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RESUMO

A “Corrida Global pela IA” incentivou uma estratégia conhecida como “IA para a soci-
edade”. Um dos principais resultados dessa estratégia foi o Regulamento Geral de Proteção
de Dados (GDPR), uma regulamentação europeia aplicada em 28 de maio de 2018, que es-
tabeleceu o “direito à explicação”. Essa regulamentação contribuiu significativamente para o
avanço da Inteligência Artificial Explicável (XAI). Em meio a essas inovações tecnológicas,
o mercado de ativos digitais, conhecidos como criptomoedas, se beneficiaram de pesquisas
sobre sistemas de trade com Inteligência Artificial (IA) e Aprendizado de Máquina (AM). No
entanto, esses sistemas frequentemente dependem de modelos caixa-preta, tornando a expli-
cabilidade um aspecto crucial. Nesse contexto, este trabalho aplica modelos de Aprendizado
de Máquina especificamente desenhados para Classificação de Séries Temporais (CST) e pro-
põe um novo método híbrido que fornece explicações baseadas em séries temporais. Após a
coleta de dados de Bitcoin e outras criptomoedas de uma exchange, os dados são processa-
dos e treinados utilizando modelos de AM tabular, modelos de AM para séries temporais e
modelos de Aprendizado Profundo (AP). O estudo avalia incerteza, performance dos modelos
e a explicabilidade por meio de um modelo híbrido de explicabilidade, que combina COMTE
(método contrafactual de explicação para CST) e LEFTIST (método baseado em ondaletas
que fornece a importância de cada janela de tempo). Os resultados mostram que o modelo de
CST MRSQM (Multiple Representations Sequence Miner) obteve um desempenho robusto,
enquanto os modelos AM tabular não apresentaram diferenças significativas em relação aos
modelos de CST. No entanto, os modelos de AP tiveram um desempenho fraco, especialmente
no segundo experimento. A análise de incerteza revelou diferenças notáveis na estimativa de in-
certeza dentre os modelos, e o modelo híbrido de explicabilidade COMTE-LEFTIST conseguiu
fornecer explicações híbridas com sucesso. O modelo híbrido teve um desempenho particular-
mente bom no primeiro experimento, que focou em séries temporais univariadas, já no segundo
experimento, envolvendo múltiplas séries temporais em formato tabular, apresentou desafios
adicionais. Em conclusão, este trabalho está entre os primeiros a aplicar métodos de CST ao
Bitcoin e a diferentes criptomoedas, além de propor um método híbrido de explicação para
CST, incentivando pesquisas e desenvolvimentos adicionais na área.

Palavras-chaves: IA Explicável. Classificação de Séries Temporais. COMTE. LEFTIST. Hy-
brid XAI.



ABSTRACT

The “Global Race For AI” has driven the pursuit of a strategy known as “AI for society”.
One of the key outcomes of this strategy was the General Data Protection Regulation (GDPR),
an European regulation enforced on May 28, 2018, which established the “right to explana-
tion”. This regulation significantly contributed to the rise of Explainable AI (XAI). Amidst this
wave of technological innovation, the market around digital assets, commonly known as the
cryptocurrency market has benefited from research into Artificial Intelligence (AI) and Machine
Learning (ML) based trading systems. However, these systems often rely on black-box mod-
els, making explainability crucial. In this context, this work applies Machine Learning models
specifically designed for Time-Series Classification (TSC) and proposes a novel hybrid method
that provides time-series-based explanations. After collecting Bitcoin and cryptocurrency data
from a crypto exchange, the data is processed and trained using ML tabular models, ML TSC
models, and Deep Learning (DL) models. The study evaluates uncertainty, performance, and
explainability through a hybrid explainability model, which merges COMTE (a counterfactual
TSC explanation method) and LEFTIST (a time-point-based method that provides feature
importance for each timestep). The results show that the Multiple Representations Sequence
Miner (MRSQM) TSC model achieved a strong performance, while ML tabular models did not
differ significantly from TSC models. DL models, however, performed poorly, particularly in the
second experiment. Uncertainty analysis revealed notable differences in uncertainty estimation,
and the COMTE-LEFTIST hybrid explainability model successfully provided hybrid explana-
tions. The hybrid model performed particularly well in the first experiment, which focused on
univariate time-series data, while the second experiment, involving multiple time-series in a
tabular format, presented additional challenges. In conclusion, this is among the first works to
apply TSC methods to Bitcoin and other cryptocurrencies, while also proposing a novel hybrid
explainability approach for TSC, encouraging further research and development in the field.

Keywords: Explainable AI. Time-Series Classification. COMTE. LEFTIST. Hybrid XAI.
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1 INTRODUCTION

Machine Learning, Deep Learning, and Artificial Intelligence have become increasingly
important fields and are now considered major assets that companies and nations strive to
develop as of 2025. Reflecting this trend, the Joint Research Centre website of the European
Commission, which is an official European Union (EU) platform refers to this current scenario
as the “Global Race for AI” 1. In this competition, China, the EU, and the United States are
the primary players, each pursuing three competing AI strategies: AI for profit, AI for control,
and AI for society. The EU, for instance, prioritizes the development of fair AI systems that are
secure and ethical by design. A key example is the european regulation named General Data
Protection Regulation (GDPR), which establishes the “right to explanation” (HOLZINGER et

al., 2018), making black-box solutions such as Machine Learning (ML) and Deep Learning
(DL) challenging to deploy in practice. Since its enforcement on May 28, 2018, the GDPR
has significantly elevated the importance of Explainable AI (XAI), transforming it from a niche
research area into a critical field of study.

In this context, as stated by Saranya and Subhashini (2023), the term “Explainable AI”
was coined by the Defense Advanced Research Projects Agency (DARPA) agency. The right
to explanation, as mandated by the GDPR, primarily focuses on providing justifications for
a model’s decisions and encompasses key aspects such as responsibility, transparency, and
accountability. XAI has been applied across various domains, including finance, time-series
analysis, computer vision, and healthcare. Its applications range from image classification
and churn prediction models to recommendation systems and EEG signal classification. By
ensuring the right to explanation, XAI fosters collaboration between AI developers, academia,
and stakeholders, ultimately enhancing both model transparency and usability.

In parallel with the growing interest in XAI, the 2008 financial crisis led to the emergence of
a new class of primarily digital assets, the first one introduced was the Bitcoin (NAKAMOTO,
2008). These digital assets, known as cryptocurrencies, have driven extensive research into
Artificial Intelligence (AI) and ML-based trading systems. However, to foster trust in these
systems, XAI can be applied. Nevertheless, adaptations may be necessary, as these systems
typically involve dealing with time-series data.
1 <https://joint-research-centre.ec.europa.eu/jrc-mission-statement-work-programme/facts4eufuture/

artificial-intelligence-european-perspective/global-race-ai_en>, accessed on March 20, 2025

https://joint-research-centre.ec.europa.eu/jrc-mission-statement-work-programme/facts4eufuture/artificial-intelligence-european-perspective/global-race-ai_en
https://joint-research-centre.ec.europa.eu/jrc-mission-statement-work-programme/facts4eufuture/artificial-intelligence-european-perspective/global-race-ai_en
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1.1 GOALS AND MOTIVATIONS

The main objective of this work is to evaluate whether explainability can be improved
by combining two XAI algorithms specifically designed for Time-Series Classification (TSC)
problems. This involves the development and assessment of a hybrid method that merges
different explanatory strategies.

In addition to this central goal, the study sets out to achieve the following specific aims:

1. Assess the performance of machine learning algorithms tailored for TSC tasks. These
models are tested on datasets with different structures, including univariate Bitcoin time
series and tabular cryptocurrency data containing multiple time series.

2. Highlight the importance of interpretability and accountability in crypto recommenda-
tion systems. By exploring a trending academic topic, the study emphasizes the ethical
challenges of deploying AI in high-risk environments.

3. Compare traditional ML and DL models for tabular data with models designed specifically
for time-series classification. This comparison helps determine which approaches are most
effective and interpretable for financial time-series tasks.

1.2 RELATED PUBLICATIONS

MORAIS, Lucas R. A. ; Teresa B. Ludermir . A Hybrid COMTE-LEFTIST Time-Series

Explanation Method For a Time-series Classification Bitcoin Recommendation System. In:

Latinx in AI @ NeurIPS 2024, 2024, Vancouver. Proceedings Latinx in AI @ NeurIPS 2024,

2024. v. 1. p. 1-8.

1.3 DISSERTATION STRUCTURE

Besides the first introductory chapter, the work is structured as follows:

• A literature review on relevant topics for Time-Series Classification and explainability
is presented in Chapter 2. The models for Time-Series Classification are introduced
in Section 2.1, while the taxonomy and key concepts of Explainable AI, along with
traditional explainability methods such as SHAP and LIME, are described in Section 2.2.
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Additionally, the concept of explainability is extended to Time-Series Classification tasks
in Section 2.3. A brief review of the Deep Learning and Machine Learning models used
in this work is provided in Section 2.4.

• Chapter 3 introduces Bitcoin, its development, and its significance, along with other
cryptocurrencies analyzed in this work. The core concepts are presented in Section 3.1.
Section 3.2 reviews the application of ML to cryptocurrency data and explores the role
of explainability in this field.

• The hybrid method is introduced in Chapter 4, where Section 4.1 reviews existing hybrid
methods, and Section 4.2 details the proposed approach.

• The materials and methods used in the experiments are described in Chapter 5. Key
aspects, such as computing resources and libraries, are discussed in Section 5.1. ETL
processes and model training are covered in Section 5.2, while models and the hybrid
explanation algorithms are presented in Section 5.3.

• The experimental results are presented in Chapter 6. Section 6.1 evaluates the perfor-
mance of the classification models, Section 6.2 analyzes the uncertainty over the Bitcoin
data comparing estimation from different classes of models, Section 6.3 presents the out-
comes of the hybrid explanation model, and Section 6.4 provides a critical evaluation of
the findings.

• The work concludes in Chapter 7. The final remarks are presented in Section 7.1, li-
mitations are discussed in Section 7.2, key findings are summarized in Section 7.3, and
future research directions are outlined in Section 7.4.
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2 THEORETICAL FRAMEWORK

In this chapter we describe the theoretical basis of the used models and concepts in this
work, further details on used libraries, hyperparameters and arguments used in the functions
are detailed in Chapter 5, furthermore this chapter is summarized as follows:

• In section 2.1 the main concepts of TSC are introduced together with some of its main
fields of applications. Furthermore in subsection 2.1.1 ML models specifically designed
to deal with TSC problems are briefly detailed.

• In section 2.2 topics relevant to Explainable AI are defined, important explainability mo-
dels such as LIME and SHAP are described in subsection 2.2.1, whereas subsection 2.2.2
defines the concept of surrogate models and subsection 2.2.3 describes concepts relative
to uncertainty estimation and fairness.

• In section 2.3 a brief overview is given on the growth of interest in the topic of Explainable
Time-series Classification and its core concepts. Subsection 2.3.1 defines LEFTIST and
subsection 2.3.2 defines COMTE, two explainability models tailored specifically for for
TSC.

• In section 2.4 concepts relative to the ML and DL models used in this work are defined.

2.1 TIME-SERIES CLASSIFICATION

The widespread use of sensors to monitor human activity, coupled with the proliferation
of internet connectivity, has resulted in an exponential increase in the daily collection of time-
series data. Time-series data can be broadly defined as a sequence of ordered values, where
each element in the series is associated with a timestamp 𝑡. If for a time-series 𝑠𝑖 present in a
set of time-series 𝑆 = {𝑠1, ..., 𝑠𝑚}, each timestamp corresponds to only one value, the series is
classified as univariate. Conversely, if two or more values are associated with each timestamp
in 𝑠𝑖, the series is classified as multivariate.

Traditionally, supervised machine learning commonly deals with assigning labels to observa-
tions in tabular or image data and training models to learn patterns that lead to final classifica-
tion. In contrast, TSC involves observations comprising univariate or multivariate time-series,
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which are labelled so that deep learning models, time-series-specific machine learning models,
or tabular machine learning models can detect patterns within each series.

Indeed, Faouzi (2024) conducted a comprehensive review on TSC, highlighting applications
ranging from food spectrograph analysis in chemometry to kinematic data used to improve
surgical practices. The author explores a wide variety of methods and terminology used in the
field and emphasizes that standard machine learning classification algorithms are not always
well-suited for time-series data, as the order of values is a crucial aspect of time series. Similarly,
Bagnall et al. (2017) support this view, noting that TSC algorithms can be categorized into
different types based on the discriminatory features employed by each technique.

Regarding these methods, shapelet-based techniques are among the most traditional ap-
proaches in the field, first introduced by Ye and Keogh (2009). According to the authors,
shapelets are defined as time points that are subsequences of a time series that are repre-
sentative of a specific class, serving as key features to differentiate between classes. Figure 1
illustrates how an image, when transformed into a time-series, by the use of signal processing
techniques, where the time series is labelled based on the object in the figure, contains a
shapelet that maximizes the discriminative power for this class.

Figure 1 – Time-Series Shapelet Pipeline Representing The Image of a Person

Source: Author, 2024. The pipeline represents an image of the class “person” with its corresponding time
series, where the shapelet is highlighted in red.

As noted by Bagnall et al. (2017), other types of algorithms for TSC include whole series-
based methods, where two series are compared either as vectors or using a distance measure;
interval-based methods, which involve feature selection based on a specific interval of the
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time series; dictionary-based methods, which build classifiers by generating histograms from
frequency counts of recurring patterns in time series; combination-based methods, which in-
tegrate two or more approaches; and model-based methods, which fit a generative model
to each series and measure similarity between series through the similarity of their models.
Model-based methods, in particular, perform well on time series of unequal lengths.

In this context Susto, Cenedese and Terzi (2018) divides these methodologies into two
main branches: feature-based methods and distance-based methods. In summary, feature-
based methods involve extracting features before classification, using signal statistics to identify
the class to which a time series belongs. In contrast, distance-based methods bypass feature
extraction and instead rely on distance metrics, as feature extraction can be time-consuming
and may lead to information loss.

2.1.1 Time-Series Classification Specific Models

Standard ML techniques often fail to account for the temporal dependencies inherent in
time-series data, leading to the development of specialized methods for TSC. This section
provides an overview of the algorithms discussed in the Experiments and Methods chapter
that were applied in this work. The dummy classifier, used as a baseline for prediction, is not
included in this overview, as it will be defined exclusively in Chapter 5.

2.1.1.1 Support Vector Machines

The use of Kernel methods for Time Series Classification is highlighted by Faouzi (2024)
as one of the most used algorithms in ML. For instance, Abade et al. (2015) employed Support
Vector Machine (SVM) for TSC to classify satellite imagery time-series collected via sensors.
While TSC algorithms require adaptations to handle time-series input, the most common used
kernel functions themselves remain unchanged, Abade et al. (2015) also summarized the most
commonly used kernel functions in Support Vector Classification (SVC), with the sigmoid
kernel, used in this work, described by the following equation:

𝐾(𝑥𝑖, 𝑥𝑗) = tanh(𝛾𝑥𝑇
𝑖 𝑥𝑗 + 𝑟), 𝛾 > 0 (2.1)

Where 𝛾 represents the smoothing parameter, and 𝑟 denotes the bias term. In summary,
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SVC methods are designed for pattern recognition, relying fundamentally on the choice of a
kernel function. This function maps the training data into a hyperplane (a higher-dimensional
space) that enables the optimal separation of the data into distinct classes.

