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“I heard this story about a fish. He swims up to this older

fish and says, “I’m trying to find this thing they call

the ocean.” “The ocean?” says the older fish. “That’s

what you’re in right now.” “This?” says the young fish.

“This is water. What I want is the ocean.”
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RESUMO

Modelos de Linguagem Visual (VLMs), como o CLIP, são amplamente utilizados em

aplicações de inteligência artificial multimodal por integrarem representações de imagens

e textos por meio de codificadores de diferentes arquiteturas. Apesar do desempenho

robusto, a complexidade desses modelos impõe desafios à compreensão e confiabilidade de

suas decisões. Pensando em mitigar esse aspecto, métodos de interpretabilidade têm sido

desenvolvidos para poder extrair mapas de atribuição visando entender quais regiões da

imagem o modelo está utilizando para inferência. Entretanto, muitos desses métodos de

interpretabilidade alteram seu resultado diante de uma pequena alteração na imagem de

entrada. Este trabalho se propõe a investigar a robustez de métodos de interpretabilidade

aplicados ao CLIP, com ênfase na sensibilidade dessas técnicas a pequenas perturbações

nas entradas, aspecto que pode comprometer a confiabilidade das explicações geradas.

Para isso, foi proposto um pipeline de avaliação baseado em perturbações controladas,

além de um conjunto de métricas que inclui correlação de postos de Spearman, Índice de

Similaridade Estrutural (SSIM), Interseção Top-K e Diferença de Similaridade. Foram

avaliados nove métodos de interpretabilidade, observando-se variabilidade significativa

em termos de estabilidade. Técnicas de interpretação como Grad-ECLIP e CLIP Surgery

apresentaram maior robustez e coerência semântica frente às perturbações, enquanto abor-

dagens como RISE e Self-Attention demonstraram instabilidade considerável. Os resul-

tados indicam a importância de se considerar não apenas a capacidade informativa das

explicações, mas também sua robustez em diferentes condições.

Palavras-chave: IA Explicável, Modelos de Linguagem Visual, CLIP, Interpretabilidade,

Robustez



ABSTRACT

Visual Language Models (VLMs), such as CLIP, are widely used in multimodal artificial

intelligence applications due to their ability to integrate image and text representations

through encoders with different architectures. Despite their strong performance, the com-

plexity of these models presents challenges to understanding and trusting their decisions.

To mitigate this issue, interpretability methods have been developed to extract attribution

maps in order to understand which regions of the image the model is using for inference.

However, many of these interpretability methods produce different results when the input

image is slightly altered. This work aims to investigate the robustness of interpretabil-

ity methods applied to CLIP, with an emphasis on the sensitivity of these techniques to

small input perturbations, an aspect that can undermine the reliability of the generated

explanations. To this end, an evaluation pipeline based on controlled perturbations was

proposed, along with a set of metrics including Spearman’s rank correlation, Structural

Similarity Index (SSIM), and Top-K Intersection. Nine interpretability methods were

evaluated, revealing significant variability in terms of stability. Interpretation techniques

such as Grad-ECLIP and CLIP Surgery showed greater robustness and semantic coherence

in the face of perturbations, while approaches like RISE and Self-Attention demonstrated

considerable instability. The results highlight the importance of considering not only the

informativeness of the explanations, but also their robustness under different conditions.

Keywords: Explainable AI, Visual Language Models, CLIP, Interpretability, Robustness
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1 INTRODUCTION

Artificial Intelligence (AI) [3] has become one of the most impactful technological

domains in recent decades, driven by advances in deep learning [4], which have enabled

the overcoming of previous limitations by leveraging large volumes of data and compu-

tational resources at scale . Among the most significant contributions is the role of deep

neural networks, especially convolutional neural networks (CNNs) [5], which have trans-

formed the field of computer vision by enabling the automation of tasks such as image

classification, object detection, and semantic segmentation, often achieving performance

levels that rival or even surpass humans in various domains [6–8].

More recently, the integration of distinct modalities, such as natural language and

computer vision, has led to the development of Visual Language Models (VLMs) [9], such

as CLIP (Contrastive Language–Image Pre-training) [1], a model that consolidated the use

of contrastive techniques by relating image and text information. These models combine

the contextual and visual representation, enabling multimodal processing of images and

text in tasks such as zero-shot learning [10], semantic retrieval, and visual command

interpretation [1, 11]. This integration not only broadens the application scope of AI

but also opens up new possibilities in interactive systems, content recommendation, and

creative tools based on language and vision.

However, the increasing capability of these models brings a new challenge: under-

standing and trusting their decisions. In sensitive applications, such as medical diagno-

sis [12, 13] or judicial [14, 15] and financial systems [16], the need to justify the decisions

made by automated systems is as critical as the model’s own accuracy [17]. In this con-

text, interpretability has emerged as an essential requirement to ensure transparency,

auditability, and trust, allowing users and experts to understand which aspects of the

inputs most influence the predictions [18].

Although several interpretability methods have been proposed for deep neural net-

works, recent studies have raised concerns about the fragility of these techniques, showing

that the explanations generated can be highly sensitive to small variations in the inputs

or the configuration of the interpretability algorithms [19]. This instability not only un-

dermines trust in the explanations but also raises doubts on the validity of interpretive

methods, since trivial differences can lead to conflicting interpretations, even when the
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model’s prediction remains unchanged.

Despite growing attention to the robustness of interpretability in CNNs and trans-

formers applied to unimodal domains (vision or language) [8, 20], the literature lacks

systematic studies on the sensitivity of interpretations in multimodal models, such as

CLIP. Given the widespread adoption of these models in high-impact scenarios, this gap

represents both a practical and scientific risk that must be addressed.

1.1 Objectives

In this context, this work aims to investigate the sensitivity of interpretability

methods when applied to the CLIP model, a representative vision-language transformer.

The study focuses on evaluating how small perturbations in the input data impact the

consistency and reliability of the resulting explanations. By conducting a systematic

experimental analysis, the objective is to uncover the current limitations of interpretability

techniques in VLMs and to offer empirical insights that inform the development of more

stable and trustworthy approaches. Ultimately, the findings seek to contribute to the

broader goal of ensuring safer and more transparent deployment of multimodal models in

real-world scenarios.
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2 STATE OF THE ART

This chapter aims to provide an overview of the relevant literature that forms the

foundation for this work. It is organized into three main sections. Section 2.1 intro-

duces Visual Language Models (VLMs), with a particular emphasis on CLIP, outlining

their architectures, training paradigms, and recent developments in the field. Section

2.2 reviews the landscape of interpretability methods in artificial intelligence, focusing on

techniques commonly applied to deep neural networks and multimodal models. Finally,

Section 2.3 presents recent findings on the sensitivity of interpretation methods, high-

lighting the challenges related to their stability and robustness when applied to models

like CLIP. Together, these sections establish the theoretical and empirical background

necessary for understanding the motivations and contributions of this work.

