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ABSTRACT

The proliferation of digital technologies, while enhancing productivity and access to new
tools, has concurrently created opportunities for cybercriminals. This has led to a surge in
digital abuses and cybercrimes, resulting in substantial losses for individuals, businesses, and
governments. Advanced Persistent Threats (APTs) are central to many attacks, characterized
by stealthy, gradual network infiltration to achieve objectives such as data theft and sabotage.
Lateral movement, a decisive phase in APT campaigns, allows adversaries to consolidate their
presence. Anomalous authentications serve as critical indicators of lateral movement, as they
reveal intruder transitions between devices, often leveraging stolen credentials and exploiting
vulnerabilities. Since computer network interactions form graph-structured data, graph-based
algorithms, such as Graph Neural Networks (GNNs) and Graph Transformers (GTs), can be
employed to detect anomalous interactions indicative of attacks within the computer net-
works. However, the effectiveness of these methods hinges on the representational power and
performance of the graph models. Efficient node embedding aggregation in GNNs is pivotal
for representing graph topology; existing simple aggregation methods (sum, mean, max) are
limited, while the computational complexity of sophisticated approaches, such as Transformer-
based methods, poses challenges for large graphs, despite their improved ability to capture
long-range dependencies. Furthermore, many existing approaches neglect the temporal aspect
of network events, which are inherently time-dependent. This work explores GNNs and GTs
for unauthorized access detection in computer networks in two distinct experiments. First, we
propose a link prediction approach incorporating a soft-attention mechanism to filter irrele-
vant node information during node representation aggregation. Second, we leverage recent
advances in Transformer architectures for large graphs and propose a novel node classification
approach for anomalous authentication detection that explicitly addresses the temporal depen-
dencies between events at different granularities. The proposed models were trained on public
datasets containing authentication logs from corporate networks. Experimental results showed
that the proposed methods outperform state-of-the-art approaches in detecting anomalous
authentications.

Keywords: Lateral movement detection, Advanced Persistent Threats, Graph Neural Net-
works, Cyber Security, Machine Learning.



RESUMO

A crescente adoção de novas tecnologias digitais tem ampliado as oportunidades para a prática
de crimes cibernéticos, causando perdas significativas para indivíduos, organizações e gover-
nos. Entre as principais ameaças, estão as Advanced Persistent Threats (APT), nas quais
os intrusos estabelecem um ponto de apoio inicial e expandem furtivamente sua presença na
rede, acessando novos dispositivos e adquirindo mais informações sobre o alvo. O Movimento
Lateral é uma etapa decisiva deste ataque, já que fortalece a presença do intruso na rede do
alvo. Autenticações anômalas, frequentemente indicativas de alternâncias não autorizadas en-
tre os dispositivos, são indicadores-chave desse estágio. A identificação de tais eventos tem o
potencial de mitigar o movimento lateral e atrasar o avanço de um ataque em curso. Como as
interações em redes de computadores formam grafos, algoritmos como Graph Neural Networks
(GNN) e Transformers podem ajudar a identificar relações incomuns. No entanto, o sucesso na
detecção de tais anomalias usando esses métodos está condicionado à sua capacidade de re-
presentação de grafos. A agregação eficaz de embeddings de nó em GNNs é determinante para
representar devidamente a topologia do grafo, algo que muitos métodos ainda não alcançam
plenamente. Além disso, a complexidade computacional de abordagens mais sofisticadas, como
as baseadas em Transformers, é outro desafio em grafos de grande escala, apesar de melhora-
rem a captura de padrões em nós distantes. Neste trabalho, exploramos GNNs e Transformers
no problema da detecção de acessos não autorizados em redes de computadores em dois ex-
perimentos complementares. Em um primeiro estudo, propomos uma abordagem baseada em
predição de links entre os vértices, com um mecanismo soft-attention que facilita a agregação
de representações de nó ao filtrar informações irrelevantes dos vértices. No segundo estudo,
exploramos avanços recentes na literatura para a arquitetura transformer considerando grandes
grafos e propomos uma nova abordagem baseada em classificação de vértices para detecção
de autenticações anômalas. Essa abordagem permite considerar a dependência temporal entre
os eventos em diferentes níveis de granularidade. Os modelos propostos foram avaliados em
datasets públicos contendo registros de autenticação em redes corporativas. Os resultados
experimentais mostraram que os métodos propostos superam as abordagens concorrentes do
estado da arte na detecção de autenticações anômalas.

Palavras-chaves: Movimentação lateral, Aprendizagem de máquina, Redes Neurais de Grafos,
Segurança digital, Ameaças digitais persistentes.
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1 INTRODUCTION

The increasing human dependence on new technologies and systems, such as 5G, cloud
computing, and the Internet of Things (IoT), has brought cybersecurity to the forefront of
public attention. Each new technology presents an opportunity for cybercriminals to exploit.
With the evolution of attack techniques, well-organized, planned, and targeted cyber threats
have become more frequent, often targeting critical infrastructures based on these technologies.

The COVID-19 pandemic brought us important moments of disruption, in which we wit-
nessed several cyber attacks on users, private companies, and government (LALLIE et al., 2021)
that should make us reflect on the need for our look at digital security. In particular, it is
important to protect critical infrastructure against attacks by internal or external adversaries.

The evolution and massification of offensive techniques have allowed the execution of
targeted attacks with losses to the companies involved and society in general. A representative
example is the incident that deprived Brazilian citizens of access to vaccination data in 20211.

For the affected companies, these incidents resulted in significant financial losses and
interruptions to their services and operations. Some recent incidents occurred within the space
of a few weeks. For example, operators of a ransomware2 have attacked the company JBS in
June 2021. The Brazilian giant in the food sector suffered interruptions in its operations in
the United States, Canada, and Australia. The incident compromised the food supply chain
and sent meat prices soaring 3.

Still in mid-2021, the retailer Renner suffered a cyberattack by ransomware that compro-
mised its operations in physical stores and e-commerce 4. Equally impactful is the case of the
Colonial Pipeline, the largest oil pipeline network in the US, which suffered a similar attack
that resulted in significant losses. The company had its operations seriously compromised and
still had to pay a millionaire amount to rescue the information that was in the possession of
cybercriminals. The incident occurred in mid-2021 5.
1 Brazil health ministry website hit by hackers, vaccination data targeted. Reuters. December 10, 2021.
2 a type of malware that employs advanced encryption features to restrict access to an infected system and

charges a “ransom” before access can be re-established
3 BBC. Meat giant JBS pays $11m in ransom to resolve cyber-attack. BBC News, 10 June. 2021.
4 After a hacker attack, Renner denies that he paid $20 million to criminals. Available at:

<https://exame.com/tecnologia/renner-sofre-ataque-de-ransomware-e-sistemas-da-empresa-ficam-
fora-do-ar/>.

5 Colonial Pipeline confirms data theft during ransomware. Available at:
<https://www.tecmundo.com.br/seguranca/223178-colonial-pipeline-confirma-roubo-dados-durante-
ransonware.htm>. Accessed on: 3 Jan. 2023.
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In early 2022, the B2W e-commerce group suffered an attack resulting in a prolonged
bottleneck of its services, seriously compromising the operation of important e-commerce
platforms, such as Americanas S.A and Submarino. The unavailability of the platforms’ services
resulted in significant financial losses, also aggravated by the drop in the organization’s share
price on the stock exchange 6.

Even more important is the fact that adversaries have resorted to using Advanced Persistent
Threats (APT) to conduct cyber crimes, which is one of the main challenges of cybersecu-
rity today. APT allows attackers to remain on the compromised network for extended periods
and, usually unscathed, steal the data of organizations and governments (KHALEEFA; ABDU-

LAH, 2022). Through sophisticated offensive techniques, adversaries remotely control machines
compromised by them and extract confidential information of interest (ZIMBA et al., 2020). Ge-
nerally, an APT has non-repetitive, unpredictable, and evasive behavior.

Due to this dynamic nature, cybersecurity software deployed across corporate networks
based on traditional defense methods typically fails to detect this type of threat. Traditional
security techniques indeed play a good role in analyzing rule-rich structured data. For example,
Security Information Event Management (SIEM) software is widely used in detecting threats
using rules. However, they still struggle to identify and discover sophisticated threats with
unknown behaviors, such as advanced persistent threats. In those situations, solutions are ne-
eded that adapt to changes in the behavior of the attacker(s). Fundamentally, the adoption of
adaptive solutions, such as machine learning techniques, in cybersecurity is justified by their
ability to identify complex and subtle patterns and detect emerging threats that evade traditi-
onal rule-based or signature-based methods. ML models can learn from large volumes of data
and continuously adapt to new malicious behaviors, improving existing defense systems (MINK

et al., 2023).
Essentially, computer networks can be naturally modeled as graphs, in which nodes repre-

sent hosts and edges denote the communication links between them. This relational structure
necessitates the use of machine learning methods that are capable of capturing and leveraging
the inherent structural dependencies within the data.

Although machine learning methods have experienced an increasing adoption in cyberse-
curity domains (HALBOUNI et al., 2022; SARKER, 2023), most of the techniques are designed to
6 Americanas and Submarino take websites offline again after a suspected hacker attack. Availa-

ble at: <https://g1.globo.com/tecnologia/noticia/2022/02/20/americanas-e-submarino-tiram-sites-do-ar-
apos-identificarem-acesso-nao-autorizado.ghtml> . Accessed on: 3 Jan. 2023.
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operate on independent and identically distributed tabular data (i.i.d.), where each instance
is represented as a fixed-size feature vector, and relationships between instances are absent or
ignored. This fundamental assumption limits their ability to effectively capture and utilize the
structural dependencies and interactions that are intrinsic to relational data, such as graphs.
In graph-structured data, instances (nodes) are interconnected by edges, and the semantics
of these connections often carry critical information for tasks such as node classification, link
prediction, or anomaly detection.

When relational dependencies are ignored, as in the case of traditional machine learning
methods, valuable information encoded in the graph topology, such as node neighborhoods or
connectivity patterns, is lost. Such relational patterns may reveal coordinated attacks or ano-
malous communication behaviors that are imperceptible when instances are treated in isolation.
Efforts to convert graph data into a tabular format typically result in the loss of expressive-
ness and context, rendering the learning process less effective. For example, two nodes with
identical local attributes might play entirely different roles in a network depending on their
connectivity, which cannot be captured through conventional feature-based representations
alone. In contrast, Graph Machine Learning (Graph ML) techniques are explicitly designed to
learn from relational structures, capturing patterns that are decisive for accurate predictions
in graph-based contexts. This capability offers significant advantages when modeling complex
attacks, such as Advanced Persistent Threats (APTs).

1.1 ADVANCED PERSISTENT THREATS

An APT is a sophisticated and premeditated cyber attack designed to persist and remain
on the target system or network until its objectives are accomplished (SHARMA et al., 2023).
Such objectives often involve stealing data, exfiltrating confidential information, or impeding
an organization’s critical operations through various attack vectors. As Tang et al. (2022) and
Jaafer Al-Saraireh and Ala’ Masarweh (2022) point out, the term APT was first introduced
by the military and later adopted by the civilian IT security community. In 2006, the US Air
Force had to deal with the challenge of discussing cyberattacks against its network with civilian
experts. On the one hand, it was mandatory to avoid disclosing its findings about the origin
of the perpetrators. At the same time, it was necessary to tell the specialists that these were
attacks of a different type. So, they came up with the notion of Advanced Persistent Threats.
Each word in the APT acronym carries an important meaning, from which we can derive a



15

description of the Vukalović e Delija (2015) attack:

• Threat: Because APTs intend to harm their targets, they pose a threat.

• Persistent: Attackers are persistent. They stay stealthy, slowly consolidating their pre-
sence by pivoting from one system to another within the organization’s network, gaining
useful information as they move. In parallel, they strategically export the acquired data
to their command and control center. Typically, intruders stay for months in an attempt
to compromise systems.

Advanced: Attacks are usually coordinated by people with access to advanced resources
and in-depth knowledge and are often well-funded. Incidents involving APTs, therefore,
differ from traditional attacks.

APTs are highly complex and focused on specific objectives, utilizing intricate attack vec-
tors. The development, deployment, and upkeep of APTs demand a substantial investment in
workforce, IT infrastructure, and time. Consequently, an APT attack is expensive and usually
requires backing from a well-resourced patron, typically a nation-state or a corporate organi-
zation. As pointed out by Steffens (2020) and Yang et al. (2021), most APTs are dedicated
to spying on governments and companies. Far from being mere opportunistic cybercriminals,
these are advanced, well-organized, and coordinated groups with sufficient resources to launch
prolonged, sophisticated attacks (VUKALOVIć; DELIJA, 2015). In an APT attack, attackers ty-
pically employ social engineering tricks or vulnerability exploitation to gain initial entry into
the network.

Since attackers aim to undermine critical services or steal data, they will need to move
laterally7 within the target’s network to search for that data and gather information to help
them progress the attack. So after initial entry, they maintain a presence in the target infras-
tructure and slowly gain a foothold, moving laterally and compromising one host after another
within the organization’s network.

To achieve its goals, an APT needs to take many intermediate steps. First, the threat must
identify targets such as vulnerable devices or information about specific technologies. After
these initial steps, attackers inject malicious software into a payload such as Microsoft Office
7 Lateral movement is the tactic of moving within the network post-compromise. Refers to the methodical

progression of an attacker through a compromised network in order to gain access to additional systems.
This movement is often guided by reconnaissance activities into compromised computer networks, aimed
at mapping the network topology and identifying vulnerable or poorly monitored machines.
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documents, PDFs, or image files. After that, they usually use email attachments, URLs, or
removable USB media to deliver infected files to the victim’s host. Such a ruse allows the
attacker to gain initial entry into the network.

Once clicked or opened, these infected files trigger the attacker’s malicious code, which
enters the system to exploit its vulnerabilities. Typically, attackers target vulnerable applications
and user accounts or use an operating system feature that allows code to run automatically.

The complexity of this multi-layered process has led to the development of a concept known
as the Intrusion Kill Chain (VELAZQUEZ, 2015), often referred to as the “Cyber Kill Chain" or
simply the kill chain. The Intrusion Kill Chain was created to systematically categorize the
various aspects of APTs, outline the stages that attackers typically go through, and enhance
analysts’ understanding.

The traditional Cyber Kill Chain does not explicitly cover lateral movement because its
primary focus is on thwarting the initial phases of an attack. However, Lateral Movement
(LM) is a critical phase during an APT attack and occurs after the initial phase when the
attacker establishes an initial access point. During this stage, attackers seek to extend their
presence across various systems and collect information about the target network’s structure
and architecture. Given its significance to the success of APTs, detecting lateral movement
becomes decisive for countering an ongoing attack.

Authentication constitutes a fundamental component of cybersecurity, as highlighted by
Pritee et al. (2024). Essentially, abnormal authentications are a critical indicator of lateral
movement, as they can reveal transitions between devices that may lead to unauthorized
authentication, often by stealing credentials. Bowman et al. (2020) used information derived
from authentication event logs to build an unsupervised graph learning technique to detect
lateral movement, and Paudel e Huang (2022) proposed a method to learn temporal node
embeddings by using a graph embedding technique named CTDNE (NGUYEN et al., 2018) and
then employs a gated-recurrent unit (GRU)-based auto-encoder top of node representations to
learn long-term temporal information from authentication logs. The method can detect lateral
movement upon identifying whether an incoming edge is anomalous or not.

However, despite their remarkable detection capabilities, many of these approaches only
partially utilize the graph structure, extracting node features and then applying non-graph
algorithms for further analysis. In contrast, Graph Neural Networks (GNNs) algorithms offer
superior performance due to their complex structural capabilities, rendering graph embedding
methods incomplete. In the cybersecurity domain, some authors have studied the use of GNNs
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to perform lateral movement detection (KING; HUANG, 2023), fraud detection (DOU et al.,
2020), and intrusion detection for IoT (LO et al., 2022). In particular, GNNs are multilayer
neural networks that can learn patterns in structured graph data. Additionally, such algorithms
eliminate the need for model retraining when new nodes are added, which is more appropriate
for modeling dynamically evolving networks.

However, the success of detecting anomalous authentications using these methods depends
on the representational power of these models. A critical challenge lies in how to aggregate
node embeddings so that the GNN can better represent the network topology. In general, graph
neural networks aim to learn permutation invariant hypotheses to have consistent predictions
for the same graph when presented with permuted vertices/nodes, and such a property is
achieved through neighborhood aggregation schemes. Existing approaches traditionally em-
ploy simple functions (e.g., sum, max, mean) on node embeddings to obtain consistent node
representations. Nonetheless, we argue that an effective aggregation of node representations
cannot be achieved through mere sum or mean operations. These aggregation functions can
potentially lead to inaccurate and biased results by propagating irrelevant or ambiguous in-
formation. Therefore, filtering irrelevant node information during aggregation should improve
model prediction.

Other significant challenges from existing GNNs pertain to the contextual range afforded
by these algorithms and how this impacts the learning of patterns even from the most distant
vertices of the graph. In particular, the inability to capture long-range dependencies hinders
their performance. These limitations are especially pronounced in cybersecurity applications,
where capturing global context and detecting subtle, long-range interactions is critical for
identifying anomalous behavior, such as APTs (ALSHAMRANI et al., 2019).