2.1.1.2 CATCH22 - Canonical Time-series Characteristics

Subjective feature selection may leave out if a different feature could have achieved the
optimal performance on a TSC task, to tackle this limitation, data-driven approaches for fe-
ature selection were developed. In this context, the Highly Comparative Time-Series Analysis
(HCTSA) toolbox was designed to compare thousands of time-series features for feature selec-
tion, however given some limitations of this approach, such as being computationally expensive
and requiring a matlab license to run, Lubba et al. (2019) developed CATCH22 which is the
acronym for Canonical Time-series Characteristics. CATCH22 is a feature selector for time-
series, that comprises a set of 22 high performance features, so that these features can be
later fed into a classification model.

CATCH22 comprises a set of 22 features distilled from the 4791 features in HCTSA. These
approaches were tested on a wide variety of time-series datasets. While HCTSA, with its full
set of 4791 features, achieved a mean class-balanced accuracy of 77.2% across all tasks,
CATCH22, with only 22 features, achieved a competitive 71.7%. To derive the 22 features,
the authors reduced redundancy in HCTSA by applying hierarchical complete linkage clustering
on the correlation distances of 710 high-performing features (selected from the initial set of
4791), using a distance threshold of 𝛾 = 0.2. This process resulted in the concise set of 22
features that define CATCH22. In addition to being interpretable, CATCH22 is approximately
a thousand times faster than HCTSA and provides an efficient summary of time-series data.
The specific features included in CATCH22 are detailed in Table 1.
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Table 1 – CATCH22 Feature set

Feature Name Description
DN_HistogramMode_5 Mode of z-scored distribution (5-bin histogram).
DN_HistogramMode_10 Mode of z-scored distribution (10-bin histogram).
SB_BinaryStats_mean_longstretch1 Longest period of consecutive values above the mean.
DN_OutlierInclude_p_001_mdrmd
DN_OutlierInclude_n_001_mdrmd

Time intervals between successive extreme events
above the mean.

CO_f1ecac First 1
𝑒

crossing of autocorrelation function.
CO_FirstMin_ac First minimum of autocorrelation function.
SP_Summaries_welch_rect_area_5_1Total power in lowest fifth of frequencies in the Fou-

rier power spectrum.
SP_Summaries_welch_rect_cen
troid

Centroid of the Fourier power spectrum.

FC_LocalSimple_mean3_stderr Mean error from a rolling 3-sample mean forecasting.
CO_trev_1_num Time-reversibility statistic.
CO_HistogramAMI_even_2_5 Automutual information.
IN_AutoMutualInfoStats_40_
gaussian_fmmi

First minimum of the automutual information func-
tion.

MD_hrv_classic_pnn40 Proportion of successive differences.
SB_BinaryStats_diff_longstretch0 Longest period of successive incremental decreases.
SB_MotifThree_quantile_hh Shannon entropy of two successive letters in equipro-

bable 3-letter symbolization.
FC_LocalSimple_mean1_tauresrat Change in correlation length after iterative differen-

cing.
CO_Embed2_Dist_tau_d_expfit
_meandiff

Exponential fit to successive distances in 2-d embed-
ding space.

SC_FluctAnal_2_dfa_50_1_2_logi
_prop_r1

Proportion of slower timescale fluctuations that scale
with DFA.

SC_FluctAnal_2_rsrangefit_50_1
_logi_prop_r1

Proportion of slower timescale fluctuations that scale
with linearly rescaled range fits.

SB_TransitionMatrix_3ac _sumdi-
agcov

Trace of covariance of transition matrix between sym-
bols in 3-letter alphabet.

PD_PeriodicityWang_th0_01 Periodicity measure.
Source: Table adapted from (LUBBA et al., 2019).

2.1.1.3 Composable Time Series Forest

Decision Trees have historically been applied to interval features of time-series data for
TSC. However, a significant limitation was the lack of robust measures to effectively distinguish
between candidate splits. To address this issue, Deng et al. (2013) introduced a tree-ensemble
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classifier named Time-Series Forest (TSF), one of the first TSC algorithms based on random
forests (FAOUZI, 2024), which incorporates a novel measure called Entrance. This measure
improves the identification of high-quality candidate splits, thereby enhancing the classifier’s
overall performance. Time-series Forests are composed of a collection of time-series trees.
These trees utilize interval features such as the average, or the standard deviation value over
a specified time interval (e.g., timestamps 10 to 30) to represent the data effectively and train
the classification model.

For the root node, given a set of 𝐾 features and 𝑓𝑘(𝑡1, 𝑡2) denoting the 𝑘𝑡ℎ interval
feature (e.g., a metric such as the mean or standard deviation) calculated between 𝑡1 and 𝑡2,
a candidate split 𝑆 must satisfy the condition 𝑓𝑘(𝑡1, 𝑡2) ≤ 𝜏 . Instances meeting this condition
are directed to the left node, while those that do not are sent to the right node. For child
nodes, where the optimal split criterion is represented as 𝑆* = 𝑓𝑘(𝑡*

1, 𝑡*
2) ≤ 𝜏 *, the Entrance

measure is used as the split criterion. This measure combines entropy gain with a distance
metric to identify high-quality splits. The entropy component of the measure is defined as:

Entropy = −
𝐶∑︁

𝑐=1
𝛾𝑐 log 𝛾𝑐 (2.2)

Where {𝛾1, . . . , 𝛾𝑐} represent the proportions of instances belonging to classes {1, . . . , 𝑐}.
The entropy gain, ΔEntropy, is defined as the difference between the entropy at the parent
node and the weighted sum of the entropies at the child nodes, where the weights correspond
to the proportions of instances assigned to each child node. Additionally, the 𝑀𝑎𝑟𝑔𝑖𝑛 measures
the distance between a candidate threshold and its nearest feature value and is defined as:

𝑀𝑎𝑟𝑔𝑖𝑛 = min
𝑛=1,2,...,𝑁

|𝑓𝑛
𝑘 (𝑡1, 𝑡2) − 𝜏 | (2.3)

Where 𝑓𝑛
𝑘 (𝑡1, 𝑡2) is the value of 𝑓 for the 𝑛𝑡ℎ instance at the node. With 𝑀𝑎𝑟𝑔𝑖𝑛 and the

entropy gain ΔEntropy it’s possible to define the Entrance metric as:

𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒 = △Entropy + 𝛼 · Margin (2.4)

Where 𝛼 is a parameter with a small value, that breaks ties that occur only from ΔEntropy.
The TSF is simply an ensemble of time-series trees that use the metrics previously defined,
and predicts the test instance by using majority class voting (e.g. if 2 trees predict class A and
another predicts class B, then class A is the final prediction).
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2.1.1.4 MRSQM

In TSC methods, a trade-off between computational cost and accuracy is frequently ob-
served, particularly in models that leverage symbolic representation. To address this challenge,
Nguyen and Ifrim (2023), Nguyen and Ifrim (2022) introduced MRSQM, a symbolic time-
series classifier specifically designed to achieve high accuracy while minimizing computational
expense. Symbolic representation techniques convert numeric time-series data into symbolic
sequences. Among the most common methods in the literature are Symbolic Aggregate Appro-
ximation (SAX) and Symbolic Fourier Approximation (SFA). Both methods are based in three
principles, they utilize a sliding window to extract segments of the time-series, approximate
each segment with a vector of equal or smaller length, and discretize the approximation to
produce a symbolic word.

The first step in MRSQM involves generating symbolic representations of the time-series
using either SFA or SAX. Once the symbolic representations are obtained, random subsequen-
ces are sampled and converted into binary features: a value of 1 indicates the presence of a
subsequence in the sample, while 0 indicates its absence. This process effectively transforms
the time-series data into a tabular format, which is then used in the final step to train a clas-
sifier based on logistic regression. MRSQM has two variants: MRSQM-R and MRSQM-RS.
In this work, only the MRSQM-R variant was applied. Figure 2 illustrates the three steps of
MRSQM-R, as described in this paragraph.

Figure 2 – Workflow for the MRSQM time series classifier.

Source: (NGUYEN; IFRIM, 2022).
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2.2 EXPLAINABLE AI

XAI serves as the foundation for Responsible AI, which encompasses a set of principles
that must be upheld when deploying AI applications, including fairness, accountability, and
transparency. In their comprehensive review, Arrieta et al. (2020) argue that any method ai-
med at reducing the complexity of a model or simplifying its outputs can be considered an XAI
approach. The authors also provide taxonomies and terminologies for the field, emphasizing
that terms such as “interpretability” and “explainability” are often used interchangeably, des-
pite notable distinctions between them. In this work, we adopt the concepts outlined in their
study; some of these will be defined throughout the text, while the main ones are defined as
follows:

• Explainability: Refers to the explanation as an interface between humans and a decision-
maker, often associated with post-hoc methods that clarify the reasoning behind a
model’s decisions.

• Post-Hoc Explainability: Focuses on providing understandable information about how
a pre-existing model produces its predictions for any given input. Post-hoc techniques
can be categorized as either global or local.

• Local Explanation: Focuses on explaining specific instances, providing insights into
individual predictions.

• Global Explanation: Aims to explain the overall behavior of a model, offering insights
into its functioning across the entire dataset.

• Interpretability: Describes the ability of a system to explain or convey its operations
in a manner that is understandable to humans.

• Fairness: Aims to identify and mitigate bias in the data used to train models, ensuring
the ethical and equitable application of AI algorithms.

• Transparency: A model is considered transparent if its structure and operations are
inherently understandable without requiring additional explanations.

• Accountability: Closely tied to the auditability of algorithms and data, emphasizing the
need to minimize and report negative impacts or limitations.
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The field of XAI has been growing exponentially each year since 2010, as evidenced by the
approximate results of the Google Scholar search queries data (Figure 3). These results show
an approximate percentual growth of 6002.80% over this period. From 2023 to 2024 alone,
the growth was approximately 48.07%, highlighting the hotness of the field and its recent
importance in academia.

Figure 3 – Google Scholar Search Results for “Explainable AI” since 2010.

Source: Author, 2025. Data collected from Google Scholar Search Results on 2025-01-05.

In this context, Saranya and Subhashini (2023) reviewed recent advancements and outlined
emerging trends within the field. The authors identified that the application of XAI to TSC was
initially introduced in a study focused on analyzing clinical gait through time-series data, which
is often gathered via sensors. Concerning post-hoc techniques for achieving explainability, they
observed that LIME remains the most widely adopted approach for interpreting black-box
models. Nevertheless, they highlighted SHAP as a more reliable method, capable of delivering
both local and global explanations across diverse datasets.

2.2.1 Post-Hoc Explainability with LIME and SHAP Values

SHAP was introduced by Lundberg and Lee (2017), the authors proposed the use of Sha-
pley Values as a unified measure of feature importance, and highlighted that its explanations
closely align with human perception, offering a more intuitive and reliable understanding of
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model outputs. Rooted in cooperative game theory, Shapley Values are defined based on the
concept of marginal contribution. As summarized by Fryer, Strümke and Nguyen (2021), these
values are estimated using a model-averaging approach. This procedure computes the weighted
average of each feature’s marginal contribution.

Classic Shapley value estimation, using Shapley regression values, is illustrated by equa-
tion 2.5. Here, 𝐹 denotes the set of all features. To compute a feature’s importance, a model
𝑓𝑆∪{𝑖} is trained with the feature 𝑖 included, while another model 𝑓𝑆 is trained without it.
The importance is determined by comparing their predictions: 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆), where
𝑆 ⊆ 𝐹 and 𝑥𝑆 are the input feature values in 𝑆.

𝜑𝑖 =
∑︁

𝑆⊆𝐹 ∖{𝑖}

|𝑆|!(|𝐹 | − |𝑆| − 1)!
|𝐹 |!

(︁
𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)

)︁
(2.5)

As noted by Lundberg and Lee (2017), the exact computation of Shapley values is com-
putationally challenging. Instead, the authors propose approximations based on insights from
additive feature attribution. They describe two model-agnostic approximation methods: Sha-
pley Sampling Values, an established technique that applies sampling approximations to equa-
tion 2.5 by integrating samples from the training dataset to estimate the effect of removing a
feature; and Kernel SHAP, a novel approach requiring fewer evaluations of the original model
(but that is fairly good at approximating accuracy). To formulate Kernel SHAP, we need the
concept of LIME, which is going to be introduced in the next paragraph. Additionally, we do
not delve into model-specific Shapley value estimation methods in this work.

LIME was proposed by Ribeiro, Singh and Guestrin (2016) as a method to produce faithful
local explanations for any classifier or regression model. The method is defined by equation 2.6,
where 𝐺 represents the class of interpretable models, and 𝑔 ∈ 𝐺. Since not all 𝑔 are inherently
interpretable, Ω(𝑔) measures model complexity (e.g., the depth of a Decision Tree). 𝜋𝑥(𝑧)

quantifies the proximity between an instance 𝑧 and 𝑥. For classification models, 𝑓(𝑥) denotes
the predicted probability score. ℒ(𝑓, 𝑔, 𝜋𝑥) measures how poorly 𝑔 approximates 𝑓 around 𝑥.
To ensure both interpretability and local fidelity, ℒ(𝑓, 𝑔, 𝜋𝑥) must be minimized, while Ω(𝑔)

remains low enough for human comprehension.

𝜉(𝑥) = argmin
𝑔∈𝐺

(ℒ(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔)) (2.6)

Kernel Shap is tied to the properties of Local Accuracy (equation 2.7), Missingness (equa-
tion 2.8) and Consistency (equation 2.9) of Additive Feature Attribution methods, where the
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equations of these properties are defined such as:

𝑓(𝑥) = 𝑔(𝑥′) = 𝜑0 +
𝑀∑︁

𝑖=1
𝜑𝑖𝑥

′
𝑖 (2.7)

The property of Local Accuracy (equation 2.7) states that 𝑓(𝑥) represents the original
model, 𝑔(𝑥′) is the explanation model, and 𝜑0 = 𝑓(ℎ𝑥(0)) corresponds to the model output
when the simplified inputs (𝑥′) are missing.

𝑥𝑖
0 = 0 =⇒ 𝜑𝑖 = 0 (2.8)

For the property of Missingness (equation 2.8), a constraint is put on features where
𝑥′

𝑖 = 0.

