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RESUMO

Apesar dos recentes avancos em visao computacional, o classico problema de verificacao de
assinaturas manuscritas offline ainda permanece desafiador. A tarefa de verificacao de assinat-
uras possui uma alta variabilidade intraclasse pois um usuario frequentemente apresenta alta
variabilidade entre suas amostras. Além disso, a verificacao de assinaturas é mais dificil na pre-
senca de falsificacoes habilidosas. Recentemente, com o objetivo de enfrentar esses desafios,
pesquisadores tém investigado métodos de aprendizagem profunda para obter representacoes
de caracteristicas de assinaturas manuscritas. Ao mapear assinaturas para um espaco de car-
acteristicas, deseja-se obter grupos densos de representacdes de assinaturas, a fim de lidar
com a variabilidade intraclasse. Além disso, ndo apenas grupos densos sao necessarios, mas
também uma melhor separacdo entre grupos de diferentes usuarios no espaco de caracteris-
ticas. Por fim, também deseja-se afastar as representacdes de caracteristicas de falsificacdes
habilidosas em relacdo ao respectivo grupo denso de representacoes genuinas. Nesta tese, con-
centramos nossos esforcos em alcancar essas propriedades no aprendizado de representacoes de
assinaturas manuscritas, visando melhorias subsequentes no tempo de verificacdo. A pesquisa
relatada nesta tese é desenvolvida em dois momentos. Inicialmente, propomos um framework
baseado no aprendizado contrastivo de representacdes de assinaturas manuscritas. Com base
na observacdo dos resultados experimentais da primeira parte desta pesquisa, estendemos este
framework para lidar com dados de assinaturas sintéticas e reais durante o treinamento por
meio da destilacdo de conhecimento, proporcionando maior robustez das representacdes apren-
didas na verificacdo de diversos conjuntos de dados. Neste trabalho, levanta-se a hipétese de
que as propriedades desejadas podem ser alcancadas por meio de uma estrutura multitarefa
para aprender representacdes de caracteristicas de assinaturas manuscritas com base em apren-
dizagem contrastiva profunda. A estrutura proposta é composta por duas tarefas de objetivos
especificos. A primeira tarefa visa mapear exemplos de assinaturas do mesmo usuario mais
préximo dentro do espaco de representacdo, enquanto separa as representacoes de caracteris-
ticas de assinaturas de diferentes usuarios. A segunda tarefa visa ajustar as representacdes
de falsificacGes habilidosas adotando funcoes de perda contrastivas com a capacidade de re-
alizar mineracdo de exemplos negativos dificeis. Negativos dificeis sao exemplos de diferentes
classes com algum grau de similaridade que podem ser aplicados durante o treinamento.
Demonstramos que nossos modelos multitarefa contrastivos tém melhor desempenho do que

o uso da funcdo de perda de entropia cruzada, o que indica experimentalmente um apri-



moramento na verificacdo de assinaturas fornecida pela estrutura proposta. Como resultados
bem-sucedidos em modelos de aprendizagem profunda exigem uma quantidade significativa de
dados de treinamento, nesses experimentos recorremos ao conjunto de dados GPDSsynthetic
com dados de assinaturas sintéticas para treinar modelos. No entanto, como resultado de ob-
servacdo experimental, verificamos que as caracteristicas intrinsecas de assinaturas genuinas
reais ndo estdo perfeitamente incorporadas nas imagens de assinatura sintética. Dessa forma,
encontramos uma diferenca no desempenho de verificacdo entre modelos treinados usando os
conjuntos de dados GPDS-960 e GPDSsynthetic; e efeitos indesejados introduzidos pelo desvio
excessivo da distribuicdo dos modelos para qualquer uma destas fontes de dados. Dado este
problema, na segunda parte desta tese recorremos ao modelo SigNet pré-treinado com dados
da GPDS-960 para fornecer conhecimento sobre assinaturas reais. Complementamos o espaco
de caracteristicas de dados reais predefinidos na SigNet usando dados sintéticos, minimizando
a divergéncia na distribuicao entre os conjuntos de dados. Isso é obtido por meio de apren-
dizado continuo incremental de classe com base na destilacio de conhecimento e ajuste fino
subsequente do espaco de representacao com um objetivo contrastivo. Além disso, propomos
um novo conjunto de dados de destilacdo, invertido a partir da distribuicdo real pré-codificada
na SigNet. Nosso método proposto obtém verificacdo dependente de escritor aprimorada e uma
verificacdo independente de escritor mais equilibrada, produzindo modelos mais robustos na
verificacdo dos diversos conjuntos de dados de script ocidental e ndo ocidental GPDSsynthetic,
GPDS-300, CEDAR, MCYT-75, BHSig-H e BHSig-B. Por fim, demonstramos que o método
proposto pode ser utilizado para melhorar a verificacao de assinaturas no treinamento de novas
arquiteturas de visao computacional quando o acesso ao conjunto de dados GPDS-960 nao

estiver disponivel.

Palavras-chaves: Verificacdo de assinaturas. Redes neurais convolucionais. Aprendizagem de
caracteristicas. Aprendizagem profunda. Aprendizagem contrastiva. Aprendizagem continua.

Destilacdo de conhecimento.



ABSTRACT

In spite of recent advances in computer vision, the classic problem of offline handwritten signa-
ture verification still remains challenging. The signature verification task has a high intra-class
variability because a given user often shows high variability between its samples. Besides, sig-
nature verification is harder in the presence of skilled forgeries. Recently, in order to tackle
these challenges, the research community has investigated deep learning methods for learn-
ing feature representations of handwritten signatures. When mapping signatures to a feature
space, it is desired to obtain dense clusters of signature's representations, in order to deal with
intra-class variability. Besides, not only dense clusters are required but also a larger separation
between different user’s clusters in the feature space. Finally, it is also desired to move away
feature representations of skilled forgeries in relation to the respective dense cluster of genuine
representations. In this thesis, we concentrate our efforts on achieving these properties in the
learning of handwritten signature representations, aiming at subsequent improvements in the
verification time. The research reported in this thesis is developed in two moments. Initially,
we propose a framework based on the contrastive learning of handwritten signature represen-
tations. Based on the observation of the experimental results of the first part of this research,
we extend this framework to handle synthetic and real signature data during training through
knowledge distillation, providing greater robustness of the learned representations in the verifi-
cation of diverse datasets. In the first part of this thesis, we hypothesize that desired properties
can be achieved by means of a multi-task framework for learning handwritten signature feature
representations based on deep contrastive learning. The proposed framework is composed of
two objective-specific tasks. The first task aims to map signature examples of the same user
closer within the feature space, while separating the feature representations of signatures of
different users. The second task aims to adjust the skilled forgeries representations by adopting
contrastive losses with the ability to perform hard negative mining. Hard negatives are exam-
ples from different classes with some degree of similarity that can be applied for training. We
demonstrate that our contrastive multi-task models perform better than using cross-entropy
loss, which experimentally indicates a signature verification improvement provided by the pro-
posed framework. As successful results in deep learning models require a significant amount
of training data, in these experiments we resorted to the GPDSsynthetic dataset with syn-
thetic signature data for training models. However, as a result of experimental observation,

we found that the intrinsic characteristics of real genuine signatures are not perfectly embed-



ded in the synthetic signature images. This way, we have found a difference in verification
performance between models trained using the GPDS-960 and GPDSsynthetic datasets; and
undesired effects introduced by excessively shifting the model distribution for any of these
data sources. Given this problem, in the second part of this thesis, we resort to the SigNet
model pre-trained with GPDS-960 data to provide knowledge about real signatures. We com-
plement the SigNet predefined real data feature space using synthetic data while minimizing
the divergence in distribution between the datasets. This is achieved through class-incremental
continual learning based on knowledge distillation with subsequent fine-tuning of the repre-
sentation space adopting a contrastive objective. Furthermore, we propose a new distillation
dataset inverted from the pre-coded real distribution in SigNet. Our proposed method obtains
improved writer-dependent verification and a more balanced writer-independent verification,
producing more robust models in the verification of the diverse Western and non-Western script
datasets GPDSsynthetic, GPDS-300, CEDAR, MCYT-75, BHSig-H, and BHSig-B. Finally, we
demonstrate that the proposed method can be used to improve signature verification in the

training of new large vision architectures when access to the GPDS-960 dataset is unavailable.

Keywords: Signature verification. Convolutional neural networks. Feature learning. Deep learn-

ing. Contrastive learning. Continual learning. Knowledge distillation.
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1 INTRODUCTION

1.1 PROBLEM STATEMENT

A Handwritten Signature Verification (HSV) system aims to distinguish whether a given
signature provided by the user actually belongs to the claimed user (when the signature is
genuine) or by an impostor (when the signature is a forgery) (MASOUDNIA et al,, 2019). The
handwritten signature is an essential form of biometric identification, primarily because of
its widespread use in verifying a person’s identity across legal, financial, and administrative
domains (HAFEMANN; SABOURIN; OLIVEIRA, 2017b). Biometrics involves measuring and sta-
tistically analyzing an individual's biological characteristics for authentication purposes. These
traits are universal, unique, permanent, acceptable, and reliable. Besides, they cannot be lost,
stolen, or forgotten (BHAVANI; BHARATHI, [2024)). One reason for the widespread adoption of
handwritten signatures as biometric identification is that collecting them is a non-invasive pro-
cess, and people are already accustomed to using signatures in their everyday lives (HAFEMANN;
SABOURIN; OLIVEIRA| 2017b).

Handwritten signature is the most commonly used trait for verifying identity across finan-
cial institutions, law enforcement agencies, forensic departments, and governments worldwide.
Its distinctive features make it a popular choice for use in banking, financial and business
transactions, cheque processing, and access control (BHAVANI; BHARATHI, 2024). Besides, the
growing reliance on mail-in ballots and automated signature verification systems has become
increasingly evident. For instance, during the November 2020 U.S. election, the U.S. Census
Bureau reported that over 154 million voters, 43% of the electorate, voted by mail (KENNEDY
et al., [2025). Additionally, 27 states employed signature verification methods, many of which
incorporated automated decision-making technologies (KENNEDY et al., 2025).

Manual verification of signatures by organizations and financial institutions has become
increasingly difficult due to the rise in forgery cases and the large volume of samples requir-
ing review (HAMEED et al., [2021). Determining the authenticity of a handwritten signature is
a critical task (BHAVANI; BHARATHI, [2024)). This challenge highlights the urgent need for a
reliable automated system to quickly and accurately distinguish between genuine and forged
signatures. Consequently, recent research has focused heavily on machine learning-based sig-
nature verification to support identity verification in access control, employment, finance, and

security applications (HAMEED et al., [2021).
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In handwritten signature verification systems, the signatures can be acquired offline or
online. In the online handwritten signature verification method, signatures are captured using
devices (like tablets, pens) that collects dynamic information such as pen inclination and pres-
sure (HAMEED et al., [2021)). On the other hand, in the offline handwritten signature verification
method, signatures are acquired as static images by scanning (HAMEED et al,, [2021)). Thus,
offline signature verification is a more complicated problem (HAMEED et al, 2021)) due to not
having dynamic information available for assisting in verification.

The forgeries can be categorized according to the knowledge of the impostor (MASOUDNIA
et al, 2019): i) in the case of the Skilled Forgeries, the forger has information about the
name and the original genuine signature pattern. ii) In the case of the Random Forgeries,
the forger has no information about the writer. It is worth noting that genuine signatures
present high intra-class variation because a given user often shows high variability between its
samples (HAFEMANN; SABOURIN; OLIVEIRA, 2017b). Besides, signature verification is harder in
the presence of skilled forgeries (MASOUDNIA et al., 2019), because they present low inter-class

variability when considering skilled forgeries that resemble genuine signatures.

(c) Skilled forgery.

(a) Genuine example. (b) Other genuine example from
the same writer.

Figure 1 — Signature examples from the MCYT-75 dataset (ORTEGA-GARCIA et al., [2003).

For instance in Figures and [1b} two genuine signatures obtained from the same user
are shown. Note that there is a variation in the writing pattern of these two signatures due to
differences in shape and size. On the other hand, a skilled forgery (shown in Figure can be
carefully crafted to look like the genuine signatures (MASOUDNIA et al., [2019)). Given this, the
main challenge of the handwritten signature verification problem is in the design of methods
that enable determining differences in the existing patterns between genuine signatures and
skilled forgeries. Thus, the offline handwritten signature verification is a problem in which sim-
ilarities between examples need to be estimated. When mapping signatures to a feature space,
it is desired to obtain the following properties: i) Dense clusters of signature's representations
for each user, in order to deal with intra-class variability. ii) A larger separation between dif-

ferent user's clusters in the feature space. Such a property is desirable since different user’s
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clusters can be easier separated by classifiers. iii) Move away feature representations of skilled
forgeries in relation to the respective dense cluster of genuine representations of each user, for
tackling low inter-class variability when considering skilled forgeries.

Recently, in order to tackle this problem, the research community has investigated deep
learning methods for learning feature representations of handwritten signatures, instead of rely-
ing on hand-engineered feature extractor methods (HAFEMANN; SABOURIN; OLIVEIRA, 2017b)).
Representation learning in the context of offline signature verification systems has shown
very effective results compared to hand-engineered methods (HAMEED et al., 2021). For in-
stance, in Hafemann, Sabourin e Oliveiral (2017a)), deep convolutional neural networks are
used to extract features from handwritten signatures images in a writer-independent way. A
model with this mentioned architecture is called SigNet (HAFEMANN; SABOURIN; OLIVEIRA,
2017a). Subsequently, these features are employed to train Writer-Dependent (WD) (HAFE-
MANN; SABOURIN; OLIVEIRA| 2017a) as well as Writer-Independent (WI) (SOUZA; OLIVEIRA;
SABOURIN, [2018)) models based on support vector machines in order to provide signature ver-
ification. A classifier is trained for each user in the writer-dependent verification approach,
whereas in the writer-independent verification approach, a single classifier is trained for all
users (HAMEED et al,, |2021). Writer-dependent systems are more complex to maintain but
provide better classification accuracies than writer-independent systems (SOUZA et al., 2020).

However, in spite of recent advances in computer vision and pattern recognition, offline
handwritten signature verification still remains challenging (HAFEMANN; SABOURIN; OLIVEIRA,
2017b; MASOUDNIA et al| [2019). A key limitation is the presence of partial knowledge on
training (HAFEMANN; SABOURIN; OLIVEIRA| 2017b)) in real world scenarios, in which few genuine
signature data for each user and no skilled forgeries are available for training (MASOUDNIA et
al, 2019). Besides, successful results in deep learning models require a significant amount
of training data (YAP:C;; TEKEREK; TOPALOGLU, 2021) in such a way that models cannot be
adequately trained with a limited number of signature examples (HAMEED et al., 2021)).

In this sense, the GPDS-960 (VARGAS et al., 2007)) dataset used to be the largest publicly
available dataset of offline handwritten signatures for training deep learning models. For illus-
tration, whereas GPDS-960 provides signatures of 881 users, other public datasets containing
real signatures, such as CEDAR (KALERA; SRIHARI; XU, 2004) and MCYT-75 (ORTEGA-GARCIA
et al, 2003, have 55 and 75 users. Nevertheless, the GPDS-960 dataset is no longer publicly
available due to data protection regulatory issues stated by The General Data Protection Regu-

lation (EU) 2016/679. Since 2016, the former researchers who possess the dataset have contin-
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ued performing experiments with the GPDS-960 for research purposes (HAFEMANN; SABOURIN;
OLIVEIRA), [2017af [YILMAZ; OZTURK]|, 2020} |ARAB; NEMMOUR; CHIBANI, 2020; MARUYAMA et al.,
2021; BOUAMRA et al., 2022} |ARAB; NEMMOUR; CHIBANI, 2023). On the other hand, new in-
vestigators starting research in this field have suffered from the absence of a public large-scale
Western script signature dataset with real signatures for training models. Therefore, as a re-
placement for the GPDS-960, new researchers have resorted (MAERGNER et al., [2019; YAP:Ci;
TEKEREK; TOPALOGLU, [2021} [ZHENG et al., 2021; VIANA et al., 2023; [LI et al., 2024) to adopt
the GPDSsynthetic (FERRER et al., [2017)) dataset, which has a large-scale set of synthetically
generated user signatures, to perform the training of deep models.

Despite this, it has been found a difference in verification performance (VIANA et al., 2023;
YILMAZ; OZTURK, 2020) between models trained using real signature data from the GPDS-960
dataset and synthetic signature data from the GPDSsynthetic dataset. For instance, the Siglet
(HAFEMANN; SABOURIN; OLIVEIRA, 2017a)) is a cross-entropy based model trained with GPDS-
960 signature data whereas the Siglet (Synthetic) (VIANA et al, [2023)) is a cross-entropy
based model trained using GPDSsynthetic signature data. As a result of the performance
evaluation of these models, we have observed that: i) A remarkably unsatisfactory performance
for the verification of synthetic skilled forgeries and synthetic random forgeries is obtained
using SigNet. ii) In the opposite situation, the SigNet (Synthetic) model has difficulty in the
verification of real skilled forgeries. In other words, models trained with real data provide
insufficient performance when tested in the face of a more diverse set of synthetic signatures,
and models trained with synthetic data are not entirely sufficient for verifying real signatures.

Besides, we observed a trade-off in verification performance between the GPDS-960 and
GPDSsynthetic datasets in such a way that a training configuration that balances verification
between the two data sources must be encountered. We show that this divergence occurs due
to side effects introduced by excessively shifting the model distribution for any of these data
sources. Namely, we found empirical evidence that there is a distribution divergence between
the GPDS-960 and GPDSsynthetic datasets, so handling this divergence should be taken into

account in the training of new models.

1.2 OBJECTIVES

In this thesis, we concentrate our efforts on enhancing the learning of handwritten signature

representations, aiming at subsequent improvements in the verification time. Thus, we modify
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aspects of the SigNet learning method based on convolutional networks originally proposed by
(HAFEMANN; SABOURIN; OLIVEIRA, 2017a)) through applying recent state-of-the-art methods
in deep learning.

The research reported in this thesis is developed in two moments. Initially, we propose a
framework based on the contrastive learning of handwritten signature representations. Based
on the observation of the experimental results of the first part of this research, we extend this
framework to handle synthetic and real signature data during training through SigNet knowl-
edge distillation, providing greater robustness of the learned representations in the verification
of diverse datasets. The two moments of this research are described below.

Firstly, we hypothesize that desired properties of handwritten signature feature representa-
tions can be achieved by means of a multi-task framework for learning representations based
on deep contrastive learning. We propose a multi-task framework for offline handwritten sig-
nature feature learning comprised by a first task for writer identification followed by a second
task that aims to improve representations with metric learning adopting contrastive losses op-
timized with hard training samples. In this scenario, we aim to investigate the following main

research question:

» Do the proposed multi-task contrastive models provide significantly better feature rep-

resentations for handwritten signatures than SigNet?

Secondly, we aim to obtain a more robust handwritten signature feature representation
employing continual learning of synthetic data supported by SigNet knowledge distillation
to minimize the divergence and combine the characteristics of real and synthetic datasets.
Furthermore, we evaluate knowledge distillation performance in the training of other state-of-

the-art architectures. Given this, we investigate the following main research questions:

» Can the characteristics of real and synthetic datasets be complemented using continual

learning to offer a more balanced verification performance across diverse datasets?

= |s SigNet knowledge distillation helpful in training state-of-the-art large vision models

for handwritten signature feature representation learning?
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1.3 PROPOSED METHODOLOGY

The proposed model training frameworkE] is composed of two objective-specific tasks. The
first task aims to map signature examples of the same user closer within the feature space,
while linearly separating the feature representations of signatures of different users. To solve
this first task, the model is optimized in terms of a cross-entropy loss, following the SigNet
approach proposed in Hafemann, Sabourin e Oliveira| (2017a)).

The second task aims to adjust the skilled forgery representations by adopting contrastive
losses with the ability to perform hard negative mining (SCHROFF; KALENICHENKO; PHILBIN,
2015; WU et al., 2017). In the context of handwritten signature verification, a hard negative
example consists of a pair of similar signatures that are obtained from different users. These
hard examples can allow models to learn how to better discriminate skilled forgeries from
genuine signatures even without the need for skilled forgeries during training phase. To solve
this second task, two different contrastive losses having hard negative mining ability are inves-
tigated. Firstly, an Euclidean distance based metric loss (SCHROFF; KALENICHENKO; PHILBIN,
2015) in which the mining of hard examples is done in an explicit way (KHOSLA et al,, 2020).
Secondly, a probabilistic based metric loss (CHEN et al., | 2020) in which hard negative mining
is done in a implicit way (KHOSLA et al., [2020).

We demonstrate that our contrastive multi-task models that adopt the proposed frame-
work perform better than using cross-entropy loss, which experimentally indicates a signature
verification improvement provided by the proposed framework. Besides, we found that explicit
hard negative mining is more effective than implicit mining.

Given these experimental results, we extend this multi-task training framework to a new
scenario in which synthetic and real signature data are employed in model training. This way,
we resort to a data-free knowledge transfer technique (YIN et al., 2020). Firstly, we generate
inverted examples that have the same distribution as the real GPDS-960 examples. Then,
we demonstrate that these inverted examples can be used alongside a pre-trained SigNet
model as a foundation to provide knowledge about the characteristics of real signature data
in the training of new models. In this sense, we complement the SigNet predefined real data
feature space using synthetic data while minimizing the divergence in distribution between the
representations provided by these two different types of data sources. This is achieved through

class-incremental continual learning based on knowledge distillation, obtaining a more robust

1 Software is available for download at |<https://github.com/tallesbrito/contrastive_sigver>.
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model for the verification of real and synthetic signatures.

We detail the properties of the inverted signature data and show that in the distillation
process, the inverted data activates network regions of the SigNet corresponding to those of
real genuine signatures with high certainty in such a way that skilled forgeries are detected
from a classification uncertainty. Therefore, the examples inverted from the distribution pre-
coded in the SigNet model can replace the GPDS-960 dataset to provide knowledge about
real signatures in situations where this dataset is unavailable. Besides, we show that a model
explicitly trained with GPDS-960 skilled forgeries over-adjusts the verification to the own
GPDS-960 examples, actually making it more difficult for the model to generalize across
different datasets. In contrast, the proposed method in this thesis provides a more balanced
generalization across diverse datasets. In total, we evaluate the following synthetic, real, and
non-Western script datasets: GPDSsynthetic (FERRER et al., 2017)), GPDS-960 (VARGAS et al.,
2007)), CEDAR (KALERA; SRIHARI; XU, 2004) and MCYT-75 (ORTEGA-GARCIA et al., [2003);
BHSig-H (Hindi) and BHSig-B (Bengali) (PAL et al., 2016)).

As the examples are inverted using a data-free technique, these do not explicitly show
the original signature shapes of the GPDS-960 examples, making it possible to maintain a
protection level when publicly sharing the inverted dataseiﬂ We evaluate the proposed method
in training other state-of-the-art large vision architectures and compare it with the situation in
which only synthetic data is available for training. We found that SigNet knowledge distillation
is helpful in the training of new architectures as it improves verification performance. In this
sense, our proposed approach can be applied to support the training of other deep backbones
and representation learning schemes for signature verification so that the research community

can significantly benefit from this work.

1.4 ORGANIZATION

The remainder of this thesis is organized as follows. This chapter presents a brief intro-
duction to the investigated problem, the main objective of the work, and the main research

questions.

2 Dataset and software are available for download at <https://github.com /tallesbrito/continual_sigver>.
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= Chapter [2} RELATED WORK|

This chapter presents related concepts in signature verification, contrastive learning and
generative methods required for a better comprehension of this work. Related methods for
feature learning of handwritten signature data with writer-dependent and writer-independent
verification are respectively presented in Sections [2.1] and [2.2] Besides, concepts primarily re-
lated to the contrastive losses used in deep contrastive learning and related work on contrastive
learning of handwritten signature representations is discussed in Section [2.3] In Section [2.4
the related work on generative methods for handwritten signature representation learning is

reviewed.

= Chapter[3} [A MULTI-TASK'APPROACH FOR CONTRASTIVE LEARNING OF HAND-

This chapter describes the proposed framework for contrastive learning of handwritten
signature representations.

The motivation for the proposed method is discussed in Section [3.1] Given this, the adopted
contrastive losses in the proposed framework are defined and detailed in Section [3.2]. Besides,
the training process with the proposed framework is described.

Section presents the research questions and Section details the associated exper-
imental configuration and presents the results of the experiments. The experimental setup
regarding the studied datasets and the training protocol are described. Besides, we performed
a sensitivity analysis in order to understand the obtained effect of the contrastive losses hyper-
parameters and through the proposed framework. Finally, the generalization performance of
the proposed models is measured concerning different datasets in writer-dependent and writer-
independent verification approaches. Given this, the obtained performance is compared to the
state-of-the-art.

Section [3.5] summarizes the conclusions of this chapter.

= Chapter 4} EXPANDING GENERALIZATION OF HANDWRITTEN SIGNATURE FEA-

TURE REPRESENTATION THROUGH DATA KNOWLEDGE DISTILLATION

This chapter describes a proposed continual learning mechanism of synthetic data based on
knowledge distillation supported by inverted signature data over a predefined real feature space.

The motivation for the proposed method is discussed in Section [4.1] Given this, the adopted
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continual learning and data-free inversion losses in the proposed framework are formally defined
and detailed in Section 4.2

Section presents the research questions and Section outlines and discusses the
associated experimental configuration and results obtained using the proposed method. Firstly,
the properties of the inverted real data are detailed. Secondly, the experiments conducted
using synthetic and real validation datasets, which was utilized to make design decisions for
the proposed method, including the evaluation of hyper-parameters are detailed. Finally, the
generalization performance across seven datasets is measured in writer-dependent and writer-
independent verification approaches and compared with the state-of-the-art.

Section [4.5 summarizes the conclusions of this chapter.

= Chapter [5f [CONCLUDING REMARKS]|

We present the key findings of the study and suggest directions for future research.

1.5 CONTRIBUTIONS

The present thesis stands out for presenting a state-of-the-art deep learning based approach
for the learning of handwritten signature feature representations. The following papers were

written during this research:

= (VIANA et al} 2022): VIANA, T. B.; SOUZA, V. L.; OLIVEIRA, A. L.; CRUZ, R. M;;
SABOURIN, R. Contrastive learning of handwritten signature representations for writer-

independent verification. In: 2022 International Joint Conference on Neural Networks

(IJCNN). [S.I.: s.n.], 2022. p. 01-09.

— Contribution of this paper: experiments with the proposed contrastive multi-task
framework based on implicit hard negative mining are discussed and evaluated in

a writer-independent verification approach.

= (VIANA et al} 2023): VIANA, T. B.; SOUZA, V. L.; OLIVEIRA, A. L.; CRUZ, R. M;;
SABOURIN, R. A multi-task approach for contrastive learning of handwritten signature
feature representations. Expert Systems with Applications, v. 217, p. 119589, 2023.
ISSN 0957-4174.
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— Contribution of this paper: experiments with the proposed contrastive multi-task
framework based on explicit and implicit hard negative mining are discussed and

evaluated in a writer-dependent and writer-independent verification approaches.

= (VIANA et al} [2024)): VIANA, T. B.; SOUZA, V. L. F.; OLIVEIRA, A. L. I.; CRUZ, R. M.
O.; SABOURIN, R. Robust handwritten signature representation with continual learning
of synthetic data over predefined real feature space. In: SMITH, E. H. B.; LIWICKI,
M.; PENG, L. (Ed.). International Conference on Document Analysis and Recognition -
ICDAR 2024. Cham: Springer Nature Switzerland, 2024. p. 233-249. ISBN 978-3-031-
70536-6.

— Contribution of this paper: experiments with the proposed continual learning mech-
anism based on knowledge distillation supported by inverted data are discussed and

evaluated in a writer-dependent verification approach.

= VIANA, T. B.,; SOUZA, V. L.; OLIVEIRA, A. L.; CRUZ, R. M.; SABOURIN, R. Ex-
panding Generalization of Handwritten Signature Feature Representation through Data

Knowledge Distillation. Under review.

— Contribution of this paper: the studied multi-task contrastive framework is extended

to accommodate the continual learning mechanism.
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2 RELATED WORK

2.1 HANDWRITTEN SIGNATURE FEATURE LEARNING
2.1.1 Learning Feature Representations for Handwritten Signatures

Recently, deep convolutional networks have been applied to handle the offline handwritten
signature verification problem. For instance, in Hafemann, Sabourin e Oliveiral (2017a) are
presented formulations based on deep convolutional networks for learning features of hand-
written signatures in the offline scenario. Instead of relying on a handcrafted feature extraction
process, this proposal focus in learning representations for handwritten signatures directly from
raw data adopting a deep learning approach.

Specifically, a two-phase approach is adopted, including: a first phase for learning a feature
space that captures the intrinsic properties of handwritten signatures. Such a feature repre-
sentation is learned in a writer-independent way through a deep convolutional network model
(adopting an architecture based on AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2017) and
detailed in Table [1)). A model with this architecture is called Siget (HAFEMANN; SABOURIN;
OLIVEIRA| 2017a)). Once the SigNet model is obtained, in a second phase, features are extracted
for a disjoint set of users and applied for classification using classifiers such as support vector
machines in a writer-dependent way. Besides, in Souza, Oliveira e Sabourin| (2018)), these ob-
tained features are applied for classification in a writer-independent way by transforming them
to a dissimilarity space.

In this context, as proposed in|Hafemann, Sabourin e Oliveira|(2017a)), given a development
set D of genuine signatures of M users, a deep convolutional neural network is trained for
this set of users. The last layer of this convolutional network (the classification layer) provides
a softmax output with predicted probabilities P(y;|x;) for each user y; € D, given a genuine
signature example x; € D. The probabilities provided by the model estimate if signature z;
belongs to user y;. By utilizing these probabilities, the model is trained to minimize the negative
log likelihood L oss-entropy Of the correct user by means of a cross-entropy loss, where y;; = 1

if signature z; belongs to user y; or y;; = 0 otherwise:
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M
LCToss—entrapy = - Z Yij 1Og P(y]‘xl)
=1

where, i refers to a signature and j refers to a user. (2.1)

After the training process, the obtained model is applied for feature extraction of hand-

written signatures belonging to a disjoint exploitation set £ of users. In order to perform

feature extraction, the classification layer of the model is thrown away and input signature

data is propagated within the trained convolutional network until it achieves the last dense

fully-connected layer (FC7 layer in Table . The output activations at this last dense layer

are employed as feature vector for an input signature in classification tasks. Thus, the trained

network (with D set) is used to project the input signatures of a disjoint set of users (the £

set) onto the representation space learned by the convolutional neural network (HAFEMANN;

SABOURIN; OLIVEIRA, [2017a)). It is worth noting that this approach takes only genuine sig-

natures into account when training the model. These obtained features are verified by linear

classifiers in a representation space.

Layer Size Other Parameters
Input 1 x 150 x 220

Convolution (C1) 96 x 11 x 11 Stride = 4, pad =0
Pooling 96 x 3 x 3 Stride = 2
Convolution (C2) 256 x 5 x 5 Stride = 1, pad = 2
Pooling 256 x 3 x 3 Stride = 2
Convolution (C3) 384 x 3 x3 Stride = 1, pad =1
Convolution (C4) 384 x 3 x3 Stride = 1, pad =1
Convolution (C5) 256 x 3 x 3 Stride = 1, pad =1
Pooling 256 x 3 x 3 Stride = 2

Fully Connected (FC6) 2048

Fully Connected (FC7) 2048

Fully Connected + Softmax (P(y | X)) M

Table 1 — Convolutional Neural Network layers of the Siglet model (HAFEMANN; SABOURIN; OLIVEIRA, 2017a)).

2.1.2 Preprocessing of Signature Data

Given that the shape (considering the height and width) of signature samples belonging

to the same dataset can vary, some preprocessing steps are required to obtain samples with
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the input size of the convolutional neural network. To this end, in |Hafemann, Sabourin e
Oliveira| (2017a)), the signature images are firstly centered in a blank image of a maximum
canvas size and subsequently resized to a fixed size. This alternative has empirically presented
better results (HAFEMANN; OLIVEIRA; SABOURIN, 2018) compared to the approach of directly
resizing all the signatures to a common size. Specifically in |[Hafemann, Sabourin e Oliveira
(2017a)), the following preprocessing steps are performed for each signature image: firstly the
signature is centered in a large canvas by using the signatures’ center of mass. The size of
the large canvas is dependent on each dataset. Given this, the image background is removed
using OTSU’s algorithm (OTSU, 1979) which sets background pixels to white and foreground
pixels in gray scale. After this, the image is inverted in order to zero-value the background.
Finally, the image is resized to a fixed size.

