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RESUMO 

O setor de Arquitetura, Engenharia, Construção e Operações (AECO) tem obtido vantagens 

com a geração e o gerenciamento de dados por meio do Building Information Modeling (BIM). 

Esse aumento de dados disponíveis pode ser fundamental para impulsionar a inovação ao ser 

analisado com modelos de Inteligência Artificial (IA). Nesse cenário, a busca por projetos 

sustentáveis inteligentes tem se consolidado como estratégia para promover o desenvolvimento 

sustentável e reduzir a dependência de recursos não renováveis. A relevância do tema se 

evidencia pelo fato de os edifícios consumirem cerca de 40% da energia global e serem 

responsáveis por 33% das emissões de gases de efeito estufa, em grande parte devido à baixa 

eficiência energética. Diante desse problema, esta pesquisa tem como objetivo desenvolver 

soluções automatizadas BIM orientadas por IA para apoiar o planejamento energético de 

edifícios sustentáveis, com foco na simulação e otimização de sistemas fotovoltaicos tanto em 

projetos novos quanto em retrofit. A investigação adota uma abordagem multimétodo, 

combinando revisão sistemática de literatura, desenvolvimento de algoritmos de aprendizado 

profundo e implementação de processos automatizados de modelagem em BIM. 

Primeiramente, foi realizado um mapeamento da integração entre BIM e IA, identificando 

domínios de aplicação, problemas abordados, resultados alcançados e capacidades 

fundamentais de ambas as tecnologias. Em seguida, foi proposto e testado um algoritmo de 

aprendizado profundo orientado por BIM para estimar a produção de energia fotovoltaica, 

relacionando séries temporais de irradiação solar com dados extraídos automaticamente de 

modelos BIM. Os resultados demonstram que a abordagem proposta (denominada 

EnergyBIM.AI) possibilita a quantificação automática da produção de energia solar e da 

redução potencial de emissões de CO₂. Além disso, a pesquisa propõe um processo para apoiar 

a seleção e posicionamento de painéis solares em modelos BIM. Assim, esta tese evidencia que 

a integração entre BIM e IA pode transformar o planejamento energético no setor AECO, 

oferecendo processos automatizados capazes de aumentar a eficiência energética, reduzir 

emissões e apoiar o design e retrofit de edifícios sustentáveis. As principais contribuições desta 

são: (i) oferecer um framework de integração entre BIM e IA aplicado a projetos inteligentes; 

(ii) propor uma abordagem para previsão energética baseada em aprendizado profundo e 

automação em BIM; e (iii) fornecer evidências para apoiar o design e o retrofit de edifícios 

sustentáveis. 

Palavras-chave: Modelagem da Informação da Construção. Inteligência Artificial. Energia 

Solar. Sustentabilidade. Séries temporais. 

  



 
 

ABSTRACT 

The Architecture, Engineering, Construction, and Operations (AECO) sector has benefited 

from data generation and management through Building Information Modeling (BIM). This 

increased availability of data can be fundamental for driving innovation when analyzed with 

Artificial Intelligence (AI) models. In this context, the pursuit of smart sustainable projects has 

become a strategy to promote sustainable development and reduce dependence on non-

renewable resources. The relevance of this topic is evident in the fact that buildings consume 

approximately 40% of global energy and are responsible for 33% of greenhouse gas emissions, 

largely due to low energy efficiency. Given this problem, this research aims to develop 

automated BIM-driven AI solutions to support the energy planning of sustainable buildings, 

focusing on the simulation and optimization of photovoltaic systems in both new and retrofit 

projects. The investigation adopts a multi-method approach, combining a systematic literature 

review, the development of deep learning algorithms, and the implementation of automated 

BIM modeling processes. First, a mapping of the integration between BIM and AI was 

performed, identifying application domains, problems addressed, results achieved, and 

fundamental capabilities of both technologies. Next, a BIM-driven deep learning algorithm was 

proposed and tested to estimate photovoltaic energy production, relating solar irradiation time 

series with data automatically extracted from BIM models. The results demonstrate that the 

proposed approach (EnergyBIM.AI) enables the automatic quantification of solar energy 

production and the potential reduction of CO₂ emissions. Furthermore, the research proposes a 

process to support the selection and placement of solar panels in BIM models. Thus, this thesis 

demonstrates that the integration of BIM and AI can transform energy planning in the AECO 

sector, offering automated processes capable of increasing energy efficiency, reducing 

emissions, and supporting the design and retrofit of sustainable buildings. The main 

contributions of this thesis are: (i) offering a framework for integrating BIM and AI applied to 

smart projects; (ii) proposing an approach for energy forecasting based on deep learning and 

automation in BIM; and (iii) provide evidence to support the design and retrofit of sustainable 

buildings. 

Keywords: Building Information Modeling. Artificial Intelligence. Solar Energy. 

Sustainability. Times series.   
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1 INTRODUCTION 

 

Urbanization and population growth rates have increased global energy consumption 

and emissions. Globally, the most recent reports identified that the main areas of energy 

consumption are industry, transport, and buildings (Di Giovanni et al., 2024). Specifically for 

buildings, the need arises to develop sustainable alternatives that benefit the environment, 

economy, and society, as the architecture, engineering, construction, and operations (AECO) 

industry adapts to emerging technologies. Therefore, this research promotes a sustainability-

oriented approach by discussing the development of an energy-oriented framework through the 

promotion of analyses and simulations of photovoltaic (PV) energy production in buildings 

(Olu-Ajayi et al., 2022; Shao et al., 2021; Wang et al., 2023). This thesis proposes an integrated 

approach to the AECO industry through three research methods.   

First, the AECO industry’s practitioners and academic community recognize and apply 

the potential benefits generated using Building Information Modeling (BIM). BIM is 

considered a data-driven modeling, simulation, and information management environment for 

projects. Digital representations provide essential information for the various phases of projects, 

particularly useful in the design phase for simulations and building performance predictions 

(Alves et al., 2025). 3D BIM models incorporate a series of geometric data, and these models 

evolve to other dimensions as new information is integrated. Particularly in the design phase, 

BIM offers the possibility of implementing, in addition to 3D modeling, scheduling (4D), cost 

estimation (5D), as well as aspects of sustainability assessment (6D). Design tasks that can be 

integrated into BIM include energy performance analysis, CO2 emission analysis, solar and 

light simulation, thermal comfort analysis, and waste management (Scherz et al., 2022). 

Therefore, it is recognized that BIM models can form databases that can be used proactively 

for performance analysis and performance measurement of buildings.  

Second, the digital representation of buildings, a central feature of BIM, enables the 

collection and storage of essential data for automated design processes in the AECO industry. 

With the use of Artificial Intelligence (AI), particularly through deep learning techniques 

applied to time series, it is possible to identify historical performance patterns, predict failures, 

and optimize the operation of building systems. Models such as recurrent neural networks 

(RNNs) and long short-term memory networks (LSTMs) are examples for dealing with 

sequential and temporal data, facilitating, for example, the prediction of energy consumption or 

predictive maintenance of systems. In a BIM environment, these models can integrate 
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information throughout the building's life cycle, optimizing design and operation phases 

(Baduge et al., 2022; Pan; Zhang, 2021; Tao et al., 2024). 

Third, this thesis identified a research trend in sustainability-oriented BIM-AI 

applications and energy simulations (see Alves et al., 2025). Studies evaluate applications of 

BIM-AI models to optimize building parameters such as orientation and material properties to 

reduce energy costs and emissions. Furthermore, the use of AI has expanded to many areas, 

including predicting building energy consumption. Despite extensive research on the 

application of AI in buildings, little research explores the combined use of BIM models with AI 

to optimize the use of renewable energy (Mehraban et al., 2024). For example, previous 

research has advanced the body of knowledge, seeking automated alternatives to improve the 

energy efficiency of buildings. Alawi et al. (2024) developed predictive simulations for 

residential buildings' annual heating and cooling loads. Olu-Ajayi et al. (2022) seek to predict 

energy consumption in the building design phase. Chou et al. (2017) developed a BIM data 

fusion process on energy consumption datasets collected. Li et al. (2024) propose an adaptive 

sea lion-optimized genetic adversarial to predict renewable energy sources. Tao et al. (2024) 

apply tree-based, linear, and non-linear regression techniques to predict the energy and exergy 

efficiency of Parabolic Trough Solar Collectors using oil-based nanofluids. However, Tian et 

al. (2023) highlight a growing field in the literature related to predicting solar radiation and PV 

energy production using time series data. Also, there is a gap in the literature addressing BIM-

driven renewable energy solutions, especially with the association of AI algorithms.  

Thus, this thesis applies a multimethod approach to develop energy BIM-AI solutions 

for the AECO industry. In the first stage, based on an extensive literature review, the thesis 

presents an integrative research model, which explores the main insights of the association 

between BIM and AI in AECO projects (Chapter 4). The research design is a systematic 

literature review that applies bibliometrics and content analysis with the assistance of 

Bibliometrix and Mendeley software. The main topics, thematic evolution, and concept maps 

are covered. Finally, using a coding scheme in the content analysis stage, the article explores 

the relationships between AI and BIM applications, essential capabilities for this integration, 

and potential benefits for the sector by proposing a framework (see Alves et al., 2025).  

In the second stage, this thesis explores the application of a BIM-driven deep learning 

algorithm to estimate PV energy production, associating solar irradiation data and automated 

extraction of information in BIM models (Chapter 5).  This paper quantifies the energy 

produced and CO2 based on the predicted values of the implemented algorithm, using a routine 

in Dynamo that extracts the information from a BIM model. For these applications, the paper 
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tests three deep learning algorithms: Long Short-Term Memory (LSTM), Extreme Gradient 

Boosting (XGBoost), and Feedforward Neural Network (FNN). It also offers general guidelines 

for BIM modelers to consider implementing PV modules as early as the Design phase of 

buildings, establishing a means to maximize efficiency in PV energy production and support 

feasibility studies for implementing PV modules.  

The third stage aims to develop an automated allocation of PV modules to maximize PV 

energy production (kWh/day) while minimizing implementation costs (Chapter 6). This 

research integrates visual programming in Dynamo with programming in Python to analyze 

different combinations of PV modules, considering the dimensions of 21 PV modules from 4 

brands for allocation on the roof of a building. The algorithm identifies the most efficient 

configuration of PV cost-production. It uses Dynamo to extract information on the families of 

PV modules and the available roof area from a BIM model in Revit. Finally, the model 

automatically allocates the best arrangement of PV modules directly in the Revit model.  

 

1.1 Thesis Justification and Motivations 

 

Buildings consume 40% of global energy and 33% of greenhouse gas emissions (Asif 

et al., 2024). Furthermore, the low energy efficiency of buildings is one of the main factors 

contributing to high global energy consumption and greenhouse gas emissions. In recent 

decades, the growing demand for energy in buildings has been driven by population growth and 

the rapid expansion of urban areas (Olu-Ajayi et al., 2022). In this context, buildings are 

strategic ventures for the global transition towards sustainability, against climate change, and 

in favor of the zero-carbon energy transition, especially in the planning and design phases. To 

this, technologies such as BIM and AI, which enable the collection and analysis of data to 

improve the physical environment and project modeling, offer new alternatives for the 

sustainable digital revolution (Asif; Naeem; Khalid, 2024). Therefore, this thesis argues that 

using PV energy provides fertile paths to promoting sustainability in buildings, and the 

available technologies can enhance the planning of sustainable strategies in the design phase of 

BIM models.  

As a primary renewable energy source, PV energy is used due to its potential to meet 

the growing demand for energy and the limited fossil fuel resources on the planet emissions 

(Asif et al., 2024). With the support of national policies, renewable energy targets, and the 

falling costs of PV modules, the PV energy market has experienced growth. Consequently, an 

increase in the number of buildings integrated with PV systems has been observed (WANG et 
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al., 2023). In this context, the forecast of PV energy production is one of the strategies in the 

design phase for developing sustainable projects (Tian et al., 2023). Furthermore, energy 

simulation models must be able to process a large amount of data for different climate 

conditions. This allows designers to adopt alternative design solutions for bioclimatic building 

elements.  

In the context of the AECO industry, emerging BIM tools and technologies have 

transformed the generation, storage, and exchange of project information. The development of 

Industry Foundation Classes (IFCs) has facilitated more integrated methods for exchanging 

construction data, thereby enhancing interoperability across various systems. However, with 

the rapid advancement of digital technologies such as AI, including data analytics, machine 

learning, and deep learning, the imperative for integrating BIM with AI has become a growing 

topic in the research field. This convergence promises to optimize processes further, enhance 

decision-making, and drive innovation in construction practices. AI offers the ability to process 

large volumes of data, identify patterns, and generate accurate predictions, extending the 

capabilities of BIM in areas such as process automation, generative design, and resource 

optimization (Boje et al., 2020). In this context, literature opens new paths to develop automated 

systems, processes, and models based on BIM, taking advantage of digital advances in AI to 

improve efficiency, innovation, and quality in the AECO industry. 

Due to the vast amount of data generated by BIM models, the storage volume and 

complexity of this data have brought new challenges to the design review process, resulting in 

a reliance on manual methods to deal with the current intricate structure of models. This 

approach creates problems such as high demand for specialized professional skills and low 

process efficiency (Li et al., 2024). Moreover, in many cases, analyzing large volumes of data 

and recognizing patterns using traditional programs or rule-based methods has proven to be 

impractical. In this context, AI has the capacity to process vast amounts of data, identify 

complex patterns, and construct large-scale statistical models (Baduge et al., 2022). 

Recent research shows that this combination has the potential to transform the way 

construction schedules, costs, quality, and cybersecurity are managed. AI can explore and learn 

from BIM data and provide solutions for architects, engineers, manufacturers, and other 

stakeholders. Furthermore, AI can support the generative design process by creating multiple 

alternatives based on defined parameters and constraints. For manufacturers, the integration of 

AI and BIM makes it possible to digitize their product catalogs, predict market demands and 

trends, optimize production processes, and offer customized solutions to customers (Zawada et 

al., 2024).  



20 
 

Therefore, research applied to the AECO industry can lead to actions to address the 

consequences of climate change through sustainability initiatives in smart projects. The focus 

is to seek greater energy and resource efficiency through digitalizing and automating projects. 

In this context, the research community is actively studying the applications of digital 

technologies to improve the sustainability of buildings. The digital revolution can increase 

energy efficiency through technologies that collect and analyze data to improve the physical 

environment (Asif; Naeem; Khalid, 2024).  

This research seeks to facilitate sustainability assessments through clean energy 

production analyses, specifically in the field of BIM and AI integration. While BIM is used as 

the input data for energy assessments, AI is applied to predictive modeling oriented towards 

energy management.  

While the body of knowledge related to photovoltaic projects in the AECO industry 

explores alternatives to enhance PV energy production through the application of different 

materials for PV modules (Myint et al., 2025; Serat et al., 2025; Zhi et al., 2023), the literature 

on BIM in sustainable projects seeks to propose solutions in the various dimensions of the 

framework (Cao; Huang, 2023; Cassandro et al., 2024; Lins et al., 2024; Mandičák et al., 2024). 

However, there is a gap in the literature related to integrating PV projects and BIM technologies 

for simulations in three-dimensional models during the project design phase. For example, 

Myint et al. (2025) discusses the importance of research on using technologies such as BIM to 

drive the development of automated projects that evaluate different PV design options. Myint 

et al. (2025) argues that articles about BIM-PV can guide the development of low-carbon 

buildings. However, research in the field of PV systems, such as Serat et al. (2025) and Zhi et 

al. (2023), has advanced mainly in simulations of solar energy production, but often without 

considering the direct integration of photovoltaic systems into the building envelope, as 

proposed by building PV systems.  

This gap is also reflected in the lack of integration between PV simulation tools and 

BIM-based building design processes, causing interoperability problems and limiting 

automated and data-driven design approaches (Di Giovanni et al., 2024; Palha et al., 2024; Zhi; 

et al., 2023). In addition, although recent research in BIM has focused on automated solutions 

that address sustainability requirements (Cao; Huang, 2023; Cassandro et al., 2024), there is 

still a lack of studies proposing comprehensive workflows that integrate BIM-PV design, 

energy simulations, and BIM technologies from the early design stages (Lu et al., 2022; 

Mandičák et al., 2024).  
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The AECO can contribute to the achievement of the United Nations' 2030 Agenda, given 

its direct impact on global energy consumption and greenhouse gas emissions. In this way, the 

motivation for this research is also the alignment with three Sustainable Development Goals 

(SDGs). Affordable and Clean Energy (SDG 7) drives the development of technological 

solutions that expand renewable energy generation through the integration of photovoltaic 

systems in buildings. Sustainable Cities and Communities (SDG 11) guides the creation of 

innovative processes that contribute to more resilient, efficient, and environmentally 

responsible urban environments. Climate Action (SDG 13) reinforces the urgency of reducing 

CO₂ emissions, a target directly addressed through the use of AI and BIM for energy simulation 

in buildings. Therefore, the motivation of this thesis arises from the need to align digital 

transformation and sustainability, exploring how the integration of BIM and AI can support 

intelligent energy planning, reduce environmental impacts, and accelerate the transition toward 

low-carbon buildings. 

 

1.2 Research Questions and Hypothesis 

 

• (#RQ1) What are the essential BIM and AI capabilities for smart AECO projects? H1: 

The integration of BIM capabilities with AI capabilities impacts the development 

efficiency of smart projects in the AECO sector. 

• (#RQ2) What are the main benefits of the connection between BIM and AI for 

developing smart AECO projects? H2: Smart AECO projects can be developed through 

integrated BIM and AI capabilities due to the large volume of data that requires higher 

levels of automation in decision-making than traditional projects. 

• (#RQ3) What is the potential of integrating deep learning models and BIM automation 

tools to support early-stage PV system planning and energy performance assessment? 

H3: Integrating deep learning algorithms with automatic data extraction routines in BIM 

models can estimate photovoltaic energy production and avoid CO₂ emissions even at 

the design stage. 

• (#RQ4) How to automate the allocation of photovoltaic panels to maximize energy 

production and minimize building implementation costs? H4: The application of a 

process model integrated with BIM can automatically identify photovoltaic module 

configurations with greater energy efficiency and lower implementation costs, 

considering the roof's physical restrictions and the modules' technical characteristics. 
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1.3 Objectives 

 

1.3.1 Main Objective 

 

This thesis aims to investigate how the integration of BIM and AI applications can foster 

a BIM-driven design process to support the planning and retrofit of sustainable buildings, with 

a specific focus on photovoltaic systems in the AECO sector. 

 

1.3.2 Specific Objectives 

 

a) Investigate how BIM and AI capabilities can improve the development of smart 

architecture, engineering, construction, and operation projects. 

b) Explore the application of a BIM-driven deep learning algorithm to estimate PV energy 

production, associating solar radiation time series and automated extraction of 

information in BIM models. 

c) Develop an automated process model for allocating photovoltaic modules to maximize 

photovoltaic energy production (kWh/day) while minimizing implementation costs.  

 

1.4 Relevance of the Research Problem to the AECO Industry 

 

The chapters of this thesis guide the main contributions of integrating BIM and AI. The 

findings show how these emerging technologies evolve the AECO sector and how the industry 

can position itself in the face of digital transformation. In addition, the results guide the 

development of sustainable projects and PV strategies to establish theoretical frameworks and 

automated processes. Thus, the results contribute in three ways.  

 

1.4.1 Contribution to Academic Field  

 

First, the thesis advances the theoretical field by articulating BIM and AI applied to 

developing smart and sustainable projects in the AECO sector. Through mapping organizational 

capabilities, the thesis structures a conceptual framework that integrates BIM and AI as 

essential dynamic capabilities for generating value throughout the project life cycle. This 

theoretical framework fills gaps in literature by operationalizing how these technologies 
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complement each other in the production of data, automation of processes, and generation of 

solutions oriented to sustainability. 

In addition, the thesis contributes to advancing the discussion on BIM 6D by presenting 

a predictive and automated process to estimating renewable energy generation and carbon 

footprint emissions while still in the project design phase. This theoretical approach broadens 

the understanding of the role of BIM in data-driven sustainable projects. In addition, a process 

is proposed to measure energy efficiency relating to PV energy production and implementation 

cost for selecting PV module manufacturers and models. 

 

1.4.2 Contribution to Managers and Professionals  

 

Second, from a practical perspective, the thesis offers solutions for AECO professionals 

working with sustainable projects, renewable energy, and digitalization. First, it guides the 

identification and development of essential organizational capabilities, encouraging 

investments in data science and multidisciplinary practices. It develops an automated process 

for forecasting solar energy generation and calculating avoided CO₂, using time series and deep 

learning, applicable to different regions and climate scenarios, which supports energy and 

environmental feasibility analyses in new projects and retrofits. By automating the allocation 

of photovoltaic modules in Revit and proposing comparisons between different layouts and 

brands, the thesis offers designers, engineers, and managers a replicable method for technical 

and economic decision-making. This contributes to preparing technical documents supporting 

credit lines and tax incentives for sustainable buildings. 

 

1.4.3 Contribution to Policy Makers 

 

Third, the growing pressure for decarbonization, energy efficiency, and digital 

transformation has redefined the priorities of the AECO industry and how society attributes 

value to urban development. In this scenario, integrating BIM and AI becomes a strategic 

necessity. However, despite the theoretical recognition of the potential of these technologies, 

there is still a gap between their availability and their effective application in design practices. 

This research addresses this challenge by focusing on one of the urgent demands of the sector: 

designing efficient and functional buildings capable of generating renewable energy and 

reducing environmental impacts from the design phase. By proposing the integration of BIM 

and photovoltaic systems, the research offers practical answers to global challenges, such as the 
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goal of near-zero energy buildings, environmental certifications, and the construction of 

climate-resilient infrastructure.  

Thus, by demonstrating the feasibility of integrating BIM and AI for energy 

performance prediction, the research provides a technical basis to encourage the adoption of 

digital technologies in public and private projects. The possibility of quantifying renewable 

energy generated and carbon footprint, even at the design stage, creates opportunities for 

developing incentive mechanisms, such as credit lines, national environmental certifications, 

and tax exemptions for projects with proven energy efficiency. In addition, the methodological 

approach can serve as a reference for regulatory guidelines that promote the use of digital tools 

in urban planning and public infrastructure, contributing to the achievement of climate goals, 

such as those set out in the 2030 Agenda and Brazil's energy transition commitments. 

 

1.5 Thesis Structure 

 

Figure 1 shows the thesis structure, which was developed through a collection of papers. 

This structure seeks to contribute to the research field while receiving reviews from target 

journals during the development process. This ensures that the thesis has peer-reviewed 

contributions and is validated through phased contributions.  

Chapter 1 introduced the general aspects of the Thesis contextualization and 

motivation, as well as the objectives, hypotheses, and research questions.  

Chapter 2 provides the basis for understanding the theorizing process. It discussed the 

problems and characteristics of the AECO industry and how innovation has transformed 

decision-making processes. It then delves deeper into the context of BIM and AI, focusing 

specifically on the context of implementing solar energy solutions.  

Chapter 3 presents an overview of the Thesis's development. This chapter only explores 

in general terms how the subsequent chapters were structured and how their contributions are 

interconnected. 

Chapter 4 discusses the advances in integrating BIM and AI through a Systematic 

Literature Review. This chapter identifies seven key core domains of this integration. Based on 

these key integration domains, this chapter attests that a research trend related to developing 

research oriented toward sustainability and renewable energies exists. Thus, the following 

chapters focus specifically on the context of PV energy production in buildings. This chapter 

generated the first article of the thesis, published in the Automation in Construction (Impact 

Factor = 9.6) (Alves et al., 2025). 
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Chapter 5 develops a process for predicting PV energy production. This process is 

called SolarisBIM.AI, and deep learning algorithms are applied to extract information from a 

BIM model in Revit. This chapter generated article 2, which was under review in the Journal 

of Construction Engineering and Management (Impact Factor = 5.1). 

Chapter 6 seeks to improve SolarisBIM.AI. This chapter focuses on selecting the best 

alternative for allocating solar modules, taking the cost and PV energy production of different 

PV module manufacturers as variables. This chapter generated the third article of the thesis, 

which was submitted to Building and Environment (Impact Factor = 7.1) 

Finally, Chapter 7 and Chapter 8 highlight the main contributions of the thesis chapters 

and explore their relationship.  
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Figure 1 - Thesis Structure 
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2 THEORETICAL BACKGROUND 

 

2.1 Architecture, Engineering, Construction, and Operations Industry 

 

The academic research field of the Architecture, Engineering, Construction, and 

Operations (AECO) industry develops advanced techniques and computing technologies to 

address industry challenges such as low productivity and project delivery, poor performance, 

and ineffective resource management (Rangasamy; Yang, 2024).  

Historically, the AECO industry has been quite resistant to change due to the difficulty 

of adopting new technologies. In addition, the industry faces challenges such as uncertainty, 

complexity, fragmented supply chains, and cultural barriers. The high level of project 

uncertainty compounds this complexity due to the unpredictable project environment (Wang, 

2024). Furthermore, buildings and structures differ in types of use (e.g., residential, 

commercial, municipal, infrastructural), in age (e.g., new, existing, heritage), and in ownership 

(e.g., private owner, housing association, public owner, universities). These different 

framework conditions influence the application of BIM, its level of detail (LoD), and its 

supporting functionalities in the design, construction, maintenance, and deconstruction 

processes due to stakeholder requirements (Volk; Stengel; Schultmann, 2014). 

In the AECO sector, building performance involves a variety of functions that buildings 

need to meet, such as energy efficiency, indoor environmental quality, thermal and visual 

comfort, and well-structured strategies for ongoing building maintenance. Several software 

tools are available for performance analysis and simulation, allowing these assessments to be 

carried out at the design stage. However, most of these tools require detailed definitions of 

aspects such as the structure's geometry, the layout of spaces, furniture, and mechanical, 

electrical, and plumbing (MEP) systems. These elements are accompanied by domain-specific 

parameters that influence their functionality, such as the thermal properties of building 

components, use and operation schedules, and internal lighting and equipment loads (Utkucu 

et al., 2024). 

Researchers have developed studies for the integration of AI and BIM in the AECO 

industry to solve problems that cover asset management and maintenance, construction problem 

solving, construction management, sustainable development, safety enhancement, building 

information management, and infrastructure management (Wang, 2024).  
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2.2 Building Information Modeling 

 

The various projects in the AECO industry require data to be exchanged between 

interdisciplinary teams throughout the project lifecycle, such as updates, verification, and 

validation. In this context, BIM, as an element for data-driven element management, includes 

geometric and semantic data and is an essential tool (Rogage; Doukari, 2024). BIM can be 

defined as a process that involves the creation and management of a digital representation of 

the physical and functional characteristics of a building or infrastructure, serving as a shared 

source of information that supports decision-making throughout the project lifecycle, from 

conception to demolition. It integrates designing, constructing, or operating a building or 

infrastructure asset using electronic object-based information (Huang; Ninić; Zhang, 2021).  

In this thesis, BIM is conceptualized as Building Information Model (the artifact) and 

Building Information Modeling (the process), as the literature and software developers 

recommended. The distinction between Building Information Model and Building Information 

Modeling is that the first refers to an intelligent, parametric, object-oriented, data-rich digital 

representation of a facility. In contrast, Building Information Modeling is a process that 

involves the creation and management (development and use) of this digital representation of 

the physical and functional characteristics of a building throughout its life cycle. BIM emerged 

from the technique of parametric object-oriented modeling, where the term "parametric" 

describes a process in which the modification of one element results in the automatic adjustment 

of adjacent or dependent elements (such as a door attached to a wall) to maintain a previously 

established relationship (Volk; Stengel; Schultmann, 2014). 

BIM allows professionals to perform various analyses, such as design option 

comparison, cost estimation, automated code checking, clash detection, safety management, 

and construction simulations. Recent integration with AI has fueled research into using and 

operating data-driven BIM software. Technologies such as Generative Adversarial Networks 

(GANs) and generative language and image models, including DALL⋅E 2, Stable Diffusion, 

and Midjourney, have been applied to explore initial design alternatives, generate design images 

and floor plans, and predict building performance. Specifically, technology that enables the 

creation of schematic images from natural language commands has reached a commercial level 

with image diffusion-based approaches, such as those offered by Veras and SketchUp Diffusion 

tools, which can be directly integrated with BIM solutions (Jang et al., 2024). 

In this context, information exchange is done through open data schemas, mainly IFC. 

Industry Foundation Classes (IFC) are an open and standardized data format created to facilitate 
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interoperability and information sharing between systems and software in the AECO industry. 

Developed by the buildingSMART organization, IFC is adopted in BIM to represent 

information related to the physical and functional aspects of a building throughout its life cycle. 

It allows different professionals and platforms to exchange and use project data, regardless of 

which tools they are using (Boje et al., 2020; Huang; Ninić; Zhang, 2021). 

 

2.2.1 BIM levels, maturity, and dimensions 

 

BIM functionalities depend on the accuracy, richness, and timeliness of the underlying 

data to achieve their goals. A widely used concept to describe the amount of information 

contained in BIM objects is the "Level of Detail" or "Level of Development" (LoD). The LoD 

specifies a model component's geometric and non-geometric attributes, often associated with a 

specific point in time or a contractual responsibility. In the case of buildings, for example, for 

analysis and programming, it is necessary to define the appropriate LoD for the attributes and 

relationships of the objects, including durations, dependencies, and precedence information. In 

the literature, different levels of LoD vary in terms of geometric accuracy, quality, and 

completeness of the semantic information provided (Volk; Stengel; Schultmann, 2014). 

In new construction projects, the LoD increases as the project progresses, from the initial 

stages to the production/construction phase, following the requirements and refinements 

throughout the process. The literature defines different LoDs for various functionalities, such 

as general modeling, 3D imaging, and energy performance. In the case of existing buildings, 

the necessary LoD is determined by the required functionality, which directly influences the 

costs and effort involved in creating the BIM model. For maintenance operations, the 

Construction Operations Building Information Exchange (COBie) standard defines a specific 

LoD for technical equipment, covering information such as type and location, make, model, 

serial numbers, label, installation date, warranties, and scheduled maintenance requirements. 

However, no adequate LoD is established for functionalities related to deconstruction and waste 

management (Volk; Stengel; Schultmann, 2014). 

BIM can be classified into different levels, from Level 0 to Level 3, according to the 

degree of maturity of its development. Level 0 refers to unmanaged CAD, usually in 2D, with 

the exchange of information occurring through paper or electronic documents without 

following standardized processes. At Level 1, CAD is managed and can be in 2D or 3D, using 

collaboration tools that provide a shared data environment for electronic information sharing. 
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Much of the market still operates in Level 1 processes, while industry leaders are already 

beginning to reap the benefits of implementing Level 2 (Gao; Koch; Wu, 2019). 

Level 2 BIM is characterized by a managed 3D environment, where data is maintained 

in separate BIM tools, with information attached to the models. This level is distinguished by 

collaboration between stakeholders, who share information through a standard file format, 

although each still works on its own CAD models. Finally, Level 3, known as Integrated BIM 

(iBIM), represents a complete integration of data and processes, enabled by web services 

compatible with emerging standards such as IFC, and managed by a collaborative model server. 

Level 3 creates a fully integrated design environment where all disciplines collaborate using a 

single shared project model, maintained in a centralized repository that allows access and 

modification of the model by all stakeholders (Gao; Koch; Wu, 2019). 

In addition to the level of detail and maturity, BIM is classified into dimensions. The 

third dimension (3D) refers to geometric modeling, which is the basis of the process, digitally 

representing the physical form of a building. This includes creating detailed three-dimensional 

models of the project's structural and architectural components. From this 3D base, the 

subsequent dimensions — 4D (time), 5D (costs), 6D (sustainability), and 7D (facilities 

management), are integrated to provide analysis throughout the life cycle of the building. The 

fourth dimension (4D) introduces time, allowing the visualization and analysis of aspects of the 

project, such as graphical models, management, costs, resources, and safety — throughout the 

schedule. The fifth dimension (5D) integrates cost estimation, providing detailed financial 

control throughout the project's life cycle. The sixth dimension (6D) is related to sustainability, 

allowing the analysis of energy performance and the environmental impact of buildings. The 

seventh dimension (7D) focuses on facilities management, using model data to optimize 

operation, maintenance, and asset management throughout the building's lifespan (Alzara et al., 

2023; Boje et al., 2020; Pan; Zhang, 2023). 