𝑓 ′
𝑥(𝑧′) − 𝑓 ′

𝑥(𝑧′ ∖ 𝑖) ≥ 𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′ ∖ 𝑖) (2.9)

The property of Consistency states that, given 𝑓𝑥(𝑧′) = 𝑓(ℎ𝑥(𝑧′)) and 𝑧′ ∖ 𝑖 where 𝑧′
𝑖 = 0,

for models 𝑓 and 𝑓 ′, if (equation 2.9) holds ∀𝑧′ ∈ {0, 1}𝑀 , then 𝜑𝑖(𝑓 ′, 𝑥) ≥ 𝜑𝑖(𝑓, 𝑥).
Shapley Values are the only solution to the linear LIME equation (equation 2.6) that

satisfies the properties of Local Accuracy, Missingness, and Consistency. The solution to equa-
tion 2.6 depends on the choice of parameters: 𝐿 (loss function), 𝜋𝑥′ (weighting kernel), and
Ω (regularization term). However, LIME selects these parameters heuristically, which is in-
sufficient to recover Shapley Values. By applying the Shapley Kernel Theorem (Theorem 1),
heuristic choices can be avoided, enabling the recovery of Shapley Values.

Theorem 1 (Shapley Kernel Theorem) In order to guarantee the properties of Local Ac-

curacy, Missingness and Consistency the parameters (parameters) need to be set as

Ω(𝑔) = 0,

𝜋𝑥′(𝑧′) = (𝑀 − 1)
(𝑀 𝑐ℎ𝑜𝑜𝑠𝑒 |𝑧′|)|𝑧′|(𝑀 − |𝑧′|) ,

ℒ(𝑓, 𝑔, 𝜋𝑥′) =
∑︁

𝑧′∈𝑍

[𝑓(ℎ𝑥(𝑧′)) − 𝑔(𝑧′)]2 𝜋𝑥′(𝑧′)

where |𝑧′| represents the number of non-zero elements in 𝑧′ and the 𝑐ℎ𝑜𝑜𝑠𝑒 function is the

combinatorial choice function
(︁

𝑀
|𝑧′|

)︁
.
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2.2.2 On the Use of Surrogate Models

According to Molnar (2022), in the field of engineering, if an outcome of interest is costly
to compute, the theory of surrogate models suggests using a cheaper model as an alternative
to complex computer simulations. For interpretable ML, the surrogate model 𝑔 must be a ML
model and not only provide accurate approximations to the black box model 𝑓 but also be
interpretable.

To train a surrogate model, a dataset 𝑋 must be selected, then the predictions 𝑦 of the
black box model on 𝑋 must be gathered, the surrogate model is supposed to be trained on
𝑋 and 𝑦, producing predictions 𝑦′, for the final step it’s necessary to measure if the surrogate
can replicate the underlying black box model, for this, metrics such as 𝑅2 or accuracy can be
used when comparing the predictions 𝑦 and 𝑦′, the higher the accuracy or the 𝑅2 the better
the approximation of the surrogate model and in consequence the explanation, in case the
surrogate model is also interpretable.

The authors also highlight that it’s important to bear in mind that there are some li-
mitations regarding interpretable surrogate models. Some authors challenge the concept of
intrinsically interpretable models, arguing that their use can be misleading and may provide
only an illusion of interpretability when used as surrogates. In our experiments we have used
agnostic explanation models, which use the concept of interpretable surrogate models (based
on SHAP and LIME techniques). Additionally, we fitted a non-interpretable surrogate model
as an intermediate step to apply explanation methods (Section 4.2).

2.2.3 On Uncertainty and Fairness

Explainable AI is the foundation for the topic of Responsible AI, and entails the concept
of transparency. Transparency in explanations can be further enhanced by studying the uncer-
tainty of predictions. According to Bhatt et al. (2021), uncertainty is defined as the lack of
knowledge about a particular outcome, while confidence represents its opposite. Some authors,
however, do not differentiate between confidence and uncertainty, maintaining a similar in-
terpretation. Alonso (2024), in his dissertation, evaluated various uncertainty quantification
methods and described uncertainty as the inverse of confidence, a high degree of uncertainty
implies low confidence (CATTELAN; SILVA, 2022). Various metrics exist to convey uncertainty,
with summary statistics of the predictive distribution being commonly employed.
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Uncertainty can be categorized into two types: aleatoric (data uncertainty) and epistemic
(model uncertainty). Aleatoric uncertainty reflects the inherent stochastic nature of an event
and is considered irreducible, although it can be mitigated by altering the source of data. In
contrast, epistemic uncertainty arises from insufficient data used to train the model and is
reducible through additional data collection. Softmax output probabilities are commonly em-
ployed as an uncertainty metric and are regarded by Cattelan and Silva (2022) as the most
natural method for uncertainty estimation. Gawlikowski et al. (2023) suggests using the Ma-
ximum Class Probability (MCP) for uncertainty estimation. Similarly, Judge (2021) proposes
flipping the MCP of a probability vector (e.g., obtained from softmax outputs) 𝑚𝑎𝑥(𝑝) to
quantify uncertainty. Another widely used approach for Uncertainty Estimation (UE) is the
use of deep ensembles, which aggregate predictions from different models and improve UE.

It is important to note that, while softmax output probabilities may not directly quantify
uncertainty, they can be interpreted as representing data uncertainty (aleatoric). However,
they cannot be associated with epistemic uncertainty (or model uncertainty) (ALONSO, 2024)
(GAWLIKOWSKI et al., 2023). In this study, we focus solely on data uncertainty resulted from
softmax outputs, by comparing UE in different classes of ML models, as suggested by Holm,
Wright and Augenstein (2023). Further details on the approach to studying it are provided in
Chapter 5 under Subsection 5.3.2.

Fairness is a crucial aspect of Responsible AI. Identifying uncertainty can contribute to
improving fairness in model decisions by revealing potential biases in data or models. In the
experiments, in order to mitigate bias in the models, a stratified train-test split was employed.
Minatel et al. (2023) demonstrated that even a simple stratification method by class and
group can effectively incorporate fairness into ML models. Fairness can also be linked to the
evaluation and comparison of different classification models, by ensuring that the same model-
tuning is used (KWON et al., 2019). This perspective was considered during the formulation of
the proposed experiments.

2.3 EXPLAINABLE AI FOR TIME-SERIES CLASSIFICATION

As of 2024, Explainability for Time Series Classification has emerged as a prominent rese-
arch topic (Figure 4 - the search query returns approximate results) in academia. An exploratory
Pearson correlation analysis between search results for “Explainable AI” and “Explainable Time
Series Classification” (Figure 5) reveals a correlation coefficient of 0.99, indicating a strong
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linear relationship between the two topics. The growing interest in Explainable AI (XAI) has
naturally driven increased attention to Explainability in TSC, as TSC-specific XAI represents
a subdomain within the broader field of XAI.

Figure 4 – Google Scholar Search Results for "Explainable Time Series Classification"since 2010.

Source: Author, 2025. Data collected from Google Scholar Search Results on 2025-01-05.

Figure 5 – Scatter Plot Comparing The Terms Explainable Ai and Explainable Time Series Classification

Source: Author, 2025. Data collected from Google Scholar Search Results on 2025-01-05.

Theissler et al. (2022) provided a comprehensive taxonomy and reviewed advancements in
the field of Explainability for TSC. The authors identified three primary categories of explana-
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tion methods: Time Point-based explanations, Subsequence-based explanations, and Instance-
based explanations. These methods are defined as follows:

• Time Point-based: These explanations are analogous to feature importance, as they as-
sign a score or weight to each time point in a time-series. There are two main approaches
within this category: attribution-based explanations and attention-based explanations.
Attribution-based methods attribute output predictions to input variables (e.g., LIME
and SHAP, mainly used in computer vision tasks, which can be applied to time-series
data). In contrast, attention-based methods leverage internal mechanisms of the TSC
model to generate explanations.

• Subsequence-based: These explanations focus on identifying the most critical sub-
parts of a time-series that contribute to its classification. Among subsequence-based
methods, shapelets are the most widely used. Shapelets represent the most representative
sequence of values within a time-series and are considered powerful discriminative tools
for time-series data.

• Instance-based: These explanations leverage the entire time-series instance for pro-
viding explanations. The most common approach involves counterfactual explanations,
where a counterfactual time-series 𝑥′ illustrates how specific changes in the input time-
series 𝑥 lead to a different classification outcome. To ensure meaningful explanations, it is
crucial that the difference between 𝑥 and 𝑥′ is minimal while maintaining the plausibility
of 𝑥′.

While there are additional explanation methods that do not fall into these categories,
this work does not explore them. For time-series explanations, we focused on Agnostic Local
Explanation for Time Series Classification (LEFTIST), a model-agnostic local explainer that
leverages both SHAP and LIME to determine the importance of time-series segments. This
method fits both in the Time Point-based and Subsequence-based categories. Additionally, we
employed Counterfactual Explanations for Multivariate Time Series (COMTE), a technique
that utilizes counterfactual explanations derived from time-series instances in the training set.
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2.3.1 LEFTIST

LEFTIST was introduced as the first model-agnostic local explainer specifically designed
for time-series classification (GUILLEMÉ et al., 2019). It draws inspiration from the idea that the
shapelets of a time-series often represent behaviors that are intuitive and easily interpretable
for humans. The interpretable components of a time-series 𝑡 can be divided into segmentations
𝑆(𝑡), defined as 𝑆(𝑡) = {𝑆𝑡

1, ..., 𝑆𝑡
𝑚}, where:

𝑆𝑡
1 = ⟨(𝑡𝑠1 , 𝑣1), ..., (𝑡𝑠𝑡1 , 𝑣𝑡1)⟩, . . . , 𝑆𝑡

𝑚 = ⟨(𝑡𝑠𝑡𝑚−1+1
, 𝑣𝑡𝑚−1+1), ..., (𝑡𝑠𝑝 , 𝑣𝑝)⟩ (2.10)

Here, each pair (𝑡𝑖, 𝑣𝑖) represents a timestamp 𝑡𝑖 and its corresponding value 𝑣𝑖, with
𝑖 ∈ [1, 𝑝]. Using the concatenation operator ⨁︀, the time-series 𝑡 can be expressed as 𝑡 =⨁︀𝑚

𝑖=1 𝑆𝑡
𝑖 , meaning that 𝑡 comprises all segments 𝑆. As such, 𝑡 can be equivalently represented

as 𝑚𝑡 = (1, ..., 1). Given 𝑚𝑗
𝑡 as the 𝑗th neighbor of 𝑚𝑡, it represents cases where some

segments are omitted by flipping an arbitrary number of ones to zeros. The proxy classifier for
the black-box model 𝑓 is expressed as:

𝑔𝑡(𝑚𝑡
𝑗) = 𝜑0 + 𝜑1𝑚

𝑗,1
𝑡 + · · · + 𝜑𝑚𝑚𝑗,𝑚

𝑡 (2.11)

Where 𝑚𝑡
𝑗 = (𝑚𝑗,1

𝑡 , ..., 𝑚𝑗,𝑚
𝑡 )𝑇 , 𝑚𝑡

𝑗,𝑖 ∈ {0, 1}, and the coefficients (importance of each
interpretable component) 𝜑𝑖 ∈ 𝑅 are learnt by least squares. To construct this proxy model,
which incorporates a learning process utilizing LIME or SHAP, a function ℎ𝑡 is defined (as shown
in equation 2.12). This function serves as a mechanism to compute the class probabilities of
the neighbors of the explained instance. It achieves this by mapping the masks 𝑚𝑡 back to the
original data space, generating a new training set, and then calculating the class probabilities,
which are subsequently fed into the local model 𝑔𝑡, which is used to build the local explanation.

ℎ𝑡(𝑚𝑡
𝑗) =

𝑚⨁︁
𝑖=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑆𝑡

𝑖 if 𝑚𝑗,𝑖
𝑡 = 1

transform𝑡(𝑆𝑡
𝑖 ) if 𝑚𝑗,𝑖

𝑡 = 0
(2.12)

The developers of LEFTIST have proposed three main transform functions to be used
along with it:

• Linear Interpolation: transform𝑡(𝑆𝑖
𝑡) = ⟨(𝑡𝑠𝑖

, 𝑑𝑡,𝑖(𝑡𝑠𝑖
)), ..., (𝑡𝑠𝑡𝑖

, 𝑑𝑡,𝑖(𝑡𝑠𝑡𝑖
))⟩, where 𝑑𝑡,𝑖(𝑥) =

𝑎𝑡,𝑖𝑥 + 𝑏𝑡,𝑖 is defined as a line that passes by (𝑡𝑠𝑡𝑖−1 , 𝑣𝑡𝑖−1) and (𝑡𝑠𝑡𝑖+1 , 𝑣𝑡𝑖+1)
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• Constant: transform𝑡(𝑆𝑖
𝑡) = ⟨(𝑡𝑠𝑖

, 𝑑𝑡,𝑖(𝑡𝑠𝑖
)), ..., (𝑡𝑠𝑡𝑖

, 𝑑𝑡,𝑖(𝑡𝑠𝑡𝑖
))⟩, where 𝑑𝑡,𝑖(𝑥) = constant,

the constant may be computed by the time-series average or can be a parameter.

• Random BackGround: transform𝑡(𝑆𝑖
𝑡) = 𝑆𝑖

𝑡𝑟, where 𝑡𝑟 is a random time-series that
belongs to a set of data BGS (BackGround Set) that needs to be available.

2.3.2 COMTE

COMTE, developed by Ates et al. (2021), is regarded by its authors as the first counter-
factual explanation method designed specifically for multivariate time-series, though it also
supports univariate time-series when the number of features 𝑚 equals 1. The method involves
selecting time-series instances from the training set that are highly similar to the time-series
sample under investigation and using them to generate different classification outcomes. Coun-
terfactual explanations have a wide range of applications, including their use in dashboards
and for extracting knowledge about system behavior. While some methods rely on synthetic
data for counterfactual explanations, COMTE enhances the meaningfulness and reliability of
its explanations by exclusively utilizing data from the training set.

The first step took by the developers of COMTE, was to define the problem of coun-
terfactual explanations for multivariate time-series, in which given a probability 𝑓𝑐(𝑥) for the
class 𝑐 ∈ [1, 𝑘], where 𝑘 represents the total number of classes, the optimal counterfactual
explanation 𝑥′ is a modified sample derived from the test sample 𝑥𝑡𝑒𝑠𝑡, where the difference
between 𝑥′ and 𝑥𝑡𝑒𝑠𝑡 must be minimized while simultaneously maximizing 𝑓𝑐(𝑥′). A distractor
sample 𝑥𝑑𝑖𝑠𝑡, selected from the training set, is used in this process to construct the optimal
explanation. The distractor is chosen to minimize equation 2.14, where a tuning parameter 𝜆,
an identity matrix 𝐼𝑚, and a binary diagonal matrix 𝐴 are defined. The rule governing 𝐴𝑗,𝑗 is
expressed as follows:

𝐴𝑗,𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1 if variable 𝑗 of 𝑥𝑡𝑒𝑠𝑡 is replaced by the corresponding value in 𝑥𝑑𝑖𝑠𝑡,

0 otherwise.
(2.13)

The distractor 𝑥𝑑𝑖𝑠𝑡 must minimize the following equation:

𝐿(𝑓, 𝑐, 𝐴, 𝑥′) = (1 − 𝑓𝑐(𝑥′))2 + 𝜆‖𝐴‖1 (2.14)
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𝑥′ is given by:

𝑥′ = (𝐼𝑚 − 𝐴)𝑥test + 𝐴𝑥dist (2.15)

However, due to its complexity, the authors adopted a heuristic approach for COMTE,
modifying the loss function in equation 2.14 as follows:

𝐿(𝑓, 𝑐, 𝐴, 𝑥′) =
(︁
(𝜏 − 𝑓𝑐(𝑥′))+)︁2

+ 𝜆 (‖𝐴‖1 − 𝛿)+ (2.16)

In equation 2.16, 𝜏 represents the target probability, and 𝛿 is the threshold below which
reducing the number of variables does not enhance explanations. The term 𝑥+ = max(0, 𝑥)

corresponds to the ReLU function, which penalizes explanations falling below 𝛿. After selecting
the candidate 𝑥𝑑𝑖𝑠𝑡 samples, the optimal choice is determined as the one whose 𝐴 matrix
yields the lowest loss value. The authors proposed finding these matrices using either a greedy
algorithm or a random-restart hill-climbing method. Further details on the implementation of
the algorithms can be found in the original work (ATES et al., 2021).

