ne~-
[[~
[[~

1

Zﬁ

<
=

US IMPAVID

- 15
-
-

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
CURSO EM SISTEMAS DE INFORMACAO

GABRIEL RAMOS RODRIGUES OLIVEIRA

PYAUTOTK: Bridging Usability and Flexibility in Web Automation Frameworks

Recie
2025
GABRIEL RAMOS RODRIGUES OLIVEIRA

GABRIEL RAMOS RODRIGUES OLIVEIRA

PYAUTOTK: Bridging Usability and Flexibility in Web Automation Frameworks

Trabalho de Conclusdo de Curso
apresentado ao Curso de Graduagao em
Sistemas de Informacdo do Centro de
Informatica da Universidade Federal de
Pernambuco, como requisito parcial para
obtencdo do titulo de bacharel em
Sistemas de Informacéo.

Aprovado em: 05/04/2025

BANCA EXAMINADORA

Prof. Dr. Breno Alexandro Ferreira de Miranda (Orientador)

Universidade Federal de Pernambuco

Prof. Dr. Leopoldo Motta Teixeira (Examinador Interno)

Universidade Federal de Pernambuco

PyAutoTk:
Bridging Usability and Flexibility in Web Automation Frameworks

Gabriel Ramos', Breno Miranda'

! Informatics Center — Federal University of Pernambuco (UFPE)
Recife — PE — Brazil

{grro,bafm}@cin.ufpe.br

Resumo. The accelerating adoption of agile methodologies, DevOps practices,
and digital transformation has increased the demand for faster, more efficient,
and higher-quality deliverables across various industries [Rajkumar et al. 2016].
Automation has become essential not only for software development and QA teams
but also for professionals in marketing, sales, and operations seeking to streamline
repetitive tasks [Ahmed et al. 2010]. However, existing tools often present significant
challenges in terms of learning curve, initial setup, and accessibility, especially for
users with limited technical background [ljaz and Andlib 2014].

PYAUTOTK emerges as a Python-based automation framework focused on lowering
the learning curve and simplifying the creation of automated scripts. By aligning
the concept of widgets with fundamental HTML and CSS principles, it reinforces
understanding of how elements work and interact. The framework also integrates
with the Page Object Model (POM) architecture, supporting both beginners and QA
professionals starting in automation.

Its modular design, flexibility, and usability-focused approach address common
challenges in test automation. Preliminary validation suggests that PYAUTOTK offers
benefits in terms of usability and maintainability, although further empirical studies
are necessary to confirm these results. Current limitations include OS compatibility,
lack of Playwright support, and limited advanced action features—prioritized for
future development.

PYAUTOTK is open-source and available at https://pyautotk.
readthedocs.io/en/dev-icst/. For a demonstration of PYAUTOTK in
action, visit: https://www. youtube.com/watch?v=PzATPf17maY.

Palavras-chave: Software Testing, Web Automation, Page Object, Python

1. Introduction

In today’s fast-paced technological landscape, the growing emphasis on agility, continuous
delivery, and digital transformation has heightened the demand for faster, high-quality delive-
rables [Rajkumar et al. 2016, Ahmed et al. 2010]. Automation has become a fundamental tool
not only for QA teams but also for professionals in areas like marketing and operations, who rely
on it to optimize repetitive workflows such as web scraping, data collection, and task orchestra-
tion. However, many existing tools pose barriers to entry due to steep learning curves, complex
setup processes, and the need for advanced programming skills [Wiklund and Wiklund 2018].

PYAUTOTK was developed to address these challenges by providing an accessible,
Python-based framework that simplifies the understanding and implementation of web

automation. Its primary goal is to reduce the learning curve associated with both programming
and automation concepts. By combining high-level abstractions—such as widgets and session
decorators—with fundamental web development knowledge (HTML and CSS), PYAUTOTK
allows users to interact with web elements intuitively. In addition, the framework aligns with
the Page Object Model (POM), reinforcing modularity and scalability in automation design.
This makes it easier for beginners and QA professionals to progressively advance in their
understanding of automation concepts and best practices.

Although PYAUTOTK introduces a minor trade-off in execution speed compared
to direct Selenium usage, it is hypothesized that this is offset by improvements in usability,
maintainability, and onboarding speed. Ongoing usability studies aim to evaluate how effectively
the framework supports users in developing automation scripts with minimal technical friction.
If validated, PYAUTOTK may empower a wider range of professionals to adopt automation
in their daily workflows, boosting efficiency and productivity.

The remainder of this paper is structured as follows: Section 4 details the tool’s
architecture and core functionalities, including the widget abstraction and browser session
management. Section 5 presents a technical comparison between PyAutoTk and raw Selenium
implementations. Section 6 describes the hypothesized user learning journey and pedagogical
approach. Section 7 provides motivating examples demonstrating real-world applications of
the framework. Section 8 discusses the user feedback methodology and collected responses.
Section 9 examines the framework’s limitations and performance trade-offs. Finally, Section 10
concludes the paper and outlines directions for future research.

2. Conceptual Foundations: Required Background for Learning

This section introduces essential concepts required to understand and effectively use
PYAUTOTK. It aims to minimize the learning curve by establishing foundational knowledge.