2.1 Visual Language Models

The intersection between computer vision and natural language processing has

given rise to a new class of machine learning systems known as Visual Language Models

(VLMs) [9]. Unlike traditional systems that operate on either images or text in isola-

tion, these models are designed to jointly process and integrate information from both

visual and textual modalities. VLMs enable cross-modal reasoning, making it possible for

machines to understand and generate connections between what they see and what they

read. [1,9] This opens the door to a variety of tasks such as image captioning [21], visual

question answering [22], semantic retrieval [23], and zero-shot classification [10].

The growing interest in VLMs reflects their potential to serve as general-purpose

models in a wide range of domains [9]. Their capacity to interpret images in the context

of natural language makes them especially useful in applications where labeled data is

limited or impractical to obtain [24]. More importantly, the ability to perform zero-shot

learning, where the model can classify or describe unseen data without task-specific fine-

tuning [10], makes VLMs a powerful solution for scalable and adaptable AI systems.

Enabled by the large data available on the internet, authors began to train a visual

language multi-modal system to predict captions on images, first

One of the most influential VLMs to date is CLIP (Contrastive Language–Image

Pretraining), introduced by Radford et al. [1]. CLIP departs from traditional supervised
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Figure 1: Summary of CLIP approach to a multi model caption predictor. For
instance, CLIP jointly trains an image encoder and a text encoder to predict the correct
pairings of a batch of (image, text) training example. At test time the learned text
encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions
of the target dataset’s classes. Figure reproduced from [1].

learning paradigms by leveraging a dataset of 400 million image-text pairs collected from

the web. Rather than being trained to recognize a fixed set of labels, CLIP learns to align

visual and textual information in a shared embedding space. This strategy allows the

model to generalize effectively to a wide variety of downstream tasks using only natural

language prompts, without requiring task-specific retraining [1].

At the core of CLIP’s design are two separate but jointly trained components:

an image encoder and a text encoder. The image encoder processes input images to

generate visual embeddings, while the text encoder transforms textual descriptions into

corresponding language embeddings. These embeddings are projected into a common

multimodal space, where similarity is computed, typically using cosine similarity. During

inference, CLIP determines the relationship between an image and a set of candidate texts

by measuring their proximity in this shared space.

The image encoder used in CLIP is most commonly based on the Vision Trans-

former (ViT) architecture. CNN approaches were used initially but encountered diffi-

culties efficiently scaling this method. Unlike CNNs, which rely on spatial hierarchies,

ViTs divide the input image into fixed-size patches and treat each patch as a token in a

sequence. These tokens are embedded and passed through a series of self-attention lay-

ers, allowing the model to capture long-range dependencies and contextual relationships

across the entire image [25]. This design not only offers flexibility in representing complex

visual features but also makes it possible for CLIP to improve training efficiency, scaling
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to bigger datasets.

On the textual side, CLIP employs a transformer model similar to those used by

Vaswani et al. [26] in LLMs. The input text is tokenized and passed through multiple

layers of self-attention and feed-forward networks. The model outputs a dense vector

representation of the sentence that summarizes the semantic content of the sequence.

This representation is then projected into the shared embedding space, making it directly

comparable to the visual embedding of an image [1].

A key innovation of CLIP is its training objective, which relies on contrastive learn-

ing. Given a batch of image-text pairs, the model is trained to maximize the similarity

between the correct pairs and minimize it for all others. This is formalized using a con-

trastive loss function based on the InfoNCE objective [27]. By training in this way, CLIP

effectively learns a bidirectional alignment between vision and language, enabling robust

zero-shot generalization across a wide range of datasets and tasks.

Since the introduction of CLIP, Visual Language Models (VLMs) have made sig-

nificant progress in various aspects. These advancements can be divided into three main

areas: (1) Pre-training objectives have evolved from using a single contrastive objective

to integrating multiple hybrid objectives. Early VLMs like CLIP relied primarily on

contrastive learning to align images and text, but recent models such as FLAVA [28]

and FIP [29] combine contrastive, alignment, and generative objectives to improve per-

formance and robustness in downstream tasks. (2) Pre-training frameworks have also

advanced, with early models using two-tower architectures for image and text process-

ing. More recent approaches, such as Single-Tower Transformers [30], now use unified

networks, reducing GPU memory usage and improving the efficiency of communication

between modalities. (3) Downstream tasks have shifted from simple image-level recogni-

tion to more complex tasks such as object detection and semantic segmentation. Models

like DETECTCLIP [31] and SEGCLIP [32] demonstrate CLIP’s ability to handle dense

prediction tasks that require understanding spatial relationships and fine-grained details

in images.

These developments highlight how recent VLMs have expanded upon CLIP’s frame-

work, improving their flexibility and performance, especially in more complex and diverse

real-world applications. In addition, the introduction of SigLIP 2 [33] builds upon the

success of CLIP by incorporating advancements such as multilingual training, enhanced lo-
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calization, and dense feature extraction, providing improvements in both vision-language

understanding and dense prediction tasks.

Despite the emergence of several newer VLMs, CLIP remains one of the most in-

fluential and widely adopted models in the field, largely due to its strong performance

in zero-shot tasks across a variety of downstream applications. As highlighted in recent

surveys [9], CLIP has set the benchmark for vision-language understanding and contin-

ues to be a foundational model for both academic research and industrial applications.

This enduring relevance and its ability to generalize across diverse tasks make CLIP the

ideal model for our experiment, allowing us to assess the sensitivity and robustness of

interpretability methods within a well-established framework.

2.2 Interpretability in artificial intelligence

Figure 2: Comparison of heat maps from different visual explanations. They
are provided for the matching score between the image and the specific text prompts,
which can be nouns (e.g., car, dog) or verbs (e.g., holding, standing). Figure reproduced
from [2]

Interpretability in artificial intelligence (AI) refers to the ability to understand and

explain the decision-making processes of a model. It is a critical aspect, particularly in

the context of deep learning models, which often operate as ”black boxes” [34]. These

models, including convolutional neural networks (CNNs), transformers, and multimodal

models, are typically too complex for humans to intuitively grasp how decisions are made.
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Interpretability ensures that AI systems can be trusted, and it enables practitioners to

identify errors, understand limitations, and increase user confidence [17].