2.4 DEEP LEARNING AND TABULAR MACHINE LEARNING MODELS

Tabular ML and DL models can also be employed for TSC, although criticism has been
made for standard/tabular ML methods (FAOUZI, 2024). There exists extensive literature on
standard ML methods, and detailed descriptions of the methods utilized in this work can be
found in the scikit-learn1 and xgboost2 libraries. Additionally, Sarker (2021b) provided
a comprehensive review summarizing the primary techniques employed in ML. Based on the
author’s review, the methods applied in this work are summarized below:

• SVM: Builds a hyperplane that is used for either classification or regression tasks, its
behavior depends on the choice of a kernel function.

• K-Nearest Neighbors (KNN): The model classifies data points based on a similarity
measure, typically a distance metric. Classification is determined through a majority vote
among the 𝑘 nearest neighbors of each data point.

1 <https://scikit-learn.org/stable/>, accessed on January 27, 2025
2 <https://xgboost.readthedocs.io/en/stable/>, accessed on January 27, 2025

https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/stable/
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• Random Forest: Is an ensemble classification method that is built from several decision
tree classifiers, the model uses majority voting or averages for the final classification
result.

• Extreme gradient boosting (XGBoost): Is an ensemble classification algorithm that
generates a final model based on a series of individual models, typically decision trees,
the algorithm uses gradient to minimize a loss function and determine the best model,
the algorithm is fast and efficient in handling large amounts of data.

• Logistic Regression: Is a parametric-based statistical model that uses a logistic function
to estimate probabilities.

Deep Learning models have the capacity of learning complex non-linear patterns in data.
In their comprehensive review of DL methods for TSC, Fawaz et al. (2019) highlighted that
end-to-end deep learning architectures consistently achieve state-of-the-art performance in this
domain. However, Nguyen and Ifrim (2023) pointed out that, deep learning approaches for
TSC remain relatively recent and computationally intensive. This explains the current lack of
dedicated libraries specifically designed for TSC in DL.

Neural networks are the core foundation for DL, many online resources are available on
explaining the subject, the pytorch3 documentation details it briefly while also explaining how
to use the module in python, Sarker (2021a) conducted a review on DL methods covering the
main architectures of neural networks, such as Multi Layer Perceptron (MLP), Convolutional
Neural Network (CNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unity (GRU).
The MLP is the simplest architecture and is a feedforward network that contains an input layer,
an output layer and may contain one or more hidden layers, using the notation in Fawaz et al.
(2019) in the context of TSC non-linearity of a MLP can be expressed as:

𝐴𝑙𝑖 = 𝑓(𝜔𝑙𝑖 * X + 𝑏) (2.17)

Where 𝜔𝑙𝑖 represents the weights, 𝑏 is the bias term, and 𝐴𝑙𝑖 denotes the activation of the
neurons in layer 𝑙𝑖. The symbol * denotes a matrix multiplication between the weights and
the input 𝑋’s. The activation function, which determines the neuron’s output, can be ReLU,
Tanh, Sigmoid, or Softmax. The number of neurons, layers, and iterations in the network
3 <https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html>, accessed on January 29, 2025

https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html
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are hyperparameters, while the weights are learned automatically using a backpropagation
algorithm with optimization such as SGD or Adam to minimize a loss function.

Another widely used neural network architecture is the LSTM, a variant of Recurrent Neural
Network (RNN) designed to address the vanishing gradient problem. LSTMs incorporate three
specialized gates: an input gate that filters incoming information, a forget gate that retains
relevant information while discarding unnecessary details, and an output gate that controls the
final output. These mechanisms allow LSTMs to effectively capture long-term dependencies
in sequential data. An extension of the LSTM is the Bidirectional Long Short-Term Memory
(BiLSTM), which enhances classification performance by employing two LSTM layers—one
processing inputs in the forward direction and the other in the backward direction. Alternatively,
the GRU architecture operates similarly to LSTMs but employs only two gates a reset gate
and an update gate, thus making it faster to compute.

Attention layers were deemed by the developers of the Transformer architecture (VASWANI

et al., 2017) as extremely important in its development, since the model is entirely based on
attention mechanisms. The Transformer fully relies on attention to capture global dependencies
between input and output. The attention mechanism focuses on the most relevant parts of an
input sequence. In this context, self-attention is a specific type of attention mechanism that
computes representations of a sequence by considering dependencies across different positions
and can yield more interpretability in models, making self-attention widely used in tasks such
as reading comprehension, abstractive summarization, and sentence representation.
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3 BITCOIN AND CRYPTOCURRENCIES

This chapter describes the core concepts of Bitcoin and other cryptocurrencies available
in the market, as well as how ML and DL have been used to aid decision-making for traders
and other types of investors in the financial market. In this context, it also explores how XAI
has contributed to more transparent models and decisions, ensuring compliance with industry
regulations and enhancing accountability. Furthermore, this chapter is structured as follows:

• In section 3.1 the main concepts of Bitcoin are introduced together with important
descriptions of other cryptocurrencies available in the market.

• Section 3.2 discuss works that have applied classification models to assist in decision
making with cryptocurrencies.

• Section 3.2.1 brings an overview of works that have used XAI in cryptocurrencies and
Bitcoin.

3.1 OVERVIEW AND CONTEXTUALIZATION

Bitcoin was created by Nakamoto (2008), a pseudonym whose true identity remains unk-
nown as of 2025. The main philosophy behind Bitcoin’s development was to create an elec-
tronic payment system based on cryptographic proof rather than trust. This approach aimed
to eliminate the need for third-party financial institutions, thereby reducing transaction costs
associated with mediation.

However, a key challenge in digital currencies is the double-spending problem since it would
not be possible to verify if the coin was spent twice. To address this, the paper proposed a peer-
to-peer electronic cash system that maintains a public record of all transactions, known as the
Blockchain, in which it is computationally impractical for attackers to alter past transactions.
In practical terms, according to Morisse (2015), each node in the Bitcoin network verifies
transactions. The node that successfully solves a cryptographic puzzle is rewarded with Bitcoins
and records the transaction in the Blockchain. As highlighted by Hellani et al. (2018), while
Bitcoin relies on blockchain technology for its existence, blockchain itself is independent from
it.
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After Bitcoin’s growth, a new market emerged around blockchain, which led to the develop-
ment of other cryptocurrencies like Dash and Ethereum. Morisse (2015) reviewed Bitcoin and
other cryptocurrencies, highlighting their upsides such as the low inflationary risks and lower
transaction costs, however, also tackling its suspicions such as being widely used for money
laundering and illicit trade. A promising global market has emerged around cryptocurrencies,
offering opportunities due to their fast and low-cost international transactions.

The following table describes the main cryptocurrencies used in the experiments available
in the Experiments and Methods chapter, with descriptions from the Bitstamp crypto exchange
market 1:

Table 2 – Cryptocurrencies’ Description

Crypto Name Description
Bitcoin (BTC) Bitcoin is the coin unit available in the Bitcoin blockchain. It is divided

into millibitcoins (0.001 BTC), and satoshis (0.00000001 BTC).
Ethereum (ETH) Ethereum is the first network based on blockchain that supported smart

contracts, the coin of Etheureum network is labelled ETH (or Ether).
Litecoin (LTC) Litecoin was created to facilitate smaller transactions that may not be

economically viable in Bitcoin. It shares many similarities with Bitcoin,
and its native unit is called LTC.

Ripple (XRP) Ripple is a financial institution that provides cryptocurrency-based solu-
tions to customers, primarily through use of the XRP digital asset.

Tether (USDT) Tether manages multiple stablecoins (cryptocurrencies that are program-
med to maintain a value approximately equal to another asset) tokens,
the one used in this work is called USDT which is pegged to the US
dollar.

Bitcoin Cash (BCH) BCH is one of the largest cryptocurrencies on the market. It is the result
of a hard fork from the original Bitcoin blockchain.

Solana (SOL) SOL is the native cryptocurrency of Solana, a platform whose goal is to
maximize transaction speeds through a novel computational mechanism
called Proof of History.

Cardano (ADA) Founded with a focus on sustainability, Cardano is a carbon neutral block-
chain, thanks to its low emission mechanism called Ouroboros. Its native
token is called ADA.

AVAX Avalanche is a smart contract-capable platform built to maximize block-
chain scalability, its native utility coin is called AVAX.

Stellar (XLM) Stellar aims to be blockchain solution in nations where the majority of the
population remains unbanked. If a party was sending USD to Germany,
Stellar would adjust the amount from USD to XLM and then to EUR in
the recipient’s wallet.

Source: Author, 2025. Description collected from Bitstamp Crypto Definition Search Results on 2025-02-03.

3.2 WORKS ON BITCOIN AND CRYPTOCURRENCY CLASSIFICATION

Several studies have analyzed the use of classification approaches for Bitcoin and cryptocur-
rencies. However, comparisons should account for methodological differences and the specific
outcome variable being predicted. Ranjan, Kayal and Saraf (2023) applied a machine learning
approach to classify Bitcoin price increases and decreases using daily and 5-minute granularity
1 <https://www.bitstamp.net/learn/crypto-definitions/>, accessed on Febrary 03, 2025

https://www.bitstamp.net/learn/crypto-definitions/


40

data. Their results indicated that logistic regression performed best for daily price predictions.
Qian and Qi (2022) explored the application of machine learning models for Bitcoin price pre-
diction and identified SVM, LSTM, and MLP as the most frequently used models, while most
approaches focused on regression, some were designed for classification, with all SVM-based
methods being used exclusively for classification.

Given the lack of a cryptocurrency prediction framework to forecast the short to medium
and long-term price that considers instant volatility, Iqbal et al. (2024) proposed a framework
based on regression and classification models to assist in Sell-or-HODL recommendations for
Bitcoin. (HODL stands for “hold on for dear life”, meaning investors intend to retain their
cryptos for an extended period). To achieve this, the authors employed SVM, LSTM, and
an Artificial Neural Network (ANN), their findings indicate that although it is possible to
accurately predict the present BTC price, predicting price increases and decreases remains
challenging. Regarding different cryptocurrencies, Kwon et al. (2019) compared Gradient Bo-
osting (GB) and LSTM for TSC across various cryptocurrencies to classify price trends (up
or down). Their results showed that LSTM performed best, though they also found BCH par-
ticularly difficult to predict. As of the writing of this work, at the best of knowledge, only a
limited number of studies, such as Yamak et al. (2024), have applied TSC-specific models to
Bitcoin and cryptocurrency data.

3.2.1 Explainability on Cryptocurrencies

Previous studies on Bitcoin and cryptocurrencies have incorporated explainability into va-
rious tasks. Gupta et al. (2023) used SHAP to identify the features contributing to the fore-
casting of SOL and ETH using a regression approach based on GRU, LSTM, Random Forest,
and SVM. Motivated by the need for improved interpretability in cryptocurrency trading, Fior,
Cagliero and Garza (2022) developed CryptoMLE, a dashboard that leverages SHAP to sup-
port decision-making. This tool assists cryptocurrency investors by enabling them to compare
rules inferred by ML algorithms with domain knowledge. Additionally, recognizing the lack of
explainability in portfolio management, Babaei, Giudici and Raffinetti (2022) utilized SHAP
to develop an explainable cryptocurrency portfolio.

Due to strict regulations in the financial industry, it is essential to understand how ML
and DL models make decisions, in this context, SHAP was employed by Morais (2022), the
author aimed to use XAI to identify the key determinants for predicting BTC value, and to
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the best of the author’s knowledge, this work is deemed to be the first one to propose such an
application for XAI in the context of cryptocurrencies. A common denominator between all of
these studies is the use of SHAP. Although SHAP and LIME contribute to decision making,
these methods do not handle univariate time series directly. Instead, they rely on additional
features to represent temporal patterns, and as regarded by Ates et al. (2021) both LIME and
SHAP assume that all of the features are independent variables, however time-series are a set
of ordered values, often exhibiting temporal dependencies (CUOMO et al., 2023), hence these
XAI algorithms may lack the power of capturing temporal complexity, and also, do not provide
a time-series as an explanation. These limitations motivate the hybrid approach proposed in
this dissertation, which, to the best of our knowledge, is the first study to apply the combined
use of COMTE and LEFTIST to cryptocurrency time-series data. The proposed method will
be presented in the following chapter.
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4 THE PROPOSED APPROACH

This chapter presents the proposed explanation approach developed in this work. It may
be the first hybrid explanation method that combines two TSC-specific, model-agnostic ex-
planation techniques. Furthermore, this chapter is structured as follows:

• Section 4.1 discusses the application of hybrid methodologies in the field of XAI.

• Section 4.2 introduces COMTE-LEFTIST, the hybrid explanation model proposed in
this work, which integrates counterfactual (instance-based) and time point-based expla-
nations.

4.1 HYBRID EXPLANATIONS

Hybrid approaches have already been studied in the field of XAI, the subject was one of
the topics in the work of Arrieta et al. (2020) that traces important concepts, taxonomies and
applications in XAI, the authors highlight different types of hybrid explanations, such as the
use of surrogate interpretable model such as using an interpretable surrogate model, like KNNs
or decision trees, after applying a DL model, or enriching black-box models with knowledge
derived from transparent ones. The work of Álvarez, Díaz and García (2024) has also reviewed
hybrid XAI modelling, but focused on merging aspects of interpretable models together with
black-box models, the authors realized that research in this field can lead to more transparency
in ML systems.

However this work proposes a different view on hybrid XAI, which is similar to the one
proposed by Tahir et al. (2024), who proposed a hybrid XAI framework that merges SHAP
and LIME. This LIME-SHAP approach was aimed to be applied to autonomous vehicle sys-
tems, inasmuch the system also makes use of sensor data, which can often be represented as
time-series data. Their framework has three modules, a perception, a decision-making and an
explanation generation module, the latter one utilizes the LIME-SHAP, where LIME is used for
low-risk scenarios and SHAP for higher-risk (e.g. higher speed), for the LIME-SHAP method,
the initial feature importance is computed using LIME and estimates are refined by using
SHAP, the following equation summarizes the hybrid framework:

𝜑Hybrid
𝑡 = 𝛼 · 𝑓LIME

𝑡 + (1 − 𝛼) · 𝜑SHAP
𝑡 (4.1)
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Where 𝑓LIME
𝑡 is the LIME equation (equation2.6), 𝜑SHAP

𝑡 refers to the SHAP values that
can be computed by using the principles set by Theorem 1, 𝛼 is a a weighting factor that
balances the contributions of LIME and SHAP.