Such limitations have been explored through generalizations of the Transformer architecture
to graphs. The transformer architecture (VASWANI et al., 2017) has experienced an increasing
research interest in the literature on graph neural networks in recent years, culminating in the
Graph Transformer architectures (HENDERSON et al., 2023; SHIRZAD et al., 2023). It occurs
because transformers are naturally graph neural networks (KIM et al., 2022; VELIčKOVIć, 2023).
Concretely, the self-attention mechanism in the standard Transformer considers the input
tokens as a fully connected graph, which is agnostic to the inherent graph structure of the data.
Notably, one of the key advantages of Transformer variants for graph modeling is that they can
learn long-range dependencies between nodes. Nevertheless, the high computational complexity
of the Transformer architecture on large graphs is another challenge. Graph Transformers is a
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relatively new and underexplored area of research.
Furthermore, many existing approaches overlook the temporal information associated with

events in computer networks, even though these events are time-dependent. Analyzing graph
structures without considering time-based perspectives may only reveal general trends that
have limited relevance for cybersecurity threats. In reality, anomalies are rarely isolated events.
To accurately identify them, we must consider the spatial relationships and the temporal
context of an entity’s interactions.

This thesis enhances GNN architectures inspired by Transformers (VASWANI et al., 2017) in
two distinct experiments to detect unauthorized access in computer networks. Specifically, it
aims to propose not only a novel model for detecting anomalous authentications—an important
indicator of lateral movement—but also a method for identifying suspicious endpoints within
the network, enabling their subsequent isolation. The Transformer architecture was chosen
primarily for its ability to model long-range dependencies, in contrast to traditional GNNs,
enabling it to capture critical information even from the most distant nodes in the graph.
This characteristic is particularly advantageous in graph-based anomaly detection tasks, where
relevant patterns may emerge from complex and non-local interactions across the network.

First, we propose a new link prediction approach incorporating a soft-attention mecha-
nism to filter irrelevant node information during node representation aggregation. Second, we
leverage recent advances in Transformer architectures for large graphs. We propose a novel
node classification approach for anomalous authentication detection that explicitly addresses
the temporal dependencies between events at different granularities. Experimental results on
relevant datasets demonstrate that our proposed methods outperform competing approaches
in anomalous authentication detection.

1.2 RESEARCH QUESTIONS

The central premise of our proposal is that users compromised in a lateral movement attack
will interact with devices they usually do not have access to. Thus, the model profiles each
network entity and distinguishes authentication activities that deviate from standard patterns.
We argue that an effective aggregation of node features into a graph-level representation
cannot be achieved through a simple sum or mean. Moreover, these aggregation functions can
be sensitive to outliers, leading to inaccurate or biased results.

The research questions derived from this hypothesis are:
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• What is the contribution of different aggregation methods to the quality of a GNN model
when framing abnormal authentication detection as a link prediction task? How does the
performance of that aggregation method compare to traditional ones (e.g., sum, mean,
and max)?

• How does filtering out irrelevant node information from the graph affect the generaliza-
tion of an anomalous login detection model?

• What is the role of each node in the network? Does incorporating temporal dynamics
enhance the generalization capabilities of models designed for detecting anomalous no-
des?

These questions explore the model’s ability to correctly identify anomalous links between
the entities and evaluate the efficacy of different aggregation schemes in improving the pre-
dictive performance of the model.

This study also explores the model’s effectiveness in identifying anomalous nodes that
signify suspicious hosts. It emphasizes the most relevant information about these nodes and
their activities over time. Understanding the role of each node within the network is essential
for detecting and isolating suspicious endpoints.

1.3 OBJECTIVES

This thesis aims to develop and validate Transformer-based models that operate on graph-
structured data to detect lateral movement and suspicious endpoints within computer networks,
an essential aspect of Advanced Persistent Threat (APT) attacks. Specifically, the study leve-
rages Graph Transformer Networks to identify abnormal behaviors in network authentications.
As discussed in the following chapters, we achieve these objectives by introducing key archi-
tectural innovations to enhance generalization ability. This capability could lead to the early
detection of cyber threats and potentially minimize the damage caused by such attacks.

To accomplish this general goal, the following specific objectives are defined:

• Investigate and adapt Transformer-based architectures for processing graph-structured
security data, emphasizing capturing long-range dependencies and heterogeneous node
relationships.
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• Propose architectural modifications to improve the generalization and robustness of
Graph Transformer models when applied to the cybersecurity data domain.

• Develop a method to identify suspicious endpoints and lateral movement patterns using
learned node representations and attention mechanisms derived from the proposed mo-
dels.

• Conduct extensive experimental evaluations on real or realistic network authentication
datasets, comparing the proposed approach against baseline methods in terms of accu-
racy and robustness.

1.4 ORGANIZATION OF THE DOCUMENT

The following chapters and sections detail how we plan to achieve our objectives. Chapter 2
examines the Cyber Kill Chain, a conceptual framework designed to delineate the sequential
stages of a cyberattack, and explores the concept of lateral movement in cyber operations,
providing an overview of current research developments in this area.

Chapter 3 presents the theoretical foundations of the thesis. It introduces key concepts in
graph theory and graph machine learning and describes core prediction tasks: node classification
and link prediction, framed within cybersecurity and lateral movement detection. The chapter
proceeds with an overview of GNNs, the standard transformer architecture, and its adaptation
to Graph Transformers (GTs). It concludes by discussing the main challenges in using GNNs
for graph representation learning.

In Chapter 4, we propose a method for detecting abnormal logins, which can indicate
lateral movement, by identifying anomalous links through graph transformers.

Chapter 5 presents a novel, scalable Graph Transformer (GT) model for detecting anoma-
lous hosts in authentication logs through node classification. Addressing the scalability chal-
lenges of traditional GTs, the model incorporates temporal information and employs advanced
attention mechanisms, including a soft-attention scheme to filter irrelevant data. Experimental
results show superior performance compared to existing Graph Neural Networks (GNNs). Fi-
nally, in Chapter 6, we conclude this thesis, summarize our results, and present future research
opportunities.

Chapter 6 provides the conclusion of this thesis, emphasizing the key findings, limitations,
future research opportunities, and the published works stemming from this research.



21

2 UNDERSTANDING ADVERSARY BEHAVIOR: INTRUSION KILLCHAIN

AND LATERAL MOVEMENT

The Cyber Kill Chain is a conceptual framework created by Lockheed Martin to outline
the sequential stages of a cyberattack. As discussed by (STEFFENS, 2020), this framework was
adapted from traditional military kill chain concepts and has become a fundamental model in
cybersecurity. Essentially, the Cyber Kill Chain helps to understand adversaries’ behavior and
effectively structure defensive measures (VELAZQUEZ, 2015).

Notably, the traditional Cyber Kill Chain framework does not explicitly cover lateral mo-
vement, as it primarily focuses on the initial phases of an attack. Specifically, this approach
assumes that attacks will be detected and mitigated early, which is not always true. Attackers
often successfully establish an initial foothold and move laterally across the network to com-
promise additional systems. Therefore, incorporating lateral movement into defense strategies
is essential to address the full scope of an attack and mitigate its impact even after an initial
breach has occurred.

2.1 INTRUSION KILL CHAIN

Figura 1 – The kill chain is a way to summarize and facilitate discussion about the steps taken by an adversary
during an APT attack.
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Based on the Cyber Kill Chain, henceforth referred to simply as kill chain, Chen, Desmet
e Huygens (2014) present a comprehensive study on APT attacks, characterizing the attack
model and the analysis techniques typically adopted, in addition to presenting a clear distinction
between APTs and traditional attacks. The authors detail how these persistent threats operate
and formulate a typical attack process that comprises six phases, such as (I)reconnaissance
and weaponization; (II) payload delivery ; (III) initial intrusion (IV) command and control (V)
lateral movement; and (VI) data exfiltration.

The phases described below are related to what was represented by Chen, Desmet e Huy-
gens (2014), but with some abstractions to facilitate the presentation and the inclusion of
the step Erase evidence, an important phase of the chain of events where the attacker erases
his traces to make the work of forensic teams more difficult. Additionally, an illustration is
provided in Figure 1:

• Reconnaissance - Attackers initially choose networks of organizations that may contain
the information they are interested in. In this phase, relevant entities are searched, and
information that can be used to facilitate later phases is collected.

• Delivery - Attackers inject malicious code into some payload such as Office documents,
PDF files, images, or some utility software. Then, they deliver the infected file to the
victim. A common method is to embed malicious code in a document sent to a recipient
via email.

• Installation or Infiltration - Based on information collected in the reconnaissance phase
and using social engineering tricks, the attacker infiltrates the organization’s network to
establish a foothold. In most cases, a well-crafted email with a malicious attachment or a
link to a malicious website is sent to the target user. Once the user opens the attachment
or clicks on the link, the malicious code is executed, and a backdoor program is installed
on the user’s system. At that point, a connection is established between the system and
the attacker’s remote server.

• Lateral Movement - Once the execution of the malicious code has been successful,
the first computer on the organization’s network has already been compromised, and
the intruder can now control it. However, that initial device usually does not contain the
information the attacker seeks. In fact, intruders often do not even know exactly where
the relevant data is stored. However, having a computer under their control allows them
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to move laterally across the network, pivoting to different systems until they find the
information of interest. This phase can last several days or even months and is critically
important to the adversary’s goals of securing its presence on the target infrastructure.
In killchain, lateral movement is described as an loop, as attackers continue to move
laterally across the network throughout the entire operation.

• Exfiltration - The attackers have practically achieved their objective at this stage.
When a significant fraction of the organization’s systems are already compromised, they
often only need to transfer data from the victim’s network to their own systems. This is
usually done through specific tools with upload functionality that the attacker installs
on the victim’s system. There are also cases where data is sent using legitimate tools
already present in the compromised system. Moreover, the attacker could also install
some ransomware to encrypt the stolen organization’s data.

• Erase Evidence - The adversary wants to remain undetected during an APT campaign.
Even the most sophisticated attacks can leave suspicious traces on compromised systems.
Therefore, the most careful opponents will usually do their best to cover their tracks,
whether during the final phase of the attack or even during all stages in between. This
includes deleting any log data generated and removing any tools the attacker has installed
as soon as it is no longer necessary to keep them on compromised systems.

Despite the Cyber Kill Chain providing an increased understanding of the anatomy of cybe-
rattacks, the concept needed to be further developed to perform more solid threat modeling
and threat assessments effectively. Based on this, the MITRE (ATT&CK, 2020) framework
comprehensively describes cyber attackers’ behavior once inside a computer network. The
framework is continuously updated and is based on publicly known adversarial behavior.

Fang et al. (2022) suggests that understanding attack techniques and the purposes of each
stage in an APT plays an important role in addressing these threats. Some of these techniques,
it is worth mentioning, are highly decisive to the attacker’s success. Network infiltration is only
the first step for an attacker. Achieving his primary goals often requires exploring the network
to find more important targets.

This suggests that lateral movement, which we will discuss in more detail in the next
section, is the most critical stage in the lifecycle of an advanced persistent threat, as it allows
adversaries to exploit and maintain their presence on the network and slowly acquire important
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information about its structure and architecture. That said, it is reasonable to assume that
early detection of lateral movement has the potential to retard an attack in progress Amin et
al. (2021). In particular, by detecting the threat at this stage, it would be possible to reduce
the severity of the damage caused significantly.

2.2 LATERAL MOVEMENT (LM)

As previously stated, the attackers’ goal at this stage is to expand their presence to other
systems and gather more information about the structure and architecture of the targeted
network. Among the previously described kill chain phases, it is quite reasonable to state that
lateral movement takes on a prominent position since it is a necessary step for the attacker
to persist in the network for long periods. As pointed out by different experts, around 60% of
attacks like those mentioned in the opening paragraphs of this work involve lateral movement
(CANARY, 2020).

Typically, the machine used by the attacker to establish his initial presence on the network
does not have the necessary user privileges to run some of the advanced tools he needs to
consolidate his presence and install software, nor does it store the most valuable data he seeks.
Therefore, one of the intruders’ first steps is to identify other accessible machines and try to
obtain the necessary login credentials to access those machines. The adversary will try to use
various techniques to access other machines from an already compromised system. Most of
the time, stolen legitimate credentials are used during this stage.

According to Alshamrani et al. (2019), LM can involve elevating privileges and, on other
occasions, it consists of obtaining user passwords through keyloggers1. Eventually, the adver-
sary may resort to techniques such as pass-the-hash2 and/or exploitation of vulnerabilities in
software. The chosen method usually depends on the target’s system.

Adversaries often aspire to extended privileges within systems, typically at the administrator
level. After elevating their privileges, the adversary searches the computer’s memory for the
credentials of other users, including administrators. With these credentials, attackers can log in
to any computer on the network, even with administrative privileges. Afterward, the attacker
can use legitimate administrative tools already installed by default on target machines.
1 Keyloggers work in the background on the operating system and capture every user typing from the

keyboard.
2 occurs when an attacker steals a user’s credential using some hash function.
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Figura 2 – An illustration of lateral movement activity in a fictitious enterprise network with machines
A,B,C,D,E,F, and servers SRV-1 and SRV-2. The attacker first establishes an initial presence in
A and then moves laterally to other machines, stealing credentials or hijacking remote sessions to
reach higher-value machines within the network. By making logon in these machines, the adversary
leaves traces. Authentication logs can reveal unusual logins typically associated with such lateral
movement
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For example, PowerShell, which has been a default choice of attackers (LEMAY et al., 2018),
is an efficient tool that allows the execution of codes at arbitrary times and the necessary
commands for the attacker to switch between different machines along the network.

As they switch between different computers, attackers learn about the network structure
and operation. Moreover, the threat actors typically seek users with access to interesting
documents or weakly protected servers. At the same time, the attacker could install additional
malware on strategically selected systems.

Eventually, the intruder could try to locate the Domain Controller (DC), a server responsible
for storing the credentials of all users on the network. Moreover, the DC is typically used to
verify that a user is authorized to log in to their desktop or when specific directories on a
file server can be accessed. As pointed out by Steffens (2020), a compromised DC server
irretrievably exposes all user credentials and allows the creation of additional accounts with
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appropriate privileges.
Therefore, detecting lateral movement is decisive in mitigating the impacts of an APT,

which, as aforesaid, include financial loss, theft of confidential data, and interruptions to es-
sential services. However, in addition to these damages, which are already quite significant, the
worst and most expensive consequence is the damage to the business’s brand and reputation.

APT and, by extension, lateral movement pose some of the main challenges for traditional
detection methods. To detect cyber threats and future abnormal behavior, threat detection
systems mainly use heuristics and static signatures of known events, which are recorded in
a large volume of data logs (HUBBALLI; SURYANARAYANAN, 2014; MASDARI; KHEZRI, 2020).
Considering the high volume of data needed to create those signatures, the occurrence of an
analyst error in the labeling process means rewriting a considerable number of rules.

Unfortunately, some of the techniques used by adversaries during lateral movement (e.g.,
stolen credentials) are too complex to formalize into signatures. During the attack, intruders
will do their best to appear as legitimate users across the network. They will use the same
tools as professional IT administrators, performing authentication on different machines within
the network using legitimate user credentials, even if stolen from systems.

Furthermore, lateral movement does not follow an explicit or recurrent pattern, so the
sequence of steps, tactics, and tools used varies according to the intruder’s plans, who may
adjust his methods periodically (POWELL, 2020). Therefore, the detection of malicious activities
that characterize lateral movement must consider the behavioral characteristics of users along
the network, and solutions must be required to adapt to changes in the attacker’s behavior.
Although commercial detection tools have evolved significantly over the last few years, they
cannot incorporate the behavioral patterns of attackers into their operations yet.

Meanwhile, it has been highlighted in a recent study conducted by (MINK et al., 2023) that
integrating defensive techniques with artificial intelligence is essential for advancing cyber-
security. With the rapid development of new machine learning-based technologies, defenders
can now use artificial intelligence to improve the identification, response, and countermeasure
of cyber attacks. From a broader perspective, researchers have recently delved into various
machine learning approaches for anomaly detection.

Typically, anomaly detection algorithms are trained on normal system behavior during
routine operation and then used to identify deviations of interest. In cybersecurity contexts,
anomalies can be indicative of various malicious activities, such as fraud, cyber-attacks, or other
forms of unauthorized access. Conventional algorithms like Isolation Forests, Autoencoders,
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and others have successfully detected anomalous events (GONçALVES; ZANCHETTIN, 2024b;
ALMEIDA et al., 2023). However, they often suffer from a limitation, which is treating individual
events independently without considering their interrelated nature.

On the other hand, some of the existing approaches incorporate graph techniques that
can be employed to address cybersecurity issues (BOWMAN; HUANG, 2021; PAUDEL; HUANG,
2022; POWELL, 2020; FANG et al., 2022). Regarding cybersecurity, data usually entails a group
of interconnected entities. This can be seen in network activities, which typically take the
form of a graph structure characterized by a set of nodes and edges. As such, the utilization
of graph-based machine learning has the potential to bring about significant advancements in
next-generation cybersecurity systems. Notably, several arguments and justifications have been
presented by (BOWMAN; HUANG, 2021) to support the suitability of Graph Machine Learning
for various domains within cyber-security, including LM detection. For example, Fang et al.
(2022) designed an algorithm that can distinguish benign activity paths and lateral movement
paths based on graphs and an unsupervised algorithm.
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3 THEORETICAL FUNDAMENTATION AND LITERATURE REVIEW

This chapter provides the necessary theoretical background for the thesis. It begins by
introducing fundamental concepts of graph theory and Graph Machine Learning, including
graph definitions, properties, and early graph representation learning techniques like DeepWalk
and Node2Vec. It outlines key prediction tasks, such as node classification and link predic-
tion, contextualizing them within cybersecurity, particularly for lateral movement detection,
and reviewing existing graph-based approaches. The chapter then delves into Graph Neural
Networks (GNNs), explaining the message-passing framework and common architectures while
also highlighting their limitations. Then, we discuss the standard Transformer architecture and
its adaptation into GTs, mentioning their potential to capture global dependencies, overcome
GNN limitations, and the associated challenges. We will discuss the link prediction task using
GNN and conclude by highlighting the challenges of employing GNN for graph representation
learning in the cybersecurity domain.