In this thesis, we specifically intend to evaluate novel feature learning frameworks against
the SigNet model (HAFEMANN; SABOURIN; OLIVEIRA, 2017a)) as a baseline. Therefore, we main-
tained the same preprocessing steps performed in [Hafemann, Sabourin e Oliveira (2017a)) in
such a way that this stage cannot influence the feature learning process. Namely, all evaluated
models in this work are trained with signature data preprocessed adopting the same steps orig-
inally defined in|Hafemann, Sabourin e Oliveira (2017a). In the beginning of the preprocessing
stage, images are centered in a large canvas size Scunvas = H x W defined according to the
maximum height and width dimensions encountered in all available image examples of the
evaluated dataset. In the end of the preprocessing stage, images are resized to the 170 x 242
size. During the training of models, random crops of size 150 x 220 from the 170 x 242 image
are taken from each signature sample as an input to the convolutional network model. In the
case of testing, a center crop of size 150 x 220 is taken for each tested signature example.
Finally, it is worth noting that we have not used data augmentation techniques to increase the

dataset size for training models.

2.1.3 Datasets

The signatures in the GPDS-960 dataset (VARGAS et al., [2007)) were collected from forms
with 24 boxes for writing the signatures, each form being filled out by a real person. The forms
for creating forgeries contain five randomly chosen genuine signatures from a given user forged
three times by a human. The entire signing process was carried out under the supervision of

an operator (VARGAS et al., 2007). The GPDS-960 was the largest publicly available Western
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script dataset for offline signature verification with real samples of 881 users (HAFEMANN;
SABOURIN; OLIVEIRA, 20173).

A common challenge in the research of signature verification methods is the scarcity of
handwritten signature samples. Moreover, legal concerns related to data protection hinder
the sharing and dissemination of biometric data (FERRER et al., 2017). Motivated by these
problems, a synthetic dataset named GPDSsynthetic is proposed by |Ferrer et al.[(2017)). This
synthetic dataset allows algorithm evaluation without incurring the time expenses associated
with creating real datasets. Furthermore, the synthetic dataset can be shared freely without
legal restrictions.

The GPDSsynthetic examples are generated from a human-like model for signature syn-
thesis inspired by motor equivalence theory (FERRER et al., 2017). The proposed procedure
for generating synthetic user signatures defines a signature morphology and a user grid based
on a cognitive map. Besides, it encodes the name and flourishes as sequences of grid nodes,
applies a motor model to design the signature trajectory, and generates dynamic signatures
through lognormal sampling. Finally, it produces multiple genuine samples and skilled forgeries
replicating real database characteristics (FERRER et al., 2017)). The synthesizer is configured
to mimic a real dataset by inputting morphology parameters and defining variability for dif-
ferent signature types. It iteratively adjusts these settings to minimize the error between the
performance of the real and the synthetically generated dataset (FERRER et al., 2017). The
authors of the synthesizer made publicly available a dataset with 10000 simulated users based
on morphology parameters extracted from the BiosecurelD-Signature UAM subcorpus dataset
(FIERREZ et al., |2010).

The GPDS-960 and GPDSsynthetic datasets were produced by The Digital Signal Pro-
cessing Group (GPDS) of the Universidad de Las Palmas de Gran Canaria (ULPGC-Spain).
Due to this, the GPDS-960 and GPDSsynthetic datasets are named with the GPDS prefix.
However, despite this similarity in the names of the datasets and the fact that both datasets
contain examples with Western writing style, this does not imply that both datasets have the
same distribution. Given the current difficulty of accessing the GPDS-960 dataset, which is
no longer public, authors have recently performed experiments with GPDSsynthetic and have
interchangeably compared (ZHENG et al., 2021} LIU et al., 2021)) the performance of GPDSsyn-
thetic with respect to previous works that performed experiments with the GPDS-960 dataset.
In this thesis, we show empirical evidence for the first time that the distributions of the GPDS-

960 and GPDSsynthetic datasets are not the same.
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Dataset Genuine signatures Forged signatures
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GPDS-960 ‘\> (, \7/‘ ) Y
(VARGAS et al., [2007) / M7~ SN
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GPDSsynthetic ez
(FERRER et al., [2017) el

CEDAR
(KALERA; SRIHARI; XU, 2004)
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(ORTEGA-GARCIA et al [2003) *&—7«;-:1-4 =S
BHSig-B
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Table 2 — Examples of genuine signatures and skilled forgeries from each dataset studied in this thesis. The
GPDS-960 images were obtained from (HAFEMANN; SABOURIN; OLIVEIRA| 2017a)). All the other
images were obtained from the respective papers.

(PAL et al., 2016)

Other Western writing style datasets are evaluated in this thesis: the CEDAR (KALERA;
SRIHARI; XU} 2004) and MCYT-75 (ORTEGA-GARCIA et al., 2003)) datasets. The CEDAR dataset
includes signatures from 55 individuals. Each genuine signer was instructed to sign within
a designated area. To create skilled forgeries, unrelated individuals were asked to carefully
imitate the authentic signatures of those in the dataset (KALERA; SRIHARI; XU, [2004). In the
MCYT-75 dataset, forgers were given images of the genuine signatures they had to replicate.
After multiple practice attempts, they were instructed to mimic the signature shapes using
fluid, natural movements without pauses or slowdowns. Samples from 75 signers and their
corresponding skilled forgeries were randomly chosen and digitized (ORTEGA-GARCIA et al.,
2003).

Due to the lack of publicly available signature datasets for Bengali and Hindi scripts, Pal et
al| (2016) developed an offline signature corpus for both languages. In the BHSig260 dataset,
the signatures of 100 users were collected in the Bengali script (BHSig-B), while the signatures
of 160 users were collected in the Hindi script (BHSig-H). The signatures were gathered in
two separate sessions. In the first session, genuine signatures were collected. In the second
session, skilled forgeries were obtained by presenting authentic signatures to the individuals
and allowing them to practice and replicate the signatures (PAL et al., 2016). It is worth noting

that evaluating non-Western datasets is important to measure the generalization of models
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trained on Western script datasets since these datasets have more divergent writing styles.
Examples of genuine signatures and skilled forgeries from each dataset studied in this thesis
are illustrated in Table[2] The number of users and the number of available genuine signature

and skilled forgery examples per user in each dataset is detailed in Table [3

Dataset Name Users  Genuine signatures Forgeries

GPDS-960 881 24 30
GPDSsynthetic 10000 24 30
CEDAR 55 24 24
MCYT-75 75 15 15
BHSig-B 100 24 30
BHSig-H 160 24 30

Table 3 — Summary of the datasets studied in this thesis.

2.2 HANDWRITTEN SIGNATURE VERIFICATION

2.2.1 Verifying Signatures in a Writer-Dependent Approach

In Hafemann, Sabourin e Oliveira (2017a)), Support Vector Machines (SVM's) are applied
to provided signature verification in a writer-dependent way. Verification can be seen as a binary
classification problem, since given a questioned signature example x,, the classifier determines
whether x, is genuine or if it is a forgery. For each user, a training set is built consisting
of genuine signatures from the user as positive examples and randomly obtained genuine
signatures from other users as negative examples (HAFEMANN; SABOURIN; OLIVEIRA| 2017al).
Therefore, in this case, a specific classifier is trained for each user of the system. The classifier
establishes a decision boundary that separates a testing example from being classified as a
genuine or a forgery signature concerning the considered user. In the verification process, the
classifier can be tested against skilled forgeries, which are carefully created forgeries examples
that resemble the genuine signatures of the target user. Skilled forgeries are harder to classify
since they are intentionally created to resemble the genuine examples, and consequently their
representations can be closer to the genuine signature representations in the feature space

(SOUZA et al, 2019).
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2.2.2 Verifying Signatures in a Writer-Independent Approach

Aiming to provide writer-independent verification, a method based on transforming hand-
written signature feature representations obtained through Siglet to a dissimilarity space is
proposed in (Souza, Oliveira e Sabourin| (2018]). Dissimilarity vectors are obtained through a
dichotomy transformation approach that converts a multi-class problem into a 2-class problem
comprising (SOUZA et al., [2020)): the within class, which constitutes the intra-class dissimilarity
vectors computed from examples of the same user; and the between class which constitutes
the inter-class dissimilarity vectors computed from samples of different users. In this way, a
writer-independent classifier is trained with a set of dissimilarity vectors obtained from signa-
tures of a development set D of users. Then after training such a classifier, signatures of a
disjoint exploitation set £ of users can be verified.

Formally, given that x = u(x,,x,) is the dissimilarity vector between a questioned signa-
ture x, € £ and a reference signature x,, the writer-independent classifier determines whether
the obtained dissimilarity vector x indicates that x, and x, belong to the same writer. Such
a decision is based on the distance of the dissimilarity vector x to the support vector ma-
chine decision hyper-plane. When there are a set of reference signatures {x,}#, the hyper-
plane distances for each reference signature are combined through a fusion function g(x,)
(RIVARD; GRANGER; SABOURIN, [2011). Experiments reported in |Souza, Oliveira e Sabourin
(2018) showed that combining these distances by using the maximum obtained distance to
the decision hyper-plane as fusion function provides better verification results.

The writer-independent classifier defines a decision boundary that delineates a region near
to the origin for classifying dissimilarity vectors as belonging to the within class; or belonging to
the between class, otherwise. When a questioned signature is similar to a reference signature,
it is expected that the respective dissimilarity vector is positioned near to the origin in the
within class region. Skilled forgeries are also hard to classify in a writer-independent approach
since they are intentionally created to resemble the reference signatures, and consequently,

their respective dissimilarity vectors are close to the origin.

2.2.3 Configuration of Support Vector Machine Classifiers

In in all experiments of this thesis, we employ soft margin Support Vector Machines

(SVM) with Radial Basis Function (RBF) kernel as classifiers for writer-dependent and writer-
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independent signature verification, following the experimental protocol defined in [Hafemann,
Sabourin e Oliveira| (2017a)), Souza, Oliveira e Sabourin| (2018). In this work, we keep the hy-
perparameter configuration of SVM classifiers fixed in all experiments because our purpose is
to determine improvements in feature representation learning. The SVM regularization param-
eter C' is given by 1.0, and the RBF kernel coefficient hyper-parameter is given by v = 2711,
In case of writer-dependent verification, we adopt different weights for each class in the SVM
formulation because the number of negatives examples is much greater than the number of
positive examples. For the negative class the weight is given by C~ = 1.0, and for the pos-
itive class the weight is given by C* = N/P, where N is the number of negative training
examples and P the number of positive training examples. In case of writer-independent ver-
ification, the number of dissimilarity vectors applied for training is balanced for each class.
Then, C~ = C* = 1.0. Besides, we combine the hyper-plane distances for each reference

signature through a max fusion function (SOUZA et al., [2020) in verification.

2.2.4 \Verification Performance Metrics

Following Hafemann, Sabourin e Oliveira (2017a)), Souza et al.| (2020), in this thesis we
evaluate writer-dependent and writer-independent classifiers in terms of the FER - Equal
Error Rate. This is the error rate obtained when F'RR - False Rejection Rate (the fraction
of genuine signatures rejected as forgeries (HAFEMANN; SABOURIN; OLIVEIRA, 2017a))) is equal
to F'AR - False Acceptance Rate (the fraction of forgeries accepted as genuine (HAFEMANN;
SABOURIN; OLIVEIRA| [2017a))). Note that E'E Rgjeq is computed using genuine signatures and
skilled forgeries. The EFE R ieq is an average measure of the separation of skilled forgeries
in relation to each user cluster of genuine signature representations. Besides, in order to
specifically measure how skilled forgeries are verified, we report the fraction of skilled forgeries
accepted as genuine F'ARijeq in this work. The FRR and F AR ijeq metrics are measured
considering the actual distance to the decision hyper-plane, then, the adopted threshold is zero.
In some specific situations of this thesis, we also measure the EE R, ndom: this is the error
rate obtained when F'RR - False Rejection Rate is equal to FFAR,4n40m - False Acceptance
Rate considering Random Forgeries (the fraction of random forgeries accepted as genuine).
The EER,4n40m is an average measure of separation between the clusters of the evaluated
users within the representation space.

Furthermore, following Hafemann, Sabourin e Oliveira| (2017a)), |Souza et al.| (2020)) pro-



37

tocols, each experimental configuration in this thesis is performed ten times with randomly

selected data, and all reported metrics are an average of these ten replications.

2.3 CONTRASTIVE LEARNING

Contrastive learning is enumerated as one of the most recent advances in deep learning
techniques. It can be defined as follows (BENGIO; LECUN; HINTON, [2021): given a pair of
examples (z;,x;), it is desired a model to indicate whether z; is the same as x; according to
an energy function E(xz;,x;), which provides lower values when z; and z; are compatible, and
higher values otherwise. E/(-) can be computed by a deep learning model trained with pairs
of compatible examples (providing low energy) and pairs of incompatible examples (providing
high energy) (BENGIO; LECUN; HINTON, 2021). When the energy is defined as the spatial
distance between two output vectors, contrastive learning is an interesting approach to obtain
good feature vectors into an embedding space, since a deep network model can be trained to
provide similar feature vectors for objects belonging to the same class, and dissimilar vectors
otherwise (BENGIO; LECUN; HINTON, [2021)).

In the deep contrastive learning context, the energy function E(x;,x;) is materialized as
an objective contrastive loss function that is minimized through a model training process.
Another central component of a deep contrastive model is the architecture. In the literature
of deep contrastive learning, models with different architectures (KRIZHEVSKY; SUTSKEVER;
HINTON], 2017} SZEGEDY et alJ, 2015 [HUANG et al, 2017; [HE et alJ, 2016} SIMONYAN; ZISSERMAN],
2015) have been applied for classification problems, including image classification (CHEN et al.,
2020)), face verification (SCHROFF; KALENICHENKO; PHILBIN, 2015) and signature verification
(RANTZSCH; YANG; MEINEL, 2016]). Despite the beneficial impact of evolving architectures to
better deal with image classification problems, some works (WU et al,, 2017; BOUDIAF et al.|
2020) have experimentally shown that maintaining the same architecture but alternating to
a contrastive losses for optimization can influence the performance. Choosing simpler model
architectures but using contrastive losses optimization can improve the state-of-the-art results

on the image classification task (CHEN et al., 2020).
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Figure 2 — Deep contrastive losses investigated in this work.

2.3.1 Contrastive Losses in Deep Learning Models

An overview of the investigated contrastive losses in this thesis is presented in this section
(they are summarized in Figure [2)). In Hadsell, Chopra e LeCun| (2006) a loss function for
mapping similar inputs to nearby points in an embedding space whereas mapping dissimilar
inputs do distant points is defined, this function is referred to as contrastive pair loss (LE-KHAC;
HEALY; SMEATON, [2020)). The contrastive pair loss runs over pairs of examples (HADSELL;
CHOPRA; LECUN, 2006, where the Euclidean distance is minimized for similar examples and
maximized for dissimilar ones (until reach a predefined distance upper bound). Because of
having to deal with pair of examples, the model architecture is a siamese network, consisting
of two copies of the same model (sharing the same set of parameters (HADSELL; CHOPRA;
LECUN, 2006))): each input is passed through each twin model and it is provided two outputs.
Given these outputs, the loss is computed based on them and the model is updated through

back-propagation.
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The contrastive pair loss encourages examples of the same class to be projected at nearby
points in the embedding space, but it does not impose a margin of separation between pairs of
that class and samples of other classes (SCHROFF; KALENICHENKO; PHILBIN, 2015). Therefore,
this implies that diverse classes are embedded in the same small space in such a way that the
embedding space does not allow distortions, not enabling the space to tolerate outliers and
adapt to different levels of intra-class variation (WU et al, 2017). Motivated by this problem,
Weinberger e Saul (2009) proposed a metric optimized with the objective that, for a training
set, k—nearest neighbors belong to the same class while examples from different classes are
separated by a large margin. This metric is applied to learn a linear transformation that
optimizes k—nearest neighbors classification for a testing set. In the deep learning context,
this metric is commonly referred as triplet loss, and it is applied to optimize deep learning
models. For instance, in (SCHROFF; KALENICHENKO; PHILBIN, 2015), the triplet loss is used
to obtain feature representations for the face recognition problem. A triplet is composed of
three examples: an anchor, a positive example of the same class, and a negative example of a
different class. The objective of the triplet loss is to minimize the anchor-positive distance while
maximizing the anchor-negative distance in the embedding space (SCHROFF; KALENICHENKO;
PHILBIN, 2015). Thus, the model architecture is a triplet network, consisting of three instances
of the same network with shared parameters (HOFFER; AILON, [2015).

It is experimentally shown in Wu et al. (2017) that adopting sampling strategies for ob-
taining good pairs/triplets from the training dataset leads to better feature representations,
and consequently results in improved performance on classification, clustering and verification
tasks. With the motivation of obtaining good triplets and to increase the difficulty of the sam-
pled triplets as the training process runs, the authors in Schroff, Kalenichenko e Philbin (2015)
proposed a strategy to obtain semi-hard negative examples when forming triplets. A semi-hard
negative example is an example that resembles the positive example, but it belongs to another
class than the class of the anchor and positive examples (the formal definition of a semi-hard
triplet is further detailed in the Section of this thesis). Experiments reported in Wu et
al.| (2017) show that effectiveness of triplet loss does not come just from the loss itself but
due to the adopted sampling method. Besides, experiments reported in Schroff, Kalenichenko
e Philbin| (2015) showed that selecting semi-hard negatives for optimizing triplet loss improve
state-of-the-art models for the face verification task.

Moreover in |Chen et al.| (2017)), it is argued that the generalization performance of models

trained with the triplet loss can be improved by reducing intra-class variations and enlarging the
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inter-class variations. To this end, |Chen et al. (2017)) defined the dual triplet loss (also called
quadruplet loss), which is an extension to the triplet loss that introduces a new constraint
that pushes away a new pair of negative examples from the anchor and the positive example.
Reported experiments by |Chen et al.|(2017) indicated that this new constraint can generate
larger inter-class variations and smaller intra-class variations.

Probabilistic contrastive losses are generally based on noise contrastive estimation, in such
a way that a nonlinear logistic regression is performed to discriminate between observed data
and some artificially generated noise (GUTMANN; HYVARINEN, [2010). This technique is based
on comparing a target positive example with randomly sampled negative examples. Artifi-
cially generated noise is obtained from randomly obtaining negative examples from a proposal
distribution (OORD; LI; VINYALS, 2019). Probabilistic contrastive losses are optimized to max-
imize some similarity measure between an anchor and a positive example whilst increasing
the dissimilarity between this anchor and a set of negative examples. For instance, InfoNCE
(OORD; LI; VINYALS| |2019) and NT-Xent (CHEN et al., 2020) loss adopt the cosine similarity as
a similarity measure. Intuitively, given K negative examples, these losses are the log-loss of a
(K + 1)-way softmax-based classifier that tries to classify as similar a questioned example as
a positive example (HE et al,, 2020), but the use of a normalized similarity measure adjusted
by a temperature coefficient hyper-parameter enables the model to learn from hard negatives
examples (JAISWAL et al., [2021). When adopting probabilistic contrastive losses, architectures
with a memory bank can be adopted in order to sample negatives examples (WU et al., 2018).
Recently, dictionaries that covers a rich set of negative examples instead of a memory bank
have also been proposed (HE et al., 2020).

It is important to mention that the contrastive power of probabilistic losses increases
with more negatives examples: the ability to discriminate between from a target class and
a noise (examples from other classes) is improved when adding more negative examples in
the training batches (KHOSLA et al., | 2020), as empirically showed in |He et al.| (2020)), |Oord,
Li e Vinyals (2019)), (Chen et al.| (2020)). Besides, probabilistic losses have an intrinsic ability
to perform hard negative mining when used with normalized representations (KHOSLA et al.,
2020): gradient contributions from hard negatives/positives in relation to an anchor example
are larger than gradients obtained from easy negatives/positives. This property allows that
probabilistic contrastive losses do not need explicit mechanisms (based on a filtering criteria)
for mining negative examples, which, on the contrary, is critical when using the triplet loss

(KHOSLA et al., 2020).
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2.3.2 Contrastive Learning of Handwritten Signature Feature Representations

Recent state-of-the-art works have investigated the application of siamese and triplet net-
works in the context of offline handwritten signature verification. A proposal for learning hand-
written signatures features in a writer-independent way using a siamese network is presented
in [Dey et al| (2017). The siamese network is composed by twin deep convolutional neural
networks with shared weights adopting an architecture inspired by the AlexNet architecture
(KRIZHEVSKY; SUTSKEVER; HINTON, |2017)), which was previously applied for the image recog-
nition problem. In this proposal, the siamese network is optimized through the contrastive pair
loss originally defined in Hadsell, Chopra e LeCun| (2006)).

Siamese networks have also been applied for writer-independent feature extraction in [Ruiz
et al|(2020)), but with a different loss formulation and adopted architecture. In this proposal, a
convolutional neural network with an inception layer (SZEGEDY et al., 2015) concatenates stacks
of convolutional layers in the architecture in order to increase the capacity of the network to
capture details (RUIZ et al., [2020) of handwritten signatures. Real signatures, augmented sig-
natures with simple transformations (morphological dilations, rotations and addition of noise)
and synthetic generated signatures are used in training. As a result of experimental evalua-
tion, it is concluded that lower error rates are obtained when combining these three types of
signatures in training. Furthermore in |Liu et al.| (2021]), siamese networks have been applied
for feature extraction through learning from local regions of signature images, motivated by
the fact that distinction of genuine signatures and forgeries lies in the details contained in
local regions (LIU et al,, 2021)). In this case, a similarity measure obtained from different local
regions are fused by average in order to obtain a final decision in signature verification. The
DenseNet architecture (HUANG et al., 2017) with SE-blocks (squeeze-and-excitation-blocks)
(HU; SHEN; SUN, [2018) is adopted in order to better account the difference between the two
input signatures of the siamese network (LIU et al., 2021]).

In Lai e Jin| (2018), a deep convolutional neural network with spatial pyramid pooling
layers (HE et al., |2015)) is concatenated to a softmax and a siamese output layers. [Lai e Jin
(2018)) argues that this additional contrastive layer can learn local signature similarities that are
needed to refine the cross-entropy loss. Experimental results shows that adding a contrastive
layer to the architecture can improve the performance of the softmax layer. However, in the
experiments performed by |Lai e Jin| (2018)), skilled forgery samples are used during the training

of models. Even so, reported results are on the same level as those obtained by Hafemann,
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Sabourin e Oliveira (2017a) with the SigNet model (which does not use skilled forgeries for
training).

Triplet networks have recently been investigated as deep neural network models for extract-
ing features of handwritten signatures in a writer-independent approach in [Rantzsch, Yang e
Meinel| (2016)). In this proposal, each member of the triplet networks is a deep convolutional
network based on a reduced version of the VGG-16 (SIMONYAN; ZISSERMAN, 2015)) architec-
ture. Before optimizing the model using the triplet loss following the formulation defined in
Hoffer e Ailon| (2015), convolutional layers are pre-trained in order to distinguish the writers.
The training process depends on skilled forgeries and strategies for mining semi-hard triplets
during training are not investigated.

A multiple classifier system combining deep contrastive learning and a graph-based ap-
proach is proposed in Maergner et al.| (2018). In order to obtain the dissimilarity score of
two signatures in the graph based approach, signatures are skeletonized and compared using
a graph edit distance. In addition, adopting a deep learning approach, a triplet convolutional
network (based on ResNetl8 architecture (HE et al., 2016)) is applied for obtaining feature
representations. Given this, the distance between feature representations characterizes a com-
plementary dissimilarity score between signatures. Experiments in|Maergner et al.| (2018)) show
that combining these approaches improves the signature verification performance. Specifically,
graph based approach provides better results against skilled forgeries whereas triplet networks
approach provides better results against random forgeries. However, mechanisms for mining
semi-hard triplets during training are not investigated.

The formulation of dual triplets is adapted to specifically solve the offline signature ver-
ification problem in Wan e Zou| (2021). In this formulation, beyond the positive and anchor
examples, the dual triplets are also composed by two negative examples: the first is a random
forgery and the second is a skilled forgery. The obtained performance with this contrastive
loss is better than using skilled forgery examples during training with cross-entropy loss opti-
mization with an additional binary neuron in the architecture that indicates whether a training
example is a genuine or a skilled forgery. However, such an approach has the evident drawback
of using skilled forgeries during model training.

In |Tsourounis et al.| (2022), a deep convolutional neural network using the same architec-
ture of SigNet (HAFEMANN; SABOURIN; OLIVEIRA| 2017a)) model is trained using handwritten
textual data. They state that learning features in the domain of handwritten textual data can

be transferred to the domain of handwritten signature data. After training models in the aux-
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iliary domain of textual data, features are adjusted to the specific domain using a finetuning
step but with two different strategies. The first strategy is to finetune the auxiliary domain
model with handwritten signatures images. In the second strategy, the features learned by the
auxiliary domain model are combined in pairs and used to learn a mapping function through
the contrastive pair loss defined in |Hadsell, Chopra e LeCun| (2006). Despite of interesting
proposal, experimental results reported in [Tsourounis et al. (2022)) do not present statistically
significant improvement in verification error rates when the proposed models are compared to
the SigNet model. Even though absolute values of reported error rates in [Tsourounis et al.
(2022) are generally lower than those presented inHafemann, Sabourin e Oliveira| (2017a), this
effect is attributed due to a user-specific grid search procedure in the training process of the
support vector machine classifiers applied for signature verification. Therefore, improvements
are associated with specific hyper-parameter adjustments for each user in signature verification
and not to better-obtained feature representations.

Soleimani, Araabi e Fouladi (2016)) proposed a neural network model for signature ver-
ification composed by a shared layer for all users, which is followed by separate layers that
distinguish signatures of each specific user. The shared layer learns writer-independent char-
acteristics of forged and genuine signatures from all individuals, whereas the separated layers
for each user learns writer-dependent specific factors. During the training process, these both
tasks are learned simultaneously with the objective to minimize the Euclidean distances of pair
of signatures from the same user while maximizing the distance of genuine and random forgery
samples. A disadvantage of this architecture is the computational cost for model maintenance
in the addition of new users as the training of the writer-independent layers is dependent on
the back-propagation coming from the user-specific layers.

The Table 4] summarizes in which aspects our proposed method differs from the related
work already existent in the literature. We propose and evaluate a multi-task framework that
adopts contrastive losses to better adjust the skilled forgery representations within the fea-
ture space. In order to separately understand the effect of the proposed framework, we main-
tained the same convolutional network architecture adopted by the SigNet model (HAFEMANN;
SABOURIN; OLIVEIRA| 2017a)), since this way we can do fair comparisons with the SigNet model.
In [Tsourounis et al.| (2022), it is also kept the SigNet architecture with the similar purpose of
evaluating a different framework for training deep convolutional models, but, in general, the
model architectures adopted by related works in the literature vary.

In some works (DEY et al., 2017} |RUIZ et al, [2020; [LIU et al., 2021} WAN; ZOU, 2021)), model
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Table 4 — Comparison of related work on contrastive learning of handwritten signature representations.

A B CDEFGH

Present work

Network architecture
AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON| 2017)
Inception layers (SZEGEDY et al.| 2015)

DenseNet (HUANG et al.| 2017)

CNN with spatial pyramid pooling (HE et al.| [2015)
VGG-16 (SIMONYAN; ZISSERMAN| 2015)
ResNet18 (HE et al.| 2016)

DMML (SOLEIMANI; ARAABI; FOULADI| [2016)

X

X X

X

Training tasks
Single task

Multiple tasks with transfer learning between sequen-
tial tasks

Multiple tasks combined with a multiple classifier sys-
tem

Multiple tasks learned simultaneously

Optimization loss
Cross-entropy loss

Contrastive pair loss (HADSELL; CHOPRA; LECUN
2006)

Binary cross-entropy loss over normalized distances
of pair samples

Mean squared error loss over normalized distances of
triplet samples (HOFFER; AILON| |2015)

Triplet loss (WEINBERGER; SAUL| 2009)

Generalized logistic loss over Euclidean distances of
pair samples (HU; LU; TAN| |2014)

Dual triplet loss (CHEN et al.| 2017)

Triplet loss with semi-hard negative
(SCHROFF; KALENICHENKO; PHILBIN| |2015)

NT-Xent loss (CHEN et al.| [2020)

mining

Signature verification
Euclidean distance (L2) threshold
Manhattan distance (L;) threshold

Graph edit distance threshold (MAERGNER et al.
2017)

Using auxiliary classifier (SVM)

Verification approach
Writer-dependent (WD)
Writer-independent (WI)

X

X X
X X X X

Signature sampling
Training using only genuine signatures

Testing with genuine signatures and skilled forgeries

X

X X
X X X X

X
X X

X
X

X
X

Related works: ~ * (DEY et al.| 2017)
E (RANTZSCH; YANG; MEINEL| 2016)
H (TSOUROUNIS et al.| 2022)

B (RUIZ et al.| [2020)
F (MAERGNER et al.| 2018)
' (SOLEIMANI; ARAABI; FOULADI| [2016)

C(LIU et al.| 2021)
¢ (WAN; ZOu| [2021)

D (LAI; JIN| [2018)
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training is performed to optimize a single objective (in Table , these works are categorized as
single task approaches). Other works define optimization steps and goals for certain specific
problems or domains (for simplicity, in Table , these works are categorized as multiple task
approaches). For instance, in Tsourounis et al. (2022), models are initially optimized using data
from an auxiliary domain, and in a following step, models are optimized in the specific domain
of handwritten signatures. Besides, in |Maergner et al.| (2018), a metric learning approach is
combined with a graph-based method. InSoleimani, Araabi e Fouladi (2016)), writer-dependent
and writer-independent characteristics are learned simultaneously.

Also adopting a multiple task approach, our proposed framework has different training
stages with specific optimization goals. Initially, models are trained to distinguish between
users. After that, models are adjusted to obtain better representations for skilled forgeries. To
achieve this second goal, in our proposed framework we adopt optimization loss functions that
have not been investigated in the related work. To the best of our knowledge, these losses
have not been yet specifically investigated for the problem of obtaining handwritten signature
representations. Moreover, we evaluated obtained feature representations with the proposed
framework in writer-dependent and writer-independent approaches, which is an aspect that is
not considered in the most of related works.

Although most of the works (DEY et al}, 2017; RUIZ et al, 2020; [RANTZSCH; YANG; MEINEL),
2016; IMAERGNER et al [2018]; [LIU et al., [2021}; |SOLEIMANI; ARAABI; FOULADI, 2016} WAN; ZOU,
2021)) use some distance threshold to determine whether or not two signatures belong to the
same user, in this work, we use an auxiliary support vector machine classifier for verifying
signature representations. This is advantageous because signatures can be verified in relation
to a set of reference signatures, as the support vector machine classifier is trained with a
collection of signature samples. This way, we can evaluate and understand the performance of
the proposed method when varying the number of reference signatures.

Besides, it is interesting to point out that we use only genuine signatures for training
models in this work, with models being tested in the presence of genuine signatures and
skilled forgeries. This design choice is more suitable to the real world applications, in which
forgeries are not available in training but the methods must still be subject to being tested with
forgeries. Note in Table [4] that some related works (DEY et al., [2017; RUIZ et al., [2020; |LIU et
al, [2021; IRANTZSCH; YANG; MEINEL, 2016; |WAN; ZOU, 2021}, [LALI; JIN, 2018) do not follow this
premise. For instance in Ruiz et al. (2020), even though models are trained using only genuine

signatures, they are not tested using skilled forgeries. Such a testing protocol is insufficient to
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measure the performance of the investigated method in the presence of skilled forgeries.