* HTML and CSS Fundamentals: HTML (HyperText Markup Language) structures
the content of web pages, while CSS (Cascading Style Sheets) defines their visual pre-
sentation. Understanding basic HTML tags (e.g., <div>, <button>, <input>)
and CSS properties (e.g., color, position, display) is crucial to recognize
how elements appear and interact.

* What is a Widget?: In UI/UX and web automation, a widget represents any user
interface element with which a user can interact. Examples include buttons, scrollbars,
input fields, and icons. In the context of PYAUTOTK, widgets abstract these components
into programmable objects, facilitating interaction.

¢ Context and Session in Automation: In browser automation, a context refers to the
environment in which automation runs—typically, a browser tab or session. Managing
sessions ensures browser resources are initialized and disposed correctly. PYAUTOTK
uses decorators to handle the session lifecycle automatically.

3. Simplifying Automation Through Abstraction

To bridge the gap between technical automation frameworks and educational use, PYAUTOTK
introduces intuitive abstractions that hide complexity while promoting learning.

* Widget Abstraction: The Widget class is the central element in PYAUTOTK,
designed to encapsulate all user interactions with web elements into a single, consistent

interface [Statter and Armoni 2020]. By concentrating all widget types into one object
model, users are encouraged to explore the HTML structure (DOM) to identify
unique attributes such as text, class_, or name. This approach is based on the
hypothesis that engaging directly with element attributes builds conceptual familiarity
and strengthens the user’s ability to reason about Ul behavior.

The example in Listing Code 1 demonstrates how a single line of code is sufficient
to locate and interact with a button on the page:

Listing 1. Widget basic instance example

home_btn =
Widget (session, class_="nav-link scrollto", text="Home")
home_btn.click ()

This abstraction allows learners to focus on intent (e.g., clicking, typing) instead of
syntax (e.g., XPath, selectors), as shown in the following Listing Code 2 used to fill
a form based on named fields:

Listing 2. Widget instance to fill a form

def fill_contact_form(self, #*xkwargs):
for key, value in kwargs.items () :
input_field = Widget
(self.session, class_="form-control", name=key)
input_field.enter_ text (value)

Session and Context Alignment: The @browser_session decorator defines
the runtime environment of scripts. It abstracts away repetitive boilerplate such as
initializing and terminating sessions, allowing learners to focus on actions within the
browser as shown in the following Listing Code 3. This aligns with the metaphor of
opening a tab and interacting with a page.

Listing 3. Browser Session example

@browser_session ("example.html", browser_type="firefox")
def main (session):
Widget (session, text="Get Started").click()

Composition for Learning the Page Object Pattern:

A core goal of PYAUTOTXK is to help learners, especially aspiring QA professionals,
internalize one of the most important concepts in test automation: the Page Object
Model (POM). This design pattern organizes code into logical representations of each
screen or section of an application, enabling reusability, readability, and scalability.

To support this learning, PYAUTOTK encourages users to group related widgets into
Python classes that represent sections of a webpage. Each class mimics a “page
object” by encapsulating both locators (widgets) and actions (methods) related to that
section. This structure not only reflects industry best practices but also simplifies code
comprehension for beginners.

The example in the following Listing Code 4 shows how an interface section with a
button is declared in a modular way:

Listing 4. llustration of POM with PyAutoTk

class ArshaMainSection:
def _ init_ (self, session):
self.watch_video_btn
= Widget (session, text="Watch Video")

def watch_main_video (self):
self.watch_video_btn.click ()

As learners structure their scripts this way, they gradually build fluency in the Page
Object approach. This progressive exposure helps users transition from high-level
abstractions to industry-grade practices, serving as a scaffolded learning path from
beginner-friendly code to more advanced automation design principles.
* Visual Metaphor and Learning Aids:

PyAutoTk adopts a screen-based metaphor: the browser is a canvas, and widgets are the
components. This aids cognitive mapping between code and UI behavior. As a result,
learners develop an internal model of how frontend structures can be manipulated
through backend logic. This abstraction supports progressive learning, where users
begin with simple tasks and gradually explore more complex logic without being
overwhelmed by low-level details.

4. Tool
4.1. Architecture

The architecture, illustrated in Figure 1, of the PYAUTOTK framework is designed with three
distinct layers:

elements . ,—| Widget |—’—| Browser Session | ,—| Keyboard |
. A 4

A A 4
core . | Expection | | Browser Controller | | Input | | Configuration | | Logger
. I

Figura 1. Overview of PYAUTOTK Architecture

* Dependency Layer: This is the foundational layer and currently relies solely on
Selenium. It serves as the external dependency, providing the essential capabilities for
browser interaction.

* Core Layer: The core layer handles critical functionalities such as exception
management, logging, configuration settings, as show in Listing Code 5, and the
browser controller. Among these, the configuration module is the only interface
directly accessible to the user, allowing customization of framework behaviors. These
configurations include selecting the default browser, setting browser behaviors like
starting in full-screen mode, enabling or disabling the GUI, and toggling logging
levels between info and debug. Additionally, the core layer includes support for Input
controller, enabling automated simulations of keyboard interactions such as pressing
specific keys or navigating through elements using the arrow keys.