For complex AI systems, such as CLIP, interpretability plays a pivotal role in ensur-

ing the reliability and safety of their deployment, especially in high-stakes applications like

healthcare, finance, and law, where incorrect decisions can have severe consequences [17].

By making model decisions understandable and transparent, interpretability methods

help build trust among users and stakeholders, facilitate compliance with regulations,

and improve the reliability and fairness of AI-driven decisions [34,35].

Interpretability methods can be categorized based on the scope of their explana-

tions: global explanations aim to clarify the model’s overall behavior, while local explana-

tions focus on individual predictions [36]. Among local methods, CAM-derived techniques,

including CAM [37], Grad-CAM [38], and Grad-CAM++ [39] generate saliency maps by

linearly combining activation maps from intermediate layers, using feature importance

scores as weights. In particular, Grad-CAM computes these weights via global average

pooling of the gradients flowing from the prediction layer. In contrast, perturbation-based

approaches, like RISE [40] and LIME [35], estimate feature relevance by systematically

modifying input regions and observing the resulting changes in model output, offering an

architecture-agnostic yet often more computationally intensive alternative.

While intuitive and architecture-agnostic, these methods exhibit high computa-

tional overhead and sensitivity to perturbation design. Shapley-value approaches [41] are

grounded in cooperative game theory and provide theoretically rigorous attribution but

face scalability constraints in large-scale vision-language models. Similarly, attribution

propagation methods, such as Layer-wise Relevance Propagation (LRP) [42], decompose

predictions recursively based on Deep Taylor Decomposition principles, propagating rele-

vance from outputs to inputs, though they too encounter scalability challenges in complex

models.

The emergence of transformer architectures has led to specialized interpretabil-

ity techniques that leverage self-attention mechanisms, including attention rollout [43]

and gradient-based adaptations such as Transformer interpretability [44] and GAME [45].

However, when applied to multimodal transformers like CLIP, these methods often fall

short due to the sparse softmax attention patterns, resulting in fragmented or misleading

explanations [1]. Moreover, CLIP-specific interpretability methods face significant lim-
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itations: cosine similarity maps between localized image features and text embeddings

often reflect bottom-up feature alignment without verifying their actual contributions to

the final predictions, while information bottleneck approaches, such as M2IB [46], rely

heavily on hyperparameter tuning, hindering their practical deployment.

To address these challenges, gradient-driven methods like Grad-ECLIP [2] offer a

principled solution by using top-down gradient attribution to identify the features that

have the most influence on predictions, thereby bypassing the need for attention maps or

cosine similarity. Similarly, the CLIP Surgery [47] approach aligns with this methodology

by providing an architecture modification that addresses the inconsistency in self-attention

and eliminates redundant features, further improving CLIP’s explainability without fine-

tuning the model. While these methods offer promising directions, their effectiveness

depends not only on the accuracy of their explanations but also on their robustness to

variations in input and model configurations—an aspect increasingly recognized as critical

in recent studies and further discussed in the next section.

2.3 Sensitivity of interpretability methods

As interpretability methods become more integrated into high-stakes AI applica-

tions, a growing body of research has exposed a concerning limitation: their sensitivity to

small perturbations in input data or model settings [19,48]. This phenomenon, known as

explanation sensitivity, refers to the degree to which an interpretability method’s output

changes in response to minor, non-adversarial perturbations, assuming the predicted label

remains constant.

Such instability can lead to significant variations in the generated explanations,

even when the model’s prediction remains unchanged, raising doubts about the reliability

and stability of these techniques. Consequently, interpretability must be evaluated not

only in terms of informativeness but also in terms of robustness, especially when explana-

tions are used to support decisions in domains such as medicine, finance, and autonomous

systems [17].

In the field of deep learning, several studies have highlighted the fragility of inter-

pretation methods. Ghorbani et al. [19] demonstrated that for conventional deep neural

networks (DNNs), small adversarial perturbations to the input could drastically alter the

attribution maps, even when the model’s output label remained unchanged. For instance,
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in the case of methods like Grad-CAM and Integrated Gradients, adversarial noise can

cause a significant shift in the saliency maps, undermining the reliability of the expla-

nation. Similarly, Bansal et al. [49] pointed out that attribution methods are highly

sensitive to hyperparameters such as the random seed, the number of perturbations, or

the sample size. A change in these settings can lead to drastically different explanations,

which not only complicates the reproducibility of experiments but also casts doubt on the

correctness of the explanations.

Interestingly, most existing sensitivity studies focus on the models themselves and

their robustness to perturbations, rather than on the interpretation methods. While

many works examine how adversarial attacks affect model performance, fewer address how

these attacks impact the interpretability of the models’ decisions [50]. For example, [51]

studied the robustness of CLIP models to visual shifts, such as changes in pose, texture,

or lighting. They found that CLIP models are not uniformly robust across different

visual factors, which directly affects the interpretability of the model. When applied to

CLIP, traditional interpretability methods like saliency maps can produce inconsistent or

misleading results, especially under perturbations. This suggests that while models like

CLIP show strong zero-shot performance across various shifts, their interpretability is far

more fragile and sensitive to input variations.

Several interpretability methods, such as LIME, SmoothGrad, and Meaningful

Perturbation have been shown to be highly sensitive to hyperparameter choices like ran-

dom seeds, iteration counts, and patch sizes—leading to inconsistent explanations across

runs [49]. In multimodal models like CLIP, the problem is exacerbated by sparse and

fragmented attention patterns, making explanations even more unstable [2]. Although

methods like Grad-ECLIP and CLIP Surgery aim to improve attribution quality, their

explanations still fluctuate under minor input changes or model variations. While adver-

sarial training improves the robustness of predictions and partially stabilizes explanations,

ensuring robust interpretability remains an open challenge.

Moving forward, more attention must be given to understanding and mitigating

the fragility of interpretation techniques, especially in multimodal models like CLIP. De-

veloping sensitivity benchmarks and introducing methods that are less sensitive to input

changes and hyperparameter variations will be key in advancing the trustworthiness of

interpretability in deep learning systems.
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In summary, while there has been significant progress in developing interpretabil-

ity methods for deep learning models, the sensitivity of these techniques remains a crit-

ical challenge. The sensitivity of CLIP and similar multimodal models presents unique

challenges for producing robust, reliable, and consistent explanations. Addressing these

issues is crucial for the deployment of AI systems in real-world applications where trust

and safety are foremost.
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3 SENSITIVITY EVALUATION PIPELINE FOR CLIP

INTERPRETABILITY

This section describes the experimental pipeline designed to assess the sensitivity of

interpretation methods applied to CLIP-based models. The pipeline, shown in the Figure

3, evaluates how consistent each explanation method remains under small perturbations,

using a multimodal dataset, a diverse set of interpretability techniques, and multiple

similarity metrics.

