malha € apresentado na Tabela
8.

A Figura 18 apresenta os resultados comparativos entre as solu¢des analiticas e numéricas
ao longo do eixo definido na Figura 16. A solugdo analitica foi proposta por Verruijt (2023), e
foi obtida utilizando uma analogia com as solu¢des de problemas termoelasticos em meios he-

terogéneos.
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Os resultados foram obtidos para os seguintes tempos adimensionais: Ty, = 0,01; T, =
0,10; T, = 0,50 and T, = 1,00. Esses tempos sdo obtidos da mesma forma do problema de
Terzaghi, utilizando os parametros da camada superior. Para a avalia¢do da performance da
formulagéo proposta foram utilizadas as mesmas métricas de erro do experimento anterior. Os
resultados s@o apresentados na Tabela 9,

Tabela 10,

Tabela 11 e Tabela 12. A partir da analise da Figura 18 € possivel verificar a consisténcia
entre todos os resultados avaliados.

Quando se realiza uma andlise quantitativa, a partir dos erros, pode-se perceber que em
todas as métricas os eles permanecem com valores proximos ¢ na mesma ordem de grandeza.
E possivel observar também que ndo existe uma relagio direta entre o refinamento da malha e
a diminui¢éo do erro, como se espera em malhas conformes. Isso ocorre pois quanto mais refi-
nada a malha interna mais se tem elementos que se sobrepde aos elementos da malha grossa,

explicando assim esse comportamento peculiar dos erros.

Tabela 7. Problema de Terzaghi heterogéneo: pardmetros fisicos.

pardmetros valores
£ 1,00 x 10’ MPa
v 0,20
k
Y 1.000,00%97/ .
1076 0
K cm
! [ 0 1076l /s
3% 1076 0
K cm
2 [ 0 3 x 10-6] /s
C 101 0
Y [ 0 101

Cp 102
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Detalhe

- ——————

malha 1 malha 2 malha 3

Figura 17. Problema de Terzaghi heterogéneo: malhas ndo-conformes.
Fonte: o autor (2025).

Tabela 8. Problema de Terzaghi heterogéneo: niimero de graus de liberdade das malhas.

graus de liberdade do  graus de liberdade do problema

malha problema hidraulico mecanico
malha 1 173 1250
malha 2 329 2450
malha 3 929 4154

Problema de Terzaghi heterogéneo

1.5
<]  malha 1
O malha2
#
1 *  malha3 <
05 analitica @
0 < ; . . <] = )
0 200 400 600 800 1000 1200

pressdo

Figura 18. Problema de Terzaghi heterogéneo: solucdo da pressdo ao longo da coordenada y.
Fonte: o autor (2025).



Tabela 9. Problema de Terzaghi heterogéneo: Erros MAE da press&o.

Evur
fator tempo malha 3 malha 4 malha 5
T, = 0,001 13,5268 18,8865 21,4098
T, = 0,01 11,9975 13,8409 14,2267
Ty = 0,10 8,8052 9,8836 9,8191
Ty = 0,50 2,9119 4,0702 2,8545
Ty = 1,00 0,7181 2,1657 0,2035

Tabela 10. Problema de Terzaghi heterogéneo: Erros MAPE da presséo.

Evure
fator tempo malha 3 malha 4 malha 5
T, = 0,001 0,0130 0,0182 0,0206
Ty = 0,01 0,0121 0,0140 0,0144
T, = 0,10 0,0104 0,0116 0,0116
Ty = 0,50 0,0115 0,0162 0,0113
Ty = 1,00 0,0130 0,0407 0,0036

Tabela 11. Problema de Terzaghi heterogéneo: Erros MSE da presséo.

Ense:
fator tempo malha 3 malha 4 malha 5
Ty, = 0,001 366,9823 503,7843 534,9548
Ty = 0,01 152,3583 198,0108 206,0281
Ty = 0,10 85,6819 103,3004 98,6267
Ty = 0,50 9,4700 17,6622 8,3582
Ty = 1,00 0,5751 5,0181 0,0431
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Tabela 12. Problema de Terzaghi heterogéneo: Erros RMSE da presséo.

Erruse
fator tempo malha 3 malha 4 malha 5
T, = 0,001 19,1568 22,4451 23,1291
T, = 0,01 12,3433 14,0716 14,3537
Ty = 0,10 9,2565 10,1637 9,9311
Ty = 0,50 3,0773 4,2026 2,8911
Ty = 1,00 0,7584 2,2401 0,2077

8.4.3 Adensamento bidimensional homogéneo — Problema de Mandel

O problema proposto por Mandel (1953) consiste na compressdo de uma camada de solo
por duas placas rigidas e impermedveis na face superior e inferior, com a drenagem ocorrendo
pelas faces laterais. O fluxo ocorre no sentido horizontal, indo do meio da amostra para as
laterais, onde as pressdes sdo nulas. Esse problema classico € frequentemente utilizado na vali-
dag¢do da capacidade das formulagdes em simular adensamentos que se desenvolvem em duas
dire¢des coordenadas.

Para a constru¢do de um modelo otimizado de simulacéo, visando a redu¢do no nimero de
graus de liberdade, foram utilizadas as condi¢des de simetria que ocorrem nos eixos médios
horizontais e verticais, como pode ser observado na Figura 19. Uma caracteristica peculiar
desse problema ¢ a imposi¢do da condi¢do de contorno imposto pela placa rigida, pois exige
que os deslocamentos verticais sejam iguais e que os deslocamentos horizontais estejam livres
ao longo de toda a face.

A imposi¢do dessa condi¢do de contorno € possivel a partir de EFA, utilizando malhas
distintas para a modelagem da placa rigida e para a massa de solo, adequando os parametros de
penalidade do acoplamento para o problema mecanico e hidraulico. Na simulag¢do a compo-
nente horizontal C, , da matriz C,, foi anulada, para que os deslocamentos horizontais perma-
necessem livres. A condi¢do de impermeabilidade da placa foi imposta anulando o pardmetro
de penalidade do problema hidraulico, C,. além disso as pressdes foram mantidas nulas ao
longo da simulag¢do em todo o dominio da placa, para que ndo fossem desenvolvidos fluxos.

Essa abordagem proposta para a solugdo de problemas de interagéo solo-estrutura é inédita,

abordada pela primeira vez no presente trabalho.
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Figura 19. Problema de Mandel: descrigdo do caso.
Fonte: O autor (2025).

A malha da simulacdo estd apresentada na Figura 20, sendo a parte superior, onde sdo
encontrados os maiores elementos, a regido correspondente a placa. A regido inferior, corres-
pondente a massa de solo, foi discretizada com uma malha mais refinada onde ocorrem as mai-
ores variagdes nos gradientes das pressoes, ou seja, na face drenante. Os parametros da simula-
cdo estdo apresentados na Tabela 13.

As solugdes numéricas das pressdes foram confrontadas com as solugdes obtidas por Man-
del (1953). Elas foram obtidas para os fatores tempo adimensionais Ty, = 0,01 , T, = 0,10 ,
Ty = 0,50 e Ty = 1,00, que € dado pela equagdo 87 onde ¢y, € obtido pela equagido 86 consi-

derando L o comprimento horizontal do dominio.

tey

Ve

87)

A Figura 21 apresenta as solugdes numéricas e analiticas, com as solugdes analiticas apre-
sentadas em linha continua, enquanto as solugdes numéricas estio identificadas na legenda. Ja
a Figura 22 demonstra como o conjunto solo-placa se deforma em T, = 1,00. Analisando a

figura é possivel observar que a placa se mantém rigida e os deslocamentos horizontais sdo
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livres, conforme esperado. A Figura 23 apresenta o campo de pressdes correspondentes ao Ty =

1,00, onde € possivel observar o desacoplamento do campo de pressdes entre a placa e o solo.

Tabela 13. Problema de Mandel: pardmetros fisicos.

Parametro Valor
E 1,00 x 108MPa
1 0,40
k
Yw 1.000,00%97/
K 1076 0 1em
[ 0 106 /s
C 0 0
“ [0 1010
C, 0,00

Figura 20. Problema de Mandel: malha no-conforme.
Fonte: O autor (2025).
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Figura 21. Problema de Mandel: pressdes ao longo do eixo x.
Fonte: O autor (2025).
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Figura 22. Problema de Mandel: deformada em Tv = 1,00.
Fonte: O autor (2025).
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Figura 23. Problema de Mandel: campo de pressdes para Tv = 1,00.
Fonte: O autor (2025).

Os campos de tensdes efetivas 'y, o'y, e Ty, sdo apresentados, respectivamente, na Figura
24, Figura 25 e na Figura 26. Como pode-se observar as tensdes de mantem constantes na
amostra e apresentam valores variaveis na placa, como esperado por conta da sua elevada rigi-

dez quando comparada a do solo.

Figura 24. Problema de Mandel: campo de tensdes efetivas em x para Tv = 1,00.
Fonte: O autor (2025).
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Figura 25. Problema de Mandel: campo de tensdes efetivas em y para Tv = 1,00.
Tenséo efetiva em y

%108

Figura 26. Problema de Mandel: campo de tensdes cisalhantes para Tv = 1,00.
Tens#o cisalhante

Os resultados obtidos foram satisfatorios quando comparados com as solugdes analiticas.
Além disso, a utilizagdo do EFA para a imposi¢do da condi¢do de contorno do problema de
Mandel de forma natural, modificando apenas parametros intrinsecos ao método, compreende

resultados animadores para a solugo de problemas de interagdo solo-estrutura.

8.4.4 Sapata em meio homogéneo — Problema de Schiffman

O presente problema consiste na aplicagdo de carga por uma sapata em um solo homogé-
neo, com a solugfo analitica para o campo de pressdes proposta por Schiffman et al. (1969).
Sua descri¢do € apresentada na Figura 27, onde uma carga de 1.000MPa ¢é aplicada ao longo
de 1,00m na superficie do terreno. Como pode-se observar foi utilizada a simetria em relagao

ao eixo vertical da sapata.
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Na modelagem foram utilizadas duas malhas computacionais, uma nao-conforme, apresen-
tada na Figura 28, onde uma malha mais refinada foi construida na zona de interesse e a malha
mais grosseira, utilizada para que as condi¢des de contorno do problema se mantivessem dis-
tantes o suficiente dessa regido, conforme consideragdo tomada na solugfo analitica. J4 a malha
conforme ¢ apresentada na Figura 29, onde € possivel verificar a presenga de uma quantidade
significativa de elementos de transi¢do, que possuem tamanho intermedidrio entre os elementos
mais e menos refinados.

Os parametros do solo sdo definidos na Tabela 14 e o fator tempo adimensional dado por:

. Gkt . E
T T T2+

(88)
onde G o mddulo de cisalhamento.