3.1 AN INTRODUCTION TO GRAPH MACHINE LEARNING

Graph Machine Learning, or shortly Graph-ML, involves employing machine learning methods
to extract valuable insights from graph-structured data. These days, Graph-ML is a fast-
growing research area. Due to the topic’s relevance to the present thesis, this chapter briefly
reviews the core concepts and literature on graph theory and graph representation learning
through machine learning, which allows us to use the learned vectorial representations of graph
structure to perform predictive tasks on network data, including anomaly detection.

3.1.1 GRAPH DEFINITIONS AND PROPERTIES

Graphs are a ubiquitous and versatile data structure that serves as a universal language for
describing complex systems. In the most general view, graphs can capture structural informa-
tion about a set of objects (or entities) and their relationships. Such objects are represented
by nodes (or vertices) and their relationships by edges, as depicted in Figure 3. Graph theory
is the branch of mathematics that studies interactions and connections. By examining the
relationship between discrete objects, we can gain insights into the larger network in which
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they exist. With our world becoming increasingly interconnected, it can be incredibly valuable
to understand and predict the information a connection, or the lack thereof.

Figura 3 – A graph 𝒢 whose node set is 𝒱 = {1, ..., 7} and the edge set is ℰ =
{{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}}.

Source: Thesis Author

For example, individual hosts (IP addresses) can be modeled as graph nodes to encode a
computer network, and the communication between hosts is modeled as edges of the graph
(LO et al., 2022). In cybersecurity, analyzing interactions using the graph theory lens is a
robust tool against the adversary, as it offers a global view of the system (something that
a cybercriminal usually does not have). In fraud detection systems, behavioral cues such as
login times and locations can be altered by advanced fraudsters to camouflage their intents.
On the other hand, it might be reasonable to argue that fraudsters could not have a global
view of the entire network in which they are operating. It would, therefore, be impractical for
them to adjust their behavior to fit as well as possible into this network without knowing all
its structure and characteristics.

Definition 1. Formally, a graph can be denoted as 𝒢 = (𝒱 , ℰ) where 𝒱 = {𝑣1, 𝑣2, . . . , 𝑣|𝒱|}

represents the node set and ℰ = {𝑒1, 𝑒2, . . . , 𝑒|ℰ|} represents the edge set 𝒢. The edge con-
necting two nodes 𝑣𝑖 and 𝑣𝑗 can be represented as 𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗) ∈ ℰ . A node 𝑣𝑖 is adjacent
to another node if an edge exists between them.

In many real-world applications, graphs constantly evolve as new nodes are added and new
edges continuously emerge. These graphs are dynamic and can capture temporal information.
In contrast, in static graphs, the connections between nodes are fixed.

Definition 2. A dynamic graph 𝒢 = {𝒱 , ℰ} is a graph whose node set 𝒱 , and the edge set
ℰ is dynamically changing with new nodes and edges added or removed. In a dynamic graph,
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timestamp information is associated with each node or edge to indicate when a connection
emerges on the network.

We can describe a graph by listing the vertex and edge sets, which is accurate and te-
chnically correct. However, such a description alone is often insufficient and tends not to be
particularly helpful in uncovering novel insights. A convenient way to obtain a codification of
graph structure is to represent the graph through an adjacency matrix, which describes the
connectivity between the nodes through a square matrix so that every node indexes a particular
row and column and indicates when pairs of vertices are adjacent or not in the structure.

Definition 3. Given a graph 𝒢, the edge distribution can be denoted using an adjacency
matrix A ∈ {0, 1}𝑁×𝑁 . We can then represent the presence of edges as entries in this matrix.
The (𝑖, 𝑗)-th entry represents the connectivity A𝑖,𝑗 between nodes 𝑣𝑖 and 𝑣𝑗. If A𝑖,𝑗 = 1, there
exists an edge, otherwise, A𝑖,𝑗 = 0.

Some graphs can also have weighted edges, where the entries in the adjacency matrix are
arbitrary real values rather than {0, 1}. For instance, a weighted edge in a machine-to-machine
interaction over a computer network represented in a graph might indicate the frequency of
the interaction between two machines.

Over the recent decades, the amount of graph-structured data available to researchers has
substantially increased. However, the true potential of this data remains untapped, and the
challenge is unlocking that potential. As these datasets grow in size and complexity, machine
learning will be crucial in furthering our capability to model, analyze, and comprehend graph
data.

However, the application of graphs in different computational solutions requires their struc-
ture to be encoded efficiently. In other words, we first need to obtain a useful graph repre-
sentation. The progress made in obtaining graph representations is often closely tied to the
concept of graph representation learning.

3.1.2 GRAPH REPRESENTATION LEARNING

Graph Representation Learning refers to the development and refinement of algorithms
and techniques that enable the automated learning of meaningful representations for graphs
(HAMILTON; YING; LESKOVEC, 2017). By leveraging such approaches, relevant features and
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patterns from graph-structured data can be extracted, and these representations can be used
to perform prediction tasks, such as classification and clustering.

Definition 4. Graph Representation Learning, also known as graph embedding, aims to learn
a function 𝜑 : 𝒱 −→ R𝑑 that embeds the nodes 𝑣 ∈ 𝒱 in a graph into a low-dimensional
Euclidean space where 𝑑 ≪ |𝒱|.

As depicted in Figure 4, graph embedding allows us to automatically generate represen-
tation vectors for the graphs such that the output vectors preserve different properties of the
graph, e.g., node proximities. Thus, the similarity of embeddings between nodes indicates their
network similarity.

Figura 4 – A toy example of graph representation, with the input graph in (a) and the output node represen-
tations in (b).

3.1.2.1 Representing graph nodes as vectors

The concept of node embedding centers around creating vector representations of nodes
by encoding them as low-dimensional vectors where geometric relations in this latent space
correspond to relationships in the original graph. Node embedding involves two main steps.
Firstly, an encoder model 𝜑 : 𝒱 −→ R𝑑 maps each node in the graph into a low-dimensional
vector or embedding, learning a matrix Z ∈ R|𝒱|×𝑑 containing the embedding vectors for all
nodes, where z𝑣 denotes the row of Z corresponding the embedding z𝑣 ∈ R𝑑 of the node
𝑣. Secondly, a decoder model utilizes these low-dimensional node embeddings to reconstruct
information about the nodes’ neighborhoods in the original graph. For example, given a node
embedding z𝑣 of a node 𝑣, the decoder can predict the set of neighbors 𝒩 (𝑣) associated with
that node.
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The decoder plays a central role in reconstructing specific graph statistics from the node
embeddings produced by the encoder. Although various decoders can be used, employing
pairwise decoders is standard practice. For instance, the Inner Product Decoder and the Bi-
linear Decoder estimate the likelihood of an edge existing between two nodes based on the
inner product of their embeddings, with the bilinear variant introducing a learnable weight
matrix to model more complex interactions. The Multi-Layer Perceptron (MLP) Decoder le-
verages neural networks to capture non-linear relationships between node pairs. Meanwhile,
Distance-based Decoders rely on similarity measures, such as Euclidean or cosine distance, to
infer relationships based on geometric proximity in the embedding space.

These decoders can be viewed as estimating the similarity or relationship between pairs
of nodes. A primary pairwise decoder may predict if two nodes are neighbors in the graph,
equivalent to determining if an edge connects them. When a pair of embeddings (z𝑢, z𝑣)
are fed into the pairwise decoder, it produces a reconstruction of the relationship between
nodes 𝑢 and 𝑣. The objective is to optimize both the encoder and decoder to minimize the
reconstruction loss, which can be expressed as:

𝐷𝐸𝐶(𝐸𝑁𝐶(𝑢), 𝐸𝑁𝐶(𝑣)) = 𝐷𝐸𝐶(z𝑢, z𝑣) ≈ Similarity(𝑢, 𝑣) (3.1)

In sum, given a node 𝑢, we want to learn feature representations predictive of nodes in its
neighborhood 𝒩 (𝑢). The Similarity(𝑢, 𝑣) approximate the probability that nodes 𝑢 and 𝑣

co-occur on a random walk over the network.
Well-consolidated graph embedding methods, such as DeepWalk (PEROZZI; AL-RFOU; SKI-

ENA, 2014), Node2vec (GROVER; LESKOVEC, 2016), and LINE (TANG et al., 2015), implicitly
use decoders in the form of pairwise scoring functions as part of their training objectives. In
particular, these methods employs inner-product when estimating node co-occurrences through
decoders such that:

𝐷𝐸𝐶(z𝑢, z𝑣) = z⊤
𝑢 z𝑣 (3.2)

Notably, the remarkable success of Word2vec(MIKOLOV et al., 2013a; MIKOLOV et al., 2013b)
across several natural language processing tasks has aroused a growing interest in applying its
Skip-gram model to learn node embeddings and adapting the inner-product approach to use
stochastic measures of neighborhood overlap. DeepWalk (PEROZZI; AL-RFOU; SKIENA, 2014),
which was the first method to make significant strides in this direction, considers the nodes in
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a given graph as words in an artificial language, with sentences in this language generated by
random walks – a random walk is an alternating sequence of vertices and edges whose edges
are selected iteratively and random. DeepWalk subsequently uses the Skip-gram model from
word2vec to learn node representations that maintain the node co-occurrence observed during
these random walks.

Similar approaches such as Node2Vec (GROVER; LESKOVEC, 2016) and LINE (TANG et al.,
2015) also achieved breakthroughs. For instance, the LINE model considered preserving both
1st-order and 2nd-order proximity between adjacent nodes. By doing so, it can successfully
reconstruct proximity between nodes and achieve remarkable results in link prediction and node
classification tasks. Node2Vec builds on the ideas presented in DeepWalk but offers greater
flexibility and can capture a broader range of graph structures. Unlike DeepWalk, which uses a
simple random walk strategy, Node2Vec employs a biased random walk strategy that balances
between exploring and exploiting the graph structure. This strategy allows Node2Vec to capture
both local and global graph structures. It enables the generation of embeddings that better
represent the graph’s topology1.

However, as pointed out by Hamilton, Ying e Leskovec (2017), these methods have two
significant limitations. Firstly, there is no parameter sharing between nodes in the encoder,
leading to computational inefficiencies as the number of parameters increases linearly with the
number of nodes. Secondly, direct embedding methods lack generalization capabilities, which
means they cannot deal with dynamic graphs since they can only generate embeddings for
nodes present during the training phase. These methods are problematic for many real-world
applications where the underlying graphs evolve as new nodes or edges appear after the initial
training phase.

3.1.3 PREDICTION TASKS ON GRAPHS

As pointed out by Hajiramezanali et al. (2019), once graph nodes have been mapped to
a low-dimensional vector space according to the Definition 4, traditional feature vector-based
machine learning formulations can be employed. Two typical node-focused tasks widely studied
in this context are node classification and link prediction.

Suppose we have a vast e-commerce dataset containing millions of users (represented as
nodes) and product reviews (represented as edges). Although a significant number of these
1 Our use of “topology” to refer to local patterns is common in the network literature.
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reviewers are genuine users of the e-commerce platform, there are also fraudulent reviewers
among them. Dishonest companies often hire fake reviewers to post positive reviews of their
products, which can harm the credibility of customer reviews and violate the e-commerce
platform’s terms of service. Detecting these fraudulent reviewers can be crucial for maintaining
trust and transparency, but manually verifying each account would be a prohibitively expensive
task. Therefore, we would like a model capable of classifying these accounts as fraudulent or
genuine using only a limited number of manually labeled examples. This is a classic example of
node classification where, in this example, the aim is to identify anomalous nodes in a graph
(DOU et al., 2020).

Definition 5. Node classification – In a graph 𝒢 = {𝒱 , ℰ}, some of the nodes are labeled, and
these labeled nodes form the set 𝒱𝑙 ⊂ 𝒱 . The remaining nodes, without any label information,
are referred to as the unlabeled set 𝒱𝑢 = 𝒱 − 𝒱𝑙. It is worth noting that 𝒱𝑢 + 𝒱𝑙 = 𝒱 and
𝒱𝑢 ∩ 𝒱𝑙 = ∅. The primary objective of the node classification task is to predict labels for the
nodes in 𝒱𝑢.

Let us now consider a computer network in which entities—such as users and machi-
nes—are represented as nodes, and authentication events between them are modeled as edges
in a graph. A natural question arises: Can we predict the probability that a particular user will
log into a given machine? More broadly, is it possible to employ machine learning techniques
to infer the existence of edges between nodes in such a graph? This problem is commonly
referred to as link prediction or relation prediction in the literature (ZHANG; CHEN, 2018a;
Lü; ZHOU, 2011; KUMAR et al., 2020) and uses the knowledge from the existing relationships
between entities to infer new relationships. However, we will simply call it link prediction in
this work. Along with node classification, it is one of the more popular machine-learning tasks
with graph data. It is worth mentioning that link prediction tasks can benefit applications in
cybersecurity, such as detecting lateral movement by identifying anomalous edges in a graph
(BOWMAN et al., 2020).

Definition 6. Link Prediction – In a given graph 𝒢 = 𝒱 , ℰ , the edge set ℰ comprises all
observed edges. Let ℳ denote the complete set of possible edges between nodes. The set of
potential edges with unobserved edges between nodes is represented by ℰ ′, where ℰ ′ = ℳ−ℰ .
The objective of the link prediction task is to identify the edges that are most likely to exist
in the graph. After link prediction, each edge in ℰ ′ is assigned a score, which indicates its
likelihood of existing or emerging in the future.
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In case of a temporal graph 𝒢 = (𝒱 , ℰ , 𝒯 ), 𝒯 represents the timestamps associated with
each edge. Each edge 𝑒 ∈ ℰ is thus a tuple (𝑢, 𝑣, 𝑡), where 𝑢, 𝑣 ∈ 𝒱 are the nodes connected
by the edge and 𝑡 ∈ 𝒯 is the timestamp indicating when the edge appeared. The objective of
the temporal link prediction task is to identify the edges that are most likely to exist in the
graph at a specific future time 𝑡𝑓 > 𝑡𝑚𝑎𝑥, where 𝑡𝑚𝑎𝑥 is the maximum timestamp in 𝒯 .

As aforesaid, after the models learn vector embeddings, various secondary tasks can benefit
from such embeddings, including the widely studied node classification and link prediction.
However, simply generating node embeddings and then employing machine learning algorithms
to perform prediction is merely an incomplete use of graph structure. Furthermore, as large-
scale graphs become increasingly complex, graph embedding models are being challenged to
capture graph structures efficiently (HOANG et al., 2023). In response, there has been a growing
body of research on deep graph neural networks capable of working with complex, large, and
dynamic graphs (WU et al., 2021). Moreover, deep neural network-based models offer better
generalization. They can more effectively capture relationships between entities and the overall
structure of the graph, which motivated the rise of GNN architectures.

As previously discussed, graph embedding methods like Node2Vec and DeepWalk often
combine multiple algorithms to generate node embeddings. The accuracy of the individual
algorithms directly impacts the quality of these embeddings. In contrast, graph neural networks
(GNNs) offer an end-to-end approach to generate node embeddings in graph-related tasks.

3.1.4 LATERAL MOVEMENT DETECTION THROUGH GRAPHS AND MA-

CHINE LEARNING

APTs are a category of targeted attacks perpetrated by highly skilled technical adversaries
that employ a broad spectrum of attack vectors for infiltration (ZIMBA et al., 2020). One of the
critical characteristics of an APT is adapting to the defender’s efforts to resist it Alshamrani et
al. (2019). Moreover, APTs are stealthy and exhibit characteristics that are difficult to detect
using most traditional rule-based defense tools.

According to Powell (2020), current commercial solutions that provide network intrusion
detection and prevention on the network do not adequately protect against lateral movement.
Notably, to defend against this threat, cyber defense tools need to adapt to the behavioral
changes of the attackers, thereby increasing the research interest in machine-learning-based de-
fense approaches. Unfortunately, the literature on lateral movement detection through machine
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learning is still in its early stages of development. Notably, ideas that involve the application
of graph-structured data have been emphasized (BOWMAN; HUANG, 2021). These approaches
commonly represent internal network logins as motion graphs between machines or users and
employ machine learning techniques to identify abnormal behavior, thereby detecting anomalies
in graph-structured data.

In the wake of recent advances in machine learning, new techniques based on artificial
intelligence have emerged with the potential to complement existing intrusion detection sys-
tems. For example, authors in (BAI et al., 2019) propose using an anomaly detection approach
that utilizes Windows RDP event logs to identify indicators of lateral movement (LM) and
explore different supervised machine learning (ML) methods for classifying RDP sessions. The
authors recall that Remote Desktop Protocol (RDP) can be used during lateral movement to
access unauthorized hosts successfully. Essentially, using RDP leaves footprints on both host
and network logs.