Figure 3: Visualization of the method pipeline. The workflow begins with a pair of
original and perturbed images from the RIVAL-10 dataset being input into CLIP along
with the explanation method. This generates a heatmap and a similarity matrix, which
are then used to compute metrics for comparing different methods.

A subset of the RIVAL10 dataset [52] was selected for the experiments, as it pro-

vides a rich multimodal benchmark specifically designed to support model interpretability

and robustness analysis. RIVAL10 consists of over 26,000 high-resolution images de-

rived from 20 ImageNet-1k [53] classes, organized into 10 semantically distinct categories

aligned with CIFAR-10 [54] (e.g., bird, dog, truck, ship). A representative subset was

chosen, consisting of 5,285 images of this dataset, to maintain computational tractability

while preserving visual diversity across classes and attribute types. This subset enables

probing the sensitivity of CLIP explanations with respect to meaningful visual concepts

across multiple attribution methods. Furthermore, since the dataset includes paired im-

age and attribute-level localization, it allows for more precise evaluation of explanation

consistency under perturbed inputs, serving as an ideal benchmark for vision-language
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model interpretability.

To evaluate the sensitivity of interpretability methods for CLIP, nine techniques

that reflect a variety of attribution strategies and theoretical motivations were selected.

Grad-CAM [38] generates visual explanations by combining feature maps from

intermediate layers with the gradients of the output, highlighting regions deemed impor-

tant for the prediction. While originally designed for CNNs, its application to CLIP’s

ViT-based architecture often results in spatially imprecise and noisy heatmaps.

GAME [45] extends relevance propagation to Transformer-based models by inte-

grating gradients across all attention heads and layers. It employs Layer-wise Relevance

Propagation (LRP) to trace the influence of input tokens through the model, offering a

general framework for interpreting attention-based architectures.

Grad-ECLIP [2], developed specifically for CLIP, decomposes the image-text simi-

larity score and backpropagates it through spatial and channel-wise features. It mitigates

the sparsity and instability of standard attention maps by introducing a loosened attention

mechanism, yielding high-resolution and semantically coherent saliency maps.

Self-Attention explanations visualize raw attention weights from the Transformer

encoder, assuming that these reflect the model’s focus. However, attention patterns in

deeper layers tend to become diffuse or uniform [43], limiting their interpretability.

Attention Rollout [43] attempts to overcome this by aggregating attention weights

across layers, estimating the influence of input tokens on the output. While it improves

alignment with early layer signals, it cannot distinguish between positive and negative

contributions, potentially producing ambiguous maps.

CLIP Surgery [47] modifies the inference process of CLIP to enhance attribution

stability. It introduces consistent self-attention mechanisms and a dual-path structure

that reduces noisy activations and improves interpretability without retraining the model.

RISE [40] generates saliency maps by applying random binary masks to the input

and aggregating the model’s outputs. As a black-box method, it is architecture-agnostic

but computationally expensive and prone to producing noisy or unstable heatmaps under

small perturbations.

M2IB [46] applies the information bottleneck principle to multimodal attribution.

It learns latent representations that preserve only the features most relevant to the image-

text alignment, enabling semantically meaningful explanations. However, it is highly
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sensitive to hyperparameter settings and optimization heuristics.

MaskCLIP [23] extracts dense patch-level features from CLIP’s image encoder and

applies the text embeddings as fixed classifiers for pixel-wise predictions. By directly lever-

aging internal feature representations, it enables interpretable outputs without altering

model weights or requiring fine-tuning.

These methods were selected for their diversity in approach and their prominence

in recent literature, in addition to the available implementation on the GRAD-ECLIP [2]

repository, enabling a systematic comparison of their behavior under controlled pertur-

bations.

To evaluate the sensitivity and stability of the interpretability methods under con-

trolled perturbations, we employed a combination of similarity metrics commonly used

in the literature. Following the methodology introduced by Ghorbani et al. [19], we used

Spearman’s rank correlation and Top-K Intersection to assess changes in the relative and

absolute importance of input features before and after perturbation.

Spearman’s Rank Correlation (ρ) measures the monotonic relationship between two

ranked variables, reflecting the consistency in the ordering of attribution scores. Given

two attribution vectors x and y with n elements, their ranks are denoted by R(xi) and

R(yi). The correlation is computed as:

ρ = 1− 6
∑n

i=1 (R(xi)−R(yi))
2

n(n2 − 1)
(3.1)

This metric ranges from −1 to 1. A value of ρ = 1 indicates perfect agreement in ranking

(high stability), ρ = 0 denotes no correlation, and ρ = −1 indicates perfect inverse ranking

(complete instability).

Top-K Intersection quantifies the proportion of overlap between the K most salient

features before and after perturbation. Given the sets of top-K indices Tx and Ty from the

original and perturbed attribution maps respectively, the Top-K Intersection is defined

as:

TopK =
|Tx ∩ Ty|

K
(3.2)

This metric ranges from 0 (no overlap) to 1 (identical top-K features), directly reflecting

the stability of the most relevant input regions.

Additionally, motivated by the analysis in Bansal et al. [49], we included the Struc-
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tural Similarity Index (SSIM) to capture perceptual and spatial inconsistencies in the

attribution maps, particularly under hyperparameter variations or input noise. SSIM

compares local patterns of pixel intensities between two images x and y and is computed

as:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.3)

where µx, µy are the means, σ2
x, σ

2
y the variances, and σxy the covariance between x and

y; C1 and C2 are constants to stabilize the division. SSIM values range from −1 to 1,

with 1 indicating perfect structural similarity.

Finally, we computed the Cosine Similarity Difference, which captures the variation

in semantic alignment between the image and text caused by perturbations. Given a

similarity score sorig for the original input and spert for the perturbed input, the metric is

defined as:

∆s =
spert − sorig

sorig
(3.4)

This relative change quantifies how much the matching strength between the image and its

associated text shifts due to perturbation. Higher absolute values of ∆s indicate greater

semantic instability, while values close to zero suggest high robustness of the model’s

multimodal representation.

Together, these four metrics provide a robust and comprehensive framework for

quantifying the sensitivity of interpretability methods in vision-language models, captur-

ing ranking stability, feature overlap, spatial coherence, and semantic alignment consis-

tency.
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4 EXPERIMENTS AND RESULTS

This section will introduce the experiments setup that was conducted to investi-

gate the state-of-the-art interpretability methods to understand CLIP decisions, followed

by the results of each metric analysis. The aim is to evaluate the visual explanation

quantitatively by providing a pair of an original picture and one attacked by FGSM-like

perturbation.