These theoretical classifications guide researchers and professionals in following the 

market evolution, research, and companies. The main BIM applications include optimizing the 

orientation of buildings to reduce energy consumption; analyzing the mass of the building to 

evaluate its shape and optimize the envelope, such as the proportion of transparency; analyzing 

natural lighting; assessing the potential for water collection; energy simulation using tools such 

as Green Building Studio; evaluating the suitability of sustainable materials, with an emphasis 

on minimizing use and adopting recycled materials; and planning logistics and site management 

to reduce waste and carbon emissions (Gao; Koch; Wu, 2019). 
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For example, Azhar et al. (2011) subdivided BIM applications in the design phase into 

three main stages: in schematic design, BIM enables comparative analysis of various design 

options and integration of photorealistic images with existing conditions; in detailed design, 

BIM tools allow the creation of internal and external 3D models, walk-through animations, and 

energy performance simulations; and in construction detailing, BIM assists in 4D phasing and 

scheduling planning, detection of construction system conflicts, and generation of 

manufacturing drawings (Azhar, 2011). These applications benefit all key project team 

members, including the project manager, architect, structural engineer, mechanical engineer, 

electrical engineer, civil engineer, quantity surveyor, and construction manager (Gao; Koch; 

Wu, 2019). 

 

2.3 Artificial Intelligence 

 

Artificial intelligence (AI) is the intelligence demonstrated by machines in contrast to 

the natural intelligence exhibited by humans. Founded as an academic discipline in 1956, AI 

has experienced rapid growth in recent years due to advanced computing technologies, 

extensive data capabilities, and theoretical understanding. The field of AI draws on computer 

science, mathematics, psychology, linguistics, philosophy, and many other fields (Song et al., 

2022). It is one of the emerging research topics in various scientific fields (Zhu et al., 2022).  

AI is the science that seeks to develop machines or computer programs capable of 

replicating human intelligence. AI has advanced in computer vision, robotics, autonomous 

vehicles, language translation, gaming, and medicine (Baduge et al., 2022). In computer 

science, AI research is defined as the study of intelligent agents, which are systems capable of 

perceiving their surroundings and performing actions to maximize the probability of achieving 

their goals effectively. Traditionally, AI research has focused on computational technologies 

that allow machines to mimic human cognitive functions, such as learning and problem-solving, 

seeking to replicate or enhance typical human mental capabilities (Song; Xu; Zhao, 2022). 

Unlike computer scientists, who focus primarily on developing and improving AI 

techniques, information systems researchers apply these techniques to solve business problems 

and improve management. AI has been widely used in various areas, including decision support 

and expert systems, knowledge management, financial forecasting, systems design, 

technological innovation, supply chain management, and big data analytics. Studies have 

demonstrated the benefits of AI applications in finance, healthcare, and marketing industries, 

highlighting their positive impact in multiple contexts (Song; Xu; Zhao, 2022).  
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Data science is a broad field that involves collecting, analyzing, and interpreting large 

volumes of data to solve complex problems and inform decisions. Within this context, AI is a 

subfield that focuses on creating systems capable of performing tasks that would normally 

require human intelligence, such as pattern recognition and decision-making. Machine learning, 

in turn, is a subset of AI that allows systems to learn from data without being explicitly 

programmed, developing predictive or classification models. Deep learning is a subcategory of 

machine learning that uses artificial neural networks with multiple layers to analyze large 

volumes of data and solve more complex problems, such as image and natural language 

processing (Baduge et al., 2022; Pan; Zhang, 2021). 

 

2.3.1 Machine Learning 

 

Machine Learning (ML) is an area of AI in which computers analyze a set of data and 

create models based on that data, which can then be used to solve problems. Unlike traditional 

programming, where rules are explicitly coded in a computer language without learning from 

the data, ML excels at generating predictive models from available data. These models are then 

applied to make predictions on new data, allowing the system to learn and adapt (Baduge et al., 

2022). 

ML methods can be classified in different ways, one of the main ways being the amount 

of supervision received during the training process. Based on this, machine learning models are 

generally divided into supervised and unsupervised learning. In supervised learning, the dataset 

includes both predictors and outcomes, called “labels”. The model is initially trained on this 

labeled data, allowing it to make predictions on new, unlabeled data. The two most common 

tasks in supervised learning are classification and regression. The classification task predicts 

discrete class labels, while regression predicts continuous values. Popular supervised learning 

algorithms include k-nearest neighbors, support vector machines (SVMs), logistic regression, 

linear regression, and neural networks (Baduge et al., 2022). 

In unsupervised learning, an unlabeled dataset is used to determine hidden patterns or 

intrinsic structures in data. It is used for tasks such as clustering, anomaly detection, novelty 

detection, visualization, and dimensionality reduction (Baduge et al., 2022). 
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2.3.2. Deep Learning 

 

Deep Learning (DL) is a machine learning subfield that focuses on studying artificial 

neural networks and related algorithms, which contain more than one hidden layer. As a result, 

the computational process in a deep learning algorithm involves multiple steps from input to 

output. DL algorithms are particularly effective when working with high-dimensional data, such 

as images, video, and audio, compared to traditional machine learning algorithms due to their 

complex computational paths. Some of the most widely used DL algorithms in the construction 

and building industry are briefly introduced in the following paragraphs (Baduge et al., 2022; 

Pan; Zhang, 2021). 

Feedforward neural networks (FNN), also known as "Multi-Layer Perceptrons" (MLPs), 

are a commonly used deep learning algorithm in which information flows exclusively in one 

direction, from input to output, without any feedback loops. FNNs consist of multiple 

interconnected layers of neurons, where input data is processed by the input layer, passes 

through several hidden layers, and then the output layer produces the result. In the hidden layers, 

each neuron receives input from the previous layer, computes a weighted sum of the inputs 

(wixi), adds a bias term (b), and then applies a nonlinear activation function to produce the 

output (Baduge et al., 2022). 

The neural network is trained using a dataset, during which the output produced by the 

network's output layers is compared to the expected real values, and the resulting error (or loss) 

is calculated. There are various methods for calculating loss, such as mean squared error, mean 

absolute error, and binary cross-entropy. By summing up the losses across the entire training 

dataset and adding any regularization terms to prevent overfitting, the cost function is 

determined. The objective is to minimize this cost function by adjusting the network's weights 

through a process called backpropagation. Backpropagation computes the gradient between the 

error and the weights. Using this gradient, optimization algorithms like Adam, NAdam, 

Adadelta, and gradient descent adjust the weights to minimize the loss. The dataset is processed 

multiple times to fine-tune these weights, resulting in a trained model with minimized error. 

The trained model retains the adjusted weights for each input at every neuron, with these 

weights reflecting the importance of each input for the output results. Finally, the model can be 

used to predict outputs based on new, unseen data (Baduge et al., 2022). 

A Convolutional Neural Network (CNN) is a specialized type of Artificial Neural 

Network (ANN) designed to process data with a grid-like structure, making it particularly 

effective for image classification and computer vision tasks. The architecture of CNNs typically 
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consists of three main types of layers: convolutional layers, pooling layers, and fully connected 

(FC) layers. In a standard CNN, convolutional layers are followed by pooling layers or 

additional convolutional layers, with the fully connected layer positioned at the end. The input 

layer of a CNN receives the image data. The convolutional layer, which is the fundamental 

component of the CNN, utilizes elements such as filters (also known as kernels or feature 

detectors) and generates a feature map. A filter is a 2D array of weights smaller than the image, 

and a dot product is computed between the image's pixel values and the filter's weights, with 

the result forming an output array. This operation, called convolution, is repeated as the filter 

moves across the entire image to identify features. Unlike traditional neural networks, neurons 

in one layer of a CNN are not fully connected to the neurons in the next layer, enhancing the 

network’s efficiency and focus on local patterns (Baduge et al., 2022; Pan; Zhang, 2021). 

A Generative Adversarial Network (GAN) is a deep learning algorithm that focuses on 

generative modeling, enabling the creation of new images, videos, or audio that closely 

resemble the data from the training set. GANs consist of two neural networks, the 'generator' 

and the 'discriminator,' which work together in a competitive framework. The generator's role 

is to produce new data that mimics the characteristics of the training data, using feedback from 

the discriminator to improve the quality of its output. Meanwhile, the discriminator's job is to 

distinguish between real data from the training set and the synthetic data produced by the 

generator, providing feedback on how realistic the generated data is. Initially, the generator 

produces clearly fake outputs, which the discriminator can easily identify. However, as training 

progresses, the generator becomes more adept at producing outputs that can deceive the 

discriminator. When training is successful, the generator creates data that the discriminator 

increasingly classifies as real, reducing the discriminator's accuracy in distinguishing between 

real and generated data (Baduge et al., 2022). 

Thus, deep learning has become the dominant approach in computer vision, surpassing 

traditional statistical models due to its superior ability to capture contextual information from 

images, achieving state-of-the-art results. Deep learning-based methods primarily focus on 

three tasks: image classification, object detection, and semantic segmentation. 

Image classification involves understanding an entire image by assigning a specific label 

to it. This task is commonly performed using convolutional neural networks (CNNs), which 

employ three main types of layers: convolutional layers, responsible for generating feature 

maps; pooling layers, which reduce the spatial dimensions of the inputs; and fully connected 

layers, which create one-dimensional feature vectors for classification. More advanced models, 
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such as AlexNet, VGGNet, and ResNet, have been developed using CNNs as their backbone 

architecture (Pan; Zhang, 2021).  

Object detection identifies and locates one or more conditions of interest within an 

image by drawing bounding boxes around each object and assigning appropriate labels. Region-

based convolutional Neural Networks (R-CNN) serve as the foundational algorithm, combining 

rectangular region proposals with the features extracted by convolutional networks. However, 

variations such as Fast R-CNN, Faster R-CNN, and Mask R-CNN were introduced to improve 

R-CNN's computational efficiency. Additionally, the "You Only Look Once" (YOLO) family 

of algorithms plays a role, employing a single convolutional network trained end-to-end to 

predict both bounding boxes and class probabilities simultaneously (Pan; Zhang, 2021). 

On the other hand, semantic segmentation aims to semantically interpret each pixel in 

an image by assigning a label to each one, precisely identifying the location and shape of objects 

or damage. This task heavily relies on Fully Convolutional Networks (FCNs), an extension of 

classical CNNs that replace fully connected layers with fully convolutional layers. FCNs have 

proven effective in learning pixel-to-pixel mappings and making predictions for varying-sized 

inputs (Pan; Zhang, 2021). 

 

2.4 Thesis Main Focus: BIM-AI photovoltaic energy solution 

 

Solar energy, as a primary renewable energy source, is used due to its great potential to 

meet the growing demand for energy and the limited fossil fuel resources on the planet. With 

the support of national policies, renewable energy targets, and the falling costs of photovoltaic 

(PV) modules, the solar energy market has experienced growth. Consequently, an increase in 

the number of buildings integrated with PV systems has been observed. In this context, the 

forecast of solar energy production is one of the strategies in the design phase for the 

development of sustainable projects (Tian; Ooka; Lee, 2023). Furthermore, energy simulation 

models must be able to process a large amount of data for different climate conditions. This 

allows designers to adopt alternative design solutions for bioclimatic building elements.  

In this context, deep learning algorithms can extract features from non-linear data by 

identifying complex patterns in large data sets. They are suitable for energy simulations, such 

as estimating solar radiation and predicting PV energy production. When associated with BIM, 

specifically in the design and planning phase of buildings, quantifying PV energy production 

through predictive solar energy algorithms becomes a proactive strategy for sustainable projects 

(Olu-Ajayi et al., 2022; Shao et al., 2021; Wang et al., 2023).  
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Previous research has advanced the body of knowledge, seeking automated alternatives 

to improve the energy efficiency of buildings. Alawi et al. (2024) developed predictive 

simulations for residential buildings' annual heating and cooling loads. Olu-Ajayi et al. (2022) 

seek to predict energy consumption in the building design phase. Chou et al. (2017) developed 

a BIM data fusion process on energy consumption datasets collected. Li et al. (2024) proposes 

an adaptive sea lion-optimized genetic adversarial to predict renewable energy sources. Tao et 

al. (2024) apply tree-based, linear, and non-linear regression techniques to predict the energy 

and exergy efficiency of Parabolic Trough Solar Collectors using oil-based nanofluids. There 

is a gap in the literature addressing BIM-driven solutions with PV studies, especially with the 

association of AI algorithms.  

Furthermore, the design process for PV systems is carried out in different phases, such 

as architectural design and photovoltaic system design, with each phase being conducted by 

specialists or engineers using tools specific to their respective fields. For example, while an 

architect is responsible for the design of the building, an electrical engineer designs the PV 

system. This results in using different software tools in each phase, even for the same project, 

which can lead to different approaches to representing the same concept. In the architectural 

design phase, programs such as AutoCAD, MyArchiCAD and SketchUp are commonly used. 

In the photovoltaic design phase, several tools are applied, ranging from more general options, 

such as PVsyst and Retscreen, to specific solutions, such as models for analyzing partial shading 

or optimizing the connection of PV modules. This use of proprietary models in each phase 

makes it difficult to seamlessly integrate the PV system, since the models created in one phase 

are not automatically compatible with those in the next phase. Therefore, changes made in one 

phase cannot be easily synchronized or adapted in the others without a system of integration 

and continuous updating (Ning et al., 2018). 

BIM can solve this problem in the PV design phase by offering a collaborative approach 

to project development. Through 3D modeling and the creation of a centralized model, BIM 

allows all parties involved in the project, from energy engineers to architects and builders, to 

work with the same information in real-time. This ensures that changes made in one phase are 

automatically reflected in all others, avoiding disconnection between the different models and 

tools used. The use of the IFC format and BIM projects offers an open standard that facilitates 

the exchange of information between different software and platforms, ensuring compatibility 

between the models created in the different phases of the project. 

In this context, the large amounts of information from BIM models can be associated 

with AI algorithms. Specifically in the field of AI, the literature highlights that deep learning 
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algorithms provide advanced techniques to achieve improved modeling and better prediction 

performance. DL uses deep architecture or multi-layer architectures (Olu-Ajayi et al., 2022). 

Numerous AI-based methods, including neural networks (NN), support vector 

regression (SVR), long short-term memory (LSTM), gated recurrent units (GRU), 

convolutional neural networks (CNN), and multi-layer perceptrons (MLP), have been 

developed by researchers for solar irradiance prediction. More recently, hybrid approaches, 

such as extreme gradient boosting trees (XGBT) and deep neural networks (DNN), have been 

applied to predict hourly irradiance levels. Given that photovoltaic generation is dependent on 

the variability of solar radiation, managing the power grid’s operation becomes a complex task 

(Sammar et al., 2024). Also, early research has investigated the implementation of an optimized 

Long Short-Term Memory (LSTM) deep learning network and compared it with two different 

algorithms, genetic algorithm (GA) and particle swarm optimization (PSO), to predict electric 

loads. The optimized LSTM networks revealed better results than tree-based ensemble models, 

Support Vector Regression, and artificial neural networks through an extensive comparison 

(Alawi; Kamar; Yaseen, 2024; Sammar et al., 2024).  

Yan et al. (2020) presents a hybrid deep learning model that combines a neural network 

based on recurrent units with an attention mechanism to predict solar irradiance variations, 

extracting features from the data via Inception and ResNet-NN and subsequently processing 

them in a recurrent neural network (Yan et al., 2020). Mutavhatsindi et al. (2020) focus on 

hourly solar energy forecasting, where different machine learning methods were compared, 

such as recurrent neural networks, LSTM, and Feed-forward neural networks (Mutavhatsindi; 

Sigauke; Mbuvha, 2020). Brahma and Wadhvani (2020) evaluated DL techniques to predict 

daily solar radiation, using regional data and techniques such as bidirectional LSTM and 

attention-based networks, which showed good performance in metrics such as MSE and RMSE 

(Brahma; Wadhvani, 2020; Kumari; Toshniwal, 2021).   

However, little research in the AECO sector has investigated the integration between 

BIM and AI. This paper recognizes that buildings are strategic projects for implementing 

sustainable actions. It is argued that an integrated BIM and AI approach considering the use of 

solar energy in the design phase enhances the gains related to energy production. Information 

about the geometry and geographic positioning of the building can be considered during the 

planning of the building. Therefore, BIM modelers can develop project designs that enhance 

and integrate the gains of photovoltaic plants, increasing solar energy production. In an ideal 

scenario, buildings could be self-sufficient regarding energy demands. 
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Also, literature has shown that it is possible to develop BIM-PV integration even in the 

design phase. For example, (Aksoy Tirmikçi et al., 2025) propose simulating a PV system 

installed in a near-zero energy building (NZEB) with PVSOL. The authors developed a 

machine-learning model based on local climate data. The study presented a performance ratio 

(PR) of 81.9% in the first year, representing the PV system’s operational efficiency compared 

to its theoretical energy generation potential. The initial investment of USD 435,600 has a 

predicted payback period of 11.42 years, while PVSOL is estimated to be 14.9 years. 

Zhang et al. (2025) analyze the solar potential, architectural modeling, financial 

feasibility, and environmental impacts of projects to simulate distributed PV systems on the 

roofs of a community. The results indicate that the installation of 79 units generates 1328.74 

MWh annually. This meets residents’ energy needs and provides a surplus to the electricity grid. 

The use of light-colored PV modules and elevated pavilion-type structures meet the aesthetic 

standards of the projects in terms of local architecture while maximizing energy efficiency and 

rooftop utilization. The life cycle assessment confirmed the project’s economic viability, 

presenting an internal rate of return of 5.82% and a discounted payback period of 15.31 years, 

considering additional architectural integration costs. In addition, the installation reduced 

24,754.77 tons of CO2 over 25 years. 

Although PV technology can potentially drive energy transition and decarbonization, its 

adoption in the AECO industry still faces regulatory, economic, and technical challenges (Chen 

et al., 2022). The literature highlights that BIM-PV integration enhances standardization and 

design optimization and improves collaboration among AEC stakeholders. Research shows that 

BIM can strengthen the integration of PV systems in buildings, from solar potential analysis 

and parametric modeling to cost-benefit and life cycle assessments. Although BIM-PV 

integration is still primarily focused on solar mapping and automating panel positioning, there 

is a vast field of research and innovation, especially in developing solutions at the design stage 

(Tian et al., 2023). 

While the body of knowledge related to photovoltaic projects in the AECO industry 

explores alternatives to enhance solar energy production through the application of different 

materials for solar modules (Lins et al., 2024; Myint et al., 2025; Serat et al., 2025; Zhi et al., 

2023), the literature on BIM in sustainable projects seeks to propose solutions in the various 

dimensions of the framework (Cassandro et al., 2024; Lins et al., 2024; Mandičák et al., 2024; 

Myint et al., 2025). However, there is a gap in the literature related to integrating photovoltaic 

projects and BIM technologies for simulations in three-dimensional models during the project 

design phase. For example, Myint et al. (2025) discuss the importance of research on using 
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technologies such as BIM to drive the development of automated projects that evaluate different 

BIPV design options. Myint et al. (2025) argue that articles about BIM-PV can guide the 

development of low-carbon buildings. However, research in the field of PV systems, such as 

(Serat et al., 2025; Zhi et al., 2023), has advanced mainly in simulations of solar energy 

production, but often without considering the direct integration of PV systems into the building 

envelope, as proposed by building-integrated photovoltaic systems. This gap is also reflected 

in the lack of integration between PV simulation tools and BIM-based building design 

processes, causing interoperability problems and limiting automated and data-driven design 

approaches (Palha et al., 2024; Zhi et al., 2023). In addition, although recent research in BIM 

has focused on automated solutions that address sustainability requirements (Cao; Huang, 2023; 

Cassandro et al., 2024), there is still a lack of studies proposing comprehensive workflows that 

integrate BIPV design, energy simulations, and BIM technologies from the early design stages 

(Mandičák et al., 2024; Nascimento et al., 2023). 
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3 THESIS METHODOLOGIES 

 

This thesis adopts a multi-method approach. The three subsequent chapters apply 

different methodologies to address each of the research objectives introduced. The literature 

review showed the trends related to the research field and how this field impacts the AECO 

industry. The application of deep learning algorithms is a contribution oriented to the planning 

of photovoltaic projects integrated into buildings. Specifically, this chapter is an excerpt from 

the key areas identified in the literature review. Finally, the thesis contributes by establishing a 

process for selecting solar module manufacturers and models based on cost and total PV energy 

production. Therefore, the thesis has three stages, as shown in Table 1. 

 

Table 1 - Methods and objectives of the thesis, with the software used and main results 
Main Objective: Investigate how the integration of BIM and AI applications can foster a BIM-driven design 

process to support the planning and retrofit of sustainable buildings, with a specific focus on photovoltaic 

systems in the AECO sector. 

Stage Specific Objective Method Software Key Results 

Chapter 4 

(Paper 1) 

a) Investigate how BIM and AI capabilities 

can improve the development of smart 

architecture, engineering, construction, and 

operation projects 

Systematic 

Literature 

Review 

Rstudio 

Biblioshiny 

Maps 14 BIM, 16 

AI capabilities, 

BIM-AI benefits, 

and a framework 

 

Chapter 5 

(Paper 2) 

b) Explore the application of a BIM-driven 

deep learning algorithm to estimate PV 

energy production, associating solar 

radiation series and automated extraction 

of information in BIM models 

Times series 

simulation 

with DL 

Revit/Dynamo 

Solarius PV 

Google 

Collab/Python 

Automated 

process for solar 

energy estimation 

Chapter 6 

(Paper 3) 

c) Develop an automated process model for 

allocating solar modules, seeking to 

maximize photovoltaic energy production 

(kWh/day) while minimizing 

implementation costs 

Optimization 

algorithm 

Revit/Dynamo 

Google 

Collab/Python 

Optimized layout 

of solar modules 

 

In the first Thesis stage, it is argued that the AECO sector gains advantages through 

generating and effectively managing BIM data. This increased available data can be 

fundamental in deriving innovative advances by processing them through AI models. In this 

context, this stage investigates how BIM and AI capabilities can benefit the development of 

smart AECO projects. The research design is a systematic literature review, applying 

bibliometric and content analysis. First, the chapter explores the relationships between the 

topics of AI and BIM applications, identifies seven core domains of BIM and AI finds 

application, explores research contributions, the problems addressed, and their primary 

outcomes. Second, the paper maps out 14 BIM and 16 AI capabilities fundamental to 

developing smart projects. Third, three propositions that sustain an integrative framework are 
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suggested. The chapter also suggests that practitioners identify critical organizational 

capabilities to be built and strengthened. 

In the second stage, it argued that photovoltaic energy is a renewable source that offers 

the potential to meet the growing demand in buildings. Through stage 1, it is observed that solar 

energy use in buildings opens the potential for research in solar radiation forecasting and 

photovoltaic energy production with application in BIM. In this context, this stage aims to 

explore the application of a BIM-driven deep learning algorithm to estimate PV energy 

production. This stage quantifies the energy produced and CO2 emissions avoided based on the 

predicted values of the implemented algorithm, using a routine in Dynamo that extracts the 

information from a BIM model. Thus, this stage uses solar radiation time series and automatic 

BIM data extraction to establish an automated process in the design phase, called 

SolarisBIM.AI, for quantifying solar energy production and avoided CO2. This strategy offers 

designers, engineers, and managers another way to analyze buildings' energy efficiency and 

sustainability. The stage provides an automated process that can serve as a strategy to 

predictively quantify the sustainable actions of the project during the design phase. 

In the third stage, it is argued that to determine the efficiency of PV systems, aspects 

such as solar radiation (to estimate total energy production), available area on the building roof, 

PV module brands, models, and costs must be considered. The traditional project process for 

applying photovoltaic solutions is still limited to two-dimensional data without considering all 

structural elements of buildings' roofs. This stage aims to develop an automated process for 

allocating solar modules to maximize PV energy production while minimizing implementation 

costs. This stage integrates visual programming in Dynamo with programming in Python to 

analyze different combinations of PV modules, considering the dimensions of 21 PV modules 

from 4 brands for allocation on the roof of a building. The algorithm identifies the most efficient 

configuration of photovoltaic cost-production. It uses Dynamo to extract information on the 

families of PV modules and the available roof area from a BIM model in Revit. Finally, the 

model automatically allocates the best arrangement of PV modules directly in the Revit model. 

Experiment 1 used 721 photovoltaic modules and obtained the highest daily energy production, 

with 2723.63 kWh/day. However, this solution also presented the highest total cost, reaching 

USD $ 387,575.45. Experiment 2 was the one that used the greatest number of panels, totaling 

969 units. Energy production was lower than in Experiment 1, with 2630.09 kWh/day. On the 

other hand, this layout presented a lower cost than Experiment 1, totaling USD $ 370,504.08. 

This study also compares the results with a case study.  

Thus, Figure 2 shows the schematic structure of the thesis. 
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Figure 2 - Thesis schematic structure 
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4 TOWARDS AN INTEGRATIVE FRAMEWORK FOR BIM AND ARTIFICIAL 

INTELLIGENCE CAPABILITIES IN SMART ARCHITECTURE, ENGINEERING, 

CONSTRUCTION, AND OPERATIONS PROJECTS 

 

4.1 Chapter Introduction 

 

The digitalization domain of the Architecture, Engineering, Construction, and 

Operations (AECO) industry is advanced by BIM, a fundamental approach to dealing with the 

growing volume of information and data generated throughout the lifecycle of construction 

projects (Zhang et al., 2022). Adopting BIM provides capabilities to the AECO sector, covering 

technological, organizational, and procedural levels aimed at innovation in the industry (Alzara 

et al., 2023b). The existing limitations in processing data from BIM models have led to 

academic research exploring the application of artificial intelligence (AI) algorithms, 

specifically Machine Learning (ML) and Deep Learning (DL) models (LI et al., 2024; Padala; 

Skanda, 2024). Integrating BIM and AI holds promising advantages, opening research areas to 

explore how capabilities for advancing smart projects can be effectively applied in the realm of 

AECO in two ways. Thus, many professions currently face the prospect of evolution and 

change, and AECO is no different. The adoption of BIM and AI in the field is growing fast and 

becoming a reality in industry; therefore, future research shall address key points to enable the 

evolution of the AECO field. 

First, BIM-based projects have 3D parametric, object-based, and data-rich information 

associated with attributes and datasets. In AI, these attributes of BIM models are applied for 

automation, prediction, and various forms of learning in the AECO industry (Abdulfattah et al., 

2023). The BIM modeling process encompasses tools and technologies applied throughout the 

entire life cycle of buildings, digitally documenting requirements related to the performance, 

planning, construction, and operation of projects (Bloch; Sacks, 2020; Ying et al., 2023). This 

process enables the creation of accurate information models and aids design analysis, 

simulation, and interpretation for enhanced utility (Li et al., 2024; Padala; Skanda, 2024). Due 

to this digital transformation, BIM data can be used to create innovative architectural and 

structural designs, improve construction safety, reduce operational costs, increase construction 

speed, and enhance sustainable solutions (Li et al., 2024). 

In this sense, this chapter theorizes that as the AECO industry incorporates the demands 

of BIM data-driven digitalization and process automation, researchers and practitioners will be 

challenged to deal with large volumes of data and understand object-data relationships and 
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interdependencies (Alzara et al., 2023b; Li et al., 2024). Data management, processing, and 

interpretation capabilities will be necessary in several domains of the AECO industry. In this 

context, by employing AI, especially ML and DL, this data can be transformed into knowledge 

for various applications (Abdulfattah et al., 2023). While ML methods develop models that 

predict future outcomes based on historical data, DL methods adopt a more automatic neural 

pipeline that does not require complex feature learning and detection. Both DL and ML are 

subfields of AI (Abdulfattah et al., 2023; Wang; Gan, 2023a).  

Second, it is essential to establish BIM capabilities for data management and AI 

capabilities for processing and interpreting that data. In this Thesis, the capability construct 

encompasses the knowledge, skills, and experience professionals need to understand, evaluate, 

implement, and promote the development of smart projects (Chen et al., 2023a). Previous 

research investigated the development of BIM and AI from different perspectives. Some of 

them aim to explore the evolutionary development of the BIM research area and AI 

applications, showing that this combined approach gradually grows in the field of cost 

management (Naderi et al., 2024), point cloud applications (Tavolare et al., 2023), building 

renovation (Mulero-Palencia et al., 2021), energy efficiency (Ratajczak et al., 2023) and 

Historical Building Information Modeling (HBIM) (Garcia-Gago et al., 2022). Current 

literature seeks to formulate strategies that aim to automate processes and simulations in 

intelligent projects through data generated in BIM models in different phases of the project's 

life cycle (Abdulfattah et al., 2023; Bloch; Sacks, 2020; Li et al., 2024; Padala; Skanda, 2024; 

Ying et al., 2023). Regardless, there is a gap in the literature in pointing out which BIM and AI 

capabilities are essential for developing smart projects. Furthermore, discussing the potential 

benefits of combining BIM and AI capabilities in the AECO sector is essential.  

Thus, this chapter investigates how BIM and AI capabilities can improve the 

development of smart architecture, engineering, construction, and operation projects. To 

support this research objective, the paper answers the following research questions: (#RQ1) 

What are the essential BIM and AI capabilities for smart AECO projects? (#RQ2) What are the 

main benefits of the connection between BIM and AI for developing smart AECO projects? 

The chapter presents an integrative research model, which explores the main 

contributions of the association between BIM and AI in AECO projects. The research design is 

a systematic literature review that applies bibliometrics and content analysis with the assistance 

of Bibliometrix and Mendeley software. The main topics, thematic evolution, and concept maps 

are covered. Finally, using a coding scheme in the content analysis stage, the article explores 

the relationships between AI and BIM applications, essential capabilities for this integration, 
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and potential benefits for the sector. To answer research question 1 (#RQ1), this paper maps 

two types of capabilities oriented to data management and application. As for research question 

2 (#RQ2), this paper covers five core benefits domains in the AECO sector.  

Previous literature reviews have presented maps and quantitatively analyzed the 

literature on AI applications in the AECO domain. These researches provide directions for the 

AECO literature by visualizing and understanding trends, identifying research topics, journals, 

institutions, key authors, and countries, and providing directions for future research (Darko et 

al., 2020; Heidari et al., 2023; Pan; Zhang, 2021b, 2023b; Zabin et al., 2022). However, this 

study suggests an approach that goes beyond mapping recent literature on the application of AI 

in the field of AECO. This chapter presents a theoretical framework grounded in three 

propositions, two essential categories of technological capabilities, and five potential benefits 

of integrating BIM and AI. The framework systematically incorporates recent literature 

contributions by organizing them into defined categories of capabilities and associated benefits. 

This structured approach offers an understanding of how BIM and AI can be effectively 

combined to enhance various aspects of AECO projects, providing a comprehensive foundation 

for both theoretical exploration and practical application. 

This research also highlights the global relevance of the BIM-AI subject in terms of 

collaboration between countries, recent research topics, and their distribution over the years, as 

well as the main problems proposed by the literature and their leading solutions for the 

evolution of the AECO industry. In this context, it is observed that recent research seeks to 

improve predictive maintenance and facility management (Cheng et al., 2020; Marzouk; Zaher, 

2020a; Palha et al., 2024), proposes to assess and reduce the environmental impact of buildings 

through life cycle analysis and CO₂ emissions monitoring (Arsiwala et al., 2023; Wu; Maalek, 

2023) and develops intelligent systems that can optimize energy consumption and thermal 

comfort in buildings (Erişen, 2023; Hou et al., 2022). They are still advancing in the theoretical 

and practical fields with the use of AI to facilitate the documentation, preservation, and 

restoration of historic buildings, employing computer vision and machine learning techniques 

for 3D reconstruction (Croce et al., 2023; JIANG et al., 2022) and applying AI in generative 

design to automate design processes, such as the generation of multiple layout options (Abdirad; 

Mathur, 2021; Wang et al., 2023). 

This chapter makes contributions to the AECO field from this research. It identifies 

seven core domains and maps out 14 BIM and 16 AI capabilities fundamental to developing 

smart projects. The discussion of these capabilities lies in understanding their inherent nature, 
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their diverse applications, and the potential benefits they bring. These analyses suggest three 

propositions, and the paper explores the potential benefits of BIM and AI capabilities. 

 

4.2 Research Methodology  

 

The chapter applies a Systematic Literature Review (SLR) because it is a structured, 

replicable, and transparent method essential in developing frameworks based on scientific 

evidence (G. Alves et al., 2024). The SLR is conducted through a bibliometric analysis and 

content analysis to identify research topics, approaches, and integrated applications of BIM and 

the AI domain (Tranfield et al., 2003).   