A malha ndo-conforme utilizada possui, na regido de interface, elementos de malha grossa
que compartilham 20 elementos da malha fina em uma tinica aresta. Um dos objetivos das me-
todologias de acoplamento de malhas € conseguir capturar diferengas com altas relagdes entre
os tamanhos dos elementos acoplados, aumentando a versatilidade das suas aplicacdes. Nesse
caso, a consisténcia dos resultados foi avaliada a partir do confronto entre a solugdo analitica e
numérica, realizado na Figura 30 para um T, = 0,10. O campo de pressdes ao longo de todo o
dominio para a malha ndo-conforme é apresentado na Figura 31, onde pode-se observar a con-

tinuidade das pressdes ao longo das interfaces das malhas.

Tabela 14. Problema de Schiffman: parametros fisicos.

Parametro Valor
E 1,00 x 108 MPa
v 0,00
Yw 1.000,00%97/ .

K 108 0 lem
[0 1078 /s
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Figura 27. Problema de Schiffman: esquema do caso.
Fonte: O autor (2023).
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Figura 28. Problema de Schiffman: malha ndo-conforme.

Fonte: O autor (2023).
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Figura 29. Problema de Schiffman: malha conforme.
Fonte: O autor (2025).

A utilizagdo da malha ndo-conforme possibilita que as condi¢des de contorno estejam longe
suficientes para que ndo influenciem significativamente os resultados na zona de interesse. Um
estudo sobre esse assunto € apresentado na dissertacdo de mestrado de Silva (2018) utilizando
malhas conformes e considerando outras condi¢des de contorno. A utiliza¢cdo da malha ndo-
conforme também possibilitou a economia na quantidade de graus de liberdade, evitando a ne-
cessidade de elementos de transi¢éo. Isso otimizou o refinamento da malha e minimizou a pos-
sibilidade da presenca de elementos deformados ou degenerados que podem afetar a solugéo.

Os campos de tensdes efetivas o'y, o'y, e Ty, sdo apresentados, respectivamente, na Figura
32, Figura 33 e Figura 34. Nessas figuras € possivel verificar o comportamento das tensdes e
que elas se concentram na regido onde foi definida a malha fina.

As deformadas em Ty = 0,10 apresentadas na Figura 35 para a malha conforme e na Figura
36 para a malha ndo-conforme mostram que o deslocamento da superficie ndo possui influéncia
perceptivel das condigdes de contorno, o que torna a simulagcdo mais realista comprovando a
eficiéncia da utilizacdo das malhas ndo-conformes em problemas praticos. As solucgdes analiti-

cas foram obtidas no programa PSPL (Verruijt, 2023).
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Figura 30. Problema de Schiffman: pressdes ao longo do eixoy em Tv = 1,00.
Fonte: O autor (2025).
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Figura 31. Problema de Schiffman: campo de pressdes em Tv = 1,00.
Fonte: O autor (2025).
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Figura 32. Problema de Schiffman: campo de tensdes efetivas em x para Tv = 1,00.
Fonte: O autor (2025).

Figura 33. Problema de Schiffman: campo de tensdes efetivas em y para Tv = 1,00.
Fonte: O autor (2025).
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Figura 34. Problema de Schiffman: campo de tensdes cisalhantes em Tv = 1,00.
Fonte: O autor (2025).
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Figura 35. Problema de Schiffman: deformada da malha conforme em Tv = 1,00.
Fonte: O autor (2025).
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Figura 36. Problema de Schiffman: deformada da malha ndo-conforme em Tv = 1,00.
Fonte: O autor (2025).

8.5 CONCLUSOES

De acordo com a analise dos resultados verifica-se que a aplicacdo do método dos elemen-
tos de acoplamento em uma formula¢do mista do MEF se mostrou eficiente para a solugéo de
problemas de acoplamento hidromecanico com caracteristicas encontradas em situagdes prati-
cas, tais como heterogeneidade e adensamentos bidimensionais. Além disso, as malhas nao-
conformes permitiram refinar, de forma localizada, regides do dominio que tenham variagdes
bruscas no gradiente das variaveis analisadas. Também foi possivel a utilizagdo de uma malha
grosseira nas regides em torno da zona de interesse, para que as condi¢des de contorno ficassem

longe o suficiente, afetando minimamente a solucéo.

Uma aplicagéo valiosa foi a utilizagdo dos EFA na soluc¢do do problema de Mandel, mos-
trando sua eficacia em resolver a interag@o solo-estrutura apenas com a manipula¢io dos para-
metros C, € C,.

Uma caracteristica inerente ao método € que ndo ha a necessidade da cria¢do de superficies
intermediarias entre as malhas para o acoplamento, como acontece nos métodos de Mortar,
resultando assim em uma solug¢éo unica, independente da escolha do usuério e sem aumento no
numero de graus de liberdade.

Outro aspecto relevante da utilizagdo de malhas ndo-conformes, e que foi verificado no

presente trabalho, € a supress@o dos elementos de transi¢éo utilizados em malhas com diferentes
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refinamentos, reduzindo a possibilidade da existéncia de elementos degenerados e concen-
trando os graus de liberdade nas regides de interesse do usudrio.

Sendo assim os elementos finitos de acoplamento apresentaram uma forma de otimizar a
modelagem de problemas de acoplamento hidromecanico, obtendo resultados satisfatorios

quando implementados junto ao MEF misto.
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9 ESCOAMENTOS BIFASICOS EM MEIOS POROSOS

Nesse capitulo sera apresentado o desenvolvimento da formulagcdo numérica estabilizada
para o escoamento bifasico em meios porosos utilizando malhas nido-conformes, para isso ¢é
necessario a defini¢do do par de variaveis primais do sistema de equagdes. No presente trabalho

essas variaveis sdo a pressdo da fase ndo molhante, p,,, € a saturagdo da fase molhante, s,,,.

9.1 FORMULACAO MATEMATICA

O problema abordado consiste em um escoamento bifasico em um meio poroso, isotérmico,
imiscivel, sem mudangas de fase, com fluidos newtonianos e que se desenvolve em duas dire-
¢cdes coordenadas. Ele ¢ governado pelas equacdes de conservagdo da massa e do momento
linear para as fases molhante e ndo-molhante. Para todos os efeitos serdo utilizados os sub-
indices w e n para as variaveis correspondentes a fase molhante e ndo-molhante, respectiva-
mente. O escoamento se desenvolve em um meio poroso rigido, sem a considerag¢do do acopla-
mento hidromecanico.

A formulag@o matematica e numérica para o problema apresentado serd apresentada a se-

guir, com base na proposta desenvolvida por Mendonga (2003).

9.1.1 Equacoes de conservaciao

As equagdes que governam o escoamento bifasico em um meio poroso sdo apresentadas a
seguir e consistem na equacdo de conservagdo de massa e de momento linear para as fases
molhante e ndo-molhante. A fase ndo-molhante corresponde ao fluido que tem mais afinidade
fisico-quimica com os grios, que se encontram recobrindo as paredes dos poros. Ja o fluido
ndo-molhante tem uma menor afinidade com os grios e se encontra nas regides centrais dos

poros (Buckley & Leverett, 1942).

W +V.(wvw) —qw =0 (89.a)
W +u, V. (hyuy) — V.0 =y 8 (89.b)
Ipsutn) o Guvs) = @ = 0 (89.c)

ot
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0 (¢ynun)

o +u,V. ypu,) — V.0, = y,8 (89.d)

sendo:
e v, e v,: velocidade superficial da fase molhante e da fase ndo-molhante;
e u, ¢ u,: velocidade intersticial da fase molhante e da fase ndo-molhante;
® Y © Vn: massa especifica da fase molhante e da fase ndo-molhante;
® s, €S, saturacdo da fase molhante e da fase ndo-molhante;
® 0, ¢ 0, tensor de tensdes da fase molhante e da fase ndo-molhante;
e g: vetor de aceleracdo gravitacional;
e {:tempo;

e ¢: porosidade do meio.

As relagdes entre as velocidades superficiais e as velocidades intersticiais das fases sdo
dadas por v, = ¢pu,, e v, = ¢u,. A velocidade superficial correspondente a velocidade do
escoamento desconsiderando a matriz porosa.

As velocidades da fase molhante e ndo-molhante sdo regidas pela lei de Darcy conforme

as equacdes abaixo.

Vy = — - K(va - )/Wg) (90.a)
w
k
Vo = ———k(Vp, — ¥8) (90.b)
Hn
sendo:

K: tensor de permeabilidades absoluta do meio;

k., € k.n: permeabilidade relativa da fase molhante e da fase ndo-molhante;

Uy € Uy: viscosidade dindmica da fase molhante e da fase ndo-molhante;

Pw € Py: pressdo da fase molhante e da fase ndo-molhante.
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9.1.2 Pressao capilar

A pressdo capilar representa a diferenca entre as pressdes dos fluidos presentes no meio
poroso e é discutida por Muskat & Wyckoff (1946). Para o caso de escoamentos bifasicos imis-

civeis em meios porosos a pressao capilar ¢ dada por:

Pc = Pn — Pw 1)

9.1.3 Forma geral das equacdes do escoamento bifasico imiscivel em meios porosos

A obtengdo da forma geral do sistema de equagdes que rege os escoamentos bifasicos imis-
civeis em meios porosos ¢ dada a partir da combinagao de 4 equacdes: a equacdo de conservagdo
de massa da fase molhante, a equagdes de conservacdo de massa da fase ndo-molhante, a relagdo
entre as saturagdes da fase molhante e ndo-molhante e a relacdo entre as pressdes das fases,
regida pelo conceito de pressdo capilar.

Esse sistema ¢ apresentado na equacdo 92 e ¢ altamente ndo-linear, j& que a pressdo capilar

e a permeabilidade sdo fung¢des das saturagdes das fases.

9(dswyw) k
(#—V. Yw — K(pr_ng) —qw =20
Hw
9(Psnyn) k
) %—V. VnﬂK(Vpn_Vng) —qn=20 ©2)
HUn
Swtsp=1
L Pc=Pw —Pn= f(sw'sn)

Como pode ser observado, o sistema de equag¢des possui 4 incognitas: Sy, Sy, Pw € Pn-
Porém, como essas variaveis se interrelacionam, é conveniente escrever o sistema em funcio
do par de variaveis primais s,, — p,,, de forma que a apresentacdo das equagdes se torne mais
elegantes e que o nimero de varidveis seja reduzido. Para isso, serdo definidos, a seguir, con-
ceitos e as manipulagdes necessarias para a obten¢do do sistema final de equagdes que € cons-

tituido pela equagdo de pressdo e pela equacdo de saturacéo.
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9.1.4 Permeabilidade absoluta e permeabilidade relativa

Para o escoamento bifasico em meios porosos sdo utilizados dois conceitos de permeabili-
dades, apresentados a seguir.

O primeiro conceito representa a capacidade do meio em permitir o escoamento, chamado
permeabilidade absoluta, que € intrinseca ao meio e definida pelo tensor k. Essa capacidade ¢
ponderada pela permeabilidade relativa, que representa o quanto as saturacdes das fases influ-
enciam nos seus escoamentos. Cada fase apresenta uma permeabilidade relativa que é fungdo
do grau de saturag@o. Essa variavel pode ser obtida em experimentos de laboratorios para casos
especificos. No presente trabalho serdo utilizadas as seguintes relacdes classicas da engenharia
de reservatdrios (Mendonga, 2003), onde as permeabilidades relativas da fase molhante (k,.,)

¢ da fase ndo-molhante (k,,,) sdo definidas a seguir.