* Elements Layer: This is the most user-facing layer, where high-level functionalities
such as widgets, the browser session decorator, and the Input component are imple-
mented. Widgets simplify interactions with web elements, while the browser session

decorator abstracts session handling. The Keyboard component, similar to the Widget,
seamlessly integrates with web elements to provide a unified API for managing external
user inputs, such as keyboard and mouse interactions. The elements layer depends
solely on the core layer (specifically the browser controller) and maintains complete
abstraction from Selenium, ensuring a clear and modular separation of concerns.

The architecture is intentionally designed to prioritize flexibility and adaptability. For
instance, the dependency layer could be replaced with a different tool without impacting
the other layers. Similarly, the browser controller in the core layer acts as an API, exposing
functionalities to the elements layer without revealing implementation details tied to Selenium.

4.2. Browser Session

The browser session decorator in PYAUTOTK plays a crucial role in simplifying browser
initialization and session management. This abstraction removes the need for users to manually
configure browsers, handle sessions, or close resources, streamlining the process of starting
and completing automation tasks. By leveraging the browser session decorator, users can:

* Effortlessly Manage Browser Configuration: Specify browser type (e.g., Chrome
or Firefox) and configurations such as headless mode or maximized windows without
modifying the core scripts. This practical implementation is illustrated in Figure ??,
which demonstrates how these configurations can be seamlessly applied using the
PyAutoTk framework.

* Streamline Session Management: Automatically open and close browser sessions,
ensuring resources are released appropriately after execution.

* Eliminate Redundant Code: Replace repetitive boilerplate setup and teardown code
with a single decorator, resulting in cleaner and more concise scripts.

* Improve Debugging and Logging: Integrated logging captures browser behavior,
aiding debugging and identifying issues during automation runs.

Listing 5. PyAutoTk Configuration example

from pyautotk.core.config_loader import config

config.browser_type = "firefox"
config.headless_mode = True
config.maximize_browser = True

4.2.1. Structured Learning Through Constraints

The session decorator intentionally limits direct control over setup/teardown processes to
reinforce foundational automation concepts. By abstracting these steps, PyAutoTk:

* Reduces Cognitive Overload: Beginners avoid getting stuck on low-level details (e.g.,
driver instantiation, implicit waits) and focus on core automation logic.

* Teaches Best Practices: Enforces the importance of proper resource cleanup (e.g.,
closing sessions) without requiring manual implementation.

* Scaffolds Understanding: Users implicitly learn the value of setup/teardown phases,
preparing them to later customize these steps in tools like Selenium.

For example, automating navigation to a webpage and performing basic actions can
be achieved with just a few lines of code using the browser session decorator, enabling users
to focus on the logic rather than setup details.

4.3. Widget

The concept of widgets in PYAUTOTK revolves around encapsulating individual web elements
into reusable and manageable objects. A Widget represents a Ul component (such as a button,
input field, or link) and abstracts the complexities of interacting with these elements. Widgets
serve as the building blocks of automation in PYAUTOTK, providing an intuitive API for:

* Clicking Elements: Perform click actions with built-in error handling and retries.

* Entering Text: Automate text input fields seamlessly, including handling element
focus and visibility.

* Scrolling: Bring elements into view automatically before interacting with them.

» Extracting Properties: Retrieve element attributes or data such as text content and
dimensions.

The widget abstraction allows users to automate tasks ranging from simple form
submissions to advanced interactions across multiple pages. For instance, in the Figure 2,
widgets are used to automate instance the ’Get Started’and ”Watch Video buttons to be able
to interact. Each widget is tied to specific UI attributes, making it easy to locate and interact
with elements without relying on fragile or complex locators.

Figura 2. Widget instance code example

4.4. Keyboard and Input Control

An important aspect of web automation is the simulation of user inputs—especially
keyboard events. PyAutoTk includes a dedicated abstraction layer to support common
keyboard interactions through the KeyboardController class, which wraps Selenium’s
ActionChains to provide a simplified and readable API.

This controller enables users to simulate key presses for both navigation and interaction
purposes. The following actions are available and can be triggered through intuitive method calls:

» Navigation keys: press_arrow_up (), press_arrow_down (),
press_arrow_left (), press_arrow_right ()
¢ Functional keys: press_enter (), press_escape (), press_tab(),

press_space (), press_backspace (), press_delete()

* Modifier keys: press_control (), press_shift (), press_alt ()
* Function keys: press_function_key (n) for any function key from F1 to F12

These input functions abstract the complexity of low-level interactions, allowing
learners to simulate realistic workflows such as navigating dropdown menus, submitting forms
via Enter, or scrolling through interfaces using arrow keys. The example in the following
Listing Code 6 shows a code example.

Listing 6. Keyboard example use

keyboard = Keyboard(session)
keyboard.press_arrow_down ()
keyboard.press_enter ()

Beyond automation convenience, the KeyboardController plays a key
pedagogical role. It reinforces the concept of event-driven interactions within web interfa-
ces—something often abstracted away in high-level tools. By requiring users to explicitly
simulate actions like pressing keys, PyAutoTk makes invisible processes (e.g., form submission
via Enter) tangible.