Given the rapid technological advancements and the increasing complexity of AECO 

projects, an SLR is needed to map out which capabilities are essential to integrate BIM and AI 

efficiently. Furthermore, what are the potential benefits that such integration generates? This 

review goes beyond previous studies by identifying, categorizing, and analyzing the essential 

capabilities of BIM and AI; the paper proposes an integrative framework that articulates the 

capabilities of BIM and AI, highlighting the potential benefits of this integration. Therefore, 

this paper provides theoretical and practical guidance through SLR to support future research 

and adopt innovative solutions in the AECO industry. 

Furthermore, this paper follows a well-defined protocol that ensures comprehensive 

coverage of the relevant literature. Given the novelty and complexity of BIM and AI integration 

and the rapidly evolving technological landscape, an SLR provides the methodological 

approach to map essential capabilities required for smart AECO projects. Furthermore, the 

systematic process allows for identifying gaps in existing research and supports the 

development of a theoretically grounded and evidence-based integrative framework. 

This research introduces two questions to be answered (#RQ1 and #RQ2). The first 

question seeks to advance the body of knowledge by identifying and categorizing BIM and AI 

capabilities and functionalities for the development of smart projects within the AECO industry. 

The goal is to understand which technologies enable smart project design, construction, and 

operation. The second question seeks to elucidate how BIM and AI improve project efficiency, 

sustainability, cost-effectiveness, and innovation. Both questions arise from the need to know 

the fundamental technological capabilities for developing smart projects, aiming at automating 

the design process through BIM and AI. In this context, SLR was essential to map the necessary 

skills based on scientific evidence and to understand the main applications of BIM and AI that 

drive the technological development of the AECO sector. 
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This section describes the SLR methodology for data composition and analysis. The 

methodological procedures adopted in developing the SLR are detailed to ensure the 

transparency and reproducibility of the sample composition and results. Thus, the following 

subsections present the databases used and the search strings. Furthermore, the paper describes 

the inclusion and exclusion criteria for the sample composition to ensure the quality and 

relevance of the articles analyzed. Finally, the bibliometric and content analysis steps are 

described. 

 

4.2.1 Sampling Process 

 

4.2.1.1 Databases selection 

 

The sample was collected from the Scopus and Web of Science (WoS) databases. Both 

databases provide comprehensive and up-to-date coverage of scientific publications, enabling 

researchers to access recent and relevant research and ensuring that the literature review 

accurately reflects the current state of the art (Alves; De Carvalho, 2023).  The SLR adheres to 

the recommended methods proposed by Tranfield et al. (2003), ensuring a systematic approach 

divided into three stages, as described in the following subsections.  

 

4.2.1.2 Search strings 

 

First, the SLR scope was defined, including the objectives, research questions, and 

inclusion and exclusion criteria. At this stage, it was also formulated search strings: [(“Building 

information model*” OR BIM) AND (“machine learning" OR "deep learning" OR "artificial 

intelligence”)], to be applied to titles, abstracts, or keywords up to the year 2023. The 

formulation of the selected search strings seeks to capture scientific research at the intersection 

between BIM and AI, including its subareas, machine learning, and deep learning. This search 

was conducted on March 27, 2024, resulting in 1338 documents in Scopus and 729 in Web of 

Science. 

 

4.2.1.3 Scientific document type filtering 

 

Second, the sample was refined to include only articles, reviews, and early access 

publications in English, resulting in 511 articles in Scopus and 540 articles in Web of Science. 
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The paper specifically opted for articles due to their typical submission to a peer-review process, 

ensuring a certain standard of quality, reliability, and methodological rigor. 

 

4.2.1.4 Duplicate Article Exclusion 

 

The metadata files (savedrecs.bib for WoS and scopus.bib for Scopus) were exported 

from both databases in the '.bib' format and employed the RStudio computing environment 

(version 2023.9) to remove duplicates. Using a code to convert BibTeX files to a data frame, 

the two files were merged and identified duplicates, resulting in the identification of 397 

duplicate articles. Therefore, the combined dataset from both databases amounted to 654 unique 

articles.  

 

4.2.2 Inclusion and Exclusions criteria 

 

After combining the metadata from the two databases, the articles were then evaluated 

using inclusion and exclusion criteria to compose the final sample, which are discussed in the 

two following subsections. 

 

4.2.2.1 Title and abstract reading 

 

The dataset was exported to ".xlsx" format with all the article information. First, the 

articles that remained duplicated were removed. Then, all the titles and abstracts of the articles 

were read. In this stage, 184 articles that were outside the scope of the study or that remained 

duplicates were excluded. In this phase, two exclusion criteria were applied: 1) articles that use 

the acronym 'BIM' (related diseases) in the healthcare domain; 2) articles that only concentrate 

on BIM, treating AI as a subject for future research without exploring direct correlations 

between the two technologies. These articles were downloaded and read before being 

definitively excluded from the sample. 

The exclusion criteria adopted at this stage ensure the relevance and specificity of the 

studies analyzed in relation to the main objective of the research. First, excluding articles that 

use the acronym 'BIM' in the context of diseases in the health domain avoids confusion with 

the term Building Information Modeling, which is the focus of this research. Second, the 

exclusion of articles that treat BIM in isolation or consider AI only as a topic for future research 
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without exploring the direct relationship between these two technologies is important to focus 

on the current and practical integration of BIM with AI. 

 

4.2.2.2 Content analysis 

 

At this stage, all remaining articles were downloaded so that authors could read them in 

full. Even at this advanced stage of sample composition, 18 downloaded documents were not 

of the article type or only had the title and abstract in English (with the rest of the manuscript 

in another language). Although many articles have titles and abstracts available in English, the 

whole body of the document may be in another language, which may not be immediately 

apparent in the initial screening phase based on titles and abstracts. In addition, document type 

classification may be inaccurate or incomplete in database indexing information. 

After reading all manuscripts in full, 128 articles are excluded. The exclusion criteria 

were: 1) articles that primarily focused on analyses limited to the quantification of research on 

the topic; 2) lacked methodological rigor, provided superficial accounts, or lacked a connection 

between BIM and AI; 3) articles that discussed only the importance of addressing the AI and 

BIM theme in undergraduate curriculum. Articles that limited themselves to quantifying 

research on the topic were excluded because this article aims to understand the applications and 

theoretical advances between BIM and AI. In addition, the established exclusion criteria aim to 

ensure that the analysis is based on robust studies that offer contributions to the field. Finally, 

the review is focused on research that effectively explored the synergies between BIM and AI. 

Hence, the final sample yielded 324 articles (see Appendix A).  

 

4.2.2.3 Data Analysis 

 

Given the final sample of 324 articles, the data analysis was performed through 

bibliometric and content analysis techniques. This phase aimed to identify patterns, trends, and 

relationships within the examined literature. The entire sample composition process is shown 

in Figure 3. 
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Figure 3 - Sample composition process 

 

 

Bibliometric analysis enables a quantitative assessment of elements, such as the 

frequency of publications, most cited authors, and temporal evolution of research (Araújo et 

al., 2020a). To accomplish this, RStudio was utilized to access the Bibliometrix package, and 

the unified data frame of the final sample in the Biblioshiny environment was subsequently 

analyzed. Bibliometrix, a specialized R library, is designed to extract detailed bibliometric 

information from datasets, offering a broad range of quantitative metrics. It facilitates a analysis 

of publication patterns, prominent authors, co-authorship networks, and the temporal evolution 

of topics (Aria; Cuccurullo, 2017). Conversely, Biblioshiny is an interactive graphical interface 

built on Shiny, a framework for developing web applications in R. This tool provides a dynamic 

visual experience, enabling researchers to explore and interpret bibliometric data intuitively. 

The integration of these tools offers a approach to bibliometric analysis, combining the 

analytical robustness of Bibliometrix with the accessibility and interactivity provided by 

Biblioshiny, thereby enhancing understanding and utility in investigating bibliographic patterns 

and research dynamics (Aria; Cuccurullo, 2017). 

Furthermore, content analysis deepens qualitative understanding by exploring the 

specific nuances and characteristics addressed in the articles (Almeida-Filho et al., 2021; Alves; 

De Carvalho, 2023). In this case, all articles were downloaded and managed using Mendeley 
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software (version 1.19.8). In addition to its primary functionality as a reference manager, 

Mendeley offers features that facilitate the organization and categorization of documents, 

essential elements for content analysis.  

In this sense, it was possible to structure and classify the articles according to categories 

that reflect the coding of the sample, identification of patterns, and emerging topics. During 

coding at this stage, words or phrases were considered units of meaning to be assigned to 

specific categories or codes, reflecting emerging concepts or themes (Alves; De Carvalho, 

2023). It adopts an inductive approach, allowing categories to appear throughout the process 

until sample saturation.  

Therefore, this chapter first categorized the sample into disciplines and the applications 

of AI and BIM. At this stage, the problems to be solved and the results obtained through the 

analyses carried out by the authors are identified. This chapter then codifies the capabilities 

needed for BIM and AI applications. Based on these capabilities, this paper maps the benefits 

generated by the integrated application of these technologies. 

 

4.3 Systematic Literature Review Results 

 

The results section initially presents the bibliometric findings through conceptual and 

correlation maps generated from analyzing the sample metadata. Thus, the core domains of the 

research are identified through content analysis. Each of these core domains is defined, and 

then the capabilities related to BIM and AI are presented, as well as the benefits arising from 

the integration between BIM and AI. 

 

4.3.1 Bibliometric Analysis for Thematic Maps 

 

This section presents the results of the bibliometric analysis in Biblioshiny (utilizing 

Bibliometrix) for the 324 articles comprising the sample in this research. Figure 4 shows an 

increasing trend in academic production over the years, with an increase in articles published 

from 2018 onwards. Between 2010 and 2017, the number of publications was low, with an 

average of 2 articles per year. However, from 2018 onwards, scientific production increased, 

reaching 13 articles in 2018 and a peak of 98 articles in 2023. This growth in recent years 

suggests increased interest and relevance of the topic researched, possibly driven by 

technological advances and a greater demand for innovation in the field. The average annual 

production for the entire period (2010-2023) is approximately 26 articles per year. 
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Figure 4 - Annual Production 

 

The analysis of the geographical distribution of scientific production in this sample, 

which includes 58 countries, shows that China leads with approximately 26% of publications. 

The United States follows with approximately 13%, and Australia and the United Kingdom 

each contribute approximately 7%. South Korea contributes approximately 6% of publications, 

and Italy approximately 5%. The remaining countries contribute 3%. Figure 5 reflects the 

nationality of all the authors in the collection, with the intensity of the color corresponding to 

the number of publications.  

The data also indicates 61 international collaborations across various countries, with 

notable partnerships between China, Australia, the USA, the United Kingdom, Singapore, and 

Chile. Figure 5 illustrates the geographical distribution of the research sample, specifically 

focusing on collaborations that occurred at least twice. 
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Figure 5 - Country Collaboration Map 

 

The journal Automation in Construction leads the sample with 89 papers (see Figure 6), 

consolidating itself as the primary source of research on automation and technological 

innovation in construction. The two main authors of the sample, Zhang L and Cheng J, focus 

on the application of AI and BIM in the AECO sector, but with specific emphasis. Zhang L 

focuses on improving smart construction management, including mining BIM logs to predict 

design commands and detect logical relationships in mechanical, electrical, and plumbing 

(MEP) systems. He also investigates the assessment of safety risks in complex projects, such 

as tunnels, using explainable tree-based optimization methods (Lin et al., 2023; Wang et al., 

2022). Cheng J focuses on areas such as using BIM and IoT for predictive maintenance of MEP 

components and optimization methods for building surveillance and fire evacuation. In 

addition, Cheng J explores the automatic segmentation of industrial point clouds using neural 

networks, demonstrating a continued interest in applying machine learning for spatial and safety 

data analysis in buildings (Cheng et al., 2020; Yin et al., 2021). 
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Figure 6 - Most Relevant Sources and Authors 

Most Relevant Sources 

 

Most relevant authors 

 

 

In the collaboration network (Figure 7), Cheng J also is highlighted by its research 

partnerships. Wang J investigates the application of graph neural networks (GNNs) in 

construction, with a focus on point cloud segmentation. Li X is notable for developing IoT-

enabled BIM platforms and applying parallel computing and big data to assembly services in 

modular construction; the author's research includes generating BIM models from 3D point 

clouds and assessing environmental satisfaction through energy digital twins. Bai Y explores 

automated modeling of historic high-rise building facades with drones and AI and uses deep 

learning to develop as-built models. Ma J, on the other hand, invests in automated processes for 

the digital fabrication of industrialized buildings, combining BIM with computational design 

and digital fabrication. Ma J also uses deep learning for semantic segmentation of indoor point 

clouds and applies image retrieval systems to facilitate facility management.  
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Figure 7 - Collaboration Network 

 

Thus, the initial analysis of the sample reveals a broad diversity of topics and 

applications associated with integrating the BIM and AI AECO sectors. The applications 

presented by the sample integrate analyses based on ML and DL for modeling construction 

elements, such as structural analyses, facility maintenance, performance analyses, and 

environmental assessments (Shen; Pan, 2023; Wang; Gan, 2023a; Wei; Akinci, 2019). The 

primary source of data that connects BIM and AI is modeling 3D point clouds of built 

environments through the development of automated model generation methods with the 

extraction of geometric information. In this context, the authors use AI computational models 

to classify, segment, or generate elements to model the geometry of BIM elements (Shu et al., 

2023). 

In the data science domain, the sample articles develop capabilities to process complex 

and multidimensional data from BIM models (Kim; Kim, 2021). While most authors use point 

clouds as a central source of BIM data, other authors use data sources such as text (such as work 

order requests for maintenance), audio (in the field of architecture to incorporate customer 

requests), IFC libraries, time series (mainly related to energy consumption), images and videos 

(both for real-time monitoring and for generating 3D models) (Kayhani et al., 2023; Ma; Leite, 

2022; Zhang; El-Gohary, 2023; Zhou et al., 2022). 

Thus, the variety of AI techniques presented in Figure 6 are employed to process this 

diversity of data. For example, CNN can process and analyze images and videos, and natural 

language processing can be applied to analyzing textual data such as work order requests. On 

the other hand, genetic algorithms can be used to optimize design elements and computer vision 
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can be used in 3D reconstruction from multiple images (photogrammetry) to recognize specific 

image patterns (Chen et al., 2023b; Matrone; Martini, 2021).  

Figure 8 is generated through graph theory and is used to model relationships between 

pairs of objects. A graph consists of nodes that are interconnected by edges. In the context of 

scientific mapping, network graphs are used to represent co-occurrences between bibliographic 

metadata. The basis for this representation is a co-occurrence matrix, where non-diagonal 

elements indicate how often two items, such as words, occur together in the same corpus (such 

as keyword lists, titles, or abstracts). Diagonal elements reflect the frequency of each item 

within the document collection. In this way, the network is organized into colors. The colors in 

the graph indicate the clusters to which each word is associated, with each cluster representing 

a research field within the analysis (Aria; Cuccurullo, 2017). 

 

Figure 8 - Co-occurrence of keywords 

 

These data science topics and approaches are integrated into the AECO industry to 

establish mechanisms for processing automation and, consequently, the development of 

intelligent projects. Thus, research topics related to research techniques that can be used in 

different disciplines of the AECO industry arise, as shown in Figure 7.  

The Thematic Map in Figure 7, generated by applying a clustering algorithm to a 

keyword network, outlines the themes in the BIM and AI domains. This algorithm groups 

keywords based on their associations and co-occurrences. In this way, distinct themes or 

clusters emerge. Centrality indicates the relevance of a theme within the broader field, and 

Density reflects the internal strength and cohesion of the theme, suggesting its development and 

the maturity of research within that cluster. The main limitation of this approach is that each 

keyword is associated with only one topic. Furthermore, the indicated topics must be analyzed 



57 
 

in depth through content analysis to verify whether the thematic indications fully reflect the 

topics of the contributions (Aria; Cuccurullo, 2017). 

Thus, Figure 9 has thematic groups related to architectural design, mainly about treating 

point clouds as a data source. Specifically, the algorithms seek to optimize separating spatial-

spectral attributes into their constituents in cloud segmentation. Point cloud algorithms 

segmentation, for example, enables the capability to extract relationships between 

neighborhoods, graphs, and topology, allowing the transition from subsymbolic to symbolic 3D 

data analysis (Ma; Leite, 2022; Poux et al., 2022). 

 

Figure 9 - Thematic Map for BIM e AI in Smart Construction Projects 

 

4.3.2 Research core domains 

 

An in-depth analysis of all articles in the sample was conducted to enhance the results 

from Figures 8 and 9. This stage involves categorizing the articles into central topics correlating 

data science techniques and BIM. These research topics were identified and tabulated in Table 

2. Seven application domains of BIM and AI in the AECO industry were identified. These 

applications guide recent contributions to literature and integrate different ways AI and BIM 

are associated with generating essential capabilities for data processing. The workflow 
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generally involves the Scan-to-BIM process, which comprises point cloud-based data 

processing. 

To identify the seven domains presented in Table 2, this paper coded the findings of the 

sample through content analysis, starting from the analysis of the co-occurrence of keywords 

to group the articles into related themes. Through this iterative process, seven key domains 

emerged that presented greater frequency in the analyzed publications, representing the most 

prominent BIM and AI integration areas. To this, the paper initially thoroughly read all the 

selected articles, extracting key concepts, recurring themes, and specific BIM-AI applications. 

These concepts and themes were transformed into initial codes, representing information units. 

Thus, the articles are grouped into domains based on similarities and thematic relationships, 

forming categories. The codes and categories were constantly reviewed and adjusted through 

an iterative refinement process. 

This chapter argues that literature advances mainly in seven domains to create data 

processing and interpretation capabilities. This research further distributes these seven key 

research domains over the years in Table 3. The following subsections detail this evolution with 

current contributions on the topic. 
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Table 2 - Seven key research domains and applications 
Domains BIM and AI integration in construction phases Problem to solve Output Source ID 

Facility 

management 

GA, CV, and RF frameworks are applied to acquiring and 

processing point cloud data, converting BIM models into real-

world images, and focusing on operations and building 

maintenance. The sample uses a Scan-to-BIM workflow to 

monitor and forecast anomalies in the 3D model. 

Provide diverse data collection and 

analysis methods to automate the 

generation of various scenarios and 

as-built projects. 

Real-time object detection, 

predictive clash models, 

visualization of anticipated facility 

anomalies, and generation of 

automatic as-built models. 

19,20,54,95,102,112,113,175, 

178,190,197,212,215,276,295. 

Sustainability 

A multi-criteria decision support system, semantic classification, 

GA, ANN, and support vector machines are employed to assess a 

building's energy consumption in operation. Data can be extracted 

with Dynamo and point clouds, applied in the planning phase for 

BIM-based energy simulation, and a dashboard for circular 

building design has been proposed. 

Optimizing energy performance, 

designing sustainable buildings, 

identifying ideal scenarios, 

automating material classification, 

and developing digital twins for 

predictive monitoring. 

Assessing energy performance, 

creating a decision support system 

for sustainable design, identifying 

optimal scenarios, classifying 

building materials, and developing 

a digital twin.  

5,6,8,25,44,61,65,80,84,137, 

150,160, 167,177,237,239,284, 

298. 

Energy 

Solution / 

Consumption 

The utilization of CNN, LR, RF, Support Vector Regression, 

Decision Tree, and ANN is directed toward analyzing 

photogrammetry, point cloud data, and time series data related to 

energy consumption, volume, and floor area size. This is applied in 

the planning phase to explore alternative solutions by developing a 

3D model for energy analysis.  

Alternative energy consumption in 

buildings enhances energy efficiency, 

integrates renewable systems, and 

enables continuous monitoring for 

informed, sustainable decision-

making. 

Energy forecasts, automatic 

generation of renovation scenarios 

based on user preferences, and 

better economic solutions for 

energy consumption 

27,85,138,139,140,146,149, 

152,168, 170,186,200,241, 

245,246,263,268,291,310,314, 

317. 

Heritage BIM 

(H-BIM) 

SS (with RF, CNN, and Pixelwise) is applied in point cloud 

scanning, space grid structures, photogrammetry, and 

Scan4Façade. Use Scan-to-BIM workflow to provide accurate 

information for BIM feature creation in Revit. 

Optimize the analysis of data 

generated from historic buildings, 

including data from point cloud 

clustering methods. 

Reconstruction of template 

geometries of classes of 

architectural elements. 

14,21,39,68, 71,78,104, 

130,133,134, 135,154,159, 

162,206,308,311. 

Time and 

Cost 

Optimization 

GA and KNN techniques are employed in Planning, specifically 

for creating a 4D BIM model integrating bill of quantities, 3D BIM 

model, and productivity factors (labor, equipment). A 5D BIM 

model cost database is developed by incorporating cost data such 

as equipment, person-hours, materials, and overhead costs into the 

model, using time series information.  

Inefficient schedules and budgets. 

The authors provide real-time 

schedules, highlighting the need to 

improve project status awareness to 

generate more realistic schedules. 

The plugin reduces project costs 

and time, provides a cash flow 

dashboard with 5D BIM mode, and 

provides a dashboard for cost 

estimation. 

1,11,12,24,26, 

58,67,72,76,98,101, 

105,155,157,181, 

189,203,204,234,265,270,280, 

283,322. 

Object-based 

computer 

modeling 

CV is applied with augmented reality and virtual reality data, 

contributing to design, planning, monitoring, and control activities. 

The integration of the Internet of Things is utilized to manage 

diverse tasks and activities across various construction and 

operational phases, supported by BIM-GIS integration. 

Improve the generation, control, and 

optimization of digital models to 

accurately reflect structures or 

systems' physical and functional state. 

Provides a real-time visualization of 

the building in an interactive 3D 

map connected to analytical 

dashboards for management 

support. Data-centric management. 

36,38,46,77,83,106,141,151, 

184,188,191,207,222,224, 

231,240,264,324. 

Generative 

Design 

(Architectural 

and 

structural 

drawings) 

 

Employing techniques such as the Mask R-CNN algorithm, CNN, 

and ANN, this domain enhances the design process for concrete 

and steel buildings. A BIM generation model is created by 

integrating architectural and structural blueprints with 3D scan 

data. This model enables a seamless BIM-to-BIM workflow, 

automating the generation of optimized BIM models. 

Optimizing the process of generating 

design alternatives in architectural 

projects, structural analyses to ensure 

stability, and efficiently implementing 

automated systems for creating 

libraries and object recommendations 

based on images and point clouds.  

Generation of design alternatives in 

architectural projects, optimizing 

analyses for structural projects with 

a focus on stability. Additionally, it 

investigates the automated creation 

of libraries based on images and 

object recommendation systems. 

13,23,28,29,31,32,33,37,43,51, 

52,54, 59,63,70,73,75,90,93,99, 

107,114,115,116,136,143,180, 

183,192,196,201,208,209,211, 

214,219,220,221,227,232,275, 

296,297,304,309,318. 

Note: Computer Vision (CV), Genetic Algorithms (GA), Random Forest (RF), Artificial Neural Network (ANN), Convolutional Neural Networks (CNN), Linear Regression (LR), Deep Neural 

Network (DNN), K-nearest neighbor (KNN), Semantic Segmentation (SS).  
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Table 3 - Distribution of key research domains over the years 
Topic 2010-2011 2012 - 2014 2015 - 2017 2018 - 2020 2021 - 2023 

Facility 

management 

   - BIM visualization for 

maintenance and 

identification of new MEP 

elements through image 

classification; - Localization 

of facility components within 

a building and associate them 

with their digital twins; -

Predictive maintenance 

planning 

- Organization and 

retriever photos; - 

Reconstruction from 3D 

LiDAR point clouds for 

MEP scenes; - Anomaly 

prediction using an IoT 

sensor; - Automatic 

detection of small 

objects 

Sustainability 

  - Decision support system for selection of sustainable materials, low-

carbon building measures selection, green building envelope design 

considering energy and maintainability 

    - Regional simulations 

for predicting natural 

hazard; - Life-cycle 

perspective for 

calculates design trade-

offs; - Predictive 

monitoring of CO2 

equivalent from existing 

buildings 

Energy 

Solution / 

Consumption 

   - Energy prediction and simulations with EnergyPlus; - 

Energy Efficiency and Daylight Performance; - Generation 

of alternatives and evaluations of energy performance by 

analyzing the shape of the envelope; - Opportunities and 

costs of energy saving; - Learning Models for Thermal 

Comfort  

Heritage BIM  

(H-BIM) 

   - Application of performance 

enhancement techniques for 

deep semantic segmentation 

point clouds 

- Three-dimensional 

(3D) reconstruction; - 

BIM and geographic 

information system 

(GIS) for operation and 

maintenance; - 

Automated vision-based 

construction progress 

monitoring 

Time and Cost 

Optimization 

 - Estimation 

activity; - Cost 

analysis for 

predictive models 

 - 4D BIM model for the 

optimization of material 

layout of task scheduling 

- Schedule optimization 

Object-based 

computer 

modeling 

   - Automated data acquisition 

for digital twin information 

systems and IA 

- Combination of 

computer vision with 

semantic analysis 

Generative 

Design 

- Automated generation of parametric BIMs based on hybrid video and laser scanning data 

   - BIM object classification, clash detection, automating 

design options; - Rule mining for construction detailing; - 

Natural language processing for predicting design 

commands; - Pipelines to extract 2D digital information 

from floorplans - Reinforcing details construction design; 

-Generation of BIM model from structural and 

architectural plans; - Automated building layout generation 
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4.3.2.1 Facility Management 

 

In Facility Management, the focus has shifted from BIM visualization for maintenance 

and identification of new MEP elements to the integration of digital twins and IoT sensors. This 

has enabled the creation of predictive models for facility maintenance and automatic anomaly 

detection. The research advances in generating and capturing different scenarios for 

automatically generating as-built projects (Chen et al., 2023b). Similar processes occur in the 

HBIM domain, which uses laser scanning or photogrammetry techniques to digitally represent 

buildings (Mohammadi et al., 2023; Tavolare et al., 2023). 

 Marzouk and Zaher (2020) advanced the use of AI in FM by employing a deep learning 

model for image classification of MEP elements and an expert system integrated with an 

Android application to identify required maintenance tasks. Villa et al. (2022) introduced 

anomaly prediction models for sustainable building maintenance using IoT sensor networks and 

BIM models, demonstrating the ability to predict faults in HVAC systems and visualize data in 

3D building models in real-time. Cheng et al. (2020) proposed a predictive maintenance 

planning framework combining BIM and IoT, featuring information and application layers that 

integrate data and apply ML algorithms to forecast future conditions of MEP components. 

 

4.3.2.2 Sustainability 

 

In Sustainability, research has evolved from decision support systems for selecting 

sustainable materials and low-carbon measures to regional simulations that predict natural 

hazards and life cycle assessments that calculate design trade-offs, as well as predictive 

monitoring of CO2 emissions. Data extraction is generally done using Dynamo and point 

clouds, applied in the planning phase for BIM-based energy simulation and the development of 

a control panel for sustainable building design (Caterino et al., 2021; Garcia-Gago et al., 2022; 

He et al., 2021).  

The findings of B. Wu and Maalek (2023), Arsiwala et al. (2023) and C. Wang et al., 

(2021) integrate digital technologies into renovation projects and asset management. B. Wu and 

Maalek (2023) developed an intelligent decision support framework for aging buildings, 

considering sustainability throughout the life cycle. They integrated BIM, point cloud 

processing and structural optimization, assessing the environmental impact of renovation or 

demolition and requalification solutions, focusing on cost, energy consumption and carbon 

emissions. Arsiwala et al. (2023) presented a digital twin solution that automates the monitoring 



62 
 

and control of CO₂ equivalent emissions in existing assets, combining IoT, BIM and AI. The 

research showed that these technologies are essential for facility management, enabling the 

visualization of critical spatial information and prediction of carbon emissions through an AI-

supported system, displaying the results in an interactive dashboard that facilitates the 

implementation of data-driven retrofit strategies. C. Wang et al. (2020) introduced a framework 

for generating and collecting information on a regional scale for risk analysis, using deep 

learning to extract building data from satellite and street images, contributing to the creation of 

semantic profiles of buildings in a city. 

 

4.3.2.3 Energy Solution / Consumption 

 

In Energy Solutions, developments have been marked by simulations of energy 

performance and thermal comfort, exploring opportunities for energy savings, and learning 

models for energy efficiency, such as studies of Erişen (2023) and Hou et al. (2022).  

Erisen (2023) highlights the use of energy-efficient automated systems, combining BIM, 

IoT, and optimization algorithms to monitor and control thermal comfort parameters, such as 

natural ventilation. The research applies machine learning models to optimize the operation of 

these systems and deep learning models to predict user activities and thermal comfort levels, 

resulting in the optimization of energy use in smart buildings. Hou et al. (2022) propose a 

prediction and optimization framework to balance thermal comfort, indoor air quality, and 

energy consumption in HVAC systems, using BIM, simulations, and the Extreme Learning 

Machine (ELM) model optimized by the Grey Wolf Optimizer algorithm. The research showed 

that after optimization, the average CO₂ concentration was reduced and thermal comfort was 

kept within acceptable limits, resulting in energy savings of 14.34%. 

 

4.3.2.4 Heritage BIM (H-BIM) 

 

In Heritage BIM (H-BIM), advances range from semantic segmentation of point clouds 

to 3D reconstruction integrated with GIS, facilitating the operation, maintenance, and 

monitoring of progress in historic buildings. Jiang et al. (2022), Croce et al. (2023), and 

Pierdicca et al. (2020) propose methods for the digital modeling and reconstruction of historic 

buildings, using drones, photogrammetry, and machine learning. 

Jiang et al. (2022) present the Scan4Façade method, which uses drones to capture 

images of historic building facades and employs photogrammetry to create 3D models. An AI 
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model (U-net) segments the generated orthoimages, and a clustering algorithm extracts 

dimensions and coordinates of facade elements, achieving high accuracy in window extraction. 

Croce et al. (2023) propose an approach for automated Scan-to-BIM reconstruction, using 

semantic segmentation with Random Forest and geometric reconstruction of architectural 

elements. Pierdicca et al. (2020) develop a Deep Learning framework for point cloud 

segmentation in the ArCH Dataset, which includes point clouds of architectural heritage, both 

internal and external. 

 

4.3.2.5 Time and Cost Optimization 

 

In Time and Cost Optimization, innovations ranged from predictive cost analysis to 

schedule and layout optimization with 4D BIM. Peiman et al. (2023) and Huang and Hsieh 

(2020) explore approaches for schedule and cost forecasting in construction projects using 

machine learning models and data mining techniques. Peiman et al. (2023) developed a gradient 

boosting ensemble model to estimate the completion duration of construction projects using 

legal and institutional variables. They used data from 30 projects of different building types and 

426 follow-up periods to train and test the models using 17 dimensional variables, including 

EVM performance indices. Huang and Hsieh (2020) proposed a hybrid methodology based on 

CRISP-DM, combining Random Forest (RF) and Simple Linear Regression to improve the 

accuracy in forecasting labor costs in BIM projects in the construction phase. Based on case 

studies of 19 completed BIM projects in Taiwan, they developed a cost decomposition 

framework to train machine learning models and proposed using effective area instead of gross 

area as an input variable, improving model performance with clustering analysis. 

 

4.3.2.6 Object-based computer modeling 

 

Object-Based Computational Modeling combined computer vision with semantic 

analysis for automated data acquisition in digital twin systems. Meschini et al. (2022), H. Wu 

et al. (2021) and T. Wang and Gan (2023)explore approaches to object-based computational 

modeling, focusing on improving building management and safety through technologies such 

as BIM, GIS, computer vision and machine learning. Meschini et al. (2022) develop a BIM-

GIS platform for the Operation and Maintenance phase of an Italian university campus, 

integrating spatial and functional data to create an interactive 3D visualization of assets, which 

aids decision-making and safety in emergencies such as fires. Wu et al. (2021) present a 
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framework that combines computer vision and ontology to manage safety on construction sites, 

detecting hazards through images and inferring mitigators based on rules defined in semantic 

language. T. Wang and Gan (2023) propose an automated computer vision approach for 3D 

reconstruction and visual inspection of buildings, using transfer learning to identify surface 

defects in 3D reconstructed scenes, applying advanced models such as ResNet-50 and Grad-

CAM techniques. 