Kew = (5)? (93.2)
krp = (1 — SW)Z (93.b)

9.1.5 Mobilidades das fases

As mobilidades das fases sdo grandezas que mensuram a capacidade de um fluido se des-

locar em um meio poroso quando esta sujeito a um gradiente de pressdo. Nesse contexto, a

mobilidade da fase molhante (4,,) e da fase ndo-molhante (A,,) sdo definidas a seguir.

k
A, = JW (94.2)
w
krn
A =— 94.b
"= (94.b)

9.1.6 Equacio de pressao

Para a obten¢do da equagdo de pressdo escreve-se as equagdes de conservagdo de massa

das fases da seguinte forma.
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(95.2)

0(¢sw) Aw
ot + V. Vy — E =0
0(¢sn) Gn
Vv,——=0
5% +V.v, ” (95.b)
Somando as equagdes 95.a e 95.b obtém-se as seguintes expressdes.
0@ (sy + s,)]
Vavt = + V. (Vn + VW) - (Qw + Qn) =0 (96)
onde:
Aw
Qw=—= 97.
w= (97.a)
q
Qn=-" (97.b)
Yn

A velocidade total do escoamento ¢ definida por v; = v,, + v,, € a vazio volumétrica total

das fases por unidade de volume ¢ dada por Q; = Q,, + Q,,. Sendo assim a equagao acima pode

ser escrita, de maneira compacta, como:

V.v,—Q, =0 (98)

Utilizando as equagdes 94.a, 94.b, que definem as mobilidades das fases, na expressdo da

velocidade total, obtida a partir da soma das equagdes 90.a e 90.b., obtém-se:

Ve = —A,kVp,, — A, xVp, + Kg(AWYW + An)’n) (99)

Utilizando a defini¢do da pressdo capilar, € possivel definir as seguintes relagdes:

Pec = Pn — Pw €V, = Vp, —Vpy, eVpy, = Vp, —Vp, (100)

Como a pressao capilar € fungdo de s,,, o gradiente de p,, é dado por:
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_ dp.
Vpw = vpn_EVSW (101)

w

Utilizando essa defini¢do na equagdo 99 obtém-se:

dpc
ds,,

v = —Ayk (Vpn - VSW) — AukVpp + k8(Ay Vi + An¥n) (102)

Utilizando a defini¢do da mobilidade total (4; = 4,, + 1,,) na equagdo acima tem-se a

forma final da equacgdo de velocidade, dada pela equagdo 103.

dp
v, = —AkVp, + Awuﬁww + kgAY + An¥n) (103)
w

Substituindo a equag@o 103 na equagéo 98 obtém-se a equagio de pressdo, dada por:
dpc
V. [—AtKVpn + ﬂwKﬁ Vs, + kg4, yw + Anyn)] +0,=0 (104)

Para escoamentos incompressiveis, como € o caso do presente trabalho, a equagdo de pres-

sdo ¢é eliptica.
9.1.7 Fluxos fracionarios

Os fluxos fracionarios das fases representam a fragéo total do fluxo correspondente a fase

avaliada. A seguir sdo definidos o fluxo fracionério da fase molhante (f,,) e ndo-molhante (f,,).

pl
f=—b (105.a)
Ao+ Ay
y)
fo = —— (105.b)
P

A partir dessas defini¢cdes € possivel escrever as seguintes relagdes:
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dfn _ _dfw

E = —a (1063)
fatfw=1 (106.b)
—Qn + fnQ: = Quw — fwQ: (106.¢)

9.1.8 Equacio de saturacao

Para a realizacdo da demonstragdo da equagdo de saturagdo utilizam-se as defini¢des apre-
sentadas nas equacdes 100 e 94.b na equacdo da velocidade da fase ndo-molhante (equagdo

90.b) obtendo:

Vp = _AnK(pr + Vp. — Vng) (107)

A combinacdo dessa equagdo com a equagdo da velocidade de percolagéo da fase molhante

fornece a equacdo de escoamento fracional.

w

1 Vn + AWK(VpC —¥n8 + ng) (108)
n

Vy =

Utilizando a defini¢do de velocidade total na equagdo 108 obtém-se:

1
v, = @ [ve = Awk(Vp: — Vo8 + Yu8)] (109)

An

Substituindo a equagdo 109 na equagdo de conservagdo de massa na fase molhante, equa-
¢do 95.b, e utilizando o conceito de fluxo fracionério da fase ndo-molhante, equagdo 105.a,

obtém-se:

d(sn)
ot

V. [fnvt - th(vPc — Y8t ng)] = ¢ - Qn (1 10)

Uma variavel auxiliar, que é funcdo das mobilidades das fases (h,,) ¢ definida como:
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h, = (111)

Os termos que sdo funcéo de s,, na equagdo 110 sdo desenvolvidos nas equagdes 112, 113

e 114.

df,
V. (fnvt) = V;. vfn + fnv (Vt) =V a . VSw + ant (112)
dh,,
V. [hWK(ng - Vng)] = Kg(yw - Yn)VhW = Kg()’w - Yn)-Fvsw (113)
w
_dp.
Vp. = s, Vsy (114)

O termo fonte total é dado pela soma das contribui¢cdes da fase molhante e ndo-molhante,

conforma apresentado na equagdo 115.

Qt =Qw +Qn (115)

Aplicando as defini¢des apresentadas nas equacdes 112, 113 e 114 na equagdo 110, obtém-

S¢:

dsy dfw _
¢W+ ‘s, — + kgG|. Vs, + V. hWK sz +0Q,—fw0Q:=0 (116)

sendo:

dh,,
—( Vn+)/W)T (117)

w

Nas vizinhangas dos pocos as fontes e os sumidouros injetam e extraem fluidos com uma

taxa proporcional as mobilidades locais, de acordo com a seguinte expressio:

= fwQt = fwV. v (118)
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Substituindo a equagéo 118 na equacdo 116 chega-se a equacdo de saturagdo na sua forma

final:
as,,
®7+Va.VSW+V.DVSW =0 (119)

Na equagdo 119 o primeiro termo € o de acumulo, o segundo termo o convectivo e o ter-
ceiro o difusivo. Essa equacdo possui carater altamente ndo-linear pois as grandezas que com-
pdem a equagdo de saturacdo, tais como a pressdo capilar e permeabilidade relativa das fases
sdo fungdes de s, (Mendonga, 2003).

A velocidade aparente do escoamento ¢ dada por v, e representa a velocidade efetiva da

frente de saturacdo da fase molhante no escoamento. Essa velocidade € escrita, de forma veto-

rial, como:
vax
Vg = [vay] (120)
onde suas componentes sdo dadas por:
df, .
Vax = vx# + (kxgx + kxygy)G (121.a)
w
_ . Y k k,g,)G 121.b
17ay_17ya'|'( xygx+ ygy) ( . )

O tensor de difusdo (D) ¢ definido pela equacdo 122. Sua nomenclatura é dada dessa forma
pois apesar do termo ser referente aos efeitos capilares, o comportamento desses efeitos é se-

melhando a difusio.

dp
D= hWKE;VSW (122)
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9.1.9 Sistema de equacgdes para o escoamento bifasico em meios porosos

A Figura 37 apresenta um esquema do escoamento bifasico. Nessa figura sao definidas as
subdivisdes do contorno, de acordo com o tipo de condi¢do imposta, e ilustra o escoamento

bifésico a partir da interface entre dois fluidos.

Figura 37. Dominios e contornos no problema de escoamento bifésico.
Fonte: o autor (2025).

O sistema de equagdes que rege o escoamento bifasico imiscivel em meios porosos ¢ com-
posto pela equacdo de pressdo, a equacdo de pds-processamento da velocidade total do escoa-

mento e a equagdo de saturacdo, demonstradas nas se¢des anteriores e dadas por:

V-Vt_Qt=O

dp
Ve = —kA;Vp, + k4 _CVSW + kg(Aw¥w + An¥n)

¥ ds, (123)

as,,
¢F+Va.VSW + V.DVs,, =0

9.1.9.1 Condig¢des iniciais e de contorno

O sistema de equacdes possui duas condi¢des de contorno essenciais, que sdo as pressdes
e saturag¢des conhecidas, respectivamente, por p,, € sp ¢ duas condigdes de contorno naturais,
que sdo o fluxo e a derivada da saturagdo, dadas, respectivamente, por q, ¢ a,. A Figura 37
ilustra as regides onde essas condi¢des sdo aplicadas, e elas sdo definidas matematicamente cno

conjunto de equacdes 124:

p(x,t) = p, sobre I, , X [0, ] (124.a)
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V;.n = q;, sobre I, y X [0, t] (124.b)
Sw(x,t) = s, sobre I x [0, t] (124.¢)
DVs,,.n = a; sobre Iy X [0,t] (124.d)

As pressdes e saturagdes iniciais conhecidas sdo dadas por p; e s;, respectivamente. Entdo,

as condi¢des iniciais sdo definidas como:

pn(x,0) = p; sobre (125.a)
sw(x,0) = s; sobre Q (125.b)

As condig¢des de contorno e iniciais completam o sistema de equagdes para o escoamento

bifasico em meios porosos. A solugdo numérica desse sistema sera apresentada a seguir.

9.2 FORMULACAO NUMERICA

9.2.1 Discretizacio espacial pelo método dos elementos finitos

De forma analoga a formula¢do mista do método dos elementos finitos apresentado anteri-
ormente, € necessario realizar a discretizagfo a partir da subdivisdo do dominio {2 em um con-
junto de subdominios, denominados elementos finitos, {1,. A divisdo apresentada segue as se-
guintes propriedades Q = U™, Q, e N7 Q, = @. Os termos nel e e sio, respectivamente, 0
numero de elementos da malha e o e-nésimo elemento avaliado.

O conjunto de fungdes admissiveis para a pressdo, P", saturacdo, S", e fungdes teste, W",

sdo dadas por:

Pt = {p,"/p," € H"(Q),p,"(x,t) = p, em I} (126.2)
Sh = {s,""/s," e H*(Q),s,"(x,t) = s, em I} (126.b)
wh = {wh/wh e H"(Q),wh = 0em I, , DI} (126.c)

onde h indica a discretizagdo em elementos finitos, sendo H"(Q) ¢ H'(Q) um espago de di-
mensdes finitas sobre Q. O espago H(£) ¢ o espago de fung¢des no qual as primeiras derivadas

sdo quadradas integraveis, ou seja:
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e HI(Q) =>fQ (g)z dQ < oo (127)

Tanto as pressdes como as saturagdes foram discretizadas por meio de elementos triangu-
lares lineares, com as varidveis definidas nos vértices do triangulo (fun¢des de interpolagéo e
ponderag@o lineares, segundo o espago de Hilbert continuo por partes, H (P,).)). A Figura 38

apresenta o esquema de graus de liberdade no elemento.