Graph-based machine learning has the potential to make a significant impact on next-
generation cybersecurity systems. In particular, the effectiveness of graph-based methods for
anomaly detection in cybersecurity has gained significant traction, driven by their ability to
capture complex relationships and patterns within network data. This capability allows them to
effectively identify anomalous behavior, often indicative of malicious activity within a computer
network (LAKHA et al., 2022).

For exampleBian et al. (2021) explores patterns extracted from authentication logs on
the host using a graph representation of authentication events. By leveraging the patterns
extracted from the graph, they evaluated various well-known machine learning algorithms to
detect hosts affected by lateral movement. Subsequently, to reduce computational overhead
and overfitting, the authors studied the correlation among the patterns and applied feature
selection, which improved the performance for all tested anomaly detection techniques, with
the Random Forest method achieving the best performance.

The work in (CHEN et al., 2018) explores a network embedding-based approach to identify
potential malicious lateral movement behaviors. Firstly, they construct a communication graph
of the host with patterns extracted from traffic logs or other data sources. The crucial as-
sumption is that the graph consolidates information about the internal network structure and
other important details from the utilized data sources. Next, they employ a learning method
that considers the feature aggregation from vertices or their neighborhood through edge com-
bination. Afterward, the authors trained a node classification model using graph embedding
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methods. Specifically, a semi-supervised classification algorithm is trained on these embedding
vectors to identify malicious hosts that indicate potential lateral movement.

In turn, Bian et al. (2021) explore graph-based features extracted from host authentication
logs and propose a novel approach for detecting hosts targeted by LM during the LM phase
of an APT attack. The authors then evaluate numerous ML classifiers, including ensemble
techniques, to detect susceptible hosts.

The author in (BOHARA et al., 2017) argues that, during lateral movement, attackers typi-
cally establish a command and control (C&C) channel to guide their expansion process. The
authors build a graph from host communication data to collectively analyze indicators of C&C
and LM compromises. Then, they extract features from the graph to evaluate both the C&C
and lateral movement-specific disruptions. Finally, the authors use the features to develop
unsupervised anomaly detection methods using an ensemble of principal component analysis
(PCA) and k-means on the lateral movement-related features, such that the model can find
hosts that behave much like the infected devices on the network.

In turn, Powell (2020) proposed a new unsupervised method that identifies potentially
malicious user logins. The authors approach the task as a graph anomaly detection problem,
where individual vertices across a sequence of graphs representing a user’s login history are
tested for abnormal behavior. Using local graph measures to characterize each vertex, the
authors employ the reconstruction error of a compression transformation applied to all vertices
to identify unusual vertices.

Another interesting solution was explored by Bowman et al. (2020). In particular, the
authors present an unsupervised graph learning technique for detecting lateral movement of
Advanced Persistent Threats in enterprise-level computer networks. The method is unsupervi-
sed and utilizes industry-standard logging practices. The approach consists of an authentication
graph and an unsupervised graph-based machine-learning pipeline. Crucially, their pipeline in-
cludes the offline training of node embeddings and a logistic regression link predictor. The
link prediction task is a long-studied graph learning problem that aims to predict missing or
future links between any pair of nodes. The detection of low-probability links in (BOWMAN

et al., 2020) occurs by performing an embedding lookup for node pairs and running the link
prediction on corresponding embeddings. A threshold is used, where links below a particular
probability threshold will be forwarded to security experts for investigation.

More recently, the work in (FANG et al., 2022) proposed LMTracker, a method that uses
event logs and traffic to establish heterogeneous graphs and generate representation vectors
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for lateral movement paths. Afterward, the method employs an unsupervised algorithm to
implement anomaly-based path detection.

Meanwhile, the authors in (PAUDEL; HUANG, 2022) suggest that the information flows
and the lateral movement induced by the threat actor in the system deviate sufficiently from
the expected behavior performed during legitimate activities across the network. To detect
APT based on such abnormal behavior, the authors consider the anomaly detection problem
in a dynamic graph whose goal is to detect anomalous edges. The proposed method was
coined PICACHU and employed an unsupervised node embedding technique that captures both
topological and temporal information from the graph. Then, a gated-recurrent unit (GRU)-
based auto-encoder is used to learn long-term temporal information.

However, the previously mentioned approaches to detect lateral movement typically extract
node features from graphs through the graph embedding methods and then utilize non-graph
algorithms for further analysis. As discussed earlier, this is merely a partial use of the graph
structure. Moreover, in recent years, large-scale graphs have posed challenges for many graph
embedding models in effectively capturing complex graph structures due to their shallow ar-
chitectures, as noted by Hoang et al. (2023). In particular, these methods can only generate
embeddings for existing nodes during training, making them unsuitable for real-world applicati-
ons where graphs evolve. In contrast, Graph Neural Networks (GNN) algorithms offer superior
performance due to their complex structural capabilities and better adaptation to evolving
networks (i.e., dynamic graphs).

3.1.5 GRAPH NEURAL NETWORKS (GNN)

Notably, research interest in GNNs has experienced substantial growth over the last few
years (ZHOU et al., 2020; WANG; YU, 2022), with promising methods developed for a broad
spectrum of domains. In the cybersecurity domain, to name a few examples, there are con-
tributions approaching intrusion detection for IoT Lo et al. (2022), detection of software
vulnerabilities (ZHOU et al., 2019a; CAO et al., 2021), lateral movement detection (SUN; YANG,
2022; PAUDEL; HUANG, 2022; GONçALVES; ZANCHETTIN, 2024a; SUN; YANG, 2022) on computer
networks, and APTs (LIU et al., 2020; LI et al., 2021) related problems.

By leveraging GNNs, the models can learn to represent data as nodes with encoded relati-
onships that standard approaches often overlook. This allows the algorithm to detect anomalies
in individual processes and how they interact and influence one another. Specifically, by le-
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arning from graph-structured data and leveraging local neighborhood information through
message-passing mechanisms and downstream tasks as node classification (LIU et al., 2023),
edge classification (LO et al., 2022; CAVILLE et al., 2022), and link prediction (ZHANG; CHEN,
2018b), GNNs can help us to identify malicious activities. For example, the work in (GONçAL-

VES; ZANCHETTIN, 2024a) proposes to detect abnormal logins by uncovering anomalous links
between nodes. The E-GraphSAGE algorithm (LO et al., 2022), which utilizes edge features and
topological information, has improved intrusion detection systems through edge classification
using GNNs.

GNNs are designed to learn functions on graphs and iteratively update the node repre-
sentations by combining the representations of their neighbors and their representations. In
particular, GNNs can be categorized into two types: 1) Spatial-based GNNs, which perform
spatial information aggregation involving neighbors nodes by operating directly on the graph
structure (HAMILTON; YING; LESKOVEC, 2017; Justin Gilmer et al., 2017; CASANOVA; LIO; BENGIO,
2018; LO et al., 2022), and 2) Spectral-based GNNs that leverage the spectral view of graphs
by transforming the graph structure into the spectral domain using graph Fourier transform.
Their primary focus is designing graph spectral filtering operators that filter specific frequen-
cies of the input signal (DEFFERRARD; BRESSON; VANDERGHEYNST, 2016; YANG et al., 2022;
WANG; ZHANG, 2022).

The propagation operator is an important component of both approaches. In particular,
it is used to propagate information between nodes so that the aggregated information can
capture both feature and topological information. Spectral methods define the propagation
operator in the spectral domain, where a graph signal is first transformed to the spectral
domain by the graph Fourier transform, and then the operator is employed.

Since spectral approaches are computationally more intensive (DEFFERRARD; BRESSON;

VANDERGHEYNST, 2016) than spatial approaches, spatial graph-based techniques are usually
preferred. However, as stated by Zhou et al. (2020), the major challenge of spatial approaches
is defining the propagation operation with differently sized neighborhoods. This is because
the propagation operation needs to aggregate information from different neighbors, and the
neighborhood size can vary depending on the node.

As noted by Wu et al. (2021), since Graph Convolutional Networks (GCNs) (KIPF; WELLING,
2017) bridged the gap between spectral-based approaches and spatial-based approaches, the
spatial-based methods have experienced significant advancements in recent times due to their
appealing efficiency, flexibility, and generality.
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3.1.5.1 GNN and the Message-Passing Framework

Before proceeding, it is important to recall the formal definition of a GNN. The following
definition captures the core functionality of most GNNs.

Definition 7. Formally, let A ∈ R𝑁×𝑁 represents the adjacency matrix from a graph 𝒢 =

(𝒱 , ℰ), where 𝑁 is the total number of nodes. Let X ∈ R𝑁×𝐶 denote the node attribute
matrix, where 𝐶 is the number of features for each node. Moreover, let H ∈ R𝑁×𝐹 denote
node representations, where 𝐹 is the dimension of node representations. Graph neural networks
aim to learn effective node representations H by combining the graph structure information
and the node attributes, which are further used for secondary tasks such as link prediction and
node classification.

We have two important functions in each layer starting from the initial node representation
H0 = X. The first one is referred to as AGGREGATE, which aims to aggregate information
from the neighboring nodes of each specific node. The latter is COMBINE, which updates
the node representations by merging the aggregated information from the neighbors with the
current node representations. Crucially, we can define the general framework of GNNs using
Algorithm 1:

Algorithm 1 Essentially, GNNs iteratively update the node representations by combining the
representations of their neighbors and their own representations.

H0 = X // Initialization
for 𝑘 = 1, ..., 𝐾 do

𝑎𝑘
𝑣 = AGGREGATE𝑘{𝐻𝑘−1

𝑢 : 𝑢 ∈ 𝒩 (𝑣)}
𝐻𝑘

𝑣 = COMBINE𝑘{𝐻𝑘−1
𝑣 , 𝑎𝑘

𝑣}
end for

where 𝒩 (𝑣) is the set of neighbors for the 𝑣-th node, and H𝑘
𝑣 is the final node represen-

tations in the last layer.
Important GNN models include Graph Convolutional Networks (GCN) (KIPF; WELLING,

2017), Graph Attention Neural Networks (GAT) (CASANOVA; LIO; BENGIO, 2018), Neural Mes-
sage Passing Networks (MPNNs) (Justin Gilmer et al., 2017) and GraphSAGE (HAMILTON; YING;

LESKOVEC, 2017).
The GCN is a popular graph neural network architecture (WU et al., 2021). This is attributed

to their simplicity and effectiveness across various tasks and applications. However, as discussed
in (CASANOVA; LIO; BENGIO, 2018), edge weights in GCNs may not be able to reflect the true
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strength between two nodes. Such limitation motivated the rise of the GAT. Fundamentally,
GAT tries to learn the importance of each node’s neighbor based on the attention mechanisms.

Specifically, compared with other operators, such as GCN and SAGE, GAT incorporates the
attention mechanism into the propagation step. In GATs, the hidden states of each node are
computed by attending to its neighbors, following a self-attention strategy (CASANOVA; LIO;

BENGIO, 2018). This means that different weights are assigned to each neighbor, depending
on its importance to the node’s representation, as depicted in Figure 5. This allows GATs,
theoretically, to alleviate noise and achieve better results than previous methods. GATs also
utilize the multi-head attention mechanism, first introduced by Vaswani et al. (2017). This
allows GATs to learn multiple independent attention head matrices concatenated or averaged
to compute the hidden states. This further stabilizes the learning process and improves the
performance of GATs.

Figura 5 – GAT tries to learn the importance of each neighbor through a node-level attention mechanism 𝑎
that measures the attention coefficients for any pair of nodes.
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Figura 6 – A MPNN aggregates node messages from its local neighborhood. This process recurs as messages
are collected from neighbors’ neighborhoods, forming a tree-like computation graph. The tree
structure illustrates the hierarchical message aggregation in the GNN.
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In addition to the different variants of spatial approaches, several general frameworks have
been proposed to integrate different models into a single framework. One such framework is
the message-passing neural network (MPNN), proposed by (Justin Gilmer et al., 2017). MPNNs
are now well-established and use message-passing functions to unify several variants. Message
passing is a fundamental operation in graph neural networks (GNNs). In message passing, each
node in the graph sends a message to its neighbors, and the neighbors then update their own
states based on the messages they receive. This process is repeated multiple times, and the
final states of the nodes represent the graph’s representation.

There are three steps for each node to generate embeddings during the neighborhood
aggregation process:

1 Receiving messages from its neighbors. Every node in the graph computes a message
for each neighbor. Messages are a function of the node, the neighbor, and the edge
between them.

2 Aggregating messages. Every node aggregates the messages it receives using a permutation-
invariant function (i.e., it doesn’t matter in which order the messages are received). The
aggregation function can be sum, average, max, or others.

3 Updating its own features. To encode the local structural information, each node
updates its attributes (after receiving the messages) as a function of its current attributes
and the aggregated messages.

Figure 6 depicts a single node aggregation messages from its local neighborhood. The
model collects messages from the neighboring nodes (such as B, C, and D) from A’s neigh-
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borhood. These messages, in turn, are based on the information aggregated from the respective
neighborhoods of B, C, and D. This process continues recursively, forming a tree structure in
the computation graph of the GNN. The tree structure represents the unfolding of the neigh-
borhood around the target node, highlighting the hierarchical nature of message aggregation
in the GNN.

The MPNN framework, whose Equations 3.3 and 3.4 represent the message and update
functions, respectively, is very similar to the general framework introduced in Algorithm 1:

𝑚𝑘
𝑢 =

∑︁
𝑢∈𝒩 (𝑣)

MESSAGE𝑘(𝐻𝑘−1
𝑢 , 𝐻𝑘−1

𝑣 , 𝑒𝑢𝑣) (3.3)

𝐻𝑘
𝑢 = UPDATE𝑘(𝐻𝑘−1

𝑢 , 𝑚𝑘
𝑢) (3.4)

In the Equation 3.4, MESSAGE𝑘(, ., ) defines the message between node 𝑢 and 𝑣 in the 𝑘-
th layer, which depends on the two node representations 𝑢 and 𝑣, as well as the information of
their edge 𝑒𝑢𝑣. The UPDATE𝑘 is the node updating function in the 𝑘-th layer that combines the
aggregated messages from the neighbors and the node representation itself. After 𝐾 iterations
of aggregation, the final node representation H𝑘

𝑢 in the last layer captures the structural
information of the graph within 𝐾 hops of distance in its neighborhood.

Moreover, the MESSAGE function in Equation 3.3 is the same as the AGGREGATE func-
tion in Algorithm 1 and performs a summation of all the messages from the neighbors. The
node UPDATE function defined in Equation 3.4 is the same as the COMBINE function.

Finally, once the node representations have been learned by a GNN using the message-
passing approach, the model can be applied directly to tasks such as node classification and
link prediction (CHEN; TAO; WONG, 2021; DWIVEDI; BRESSON, 2021; DOU et al., 2020; LIU et al.,
2021; KING; HUANG, 2023).

It is worth note GNNs are very accurate at link prediction tasks, which have been an active
research topic (DIVAKARAN; MOHAN, 2020; DAUD et al., 2020; NASIRI et al., 2021), achieving
state-of-the-art results on various datasets (ZHOU et al., 2020; WU et al., 2021). Notably, two
strategies have proved successful for GNN-based link prediction. The first is to devise a score
function that only depends on the two nodes that define a link. The second is to extract a
subgraph around the focal link and solve link prediction by subgraph classification (ZHANG;

CHEN, 2018b). In both cases, a GNN can learn node representations.
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Unfortunately, existing GNNs face significant limitations. As GNN layers deepen, the repre-
sentations of nodes in the graph tend to converge to a constant after sufficiently many layers,
becoming indistinguishable from each other. This phenomenon, known as over-smoothing (CHEN

et al., 2020; KELESIS et al., 2023; CHEN et al., 2020), severely limits the model’s ability to learn
distinct representations for nodes that belong to different classes. Another phenomenon is
over-squashing (DIN; QURESHI, 2024), which occurs when a GNN struggles to compress infor-
mation from exponentially growing neighborhoods into fixed-size node representations. This
limits the model’s ability to capture important long-range dependencies, especially in densely
connected graphs. These limitations are particularly problematic in anomaly detection tasks,
where subtle interactions across distant nodes must be captured to detect suspicious behavior
patterns.

This inability to capture long-range dependencies significantly impacts performance, parti-
cularly in cybersecurity. Detecting sophisticated threats like advanced persistent threats (APTs)
requires understanding global context and subtle, far-reaching interactions, a capability lac-
king in many existing GNNs. Addressing this limitation has driven research into adapting the
Transformer architecture to graph data, a topic explored in the next chapter.

3.2 FROM TRANSFORMERS TO GRAPH TRANSFORMERS

The recent success of transformer architectures (VASWANI et al., 2017) in natural language
processing and computer vision has inspired a surge of research into Graph Transformers (GTs).
These models aim to leverage the strengths of transformers for modeling spatial relationships
in graph-based tasks (LIU et al., 2023; WU et al., 2022; MA et al., 2023; MÜLLER et al., 2024).
In fact, GTs are a relatively new type of GNN that leverages the attention mechanism. Due
to its importance to this thesis, this chapter details transformer architecture, its constituent
building blocks, and its relevance for graph-based machine learning tasks.