 

4.3.2.7 Generative Design 

 

Generative Design, there was a leap from automated generation of parametric BIMs to 

advanced techniques such as clash detection, rule mining for detailing, and automated 

generation of layouts and BIM models from structural and architectural plans. The central focus 

is to optimize the process of generating design alternatives in architectural projects, performing 

structural analyses to ensure stability, and implementing automated systems efficiently to create 

libraries and object recommendations based on images and point clouds (Garcia-Gago et al., 

2022; Van Der Zwaag et al., 2023). 

Recent studies by Abdirad and Mathur (2021), Leon-Garza et al. (2022), Frías et al. 

(2022), Urbieta et al. (2023), and L. Wang et al. (2023) illustrate the advances in generative 

design. Abdirad and Mathur (2021) developed a BIM content recommendation system that 

improves the accuracy in predicting content needs using unsupervised machine learning and 

association rule mining. Leon-Garza et al. (2022) presented an innovative approach that 

transforms 2D floor plans into 3D BIM models through type-2 fuzzy logic, increasing the 

interpretability and adjustability of the processes. On the other hand, Frías et al. (2022) 

proposed a deep learning framework for object classification in point clouds with high accuracy, 

using synthetic data and orthographic projections for training. Urbieta et al. (2023) advanced 

the automation of BIM model creation from architectural drawings using Mask R-CNN, 

facilitating the integration of diverse geometric representations. Finally, L. Wang et al. (2023) 

developed a framework for automatic generation of building layouts, demonstrating the ability 

to produce accurate and visually verifiable layouts with the help of the U-Net network. 

 

4.3.3 BIM and AI Capabilities for Smart Buildings 

 

For organizations in the AECO sector to proactively benefit from the advantages of 

BIM-AI integration, this paper argues that essential BIM and AI capabilities are needed in smart 
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building management. First, BIM capabilities refer to the skills and functionalities that a BIM 

platform or system offers to improve the design, construction, and management process of 

buildings and infrastructures (Munianday et al., 2022; Yilmaz et al., 2023). Second, AI 

capabilities refer to the skills and functionalities embedded in systems or platforms that use AI 

techniques to improve processes, make automated decisions, and learn from data (Mikalef; 

Gupta, 2021). These capabilities become strategic artifacts to select, orchestrate, and leverage 

their specific capabilities from BIM and AI models. To answer research question 1 (#RQ1), this 

paper maps two types of capabilities oriented to data management and application. 

This paper maps BIM capabilities in Table 4 and argues that these capabilities underline 

the evolution of organizations in the AECO sector, providing process automation and project 

optimization. First, BIM platforms serve as a centralized and accessible source of project-

related information. Additionally, BIM models offer details about project geometry, materials, 

and components (Tixier et al., 2016; Zheng; Fischer, 2023). This wealth of information becomes 

essential for AI algorithms, especially when considering performance data such as energy 

consumption and structural analysis. In the context of computer vision, BIM provides a detailed 

visual representation of the project and allows the integration of real-world data such as point 

clouds. This ability to connect virtual to the real enriches AI analysis even further. The 

feasibility of this integration is enhanced by standardization in the use of BIM, facilitating 

interoperability between diverse AI systems and tools and establishing a solid foundation for 

advanced analytics (Fenz et al., 2023; Garcia-Gago et al., 2022). Furthermore, efficient data 

management in BIM environments provides a robust framework for dealing with complex sets 

of information, a fundamental necessity when training AI models with large volumes of data 

(Tavolare et al., 2023; Tixier et al., 2016). 

 

Table 4 - Key BIM Capabilities for Smart Constructions and AI 

Code Capability Source ID 

BIM1 
Continuous planning and monitoring of 

components 

3,17,19,20,49,69,74,80,119,128,134,148,151,166,174,176, 

179,212,234. 

BIM2 
Continuous utilization of data 

throughout the project lifecycle 53,72,73,77,84,110,115,131,149,155,157,163,167,168. 

BIM3 
Creation of BIM-based decision 

support system 

5,6,8,15,21,25,41,43,48,51,55,59,61,75,106,123,132,137, 

148,150,152,155,157,161,288. 

BIM4 Data Management 26,40,93,116,150,166,167,126,170,176,190,257. 

BIM5 
Digital representation and data 

integration 

29,31,33,38,39,59,70,78,81,89,91,93,96,99,104,107,115, 

129,136,137,138,141,142,143,149,118,126,127,176,190. 

BIM6 
Digital representation of existing 

ventures 

2,3,14,21,31,39,55,57,71,78,93,104,116,121,125,130,132, 

133,135,153,154,159,162,206,231,308,311. 

BIM7 Enhanced project visualization 19,33,53,72,95,110,113,114,127,141,151,166,169,316. 

BIM8 Data control for point cloud processing 
3,39,68,71,78,96,114,153,154,156,159,162,170,192,204,206, 

222,224,226,231,236,243,253,269,276,281,300,323. 
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BIM9 
Multidimensional Modeling (3D, 4D 

and 5D) 

24,26,30,33,42,45,50,64,73,94,96,110,114,116,125,127,135, 

143,127,151,155,156,157,162,163,167,175,179,188,189,192, 

208,222,224,227,243,259,262,265,275,287,297,308,319,324. 

BIM10 Multidisciplinary Integration 28,35,54,62,65,66,72,74,146,112,167,168,172 

BIM11 Accurate Performance Analysis 
14,27,58,69,82,126,138,139,140,152,155,157,161,166,168, 

169,173,177,179,246,249,299,303,314. 

BIM12 Time dashboards development 6,17,20,63,134,141,151,161,164,167. 

BIM13 Simulation and Dynamic Analysis 
6,8,11,15,28,44,55,67,69,85,86,87,140,149,150,152,155,162, 

168,173,179,289,316. 

BIM14 Standardization with IFC schema 
3,9,33,37,57,90,92,112,114,118,132,139,152,160,164,166, 

174,181,187,254,261,313. 

 

Integrating data science with BIM establishes mechanisms for creating and enhancing 

new capabilities in the AECO industry. The digital representation of buildings generates 

complex and multidimensional databases, opening a wide field of research for literature. This 

digital representation goes from existing buildings' planning, monitoring, and reproduction 

phases (as happens in the context of HBIM). Data management through BIM capabilities 

improves the use of data by AI by continuously storing information throughout the life cycle of 

projects (X. Chen et al., 2023; Marzouk & Zaher, 2020). This data can then be processed to 

improve different forms of project representation, from incorporating specific customer 

requirements to integrating sustainability-oriented alternatives. These capabilities can nurture 

data-based decision-making systems that can be generated from performance, safety, comfort, 

and energy simulations. However, all of this is only possible through the ability of BIM models 

to standardize their data across IFC schemas (Van Der Zwaag et al., 2023). In this sense, this 

paper suggests the following research proposition: 

 

Proposition 1: BIM capabilities can be positively related to the development of smart projects 

when associated with AI techniques 

 

Table 5 identifies the key AI capabilities in the sample, highlighting their importance 

for driving innovation and efficiency in the AECO industry. AI capabilities incorporate 

technical skills to handle data and implement AI techniques, as well as managerial skills to 

understand how each available AI algorithm can be applied in each discipline or construction 

stage. For example, data mining capabilities enhance innovation processes, while predictive 

algorithms enable anticipating results and trends (Lin et al., 2022; Muhammad et al., 2021). 

Furthermore, AI offers interface customization, real-time control, and risk prediction, 

promoting a proactive approach to management. The ability to process large volumes of data 

quickly and efficiently enables more accurate and predictive analyses, contributing to the 

optimization of construction processes (Zhang et al., 2022). The application of advanced 
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algorithms can improve operational efficiency, reduce costs, and mitigate risks by anticipating 

potential problems during the planning and execution phases of projects (Caterino et al., 2021). 

The ability to perform simulations and dynamic analyses also contributes to developing more 

sustainable and energy-efficient projects (Villa et al., 2022; P. Wu et al., 2023). 

 

Table 5 - Key AI capabilities for Smart Constructions and BIM 

Code Capability Source ID 

AI1 Advanced Cloud Services 46,88,91,106,108,117,120,122,132,134,135,144,147,127.  

AI2 
Equipment for point cloud acquisition 

for building reconstruction 

39,71,104,121,125,130,133,135,153,154,159,162,276,271, 

309,319,324. 

AI3 

Capability to develop algorithms for 

recommendation of multiple design 

options 

5,11,18,28,29,89,116,136,138,140,113,160,161,171,178,198, 

211,214,275,301.  

AI4 Automated point cloud processing 

3,7,22,38,39,68,78,96,100,104,116,129,130,135,137,142,147, 

153,154,156,159,162,170,174,178,192,204,206,207,210,222, 

223,224,226,231,233,236,243,253,269,276,278,281,282,286, 

289,293,300,312,320,323.  

AI5 Automatic BIM models Generation 
1,7,26,32,37,52,57,95,97,98,114,116,129,141,115,156,160, 

161,167,169,171,180,243,286,296. 

AI6 Automatic Object detection 7,60,71,90,100,107,121,135,138,153 170,115. 174,175,187. 

AI7 
Customization of project elements 

(objects, libraries, structural elements) 1,5,29,32,52,63,73,114,129,136,137,114,153,162,167,169 

AI8 
Establishment of standardized routines 

for data analysis 

10,40,56,80,90,91,111,113,118,126,140,157,159,168,169, 

171,175,179,183. 

AI9 Development of probabilistic analysis 59,150,157,165,166 

AI10 Natural language Processing 10,34,76,92,103,109,111,145,182,194,202,255. 

AI11 Performance Evaluation 
11,48,49,58,82,85,127,139,140,149,162,166,167,169,170,171, 

188,246,249,299,303,314. 

AI12 Predictive modeling 

12,19,23,24,27,63,67,76,102,103,106,109,113,124,149,123,126, 

151,155,157,162,167,168,172,173,178,200,203,212,245,252, 

267,275,280,283,304. 

AI13 
Process unstructured data (sensors, 

IoT, cameras) 
7,16,17,22,79,83,86,88,89,99,113,129,133,134,135,139,146, 

149,152,153,154,156,158,162,164,165,167,175,258,285. 

AI14 Real-time monitoring 31,70,74,100,101,127,128,147,151,156,162,167,173 

AI15 Scalable data storage infrastructures 4,142,113,153,156,166,169,173. 

AI16 Semantic analyzes 
13,36,47,114,118,137,143,145,153,154,156,159,164,182,185, 

185,197,204,222,230,231,240,266,284,293,307,313. 

 
 

In this context, the AI capabilities mapped in Table 4 reveal competencies and processes 

for implementing BIM-AI in the AECO sector. Advanced cloud capabilities indicate the 

exploration of robust and scalable processing environments. Algorithms aimed at 

reconstructing buildings demonstrate the ability to create accurate and up-to-date digital 

representations of existing structures (Wu et al., 2023). Automatic model generation and 

automatic object detection point to a practical approach to creating and analyzing digital 

representations, while data analysis and the development of probabilistic analyses provide a 

deeper understanding of project performance (Marroquin et al., 2018; Marzouk & Zaher, 

2020). Additionally, applying natural language processing suggests more intuitive interfaces, 
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while performance assessment and predictive modeling contribute to proactive strategies and 

continuous optimization (Pan; Zhang, 2021b; Van Der Zwaag et al., 2023). Unstructured data 

processing, real-time monitoring, scalable data storage infrastructures, and semantic analytics 

complement a set of capabilities, enabling effective integration of AI into construction and 

design processes (Novembri; Rossini, 2020; Rafsanjani; Nabizadeh, 2023). 

These capabilities stand out as essential catalysts for driving innovation, which range 

from exploring advanced cloud environments to automating model generation and data analysis 

(Chen et al., 2023a; Fenz et al., 2023). The strategic combination of these capabilities with BIM 

models creates a foundation for building smart and efficient projects, promoting a proactive 

approach to management, agile decision-making, and continuous performance optimization 

(Çetin et al., 2022; Villa et al., 2022). Thus, it is suggested the following proposition: 

 

Proposition 2: AI capabilities can provide subsidies for data processing from BIM models for 

smart buildings. 

 

4.3.4 Benefits of BIM-based and AI Capabilities for Smart Construction  

 

AI and BIM capabilities are applied in architectural design to automate smart layouts, 

reproduce existing buildings and simulations oriented towards energy efficiency, and model 

budgets and schedules. These capabilities generate potential benefits that organizations in the 

sector must explore. The capabilities enhance financial gains and proactively integrate data 

management that reflects the unique organizational context, enables project optimization, and 

helps preserve historic buildings. In this sense, Table 6 maps the five dimensions of benefits 

that AI and BIM capabilities generate for the AECO sector, answering research question 2 

(#RQ2). 

Regarding point cloud processing, (Shu et al., 2023) highlight that AI techniques, 

specifically deep learning, have a strong learning capacity and advantages in completing object 

recognition tasks, which can use the Scan2BIM-NET scheme to semantically segment the 

construction of point clouds into structural, architectural subcomponents and mechanics. Other 

models that can be used in this process are PointNet, PointCNN, and Dynamic Graph 

Convolutional Neural Network to classify point clouds of different bridge components (SHU 

et al., 2023). Machine Learning models can also automate the creation of BIM models from the 

point cloud, simplifying the Scan-to-BIM process. This includes three-dimensional 

reconstruction of architectural elements based on captured data (Garcia-Gago et al., 2022). 
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Another fundamental application is to compare different point clouds over time to identify 

changes, updates, or progress in construction projects, which is valuable for managing as-built 

projects (Caterino et al., 2021; Hsu et al., 2020).  

The authors who opt for the PointNets approach apply the analysis approach proposed 

by Qi et al. (2017). This architecture uses point clouds directly as input, avoiding the 

irregularities and complexities of meshes, which facilitates the learning process. PointNet is a 

unified framework with point clouds as input, generating class labels for the entire input or 

point segment/part-specific labels for each point in the input. In object classification tasks, the 

input point cloud is directly sampled from a shape or pre-segmented from a scene point cloud 

(Qi et al., 2017). The proposed deep network produces scores for all candidate classes, 

approximating a general function defined on a set of points by applying a symmetric function 

to the transformed elements of the set, as shown in Equation (1). 

 

𝑓({𝑥1, … , 𝑥𝑛}) ≈ 𝑔((𝑥1), … , ℎ(𝑥𝑛)) 

where, 

𝑓 ∶  2ℝ𝑁
→  ℝ, ℎ ∶  ℝ𝑁  →  ℝ𝐾 𝑎𝑛𝑑 

𝑔 ∶  ℝ𝐾  × … ×  ℝ𝐾  →  ℝ 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

(1) 

The PointNet approach approximates h by a multi-layer perceptron network and g by a 

composition of a single variable function and a max pooling function. By collecting h, the 

model learns several f’s to capture different properties of the set (Qi et al., 2017). 

Hence, the capabilities can then be used for design customization, whether to analyze 

data such as point clouds and design information to generate detailed BIM models automatically 

or to enhance clash detection algorithms by analyzing large data sets and recognizing complex 

patterns that may go unnoticed (Caterino et al., 2021; He et al., 2021). Some construction 

companies need specific objects and families in their BIM models. In this sense, AI algorithms 

can learn from existing examples and automatically generate personalized objects and families, 

saving time and ensuring consistency in design. Furthermore, AI can apply natural language 

processing and machine learning techniques to enrich BIM data with semantic information, 

facilitating the analysis and interpretation of data by professionals involved in the project 

(Marroquin et al., 2018; Marzouk & Zaher, 2020; Pan; Zhang, 2021). 

The simulations carried out with AI reflect the integration of BIM into different phases 

of a building's life cycle. Artificial lighting simulation allows for the prior assessment of the 

lighting environment, providing energy efficiency and improving user experience (Carreira et 

al., 2018). The development of individualized designs, driven by AI, represents an evolution in 
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customizing architectural spaces to meet specific user needs. Optimizing indoor air quality, 

simulating energy consumption, and thermal comfort highlight the role of AI in promoting 

sustainable and healthy environments (Carreira et al., 2018; Chen et al., 2023b). Making smart 

decisions about sustainable building materials highlights the potential of AI in aligning 

architectural designs with environmental principles (Garcia-Gago et al., 2022; Van Der Zwaag 

et al., 2023). 

Finally, the benefits of cost and schedule modeling range from controlling estimates to 

automating the detection of potential delays in the project. Capabilities are applied in these 

disciplines through the continuous analysis of databases from previous projects to suggest 

alternative methodologies for cost and time management (Alzara et al., 2023; Peiman et al., 

2023). The focus is to predict scenarios to avoid delays and reduce expenses throughout the life 

of the projects. Thus, it is suggested the following proposition: 

 

Proposition 3: Integrating BIM and AI can promote efficiency in design and construction 

processes, resulting in tangible benefits such as improved point cloud processing, 

customization, simulation, cost, and schedule management. 

 

Table 6 - Smart Construction Benefits of AI-BIM-based Capabilities 

Smart Benefits Code Description Source ID 

Smart Point 

Cloud 

Processing 

PCP1 Control for Data Processing 14,21,104,130,133,154,182,288. 

PCP2 Feature Extraction 
39,51,78,130,136,175,196,198, 

210,222,235,244,278,297. 

PCP3 
Geospatial accuracy for component 

identification 

33,38,75,78,104,130,179,190, 

197. 

PCP4 
Identification of Changes in As-Built 

Projects 

4,14,43,51,68,122,135,175,224, 

233,286,304,306,309. 

PCP5 Model View Definition 14,78,104,134,162,185,216,294. 

PCP6 Object Classification 39,54,63,71,104,116,187,194,278. 

PCP7 Optimization for Processing 22,68,78,104,121,130, 137,159. 

PCP8 Point Cloud Segmentation 

31,71,78,107,133,154,159,206,207, 

222,223,236,249,253,269,272,282, 

293,312,320. 

PCP9 Scan-to-BIM reconstruction 
99,114,130,133,134,135,159,180, 

192,208,244,269,306. 

PCP10 
Automated inspection for parametric 

modeling 

14,31,33,59,63,68,71,130,134, 

154,159,324. 

Smart Design 

Customization 

DC1 Application programming interface (API) 
4,41,51,52,68,95,143,145,215, 228, 

245,250,287,316,321. 

DC2 Automatic generation of BIM model 
37,43,59,73,75,93,99,180,224,243, 

249,296,312. 

DC3 Clash detection 
23,33,43,50,51,127,134,136, 184, 

195,209,250. 

DC4 Custom creation of objects and families 90,93,107,116,146. 

DC5 Data Format Compatibility 32,33,37,43,73,75,114,265,317. 
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DC6 Semantic enrichment 
13,14,43,47,75,90,102,103,120, 

131,143,164,251,254,307. 

Smart Design 

Simulations 

DS1 Artificial lighting simulation 25,27,80,84,241. 

DS2 Development of individualized design  5,6,80,150,167,271,289. 

DS3 FM-compliant planning 19,20,84,54,95,102,112,113. 150 

DS4 Optimization of indoor air quality 8,27,80,84,160,190,197. 

DS5 Simulation of energy consumption 
5,25,27,61,80,138,139,140,160, 

177,241,245,246,291,317. 

DS6 Simulation of thermal comfort 
25,27,84,152,160,241,242,245,258, 

263. 

DS7 
Smart decision of sustainable building 

materials 
5,6,25,61,137,167,183,265. 

Smart Cost 

Modeling 

CM1 Accurate cost estimates 1,67,98,127,155,203,265,280,283. 

CM2 
Control of delivery of contractual 

milestones to avoid fines 
67,94,105,126. 

CM3 

Cost savings on resources (reduction of 

expenses associated with the use of 

materials, labor, and equipment) 

5,12,98,105,126,157,216,245,298. 

CM4 

Cost savings on rework reduction 

(decreased expenses related to corrections 

and adjustments required due to errors or 

changes during the construction process 

related to planning, execution, and 

coordination between different teams and 

disciplines) 

1,72,94,119,155,271,281. 

CM5 

Reduction of operational costs (Reduced 

preventive and corrective maintenance 

costs due to better monitoring and 

predictability of failures) 

11,72,98,113,155,228,309. 

CM6 Variation detection on the project 
11,72,105,126,157,183,218,233,253 

280,292. 

Smart Schedule 

Modeling 

SM1 
Automatic adjustment of schedules based 

on available resources 
24,58,94,113,148,172,213,256,282. 

SM2 
Automatic detection of construction 

delays 

67,72,76,89,101,126,209,268,282, 

306. 

SM3 Automatic update of project progress 1,72,76,101,112,181,189,204,321. 

SM4 

Scenario Analysis (Running simulations 

to evaluate different scenarios and their 

possible implications on project 

deadlines) 

1,24,76,94,117. 

SM5 Task overlap detection 58,72,94,101,112. 

 

 

4.4 Discussion  

 

This chapter explores the main application domains of BIM and AI in the development 

of smart projects in the AECO industry. It maps out the essential capabilities to be developed 

for this integration. This article's contributions advance the understanding of how these 

capabilities are applied and their potential benefits. 

This article advances the body of knowledge in the AECO industry by arguing that BIM 

has evolved from an information management model throughout the project life cycle to 
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application in key domains. With the international Industry Foundation Class (IFC) standard, 

data scientists and engineers can share and store information from different software providers 

and transform this BIM data into semantic elements such as XML and RDF format (Bloch; 

Sacks, 2020). 

However, the complexity and multidimensionality of BIM data increase computational 

processing capacity and make manual data processing unfeasible. To overcome this challenge, 

the researchers in this article's sample propose strategies that exploit machine learning 

capabilities for understanding semantic relationships, performance simulations, real-time 

monitoring, and predictions based on time series.  

The interconnected capabilities of BIM and AI in data science provide the necessary 

mechanisms for representing and analyzing tangible results from predictions and contributions 

in real-time. For example, in the planning phase, algorithms can use semantic information from 

previous project data repositories to optimize the development of projects that contain similar 

requirements from the owner and architects. This can be done through algorithms that use 

mining rules based on natural language processing to create a library or layout recommendation 

systems within software such as Revit. During construction, the trained models can be used in 

real-time planning for necessary work sequence adjustments, conflict detection, and site layout 

planning. In the project finalization phase, the algorithms can generate as-built models using 

automated approaches such as image detection, point cloud generation and processing, or laser 

scanning based on 3D reconstruction (Mousavi et al., 2022).  

Thus, through Proposition 1, this article argues that the data generated by BIM models 

can be considered centralized and multinational information repositories. This repository 

comprises data acquisition at different phases of construction. Thus, machine learning and deep 

learning techniques adopt an automated pipeline for processing data by extracting features and 

patterns in the set. Therefore, these AI models establish solid analytical capabilities for data 

information, enabling them to analyze complex patterns with multiple variables. Data scientists 

can adjust the necessary parameters of the algorithms based on the experiences of professionals 

in the AECO industry according to the proposed requirements (Mohammadi et al., 2023; 

Tavolare et al., 2023).  

Proposition 2 endorses the wealth of information in BIM models that can be analyzed 

to generate smart projects in the AECO sector. The algorithms used by AI process this 

information to represent existing buildings, create a greater diversity of layout options, objects, 

and families for architectural projects, and optimize the customization of objects to meet the 

specific needs of a given organization. This data can be structured or unstructured. In the case 
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of structured data, information is organized in a formal and predefined way. They are organized 

in a specific format, like tables in relational databases, where each field has a predefined data 

type. This is the case with databases that store information about construction projects, 

including details about the parties involved, schedules, costs, and materials (Zhou et al., 2019). 

Another example is 3D digital models that contain detailed information about the geometry, 

materials, and components of a building, such as a BIM model in software like Revit, which 

has distinct categories for walls, floors, HVAC systems, etc. Unstructured data is information 

that does not have a predefined form or rigorous organization. They do not fit easily into a 

tabular format or have a fixed schema. Unformatted texts, images, videos, audio, and documents 

in natural language can be cited as examples of unstructured data (Hong et al., 2021). These 

data types generally do not have an organized structure in tables or fields. 

In this sense, Proposition 3 suggests that integrating BIM and AI can drive efficiency in 

design and construction processes, resulting in tangible benefits. Specifically, the paper 

highlights improvements in point cloud processing, customization, simulation, cost, and 

schedule management. The benefits range from the ability to process and analyze large data 

sets to adaptive customization and more accurate simulations. 

It is through capability mapping, proposition suggestion, and knowledge of BIM and AI 

application domains that a theoretical framework is suggested, as presented in Figure 10. The 

Framework develops an approach for analyzing and processing data from BIM models and their 

respective contributions to domains in the AECO sector, which generate potential benefits. 

First, it is endorsed that the information in BIM models can be collected by defining the model 

and updating it whenever necessary. The structure suggests identifying the type of data (whether 

it is structured or not) so that this data can be collected to consolidate a database. 

This database is the input for analysis in AI models. These analyses are based on full 

knowledge of the type of data to be processed to select the AI model to be used. Based on this 

selection, the algorithm processes the information through validations and tests to generate 

performance measurement parameters, such as accuracy. In construction projects, this process 

creates forecast analyses, models for actual monitoring of construction sites or existing 

buildings, and the creation of new designs or objects to compose BIM libraries. These processes 

are then applied in different disciplines, such as generative design, FM, sustainability, energy 

solutions, and object-based modeling, as mapped in this study ;(Marzouk Zaher, 2020; Villa et 

al., 2022; Xia; Gong, 2022). The main output of these processes and capabilities are smart 

benefits, such as point cloud processing, design customization, design simulations, cost 

modeling, and schedule modeling. 
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For the implementation of the proposed framework, researchers and professionals must 

understand that each of the seven highlighted domains has a specific approach to data creation 

and analysis. For example, facilities management begins with data collection and preparation. 

This involves extracting information from BIM models, such as assets, MEP systems, 

maintenance history, and equipment specifications. Simultaneously, integration with IoT 

devices allows real-time monitoring of system performance, environmental conditions, and 

space usage. Data preprocessing includes cleaning, normalization, and proper structuring in 

databases. Then, AI models are developed using machine learning techniques for predictive 

maintenance. Algorithms such as Random Forest, XGBoost, and Artificial Neural Networks 

help predict equipment failures. Natural language processing (NLP), with tools such as NLTK 

and SpaCy, analyzes service requests and user feedback, identifying patterns and prioritizing 

tasks. The implementation of recommendation systems uses association rule mining (Apriori 

algorithms, FP-Growth) to identify relationships between failures and environmental 

conditions, as well as unsupervised learning (K-Means, DBSCAN) to group similar assets and 

optimize maintenance strategies. Visualization and integration with BIM are performed through 

tools such as Autodesk Forge and Revit APIs, allowing the incorporation of the results of AI 

models into the BIM model for 3D visualization and contextual analysis. The main tools include 

programming languages such as Python and R, machine learning platforms such as TensorFlow 

and Scikit-learn, databases such as SQL and MongoDB, and BIM software such as Autodesk 

Revit and Dynamo. 

In the sustainability domain, BIM can be integrated with environmental impact 

databases, using tools such as SimaPro and OpenLCA. AI models apply machine learning to 

predict environmental impacts based on project parameters. Multicriteria analysis can be 

applied through genetic and evolutionary algorithms to balance cost, performance and 

environmental impact, with simulations performed in tools such as EnergyPlus and 

DesignBuilder. Specifically in the field of H-BIM, it begins with the acquisition of data through 

3D surveys using laser scanning (LiDAR) and photogrammetry, including the use of drones for 

hard-to-reach areas. Initial processing involves the registration and alignment of point clouds 

to form a complete model, followed by filtering and cleaning to remove noise. Segmentation 

and classification use neural networks for point clouds (PointNet, PointCNN) to classify 

architectural and structural elements, in addition to traditional machine learning algorithms 

(Random Forest, SVM) for semantic segmentation. BIM reconstruction and modeling are 

automated with plugins such as Scan-to-BIM, converting point clouds into parametric BIM 

objects. 
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Finally, in the topic of computer vision, object detection and recognition are performed 

with computer vision, using models such as Mask R-CNN and YOLOv5 to identify components 

in images or point clouds. Furthermore, in the context of generative design, semantic analysis 

and ontology creation use tools to define relationships between objects and attributes. 

Automation of tasks in these two topics is achieved through scripting APIs with tools such as 

Dynamo and Grasshopper, automating modeling and analysis processes. BIM integration and 

updating include data synchronization to update the model with information from AI. The main 

tools and techniques are programming languages (Python, C#), computer vision frameworks 

(OpenCV, TensorFlow), and BIM tools (Revit, Rhino). 

 

Figure 10 - Integrative Framework for BIM and Artificial Intelligence Capabilities in Smart 

Architecture, Engineering, Construction, and Operation Projects 
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The process suggested by the Framework proposed in Figure 8 establishes that BIM and 

AI capabilities are interconnected from data generation and processing until completion with 

the potential benefits in the different domains mapped in this article. In this context, BIM 

emerges as a data supply and centralization model, expanding its data management and 

standardization capabilities. This data ranges from semantic information through point clouds 

to control data on costs, schedules, and energy consumption. In this context, AI capabilities 

require professionals working in the AECO industry to know the area of data science, ranging 

from basic programming knowledge to advanced machine learning and deep learning models. 

Figure 10 establishes that it is necessary to recognize which BIM and AI capabilities are 

essential for the data-driven technological development that AECO industry organizations must 

establish. This process guides researchers and practitioners to recognize what is technically 

feasible, assess the readiness of these technologies for implementation, and identify areas where 

further development or innovation is needed within the organization, aiming for long-term 

growth. By understanding the benefits of BIM and AI integration, tangible and intangible 

advantages are articulated. In addition, the interaction between capabilities and benefits 

facilitates strategic planning. This allows prioritizing specific capabilities that generate 

potential benefits for the organization so that resource allocation is guided by organizational 

strategy. 

Given the complexity of the AECO industry, process automation essentially comes from 

the multidisciplinary knowledge and skills of the data science and AECO areas. AECO 

professionals have specific knowledge about project needs and their technical and functional 

requirements. Data science professionals know the fundamental means and techniques for 

developing intelligent design-oriented models based on your requirements. Therefore, a 

professional who has mastered these two fields of knowledge is equipped with skills that can 

overcome several difficulties in the AECO industry. Thus, the framework presented in Figure 

10, in addition to presenting a workflow and its benefits, can suggest new directions for future 

research on how engineering and architecture schools can integrate data science disciplines to 

train an entire generation of professionals focused on smart projects and process automation. 

Although it is not the focus of this article, it should be noted that investments in materials 

are necessary for the AECO industry to evolve towards the practical application of AI 

techniques. All machinery, such as scanners, computers, drones, and servers, require monetary 

investments. Furthermore, despite the gains related to time due to the automation of algorithms' 

analysis, there is time to be dedicated to training qualified professionals with the capabilities 

for these tasks. Finally, professionals in the AECO industry can implement the framework 
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presented in Figure 10 by establishing essential data management and analysis skills. By 

mapping essential capabilities, professionals can use them as a guide to good practices and 

fundamental elements to effectively implement AI techniques in their organizations. Given 

these capabilities, professionals can compare the benefits generated with those mapped in this 

research. 

 

4.4.1 Future Directions 

 

When utilized as a data source for AI, BIM capabilities facilitate simulations designed 

to optimize the development of smart projects. The process initiates with the definition of the 

criteria or variables to be integrated into the models. Subsequently, the most promising 

algorithms are selected, and their fundamental characteristics are detailed. The models, whether 

they are classificatory or predictive, are then trained using these selected algorithms. To enhance 

the robustness of the models, cross-validation methods and sampling techniques are employed. 

Finally, tests are conducted to identify the algorithm that performs best, which is subsequently 

applied in specific case studies. 

Wang and Gan (2023) develop a model for crack detection in buildings, setting the stage 

for future research to train models with more diverse datasets. These datasets could include 

various types of anomalies encountered in built environments, such as advanced structural wear, 

corrosion, or water damage. Literature underscores the necessity to create 3D models that 

incorporate a rich semantic representation of objects. Future research could explore fully 

machine-learning-based methods to generate 3D models that encode pixel characteristics into 

high-level representations, enhancing the depth and utility of the generated models. To 

overcome the limitations in generating 3D models, researchers such as Su et al. (2023) suggest 

the use of Zero-reference Deep learning model for the low-light image Enhancement for 

underground utilities 3D reconstruction (ZDE3D). Furthermore, much effort can still be 

directed towards automating the reconstruction of as-built BIM models from the point cloud. 