P2, 52, Ay

P1,51, 41

b3, 53,03

Figura 38. Graus de liberdade do problema bifésico.
Fonte: o autor (2025).

A equacdo de pressdo € discretizada a partir da formulag@o classica de Galerkin, como essa
equacdo é eliptica a formulagdo € capaz de apresentar bons resultados. Ja a equagdo de saturagao
possui carater parabolica-hiperbolica. Esse tipo de equago, quando discretizado pela formula-
cdo classica de Galerkin apresenta oscilagdes numéricas espurias.

Visando a obteng¢do de solucdes estabilizada foram introduzidas estabiliza¢des na diregdo
das linhas de corrente (SUPG — Streamline Upwind Petrol-Galerkin) e na dire¢do dos gradien-
tes de satura¢do (CAU — Consistent Approximate Upwind). Essas duas técnicas introduzem
termos adicionais a forma discreta da equagao de saturagdo que funcionam como difusdes arti-

ficiais, minimizando tais oscilag¢des.
9.2.1.1 Forma fraca da equagéo de pressdo
Para a obten¢do da forma discreta da equagdo de pressdo aplica-se o método dos residuos

ponderados na equacéo de conservagdio de massa (primeira equagio do sistema 123), onde w”

¢ a funcdo de teste. Essa operagdo € apresentada na equacdo 128.
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f wh(V.v, — QdV =0 (128)

Ve

Aplicando na equacdo 128 o teorema da divergéncia e a integragdo por partes obtém-se,

reorganizando o resultado:

- f vwh. v, dV + fwhvt.ndf‘= fWthdV (129)
ve re ve

Substituindo a equacdo de velocidade total (segunda equagdo do sistema 123) na equagéo

129 obtém-se a forma fraca da equagéo de pressao:

d
f Vwh. kA, Vp, dV = j whQ,dv + j Vwhich, dpc

ve ve ve

Vs, dV

w

(130)

+ f Vwikg(AwVw + Anyn)dV
Ve

9.2.1.2  Pos-processamento do campo de velocidades

Para a obten¢do do campo de velocidades é utilizada uma técnica de pds-processamento
proposta por Malta et al. (2000) pois, quando ele € calculado diretamente utilizando a lei de
Darcy os resultados néo sdo satisfatorios, pois essa abordagem ndo garante a conservacio de
massa (Loula et al., 1999; Malta et al., 2000; Masud & Hughes, 2002).

Para a realizagdo do pds-processamento € necessario conhecer o campo de pressdes p,, €

saturagdes s,, e definir:
Ut = {wheH"(Q) x H"(Q),w".n=0em I},} (131)

O campo de velocidades ¢ obtido a partir da determinacéo de Ve U™ tal que vw'e U". A

partir disso tem-se:
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w

d
f wh (‘N& - K/'ltvpn - K/1w d_ijcvsw - Kg(;twyw + An)’n)) av
ve (132)

nel

+ z f SV.Wh(V.¥, — Q)dV =0

e=1lye

sendo o termo V; a velocidade pds-processada e § um parametro que depende do tamanho do

elemento avaliado. Esse parametro é dado por § = h,/2, onde h, ¢ o tamanho caracteristico

do elemento dado por h, = V2A, sendo A € a area do elemento.
9.2.1.3  Formulagdo estabilizada da equagéo de saturagdo

Para a obten¢do da formulagdo estabilizada da equagdo de saturagdo define-se, previa-

mente, um operador bilinear como:
as,,
L(sy,Vq) = qbﬁ +v,.Vs, +V.DVs, =0 (133)

onde v, ¢ a velocidade aparente de escoamento.
A formulagdo estabilizada de Petrov-Galerkin consiste em encontrar s,, € S tal que

vwhe W", a forma fraca da equacéo de saturacio &, entdo, dada por:

nel nel

f WhL(sW,va)dV+z f Tlva.VWhL(sW,va)dV+z f 7,Vwh. Vs, dV = 0 (134)

ve e=1lye e=1lye

Nessa equagdo o primeiro termo € referente a formulagéo classica de Galerkin, o segundo
termo ¢ referente a corre¢do SUPG ¢ o terceiro termo referente a correcdo CAU.

Os termos de estabilizagao estdo definidos no conjunto de equagdes 135.

67 . (Pe®
T, = |Ve|mm (T,l) (135.a)
a
ve 3
pee = s¢ V! (135.b)



111

|L(syw, v ., . (Pej
T, = #ﬁmm T, 1 (1350)
3
|vey/|
Pef/ = 5Zeﬁ (135.(1)
Vass DV,
vE.Vsé
v, = wVSﬁ, (135.¢)

Nos parametros acima Pe® é o numero de Peclet avaliado em cada elemento. Essa variavel
apresenta a relacdo entre os efeitos convectivos e difusivos do escoamento. Em todas as defini-
¢des o superindice e e o subindice // indicam, respectivamente, que a variavel foi avaliada no
interior do elemento e que a variavel ¢ obtida na dire¢do paralela ao gradiente da saturagdo no

elemento (sg).

9.2.14  Vetores e matrizes locais do problema bifésico

Utilizando as defini¢cdes apresentadas na se¢do 7 nas equacdes 130, 132 e 134 ¢ possivel

obter as formas compacta das respectivas equagdes como:

hp=q (136.a)

kv =f (136.b)

ma + cs = f; (136.c)
onde:

¢ h ¢ a matriz de condutividade hidraulica;

e q ¢ o vetor de fluxos prescritos;

e P vetor das pressdes nos nds do elemento;

e &k matriz dos coeficientes:

e f vetor dos termos independentes;

e ¥ vetor das velocidades nos nds do elemento;
e m ¢ a matriz de massa;

e ¢ matriz de convecgao;

e a vetor das derivadas da satura¢do da fase molhante nos nés do elemento;
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e s das satura¢des nos nos do elemento.

€
q=4qq +qsw t 44 t qp (137.a)
k=k, +k, (137.b)
f=1,—f,+f, +1, (137.c)
m=m, +m,, (137.d)
€C=¢y+ ¢y +Cyy+Cyp (137.e)

Nas definigdes dos termos independentes, apresentadas no conjunto de equagdes 137, qq €
fq sdo associados ao termo fonte do dominio, q,, € fp as pressdes, qg,, ¢ fg, as saturagdes e
qg¢ fg aos efeitos gravitacionais. O termo f introduz a contribuicéo das condi¢des de contorno
das saturacdes.

A matriz de coeficientes da equagio de pos-processamento das velocidades, k, é decom-
posta em duas partes (equagio 137.b), a matriz K,. que representa a discretiza¢io pelo método
classico de Galerkin e a matriz k., que tem func@o estabilizadora.

De forma analogo a matriz Kk, matriz de massa da equacdo de saturacdo, m, é decomposta
em duas partes (equagdo 137.d), a matriz mg, que corresponde ao termo classico de Galerkin,
€ 0 matriz my, 4, que corresponde ao termo estabilizador na dire¢do das velocidades.

Ja a matriz de convecgdo da equagdo de saturago, ¢, € decomposta em 4 partes, sendo ¢,
referente a parcela do método classico de Galerkin, ¢, a corregdo SUPG da matriz de convec-
¢80, €y a matriz de difusdo e ¢,, a matriz de corregdo do operador de captura de descontinui-
dade.

Os termos da equagéo de pressdo, do pos-processamento do campo de velocidades e da

equacdo de saturag¢do s@o determinados de acordo com os conjuntos de equagdes 138, 139 e

140, respectivamente.

h= j B"kA,BdV (138.a)

Ve



q, = fNTquV

Ve

dp
Qs = fBTKAW ds:, BsdV

Ve

qy = j BTKg(AW)/W + Apyn)dV

Ve

q, = —hp

k, = f N"NdV
Ve

i(b =6 f DgideivdV

Ve

f,=16 f D"NqdV
ve

f, = f NTkA,BpdV

Ve

dp.

B
w s, sdV

fo, = f N"kA

Ve
t~‘g = f N"kg(AywVw + An¥n)dV

Ve

m, = j ¢N"NAV

Ve

m,, = fBZ;qbrlvadeV+ f BJ ¢7,V4, NdV

ve ve

C
ve ve

= j NTv,,B,dV + f N"V, B, dV
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(138.b)

(138.0)

(138.d)

(138.¢)

(139.a)

(139.b)

(139.c)

(139.d)

(139.¢)

(139.9)

(140.2)

(140.b)

(140.¢)



Cpg = j 7,BTABdV sendo A =v, Q v,

Ve

Cag = f B”DBdV
ve

Cop = f 7,BTBdV
Ve

f; = —(ma + cs)
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(140.d)

(140.¢)

(140.9)

(140.g)

O termo fr leva em consideracéo os fluxos prescritos nas arestas de contorno. Esse termo

¢ calculado em cada aresta e armazenado diretamente no vetor global definido a seguir.

9.2.1.5 Construgdo das matrizes globais do problema bifasico para malhas ndo-conformes

As matrizes globais do sistema sdo construidas com a contribui¢do das matrizes locais dos

elementos finitos e as matrizes dos elementos finitos de acoplamento, conforme apresentado

abaixo.

nelc nelnt neln?

H = Zh+2hc= 2 fBTKAthV+ Z fBTKAthV
n=1

elem n=1 ye n=1 ye
nelc
+ ) BS'C, B¢
p “p=Dp
n=1
nelnt neln?

Q=) a=) jNTquV+ > fNTquV

elem n=1 ye n=1 ye

nelnt neln?

d
Q. = z Qs = — Z BTk, P Bsdv — Z BTk,
ds,,
n=1 n=1

elem
neln?!
Qg = z 4y = Z j BTKg(;tWYW + Aayn)dV
elem n=1 ye
nel?

+ 3 [ BTRgGyn + )V

n=1 ye

dp.
BsdV
ds,, S

(141.2)

(141.b)

(141.0)

(141.d)



nelnt neln?

Qp:z(h):_zhp_zhp
n=1

elem n=1

nel0?! ne 1
K= Z(i(a+i<b)= z fNTNdV+ Z 8 j D}, DgidV
elem n=1 ye n=1 ve
nel? nel?
+ Z f NTNdV + z 5 f DT, DyindV
n=1 ye n=1 vye
nel0?! nel0?
F,=) f,= z 6JDTquV+ z SfDTquV
elem n=1 ye n=1 ye
neln? neln?
Fo= ) f,= Z f NTkA,BpdV + Z f NTiA,BpdV
elem n=1 ye n=1 ye
nel0? nel0?
Fo,= ) £y, = Z j Nk, dpe BsdV + z f Nk, 4pe BsdV
elem n=1 ye dSW n=1 ye dSW
neln?!
Fp= ) fy= z fNTKg(AwV‘FﬂnVn)dV
elem n=1 ye
nel0?
£y j NTig(A Yy + AnYa)dV
n=1 ye
nelc
M= Z(mg+mpg)+2tc=
elem n=1
nel0?!
Z J(ﬁNTNdV
n=1 ye
neln?