3.2.1 TRANSFORMER ARCHITECTURE

Transformers excel with sequential data, featuring a parallelizable architecture that effec-
tively captures long-range dependencies. Undoubtedly, transformer architecture has been one
of the most disruptive artificial intelligence technologies in recent years. The proliferation of
newly introduced variants of transformer models has presented researchers with a formidable
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challenge in terms of keeping up. First applied to the field of natural language processing for
machine translation (VASWANI et al., 2017), the method is now a vibrant research topic in diffe-
rent domains thanks to its strong representation capabilities. Recent proposals include variants
to computer vision (DOSOVITSKIY et al., 2021) to solve semantic segmentation (ZHENG et al.,
2021), object detection (CARION et al., 2020), and super-resolution (ZHOU; LI; WANG, 2023);
anomaly detection in time-series (KIM; KANG; KANG, 2023; Siva Kumar et al., 2023) and system
logs (HUANG et al., 2020); and network intrusion detection (HAN et al., 2023b), to name a few.
Moreover, generative AI has made substantial progress using transformer-based architectures
(CHAVEZ et al., 2023; EKE, 2023).

The transformer architecture is composed of an encoder and a decoder. The primary
function of the encoder is to generate encodings of the inputs, while the decoder leverages
the assimilated contextual information from these encodings to produce the output sequence.
Each transformer block encompasses various components: a multi-head attention layer, a feed-
forward neural network, residual connections, and layer normalization, as depicted in Figure 7.
The self-attention mechanism plays a central role in the architecture, through which the
transformer learns the global dependency in a sequence.

3.2.1.1 Self-attention

Self-attention is the basic building block of the transformer architecture, in both encoders
and decoders. By employing the attention mechanism, the transformer model gains the ability
to emphasize key segments within the input sequence, assigning varying weights to different
parts accordingly. Specifically, this enables the model to selectively concentrate on essential
elements during its processing by giving different weights to different parts.

Within the self-attention layer, the initial step involves transforming the input vector into
three distinct vectors: the query vector q, the key vector k, and the value vector v, all of
which possess a dimensionality of 𝑑𝑞 = 𝑑𝑘 = 𝑑𝑣 = 𝑑model = 512. Subsequently, vectors derived
from various inputs are organized and consolidated into three separate weight matrices: Q, K,
and V. These weight matrices are randomly initialized, and their weights are learned through
training.

By calculating the self-attention values, the transformer model considers the entire se-
quence, enabling the capture of long-range dependencies and relationships between distant
elements. The Equation 3.5 represents the calculation of attention values, while Figure 8(left
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Figura 7 – The original transformer as introduced by Vaswani et al. (2017). The transformer architecture
consists of an encoder-decoder structure with self-attention mechanisms. The encoder processes
input sequences and captures contextual information, while the decoder generates output sequences
using attention over the encoder’s representations.
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side) depicts the process:

Attention(Q, K, V) = softmax
(︃

QK⊤
√

𝑑𝑘

)︃
V (3.5)

Specifically, the operation QK⊤ computes scores between different input vectors, which
determine the degree of attention that we give other input elements when encoding the element
at the current position. To enhance gradient stability for improved training, the scores are then
normalized after scaling by 1√

𝑑𝑘
. The multiplication with matrix V yields a weighted value

matrix, wherein the sum of the probabilities scales the value vector. Consequently, vectors
associated with higher probabilities receive enhanced attention from subsequent layers.

Specific applications require a causal deep learning approach (OORD et al., 2016a; NICOLSON;

PALIWAL, 2020). Specifically, when making predictions based on previous tokens, it is critical
to prevent the attention mechanism from accessing any information about the token at future
positions. In particular, the utilization of masking can guarantee the causality of the self-
attention mechanism.

As pointed out by Nicolson e Paliwal (2020), to achieve this, a masking weight matrix M

is used, where future positions are assigned a value of negative infinity (−∞), and previous
positions are assigned a value of 0. This masking operation is performed after scaling the
multiplication of Q and K⊤ by 1√

𝑑𝑘
, and before the softmax operation in the self-attention

calculation. The Equation 3.6 shows as the masked attention is computed:

MaskedAttention(Q, K, V) = softmax
(︃

M + QK⊤
√

𝑑𝑘

)︃
V (3.6)

By using M to mask out similarities QK⊤ that include future positions, the new represen-
tation is computed so that softmax results in the actual scaled values for previous positions
and the value 0 for future positions.

3.2.1.2 Multi-head attention

The multi-head attention mechanism provides different subspace representations, which
helps the model expand the focus to various positions and capture diverse aspects of the same
input. Instead of a single self-attention head, there can be ℎ parallel self-attention heads, so the
mechanism employs multiple queries with distinct weights to compute multiple attention values
in parallel. These values are then concatenated to obtain a more comprehensive representation,
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capturing richer information from multiple perspectives. The multi-head self-attention process
is shown as follows:

MHSA(Q, K, V) = contat(ℎ𝑒𝑎𝑑0, ..., ℎ𝑒𝑎𝑑ℎ)W0 (3.7)

where ℎ𝑒𝑎𝑑𝑖 = Attention(QW𝑄
𝑖 , KW𝐾

𝑖 , VW𝑉
𝑖 ). In addition, W0, W𝑄

𝑖 , W𝐾
𝑖 , and W𝑉

𝑖 are
trainable parameters that can be learned through backpropagation during the training process.

The multi-head mechanism enables simultaneous attention functions across various repre-
sentation subspaces of the input. As a result, each attention head can identify unique input
characteristics, which are contained within different subspaces (LI et al., 2019a).

3.2.1.3 Positional Encoding

The transformer employs a technique known as positional encoding (PE) to incorporate
the positional information of words in a sentence. Specifically, a positional encoding with
dimension 𝑑model is added to the original input embedding. Let the input length be denoted by
𝑙, and the embedding dimension is given by 𝑑model. Then, the positional encoding is a matrix
of dimension P ∈ R𝑙×𝑑model . Thus, every position in the input can be represented in terms of
𝑝𝑜𝑠 and the embedding depth 𝑑:

PE(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛

(︃
𝑝𝑜𝑠

10000
2𝑖

𝑑model

)︃
(3.8)

PE(𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠

(︃
𝑝𝑜𝑠

10000
2𝑖

𝑑model

)︃
(3.9)

where 𝑝𝑜𝑠 denotes the position of words in a sentence, and 𝑖 represents the current di-
mension of the positional encoding. In this way, each element of the positional encoding
corresponds to a sinusoid, allowing the transformer model to learn to attend by relative po-
sitions and extrapolate to longer sequence lengths during inference. The function definition
indicates that the frequencies decrease along the vector dimension and form a geometric pro-
gression from 2𝜋 to 10000 · 2𝜋 in terms of wavelengths. Finally, the input representation X

from transformer architecture is a composition from the word embedding W and positional
encoding P matrices, which is represented by X = W + P ∈ R𝑙×𝑑model .
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Despite the role of positional encoding in incorporating word positions in the transformer,
Haviv et al. (2022) argues that causal attention alone can approximate the absolute position
of the inputs.

3.2.1.4 Positionwise Feed Forward Network

After the self-attention sub-layers in each encoder and decoder, a fully connected feed-
forward network (FFN) is applied. For each position, linear transformation layers and a non-
linear activation function within them are employed. The output of the feed-forward layer is
calculated as follows:

FFN(X) = W2𝜎(W1X) (3.10)

where W1 and W2 are the two weight matrices of the two linear transformation layers,
and 𝜎 denotes the nonlinear activation function.

3.2.1.5 Residual connection (Add & Norm)

To achieve higher performance by strengthening the flow of information and to address the
degradation of deep networks, a residual connection is added to each sub-layer in the encoder
and decoder. A layer-normalization is followed after the residual connection to reduce the
gradient dependencies between each layer, which speeds up the convergence as fewer iterations
are needed (KAMATH; GRAHAM; EMARA, 2022; BA, 2016). In particular, the layer normalization
ensures each layer has 0 mean and a unit variance. The output of these operations can be
described as in Equation 3.11, where ℱ represents operations like multi-head attention or
feed-forward:

AD(X) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(ℱ(X) + X) (3.11)

3.2.1.6 The final layer of transformer

In the decoder, the final layer is responsible for converting the stack of vectors back into
a word. This process involves two steps: a linear layer and a softmax layer. The linear layer
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projects the vector into a logit vector whose dimensions correspond to several words in the
vocabulary. Subsequently, the softmax layer is applied to the logits vector. This layer transforms
the logits into probabilities, assigning a probability value to each word in the vocabulary. As
pointed out by Han et al. (2023a), these probabilities indicate the likelihood of each word
being the correct output word.

3.2.2 TRANSFORMER FOR GRAPH REPRESENTATION LEARNING

Transformer architecture for graphs is a recent and promising research topic that has gained
growing attention in graph representation learning literature(CHEN; TAO; WONG, 2021; CHEN;

O’BRAY; BORGWARDT, 2022; YING et al., 2021; SHI et al., 2021; HU et al., 2020; MÜLLER et al.,
2024).

Some authors argue that even pure transformers are already powerful graph learners Kim
et al. (2022), Henderson et al. (2023). This is because the self-attention mechanism in the
standard Transformer considers the input tokens as a fully connected graph, which is agnostic
to the inherent graph structure of the data. Notably, one of the key advantages of Transformer
variants for graph modeling (CHEN; TAO; WONG, 2021; DWIVEDI; BRESSON, 2021) is that they
can learn long-range dependencies between nodes. The self-attention mechanism allows the
model to attend to any pair of nodes in the graph, regardless of their distance, and each
attention head implicitly attends to information from a different representation subspace of
different nodes. This allows the model to learn different aspects of the node representations. As
previously pointed out in Chapter 1, capturing global context and detecting subtle, long-range
interactions is critical for identifying anomalous behavior in cybersecurity contexts. Unlike
traditional GNNs, which only aggregate local neighborhood information, Transformers can
capture interaction information between any node pair via a single self-attention layer.

The superiority of GTs over GNNs lies in their capacity to capture long-range dependencies
and global information by leveraging the attention mechanism, which GNNs, usually limited
to local structure, often fail to grasp. As noted by Müller et al. (2024) and Chen, O’Bray e
Borgwardt (2022), the global attention mechanism allows GTs to capture relationships between
any two nodes, regardless of their distance, overcoming the over-smoothing and limited expres-
siveness often seen in deep GNNs. By considering all nodes during information aggregation,
GTs are also less susceptible to over-squashing. This enables GTs to preserve information flow
better and capture long-range dependencies in complex graphs.
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According to authors in (YING et al., 2021), the key to utilizing Transformer in graphs is
to properly incorporate structural information of graphs into the model, such as structural
relation between nodes and node importance. The authors propose using the shortest path
distance between any two nodes to model spatial relations and accurately capture the spatial
dependency in a graph. The authors propose to encode the node centrality to capture the node
importance. In turn, Chen, Tao e Wong (2021) explore transformers to graphs by projecting
an efficient node sampling method to reduce the time and space complexity of the attention
mechanism, as well as modifications on the attention mechanism to learn diverse node relations
on graph topology.

In their paper, Shi et al. (2021) employs a Graph Transformer network as a feature propaga-
tion component in a hybrid architecture that unifies feature propagation and label propagation.
This architecture is empirically robust on the semi-supervised node classification task, and they
obtain new state-of-the-art semi-supervised classification results.

Despite their strengths, GTs are not without challenges. The primary drawback is the
quadratic complexity of the attention mechanism, which requires computing pairwise attention
scores between all nodes. As discussed by recent literature (WU et al., 2022; CHEN; TAO; WONG,
2021; WU et al., 2023), this computational overhead limits the scalability of GTs, particularly
for large graphs commonly encountered in real-world applications like cybersecurity.

To address the scalability issue, several approaches have been proposed to improve the
efficiency of Graph Transformers by reducing the computational complexity of the attention
mechanism. For example, Node Sampling involves (CHEN; TAO; WONG, 2021) selecting a subset
of nodes to participate in the self-attention mechanism. This reduces the number of tokens
considered during attention calculation, making the process more efficient.

The authors in (WU et al., 2022) proposed a scalable and efficient graph Transformer for
node classification that can propagate layer-wise node signals between arbitrary node pairs
through a kernelized Gumbel-Softmax operator with linear algorithmic complexity, which can
distill latent structures among all the instance nodes. In (CHEN; O’BRAY; BORGWARDT, 2022),
the authors have presented a new type of flexible Graph Transformer that uses a structure-
aware self-attention mechanism. This mechanism has achieved state-of-the-art performance on
graph and node classification tasks by incorporating structural information through a subgraph
extraction rooted at each node before computing the attention.

Hybrid Approaches allow us to combine different efficient transformer techniques, which can
lead to further efficiency gains. For instance, combining global attention with local message-
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passing has shown promise, as seen in GraphGPS (RAMPášEK et al., 2022) models. The research
proposed by Wu et al. (2023) proposes a Simplified Graph Transformer (SGFormer) that
employs a single-layer global attention mechanism that scales linearly w.r.t. the number of
nodes, significantly reducing computational complexity and memory usage.

The work in (LIU et al., 2023) introduces Gapformer for node classification. Gapformer
incorporates Graph Pooling to overcome existing limitations of transformers with large graphs.
The method coarsens the large graph into a smaller set of “pooling nodes"using local or global
graph pooling strategies. This allows for sparse attention mechanisms, which focus only on the
pooling nodes rather than all other nodes, resulting in linear complexity and reduced noise.

To address the computational burden of Graph Transformers, the research in (LIU et al.,
2024) delves into sparsification techniques to reduce their complexity. The authors tackle
this challenge by identifying and removing redundant computations within GT models. They
achieve this through pruning strategies applied to various components, including input nodes,
attention heads, model layers, and model weights. While these pruning methods offer the
potential for efficiency and generalizability, several challenges remain. For instance, dynamically
adjusting the pruning ratio for different graph structures and effectively pruning all components
while accounting for their intricate interactions presents significant hurdles.

Each method aims to reduce the cost of attention in Graph Transformers while maintaining
the model’s performance. However, despite these advancements, the adoption of GTs for
cybersecurity anomaly detection remains limited despite their potential benefits. This stands
in contrast to the wider use of Graph Neural Networks (GNNs) in this domain. Moreover,
the related works mentioned above suggest that academic research involving applications or
generalizations of the Transformer architecture on graph data has been a very active and
rapidly growing research topic.

3.3 LINK PREDICTION THROUGH GRAPH NEURAL NETWORKS

Since real-world graphs are often only partially observed, the central problem is to predict
missing links, which have been an active research topic (DIVAKARAN; MOHAN, 2020; DAUD

et al., 2020; NASIRI et al., 2021). In particular, link prediction aims to forecast the likelihood
of a connection between two nodes within a graph. In this work, we reframe the problem of
detecting unusual authentications between entities across a computer network as the problem
of predicting low-probability links in a graph.
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GNNs are very accurate at link prediction, achieving state-of-the-art results on various
datasets (ZHOU et al., 2020; WU et al., 2021). Notably, two strategies have proved successful
for GNN-based link prediction. The first is to devise a score function that only depends on the
two nodes that define a link (KIPF; WELLING, 2016; KOLLIAS et al., 2022; ZHU et al., 2023). The
second is to extract a subgraph around the focal link and solve link prediction by subgraph
classification (ZHANG; CHEN, 2018b). In both cases, a GNN can learn node representations.

A simple score function, such as inner product, cosine similarity, or even parameterized
functions like bilinear, typically operates only on the embeddings of the two target nodes. This
inherently limits the amount of relational and structural information that can be captured. Such
functions may struggle to disambiguate links in complex graph topologies. In contrast, a link
classifier is designed to process richer contextual information. By operating on the subgraph
surrounding the link, the classifier can learn to capture structural patterns, such as position-
aware features that are inaccessible to node-pair-only scoring mechanisms. Empirical studies,
such as those by Zhang e Chen (2018b), demonstrate that subgraph-based link classifiers
significantly outperform simple score functions in a variety of benchmarks, especially when the
link prediction task involves complex relationships or requires robustness to noise. Thus, in our
experiments, we adopt subgraph classification for the link prediction strategy, in which a GNN
is trained jointly with the link classifier.

Especially, we extend the vanilla multi-head attention (VASWANI et al., 2017) into the graph
representation learning problem, where the input is an authentication graph. By modeling the
problem through the lens of GNNs, we can incorporate the behavioral characteristics of users
and their interactions within the network. It is worth noting that such is more challenging
than using traditional machine learning for classification, which requires the information to
be independent. Specifically, we want to represent a computer network as a graph-structured
dataset, where users and machines are nodes, and authentications are denoted by edges. The
idea is that low-probability edges reflect atypical logons and, by extension, possible unauthori-
zed access we want to detect. It can be a challenge as computer networks are dynamic graphs,
meaning that the nodes and edges in the graph can be added or removed over time. This can
make it difficult for GNNs to learn a generalizable model for future data.

To overcome this challenge, in Chapter 4, this work investigates the Transformer archi-
tecture to identify abnormal authentications or suspicious hosts within computer networks,
which may signal lateral movement. Specifically, we redefine the problem of detecting atypical
logins as a graph link prediction task. Since real-world graphs are often only partially observed,
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predicting missing links becomes a critical challenge.
In Chapter 5, we introduce a new Graph Transformer model designed to detect anomalous

graph nodes through a node classification task. This model is particularly useful for identifying
suspicious hosts within a network, allowing us to isolate compromised endpoints even during
non-APT attacks. We propose that these approaches are complementary, as the models address
the intrusion detection problem from two distinct but supportive perspectives.