Another approach would be investments related to real-time monitoring systems for detecting 

changes in the pipeline structure, such as wear and obstructions. 

Following the logic of applying AI capabilities to smart projects, there exists an 

opportunity for developing algorithms capable of detecting building materials and geometries 

across various scenarios in the AECO industry, both during the design phase and in H-BIM. 

The exploration of point cloud applications could enhance models' ability to identify different 

materials and detect structural anomalies. Additionally, incorporating machine learning 



78 
 

algorithms that can adapt to dynamic building environments and learn from incremental data 

inputs may greatly improve the robustness and accuracy of assessments. Another direction is 

the exploration of semi-supervised or unsupervised learning techniques, which can reduce 

reliance on large volumes of labeled data, this is particularly beneficial in scenarios where 

training data are scarce or difficult to gather. 

There also remains a vast field of research linking digital architecture with energy 

efficiency. Future research simulations could aim to precisely simulate and quantify the actual 

reductions in energy consumption, CO2 emissions, and thermal discomfort in buildings, 

considering the entire chain of building materials used. Another promising avenue could 

involve deepening the integration of generative design into sustainable architecture, creating 

automated systems that combine energy prediction and optimization with parametric design 

tools like Dynamo and Grasshopper. For instance, as discussed by Erisen (2023) and Hou et al. 

(2022), the integration of AI into building energy management and sustainability can optimize 

controls over energy consumption and thermal comfort through intelligent systems that actively 

analyze and adjust to the built environment in real-time. These also enables to build a portfolio 

selection approach (Nascimento et al., 2023) as new alternatives may be considered with a 

reduced development cost. 

Future research should prioritize expanding the datasets used in BIM applications 

integrated with AI to overcome the current limitations related to the quantity and quality of 

available data. The acquisition of data on a larger scale and its adequate processing and labeling 

are fundamental steps to strengthen the training base for deep learning models. For example, 

Ma et al. (2020) faced difficulties constructing datasets for BIM-AI applications and 

encouraged sharing these databases to improve this field of research. Future research can use 

datasets available in academic repositories, such as Zenodo, Figshare, IEEE DataPort, and Open 

Science Framework, to analyze data from BIM models through AI. These repositories offer 

open access to datasets, such as point clouds, parametric models, and sensor information, which 

are essential for the development and validation of machine learning and deep learning 

algorithms applied to the modeling, analysis, and automation of processes in architecture, 

engineering, construction, and operation projects. By exploring these datasets, researchers can 

advance studies on semantic segmentation, automated fault detection, regulatory compliance 

verification, and the creation of Digital Twins. Using these scientific datasets also ensures the 

reproducibility of experiments and encourages the evolution of AI-based solutions for the 

intelligent management of the built environment. Expanding the datasets will allow the 
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exploration of more complex tasks, such as point cloud segmentation, which are currently 

limited by the scarcity of labeled data and the complexity of the algorithms. 

Furthermore, the generation of BIM models from point clouds of historical buildings 

represents one of the most challenges in AECO literature. The difficulties arise from the 

complexity of architectural forms and the limitations of current techniques for segmenting and 

classifying building elements. The potential of convolutional neural networks for automating 

the semantic segmentation of complex architectural elements stands out, as highlighted in this 

paper. To improve classification accuracy and simplify the modeling workflow, specialized 

architectures, such as PointNet, PointCNN, and voxel-based networks, can improve 

classification accuracy and the modeling workflow. 

Finally, it is essential to consider that the construction environment is becoming 

increasingly permeated by IoT devices, cameras, and sensors that collect data in real-time. 

Despite this data's increasing availability, the heterogeneity of the hardware and software 

systems challenges the integration and flow of information. Future work can focus on 

developing adaptive networks and data management systems capable of handling these non-

linear interactions, ensuring interoperability between devices and platforms. 
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5 SOLARISBIM.AI: SMART SUSTAINABLE BUILDING PLANNING WITH SOLAR 

RADIATION FORECASTING FOR PHOTOVOLTAIC ENERGY PRODUCTION 

WITH A BIM-DRIVEN DEEP LEARNING MODEL 

 

 

5.1 Chapter Introduction  

 

The photovoltaic sector in AECO building projects has seen unprecedented growth. In 

2024, global renewable energy capacity reached 507 GW, with solar PV comprising 

approximately 75% of new installations. Forecasts suggest that by 2050, global PV generation 

could exceed 4,600 TW, largely driven by China and India (Wang; Wang; Zhao, 2025). This 

growth reflects a convergence of supportive policies, technological innovation, and increasing 

awareness of climate imperatives. Solar energy, in particular, stands out for its versatility and 

accessibility in both urban and rural contexts (López; Olivieri, 2025). Several approaches have 

been explored to address challenges in predicting PV energy production and optimizing 

building design for energy efficiency. Traditional statistical methods and physical-spatial 

modeling techniques are commonly employed to predict power generation and assess building 

performance (Barbosa et al., 2024; Dong; Zhong, 2025). Furthermore, simulation-based tools 

allow designers to test different architectural strategies and integrate renewable energy systems 

to maximize energy production (Zhang et al., 2025). However, as the complexity and volume 

of climate and energy data increase, more advanced computational methods are needed to 

improve forecast accuracy and support decision-making processes (Palha et al., 2024). Thus, 

previous research has applied deep learning algorithms to process complex time series data sets, 

specifically in energy production and consumption forecasts (Zhang et al., 2025).  

In this context, deep learning algorithms can extract features from non-linear data by 

identifying complex patterns in large data sets. They are suitable for energy simulations, such 

as estimating solar radiation and predicting photovoltaic energy production. When associated 

with BIM, specifically in the design and planning phase of buildings, quantifying PV energy 

production through predictive solar energy algorithms becomes an initiative-taking strategy for 

sustainable projects (Olu-Ajayi et al., 2022; Shao et al., 2021; Wang et al., 2023).  

This research addresses that need by proposing an innovative approach: the integration 

of deep learning algorithms into a BIM-based workflow to support automated PV system design 

and solar energy prediction. Unlike traditional design processes, this method, called 

SolarisBIM.AI, leverages time series data of solar radiation and automates information 
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extraction from BIM models to enable data-driven decisions during the planning and retrofit of 

solar systems in buildings.   

Previous research has advanced the body of knowledge, seeking automated alternatives 

to improve the energy efficiency of buildings. Alawi et al. (2024) developed predictive 

simulations for residential buildings' annual heating and cooling loads. Olu-Ajayi et al. (2022) 

seek to predict energy consumption in the building design phase. Chou et al. (2017) integrate 

data from BIM with power consumption datasets to enhance the visualization of analysis 

results. Additionally, they implement a spatiotemporal analysis mechanism to assist residents 

in identifying energy-saving opportunities. Li et al. (2024) propose an adaptive sea lion-

optimized genetic adversarial to predict renewable energy sources. Tao et al. (2024) apply tree-

based, linear, and non-linear regression techniques to predict the energy and exergy efficiency 

of Parabolic Trough Solar Collectors using oil-based nanofluids.  

Building upon these advancements, this study proposes a novel BIM-driven deep 

learning based on radiation forecasting to PV energy prediction. While previous research has 

focused on energy consumption estimation (Olu-Ajayi et al., 2022), heating and cooling load 

simulations (Alawi et al., 2024), and energy visualization through BIM integration (Chou et al., 

2017), these approaches primarily emphasize building energy efficiency rather than strategic 

PV energy planning. Moreover, although AI techniques have been leveraged for renewable 

energy forecasting (Li et al., 2024; Tao et al., 2024), there remains a gap in integrating BIM 

with predictive models optimized to PV applications. Addressing this gap, the proposed 

SolarisBIM.AI method utilizes deep learning algorithms to enhance solar radiation forecasting 

within BIM-based modeling for data-driven decision-making in PV system design. 

Thus, this chapter aims to explore the application of a BIM-driven deep learning 

algorithm to estimate PV energy production, associating solar radiation time series and 

automated extraction of information in BIM models. This chapter quantifies the energy 

produced and CO2 emissions avoided based on the predicted values of the implemented 

algorithm, using a routine in Dynamo that extracts the information from a BIM model. To 

support this research objective, this chapter also answers the following research question:  

(#RQ3): What is the potential of integrating deep learning models and BIM automation 

tools to support early-stage PV system planning and energy performance assessment? 

This chapter makes contributions to the field of AECO industry research. First, it 

highlights that the design phase in BIM projects is essential for establishing efficient PV plants. 

Associated with predicting solar energy production, PV design can be justified with data-based 

documentation of the potential economic benefits generated by clean energy production and the 
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environmental benefits from avoided CO2 emissions. In addition, engineers and architects can 

plan the physical layout that best accommodates solar modules according to the available 

physical space. In summary, this paper uses solar radiation time series and automatic BIM data 

extraction to establish an automated design process called SolarisBIM.AI for quantifying solar 

energy production and avoiding CO2, highlighting the role of BIM modelers in the design phase.  

 

5.2 SolarisBIM.AI Methodology 

 

In this research, Long Short-Term Memory (LSTM), Extreme Gradient Boosting 

(XGBoost), and Feedforward Neural Network (FNN) are applied to model a time series of solar 

radiation. LSTM was selected for its recurrent network architecture, which uses memory cell 

mechanisms and control gates. LSTM allows for capturing long-term dependencies and 

seasonal patterns common in time series. XGBoost, based on gradient boosting, is efficient in 

boosting structured data and can be adapted to time series by transforming temporal 

observations into a supervised learning problem. FNN, on the other hand, considers more 

complex temporal dependencies ideally suited to non-linear patterns in the time series (Tian et 

al., 2023). These algorithms are widely used in forecasting solar radiation and PV energy from 

a multiscale perspective, including mesoscale, microscale, and building scale forecasting in 

urban environments, as pointed out in the systematic literature review by Tian et al. (2023). 

The performance of each algorithm was evaluated, and the one with the best 

performance on the dataset was selected for implementation in this article's experiment. The 

predictions made in the model feed the calculation of PV energy production, which converts 

radiation data into energy generation estimates. Thus, this paper develops a database of daily 

solar radiation with data from municipalities in Pernambuco, Brazil. The research flowchart is 

shown in Figure 11, and each research step is described in the subsequent sections.  

This research used Python programming to develop the algorithm, leveraging the scikit-

learn library for predictive data analysis tools. The 3D model was created using Revit software, 

and building geometry data was extracted with Dynamo. The IFC data standard was employed 

to import the 3D model into Solarius PV software. Additionally, QGIS software was used to 

generate maps of the mesoregions for the study area. 
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Figure 11 - Research workflow 

 

 

5.2.1 Dataset Composition 

 

The solar radiation data was obtained from the National Institute of Meteorology 

(INMET), an agency of the Brazilian Ministry of Agriculture and Livestock. INMET is the 

principal meteorological agency in Brazil, responsible for collecting, monitoring, and providing 

meteorological data on a national scale (INMET, 2023). Solar radiation is the quantity used to 

express the solar energy that falls on a given flat surface area over a given time interval. Solar 

radiation is given in kWh/m² (kilowatt-hours per square meter).  

Pernambuco, located in the northeast region of Brazil, was selected for the study of PV 

energy generation due to the state's favorable climate conditions. Pernambuco has high levels 

of sunlight throughout the year, which is essential for the performance of solar systems. In 

addition, public institutions in Pernambuco, such as the Universidade Federal de Pernambuco 

(UFPE), have shown a growing interest in renewable energy and seek to diversify their energy 

matrix, reducing dependence on polluting sources. In addition, this research in the state can 

contribute to technological advancement and efforts to mitigate CO₂ emissions. 

Pernambuco is in the center-east of the Northeast region of Brazil, with a total area of 

98,067,877 km². It borders Ceará and Paraíba to the north, Piauí to the west, Bahia and Alagoas 

to the south, and is bathed by the Atlantic Ocean to the east. According to the Brazilian Institute 

of Geography and Statistics (IBGE), Pernambuco is divided into five distinct mesoregions that 

reflect geographic, economic, and cultural variations, as shown in Figure 12. The Sertão 
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Pernambucano, to the west, is characterized by a semiarid climate and an economy focused 

primarily on livestock farming and agricultural activities adapted to drought conditions. The 

Agreste Pernambucano, located between the Sertão and the Zona da Mata, has a climate that 

favors agriculture and the development of regional industrial hubs. The Metropolitan Region of 

Recife, to the east, has the highest level of urbanization, being the economic and administrative 

center of the state, with emphasis on the services, commerce, and industry sectors. The Mata 

Pernambucana, adjacent to the Metropolitan Region, is traditionally a sugarcane growing area 

that has historically been integrated into the sugar economy. Finally, the mesoregion of Saint 

Francisco Pernambucano, located in the extreme west and bathed by the Saint Francisco River, 

is fundamental for irrigation and agricultural development of irrigated fruit growing, with 

emphasis on the production of fruits for export (IBGE, 2024). 

 

Figure 12 - Mesoregions of Pernambuco, Brazil 

 

 

Regarding the climate, the Sertão Pernambucano is predominantly semiarid, 

characterized by high temperatures and low precipitation, with strong sunlight throughout the 

year, contributing to the region's aridity. In the Agreste Pernambucano, the climate is marked 

by higher relative humidity and precipitation during the winter, with moderate sunlight that 

favors crops adapted to the more fertile soil. With a humid tropical climate, the Metropolitan 

Region of Recife experiences high annual precipitation rates and less thermal variability, with 

intense sunlight in the drier periods, highlighting the region's summer characteristics. In the 

Mata Pernambucana, the influence of the humid tropical climate maintains dense and green 

vegetation, with high humidity and rainfall distribution throughout the year, although with high 
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sunlight during intermittent dry periods. In the São Francisco Pernambucano, the semiarid 

climate is mitigated by the presence of the Saint Francisco River, and the high sunlight 

incidence becomes advantageous for irrigated fruit-growing practices (IBGE, 2024).  

In Pernambuco, INMET has 16 stations collecting sunlight data, as shown in Table 13. 

However, three stations have been on record for over 10 years, so they were excluded from the 

analysis. Seven stations were deactivated and have no records. Therefore, only six stations 

(Arcoverde, Cabrobó, Garanhuns, Petrolina, Recife, and Surubim, names in bold in Table 13) 

have records for available use. To encompass a more extensive historical series between the six 

municipalities, the dataset has records from 01/01/1975 to 12/31/2023, corresponding to 17,896 

days (49 years). 

The preliminary analysis also revealed some days without sunlight records. To get 

around this, the cells in the dataset with “null” values were filled with the average sunlight of 

the stations on that day.  

 

Figure 13 - Solar Insolation data collection stations in Pernambuco, Brazil 

City Code Latitude Longitude Altitude 
First 

measurement 
Zone 

Arcoverde 82890 -8.4336111 -37.05527777 683.91 1973-01-31 
Sertão 

Pernambucano 
Ouricuri* 82753 -7.87944443 -40.09194444 462.01 1975-09-15 

Triunfo** 82789 -7.82972221 -38.12222221 1105 1953-05-31 

Garanhuns 82893 -8.91083333 -36.49333333 827.78 1913-01-31 

Agreste 

Pernambucano 

Surubim 82797 -7.839628 -35.801056 421.44 1929-09-30 

Pesqueira* 82892 -8.370701 -36.707812 643.38 1911-08-31 

Caruaru** 82895 -8.28 -35.97 537 1928-12-31 

Recife 82900 -8.05916666 -34.95916666 11.3 1961-07-06 

Metropolitana 

de recife 

São Lourenço da 

Mata (Tapacurá)** 
82897 -8.17 -35.18 102 1918-12-31 

Olinda** 82898 -8.02 -34.85 55 1921-12-31 

Nazaré da Mata** 82781 -7.73 -35.25 87 1908-12-31 Mata 

Pernambucana Goiana** 82799 -7.55 -34.98 11 1910-12-31 

Cabrobó 82886 -8.50388888 -39.31527777 342.78 1927-10-16 

São Francisco 

Pernambucano 

Petrolina 82983 -9.3886111 -40.52333332 372.54 1940-12-31 

Floresta* 82887 -8.6 -38.56999999 309 1952-08-31 

Petrolândia** 82987 -9.07 -38.32 286 1937-12-31 

* Station without measurement data in more than 10 years 

** Disabled 

 

5.2.2 Deep Learning Algorithms 

 

In all algorithms described in the following subsections, the data is divided according 

to these indices: the first 80% of the data is assigned to the training set, the data between 80% 

and 90% is allocated to the validation set, and the last 10% of the data goes to the test set, as 

shown in Figure 14. 
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Figure 14 - Division of data into training, testing, and validation 

 

 

5.2.2.1 LSTM network 

 

The LSTM network was developed to overcome the limitation of original RNNs in 

handling long-term dependencies, i.e., situations where current predictions need to access 

previously stored information. Unlike the traditional RNN model, the LSTM includes an 

enhanced memory block that holds the weights and thresholds of all previous learning samples. 

This memory block regulates the flow of input and output data through input, forget, and output 

gates. At a given time t, the LSTM takes three inputs (the current input value xt, the previous 

cell hidden state ht-1, and the previous cell state Ct−1) and generates two outputs (the current 

hidden state ht and the current cell state Ct-1) (Kumari; Toshniwal, 2021; Long et al., 2023).  

• Forget Gate: Acting as one of the components that regulates the state of cell Ct-1 in the 

LSTM network, the forget gate ft decides whether the state of cell Ct from the previous 

instant will be maintained until the current instant, defined as in Equation (2) (LONG et 

al., 2023). 

 

ft = sigmoid × (Wf [ht-1, xt] + bf) 

where 

[𝑤𝑓] [ 
ℎ𝑡−1

𝑥𝑡
] = [𝑤𝑓ℎ 𝑤𝑓𝑥] [ 

ℎ𝑡−1

𝑥𝑡
] =  𝑤𝑓ℎ ℎ𝑡−1 +  𝑤𝑓𝑥 𝑥𝑡 

(2) 
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The ft is the forget gate activation that determines how much of the past memory (Ct−1) 

will be kept in the cell. The sigmoid function generates values between 0 and 1 by controlling 

the proportion of information that will be forgotten. Wf is the forget gate weight matrix 

associated with the forget gate, which modulates the influence of ht−1 and xt. ht−1 is the previous 

hidden state of the previous stage, which carries information from the past. xt is current input 

vector in the stage t. The bf forget gate adjusts the output of the sigmoid activation. Wfh is the 

hidden state weight matrix connect the previous hidden state ht−1 at the door of oblivion. Wfx is 

the input weight matrix connect the input xt at the door of oblivion. 

• Input gate: Another essential control component in this algorithm is the input gate, 

which is responsible for deciding whether the current network input xt will be stored in 

the cell state Ct. This can be expressed by Equation (3), where wi and wc are the weight 

matrices corresponding to the input data and the cell state value at the input gate, while 

bc and bf represent the thresholds. With this information, the current cell state ct is 

obtained (Long et al., 2023). 

 

it = sigmoid × (wi [ht-1, xt] + bi) 

C’t = tanh (wc [ht-1, xt] + bc) 

Ct = ft * Ct-1 + it * C’t 

(3) 

 

The candidate cell state (C´t) represents a potential update to the LSTM memory, 

regulated by the tanh activation function, which scales values between -1 and 1. This state is 

influenced by the candidate cell state weight matrix (Wc) and its corresponding bias (bc). The 

cell state (Ct) is then updated by integrating the previous cell state (Ct−1), modulated by the 

forget gate activation (ft), with the candidate cell state (C’t), weighted by the input gate 

activation (it). This selective memory update mechanism ensures that information is retained 

while unnecessary data is discarded, allowing the LSTM to effectively capture long-term 

dependencies in sequential data. 

• Output Gate: As the last control component of this algorithm, the LSTM uses the output 

gate to regulate the cell state Ct, which is passed to the current output value ht. This 

process can be represented by Equation (4), where Ot, Wo, and bo corresponds to the 

output gate value, weight matrices, and thresholds at the output gate, respectively (Long 

et al., 2023). 

 (4) 
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Ot = sigmoid × (Wo [ht-1, xt] + bo) 

ht = Ot tanh (Ct) 

 

The output gate activation (Ot) regulates how much of the updated cell state (Ct) will 

contribute to the final hidden state (ht). It is computed using a sigmoid activation function, 

which ensures values remain between 0 and 1. The output gate weight matrix (Wo) and its bias 

(bo) determine the influence of the previous hidden state (ht−1) and the current input (xt). The 

final hidden state (ht) is obtained by applying the tanh activation function to the cell state (Ct) 

and modulating it by the output gate activation (Ot), allowing the LSTM to expose information 

to the next step selectively. The three gates act together to generate the cell state Ct and the 

output value ht, allowing the LSTM to solve the vanishing gradient problem caused by long-

term dependencies in the original RNN model (Long et al., 2023). 

In the logical structuring of the LSTM algorithm, the first step was to transform the time 

series data into a supervised learning problem with input and output patterns, as shown in 

Algorithm 1. A main function created a DataFrame containing the data windows with a 

specified length parameter n. The function receives a date range and extracts subsets from the 

original DataFrame, so that each subset contains n consecutive observations and a target date. 

For each valid window, the x values are separated into variables X (for historical data) and Y 

(for the value to be predicted). Finally, a DataFrame is created with the Target Date column 

containing the target dates, the Target-X columns representing the window data, and the Target 

column for predicting the value. Table 7 presents this application logic.  

The logic is to evaluate the network's performance for predicting multiple points in time, 

that is, given that the dataset is composed of a daily historical series, the LSTM algorithm 

performs the accuracy considering three points of the historical series. For example, given one 

day as input, the model predicts the next three days.  

Table 7 - Structuring the dataset in DateTime 

 Target Date Target-3 Target-2 Target-1 Target 

0 1975-01-04 7.3 10.4 10.6 10.0 

1 1975-01-05 10.4 10.6 10.0 10.6 

2 1975-01-06 10.6 10.0 10.0 8.7 

3 1975-01-07 10.0 10.6 8.7 2.1 

4 1975-01-08 10.6 8.7 2.1 20.4 

… … … … … … 

17889 2023-12-27 7.6 9.7 10.2 11.1 

17890 2023-12-28 9.7 10.2 11.1 11.3 

17891 2023-12-29 10.2 11.1 11.3 10.8 

17892 2023-12-30 11.1 11.3 10.8 10.8 

17893 2023-12-31 11.3 10.8 10.8 8.6 

17894 rows × 5 columns. Results of Recife 
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Algorithm 1: Transforming Time Series into Data Windows for Predictive Modeling 

Step 1. Define function to transform string column into date format 

              Receive string in format YYYY-MM-DD 

              Convert string to datetime 

Step 2. Define Function to receive data Windows 

              Receive a DataFrame, the first date, the last date, and the window size n 

              Convert first date and last date to datetime 

Step 3. Create data Windows 

              Extract last n+1 records until target_date 

              If window size is n+1, separate data X (last n values) and Y (last n values): 

                       X as the first n values: 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] =  df_subset[: −1]   

                       Y as the value of the last element: Y= [𝑥𝑛+1] =  df_subset[−1]   

              Add target_date, X, and Y to the respective vectors 

              Advance target_date by 1 day 

Step 4. Construct Return DataFrame 

              Add dates in the Target Date column 

              For each i in the range 0 to n-1: 

                       Add X[:, i] to column Target-(n-i) 

              Add Y to column Target 

                           return [Target] = Y 

Step 5. Return with structured windows for modeling 

             Store result in Dataframe 

End code. 

 

The DataFrame is then converted to a NumPy array. The dates are extracted from the 

first column and stored. The intermediate columns, corresponding to the input data (X), are 

extracted and reshaped to include an extra dimension, preparing the data for models that require 

three-dimensional inputs. Finally, the last column containing the output values (y) is extracted 

and converted to the np.float32 type. The function returns the dates, inputs (X), and outputs (y). 

Algorithm 2 then defines the LSTM using Keras, to predict a continuous value based on 

time sequences. The first part of the code imports essential libraries for building the model, 

such as Sequential (to define the sequential model), Adam (the optimizer used to adjust the 

weights during training), layers (which contains the network layers, such as LSTM and Dense), 
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and ReduceLROnPlateau (a callback that adjusts the learning rate if the model's performance 

stagnates). 

In the model definition, it is specified that the model will be of the sequential type, where 

the layers are stacked linearly. The first layer is an input layer that receives sequences of 3 

timesteps, with one value per timestep. Then, the LSTM layer is added. The number of neurons 

in the LSTM is set at 256. After the LSTM, two dense layers with 64 neurons each are added, 

using the ReLU activation function to introduce non-linearities into the model and allow it to 

learn more complex representations of the data. The last layer of the model is a dense layer with 

a single neuron, which will generate the final prediction of the model. 

After defining the architecture, the model is compiled using the MSE (mean squared 

error) loss function. The optimizer used is Adam, which is known for dynamically adapting the 

learning rate during training.  

 

Algorithm 2: Defining and Training the LSTM Model 

Step 1. Model Definition 

            Input layer: Receives sequences of size 3, with one value per timestep: 

                       The input has the form (n,3,1), where n is the number of samples per timestep 

              Model Layers: 

                      Uses an LSTM layer with 256 units (neurons) 

                      Two dense layers of 64 units with ReLU activation 

                                f(x)=max(0,x) 

               Output Layer: Dense layer with 1 unit to produce the final prediction: 

                                𝑦𝑝𝑟𝑒𝑑 = ŷ 

Step 2. Loss Function and Optimizer 

             Use means squared error (MSE): 

                             𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)²𝑛

𝑖=1  

                                                                   𝑦𝑖 is the actual value of the sample i; 

                                                                   𝑦𝑖̂ is the model's prediction for the sample i; 

                                                                   n is the total number of sample. 

             Using the Adam algorithm for optimization: 

                             𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝜃𝐽(𝜃) 

                              𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)∇𝜃
2 𝐽(𝜃) 
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                              𝑚𝑡̂ =
𝑚𝑡

1−𝛽1
𝑡  , 𝑣𝑡̂ =

𝑣𝑡

1−𝛽2
𝑡 

                               𝜃𝑡 = 𝜃𝑡−1 − 𝛼
𝑚𝑡̂

√ 𝑣𝑡̂+ 𝜀
  

                                                                 𝑚𝑡 is the average of the gradients; 

                                                                 𝑣𝑡  is the variance of the gradients; 

                                                                 𝛽1 𝑎𝑛𝑑 𝛽2 are the decay coefficients; 

                                                                 𝛼 is the learning rate; 

                                                                 𝜀 is a small value to avoid division by zero. 

Step 3. Training with Learning Rate Reduction Callback 

                Callback ReduceLROnPlateau: monitors validation loss during training: 

                                       𝜂𝑡 =  𝜂𝑡−1 ∗ 𝑓𝑎𝑐𝑡𝑜𝑟 

                                                                 𝜂𝑡 is the learning rate at the time t; 

                                                                 𝜂𝑡−1 is the learning rate of the previous epoch; 

                                                                 factor is the reduction factor. 

Step 4. Model Training 

             Using the Keras fit method 

             Feed the neural network and parameters according to the loss function and optimizer: 

                                   𝑦𝑡̂ = 𝑓(𝑋𝑡;  𝜃) 

                                                              𝑋𝑡 are the input data at the time t; 

                                                              𝑦𝑡̂ is the model's prediction for 𝑋𝑡; 

                                                              𝜃 are model weights and biases. 

Step 5. Completion of the Process 

              Predict values for new input data 

              Perform time series predictions based on the training obtained 

End code. 

5.2.2.2 Extreme Gradient Boosting (XGBoost) 

 

The XGBoost algorithm is used for target detection and prediction due to its incremental 

tuning capability. At each iteration, it minimizes the residual of the previous model by 

constructing a new tree that fits in the direction of the negative gradient, allowing the training 

effect of a tree to directly influence the input samples for building the next model. To improve 

computational efficiency, XGBoost applies second-order Taylor expansion to the objective 

function, effectively approximating the generalization error and simplifying calculations. 

Furthermore, XGBoost mitigates prediction volatility and reduces the risk of overfitting by 
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including a regularization term in the objective function, which improves the robustness and 

generalization of the model (Li et al., 2023).  

The XGBoost gradient algorithm can model complex, nonlinear interactions in data. It 

is suitable for identifying patterns in solar irradiance. This model uses a set of decision trees 

that operate cooperatively to refine predictions, with each tree evaluating different aspects of 

the data. In addition, XGBoost generates variable importance ratings to identify the main 

determinants of the time series (Saigustia; Pijarski, 2023). The XGBoost algorithm, after 

establishing each node, reduces losses as shown in Equation (5).  

 

𝐿𝑗 = ∑ 𝑙 (𝑦𝑖, 𝑦̂𝑖
(𝑗−1)

+ 𝑓𝑗(𝑥𝑖)) + Ω(𝑓𝑗)

𝑛

𝑖=1

 

𝐿𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑ 𝑔𝑖𝑖∈𝑙𝐿 )2

∑ ℎ𝑖 + 𝜆𝑖∈𝑙𝐿
+

(∑ 𝑔𝑖𝑖∈𝑙𝑅 )2

∑ ℎ𝑖 + 𝜆𝑖∈𝑙𝑅
+  

(∑ 𝑔𝑖𝑖∈𝑙 )2

∑ ℎ𝑖 + 𝜆𝑖∈𝑙
] − 𝛾 

(5) 

 

The objective function (Lj) in XGBoost is designed to optimize the model at each 

boosting iteration by minimizing the loss function while adding a regularization term. The 

summation term represents the loss function l(yi, 𝑦̂𝑖
(𝑗−1)

+fj(xi)), which measures the difference 

between the actual and predicted values. The function fj(xi) represents the newly added tree at 

iteration j, and Ω(fj) is a regularization term that controls the complexity of the model to prevent 

overfitting. The split gain function (Lsplit) quantifies the loss reduction achieved by splitting a 

node in a decision tree. It is computed using the first-order gradient statistics (gi) and second-

order statistics (hi), where L and R denote the left and right child nodes after the split. The 

denominator terms include λ, a regularization parameter that smooths the gain calculation. The 

term γ represents the penalty for introducing a new leaf node, which prevents unnecessary splits. 

A higher split gain indicates a more effective partition of the data, contributing to improved 

model accuracy. 

In Equation (6), l is the subset of observations available at the current node, lL and lR 

are the subsets of observations available at the left and right nodes after splitting. The XGBoost 

algorithm defines the functions as in Equation (6) (Li et al., 2023). 

 

𝑔𝑖 = 𝜕𝑦𝑖̂
(𝑗−1)

𝑙(𝑦𝑖, 𝑦𝑖̂
(𝑗−1)) 

ℎ𝑖 = 𝜕
𝑦𝑖̂(𝑗−1)
2 𝑙(𝑦𝑖, 𝑦𝑖̂

(𝑗−1)) 
(6) 
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In the XGBoost algorithm, gi and hi represent the first-order and second-order gradients, 

respectively, of the loss function l(yi, 𝑦̂𝑖
(𝑗−1)

) with respect to the predicted value from the 

previous boosting iteration. The first-order gradient (gi) measures the direction and magnitude 

of the loss function’s change, indicating how adjustments to the prediction affect the model’s 

error. The second-order gradient (hi) captures the curvature of the loss function, allowing for an 

adaptive learning rate based on confidence in the gradient estimation. These gradient statistics 

are used in the tree-splitting process and the computation of the split gain to determine the 

optimal node partitioning, ultimately improving model performance. 

Like LSTM, the algorithm partitions the dataset into three subsets: training, testing, and 

validation. Initially, 80% of the data is allocated to training, 10% to testing, and the remaining 

10% to validation, which allows evaluation of the model's performance on samples not seen 

during tuning. 

Then, the XGBoost model is configured with the mean squared error (MSE) function as 

the objective, which is suitable for regression tasks. The parameter n_estimators=100 defines 

the number of trees, while learning_rate=0.1. Finally, prediction is performed on the validation 

set, and the mean squared error is calculated as an evaluation metric. This calculation of the 

error on the validation set provides an objective measure of model performance, which can be 

used for tuning and comparisons with other models.  