+ Z f BT h7,v, NdV + f BT b7, va, NdV
n=1 ve
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(141.¢)

(142.2)

(142.b)

(142.¢)

(142.d)

(142.¢)

(143.2)
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neln?
+ z f Bl ¢t v, NdV + j B ¢T1v,yNaV
n=1 \ye ve
nelc
T
+ ) BSTCBY
n=1
C, = Z (cg + Cpg + €ag + Cop)
elem
nelc nel0t
+ z i€ = Z f NTv,, B, dV + f NTv,,B,dV
n=1 n=1 ve ve
neln?
+ Z f Ny, B,dV + f NTv,,B,dV
n=1 ve ve
nel 1 neln? nelnt (143.b)
+ Z f ,BTABAV + Z f ,BTABAV + Z f BTDBdV
n=1 ye n=1 ye n=1 ye
neln? nelnt ne 2
+ Z J B"DBdV + z J TZBTBdV + Z J TZBTBdV
n=1 ye n=1 ye n=1 ye
nelc
T
+) Bi'C.BY
n=1
nelnt neln?
F, = Z f,=— z (ma + cs) — Z (ma + cs) (143.c)
elem n=1 n=1
onde
144.
Fp,N
R=R,+K, (144.b)
F=F,-F, +F, +F (144.0)
M= Mg + Mpg (144.d)
C= Cg + Cpg + Cdg + Cop (144.e)

As matrizes H, K, M e C sdo as matrizes globais de condutividade hidraulica, do pds-pro-

cessamento da velocidade, de massa e de convecgdo. A matriz K é dada pela soma das matrizes
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globais K, que representa o termo do método classico de Galerkin e da matriz K, que é o
termo estabilizador do tipo SUPG. A matriz de massa global, M, é composta pelo termo classico
de Galerkin, My, € o termo estabilizador do tipo SUPG, M,,4. O termo que contempla as con-
di¢des de contorno da saturagéo € o F;.

A matriz de conveccdo global, C, é composta pelo termo classico de Galerkin, C,, pelo

termo estabilizador do tipo SUPG, C,4. pelo termo de difusdo, Cg4, € pelo termo referente a

rg>
estabilizagdo pelo operador de captura de descontinuidade, C,y,.

O vetor global da equacdo de pressdo ¢ Q, composto pelos vetores com as contribuigdes
dos fluxos prescritos, saturagdes, efeitos gravitacionais e de pressdes que sao, respectivamente,
Qqa sta Qg S Qp-

O sistema global é entdo escrito conforme o conjunto de equacdes 145.

HP =Q (145.a)
KV=F (145.b)
MA + CS = F, (145.¢)

onde P, V, A, S sdo, respectivamente, os vetores globais das pressdes, das velocidades, das

derivadas temporais da saturacio e das saturacdes.

9.2.2 DISCRETIZACAO TEMPORAL

O conjunto de equagdes do problema ¢ discretizado no espago pelo método dos elementos
finitos e no tempo pelo método trapezoidal proposto por Hughes (1987). O avango temporal
sera realizado por uma estratégia baseada no algoritmo bloco-iterativo preditor-multicorretor

(Mendonga, 2003). As estratégias supracitadas estdo apresentadas a seguir.

9.2.2.1 Algoritmo sequencialmente implicito

O avancgo temporal das solugdes numéricas € amplamente resolvido a partir da discretiza-
cdo do termo temporal pelo método de diferencgas finitas. Os esquemas mais utlizados sdo os
explicitos, implicitos, semi-implicitos e hibridos. Os esquemas explicitos, apesar de menos cus-
tosos computacionalmente necessitam do controle do passo de tempo para garantir a estabili-

dade da solug@o. Nesses casos o passo € restrito em fungdo do nimero de Courant (CFL) (Appau
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& Dankwa, 2019). Em contrapartida os esquemas implicitos s@o incondicionalmente estaveis
para qualquer passo de tempo (Appau & Dankwa, 2019; Chen, 2018).

O esquema semi-implicito, abordado no presente trabalho, ¢ uma alternativa interessante
em termos de custo computacional para a solugéo de sistemas de equacdes. Ele apresenta resul-
tados estaveis independente do passo de tempo e evita o alto custo computacional associado
aos esquemas totalmente implicitos (Mendonga, 2003; Gjennestad et al., 2018). Nesses esque-
mas todas as equagdes do sistema sdo resolvidas de maneira acoplada, aumentando significati-
vamente o tamanho das matrizes quando comparada a estratégia semi-implicita.

As equagdes 145.a e 145.c podem ser escritas como um sistema de equacdes diferenciais

ordinérias apresentado na equacgdo 146:

Fp (p' SW' t) Qp

ds = ] (146)
Fsat (p, Sw) a_;;v ’ t) QS

O termo F, € referente a equagéo de pressdo e inclui as derivadas espaciais das pressdes e
termos capilares. Por conta da defini¢do da permeabilidade relativa, esse termo também ¢ fun-
cdo da saturagdo. Ja o termo F; é referente a equacdo de saturacdo e engloba, além das varidveis
do termo F,, as derivadas da saturagdo da fase molhante. Esse termo também ¢ dependente da
pressdo e da saturagdo. Os termos do lado direito do sistema, Q,, € Qs, correspondem as contri-
bui¢des das condi¢des de contorno na equagdo de pressao e de saturagio, respectivamente. Con-
clui-se entdo que o sistema ¢ altamente ndo-linear pois as equagdes estdo interligadas fisica-
mente e matematicamente.

A solugdo sequencialmente implicita utilizada nesse trabalho segue a seguinte sequéncia:

e 1°passo: solugdo da equacdo de pressdo;
e 2°passo: pos-processamento das velocidades;

e 3°passo: solugdo da equacdo de saturagio.

Os sistemas de equacdes da pressdo e da velocidade sdo lineares e simétricos, ja o sistema
de equagdes da saturag@o € ndo simétrico. A equagdo de pressdo possui caracter eliptico e a

equacdo de saturagdo carater parabolico-hiperbolico.
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9.2.2.2  Algoritmo bloco-iterativo preditor-multicorretor

O algoritmo bloco-iterativo preditor-multicorretor (Mendonga, 2003; Terry & Rogers,
2015; Coutinho et al., 2003) ¢ uma estratégia utilizada para a solugéo de sistemas fortemente
acoplados, como € o caso do sistema pressdo-saturagdo. Nessa estratégia € realizada uma esti-
mativa inicial da solucdo, de forma explicita, em cada passo de tempo. De posse dessa estima-
tiva as equacdes sdo resolvidas sequencialmente, de forma implicita, até que os critérios de
convergéncia sejam satisfeitos. Esse procedimento é realizado em todos os passos de tempo da
simulagdo.

O avan¢o de um tempo n para um tempo n + 1 é obtido de acordo com o algoritmo:

Avanc¢o temporal:
dados iniciais: S, A, P;i1+1 =P, v1i1+1 =V,
predicdao da saturacao de forma explicita (i=1):

Siii=S,+(Q-yAtA, AL, =0

para i = 2,3... até maxiter ou até convergir, faca:

Bloco 1: Resolve a equagdo da pressdo: H(SL,;)Piti =Q(Si;1)

Bloco 2: Calcula o campo de velocidade: K(Si,, Piti)Viti = F(Si,,, Pit})

Bloco 3: Resolve a equagdo da saturagdo: M AALYL, =R, onde:

* __ i i+1 yri+1 i i+1 yri+1
M = M(Sn+1' Pn+1' Vn+1) P yAtC(Sn+1l Pn+1' Vn.+1
— i i+1 yi+1) _ i i+1 yri+1) _ i i+1 yri+l)gi
R= M(Sn+1' Pn+1'vn+1) M(Sn+1' P11+1'Vn+1) C(Sn+1' Pn+1'vn+1)sn+1
Atualiza as grandezas (corre¢ao):

Sitl =Si., +yAtAATTY

i+1 _ Al i+1
v An+1 - An+1 + AAn+1
fim

do loop anterior obtém-se: S,;; Any1 Puyr Vo

onde:

e i: contador das multicorreg¢des;
e maxiter: numero maximo de iteragdes;

e At: passo de tempo;
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e y: parametro de ajuste do método;

e AA: incremento da derivada temporal das saturacgdes.

9223 Critérios de parada do algoritmo bloco-iterativo preditor-multicorretor

Os critérios de parada para o algoritmo bloco-iterativo preditor-multicorretor sdo de dois
tipos, o primeiro, como ja apresentado, € relativo ao nimero maximo de iteragdes maxiter. O
outro critério de parada ¢ pré-determinado de acordo com a convergéncia do método, que ¢
ocorre a partir da avaliag@o dos erros definidos no conjunto de equagdes 147. As iteragdes acon-

tecem até que um desses critérios seja satisfeito.

eP — |p£{:11 - p£1+1| (147.2)
|p§;§.11
_ |Vrl:|-11 n+1|
e’ = TR (147.b)
|Aa£;11
et = LaLT (147C)
n+1
ritl
- nl (147.d)
|rL—0
n+1
(Aal+1 L+1
ef — n+1) Tn+1 (147.e)

(aal7y) rd

Os erros, definidos no conjunto de equacdes 147, sdo:

e eP: erro da pressio;

e eV:erro da velocidade;

e e?: erro da derivada temporal da satugio:

: erro no balang¢o de massa da equagfo de saturagao;

: erro da norma da energia.

Os critérios de convergéncia sdo dados por:
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e?
=< (148.2)
v
=< (148.b)
e* el ef
sat — — — —1<1 148.
€ max ltol "tol’ toll - (148.0)

9.3 EXPERIMENTOS NUMERICOS

A presente se¢do apresenta 5 experimentos numeéricos que objetivam avaliar a formulacgéo
proposta sob condi¢des especificas. Todos os experimentos numéricos propostos possuem so-
lu¢des de referéncia apresentadas na literatura e serdo avaliados a partir de malhas ndo-confor-

mes com caracteristicas diferentes para cada caso.

9.3.1 Injecio unidimensional de fluido — Problema de Buckley-Leverett

O problema de inje¢@o unidimensional, conhecido na literatura como Problema de Buc-
kley-Leverett (Buckley & Leverett, 1942) que tem como objetivo a avaliagdo do campo de
saturagdo em uma inje¢do unidimensional em um meio poroso. O problema esta sintetizado na
Figura 39 e consiste na inje¢do pela face esquerda do fluido molhante, com o objetivo de des-
locar o fluido ndo-molhante. O dominio utilizado possui dimensdes de 4,00m por 0,05m e
inicialmente se encontra totalmente saturado pelo fluido ndo-molhante, entdo em t = 0,00s o
valor da saturagéo € s, = 0,00 em todo o dominio. Na face esquerda a satura¢do da fase mo-
lhante se mantém constante com valor unitario durante toda a injecéo e a pressao da fase néo-
molhante é mantida nula na face direita. O deslocamento do fluido € induzido a partir da impo-
sicdo de um campo de velocidades totais unitario em todo o dominio (v; = i,). A Tabela 15
apresenta os parametros fisicos e numéricos utilizados na simulagao.