This promotes an experiential learning process where users begin to understand how
browser interactions are structured and triggered. It also helps in debugging real-world scenarios
where keyboard input is essential, such as closing popups, navigating modals, or interacting
with single-page applications (SPAs). Although still under development, the framework reserves
a placeholder for mouse actions through the MouseController class, where additional
input modalities (e.g., drag-and-drop, hover with delay, or click-and-hold) may be introduced
as learners evolve to more complex automation use cases.

4.5. Page Object Model as a Learning Composition

The Page Object Model (POM) is one of the most important design patterns for test automation,
helping to improve modularity, scalability, and maintainability. In PYAUTOTK, POM is not
introduced as a pedagogical resource designed to facilitate structured learning for aspiring QA
professionals.

Listing 7. Top Menu POM example using PyAutoTk

class Arsha:
def _ _init__ (self, session) —-> None:

self.session = session
self.home_btn = Widget (self

.session, class_="nav-1link scrollto", text="Home")
self.about_btn = Widget (self

.session, class_="nav-link scrollto", text="About")
self.service_btn = Widget (self.

session, class_="nav-link scrollto", text="Services")
self.portfolio_btn = Widget (self.session

, class_="nav-1link scrollto", text="Portfolio")
self.team_btn = Widget (self

.session, class_="nav-link scrollto", text="Team")
self.dropdown_btn

= Widget (self.session, class_="bi bi-chevron-down")

self.contact_btn = Widget (self

.session, class_="nav-link scrollto", text="Contact")
self.get_started_btn = Widget (self.session, text

="Get Started", class_="btn-get-started scrollto")

def dropbox_navigate (self):
self.dropdown_btn.click ()
self.dropdown_btn.hover ()

About Services Portfolio Team Contact | Get Started

Drop Down 1

Deep Drop Down 1

Drop Down 2

Deep Drop Down 2

Figura 3. Top menu button web page example

By combining abstraction with practical composition, PYAUTOTK allows users to build
intuitive mental models of automation architecture. The Arsha class (Listing Code 7) demons-
trates how to structure a webpage’s navigation menu using widgets. Each button—such as
Home, About,and Contact—is abstracted as a widget, using identifiable HTML attributes.
These are grouped into a class representing the page section, reflecting the POM philosophy of
separating locators and actions. The corresponding interface (Figure 3) provides visual reinforce-
ment, linking code to actual Ul elements. The method dropbox_navigate (), for instance,
encapsulates interaction logic into a reusable function. This kind of structure helps beginners
grasp the modularity principle behind POM without needing to learn it formally first. It becomes
a natural consequence of organizing automation scripts in a readable and reusable way.

4.6. Testing of PYAUTOTK

To ensure reliability and maintainability during the development of PYAUTOTK, a comprehen-
sive suite of unit tests was created. These tests focus on validating critical components, such
as the widget and browser functionalities, which are central to the framework’s usability.

The widget unit tests ensure that XPath expressions, which are essential for the widget
class to interact with web elements, are generated correctly. Similarly, browser unit tests
validate the functionality of the browser session decorator for all supported browsers, including
tests in headless mode.

An example of browser unit tests, including a headless Chrome session, is shown
in Listing Code 8. For additional tests suite available in PYAUTOTK, please visit: https:
//github.com/brailog/PyAutoTk/tree/dev-icst/pyautotk/tests.

Listing 8. Browser Session unit test exmaple

@browser_session (MOCKUP_TEST_URL_FILE)

def test_chrome_browser headless (self) :
@Qbrowser_session (GOOGLE_URL, headless=True)
def _test chrome browser headless (session) :

assert session.driver.title == "Google"
_test_chrome_browser headless ()

4.7. Exception Handling and Educational Value

A robust exception handling mechanism is critical in any automation framework—not only
to ensure reliable execution, but also to guide users through meaningful feedback when things
go wrong. In PyAutoTk, exception handling has been designed not only with stability in mind,
but also as a didactic resource that encourages deeper understanding of automation flow and
failure diagnosis.

All exceptions in PyAutoTk related to widgets and browser behavior inherit from a
unified base class: WidgetException. This structured hierarchy enables both precise
error filtering during execution and improved traceability when debugging complex automation
scenarios.

For example, when a user attempts to click on a web element and the action fails, a
specific WidgetClickException is raised. This exception includes the XPath of the
failed element and the original error message, promoting transparency and helping learners
trace back to the cause of the issue showing in Listing Code 9

Listing 9. Handler issues with execption

@Qbrowser_session (MOCKUP_TEST_URL_FILE)
def test_navigate_by_search(...):
try:

search_field.click ()

except WidgetClickException as e:
assert False, "Search field did not appear"

Each exception is contextually tailored to a specific action or operation within the
framework:

* WidgetClickException, WidgetDoubleClickException, and Wid-
getHoverException address interaction failures.

* WidgetEnterTextException and WidgetScrollException help
identify input and visibility issues.