2.4 GENERATIVE NETWORKS

Generative adversarial networks (GANs) (GOODFELLOW et al., [2014) have stood out as
state-of-the-art methods for synthesizing new images (YIN et al., 2020). In the context of sig-
nature verification systems, generative adversarial networks have recently been investigated
for generating new signature examples in order to deal with the limited availability of sig-
nature data when training new models. Besides, generative adversarial networks (and other
deep learning methods) have been widely explored for signature image synthesis, seemingly
surpassing conventional mathematical methods (DIAZ et al., 2025)).

In this thesis, we propose and adopt a dataset with examples generated from the pre-
coded signature distribution in the SigNet model, aiming to transfer knowledge about real
signatures in the training of new models through knowledge distillation. Knowledge transfer
by distillation was originally conceived to transfer learning between an expert teacher model to
different architectures (HINTON; VINYALS; DEAN, [2015)). However, these methods rely on the
original dataset used in training. More recent research (YIN et al., 2020) has explored data-free
distillation, in which pre-existing knowledge from a teacher model can be transferred without
directly accessing the original dataset. To achieve this, training examples are inverted and
generated from the distribution encoded in the pre-trained model. Data-free methods have a
different approach from generative adversarial networks, which require access to the original

dataset to capture the data distribution in order to generate new examples.

2.4.1 Knowledge Distillation Supported by Generated Inverted Data

In the absence of prior data to support knowledge distillation, researchers have explored
recovering training data from pre-trained models for knowledge transfer. Methods like Deep-
Dream (MORDVINTSEV; OLAH; TYKA, [2015) optimize input images to produce high responses
for specific output classes. However, these generated images prove ineffective for knowledge
transfer, as shown in the experiments reported in Yin et al.| (2020).

Motivated by this problem and considering that high-performing convolutional neural net-
works use batch normalization layers that store running means and variances of activations,

effectively capturing the history of past data. The Deeplnversion (YIN et al., |2020) method
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generates inverted images by introducing a regularization term based on layer-wise mean and
variance, eliminating the need for training data or metadata. This approach facilitates knowl-
edge transfer between networks, even with different architectures, achieving minimal accuracy
difference compared to the situation where the original training data is employed in the distil-
lation process. Besides, Deeplnversion can be used for continual learning, allowing new classes
to be added to a pre-trained neural network without requiring access to the original data (YIN

et al., 2020)).

2.4.2 Generative Methods for Handwritten Signature Representation Learning

Initial efforts to generate signature examples using generative adversarial networks are
presented in [Zhang, Liu e Cui (2016)) so that generated training examples are used for train-
ing a discriminator based on convolutional networks (RADFORD; METZ; CHINTALA, 2015) in
an unsupervised manner. The discriminator is employed to extract features verified by a hy-
brid writer-dependent and writer-independent classifier. In the experimental evaluation, the
generative model is trained with GPDS-960 data, but tests are also performed with classi-
fiers trained with GPDSsynthetic data. In such experiments, it is already possible to notice a
more outstanding difficulty in generalizing the features learned with GPDS-960 for classifying
GPDSsynthetic examples. In Yonekura e Guedes (2021)), a similar approach is proposed, with
the difference that the generative model is trained in a supervised manner, aiming to add an
extra layer of control in the training of the generator and the discriminator. However, even
with this additional restriction, the experimental results in Yonekura e Guedes (2021) are far
below those presented by the state-of-the-art.

In Yapici, Tekerek e Topaloglu (2021)), a Cycle-GAN generative network (ZHU et al, 2017)) is
used to learn high-level signature features through an image-to-image translation process and
thus create new augmented examples for a given user. These augmented examples are used to
train classifiers based on Capsule Networks (SABOUR; FROSST; HINTON, 2017)) that consider
spatial relationships between input features in a writer-dependent approach. A drawback of
the method is that a distinct generative model is trained for each user, introducing more
complexity in systems with a large number of users.

Also using a Cycle-GAN but for an on-2-off scenario where offline signatures are generated
from online signatures, in|Jiang et al.| (2022) online signature datasets (TOLOSANA et al., |2021))

are used to train a single generative network that provides new augmented offline examples
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Table 5 — Comparison of related work on generative methods for handwritten signature representation learning.

A B C D E | Present work

Generative method
Inversion (YIN et al.| 2020) X
Cycle-GAN (ZHU et al.| [2017) X X
Adversarial variation network (LI; WEI; HU| 2022) X
Generative adversarial network (GOODFELLOW et al.| [2014) X

Conditional generative adversarial network (YONEKURA; GUEDES
2021)

' Network architecture
AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON| 2017) X
Capsule Network (SABOUR; FROSST; HINTON| 2017)) X
SigCNN (JIANG et al.| 2022) X
VGG-16 (SIMONYAN; ZISSERMAN| 2015) X

Deep convolutional generative adversarial network (RADFORD;
METZ; CHINTALA| |2015)

7Signature verification
SVM classifier X
Euclidean distance (L) threshold X X
Probability threshold X X
Gentle Adaboost (FRIEDMAN; HASTIE; TIBSHIRANI| {2000) X
Verification approach )
Writer-dependent (WD) X X
Writer-independent (WI) X X X
Signature sampling

X
X
X

X

Training using only genuine signatures X X X

Testing with genuine signatures and skilled forgeries X X X X X X

Related works: ~ * (YAPiCi; TEKEREK; TOPALOGLU| [2021) B (JIANG et al.| [2022)
€ (u1; WL, HU| 2022) P (ZHANG; LIU; Cul| 2016) B (YONEKURA; GUEDES| 2021)

from a style transfer perspective. In this way, the generative model provides examples employed
to train a convolutional model for feature representation extraction, and representations are
verified based on distance in a writer-dependent approach. Furthermore, generated examples in
lower distortion act as augmented genuine data, and those in higher distortion act as forgeries
in the training of the feature extractor, eliminating the use of real forgeries.

Based on the hypothesis that colors or intensities of signature images should not change the
verification decision in such a way that the model decision in verification must be focused on
the signature stroke information, a framework based on a generative method called adversarial
variation network is proposed in |Li, Wei e Hu| (2022). In this framework, a variator module
produces variation maps applied in training examples to generate signature image variants.

The augmented examples are employed to train a feature extractor and a discriminator, which
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determines the decision in signature verification. Despite the interesting contribution, models
in |Li, Wei e Hu| (2022) are trained and tested using partitions of the same dataset. Considering
that examples from the same dataset have the same acquisition process, training and testing
models with partitions from the same dataset can introduce specific dataset biases, which
facilitates the solution of the problem. In contrast, in this thesis, we use prior knowledge about
the GPDS-960 dataset with GPDSsynthetic data examples for training, and models are tested
on a broad set of datasets with different acquisition processes and scripts such that different
populations of writers are considered.

Table [5] summarizes the discussed related works and qualitatively compares them with this
work. In our proposed work, we generate new examples that come from a real distribution
pre-coded in a neural network. However, we use a data-free inversion method to achieve this.
To the best of our knowledge, this is the first work in which a deep neural network inversion

method is used to generate examples that represent characteristics of real signatures.
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3 A MULTI-TASK APPROACH FOR CONTRASTIVE LEARNING OF HAND-
WRITTEN SIGNATURE FEATURE REPRESENTATIONS

3.1 MOTIVATION

Signature verification task has a high intra-class variability (HAFEMANN; SABOURIN; OLIVEIRA,
2017b) because users often show high variability between their samples. This implies that the
distribution of feature representations for a given user can present a higher variance, providing
scattered clusters that can overlap in the feature space. This situation is illustrated in Figure
[Bal Due to that, in the case of writer-dependent verification, genuine signatures of other users
can be wrongly accepted since a given user can have feature representations that overlap the
clusters of other users. After transforming these feature representations into a dissimilarity
space, vectors of within class tend to be more scattered around the region near to the origin.
Furthermore, dissimilarity vectors of between class tends to be scattered into the whole space,
also overlapping the within class vectors (as shown in Figure .

Signature verification is a harder task when skilled forgeries are present since they have
low inter-class variability (HAFEMANN; SABOURIN; OLIVEIRA, [2017b)). As illustrated in Figure
[Ba] in writer-dependent approach, skilled forgeries can be miss-classified as genuine signa-
tures because they are generally closer to the decision hyper-plane around the cluster of
genuine examples. In the case of writer-independent verification, as shown in Figure [3d, since
skilled forgeries resemble reference signatures, the associated dissimilarity vectors obtained
from comparing them can be closer to the region of within class, in the origin, resulting in
miss-classification. Given these problems, the motivation of this work is to experiment a frame-
work for obtaining offline handwritten signature feature representations, specifically aiming to

achieve the following properties:

Property 1. Obtain denser clusters of signature’s representations for each user, dealing with

high intra-class variability.

Property 2. Not only dense clusters are required but also a larger separation between different
user’s clusters in the representation space. Such a property is desirable since different user's

clusters can be easier separated by classifiers.
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Property 3. Move away representations of skilled forgeries in relation to the respective dense
cluster of genuine representations of each user, dealing with low inter-class variability when

considering skilled forgeries and genuine signatures.

The effect of obtaining the properties (1)) and (2)) is illustrated in Figure [3b] Having these

properties, features representations for each user are positioned in a dense cluster, and also
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(a) In Writer-Dependent (WD) approach, an (b) In Writer-Dependent (WD) approach, a bet-
user-specific classifier determines whether a ter separated dense cluster of a given user is
questioned signature is a genuine or a forgery. easier to be separated from the other user’s

clusters (achieving properties [1] and [2)). Be-
sides, better skilled forgery representations are
further away from the respective dense cluster
of genuine signature feature representations of
a given user (achieving property .

- + Within class + Within class

- _ - Betweenclass - Between class

- - x  Skilled forgeries %  Skilled forgeries

(c) In Writer-Independent (WI) approach, a clas- (d) In Writer-Independent (WI) approach, a bet-

sifier determines whether a questioned signa- ter clearer separation of within and between
ture is a genuine or a forgery when compared dissimilarity vectors makes easier to classify
to a reference signature. dissimilarity vectors (achieving properties

and . Besides, better skilled forgery dissimi-
larity vectors are further away from the within
class region (achieving property [3).

These examples are figurative, and we artificially generated the examples in Figuresand Random clusters
with a default variance were generated in Figure[3a] We decreased the variance of clusters representing genuine
signatures and increased the variance of the cluster representing skilled forgeries to obtain Figure 3b|from Figure
Bal Applying the dichotomy transformation, we transformed the artificial data from Figure [33] to the data in
the dissimilarity space illustrated in Figure Likewise, data from Figure Were transformed to Figure

Figure 3 — Hypothetical handwritten signatures represented in the feature space and in the dissimilarity space,
respectively verified in writer-dependent and writer-independent ways.
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these clusters are separated within the feature space. Then, in writer-dependent verification, a
given cluster of genuine signatures is easier to be separated from the other clusters. In the case
of writer-independent classification, as illustrated in Figure [3d} since clusters in the feature
space are denser, consequently, the obtained vectors of within class in the dissimilarity space
are also denser and nearer to the origin, with a clearer separation to the between class vectors.
These, in turn, are less scattered within the dissimilarity space.

Secondly, the effect of obtaining the property is also illustrated in Figure . Having
this property, skilled forgeries are further away from the respective cluster of genuine signatures
for a given user. Thus, these skilled forgeries are easier to be classified in a writer-dependent
approach. In the case of writer-independent classification, as illustrated in Figure [3d] since
these representation are further away from the representations of reference signatures, it is
obtained dissimilarity vectors that are further away from the region of within class vectors, and

thus, improving the classification of skilled forgeries in this scenario.

3.2 MULTI-TASK HANDWRITTEN SIGNATURE REPRESENTATION LEARNING

In this work, we hypothesize that properties (I]), and can be achieved by means
of a multi-task framework for learning handwritten signature feature representations based
on deep contrastive learning. Multi-task learning is a mechanism that objectives to improve
generalization performance by taking advantage of learning information contained in differ-
ent domain-specific related tasks (CARUANA, 1997)). In the proposed framework, we adopt a
transfer learning approach in which the representation space learned through a first task is
used as a primary structure for learning a representation space adjusted by a second task,
providing an information flow for learning feature representations. Specifically, in the first
task, the properties and are achieved through learning a feature space that separates
feature representations of genuine signatures of different users. In sequence, in the second
task, property is achieved by applying contrastive losses in order to better discriminate
skilled forgeries. We hypothesize that solving the first task is beneficial because it can improve
the generalization performance by defining a more favorable initial state for applying a second
step that adjusts specific characteristics of the learned representation space (MASOUDNIA et al.,
2019; [RANTZSCH; YANG; MEINEL, 2016; [TSOUROUNIS et al ., 2022; |SOLEIMANI; ARAABI; FOULADI,

2016). These two tasks are outlined in Figure {4 and described in the following subsections.
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Figure 4 — An overview of the proposed multi-task framework for contrastive learning of handwritten signature
feature representations.

3.2.1 First Task: to Distinguish between Users

As proposed in Hafemann, Sabourin e Oliveiral (2017a), a deep convolutional model is
trained to distinguish between signatures of different users in such a way that representations
of signatures from these users are separable in the representation space. The model is optimized
in terms of a cross-entropy loss (following the Equation [2.1)). Following this idea, the objective
of the first task of the proposed framework is to encourage signature examples of the same user
to be close to each other in the feature space, whereas pushing away feature representations
of signatures obtained from different users. This enables reaching the properties and .
Besides, the learned feature space in this first task generalizes well for verification of signatures
of other users in other datasets which are not used for training the model. It is experimentally
shown in Hafemann, Sabourin e Oliveiral (2017a)), Souza et al.| (2020)) that this learned feature

space generalizes well to other datasets in transfer learning scenarios.

3.2.2 Second Task: to Discriminate Skilled Forgeries

In the proposed framework, we hypothesize that applying contrastive losses with the ability
to better separate similar examples of different classes can be advantageous for obtaining
feature representations of handwritten signatures. It is experimentally shown in [Hafemann,
Sabourin e Oliveira (2017a)) that adding skilled forgeries information during training can result
in lowering the verification error rates, but this is not feasible in practice because usually, in
real-world scenarios, skilled forgeries are not readily available. Following this idea, the objective

of the second task in the proposed framework is to allow models to learn to differentiate better
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skilled forgeries from genuine signatures when moving the representations of skilled forgeries
from the respective genuine representations, even without requiring to provide skilled forgeries
during training.

A hard negative pair consists of a pair of similar examples but from different classes
(SCHROFF; KALENICHENKO; PHILBIN, 2015)). In the context of handwritten signature verifica-
tion, a hard negative pair can be seen as a pair of similar signatures that are obtained from
different users. For instance, Figure [5|illustrates a pair of similar signatures (z%, ™), but the
anchor example z* and the negative example z™ are obtained from different users. In this
scenario, contrastive losses with the ability to perform hard negative mining encourage fea-
ture representations of similar signatures obtained from different users (hard negatives) to be

pushed away by a larger separation in the embedding space. We expect that this allows for

refining properties (1) and (2) and consequently reaching property (3).

(a) Anchor example z°. (b) Negative example z".

Figure 5 — A hard negative pair of signatures. This pair of signatures presents similarities but they were obtained
from two different users of MCYT-75 dataset (ORTEGA-GARCIA et al, [2003]).

In this sense, two different contrastive losses having the ability to perform hard negative

mining are investigated in this work:

i) A distance based loss with explicit hard negative mining: the triplet loss with semi-hard

negative mining (SCHROFF; KALENICHENKO; PHILBIN, [2015)).

ii) A probabilistic based loss with implicit hard negative mining: the normalized temperature-

scaled cross entropy loss (NT-Xent loss) (CHEN et al., [2020)).

In the triplet loss with semi-hard negative mining, hard negative pairs that constitute the
triplets applied for training are filtered based on the Euclidean distance of the negative example
in relation to an positive example of another class. The purpose is to select negative examples
near to a positive example within a predefined margin. Selecting these semi-hard negative pairs
is based on some concrete spatial metric, in such way that mining these training examples is

done in an explicit way (KHOSLA et al., [2020).
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On the other hand, in the NT-Xent loss, hard negative pairs are not selected based on a
explicit filtering criteria. The formulation of NT-Xent loss takes advantage of hard negative
pairs, because gradient contributions of the hard negative pairs during training provide a
stronger model correction in comparison to the easy negative pairs. Since an explicit filtering
criteria is not performed in NT-Xent loss, it is considered that obtaining the contributions of
hard negative examples is done in an implicit way (KHOSLA et al., 2020)).

In this work, we investigate the effect of using explicit or implicit mechanisms for min-
ing hard negative examples during training to obtain feature representations for handwritten

signature verification. The investigated losses are further detailed in the following subsections.

3.2.3 Investigated Losses
3.2.3.1 Triplet Loss with Semi-hard Triplet Mining

A triplet network is composed of three instances of the same feed-forward network with
shared weights (HOFFER; AILON, [2015)). The network is fed with three examples: a anchor
example z¢, a positive example z¥ and a negative example x”. Given this, the network encodes
the pair of distances between the negative and positive example against the anchor example
(HOFFER; AILON, 2015). The network models a function f(z;) that embeds an input example
x; into an Euclidean space. Namely, f(z;) is the feature representation obtained from the
network for an input example x;. With respect to the offline handwritten signature verification
problem, for any triplet (z¢,z?, 1), the anchor example ¢ and the positive example a? are
signatures of the same user, whereas the negative example z}' is a signature of a different user
than the anchor user.

In the training phase, the objective of the triplet loss is to minimize the anchor-positive
distance while maximizing the anchor-negative distance. Thus, given a training set of N triplets

(¢, 2%, x}), the loss being minimized (SCHROFF; KALENICHENKO; PHILBIN, [2015) is

vt = 3 D + 1) = JEDIE 1) — S
where, [e], = max(0,¢) (3.1)

In the Equation [3.1], m is the adopted margin when optimizing the network with the triplet

loss. This margin controls how much the feature representation of a negative example should
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be pushed away from the feature representation of a positive example, within a margin m.

When [ f(2f) — f(z})[3 > m + | f(zf) — f(aF)

Liyipier = 0. Consequently, in order to ensure fast convergence when training the network

2, the network is not optimized because

(SCHROFF; KALENICHENKO; PHILBIN, 2015), it is necessary to select triplets that violate this
constraint. In other words, triplets such that: | f(z%) — f(2?)||2 < m+ | f(2%)— f(«?)|3 should
be selected in order to improve the model optimization during training.

Therefore, the margin m is applied to narrow the selection of triplets during training. In

this case, triplets such that:

1) = f@D)z <m+ | f(f) — f)]2 (3.2)
are selected. Selecting the hardest negatives which are nearer to the anchor in relation to the
positive examples can lead to bad local minima early on training (SCHROFF; KALENICHENKO;
PHILBIN, [2015)), resulting in a collapsed model. Preliminary experiments (which are not explored
in this study) selecting those hardest negatives indicated that collapsed models such that
f(z;) = 0 were obtained. Due to this problem, only triplets in which the negative example is
further away from the anchor than the positive example (|| f(x¢)— f(z2)]3 < | f(z%)— f(z?)|3)
within a margin m are selected. Such triplets are called as semi-hard triplets (SCHROFF;

KALENICHENKO; PHILBIN, 2015).
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Figure 6 — A graphic example of a semi-hard triplet (z¢, 2%, 2). It is shown where a semi-hard negative ="

PR R Rt}

is positioned in relation to an anchor z¢ and a positive example z%.

Figure [6] shows an graphic example of a semi-hard triplet (z¢,z%,27). In this figure, it
is illustrated where a semi-hard negative ' is positioned in relation to an anchor z¢ and a
positive example z¥. Semi-hard negatives are further away within an margin m from the positive
example. When optimizing the model, selected semi-hard negatives feature representations are

pushed away within a margin m into the space.
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3.2.3.2 Normalized Temperature-Scaled Cross Entropy Loss

The Normalized Temperature-Scaled Cross Entropy Loss (referred as NT-Xent loss in /Chen
et al| (2020)) is a contrastive loss for maximizing the similarity of representations of a pair
composed by an anchor and a positive example whilst minimizing the similarity between this
anchor and a set of negative examples. With respect to the offline handwritten signature
verification problem, for any positive pair (x?,x?), the anchor example z¢ and the positive
example 7 are signatures obtained from the same user, whereas for any negative pair (zf, ),
the anchor example z¢ and the negative example x} are signatures obtained from different
users. Therewith, the loss function for all positive pairs of examples (z{, %) obtained from a

training set with NV positive pairs is defined as:

exp(sim(f (), f(x5))/7)

exp(sim(f(x2), f(22))/7) + Yy exp(sim(f (x2), f(x}))/7)
(3.3)

1 &
Lyt xent = N Z —log
4,J

where, the sum ZkK:1 is over all K negative examples in the training set for a given anchor

example z¢; sim(v,w) = | “— is the cosine similarity between two feature vectors; and 7 is

wl2flwl2
a temperature hyper-parameter. The use of L, normalization (applied in the cosine similarity)
with an appropriately adjusted 7 temperature hyper-parameter weighs different examples and
makes possible the model to learn from hard negative pair examples (JAISWAL et al., [2021;

CHEN et al., 2020).

3.2.4 Training Process with the Proposed Framework

In the training process, we firstly optimize randomly initialized weights W,.4ndom Of @ con-
volutional neural network in terms of the cross-entropy loss using randomly obtained batches
of data from the development set D, resulting in the weights W oss—entropy at the end of
this first training stage. Thereafter, in a second training stage, the weights W, oss—entropy are
optimized in terms of a contrastive loss (the NT-Xent loss or the Triplet loss with semi-hard
negative mining) using balanced batches of data from the same development set D, resulting
in a second convolutional neural network with weights W,,,.ii—task- | herefore, the second task
of the proposed framework is accomplished by transferring a preceding learned feature space

by adjusting it with contrastive losses. For the sake of simplicity, in this work, we call these
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models as multi-task (MT) contrastive models, since they are trained in a two-task approach.

This approach is illustrated in Figure [7a]

-,
-
f”
-
-

Single-task (ST) approach

-

a N
P - Transfer
/’/ \\\ W cross—
Initialize with // S\ entropy
’ -~ N,
Wrandom ," N
————— / 570 v
Ss 4
N 4 Tripl
. xP| >~ Wanulti- e
NS task loss
] 2
A / Semi-hard | X CNN
Cross- JED
W cross—
X |:> oot entropy <
loss e
€D il CNN
1
\ 2l
‘\
\ n : NT-Xent
\ X1 >~ Winuiti- e
N\ - task loss
N x2
\ 4 o\
\\ /
N\, /
\\ = ,’l
\\ x 7’
o K1l )eD ..~ Transfer
~ Pod
RN PPt W cross—
Multi-task (MT) approach P - entropy
\ 7
(a) Multi-task contrastive training process.
r p— \
“‘\\ Initialize with
\\ random
) \
\
5 v
RS W singriom Triplet
il loss
Semi-hard | x™ CNN
JED
-~
xa
xP
n o
X1 >|:> Wiingle— |:> B S
- task loss
X2
4 o\
I'
4
n /l
x 4
Kl JeD .~ initialize with

Wrandom

(b) Single-task contrastive training process.

Figure 7 — Contrastive training approaches investigated in this work.

In the experiments, the proposed framework is compared to the situation in which con-

trastive losses are directly applied in a single-stage training approach. In this case, randomly
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initialized weights W, qndom Of a convolutional neural network are optimized in terms of the
considered contrastive losses using balanced batches of data from the development set D,
resulting in the weights Wgingie—tasi- For the sake of simplicity, in this work we call these
models as single-task (ST) contrastive models. This approach is illustrated in Figure . It is

also important to note that Wuiti—task # Wsingle—task-

3.3 RESEARCH QUESTIONS

The main objective of this chapter is to investigate whether adopting the proposed multi-
task framework outperforms the situations in which contrastive losses can be directly applied in
a single-task approach. Specifically, we investigate the obtained effect on model generalization
when adopting the proposed framework for training models. Besides, we investigate whether
obtained models with the proposed framework can significantly improve the signature verifica-
tion in comparison to the state-of-the-art SigNlet model. Yet, to our knowledge, a contrastive
framework for representation learning based on hard negative mining of handwritten signa-
tures has not been investigated in the context of handwritten signature verification problem.

Therefore, the following Research Questions (RQs) are investigated in this chapter:

RQ1) How do the contrastive losses adopted in the proposed framework affect signature

verification and model generalization?

RQ2) Does the proposed multi-task approach for learning representations provide signature

verification improvement in comparison to a contrastive single-task approach?

RQ3) Do the proposed multi-task contrastive models provide significantly better feature rep-

resentations for handwritten signatures than SigNet?

RQ4) Does NT-Xent loss (with implicit hard negative mining) provide better feature represen-
tations than Triplet loss (with explicit hard negative mining) for handwritten signature

verification?
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3.4 EXPERIMENTS

3.4.1 Experimental Setup

In this set of experiments, we adopt the GPDSsynthetic dataset (FERRER et al., 2017)) for
training and testing models. The GPDSsynthetic is a dataset containing synthetic genuine
signatures and skilled forgeries generated with the objective of having similar characteristics
to real signatures. Formerly, partitions of the GPDS Signature 960 dataset were extensively
used for training and testing deep learning models in previous related works (HAFEMANN;
SABOURIN; OLIVEIRA), 201/a; [HAFEMANN; OLIVEIRA; SABOURIN|, 2018; MARUYAMA et al/, 2021
SOUZA et al., |2020; [TSOUROUNIS et al., 2022), but GPDS Signature 960 dataset is no longer
publicly available due to The General Data Protection Regulation (EU) 2016/679 and new
investigators starting research in this field do not have access to this dataset. Thus, we expect
to obtain an approximation of the performance on real signature data when training and testing
models with the GPDSsynthetic dataset. Furthermore, the GPDSsynthetic dataset has a large
number of users, which is an important requirement because it increases the likelihood of
obtaining hard negative pairs during training.

It is worth mentioning that we performed experiments with the SigNet model for compar-
ison purposes. The SigNet model was trained by |Hafemann, Sabourin e Oliveira (2017a)) with
signature examples obtained from the GPDS Signature 960 dataset. In addition, we also trained
a model following the same neural network architecture optimized with the cross-entropy loss
as proposed by |Hafemann, Sabourin e Oliveira (2017a)), but using genuine signature examples
obtained from the GPDSsynthetic dataset. In this work, this second model is called SigNet
(Synthetic).

3.4.1.1 Data Segmentation

In this set of experiments, we carried out investigation using the GPDSsynthetic (FERRER et
al., 2017), MCYT-75 (ORTEGA-GARCIA et al., 2003) and CEDAR (KALERA; SRIHARI; XU, |2004)
datasets. The number of users and the number of available genuine signature and skilled
forgery examples per user in each dataset is detailed in Table [6]

We followed the GPDSsynthetic dataset segmentation proposed by [Zheng et al.| (2021))

for training deep learning models. It is important to note that this segmentation allows a well
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Dataset Name  Users  Genuine signatures Forgeries

CEDAR 55 24 24
MCYT-75 75 15 15
GPDSsynthetic 10000 24 30

Table 6 — Summary of the datasets used in this set of experiments.

definition of disjoint sets for training, validation, and testing of models, allowing us to compare
the error rates among related works, as it is guaranteed that the same subset of users is being
verified. Given this, we split the GPDSsynthetic dataset into disjoint subsets of users: the
development set D, the validation set V), and the exploitation sets £ with different range of

users (summarized in Table [7)).

Subset Name #Users  User Range
Development set D 2000 5001 - 7000
Validation set V), 50 9951 - 10000
Exploitation set £;505 (GPDS-150S) 150 1-150
Exploitation set E3005 (GPDS-300S) 300 1-300

Table 7 — Segmentation of the GPDSsynthetic dataset following (ZHENG et al., |2021)).

The signatures of users in the development set D are employed for training models. The
validation set V), is used for hyper-parameter search and validation of models, comprising
signatures of the last 50 writers of the GPDSsynthetic dataset. Finally, different exploitation
sets £ are employed for testing models with different number of users. In this work, we tested
models with the first 150 users (called as GPDS-150S) and with the first 300 users (called
as GPDS-300S) of the GPDSsynthetic dataset. Besides, all the users of the MCYT-75 and
CEDAR datasets are used to measure the generalization performance of features learned with
the GPDSsynthetic development set. This way, two synthetic signature datasets (GPDS150S,
GPDS150S) and two real signature datasets (MCYT-75, CEDAR) are evaluated in our exper-

iments, balancing the types of datasets used for testing.

3.4.1.2 Experimental Protocol for Training Models

The signatures of the development set D are employed during model optimization, whereas
V), signatures are employed for evaluating the performance of trained models with different
hyper-parameter configurations in order to obtain unbiased choices of best hyper-parameters.

The D set has 24 genuine signatures per user. In training, we used 90% of these genuine
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signatures to optimize the model during training, whereas we employed 10% of these genuine
signatures for monitoring the early stopping of the training process up to a maximum of 60
epochs. It is important to note that skilled forgeries are not used for training.

We conducted model optimization as the same way as defined in |[Hafemann, Sabourin e
Oliveira| (2017a). For all contrastive losses studied in this work, those are minimized using
Stochastic Gradient Descent with Nesterov Momentum with momentum factor given by 0.9.
We trained models with an initial learning rate of 10~ which is divided by 10 every 20 epochs.
The adopted architecture of the deep convolutional neural network model is the same as
defined in [Hafemann, Sabourin e Oliveira| (2017a]) (described in Table [I)), in such a way that
the dimensionality of obtained signature feature representations is 2048.

In general, balanced batches of data are acquired (SCHROFF; KALENICHENKO; PHILBIN,
2015; WU et al., 2017) when deep learning models are optimized with contrastive losses, aim-
ing to ensure that the number of positive and negative pairs are balanced for each class.
Therefore, in the experiments, we sampled balanced batches of data during training when the
optimization is done with contrastive losses. In this case, the number of signatures of each
user is the same in any batch. Aiming to increase the diversity of samples from different users,
we allocated 2 signature samples per user. The adopted batch size is 256, thus, 128 different
users are randomly allocated per batch. In order to enable more pairwise combinations between
signatures of different users, each signature example of the dataset is randomly allocated twice

for two different batches.

3.4.2 Sensitivity Analysis
3.4.2.1 Experimental Protocol for the Validation Phase

The triplet loss with semi-hard negative mining is dependent on a margin hyper-parameter
m (as defined in Equation . The margin hyper-parameter is usually set as m = 0.2
(SCHROFF; KALENICHENKO; PHILBIN, 2015; WU et al., [2017). However, margin values around
m = 0.2 are investigated in this work. Thus, we trained models with m = {0.1,0.2,0.4,0.8},
and signatures of V, are verified in writer-dependent and writer-independent ways using feature
representations obtained from these models. The NT-Xent loss is dependent on a temperature
hyper-parameter 7 (as defined in Equation . The temperature hyper-parameter is set as

7 = 0.07 in |He et al| (2020) for an image classification problem. However, smaller hyper-
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parameters around 7 = 0.07 as well as a hyper-parameter much greater than 7 = 0.07
are investigated in this work. Thus, we trained models with 7 = {0.01,0.05,0.07,0.5}, and
signatures of V), are verified in writer-dependent and writer-independent ways using feature
representations obtained from these models.

For writer-dependent verification, we trained a support vector machine classifier for each
user of the validation set V), following the protocol defined by [Hafemann, Sabourin e Oliveira
(2017a). To this end, 12 genuine reference signatures from the user of the validation set V),
are used as positive examples, whereas 14 randomly obtained signatures from each user of the
D set are used as negative examples for training. We tested each writer-dependent classifier
using 10 remaining genuine signatures and 10 skilled forgeries from the respective user in the
validation set V,.

For writer-independent verification, we trained a support vector machine classifier with a
set of dissimilarity vectors obtained from the signatures of all users in the D set, following
the protocol defined by Souza, Oliveira e Sabourin| (2018). Hence, for each user of the D set,
we randomly selected 12 genuine signatures, which are pairwise combined, obtaining vectors
of within class. Besides that, for each user of the D set, 11 genuine signatures are combined
against 6 randomly selected genuine signatures from other users (random forgeries) in the D
set. These are the dissimilarity vectors of between class. We tested the writer-independent
classifier in face of each user of the validation set V,. In this case, for each user of the V), set,
we used 12 genuine signatures as reference signatures within the max fusion function, and the
classifier is tested using 10 remaining genuine signatures and 10 skilled forgeries of the user.