 

5.2.2.3 Feedforward Neural Network (FNN) 

 

An Artificial Neural Network is a nonlinear model that aims to simulate how the human 

nervous system performs specific tasks. With an appropriate and limited set of processing units, 

neural networks could recognize patterns and adapt to empirical data. Several studies have 

demonstrated their effectiveness in classification tasks, pattern recognition and, especially, in 

making accurate predictions. Among the types of neural networks, feedforward networks stand 

out as one of the most prominent structures. Recent advances in literature have established the 

theoretical basis for the ability of feedforward networks to approximate functions in a universal 

way. It has been shown that, with enough hidden units and properly adjusted parameters, 

feedforward networks can approximate any arbitrary function. In this architecture, neurons are 

organized in layers, allowing the transmission of information in a hierarchical and sequential 

manner. The general formulation of the FNN is shown in Equation 7 (Saâdaoui, 2017).  
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𝑦𝑡 = 𝑁 [𝛽0 + ∑ 𝛽1𝑀(𝛼𝑖
𝑇𝑥𝑡)

𝑞

𝑖=1

] +∈𝑡= 𝑓(𝑥𝑡, 𝛩) +∈𝑡 (7) 

 

The term β0 represents the bias, acting as an offset in the prediction. The summation 

[∑ 𝛽1𝑀(𝛼𝑖
𝑇𝑥𝑡)𝑞

𝑖=1 ] models the hidden layer processing, where 𝛼𝑖
𝑇𝑥𝑡 denotes the weighted sum 

of inputs, and 𝑀(𝛼𝑖
𝑇𝑥𝑡) is the activation function that introduces nonlinearity to the model. The 

coefficient β1 determines the contribution of each transformed input to the final output. 

Additionally, the function f(xt,Θ) represents a general nonlinear mapping parameterized by Θ, 

which may correspond to the network weights and biases learned during training. The term ϵt 

captures residual errors or noise in the predictions. This formulation allows the FNN to 

approximate complex functions and relationships within the input data, making it suitable for 

applications in forecasting, classification, and regression tasks. 

Considering the network structure described in Equation (8), a central numerical issue 

is estimating the set of unknown parameters Θ for a given data sample. For this purpose, 

backpropagation, together with its variants, is widely used as one of the most effective learning 

algorithms. Backpropagation is an iterative estimation method that allows the calculation of Θ 

recursively. In this process, a starting point is randomly selected and then updated according to 

the following procedure of Equation (8) (Saâdaoui, 2017).  

 

𝛩̂(𝒊+𝟏) =  𝛩̂(𝒊) +  𝛾∇𝑓(𝑥𝑡, 𝛩̂(𝒊))[𝑦𝑡 − 𝑓(𝑥𝑡, 𝛩̂(𝒊))] (8) 

 

The term 𝛩̂(𝒊+𝟏) represents the updated parameter set at iteration i+1, while 𝛩̂(𝒊) denotes 

the parameters from the previous iteration. The update is influenced by the learning rate γ, 

which controls the step size in the optimization process. The gradient ∇𝑓(𝑥𝑡, 𝛩̂(𝒊)) represents 

the partial derivative of the model function 𝑓(𝑥𝑡, 𝛩̂(𝒊)) with respect to the parameters, indicating 

the direction in which the model should adjust its weights. The term [𝑦𝑡 −

𝑓(𝑥𝑡, 𝛩̂(𝒊))] measures the prediction error at time t, guiding the update to minimize the 

difference between actual and predicted values. 

The FNN uses the TensorFlow Keras library. Initially, the model is configured to predict 

a specific time variable with a 1-day observation window (look_back=1), meaning that the 

current value is predicted based on the immediately previous value. The create_dataset function 

organizes the training, validation, and test data, generating the X and y variables suitable for 

time series modeling. 
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The model itself is a multilayer perceptron (MLP) network with two hidden layers of 10 

neurons each, activated by the ReLU function, which facilitates the modeling of non-linear 

patterns. The output layer is a dense layer with a single neuron, suitable for predicting 

continuous values. The Adam optimizer is used for efficient adjustment of the weights, while 

the MSE loss function minimizes the mean squared error, a common metric for regression. 

To monitor the accuracy during training, a custom Callback 

(MAE_Percentage_Callback) is added. This calculates and displays the MAE and MAPE for 

both the training and validation sets at the end of each epoch. Finally, the MSE, the MAE, and 

the MAPE are calculated to quantify the accuracy of the predictions and verify the 

generalization ability of the model on unseen data. The architecture of the algorithm is shown 

in Algorithm 3.   

 

Algorithm 3: Defining and Training the FNN Model 

Step 1. For each input sequence {𝑥𝑡} with time window L 

            𝑋𝑡 =  {𝑥𝑡−𝐿+1, … , 𝑥𝑡−1, 𝑥𝑡} and 

            𝑦𝑡+1 =  𝑥𝑡+1      

                                                                X is the feature matrix 

                                                                y is the vector of target values                                          

Step 2. Input layer with n1 neurons, where n1=10 

            ℎ(1)=f(𝑊(1) ∗ 𝑋 + 𝑏(1)) 

                                                           W(1) and b(1) are the weights and biases of the input layer 

                                                           f is the ReLU activation function 

                                                           ℎ(1) is the activation of the first hidden layer 

                                                           ℎ(2) is the activation of the second hidden layer 

         Hidden layer with n2=10 neurons 

         ℎ(2)=f(𝑊(2) ∗ ℎ(1) + 𝑏(2)) 

Step 3. Output layer with a single neuron, which provides the prediction 𝑦̂ 

        𝑦̂=𝑊(3) ∗ ℎ(2) + 𝑏(3)  

End code 
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5.2.3 Evaluation Metrics 

 

To evaluate the proposed model, this paper applies the MAPE and MAE, as presented 

in Equation 9.  The MAE measures the average absolute difference between actual and 

predicted values. It indicates how much, on average, predictions deviate from the real values 

without considering direction. The MAPE expresses this error as a percentage of the actual 

values. 

𝑀𝐴𝐸 =  
∑ |𝑦(𝑖) − ŷ(𝑖)|𝑁

𝑖=1

𝑁
 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑦(𝑖)𝑦(𝑖)̂

𝑦(𝑖) 
|

𝑛

𝑖=1

× 100 

(9) 

 

In this context, y(i) represents the actual solar energy value, while ŷ(𝑖) is the predicted 

solar energy value. N denotes the number of samples. The defined statistical evaluation tests 

were applied to measure the forecasting system's effectiveness. Variations in the evaluation 

metrics provide insights into the stability of the proposed model.  

 

5.2.4 BIM Model Generation 

 

School of Engineering, a building of UFPE, was chosen to model and simulate PV 

production. It is worth noting that this building has solar modules installed on its roof, which 

allows the comparison of the simulation model proposed in this study with the real production 

case.  

However, all the plans for this building are still in 2D format in Autocad. Therefore, to 

be able to develop this research the 2D was modeled in Revit software (2025). The BIM 

mandate in Brazil for public institutions, established by Decree No. 10,306/2020, aims to 

promote the adoption of BIM in engineering works and services in the public sector. The 

implementation of BIM in public contracts in Brazil is divided into phases, with progressive 

deadlines that require the use of this technology from conception to management of the project 

life cycle. The main objectives of this requirement are to improve efficiency, transparency, and 

quality control in public contracts, in addition to reducing costs and waste throughout the 

construction execution and maintenance stages. The Decree establishes BIM as an essential 

instrument for the modernization of the construction sector, encouraging data interoperability, 

collaboration between the agents involved, and the adoption of innovative practices.  
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Furthermore, it is worth noting that UFPE has developed strategic actions to restructure 

the energy matrix of its Campi to align with environmental guidelines and sustainability 

practices in the generation of renewable energy. The institution's focus is to reduce dependence 

on energy suppliers by using PV energy due to its low maintenance and operating costs.  

The chosen CTG UFPE building has 6 floors and several classrooms, professors' 

officers, laboratories, and auditoriums for various engineering courses. The floor plan of the 

roof and the 3D model generated in Revit are shown in Figure 15.  

 

Figure 15 -Representation of the roof and 3D model generated in Revit 

 

 

A Dynamo routine was implemented to extract the usable area of the building's roof, as 

illustrated in Figure 4. Subsequently, the dimensions and efficiency of the currently installed 

solar modules were input into the routine to determine the number of modules. This data was 

then utilized to estimate the predicted photovoltaic energy production using SolarisBIM.AI. 

Dynamo offers an intuitive, node-based visual programming environment that facilitates 

automated data import. Dynamo is a plugin of Revit and integrates this software but can be 

used on other platforms. It is useful for automating and enhancing design and modeling tasks. 

Its features streamline the process of collecting, analyzing, and visualizing data within the BIM 

context. The node-based structure allows for the creation of customized workflows by 

interconnecting different nodes to meet the specific needs of each project (Cho et al., 2024). 
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5.2.5 Quantification of PV energy production 

 

The DL algorithms provide the solar radiation in kWh/m² for the desired day(s). The 

manufacturer's manual provides the average conversion efficiency of the modules, typically 

between 15% and 22% (or 0.15 to 0.22). The area required for the calculation is extracted from 

the 3D BIM model. The calculation is achieved by using Equation 10. The number of solar 

modules (NSP) is obtained by the division between total area of the building's roof (Aroof) by 

area of a solar module (ASP). The daily PV production (DPV) is calculated by multiplying the 

number of solar modules by the average daily solar radiation per square meter (Daverage) and the 

efficiency of the modules (E). The annual PV energy production (PVanual) is then obtained by 

multiplying the daily energy output by 366 days, accounting for leap years. This estimation 

provides a straightforward method to assess photovoltaic energy generation based on module 

specifications and local solar conditions. It is worth noting that this model disregards the losses 

of the conversion stage of the PV system (inverter). 

 

NSP = 
𝐴𝑟𝑜𝑜𝑓

𝐴𝑆𝑃
  (9.1) 

(10) DPV (kWh) = NSP × (Daverage)  ×  E (9.2) 

PVanual = DPV * 366 (9.3) 

 

 

The PV energy production in kWh was further compared to the CO₂ emission factor to 

find the amount of CO₂ avoided. The formula is shown in Equation 11. In Brazil, the Ministry 

of Science, Technology and Innovation (MCTI) reports that the annual Average Emission Factor 

(tCO2/kWh) is 0.0000467 tCO₂/kWh (MCTI, 2023).  

 

CO₂avoided = PVanual (kWh) × CO₂ factor (tCO₂/kWh) (11) 

  

5.2.6 Proposed model comparison 

 

The model developed in this research is evaluated by comparing the existing energy 

production in the UFPE school building, which has a PV power generation plant with a 

production capacity of 273.24 kWp. The total investment was $333,450 dollars, with resources 

from the Ministry of Education (MEC), including installing two other poles at the Center for 
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Applied Social Sciences (CCSA) and the administration building. The UFPE dchool building 

generation pole began operating in June 2021 (UFPE, 2021). 

The proposed methodology was compared with the Solarius PV software simulations to 

validate its effectiveness in predicting solar irradiance. Solarius PV is widely used in industry 

to simulate the performance of solar systems with high precision, integrating climate, sunlight, 

and solar module efficiency data (Di Giovanni et al., 2024). In this context, the BIM model 

generated in Revit was exported in IFC format and imported into Solarius PV.  

 

5.3 Results 

 

5.3.1 Experiment 

 

LSTM and FNN demonstrated good effectiveness in predicting variations in the data, 

with a good overlap between predicted and observed values in both the validation and test sets. 

This indicates that the model could capture the underlying temporal trends in the data, 

generating predictions that were close to the actual observations. However, FNN demonstrated 

the best performance among the three classifiers tested. The overlap in the FNN network of 

predicted and observed values reflects the model's ability to generalize, as shown in Figure 16 

and Figure 17.  

In contrast, the XGBoost model did not perform as well in capturing the temporal 

variations in the data, as indicated by a lower overlap between predicted and observed values. 

Additionally, while LSTM demonstrated reasonable effectiveness, its performance was still 

inferior to that of FNN, which exhibited better performance.  
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Figure 16 -Predicted and observed values in the test set in FNN algorithm 

 

 

Figure 17 - Predicted and observed values in the validation set in FNN algorithm 

 

 

In the LSTM algorithm, the cities Arcoverde, Petrolina, and Cabrobó have MAPE 

percentage errors for the validation set ranging from 31.7328% (Petrolina) to 39.1658% 

(Arcoverde). Sertão (São Francisco Pernambucano and Sertão Pernambucano), with drier and 

more stable climate characteristics throughout the year, provides data with less seasonal 
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variation for the model to capture patterns.  In Agreste Pernambucano, which includes 

Garanhuns and Surubim, the model presents greater variability in percentage errors, especially 

in Garanhuns, where the MAPE validation reaches 54.8246%. This mesoregion has a humid 

climate and can be influenced by local phenomena. The city of Surubim, despite presenting a 

high percentage error in testing (42.9990%), has a slightly more balanced performance in 

validation (37.4277%). The climate variation of the Agreste, which has a transition between the 

dry climate of the Sertão and the more humid climate of the Zona da Mata, can make it difficult 

to capture patterns. In the Metropolitan Region of Recife, with its urban characteristics and high 

climate variation due to the influence of the ocean, it presents a percentage error of 46.9155% 

in testing and 45.7837% in validation. The model results are summarized in Table 8. 

For XGBoost, Recife presented a MAPE of 43.76% in training, while Arcoverde had a 

higher MAPE, around 67.2%, which indicates that the model had difficulty learning complex 

patterns in the locations. In validation, errors increase for all cities, with Recife standing out, 

where the MAPE reaches 76.66%. The best results are in the FNN algorithm. Cities such as 

Arcoverde and Petrolina present MAEs around 2.07 and 2.11, respectively, with MAPE varying 

between 26% and 26.6%, which indicates good accuracy in these regions. Recife has a MAPE 

of 33.28% and MAE of 2.31.  

Table 8 - Model Evaluation Metrics 

Collection 

points 

Mean 

Absolute 

error 

(MAE) 

Mean 

Absolute 

Percentage 

Error 

(MAPE) 

Validation 

(MAE) 

Validation 

(MAPE) 

LSTM 

Arcoverde 1.8647 39.9136 1.8453 39.1658 

Cabrobo 1.9144 40.8204 1.8904 37.1235 

Garanhuns 1.8220 45.3659 1.7889 54.8246 

Petrolina 1.9691 41.0090 1.8716 31.7328 

Surubim 1.8820 42.9990 1.8410 37.4277 

Recife 1.9406 46.9155 1.8413 45.7837 

XGBoost 

Arcoverde 1.7610 67.2044 2.0811 61.7300 

Cabrobo 1.8107 67.4638 2.1141 75.1386 

Garanhuns 1.0574 50.8401 2.1414 53.2101 

Petrolina 1.8400 67.6806 2.0256 59.1410 

Surubim 1.8286 65.4670 2.0343 62.3113 

Recife 1.0907 43.7614 2.3363 76.6583 

FNN 

Arcoverde 2.0671 26.6168 2.0904 27.5519 

Cabrobo 2.0903 26.8951 2.1251 27.8433 

Garanhuns 2.2850 35.9728 1.8467 25.0528 

Petrolina 2.1141 26.2415 2.0454 25.4250 

Surubim 2.1417 28.8155 2.0402 27.5487 

Recife 2.3154 33.2809 1.9939 32.6219 

Note: Epoch 100/100 
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FNN had the lowest MAPE value across all cities. This is because FNN, being a 

sequential memoryless network, makes predictions considering only static patterns, which can 

work well when there is less complexity or temporal variability. In this way, FNN can smooth 

out the values and have a lower percentage error, since it is not trying to capture more detailed 

sequences. 

LSTM had an intermediate performance with higher error percentages than FNN, but 

lower than XGBoost. This is because LSTM has memory cells that can capture temporal 

relationships and long-term dependencies, which is advantageous for sequential data, but can 

introduce some level of complexity and increase the percentage error, especially if variability 

is high. LSTM tends to be more accurate on data where seasonal or sequential patterns are 

present, but the adjustment to each city may not be optimal in all cases. 

XGBoost had the highest MAPE values across almost all collection points. This is 

because XGBoost, a decision tree-based model, is excellent for tabular data but can struggle 

with temporal dependencies, especially in data with temporal variability. It overfits static or 

low-frequency data but loses accuracy on complex time series, which explains the higher 

percentage error. 

 

5.3.2 Comparison of the proposed methodology 

 

Considering this study's objectives, which prioritize minimizing relative errors in energy 

production forecasting across different locations, the FNN model was selected as the most 

suitable approach. The FNN consistently achieved the lowest MAPE values across most 

collection points in both training and validation phases, indicating greater reliability in 

proportional accuracy.  However, it is worth noting that LSTM also presented good results when 

considering the MAE metric. 

Noting that the FNN demonstrated better performance across the time series, this paper 

used its solar radiation predictions as input to the solar radiation data in the process of BIM 

quantifying solar energy production. This quantification process is called SolarisBIM.AI. 

Figure 18 compares the solar irradiance predicted by the algorithm to the solar irradiance 

provided by the Solarius PV software. Solarius PV, a BIM software, enables the modeling and 

analysis of PV energy production using solar irradiance values from climate databases 

incorporated into the software. However, Solarius PV does not disclose detailed information 

about the algorithms used in sky modeling or about the matrix calculation methodology it uses 

(Di Giovanni et al., 2024).  
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There is an average percentage variation of 30% between the daily average solar 

radiation values provided by Solarius PV and those predicted by SolarisBIM.AI. In some cities, 

such as Petrolina and Cabrobó, the variation reaches 38% and 33%. There is a smaller 

discrepancy in other cities, such as Recife (25%) and Garanhuns (27%). Despite the differences, 

the values predicted by the proposed model follow the variations of high and low solar radiation 

values, as shown in Figure 18. 

 

Figure 18 - Comparison between predicted values for the year 2023 and Solarius PV 

 

The results of Di Giovanni et al. (2024) also showed differences in terms of comparison 

of solar radiation provided by Solarius PV. The results of Di Giovanni et al. (2024) show that 

the Solarius PV software overestimated the energy production of the PV plant and 

underestimated the global radiation received by the modules. In addition, the Solarius PV 

software, with the climate data provided by UNI 10349:2016, presents a relative error of 

21.13%. In contrast, the simulation with the radiation data provided by PVGIS shows a relative 

error of 22.11% (Di Giovanni et al., 2024).  

The daily production data for the year 2023 from CTG UFPE were collected to compare 

with the predicted production data for the year 2023 from SolarisBIM.AI. The solar module 

model of CTG UFPE is the Astronergy CHSM6612P/HV-345, whose module efficiency is 18%. 

In total, CTG UFPE has 792 modules distributed on the roof of the building. Therefore, as 

shown in Figure 19, the predicted values from SolarisBIM.AI are very close to the actual values 

of CTG UFPE. For the year 2023, UFPE's actual solar energy production was 374,204.50 kWh, 

while the value predicted by SolarisBIM.AI was 381,802.31 kWh, establishing an annual 

difference of 2% more from the real case to the prediction. Although CTG UFPE has a total 

roof area of 2,863.87 m², only 1,536.80 m² are covered with solar modules.  
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Figure 19 - Actual solar energy production at CTG UFPE vs. Production predicted by 

SolarisBIM.AI 

 

 

Previous research, such as Kazanasmaz et al. (2009), developed an FNN model with six 

building parameters, two weather parameters, and five weather parameters as inputs to predict 

daylight illuminance, and also obtained an average error of 2.2% (Kazanasmaz; Günaydin; 

Binol, 2009). These findings support assumptions investigated in research, such as that of (Liu 

et al., 2023b).  

 

5.3.3 BIM routine for quantifying solar energy produced in a year and CO2 avoid 

 

 Considering that the CTG UFPE has a useful area of 2,300.07 m² (removing access to 

stairs, cleaning, and water tanks), a routine was created in Dynamo focused on automating the 

quantification of roof areas of the UFPE CTG building in Revit, calculating the energy 

efficiency of a solar module system and, additionally, estimating the avoided CO₂ emissions 

based on the energy generated. The routine extracts the total roof area and uses the specific 

parameters of the solar module model, such as the efficiency of the solar modules and the 

average radiation, to calculate the annual energy production. It then multiplies this value by an 

adjusted emission factor to obtain avoided emissions, as shown in Figure 20 and described in 

Algorithm 4.  
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Figure 20 - Dynamo routine for building roof area extraction 

 

 

Algorithm 4: PV Energy Calculation using Dynamo 

Step 1. Extract the roof area 

             Select floor category (roof) in Revit 

             Retrieve all elements in this category 

             Extract the area parameter for each element 

                 Compute the total roof area by summing all retrieved values 

Step 2. Determine the number of solar modules          

             Define the area of a single solar module (m²). 

             Compute the maximum number of solar modules that fit in the total available area:  

                             NSP =   

Step 3. Calculate daily and annual energy production 

            Define the solar module efficiency 

            Define the average daily solar radiation (kWh/m2/day). 

            Compute daily energy production: 

                             DPV (kWh) = NSP  (Daverage)    E 

            Multiply by 366 days to get the annual energy production: 

                             PVanual = DPV * 366 

Step 4. Calculate CO₂ emissions avoided 

            Define the CO₂ emission factor (tCO2/kWh). 

            Compute the total CO₂ emissions avoided per year: 

                             CO₂avoided = PVanual (kWh)  CO₂ factor (tCO₂/kWh) 
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Step 5. Output Results 

            Total usable roof area (m²) 

            Number of solar modules 

            Total energy produced annually (kWh) 

            CO₂ emissions avoided per year (tons) 

End code 

 

This Dynamo routine highlights the importance of modeling in the design phase for BIM 

projects focused on PV installations. The application on roofs minimizes energy losses, 

optimizes installation costs, and maximizes solar radiation capture. Thus, the location, 

characteristics, and dimensions of roofs become fundamental when analyzing installations' 

viability, production, and profitability (Martín-Jiménez et al., 2020). This research contributes 

to the AECO sector by expanding the use of two-dimensional data to integrate the BIM into an 

automated design process, aiming to achieve optimal solar energy production values.  

To quantify solar energy production and CO2, parameters such as solar module model, 

roof area, module efficiency, and CO₂ emission factor (0.0000467 tCO₂/kWh) were applied to 

the Dynamo routine. The Astronergy CHSM6612P/HV-345 model was randomly selected for 

this simulation, with a total roof area of 2,300.07 m². The number of solar modules required to 

cover this area was calculated based on the area of one module, which is 1.9404 m², resulting 

in approximately 1,185 solar modules. The module efficiency provided by Astronergy is 18% 

(meaning that this system converts 18% of the incident solar energy into useful electricity). In 

addition, to calculate the CO₂ reduction, the emission factor of 0.0000467 tCO₂/kWh was used, 

which indicates the amount of carbon dioxide avoided for each kilowatt-hour of energy 

generated. 

The potential daily energy generation in the cities ranged from 1,468,79 kWh 

(Garanhuns) to 1,757.23 kWh (Petrolina), with the highest daily production occurring in the 

Sertão region. The avoided CO₂ results show that Petrolina, which has the largest energy 

production, also avoided the largest amount of CO₂, with an annual reduction of 29.95 tons. 

Arcoverde also stood out in CO₂ avoidance (27.46 tons per year). Garanhuns and Surubim, with 

smaller energy productions, also presented a lower CO₂ avoidance (25.04 and 26.41 tons, 

respectively). These results are summarized in Table 9. 
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Table 9 - Simulation of annual solar energy production and avoided CO2 

Results Arcoverde Cabrobó Garanhuns Petrolina Surubim Recife 

Daily energy (kWh)  1,611.19 1,627.08 1,468,79 1,757.23 1,549.19 1,565.26 

Annual energy (kWh)  588,082.77 593,884.27 536,109.17 641,389.23 565,455.11 571,319.09 

CO₂ avoided (t) 27,46 27,73 25,04 29,95 26,41 26,68 

 

The Sertão region, characterized by more intense solar radiation, generates greater 

energy production and, consequently, greater CO₂ avoidance, which supports the strategic 

installation of PV systems in these areas to maximize economic and environmental benefits. 

The analysis of solar energy production and CO₂ reduction avoided in the different cities of 

Pernambuco shows the importance of efficient planning and design in implementing PV 

systems. 

Using tools such as Dynamo and Revit, which integrate with BIM, can assist in 

analyzing local solar conditions and the precise dimensioning of PV systems, considering the 

specific characteristics of each region. Thus, in cities such as Petrolina and Cabrobó, where 

solar radiation is more intense, the BIM model can optimize the layout of the systems, ensuring 

greater efficiency in energy production. On the other hand, in areas such as Garanhuns, where 

solar radiation is more moderate, the use of BIM can help to plan alternative solutions, such as 

the use of more efficient modules or the inclusion of complementary systems, such as storage 

batteries, to maximize the use of the energy generated. 

 

5.4 Discussion  

 

This chapter establishes an automated process for predicting and quantifying solar 

energy production, highlighting the role of BIM and project planning in the Design phase. 

Figure 21 highlights that the design phase is essential for the proper operational functioning of 

a rooftop PV system. Using BIM from the early stages of project construction contributes to 

optimized information management, facilitating the design process and multidisciplinary 

collaboration between the different stages of the project (Di Giovanni et al., 2024). Applying 

solar radiation data and BIM information at the design stage helps designers optimize PV plants 

adapted to local climatic and regional conditions.  

Some factors can influence the adaptation of solar modules to building roofs that can be 

optimized or avoided in the design phase. The available area on roofs must be analyzed in 

advance since space limitations can restrict the installation of PV systems in buildings. Several 

structural components, such as chimneys, machine rooms, exhaust fans, and plumbing outlets, 
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also impact the physical layout for installing solar modules. In addition, self-shading between 

modules in close rows can reduce the amount of solar radiation received, compromising 

efficiency. Another important point is the variety of sizes of PV modules available on the 

market, which allows for certain flexibility in adapting these modules to the roofs of different 

buildings (Barbón et al., 2022). 

Furthermore, on a macro scale, energy planning needs to anticipate and mitigate risks 

associated with grid overload, especially in light of the rise in distributed generation and the 

growing electrification of cities. The use of forecasts based on solar radiation time series, 

combined with deep learning models and data integrated via BIM, allows policymakers to 

identify consumption and generation patterns with greater precision. With this information, it 

is possible to define load balancing strategies, such as encouraging the adoption of energy 

storage systems, implementing dynamic tariffs and the intelligent expansion of transmission 

infrastructure.  

 

Figure 21 - SolarisBIM.AI - Smart sustainable building planning with solar radiation 

forecasting for photovoltaic energy production with a BIM-driven deep learning model 

 
 

From a theoretical perspective, this study contributes to sustainability research in the 

built environment by articulating its implications across micro, meso, and macro levels of 

application. At the micro scale, the proposed SolarisBIM.AI framework addresses individual 

building projects by enabling the automated estimation of photovoltaic energy production and 
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avoided CO₂ emissions directly from BIM models. This allows project designers to optimize 

energy strategies during the early design phase, enhancing building-level sustainability and 

energy efficiency (Gan, 2022; Wijayarathne; Gunawan; Schultmann, 2024). 

At the meso scale, the model supports professional practices within architectural and 

engineering firms by integrating artificial intelligence into routine design workflows. The 

automated process developed in Dynamo addresses the standardization of sustainable design 

practices, improves decision-making across teams, and fosters digital transformation in the 

AECO sector. At the macro scale, this research supports broader urban and policy agendas by 

contributing to the operationalization of net-zero carbon targets and energy transition goals. The 

ability to quantify the environmental impact of design alternatives at scale can inform municipal 

planning strategies, energy resilience programs, and sustainability certifications. Thus, the 

integration of BIM and AI presented in this study has the potential to align with national and 

global policies for decarbonization, particularly in the context of rapidly urbanizing regions and 

climate-sensitive zones (Chen; Gou, 2024; D’adamo et al., 2024). 

In the sustainability domain, beyond the economic and environmental benefits, PV 

energy promotes the democratization of access to electricity, as it is a decentralized source that 

reinforces the security of energy supply. Unlike centralized generation, PV systems can be 

installed in different locations and do not necessarily require a connection to the electricity grid. 

As a result, owners of these systems are protected against increases in energy costs and supply 

interruptions caused by extreme events (Kim; Kim; Kim, 2017; Qiu; Yang, 2024).   For 

example, government measures have been widely adopted to encourage the implementation of 

PV projects, such as the feed-in tariff (FIT). The FIT offers project operators a fixed payment 

per kilowatt-hour (kWh) of electricity generated from PV systems. This policy has played a key 

role in stimulating the development of solar energy in several countries, both developed 

countries such as the USA, New Zealand, Japan, and Italy, and developing countries such as 

Chile, Vietnam, and China, which have also implemented a series of policies to encourage the 

expansion of PV projects (Hu; Song; Zhao, 2024).  

For BIM modelers, these incentives increase the demand for infrastructure projects 

incorporating renewable energy sources, requiring the integration of PV systems with 

architectural and structural design. AI complements this need by enabling optimized analysis 

of performance data, climate simulations, and energy generation forecasting, increasing 

efficiency in the planning and maintenance of solar systems (Ling et al., 2023; Shao; Meng; 

Che, 2025). 
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6 FROM COST TO EFFICIENCY: A BIM-DRIVEN APPROACH FOR 

PHOTOVOLTAIC MODULES ALLOCATION TO MAXIMIZING ENERGY 

PRODUCTION WHILE MINIMIZING COSTS 

 

6.1 Chapter Introduction  

 

Addressing the urgent challenge of energy sustainability requires expanding renewable 

sources and driving the rapid adoption of innovative technologies in the Architecture, 

Engineering, Construction, and Operations (AECO) sector (Winkler et al., 2024). This includes 

the production of photovoltaic (PV) energy through project planning from the initial phases of 

buildings and extending throughout their entire life cycle (Serat et al., 2025; Szalay et al., 2022). 

For this planning to be efficient, optimized, and data-driven, design processes must provide the 

best configurations for allocating solar modules on building roofs (Di Giovanni et al., 2024). 

To this, simulations of PV plant projects and integration between the different disciplines that 

make up a building are possible through digital representations made by BIM models. In this 

context, this chapter integrates two research topics to provide an automated design process for 

simulating alternative layouts of PV systems on a building´s roof.  

First, this chapter argues that BIM models are the basis for simulating PV array layout 

alternatives. BIM models store and integrate data throughout the building life cycle through 

geometric and non-geometric information about building objects. When applied in the early 

design phases, the models provide the information needed to document and coordinate solutions 

that justify design alternatives  (Palha et al., 2024). Furthermore, as sustainable demands are 

placed on the AECO industry, new technologies and automated design processes are needed for 

the long-term growth of the sector (Araújo et al., 2020b; Araujo; Alves, 2025). The association 

of BIM models and PV systems establishes a data-driven workflow for the AECO industry. 

Thus, during the planning and development phase of the project, BIM modelers analyze the 

compliance of the detailed design of the PV system, structural load of the PV system, power 

generation, and electrical flow with the other disciplines and structures of the building. After 

the project is completed, the BIM model becomes a data platform and a management system 

for the PV system by analyzing the system's performance during operation (Lin et al., 2021; 

Wang et al., 2024).  

Second, isolated planning of PV systems can perpetuate interoperability problems 

between software and accentuate conflicts between the different disciplines involved (Palha et 

al., 2024).  Li et al. (2021) highlight that the conventional workflow using BIM for developing 
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PV systems usually involves using multiple platforms. In this process, the architectural model 

with its geometric information is transferred to simulation software, either through the Industry 

Foundation Classes (IFC) format or by rebuilding the model in the simulation tool. After 

analysis, the data generated is integrated back into the architectural model for the insertion of 

the photovoltaic system. In contrast, the workflow proposed by researchers such as Li et al. 

(2021) and in this chapter simplifies this process by using a single BIM platform, Revit, 

associated with the Dynamo plugin.  

The ideal workflow for designing and constructing PV systems should start at the 

planning and design phase of the building. For example, Wang et al. (2024) highlight that in 

the design phase, simulation technologies can be employed to optimize the PV layout to 

maximize solar power generation efficiency. This includes analyzing the efficiency of different 

PV arrays to enable refinement of the asset design at an early stage. From the information on 

the construction site, it is possible to analyze factors such as solar radiation and specific 

conditions of roof structural elements (Shao et al., 2024). The design phase has three main parts: 

system design, electrical design, and structural design. This chapter specifically discusses the 

system design in buildings. The system design includes the layout of the PV array, system size, 

module location, and how to integrate the system efficiently (Lin et al., 2021).  

Nevertheless, determining the efficiency of PV systems considers aspects such as solar 

radiation (to estimate total energy production), available area on the building roof, PV panel 

brands and models, and the financial analysis for each PV panel model and brand. Several solar 

design and simulation tools on the market are specific to PV, such as RET Screen, Homer Pro, 

SAM, PVsyst, PVwatts, Polysun, and PVSol (Jing Yang et al., 2024; Lin et al., 2021).  