* WidgetWaitTimeoutException ensures that users understand when a timeout
condition has occurred.

* WidgetAttributeException and WidgetRetrievePropertiesEx-—
ception assist in debugging attribute access and data retrieval.

* BrowserWaitForPageLoadException is used when a page fails to load fully
within a set timeframe.

From an educational perspective, this granularity fosters a culture of hypothesis testing.
Rather than presenting a generic error message, PyAutoTk encourages learners to consider
why a specific interaction may have failed—whether due to visibility issues, timing delays,
incorrect locators, or DOM structure changes. By analyzing exception types and messages,
users incrementally build mental models of browser behavior and error recovery.

Additionally, this exception system aligns with the framework’s filtering capability.
Developers can catch specific exception types when implementing retry logic or conditional
handling in their automation scripts. This provides a foundation for more advanced error
management patterns such as fallback mechanisms, adaptive waits, or screenshot captures on
failure—gradually introducing professional practices into the learning process.

The exception module in PyAutoTk is not merely a defensive coding feature is an
integral part of its pedagogical design. It invites exploration, encourages experimentation, and
reinforces the critical thinking required to evolve from a beginner to a proficient automation
practitioner.

5. Technical Depth of PyAutoTk’s Abstraction Layer

To demonstrate how PyAutoTk simplifies Selenium workflows while retaining pedagogical
transparency, we analyze a side-by-side comparison of PyAutoTk (Listing Code 10) and raw
Selenium (Listing Code 11) code for filling a contact form. This comparison highlights the
framework’s abstraction mechanisms and their impact on code simplicity and learning curve.

Code Comparison

Objective: Fill a contact form with user-provided data, measure execution time and memory
usage.

Listing 10. PyAutoTk Performance comparation

@browser_session (f"file:///{MOCKUP_TEST_URL_FILE}",
browser_type="firefox",
headless=True)

def pyauto_fill_contact_form(session, #*xkwargs):

start_mem = get_memory_usage ()
start_time = time.time ()

Click "Contact" using Widget abstraction
Widget (session, class_="nav-link scrollto",
text="Contact") .click ()

Dynamically fill form fields
for key, value in kwargs.items () :
form_control = Widget (session,
class_="form-control",
name=key)
form_control.enter_text (value)

Measure metrics

elapsed_time = time.time () - start_time
end_mem = get_memory_usage ()
return elapsed_time, end_mem - start_mem

Listing 11. Raw Selenium Implementation

def fill_contact_form(name, email, subject, message):
start_mem = get_memory_usage ()

driver = webdriver.Firefox (service=FirefoxService())
driver.get (f"file:///{MOCKUP_TEST_URL_FILE}")
start_time = time.time ()

Manual XPath for "Contact" link

contact = driver.find_element (
By .XPATH, "//
alcontains (@class, 'nav-1link') and text ()='Contact']"

)

contact.click ()

Scroll and locate fields

form element = driver.find_element (
By.XPATH, '//form[@class="php-email-form"]"

)

driver.execute_script
("arguments [0] .scrollIntoView();", form_element)

Explicit field interactions

name_field = driver.find_element (By.ID, "name")
name_field.send_keys (name)

email_field = driver.find_element (By.ID, "email")
email_field.send_keys (email)

subject_field = driver.find_element (By.ID, "subject")
message_field = driver.find_element (By.TAG_NAME, "textarea")
subject_field.send_keys (subject)

message_field.send_keys (message)

Cleanup

elapsed_time = time.time () - start_time
end_mem = get_memory_usage ()
driver.quit ()

return elapsed_time, end_mem - start_mem

Key Simplifications in PyAutoTk

1. Session Management: Abstracts browser initialization/cleanup via @brow-—
ser_session, eliminating manual driver.quit () calls.

2. Widget Abstraction: Replaces verbose locators (e.g., By . XPATH) with declarative
queries (class_, text).

3. Dynamic Handling: Loops over kwargs to map form fields dynamically, avoiding
repetitive code.

4. Implicit Scrolling: Automatically scrolls elements into view without explicit JavaScript
calls.

Pedagogical Trade-offs

* Lower Barriers: Beginners focus on what to automate rather than sow.
* Graudal Complexity: Users can later inspect PyAutoTk’s source code to see Selenium
mappings.

Tabela 1. Summary Comparison of PyAutoTk and Selenium

Aspect PyAutoTk Selenium

Lines of Code 12 21

Boilerplate Minimal (decorators/widgets) High (manual setup)
Cognitive Load Low (focus on intent) High (syntax-heavy)
Flexibility Limited to abstractions Full low-level control
Performance 0.8s (with overhead) 0.3s (raw speed)

* Debugging Pedagogy: Exceptions like WidgetClickException provide
actionable feedback.

6. The User Journey: Hypothesis in Practice

This section presents the learning journey anticipated by the framework’s design, which also
forms the basis for validating its core hypothesis.

The central hypothesis is that by abstracting automation into widget-based interactions
and providing high-level, readable code structures, non-technical users can learn web
automation faster and more intuitively. Instead of being overwhelmed by verbose selectors
and configuration steps, users can begin with concrete actions—such as clicking a button or
filling out a form—without needing to understand the underlying DOM interaction logic.