O caso foi resolvido com At = 0,0001s, numero maximo de iteragdes para o algoritmo
multicorretor igual a 10 e tol = 0,01. Os resultados obtidos foram comparados com as solugdes
de referéncia apresentadas no trabalho de Durlofsky (1993).

Nesse caso o tamanho caracteristico do elemento para o termo estabilizador do CAU ¢

definido como 85 =n h,/2.
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Figura 39. Problema de Buckley e Leverett: esquema do caso.
Fonte: O autor (2025).

O experimento foi dividido em 13 casos, sintetizados na Tabela 16. Os casos de 1.1 a 1.5
possuem a mesma malha (malha 1), que € apresentada na Figura 40 onde a parte direita do
dominio ¢ mais refinada que a parte esquerda, o que diferencia um caso do outro é a utilizag¢do
ou ndo dos termos estabilizadores do SUPG e do CAU, além da variag@o no valor de 1.

Todos os outros casos foram resolvidos com os dois termos estabilizadores ativos e com o

parametro = 1,00.

Tabela 15. Problema de Buckley e Leverett: pardmetros fisicos.

parametro valor
Un 5,00Pa.s
7. 1,00 Pa.s
K [ Yo
) 0,20
Cp, C 10°

Os casos 1.5, 2 e 3 foram resolvidos com as malhas 1, 2 e 3, respectivamente. Todas as
malhas sdo estruturadas, porém a diferenga entre a malha 2 e malha 3 em relacdo a malha 1 sdo
os refinamentos das malhas finas, que podem ser observados na Figura 40, Figura 41 e Figura
42.

Os casos 4.1, 4.2 e 4.3 foram resolvidos com as malhas 4, 5 e 6, apresentadas na Figura 43,
Figura 44 e Figura 45. Essas malhas foram construidas de forma analoga as malhas 1, 2 e 3,
porém, elas possuem elementos construidos com as hipotenusas alternadas ao longo da diregéo

horizontal.



123

Os casos 5.1, 5.2 e 5.3 foram resolvidos com as malhas 7, 8 e 9 que, diferente das demais,
possuem a regido mais fina na parte esquerda do dominio. Essas malhas sdo apresentadas nas

Figura 46, Figura 47 e Figura 48, respectivamente.

Tabela 16. Problema de Buckley-Leverett: casos.

caso malha SUPG CAU n
caso 1.1 malha 1 X 0,5
caso 1.2 malha 1 X 1,0
caso 1.3 malha 1 X 0,5
caso 1.4 malha 1 X X 1,0
caso 1.5 malha 1 X X 0,5

caso 2 malha 2 X X 1,0

caso 3 malha 3 X X 1,0
caso 4.1 malha 4 X X 1,0
caso 4.2 malha 5 X X 1,0
caso 4.3 malha 6 X X 1,0
caso 5.1 malha 7 X X 1,0
caso 5.2 malha 8 X X 1,0
caso 5.3 malha 9 X X 1,0

(EVANAN AN AV AN AN AN AN AN AN AN AN AN AN AVAN AN ANENAN AV AN AN AN AN AN AMAN AN ANANENE NANAN

Figura 40. Problema de Buckley-Leverett: Malha 1.
Fonte: O autor (2025).



124

|
1
L e e e e e - e e e . e = e ————

Figura 41. Problema de Buckley- Leverett: Malha 2.
Fonte: O autor (2025).

Figura 42. Problema de Buckley-Leverett: Malha 3.
Fonte: O autor (2025).
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Figura 43. Problema de Buckley-Leverett: Malha 4.
Fonte: O autor (2025).

Figura 44. Problema de Buckley-Leverett: Malha 5.
Fonte: O autor (2025).
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Figura 45. Problema de Buckley-Leverett: Malha 6.
Fonte: O autor (2025).

Figura 46. Problema de Buckley-Leverett: Malha 7.
Fonte: O autor (2025).

-

Figura 47. Problema de Buckley-Leverett: Malha 8.
Fonte: O autor (2025).
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Figura 48. Problema de Buckley-Leverett: Malha 9.
Fonte: O autor (2025).

Os resultados do campo de s,, ao longo do eixo x s@o apresentados na Figura 49, Figura
50, Figura 51 e Figura 52, correspondendo as analises discutidas anteriormente.

Analisando a Figura 49, observa-se que o caso 1.1 apresenta oscilagdes mais pronunciadas
em comparagdo ao caso 1.2, evidenciando que o termo estabilizador CAU, para esse caso, pos-

sui uma eficacia maior no controle das oscilagdes quando comparado com o SUPG. Ainda nessa
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figura verifica-se que a utilizacdo dos termos CAU e SUPG reproduziu solugdes estaveis. Ve-
rifica-se também que o caso 1.3 foi o que mais se aproximou da solucéo de referéncia. Outra
observagdo a ser feita é que todos os resultados obtidos possuem a frente de saturagdo mais
avancada que o caso de referéncia.

Quando se avalia o pardmetro ) verifica-se a diferen¢a entre as solugdes do caso 1.1 e 1.2.
Observa-se que no caso 1.3 os resultados foram mais suavizados e que, apesar de pequenas, o
caso 1.1 apresentou oscilagdes.

A Figura 50 apresenta a comparacao entre os casos 1.5, 2 e 3. Todos os resultados apresen-
taram desempenho satisfatorio, conseguindo capturar a frente de saturagdo sem a presenga de
oscila¢des espurias. Outra questdo a ser observada é que a malha intermediaria gerou uma frente
de saturagdo mais avangada que as demais, com a malha mais refinada apresentando valores
intermediarios.

Os resultados da Figura 51, correspondem aos casos 4,1. 4.2 e 4.3. Analisando esses resul-
tados chega-se a conclusdo de que todos apresentaram oscilagdes violando o valor minimo da
saturacdo. Além disso, os resultados desses trés casos se mostraram muito préximos, indicando
baixo impacto na varia¢do dos parametros testados.

Por fim, os resultados referentes aos casos 5.1, 5.2 € 5.3, apresentados na Figura 52, foram
satisfatorios, capturando bem a frente de saturag@o. No entanto, observa-se a presenca de osci-

lacdes de pequena intensidade violando o valor minimo da saturag@o.

Durlofsky-0.25
Durlofsky-0.50
= === eas01.1-0.25
--------------- caso1.1-0.50
- caso1.2-0.25
............... caso1.2-0.50
- = =~ caso1.3-0.25
""""""""" caso1.3-0.50
= caso1.4-0.25
rrrrrrrrrrrrrr caso1.4-0.50
caso1.5-0.25
caso1.5-0.50

Figura 49. Problema de Buckley-Leverett: saturagdes para VPI = 0,25 ¢ VPI = 0,50 dos
casos 1.1 ao 1.5.
Fonte: O autor (2025).
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Figura 50. Problema de Buckley-Leverett: satura¢des para VPI = 0,25 ¢ VPI = 0,50 dos casos 1.5, caso 2 e caso

3.
Fonte: O autor (2025).

Durlofsky-0.25
Durlofsky-0.50
=== - caso4.1-0.25
= === caso4.1-0.50
-------- caso4.2-0.25
= caso4.2-0.50
 caso4.3-0.25
"""""""" caso4.3-0.50

Figura 51. Problema de Buckley-Leverett: saturagdes para VPI = 0,25 e VPI = 0,50 dos

casos 4.1 ao 4.3.
Fonte: O autor (2025).



128
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-------- cas05.2-0.25
cas05.2-0.50
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Figura 52. Problema de Buckley-Leverett: saturagdes para VPI = 0,25 ¢ VPI = 0,50
dos casos 5.1 a0 5.3.
Fonte: O autor (2025).

9.3.2 Injecio bidimensional de fluido — %4 de cinco pocos

O presente caso ¢ amplamente difundido na literatura técnica, e consiste em uma proposta
na distribuicdo de pogos produtores e injetores visando a otimizac¢do na produgdo de petrdleo
quando se utiliza a técnica de recuperagdo secundaria. O caso € conhecido como Y4 de cinco
pogos e tem esse nome por conta da simetria utilizada na modelagem.

O dominio € formado por um quadrado de lados unitarios com o pogo produtor localizado
no vértice superior direito e o pogo injetor localizado no vértice inferior esquerdo. No pogo
injetor € a satura¢o ¢ unitaria e a vazio é g = 0,002 m3/(m3s). Ja no pogo produtor a pressio
¢ mantida nula durante toda a simulagéo. O passo de tempo da simulagdo é At = 0,01s e foram
utilizadas, para efeito comparativo, 6 malhas ndo-conformes. A tolerancia utilizada para o al-
goritmo multicorretor foi de tol = 0,01.

Os parametros fisicos e numéricos utilizados na simulag@o estdo apresentados na Tabela

17.
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Figura 53. Problema " de cinco pogos: esquema do caso.
Fonte: O autor (2025).

Tabela 17. Problema % de cinco pogos: parametros fisicos.

Parametro Valor
Hn 4,00Pa.s
7. 1,00 Pa.s
K [é (1)] m2
) 0,20
Cp Cs 10°

Para a realizacdo do experimento foram utilizadas 6 malhas ndo-conformes. A malha 1 e a
malha 2 sdo mostradas, respectivamente, na Figura 54 e Figura 55 e s@o mais refinadas na regido
diagonal que liga o poco injetor ao produtor. A malha 1 possui um refinamento mais acentuado
e mais concentrado nas regides proximas a diagonal e a malha 2 possui um refinamento mais
brando, se desenvolvendo ao longo de uma regido maior do dominio.

Ja as malhas 3, 4, 5 e 6, apresentadas na Figura 56, foram construidas objetivando avaliar
o efeito da orientagdo de malha nos resultados. Enquanto as malhas 3 e 4 possuem uma Unica
orientacdo, as malhas 5 e 6 possuem orientagdes alternadas entre os elementos da malha fina e
da malha grossa, conforme pode ser observado nas figuras citadas. A malha 1 possui 1418 nos,

a malha 2 possui 2139 nds. As malhas 3, 4, 5 ¢ 6 possuem 626 nés.
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Detalhe

Figura 54. Problema 4 de cinco pogos: malha 1.
Fonte: O autor (2025).

|

Figura 55. Problema 4 de cinco pogos: malha 2.
Fonte: O autor (2025).
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(@ (b)

(© (d
Figura 56. Problema Y de cinco pogos: (a) malha 3; (b) malha 4; (c) malha 5; (d) malha 6.
Fonte: O autor (2025).