4.1 Experiment setup

The repository Grad-ECLIP, developed by Zhao et al. [2], was the starting point to

generate explanations for the CLIP model. This choice was made because the repository

provided the necessary tools for computing the gradient maps. It is important to mention

that the CLIP model used was the ”ViT-B/16”.

The image input perturbation was inspired by the Fast Gradient Sign Method

(FGSM) [55] implementation by the torchattacks library1. While FGSM focuses on gen-

erating adversarial examples to maximize the model’s classification loss, the perturb func-

tion on this work pipeline is tailored for multimodal models like CLIP. Our perturbation

function computes the gradient of the image-text similarity score and modifies the image

in the direction that increases this similarity. This design choice allows us to introduce

small, targeted changes that do not flip the model’s prediction, but can still significantly

affect the generated explanations. The goal is to assess the sensitivity and robustness of

interpretability methods under subtle, semantically consistent perturbations.

The image input perturbation was inspired by the Fast Gradient Sign Method

(FGSM) [55] implementation from the torchattacks library. While FGSM traditionally

generates adversarial examples by maximizing the classification loss, in this work we adapt

its principle to multimodal models like CLIP. Our perturbation function computes the

gradient of the image-text similarity score and modifies the image in the direction that

increases this similarity. This design choice allows us to introduce small, targeted changes

that do not flip the model’s prediction, but can still significantly affect the generated ex-

planations. The goal is to assess the sensitivity and robustness of interpretability methods

1https://adversarial-attacks-pytorch.readthedocs.io/en/latest/_modules/torchattacks/

attacks/fgsm.html#FGSM

https://adversarial-attacks-pytorch.readthedocs.io/en/latest/_modules/torchattacks/attacks/fgsm.html#FGSM
https://adversarial-attacks-pytorch.readthedocs.io/en/latest/_modules/torchattacks/attacks/fgsm.html#FGSM
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under subtle, semantically consistent perturbations. Future work may also explore per-

turbations that decrease the similarity to evaluate contrastive behavior.

The perturbation coefficient (ϵ) defines the degree to which the image is modified.

Common values used in the literature are applied in this work, such as the default value

of ϵ = 8/255 in the torchattacks implementation. Four different values of ϵ (4/255, 8/255,

16/255, and 32/255) were used in the experiments to observe how heatmaps changed

across different interpretation methods. By exploring the impact of various levels of

adversarial perturbations on CLIP inputs, it is possible to identify which methods are

more robust and what characteristics contribute to their resilience.

The results are organized by evaluation metric. Section 4.2 presents the Spear-

man’s rank correlation results, which measure the consistency of feature rankings under

perturbation. Section 4.3 describes the SSIM scores, evaluating the structural similarity

of saliency maps. Section 4.4 reports the Top-100 Intersection scores, focusing on the

stability of the most important regions. Section 4.5 analyzes the relationship between

Spearman correlation and attribution similarity. Section 4.6 discusses the relationship

between SSIM and similarity difference. Finally, Section 4.7 presents the relationship

between Top-K intersection and similarity difference, providing further insight into the

trade-offs between visual stability and semantic sensitivity.
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4.2 Spearman’s rank correlation per norm of perturbation

Figure 4: Interpretation methods spearman’s rank correlation per norm of pertubation.

Spearman’s rank correlation coefficient (ρ) quantifies the monotonic relationship

between two ranked variables, providing a non-parametric measure of explanation stability

under perturbations. Following Ghorbani et al. [19], we employed this correlation metric to

evaluate how consistently interpretability methods rank salient features in CLIP’s saliency

maps when subjected to adversarial noise of varying magnitudes (ϵ = 4/255, 8/255,

16/255, 32/255). This metric is particularly suitable for three interrelated reasons.

First, its focus on ordinal consistency rather than linear relationships makes it

ideal for comparing saliency maps, where the exact magnitude of activation values may

vary significantly between methods, but the relative ranking of important regions carries

meaningful interpretation. This property allows fair comparison across different expla-

nation techniques that might use disparate activation scales. Second, the rank-based

approach demonstrates inherent robustness to outliers in saliency map activations, a crit-

ical feature given that explanation methods frequently produce extreme values in isolated
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pixels due to artifacts in gradient computation or attention mechanisms. Third, and most

fundamentally, Spearman correlation directly assesses whether perturbations preserve the

hierarchical importance of image regions, which aligns with the cognitive principle that hu-

mans prioritize relative rather than absolute feature importance when interpreting visual

explanations. This last characteristic proves especially valuable for CLIP’s multimodal

context, where text-guided attention often creates non-uniform importance distributions

across image regions.

As shown in Figure 4, the ECLIP, Surgery, and M2IB methods displayed the

highest robustness among all evaluated techniques. For example, ECLIP started with

ρ = 0.655 at the lowest perturbation level and declined gradually to ρ = 0.615 at the

highest. CLIP Surgery and M2IB followed a similar trend, with Surgery decreasing from

0.636 to 0.588 and M2IB from 0.605 to 0.538. These results suggest a moderate but

consistent degradation in feature ranking, indicating that these methods are sensitive to

perturbations while still retaining a relatively stable attribution hierarchy.

A group of methods including Grad-CAM, GAME, Rollout, MaskCLIP, and Self-

Attention exhibited intermediate robustness. Their Spearman correlation scores declined

gradually across perturbation levels, with variations in the range of approximately 0.05

to 0.09. This indicates moderate sensitivity to perturbations: while the ranking of salient

regions is not fully preserved, it does not collapse entirely. These methods are thus

partially robust, though not as stable as ECLIP, Surgery, or M2IB.

The RISE method demonstrated the lowest correlation across all levels, with ρ

values consistently below 0.01. This implies that even small perturbations drastically

alter the order of salient regions, rendering RISE highly unstable and unreliable in terms

of ranking consistency.

Overall, the results suggest that these methods appear to retain some structural

consistency in their explanations, yet still respond to input perturbations in ways that

may affect interpretability trust. Notably, the extreme instability of RISE, with near-zero

rank consistency, highlights the limitations of certain perturbation-based approaches in

multimodal contexts.
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Figure 5: SSIM scores of interpretation methods under increasing perturbation norms.