However, the analyses performed with these tools are based on the geometry of the building's 

roof, which must be created manually (which generates rework). 

This chapter argues that the AECO literature can benefit from developing strategies 

geared toward the advanced planning of PV plants. The focus is on guiding the planning of the 

building roof design to the PV project and establishing better layout alternatives in the case of 

retrofit projects. For this, Alves et al. (2025) argue that BIM can be considered a source of 

information for developing smart projects based on data management. Furthermore, Palha et al. 

(2024) argue that geometric and non-geometric representations of construction elements are 

developed using BIM to mitigate recurring failures in the traditional method in 2D Computer-

Aided Design and overcome limitations in the exchange of information in collaborative 

environments. Palha et al. (2024) also argue that the application of BIM is more consolidated 

in the initial stages of projects, especially in project documentation and coordination. Lin et al. 
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(2021) highlight that the lack of support tools in the initial design phase is one of the main 

problems hindering the use of photovoltaic tools in designing PV layouts. 

Previous research demonstrates advances in the planning process for integrating BIM 

with photovoltaic systems. Li et al. (2021) developed a Revit API built-in class and user control 

classes for PV module planning, including filters, user selection, bounding box, sun and shadow 

setting, reference intersection, family manager, and spatial field manager. Di Giovanni et al. 

(2024) use solar radiation data on building surfaces, accessed through Insight 360 (Revit plug-

in), and apply different machine learning techniques to predict long-term photovoltaic energy 

generation. (Changsaar et al., 2022) developed a photovoltaic system in an Eco-Home model 

and demonstrated that it has the potential to generate annual energy savings of 26,552 kWh, 

with an estimated maximum payback period of 18 years — a value considered adequate within 

the standard useful life of photovoltaic systems. (Szalay et al., 2022) developed BIM models to 

analyze life cycle carbon neutrality and prove that this can be achieved through additional 

photovoltaic panels installed on the roof, establishing a model for nearly zero energy buildings 

(nZEB). (Lu et al., 2022) developed a method based on the IFC standard in BIM to estimate 

the potential area and location of photovoltaic modules on the surface of buildings, considering 

windows (47,589.793 kWh/year), roofs (141,126.304 kWh/year), and facades (284,060.393 

kWh/year). However, these approaches still have limitations when it comes to automating the 

PV module allocation process directly in Revit models. The body of knowledge can advance 

the proposition of a model to analyze the cost-energy production relationship considering 

different sizes and brands of PV modules. 

This research aims to develop an automated process optimization model for allocating 

solar modules, seeking to maximize photovoltaic energy production (kWh/day) while 

minimizing implementation costs. This research integrates visual programming in Dynamo 

with programming in Python to analyze different combinations of PV modules, considering the 

dimensions of 21 PV modules from 4 brands for allocation on the roof of a building. The 

algorithm identifies the most efficient configuration of photovoltaic cost-production. It uses 

Dynamo to extract information on the families of PV modules and the available roof area from 

a BIM model in Revit. Finally, the model automatically allocates the best arrangement of PV 

modules directly in the Revit model.  

This research advances the body of knowledge on BIM and sustainable projects by 

proposing an automated process for selecting and allocating PV modules. First, the method 

starts by selecting solar models available on the market. Then, based on research related to costs 

associated with solar energy implementation, the final cost of the modules for customers is 
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estimated. Third, the production of the modules is estimated. By automatically extracting 

information from the building’s roof via Dynamo, the algorithm selects the best allocation 

solution, based on maximizing solar energy production and minimizing cost. Finally, Dynamo 

allocates the best configuration directly in the BIM model. 

 

6.2 Methodological Approach 

 

This chapter implements an automated process model to determine the best PV module 

allocation within an available area. It seeks a balance between PV energy production (kWh/day) 

and cost (USD $). The best PV module configuration is given by maximizing energy production 

(kWh/day) and minimizing total cost (USD $).  

The methodological process of this research is structured into two simultaneous stages. 

First, four PV module brands were selected, and their manuals were reviewed to gather 

technical specifications of the series and models available. Next, corresponding BIM object 

families representing these panels were identified and imported into Revit. With the geometric 

and technical data of the PV modules integrated into the BIM environment, it was then possible 

to calculate their unit price, which served as a input for assessing the efficiency of the 

photovoltaic layout.  

The second stage involves selecting the case to be analyzed and compared with the 

simulation results proposed in this article. The UFPE engineering school building was chosen 

to compose the case. This building already has a PV system, and as it is a public entity, data on 

solar energy generation can be made available upon request. Thus, the building's floor plan was 

converted from 2D CAD (made in AutoCAD) to a 3D BIM model in Revit. The extraction of 

information on the geometry of the building's roof was done with Dynamo, a Revit plugin that 

allows the development of automated projects through visual programming. Dynamo also has 

the functionality of allowing the insertion of code in Python. Based on information on the 

geometry of the building's roof and the average daily solar radiation in the city of Recife-PE, it 

was possible to estimate the daily production of solar energy for the year 2023.  

With the information on cost and energy production, an efficiency indicator was created 

to analyze the different PV layout combinations generated by the algorithm. Finally, with the 

information on the actual solar energy production of the selected building, it was possible to 

compare the PV layout generated by the algorithm with the solution currently implemented by 

UFPE. This methodological process is shown in Figure 22 and described in detail in the 

following subsections.  
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Figure 22 - Methodological process 

 
 

It is important to note that PV cells can be classified into different types according to 

the semiconductor material and the manufacturing process used, directly influencing solar 

systems' efficiency, cost, and application. The main types of PV cells include monocrystalline 

(Mono-Si), polycrystalline (Poly-Si), and thin-film (Thin-Film), in addition to emerging 

technologies, such as perovskite cells. Monocrystalline cells, highlighted in this study as the 

technology used in simulations, are known for their high conversion efficiency and superior 

performance in low irradiation and high-temperature conditions. Produced from a single high-

purity silicon crystal, these cells have a uniform and dark appearance and higher power density, 

making them ideal for projects where the available space for installation is limited (Pupin et al., 

2023). In the context of this article, the simulations were performed with modules based on 

mono-crystalline cells, considering their high energy efficiency and wide application in BIPV 

systems integrated into the architecture of buildings. 

 

6.2.1 Case selection 

 

The algorithm for PV module allocation was implemented in an existing building at the 

UFPE. The building already has a photovoltaic plant installed and operating since the second 
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half of 2022. To this end, the algorithm follows the BIM-oriented approach by extracting 

information about the geometry of the building's roof.  

Brazil has reached an installed capacity of 55 GW in photovoltaic (PV) energy, 

consolidating its position as the sixth largest country in the world in terms of installed capacity 

and positioning this source as the second largest national energy matrix, far surpassing wind 

energy. Distributed generation (DG), which includes systems installed in buildings, represents 

the largest part of this capacity. In February 2025, solar PV energy was responsible for 12.10% 

of all electricity supply in the country, contributing to avoiding the emission of more than 66.6 

million tons of CO₂ and boosting the economy by generating around 1.6 million new jobs. At 

the state level, Pernambuco ranks 7th among Brazilian states in solar energy generation 

(ABSOLAR, 2025). Despite the growth of the national market, most of the PV modules and 

panels used are still imported from China due to Brazil's limited manufacturing capacity of 

photovoltaic components (Pupin et al., 2023). 

UFPE, a public federal higher education institution, is one of Brazil's leading higher 

education institutions, recognized for its academic excellence and innovation. Founded in 1946 

and headquartered in Recife, it also has Caruaru and Vitória de Santo Antão campuses. With a 

wide range of undergraduate and graduate courses in various areas of knowledge, UFPE stands 

out, especially in technology, exact sciences, humanities, and health. The university is 

committed to innovation, internationalization, and social impact (UFPE, 2025).  

UFPE is committed to sustainability and energy efficiency. As part of its policy to reduce 

environmental impact, it is installing PV modules on its buildings. The initiative is part of a 

program to expand the use of renewable energy on campus, reduce dependence on the 

conventional electricity grid, and generate long-term savings (UFPE, 2021). However, the logic 

of project selection and prioritization in higher education institutions in Brazil, as exemplified 

in the case of UFPE, is strongly influenced by a cost-effectiveness assessment approach, where 

the costs of similar alternatives are compared to support decision-making. In the institutional 

context, project demands arrive through two distinct channels: through the university 

presidency or through organic requests entered the corporate system (SIPAC). Projects 

forwarded by the presidency have clear priority, as they are part of the annual strategic planning. 

They generally have guaranteed resources, such as parliamentary amendments, which result in 

larger-scale projects with financial impact. In contrast, projects coming from SIPAC are more 

varied in scope and value and may be requested continuously throughout the year, which creates 

challenges for planning and resource allocation. Currently, the predominant criterion for 

developing these projects follows the FIFO logic (first in, first out) (Nascimento et al., 2023).  
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Energy consumption in public academic buildings is four times higher than in other 

types of buildings. Academic buildings generally require large amounts of energy to keep 

classrooms cool and laboratory equipment running. This demand is even greater in full-time 

educational institutions (Chen et al., 2025).  

Furthermore, the Brazilian Federal Government, through Decree Nº. 10,306, of April 2, 

2020 (Brazil, 2020), establishes the mandatory use of BIM in engineering works and services 

performed by federal public administration agencies and entities. Implementation occurs in 

phases, starting with building designs and modeling and progressively expanding to the 

execution, maintenance, and management of the life cycle of buildings. In this context, this 

article contributes to UFPE by implementing the BIM design process by converting a 2D CAD 

project to BIM in Revit and structuring an automated method for analyzing the efficiency of 

PV module allocation.   

The selected UFPE building called the Engineering School Building, located on the 

Recife - PE Campus, has complete daily records of solar energy production with no missing 

values for 2022 and 2023. For the comparisons explored in the results of this article, the records 

from 2023 are used. The data on daily PV energy production was made available by the High 

Voltage and Public Lighting Management (GATIP) linked to the Infrastructure Superintendence 

(Sinfra) of UFPE. Sinfra provides building and urban maintenance and conservation services. 

It aims to preserve the integrity of the infrastructure and guarantee the quality of access to the 

University's facilities, ensuring environmental Sustainability (UFPE, 2025).  

Finally, UFPE is part of the Federal Institutions of Higher Education (FIHL) of the 

Federal Government. FIHLs have limited financial and personnel resources to develop projects, 

despite having a high demand for requests. In addition, decision methods for selecting project 

portfolios from public institutions must consider the wide range of benefits associated with the 

costs involved (Nascimento et al., 2023). Thus, this research also advances by providing an 

automated strategy to select different layout alternatives for PV projects in buildings based on 

costs, PV energy production, and efficiency of the adopted solution.  

 

3.2 Calculating the production and cost of PV modules 

   

The family was downloaded and imported into the Revit model for each indicated PV 

module brand. The simulation considered all four brands' models for the series of modules 

available in the manual. Table 10 shows information on the brands and models of the PV 

modules. 
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The calculation of the unit price of the PV modules was based on market research carried 

out by Greener, a renowned Brazilian company specializing in market intelligence, consulting, 

and studies for the photovoltaic solar energy sector. Greener is recognized for providing detailed 

reports on the photovoltaic market, financial analyses, feasibility studies, and strategic data, 

assisting companies and investors in the renewable energy sector (GREENER, 2024).  

According to Greener's research, the end consumer pays, on average, USD $ 1.09 per 

watt of maximum nominal power (Pmax) of each PV module. Therefore, to estimate the unit 

cost of each panel model, its maximum nominal power (Pmax) was multiplied by the reference 

value of USD $ 1.09/W. Thus, the cost was calculated according to Equation 12. 

 

𝐶𝑜𝑠𝑡 = 𝑃𝑚𝑎𝑥 (𝑊) ×  
$ 1.09

𝑊
 (12) 

 

According to Chapter 5, the average daily solar radiation in the year 2023 for the city of 

Recife, Pernambuco, Brazil, is 7.6 kWh/m² (kilowatt-hours per square meter). Thus, the daily 

production of PV energy is the multiplication of the value of solar radiation (SR), the efficiency 

of the module (η), and the area of the panel (A). Thus, the PV production was calculated 

according to Equation 13. 

 

𝑃𝑉 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (
𝑘𝑊ℎ

𝑑𝑎𝑦
) = 𝑆𝑅 (

𝑘𝑊ℎ

𝑚2 / 𝑑𝑎𝑦
) × η × 𝐴 (𝑚²) (13) 

 

Equation 12 and Equation 13 calculated the production and costs of each PV module. 

The results are summarized in Table 10.  

 

 

Table 10 - General information on solar modules, cost, and unit production 

Panel brand ID 
Nominal Max. 

Power (Pmax) 

Efficiency 

(η) 
Unit Cost 

PV 

Production 

(kWh/day) 

A 

Dimension: 1,16 m x 2,07 m 

Area: 2,401 m² 

1 475 0,198  $515.83  3,613 

2 480 0,200  $521.26  3,649 

3 485 0,202  $526.69  3,686 

4 490 0,204  $532.12  3,722 

5 495 0,207  $537.55  3,777 

6 500 0,209  $542.98  3,814 

B 

Dimension: 0,99 m x 1,62 m 

Area: 1,634 m² 

7 300 0,184  $325.79  2,284 

8 310 0,190  $336,65  2,358 

9 320 0,196  $347.51  2,433 

C 

Dimension: 1,30 m x 2,38 m 

Area: 3,106 m² 

10 640 0,206  $695.02  4,863 

11 645 0,208  $700.45  4,910 

12 650 0,209  $705.88  4,934 

13 655 0,211  $711.31  4,981 
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14 660 0,212  $716.74  5,004 

15 665 0,214  $722.17  5,052 

16 670 0,216  $727.60  5,099 

D 

Dimension: 0,7 m x 1,56 m 

Area: 1,092 m² 

17 210 0,1923  $228.05  1,595 

18 215 0,1969  $233.48  1,634 

19 220 0,2015  $238.91  1,672 

20 225 0,206  $244.34  1,709 

21 230 0,2106  $249.77  1,747 

 

 

6.2.2 Algorithm implementation  

 

6.2.2.1 Algorithm objectives 

 

The process implemented in this paper seeks the best arrangement of PV modules that 

produce the most solar energy at the lowest possible cost through the efficiency parameter. The 

algorithm's first objective is to maximize the amount of solar energy generated, as defined in 

Equation 14.  

 

𝑃𝑡 =  ∑ 𝑀𝑎𝑥𝑄𝑖  ×  𝑃 (𝑘𝑊ℎ/𝑑𝑎𝑦)𝑖

𝑛

𝑖=1

 
(14) 

Where: 

• Pt is the PV module configuration's total energy production (kWh/day). 

• n is the number of different types of PV modules in the combination. 

•  𝑀𝑎𝑥𝑄𝑖 is the maximum amount of panel i that can be installed in the available area. 

• Production (kWh/day)i is the daily energy production per panel i. 

The second objective is to minimize the cost of PV modules, which is defined as shown 

in Equation 14.  

 

𝐶𝑡 =  ∑ 𝑀𝑎𝑥𝑄𝑖  × 𝑃𝑝𝑟𝑖𝑐𝑒(𝑅$)𝑖

𝑛

𝑖=1

 
(15) 

 

Where: 

• Ct is the total cost (USD $) of the PV module configuration. 

• 𝑀𝑎𝑥𝑄𝑖 is the price of each panel i (Unit Cost).  

The algorithm uses a function derived from the two objectives to represent efficiency, 

which is given by the ratio between total production and total cost, as shown in Equation 15. 

The algorithm then seeks to maximize efficiency, balancing energy production and price. 
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𝜂(𝑘𝑊ℎ/𝑈𝑆𝐷 $) =  
𝑃𝑡

𝐶𝑇
 

(16) 

 

6.2.2.2 Logical structure of the algorithm in Revit via Dynamo 

 

First, the available area on the building roof is extracted in Dynamo via ‘Select Model 

Element’ (Figure 23). Then, for each combination of PV modules, the algorithm selects the 

corresponding panels from the database (families imported into the 3D Revit model – Figure 

24a) and calculates the maximum quantity of each panel installed in the available area (Figure 

24b). The maximum number of units of each panel is calculated by dividing the available area 

by the area of each panel, and the total production and cost are obtained by multiplying the 

quantities by their respective daily production and prices. This results in total energy production 

value and cost per configuration. The efficiency of each combination is defined as the ratio 

between the total production (in kWh/day) and the total cost (in USD $). 

After defining the best allocation, the one with the highest efficiency, the algorithm 

identifies the families (brands of PV panels) and models and allocates them according to the 

best configuration. The algorithm via Dynamo finds the families imported into Revit by the ID 

of the panel model.  

Figure 23 - Dynamo structure for extracting information from the building´s roof and module 

allocation 
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Figure 24 - Revit model 

 

 

Algorithm 5 uses Dynamo to optimize and automatically allocate PV modules in a Revit 

model. The algorithm first extracts information from the model’s coverage using Dynamo, 

selecting the model elements (Step 1). It then generates all possible combinations of PV 

modules and prepares a list to store the results (Step 2). During the simulation, the algorithm 

calculates the maximum number of each panel allocated in the available area, creating a 

temporary data frame with this information (Step 3). It then calculates the total production and 

cost of the panel configuration, as well as the efficiency of the configuration, which is the ratio 

between output and cost (Step 4). The results are stored and converted to a final ‘DataFrame’ 

(Step 5). The algorithm then identifies the best configuration, with the highest efficiency, to be 

used for the allocation (Step 6). Finally, the transaction in Dynamo/Revit is started to create 

instances of PV modules in the model, calculating the positions of each panel and creating 

instances in Revit, which are added to the list of panels, and the transaction is completed (Step 

7). The algorithm returns to the list of created PV module instances as output. 

 

Algorithm 5: Automatic PV module optimization and allocation 

Step 1. Extract information from the BIM model 

            Select the roof element in the Revit model 

            available_area ← Extract available roof area from selected element 

 

Step 2. Generate combinations of solar modules 
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                  possible_combinations ← Generate all combinations of available PV modules 

             results_sampled ← Empty list to store simulation results 

 

Step 3. Run simulations for each combination 

            For each combination in possible_combinations: 

                    selected_panels ← Select modules from current combination 

                    df_comb ← Create DataFrame with module data 

                   For each module i in df_comb: 

                          MaxQi ← roof (
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑎𝑟𝑒𝑎 

𝐴𝑟𝑒𝑎𝑖
) 

                          Costi ← Pmaxi × 1.09      # Equation (12) 

                          PV_productioni ← SR × η × Areai    # Equation (13) 

                         TotalProductioni ← MaxQi × PVproductioni 

                         TotalCosti ← MaxQi × Costi 

 

            Pt ← Sum of all TotalProductioni          # Equation (14) 

            Ct ← Sum of all TotalCosti                # Equation (15) 

            η ← 
𝑃𝑡

𝐶𝑡
        # Equation (16) 

            Store [df_comb, P_t, C_t, η] in results_sampled 

 

Step 4. Select the best configuration 

            df_results_sampled ← Convert results_sampled into a DataFrame 

            best_index ← Index of the highest efficiency (η) in df_results_sampled 

            best_combination ← Corresponding combination with highest efficiency 

 

Step 5. Automatically place modules in the Revit model 

            Start transaction in Dynamo/Revit 

            For each module type i in best_combination: 

                  For j from 0 to MaxQi - 1, do: 

                 x ← minPt.X + i × (panel_width + spacing) + (panel_width / 2) 

                 y ← minPt.Y + j × (panel_length + spacing) + (panel_length / 2) 

                 z ← minPt.Z 

                position ← XYZ(x, y, z) 

               PV_module ← Search family instance at position in Revit 

              Add PV_module to the module list 

OUT ← modules 

 

End transaction 

 

6.3 Results 

 

The results were developed through two experiments that follow the logical structure 

shown in Figure 25. The algorithm stores all simulated solutions in a DataFrame, highlighting 

the best solution through graphs. Only the best solution is allocated to the building's roof 

through Dynamo. 
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Figure 25 - Logical structure of the results experiment 

 
 

6.3.1 Total costs and Production in PV module Allocation 

 

Table 11 shows the different brands of PV modules (A, B, C, and D) and presents 

production and cost data associated with each set of panels. In all brands, the increase in 

production is related to the rise in cost. For example, brand A and model ID 1 require 721 panels 

allocated in a total area of 1731.51 m². In addition, the daily production in ID 1 is 2,605.21 kWh 

and rises to 2,749.94 kWh in ID 6—the total cost increases from USD $ 371,915.83 to USD $ 

391,490.35. In addition, despite having the smallest number of panels (557), brand C has the 

highest production, with 2,840.36 kWh in ID 16, but requires greater investments.  

 

Table 11 - Single PV modules allocation 

Brand ID 
Total of 

panels 

Total 

Production 

(kWh/day) 

Total Cost 

(USD $) 

A 

1 721 2605.207 $371,915.83 

2 721 2631.523 $375,830.74 

3 721 2657.838 $379,745.64 

4 721 2684.153 $383,660.54 

5 721 2723.626 $387,575.45 

6 721 2749.941 $391,490.35 

B 7 1060 2421.343 $345,336.84 



123 
 

8 1060 2500.300 $356,848.07 

9 1060 2579.257 $368,359.30 

C 

10 557 2708.860 $387,124.77 

11 557 2735.160 $390,149.18 

12 557 2748.310 $393,173.60 

13 557 2774.609 $396,198.01 

14 557 2787.759 $399,222.42 

15 557 2814.059 $402,246.83 

16 557 2840.358 $405,271.25 

D 

17 1586 2531.154 $361,691.47 

18 1586 2591.702 $370,303.18 

19 1586 2652.250 $378,914.88 

20 1586 2711.481 $387,526.58 

21 1586 2772.029 $396,138.28 

 

As shown in Figure 26, increased production is associated with increased costs for all 

brands of PV modules. To increase production capacity, greater financial investments are 

required. Therefore, it is necessary to find a balance between production and investment.  

 

Figure 26 - Correlation between total cost and total production of solar modules 

 
 

An index is applied to divide the total energy production (kWh) by the total cost (USD 

$) to assess the efficiency of PV modules. Thus, Figure 27 shows the efficiency of each model 

considered in this article. This index reflects the amount of energy generated per monetary unit 
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invested. Among the models presented, Brand A ID 5 has the highest efficiency among the 

others analyzed.  

Figure 27 - PV module efficiency 

 
6.3.2 Experiment 1: PV module allocation optimization algorithm 

 

Experiment 1 considers all photovoltaic modules for simulation. The algorithm 

combines the different models within the restriction of the total roof area. When the maximum 

number of panels is allocated, the algorithm records the total cost (in USD $) and the total 

energy production (in kWh/day) for different combinations of PV modules. Thus, Figure 28 

shows a configuration of PV modules at each point in the graph, with energy production on the 

Y axis and the total cost on the X axis. The efficiency of each configuration, which is the ratio 

between energy production and cost, is represented by a color scale on the right side of the 

graph, ranging from blue (least efficient) to red (most efficient). The higher the efficiency value, 

the greater the cost-benefit of the solution analyzed.  
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Figure 28 - Experiment 1 for selecting the best arrangement of PV modules considering the 21 

PV modules 

 
In experiment 1, using only a single PV module model maximizes production and 

reduces costs. In this case, allocating seven PV modules of Brand A, ID 5 is the highest 

efficiency. This configuration's total production is 2723.63 kWh/day, and its total cost is USD 

$387,575.45. The efficiency of this configuration is 0,007027345. The arrangement of the 

panels in the BIM model is shown in Figure 29. 

 

Figure 29 - Arrangement of solar modules in Experiment 1 
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Figure 30 shows other alternative, less efficient scenarios. When different brands are 

applied in the same plant, as in scenario 4, many empty spaces arise, reducing PV energy 

production. In addition, this alternative would be unviable in the long term due to high 

maintenance costs. 

Figure 30 - Alternative, less efficient scenarios 

 
 

6.3.3 Experiment 2: Best allocation considering all four brands 

 

The algorithm implemented in Experiment 1 showed that the best configuration would 

be one that considers only a single panel across the entire roof area of the building. However, 

in Experiment 2, an algorithm was implemented that divides the total roof area into four equal 

parts (i.e., four rectangles measuring 432.88 m² each). Each area has at least one panel of each 

brand. This algorithm makes it possible to determine efficiency when different brands and 

models exist in a single project. Thus, Figure 31 shows the relationship between PV energy 

production, costs, and efficiency.  
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Figure 31 - Experiment 2 for selecting the best arrangement of solar modules considering the 

21 PV modules and requiring at least one panel of each brand 

 
Table 12 shows the information on the best arrangement of the PV modules. In 

Experiment 2, it was also observed that the best configuration for the layout of the PV modules 

is when only one model is considered. In the four areas designated for simulation, only one 

single model per area generates the best cost-benefit ratio. The total number of PV modules is 

980, with a total production of 2,630.09 kWh/day and a total cost of USD $ 370,504.08. The 

efficiency of 0,007012411 kWh/USD $ indicates the amount of energy generated per real spend 

and reflects the cost-benefit ratio of the configurations. The arrangement of the panels in 

Experiment 2 is shown in Figure 32.  

 

Table 12 - Allocation of PV brand models 

Brand ID model 
Total of PV 

Modules 

Total 

Production 

(kWh/day) 

Total Cost 

(USD $) 

A 5 180 679.962  $ 96,759.47  

B 7 265 605.335  $ 86,008.42  

C 11 139 682.562  $ 94,560.39  

D 19 396 662.226  $ 93,175.79  

Total: 969 2630.09 $ 370,504.08  

 Efficiency: 0,007012411 kWh/USD $ 
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Figure 32 - Arrangement of solar modules in Experiment 2 

 
 

 

6.3.4 Case study for comparison of PV layout solutions 

 

The results of Experiment 1 and Experiment 2 are compared with the solution currently 

adopted by UFPE. Figure 33 compares the three photovoltaic layout solutions regarding the 

total installed panels, total energy production (kWh/day), and total system cost (USD $). 

Experiment 1 used 721 PV modules and obtained the highest daily energy production, 

with 2723.63 kWh/day. However, this solution also presented the highest total cost, reaching 

USD $ 387,575.45. Experiment 2 was the one that used the greatest number of panels, totaling 

969 units. Energy production was lower than in Experiment 1, with 2630.09 kWh/day. On the 

other hand, this layout presented a lower cost than Experiment 1, totaling USD $ 370,504.08. 

The solution currently implemented in the School of Engineering building has 792 photovoltaic 

modules, but its energy production was the lowest among the three options, registering only 

1,220.1 kWh/day. On the other hand, this solution presented the lowest total cost, being USD $ 

296,729.05. 

The solution currently adopted by the School of Engineering is to implement a panel 

whose production was discontinued in 2020. This model and brand were not considered in the 

simulations carried out in the study. This means that the Experiments 1 and 2 analyses were 

based on newer technologies available on the market, possibly more efficient and with better 

energy performance. In addition, the solutions proposed by the algorithm consider the entire 

helpful area available on the building's roof.  
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Figure 33 - Comparison between solutions 

 
 

6.4 Discussion 

 

This research is a BIM model-based approach to quantify the PV energy production and 

associated costs in the simulated PV layouts. PV panel manufacturers’ manuals were consulted 

to provide technical information, including characteristics of the photovoltaic modules, such as 

dimensions and conversion efficiency. This data serves as the basis for calculating the energy 

production of the PV system. The evaluation process developed from this BIM-PV integration 

allowed for estimating the energy generation and calculating the costs associated with the PV 

modules. For end customers, this design process enables creating and evaluating PV layouts to 

justify the design alternatives and solutions proposed by AECO industry professionals.  

With the rapid global expansion of renewable energy, approaches that integrate PV 

systems with existing architectural structures are needed, taking advantage of underutilized 

spaces such as rooftops to avoid the need for dedicated land for PV plants. Increasing the power 

generation capacity of rooftop PV systems requires a focus on optimizing the layout of PV 

modules (Cao et al., 2024).  In this chapter, it is argued that photovoltaic systems can be selected 

based on cost-efficiency criteria as a viable solution to mitigate energy shortages, reduce 

environmental impacts, and contribute to carbon neutrality (He et al., 2024).  

In the traditional workflow of PV modules in building projects, the project boundaries 

and parameters are defined, directly impacting their execution. The decisions made by the first 

actors involved influence the structuring of the project and determine the agreements that will 
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be signed in the subsequent phases. These contracts act as connecting points, guiding the 

activities of various participants. In addition to the client and, occasionally, the PV specialist 

consultants, architects, and technical consultants, such as electrical engineers, structural 

designers, and fire safety experts, are involved in this initial phase (Kathiravel et al., 2024). 

During the design phase, architects and technical consultants prepare technical specification 

documents to transfer essential information to the procurement phase. In the procurement 

phase, the client is responsible for selecting PV system suppliers, electrical contractors, and 

contractors based on their technical capabilities and the proposals submitted regarding cost and 

compliance with specifications. To strengthen integration between the agents involved and 

ensure the continuity of the project, contracts for civil works and installation are signed, and, 

when necessary, technical support from a PV specialist can be provided (Winkler, 2024; 

Winkler et al., 2024).  

Strategies and approaches to energy efficiency in buildings have been widely debated 

globally. In general, current efforts focus on two main axes: the direct reduction of energy 

consumption in buildings and the increased incorporation of renewable energy sources on-site, 

promoting an indirect reduction in demand (Liu et al., 2023).  

However, the workflow proposed in this chapter positions BIM modelers as key players 

in generating optimized PV systems. BIM can integrate different stakeholders in project 

development, eliminating segmentation between specialists, clients, and suppliers to reduce 

conflicts and project nonconformities. For PV system simulations, BIM modelers can look for 

PV module manuals that contain the necessary information that influences the decision and 

choice of brands. In this article, the decision process is based on the efficiency of the solution, 

which is the relationship between the area and the cost of the solution based on the building's 

roof area (Abouelaziz; Jouane, 2023; Chen et al., 2022; Ning et al., 2018). 

Due to the emerging demand for renewable energy sources, evaluating the potential for 

PV energy generation on urban-scale rooftops is necessary. Through BIM, smart projects can 

identify the appropriate roof area for solar photovoltaic installation and perform an economic 

feasibility assessment. The methods should consider the installation size, the costs, and the 

expected benefits of solar PV modules (Dong; Zhong, 2025). In this context, this paper proposes 

an automated workflow for simulating layouts for PV modules. Figure 34 highlights the digital 

element BIM models for centralizing building information. The main information from the BIM 

models discussed in this article is the area of the PV modules, the area of the building's roof, 

information on solar radiation, costs of the PV modules, and the PV energy production of the 

different models to be simulated. 
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Integrating this information is feasible through the Dynamo plugin in Revit, which 

applies to the multi-objective algorithm to select the best layout based on the highest efficiency 

index in the tested solutions. In this context, we highlight the role of integrating stakeholders 

from AECO industry projects into BIM models for decision-making on implementing 

sustainable solutions, given the high initial investments associated with the proposed solutions. 

Specifically, we highlight the role of BIM modelers in controlling and centralizing information 

and then performing simulations to select PV modules. The goal is to maximize PV energy 

production while selecting the lowest-cost solution. These goals were achieved through the 

efficiency index calculated based on the integrated information from the BIM model. 

 

Figure 34 - From cost to efficiency in solar modules allocation layout 

 
Urban surfaces, such as roofs and facades, have a high potential for capturing solar 

energy. This potential can be used as a subsidy in the pre-design of solar generation systems to 

define guidelines, planning recommendations, and good practices that promote exploiting this 

energy source. The advantage of using BIM models in planning PV systems is that the accuracy 

depends on the spatial information available and generated (Manni et al., 2022). The paper 

argues that photovoltaic energy is one of the main renewable sources and brings economic, 

environmental, and social benefits. PV systems installed on rooftops help to produce electricity 

at the point of consumption, reducing the need for energy from the electricity grid and, 

consequently, carbon emissions (Wei et al., 2024; Zhang et al., 2024). In addition to the positive 

environmental impact, photovoltaic technology has great potential to reduce long-term 
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electricity costs and improve distributed generation's economic viability, making energy more 

affordable and sustainable (Zhang et al., 2023).  