3.4 CHALLENGES IN USING GNN FOR GRAPH REPRESENTATION LEARNING IN THE
CYBER SECURITY CONTEXT

Notably, GNN models include Graph Convolutional Networks (GCN) (KIPF; WELLING,
2017), GraphSAGE (HAMILTON; YING; LESKOVEC, 2017), Graph Attention Networks (GAT) (CA-

SANOVA; LIO; BENGIO, 2018), and Graph Isomorphism Network (GIN) (XU et al., 2019). For
example, while GCN is popular and praised for its simplicity, GraphSAGE uses fixed-neighborhood
sampling to save computation and suggests different aggregators to optimize the representa-
tion: mean aggregator, LSTM aggregator, and pooling aggregator, where mean aggregator
can be regarded as an inductive version of GCNs. The LSTM aggregator is not permutation
invariant, which means that the order of the sampled neighbors matters. This can be a problem
for graphs where the order of the nodes is not meaningful.

The authors of GIN (XU et al., 2019) identified graph structures that GNNs, such as GCNs
and GraphSAGE, cannot distinguish. They then proposed their method as a more expressive
GNN architecture, which achieves the same representational power as the Weisfeiler-Leman
(WL) test (LEMAN; WEISFEILER, 1968), an algorithm for graph isomorphism testing.

Meanwhile, the work in (BRESSON; LAURENT, 2018) proposed a generic graph ConvNet
design that uses gated edge mechanisms inspired by LSTM and residuality. Using a simplified
design, the proposed method achieved promising performance on subgraph matching and graph
clustering tasks.

GATs are a powerful and flexible GNN architecture that learns the importance of each
node’s neighbor based on attention mechanisms during the propagation step. This allows
GATs to compute each node’s hidden states by attending to its neighbors.

Due to its convincing performance, GNN has become an important ally in the cybersecurity
domain (LAKHA et al., 2022; KING; HUANG, 2023; NGUYEN et al., 2022; SUN; YANG, 2022; ZHOU et

al., 2019b). For example, the authors in (SUN; YANG, 2022) and (KING; HUANG, 2023) explored
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graph neural networks to detect lateral movement by discovering anomalous links between
nodes on a graph that represent anomalous authentications.

However, the success of detecting anomalous authentications using GNNs is conditioned
on the representational power and performance of those models. The combination of the re-
presentations of a node and its neighbors, which we call aggregation, contributes significantly
to the representational power of a GNN. In general, graph neural networks aim to learn permu-
tation invariant hypotheses to have consistent predictions for the same graph when presented
with permuted vertices/nodes, and such property is achieved through neighborhood aggre-
gation schemes. The GNN mentioned above models traditionally use simple functions (e.g.,
sum, max, mean) on the node embeddings to preserve permutation invariance. However, we
argue that an effective aggregation of node features into a graph-level representation can not
be achieved through simple sum or mean. Moreover, a single outlier can easily distort aggre-
gation functions such as sum, weighted mean, or the max operation used in standard GNNs,
leading to inaccurate or biased results.

In Chapter 4 from this thesis, we adopt the subgraph classification approach to link pre-
diction proposed in SEAL (ZHANG; CHEN, 2018b). SEAL adds a Double-Radius Node Labeling
(DRNL) strategy to labeling node attributes (i.e., node’s structural label), where the purpose
is to use different labels to mark different roles of nodes. Afterward, the method generates
node embeddings using a Deep Graph Convolutional Neural Network (DGCNN) (ZHANG et

al., 2018). In contrast to SEAL, we utilize multi-head self-attention to generate node em-
beddings, inspired by recent advances in adapting the transformer architecture for learning
representations in graph-structured data, as discussed in Subsection 3.2.2 of this chapter.

Learning through Graph Neural Networks (GNNs) can be challenging because of the pos-
sibility of aggregating misleading information from the neighborhood during message passing.
This can lead to suboptimal performance since these misleading messages can spread th-
roughout the entire graph as GNNs go deeper, ultimately affecting the overall outcome. Thus,
it is essential to filter out irrelevant information to ensure optimal performance. For example, in
a recent study (CHEN et al., 2021), the authors propose an approach that explicitly prunes the
irrelevant neighbors in the message-passing stage of GCNs, significantly reducing the negative
impact of noise in recommender systems. On the contrary, within the scope of our research,
rather than filtering pertinent information by eliminating neighboring vertices, we delve into
a methodology that emphasizes relationships of higher relevance within a graph, utilizing a
residual soft-attention aggregation methodology. As our results demonstrate, such an appro-
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ach proved to be pivotal in our work, enhancing the performance of our model compared to
models that employ simpler aggregation functions.

Moreover, GNNs have been demonstrated to be inherently susceptible to the problems of
over-smoothing (KERIVEN, 2022; NGUYEN et al., 2023), in which nodes tend to have similar
representations after the aggregation operation as models become deeper. While increasing
GNN depth can capture long-range dependencies and eventually improve its representational
power, it is well-known that deeper GNN models do not always enhance performance and may
even deteriorate it (ZHOU et al., 2020). This is primarily attributed to the fact that additional
layers can propagate noisy information from an exponentially growing number of expanded
neighborhood members.

The recent work (CHEN et al., 2022) proposed overcomes these limitations in the context
of recommendation systems by presenting a new approach to capture long-range dependencies
without increasing the depths of GNNs. In particular, the authors overcome the problem by
grouping similar nodes using K-Means and connecting individual nodes to their corresponding
centroids by computing node-centroid attentions. This enables long-range information flow via
non-local attention among distant but similar nodes. This "bridging"mechanism jointly learns
GNNs and k-Means in one unified model. It lets shallow GNNs capture both local and non-
local relationships, avoiding the bottleneck effects of deep GNNs. However, using the K-Means
clustering algorithm can impose an extra computational load.

Additionally, the model’s performance depends heavily on selecting the correct cluster size,
which is a critical hyperparameter of K-Means. When a sub-optimal cluster size is selected, the
success rates of those approaches become limited. Conversely, our method is more straight-
forward and does not rely on additional optimizations.

There is another critical challenge related to spatial approaches, as previously mentioned,
which define convolutions directly on the graph based on its topology. This challenge involves
defining the convolution operation with differently sized neighborhoods while maintaining local
invariance on the graph topology. This problem is yet to be solved and can offer significant
scope for academic contributions.
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4 DETECTING ABNORMAL LOGINS BY DISCOVERING ANOMALOUS

LINKS VIA GRAPH TRANSFORMERS

Detecting anomalous authentications is essential for mitigating cyber attacks, particularly
APTs, where gaining unauthorized access is fundamental to the attacker’s strategy in such
attacks. As previously discussed, the APTs represent a severe and furtive threat to cybe-
rinfrastructure and are executed over prolonged periods. Their low and slow approach often
characterizes these attacks, making them notoriously difficult to detect and counter. The abi-
lity to detect and respond to these anomalous authentication attempts is a technical challenge
necessary for society’s cyber resilience.

This chapter approaches a new Transformer-inspired GNN model to detect abnormal logins.
Especially, the proposed model introduces a new residual soft-attention scheme that facilitates
the aggregation of node representations through a weighted sum, resulting in enhanced node
representations and improved filtration of irrelevant information.

4.1 THE ROLE OF ABNORMAL AUTHENTICATIONS IN ADVANCED CYBER THREATS

As stated by authors in (ALSHAMRANI et al., 2019), during an APT, the attackers will often
keep stealthy and slowly expand their presence by moving laterally within the network once
they have gained access, searching for sensitive data or critical systems. One of the key ways
that APTs can move laterally is by using anomalous authentications. This means that they
will attempt to obtain access to systems through unauthorized logins using credentials that
do not belong to them. This can be done by stealing credentials, using brute force attacks,
or exploiting vulnerabilities in the authentication process. Figure 2 from Chapter 2 depicts the
process.

As previously noted in that figure, machines A, B, C, D, E, and F, as well as servers SRV-1
and SRV-2, can be represented as nodes in a graph, and authentication events between these
entities in the network can be represented as edges in the graph. If a user from machine C
does not usually have access to server SRV-2, an attacker can gain legitimate access to it. An
accurate graph machine learning model could identify this access as anomalous.

We focused on detecting abnormal authentications, as they can reflect cyber threats such as
lateral movement, in which a user typically gains unauthorized access to different machines to
consolidate their presence in the target network. Therefore, detecting abnormal authentications
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is essential to prevent or mitigate lateral movement and, consequently, to identify an ongoing
APT attack within an organization. However, traditional security products often fail to detect
lateral movement because of the dynamic nature of the attack. Therefore, solutions that adapt
to the changing behavior of attackers are needed.

Fortunately, attackers leave traces in the form of authentication logs during unauthorized
access, which we can use to evaluate the performance of machine-learning-based detection
models. Crucially, these logs tell us which users and machines were involved in the recorded
events. Moreover, such resources are essentially graph-structured data and intrinsically rela-
tional. In these data structures, the users and machines are represented by nodes, whereas
the edges denote the authentication events between them. Therefore, graph representation
learning has the potential to make a significant difference over traditional machine learning in
cyber security research (BOWMAN; HUANG, 2021).

While other approaches can use graph neural networks to solve the problem of identifying
atypical authentications (SUN; YANG, 2022; KING; HUANG, 2023), the incorporation of the
multi-head attention mechanism derived from transformers represents an evolution in the
way models gather information on the graph and help to identify these abnormal behaviors
across the computer network. It occurs because the multi-head self-attention obtains a more
comprehensive representation, capturing richer information regarding user behavior within the
network from multiple perspectives. As mentioned earlier in Chapter ??, Section 3.2.1, the
multi-head attention mechanism can simultaneously extract various types of information from
several representation subspaces, capturing distinct input properties.

In particular, unlike traditional GNNs, the large contextual range of the transformers enables
the aggregation of information from arbitrary nodes, which overcomes the shortcomings of the
GNNs in long-term dependencies.

As we will describe in greater detail later in this chapter, we evaluated the performance of
our method on three cybersecurity-related datasets, which are particularly useful for testing
models for detecting anomalous authentications. Specifically, we evaluated its performance
concerning the AUC, TPR, FPR, and F1 score metrics. The approach proposed in this chapter
was recently published as a full paper in the Computers & Security Journal (GONçALVES;

ZANCHETTIN, 2024a).
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4.2 AN OVERVIEW OF THE PROPOSAL FOR DETECTING ABNORMAL LOGINS

The concept underlying our proposal, elaborated in Section 4.3, is that users compromised
in a lateral movement attack will engage with devices they typically cannot access. As such,
the model profiles each network entity and its relationships to neighboring entities, identifying
authentication activities diverging from standard patterns. However, the success of detecting
anomalous authentications using GNNs is conditioned on the representational power and per-
formance of those models. The combination of the representations of a node and its neighbors,
which we call aggregation, contributes significantly to the representational power of a GNN. In
general, graph neural networks aim to learn permutation invariant hypotheses to have consis-
tent predictions for the same graph when presented with permuted vertices/nodes, and such
property is achieved through neighborhood aggregation schemes. Graph neural networks tra-
ditionally use simple functions (e.g., sum, max, mean) on the node embeddings to preserve
permutation invariance. However, we argue that an effective aggregation of node features into
a graph-level representation cannot be achieved through a simple sum or mean. These aggre-
gation techniques fail to filter out redundant information and thus propagate uninformative
features.

To overcome that problem, we aggregate the node representations during message passing
through a residual soft attention mechanism that transforms the node representations and then
uses a weighted sum with gating vectors to aggregate across nodes. This scheme enhances
the aggregation of node representations by the graph transformer, selecting relevant node
representations through soft attention and consequently reducing the influence of redundant
information.

Our choice of attention-based node aggregation is inspired by previous works that used
similar approaches to solve tasks such as program verification (LI et al., 2016) and graph simi-
larity learning (LI et al., 2019b). These approaches are related to soft alignment and attentional
(also known as global attention) models (SUKHBAATAR et al., 2015; HE; WU; LI, 2021) in that
they use context to focus attention on the nodes that are most important to the current
decision. This is important for the task we are working on, as we need to be able to identify
the most relevant nodes in the graph to make a good decision. In soft attention, a probabi-
lity distribution is calculated over all positions in the input. The resulting probabilities reflect
each position’s relative importance and are used as weights to produce a context vector. Soft
attention is fully differentiable, so it can be easily trained using gradient-based methods.
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Moreover, complementary to attention coefficients in multi-head attention is the idea that
the model should be aware of the contribution of each edge at the neighborhood from a node.
For this reason, we incorporate that idea in our model by employing a gating mechanism
so that the model can decide which edges are more relevant for the task. The introduced
gating mechanism helps the model focus on more significant relationships on the graph by
determining the relative importance of edges during a message-passing event.

Drawing inspiration from LSTM (HOCHREITER; SCHMIDHUBER, 1997) concepts to effecti-
vely model syntactic dependency graphs, the authors in (MARCHEGGIANI; TITOV, 2017) notably
explored the introduction of gates in GCNs. Their work, in turn, was inspired by (OORD et al.,
2016b) and (DAUPHIN et al., 2017), which previously studied the incorporation of gating mecha-
nism in convolutional neural networks, respectively, regarding the conditional image generation
and language modeling tasks.

In the present approach, we argue that graph transformers can benefit from such a stra-
tegy during message passing by considering the most critical edges. We highlight the main
contributions from this approach as follows:

• We introduce a residual soft-attention scheme for graph transformer networks that fa-
cilitates the aggregation of node representations through a weighted sum, resulting in
enhanced node representations and improved filtration of irrelevant information.

• We incorporate a gating mechanism that aids the model in determining the relative
importance of edges during the message-passing process.

• We emphasize reducing the False Positive Rate (FPR). In cybersecurity, a high FPR can
lead to many false alarms, consuming unnecessary resources and potentially overlooking
real threats. The proposed model demonstrates its real-world applicability by focusing
on this metric and maintaining it below an industry-accepted threshold.

The introduction of the residual soft-attention aggregation scheme, which decides which
nodes are relevant to the current graph-level task, and the gating mechanism differentiates this
research from conventional methods. Moreover, leveraging the multi-head attention mechanism
from transformers can be seen as a contemporary approach to solving the problem.

Through extensive experimentation, we demonstrate the feasibility of the proposed metho-
dology. We evaluated our model’s performance using multiple metrics to understand how
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it works comprehensively. The experimental results show that the proposed method outper-
forms state-of-the-art approaches such as GAT (CASANOVA; LIO; BENGIO, 2018), GCN (KIPF;

WELLING, 2017), and SAGE (HAMILTON; YING; LESKOVEC, 2017) in fundamental evaluation
metrics, including AUC, TPR, and, crucially, FPR. FPR is a critical metric in cybersecurity, as
a model’s ability to maintain a low false positive rate is essential for its real-world applicability
in detecting cyber threats. Even more important, the lower the false positive rate, the lower
the investigation budget.

4.3 GATED-GRAPH TRANSFORMER MODEL

Inspired by work in (ZHANG; CHEN, 2018b), we have extracted the enclosing subgraphs
surrounding node pairs of interest, namely, the focal nodes, and used these subgraphs to build
a node feature matrix. Specifically, this matrix encapsulates the structural variances of the
vertices situated at varying distances from each focal pair. The idea is that structural differences
help the GNN to predict the existence of links between the nodes. As detailed in the following
sections, we have modified a Graph Transformer Network by integrating novel features, thereby
empowering it to generate enhanced representations of nodes for link prediction. The proposed
approach is referred to as Gated-Graph Transformer.

Figura 9 – Illustration of how our model learns general graph structure features from local enclosing subgraphs
using a transformer-based propagation module that transforms the node representations through a
soft attention mechanism and then uses a weighted sum with gating vectors to aggregate across
nodes while helping filter out irrelevant information. In addition, we have implemented a residual
connection to prevent over-smoothing
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Specifically, we use 𝒢ℎ(𝑢, 𝑣) to denote the ℎ-hops neighborhood subgraph of the node pair
(𝑢, 𝑣), which is derived from the whole graph 𝒢. For any node 𝑣𝑘 in the neighborhood subgraph
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𝒢ℎ(𝑢, 𝑣), it should satisfy 𝑑(𝑢, 𝑣) ≤ ℎ, indicating that 𝑣𝑘 ∈ 𝒩 ℎ(𝑢) ∪ 𝒩 ℎ(𝑣). Figure 9 depicts
the proposed methodology.

4.3.1 TAKING GENERAL GRAPH STRUCTURE FEATURES FOR LINK PRE-

DICTION

Before training the model, we build structural node features by extracting subgraphs around
the focal links and solve link prediction by (sub)graph classification. However, unlike in vanilla
graph classification, where a priori all links are equally important, in graph classification for link
prediction, the focal link plays a special role and the relative positions of other links concerning
it matter. In particular, our method to compute structural features for link prediction follows
the same criteria from (ZHANG; CHEN, 2018b).

Specifically, we use local subgraphs to compute structural features as those structures
include rich information related to link existence and already contain enough information
to learn good graph structure features for link prediction. Thus, we extract local enclosing
subgraphs around focal links as training data and use the GNN to learn which subgraphs
correspond to link existence. Concretely, the enclosing subgraph 𝒢ℎ

𝑢,𝑣 for a node pair (𝑢,𝑣) is
the subgraph induced from the network 𝒢 by the union of 𝑢 and 𝑣’s neighbors up to ℎ-hops,
as depicted in Figure 10.

Figura 10 – The enclosing subgraph 𝒢ℎ
𝑢,𝑣 for a focal node pair (𝑢, 𝑣) is the subgraph induced from the network

𝒢 by the union of 𝑢 and 𝑣’s neighbors up to ℎ hops.
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Within an enclosing subgraph, nodes with different relative positions to the center (𝑢, 𝑣)
have different structural importance to the link. To mark those different roles of the nodes,
we use distinct labels to indicate where are the target nodes between which a link existence
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should be predicted. In particular, we let nodes with the same distance to the central node
have the same label so that the node labels can reflect nodes’ relative positions and structural
importance within subgraphs.