4.3 SSIM score per norm of perturbation

The Structural Similarity Index Measure (SSIM) provides a perceptually grounded

comparison between images, focusing on luminance, contrast, and structure. Unlike pixel-

wise metrics, SSIM provides a more holistic and human-aligned assessment of visual

changes. When applied to saliency maps, SSIM quantifies the degree to which the visual

structure of an explanation is preserved after perturbation. This is especially important

for interpretability in vision-language models, where the spatial coherence of highlighted

regions influences human trust in the explanation.

Figure 5 illustrates how different interpretability methods behave under increasing

perturbation levels (ϵ = 4/255, 8/255, 16/255, and 32/255). The Self-Attention method

consistently achieved the highest SSIM scores among all techniques, starting at 0.877 and

dropping slightly to 0.868. This indicates that its explanations are highly stable in terms

of spatial layout. Rollout also demonstrated strong performance, with scores ranging from

0.731 to 0.705, suggesting that its visual outputs remain relatively consistent even under

stronger perturbations. However, it is worth noting that high SSIM scores alone do not
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guarantee meaningful explanations; in some cases, these methods may simply produce

static or low-resolution attribution maps that change little because they fail to capture

input-specific information, rather than due to true robustness.

In contrast, methods like Grad-CAM, GAME, Surgery, M2IB, and MaskCLIP pre-

sented moderate SSIM values, generally fluctuating between 0.54 and 0.61. These results

suggest partial robustness, where some structural degradation occurs, but not enough to

severely distort the overall saliency map. ECLIP, on the other hand, showed slightly lower

performance, with scores decreasing from 0.56 to 0.52, indicating comparatively higher

sensitivity to perturbations in spatial structure.

Finally, RISE again exhibited the lowest SSIM values, consistently around 0.386

across all perturbation levels. This low score indicates a high degree of structural insta-

bility, confirming that its explanations are not spatially reliable under perturbations.

Overall, the SSIM analysis reveals that while some methods are able to preserve

perceptual structure well, others degrade significantly, which can hinder their usefulness in

contexts requiring stable and interpretable visual outputs. SSIM thus complements rank-

based metrics by offering a perceptual perspective on the robustness of visual explanations.

4.4 Top-100 Intersection per norm of perturbation

The Top-K Intersection metric evaluates the overlap between the K most salient

pixels or regions in the attribution maps before and after perturbation. In this experi-

ment, it was fixed K = 100 to compare the top-100 most important pixels as ranked by

each interpretability method. This metric directly reflects the stability of the most crit-

ical regions identified by the model and is particularly useful for assessing robustness in

practical settings where explanations are typically visualized using thresholded heatmaps.

As shown in Figure 6, ECLIP achieved the most stable performance across per-

turbation levels, starting with a Top-K Intersection score of 0.185 at ϵ = 4/255 and

decreasing gradually to 0.152 at ϵ = 32/255. Rollout followed closely, with scores rang-

ing from 0.186 to 0.133. Notably, Rollout exhibited a drop of 0.053 in intersection score

across the perturbation range, reflecting a moderate but steady decline in the consistency

of high-importance regions.

MaskCLIP and Self-Attention also maintained relatively robust outputs, beginning

at 0.163 and 0.154 respectively, and ending at 0.123 and 0.119. These results indicate that
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Figure 6: Top-100 intersection scores of interpretation methods under increasing pertur-
bation norms.

both methods manage to retain a significant portion of their top-ranked features under

noise, although slightly less stable than ECLIP or Rollout.

Grad-CAM, GAME, M2IB, and Surgery showed intermediate robustness. Their

intersection scores started in the range of 0.13–0.14 and declined to values near 0.10 or

below. These drops suggest moderate sensitivity, with some methods, like Surgery and

GAME, exhibiting more pronounced degradation in attribution consistency.

RISE, once again, demonstrated the lowest performance. Its scores remained

around 0.002 across all perturbation levels, indicating near-complete instability in preserv-

ing salient features. This reinforces previous findings that perturbation-based methods

like RISE are particularly vulnerable in multimodal contexts.

In summary, Top-K Intersection analysis corroborates the results observed with

Spearman and SSIM: gradient and attention based methods like ECLIP and Rollout

tend to exhibit higher stability under perturbations, while methods such as RISE fail to

retain consistency in highlighting important input regions.
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4.5 Relationship between Spearman’s rank correlation and similarity difference

Figure 7: Relationship between similarity difference and Spearman’s rank cor-
relation coefficient for each interpretability method. Each point represents a
perturbed sample. The analysis assesses the robustness of explanations by showing how
changes in similarity affect the consistency of feature importance rankings. Higher Spear-
man values indicate more stable and reliable explanations despite perturbations

Sections 4.2, 4.3, and 4.4 evaluate different metrics independently. However, it is

also important to examine how the same model behaves across multiple metrics. In this

section, we explore the relationship between Spearman’s rank correlation coefficient and

the similarity difference. Figure 7 presents scatter plots that illustrate this relationship

for each interpretability method. This analysis reveals how variations in the explanation

maps, measured by vector-based similarity difference, affect the consistency of ranked

feature importance across perturbations.

Analyzing the plots qualitatively the ECLIP and Surgery demonstrated the most

stable behavior among all methods. Despite increasing similarity differences, the major-
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ity of its samples maintained a high Spearman coefficient, frequently above 0.6. This

indicates that the relative ranking of salient regions remains preserved even when visual

explanations differ significantly, supporting the method’s robustness.

Grad-CAM, MaskCLIP, M2IB, Rollout and Self-Attention showed a more interme-

diate behavior. Their plots revealed broader dispersions and a tendency toward slightly

lower Spearman values as similarity difference increased. Besides that, these methods

present dense clusters between 0.5 and 0.7 Spearman’s coefficient range across most levels

of similarity difference. Notably, Maskclip showed less degradation in rank correlation

than other methods, reflecting moderate resilience.

RISE was the least robust method. Its Spearman values remained predominantly

below 0.3, independent of the similarity difference. Such poor correlation indicates that

RISE fails to maintain stable rankings of important regions under minor input changes,

undermining its reliability.

In summary, this analysis reinforces previous findings: methods such as ECLIP

and Surgery are better suited for applications demanding stable interpretability, while

techniques like RISE exhibit extreme sensitivity and should be applied with caution in

high-stakes or reliability-critical contexts.

4.6 Relationship between SSIM score and similarity difference

Figure 8 shows scatter plots relating the SSIM score to the similarity difference for

each interpretability method. This analysis helps clarify whether structural consistency

in the saliency maps is preserved when the underlying attribution vectors diverge.