A solugdo de referéncia utilizada para a avaliacdo dos resultados foi obtida por Durlofsky
(1993). A Figura 57 apresenta os resultados obtidos do VPI x Recuperacdo de 6leo mostrando
que todos os resultados obtidos apresentaram solugdes onde o corte de 4gua inicia em instantes
anteriores a solugao de referéncia. Apesar de todos os resultados apresentarem resultados satis-
fatdrios, o caso 4 e o caso 5 apresentaram oscilacdes que podem ser vistas nos detalhes apre-
sentados na Figura 58. Esses dois resultados possuem em comum a orienta¢do dos elementos
da malha fina. J& os outros resultados foram comportados em termos de oscilagdes.

Os resultados do volume recuperado acumulado, apresentados na Figura 59, mostraram
boa concordancia entre os resultados e a solugédo de referéncia.

Sendo assim, a formulag¢do se mostrou capaz de reproduzir, de maneira satisfatdria, bons

resultados para esse caso.
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Figura 57. Problema " de cinco pogos: VPI x Recuperag@o de dleo.
Fonte: O autor (2025).
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Fonte: O autor (2025).
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Figura 59. Problema de % de cinco pogos: VPI x Volume recuperado.
Fonte: O autor (2025).

9.3.3 Reservatorio com 2 barreiras

O presente caso foi adaptado de Carvalho (2005) e possui o objetivo de avaliar o compor-
tamento da formulag¢do proposta em uma situagdo em que o dominio apresenta barreiras imper-
meaveis, além de avaliar a capacidade da malha sugerida em resolver o problema reduzindo o
nivel de refinamento nos locais onde a saturagdo ndo possui varia¢des significativas.

O dominio é um quadrado medindo [100,00m % 100,00m], com duas barreiras que for-
mam um canal e que sdo definidas no esquema do caso apresentado na Figura 60. O escoamento
se desenvolve a partir de um gradiente de pressdes imposto com a pressdo na face esquerda
igual a p,, = 5.000,00Pa e na face direita igual a p,, = 1.000,00Pa. A saturagfo na face es-
querda ¢ s,, = 0,90, constante ao longo de toda a simula¢@o. O passo de tempo utilizado foi de
At = 1,00s e os parametros fisicos e numéricos da simulagao estio apresentados na Tabela 18.

A malha utilizada ¢ uma malha ndo-conforme onde a malha fina € referente aos locais onde
se concentra o escoamento, ja a malha grossa esta na regido onde ndo ocorre escoamento signi-
ficativo, tanto no reservatorio como nas barreiras. Essa malha possui 2194 nds e estd apresen-

tada na Figura 61.
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Figura 60. Problema das barreiras: esquema do caso.
Fonte: O autor (2025).

Tabela 18. Problemas das barreiras: pardmetros fisicos.

Parametro Valor
Un 0,004Pa.s
7. 0,001 Pa.s
K, 107 0 2
° [ 0 10—‘*]m
Kp 10-10 0 2
" [ 0 10-1°]m
Q)res 0'35
Dbar 0,20

C,. C; 10°




Figura 61. Problema das barreiras: malha.
Fonte: O autor (2025).
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A partir da analise do campo de pressoes pode-se verificar que a formulacdo foi capaz de

reproduzir a acentuada queda de pressdes que ocorre na regido confinada pelas duas barreiras,

apresentando um comportamento linear ao longo do canal, conforme a Figura 62.

A Figura 63 apresenta o campo de saturagdo nos instantes de tempo iguais a 10,00s,

60,00s, 120,00s, 180,00s, 240,00s e 320,00s. Analisando os resultados verifica-se que os

resultados s@o compativeis com as condigdes de escoamento proposto, respeitando as barreiras

e se concentrando no canal de escoamento. Verifica-se também que a malha sugerida se mos-

trou compativel com a solugéo, que variou pouco nos locais discretizados pela malha grossa.

Pressao com Extrusdo Visual

Pressao (MPa)

100

100 O y (m)

(a (b)

Figura 62. Problema das barreiras: (a) campo de pressdes com vista bidimensional;
(b) campo de pressdes extrudado.
Fonte: O autor (2025).
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Figura 63. Problema das barreiras: campo de saturac¢des (a) 10,00s; (b) 60,00s; (c) 120,00s;
(d) 180,00s; (e) 240,00; (f) 320,00s.
Fonte: O autor (2025).
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9.3.4 Reservatorio fraturado

O presente caso foi adaptado de Damirchi et al. (2020). Nesse trabalho os autores propu-
seram uma formulagdo para a solugdo do escoamento monofasico em meios porosos fraturados
que também utiliza o EFA. Essa proposta sobrepde uma malha bidimensional para a matriz
porosa e uma malha de elementos lineares para as fraturas.

Propde-se entdo uma comparagdo entre os resultados para o escoamento monofasico obti-
dos da formulagédo do presente trabalho e da abordada por Damirchi et al. (2020). Essas abor-
dagens, apesar de usar o EFA para discretizar, de forma distinta, as fraturas e o meio, possuem
uma diferenca substancial que é a malha utilizada para a discretizagdo da fratura. Como ja ci-
tado, Damirchi et al. (2020) utiliza uma formula¢do com fraturas lineares enquanto o método
proposto no presente trabalho propde discretizar as faturas com uma malha bidimensional con-
cebida na escala das fraturas.

Além da andlise do escoamento monofasico, foram realizadas simula¢des considerando o
escoamento bifasico em duas condi¢des, a primeira com as fraturas formando barreiras imper-
meaveis e a segunda com as fraturas formando canais de fluxo.

O caso possui a geometria definida por um quadrado de lados unitarios, com a face superior
e inferior impermedveis. O fluxo ocorre a partir da imposi¢do de um gradiente de pressoes,
dado por pressdes com valores de p, = 10.000,00Pa ¢ p, = 0,00Pa impostas, respectiva-
mente, na face esquerda e direita do dominio. A posicéo das fraturas esta apresentada na Figura

64 e amalha na

Figura 65. A malha utilizada neste caso possui 4455 nos.

Os parametros fisicos e numéricos utilizados na simulagéo estdo apresentados na Tabela
19. As fraturas impermeaveis possuem um tensor de permeabilidades K4 imy € as permeaveis
Kpar,per- Todos o0s outros pardmetros sdo iguais para as duas situa¢des. A porosidade do reser-
vatério ¢ dada por ¢,..s e da barreira por ¢p ;-

Para as simulagdes bifasicas o passo de tempo utilizado foi de At = 1 x 10~°s e a toleran-

cia utilizada para o algoritmo multicorretor foi de tol = 0,01.
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Figura 64. Problema das fraturas: esquema do caso.
Fonte: O autor (2025).
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Figura 65. Problema das fraturas: malha.
Fonte: O autor (2025).



Tabela 19. Problema das fraturas:

parametros fisicos.

Parametro Valor
Uy 4,00Pa.s
7. 1,00 Pa.s
K, 1074 0 2
° [ 0 10-4] m
Kpar,imp [10(;10 10(110] m2
Kbar,per [é (ﬂ m?2
¢res 0'35
¢bar 0'20
C » Cg 10°

9.3.4.1 Fraturas impermeaveis
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Os resultados considerando as fraturas impermedveis estdo apresentados na Figura 66 e

Figura 67, e sdo referentes, respectivamente ao campo de pressdes e as pressdes obtidas ao

longo da coordenada y = 0.5m. A Figura 66 (a) apresenta os resultados utilizando a formulagao

proposta nesse trabalho e a Figura 66 (b) apresenta os resultados de referéncias, obtidos por

Damirchi et al. (2020).

A partir das analises desses resultados € possivel observar a concordancia entre as duas

formulagdes.
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Figura 66. Problema das fraturas impermeaveis: (a) solu¢do numérica; (b) solugéo de referéncia.
Fonte: O autor (2025).
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Figura 67. Problema das fraturas impermeaveis: solu¢do numérica x solugéo de referéncia.
Fonte: O autor (2025).

O desenvolvimento temporal do campo de saturagdes para o escoamento bifasico esta apre-
sentado na Figura 68 para 6 instantes distintos. A Figura 69 apresenta o campo de saturagdes
extrudado nos instantes iniciais. No primeiro instante de tempo ¢ possivel notar a presenga de
oscila¢des espurias que se estabilizaram posteriormente.

A partir dos resultados analisados verifica-se que o avango da frente de satura¢éo contornou

as fraturas impermeaveis conforme esperado.
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Figura 68. Problema das fraturas impermeaveis, campo de saturagfo: (a) 1x10%s; (b) 10x107s;
(c) 30x10%s; (d) 50x10°%s; (e) 70x10s; (f) 90x10s.
Fonte: O autor (2025).
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Figura 69. Problema das fraturas impermeaveis, campo de saturagfo extrudado:
(a) 1x10s; (b) 10x10°%s.
Fonte: o autor (2025).

9.3.4.2  Fraturas permeaveis

Os resultados para a situag@o em que as fraturas foram consideradas permeaveis, formando
canais de fluxo, estdo apresentados na Figura 70 e Figura 71. De forma semelhante ao caso
anterior, a Figura 70 apresenta o avango do campo de saturagdes ao longo do tempo e a Figura
71 apresenta o campo de satura¢des extrudado para os dois primeiros instantes de tempo.

A partir da andlise dos resultados percebe-se que as oscilagdes espurias também ocorreram
nos tempos iniciais e foram se estabilizando com o avangar da simulag@o. Analisando o com-
portamento da frente de saturag@o também percebe-se o seu avango de forma mais intensa ao

longo das fraturas, conforme esperado.
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Figura 70. Problema das fraturas permeéveis, campo de saturagéo: (a) 1x107s; (b) 10x10s; (c) 30x10s; (d)
50x10°%s; (e) 70x10s; () 90x10s.
Fonte: O autor (2025).
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Figura 71. Problema das fraturas permedaveis, campo de saturagfo extrudado:
(a) 1x10°%s; (b) 10x10°%,
Fonte: O autor (2025).

9.3.5 Yide cinco pocos modificado

O presente caso foi proposto por Souza (2015) e consiste em uma varia¢do do problema de
%4 de cinco pocos. Para o presente caso foram considerados u,, = 50Pa.s, u,, = 1,00Pa.s e o
tensor de permeabilidades obtido pela equacdo 149. Todos os outros pardmetros e defini¢des

do modelo foram iguais ao caso % de cinco poc¢os apresentado anteriormente.

_ [005(45°) —sen(45°)] [10 0] [ cos(45°)  sen(45°)
0 10

"~ Lsen(45°)  cos(45°) —sen(45°)  cos(45°) (149)

A partir de uma analise da expressdo que define o tensor de permeabilidades, percebe-se
que ele é obtido aplicando uma rotacdo em um angulo de 45° de um tensor isotropico, resul-
tando em um tensor cheio.

A solug@o de referéncia foi proposta por Souza (2015) utilizando uma formulagao de MVF
do tipo Multipoint Flux Approximation (MPFA). Essa ¢ uma familia do MVF onde utiliza-se
formato malhas duais, com os elementos do esténcil divididos em subvolumes de controle onde
sdo obtidos os gradientes para a realizag¢do dos balangos locais. Na solucdo de referéncia, apre-
sentada na Figura 72 foi utilizada a técnica MPFA-O em uma malha triangular estruturada com

37.996 volumes de controle.