Let 𝑢 and 𝑣 be the two central nodes. Intuitively, the topological position of a node 𝑖

within an surrounding subgraph can be described by its distances (or its radius) to the two
central nodes, specifically (𝑑(𝑖, 𝑢), 𝑑(𝑖, 𝑣)), where where 𝑑 denotes the shortest path distance
between two nodes. Thus, we assign the same label to nodes that share the same orbit,
allowing these labels to reflect the relative positions and structural importance of the nodes
within the subgraph. Based on this criteria, Zhang e Chen (2018b) propose a DRNL function,
which iteratively assigns larger labels to nodes that have a greater radius with respect to both
central nodes.

After computing the structural label of each node in an enclosing subgraph, we then use
the one-hot encoding vectors from those labels to construct a node feature matrix 𝑋, which
is used to train the GNN model.

We summarize the above steps as follows:

1. Enclosing subgraph extraction. The center nodes 𝑢 and 𝑣 are the target nodes
between which the link is located. The enclosing subgraph 𝒢ℎ

𝑢,𝑣 for a focal node pair
(𝑢, 𝑣) is the subgraph induced from the network 𝒢 by the union of 𝑢 and 𝑣’s neighbors
up to ℎ hops. Such subgraph contains all the information in the neighborhood of node
𝑢, 𝑣.

2. Node information matrix construction. In an enclosing, nodes that are positioned
differently relative to the central nodes have varying structural significance for the link
and receive different labels accordingly. Therefore, we compute their structural label and
then use one-hot encoding vectors from these labels to construct a node feature matrix
𝑋.

3. GNN training. The node feature matrix and the subgraphs are utilized to train the
GNN. In the link prediction task, we treat it as a subgraph classification problem where
a Multi-Layer Perceptron (MLP) classifier predicts the link existence between pairs of
nodes.
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4.3.2 GETTING NODES REPRESENTATIONS

We adapted vanilla transformers to generate node embeddings. Even pure transformers are
already powerful graph learners (KIM et al., 2022). This is because the self-attention mechanism
in the standard Transformer considers the input tokens as a fully connected graph, which is
agnostic to the inherent graph structure of the data. Notably, one of the key advantages of
Transformer variants for graph modeling is that they are able to learn long-range dependencies
between nodes. This is because the self-attention mechanism allows the model to attend to
any pair of nodes in the graph, regardless of their distance, and each attention head implicitly
attends to information from a different representation subspace of different nodes. This allows
the model to learn different aspects of the node representations.

Specifically, given node features 𝐻(𝑙) = {ℎ
(𝑙)
1 , ℎ

(𝑙)
2 , ..., ℎ(𝑙)

𝑛 }, we calculate multi-head atten-
tion coefficient for each edge as in Equation 4.1:

𝑞(𝑙)
𝑐,𝑢 = W(𝑙)

𝑐,𝑞ℎ
(𝑙)
𝑢 + 𝑏(𝑙)

𝑐,𝑞

𝑘(𝑙)
𝑐,𝑣 = W(𝑙)

𝑐,𝑘ℎ(𝑙)
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(𝑙)
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⊤
𝑘
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𝑑

)︃
∑︀

𝜁∈𝒩 (𝑢) exp
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𝑞
(𝑙)
𝑐,𝑢

⊤
𝑘

(𝑙)
𝑐,𝜁√

𝑑

)︃
(4.1)

where exp
(︃

𝑞⊤𝑘√
𝑑

)︃
is exponential scale dot-product function and 𝑑 is the hidden size of each

head. For the 𝑐-th head attention, we firstly transform the features ℎ(𝑙)
𝑢 and ℎ(𝑙)

𝑣 from nodes
(𝑢, 𝑣) into query vector 𝑞(𝑙)

𝑐,𝑢 ∈ R𝑑 and the key vector 𝑘(𝑙)
𝑐,𝑣 ∈ R𝑑 respectively using different

trainable parameters W(𝑙)
𝑐,𝑞, W(𝑙)

𝑐,𝑘, 𝑏(𝑙)
𝑐,𝑞, 𝑏

(𝑙)
𝑐,𝑘.

Additionally, we introduce a gating mechanism to help the model learn what edges are
important for the graph learning task at hand, which is expressed by Equation 4.2:

𝜂𝑢,𝑣 = 𝜎(W(𝑙)
𝑢 h(𝑙)

𝑢 + W(𝑙)
𝑣 h(𝑙)

𝑣 ) (4.2)

where 𝜎 is the logistic sigmoid function, and W(𝑙)
𝑢 and W(𝑙)

𝑣 are learnable weight for the
gate. The sigmoid function 𝜎(·) from the Equation 4.2 plays a critical role in the gating
mechanism by enabling the model to learn a differentiable importance score for each edge
(𝑢, 𝑣) into a node’s neighborhood. More specifically, this gating mechanism is designed to
regulate the flow of information between node pairs during message passing by learning a
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continuous attention weight over the graph edges. Specifically, the sigmoid function maps
its input to the interval (0, 1), making it particularly well-suited for expressing attention-like
weights or gating values that represent relative importance. In this formulation, 𝜂𝑢,𝑣 can be
interpreted as a soft indicator of how important the edge (𝑢, 𝑣) is for the current learning task.

As our model employs multi-head attention over all nodes, after getting the graph multi-
head attention, we proceed to node update as follows in Equation 4.3:

ℎ̂(𝑙+1)
𝑢 =

⃦⃦⃦⃦
⃦

𝐶

𝑐=1

[︃ ∑︁
𝑣∈𝒩 (𝑢)

(𝛼(𝑙)
𝑐,𝑢𝑣W(𝑙)

𝑐,𝑣ℎ(𝑙)
𝑣 ) ⊙ 𝜂𝑐,𝑢𝑣

]︃
(4.3)

where ‖ is the concatenation operation for 𝐶 head attention and ℎ(𝑙)
𝑣 is the 𝑣-th node’s

features at the 𝑙-th layer.
To increase model stability, existing works that explore the transform architecture in graph

representation learning introduce gated residual connections between layers. An important
example can be found in (SHI et al., 2021), and those residual connections can be mathemati-
cally denoted as in Equation 4.4:

𝑟(𝑙)
𝑢 = W(𝑙)

𝑟 ℎ(𝑙)
𝑢 + 𝑏(𝑙)

𝑟

𝛽(𝑙)
𝑢 = 𝜎(W(𝑙)

gate[ℎ̂(𝑙+1); 𝑟(𝑙)
𝑢 ; ℎ̂(𝑙+1)

𝑢 − 𝑟(𝑙)
𝑢 ])

ℎ(𝑙+1)
𝑢 = ReLU(LayerNorm(1 − 𝛽(𝑙)

𝑢 )ℎ̂𝑙+1
𝑢 + 𝛽(𝑙)

𝑢 𝑟(𝑙)
𝑢 )

(4.4)

where 𝜎 denotes the sigmoid. In our experiments, such a strategy showed a significant gain
in model quality.

4.3.3 AGGREGATION OF NODE FEATURES

As previously discussed in Chapter 3, the GNNs combine the feature information of the
nodes and the graph structure to learn better representations of the graph. The general idea
is that GNNs use a form of neural message passing in which vector messages are exchanged
between nodes and updated using neural networks (Justin Gilmer et al., 2017). In neural message
passing, each node in the graph sends a message to its neighbors. As depicted in Figure 6,
these messages are aggregated and updated to the node’s representation. In each iteration of
a GNN, the node embeddings h(𝑙)

𝑢 of each node 𝑢 in the graph 𝒱 are updated by aggregating
information from its neighbors 𝒩 (𝑢).
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The message-passing update can be interpreted as propagating information through the
graph. In each iteration, the node embeddings are updated to reflect the information pro-
pagated from their neighbors. This process continues for several iterations until the node
embeddings reflect the overall structure of the graph.

In this work, we introduce a residual soft attention mechanism on the Graph Transformer
Network while aggregating messages from neighbor nodes that transform the node represen-
tations. Then, we use a weighted sum with gating vectors to aggregate across nodes. Our
aggregation function is mathematically represented as follows:

h =
∑︁
𝑖∈𝒱

softmax (ℱgate(ℎ𝑖)) ⊙
(︁
LayerNorm(ℱΘ(ℎ𝑖)) + ℎ𝑖

)︁
(4.5)

where ℱgate and ℱΘ are neural networks, and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℱgate(ℎ𝑛)) serves as a soft at-
tention mechanism that determines the nodes relevant to the current task. Specifically, we
use ℱgate to compute attention scores and ℱΘ to map node features and then combine them
with the attention scores. Additionally, we added a skip connection to prevent our model from
over-smoothing. Moreover, the soft-attention aggregator has the added benefit of effectively
filtering out unimportant information that may be present. We have observed experimentally
that such an aggregation method gives better results than a simple sum or mean.

Our main insight is that, while the attention scores from the Equation 4.1 capture broader,
long-range dependencies across distant regions of the graph, the residual soft-attention and
the gating mechanism introduced in Equation 4.2 contribute to the modeling of more localized
information, thus enhancing learned graph representation.

Figura 11 – The complete architecture, including the proposed message passing operator. The initial layer
receives and processes the node feature matrix. Next, the message-passing operators work with
the node feature and adjacency matrices. After that, we implement layer normalization to ensure
that the activations are standardized across the features in each layer. The graph pooling layer
is then employed to summarize the node embeddings at the graph level. Finally, the final multi-
layer perceptron (MLP) in the architecture generates a logit that reflects the probability of a link
existing between two specific nodes.

Layer Norm MLP MLPEmbedding Layer
Receives the node feature matrix

MP Operator
Gated-Graph Tranformer Layer 1 Graph Pooling

Graph-level summary of node embeddings Link likelihood logit

MP Operator
Gated-Graph Tranformer Layer 2
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Source: Thesis author

The complete architecture, which incorporates the proposed Gated Graph Transformer
operator, is illustrated in Figure 11. The first layer takes in and processes the node feature
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matrix. The message-passing operators then handle the embedded node feature and adjacency
matrices. We then apply layer normalization to standardize the activations across the features
within each layer. The graph pooling layer creates a graph-level summary of the node embed-
dings. Finally, the last multi-layer perceptron (MLP) in the architecture produces a logit that
indicates the likelihood of a link existing between two specific nodes.

4.3.4 DETERMINING THE THRESHOLD

We apply a threshold to determine what is an anomaly and what is benign. Regarding the
threshold choice, we proceed as in (KING; HUANG, 2023). Specifically, given a set of scores
given for edges that exist and a set of scores for non-edges in the validation data, the optimal
cutoff threshold 𝜏 is the one that achieves optimal TPR and FPR and satisfies

arg min
𝜏

‖ (1 − 𝜆)TPR(𝜏) − 𝜆FPR(𝜏) ‖ (4.6)

where 𝜏 is a cutoff threshold, and 𝜆 is a hyperparameter in [0 − 1], biasing the model to
optimize for either a high true positive rate or a low false positive rate.

Moreover, TPR(𝜏) and FPR(𝜏) refer to the true and false positive rate of classification
given cutoff threshold 𝜏 . We use 𝜆 = 0.5 in all experiments as such value has shown to be
more effective. Crucially, our aim with such an approach is to automate the process of deciding
the threshold through an optimization process whose inputs are the scores for existing edges
and non-edges. Since it uses both positive and negative edge sets as input, this approach is
generic and effectively applicable to other scenarios that adopt the negative sampling strategy
for link prediction for cybersecurity purposes.

4.4 EXPERIMENTAL SETUP FOR GATED-GRAPH TRANSFORMER

The models were trained using focal loss and Adam optimizer with a learning rate of
0.0001. Moreover, we use 10% of edges for testing and 5% for validation. The remaining is
reserved for training.
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4.4.1 DATASETS

This study evaluates the proposed method using the CERT Insider Threat Dataset (GLAS-

SER; LINDAUER, 2013) and PicoDomain (LAPRADE; BOWMAN; HUANG, 2020). The CERT da-
taset is a publicly available dataset that can be used to research, develop, and test methods
for mitigating insider threats.

The CERT Insider Threat Center defines insider threats as threats that can be carried
out by malicious or unintentional insiders. These insiders have authorized access to the orga-
nization’s network, systems, and data. They can exploit this access to negatively affect the
confidentiality, integrity, and availability of the organization’s information. Intentional insider
threats are carried out by malicious insiders, who may sabotage information systems, steal
intellectual property, or disclose classified information. Unintentional insider threats are carried
out by users who are negligent in using authorized resources, such as by clicking on phishing
links or downloading malicious files.

The dataset consists of multiple releases, each characterizing an organization with 1,000 to
4,000 employees. The CERT 4.2 contains activity logs from 1000 users and 1003 computers.
Release 5.2 of the dataset (CERT r5.2) simulates an organization with 2000 employees over
18 months. Each malicious insider in CERT r5.2 belongs to one of four popular insider threat
scenarios: data exfiltration (scenario 1), intellectual property theft (scenarios 2, 4), and IT
sabotage (scenario 3).

The CERT dataset contains multisource activity logs such as user login/logoff, emails, file
access, website visiting, removable device usage, and organizational structure. These events
are present in separate CSV files. In this work, we use only user login activities (in the file
logon.csv) for both CERT r4.2 and r5.2.

In turn, the PicoDomain consists of 3 days of detailed Zeek logs collected in a simulated
small-scale network where APT attacks occurred in the last two days. Zeek is a passive,
open-source network traffic analyzer that is widely used by operators to examine network
traffic packets. Zeek logs are detailed, structured records generated by the tool, which can
help detect malicious activities within a network. These logs capture a wide range of network
activities, providing a comprehensive overview of network behavior.
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Tabela 1 – We compared the performance of all approaches in our experiments. In comparing ten different
models, we discovered that the proposed model excels above the majority. It demonstrates excep-
tional performance in various metrics across the datasets we utilized. Furthermore, the proposed
model has a lower rate of False Positives, showing even greater significance in our study.

Dataset Model AUC TPR FPR TP FP F1

CERT r4.2

Gated-GraphTransformer 94.3859 ± 0.0817 92.5330 ± 0.2136 7.7420 ± 0.2878 224300.0000 ± 517.6871 18766.6660 ± 697.6150 92.4356 ± 0.0878
DGCNN 94.3274 ± 0.0718 92.9730 ± 0.3255 9.6947 ± 0.8434 225366.6719 ± 789.0923 23500.0000 ± 2044.5049 92.1470 ± 0.1383

GAT 94.7891 ± 0.0860 92.8287 ± 0.6895 12.6100 ± 4.7206 225016.6719 ± 1671.4265 30566.6660 ± 11442.8438 92.2165 ± 0.1676
GATV2 94.9026 ± 0.1193 92.9112 ± 0.4960 11.6887 ± 2.2485 225216.6719 ± 1202.3588 28333.3340 ± 5450.3823 92.3303 ± 0.1280
GCN 94.3243 ± 0.0770 93.5369 ± 0.3338 14.8790 ± 2.6842 226733.3281 ± 809.1147 36066.6680 ± 6506.5098 92.1692 ± 0.1219
GIN 94.2180 ± 0.1505 92.5055 ± 0.3171 8.4158 ± 0.5059 224233.3281 ± 768.5484 20400.0000 ± 1226.3768 92.1817 ± 0.1093

GatedGraphConv 94.5331 ± 0.1744 92.7462 ± 0.1816 8.2508 ± 0.6130 224816.6719 ± 440.0757 20000.0000 ± 1485.9341 92.3995 ± 0.1062
Node2Vec 49.1371 ± 0.0421 49.6837 ± 0.4716 52.0558 ± 0.4210 120433.3359 ± 1143.0952 126183.3359 ± 1020.6207 48.9540 ± 0.0682
SAGE-add 94.4155 ± 0.2872 93.2068 ± 0.5496 11.1799 ± 3.4720 225933.3281 ± 1332.1661 27100.0000 ± 8416.1748 92.2948 ± 0.0683
SAGE-max 94.4824 ± 0.1415 92.5055 ± 0.3536 8.2646 ± 0.3478 224233.3281 ± 857.1270 20033.3340 ± 843.0105 92.3500 ± 0.0724
SAGE-mean 94.8133 ± 0.2267 93.1724 ± 0.1447 9.4266 ± 0.3287 225850.0000 ± 350.7136 22850.0000 ± 796.8689 92.5371 ± 0.0878

CERT r5.2

Gated-GraphTransformer 95.3451 ± 0.1306 93.5209 ± 0.2358 6.8121 ± 0.3935 613216.6875 ± 1545.8546 44666.6680 ± 2580.4392 93.5225 ± 0.0564
DGCNN 95.3275 ± 0.1365 93.7243 ± 0.1633 8.2024 ± 0.8344 614550.0000 ± 1070.9808 53783.3320 ± 5471.1670 93.3895 ± 0.0451