Self-Attention and Rollout methods stand out with consistently high SSIM scores

across all similarity difference levels, rarely falling below 0.7. This stability indicates

that, regardless of changes in attribution vectors, these methods maintain coherent visual

explanations. A key reason for this behavior is that both are based directly on the

attention maps generated by the Vision Transformer (ViT), which tend to be stable under

small perturbations. These attention patterns reflect high-level contextual dependencies

learned across layers and are generally less sensitive to localized changes. However, this

same stability may also point to a limitation: the maps may reflect static or global

attention patterns that do not adapt well to input-specific features, potentially overlooking

subtle semantic shifts introduced by perturbations.
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Figure 8: Relationship between similarity difference and SSIM score for each
interpretability method. Each point represents a perturbed sample. This analysis
evaluates how changes in attribution vectors affect the structural consistency of saliency
maps. Higher SSIM scores indicate more stable visual explanations despite similarity
variations.

Grad-CAM, MaskCLIP, ECLIP, M2IB, GAME, and Surgery exhibit more scat-

tered patterns. Their SSIM values typically range between 0.4 and 0.8, showing a gradual

decline as similarity difference increases. This indicates that these methods are moder-

ately sensitive to vector-level changes, and while they often maintain structural features,

their visual explanations can degrade under perturbation. Among these, MaskCLIP and

Surgery appear to be slightly more resilient.

Finally, RISE displays the most unstable pattern. Its SSIM scores remain low and

dispersed across the entire range of similarity differences, underscoring its high structural

variability and weak robustness.

To sum up, this analysis shows that spatial consistency (SSIM) and attribution
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similarity do not always align. Methods like Self-Attention and Rollout preserve visual

structure even with divergent attribution vectors, while others degrade both structurally

and semantically. These findings confirm that some methods produce stable yet poten-

tially uninformative maps, reinforcing the need for multi-perspective evaluation when

assessing interpretability robustness.

4.7 Relationship between Top-K intersection and similarity difference

Figure 9: Relationship between similarity difference and Top-100 intersection
score for each interpretability method. Each point represents a perturbed sample.
This metric captures how well each method preserves the most salient regions (Top-100
pixels) under input perturbations. Higher intersection values indicate greater consistency
in attribution.

Figure 9 presents scatter plots showing the relationship between similarity differ-

ence and Top-100 intersection score across interpretability methods. This analysis offers

insight into how well each method maintains its most critical attribution regions as input
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similarity shifts.

Self-Attention stands out with a unique pattern. While its average intersection

scores are moderate, its results show the widest dispersion, covering nearly the entire

range of possible values. Notably, it frequently achieves perfect intersection scores (1.0),

indicating that in certain cases it preserves exactly the same top-100 pixels despite input

changes. However, the broad variation also suggests high inconsistency, where other

samples experience dramatic shifts in attributions. This duality reflects a structurally

unstable behavior: either fully aligned or highly divergent.

In contrast, methods like ECLIP, GAME, Surgery, Rollout, and M2IB exhibit

more homogeneous behavior. Their scatter plots share similar shapes, characterized by

moderate intersection values and significant dispersion. These methods tend to retain

a subset of key regions across perturbations, but their consistency weakens as similarity

difference grows. Although not as erratic as Self-Attention, these methods demonstrate

only partial robustness in preserving salient regions.

Meanwhile, Grad-CAM and MaskCLIP exhibit lower and more concentrated in-

tersection scores. Their values predominantly fall below 0.6, with less dispersion than the

previously discussed methods. This indicates a more stable but less adaptive behavior,

where saliency maps change modestly regardless of the degree of input variation. Such

conservativeness might reflect a tendency to highlight similar regions repeatedly, possibly

limiting sensitivity to nuanced input shifts.

Lastly, RISE performs the worst by a wide margin. Its intersection scores remain

consistently near zero across all levels of similarity difference, confirming extreme insta-

bility and suggesting that it fails to preserve any consistent attribution patterns under

perturbation.

These groupings help clarify the trade-offs between stability and sensitivity in

interpretability methods. While some methods offer high visual overlap or structural

consistency, they may do so at the cost of responsiveness to input variation, highlighting

the need for careful selection based on application context.
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5 DISCUSSION

This section analyzes the experimental findings regarding the sensitivity of inter-

pretability methods applied to the CLIP model under input perturbations. The discus-

sion is organized around four main aspects: the quantitative stability of methods, their

comparative behavior, the nature of critical cases, and the practical implications of the

observed sensitivity patterns.

5.1 Sensitivity Analysis Across Metrics

The combination of Spearman’s rank correlation, SSIM, and Top-K Intersection

metrics provided a multifaceted view of explanation stability. Overall, methods such as

ECLIP and Surgery consistently demonstrated the highest resilience across all metrics.

They maintained stable attribution rankings and preserved key salient regions, even under

increasing levels of perturbation. This suggests that these techniques are less sensitive to

small input variations, making them more reliable for use in practical applications.

In contrast, RISE showed extreme sensitivity. Its saliency maps were highly un-

stable across perturbation levels, with near-zero Spearman correlations and low spatial

consistency. As a sampling-based black-box method, RISE is affected by hyperparameter

choices and randomness [40], resulting in noisy and unreliable explanations for CLIP. This

instability significantly undermines its usefulness in settings that demand consistent and

interpretable outputs.

5.2 Behavioral Comparison Between Methods

The results revealed substantial differences in how each method responds to input

perturbations. ECLIP preserved both the semantic and spatial structure of attribution

maps, likely due to its use of gradient-guided token masking. Its architecture leverages

the gradients of the image-text matching score to generate top-down explanations that

are better aligned with the model’s decision process. Furthermore, by replacing the sparse

softmax attention with a normalized similarity map, ECLIP produces more continuous

and interpretable heatmaps that maintain high fidelity under perturbations. It also com-

bines spatial and channel weighting to enhance attribution clarity and aggregates layers
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strategically to maximize interpretability.

Surgery also demonstrated a strong ability to preserve focus on key regions de-

spite noise, reinforcing its robustness. This method was explicitly designed to overcome

common failure modes of CLIP, such as noisy activations and attention to background

regions. Through a dual-path architecture and selective pruning of feature components

(notably those associated with feed-forward networks), CLIP Surgery constructs more se-

mantically coherent attention maps. Additionally, its inference-only modifications enable

it to correct undesirable behaviors of CLIP without the need for fine-tuning, making it

highly practical and effective.