In our experiments, training of writer-independent classifiers has not converged in feasible
time specifically with feature representations obtained through SigNet model to the GPDSsyn-
thetic dataset examples. Thus, specifically in this situation, we decreased the number of sam-
pled dissimilarity vectors from the development set D in order to obtain the performance of
the classifier in a feasible time. In this case, for each user of the D set, we randomly selected
6 genuine signatures, which are pairwise combined, obtaining vectors of within class. Besides
that, for each user of the D set, 5 genuine signatures are combined against 3 randomly se-
lected genuine signatures from other users (random forgeries) in the D set, obtaining vectors
of between class.

Finally, it is important to highlight that all comparisons between models performed in the
experiments with the validation set V), were done using Wilcoxon paired signed-rank tests with

a 5% level of significance.
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3.4.2.2 Analyzing Contrastive Losses Varying the Hyper-parameters

In this validation experiment, we analyze the obtained effect on equal error rate when
varying the margin hyper-parameter in the Triplet loss and the temperature hyper-parameter
in the NT-Xent loss. The obtained equal error rates when using global and user thresholds for
each evaluated model configuration are shown in Figure [§]

As can be observed in the experimental results of validation experiments with the Triplet
loss (Figures [8al and , the representation with margin m = 0.1 presented lower error rates
with a statistical difference to all the other margin configurations in the most of situations.
In the specific situations where the average error adopting m = 0.1 is slightly higher than to

the configuration with m = 0.2, these two configurations are statistically equivalent. Given
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Firstly, we varied the margin hyper-parameter m of the Triplet loss, using a global threshold in and using
user thresholds in [Bb} Secondly, we varied the temperature hyper-parameter 7 of the NT-Xent loss, using a

global threshold in [8c| and using user thresholds in @

Figure 8 — Performance of writer-dependent and writer-independent classifiers on the validation set V), in terms
of the equal error rate (errors and standard deviations in %).
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this, adopting the margin hyper-parameter as m = 0.1 indicates the best hyper-parameter
configuration for the Triplet loss in the studied problem. Note that a higher margin hyper-
parameter value (m = 0.8) provided worse feature representations.

Besides, as can be observed in the experimental results of validation experiments with the
NT-Xent loss (Figures [Bd and [8d]), the representation with 7 = 0.01 presented lower error
rates with a statistical difference to all the other temperature configurations in the most of
situations. In the specific situations where the average error adopting 7 = 0.01 is slightly
higher than to the configuration with 7 = (.05, these two configurations are statistically
equivalent. Given this, adopting the temperature hyper-parameter as 7 = 0.01 indicates the
best hyper-parameter configuration for the NT-Xent loss in the studied problem. Note that a
higher temperature hyper-parameter value (7 = 0.5) provided worse feature representations.

Finally, it is worth mentioning that the best-obtained configurations with the proposed
framework adopting the Triplet loss with m = 0.1 and the NT-Xent loss with 7 = 0.01 are
statistically equivalent in writer-dependent as well as in writer-independent verification with
the validation set. This result indicates that despite being contrastive losses with different

mechanisms for mining hard negative examples, these losses perform in a comparable way.

3.4.2.3 Understanding Obtained Representations with Contrastive Losses

In the experimental results, obtaining a lower FFRR (False Rejection Rate) implies in bet-
ter classification of genuine signatures with well-separated dense clusters of genuine signatures
representations, which indicates reaching the Properties [1| and [2| (as previously defined in
Section . Furthermore, obtaining a lower FAR.q (False acceptance rate considering
skilled forgeries) implies in better classification of skilled forgeries when moving away rep-
resentations of skilled forgeries from the respective genuine signature representations, which
indicates reaching the Property [3| (as previously defined in Section .

As can be seen from the results of such metrics (listed in Table [g): increasing the hyper-
parameter values of the contrastive losses in the single-task approach increases both the
FARiieq and the FRR error rates. Increasing the margin and the temperature hyper-
parameters worsens both the verification of genuine signatures and skilled forgeries as these
representations are being moved in the space, which causes an overlap of these representa-
tions. However, skilled forgeries are better separated from the genuine signatures with this

move, as the FFAR .4 error rate is generally lower than the FFRR error rate. Despite this
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being a beneficial effect, moving skilled forgery representations tends to generate a side ef-
fect that increases the intra-class distance of genuine signatures. Hyper-parameter values that
decrease these two metrics should be found for the problem. In the studied validation set,

smaller hyper-parameters values such as m = 0.1 and 7 = 0.01 do it, providing lower equal

error rates.

Table 8 — Obtained metrics for feature representations extracted from different single-task contrastive models
adopting different loss configurations for the 50 users of the validation set V,,.

These metrics were obtained in the feature space using writer-dependent classifiers. The FRR and FFARki1c4
metrics are measured considering the actual distance to the decision hyper-plane, then, the adopted thresh-
old for these metrics is zero. The % means that obtained experimental result is significantly different when
compared to the same loss configuration but with smaller hyper-parameter value. Wilcoxon paired signed-rank
tests were performed with 5% significance level.

FRR FARitica EERjiopatthreshold | £ E Ryserthresholds
Triplet loss m = 0.1 (single-task) | 19.88 =(1.04) | 4.76 £(0.73) | 9.71 +(0.67) 5.64 +(0.87)
Triplet loss m = 0.8 (single-task) | 26.90 =(1.96)% | 11.56 +(1.22)s | 17.70 £(0.72)% | 14.91 +(1.38)3
NT-Xent loss 7 = 0.01 (single-task) | 8.52 +(1.09) 5.86 +(0.88) 6.93 £(0.71) 3.43 £(0.57)
NT-Xent loss 7 = 0.5 (single-task) | 27.94 £(2.02)% | 12.62 +£(1.96)% | 19.17 £(0.96)% | 16.24 +(1.34)%

When the margin m and temperature 7 hyper-parameters are higher in the studied con-
trastive losses, these hyper-parameters have an influence in adjusting genuine signatures and
skilled forgery representations. Higher hyper-parameter values increase the distance between
representations of similar examples of different classes, which can be seen as an effect asso-
ciated with moving the skilled forgery representations from the genuine ones during training.
But on the other hand, as a side effect, higher hyper-parameters can increase the distance
between representations of similar examples of the same class, which implies that genuine
representations of different users overlap more in the feature space. This generates not-well
separated signature clusters and decreases the ability to verify genuine signatures.

Figure [9] shows obtained t-SNE (MAATEN; HINTON, [2008)) projections for feature repre-
sentations of genuine signatures (in blue) and skilled forgeries (in red) for the users of the
validation set V. When adopting a small margin m = 0.1 (in Figure[9a]) or a small temperature
7 =0.01 (in Figure hyper-parameters, each user has genuine signatures projected in dense
clusters that are in separated regions of the space. Namely, in this case genuine signatures have
a more uniform distribution within the space. On the other hand, when adopting a large margin
m = 0.8 (in Figure or a large temperature 7 = 0.5 (in Figure hyper-parameters, the
skilled forgeries representations are moved away from the genuine signature representations
within the feature space. However, in this situation, genuine signature clusters are not strictly

dense and consequently are more scattered within the space in such way that genuine clusters
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These features were extracted from different models adopting different configurations: in[9a]and [9b] we adopted
the Triplet loss with two different margin hyper-parameter configurations; and in [9d and [9d| we adopted the
NT-Xent loss with two different temperature hyper-parameter configurations. Finally, features extracted from
the Siget model are shown in [O¢|

Figure 9 — Obtained t-SNE projections for features representations of genuine signatures (in blue) and skilled
forgeries (in red) for the 50 users of the validation set V,.

of different users can overlap each other.

The effect of moving skilled forgery representations is evidenced by transforming them into
a dissimilarity space. The representations in Figure [0] were transformed through a dichotomy
transformation, and obtained visualizations are shown in Figure [I0l As can be observed in

Figures[10a| and [10c, when lower hyper-parameter values (m = 0.1 and 7 = 0.01) are adopted
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(c) NT-Xent loss with 7 = 0.01 (d) NT-Xent loss with 7 = 0.5

We extracted dissimilarity vectors from different models adopting different configurations: in and we
adopted triplet loss with two different margin hyper-parameter configurations; and in and [10d| we adopted
NT-Xent loss with two different temperature hyper-parameter configurations.

Figure 10 — Obtained visual projections in the dissimilarity space for: the between class vectors (in green), the
within class vectors (in blue), and skilled forgeries compared to one reference signature (in red).
Dissimilarity vectors were obtained from signatures of the 50 users of the validation set V.

in the studied contrastive losses, the within and between classes are better separated in the
dissimilarity space. Due to the skilled forgeries tend to be similar to genuine signatures, a
considerable amount of skilled forgery dissimilarity vectors are positioned in the within class
region. On the other hand, when higher hyper-parameter values are adopted (m = 0.8 and
7=0.5in Figures and , the dissimilarity vectors of skilled forgeries are moved further
away from the within class region. However, as a side effect, the within and between class
regions overlap more in the dissimilarity space.

Finally, as can be observed in Figure[9¢} it is worth mentioning that the SigNet model does
not provide good representations for the GPDSsynthetic samples as there is no tendency to
represent genuine signatures in clusters adopting this model. Hence, this explains the obtained
high error rates (reported in Figure [8) when using SigNet model for feature extraction in

writer-dependent and writer-independent verification of GPDSsynthetic samples.
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3.4.2.4 Understanding the Influence of the Proposed Framework

This experiment aims to understand the influence of the proposed framework (defined in
Section in the obtained feature representations for the validation set V,. To this end,
contrastive models trained by directly applying contrastive losses in a single-task approach are
compared to the models trained in a multi-task approach adopting the proposed framework. In
these experiments, we defined the hyper-parameters values of the contrastive losses according

to the best values found for the problem (as previously discussed in Section [3.4.2.2)).

Table 9 — Obtained metrics for feature representations extracted from different contrastive models adopting
the multi-task and single-task approaches for the 50 users of the validation set V,,.

These metrics were obtained in the feature space using writer-dependent classifiers. The FRR and FARski1ed
metrics are measured considering the actual distance to the decision hyper-plane, then, the adopted threshold
for these metrics is zero. The *k means that obtained experimental result is significantly different when com-
pared to the same configuration but following the proposed multi-task framework. Wilcoxon paired signed-rank
tests were performed with 5% significance level.

FRR FARitiea EERjiobatthreshold | EE Ruserthreshotds
Triplet loss m — 0.1 (multitask) | 7.38 £(1.12) | 5.30 =(0.63) | 6.27 £(0.94) 3.00 +(0.43)
Triplet loss m = 0.1 (single-task) | 19.88 +(1.04)s% | 4.76 £(0.73) | 9.71 +(0.67)% | 5.64 £(0.87)%
NT-Xent loss 7 — 0.01 (multi-task) | 7.98 +£(0.71) | 4.84 +£(0.79) | 5.88 £(0.59) 2.82 +(0.34)
NT-Xent loss 7 = 0.01 (single-task) | 8.52 +(1.09) 5.86 £(0.88)% | 6.93 +(0.71)3% 3.43 +(0.57)k

As can be seen from the results of the metrics listed in Table[9} single-task contrastive mod-
els have worsened the ability to classify genuine signatures. In contrast, multi-task contrastive
models can better classify genuine signatures while still maintaining the ability to verify skilled
forgeries, which lowers the equal error rates. This occurs because a prior training step with
cross-entropy loss implies in a denser and more uniform distribution of genuine clusters into
the representation space, controlling the side effects later introduced by using the contrastive
losses in the second task of the framework. The t-SNE projections for feature representations
obtained from multi-task contrastive models are shown in Figure [II] As can be observed in
this figure, dense clusters (in Figures and obtained from the multi-task contrastive
models are more dispersed and uniformly distributed into the space when compared to the
respective single-task model adopting the same contrastive loss and same hyper-parameter
configuration (visualizations previously shown in Figures [9a] and [9d).

Besides, we collected the number of semi-hard triplets applied for training in each epoch
with the Triplet loss (namely, the number of semi-hard triplets that explicitly satisfy the
constraint defined in Equation [3.2)). As can be observed when comparing the Figures[12a] and

[12b] training the contrastive model from a representation space initially optimized through
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(a) Triplet loss with m = 0.1 (multi-task) (b) NT-Xent loss with 7 = 0.01 (multi-task)

The triplet loss is optimized with margin hyper-parameter given by m = 0.1 in a multi-task approach in
The NT-Xent loss is optimized with temperature hyper-parameter given by 7 = 0.01 in a multi-task approach

:
Figure 11 — Obtained t-SNE projections for features representations of genuine signatures (in blue) and skilled

forgeries (in red) for the 50 users of the validation set V,. We extracted these features from
different models adopting the proposed multi-task framework.

cross-entropy loss with the multi-task approach diminishes the chances of generating semi-
hard triplets. It happens because the clusters of genuine signatures for each user are already
well defined in the representation space at the beginning of the second step of the training
process. Thus, such triplets satisfy the constraint of being semi-hard but from a situation that
makes this restriction more difficult to be satisfied. Adopting these triplets for optimization
seems strong enough for adjusting the model in a second-step training refinement. Moreover,
a more restricted choice for sampling triplets seems to better control the overfitting of the

obtained model.

1e6 Number of semi-hard triplets ) )
Number of semi-hard triplets
4.0 22500
3.5 20000
3.01 17500
2.5
15000
2.0 1
12500 1
1.5 A
10000
1.0
054 7500 -
0.0 5000 -
0 10 20 30 40 50 60 10 20 30 40 50 60
Epoch Epoch

(a) Triplet loss with m = 0.1 (single-task) (b) Triplet loss with m = 0.1 (multi-task)

The vertical axis represents the number of mined semi-hard triplets. In the Figure this number is described
in million.

Figure 12 — The number of mined semi-hard triplets in each epoch of the training process considering the
single-task and the multi-task approaches.
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3.4.2.5 Findings of the Sensitivity Analysis

In this section, the findings of the performed analysis are summarized: RQI]) How do the
contrastive losses adopted in the proposed framework affect signature verification
and model generalization?

The tuning of hyper-parameters of the contrastive losses allows adjusting the trade-off
between verifying genuine signatures and skilled forgeries. The Triplet and NT-Xent losses
have the property of moving genuine signature and skilled forgery representations within the
feature and the dissimilarity spaces. Specifically, in the Triplet loss, increasing the margin
means including more semi-hard negative examples during the optimization, which moves
the representations of skilled forgeries, but on the other hand, it introduces a side-effect
that worsens the verification of genuine signatures. Such an effect also happens with higher
temperature values in the NT-Xent loss. We encountered hyper-parameter values of the Triplet
and NT-Xent losses that balance this trade-off.

Finally, we identified that applying contrastive losses in a pre-organized space generates a
refinement of this original representation space. In this way, the proposed multi-task framework
maintains the same generalization ability provided by the cross-entropy loss for the studied
problem. A better control of the intra-cluster density and more uniform dispersion of clusters
in the representation space provided by the proposed multi-task approach can help in the
generalization of the models to subset of users with different distributions as well as to other

datasets.

3.4.3 Measuring Generalization Performance on Other Datasets

In this section, we apply the feature space learned in the GPDSsynthetic development set
D for extracting features on the GPDS-150S, GPDS-300S, CEDAR and MCYT-75 datasets
as a transfer learning approach. The single-task and multi-task contrastive models optimized
through Triplet loss and NT-Xent loss with the best hyper-parameter configurations obtained
in the validation set are applied for feature extraction. We used these features for training
writer-dependent and writer-independent classifiers, which had their performance measured.

From this point on, we refer to the evaluated models by their respective names. SigNet
is the pre-trained model provided by Hafemann, Sabourin e Oliveiral (2017a). Furthermore,

we trained a model using the same cross-entropy optimized architecture as defined by [Hafe-
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mann, Sabourin e Oliveira (2017a) but using genuine signature samples obtained from the
GPDSsynthetic development set. This second model is called SigNet (Synthetic). Regarding
the contrastive models, we evaluated the best single-task and multi-task models for each one
of the contrastive losses studied in this work. Thus, the models optimized with the Triplet loss
are called ST-SigNet (Triplet) and MT-SigNet (Triplet) for the single-task and multi-task ver-
sions, respectively. Finally, the models optimized with the NT-Xent loss are called ST-SigNet
(NT-Xent) and MT-SigNet (NT-Xent) for the single-task and multi-task versions, respectively.

3.4.3.1 Experimental Protocol for Writer-Dependent Verification

In order to measure the generalization performance of models in a writer-dependent ap-
proach, we followed a signature segmentation method based on those proposed in |[Hafemann,
Sabourin e Oliveira (2017a), |[Zheng et al.| (2021)), Tsourounis et al.| (2022): for each user, we
built a training set consisting of user's genuine signatures as positive examples and genuine
signatures of other users as negative examples. By utilizing this training set, we trained a sup-
port vector machine for each user. For the GPDS-150S, GPDS-300S, CEDAR and MCYT-75
datasets, we used 7 genuine reference signatures of a given user from the exploitation set
as positive examples, whereas we obtained r genuine signatures from the other users in the
same exploitation set as negative examples. These negative examples can be seen as random
forgeries with regard to the considered user. The number r of genuine reference signatures

and the number of random forgeries used in training for each dataset is listed in Table [10]

Table 10 — Separation into training and testing sets in Writer-Dependent approach for each evaluated dataset.

Dataset Training set Testing set
Name #Users | Genuine Random Forgeries
CEDAR 55 re{l,2,3,5,10,12} r x 54 10 genuine, 10 skilled
MCYT-75 75 re{l,2,3,5,10} rx 74 5 genuine, 15 skilled
GPDS-150S 150 | re€{1,2,3,5,10,12} r x 149 10 genuine, 10 skilled
GPDS-300S 300 | re{l,2,3,5,10,12} r x 299 10 genuine, 10 skilled

After training a writer-dependent classifier, we measured the performance over a testing
set. To this end, a disjoint sample of remaining genuine signatures and skilled forgeries of
each user from the exploitation set are used for testing. We verified these signatures and

evaluation metrics (listed in Section [2.2.4)) were applied considering them. The number of
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genuine signatures and the number of skilled forgeries employed in testing for each dataset is

listed in Table [10L

3.4.3.2 Experimental Protocol for Writer-Independent Verification

In order to measure the generalization performance of models in a writer-independent ap-
proach with the GPDS-150S and GPDS-300S datasets, we followed the signature segmentation
proposed in|Souza, Oliveira e Sabourin|(2018). Writer-independent classifiers were trained with
a set of dissimilarity vectors obtained from signatures of the development set D. For each user,
we randomly selected a subset of 12 genuine signatures. All genuine signatures of each subset
were pairwise combined, obtaining 132,000 dissimilarity vectors of within class. Besides that,
for each user, 11 genuine signatures were combined against 6 random forgeries. In this case,
random forgeries consist of randomly selected genuine signatures from other users. In total,
we obtained 132,000 dissimilarity vectors of between class. As the number of vectors of within
class and between class is the same, then, dataset used for training is balanced.

In the case of measuring the generalization performance of models in a writer-independent
approach with the CEDAR and MCYT-75 datasets, we followed the signature segmentation
proposed in Souza et al|(2020). We evaluated writer-independent classifiers through a cross-
validation procedure. In this scenario, half of the users of the dataset are used as development
set, whereas the other half are used as exploitation set. In the experiments, we performed a
random split of the dataset in a 5 x 2—fold cross-validation. Obtained metrics are an average of
measuring the performance in each of these splits. The number of examples used for training
of writer-independent classifiers for each dataset is summarized in Table [11]

For the CEDAR dataset, signatures of 27 or 28 users were employed for training writer-
independent classifiers. For each user, we randomly selected a subset of 14 genuine signatures.
All genuine signatures of each subset were pairwise combined, obtaining 2,457 dissimilarity
vectors of within class. Besides that, for each one of these 27 or 28 users, 13 genuine signatures
were combined against 7 random forgeries. In total, we obtained 2,457 dissimilarity vectors
of between class. For the MCYT-75 dataset, signatures of 37 or 38 users were employed for
training writer-independent classifiers. For each user, we randomly selected a subset of 10
genuine signatures. All genuine signatures of each subset were pairwise combined, obtaining
1,665 dissimilarity vectors of within class. Besides that, for each one of these 37 or 38 users,

9 genuine signatures were combined against 5 random forgeries. In total, we obtained 1,665
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Table 11 — Separation into training and testing sets in Writer-Independent approach for each evaluated dataset.

Dataset

Training set

Testing set

Name

#Users

Negative (between) class

Positive (within) class

Reference set

Questioned set

CEDAR

55

Distances between the 13 sig-
natures for each user and 7
random signatures from other
users (2,457 samples).

Distances between the 14 sig-
natures for each user (2,457
samples).

re{1,2,3,5,10,12}

10 genuine, 10 skilled

MCYT-75

75

Distances between the 9 sig-
natures for each user and 5
random signatures from other
users (1,665 samples).

Distances between the 10 sig-
natures for each user (1,665
samples).

ref{l,2,3,510}

5 genuine, 15 skilled

GPDS-150S

150

Distances between the 11 sig-
natures for each user and 6
random signatures from other
users (132,000 samples).

Distances between the 12
signatures for each user
(132,000 samples).

re{1,2,3,5,10,12}

10 genuine, 10 skilled

GPDS-300S

300

Distances between the 11 sig-
natures for each user and 6
random signatures from other

Distances between the 12
signatures for each user
(132,000 samples).

re{1,2,3,5,10,12}

10 genuine, 10 skilled

users (132,000 samples).

dissimilarity vectors of between class. The number of vectors of within class and between
class is the same. Given this, the dataset used for training classifiers in the cross-validation
procedure is balanced.

With respect to the evaluation of writer-independent classifiers with the GPDS-150S and
GPDS-300S datasets, we respectively employed signatures of 150 and 300 users in the exploita-
tion set £ for testing models. In the case of the CEDAR and MCYT-75 datasets, signatures of
the remaining half of users (not used in training) in the cross-validation procedure were em-
ployed as exploitation set for testing models. For each user, we randomly selected r genuine
reference signatures. We employed these reference signatures to perform verification within
fusion functions. Besides that, for each user, we applied the remaining genuine signatures and
randomly selected skilled forgeries for verification. These questioned set of signatures were
verified and evaluation metrics (listed in Section were applied considering them. In the

experiments, the number r of reference signatures is varied for each dataset and is listed in

Table 111

3.4.3.3 Experimental Results and Discussion

Figures[13], [14] [I5] and [I6] respectively show the average performance obtained in terms of
equal error rate on GPDS-150S, GPDS-300S, CEDAR and MCYT-75 datasets.

As can be seen in the Figures [I3] and [14} the performance of the contrastive single-task
models is worse than contrastive multi-task models in the face of the GPDS-150S and GPDS-
300S datasets in most situations. Besides, in the case of CEDAR and MCTY-75 datasets
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SigNet (Synthetic) ~ —F— MT-SigNet (Triplet) —F— MT-SigNet (NT-Xent)

Figure 13 — Average performance of Writer-Dependent and Writer-Independent classifiers for the GPDS-150S
dataset, as the number of reference genuine signatures (per user) available for training is varied.

(Figures (15| and , the performance of single-task contrastive models is clearly worse than
that obtained through multi-task contrastive models. Thus, an improvement on verifying sig-
natures of these datasets is obtained when using multi-task contrastive models following the
proposed framework.

RQZ[) Does the proposed multi-task approach for learning feature representations
provide signature verification improvement in comparison to a contrastive single-task
approach? This obtained effect suggests that single-task contrastive models over-adjust to
specific characteristics of signatures belonging to the training dataset. Therefore, the proposed
multi-task framework generates models with a better generalization ability when compared to
applying contrastive methods directly in training following a single-task approach.

Furthermore, it is possible to observe in Figures[13] [I4) [I5)and[16]that there is no difference
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Figure 14 — Average performance of Writer-Dependent and Writer-Independent classifiers for the GPDS-300S
dataset, as the number of reference genuine signatures (per user) available for training is varied.

in signature verification performance behavior among models with respect to the number of
reference signatures (in writer-dependent or writer-independent verification). With contrastive
single-task and multi-task models or using SigNet, when the number of reference signatures
increases, the verification performance improves in all evaluated datasets.

Another important observation from the experiments is that the best writer-independent
performance of models is generally inferior to the writer-dependent performance. Writer-
independent classifiers are trained with a disjoint set of users different from those applied
for testing. Therefore, the writer-independent model must adapt to a broader range of users
even being a single model, leading to slightly higher error rates. Nevertheless, the writer-
independent classifier is more scalable because it can be applied to verify signatures from a

greater diversity of users without fine-tuning the model for each user.
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Figure 15 — Average performance of Writer-Dependent and Writer-Independent classifiers for the CEDAR
dataset, as the number of reference genuine signatures (per user) available for training is varied.

Besides, an interesting finding based on the analysis of the experimental results reported

in Figures [13] [14] [15] and [16] is that the SigNet (trained with GPDS960Gray by

'Sabourin e Oliveira| (2017a))) performed better than SigNet (Synthetic) (trained with GPDSsyn-

thetic) on real signature data. However, SigNet (Synthetic) is still competitive in the majority
of cases. It is explained by the fact that SigNet learned the intrinsic characteristics of genuine
signature images more than SigNet (Synthetic), where this knowledge is not perfectly embed-
ded in the synthetic signature images. On the other side, SigNet does not perform well on
synthetic signature data compared to the SigNet (Synthetic). This analysis demonstrated that
the distributions of the GPDS960Gray and GPDSsynthetic are different. However, learning
from synthetic signature images can help to cope with the unavailability of real signature data

for training.
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Figure 16 — Average performance of Writer-Dependent and Writer-Independent classifiers for the MCYT-75
dataset, as the number of reference genuine signatures (per user) available for training is varied.

We performed Friedman tests in order to statistically compare the proposed models. The
purpose of Friedman test is to rank the models in terms of obtained equal error rates in writer-
dependent and writer-independent approaches considering global thresholds and user-specific
thresholds. For the GPDS-150S, GPDS-300S, CEDAR and MCYT-75 datasets, we generated
different signature segmentations with different number of reference signatures (according to
the Tables and , totaling twenty-three evaluated subjects. For each one of these subjects,
different obtained feature representations (using the investigated models) are extracted in
such a way that equal error rate is a repeated measure over each subject when varying each
model. It is worth noting that we balanced the chosen datasets (when adopting two synthetic
signature datasets and two real signature datasets), aiming to diminish the biases that one

type of dataset would introduce in the performed statistical tests. All performed tests indicated
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The GPDS-150S dataset provides synthetic signatures of 150 users, the GPDS-300S dataset provides synthetic
signatures of 300 users, the MCYT-75 dataset provides real signatures of 75 users, and the CEDAR dataset
provides real signatures of 55 users. All the signatures obtained from the two real signature datasets (MCYT-75
and CEDAR) and the two synthetic signature datasets (GPDS-150S and GPDS-300S) are applied together
in the performed statistical tests. All models with ranks outside the marked interval are significantly different
(p < 0.05) from the SigNlet model.

Figure 17 — Comparison of the SigNet model against contrastive models with the Bonferroni-Dunn post hoc
test. The models were tested using signature data obtained from the GPDS-150S, GPDS-300S,
CEDAR and MCYT-75 datasets.

that all evaluated models are not equivalent (rejecting the null hypothesis) with 5% level of
significance. Then, Bonferroni-Dunn post hoc tests were performed to compare the contrastive
models against the Siglet as a baseline method. Critical difference diagrams (DEMsAR, 2006)
are shown in Figure [I7] In these diagrams, the SigNet model is compared against single-
task and multi-task contrastive models. All classifiers with ranks outside the marked interval
are significantly different (p < 0.05) from the SigNet model. Moreover, right-most placed
classifiers provide better performance in terms of the equal error rate.

RCE[) Do the proposed multi-task contrastive models provide significantly better

feature representations for handwritten signatures than SigNet? As can be observed
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in Figure [17] single-task contrastive models provided worse performance than Siglet. In con-
trast, the multi-task contrastive models that adopt our proposed framework are better ranked
in performance when compared to the SigNet model. Furthermore, when considering the
multi-task model optimized with the Triplet loss, the experiments demonstrated a statisti-
cally significant improvement in signature verification error rates with different datasets when
adopting the proposed multi-task contrastive framework. This result points towards a general
guideline strategy when training contrastive models for extracting handwritten signature fea-
tures. Adopting the proposed framework results in models that outperform the state-of-the-art
SigNet (HAFEMANN; SABOURIN; OLIVEIRA, [2017a)) model, improving the signature verification
task in writer-dependent and writer-independent approaches.

It is important to mention that SigNet tends to have a better performance specifically with
the MCYT-75 and CEDAR datasets. This occurs because SigNet is a pre-trained model with
data obtained from real users of the GPDS Signature 960 dataset, and the MCYT-75 and
CEDAR datasets also contain real signature samples. In contrast, the models proposed in this
work are trained with the GPDSsynthetic dataset, which includes synthetic signatures. Even
with this, we identified situations in our experiments where the proposed multi-task models
performed better than SigNet when tested with MCYT-75 and CEDAR datasets.

For comparison purposes, we also trained a model optimized with the cross-entropy (adopt-
ing the same architecture defined by|Hafemann, Sabourin e Oliveira| (2017a))) but using samples
from the GPDSsynthetic dataset (labeled as SigNet (Synthetic) in Figure [17). It is observed
that the SigNet (Synthetic) does not present a significant difference to the SigNet model
(HAFEMANN; SABOURIN; OLIVEIRA, 2017a)). In contrast, the MT-SigNet (Triplet) model, in
addition to being the best-ranked model, presented a statistical difference in performance
compared to the SigNet (HAFEMANN; SABOURIN; OLIVEIRA, [2017a). This result is due to
the fact that the MT-SigNet (Triplet) model is only a little worse than SigNet (HAFEMANN;
SABOURIN; OLIVEIRA, 2017a)) in the MCYT-75 and CEDAR datasets with real signatures, thus
providing a better overall ranking of the MT-SigNet (Triplet) model when considering all the
evaluated synthetic and real datasets. As a result, our contrastive multi-task models that adopt
the proposed framework perform better than using cross-entropy loss, which experimentally
indicates a signature verification improvement provided by the proposed framework.

RQ4) Does NT-Xent loss (with implicit hard negative mining) provide better
feature representations than Triplet loss (with explicit hard negative mining) for

handwritten signature verification? As also can be observed in Figure , in the writer-
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dependent as well as writer-independent verification approaches (with global or user-specific
thresholds), the Triplet loss multi-task optimized model presented statistically better perfor-
mance than SigNet. However, the NT-Xent loss multi-task optimized model presented statisti-
cally better performance than SigNet only in writer-dependent approach with user thresholds,
even though being better ranked than SigNet in all approaches. The better performance of
the Triplet loss in verification is partially explained by the fact that the separation between
skilled forgery and genuine signature representations seems to be stronger when adopting the
explicit mechanism for mining hard negatives with the Triplet loss within the proposed frame-
work. Note that the contrastive single-task model optimized with the Triplet loss is also the
worst-ranked model, which suggests that the representation adjustments with the Triplet loss

are more significant when compared to the NT-Xent loss.

3.4.3.4 Comparison with the State-of-the-art

In this section, the best-obtained results with the proposed multi-task framework are
compared with the related state-of-the-art works in which deep learning, contrastive learn-
ing and hand-engineered methods are applied for offline handwritten signature verification.
Among these works, we highlight [Hafemann, Sabourin e Oliveira| (2017a)), [Hafemann, Oliveira
e Sabourin| (2018)), |Souza, Oliveira e Sabourin| (2018)), |Souza et al.| (2020), which are pre-
vious works in which the SigNet model is trained and tested using data obtained from the
GPDS960Gray dataset. In addition to these works, we highlight |Zheng et al. (2021), a very
recent work in which deep learning models are trained and tested using data obtained from
the GPDSsynthetic dataset. It is important to note that we compare the performance of the
methods with regard to different datasets with real and synthetic user data (respectively, the
GPDS960Gray and the GPDSsynthetic) but keeping the same number of users. Therefore, the
comparison presented in this section intends to place an overview of the performance of the
existing methods in relation to the proposed framework.