The authors consider this hybrid method to be more consistent than LIME in estimating
feature importance while leveraging SHAP to optimize computational cost. This approach
serves as an inspiration for the method proposed in this work. Although initially applied to
different datasets—LIME-SHAP for autonomous vehicles (which may include sensor data) and
COMTE-LEFTIST for cryptocurrency data, they share similarities in concept and formulation.
The next section describes the method proposed in this work.

4.2 COMTE-LEFTIST A HYBRID EXPLANATION METHOD FOR TIME-SERIES CLAS-
SIFICATION

COMTE-LEFTIST is a hybrid XAI method tailored for TSC, it may be applied to sen-
sor data (e.g. ECG), finances, longitudinal studies, etc. Summarizing the whole proccess, the
LEFTIST and COMTE approaches are combined to emphasize the impact of the most im-
portant shapelets from the counterfactual explanation on class predictions. The basic idea
behind the hybrid framework is that LEFTIST captures the most important time-windows of
the time-series and COMTE is responsible for generating the counterfactual examples.

To generate explanations with COMTE-LEFTIST, a mask needs to be built, by using the
positive LIME or SHAP values derived from the LEFTIST approach. This mask filters out
only the shapelets that contribute positively to the class prediction, so that we can apply it to
COMTE and find the most relevant shapelet for the counterfactual explanation. The process
can be summarized by the following steps:

• Generate a mask of positive LEFTIST values, estimated using either LIME or SHAP,
where Positive values are marked as True and Negative or zero values are marked as
False.

• Apply the mask to the COMTE values. Positive values highlight the relevant shape-
lets in the counterfactual explanation, while non-positive values are discarded from the
predicted time series.

• Concatenate the shapelets of predicted and counterfactual values found by the mask.
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• Feed the concatenated values into the prediction model.

After applying these steps it’s necessary to compute the effect of the counterfactual ex-
planation on the prediction score, as represented by the following equation:

ℎ(𝑓, 𝑥, 𝑥′) = 𝑓(𝑥) − 𝑓

⎛⎜⎜⎜⎜⎝
𝑚⨁︁

𝑖=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥𝑖 if 𝑚𝑎𝑠𝑘𝑖 = 𝐹𝑎𝑙𝑠𝑒

𝑥′
𝑖 if 𝑚𝑎𝑠𝑘𝑖 = 𝑇𝑟𝑢𝑒

⎞⎟⎟⎟⎟⎠ (4.2)

Where mask = (True, . . . , False) refers to the mask built by LEFTIST, 𝑖 = 1, . . . , 𝑚 refers
to the position of the time-series values. The variable 𝑥 represents the predicted time-series
values, while 𝑥′ corresponds to the counterfactual values, ⨁︀ is the concatenation operator, and
𝑓 is the prediction function, which may or may not include standardized values for the predicted
input, depending on the model’s training configuration. The training and test dataset are
standardized before being fed into the COMTE-LEFTIST hybrid model. However, the impact
of standardizing the instance being predicted before feeding it to the explanation model, is
observed and detailed in Chapter 6, as results vary depending on whether the instance is
standardized or not, together with other aspects such as stability of explanations and the
experiment being evaluated.

For regular ML models to work with COMTE-LEFTIST they need to be adapted, since
LEFTIST requires that the training and instance arrays need to have a 3 dimensional shape,
and COMTE also requires the instance to have the same shape. Given these specificities,
the hybrid framework only works with ML TSC-specific models or DL models, ML models
would need to be adapted to handle 3 dimensional shaped arrays. Furthermore when applying
the COMTE-LEFTIST model on the cryptocurrencies dataset, the framework makes use of a
surrogate model to communicate between the Tabular dataset with dummy variables and the
framework.

The hybrid explanation is then visualized by plotting the most important shapelets of
both the counterfactual and predicted series, each highlighted in different colors. This visua-
lization shows the impact of the highlighted counterfactual shapelets on the final prediction
score, offering a clearer understanding of how these counterfactual components influence the
model’s decision-making process. The steps to build COMTE-LEFTIST explanations can be
summarized by the following figure:
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Figure 6 – COMTE-LEFTIST Pipeline

Source: Author, 2025.
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5 EXPERIMENTS AND METHODS

This chapter outlines the materials used in the experiments conducted in this study. It
details key steps in data preparation, model training, uncertainty estimation, and explanation
generation. The chapter is structured as follows:

• Section 5.1 provides an overview of the libraries used in this study and details the
computing cluster, which played a crucial role in the experiments.

• Section 5.2 outlines the data acquisition process and the preprocessing steps applied
before training (see subsection 5.2.1).

• Section 5.3 presents the classification models used in this study, categorizing them into
tabular ML, TSC-ML, and DL. Subsection 5.3.1 details the hybrid XAI algorithms, high-
lighting key considerations for interpreting their results. Additionally, subsection 5.3.2
discusses the uncertainty estimation process and its evaluation in this work.

5.1 LIBRARIES AND COMPUTING RESOURCES

All experiments were conducted by using Jupyter Notebooks in Python (version 3.10.6),
together with the Apuana Cluster provided by the Federal University Of Pernambuco (UFPE).
The Cluster’s architecture1 contains 10 processing nodes, integrating 11 GPUs RTX3090, 5
GPUs A100 and 5TB of RAM. In the experiments, we allocated computational resources using
the salloc command with the following parameters: –mem=64G to request 64GB of RAM, -c
32 to allocate 32 CPU cores, –gpus=2 to utilize two GPUs, and -p short to specify the short
partition (No access was provided for the long partition since there was no need for it). The
computations were often executed by specifying cluster nodes that were not being much used,
ensuring efficient parallel processing and GPU acceleration for model training and evaluation.

Besides the common libraries used for handling tasks relating to data manipulation and
visualization in Python, such as Pandas, Numpy, Matplotlib, etc. To train the ML tabular
models the libraries used were: sklearn (Version 1.3.0), xgboost (Version 2.1.0). For the DL
models pytorch (Version 2.4.1+cu121) was used. For ML models designed specifically for
TSC, sktime (Version 0.30.2) developed by Löning et al. (2019) was used, the library provides
1 <https://helpdesk.cin.ufpe.br/servicos/cluster-apuana>, accessed on February 15, 2025

https://helpdesk.cin.ufpe.br/servicos/cluster-apuana
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a unified interface, that consists of techniques used for feature extraction, robust regression
or classification with the use of ML and DL on time-series. Another important library for TSC
was the tsLearn (Version 0.6.3), introduced by Tavenard et al. (2020) specifically designed to
implement advanced techniques, in this work the library was used to apply the time-series SVC
model.

Regarding explainability for TSC, the TSInterpret library (Version 0.4.5) developed by
Höllig, Kulbach and Thoma (2023) played a key role in this work. Its core philosophy is to
provide a unified interface to state-of-the-art XAI algorithms. Among its various functions
and explainability techniques, the library facilitates the application of COMTE and LEFTIST
explanations. For the experiments, data from Bitcoin and various cryptocurrencies was sourced
from the Bitstamp cryptocurrency exchange using the ccxt library (Version 4.3.58). The data
processing and transformation steps will be discussed in the next section.

5.2 DATA PREPARATION

Two sets of experiments were conducted. The first set focused solely on Bitcoin data. For
this experiment, closing price data with one-minute granularity (in USD), spanning from 2011-
09-01 to 2024-08-01, was used to train the models and evaluate explainability. The Bitcoin
data consists of a univariate time-series, that can be represented as an 1-d array (the same
would be applied to every crypto in the experiments). Figure 7 illustrates the full extent of
the Bitcoin data before it was processed into different time windows to align with the TSC
perspective.

Figure 7 – Bitcoin Closing USD Prices 1-minute granularity

Source: Author, 2025.
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To align with the TSC perspective, the Bitcoin data was segmented into three distinct time
windows: 30 minutes, 1 hour, and 2 hours. Each time window corresponds to a time-series,
where the number of timesteps matches the duration of the window in minutes (e.g., a 1-hour
window consists of 60 timesteps). This process is illustrated in Figure 8. Each window was
labeled as either “1” or “0”, where “1” indicates a sell recommendation, meaning that if a
certain amount of Bitcoin is purchased during the current time window, the average Bitcoin
price is expected to rise in the next window. Conversely, “0” represents a hold recommendation,
suggesting that the average Bitcoin price is expected to decline, making the market unfavorable
for selling Bitcoin at that time.

Figure 8 – Bitcoin Time-series Data Transformation Pipeline

Source: Author, 2025.

The same labeling process and steps outlined in Figure 8 were applied to the cryptocurrency
dataset, with one key difference. Instead of creating separate datasets for each cryptocurrency,
all cryptocurrencies were combined into a single dataset and distinguished using dummy co-
lumns, meaning that in the end a tabular datasets for each time window containing time-series
for each crypto were created. This approach aimed to accumulate sufficient data to train the
DL models, with the expectation that the models would learn the distinct behavioral charac-
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teristics of each cryptocurrency. The proportion of each cryptocurrency in the cryptocurrency
datasets is as follows: BTC 24%, ETH 13%, LTC 13%, XRP 14%, USDT 5%, BCH 13%,
SOL 3%, ADA 5%, AVAX 3%, and XLM 7%. The respective sizes of each dataset, including
the ones used exclusively for BTC, are detailed in the following table:

Table 3 – Length of different Datasets

Crypto Name Length
Bitcoin 30 Minutes 226,472

Bitcoin 1 Hour 113,235
Bitcoin 2 Hours 56,617

30 Minutes Cryptocurrencies 914,579
1 Hour Cryptocurrencies 457,286
2 Hour Cryptocurrencies 228,642

Source: Author, 2025.

5.2.1 Training Pipeline

The first step for both datasets was the train-test split, where 80% of the data was used for
training and 20% for testing. The split was stratified by label, ensuring that the proportions of
classes 0 and 1 remained approximately between 45%–55% in both the training and testing da-
tasets across the 30-minute, 1-hour, and 2-hour windows. For the cryptocurrency dataset, the
split was also stratified by cryptocurrency to ensure that each cryptocurrency was also repre-
sented in both the training and test sets, preventing the scenario where all data from a specific
cryptocurrency would be confined to a single set, additionally, the stratification preserved label
proportions around 50% across different cryptocurrencies. The train_test_split function
from the sklearn.model_selection module was used for the split, with random_state=42

applied to all experiments to ensure reproducibility, and that different models would be working
with the same train-test split.

Data was also standardized, by using the MinMax standardization, which was fitted to the
training data, and then used to transform the test data, in order to prevent information leakage
(preventing the model to learn the minimum and maximum from the test set, which could
potentially risk the reliability of the models). After the training process the ML, DL models, and
agnostic explanation methods were applied to enhance interpretability and support decision-
making. Furthermore, the Kruskal-wallis test, created by Kruskal and Wallis (1952), was used
to verify if there was any statistically significant difference between different classes of models,
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given that not much experimental data was available and normality assumptions couldn’t be
fulfilled, a statistical significance level of 5% was chosen.

5.3 MODELS AND EXPLANATIONS

This study evaluated three categories of models: ML tabular models, ML time-series models
(designed specifically for TSC), and DL models. While each model was trained on different time
windows, identical hyperparameters were used across all models to ensure a fair performance
comparison, considering the distinct characteristics of the cryptocurrency and Bitcoin-only
datasets. For the TSC-specific ML models implemented using the sktime and TsLearn libraries,
most models were applied to both the cryptocurrency and Bitcoin datasets. The only exception
was the time-series SVC, which was excluded from the cryptocurrency dataset due to excessive
computation time, making it unfeasible given the available resources.

For the ML tabular models, computation time was excessive for the cryptocurrency da-
taset. As a result, instead of using SVC, a logistic regression model was adopted. Regarding
DL approaches, all methods were applied in both experiments, but with different training
configurations. After applying the standard pipeline described in subsection 5.2.1, a random
seed of 2 was set using torch.manual_seed, random.seed, and numpy.random.seed. The
train and test dataloaders used a batch size of 32, with training batches shuffled while test
batches remained in order. In the two hour cryptocurrencies dataset, most DL models required
dropping the last batch, except for the Fully Connected MLP. This was handled by using the
parameter last_batch=True, which according to Pytorch’s documentation2 ignores the last
batch when the dataset size is not divisible by the batch size. The following table details the
parameters and arguments of the functions used in the classification models:
2 <https://pytorch.org/docs/stable/data.html>, accessed on February 18, 2025

https://pytorch.org/docs/stable/data.html
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Table 4 – Summarization of Models

Model Parameters Experiment Applied

MRSQM MrSQM(strat=’R’, random_state=42) Bitcoin / Cryptocurrencies

Catch22 Catch22Classifier(random_state=3) Bitcoin / Cryptocurrencies

Dummy Classifier DummyClassifier(strategy=’prior’, random_state=3) Bitcoin / Cryptocurrencies

Time-series SVM Classifier TimeSeriesSVC(kernel="sigmoid", gamma="auto", probability=True, random_state=42) Bitcoin

Composable Time-series Forest ComposableTimeSeriesForestClassifier(RocketClassifier(num_kernels=100), n_estimators=10, random_state=4) Bitcoin / Cryptocurrencies

KNN KNeighborsClassifier(n_neighbors=5) Bitcoin / Cryptocurrencies

SVM Classifier SVC(random_state=42, probability=True, kernel=’sigmoid’, gamma="auto") Bitcoin

Logistic Regression LogisticRegression(random_state=42, max_iter=1000) Cryptocurrencies

XGBoost Classifier XGBClassifier(objective=’binary:logistic’, random_state=42) Bitcoin / Cryptocurrencies

Random Forest Classifier RandomForestClassifier(random_state=5) Bitcoin / Cryptocurrencies

CNN-GRU with Attention Conv1D; MaxPooling1D; GRU Layer; Attention Layer; GlobalAveragePooling1D; BatchNormalization; Output Layer Bitcoin / Cryptocurrencies

CNN-LSTM Conv1D Layer; AdaptiveMaxPooling1D; Flatten Layer; Fully Connected Layer; BatchNormalization; Output Layer Bitcoin / Cryptocurrencies

Simple DNN Flatten Layer; Fully Connected Layer; Fully Connected Layer Bitcoin / Cryptocurrencies

BiLSTM Bidirectional LSTM; BatchNormalization; Output Layer Bitcoin / Cryptocurrencies

Source: Author, 2025.

About the DL models, it’s also important to highlight that the same hyperparameters were
used in both experiments, models were trained with 1000 epochs, the learning rate chosen was
of 10−5 to be as close as possible to 0 to improve convergence in a local minima, following
an strategy of early stopping based on the validation loss, meaning that, if the loss did not
improve for 50 epochs given a Δ parameter, then the training had to stop.

5.3.1 Explanations

Hybrid explanations were generated using LEFTIST and COMTE, both available in the
TSInterpret library. For LEFTIST, the chosen learning process was LIME, combined with the
uniform transform (also known as the mean transform, similar to the constant transform
described in subsection 2.3.1). Since the explanation process exhibits stochastic behavior, a
random seed was set to ensure reproducibility. The same approach used for the DL models
was applied here, with fixed random seeds of 2.