The expected learning curve begins with structured documentation and simple examples.
Users start by running pre-written code snippets and gradually move toward adapting them
for their own use cases. Over time, they gain confidence to modify attributes, combine widget
interactions, and build more complete workflows.

To validate this learning path, users will be invited to complete short tasks: executing
example scripts, navigating browser sessions, and modifying widget properties to achieve
specific automation goals. Feedback will be collected both qualitatively (through interviews and
open-ended feedback) and quantitatively (through task success rates and time to completion).

One of the key differentiators of PYAUTOTK is its commitment to transparency. As an
open-source project, all internal components are fully accessible. Users are not only encouraged
to use the framework but also to read its source code, understand how widgets are implemented,
and explore how sessions are managed. This visibility turns the framework itself into a pedago-
gical tool, helping learners form mental models of how automation frameworks work internally.

As users evolve in their understanding, they can progressively remove these scaffolds.
Since PYAUTOTK is built atop Selenium and modular by design, more advanced learners
can begin replacing or extending components, or even migrate completely to tools like
Selenium or Playwright. This makes PYAUTOTK not only a learning resource but also a valid
intermediate framework capable of supporting real-world automation needs before transitioning
to lower-level solutions.

The design of PyAutoTk is grounded in well-established learning theories (Figure 4).
“Learning by Doing,” popularized by John Dewey, suggests that learners grasp concepts
more effectively when engaging in hands-on experiences. PyAutoTk embraces this principle
by encouraging experimentation and immediate feedback—users run real scripts, observe

outcomes, and iteratively build understanding.

Additionally, the framework aligns with the theory of Scaffolding, introduced by
Jerome Bruner and based on Vygotsky’s educational model. In this approach, learners are
supported early on by simplified constructs (e.g., decorators and widgets) that reduce cognitive
load. As users gain experience, these supports can be removed, empowering them to work
directly with more complex tools and paradigms.

Journey to Advanced Web Automation

S Transition to
Selenium/Playwright

Moving to advanced tools with
structured knowledge

Organizing code with modular
design patterns

4 [l Page Object Model

Experimenting and customizing
avtomation scripts

3 Il Hands-on Practice

Initial avtomation using simple
attributes

2 [I PyAutoTk Basics

Understanding HTML, CSS, and
web widgets

1 Il Web Fundamentals

Figura 4. User Journey in Practice

7. Motivating Example

During the development of PYAUTOTK, real-world examples were created not only to validate
its architecture but also to demonstrate its educational value through practical use cases. These
examples serve a dual purpose: they showcase how automation can be structured using
intuitive abstractions, and they give learners an opportunity to apply their knowledge in real
environments before transitioning to more complex tools like Selenium or Playwright.

Listing Code 12 presents a typical scenario involving swipe actions in video interfaces
such as TikTok and YouTube Shorts. Despite being simplified for educational purposes, the
example simulates real interaction patterns and browser behavior, helping users understand
key automation concepts such as navigation, keyboard input, and DOM-based element targeting

Moreover, PYAUTOTK goes beyond basic examples by offering mechanisms to deal
with dynamic and unpredictable interface elements. Listing Code 13 demonstrates how the
framework handles conditional popups using exception handling and timeouts—skills essential
in production-grade automation.

These examples reinforce the idea that PYAUTOTK can be used as a practical stepping
stone. Beginners are empowered to write meaningful automation scripts that work in real

websites, giving them confidence and clarity before advancing to lower-level tools. Rather
than relying solely on mock interfaces or theoretical explanations, learners experience firsthand
how to diagnose and resolve real-world automation challenges.

Thus, PYAUTOTK acts not only as a pedagogical framework but also as a bridge
between learning and execution. It reduces the initial friction typically encountered in
automation onboarding, while still offering the capability and flexibility required for real
application testing and prototyping.

Listing 12. Automation Example: Swiping Through TikTok and YouTube Shorts Videos

@browser_session ("https://www.tiktok.com/")
def watch_tiktok (session):
generical_swipe_for_small_videos_interface
(session, "For you")

@browser_session (url="https://www.youtube.com/")
def watch_shorts(session) —> bool:
generical_swipe_for_small_videos_interface
(session, "Shorts")

def generical_ swipe_for_small_videos_interface
(session, menu_option: str):
keyboard = Keyboard(session)
Widget (session, text=menu_option) .click ()
session.wait_for_initial load()
for _ in range (SWIPE) :
keyboard.arrow_down ()
time.sleep(0.5)

Listing 13. Handling Popups During TikTok Automation.

def swipe_tiktok_with_skip_guest (session, menu_option: str):
keyboard = Keyboard(session)
Widget (session, text=menu_option).click ()
session.wait_for_initial load()
for _ in range (SWIPE) :
keyboard.arrow_down ()

try:

Widget (text="Continue as guest").click (timeout=1)
except WidgetClickException:

continue

8. User Feedback and Survey Design

To evaluate the hypothesis that PYAUTOTK facilitates the learning process of web automation
through abstraction and pedagogical alignment, we developed and distributed a feedback
form to potential users of the framework. The primary objective was to understand how
real users—particularly those at the beginning of their careers in QA or automation—would
perceive the tool’s usefulness in learning and applying core automation concepts.