Experimental results with the GPDS-150S and GPDS-300S datasets are respectively listed
in Tables[12] and [I3] The proposed framework for obtaining feature representations clearly out-
performs very recent deep learning based methods for writer-dependent verification (ZHENG
et al, 2021; [YILMAZ; OZTURK, 2020), in which the models are tested using samples taken
from the GPDSsynthetic dataset. The proposed framework also outperforms the contrastive

method described in |Soleimani, Araabi e Fouladi (2016) and hand-engineering methods pre-
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Table 12 — Comparison with the state-of-the-art in GPDS-150S dataset (errors in %).

The Exploitation £ source column indicates the type of the dataset in which the tested signature examples
were obtained: from the GPDS960Gray (GPDS-150) in case of real signature data or from the GPDSsynthetic

in case of synthetic signature data.

Exploitation £

Reference #Samples Features Type EER
source
Hu e Chen|(2013) GPDS960Gray 10 LBP, HOG and GLCM WD  7.66
Soleimani, Araabi e Fouladi|(2016) GPDSsynthetic 10 LBP + DMML WD 12.67
Zheng et al.|(2021) GPDSsynthetic 5 Micro deformations WD  6.87 (+ 0.35)
Zheng et al.|(2021) GPDSsynthetic 10 Micro deformations WD  5.45 (+ 0.42)
Zheng et al.|(2021) GPDSsynthetic 12 Micro deformations WD  4.82 (£ 0.38)
“|Hafemann, Sabourin e Oliveira|(2017a) (our test) GPDSsynthetic 5 SigNet WD  29.10 (+ 1.19)
Hafemann, Sabourin e Oliveira|(2017a) (our test) GPDSsynthetic 10 SigNet WD 23.39 (£ 0.85)
Hafemann, Sabourin e Oliveira|(2017a) (our test) GPDSsynthetic 12 SigNet WD  21.68 (+ 0.74)
Present Work GPDSsynthetic 5 SigNet (Synthetic) WD  4.14 (£ 0.43)
Present Work GPDSsynthetic 10 SigNet (Synthetic) WD  3.26 (£ 0.42)
Present Work GPDSsynthetic 12 SigNet (Synthetic) WD  3.15 (£ 0.15)
Present Work GPDSsynthetic 5 MT-SigNet (Triplet) WD  3.84 (£ 0.23)
Present Work GPDSsynthetic 10 MT-SigNet (Triplet) WD  3.28 (+ 0.40)
Present Work GPDSsynthetic 12 MT-SigNet (Triplet) WD 296 (+ 0.37)
Present Work GPDSsynthetic 5 MT-SigNet (NT-Xent) WD  3.92 (4 0.36)
Present Work GPDSsynthetic 10 MT-SigNet (NT-Xent) WD  3.41 (£ 0.42)
Present Work GPDSsynthetic 12 MT-SigNet (NT-Xent) WD  3.11 (£ 0.29)
Souza, Oliveira e Sabourin|(2018) (our test) GPDSsynthetic 5 SigNet Wl 18.26 (+ 0.96)
Souza, Oliveira e Sabourin|(2018) (our test) GPDSsynthetic 10 SigNet Wl 17.62 (+ 0.49)
Souza, Oliveira e Sabourin|(2018) (our test) GPDSsynthetic 12 SigNet Wl 17.63 (£ 0.47)
Present Work GPDSsynthetic 5 SigNet (Synthetic) Wl 5.70 (£ 0.21)
Present Work GPDSsynthetic 10 SigNet (Synthetic) Wl 4.64 (£ 0.46)
Present Work GPDSsynthetic 12 SigNet (Synthetic) WI 453 (+ 0.47)
Present Work GPDSsynthetic 5 MT-SigNet (Triplet) WI  5.68 (+ 0.68)
Present Work GPDSsynthetic 10 MT-SigNet (Triplet) WI 476 (£ 0.53)
Present Work GPDSsynthetic 12 MT-SigNet (Triplet) WI 448 (+ 0.45)
Present Work GPDSsynthetic 5 MT-SigNet (NT-Xent) WI  5.80 (£ 0.55)
Present Work GPDSsynthetic 10 MT-SigNet (NT-Xent) WI  4.93 (£ 0.36)
Present Work GPDSsynthetic 12 MT-SigNet (NT-Xent) WI  4.78 (£ 0.41)

sented in|Zois, Alewijnse e Economou| (2016)), |Serdouk, Nemmour e Chibani (2017)), Hu e Chen
(2013)), Bhunia, Alaei e Roy| (2019)), Diaz et al.| (2017)), Hamadene e Chibani| (2016). When

the proposed framework is compared with models trained with the GPDS960Gray dataset,

our new models performed at a comparable level to those reported in |Hafemann, Sabourin e

Oliveira| (2017a) for writer-dependent verification. However, specifically in the case of writer-

independent verification, our proposed models trained with the GPDSsynthetic dataset per-

formed a little worse when compared with the experimental results reported by |Souza, Oliveira

e Sabourin| (2018)). The difference among distributions of the GPDSsynthetic users seems to

be greater than among GPDS960Gray users, as the GPDSsynthetic dataset is much larger

than the GPDS960Gray, making it more challenging to adapt writer-independent classifiers to

a different set of users. Besides, methods based on the SigNet-F model (MARUYAMA et al|
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Table 13 — Comparison with the state-of-the-art in GPDS-300S dataset (errors in %).

The Exploitation £ source column indicates the type of the dataset in which the tested signature examples
were obtained: from the GPDS960Gray (GPDS-300) in case of real signature data or from the GPDSsynthetic

in case of synthetic signature data.

Exploitation £

Reference #Samples Features Type EER
source

“ISoleimani, Araabi e Fouladi[(2016) GPDS960Gray 10 LBP + DMML WD 20.94
Zois, Alewijnse e Economou|(2016) GPDS960Gray 12 Poset-oriented grid WD 324
Hamadene e Chibani|(2016) GPDS960Gray 5 Contourlet Transform ~ WiI 18.42
Serdouk, Nemmour e Chibani|(2017) GPDS960Gray 10 HOT WD 9.30
Diaz et al.|(2017) GPDS960Gray 8 Duplicator WD 1458
Hafemann, Sabourin e Oliveira|(2017a) GPDS960Gray 12 SigNet-F WD  1.69 (+ 0.18)
Hafemann, Sabourin e Oliveira|(2017a) GPDS960Gray 5 SigNet WD  3.92 (£ 0.18)
Hafemann, Sabourin e Oliveira|(2017a) GPDS960Gray 12 SigNet WD 3.15 (£ 0.18)
Hafemann, Oliveira e Sabourin|(2018) GPDS960Gray 12 SigNet-SPP WD  3.15 (£ 0.14)
Hafemann, Oliveira e Sabourin|(2018) GPDS960Gray 12 SigNet-SPP-F WD  0.41 (+ 0.05)
Souza, Oliveira e Sabourin|(2018) GPDS960Gray 5 SigNet WI 440 (£ 0.34)
Souza, Oliveira e Sabourin|(2018) GPDS960Gray 12 SigNet Wl 3.34 (£ 0.22)
Bhunia, Alaei e Roy|(2019) GPDS960Gray 12 Hybrid texture WD 8.03
Zois et al.|(2019) GPDS960Gray 12 SR-K-SVD/OMP WD 0.70
Zois, Alexandridis e Economou|(2019) GPDS960Gray 5 Poset-oriented grid Wi 3.06
Maruyama et al.|(2021) GPDS960Gray 3+ (3 x 22) SigNet-F + Duplicator WD  0.20
Tsourounis et al.|(2022) GPDS960Gray 5 CNN-ColLL WD 2091
Tsourounis et al.|(2022) GPDS960Gray 12 CNN-CoLL WD  2.12 (£ 0.76)
Yilmaz e Oztiirk|(2020) GPDSsynthetic 5 RBP network WD  31.16 (+ 0.31)
Yilmaz e Oztiirk|(2020) GPDSsynthetic 12 RBP network WD 2422 (+£0.21)
Zheng et al.|(2021) GPDSsynthetic 5 Micro deformations WD 7.11 (£ 0.41)
Zheng et al.|(2021) GPDSsynthetic 10 Micro deformations WD  5.38 (+ 0.36)
Zheng et al.|(2021) GPDSsynthetic 12 Micro deformations WD  4.52 (£ 0.42)

“|Hafemann, Sabourin e OIiveiraI2017ai (our test) GPDSsynthetic 5 SigNet WD  28.82 (+ 0.60)
Hafemann, Sabourin e Oliveira|(2017a) (our test) GPDSsynthetic 10 SigNet WD 2256 (4 0.53)
Hafemann, Sabourin e Oliveira|(2017a) (our test) GPDSsynthetic 12 SigNet WD  20.88 (& 0.96)
Present Work GPDSsynthetic 5 SigNet (Synthetic) WD  4.24 (+ 0.43)
Present Work GPDSsynthetic 10 SigNet (Synthetic) WD  3.58 (£ 0.25)
Present Work GPDSsynthetic 12 SigNet (Synthetic) WD  3.53 (£ 0.23)
Present Work GPDSsynthetic 5 MT-SigNet (Triplet) WD  4.02 (£ 0.38)
Present Work GPDSsynthetic 10 MT-SigNet (Triplet) WD 3.24 (£ 0.21)
Present Work GPDSsynthetic 12 MT-SigNet (Triplet) WD  3.33 (+0.23)
Present Work GPDSsynthetic 5 MT-SigNet (NT-Xent) WD  4.19 (+ 0.33)
Present Work GPDSsynthetic 10 MT-SigNet (NT-Xent) WD  3.22 (£ 0.23)
Present Work GPDSsynthetic 12 MT-SigNet (NT-Xent) WD  3.15 (£ 0.21)
Souza, Oliveira e Sabourin|(2018) (our test) GPDSsynthetic 5 SigNet Wl 18.81 (& 0.54)
Souza, Oliveira e Sabourin{(2018) (our test) GPDSsynthetic 10 SigNet Wl 17.79 (£ 0.47)
Souza, Oliveira e Sabourin|(2018) (our test) GPDSsynthetic 12 SigNet Wl 17.59 (+ 0.47)
Present Work GPDSsynthetic 5 SigNet (Synthetic) Wl 5.67 (+ 0.24)
Present Work GPDSsynthetic 10 SigNet (Synthetic) Wl 4.69 (£ 0.34)
Present Work GPDSsynthetic 12 SigNet (Synthetic) Wl 4.44 (+ 0.16)
Present Work GPDSsynthetic 5 MT-SigNet (Triplet) ~ WI  5.48 (+ 0.29)
Present Work GPDSsynthetic 10 MT-SigNet (Triplet) ~ WI  4.69 (+ 0.43)
Present Work GPDSsynthetic 12 MT-SigNet (Triplet) WI 451 (+£0.32)
Present Work GPDSsynthetic 5 MT-SigNet (NT-Xent) WI 5.47 (£ 0.39)
Present Work GPDSsynthetic 10 MT-SigNet (NT-Xent) WI  4.70 (+ 0.21)
Present Work GPDSsynthetic 12 MT-SigNet (NT-Xent) WI  4.52 (+ 0.26)
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Table 14 — Comparison with the state-of-the-art in CEDAR dataset (errors in %).

Reference #Samples Features Type EER
Serdouk, Nemmour e Chibani|(2016) 16 Gradient LBP + LRF WD 3.54
Hamadene e Chibani|(2016) 5 Contourlet Transform Wi 2.11
Hafemann, Sabourin e Oliveira|(2017a) 12 SigNet-F WD  4.63 (+ 0.42)
Hafemann, Sabourin e Oliveira|(2017a) 4 SigNet WD  5.87 (£ 0.73)
Hafemann, Sabourin e Oliveira|(2017a) 12 SigNet WD  4.76 (+ 0.36)
Hafemann, Oliveira e Sabourin|(2018) 10 SigNet-SPP WD  3.60 (& 1.26)
Hafemann, Oliveira e Sabourin|(2018) 10 SigNet-SPP (fine-tuned) WD  2.33 (4 0.88)
Lai e Jin| (2018} 5 CNN with SPP WD 437
Bhunia, Alaei e Roy|(2019) 10 Hybrid texture WD  6.66
Shariatmadari, Emadi e Akbari|(2019) 12 HOCCNN WD  4.94
Zois et al.|(2019) 10 SR-K-SVD/OMP WD  0.79
Zois, Alexandridis e Economou|(2019) 5 Poset-oriented grid WiI 2.90
Souza et al.|(2020) 12 SigNet Wi 5.86 (£ 0.50)
Ruiz et al.|(2020) 1 SCINN Wi 4.84
Wan e Zou|(2021) SigCNN W 8.12 (£ 0.98)
Wan e Zou|(2021) 12 SigCNN Wl 6.42 (£ 1.15)
Maruyama et al.|(2021) 34 (3x22) SigNet-F + Duplicator WD  0.82
Liu et al.|(2021) 10 MSDN WD 175
Liu et al.|(2021) 12 MSDN WD  1.66
Liu et al.|(2021) 1 MSDN Wi 6.74
Zheng et al.|(2021) Micro deformations WD  3.89 (£ 0.45)
Zheng et al.|(2021) 10 Micro deformations WD  2.95 (£ 0.38)
Zheng et al.|(2021) 12 Micro deformations WD  2.76 (£ 0.43)
Tsourounis et al.|(2022) 5 CNN-ColLL WD  2.03
Tsourounis et al.|(2022) 10 CNN-ColLL WD  1.66 (£ 0.74)
~ |Hafemann, Sabourin e Oliveira|(2017a) (our test) 5 SigNet WD  3.38 (£ 0.53)
Hafemann, Sabourin e Oliveira|(2017a) (our test) 10 SigNet WD  2.89 (+ 0.72)
Hafemann, Sabourin e Oliveira|(2017a) (our test) 12 SigNet WD 2,97 (£ 0.49)
Present Work 5 SigNet (Synthetic) WD  4.64 (£ 0.38)
Present Work 10 SigNet (Synthetic) WD  3.87 (£ 0.70)
Present Work 12 SigNet (Synthetic) WD  3.77 (£ 0.44)
Present Work 5 MT-SigNet (Triplet) WD  4.43 (£ 0.43)
Present Work 10 MT-SigNet (Triplet) WD  3.45 (+ 0.55)
Present Work 12 MT-SigNet (Triplet) WD  3.50 (+ 0.58)
Present Work 5 MT-SigNet (NT-Xent) WD  4.72 (£ 0.31)
Present Work 10 MT-SigNet (NT-Xent) WD  3.58 (£ 0.68)
Present Work 12 MT-SigNet (NT-Xent) WD  3.32 (£ 0.44)
Souza et al.|(2020) (our test) 5 SigNet Wi 5.46 (£ 1.48)
Souza et al.|(2020) (our test) 10 SigNet Wi 4.20 (+ 1.45)
Souza et al.|(2020) (our test) 12 SigNet Wi 3.63 (+ 1.13)
Present Work 5 SigNet (Synthetic) Wi 7.86 (£ 2.62)
Present Work 10 SigNet (Synthetic) Wi 6.20 (£ 1.96)
Present Work 12 SigNet (Synthetic) Wi 6.07 (£ 1.78)
Present Work 5 MT-SigNet (Triplet) Wi 5.91 (£ 2.05)
Present Work 10 MT-SigNet (Triplet) Wi 4.91 (£ 1.30)
Present Work 12 MT-SigNet (Triplet) Wi 4.59 (£ 1.15)
Present Work 5 MT-SigNet (NT-Xent) Wi 6.41 (£ 1.40)
Present Work 10 MT-SigNet (NT-Xent) Wi 5.57 (£ 0.92)
Present Work 12 MT-SigNet (NT-Xent) Wi 5.32 (£ 0.91)

2021; [HAFEMANN; OLIVEIRA; SABOURIN, 2018) have presented better results than the proposed

framework. This is expected because the SigNet-F model is trained using skilled forgeries from

the GPDS960Gray dataset.

Experimental results with the CEDAR dataset are listed in Table [14] With the CEDAR
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dataset, we obtained improvements for writer-dependent and writer-independent signature
verification in relation to the works (HAFEMANN; SABOURIN; OLIVEIRA, 2017a; HAFEMANN;
OLIVEIRA; SABOURIN, 2018; SOUZA et al., |2020) that adopt SigNet and SigNet-F models for
feature extraction. Besides, we noticed improvements in writer-dependent verification regarding

recent hand-engineering (BHUNIA; ALAEI; ROY, [2019; SERDOUK; NEMMOUR; CHIBANI, 2016)

Table 15 — Comparison with the state-of-the-art in MCYT-75 dataset (errors in %).

Reference #Samples Features Type EER
“[Soleimani, Araabi e Fouladi/(2016) 5 LBP + DMML WD  13.44
Soleimani, Araabi e Fouladi|(2016) 10 LBP + DMML WD 9.86
Serdouk, Nemmour e Chibani|(2017) 10 HOT WD  10.60
Diaz et al.|(2017) 8 Duplicator WD 9.12
Hafemann, Sabourin e Oliveira|(2017a) 10 SigNet-F WD  3.00 (+ 0.56)
Hafemann, Sabourin e Oliveira|(2017a) 5 SigNet WD  3.58 (£ 0.54)
Hafemann, Sabourin e Oliveira|(2017a) 10 SigNet WD  2.87 (£ 0.42)
Hafemann, Oliveira e Sabourin|(2018) 10 SigNet-SPP WD  3.64 (£ 1.04)
Hafemann, Oliveira e Sabourin|(2018) 10 SigNet-SPP (fine-tuned) WD  3.40 (£ 1.08)
Maergner et al.|(2018) 5 CNN-Triplet + GED Wi 10.67
Maergner et al.|(2018) 10 CNN-Triplet + GED Wi 10.13
Lai e Jin|(2018) 5 CNN with SPP WD 3.78
Masoudnia et al.|{(2019) 10 MLSE WD  5.85 (£ 0.71)
Shariatmadari, Emadi e Akbari|(2019) 10 HOCCNN WD 5.46
Bhunia, Alaei e Roy|(2019) 10 Hybrid texture WD 9.26
Zois et al.|(2019) 10 SR-K-SVD/OMP WD 1.37
Zois, Alexandridis e Economou|(2019) 5 Poset-oriented grid WiI 3.50
Ruiz et al.|(2020) 1 SCINN Wi 2.06
Wan e Zou|(2021) 5 SigCNN Wl 17.24 (£ 1.07)
Wan e Zou|(2021) 12 SigCNN Wl 15.04 (+ 0.93)
Souza et al.|(2020) 10 SigNet Wl 2.99 (£ 0.16)
Maruyama et al.|(2021) 3+ (3x22) SigNet-F + Duplicator WD 0.01
Tsourounis et al.|(2022) 5 CNN-ColL WD 261
Tsourounis et al.|(2022) 10 CNN-CoLL WD 1.62
"|Hafemann, Sabourin e Oliveira 7(2017a‘) (our test) 5 SigNet WD  3.79 (£ 0.52)
Hafemann, Sabourin e Oliveira|(2017a) (our test) 10 SigNet WD  3.23 (£ 0.65)
Present Work 5 SigNet (Synthetic) WD  4.28 (+ 0.99)
Present Work 10 SigNet (Synthetic) WD  3.24 (£ 0.60)
Present Work 5 MT-SigNet (Triplet) WD  4.07 (£ 0.46)
Present Work 10 MT-SigNet (Triplet) WD  2.71 (£ 0.53)
Present Work 5 MT-SigNet (NT-Xent) WD  4.01 (+ 0.77)
Present Work 10 MT-SigNet (NT-Xent) WD  3.22 (£ 0.65)
Souza et al.|(2020) (our test) 5 SigNet WI  5.08 (£ 2.08)
Souza et al.|(2020) (our test) 10 SigNet WI  3.86 (£ 1.83)
Present Work 5 SigNet (Synthetic) Wl 6.50 (£ 1.13)
Present Work 10 SigNet (Synthetic) Wl 4.99 (£ 0.82)
Present Work 5 MT-SigNet (Triplet) WI 497 (£ 1.31)
Present Work 10 MT-SigNet (Triplet) Wl 4.07 (£ 1.21)
Present Work 5 MT-SigNet (NT-Xent) WI  4.74 (+ 1.52)
Present Work 10 MT-SigNet (NT-Xent) ~ WI  3.95 (£ 0.77)
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and deep-learning (SHARIATMADARI; EMADI; AKBARI, 2019) methods. Concerning the related
contrastive methods, experimental results with the CEDAR dataset outperform those presented
in Ruiz et al.| (2020)), |Liu et al| (2021)), Wan e Zou| (2021)) following a writer-independent
approach. However, Liu et al.|(2021)) has presented better results than ours in writer-dependent
verification. It is important to note that models in |Liu et al.| (2021)) were trained using skilled
forgeries obtained from the own CEDAR dataset. In contrast, skilled forgeries are not used in
training in the present work. Besides, |Zheng et al | (2021]) presented lower error rates than ours
for writer-dependent verification with the CEDAR dataset, but on the other hand, we reiterate
that our models performed better than those presented in [Zheng et al.| (2021)) in the face of
the GPDS-150S and GPDS-300S datasets.

Experimental results regarding the MCYT-75 dataset are listed in Table[15] Our experimen-
tal results presented lower error rates than those reported in |[Hafemann, Sabourin e Oliveira
(2017a), Hafemann, Oliveira e Sabourin| (2018) when adopting SigNet and SigNet-F models
for feature extraction in writer-dependent verification, even though obtained results do not out-
perform Souza et al.|(2020) for writer-independent verification. Our results with the MCYT-75
dataset also outperform recent hand-engineering (BHUNIA; ALAEI; ROY, 2019; SERDOUK; NEM-
MOUR; CHIBANI, |2017; [DIAZ et al., 2017) and deep learning (SHARIATM/—\DARI; EMADI; AKBARI,
2019; |SOLEIMANI; ARAABI; FOULADI, 2016) related methods for writer-dependent verification.
Moreover, our proposed contrastive framework even with a simpler training process outperforms
the method proposed in Masoudnia et al.| (2019)), in which three different losses (cross-entropy
loss, CauchySchwarz divergence, and hinge loss) are combined as an ensemble framework for
feature learning. When considering recent contrastive learning methods for writer-independent
verification, our experimental results considerably outperform those presented in [Maergner et
al.[ (2018), Wan e Zou| (2021) but do not outperform those presented in Ruiz et al.| (2020). In
Ruiz et al. (2020), tests are performed without considering skilled forgeries, which is an easier
verification problem. Therefore, our results cannot be directly compared to |Ruiz et al.| (2020).

It is important mentioning that the contrastive method proposed in|Tsourounis et al [ (2022)
has presented better results than ours in all evaluated datasets. However, in the experimen-
tal protocol defined by Tsourounis et al.| (2022), the hyper-parameters of writer-dependent
classifiers are specifically adjusted for each user through a cross-validation procedure. The
implementation of such cross-validation procedure is not publicly available, then we could not
reproduce it. It is unclear whether the good obtained performance is due to better feature

representations or an exhaustive search process for achieving better results. Under these con-
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ditions, the experimental results of this work with the GPDS-300S, CEDAR and MCYT-75
datasets can not be fairly compared to those presented in [Tsourounis et al.| (2022). In the
experimental protocol conducted in this work, hyper-parameters of support vector machines

are fixed to precisely evaluate the improvement on obtained feature representations.

3.5 CONCLUSION

One main contribution of this work is to propose a multi-task framework based on con-
trastive losses with hard negative mining for offline handwritten signature feature extraction
in writer-dependent and writer-independent verification systems. Models optimized with the
proposed framework were experimentally compared to the state-of-the-art model called SigNet
(HAFEMANN; SABOURIN; OLIVEIRA, 2017a), in a effort to assess whether better suitable fea-
ture representations are obtained when following the proposed method. In [Tsourounis et al.
(2022)), it is showed that the performance of the SigNet is obtainable with less training sig-
nature examples by appropriately pre-training the models with external textual based data.
With a similar purpose, in this work, we identified that an external data source of synthetic
signatures can reasonably be used for real signature verification in the lack of real signature
data for training deep learning models. However, we found that the intrinsic characteristics of
real genuine signatures are not perfectly embedded in the synthetic signature images.

Moreover, experiments indicated that:

i) Adopting larger margin (in the Triplet loss) and temperature (in the NT-Xent loss)
hyper-parameters worsens the verification of genuine signatures and skilled forgeries as these
representations overlap in the space. Higher hyper-parameter values move skilled forgeries
representations from the genuine ones but introduce a side effect that increases the distance
between genuine signature representations. Therefore, adopting smaller hyper-parameters bal-
ances these two factors, providing lower equal error rates.

ii) Single-task contrastive models have lost the ability to generalize to other datasets with
a disjoint set of users. In transfer learning scenarios, adopting the proposed framework is
required to provide a better generalization performance to other datasets. We demonstrated
that contrastive losses do not replace the cross-entropy loss for the offline signature verification
problem, but in fact, contrastive losses should be used in conjunction with the cross-entropy
loss following the proposed framework.

iii) Finally, concerning the generalization performance of contrastive models, the multi-
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task contrastive model optimized with the Triplet loss provided better feature representations
for writer-dependent and writer-independent verification. This result indicates that the ex-
plicit mining of hard negatives performed by the Triplet loss provides a more powerful model

correction than the implicit mining mechanism of the NT-Xent loss.
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4 EXPANDING GENERALIZATION OF HANDWRITTEN SIGNATURE FEA-
TURE REPRESENTATION THROUGH DATA KNOWLEDGE DISTILLATION

4.1 MOTIVATION

The GPDS-960 dataset (VARGAS et al., 2007)) used to be the largest publicly available West-
ern script dataset of offline handwritten signatures for training deep learning models. For illus-
tration, whereas GPDS-960 provides signatures of 881 users, other public datasets containing
real signatures, such as CEDAR (KALERA; SRIHARI; XU, 2004) and MCYT-75 (ORTEGA-GARCIA
et al, 2003), have 55 and 75 users. Nevertheless, the GPDS-960 dataset is no longer publicly
available due to data protection regulatory issues stated by The General Data Protection Regu-
lation (EU) 2016,/679. Since 2016, the former researchers who possess the dataset have contin-
ued performing experiments with the GPDS-960 for research purposes (HAFEMANN; SABOURIN;
OLIVEIRA), [2017af [YILMAZ; OZTURK]|, 2020 |ARAB; NEMMOUR; CHIBANI, 2020; MARUYAMA et al.,
2021; BOUAMRA et al., 2022} |ARAB; NEMMOUR; CHIBANI, 2023). On the other hand, new in-
vestigators starting research in the offline signature verification field have suffered from the
absence of a public large-scale Western script signature dataset with real signatures for train-
ing models. Therefore, as a replacement for the GPDS-960, new researchers have resorted
(ZHENG et al, [2021; VIANA et al., [2023; IYAPICi; TEKEREK; TOPALOGLU|, 2021; MAERGNER et al.,
2019) to adopt the GPDSsynthetic (FERRER et al., [2017)) dataset, which has a large-scale set
of synthetically generated user signatures, to perform the training of deep learning models.

However, we have found a difference in verification performance (VIANA et al., 2023; |YILMAZ;
OZTURK, [2020) between models trained using real signature data from the GPDS-960 dataset
(VARGAS et al., [2007)) and synthetic signature data from the GPDSsynthetic dataset (FERRER
et al, [2017). For instance, the SigNet (HAFEMANN; SABOURIN; OLIVEIRA, |2017a) is a cross-
entropy based model trained with GPDS-960 signature data whereas the SigNet (Synthetic)
(VIANA et al., 2023) is a cross-entropy based model trained using GPDSsynthetic signature
data. As a result of the performance evaluation of these models, we have observed that: i) A
remarkably unsatisfactory performance for the verification of synthetic skilled forgeries and
synthetic random forgeries is obtained using SigNet (this scenario is visually represented in
Figure . This occurs because the SigNet model provides incorrect cluster separation when
applied to synthetic signature data and thus has substantial difficulty in separating synthetic

skilled forgeries from poorly formed genuine signature clusters. ii) In the opposite situation
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Figure 18 — Our motivation.

(illustrated in Figure|18b)), the SigNet (Synthetic) model has difficulty in the verification of real

skilled forgeries. However, the SigNet (Synthetic) model maintains suitable cluster separation in

real and synthetic datasets, supporting the ability to verify real and synthetic random forgeries

as the synthetic dataset provides more diversity with a large number of different users. This

way, models trained with real signature data provide insufficient performance when tested in the

face of a more diverse set of synthetic signatures, and models trained with synthetic signature

data are not entirely sufficient for verifying real genuine signatures and skilled forgeries.

To deal with this problem, in our proposed method (illustrated in Figure we resort to

a pre-trained SigNet model as a foundation to provide knowledge about the characteristics of

real signature data in the training of new models. In this sense, we complement the SigNet

predefined real data feature space using synthetic data while minimizing the divergence in

distribution between the representations provided by these two different types of data sources.

This is achieved through class-incremental continual learning based on knowledge distillation.
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In this work, we demonstrate that knowledge distillation through SigNet enhances skilled
forgery detection capability, which is provided by an inherent ability of the model to separate
genuine representations from skilled forgery representations in a region of uncertainty within
the representation space. This separation capability is helpful in the verification of various
types of signature data sources. Besides, continual learning based on synthetic data enables
the model to be more robust in the verification of signatures on other domains, for instance,
signatures of non-Western scripts.

More than that, we empirically demonstrate a trade-off in verification performance between
the GPDS-960 and GPDSsynthetic datasets in such a way that a training configuration that
balances verification between the two data sources is encountered. We show that this diver-
gence occurs due to side effects introduced by excessively shifting the model distribution for
any of these data sources. Thus, aiming to alleviate such side effects, we extend the multi-task
framework proposed in Chapter [3| to this new scenario and propose fine-tuning the combined
representation space based on a contrastive objective. This objective minimizes intra-class
distances between representations to reduce the variability of distances among different users,
providing a more uniform verification decision boundary across them.