For the COMTE explanation, which is considered an instance-based method, brute-force
computation (brute) was chosen as the optimization approach over the optimized calculation.
When implementing the COMTE-LEFTIST technique, the selected argument values were com-
bined with the default parameters of the respective functions. Additionally, when evaluating
the impact of the most relevant shapelet in the counterfactual explanation on score probabi-
lity, it is essential to distinguish between standardizing or not standardizing the instance under
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evaluation. Standardization can influence the effect of the counterfactual component on score
probability. For the Bitcoin experiment, this process is illustrated in algorithm 1.

Algorithm 1: COMTE-LEFTIST Explanation
Input: instance, model, trainX, predicted label, trainy, prob_estimation
Output: Counterfactual explanation and probability shift
Initialize LEFTIST explainer;
Get explanation for instance;
if prob_estimation in [’standardized’, ’not-standardized’] then

Standardize trainX;
Predict probabilities;
Initialize COMTECF explainer with trainX not standardized;
Get counterfactual explanation;
Compute counterfactual label;
Identify positive indices in explanation;
Modify instance with counterfactual values;
if prob_estimation == ’standardized’ then

Apply standardization on instances before compute impact on probability;

Compute impact on probability score;

Plot instance, counterfactual, and highlighted areas;

Source: Author, 2025.

For the cryptocurrency dataset, the following algorithm 2 incorporates an intermediate
surrogate model to communicate with the explanation generation process, given the structure
of data. Explanations with surrogate models are always standardized, as experimental results
showed issues when estimating their impact on score probability.
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Algorithm 2: COMTE-LEFTIST with Surrogate
Input: instance, model, trainX, predicted label, trainy, prob_estimation, surrogate
Output: Counterfactual explanation and probability shift
Initialize LEFTIST explainer;
Get explanation for instance;
if prob_estimation == ’standardized’ or surrogate == True then

Standardize trainX;
Predict probabilities;
Initialize COMTECF explainer with trainX not standardized;
Get counterfactual explanation;
Compute counterfactual label;
Identify positive indices in explanation;
Modify instance with counterfactual values;
Apply standardization on instances before compute impact on probability;
Compute impact on probability score;

else

Standardize trainX;
Predict probabilities;
Initialize COMTECF explainer with trainX not standardized;
Get counterfactual explanation;
Modify instance with counterfactual values;
Compute impact on probability score;

Plot instance, counterfactual, and highlighted areas;

Source: Author, 2025.

5.3.2 Uncertainty estimation

Although uncertainty estimation was not the primary focus of this work, it is important to
address the topic, particularly in the context of responsible AI, which is associated with this
work. Aleatoric uncertainty was assessed in the Bitcoin experiment to investigate potential
differences in how various model classes (DL, tabular ML, and TSC-specific ML) generate esti-
mates. Initially, aleatoric uncertainty was computed for each time window and analyzed within
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each one using the Kruskal-Wallis test, followed by the Conover post-hoc test (CONOVER;

IMAN, 1979), which is designed to compare different groups after a significant Kruskal-Wallis
result. This procedure was also extended to examine whether uncertainty differed across the
three model classes when considering all time windows collectively.

To calculate aleatoric uncertainty (or data uncertainty), the maximum score probability was
flipped. Since the classification was binary, aleatoric uncertainty was estimated as 1 minus the
maximum predicted probability, which is equivalent to the minimum class probability. Although
there are tons of ways to estimate aleatoric uncertainty, this approach was chosen due to its
simplicity, ease of computation, and intuitive interpretation. Given the exploratory nature of
this analysis, this method was deemed sufficient for the study.
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6 RESULTS

This chapter presents and discusses the results of the experiments conducted in this study.
It covers key topics such as uncertainty estimation, model performance, and interpretability.
The chapter is structured as follows:

• Section 6.1 presents the classification model results for both the Bitcoin experiment
(subsection 6.1.1) and the Cryptocurrency experiment (subsection 6.1.2).

• Section 6.2 discusses the uncertainty estimation results for the Bitcoin experiment.

• The primary findings of the hybrid COMTE-LEFTIST explanation method are presented
in Section 6.3.

• Section 6.4 reflects on the implications of the findings and addresses limitations related
to the explanation method and uncertainty estimation.

6.1 MODEL RESULTS

In both experiments, the primary evaluation metric was accuracy. Precision was also consi-
dered, as it is important to assess whether the models exhibit higher error rates in sell or hold
recommendations. First, the results of the Bitcoin experiment will be presented, followed by
the results of the Cryptocurrency experiments.

6.1.1 Bitcoin Model Results

First and foremost given the results of the Kruskal-Wallis test, there is not enough evidence
at the 5% level of statistical significance to reject the hypothesis that the three different model
classes (Tabular-ML, TSC-ML and DL) are equal (P-value = 0.8386), the results imply that
if the focus is mainly on accuracy of the models, it’s important to test between different
model classes before selecting one. However, these results should be taken carefully, given
the non-parametric nature of the test, and the small amount of data regarding the results
provided in the experiment. Under different circumstances results may differ, as it will be seen
in Subsection 6.1.2.
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Evaluating strictly the accuracy, for the DL models, the CNN-GRU with attention me-
chanism was deemed to be the best model in all time-windows. For ML tabular models the
Random Forest achieved the best metric results in all time-windows, whereas KNN showed a
sharp decline of 10.76% in accuracy from the 1 hour to 2 hour time-window. For the TSC-
specific ML models the MRSQM had the best metrics, it also surpassed the accuracy values of
models in different classes. The Dummy Classifier is the baseline model, since it simply clas-
sifies as the most proeminent class, the SVC models (both tabular and TSC-specific) weren’t
able to overcome the baseline values.

Table 5 – Prediction Accuracy for All Model Types In BTC Experiment

Model 30 minutes 1 Hour 2 Hours
Deep Learning

Attention CNN-GRU 0.64 0.64 0.64
CNN-LSTM 0.64 0.63 0.63

MLP 0.56 0.56 0.58
BiLSTM 0.63 0.61 0.59

Machine Learning Tabular
Random Forest 0.68 0.68 0.60

KNN 0.65 0.65 0.58
SVC (Tabular) 0.53 0.52 0.53

XGB 0.57 0.58 0.57
Time Series Specific

Dummy Classifier 0.55 0.54 0.54
Catch22 0.64 0.63 0.64
MRSQM 0.70 0.69 0.68

SVC (Time Series) 0.48 0.48 0.51
TS Forest 0.66 0.66 0.66

Source: Author, 2025.

The impact of each model can be visualized through the comparisons in Figure 9. In the
two-hour time window, DL models appear to outperform tabular ML models, as the Atten-
tion CNN-GRU model (referred to in the figure as attention_model) and the CNN-LSTM
model (denoted as cnn) achieved higher accuracy than both the Random Forest classifier
(forest_classifier) and the KNN model. Additionally, the BiLSTM model (lstm) slightly
outperformed the Random Forest classifier. When considering the three best-performing mo-
dels in terms of accuracy across all three time windows, their improvements over the Dummy
Classifier were as follows:
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• In the 30-minute window, the accuracy increase was of 27.27% (MRSQM), 23.64%
(Random Forest), and 16.36% (Attention CNN-GRU).

• In the one-hour window, the improvements were 27.78% (MRSQM), 25.93% (Random
Forest), and 18.52% (Attention CNN-GRU).

• In the two-hour window, the gains were 25.93% (MRSQM), 11.11% (Random Forest),
and 18.52% (Attention CNN-GRU).

Among these models, MRSQM consistently demonstrated the highest accuracy improve-
ment over the baseline.

Figure 9 – Comparison of BTC accuracy at different time intervals

(a) Accuracy - 2 Hours (b) Accuracy - 1 Hour

(c) Accuracy - 30 minutes

Source: Author, 2025.

When analyzing the precision of Selling (Class 1) and Holding (Class 0) recommendati-
ons, the MRSQM model, which achieved the highest accuracy, also demonstrated the highest
precision for Class 1 across all time windows. This indicates that MRSQM is the most reliable
model for issuing Sell recommendations, possibly making it the most effective at maximizing
possible gains. The MLP model, on the other hand, achieved the highest precision for Class
0, meaning it was more accurate in identifying when holding is the optimal decision. While
avoiding losses is generally more critical than missing out on gains (as an incorrect Sell re-
commendation is more detrimental than an incorrect Hold recommendation), a model that
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exclusively recommends holding would not be practical. Given MRSQM’s balanced and consis-
tent performance in both Sell and Hold recommendations, together with its accuracy, it was
deemed the best-performing model in this experiment.

Table 6 – Prediction Precision for All Model Types (Class 0) (Class 1)

Model 30 minutes 1 Hour 2 Hours
Deep Learning

Attention CNN-GRU (0.70)(0.62) (0.73)(0.61) (0.75)(0.61)
CNN-LSTM (0.71)(0.62) (0.72)(0.61) (0.71)(0.61)

MLP (0.64)(0.55) (0.83)(0.55) (0.76)(0.56)
BiLSTM (0.65)(0.63) (0.75)(0.59) (0.62)(0.58)

Machine Learning Tabular
Random Forest (0.65)(0.71) (0.66)(0.70) (0.66)(0.68)

KNN (0.62)(0.67) (0.62)(0.66) (0.62)(0.64)
SVC (Tabular) (0.48)(0.57) (0.48)(0.56) (0.50)(0.53)

XGB (0.59)(0.57) (0.59)(0.58) (0.62)(0.61)
Time Series Specific

Dummy Classifier (0.00)(0.55) (0.00)(0.54) (0.00)(0.54)
Catch22 (0.61)(0.68) (0.61)(0.66) (0.62)(0.66)
MRSQM (0.65)(0.74) (0.66)(0.73) (0.65)(0.71)

SVC (Time Series) (0.43)(0.52) (0.44)(0.52) (0.47)(0.54)
TS Forest (0.61)(0.70) (0.62)(0.71) (0.62)(0.70)

Source: Author, 2025.

6.1.2 Cryptocurrencies Model Results

For the cryptocurrency experiments, results were analyzed both at the individual crypto-
currency level and across the entire dataset. In the latter case, the Kruskal-Wallis test was
applied to determine whether there were significant differences in accuracy among the th-
ree model classes. The test yielded a P-value < 0.01, indicating strong evidence at the 5%
significance level to reject the hypothesis that all model classes perform equivalently. Further-
more, pairwise comparisons using the Conover post-hoc test revealed that DL models were
significantly different from both tabular ML models and TSC-specific ML models (P-value <
0.01 in both comparisons). However, no statistically significant difference was found between
TSC-specific and tabular ML models (P-value = 0.8072). It is important to note that the
results of the Kruskal-Wallis test in this experiment differ from those obtained in the Bitcoin-
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only experiment. Given the non-parametric nature of the test and the fact that identical DL
model parameters were used in both experiments, these discrepancies may be attributed to
differences in the TSC and tabular ML models used.

The accuracies for each model and time-window are detailed in Table 7. The MRSQM
model achieved the highest accuracy across all timeframes. Within the DL category, the CNN-
LSTM model performed best across all time-windows. However, its accuracy improvements
over the baseline were relatively modest. Overall, DL models underperformed expectations,
yielding the lowest accuracy results among all model classes. Regarding tabular ML models,
KNN and Random Forest were among the top-performing models.

Table 7 – Cryptocurrencies Prediction Accuracy for All Model Types

Model 30 minutes 1 Hour 2 Hours
Deep Learning

Attention CNN-GRU 0.53 0.53 0.53
CNN-LSTM 0.55 0.58 0.58

MLP 0.54 0.53 0.54
BiLSTM 0.52 0.51 0.51

Machine Learning Tabular
Random Forest 0.64 0.63 0.63

KNN 0.64 0.64 0.62
Logistic Regression 0.54 0.54 0.54

XGB 0.55 0.56 0.57
Time Series Specific

Dummy Classifier 0.52 0.52 0.51
Catch22 0.62 0.60 0.58
MRSQM 0.69 0.69 0.68
TS Forest 0.61 0.61 0.61

Source: Author, 2025.

Figure 10 illustrates the impact of each model compared to the baseline (Dummy Classifier).
There was a slight decrease of 1.92% in accuracy performance when comparing the BiLSTM
with the baseline for the 1 hour time-window. Furthermore, the increase in accuracy for the
top-performing models in each class, across different time windows, is detailed as follows:

• In the 30-minute window, the accuracy increase was of 32.70% (MRSQM), 23.10%
(Random Forest and KNN), and 6% (CNN-LSTM).
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• In the 1-hour window, the accuracy increase was of 32.70% (MRSQM), 23.10% (KNN),
and 11.54% (CNN-LSTM).

• In the 2-hour window, the accuracy increase was of 33.33% (MRSQM), 23.53% (Random
Forest), and 13.73% (Attention CNN-GRU).

Figure 10 – Comparison of cryptocurrencies accuracy at different time intervals

(a) Accuracy - 2 Hours (b) Accuracy - 1 Hour

(c) Accuracy - 30 minutes

Source: Author, 2025.

Regarding the precision of both classes (selling and holding), the MRSQM maintained ba-
lanced and strong results (Table 8). For the 30-minute and 1-hour time-windows, the model
achieved a Sell recommendation precision of 70%, meaning that 7 out of 10 Sell predicti-
ons were true positives. In the 2-hour window, this precision slightly decreased to 69%. For
the Hold recommendation, MRSQM performed consistently well, with precision scores only
slightly lower than logistic regression in the 30-minute and 1-hour windows. For instance, in
the 1-hour timeframe, logistic regression correctly predicted approximately 8 out of 10 Hold
recommendations (75% precision). However, in the 2-hour window, MRSQM outperformed
logistic regression, achieving nearly 7 out of 10 correct Hold predictions, effectively minimizing
potential losses for investors, since it’s able to better capture when the market will remain
stable or go down on average.
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Table 8 – Cryptocurrencies Prediction Precision for All Model Types (Class 0) (Class 1)

Model 30 minutes 1 Hour 2 Hours
Deep Learning

Attention CNN-GRU (0.52)(0.54) (0.52)(0.53) (0.53)(0.53)
CNN-LSTM (0.53)(0.57) (0.59)(0.57) (0.58)(0.57)

MLP (0.63)(0.53) (0.54)(0.53) (0.57)(0.53)
BiLSTM (0.53)(0.52) (0.50)(0.52) (0.50)(0.52)

Machine Learning Tabular
Random Forest (0.67)(0.62) (0.68)(0.61) (0.65)(0.61)

KNN (0.62)(0.65) (0.63)(0.64) (0.62)(0.63)
Logistic Regression (0.70)(0.53) (0.75)(0.53) (0.56)(0.53)

XGB (0.60)(0.55) (0.59)(0.55) (0.59)(0.57)
Time Series Specific

Dummy Classifier (0.00)(0.52) (0.00)(0.52) (0.00)(0.51)
Catch22 (0.60)(0.63) (0.59)(0.60) (0.57)(0.60)
MRSQM (0.67)(0.70) (0.68)(0.70) (0.67)(0.69)
TS Forest (0.62)(0.60) (0.62)(0.60) (0.62)(0.61)

Source: Author, 2025.