A total of 17 users participated in this feedback round, including university students,
junior developers, and QA professionals with varying degrees of prior experience. The feedback
collected was crucial in assessing both the usability of PYAUTOTK and its effectiveness as an
educational aid. The survey was structured into five main categories and summarized in Table 2.
The first category, Background Information, aimed to contextualize each respondent’s
experience level with web automation and tools like Selenium or Playwright. This allowed
us to calibrate responses according to prior knowledge and assess the framework’s impact
on different user profiles. The second category, Learning Experience, explored how users
interacted with the documentation, code examples, and the overall learning flow. It included
questions about the ease of understanding the examples and whether users felt more confident
in handling basic concepts like HTML structure and the Document Object Model (DOM) after
using the tool. In the third category, Practical Application, we investigated whether users were
able to run and adapt the example scripts, and if they would consider using PYAUTOTK in small,
real-world projects. While the main intent of the framework is educational, this section helped
assess whether its simplicity and abstraction could extend to lightweight practical use cases.
The fourth category, Transition Readiness, focused on whether the use of PYAUTOTK helped
users feel more prepared to transition to core automation libraries like Selenium or Playwright.
Questions in this section evaluated the confidence gained and understanding developed through
the use of high-level abstractions. Lastly, the fifth category, Suggestions and Perceived Value,
captured qualitative insights on what could be improved and what was most appreciated. Many
users highlighted the clarity of the widget abstraction and the usefulness of the examples but
also pointed out the need for more visual learning materials and the inconvenience of having
to always define a Python function due to the decorator-based session model.

Through this structured approach, we were able to extract rich feedback that informed
both the validation of our hypothesis and directions for future development.

8.1. Collected Responses

Tabela 2. User Feedback Summary (n = 17)

Question Response
Experience level in automation 10/17 Beginner,
5/17 Intermediate, 2/17 Advanced
Was the documentation Average rating: 4.6/5
and code example easy to understand?
Did you manage 15/17 Yes
to run and edit the examples without issues?
Did the framework help 14/17 Yes
you understand HTML/CSS/DOM better?
Would you consider using 6/17 Yes
PyAutoTk for small real-world projects?
Would you recommend this framework to 16/17 Yes
someone starting in QA or test automation?
After using PyAutoTk, do you feel more Average rating: 4.3/5
prepared to learn Selenium or Playwright?
Which concepts Structure
became clearer after using the tool? of HTML; Element identification;

How sessions work; Automation flow

Suggestions for improvement More visual examples; Include
GUI; More exercises; Need to always
use Python function due to decorator

8.2. Insights from User Feedback

The results reinforce the hypothesis that PYAUTOTX is effective in promoting a structured
and accessible entry into web automation. Respondents reported a high level of satisfaction,
particularly around the simplicity of the abstraction (Widget, @browser_session) and
the alignment with educational challenges such as understanding HTML and CSS in relation
to automation logic.

Key takeaways include:

* Cognitive Scaffolding: Users felt guided by the framework’s abstractions, which
simplified the learning process and lowered the entry barrier to automation.

* Didactic Utility: Most participants indicated that they would recommend the tool to
someone starting in QA or test automation.

* Bridge to Advanced Tools: The tool encouraged deeper understanding, enabling
learners to explore and transition to Selenium or Playwright with greater autonomy.

* Areas for Improvement: Feedback highlighted the constraint of always needing
to write automation logic inside Python functions due to the decorator-based session
management.

9. Limitations and Lessons Learned

The evaluation of PYAUTOTK revealed important insights into its trade-offs and limitations,
particularly when considering its primary goal: to support learning in web automation rather
than to compete as a high-performance, production-grade tool.

Performance benchmarks conducted during identical automation tasks—such as form
submission and menu navigation—demonstrated that PYAUTOTK introduces a measurable
overhead compared to native Selenium usage, with an average increase of approximately 0.5
seconds in execution time, more detail in Table 3. However, this performance cost is considered
irrelevant in the context of its educational purpose. The abstraction layer, which slightly impacts
execution speed, is also what makes the framework accessible and intuitive for beginners,
offering users a gentler learning curve when approaching automation for the first time.

Tabela 3. Performance Metrics Comparison Between PYAUTOTK and Selenium

Metric PYAUTOTK Selenium
Average Time (s) 0.789 0.289
Std Dev (s) 0.030 0.011
Min Time (s) 0.746 0.277
Max Time (s) 0.836 0.312

This pedagogical trade-off reflects the framework’s intent: PYAUTOTK was not designed
to optimize for speed, but to simplify the understanding of concepts such as DOM interaction,
UI element identification, and script modularization. By prioritizing clarity and abstraction,
PYAUTOTK lowers the barrier to entry for learners who may not yet be comfortable with
complex locator strategies or verbose script setups required in tools like Selenium or Playwright.