From an environmental perspective, adopting PV systems in buildings directly reduces 

greenhouse gas emissions since the electricity generated is clean and renewable. Furthermore, 

by decentralizing energy production, PV systems reduce losses in electricity transport along the 

electrical grid, making energy use more efficient. Furthermore, in regions where access to 

electricity is limited or unstable, photovoltaic systems offer a solution to guarantee energy 

supply, even in remote communities (Chong et al., 2024).  

It is worth noting that the PV systems market is more present in Europe, the United 

States, and China, driven by collaboration between government, manufacturers, developers, 

and end users. To expand this technology, it is essential that governments adopt incentive 

policies, offer financial support, and promote Research and Development (R&D) projects 

aligned with local needs. From the developers' perspective, improving research and design 

methods and investing in innovation are essential for the sector's evolution. For manufacturers, 

the focus should be on increasing module efficiency and enhancing integration solutions. 

Finally, awareness and engagement of end users play an essential role in disseminating 

technology, enabling broader and more efficient adoption of photovoltaic systems (Liu et al., 

2021; Poshnath et al., 2023). 

Future applications in the BIM-PV topic could include simulations of PV modules to 

assess energy, thermal performance and comfort, with a focus on mitigating carbon emissions 

as well as climate change impacts. In the field of BIM research, future research could involve 

global and regional simulation using climate models. For this, geographic information systems 

and satellite imagery could be used in conjunction with climate models to analyze and visualize 

the spatial aspects of solar energy potential, resource availability and system performance. 

Software such as EnergyPlus and Rhinoceros (Grasshopper) could be applied for energy system 

modeling, efficiency as well as optimization at the building to city scale. These analyses could 

extend to carbon emissions, life cycle analysis, benchmarking, probabilistic analysis, statistical 

learning algorithms, machine learning optimization methods and zero energy design analysis 

(He et al., 2024).  
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7 FINAL REMARKS FOR THE THESIS CONCLUSION 

 

This thesis aimed to investigate how the integration of BIM and AI applications can 

promote a BIM-driven design process to support the planning and renovation of sustainable 

buildings, with a specific focus on photovoltaic systems in the AECO sector. To this, the results 

presented achieved three specific objectives.  

First, the recent literature on artificial intelligence and BIM in the context of AECO 

projects was examined. BIM and AI application domains were mapped, and which capabilities 

needed for the development of smart projects. The combined capabilities of BIM and AI 

encompass the set of skills and functionalities that a BIM platform offers to enhance the 

lifecycle of projects in architecture, engineering, and construction. This includes the integrated 

digital representation provided by BIM, covering detailed geometry, materials, and component 

data. AI capabilities combine technical skills for manipulating data and implementing advanced 

AI techniques, and management skills for efficient strategies. For example, applying data 

mining capabilities drives innovative processes, while predictive algorithms allow you to 

anticipate results and trends, contributing to a proactive approach to continuous project 

management and optimization. These combined capabilities are fundamental to creating 

potential benefits for point cloud processing, design customization, simulations, cost modeling, 

and scheduling. 

Second, with a specific focus on smart sustainable projects, the thesis develops a BIM-

AI approach called SolarisBIM.AI, based on deep learning and BIM data extraction to estimate 

PV energy production by associating solar radiation data. The results were compared with 

commercial BIM software (for solar irradiance) and a confirmed case of solar energy 

production. It was argued that this integrated approach of technologies in the design phase can 

enhance solar module performance by considering each project's specific characteristics and 

location.  Answering the research question introduced in this article (#RQ3), the results 

demonstrate the potential of integrating deep learning models with BIM automation tools to 

support early-stage PV system planning and energy performance assessment. The results 

indicate that integrating deep learning algorithms into BIM workflows can provide reliable 

energy production estimates before construction begins. Furthermore, the methodology was 

validated using a real case study in Pernambuco, Brazil, where the predicted energy generation 

closely matched the actual output of an operational PV system. The automated process also 

quantified the corresponding CO₂ emissions avoided, reinforcing the environmental benefits of 

early PV integration. By embedding energy simulation and forecasting into the BIM 
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environment, SolarisBIM.AI empowers AECO professionals to optimize building design for 

solar efficiency, assess the feasibility of PV systems during the conceptual stage, and contribute 

to net-zero energy goals through data-driven, replicable practices. 

Third, based on solar energy production prediction data, the design process for planning 

photovoltaic energy production is improved. The focus is on the design and placement of solar 

panels in Revit models via Dynamo. The research proposes an efficiency index that is the 

relationship between energy production and the cost of PV modules. In this context, BIM is the 

source of data and information about the building, allowing the best configuration of the PV 

layout given the elements on the building's roof. In this research thesis stage, it is argued that 

the total costs and efficiency per panel need to be carefully analyzed to ensure the economic 

and operational viability of the project.  

In this way, Figure 35 shows that the results of this thesis highlight the role of BIM in 

the management and digital representation of building data. It is argued that the AECO industry 

needs to capture market opportunities and customer requirements as technology develops. 

However, this future orientation of AECO organizations must be preceded by data management 

and processing capabilities. Such capabilities are formed through the interdisciplinary skills of 

data science, engineering, and architecture. The needs of the industry in the face of digital 

transformation open opportunities for the proactive exploration of data as a strategic mechanism 

to meet customer needs.  

This theorization is explored in Chapter 4, which guides the definition of the scope of 

the Thesis, as shown in Figure 35. Different research fronts of the AECO industry recognize 

the promising path of BIM-AI applications, but there is still a barrier to technical skills for 

developing smart projects. Associated with customers' needs (public or private), the new trends 

in both the academic community and the practical community are to develop sustainable 

solutions for buildings. To contribute to the development of sustainable projects, Chapter 5 uses 

time series to predict solar energy production. In this chapter, an automated process is 

established to predict solar irradiation in different mesoregions of Pernambuco, and the amount 

of energy produced and the amount of CO2 avoided are subsequently calculated. The 

perspective explored in Chapter 5 is the position of the proactive use of AI for generating 

predictions, still in the design phase. This highlights the role of the BIM modeler in thinking of 

sustainable alternatives that are efficiently accommodated to the structure and architecture of 

the building. Specifically, in the generation of solar energy, the proposed methodology can 

support feasibility studies, providing documentation that proves the potential of the building to 

generate renewable energy. These results can also be integrated into return on investment and 
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life cycle analyses. Chapter 6 establishes an initial metric for selecting PV layouts through an 

automated BIM-driven process. The strategy allows decision-makers to determine which 

manufacturers and brands best suit their needs. Using the Revit model, the best solution for the 

building’s needs can be planned at the lowest possible cost and with the highest energy 

production.  

 

Figure 35 - Thesis Overview 

 

 

These contributions position the thesis in the field of automation of sustainable design 

processes by integrating BIM modeling with artificial intelligence and computational 

automation in the context of energy planning for buildings. The novelty lies in the creation of 

a methodological flow that combines forecasting of solar generation by time series (Chapter 5) 

with the optimized allocation of photovoltaic modules guided by BIM (Chapter 6). Unlike 

traditional approaches that treat sustainability as a later stage in the project life cycle, this 

research anticipates decisions even in the design phase. It is articulated that the BIM modeler 

assumes a role in the formulation of environmentally responsible solutions. Energy forecasts 

and feasibility metrics are operationalized within the modeling environment to simulate 

strategies for how sustainable projects can be designed. 
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The Sustainable Development Goal (SDG) Agenda for 2030 includes the provision of 

clean and sustainable energy and the realization of sustainable communities. An advantage of 

PV energy in buildings is that it produces renewable energy on-site without requiring additional 

land area. One of BIM-PV's promising strategies is combining energy efficiency with 

sustainable design, contributing to reducing the carbon footprint and promoting energy self-

sufficiency.  

The BIM-PV framework can effectively guide the AECO industry toward sustainable 

outcomes. This integration can help establish indicators to enhance the attainment of sustainable 

building certifications, such as the Building Research Establishment Environmental 

Assessment Method (BREEAM), Leadership in Energy and Environmental Design (LEED), 

GREEN STAR (GS), and the Comprehensive Assessment System for Built Environment 

Efficiency. BIM-PV framework also enables the planning of renewable energy generation 

directly in the building’s construction elements.  

In the context of projects aimed at energy self-sufficiency, this approach increases the 

areas available for solar capture, optimizing energy generation and directly contributing to 

achieving energy neutrality goals, as in the case of net-zero energy buildings (NZEBs). 

Therefore, the integration between BIM and photovoltaic systems (BIM-PV) guides the energy 

planning of buildings by adopting sustainable solutions. By incorporating technical, spatial, and 

economic variables at the design stage, this approach expands the role of BIM as a decision-

making support tool. Thus, the research reinforces the potential of BIM-PV as a technological 

solution for sustainable urban development, with a direct impact on reducing the carbon 

footprint. 

 

7.1 Hypotheses and research questions 

 

This thesis also answered 4 research questions that support four hypotheses. The 

research questions (#RQ1) and (#RQ2) were answered by identifying 4 capabilities associated 

with BIM and 16 capabilities related to AI that are fundamental to promoting innovation, 

automation, and efficiency in AECO projects. Based on this conceptual basis, three theoretical 

propositions were proposed that support understanding how BIM and AI can generate value 

and transform traditional practices in the sector. The evidence indicated that combining these 

technologies allows for greater analytical capacity, prediction results, and solutions 

customization. By acting as a digital database, including geometry, materials, schedules, and 

technical information, BIM provides the ideal environment for applying AI algorithms aimed 



137 
 

at pattern extraction, simulations, predictive analysis, and project optimization. This thesis 

argued that BIM capabilities are associated with the integrated digital representation and 

management of information throughout the project lifecycle, and AI capabilities involve both 

technical skills for data manipulation and strategic skills for the application of advanced 

algorithms and machine learning techniques.  

Research question 3 (#RQ3) was answered by developing a SolarisBIM.IA process, 

which combined time series with deep learning algorithms and parametric data extraction from 

the BIM model to predict solar energy production and avoided environmental impact. The 

results were compared with commercial software and real production cases, validating the 

accuracy of the integrated approach. The main contribution lies in the automation of the 

photovoltaic system design process, allowing designers to simultaneously consider the spatial 

constraints of the building and the local energy potential. In addition, by anticipating the 

quantification of renewable energy and avoiding emissions even in the design phase, the 

methodology offers technical support for feasibility studies, environmental certifications, and 

policies to encourage sustainable construction. 

To answer research question 4 (#RQ4), a method was developed that begins with 

selecting solar modules available on the market, incorporating performance and cost data. 

Based on a database of solar system implementation prices, the final cost to the client was 

estimated. The energy production of each model was estimated. By automatically extracting 

information from the building's roof using scripts developed in Dynamo, the algorithm selects 

the most efficient allocation solution, considering the maximization of energy generation and 

the minimization of total costs. Finally, the ideal configuration is automatically positioned in 

the BIM model, respecting the geometric and technical limitations of the roof. The main 

contribution of this stage of the research lies in the formulation of an efficiency index that 

relates the cost of the system to the amount of energy generated. Finally, this approach expands 

the potential for replication of the methodology in different types of buildings and stages of the 

life cycle, including new and retrofit projects. 

 

7.2 Contributions to literature 

 

The identification and mapping of BIM and AI capabilities guide the functionalities 

available to optimize the project lifecycle. Furthermore, the analysis of the mapped capabilities 

and their relationship with the development of smart projects indicates the potential benefits 

generated by project automation in different phases. Based on the core codes identified and the 
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relationships established in the proposed framework, the thesis suggests that practitioners 

identify organizational capabilities and invest in building and strengthening them. This involves 

massive investments in technologies and knowledge focused on data science and engineering, 

aiming for a multidisciplinary approach oriented towards innovation. Through capability 

mapping, the three suggested propositions integrate BIM and AI for application on AECO 

topics that sustain a theoretical framework. The framework suggests an approach for analyzing 

and processing data from BIM models and their respective contributions to disciplines in the 

AECO sector, which generate potential benefits.  

In the context of 6D BIM, which covers projects' sustainability and environmental 

impact, the study offers a strategy to estimate renewable energy generation and avoid CO₂. This 

strategy gives designers, engineers, and managers another way to analyze buildings' energy 

efficiency and sustainability. This paper offers a design process that can serve as a strategy to 

predictively quantify the sustainable actions of the project in the design phase. This opens the 

way for incentive programs, such as specific credit lines for sustainable buildings and tax 

exemptions for projects that adopt energy forecasting technology, which can encourage the 

construction industry to adopt more sustainable and technologically advanced practices.  

 

7.3 Management contributions 

 

The design process results established in this thesis highlight the importance of 

automation in the planning process of PV systems. In addition, the use of solar radiation data 

and integration with BIM models offers a promising path to improve the sustainability and 

economic viability of PV projects. Applying time series with Deep Learning models expands 

the system's ability to adapt to different environmental conditions based on real production 

analyses. This research also offers theoretical and managerial contributions to the AECO 

industry. The research establishes a BIM and AI-based design process to support automated 

data extraction and predictive quantification of solar energy generation, introducing the 

implementation of deep learning techniques applied to solar radiation time series. The practical 

application of the model to estimate energy produced and CO₂ avoided highlights the role BIM 

and deep learning can play in sustainability through renewable energy. This study provides an 

example of the literature on how digital technologies can be applied to promote sustainable 

projects in the AECO industry.  

Also, it offers a BIM-oriented approach to PV system projects applied to buildings by 

presenting a comparative analysis between different layout solutions and the automated 
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allocation of PV modules. The results reveal that, although solutions with a larger number of 

panels can generate more energy. In the professional field, this research directly contributes to 

improving the practices of engineers, designers, and consultants who develop and implement 

photovoltaic systems. The method developed in this article can be applied to projects still in the 

design phase and building retrofit projects to generate documents that can serve as a technical 

reference for dimensioning and selecting equipment in new projects. In addition, the 

methodology applied in comparative analysis can be replicated or adapted in other contexts, 

building typologies and expanding the practical applicability of the study. 

 

7.4 Limitations and future directions for research development 

 

Has some limitations that may provide opportunities for future research. The sample 

articles and databases used in this literature review were selected based on specific criteria and 

search strings. The article was developed based on a thorough structuring of the theoretical 

background; it is possible that some studies were not included in the sample. Furthermore, the 

sample was restricted until 2023, which may limit the timeliness of the information presented 

in the future. The search strategies adopted, such as selected databases, search filters, and 

exclusion criteria, can restrict the sample of articles. Subjective qualitative analysis is another 

limitation that may affect the results. These limitations highlight the importance of cautiously 

interpreting results and indicate areas requiring further investigation. Therefore, future research 

can apply the findings of this research through other methodological approaches. Case studies 

can drive an in-depth understanding of how BIM and AI capabilities are used in the 

organizational context to generate innovation. Research can advance the knowledge of which 

contextual phenomena, such as stakeholders, market, and environment, influence the 

development of BIM and AI capabilities. Furthermore, quantitative research can apply the 

variables mapped in research to quantify their correlation and test the proposed framework, 

mathematically validating the suggested propositions. 

Although the solar radiation data used to forecast PV energy production were based on 

time series, the analyses of meteorological data are conditioned by the availability of 

meteorological monitoring stations. Despite the advantages of deep learning for forecasting PV 

energy production, the deep learning model may be sensitive to the training data. The scarcity 

of data may result in a model with suboptimal performance, limiting the generalization of 

predictions for different design conditions. Future research could address the automation of PV 

plant planning on existing building roofs using 3D point cloud techniques from aerial LiDAR 
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technology or aerial orthoimagery. There is a fertile path in analyzing AI algorithms for point 

cloud segmentation and application in BIM, specifically for the optimized generation of PV 

plants. New research could also propose an analysis for optimizing PV plant layouts, addressing 

installation costs, module positioning, available area, maintenance, and return on investment of 

PV systems. 

The analysis does not consider the entire life cycle of PV modules and the costs 

associated with maintaining the solutions. In addition, the study used estimated cost information 

based on current market values without considering possible regional variations, maintenance 

costs throughout the life cycle, or tax incentives that could alter the economic viability of the 

proposed solutions. In this context, new studies can advance the analysis of the life cycle of 

components, aspects related to maintenance, and the evaluation of suppliers and manufacturers 

that guarantee technical support throughout the system's useful life. To this end, longitudinal 

databases will be necessary to evaluate these parameters based on solutions already 

implemented and compare them with those planned in the design phase of the projects.  

Future research could explore integrating LiDAR (Light Detection and Ranging) data 

to map surfaces and structures where PV modules will be installed. This technology allows for 

detailed analysis of the building's geometry, considering factors such as inclination, shading, 

and obstructions, which can impact the energy efficiency of PV systems. Future studies could 

investigate how point cloud information generated by LiDAR sensors can be directly integrated 

into BIM models and energy simulation software, optimizing the positioning and orientation of 

solar modules. 

Future research could explore increasing the complexity of the algorithms used for 

photovoltaic module allocation on building rooftops. One promising direction is to integrate 

information about the natural slope of the building roof (e.g., rainwater drainage). Such data 

could be used to assess whether modules should be placed following the original slope or 

whether alternative inclinations, supported by stainless steel structures, could provide higher 

efficiency. In buildings without natural slopes (i.e., flat roofs), the direction and inclination of 

the modules could be optimized to maximize energy generation for the selected module type. 

Another avenue for future research is to evaluate the influence of elevated objects on 

rooftop PV performance, such as water tanks, lightning rods, and antennas. By calculating the 

shadow profile cast by these objects over the course of the year, it would be possible to test 

different strategies to mitigate shading effects, for instance, repositioning the object, adjusting 

the orientation of PV modules, or redesigning their layout. 
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Another area for future research is the application of aerial photogrammetry with drones 

to capture spatial data of buildings. Photogrammetry can generate high-resolution 3D models 

and orthomosaics for topographic analysis and planning of large-scale solar projects. In 

addition, future research could deepen the use of these technologies in retrofit strategies, 

combining them with real-time energy performance analysis and smart monitoring systems. 

Finally, future research may incorporate life cycle assessments (LCA) as a strategic tool 

for risk management in implementing PV module systems. The application of LCA allows the 

evaluation of environmental, economic, and social impacts throughout all stages of the 

photovoltaic system, from the extraction of raw materials, manufacturing of modules, 

transportation, installation, and operation to the decommissioning and recycling of components 

at the end of their useful life. For example, by considering LCA, it is possible to identify risks 

related to the carbon footprint of the materials used, maintenance costs over time, or even the 

challenges associated with the disposal and reuse of components such as crystalline silicon and 

heavy metals in some modules. 

Future research can also apply the capabilities identified in this thesis to establish 

indicators for organizations’ transition to digital transformation. Research methods such as 

Structural Equation Modeling can be applied to quantify the correlation between these 

capabilities and how they are interrelated in a theoretical model. Case studies can also be 

developed to understand how companies have overcome the interdisciplinary barrier of the 

topic since BIM-AI integration is reflected in areas such as building construction and computer 

science. 

The findings of this thesis mainly focus on project planning in BIM models. Future 

research can focus on understanding how to deal with the operational barriers of sustainable 

projects in terms of maintenance and operation. In the field of photovoltaics, this includes 

investigating the actual performance of systems over time, smart monitoring strategies, 

predictive maintenance, and integration with BIM-based building management systems (BMS). 

Furthermore, there is room to explore how real-time data analysis collected by IoT sensors can 

be incorporated into BIM models to feed back into design decisions and optimize energy 

performance throughout the building's life cycle. 

A promising development of this research is the incorporation of LCOE (Levelized Cost 

of Energy) as an evaluation index for PV projects integrated into the BIM environment. LCOE 

is widely used in the energy sector because it represents the total cost of energy generation over 

the system's useful life, considering both initial installation costs (CAPEX) and operational and 
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maintenance costs (OPEX). Adopting this metric could improve the economic feasibility 

analysis of simulated layouts. 

In addition, a factor that has not yet been explored but is of great practical relevance is 

the need for spacing between photovoltaic modules to allow access for cleaning and 

maintenance. This variable directly impacts the coverage density and the usable area available 

for installation. In this scenario, using higher-power modules may be more advantageous, as it 

reduces the total number of panels and, consequently, the area sacrificed for the circulation of 

the technical team.  

 

7.5 Research Development 

 

The doctoral program at UFPE for developing this thesis was oriented toward the themes 

of innovation, technology, and sustainability. This was reflected in the subjects studied, such as 

BIM, Python, Machine Learning, Sustainability, Project Management, and Applied Statistics. 

The highest grade was achieved in all these subjects, as well as in the qualification exam. A 

one-year teaching internship was also carried out on the graduate subject of Tecnologia da 

Construção Civil I.  

During de research activities, it participated in scientific events with the presentation of 

articles, such as Simpósio Brasileiro de Gestão e Economia da Construção (SIBRAGEC) and 

the Simpósio Brasileiro de Tecnologia da Informação e Comunicação na Construção (SBTIC) 

in 2023 and Encontro Nacional de Tecnologia do Ambiente Construído (ENTAC) in 2024.  

The chapters of this thesis generated three articles. The first was published in 

Automation in Construction, impact factor 9.6, qualis A1 (see Alves et al., 2025). The second 

was submitted to the Journal of Construction Engineering and Management, impact factor 5.1, 

qualis A1. The third was submitted to Building and Environment, impact factor 7.1, qualis A1. 

A fourth article published in a journal with qualis A2, reflecting theoretical research on the 

integration of PV and BIM systems (see “BIM-Based Framework for Photovoltaic Systems: 

Advancing Technologies, Overcoming Challenges, and Enhancing Sustainable Building 

Performance”).   

In addition to these articles, partnerships were established with the research group on 

Decision Support in BIM–ADBIM. This resulted in two other articles submitted to international 

journals.  
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APPENDIX A – SLR SOURCE IDENTIFICATION OF FINAL SAMPLE 
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6 Kim et al. (2015) 66 Liu and Jiang (2021) 126 Omar and Mahdjoubi (2023)
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8 Chen and Pan (2016) 68 Spallone and Palma (2021) 128 Morfidis et al. (2023)

9 Solihin et al. (2016) 69 Johansen et al. (2021) 129 Perez and Tah (2023)

10 Tixier et al. (2016) 70 Chen et al. (2021) 130 Tavolare et al. (2023)
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15 Kim et al. (2018) 75 González et al. (2021) 135 Croce et al. (2023)

16 Marroquin et al. (2018) 76 Hong et al. (2021) 136 Lien and Dolgorsuren (2023)

17 Li et al (2018) 77 Yitmen et al. (2021) 137 Wu and Maalek (2023)

18 Mahankali et al. (2018) 78 Jiang et al. (2022) 138 Ratajczak et al. (2023)

19 McArthur et al. (2018) 79 Turjo et al. (2022) 139 Choi and Lee (2023)

20 Carreira et al. (2018) 80 Çetin et al. (2022) 140 Almufarrej and Erfani (2023)

21 Kamari et al. (2018) 81 Wang et al. (2022) 141 Pal et al. (2023)

22 Barazzetti (2018) 82 Dobrucali et al. (2022) 142 Jia et al. (2023)

23 Hu et al. (2019) 83 Meschini et al. (2022) 143 Urbieta et al. (2023)

24 Juszczyk  et al. (2019) 84 Scherz et al. (2022) 144 Dou et al. (2023)

25 Petrova et al. (2019) 85 Li et al. (2022) 145 Zheng and Fischer (2023)

26 Cheng and Chang (2019) 86 Sun and Liu (2022) 146 Shao et al. (2023)

27 Sha et al. (2019) 87 Cai (2022) 147 Yang and Xia (2023)

28 Livshits et al. (2019) 88 Mahmudnia et al. (2022) 148 Valery et al. (2023)

29 Bianconi et al. (2019) 89 Hajirasouli et al. (2022) 149 Jradi et al. (2023)

30 Bongiorno et al. (2019) 90 Yu et al. (2022) 150 Arsiwala et al. (2023)

31 Acharya et al. (2019) 91 Xu et al. (2022) 151 Rafsanjani and Nabizadeh (2023)

32 Karan and Asadi (2019) 92 Elghaish et al. (2022) 152 Erisen (2023)

33 Zhou et al. (2019) 93 Leon-Garza et al (2022) 153 Ureña-Pliego et al. (2023)

34 Dawood et al. (2019) 94 Doukari et al. (2022) 154 Billi et al. (2023)

35 Lu et al (2019) 95 Wang et al. (2022) 155 Peiman et al. (2023)

36 Boje et al. (2020) 96 Rodrigues et al. (2022) 156 Kim et al. (2023)

37 Doukari and Greenwood (2020) 97 Farghaly et al (2022) 157 Alzara et al. (2023)

38 Döllner (2020) 98 Kanyilmaz et al. (2022) 158 Luo et al. (2023)

39 Bienvenido-Huertas et al (2020) 99 Xia and Gong (2022) 159 Haznedar et al. (2023)

40 Soman and Whyte (2020) 100 Lee et al. (2022) 160 Fenz et al. (2023)

41 An et al. (2020) 101 Singh et al. (2022) 161 Galera-Zarco and Floros (2023)

42 Sacks et al. (2020) 102 Sampaio et al. (2022) 162 Trzeciak and Brilakis (2023)

43 Novembri and Rossini (2020) 103 Zabin et al. (2022) 163 Akomea-Frimpong et al. (2023)

44 Hetemi et al. (2020) 104 Garcia-Gago et al. (2022) 164 Chen et al. (2023)

45 You and Fang (2020) 105 Igwe et al. (2022) 165 Wang et al. (2023)

46 Sacks et al. (2020) 106 Shahzad et al. (2022) 166 Lin et al. (2023)

47 Bloch and Sacks (2020) 107 Sun and Kim (2022) 167 Zwaag et al. (2023)

48 Arashpour et al. (2020) 108 Xu et al. (2022) 168 Yang and Mao (2023)

49 Tak et al. (2020) 109 Lin et al. (2022) 169 Wu et al. (2023)

50 Eber (2020) 110 Baduge et al. (2022) 170 Abouelaziz and Jouane (2023)

51 Hsu et al. (2020) 111 Wang et al. (2022) 171 Bazzan et al. (2023)

52 Frías et al. (2020) 112 Zhang et al. (2022) 172 Hellenborn et al. (2023)

53 Darko et al. (2020) 113 Villa et al. (2022) 173 Hariri-Ardebili et al. (2023)

54 Marzouk and Zaher (2020) 114 Collins et al. (2022) 174 Na et al. (2023)

55 Caterino et al. (2021) 115 Doukari et al. (2022) 175 Rampini and Cecconi (2023)

56 Pan and Zhang (2021) 116 Frías et al. (2022) 176 Chen et al. (2023)

57 Mulero-Palencia et al. (2021) 117 Megahed and Hassan (2022) 177 Mohanta and Das (2023)

58 Ma et al. (2021) 118 Herrera-Martín et al. (2022) 178 Mohamed and Marzouk (2023)

59 Karan et al. (2021) 119 Onososen and Musonda (2022) 179 Joshi (2023)

60 Ilyas et al. (2021) 120 Lehtola et al. (2022) 180 Brilakis et al. (2010)
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Access to sample metadata: 

https://drive.google.com/drive/folders/1NYtiw9NoWBekzZ75og90VoslPJoiiopn?usp=sharing 

Id Source Id Source Id Source

181 Golparvar-Fard et al. (2015) 241 Hosamo et al. (2022) 301 P Liu et al. (2023)

182 Zhang and  El-Gohary (2016) 242 Kanna et al. (2022) 302 Lin et al. (2023)

183 Han and Golparvar-Fard (2017) 243 Tang et al. (2022) 303 Yu et al. (2023)

184 Tixier et al. (2017) 244 B Wang et al (2022) 304 Abdulfattah et al. (2023)

185 Vandecasteele et al. (2017) 245 Hou et al. (2022) 305 Cui et al. (2023)

186 Shi and O’Brien (2018) 246 X Wu et al. (2022) 306 Han et al. (2023)

187 Koo and Shin (2018) 247 Pan and Zhang (2022) 307 Kayhani et al. (2023)

188 Chen et al. (2018) 248 Y Zhou et al. (2022) 308 Artopoulos  et al. (2023)

189 Lei et al. (2019) 249 Ma and Leite (2022) 309 Xie et al. (2023)

190 Baeka et al. (2019) 250 Feist et al. (2022) 310 Kiavarz et al. (2023)

191 Koo et al. (2019) 251 Z Wang et al. (2022) 311 Basu et al. (2023)

192 Chen et al. (2019) 252 Mousavi et al. (2022) 312 Hsieh and Ruan (2023)

193 Braun and Borrmann (2019) 253 Poux et al. (2022) 313 Zhang and El-Gohary (2023)

194 Jung and Lee (2019) 254 Emunds et al. (2022) 314 Shen and Pan (2023)

195 Lin and Huang (2019) 255 H Wang et al. (2022) 315 Xiang and Rashidi (2023)

196 Sakhakarmi et al. (2019) 256 H Hosamo et al. (2022) 316 Huang and Liang (2023)

197 Wei and Akinci (2019) 257 Mokhtari et al. (2022) 317 H Kiavarz et al. (2023)

198 Song et al. (2020) 258 J Cheng et al. (2022) 318 S Park et al. (2023)

199 Angah and Chen (2020) 259 Shon et al. (2022) 319 Su et al. (2023)

200 M.M. Singh et al. (2020) 260 M Singh et al. (2022) 320 Grandio et al. (2023)

201 Quinn et al. (2020) 261 Buruzs et al. (2022) 321 Wong et al. (2023)

202 Bouabdallaoui et al. (2020) 262 Fazeli et al. (2022) 322 Chen et al. (2023)

203 Huang and Hsieh (2020) 263 Abdelrahman et al. (2022) 323 Shu et al. (2023)

204 Braun et al. (2020) 264 Tan et al. (2022) 324 Wang and Gan (2023)

205 Czerniawski and Leite (2020) 265 Banihashemi et al. (2022)

206 Pierdicca et al. (2020) 266 Wei and Akinci (2022)

207  Ma et al. (2020) 267 Wusu et al. (2022)

208 Y. Zhao et al. (2020) 268 W Wang et al. (2022)

209 Liu et al. (2020) 269 Geyter et al. (2022)

210 S. Zeng et al. (2020) 270 Soh et al. (2022)

211 Pan and Zhang (2020) 271 Matthews et al. (2022)

212 Cheng et al. (2020) 272 Zhai et al. (2022)

213 Rahimian et al. (2020) 273 Kim et al. (2022)

214 Boonstra et al. (2020) 274 Xiao et al. (2022)

215 Ma et al. (2021) 275 Gao et al. (2022)

216 Ma and Pan (2021) 276 B Wang et al. (2022)

217 Su et al. (2021) 277 Watfa et al. (2022)

218 Martínez-Rocamora  et al. (2021) 278 Xu et al. (2022)

219 Hou et al. (2021) 279 Y Cheng et al. (2022)

220 Y. Zhao et al. (2021) 280 Shoar et al. (2022)

221 Chow et al. (2021) 281 T Wang et al. (2022)

222 Perez-Perez et al. (2021) 282 Zhang and Zou (2023)

223 Yin et al. (2021) 283 Park and Yun (2023)

224 Kim and Kim (2021) 284 Forth et al. (2023)

225 Ryu et al. (2021) 285 Sobhkhiz and El-Diraby (2023)

226 Chuang and Sung (2021) 286 Tang et al. (2023)

227 Koo et al. (2021) 287 Wei et al. (2023)

228 Cheng et al. (2021) 288 Barkokebas et al. (2023)

229 B Koo et al. (2021) 289 Korus et al. (2023)

230  Zhou and El-Gohary (2021) 290 Hassaan et al. (2023)

231 Croce et al. (2021) 291 Liu et al. (2023)

232 Hong et al. (2021) 292 Saini et al. (2023)

233 Czerniawski et al. (2021) 293 Martens et al. (2023)

234 Wu et al. (2021) 294 Ying et al. (2023)

235 Y Zhou et al. (2021) 295 Park et al. (2023)

236 C Yin et al. (2021) 296 L Wang et al. (2023)

237 Wang et al. (2021) 297 Chen and Xue (2023)

238 C Wu et al. (2021) 298 Wang and Chang (2023)

239 Sanhudo et al. (2021) 299 Ghorbany et al. (2023)

240 H Wu et al. (2021) 300 Kellner et al. (2023)

https://drive.google.com/drive/folders/1NYtiw9NoWBekzZ75og90VoslPJoiiopn?usp=sharing
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APPENDIX B – FINANCIAL SUPPORT 

 

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de 

Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001. 