Accuracy was also evaluated by cryptocurrency type (Table 9), as the model may better
capture the behavior of certain cryptocurrencies while struggling with others. In this experi-
ment, the Kruskal-Wallis test yielded a P-value < 0.0001, indicating significant differences in
accuracy across model types. The Conover post-hoc test also produced a P-value < 0.0001
when comparing DL models with both tabular and TSC-specific ML models. However, consis-
tent with previous findings, no significant differences were observed between TSC-specific and
tabular ML models at the 5% level of significance (P-value = 0.3319).

The AVAX achieved the highest accuracy across all models for the 30-minute time-window,
reaching 74%, while among the top-performing models, the lowest accuracy was observed for
USDT. For the 1-hour time-window, ADA achieved the highest accuracy (72%), whereas USDT
remained the lowest-performing cryptocurrency. In the 2-hour time-window, only SOL and
AVAX managed to reach 70% accuracy. Notably, USDT consistently had the lowest accuracy
among the best-performing models. Across all time-windows, MRSQM demonstrated strong
performance, particularly in the 1-hour timeframe, where it dominated the top results. The
Random Forest model also performed well, while DL models fell below expectations, even
though the CNN-LSTM model showed improved performance specifically for BTC.



62

Table 9 – Cryptocurrencies Prediction Accuracy for All Model Types By Crypto

(a) 30 Minutes Time-Window

Model ETH LTC XRP USDT BCH SOL ADA AVAX XLM BTC
Dummy Classifier 0.51 0.51 0.51 0.53 0.51 0.53 0.55 0.56 0.51 0.55

Catch22 0.61 0.60 0.61 0.55 0.62 0.66 0.70 0.69 0.62 0.61
MRSQM 0.68 0.68 0.67 0.62 0.69 0.72 0.72 0.74 0.67 0.70

Time-Series Forest 0.65 0.63 0.51 0.53 0.65 0.63 0.55 0.65 0.51 0.64
Random Forest 0.68 0.69 0.51 0.53 0.69 0.70 0.56 0.71 0.51 0.68

KNN 0.64 0.65 0.65 0.51 0.65 0.66 0.66 0.67 0.61 0.65
Logistic Regression 0.53 0.51 0.51 0.53 0.51 0.53 0.55 0.56 0.51 0.58

XGBoost 0.53 0.54 0.54 0.62 0.55 0.56 0.59 0.56 0.55 0.56
Attention CNN-GRU 0.51 0.51 0.51 0.53 0.51 0.53 0.55 0.56 0.51 0.58

CNN-LSTM 0.53 0.50 0.51 0.53 0.54 0.53 0.55 0.57 0.49 0.64
MLP 0.51 0.51 0.51 0.53 0.52 0.53 0.55 0.57 0.51 0.59

BiLSTM 0.51 0.51 0.51 0.53 0.51 0.53 0.55 0.56 0.51 0.55
(b) 1 Hour Time-Window

Model ETH LTC XRP USDT BCH SOL ADA AVAX XLM BTC
Dummy Classifier 0.51 0.50 0.51 0.51 0.50 0.51 0.52 0.52 0.51 0.54

Catch22 0.61 0.57 0.60 0.58 0.58 0.62 0.62 0.60 0.62 0.59
MRSQM 0.69 0.69 0.69 0.62 0.69 0.71 0.72 0.71 0.70 0.70
TS Forest 0.65 0.65 0.51 0.51 0.65 0.63 0.52 0.64 0.51 0.65

Random Forest 0.69 0.69 0.51 0.51 0.69 0.69 0.52 0.68 0.51 0.69
KNN 0.65 0.64 0.65 0.53 0.64 0.62 0.65 0.64 0.64 0.64

Logistic Regression 0.54 0.51 0.51 0.51 0.56 0.51 0.52 0.52 0.51 0.59
XGB 0.53 0.55 0.56 0.61 0.56 0.54 0.58 0.53 0.56 0.56

Attention CNN-GRU 0.51 0.49 0.51 0.51 0.51 0.51 0.52 0.52 0.51 0.58
CNN-LSTM 0.66 0.52 0.51 0.51 0.60 0.54 0.52 0.53 0.51 0.65

MLP 0.51 0.49 0.51 0.51 0.53 0.51 0.52 0.53 0.51 0.59
BiLSTM 0.51 0.50 0.51 0.51 0.50 0.51 0.52 0.52 0.51 0.54

(c) 2-Hour Time-Window

Model ETH LTC XRP USDT BCH SOL ADA AVAX XLM BTC
Dummy Classifier 0.51 0.50 0.50 0.49 0.50 0.51 0.50 0.50 0.51 0.54

Catch22 0.60 0.57 0.60 0.57 0.58 0.57 0.58 0.58 0.59 0.59
MRSQM 0.68 0.68 0.68 0.59 0.68 0.70 0.69 0.70 0.69 0.68
TS Forest 0.66 0.66 0.51 0.51 0.66 0.65 0.51 0.65 0.51 0.65

Random Forest 0.69 0.69 0.51 0.51 0.68 0.68 0.51 0.67 0.51 0.67
KNN 0.64 0.63 0.63 0.56 0.63 0.62 0.62 0.63 0.63 0.62

Logistic Regression 0.56 0.51 0.50 0.51 0.53 0.51 0.50 0.50 0.51 0.59
XGB 0.56 0.58 0.57 0.62 0.59 0.56 0.57 0.52 0.57 0.56

Attention CNN-GRU 0.53 0.51 0.50 0.51 0.53 0.48 0.50 0.50 0.51 0.59
CNN-LSTM 0.66 0.54 0.50 0.49 0.60 0.54 0.50 0.50 0.49 0.65

MLP 0.56 0.50 0.50 0.51 0.55 0.51 0.50 0.51 0.51 0.60
BiLSTM 0.51 0.50 0.50 0.51 0.50 0.49 0.50 0.50 0.51 0.54

Source: Author, 2025.
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Considering Table 7 and Table 9, the precision of each class was highlighted for the most
promising models in each category based on accuracy. The MRSQM demonstrated consistent
and strong precision for both sell and hold recommendations, particularly excelling in AVAX.
Additionally, some models with lower overall accuracy exhibited higher precision for one of the
classes. For instance, the CNN-LSTM model in the 2-hour time-window for AVAX achieved an
accuracy of only 50%, yet its precision for selling recommendations was 1.0. This suggests that
the model was likely unbalanced, predicting the selling class more frequently while failing to
properly learn the holding recommendation. Furthermore, Table 10 illustrates the precision of
each class by cryptocurrency for these models, which were deemed the best in each category.

Table 10 – Prediction Precision for All Best Performing Models By Cryptocurrency (Class 0) (Class 1)

(a) 30 Minutes Time-Window
Model ETH LTC XRP USDT BCH SOL ADA AVAX XLM BTC

MRSQM (0.67)(0.70) (0.67)(0.69) (0.66)(0.68) (0.61)(0.62) (0.69)(0.69) (0.71)(0.73) (0.74)(0.71) (0.75)(0.74) (0.65)(0.68) (0.67)(0.72)
Random Forest (0.68)(0.69) (0.68)(0.70) (0.59)(0.51) (1.00)(0.53) (0.69)(0.70) (0.71)(0.70) (0.78)(0.55) (0.71)(0.70) (0.75)(0.51) (0.66)(0.70)

KNN (0.63)(0.64) (0.64)(0.65) (0.64)(0.65) (0.49)(0.54) (0.65)(0.65) (0.65)(0.66) (0.64)(0.67) (0.66)(0.68) (0.61)(0.62) (0.62)(0.67)
CNN-LSTM (0.51)(0.80) (0.49)(0.52) (0.51)(0.51) (1.00)(0.53) (0.52)(0.57) (0.50)(0.55) (0.00)(0.55) (0.52)(0.61) (0.49)(0.00) (0.66)(0.63)

(b) 1 Hour Time-Window
Model ETH LTC XRP USDT BCH SOL ADA AVAX XLM BTC

MRSQM (0.69)(0.70) (0.68)(0.69) (0.67)(0.70) (0.60)(0.66) (0.68)(0.70) (0.71)(0.71) (0.72)(0.71) (0.73)(0.70) (0.68)(0.71) (0.68)(0.72)
Random Forest (0.69)(0.70) (0.69)(0.69) (0.57)(0.51) (0.00)(0.51) (0.68)(0.69) (0.69)(0.70) (0.87)(0.52) (0.67)(0.68) (0.88)(0.51) (0.67)(0.71)

KNN (0.64)(0.65) (0.64)(0.64) (0.65)(0.66) (0.52)(0.53) (0.63)(0.64) (0.62)(0.62) (0.65)(0.65) (0.63)(0.65) (0.63)(0.65) (0.62)(0.66)
CNN-LSTM (0.64)(0.70) (0.51)(0.87) (0.00)(0.51) (0.00)(0.51) (0.57)(0.68) (0.55)(0.54) (0.00)(0.52) (0.94)(0.52) (0.00)(0.51) (0.76)(0.62)

(c) 2-Hour Time-Window
Model ETH LTC XRP USDT BCH SOL ADA AVAX XLM BTC

MRSQM (0.67)(0.69) (0.68)(0.68) (0.67)(0.69) (0.58)(0.60) (0.68)(0.69) (0.69)(0.71) (0.68)(0.71) (0.70)(0.70) (0.68)(0.70) (0.66)(0.70)
Random Forest (0.69)(0.69) (0.69)(0.69) (0.69)(0.51) (0.51)(1.00) (0.68)(0.68) (0.68)(0.69) (0.67)(0.51) (0.66)(0.67) (0.53)(0.51) (0.65)(0.69)

KNN (0.63)(0.64) (0.62)(0.63) (0.62)(0.64) (0.55)(0.57) (0.63)(0.63) (0.62)(0.62) (0.62)(0.62) (0.63)(0.62) (0.63)(0.64) (0.60)(0.64)
CNN-LSTM (0.63)(0.70) (0.61)(0.53) (0.00)(0.50) (0.00)(0.49) (0.59)(0.63) (0.66)(0.53) (0.50)(0.00) (0.50)(1.00) (0.49)(0.00) (0.70)(0.63)

Source: Author, 2025.

6.2 UNCERTAINTY

The analysis of uncertainty was brief, as the experiment was conducted using only Bitcoin
data. The results showed no evidence that the uncertainty in any model class or time-window
followed a Gaussian distribution. The Shapiro-Wilk test yielded P-values<0.0001, thus rejecting
the null hypothesis of normality. Additionally, the Kruskal-Wallis test across all models and
time-windows produced a p-value < 0.0001, supporting the hypothesis that at least one model
class differs in estimating aleatoric uncertainty at the 5% of statistical significance level. The
Conover post-hoc test yielded p-values < 0.0001 when comparing all three model classes,
indicating significant differences in their uncertainty estimations.
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Figure 11 exhibits the uncertainty captured across different time-windows and model types.
Red indicates higher levels of uncertainty, while greener shades represent lower uncertainty. For
the TSC-specific ML models (Figures 11a, 11b, and 11c), more green points were observed
compared to Tabular ML models, suggesting that these models are more confident considering
their UE. In contrast, for Tabular models (Figures 11d, 11e, and 11f), green points were less
prevalent in comparison to TSC-specific ML models, while red points were more prominent,
indicating a higher frequency of low-confidence predictions in this category. For DL models
(Figures 11g, 11h, and 11i), both extremes were frequently captured, as this class of models
tended to overestimate confidence in certain time-series while capturing lower confidence in
others.

Figure 11 – Comparison of Uncertainty At Different Time-Windows By Model Class

(a) Uncertainty Time-Series - 30
Minutes

(b) Uncertainty Time-Series - 1
Hour

(c) Uncertainty Time-Series - 2
Hour

(d) Uncertainty Tabular ML - 30
Minutes

(e) Uncertainty Tabular ML - 1
Hour

(f) Uncertainty Tabular ML - 2
Hour

(g) Uncertainty Deep Learning -
30 Minutes

(h) Uncertainty Deep Learning -
1 Hour

(i) Uncertainty Deep Learning - 2
Hour

Source: Author, 2025.
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6.3 COMTE-LEFTIST EXPLANATIONS

Explanations were generated using the MRSQM model on the 1-hour time-window data, as
this model was identified as the most stable and best-performing. For Bitcoin data, two random
instances were selected (no differences were found between LIME and SHAP, hence why LIME
was chosen in the following experiments), one corresponding to a selling recommendation in
the predicted class (Class 1) and the other to a holding recommendation (Class 0). Figure 12
illustrates the COMTE-LEFTIST explanation. In these figures, the orange highlighted line
in the counterfactual series marks the most significant time-window in the explanation, that
indicates the behavior most likely to alter the classification. The blue highlighted line represents
the most influential segment of the predicted series that affects the class prediction.

Some differences appear in the estimation of the impact on probability when conside-
ring standardization. When analyzing the selling recommendation time-series, a comparison
between the standardized (Figure 12a) and non-standardized (Figure 12b) versions, the impact
on the score probability changes, since more weight is put on the highlighted shapelets of the
counterfactual explanation. A similar effect is observed in the holding recommendation case
(Figure 12c vs. Figure 12d), demonstrating that standardization influences the computation
of probability impact, leading to variations in the explanation results.

Figure 12 – COMTE-LEFTIST Explanations for Bitcoin In 1-hour Time-Window

(a) Selling Recommendation Standardized
(b) Selling Recommendation Not Standardi-

zed

(c) Holding Recommendation Standardized
(d) Holding Recommendation Not Standar-

dized

Source: Author, 2025.
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It is important to highlight that the explanations are sensitive to the random seed, which
is why seed 2 was used consistently throughout the explanation results. In Figure 13, the same
time-series was analyzed under different random seeds. A comparison between Figure 13a,
which uses a random seed of 2 and detected no or minimal impact on the score probability
from the counterfactual explanation (hence the 0 impact on probability), and Figure 13b,
which was generated with a random seed of 23, shows that the change in seed allowed the
model to detect and attribute importance to a shapelet in the time-series. This shapelet was
identified as responsible for a 17-point decrease in the score probability for the predicted class.

Figure 13 – Stochastic Behavior of COMTE-LEFTIST Explanations

(a) Explanation using Seed 2 (b) Explanation using Seed 23

Source: Author, 2025.

Regarding the cryptocurrency data, the first MRSQM model, fitted to obtain the classifi-
cation results, is used to generate classification labels for each time series. However, for the
counterfactual COMTE plots and LEFTIST importance analysis, a separate MRSQM model
must be trained as a surrogate for the time-series data, excluding the dummy columns that
identify which cryptocurrency the time-series belongs to. Therefore this surrogate model is
fitted for each cryptocurrency, with accuracy measured relative to the predictions of the origi-
nal model being used as an indicator of “goodness-of-fit”. The lowest accuracy observed was
0.90 for BTC, suggesting that the surrogate model is a reliable approximation of the original.
Cryptocurrencies with lower representation in the dataset typically exhibited higher accuracy
values, such as AVAX, SOL, and ADA, as shown in Table 11.