Several technical limitations remain that could be addressed in future development:

First, PYAUTOTK currently supports only Windows 10/11 and Ubuntu (16.04 or
newer), with no official compatibility with macOS or distributions like Fedora. This narrows
the accessibility of the tool in diverse learning environments and limits its reach among broader
audiences. Second, the current version of the source code is tightly coupled to Selenium as
the underlying browser automation engine. While this suffices for many educational scenarios,
extending the implementation to include Playwright as an alternative backend would enrich
the learning experience. This would allow users to understand the differences between engines
and experiment with cross-tool abstractions while maintaining the same Widget-based logic.
Another technical limitation lies in the lack of hierarchical widget instantiation. Although
users can target elements based on attributes like text or class, the framework does not
currently support contextual scoping within parent containers, which is often necessary for
complex DOM structures. Implementing such functionality would help bridge the gap between
simplified learning and more advanced, real-world cases. Finally, while basic actions like
clicking and text input are well-supported, advanced user interactions such as drag-and-drop or
hover delays are not yet available. Though not essential for introductory learning, these features
could be relevant as users progress toward intermediate or advanced automation topics.

In terms of feedback, one recurring observation from learners was the friction
introduced by the decorator-based session model. Users must always define a function with the

decorator to execute automation flows, which can feel unintuitive or restrictive in exploratory
learning scenarios. Future improvements might explore alternative mechanisms that balance
session control with user flexibility.

Overall, the design decisions behind PYAUTOTK—from its abstractions to its API
design—prioritize the teaching of automation principles rather than replacing conventional tools.
Its limitations are acknowledged as opportunities for evolution, with future iterations potentially
supporting additional engines and capabilities to further enhance its value as a learning platform.

10. Conclusion and Future Work

This paper presented PYAUTOTK, a Python-based automation framework developed with an
educational perspective to facilitate the learning journey of beginners and QA professionals. By
abstracting interactions through high-level constructs such as widgets and session decorators,
and by aligning its structure with the Page Object Model (POM) architecture [Ozkaya 2023],
PYAUTOTK enables users to build conceptual clarity while performing real automation tasks.
Its modular and open-source design encourages transparency and allows learners not only to use
the tool but also to explore and modify its internal components, reinforcing their understanding
of web automation principles.

The results of the evaluation and the feedback collected from 17 users—ranging from
university students to junior QA engineers—demonstrated that the tool is effective in promoting
structured learning and improving confidence in understanding HTML, CSS, and DOM-related
concepts. While some limitations were noted, such as the need to always define Python functions
due to the decorator-based session model and the lack of support for macOS or advanced browser
interactions like drag-and-drop, these constraints were considered minor in light of the tool’s
primary goal. The framework’s performance trade-off, observed in comparison with Selenium,
was also deemed acceptable, given the educational value and clarity provided by its abstractions.

Looking ahead, future developments for PYAUTOTK include extending compatibility
to macOS and other Linux distributions, integrating Playwright as an alternative backend to
support comparative learning, and adding support for more advanced user interactions, such
as mouse gestures and contextual element scoping. Another direction involves testing the
framework in mobile contexts through the use of tools like uiautomator for Android
automation [Sinaga et al. 2018]. Based on user feedback, there are also plans to implement
visual learning aids and possibly integrate LLLM-based solutions for automatically generating
Page Object Models.

More than a production-ready framework, PYAUTOTK positions itself as a scaffold for
education, serving as a stepping stone for those who aim to migrate to more complex tools like
Selenium or Playwright. Its open-source nature, simplicity, and alignment with foundational
learning theories make it a promising alternative to ease the onboarding process for aspiring
automation professionals. By continuing to evolve from user contributions and academic
experimentation, PYAUTOTK seeks to become a gateway for deeper learning and confident
progression in the automation landscape.

Referéncias

Ahmed, A., Ahmad, S., Ehsan, N., Mirza, E., and Sarwar, S. Z. (2010). Agile software
development: Impact on productivity and quality. In 2010 IEEE International Conference
on Management of Innovation Technology, pages 287-291.

Ijaz, T. and Andlib, F. (2014). Impact of usability on non-technical users: Usability testing
through websites. In 2014 National Software Engineering Conference, pages 37-42.

Ozkaya, 1. (2023). Application of large language models to software engineering tasks:
Opportunities, risks, and implications. IEEE Software, 40(3):4-8.

Rajkumar, M., Pole, A. K., Adige, V. S., and Mahanta, P. (2016). Devops culture and its impact
on cloud delivery and software development. In 2016 International Conference on Advances
in Computing, Communication, Automation (ICACCA) (Spring), pages 1-6.

Sinaga, A. M., Wibowo, P. A., Silalahi, A., and Yolanda, N. (2018). Performance of automation
testing tools for android applications. In 2018 10th International Conference on Information
Technology and Electrical Engineering (ICITEE), pages 534-539. IEEE.

Statter, D. and Armoni, M. (2020). Teaching abstraction in computer science to 7th grade
students. ACM Trans. Comput. Educ., 20(1).

Wiklund, K. and Wiklund, M. (2018). The next level of test automation: What about the users?
In 2018 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 159-162.