M2IB and MaskCLIP showed intermediate robustness, supported by their archi-

tectural designs. M2IB, grounded in the multi-modal information bottleneck principle,

learns to retain relevant information while suppressing irrelevant features. This results

in focused and semantically aligned attributions across modalities, even in the presence

of noise. Despite sensitivity to hyperparameter choices and occasional omission of com-

plete object regions, its explanations remained meaningful in most cases. MaskCLIP, by

leveraging dense features from the pretrained CLIP encoder and directly projecting them

onto text embeddings, maintained strong localization of target concepts without requir-

ing fine-tuning. Its ability to segment open-vocabulary phrases and resist noise makes

it suitable for robust visual grounding, although its performance slightly declines under

perturbation. Together, these methods demonstrated the capacity to produce coherent

attributions with only moderate sensitivity to input perturbations.

Grad-CAM produced inconsistent results, frequently emphasizing background el-

ements and demonstrating high sensitivity to input perturbations. This behavior can be

attributed to several known limitations. When applied to CLIP, Grad-CAM often suf-

fers from ”opposite visualizations,” where background regions are incorrectly prioritized

over foreground objects. The method tends to generate noisy activations that reduce its

class discriminativeness, especially due to its reliance on gradient information affected

by architectural aspects such as ReLU activations. Although it occasionally highlights

relevant regions, these are typically accompanied by substantial background noise. These

weaknesses limit its applicability for robust interpretability in vision-language settings.

In contrast, Self-Attention, GAME, Rollout, and RISE were the least effective due

to a combination of intrinsic methodological limitations and challenges specific to explain-
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ing CLIP. Self-Attention maps derived from raw attention weights often fail to correlate

with token importance and tend to become uniformly distributed across deeper layers.

When applied to CLIP, they frequently focus on irrelevant or background regions due

to sparse and semantically inconsistent attention patterns. GAME, designed primarily

for self-attention modules, struggles in multimodal contexts like CLIP that rely heavily

on cross-modal interactions. Its heatmaps are typically noisy and lack discriminative

precision. Rollout accumulates attention across layers without distinguishing between

positive and negative contributions, resulting in diffuse and sometimes contradictory rel-

evance scores. Finally, RISE, a perturbation-based black-box method, generates highly

sparse and computationally expensive explanations that are frequently misaligned with

the target object. Its sampling-based approximations are particularly fragile under input

variation and produce poor localization performance, especially in CLIP. Together, these

methods suffer from an inability to consistently highlight semantically meaningful regions,

reinforcing their unsuitability for robust interpretability in vision-language settings.

5.3 Critical Examples and Visual Evidence

To complement the quantitative evaluation, Figure 10 presents a qualitative com-

parison of saliency maps generated by each interpretability method, before and after

perturbation. The examples include diverse visual contexts associated with the labels

“a photo of a dog,” “a photo of a frog,” and “a photo of a plane.” These samples offer

concrete insights into the ability of each method to localize semantically relevant regions.

Among all methods, ECLIP and Surgery provided the most coherent and consis-

tent explanations. Their saliency maps remained stable under perturbations and accu-

rately highlighted the core regions corresponding to the described objects, such as the

dog’s face, the frog’s body, and the fuselage of the plane. Minor shifts in attention were

observed, but the primary focus of the attribution was preserved.

M2IB and MaskCLIP followed closely in performance. While some variation in

activation patterns occurred after perturbation, these methods still concentrated their

attention around the main object mentioned in the label. Their explanations tended to

be more spatially aligned with the target concepts compared to most other techniques.

Grad-CAM displayed more erratic behavior. Although it occasionally emphasized

relevant regions, for instance, parts of the animal bodies, it also highlighted unrelated
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Figure 10: Visual comparison of saliency maps before and after perturbation for
each interpretability method. Rows represent a original and perturbed input for three
different labels and columns correspond to interpretability methods. The perturbation
coefficient used was ϵ = 8/255

elements in the background. This inconsistency compromises the reliability of its attri-

butions in high-sensitivity scenarios.

On the other hand, Self-Attention, GAME, Rollout, and RISE failed to consis-

tently identify the key object in the image. In multiple examples, their attributions were

scattered across irrelevant areas or entirely ignored the regions associated with the label.

Notably, RISE produced highly sparse heatmaps, with low activation over any meaningful

region. The other three methods displayed isolated or misaligned points of attention that

did not correspond to the semantic content of the prompt.

These qualitative findings support the previous metric-based analysis, confirming

that only a subset of methods maintain robust, semantically meaningful explanations

when exposed to input perturbations. In particular, ECLIP and Surgery emerge as strong

candidates for reliable interpretability in vision-language models.
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6 CONCLUSION

This work investigated the sensitivity of different interpretability methods when

applied to the ”ViT-B/16” CLIP model, a representative vision-language transformer.

Through a combination of quantitative metrics (Spearman’s rank correlation, SSIM, and

Top-K Intersection) and qualitative heatmap analysis, the robustness of each method was

systematically assessed under increasing levels of input perturbation.

The results indicate a significant variation in robustness across methods. ECLIP

and Surgery consistently outperformed others, showing high stability and semantic align-

ment in their explanations. These methods effectively addressed limitations typical of

CLIP, such as attention to background and noisy activations, through gradient-based

strategies or architectural modifications. M2IB andMaskCLIP also demonstrated promis-

ing performance, producing explanations that remained meaningful even when perturbed,

although with moderate degradation.

On the other hand, methods such as Grad-CAM, Self-Attention, GAME, Rollout,

and RISE struggled to maintain relevance under noise. Their heatmaps frequently shifted

toward irrelevant or dispersed regions, undermining their reliability in sensitive or high-

stakes applications.

These findings underscore the need to critically assess not only the interpretability

quality of a method in static conditions, but also its stability under real-world scenarios,

where input variability is common. Interpretability techniques that are unstable can lead

to misleading or inconsistent explanations, limiting their applicability in domains that

demand transparency and trust.

Future research should aim to develop interpretability methods that are both se-

mantically faithful and robust to perturbations, ideally grounded in the internal reasoning

mechanisms of multimodal models. Studies could also expand the analysis to other vision-

language models, such as SigLIP, which would provide valuable insights into whether the

sensitivity patterns observed in CLIP generalize across architectures. Additionally, eval-

uating a broader set of interpretability approaches could help uncover strategies that are

naturally more robust. This work presented experimental evidence, however, future inves-

tigations could also theoretically analyze each interpretation method to identify aspects

that justify the results found. The establishment of standard benchmarks for sensitiv-
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ity analysis, alongside human-in-the-loop assessments of explanation quality, would be

instrumental in advancing the interpretability field toward more practical and reliable

solutions.

Ultimately, this work contributes to the growing field of robust interpretability for

vision-language models and provides a framework for evaluating explanation stability, a

key requirement for trustworthy AI systems.
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