Table 11 – Cryptocurrency Surrogate Model Accuracy Values

ETH LTC XRP USDT BCH SOL ADA AVAX XLM BTC
0.9277 0.9269 0.9218 0.9333 0.9380 1.0000 0.9951 1.0000 0.9795 0.8954

Source: Author, 2025.
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In Figure 14, COMTE-LEFTIST explanations are presented for AVAX data. Both expla-
nations rely on standardization, which is crucial when employing a surrogate model. Without
standardization, the explanations were often suboptimal and did not yield reliable results.

Figure 14 – COMTE-LEFTIST Explanations For the Cryptocurrencies Data (AVAX)

(a) COMTE-LEFTIST Explanations For AVAX (b) COMTE-LEFTIST Explanations For AVAX

Source: Author, 2025.

Explanations for the cryptocurrency dataset were significantly more unstable compared
to Bitcoin data, which affects their reliability (Figure 15). Figures 15a and 15b illustrate
common issues that arise when standardization is not applied in the surrogate model strategy.
In the former, a negative impact appears, this pattern frequently occurred when generating
explanations without standardization. In the latter, an impact of 100% was attributed to the
highlighted shapelet, which is an extreme and questionable result.

Figure 15 – Problems with COMTE-LEFTIST Not Standardized Explanations for the Crypto Experiment

(a) Unreliable Not Standardized With Negative
Impact (b) AVAX Not Standardized With 100% Impact

Source: Author, 2025.

Regarding standardization, although it improved the stability of explanations, odd behaviors
still appeared as shown in Figure 16, although less frequently than when standardization is
not applied. Figure 16b shows that negative impact was still a constraint, while Figure 16a
demonstrates a case where the explanation resulted in null impact. While null impact does not
necessarily indicate a problem, it was observed frequently during experiments.
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Figure 16 – Problems with COMTE-LEFTIST Standardized Explanations for the Crypto Experiment

(a) Standardized Explanations For AVAX With
Null Impact

(b) Standardized Explanations For AVAX With
Negative Impact

Source: Author, 2025.

6.4 CRITICAL EVALUATION

DL models achieved the worst performance in both experiments, while it wasn’t possible
to state with statistical significance that the performance of this specific class wasn’t much
worse than TSC-specific and ML-tabular models, for the Bitcoin experiment, the opposite
happened in the Cryptocurrencies dataset, which is counter-intuitive, since more data was
available, and may have happened because the same parameters from the Bitcoin experiment
were kept. When including more cryptocurrency data, it appears that TSC-specific and ML-
tabular models, more specifically the MRSQM had a slight increase in accuracy of 0.01 points,
for BTC both in the 1 hour and 2 hour time-windows and Random Forest had an increase of
0.01 point for 1 hour and 0.07 points for the 2-hour time-window.

Another key difference lies in the Kruskal-Wallis test results. In the Bitcoin experiment,
the p-value was above the 5% threshold. However, in the Cryptocurrency experiment, the
opposite occurred. This discrepancy may be attributed to the underperformance of DL models
in the latter experiment, since it’s not possible statistically distinguish TSC-specific from ML-
tabular models at the 5% level. Furthermore, regarding the Cryptocurrency experiment, it is
challenging to determine whether the inclusion of additional data improved model learning, as
each cryptocurrency exhibits distinct behavior, some being more chaotic while others are more
predictable.

Furthermore, given that each crypto asset exhibits distinct behavior, Bitcoin follows cycles
of growth and decline, perhaps influenced by a periodic event known as halving, which results
from the fixed supply limit of 21 million Bitcoins. Fabus et al. (2024) analyzed this event and
reported that nearly 90% of BTC has already been mined. To maintain scarcity, the halving



69

process reduces mining rewards by decreasing the number of BTC issued per block. This cycle
occurs approximately every four years and, despite the influence of random market events,
contributes to a relatively predictable price increase. In contrast, cryptocurrencies such as
USDT, which is pegged to the US dollar, are more susceptible to external and unpredictable
factors, such as political and/or economic trade conditions. Consequently, disregarding factors
such as the sample size of each asset in the cryptocurrency experiment, these differences in
behavior may explain why some cryptocurrencies, like BTC, exhibited higher predictability and
classification accuracy, whereas others with more chaotic and less predictable price movements,
such as USDT, yielded lower accuracies.

Comparing the findings of this work with other studies on cryptocurrency prediction and
classification is challenging due to methodological differences. However, Ranjan, Kayal and Sa-
raf (2023) employed a ML approach to classify Bitcoin price movements (increase or decrease)
using daily and 5-minute granularity data. Their best performance was achieved with logis-
tic regression, obtaining an accuracy of 64.8% for daily price predictions, while for 5-minute
granularity, their best model reached 59.4% accuracy.

Similarly, Iqbal et al. (2024) explored longer time windows of 90, 30, and 7 days to classify
Bitcoin price increases and decreases using LSTM, ANN, and SVC. While LSTM achieved the
highest accuracy at 74%, SVC outperformed deep learning models in two of the time-windows.
This pattern, where ML models occasionally outperform DL models, was also observed in this
study with models such as Random Forest and MRSQM surpassing DL models.

In contrast, Kwon et al. (2019) compared GB and LSTM for different cryptocurrencies,
finding that LSTM achieved the best classification results for each cryptocurrency evaluated.
As stated in the previous paragraph, methodological differences play a crucial role in the out-
comes of each experiment, and DL methods can in fact be used for TSC. However, considering
the results from these prior studies, the performance of MRSQM and TSC-specific methods
appears promising and should be further explored in the field of cryptocurrency recommen-
dation systems, since this category of models was specifically designed to tackle this class of
problems.

Regarding uncertainty estimation, notable differences were observed across the three model
classes. Lower levels of high uncertainty were found in TSC-specific and ML-tabular models,
whereas DL models exhibited the opposite trend. The prevalence of overconfident and un-
derconfident predictions in DL approaches aligns with critiques of using softmax for UE. For
instance, Klaß et al. (2022) and Alonso (2024) argue that raw softmax outputs are unreliable,
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often leading to poor calibration in ANNs, which results in over- or under-confident predictions.
Additionally, Alonso (2024) suggests that averaging softmax outputs across an ensemble,

as implemented in this work, captures aspects of both aleatoric and epistemic uncertainty, in
this regard Gawlikowski et al. (2023) also states that even though softmax outputs should
represent data uncertainty, it is not possible no tell the amount of model uncertainty that
affects a specific prediction. Consequently, epistemic uncertainty may be influencing the final
uncertainty estimates, contributing to the discrepancies observed between model classes. These
factors, including model uncertainty and potential miscalibration, should be carefully considered
when interpreting UE results.

In the Bitcoin experiment, explanations generated using the hybrid COMTE-LEFTIST
approach demonstrated significantly greater stability compared to those in the Cryptocurrency
experiment. The primary concern in this experiment is not the occurrence of null impact,
since this simply indicates that no specific shapelet was identified as the most influential in
class prediction, but rather the stochastic nature of the explanations. A simple change in
the random seed can lead to variations in the generated explanations, highlighting potential
instability. Regarding the standardization of the predicted and concatenated instances, if the
trained model was also fitted on standardized data, it is considered good practice to standardize
the instances as well, given the gap that was identified when calculating the impact of the
explanation on the score probability.

In contrast, the explanations in the Cryptocurrency experiment were considerably less
reliable, likely due to the use of an intermediate surrogate model, which possibly propagates
additional sources of error throughout the explanation process (causing negative impact and
often 100% or null impact). As a result, applying COMTE-LEFTIST in this context requires
caution, and its use is more advisable for univariate time-series, such as the Bitcoin time-series
in the first experiment.
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7 FINAL REMARKS

This final chapter concludes the study by presenting final remarks, detailing current limi-
tations, summarizing key findings, and outlining future research directions in the field of XAI
for TSC.

• The final conclusion of this research is presented in Section 7.1, summarizing the discus-
sion on the employed models, the uncertainty study, and the COMTE-LEFTIST hybrid
method.

• The limitations related to computational resources and employed methods encountered
in this study are discussed in Section 7.2.

• Section 7.3 is structured as a bulleted list to summarize the key findings and main
contributions of this study.

• Section 7.4 outlines future research directions based on the study’s limitations and the
current advancements in TSC, highlighting promising new methods that have yet to
fully benefit from XAI frameworks.

7.1 CONCLUSION

The MRSQM achieved 70% accuracy in generating Sell and Hold recommendations for
Bitcoin in the 30-minute time-window, outperforming other models in both experiments when
considering BTC. For other cryptocurrencies, its performance remained strong, though occasi-
onally slightly lower than models such as Random Forest or KNN. Additionally, it demonstrated
high precision for the Selling and Holding classes. Furthermore, the Kruskal-Wallis test results
were non-significant for the Bitcoin experiment, whereas in the Cryptocurrency experiment,
the results at a 5% significance level suggested a rejection of the hypothesis of equality among
model classes. This indicates that, in certain cases, TSC-specific models and tabular ML al-
gorithms can outperform DL models, as the post hoc test did not find significant differences
between Tabular and TSC ML models. Therefore, it is essential to experiment with different
model classes to determine the most suitable approach, as the optimal choice depends on the
problem’s nature and the complexity of the time-series.
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Uncertainty was assessed using the averaged inverse of the MCP across ensembles of the
different model classes. The Kruskal-Wallis test results indicated that, at the 5% significance
level, it would be reasonable to reject the assumption of equal uncertainty across model classes.
Additionally, post hoc analysis using the Conover Test revealed significant differences among
all three model classes. Furthermore, DL models have exhibited both higher uncertainty and
confidence compared to the others model classes. Even though Holm, Wright and Augenstein
(2023) supports using softmax in UE when resource efficiency is a concern, highlighting that
softmax can be as good at UE as Monte Carlo dropout in some cases, they only recommend
using it in low-risk applications. Furthermore, given the criticisms of the employed method
(KLAß et al., 2022; ALONSO, 2024), these results should be interpreted with caution, and further
improvements and research with more advanced UE methods is needed to assess uncertainty
with more reliability.

Despite certain limitations, COMTE-LEFTIST emerges as one of the first attempts to
generate instance- and subsequence-based explanations in TSC. Notably, neither SHAP nor
LIME incorporates time-series representations within their explanations. Furthermore, previous
explainability approaches in Bitcoin and cryptocurrency experiments, such as those proposed
by Fior, Cagliero and Garza (2022), Babaei, Giudici and Raffinetti (2022), Gupta et al. (2023),
and Morais (2022), have not focused on providing visual time-series explanations within their
frameworks. Instead, these studies pursued different objectives, such as identifying important
features for predicting cryptocurrency value or recommending asset allocation, which explains
their predominant reliance on SHAP and LIME for model interpretability.

In contrast, the hybrid COMTE-LEFTIST method not only provides time-series as part of
the explanation but also generates counterfactual examples and identifies the most important
timestamps. As a result, COMTE-LEFTIST consolidates the key elements of an explanation.
It offers users valuable insights, helping them understand the model’s reasoning behind sell or
hold recommendations, and assess whether it behaves as expected. Although certain limitations
were encountered during the experiments, the contribution of hybrid explanations is crucial for
advancing the field of explainability in TSC.

7.2 LIMITATIONS

The SVC model could not be used in the Cryptocurrency experiment due to excessive
computation time. Given the available resources, it was not feasible to keep the machine
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running for several days. This limitation also influenced model selection, as overly complex
DL architectures required significant training time, with some models taking over six hours
to train. Additionally, for TSC-specific models, due to the same reason of the SVC, it was
not possible to use HIVE-COTE 2.0, which is the latest extension of the first ensemble-based
algorithm for TSC (FAOUZI, 2024), being frequently updated, and is also available in sktime 1.

Uncertainty estimation used the softmax score probabilities and in general for all model
classes involved averaging the inverse of the MCP, which often suffers from criticism since more
advanced and reliable methods to investigate uncertainty are available for UE. The assessment
of uncertainty was also only explored in the Bitcoin experiment, however it would also be useful
to understand how uncertainty behaves among different crypto assets.

One of the major concerns regarding COMTE-LEFTIST is that it has a tendency to exhibit
stochastic behavior, primarily due to the inherent randomness of the LEFTIST component.
As a result, the hybrid method becomes highly dependent on the random seed used for repro-
ducibility. This randomness can influence the calculation of the counterfactual explanation’s
impact on the predicted class probability, since it’s dependent on LEFTIST values, leading
to greater variability in results. In some cases, particularly observed in the cryptocurrency
experiment, rather than reducing the predicted class probability, the explanation exhibited a
negative impact. This led to the decision to avoid standardization when using surrogates in
this experiment, since most cases happened when it was applied. Additionally, instances where
no effect was observed were also noted; however, this was considered a less concerning issue,
as no particular shapelet appeared to significantly alter the predicted class probability.

7.3 SUMMARIZATION

• The field of Explainable AI applied to TSC is an emerging and actively researched
topic, as illustrated in Figure 4. This work contributes to this trend by proposing a
hybrid explanation method. To the best of knowledge, it is the first study to introduce
a hybridization of explainability models specifically tailored for TSC, with a particular
focus on cryptocurrency data.

• The MRSQM achieved the best performance across both experiments, standing out
for its accuracy and consistently strong precision in the holding and selling classes. Its

1 <https://www.sktime.net/en/stable/api_reference/auto_generated/sktime.classification.hybrid.
HIVECOTEV2.html#sktime.classification.hybrid.HIVECOTEV2>, accessed on March 18, 2025

https://www.sktime.net/en/stable/api_reference/auto_generated/sktime.classification.hybrid.HIVECOTEV2.html##sktime.classification.hybrid.HIVECOTEV2
https://www.sktime.net/en/stable/api_reference/auto_generated/sktime.classification.hybrid.HIVECOTEV2.html##sktime.classification.hybrid.HIVECOTEV2
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stability makes it a relatively “safe” model for recommendation tasks.

• While uncertainty estimation in this experiment requires further refinement, the findings
suggest differences in the UE of aleatoric uncertainty across ensembles of the three
model classes.

• COMTE-LEFTIST has been fully implemented, despite some limitations. This contribu-
tion aims to introduce hybrid XAI modeling to TSC and encourage further research in
this area.

7.4 FUTURE WORK AND RESEARCH HORIZON

This work is among the first ones to explore hybrid XAI methods for TSC, highlighting
the need for further research into the hybridization of different XAI techniques in this domain.
Additionally, the frequent instability of COMTE-LEFTIST in the Cryptocurrency experiment
was not fully examined in this study and warrants further investigation before it can be reliably
applied to datasets with multiple time-series, such as multivariate time-series data.

Emerging methods like Wide-TSNet, proposed by Yamak et al. (2024), have demonstrated
promising results, achieving 94% accuracy in Bitcoin price prediction by integrating time-series
and image classification via Markov Transition Fields. These models excel at identifying key
regions within a sequence and capturing temporal correlations, making them a compelling
direction for further research. Future studies could explore training surrogate models on these
advanced architectures that merge image classification with TSC, by enhancing explainability
through COMTE-LEFTIST and other TSC XAI techniques.
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