Finally, it is important to mention that an auxiliary dataset with examples having a sim-
ilar distribution as the GPDS-960 data is required to be propagated during training in order
to provide knowledge distillation from the SigNet model. To this end, we generate inverted
examples that have the same distribution as the real GPDS-960 examples. We demonstrate
that the examples inverted from the distribution pre-coded in the SigNet model can replace
the GPDS-960 dataset to provide knowledge about real signatures in situations where this
dataset is unavailable. As the examples are inverted using a data-free technique, these do
not explicitly show the original signature shapes of the GPDS-960 examples, making it possi-
ble to maintain a protection level when publicly sharing the inverted dataset to the research
community. As the research community can benefit from this data in the training of other
deep backbones and representation learning schemes, in this work, we preliminarily evaluate
our distillation mechanism in the training of other recent state-of-the-art deep backbones for

signature verification.
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4.2 COMBINED HANDWRITTEN SIGNATURE REPRESENTATION WITH CONTINUAL
LEARNING OF SYNTHETIC DATA BASED ON KNOWLEDGE DISTILLATION SUP-
PORTED BY INVERTED SIGNATURE DATA

In the proposed method, we take advantage of the greater availability of synthetic signature
data for model training whereas minimizing the distribution divergence of such data to real
signature data during the training process. To this end, we employ examples inverted from
SigNet (a pre-trained model with GPDS-960 dataset) that follow a real distribution, along
with synthetic examples obtained from a pre-existing synthetic dataset (the GPDSsynthetic

dataset). Initially, given that the SigNet model is pre-trained on a set of real classes R, the

Inverted Real Data

Inverted
[ SigNet

~N(0,1) (fixed)

Noise

Deeplnversion
examples

First Task v Second Task ]
(x4, 27, 2™)
GPDS-960 Data-free Knowledge Distillation GPDS-960 Data-free Knowledge Distillation
v
£r——— > . - X > : !
X SigNet |, | Divergence X SigNet |, | Divergence
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GPDSsynthetic Continual Learning
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Figure 19 — Overview of the proposed method. The Inverted SigNet module inverts a set of examples & ~
N(0,1) that follow a real distribution using Deep Inversion. Besides, synthetic examples = are
obtained from a pre-existing synthetic dataset (the GPDSsynthetic dataset). The Siglet is a
pre-trained model on a real dataset (the GPDS-960 dataset). Given this, in the First Task, a new
student model St is trained using synthetic data & while minimizing the divergence in distribution
with the inverted data &. After that, in the Second Task, the combined representation space
provided by the student model St is adjusted according to a contrastive objective using synthetic
triplets (x®, 2P, 2™) and inverted triplets (2%, 2P, 2™). The SigNet teacher has 531 probability
outputs, whereas the student St has 8.481 probability outputs, since the latter is optimized using
both inverted data of 531 users and synthetic data of 7950 users.
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specific goal of the first task of the proposed method is to generate a new student model
St trained on a set of synthetic classes S, such that it produces predictions in a combined
space R U S that allows extracting features in a representation space that complements global
characteristics of real and synthetic signatures. In this context, we denote z € R as an inverted
example. Besides, examples directly obtained from the synthetic dataset are represented as
x € 8. After that, in a second task, the representation space provided by the student model
St is adjusted according to a contrastive objective: we contrast synthetic triplet examples
(x®, aP x™) with each other and inverted triplet examples (2%, 27, 2") with each other. The

proposed method is summarized in the framework illustrated in Figure [19]

4.2.1 Data-free Deep Inversion of Real Signature Data

The objective of the Inverted SigNet module (illustrated in Figure is to synthesize a
set of examples inverted from noise & ~ A/(0, 1) that maintain classification accuracy in the
pre-trained SigNet model. To achieve this, we apply the Deep Inversion technique proposed in
Yin et al.|(2020) to our investigated problem. This way, the pre-trained SigNet model provides
statistics that are used to generate new examples that have the same distribution as the real
examples 2’ € R originally used to train the SigNet model. These generated examples can
be subsequently applied to provide data-free knowledge distillation since they are generated
without the need for direct access to the original data but only to a pre-trained model that

encodes the original data distribution. An overview of the inversion method is illustrated in

Figure [20]

~ Inverted Real Data

4

. f SigNet Classification
'L (fixed) L loss

; e
~’}\lfczl(§f) Deeplnversion
f SigNet (Synthetic) Divergence examples
(fixed) loss
Inverted SigNet )

Figure 20 — Overview of the inversion method.
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4.2.1.1 SigNet Deep Inversion

In this sense, the inverted real examples & € R are optimized according to the Lp; loss

function (YIN et al., 2020)) defined as:

min Lp;(2) = minoLsigner(?,y) + awRrv(E) + a,Re(2) + arRicawe (2) (4.1)

where Lsignet(+) is the cross-entropy classification loss obtained with the SigNet, and Ry (),
Ry, (+) are regularization terms that respectively penalize the total variance and ¢, norm of &
with scaling factors ay, iy, ay,. Besides, Reeature (£) is the feature distribution regularization

term scaled with oy and defined by:

Riawre (2) = 2@ —E(u(@) | R), + Y[o?(@) - E (07 | R)|, (42)

where (%) and o?(%) are the batch-wise mean and variance estimates of feature maps
corresponding to the [ convolutional layer of the SigNet model, and E (14(2') | R) and
E (07(2') | R) are the running average statistics stored in the SigNet batch normalization lay-
ers. The feature distribution regularization term Rfeature (%) effectively enforces feature simi-
larities at all convolutional levels when minimizing the distance between feature map statistics

for 2 and 2’ (YIN et al., 2020).

4.2.1.2 Introducing Competition on SigNet Deep Inversion

Inspired by the adaptive inversion loss proposed in |Yin et al.| (2020), we propose a new
adapted objective function that introduces competition between models trained with real and
synthetic signature data when synthesizing inverted examples. We evaluate the effect in the
generation of inverted examples by competing the SigNet model (HAFEMANN; SABOURIN;
OLIVEIRA, 2017a)) (trained on GPDS-960 data) with other model trained on synthetic data
from the GPDSsynthetic dataset: the SigNlet (Synthetic) model (VIANA et al., 2023).

In this scenario, the inverted examples & € ‘R are optimized according to the deep inversion
loss Lp; defined in Equation with an additional loss term Rcompete (Z) that encourages

the inverted synthesized examples to cause disagreement between two model distributions in
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order to enhance the diversity of generated examples. The inverted real Z € R examples are

optimized as:

mjn »CDI(C%) + acRcompeteC%) = (43)
Inmjn ACDI(-%) + Oéc(l —JS (pSigNet(fE)apSigNet—Synthetic('ﬁ))) (44)

where JS is the measure of Jensen-Shannon divergence (FUGLEDE; TOPSOE, 2004) between

the SigNlet and SigNet (Synthetic) models:

JS (psighet (), PsigNet-Synthetic (£)) = ; (KL (psignet (#), M) + KL (psighet-synthetic(2), M)
(4.5)
such that,
M = ; - (Psiget(2) + PsigNet-synthetic (%)) (46)

is the average of the real and synthetic distributions. We aim to promote the generation of
inverted examples that produce greater divergence in relation to the average of the probability
distributions provided by the SigNet and SigNet (Synthetic). To this end, we employ Jensen-
Shannon divergence, which is a symmetric divergence measure (DOMENICO et al., [2015)).

In Equation [4.3] the hyper-parameter a.. scales the influence of the competition between
these models in the inversion process. Our goal is to ideally synthesize new inverted examples
from a real distribution that cannot be correctly captured by the synthetic data distribution
provided by the SigNet (Synthetic). Therefore, the purpose of Equation is to induce the

generated examples to cause disagreement between the SigNet and SigNet (Synthetic) outputs.

4.2.2 First Task: Combining Real and Synthetic Signature Representations through

Continual Learning

Initially, in the proposed method (illustrated in Figure , we complement a predefined
feature space based on real data using synthetic data while minimizing the divergence in dis-
tribution between the representations provided by these two different types of data sources by
means of knowledge distillation. With a class-incremental continual learning configuration (YIN
et al,, 2020), a student model St is trained to learn new synthetic classes while simultaneously

distilling knowledge from the SigNet to generate an improved model that combines signature
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representations from the real and synthetic feature spaces, avoiding catastrophic forgetting
(LI; HOIEM, 2018). To achieve this, we optimize the student model St using inverted (Z € R)

and synthetic (z € S) data according to the following loss function:

IVI\I/jn Z l‘CContinual] = IVI\I/,IH Z lKLreal (pSigNet(*@)apSt(i')) + CE(?JapSt(x))

St . St .
ZER,xeS ZER,xeS

+ )\pKLsynthetic(pSigNet<x>7pSt(x))] = (47)

min )’ [pSIgNet(aA?) log (psg“”()m)) — ylogpsi(z)

Wst 2eR, xS pSt(i) (48)

+ApDsignet () log (pSigNet@)> ]

pSt(JJ)

We adapt a continual learning loss Lcontinua (Equation , which is expanded into Equa-
tion with a class incremental approach defined in Yin et al.| (2020) to our investigated
problem. Specifically, the loss is composed by a first distillation term (denoted as KL, ) that
applies the Kullback-Leibler divergence (HINTON; VINYALS; DEAN, 2015) aiming to measure
the difference in prediction score distributions between the SigNet and a new student model
being trained considering inverted examples. In this case, the teacher output psignet(Z) with
531 probabilities is incremented with zeros for comparison with the student output pg;(Z) with
8.481 probabilities. Secondly, we adopt an additional cross-entropy term (denoted as CE) to
distinguish between new incremental synthetic classes in & that are complementary to real
classes in R. Finally, we use a third distillation term (denoted as KLgynthetic) that measures
the Kullback-Leibler divergence between the predictions generated by the incremented stu-
dent with synthetic classes in relation to the original SigNet predictions. Thus, we compute
this latter divergence considering the SigNet outputs psignet(2) and the first 531 outputs of
the student model ps;(x). Note that the A, hyper-parameter enforces the intensity such that
the divergence between synthetic and real signature characteristics is minimized into the new
combined representation space.

It is worth noting that since synthetic data is used in training, the student classification
layer has considerably more outputs than the teacher. As expected in our experiments, the
student model occupies more memory (132.68 MB) compared to the SigNet teacher (67.52
MB). Furthermore, the optimization time for the continual learning loss (Equation is
higher (4 hours and 39 minutes) than the cross-entropy loss (Equation of the teacher (25
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minutes). Despite introducing additional computational overhead during the training phase
of the student model, its classification layer is not used in testing. During inference, input
signature data is propagated through the trained student up to the final dense fully connected
layer, which occupies only 63.17 MB of memory. Consequently, when extracting features from
a questioned signature, there is no difference in inference performance between the teacher

and student models, assuming both adopt the same backbone architecture.

4.2.3 Second Task: Contrastive Adjustment of the Combined Representation Space

We found that the process of minimizing the divergence between real and synthetic data
distributions in the first task increases the intra-class distances of the synthetic representations.
Given this problem, we resort to a contrastive objective to refine the combined representation
space of the first task. Contrastive losses applied in a pre-organized representation space
provide a refinement of the representation space by generating denser genuine clusters and
locally separating skilled forgery representations (VIANA et al., 2023). Following this, in the first
task a combined feature space that map real and synthetic signature examples is generated,
and after that, this space is locally adjusted in a second task (as illustrated in Figure . To
this end, we adopt a triplet-based contrastive loss.

However, we desire to not undo the complementary R U S representation space between
inverted real and synthetic data obtained in the first task. Thus, the adjustment is applied
separately for each data source type: contrasting synthetic examples (2, 2P, 2™) with each
other, as well as contrasting inverted real examples (2%, 27, ") with each other. Furthermore,
we desire to prevent model distribution shifts towards the synthetic or real data distributions.
Therefore, in the contrastive adjustment we simultaneously optimize Lcontinuar (Equation
with a fixed ), aiming to hold the combined representation space. Given this, in the second
task we adjust the representation space provided by the student model St according to the

following loss function:

%1321 [( Z o (*CATm'plet) + Z - ('CTriplet) =+ Z (['Continual)] (49)

£o,3P g" (z®,zP ™ ZER,xeS
where Loy = max(0,m + | f(2) — f(37)[3 — | £(2°) — f(E")[3),
and Lrviper = max (0, m + | f(2%) — f(2)[5 — | f(z?) — f(&™)]3).

adopting a defined margin m = 0.1 hyper-parameter using semi-hard triplets such that:
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[£(29) = F@MI5 < m + [ (@) = f@)[3 with [ f(29) = F(@)]3 < [f(29) = F(@)]3,
and [ f(z) = f(a")5 < m+ | f(x®) = (2[5 with [ f(2%) = f(a?) |5 < | f(x®) = f(2")]

for the optimization of the model (VIANA et al., 2023).

2
21

4.2.4 Distillation to Large Vision Architectures

We evaluate the distillation performance of the proposed method to other state-of-the-
art deep learning backbones. Specifically, we assess the signature verification performance of
feature representations obtained through models with large vision architectures. Firstly, the
student St is modified to a deep architecture with a large number of convolutional layers:
we adopt a 152-layer ResNet (HE et al, [2016) that through residual connections is expected
to obtain accuracy gains with a large number of layers. Furthermore, as shown in (HE et al,,
2016), the representations provided by ResNets have excellent generalization performance in
recognition tasks. Secondly, we evaluate the distillation performance for a student St founded
on a self-attention based architecture: the Vision Transformer (ViT) (DOSOVITSKIY et al.
2021)). This architecture is inspired by the Transformers (VASWANI et al., 2017)), which have
become the standard state-of-the-art architecture for large-scale natural language processing
tasks. In the case of vision transformers, a sequence of image patches provides a sequence of

embeddings used as input to a transformer encoder.

4.3 RESEARCH QUESTIONS

The main objective of this chapter is to investigate whether the combined representation
space generated from knowledge about synthetic and real signatures provides a more bal-
anced signature verification across different datasets. Yet, to our knowledge, a framework for
continual representation learning using synthetic handwritten signature data based on knowl-
edge distillation using inverted real handwritten signature data has not been investigated in
the context of handwritten signature verification problem. Given this, the following Research

Questions (RQs) are investigated in this chapter:

RQ5) How can we obtain a more suitable signature representation with models trained using
synthetic and inverted data in a situation where the access to the GPDS-960 dataset

is unavailable?
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RQ6) s it feasible to rely solely on synthetic data from the GPDSsynthetic dataset for training

models?

RQ7) Can the characteristics of real and synthetic datasets be complemented using continual

learning to offer a more balanced verification performance across diverse datasets?

RQ8) Is SigNet knowledge distillation helpful in training state-of-the-art large vision models

for handwritten signature feature representation learning?

4.4 EXPERIMENTS
4.4.1 Experimental Setup
4.4.1.1 Experimental Protocol for SigNet Deep Inversion

In order to determine the best hyper-parameter configuration for SigNet deep inversion, we
generated inverted validation sets with 50 handpicked fixed users, such that each user has 24
inverted genuine signatures. In the case of SigNet deep inversion (Equation , each validation
set is generated with an associated distribution regularization scaling factor hyper-parameter
ag around the values reported in Yin et al. (2020) with experiments concerning the ImageNet
dataset: we proceeded with a grid search and evaluated oy € {0.001,0.01,0.1,0.5,1.0} and
found that ay = 0.1 provided the best accuracy in the classification of the inverted examples
using SigNet, obtaining an average accuracy of 99.92%. Besides, we set a;, = 10~* and
g, = 1077 following |Yin et al|(2020)). In the case of SigNet deep inversion with competition
(Equation , we kept these best hyper-parameters initially found, and each validation set
is generated with an associated competition scaling factor hyper-parameter a. around the
values reported in |Yin et al.| (2020) with experiments regarding the ImageNet dataset: we
proceeded with a grid search and evaluated o, € {0.2,0.5,0.8,1.0} and found that a mid-term
competition coefficient ay = 0.5 provided the best accuracy in the classification of the inverted
examples using SigNet, obtaining an average accuracy of 99.58%.

Finally, given the definition of the best hyper-parameter configurations, we generated two
definitive inverted sets: D, (without competition) and ﬁr_compete (with competition) consid-
ering all the 531 users from the GPDS-960 dataset formerly employed in the SigNet training.

For each user, 24 genuine signatures were inverted. For all the inversion experiments described
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in this work, we used Adam for gradient optimization with learning rate given by 0.25 (YIN et
al., 2020). To obtain the final result, we performed 9000 gradient updates for each data batch.
The two final inverted datasets containing 12744 examples each provide a SigNet classifica-
tion accuracy given by 99.40% when using deep inversion and accuracy given by 99.17% when
using deep inversion with competition. Note that the competition scheme between SigNet
and SigNet (Synthetic) models slightly degraded the overall accuracy compared to the case in
which the examples were synthesized without competition. This result partially indicates that
the competition term promotes a greater variability of generated inverted examples that may
be out-of-distribution of the SigNet model, and thus expanding the inverted data distribution

coverage.

4.4.1.2 Experimental Protocol for Training Models

In our experimental setup, we combine the distribution of inverted real signature data with
the distribution of synthetic signature data using the proposed method. In order to obtain the
characteristics of real signatures through knowledge distillation, we evaluate three different
datasets: firstly, the GPDS-960 development dataset D, as an oracle that allows measuring
performance in the situation such that this dataset is available to support distillation. Secondly,
we replace the GPDS-960 development dataset to the examples obtained through SigNet deep
inversion with and without competition (ﬁr_compete and 15,) to evaluate the performance when
using these datasets as surrogates to support knowledge distillation. Thus, our intention is to
perform an ablation experiment to compare the performance of the examples inverted without
(Equation and with competition (Equation [4.3).

Therefore, the real data is obtained from a development dataset D, with segmentation
detailed in Table . Besides, in order to obtain the characteristics of synthetic data, the
GPDSsynthetic development set D, with segmentation detailed in Table[17]is used for training.
In both development sets, each user has 24 genuine signatures. With these training datasets,
we conducted model optimization adopting the evaluated architectures: ResNet-152, Vision
Transformer and the SigNet architecture as defined in Hafemann, Sabourin e Oliveira (2017a)).

The adopted Vision Transformer follows the architectural configuration proposed in |[Doso-
vitskiy et al.| (2021): we adopt patches of size 16 x 16 that are linearly embedded in represen-
tations of dimensionality D = 768 that feed a stacked architecture of L = 12 transformers

encoders having h = 12 attention heads and hidden layer dimensionality given by 3072. In the
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Table 16 — Segmentation for the GPDS-960 dataset following |Hafemann, Sabourin e Oliveira (2017al).

Subset Name Users User Range
Development set 15,, or ﬁr,compete or D, 531 351 - 881
Validation set V), 50 301 - 350
Exploitation set &g 300 1-300

Table 17 — Proposed segmentation for the GPDSsynthetic dataset.

Subset Name Users  User Range
Development set Dy, 7950 2001 - 9950
Validation set V,, 50 9951 - 10000
Exploitation set £1505 150 1-150

Exploitation set 3005 300 1-300

ResNet-152 and Vision Transformer architectures, we added a classification head that follows
the same original configuration of the architecture adopted by SigNet: we append two fully
connected layers of size 2048 to the end of the architectures. In this way, all models studied
in this work provide feature representations of size 2048 that can be used in the training of
classifiers for signature verification.

The studied losses are minimized with Stochastic Gradient Descent with Nesterov Mo-
mentum with momentum factor given by 0.9. We trained models with an initial learning rate
of 1073 which is divided by 10 every 20 epochs (following Hafemann, Sabourin e Oliveira
(2017a)). In the first task, the adopted batch size is 64, we use balanced data batches in
which 32 elements are obtained from the real dataset and the other 32 from the synthetic
dataset. As the second task is contrastive based, we allocated 2 signature samples per user
in each batch specifically in the second task. In this case, the adopted batch size is 256 with
128 synthetic examples and 128 real examples, thus, 128 different users are allocated per
batch. Specifically in the large vision architectures (ResNet-152 and Vision Transformer), due
to memory constraints in the second task, we use data batches of size 128, with 64 real
examples and 64 synthetic examples.

In training, we used 90% of the total genuine signatures (real and synthetic ones respec-
tively from the development sets D, and D;) to optimize the model, whereas we employed the
remaining 10% of the total genuine signatures for monitoring the early stopping of the training
process. We respectively call the real and synthetic genuine signature monitoring sets as M.
and M. Training is performed up to a maximum of 60 epochs in the case of the SigNet and

ResNet-152 architectures. Specifically in the case of the Vision Transformer architecture, we
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found better model convergence when the training process is conducted up to a maximum of
120 epochs.

In the first task, the final obtained model is the one that generates the best accuracy
performance on the classification of the monitoring sets M, and M, considering an average
between real and synthetic performance. As probability-based and contrastive distance-based
loss functions are simultaneously optimized in the second task, in this situation the final
obtained model is the one that provides the best performance considering an average of the
classification accuracy of the M,., M, signature examples by the model; and the accuracy that
considers whether the first nearest neighbors of the M,., M, signature examples correspond
to the respective users of the D,., D, development sets. Besides, it is important to note that
neither real nor synthetic skilled forgeries are used for training.

Given this, the trained models are evaluated in terms of the Equal Error Rate (HAFE-
MANN; SABOURIN; OLIVEIRA, 2017a)) using synthetic and real validation sets in writer-dependent
and writer-independent approaches. A disjoint set of real signatures V), (Table from
the GPDS-960 dataset in conjunction with a disjoint set of synthetic signatures V,s (Ta-
ble from the GPDSsynthetic dataset are employed for evaluating the performance of
trained models with different A, hyper-parameter (Equation configurations (we adopted
Ay = {0.0,0.1,...,1.9,2.0} in writer-dependent approach, and )\, = {0.0,0.1,...,1.0}) in
writer-independent approach) in order to obtain unbiased choices of best \, hyper-parameters.
In this validation scenario, the objective is to determine the optimal value of A, that main-
tains a balanced verifiability of real and synthetic signatures. In the first task, we discover the
best )\, value. In the second task, we keep the previously found hyper-parameter value fixed,
aiming to focus on the contrastive adjustment of the model. Furthermore, it is important to
mention that we search for the best )\, hyper-parameters using SigNet architecture, which
are later employed in the training of other evaluated architectures. This way, we can obtain
a comprehension of how the use of these hyper-parameters generalizes to different student
architectures.

Given the best choices for )\, hyper-parameters, we apply the combined feature space
learned with the real D, and synthetic D, development sets in the extraction of features
for disjoint exploitation sets (€505, 3005, E300) containing a large number of users and other
datasets in order to measure the generalization performance of the trained models in a transfer
learning scenario. Thus, we evaluated writer-dependent and writer-independent classifiers using

the synthetic dataset GPDSsynthetic (GPDS-150S and GPDS-300S); on the Western script
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real datasets GPDS-960 (GPDS-300), CEDAR (KALERA; SRIHARI; XU, 2004) and MCYT-75
(ORTEGA-GARCIA et al., [2003); and on the non-Western script real datasets BHSig-H (Hindi)
(PAL et al., [2016) and BHSig-B (Bengali) (PAL et al., 2016) datasets. The experimental protocol

for the training of the classifiers is described as follows.

4.4.1.3 Experimental Protocol for Writer-Dependent Verification

For writer-dependent verification of the validation sets V,, and V), we followed the pro-
tocol defined in [Hafemann, Sabourin e Oliveira (2017a)): we trained a support vector machine
classifier for each user of the validation set. To this end, 12 genuine reference signatures from
the verified user are used as positive examples, whereas 14 randomly obtained signatures from
each user of the respective development set are used as negative examples. We tested each
classifier using 10 remaining genuine signatures, 10 skilled forgeries and 10 random forgeries

(randomly obtained from other users).

Table 18 — Separation of the training and testing sets for the evaluation of each dataset in Writer-Dependent

approach.

Dataset Training set Testing set
Name Users | Genuine Random Forgeries
GPDS-150S 150 | r€{1,2,3,5,10,12} r x 149 10 genuine, 10 skilled
GPDS-300S 300 | re{l,2,3,5,10,12} r x 299 10 genuine, 10 skilled
GPDS-300 300 | re{1,2,3,5,10,12} r x 299 10 genuine, 10 skilled
CEDAR 55 | re{l,2,3,5,10,12} r X 54 10 genuine, 10 skilled
MCYT-75 75 | ref{l,2,3,5,10} rx 74 5 genuine, 15 skilled
BHSig-B 100 | re{l,2,3,5,10,12} r x 99 10 genuine, 10 skilled
BHSig-H 160 | r€{1,2,3,5,10,12} r x 159 10 genuine, 10 skilled

In order to measure the generalization performance in a writer-dependent approach on
other datasets, we followed a protocol based on those adopted in |[Hafemann, Sabourin e
Oliveira (2017a)), Viana et al.| (2023), Zheng et al.| (2021), Tsourounis et al.| (2022): we used
r genuine reference signatures of a given user from the dataset as positive examples, whereas
we obtained r genuine signatures from the other users (random forgeries) in the same dataset
as negative examples. The number r of signatures used in training for each dataset is listed
in Table [18] By utilizing this training set, we trained a support vector machine for each user
and measured the performance over the testing set: a disjoint sample of remaining genuine

signatures and skilled forgeries of each user are used for testing. We verified these signatures
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and the number of tested signatures is listed in Table [18]).

4.4.1.4 Experimental Protocol for Writer-Independent Verification

For writer-independent verification of the validation sets V,, and V,, we trained a support
vector machine classifier with a set of dissimilarity vectors obtained from the signatures of
all users in the development set, following the protocol defined by Souza, Oliveira e Sabourin
(2018)). Hence, for each user of the development set, we randomly selected 12 genuine signa-
tures, which are pairwise combined, obtaining vectors of within class. Besides that, for each
user of the development set, 11 genuine signatures are combined against 6 randomly selected
genuine signatures from other users (random forgeries) in the development set. These are the
dissimilarity vectors of between class. We tested the writer-independent classifier in face of
each user of the validation set (50 users). In this case, for each user of the validation set, we
used 12 genuine signatures as reference signatures within the max fusion function, and the
classifier is tested using 10 remaining genuine signatures, 10 skilled forgeries from the user and

10 random forgeries (randomly obtained from other users).

Table 19 — Separation into training and testing sets in Writer-Independent approach for each evaluated dataset.

Dataset Training set Testing set

Name #Users | Negative (between) class Positive (within) class Reference set Questioned set

Distances between the 5 sig- .
& Distances between the 6
natures for each user and 3

GPDS-150S 150 . signatures for each wuser | r€{1,2,3,5,10,12} 10 genuine, 10 skilled
random signatures from other
(119,250 samples).

users (119,250 samples).
Distances between the 5 sig- Distances between the 6
natures for each user and 3

GPDS-300S 300 . signatures for each user | r€{1,2,3,5,10,12} 10 genuine, 10 skilled
random signatures from other
(119,250 samples).

users (119,250 samples).
Distances between the 11sig- . 0 o perween the 12 sig-
natures for each user and 6

GPDS-300 300 . natures for each user (38,346 | r € {1,2,3,5,10,12} 10 genuine, 10 skilled
random signatures from other samples)

users (38,346 samples).

Distances between the 13 sig- . .
: W '&” Distances between the 14 sig-
natures for each user and 7

CEDAR 55 . natures for each user (2,457 | r € {1,2,3,5,10,12} 10 genuine, 10 skilled
random signatures from other samples)

users (2,457 samples).

Distances between the 9 sig- . .
Distances between the 10 sig-
natures for each user and 5

MCYT-75 75 . natures for each user (1,665 | r € {1,2,3,5,10} 5 genuine, 15 skilled
random signatures from other samples)

users (1,665 samples).

Distances between the 13 sig- . .
stan ween & Distances between the 14 sig-
natures for each user and 7

BHSig-B 100 . natures for each user (4,550 | r € {1,2,3,5,10,12} 10 genuine, 10 skilled
random signatures from other samples)

users (4,550 samples).

Distances between the 13 sig- . .
€ Distances between the 14 sig-
natures for each user and 7

. - . .
BHSig-H 160 random signatures from other Snj;uglteess)for each user (7,280 | r € {1,2,3,5,10,12} 10 genuine, 10 skilled

users (7,280 samples).
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In order to measure the generalization performance of models in a writer-independent ap-
proach on other datasets we followed the protocol proposed in |Souza, Oliveira e Sabourin
(2018)). In the case of GPDS-150S, GPDS-300S and GPDS-300 datasets, writer-independent
classifiers are trained with a set of dissimilarity vectors obtained from the signatures of the
respective development set. In the case of measuring the performance of models with the
CEDAR, MCYT-75, BHSig-B and BHSig-H datasets, we evaluated writer-independent clas-
sifiers through a cross-validation procedure. In this scenario, half of the users of the dataset
are used as development set, whereas the other half are used as exploitation set. In the ex-
periments, we performed a random split of the dataset in a 5 x 2—fold cross-validation. The
number of examples used for training and testing of writer-independent classifiers for each

dataset is summarized in Table [I9]

4.4.2 Sensitivity Analysis
4.4.2.1 Grid-search of Deeplnversion Hyper-parameters

We considered finding an as scaling factor that maintains the classification ability of the
inverted examples by the SigNet. In the performed grid-search process, we monitored the
Rteature loss (Equation . This loss term indicates how the feature statistics of the inverted
examples are close to the running average statistics stored in the SigNet batch normalization
layers. The Figures|21aland respectively show the average Top-1 accuracy across batches
of inverted examples and the levels of Reature l0ss. When the feature distribution regularization
scaling factor is high (ay = 1.0), this generates an overfitting with the batch normalization
layers statistics, providing a lower Ryeature l0ss but with an undesired low accuracy. In the
opposite situation, adopting a low feature distribution regularization scaling factor (af =
0.001) implies no match with these statistics, also providing a low accuracy. In this way, an
in-between scaling factor oy = 0.1 balances the two previously mentioned opposite situations
so that a high accuracy of inverted examples is obtained, maintaining the match with the
GPDS-960 distribution.

Regarding the additional competition term Rcompete (Equation , increasing the com-
petition scaling factor «. enforces obtaining a smaller value of the Rcompete term loss (Figure
21d)), indicating a more significant disagreement between the SigNet and SigNet (Synthetic)

outputs when propagating inverted examples. This competition term leads to further inverted
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Figure 21 — The level of the investigated losses and associated Top-1 accuracy for inverted validation sets with
50 handpicked fixed users, such that each user has 24 genuine examples.

examples outside the SigNet (Synthetic) distribution, aiming to increase the variability of in-
verted examples. However, choosing a high competition scale factor decreases the obtained
Top-1 accuracy in the classification of inverted examples (Figure [21c]), which indicates an
excessive disagreement of the inverted examples with the SigNet distribution. Thus, a middle
ground competition coefficient (. = 0.5) appears to introduce a suitable level of variability

in the inverted examples compared to other configurations with competition enabled.

4.4.2.2 Properties of the Inverted Data

In Figure 22| is shown four obtained inverted genuine signature examples (across the lines)
for each one of eight randomly sampled users (across the columns). As can be observed, in-
verted examples generated from the same user appear to maintain a slight intra-class variation,

whereas examples from different users have more significant inter-class variation. Besides, the
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Figure 22 — Four inverted genuine signature examples (across the lines) for each one of eight randomly sam-
pled users (across the columns). The last line shows examples generated using the additional
competition term.

generated examples appear to have a darker background and present shapes in gray-scale,
generally more positioned in the center. The presented shapes may be related to the writ-
ing intensity and shape of the users’ signatures and may represent motor aspects concerning
movements the users perform when producing signature examples. However, note that the
inverted examples do not explicitly show the original traits of the GPDS-960 signatures. As
inverted examples are not visually the same as the original examples, it is possible to maintain

a data protection level when publicly sharing the inverted dataset.
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(a) Visualizations for 50 randomly picked users of the (b) Visualizations for 50 randomly picked users of the

inverted set ﬁr, having inverted genuine exam- inverted set ﬁr,compete, having inverted genuine
ples adopting Deeplnversion. Top-1 accuracy of examples adopting Deeplnversion with additional
the inverted set is given by 99.92%. competition term. Top-1 accuracy of the inverted
set is given by 99.58%.
e Genuine e Genuine inverted e Skilled forgery]

Figure 23 — Obtained t-SNE visualizations for feature representations of genuine inverted examples from D,
and ﬁr_compete; real genuine examples and real skilled forgeries from the respective original users
of the GPDS-960 development dataset D,.. Critical regions where skilled forgeries are located are
highlighted in light red. To generate visualizations of critical regions, we trained a support vector
machine with a radial basis function kernel for a binary classification problem. We considered skilled
forgeries as the positive class, and genuine and Deeplnversion-generated examples as negative
examples. Given this, we plotted the decision boundaries generated by separating these examples.
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Furthermore, as illustrated in Figure 23] we generated t-SNE (MAATEN; HINTON) 2008)
visualizations for the genuine inverted examples (in green) as well as real genuine examples
(in blue) and real skilled forgeries (in red) for 50 randomly picked users from the two inverted
sets ﬁr and ﬁr_compete; and the GPDS-960 development set D,. The obtained visualizations
for inverted signatures with deep inversion and additional competition term are respectively
illustrated in Figure [23a] and Figure . As can be observed, in both approaches, the inverted
genuine signature clusters tend to maintain inter-class separation with intra-class variability.
It is worth noting that each cluster of inverted examples tends to be positioned close to the
respective original cluster, indicating that the inverted samples keep the distribution of the
original GPDS-960 development set data. Finally, it is also possible to observe a region that
concentrates representations of skilled forgeries, which tend to be clustered together as a
whole, moving away from the clusters of genuine and inverted signatures.

We analyzed the entropy of inverted signature examples; and the entropy of real genuine
signature and skilled forgery examples to complement the visualizations presented in Figure
and reinforce the hypothesis that skilled forgeries tend to be generally positioned in a
contained region of the representation space. The entropy H(%) is a measure of the amount of

uncertainty (MAC&DO et al [2022)) generated in the classification of a given example Z, defined

by:

531
H(Z) = — )] Dsighety, () 108 psignet,,, () (4.10)

ueD,=1

The average entropy of the genuine signature and skilled forgery examples from the GPDS-
960 development set and the average entropy of the inverted genuine examples are listed in
Table[20] As expected, the original examples from the GPDS-960 development set have entropy
close to zero. It occurs because the SigNet model is originally trained with such examples which
generate probabilities much closer to the limit, providing high certainty in the classification.
On the contrary, the GPDS-960 skilled forgeries present a very high entropy value, implying
that skilled forgeries are in a region of uncertainty: the SigNet model does not assign a specific
class to the skilled forgeries examples, but it generates an uncertain class assignment. This
result indicates that the SigNet model learns the global characteristics of genuine signatures,
holistically differentiating them from the global attributes of skilled forgeries. Thus, the skilled
forgery representations are placed in a region of uncertainty within the representation space.