145

Para o presente caso foram propostas 4 malhas, sendo 3 ndo conformes e 1 conforme. Essas
malhas, estdo apresentadas nas Figura 73 (b), Figura 74 (b), Figura 75 (b) e Figura 76 (d) e
serdo denominadas, respectivamente, por malha 1, malha 2, malha 3 e malha 4. Os campos de
saturagdo para cada malha estdo apresentados nas Figuras Figura 73 (a), Figura 74 (a), Figura
75 (a) e Figura 76 (a).

A malha 1 foi proposta a fim de obter um resultado onde a regido mais refinada ¢ onde a
solugdo se desenvolve. As malhas 2, 3 e 4 foram sugeridas a partir de uma sequéncia com 3
refinamentos distintos. Todos os campos de satura¢do foram obtidos para um VPI = 0,40.

Pseudocolor
Var: WaterSaturation
000

- 0.7500

‘ — 0.5000

—0.2500

. 0.0000

Figura 72. Problema " de cinco pogos modificado: solugéo de referéncia.
Fonte: Souza (2015).
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Figura 73. Problema Y de cinco pogos modificado: (a) campo de saturacgéo; (b) malha 1.
Fonte: o autor (2025).
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Figura 74. Problema Y de cinco pogos modificado: (a) campo de saturacgdo; (b) malha 2.
Fonte: o autor (2025).
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Figura 75. Problema Y de cinco pogos modificado: (a) campo de saturacgdo; (b) malha 3.
Fonte: o autor (2025).
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Figura 76. Problema 4 de cinco pogos modificado: (a) campo de saturagio; (b) malha 4.
Fonte: o autor (2025).

A partir da analise dos resultados € possivel verificar que todos eles foram mais difusivos
que a solugdo de referéncia. Esse fato por ser explicado pela prépria natureza da formulagdo
que introduz uma difusdo artificial para a sua estabilizagdo, tendo em vista que a quantidade de
elementos utilizado nas solu¢des numéricas sdo consideravelmente menores que a de referén-
cia, entdo o efeito da difusdo é bem mais pronunciado.

Percebe-se também uma maior evidéncia na assimetria do resultado na malha 2, que ¢ mi-
nimizado na malha 3 e que volta a ficar um pouco mais assimétrico na malha 4, esse fato pode
ser explicado pela diferenga entre os niveis de refinamento das duas regides.

Apesar das observagdes apresentadas anteriormente os resultados se mostraram satisfato-

rios e compativeis com a solucdo de referéncia.

9.4 CONCLUSOES

A partir dos resultados obtidos verifica-se que a utilizacdo do método dos elementos de
acoplamento em conjunto com as formulagdes propostas apresentou resultados satisfatorios. O
problema de Buckley-Leverett, por exemplo, serviu como demonstragio da influéncia nos pa-
rametros de estabilizag@o e da construgdo da malha. Uma das caracteristicas a ser observada é
que quando o refinamento ocorre a montante da frente de saturacdo os resultados se mantem
estaveis, reduzindo as oscilagdes espurias. Desta forma, isso sugere que esse tipo de malha pode

ser utilizado em aplicac¢des praticas em proximidades de pocos injetores, por exemplo.
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A formulagdo também apresentou resultados animadores em situagdes que sdo frequente-
mente encontradas em aplica¢des praticas da area de reservatdrios, como € o caso de recupera-
cdo secundaria com a configurac¢do % de cinco pogos. Nesse caso verificou-se que apesar da
pequena influéncia das malhas nos fluxos fracionarios (recuperacdo), os resultados dos volumes
acumulados se mantiveram consistentes.

Outras condi¢des frequentemente encontradas em reservatorios sdo a presenca de barreiras
e fraturas que formam canais de fluxos. As malhas ndo-conformes permitiram a simulag@o des-
ses casos que apresentaram resultados animadores, com as malhas sendo construidas de forma
otimizada de acordo com os locais onde hé grandes variagdes nos as gradientes das saturagoes.

Os resultados apresentados s@o animadores e apresentam as possibilidades da aplicacdo da
formulagdo sugerida em problemas de reservatérios de petroleo com as caracteristicas avalia-

das.
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10 CONSIDERACOES FINAIS E TRABALHOS FUTUROS

O presente trabalho apresenta uma contribui¢o inédita a simulagdo em meios porosos com
a aplicag@o do EFA (Bitencourt Jr et al., 2015) em conjunto com formulagdes estabilizadas do
MEF (Sloan & Abbo, 1999; Mendonga, 2003; Coutinho et al., 2003) em dois problemas da
area. O foco principal do trabalho foi a validacdo das formulagdes propostas, bem como o en-
tendimento dos seus comportamentos frente a situagdes que podem ocorrer na pratica como
anisotropias ¢ heterogeneidades. Para isso, essas propostas foram testadas exaustivamente a
partir de experimentos classicos da literatura, apresentando resultados animadores.

Diante da natureza dos problemas abordados, as formulac¢des propostas se mostraram efi-
ciente em todas as situacdes apresentadas, permitindo tanto a redugdo do nimero de graus de
liberdade do sistema, como imposicdo de condi¢des de acoplamento entre malhas construidas
de forma independente.

O EFA possui duas caracteristicas particularmente vantajosas: a capacidade de acoplar ma-
lhas mantendo o nimero de graus de liberdade das malhas originais e a realizagdo do acopla-
mento sem a criacdo de superficies definidas pelo usuario. Essas caracteristicas fazem com que
o acoplamento seja tratado de forma natural e direta, possibilitando facilmente a replicagdo dos
resultados e diminuindo o custo computacional da simulagéo.

Todo o desenvolvimento do trabalho foi realizado em um c6digo implementado pelo autor,
possibilitando total controle sobre sua estrutura, funcionalidades, permitindo intervengdes di-
retas nos esquemas numéricos implementados. Além disso o gerador de malhas utilizado ¢ gra-
tuito e de facil acesso. Essas caracteristicas permitem que outras formulagdes sejam implemen-

tadas e facilita os trabalhos futuros, sugeridos a seguir.
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10.1 SUGESTAO DE TRABALHOS FUTUROS

Sugere-se, entdo, como extensdes desse trabalho os seguintes temas.

Para o problema de acoplamento hidromecanico:

A o e

Generalizagdo do codigo para simulagdes tridimensionais;

Aplicacdo com materiais plasticos;

Consideracéo do escoamento bifasico;

Consideracdo de fraturas lineares utilizando o EFA;

Aprofundamento na aplicagdo do método para a solucdo de problemas de inte-
ragdo solo estrutura;

Aplicacdo do controle de passo de tempo na simulagao.

Para o problema de escoamento biféasico:

Sl e

Considerar o escoamento de fluidos misciveis;
Implementar o escoamento trifésico;
Utilizar esquemas de refinamento adaptativos de malhas;

Considerar fluidos ndo-newtonianos no escoamento.

Para os dois problemas, recomenda-se:

1.
2.
3.

Simular casos reais de reservatorios;
Utilizar técnicas de paralelizagdo;

Implementar as técnicas sugeridas para problemas tridimensionais.
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ANEXO A

Esse anexo trata dos aspectos associados ao c6digo computacional desenvolvido, onde fo-
ram implementadas as formulagdes apresentadas no presente trabalho. A Figura 77 ilustra um
esquema didatico do procedimento de simulac¢do apresentando as seguintes etapas: geracdo de
malha, entrada de dados, pré-processamento, processamento e pos-processamento. Salvo a
etapa de geracdo de malha, que ¢ realizada no Gmsh®, todas as outras so realizadas no cédigo
desenvolvido, ou seja, no proprio MATLAB®. A Figura 78 apresenta um esquema do cédigo,
indicando se a etapa € definida pelo usudrio ou realizada automaticamente e em que ferramenta

ela ocorre.

1.Geragdo de malha

U Definida pelo usuario
QO Realizada no Gmsh®

2.Entrada de dados )
U Definida pelo usuario

QO Realizada no MATLAB®
3.Pré-processamento

O Procedimento automatico
O Realizado no MATLAB®

4 Processamento

[ Procedimento automatico
O Realizado no MATLAB®

5.Pés-processamento

@ Procedimento automatico

Q Realizado no MATLAB®
_/

Figura 77. Esquema do cddigo.
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As etapas apresentadas na Figura 77 estdo sintetizadas abaixo:

Geracdo de malha:

Essa etapa ¢ realizada no Gmsh®, onde o usuario define a geometria, o tipo de elemento,
o refinamento da malha, os locais que contém condi¢des de contorno e os pardmetros do mate-
rial. Para os casos de malhas conformes apenas uma malha ¢ criada j& para casos de malhas
ndo-conformes sdo criadas duas malhas. Nesse passo sdo gerados arquivos do tipo .msh’ que

serdo lidos no codigo.

Entrada de dados:

A entrada de dados é realizada em um arquivo principal em formato MATLAB® onde o
usuario define os parametros de simulagéo, os valores e tipos de condi¢do de contorno, o nome
dos arquivos de malhas e as defini¢des de pos-processamento. Esse procedimento ¢ definido
em um arquivo padrdo que quando processado acessa as fungdes de pré-processamento, pro-

cessamento e pos-processamento.

Pré-processamento:

De posse dos nomes dos arquivos de malha essa rotina faz a leitura desses arquivos e or-
ganiza os vetores e matrizes das coordenadas, conectividades dos elementos e de condi¢des de
contorno. Para o MEF misto essa rotina cria os graus de liberdade mecéanicos a partir dos ele-
mentos hidraulicos. No caso de malhas ndo-conformes essa rotina identifica as interfaces, cria
os elementos de compatibilidade e a malha final resultante da unido dos elementos de interface

e dos elementos das malhas iniciais.

Processamento:

A partir dos dados lidos anteriormente e a defini¢do do mddulo a ser utilizado o processa-

mento ¢ realizado conforme as formulagdes apresentadas.

Pdés-processamento:

Todo o pés-processamento € realizado no MATLAB®, onde séo criadas imagens com as
deformadas das malhas, imagens com escalas de cores das variaveis, secdes no dominio com
planos onde os resultados sdo apresentados em termos da dire¢do coordenada x ou y e variagéo

nos valores de coordenadas ao longo do tempo.



O cddigo apresenta 8 mddulos de andlises que so sintetizados na Figura 78.
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00000000

Hidraulico (T3)

Hidraulico ndo-conforme (T3+EFA)
Mecanico (T6)

Mecanico nio-conforme (T6+EFA)
Hidromecanico (T3-T6)

Hidromecanico nio-conforme (T3-T6+EFA)
Bifasico (SUPG T3)

Bifasico ndo-conforme (SUPG T3+EFA)

LEGENDA

T3  Elemento triangular linear (3 nos)
T6  Elemento triangular quadratico (6 nos)
EFA Elementos finitos de acoplamento

Figura 78. Modulos do codigo.
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