Concerning the inverted genuine examples using deep inversion, these produce a low entropy
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Table 20 — Average entropy of genuine signatures, skilled forgeries, and inverted genuine signatures. Genuine
signatures and skilled forgeries were obtained from the 531 users of the GPDS-960 development
set. Inverted genuine signatures were obtained through deep inversion of examples from the same
531 users. The entropy measures the uncertainty across a probability distribution. In this scenario,
the maximum value of entropy is log;, 531 = 2.7250, as 531 is the number of users contained in
the development set.

Source Entropy

GPDS-960 genuine signatures in D, 0.0343 (+ 0.0598)
GPDS-960 skilled forgeries in D, 1.1241 (£ 0.5556)
Inverted genuine signatures in D, 0.2426 (£ 0.4524)
Inverted genuine signatures with competition in ﬁr_compete 0.2335 (+ 0.4558)

providing network activations associated to the real GPDS-960 genuine signatures. Therefore,
inverted examples are in a region of classification certainty and can be employed to distill
knowledge about real genuine signatures through the SigNet model. The inverted examples
using competition provide slightly better convergence of probability outputs with slightly lower
entropy. The reason for this is explained by the promotion of a greater intra-class variability

introduced by competition.

4.4.2.3 Signature Verification System Design

We adopted the GPDS-960 dataset as an oracle measure concerning the distillation process
in order to delimit a performance baseline in the case that this dataset is available. In this
way, we compared the performance of the models obtained by distillation using the alternative

datasets based on SigNet deep inversion instead of the original dataset. Besides, we considered

the situations in which student models are initialized from scratch (Figures 244}, [24b) [25a] [25b))
as well as from the SigNet weights (Figures [24c| [24d] [25d| [25d)).

We vary the A, hyper-parameter aiming to verify the obtained effect when the divergence
between the distributions of real and synthetic data sources is minimized. As shown in Figure
[24a] when the ), value is increased in the writer-dependent approach, the error rate in the
real validation set decreases by approximately less than half. On the other hand, the error rate
in the synthetic validation set increases (Figure [24b]). This same result is observed when the
student model is optimized from the original SigNet weights (Figures and .

Analogous to the writer-dependent verification case, when the A, value is increased, the

writer-independent error rate in the real validation set decreases by approximately less than

half (as shown in Figures and [25c). However, the writer-independent error rate in the
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synthetic validation set slightly increases (Figure when the student models are initialized
from scratch and presents a more stable variation when the student models are initialized from
the SigNet weights (Figure [25d)).

Given this scenario, we observe a trade-off in verification performance concerning the
obtained equal error rate on the real validation set from the GPDS-960 dataset and the
synthetic validation set from the GPDSsynthetic dataset. It is important to mention that this
effect is observed not only when the GPDS-960 dataset is used but also when the datasets

obtained through SigNet deep inversion are used to guide the distillation.
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—— GPDS-960 —— Deeplnversion = —4— Deeplnversion + Competition l

Figure 24 — Real V,,- and synthetic V, s validation sets Writer-Dependent performance with features extracted
from students trained with the proposed continual loss (Equation using three different distilla-
tion datasets: GPDS-960 examples, Deeplnversion examples and Deeplnversion examples obtained
with competition.
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4.4.2.4 Summarizing the Best )\, Configurations

For each evaluated dataset in the distillation process, we describe a comparison regarding
the best student model generated with the )\, hyper-parameter that provides the best average
performance considering the synthetic V,, and real V,, validation sets.

RQED How can we obtain a more suitable signature representation with models
trained using synthetic and inverted data in a situation where the access to the
GPDS-960 dataset is unavailable? In the Tables 21] and 22] are listed the best A, hyper-
parameter configurations associated with the lowest obtained error rate regarding the studied

data sources for distillation in the writer-dependent and writer-independent approaches. We
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initialized with SigNet weights. dents initialized with SigNet weights.
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Figure 25 — Real V,,,- and synthetic V,s validation sets Writer-Independent performance with features extracted
from students trained with the proposed continual loss (Equation using three different distilla-
tion datasets: GPDS-960 examples, Deeplnversion examples and Deeplnversion examples obtained
with competition.
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compared the performance of the proposed method on the real V,,. and synthetic V,, validation
sets in relation to the previous works, SigNet (HAFEMANN; SABOURIN; OLIVEIRA| 2017a)) and
SigNet (Synthetic) (VIANA et al, [2023)). As can be seen in the Table 21} the proposed method
has a better average performance than previous methods when considering the average writer-
dependent performance between real and synthetic data sources. Besides in the Table 22} all
distillation-based models provide a considerably lower average error rate considering synthetic
and real validation data than previous SigNet-based models (HAFEMANN; SABOURIN; OLIVEIRA,
2017a; VIANA et al [2023)) in the writer-independent verification scenario. It is worth noting
that regardless of the dataset used to guide the distillation process (GPDS-960, Deeplnversion
or Deeplnversion with competition), all average performance results are better than previous
SigNet based models in both verification approaches. This indicates that the proposed method
has greater robustness concerning different types of data sources.

Furthermore, as can be seen in the Table [21], when considering the F'E R ;j;.q metric, the
models obtained from deep inversion provided an average writer-dependent performance that
is only slightly worse than those obtained with the original data. However, by adopting the data

Table 21 — Average Writer-Dependent performance of the proposed method on the real V,,. and synthetic V¢
validation sets in relation to previous SigNet based models.

V.~ Real Performance V,s Synthetic Performance | Average Performance

Model Initialization EERSL‘/II{',d EERrunliom EERSM/IMI EERrrmdr)m EERS/;I'U(:(] EERraﬂ,dmn

Previous models:

SigNet
(HAFEMANN;
SABOURIN;
OLIVEIRA| |2017a))
SigNet (Synthetic)
(VIANA et al.| [2023)

- 3.63 (+ 0.77) |0.02 (+ 0.06)|18.69 (+ 1.27)|5.65 (+ 1.04) | 11.16 (+ 7.53) |2.83 (4 2.81)

- 12.17 (+ 0.99) | 0.02 ( 0.06) | 2.87 (+ 0.62) |0.00 (+ 0.00) |7.52 (+ 4.65) |0.01 (& 0.01)

Finetuning of previous models:

SigNet  finetuned

with synthetic data - 11.33 (+ 1.17)|0.03 (£ 0.06) | 1.52 (& 0.47) |0.00 (& 0.00) |6.43 ( 4.91) |0.02 + (0.02)

SigNet (Synthetic)
finetuned with real - 5.85 (+ 0.86) |0.00 (+ 0.00)|6.93 (+ 1.02) |0.72 (+ 0.31) |6.39 (+ 0.54) |0.36 (+ 0.36)
data

Distillation based models studied in this work:

Random (), = 1.4)|4.85 (£ 0.80) |0.00 (- 0.00)| 1.76 (- 0.47) |0.00 ( 0.00) |3.31 (= 1.55) |0.00 (= 0.00)
Oracle: GPDS-960

SigNet (A, = 1.8) |4.54 (& 0.71) |0.00 (= 0.00) | 1.86 (= 0.64) |0.00 (£ 0.00) |3.20 (£ 1.34) |0.00 (< 0.00)

Random (), = 1.8)|4.96 (£ 0.97) |0.00 (= 0.00)|1.90 (= 0.52) |0.00 (- 0.00) | 3.43 (= 1.53) |0.00 (= 0.00)
Deeplnversion

SigNet (A, = 1.3) |5.19 (= 0.54) |0.00 (= 0.00) |1.72 (= 0.44) |0.00 (& 0.00) |3.46 (& 1.74) |0.00 (< 0.00)
Deeplnversion | Random (X, = L.8) | 5.04 (= 0.65) |0.00 (< 0.00)| 181 ( 0.48) |0.00 (& 0.00) | 343 (- 161) |0.00 (< 0.00)
with Competition | . et (A, = 1.7) |4.70 (= 1.00) | 0.00 (% 0.00)| 1.69 (= 0.5) |0.00 (- 0.00) |3.20 (& 1.50) | 0.00 (& 0.00)
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Table 22 — Average Writer-Independent performance of the proposed method on the real V,,. and synthetic

V,s validation sets in relation to previous SigNet based models.

V., Real Performance Vs Synthetic Performance | Average Performance

Model Initialization EERsk‘zllcd EERrandom EER.skillcd EERmmlom EERskillod EERmmlom
Previous works:
SigNet
(SigFOEU'\gIANNN; - 3.79 (+ 0.56) |0.00 (+ 0.00)|18.29 (+ 1.60) | 5.23 (+ 1.16) | 11.04 (& 7.25) |2.62 (+ 2.62)
OLIVEIRA] [2017a)
SigNet (Synthetic) ; 14.73 (£ 0.86) |0.07 (£ 0.11) |3.37 (£ 0.68) |0.00 (= 0.00) |9.05 (+ 5.68) |0.04 (= 0.04)
(VIANA et al.| [2023) ’ ’ ' ’ ’ ’ ’ ’ ’ ’ ’ ’
Finetuning of previous models:
SigNet _ finetuned 14.32 (4 0.80) |0.17 (& 0.14) | 2.78 (£ 0.58) |0.00 (< 0.00) |8.55 (+ 5.77) |0.09 = (0.09)
with synthetic data ) ’ ' ’ ' ' ' ' ' ' ' ' ’
SigNet (Synthetic)
finetuned with real - 7.37 (£ 0.91) |0.00 (£ 0.00)|7.03 (+ 0.81) |0.12 (& 0.15) |7.20 (£ 0.17) |0.06 (& 0.06)
data
Distillation based models studied in this work:

Random (\, = 0.6)|5.94 (& 0.73) |0.00 (& 0.00) |2.61 (< 0.64) |0.00 (£ 0.00) | 4.28 (4 1.67) |0.00 (= 0.00)
Oracle: GPDS-960

SigNet (\, = 1.0) |5.78 (& 0.72) |0.00 (< 0.00) |2.33 (< 0.49) |0.00 (& 0.00) |4.05 (& 1.73)|0.00 (= 0.00)

Random (\, = 0.9)|6.03 (& 0.91) |0.04 (& 0.08) |2.61 ( 0.74) |0.00 (£ 0.00) |4.32 (+ 1.71) |0.02 (« 0.02)
Deeplnversion

SigNet (\, = 1.0) |6.11 (& 0.67) |0.02 (< 0.06) |2.31 (+ 0.57) |0.00 (& 0.00) [4.21 (+ 1.90) |0.01 (< 0.01)
Deeplnversion Random (\, = 0.7)|6.01 (& 0.90) |0.02 (£ 0.06) |2.55 ( 0.75) |0.00 (« 0.00) | 4.28 (+ 1.73) |0.01 (« 0.01)

ith C titi

Wi -OMPEHHON | 6ioNet (A, = 1.0) [6.09 (+ 0.59) |0.02 (= 0.06) | 2.28 (& 0.33) |0.00 (& 0.00) |4.18 (< 1.91) |0.01 (& 0.01)

obtained by deep inversion using competition, it is possible to obtain equivalent performance to
the original GPDS-960 data in the situation such that the distillation process is initialized from
the SigNet weights. This writer-dependent performance advantage of the data generated by
deep inversion with competition can be partially explained by a better coverage of the inverted
data distribution compared to the method without competition. In the writer-independent
scenario (Table [22), the best average rates obtained with deep inversion data sources are only
slightly higher than when using the GPDS-960 dataset to guide the distillation process. Besides,
when considering FE R, 4n40m in both verification approaches, all evaluated datasets provide
better performance than the baselines. Therefore, the inverted data is a viable replacement
for the original GPDS-960 data in situations where this data is unavailable and can effectively
be used as a support in the process of transferring the characteristics of real signatures in the
learning of new models.

Finally, it is important to note that the simple process of fine-tuning the SigNet and SigNet
(Synthetic) models, respectively, with synthetic and real data, does not provide better average

error rates than with the proposed method (as observed in Tables and . This result
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indicates that fine-tuning the pre-trained models tends to excessively skew the distribution of

the models for the type of data source employed in fine-tuning.
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Figure 26 — Obtained distributions of Euclidean distances between examples of the real and synthetic validation
sets V., and V,,, considering representations obtained from the SigNet (HAFEMANN; SABOURIN;

2017a)), SigNet (Synthetic) (VIANA et al}, 2023) models and student trained with the

proposed continual loss (Equation with \, = 1.7.
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4.4.2.5 Understanding the Influence of the Proposed Framework

In Figure is shown the distributions of intra-class, inter-class and skilled-genuine dis-
tances of the representations obtained for the synthetic V,; and real V,, validation sets using
features obtained from SigNet (HAFEMANN; SABOURIN; OLIVEIRA, [2017a)), SigNet (Synthetic)
(VIANA et al., |2023) and with the proposed method.

RQG) Is it feasible to rely solely on synthetic data from the GPDSsynthetic
dataset for training models? As can be observed in Figure 26a] although the SigNet model
correctly groups representations of real signatures, it provides incorrect cluster separation when
applied to synthetic signature data (Figure and thus has substantial difficulty in separating
synthetic skilled forgeries from poorly formed genuine signature clusters. On the other hand,
the SigNet (Synthetic) is a model with a useful capability for grouping the different real users
in the space (Figure . However, the representations of skilled forgeries are positioned closer
to the genuine representations. This result indicates that SigNet (Synthetic) can produce a
good capacity to group different real or synthetic users (Figure , but there is a lack in
relation to the ability to provide acceptable separation of real skilled forgeries (Figure .
Therefore, it is unfeasible to rely solely on synthetic data from the GPDSsynthetic dataset for
training models.

Given this scenario, by forcing the minimization of the divergence between synthetic and
real representations in the student model with the proposed method, a separation force that
moves real skilled forgeries away from their respective genuine clusters is created (as can be
seen in Figure. Despite this beneficial effect, by minimizing the divergence with the distri-
bution of real data, a slight disturbance is generated in the representation space, providing less
dense clusters (namely, with greater variance) of synthetic genuine representations that can
justify the slight increase in the error rate in the synthetic validation set when ), is increased.
Obtained effects are evidenced by the visualizations (Figure of intra-class and inter-class
distances; and between skilled forgeries and genuine signatures (skilled-genuine) representa-
tions of examples from the real and synthetic validation sets. As can be observed, although
the desired increase in inter-class and skilled-genuine distances occurs in both validation sets
when X, = 2.0 (Figures 27b| 27d, [27€| [27f)), by emphasizing the effect of this hyper-parameter
the intra-class distances of examples from the real validation set decrease (Figure [27a]), but
on the other hand, the intra-class distances of examples from the synthetic validation set in-

crease (Figure [27d)). This result justifies the occurrence of a verification performance trade-off
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between the real and synthetic validation sets of the GPDS-960 and GPDSsynthetic datasets

(initially reported in Section [4.4.2.3)).

10 20 30 40 50 30 40 50 60 70 20 30 40 50 60

(a) Intra-class distance distribu- (b) Inter-class distance distribu- (c) Skilled-genuine distance distri-
tions of the real validation set tions of the real validation set butions of the real validation set
er- er V’ur
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(d) Intra-class distance distribu- (e) Inter-class distance distribu- (f) Skilled-genuine distance distri-

tions of the synthetic validation tions of the synthetic validation butions of the synthetic valida-
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Figure 27 — Obtained distributions of Euclidean distances between examples of the real and synthetic validation
sets V. and V,s, considering representations obtained from students trained from scratch with
the proposed continual loss (Equation with A\, = 0.0 and A\, = 2.0. For this analysis, we
used the representations obtained from student models trained from scratch, as such models have
a more discrepant average performance. Wilcoxon paired signed-rank tests were performed with
a 5% significance level to compare distributions with A, = 0.0 and X\, = 2.0. The distribution
of distances obtained with different A, is statistically different in all measurements listed in this
figure.

4.4.3 Measuring Generalization Performance on Other Datasets

We evaluated the generalization of the best-obtained continual learning based models with
the configurations highlighted in Tables[21] and[22] From this point on, in the writer-dependent
verification context we call the best continual learning model trained with A\, = 1.7 using
inverted data as SigNet-CL (Deeplnversion + Competition) and the best continual learning
model trained with A\, = 1.8 using the original GPDS-960 data as SigNet-CL (GPDS-960).
Besides, in the writer-independent verification context, we call the best continual learning
model trained with A, = 1.0 using inverted data as SigNlet-CL (Deeplinversion + Competition)

and the best continual learning model trained with A\, = 1.0 using the original GPDS-960 data
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as SigNet-CL (GPDS-960). The models adjusted in the second contrastive task of the proposed
framework (Figure are named with the prefix MT (multi-task). Finally, models based on
large vision architectures (ResNet-152 and Vision Transformers) are trained with the same
hyper-parameter configuration and training datasets previously mentioned and are respectively
called as MT-ResNet-152-CL and MT-ViT-CL. In the following three subsections, we discuss
the research question: R Can the characteristics of real and synthetic datasets
be complemented using continual learning to offer a more balanced verification

performance across diverse datasets?

4.4.3.1 Writer-Dependent Generalization Performance

We observed the writer-dependent performance of the models provided by the first task of
the proposed training framework (Figure. The writer-dependent generalization performance
for the GPDS-150S, GPDS-300S, GPDS-300, CEDAR, MCYT-75, BHSig-B and BHSig-H
datasets is respectively listed in Table [23]

As can be seen, the performance of the SigNet is clearly better when the model is tested
on the GPDS-300 (a disjoint partition of the GPDS-960 dataset). On the other hand, the
SigNet performance is noticeably very poor when tested on the GPDS-150S and GPDS-300S
synthetic datasets, following results recently reported in the literature. Conversely, the proposed
SigNet-CL based models perform much better on synthetic data from the GPDS-150S and
GPDS-300S datasets.

The proposed SigNet-CL (Deeplnversion + Competition) model has a better performance
compared to the SigNet (Synthetic) model trained only with synthetic data in the face of
GPDS-150S, GPDS-300S, GPDS-300, CEDAR, MCYT-75 and BHSig-H datasets. It is worth
mentioning that unlike SigNet (Synthetic), SigNet-CL (Deeplnversion + Competition) provides
a more stable error rate when increasing the number of tested users from 150 to 300 in
the GPDS-150S and GPDS-300S synthetic datasets. Furthermore, the proposed SigNet-CL
(Deeplnversion + Competition) model provides a lower average error on the synthetic GPDS-
150S, GPDS-300S, and on the real CEDAR, MYCT-75, BHSig-B, BHSig-H datasets when
compared to the version of SigNet-CL (GPDS-960) model with distillation performed over
GPDS-960 data. This result indicates a better generalization capacity of models trained using
Deeplnversion-based data for knowledge distillation than the original GPDS-960 data.

When specifically analyzing the non-Western script datasets, the signature data from the
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Table 23 — Writer-Dependent verification performance of the models studied in this work. Users of the GPDS-
150S, GPDS-300S, GPDS-300, CEDAR, BHSig-B and BHSig-H datasets are tested using 12 ref-
erence signatures. Users of the MCYT-75 dataset are tested using 10 reference signatures.

GPDS-150S GPDS-300S GPDS-300 CEDAR MCYT-75 BHSig-B BHSig-H
SigNet
(HAFEMANN;
A ROURTT 21.68 (+0.74) 20.88 (+0.96) 3.24 (£0.25) 2.97 (£0.49) 3.23 (+£0.65) 1.73 (+0.39)  4.64 (+0.40)

OLIVEIRA| |2017a)

SigNet (Synthetic)
(VIANA et al| [2023)

SigNet-F
(HAFEMANN;
SABOURIN;
OLIVEIRA| [2017a)

SigNet-CL
(GPDS-960)
SigNet-CL
(Deeplnversion + | 2.75 (£0.28)  2.71 (£0.20)  4.58 (+£0.28) 2.65 (£0.39) 3.06 (£0.53) 2.33 (+0.49)  3.12 (0.49)
Competition)
MT-SigNet-CL
(GPDS-960)
MT-SigNet-CL
(Deeplnversion + | 2.42 (£0.32) 2.31 (£0.14) 4.44 (+0.28) 294 (+0.41) 2.95 (£0.73) 1.55 (£0.33) 2.43 (:0.41)
Competition)

315 (+£0.15) 353 (+0.23) 9.7 (+0.38) 3.77 (£0.44) 3.24 (£0.60) 3.71 (£0.55) 3.35 (:0.43)

24.37 (£0.77) 23.64 (+£0.41) 1.67 (£0.10) 4.76 (+0.70) 3.00 (+0.65) 197 (+033) 6.22 (+0.47)

277 (£0.32) 279 (£0.20) 439 (£0.35) 2.72 (£0.43) 3.39 (+£0.39) 2.35 (+£0.35)  3.66 (+0.37)

2.27 (£0.15) 2.36 (+0.16) 4.31 (+0.24) 275 (+£0.43) 2.95 (+£0.51) 187 (+£0.35) 2.65 (+0.46)

BHSig-B (Bengali) dataset appears to be more aligned with the distribution of the GPDS-960
dataset. However, on the contrary, the SigNet model trained with GPDS-960 data delivers a
higher error rate for the non-Western script dataset BHSig-H (Hindi). In this way, the proposed
model SigNet-CL (Deeplnversion + Competition) provides a more balanced performance be-
tween non-Western datasets, as it provides the lowest error rate in the BHSig-H dataset while
delivering a more satisfactory performance than the Signet (Synthetic) model trained with
synthetic data in the face of the BHSig-B dataset.

Given this scenario, we observed the effect on model generalization after applying con-
trastive adjustments to the SigNet-CL proposed models in the second task of the proposed
training framework (Figure[19)), with the obtained performance of MT-SigNet-CL models listed
in Table . In writer-dependent verification, the adjusted MT-SigNet-CL (Deeplnversion +
Competition) model provides an improvement over the SigNet-CL (Deeplnversion + Compe-
tition) model on the GPDS-150S, GPDS-300S, MCYT-75, BHSig-B, and BHSig-H datasets,
obtaining a lower error rate on these datasets. Furthermore, the MT-SigNet-CL (Deeplnver-
sion + Competition) model performs better than SigNet and SigNet (Synthetic) models on
all evaluated datasets except the GPDS-300 dataset. We believe that SigNet model is over-
adjusted to the signature examples from the GPDS-960 sub-partitions. Therefore, although

SigNet works well on the GPDS-300 dataset, this model has more difficulty to generalize to
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Figure 28 — Average performance of writer-dependent classifiers using user thresholds for the GPDS-150S,
GPDS-300S, GPDS-300, CEDAR, MCYT-75, BHSig-B and BHSig-H datasets, as the number
of reference genuine signatures (per user) available for training is varied. Given that SigNet and
SigNet-F performance errors are much greater than the other models’ errors specifically in the
GPDS-150S and GPDS-300S datasets, the SigNet and SigNet-F performances are represented in
a secondary axis positioned to the right in Figures and

a range of more diverse datasets. On the other hand, the MT-Signet-CL models which are

trained with real and synthetic data that come from different distributions, promote greater

writer-dependent generalization on miscellaneous datasets. In conclusion, we observe that MT-

SigNet-CL (Deeplnversion + Competition) is a more robust model compared to the SigNet

and SigNet (Synthetic) models when evaluating a broader range of real and synthetic datasets

in a writer-dependent approach.

The Figure 28 shows the Equal Rate Error rate obtained when the number of reference

signatures 7 used to train writer-dependent classifiers varies. For all models, there is a tendency

for the error rate to decrease when more reference signatures are used.
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Figure 29 — Comparison of the proposed MT-SigNet-CL (Deeplnversion + Competition) model against the
other models studied in this work with the Bonferroni-Dunn post hoc tests. The models were
tested in writer-dependent approach with user thresholds using signature data obtained from the
GPDS-150S, GPDS-300S, GPDS-300, CEDAR, MCYT-75, HSig-B and BHSig-H datasets. The
GPDS-150S dataset provides synthetic signatures of 150 users, the GPDS-300S dataset provides
synthetic signatures of 300 users, the GPDS-300 dataset provides real signatures of 300 users,
the CEDAR dataset provides real signatures of 55 users, the MCYT-75 dataset provides real
signatures of 75 users, the HSig-B dataset provides real signatures of 100 users and the HSig-H
dataset provides real signatures of 160 users. All the signatures obtained from these datasets
are applied together in the performed statistical tests. All the models with ranks outside the
marked interval are significantly different (p < 0.05) from the MT-SigNet-CL (Deeplnversion +
Competition) model.

We performed Friedman tests (DEMsAR, 2006) in order to statistically compare the studied
models. For the all evaluated datasets, we generated different signature segmentations with
different number of reference signatures r (according to the Table , totaling forty-one eval-
uated subjects. For each one of these subjects, different obtained feature representations (using
the investigated models) are extracted in such a way that equal error rate is a repeated measure
over each subject when varying each model. All performed tests indicated that all evaluated
models are not equivalent (rejecting the null hypothesis) with 5% level of significance. Then,
Bonferroni-Dunn post hoc tests were performed to compare the studied models against the
proposed MT-SigNet-CL (Deeplnversion + Competition) model (illustrated in Figure 29). All
models with ranks outside the marked interval are significantly different (p < 0.05) from the
MT-SigNet-CL (Deeplnversion + Competition) model. Besides, the right-most placed mod-
els are better ranked regarding the writer-dependent verification performance. As observed
in Figure , the proposed MT-SigNet-CL (Deeplnversion + Competition) model provides
a statistically significant improvement in the generalization of writer-dependent verification
compared to the previous related models SigNet (HAFEMANN; SABOURIN; OLIVEIRA, 2017a))
and SigNet (Synthetic) (VIANA et al 2023)). Furthermore, the MT-SigNet-CL (Deeplnversion
+ Competition) model is statistically equivalent to the MT-SigNet-CL (GPDS-960), which

indicates that the inverted data can replace the original GPDS-960 data in model training.
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4.4.3.2 Writer-Independent Generalization Performance

The writer-independent generalization performance for the GPDS-150S, GPDS-300S, GPDS-
300, CEDAR, MCYT-75, BHSig-B and BHSig-H datasets is listed in Table 24]

Table 24 — Writer-Independent verification performance of the models studied in this work. Users of the GPDS-
150S, GPDS-300S, GPDS-300, CEDAR, BHSig-B and BHSig-H datasets are tested using 12 ref-
erence signatures. Users of the MCYT-75 dataset are tested using 10 reference signatures.

GPDS-150S GPDS-300S GPDS-300 CEDAR MCYT-75 BHSig-B BHSig-H
SigNet
(HAFEMANN;
AEOURI. 17.63 (£0.47) 17.59 (+£0.47) 3.65 (+0.16) 3.63 (+1.13) 3.86 (+1.83) 3.02 (£1.58) 6.92 (£0.74)

OLIVEIRA| |2017a)

SigNet (Synthetic)
(VIANA et al.| [2023)

SigNet-F
(HAFEMANN;
SABOURIN;
OLIVEIRA| [2017a)

SigNet-CL
(GPDS-960)
SigNet-CL
(Deeplnversion + | 3.65 (£0.44) 356 (£0.16) 541 (£0.40) 438 (£1.37) 514 (£1.95) 4.91 (+£2.39) 4.68 (+0.95)
Competition)
MT-SigNet-CL
(GPDS-960)
MT-SigNet-CL
(Deeplnversion + | 338 (+£0.42) 342 (£0.28) 575 (+£0.20) 443 (+£158) 434 (+1.30) 3.01 (£1.31) 3.56 (+0.79)
Competition)

453 (+£0.47) 444 (+0.16) 1248 (+0.44) 6.07 (+1.78) 4.99 (+0.82) 7.56 (+1.14)  4.54 (-0.94)

17.60 (+0.89) 17.55 (+£0.60) 2.03 (£0.26) 7.70 (+2.71) 4.73 (+1.24) 3.17 (+0.77)  8.04 (+0.69)

355 (+£0.40) 347 (+£0.26) 542 (+£0.28) 3.8 (+1.38) 4.29 (+0.66) 4.39 (+1.38)  4.26 (+0.80)

3.35 (£0.42) 3.32 (£0.26) 560 (£0.22) 3.98 (£1.25) 3.47 (£1.09) 324 (£1.32) 3.29 (+0.75)

We observed the writer-independent performance of the models provided by the first task of
the proposed training framework (Figure [19): on the GPDS-150S and GPDS-300S synthetic
datasets, the proposed SigNet-CL (Deeplnversion + Competition) and SigNet-CL (GPDS-
960) models provide lower error rates in writer-independent verification than the SigNet and
SigNet (Synthetic) models. However, SigNet model provides better writer-independent verifi-
cation results on GPDS-300, CEDAR, MCYT-75, and BHSig-B real datasets when compared
to SigNet-CL based models. Despite this, the proposed SigNet-CL models have intermediate
performance, performing better than the SigNet (Synthetic) model trained only with synthetic
data on the GPDS-150S, GPDS-300S, GPDS-300, CEDAR, MCYT-75, BHSig-B and BHSig-H
datasets. When specifically considering the non-Western script BHSig-H dataset, the SigNet
model provided a higher writer-independent verification error rate. On the contrary, the pro-
posed SigNet-CL models have an improved performance for writer-independent verification in
this dataset.

Given this, we observed the effect on model generalization after applying contrastive adjust-
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Figure 30 — Average performance of writer-independent classifiers using user thresholds for the GPDS-150S,
GPDS-300S, GPDS-300, CEDAR, MCYT-75, BHSig-B and BHSig-H datasets, as the number
of reference genuine signatures (per user) available for training is varied. Given that SigNet and
SigNet-F performance errors are much greater than the other models’ errors specifically in the
GPDS-150S and GPDS-300S datasets, the SigNet and SigNet-F performances are represented in
a secondary axis positioned to the right in Figures and

ments to the SigNet-CL proposed models in the second task of the proposed training framework

(Figure . In the writer-independent verification scenario, we observed that the contrastive

adjustment over the SigNet-CL (Deeplnversion + Competition) model that produces the MT-

Signet-CL (Deeplnversion + Competition) model decreases the writer-independent error rate in

the verification of the GPDS-150S, GPDS-300S, MCYT-75, BHSig-B, and BHSig-H datasets,

generating an improved model for writer-independent verification. Especially on the BHSig-B

dataset, the adjustment diminished the error rate by 1.9%.

The proposed MT-Signet-CL models performs better than SigNet for writer-independent
verification on the GPDS-150S, GPDS-300S, MCYT-75, BHSig-B, and BHSig-H datasets.
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But on the contrary, the SigNet model has presented a better writer-independent performance
on the GPDS-300 and CEDAR datasets. Nevertheless, it is worth noting that MT-SigNet-CL
models performed better than SigNet (Synthetic) in all evaluated datasets.

The Figure 30| displays the Equal Error Rate achieved as the number of reference signatures
r used for training writer-independent classifiers varies. In all models, the error rate generally

decreases as the number of reference signatures increases.

7 B 5 4 3 2 1
Sighet (Synthetic) Q \— MT-SigNet-CL {GPD5-960)
SigNet-F L MT-SigNet-CL {Deeplnversion + Competition)
SigNet-CL iDeeplnversion + Competition) SigNet-CL (GPDS-960)

SigNet

Figure 31 — Comparison of the proposed MT-SigNet-CL (Deeplnversion + Competition) model against the
other models studied in this work with the Bonferroni-Dunn post hoc tests. The models were
tested in writer-independent approach with user thresholds using signature data obtained from

the GPDS-150S, GPDS-300S, GPDS-300, CEDAR, MCYT-75, HSig-B and BHSig-H datasets. The
GPDS-150S dataset provides synthetic signatures of 150 users, the GPDS-300S dataset provides
synthetic signatures of 300 users, the GPDS-300 dataset provides real signatures of 300 users,
the CEDAR dataset provides real signatures of 55 users, the MCYT-75 dataset provides real
signatures of 75 users, the HSig-B dataset provides real signatures of 100 users and the HSig-H
dataset provides real signatures of 160 users. All the signatures obtained from these datasets
are applied together in the performed statistical tests. All the models with ranks outside the
marked interval are significantly different (p < 0.05) from the MT-SigNet-CL (Deeplnversion +
Competition) model.

We performed Friedman tests (DEMsAR, 2006) in order to statistically compare the studied
models in the writer-independent scenario. For the all evaluated datasets, we generated differ-
ent signature segmentations with different number of reference signatures r (according to the
Table , totaling forty-one evaluated subjects. All performed tests indicated that all evalu-
ated models are not equivalent (rejecting the null hypothesis) with 5% level of significance.
Then, Bonferroni-Dunn post hoc tests were performed to compare the studied models against
the proposed MT-SigNet-CL (Deeplnversion + Competition) model (illustrated in Figure 31)).
The right-most placed models are better ranked regarding the writer-independent verification
performance. As observed, the proposed MT-SigNet-CL (Deeplnversion + Competition) model
provides a statistically significant improvement in the generalization of writer-independent ver-
ification compared to the previous related models SigNet (HAFEMANN; SABOURIN; OLIVEIRA,
2017a)) and SigNet (Synthetic) (VIANA et al., [2023). Additionally, the MT-SigNet-CL (Deepln-
version + Competition) performs equivalently to the MT-SigNet-CL (GPDS-960), indicating
that the inverted data can effectively substitute the original GPDS-960 dataset during model

training in the writer-independent context.
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4.4.3.3 Comparing Performance with a Model Explicitly Trained with Skilled Forgeries

The SigNet-F (HAFEMANN; SABOURIN; OLIVEIRA, 2017a)) is a model trained with genuine
signatures and skilled forgeries from the GPDS-960 development set, aiming to provide a
more effective separation force between the representations of genuine signatures and skilled
forgeries. We observed the performance of SigNet-F model explicitly trained with skilled forg-
eries in relation to the performance of SigNet trained only with genuine signatures. In writer-
dependent verification (Table, SigNet-F performs better than SigNet only on the MCYT-75
and GPDS-300 datasets. In writer-independent verification (Table [24)), SigNet-F presents only
a slightly better performance on the GPDS-150S and GPDS-300S datasets and a more no-
ticeable performance improvement on the GPDS-300. These results indicate that SigNet-F
presents a degree of overfitting to the skilled forgeries from the GPDS-960 dataset.

Comparing the performance of SigNet-F with the proposed MT-SigNet-CL models, we
observe that in writer-dependent verification (Table , improved performance is obtained
with MT-SigNet-CL models in all datasets except the GPDS-300 dataset. In writer-independent
verification (Table [24)), enhanced performance with MT-SigNet-CL models is obtained on all
datasets except the GPDS-300. Besides, the results of statistical tests considering different
numbers of reference signatures in the writer-dependent and writer-independent approaches
(respectively illustrated in Figures and indicate that the MT-SigNet-CL models provide
a significant generalization improvement over the SigNet-F model. Given this, these results
corroborate that the proposed models provide better generalization capacity for diverse datasets

than a model explicitly trained with forgeries.

4.4.3.4 Evaluating Performance in Large Vision Architectures

RQ@8) Is SigNet knowledge distillation helpful in training state-of-the-art large
vision models for handwritten signature feature representation learning? In Tables
and [26] we respectively indicate the results obtained with the proposed method in large vision
architectures for writer-dependent and writer-independent verification.

In both verification approaches, we demonstrate that employing the proposed method using
the proposed inverted data source together with synthetic data for training large vision models
significantly improves verification across all evaluated datasets. Thus, the proposed distillation

mechanism is helpful in the training of new architectures instead of using only synthetic data
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Table 25 — Writer-Dependent verification performance of models based on the ResNet-152 and Vision Trans-
former architectures. Users of the GPDS-150S, GPDS-300S, GPDS-300, CEDAR, BHSig-B and
BHSig-H datasets are tested using 12 reference signatures. Users of the MCYT-75 dataset are
tested using 10 reference signatures.

GPDS-1505  GPDS-3005  GPDS-300 CEDAR MCYT-75 BHSig-B BHSig-H
?seySnNtitetl.i)Q 375 (+0.37) 3.89 (+£0.38) 13.86 (+£0.48) 657 (+0.88) 7.49 (+£0.91) 6.88 (+0.68) 7.60 (+0.65)
ViT (Synthetic) 504 (£050) 6.33 (£0.40) 13.47 (£0.46) 7.32 (+0.41) 0.98 (+£0.89) 7.04 (+0.87) 6.05 (+0.71)

MT-ResNet-152-CL
(Deeplnversion  +12.19 (£0.33) 2.22 (+0.20) 4.85 (+0.44) 3.13 (+0.60) 4.59 (£0.29) 2.20 (+0.32) 4.71 (+0.32)

Competition)

MT-ViT-CL
(Deeplnversion  +| 2.90 (+£0.42)  3.03 (+0.35) 4.79 (£0.33) 2.97 (£0.56) 4.76 (+0.87) 2.37 (+0.42) 3.65 (+0.43)

Competition)

Table 26 — Writer-Independent verification performance of models based on the ResNet-152 and Vision Trans-
former architectures. Users of the GPDS-150S, GPDS-300S, GPDS-300, CEDAR, BHSig-B and
BHSig-H datasets are tested using 12 reference signatures. Users of the MCYT-75 dataset are
tested using 10 reference signatures.

GPDS-150S GPDS-300S GPDS-300 CEDAR MCYT-75 BHSig-B BHSig-H
ResNet-152
(Synthetic) 465 (+025) 462 (+£0.23) 1644 (£0.42) 804 (£1.72) 11.30 (+£2.89) 11.08 (£1.06) 9.07 (+1.33)
ViT (Synthetic) 7.36 (£0.62) 7.54 (£0.24) 14.80 (£0.41) 8.77 (+£1.80) 16.95 (+£1.96) 11.24 (+£1.89) 7.22 (£1.04)

MT-ResNet-152-CL
(Deeplnversion  +(3.13 (£0.43) 3.12 (+£0.26) 5.18 (+0.38) 5.25 (£1.53) 7.73(£1.91) 2.50 (£0.89) 5.43(+0.91)

Competition)

MT-ViT-CL
(Deeplnversion  +| 4.39 (£0.30)  4.49 (£0.17) 5.13 (£0.33) 4.91 (+1.43) 7.61 (£1.59) 3.10 (£0.56) 4.41 (+0.86)

Competition)

(as done in |Viana et al.| (2023)), Zheng et al | (2021).

However, despite the benefit provided by knowledge distillation in the training of large
vision models, these new architectures present more prominent difficulty in the learning of
synthetic signature representations compared to the SigNet architecture (which is a classical
deep convolutional network based on the AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, [2017))
architecture). Figure shows the classification accuracy of the real and synthetic monitoring
examples M, and M over the epochs in model training. The vertical bars indicate the epoch
in which the highest classification among the examples of the sets M,. and M is obtained for
each architecture. The best obtained classification accuracy of monitored examples during the
training of models based on the Vision Transformer, ResNet-152 and SigNet architectures in
the same experimental configuration (only the architecture is changed) is respectively 95.83%,
97.67%, 97.93% (Figure. This specifically occurs due to a discrepancy in the classification
of synthetic examples (Figure that is more evident in the Vision Transformer architecture.
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(a) Accuracy over M,. (real).  (b) Accuracy over M, (synthetic). (c) Average accuracy over M,
and M.

—— SigNet Architecture —— ResNet-152 Vision Transformer]

Figure 32 — Classification accuracy of the real and synthetic monitoring examples M,. and M over the epochs
in the first task of model training using Deeplnversion + Competition data with the evaluated
architectures.

4.4.3.5 Comparison with the State-of-the-art

In this section, the MT-SigNet-CL (Deeplnversion + Competition) model is compared
with the related state-of-the-art works in which deep learning generative methods and large
vision architectures are applied for offline handwritten signature verification (listed in Table
. It is important to note that the protocols for training feature extractors and classifiers can
differ between related works since no single definitive protocol has been adopted by all works.
Besides, none of the related works verify the performance on the same datasets analyzed in this
work, but only on some of them. Therefore, the comparison presented in this section intends
to place an overview of the performance of the existing methods in relation to the proposed
framework.

In writer-dependent verification approach, the proposed method provides better verification
performance on the GPDSsynthetic dataset when compared to recent works based on new ar-
chitectures (MERSA et al., 2019) and generative networks (YAPiCi; TEKEREK; TOPALOGLU|, | 2021)).
Furthermore, the proposed method provides verification improvement on the CEDAR dataset
compared to generative methods (YONEKURA; GUEDES, [2021; JIANG et al,, [2022). However,
on the MCYT dataset, the related generative methods (YAPiCi; TEKEREK; TOPALOGLU, 2021;
JIANG et al,, [2022)) have presented better performance. Regarding the MCYT-75 dataset, in
the experiments with Cycle-GAN performed in [Yapici, Tekerek e Topaloglu| (2021)), the signa-
ture data is partitioned in relation to the signatures instead of users; it simplifies the problem
because examples from the same user are used to train and test generative models but in-
troduces a higher cost in system maintenance as each user needs an associated generative

model. In the experiments with Cycle-GAN on-2-off performed in Jiang et al.| (2022), only
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the performance obtained on the MCYT-75 dataset stands out. This result can be justified
because the generative model proposed in|Jiang et al| (2022) is trained with samples provided
from the MCYT online dataset (with 330 users) and tested with a derived subcorpus with
offline signatures of 75 users. On the contrary, in this work, the set of users used for model
training and verification is entirely disjoint, indicating a competitive generalization capability
of the features learned by the proposed model for a more diverse range of users and datasets.

When considering a model based on SigNet distillation to the ResNet architecture, the
method proposed in Tsourounis et al.| (2023) delivers improved performance on the CEDAR

Table 27 — Comparison with state-of-the art generative methods. The proposed method is the MT-SigNet-CL
(Deeplnversion 4+ Competition) model.

Dataset | Method | #Ref | EER
Writer-Dependent
ResNet (MERSA et al.|[2019) 10 6.81
GPDSsynthetic Cycle-GAN (YAP:Ci; TEKEREK; TOPALOGLU|[2021) 10 12.34 (£ 0.20)
Proposed Method 12 2.31 (£ 0.14)
CPDS-300 ResNet S-T FKD (TSOUROUNIS et al.| [2023) 12 | 274 (£ 0.28)
Proposed Method 12 4.44 (£ 0.28)
Conditional GAN (YONEKURA; GUEDES‘72O21) 1 18.53
CEDAR Cycle-GAN on-2-off (JIANG et al.| [2022) 10 3.48
ResNet S-T FKD (TSOUROUNIS et al.| [2023) 12 2.25 (+ 0.24)
Proposed Method 12 2.94 (£ 0.41)
ResNet (MERSA et al.|[2019) 10 | 3.98
Cycle-GAN (YAP:Ci; TEKEREK; TOPALOGLU|[2021) 10 2.58 (£ 0.43)
MCYT-75 Cycle-GAN on-2-off (JIANG et al.| [2022) 10 2.01
ResNet S-T FKD (TSOUROUNIS et al.| [2023) 10 3.29 (£ 0.62)
Proposed Method 10 2.95 (£ 0.73)
BHSig-B (Bengali) TransOSV (ViT) (Ul et al.|[2024) 12 | 0.95 (£ 0.24)
Proposed Method 12 1.55 (£ 0.33)
BHSig-H (Hind) TransOSV (ViT) (Ui et al.|[2024) 12 | 3.43(£021)
Proposed Method 12 2.43 (£ 0.41)
Writer-Independent
Adversarial variation network (LI; WEI; HU72022:) 1 9.77
GPDSsynthetic TransOSV (ViT) (LI et al.| [2024) 1 10.64
Proposed Method 12 3.42 (£ 0.28)
CEDAR Adversarial variation network (LI; WEI; HU| [2022) 1 3.77
Proposed Method 12 4.43 (£ 1.58)
Adversarial variation network (LI; WEI; HU720221) 1 6.14
BHSig-B (Bengali) | TransOSV (ViT) (LI et al.| 2024) 1 9.90
Proposed Method 12 3.01 (£ 1.31)
Adversarial variation network (LI; WEI; HU| [2022) 1 5.65
BHSig-H (Hindi) | TransOSV (ViT) (LI et al.| [2024) 1 3.24
Proposed Method 12 3.56 (£ 0.79)
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and GPDS-300 datasets. However, on the contrary, our proposed method demonstrates better
performance than ResNet-based models (TSOUROUNIS et al.,, 2023; [MERSA et al} 2019) on
the MCTY-75 dataset. Furthermore, in Tsourounis et al. (2023) the resulting models are not
tested on the GPDSsynthetic, BHSig-H, and BHSig-B datasets in such a way that it is not
possible to understand whether such models would continue to maintain suitable verification
on more diverse datasets (especially the GPDSsynthetic dataset, which we demonstrated that
presents very discrepant divergence with the GPDS-960 distribution). When considering the
BHSig-H and BHSig-B datasets, the [Li et al.| (2024) method based on Vision Transformers
provides better performance on BHSig-B (Bengali), but in contrast, the method proposed in
this work offers superior performance on the BHSig-H (Hindi) dataset, indicating that our
method provides competitive performance when compared to the large architecture method
proposed by [Li et al.| (2024).

In the writer-independent verification scenario, the |Li et al.| (2024), |Li, Wei e Hu (2022
methods are designed to adopt a single reference signature for verification. In this work, we use
multiple reference signatures to make the decision. Our proposed method provides improved
writer-independent verification performance over the generative method |Li, Wei e Hu| (2022)
on the GPDSsynthetic, BHSig-B, and BHSig-H datasets; and over the Vision Transformer
based method |Li et al.| (2024) on the GPDSsynthetic and BHSig-B datasets. It is worth noting
that in |Li et al| (2024), Li, Wei e Hu (2022) methods, the models for feature extraction
are trained with a sub-partition of the same dataset used in the tests and employing skilled
forgeries. Thus, we can assume that these related models are over-adjusted to identify the

forgeries of the test dataset.

4.4.3.6 Adaptation of the Proposed Method to other Applications

In this section, we discuss how the proposed method can be adapted to generate models
trained with datasets from other divergent scripts. For instance, suppose that a new student
model is trained with a divergent script dataset but minimizing the divergence with the Western
script knowledge provided by the SigNet without directly depending on the GPDS-960 data. In
this case, the SigNet model for knowledge distillation and an inverted data source is needed,
and thus, one of the following approaches can be adopted.

A straightforward and less computationally expensive approach is to train the new student

model through the loss function defined in Equation using the A, hyper-parameter defined
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according to the values described in the Tables[2I]and [22] We demonstrated in our experiments
that the adoption of the aforementioned hyper-parameter configuration is generalizable in the
verification of different datasets (and with different architectures) so that the values found for
A, are suitable for the distillation of GPDS-960 knowledge through the SigNet using inverted
data source.

A second approach if a particular tuning of the A, hyper-parameter is desired is to perform a
hyper-parameter search regarding the verification performance between two disjoint validation
sets: one of the Western script and another of the specific application. In the case of the
Western script validation set, an alternative is to adopt partitions from the MCYT-75 dataset
as a validation set, since we verified in our experiments an improvement in the verification of

this Western script datasets with the proposed method.

45 CONCLUSION

In this work, we propose a method to combine the distribution of a large number of synthetic
signatures from the GPDSsynthetic dataset with the distribution of real signatures from the
GPDS-960 dataset. Knowledge about real signatures is obtained through the distillation from
the pre-trained SigNet model. We also propose a dataset obtained with a generative technique
that inverts examples from the pre-coded distribution in SigNet. The inverted examples do
not exhibit the original traits of the GPDS-960 signatures, so we consider they can be publicly
shared. Thus, the introduction of a large synthetic variety, together with the minimization of
the distribution divergence with real data, produces more robust models to verify examples
from different datasets. Moreover, we found improvement in the verification of non-Western
script datasets.

Employing the inverted data in distillation is beneficial for writer-dependent verification
compared to using the original GPDS-960 data. In writer-independent verification, the in-
verted data maintained a competitive verification performance. Presumably, the inverted data
produces a more prominent adaptability of the representations to the testing datasets. This is
advantageous in the writer-dependent scenario but provides less uniform decision boundaries
among users for the writer-independent scenario. In our experiments, we found that this prob-
lem is minimized by a contrastive adjustment of the models that produce more homogeneous
representations. Furthermore, in both verification approaches, we identified that the SigNet-F

model trained with skilled forgeries has an excessively deviated distribution to identify sub-
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partitions of the GPDS-960 dataset. In contrast, the proposed models trained with inverted
data present a more balanced verification considering the seven assessed datasets.

Finally, we demonstrated that the proposed method can be used to improve verification
results in the training of new architectures, especially when access to the GPDS-960 dataset
is unavailable. Therefore, we expect this work to encourage the experimentation of new ar-
chitectures integrated with the proposed distillation method for the learning of handwritten

signature feature representations.
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5 CONCLUDING REMARKS

In this thesis, we propose a framework founded on contrastive optimization for learning
handwritten signature representations based on three demanded properties for the feature
representations: obtaining denser and more separated clusters of genuine signatures (smaller
intra-class distances and larger inter-class distances) together with a local distancing of the
skilled forgery representations with respect to each respective genuine cluster. In this thesis, we
demonstrate that achieving these properties in the representation space implies an improvement
in the subsequent verification.

In addition to this aspect, we verified that the divergence among the distribution of dis-
tances related to the mentioned properties obtained in different datasets generates difficulties
in generalization, and especially such challenges are more experimentally evident when a feature
representation is tested against a more diverse range of datasets.

For illustration, a model explicitly trained with GPDS-960 skilled forgeries generates sepa-
ration distances between genuine signatures and skilled forgeries over-adjusted for subsets of
the own GPDS-960 dataset in such a way that this separation force is extremely strong in
separating forgeries from other different datasets. On the other hand, in this work, we demon-
strate that introducing a more considerable synthetic variety together with a more balanced
separation force of skilled forgeries obtained through SigNet knowledge distillation contributes
to a better generalization ability.

We consider this thesis can influence in the development of new handwritten signature
feature representation learning methods based on these mentioned properties, introducing an
interpretative nuance on the quality of the obtained representations and their association with
the error metrics that consider the separation between genuine signatures and skilled forgeries.

To conclude, we enumerate below the answers to the research questions investigated in

this thesis:

RQ1) How do the contrastive losses adopted in the proposed framework affect signature

verification and model generalization?

e The proposed multi-task framework refines the original representation space by
applying contrastive losses while maintaining the generalization ability of the cross-
entropy loss. This approach improves intra-cluster density and ensures more uniform

cluster dispersion, benefiting model generalization to different datasets.
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RQ2)

RQ3)

RQ4)

RQ5)

RQ6)

Does the proposed multi-task approach for learning representations provide signature

verification improvement in comparison to a contrastive single-task approach?

e Single-task contrastive models over-adjust to the training dataset. In contrast,
the proposed multi-task framework improves generalization compared to directly using

contrastive methods.

Do the proposed multi-task contrastive models provide significantly better feature rep-

resentations for handwritten signatures than SigNet?

e The experiments indicated a significant improvement in signature verification
using the proposed multi-task contrastive framework compared to the SigNet (a cross-
entropy based model), suggesting the proposed framework as a general strategy for

training contrastive models for handwritten signature feature extraction.

Does NT-Xent loss (with implicit hard negative mining) provide better feature represen-
tations than Triplet loss (with explicit hard negative mining) for handwritten signature

verification?

e The more satisfactory verification performance of the Triplet loss compared to
the NT-Xent loss is explained by its more significant separation ability between skilled
forgery and genuine signatures, facilitated by the explicit mechanism for mining hard

negatives within the proposed framework.

How can we obtain a more suitable signature representation with models trained using
synthetic and inverted data in a situation where the access to the GPDS-960 dataset

is unavailable?

e The proposed knowledge distillation mechanism using inverted data has a bet-
ter average performance than previous models (SigNet and SigNet (Synthetic)) when
considering real and synthetic data sources. In situations where the original GPDS-960
data is unavailable, inverted data serves as an effective substitute for transferring real

signature characteristics to new models.

s it feasible to rely solely on synthetic data from the GPDSsynthetic dataset for training

models?

e A model trained with GPDSsynthetic data (as the SigNet (Synthetic)) effectively

groups real and synthetic users but fails to adequately separate real skilled forgeries. As
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a result, relying solely on synthetic data from the GPDSsynthetic dataset for training

models is unfeasible.

RQ7) Can the characteristics of real and synthetic datasets be complemented using continual

learning to offer a more balanced verification performance across diverse datasets?

e Models trained with both real and synthetic data distributions offer better gen-
eralization across various datasets. In contrast, a model trained with GPDS-960 skilled
forgeries over-fits to the own GPDS-960 examples, hindering its ability to generalize to
other datasets. The proposed method in this work provides more balanced generalization

across both Western and non-Western script datasets.

RQ8) Is SigNet knowledge distillation helpful in training state-of-the-art large vision models

for handwritten signature feature representation learning?

e Employing the proposed method with inverted and synthetic data for training large
vision models enhances verification. The proposed distillation mechanism is beneficial
for training new architectures, offering an alternative instead of using only synthetic

data.

5.1 FUTURE WORK

This thesis presents a promising approach for handwritten signature feature representation
learning. However, there are opportunities for further enhancement. The findings and analyses
presented in this work provide inspiration for future research. Potential directions for future
work include:

We identified in our experiments a more prominent difficulty in classifying synthetic exam-
ples by large vision models compared to the SigNet architecture, which is based on classical
deep convolutional neural networks. Thus, an important research direction is the development
of new architectures integrated with the proposed framework that can obtain better accuracy
in classifying an extensive collection of synthetic examples.

In this thesis, we invert the genuine signatures of the GPDS-960 development set. One
direction of research is to extrapolate and generate more inverted examples by: possibly sim-
ulating the distribution of new users from the existing users, as well as increasing the number

of inverted examples for each user through augmentations.
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APPENDIX A - EXECUTION TIME OF EXPERIMENTS

A.l1 EXPERIMENT ENVIRONMENT

The experiments in Chapter [3| were performed on the cluster provided by the Northeast
Strategic Technologies Center - CETENE on machines with the following configuration: 32GB
of RAM using NVIDIA GeForce GTX 980 GPUs with 4 GB memory size.

The experiments in Chapter |4 were performed on the cluster belonging to the advanced
research computing platform provided by the Digital Research Alliance of Canada using ma-
chines with the following configuration: 48GB of RAM using NVIDIA V100 GPUs with 32 GB

memory size.

A.2 EXECUTION TIMES

A.2.1 Inversion

The runtimes for the inversion of the development set from SigNet with the methods
discussed in Section [4£.2.1] are listed in Table 28

Table 28 — Runtimes for the inversion of the development set in days(d), hours(h), minutes(m) and seconds(s).

Inversion method Inversion time
Deeplnversion 7d:10h:48m:25s
Deeplnversion + Competition | 14d:10h:33m:11s

A.2.2 Validation Experiments

The runtimes for the contrastive models studied in Section with tests performed on
the validation set V), are presented in Table 29|

The runtimes for the proposed models adopting the continual learning-based framework
described in Section [4.2] are presented in Tables 30, 31, and [32] Table [30] lists the model
training execution times. Respectively, Tables [31] and [32| present the testing times on the real
V,r and synthetic V,, validation sets (described in Section using writer-dependent

and writer-independent approaches.



Table 29 — Runtimes for the training of models and testing on the validation set V), in days(d), hours(h),

minutes(m) and seconds(s).

Model configuration Training time

test time

Writer-dependent

Writer-independent
test time

Triplet loss m = 0.1 (multi-task)

0d:2h:41m:50s | 0d:1h:1m:46s

0d:11h:24m:24s

Triplet loss m = 0.8 (multi-task) 0d:2h:41m:4s

0d:0h:52m:8s

1d:0h:41m:11s

NT-Xent loss 7 = 0.01 (multi-task) | 0d:2h:29m:20s | 0d:1h:7m:33s

0d:14h:47m:0s

NT-Xent loss 7 = 0.5 (multi-task)

0d:2h:28m:44s | 0d:0h:53m:20s

0d:23h:58m:43s

SigNet

0d:0h:24m:39s | 0d:3h:32m:32s

0d:23h:50m:22s

SigNet (Synthetic)

0d:0h:43m:53s | 0d:1h:2m:17s

0d:20h:39m:3s

Table 30 — Runtimes for the training of models with proposed continual learning framework in days(d),

hours(h), minutes(m) and seconds(s).

Model configuration

Training time

SigNet-CL (Deeplnversion 4+ Competition) A\, = 0.0

0d:4h:42m:39s

SigNet-CL (Deeplnversion + Competition) A\, = 1.0

0d:4h:41m:13s

SigNet-CL (Deeplnversion 4+ Competition) A\, = 1.7

0d:4h:38m:22s

MT-SigNet-CL (Deeplnversion + Competition) A\, = 1.0

0d:14h:4m:20s

MT-SigNet-CL (Deeplnversion 4+ Competition) A, = 1.7

1d:0h:4m:bs

MT-ResNet-152-CL (Deeplnversion + Competition) A,

=1.0

3d:18h:58m:41s

MT-ResNet-152-CL (Deeplnversion + Competition) A,

=17

3d:19h:16m:25s

MT-ViT-CL (Deeplnversion + Competition) A\, = 1.0

6d:21h:11m:28s

Table 31 — Runtimes for the writer-dependent testing on the real validation set V,,. and on the synthetic
validation set V,; in days(d), hours(h), minutes(m) and seconds(s).

Model configuration

Writer-dependent test | Writer-dependent test
time with real data time with synthetic data

SigNet-CL (Deeplnversion + Competition) A, = 0.0 | 0d:0h:32m:49s

0d:6h:37m:59s

SigNet-CL (Deeplnversion + Competition) A, = 1.0 | 0d:0h:30m:1s

0d:8h:40m:9s

SigNet-CL (Deeplnversion + Competition) A, = 1.7 | 0d:0h:29m:11s

0d:8h:40m:23s

Table 32 — Runtimes for the writer-independent testing on the real validation set V,, and on the synthetic
validation set V,; in days(d), hours(h), minutes(m) and seconds(s).

Model configuration

Writer-independent test | Writer-independent test
time with real data time with synthetic data

SigNet-CL (Deeplnversion + Competition) A\, = 0.0 | 0d:7h:55m:43s

0d:21h:19m:41s

SigNet-CL (Deeplnversion + Competition) A, = 0.5 | 0d:6h:5m:46s

1d:1h:31m:40s

SigNet-CL (Deeplnversion + Competition) A, = 1.0 | 0d:5h:18m:33s

1d:4h:45m:10s
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A.2.3 Generalization Experiments

The runtimes of the generalization measurement experiments (Section of the models
proposed in Chapter[3|are listed in Tables[33] and[34] The execution times of the generalization
measurement experiments (Section |4.4.3) of the models proposed in Chapter [4] are listed
in Tables [35], [36] [37] [38} 39, and [40] In these reported results, the users of the GPDS-
150S, GPDS-300S, GPDS-300, CEDAR, BHSig-B and BHSig-H datasets are tested using 12

reference signatures. Users of the MCYT-75 dataset are tested using 10 reference signatures.

Table 33 — Testing times for the MT-SigNet (Triplet) model.

Dataset Writer-dependent test | Writer-independent test
GPDS-300S | 0d:0h:43m:21s 0d:12h:47m:28s
GPDS-150S | 0d:0h:11m:38s 0d:11h:45m:13s
CEDAR 0d:0h:1m:40s 0d:0h:3m:54s
MCYT-75 0d:0h:2m:37s 0d:0h:3m:52s

Table 34 — Testing times for the MT-SigNet (NT-Xent) model.

Dataset Writer-dependent test | Writer-independent test
GPDS-300S | 0d:0h:45m:9s 0d:16h:21m:11s
GPDS-150S | 0d:0h:10m:44s 0d:15h:8m:38s
CEDAR 0d:0h:1m:48s 0d:0h:4m:27s
MCYT-75 0d:0h:2m:52s 0d:0h:4m:4s

Table 35 — Testing times for the SigNet model.
Dataset Writer-dependent test | Writer-independent test
GPDS-150S | 0d:0h:24m:32s 1d:5h:8m:14s
GPDS-300S | 0d:1h:31m:35s 1d:13h:57m:14s
GPDS-300 | 0d:2h:50m:18s 0d:2h:8m:46s
CEDAR 0d:0h:1m:36s 0d:0h:3m:50s
MCYT-75 0d:0h:2m:31s 0d:0h:3m:19s
BHSig-B 0d:0h:4m:30s 0d:0h:14m:23s
BHSig-H 0d:0h:17m:24s 0d:0h:46m:7s
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Table 36 — Testing times for the SigNet (Synthetic) model.

Dataset Writer-dependent test | Writer-independent test
GPDS-150S | 0d:0h:11m:38s 0d:22h:14m:5s
GPDS-300S | 0d:0h:43m:7s 0d:23h:11m:18s
GPDS-300 | 0d:0h:53m:12s 1d:2h:45m:17s

CEDAR 0d:0h:1m:52s 0d:0h:4m:37s
MCYT-75 0d:0h:3m:2s 0d:0h:4m:21s

BHSig-B 0d:0h:5m:24s 0d:0h:14m:8s

BHSig-H 0d:0h:14m:26s 0d:0h:30m:4s

Table 37 — Testing times for the SigNet-F model.

Dataset Writer-dependent Test | Writer-independent test
GPDS-150S | 0d:0h:31m:16s 4d:7h:52m:10s
GPDS-300S | 0d:2h:3m:55s 5d:7h:43m:0s
GPDS-300 | 0d:0h:56m:40s 0d:12h:18m:42s
CEDAR 0d:0h:3m:10s 0d:0h:9m:22s
MCYT-75 0d:0h:2m:3s 0d:0h:6m:16s

BHSig-B 0d:0h:5m:12s 0d:0h:19m:22s
BHSig-H 0d:0h:22m:39s 0d:1h:19m:16s

Table 38 — Testing times for the MT-SigNet-CL (Deeplnversion + Competition) model.

Dataset Writer-dependent test | Writer-independent test
GPDS-150S | 0d:0h:8m:59s 0d:7h:45m:31s
GPDS-300S | 0d:0h:45m:4s 0d:8h:56m:10s
GPDS-300 | 0d:0h:42m:28s 0d:8h:10m:1s

CEDAR 0d:0h:0m:50s 0d:0h:3m:56s
MCYT-75 0d:0h:1m:44s 0d:0h:4m:48s

BHSig-B 0d:0h:3m:27s 0d:0h:20m:43s
BHSig-H 0d:0h:9m:7s 0d:0h:28m:11s
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Table 39 — Testing times for the MT-ResNet-152-CL (Deeplnversion + Competition) model.

Dataset Writer-dependent test | Writer-independent test
GPDS-150S | 0d:0h:9m:5s 0d:7h:51m:41s
GPDS-300S | 0d:0h:45m:8s 0d:8h:38m:43s
GPDS-300 | 0d:0h:38m:40s 0d:8h:22m:5s

CEDAR 0d:0h:1m:31s 0d:0h:4m:3s

MCYT-75 0d:0h:6m:18s 0d:0h:5m:27s

BHSig-B 0d:0h:2m:49s 0d:0h:16m:38s
BHSig-H 0d:0h:11m:30s 0d:0h:51m:35s

Table 40 — Testing times for the MT-ViT-CL (Deeplnversion + Competition) model.

Dataset Writer-dependent test | Writer-independent test
GPDS-150S | 0d:0h:11m:20s 0d:9h:53m:25s
GPDS-300S | 0d:0h:44m:23s 0d:11h:55m:42s
GPDS-300 | 0d:0h:34m:13s 0d:11h:0m:2s

CEDAR 0d:0h:1m:13s 0d:0h:5m:16s
MCYT-75 0d:0h:2m:32s 0d:0h:7m:30s

BHSig-B 0d:0h:8m:42s 0d:0h:14m:59s
BHSig-H 0d:0h:33m:44s 0d:0h:45m:48s
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In Table[41]is listed the number of total parameters and memory size of the models studied

in this thesis.

Table 41 — Number of parameters and memory size of the studied models in this thesis.

Model Total parameters | Parameters size (MB)
SigNet 16,880,179 67.52

SigNet (Synthetic) 19,890,160 79.56

MT-SigNet (Triplet) 15,792,160 63.17

MT-SigNet (NT-Xent) 15,792,160 63.17

MT-SigNet-CL (Deeplnversion + Competition) 33,169,729 132.68
MT-ResNet-152-CL (Deeplnversion + Competition) | 83,911,905 335.65

MT-ViT-CL (Deeplnversion + Competition) 108,497,697 433.62
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