GAT 95.6779 ± 0.0764 93.1396 ± 0.3934 9.1480 ± 1.3522 610716.6875 ± 2579.4702 59983.3320 ± 8866.6602 93.3886 ± 0.1589
GATV2 95.5954 ± 0.1269 93.6200 ± 0.3034 9.2319 ± 2.0476 613866.6875 ± 1989.6399 60533.3320 ± 13426.1934 93.5845 ± 0.0852
GCN 95.0554 ± 0.1411 93.8844 ± 0.2051 12.2947 ± 1.7581 615600.0000 ± 1344.6189 80616.6641 ± 11527.9512 93.3530 ± 0.0636
GIN 95.3148 ± 0.1684 93.5133 ± 0.2077 8.0880 ± 0.6857 613166.6875 ± 1361.8615 53033.3320 ± 4496.0723 93.4028 ± 0.0741

GatedGraphConv 95.5418 ± 0.0517 93.3532 ± 0.1978 6.6011 ± 0.4153 612116.6875 ± 1296.7909 43283.3320 ± 2722.8049 93.5664 ± 0.0659
Node2Vec 50.1118 ± 0.1930 50.2389 ± 0.0685 49.8424 ± 0.4172 329416.6562 ± 449.0731 326816.6562 ± 2735.2634 49.9912 ± 0.0248
SAGE-add 95.5118 ± 0.0828 93.8920 ± 0.1919 7.9788 ± 0.8703 615650.0000 ± 1258.1733 52316.6680 ± 5706.6338 93.5873 ± 0.0572
SAGE-max 95.4891 ± 0.1164 93.5794 ± 0.1585 6.8705 ± 0.4554 613600.0000 ± 1039.2305 45050.0000 ± 2985.7998 93.5708 ± 0.0501
SAGE-mean 95.6896 ± 0.1280 93.8336 ± 0.0615 7.2416 ± 0.1624 615266.6875 ± 403.3195 47483.3320 ± 1064.7378 93.6942 ± 0.0290

Pico Domain

Gated-GraphTransformer 75.0000 ± 0.0000 100.0000 ± 0.0000 25.0000 ± 0.0000 400.0000 ± 0.0000 100.0000 ± 0.0000 88.8889 ± 0.0000
DGCNN 60.4167 ± 28.6865 70.8333 ± 29.2261 79.1667 ± 18.8193 283.3333 ± 116.9045 316.6667 ± 75.2773 59.8545 ± 27.6942

GAT 53.1250 ± 25.8451 66.6667 ± 43.7798 70.8333 ± 29.2261 266.6667 ± 175.1190 283.3333 ± 116.9045 52.1212 ± 30.1499
GATV2 57.2917 ± 30.9780 91.6667 ± 12.9099 41.6667 ± 20.4124 366.6667 ± 51.6398 166.6667 ± 81.6497 74.4529 ± 13.2439
GCN 56.2500 ± 11.1803 79.1667 ± 24.5798 62.5000 ± 34.4601 316.6667 ± 98.3192 250.0000 ± 137.8405 51.2963 ± 28.2005
GIN 57.2917 ± 17.4180 83.3333 ± 20.4124 66.6667 ± 30.2765 333.3333 ± 81.6497 266.6667 ± 121.1060 57.2222 ± 13.4026

GatedGraphConv 45.8333 ± 27.8575 70.8333 ± 40.0520 50.0000 ± 38.7298 283.3333 ± 160.2082 200.0000 ± 154.9193 53.6508 ± 35.2773
Node2Vec 70.8333 ± 10.2062 70.8333 ± 10.2062 29.1667 ± 10.2062 283.3333 ± 40.8248 116.6667 ± 40.8248 70.8333 ± 10.2062
SAGE-add 42.7083 ± 19.1281 95.8333 ± 10.2062 62.5000 ± 34.4601 383.3333 ± 40.8248 250.0000 ± 137.8405 69.8990 ± 5.5104
SAGE-max 40.6250 ± 21.5602 95.8333 ± 10.2062 75.0000 ± 31.6228 383.3333 ± 40.8248 300.0000 ± 126.4911 65.7576 ± 8.5345
SAGE-mean 55.2083 ± 10.0130 95.8333 ± 10.2062 75.0000 ± 31.6228 383.3333 ± 40.8248 300.0000 ± 126.4911 60.1010 ± 14.3953

4.4.2 EVALUATION METRICS

To evaluate our technique for detecting malicious authentication in enterprise networks,
we report the true positive rate (TPR) and false positive rate (FPR), which is consonant with
practices in the literature (BOWMAN et al., 2020; KING; HUANG, 2023). Additionally, we include
AUC and F1 scores. The experiments are repeated five times, and we report the average
results.

4.5 RESULTS AND DISCUSSIONS

Our experiments involved comparing ten models on three complementary datasets. The
results showed that our model performed better than most of the others regarding false posi-
tives. Table 1 displays the results, and it can be seen that our model achieved the best FPR
score, outperforming state-of-the-art approaches such as GAT (CASANOVA; LIO; BENGIO, 2018),
GCN (KIPF; WELLING, 2017), and SAGE (HAMILTON; YING; LESKOVEC, 2017). Additionally, we
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Figura 12 – Comparative performance of the evaluated models on multiple metrics. While the overall results
are comparable for most metrics, our proposed model demonstrates a superior ability to minimize
false positives, surpassing other examined approaches. Notably, in the Pico Domain dataset, a
high F1 score proved elusive for all models, suggesting a higher complexity and challenge inherent
in this dataset. Despite this, our Gated Graph Transformer model achieved the most meritorious
performance on this particularly demanding dataset, outperforming the evaluated models.

compare the performances in Figure 12 for better visualization.
The FPR metric, which measures the proportion of benign samples that are incorrectly clas-

sified as malicious, is an essential concern in cybersecurity and holds substantial significance
as a Key Performance Indicator (KPI) within the realm of threat intelligence. Fundamentally,
this particular metric serves to quantify the number of false alarms generated by tools and
processes utilized in the field of threat intelligence. A heightened FPR may indicate the inef-
fectiveness of said tools, while a diminished FPR is generally deemed acceptable within the
security industry.

As we can note from the results summarized in Table 1 and Figure 12, our model’s per-
formance in FPR is consistently better, outperforming most of the compared approaches.
Although our method performed poorly on PicoDomain compared to its performance on CERT,
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primarily concerning the false positive rate (FPR) metric, its results were still superior to those
of competing methods on the same dataset.

4.5.1 CONTRIBUTION OF DIFFERENT AGGREGATION METHODS

Tabela 2 – The results show the average performance of the models (in percentage) using the proposed
aggregation function and traditional methods over five runs. We want to highlight the performance
of models in the FPR metric, which is a crucial metric in cybersecurity.

dataset aggregation AUC TPR FPR

CERT R4.2

proposal 94.3859 ± 0.0817 92.5330 ± 0.2136 7.7420 ± 0.2878
add 95.0016 ± 0.2227 93.2550 ± 0.2721 8.5877 ± 0.4778
max 95.1078 ± 0.0993 93.0624 ± 0.3943 8.0652 ± 0.3084
mean 94.6605 ± 0.1420 92.9387 ± 0.3524 8.0789 ± 0.2910
power 94.6605 ± 0.1420 92.9387 ± 0.3524 8.0789 ± 0.2910

CERT R5.2

proposal 95.3451 ± 0.1306 93.5209 ± 0.2358 6.8121 ± 0.3935
add 95.5101 ± 0.0289 93.7802 ± 0.0792 6.8400 ± 0.2328
max 95.4969 ± 0.0978 93.8285 ± 0.1304 7.7373 ± 1.0356
mean 95.3872 ± 0.0417 93.8158 ± 0.0904 7.2823 ± 0.4479
power 95.3872 ± 0.0417 93.8158 ± 0.0904 7.2823 ± 0.4479

PicoDomain

proposal 75.0000 ± 0.0000 100.0000 ± 0.0000 25.0000 ± 0.0000
add 76.0417 ± 2.5516 100.0000 ± 0.0000 41.6667 ± 30.2765
max 75.0000 ± 0.0000 100.0000 ± 0.0000 37.5000 ± 30.6186
mean 75.0000 ± 0.0000 100.0000 ± 0.0000 45.8333 ± 33.2290
power 75.0000 ± 0.0000 100.0000 ± 0.0000 45.8333 ± 33.2290

To examine the impact of the aggregation method proposed in this paper, we evaluated the
performance of our model using various aggregation methods. As shown in Table 2, regarding
the false positive rate, the residual soft-attention aggregation method has been shown to
outperform competing approaches in all three datasets used.

Concerning the AUC and TPR metrics, the performance of all aggregation methods is
predominantly similar. This may suggest that the sensitivity of the models is invariant with
respect to the aggregation technique employed. Alternatively, it may indicate that the dataset
has specific characteristics that result in the uniform performance of all models in terms of
those metrics. Nevertheless, in practice, we argue that the model that presents the lowest false
positive rates while maintaining high predictive performance in the other metrics is generally
the preferred solution. As previously discussed, a low FPR is desirable, indicating that the
method is less likely to generate false alarms.

The residual soft-attention aggregation method can produce more powerful models that are
less likely to be affected by aggregating less informative structural representations of nodes. On
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the other hand, the sum and mean aggregation methods, for example, simply combine the node
representations without considering their relative importance. This can lead to aggregating less
informative structural representations of nodes, negatively impacting the model’s performance.

Figura 13 – A comparison of FPR performances for various node aggregation methods concerning the depth
of the GraphTransformer model on the “r4.2"and “r5.2"datasets. The x-axis indicates the depth of
each model through the number of layers; the y-axis indicates the false positive rate. The results
show that the proposed node aggregation method consistently outperforms others, even in deeper
models. This outcome suggests that our model is less affected by over-smoothing than models
based on more traditional aggregation methods.
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Figure 13 depicts a comparison of FPR performances among different node aggregation
methods concerning the depth of the GraphTransformer model on the “r4.2"and “r5.2"datasets.
Evidently, the proposed aggregation method consistently outperforms others, even in deeper
models. This outcome suggests that our model is less affected by over-smoothing than models
based on more traditional aggregation methods.

Moreover, we assessed the complexity of the proposed aggregation method in terms of
the time required to train each GraphTransformer model on the “r4.2"and “r5.2"datasets, as
illustrated in Figure 14. Notably, the training time for our model generally exceeds that of
models employing more straightforward aggregation methods. This discrepancy was expected
since aggregation using simpler functions like maximum, average, or sum values does not
significantly impact the model’s parameter count, unlike the proposed approach that involves
computing more parameters.

This trade-off between training time and performance is a common consideration in model
development, but the advantages of our model outweigh the increased training time. Neverthe-
less, we plan to explore optimization techniques to mitigate our architecture’s complexity for
future research.
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Figura 14 – The complexity of the proposed aggregation method in terms of the time (average in seconds
from five executions) required to train each two-layer GraphTransformer model on the “r4.2"and
“r5.2"datasets compared to more traditional aggregation methods. The x-axis indicates the
method used for node aggregation; the y-axis indicates the average time in seconds used to
train each model. Our approach delivers significantly improved performance despite requiring lon-
ger training than simpler models. We believe further optimization efforts can bridge this gap while
maintaining these gains.
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Figura 15 – A comparison between the training time (average in seconds from five executions) required for
our model and that of other GNN architectures. The x-axis represents the different architectures;
the y-axis represents each model’s average training time in seconds. For better visualization, GGT
is short for our Gated-GraphTransformer. Despite our model requiring a longer training time than
other GNN architectures, it’s important to remember that our proposal also delivers significantly
improved performance with lower false positive rates.
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Finally, Figure 15 compares the training time required for our model and that of other
GNN architectures. In part, our model requires more training time than other architectures
due to inheriting the computational complexity inherent in the vanilla Transformer architecture
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(KITAEV; KAISER; LEVSKAYA, 2019; LIN et al., 2022), upon which we have based our approach.

4.5.2 WILL ADDING MORE LAYERS AFFECT THE FPR PERFORMANCE?

Figura 16 – The false positive rate in various models tends to be sensitive to an increase in the number of
layers. Notably, DGCNN, GCN, GIN, SAGE-add, SAGE-mean, and GatedGraphConv(BRESSON;
LAURENT, 2018) experience a significant increase in the false positive rate (FPR), while GAT
and SAGE-max demonstrate noteworthy improvements, though less consistently. In the “r4.2"and
“r5.2"datasets, our model surpasses most competing methods, even with four layers, where over-
smoothing is expected.

Regarding the false positive rate, models commonly exhibit sensitivity to an increase in the
number of layers, as depicted in Figure 16. Some models, such as DGCNN, GCN, GIN, SAGE-
add, SAGE-mean, and GatedGraphConv(BRESSON; LAURENT, 2018), experience a significant
rise in the false positive rate (FPR), whereas others, like GAT and SAGE-max, show notable
improvements, albeit less frequently. Across the PicoDomain dataset, all models experience a
substantial deterioration in the FPR. Nevertheless, the proposed model consistently outper-
forms others in performance. In the CERT “r4.2"and “r5.2"datasets, our model surpasses most
competing methods, even when using four layers, where over-smoothing is expected to occur.

4.5.3 HOW DOES THE PROPOSED GNN COMPARE TO EXISTING STATE-

OF-THE-ART APPROACHES

Not many works explore the problem of detecting anomalous authentications to discover
lateral movement through Graph Neural Networks in the context of link prediction. Nonethe-
less, our literature review found some significant works in the context (DUAN et al., 2020; SUN;
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YANG, 2022; KING; HUANG, 2023). For example, the study in (KING; HUANG, 2023) presents
a model-agnostic framework for detecting lateral movements using GNNs in temporal graphs.
The aim is to capture temporal relations of data to perform anomaly link prediction. In (DUAN

et al., 2020), the authors propose an anomaly aware network embedding (AANE) model based
on a Graph Auto-Encoders (GAE) with a tailored loss function comprising an anomaly aware
loss and adjusted fitting loss and use it as an anomaly indicator to select significant anomalous
links during model training iteratively.

The work in (SUN; YANG, 2022) introduces HetGLM, a GNN-based anomaly link predic-
tion algorithm to detect lateral movements. HetGLM utilizes a graph auto-encoder with a
metapath-based neighbor sampling strategy and attention mechanism. For the decoder part, a
dual-decoder structure, working together with a mutual information (MI) regularization term,
is designed to identify anomaly links via relative reconstruction errors. The authors have pre-
sented different versions of the HetGLM. Specifically, HetGLMoA describes HetGLM without
the attention mechanism; HetGLMoD adapts HetGLM to use a traditional decoder instead of
a dual-decoder structure. Finally, HetGLMoR defines HetGLM without the mutual information
regularization term. The method GLGV introduced by (BOWMAN et al., 2020) generates node
embeddings using DeepWalk. It represents links as Hadamard products and detects lateral
movement with a logistic regression classifier.
Tabela 3 – Comparison of the proposed approach with existing state-of-the-art models. We compare our results

with those extracted from (SUN; YANG, 2022). The comparison is based on the F1 metric.

Model CERT r4.2 PicoDomain
HetGLMoA (SUN; YANG, 2022) 89.68 92.18
HetGLMoD (SUN; YANG, 2022) 83.84 89.85
HetGLMoR (SUN; YANG, 2022) 89.99 91.72
HetGLM (SUN; YANG, 2022) 91.28 92.68
GLGV (BOWMAN et al., 2020) 82.75 81.86
AANE (DUAN et al., 2020) 88.58 90.66
Gated-Graph Transformer 92.43 88.88

We compare our results with HetGLM, AANE, and GLGV, as their authors partly used
the same datasets as our study. The comparison is based on the F1 metric, the only common
metric reported in their paper. As shown in Table 3, the Gated-Graph Transformer achieves
a higher F1 on the CERT r4.2 dataset, indicating that it is effective for anomaly detection.
In the PicoDomain dataset, the proposed model is very competitive, maintaining significant
robustness even in different data contexts, which the other models do not present. However, the



76

lower F1 score of the Gated-Graph Transformer on the PicoDomain dataset may be attributed
to its significantly compact nature when compared to CERT R4.2. This compactness could
result in less useful information being available to the Gated-Graph Transformer than CERT
R4.2.

4.5.4 KEY ASPECTS OF THE PROPOSED APPROACH.

Finally, we would like to highlight the following points regarding the results of our experi-
ments:

Model Robustness. Regarding the model robustness, the Gated-GraphTransformer con-
sistently outperforms other models across all datasets, suggesting it might be a robust model
for tasks of this nature, regardless of dataset variations.

Dataset Complexity. The Pico Domain dataset appears more challenging for most models
than the CERT dataset. This could point to inherent complexities or nuances in the Pico
Domain data that might warrant further investigation.

Trade-offs. While our model achieves superior performance, it comes at the cost of longer
training times compared to simpler aggregation methods. This is unsurprising as our more
complex architecture necessitates computationally demanding functions. Moreover, while the
ability of graph transformers to model all pairwise interactions through a full attention mecha-
nism is their hallmark, it also leads to quadratic computational and memory barriers. Sparse
attention frameworks, specifically designed for graph data, hold significant promise towards
optimizing these models, which have been a critical research priority, as stated by authors in
(SHIRZAD et al., 2023). We intend to investigate optimization techniques to reduce this training
overhead.

Model Variability. High standard deviations in model performance metrics for specific
models, like GAT, SAGE, and GIN, suggest that these models might be sensitive to variations
in data. This could point to potential overfitting or instability in the model’s learning process.

Potential for Improvement. The results reveal areas of potential improvement, especially
for models with high False Positive Rates on specific datasets. This could open avenues for
research into model refinement or hyperparameter tuning.

In this work, we study the problem of identifying abnormal authentications in computer
networks. Atypical logons can indicate unauthorized access, which generally reveals an ongoing
attack. However, the problem imposes unique challenges, as attackers can use legitimate
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credentials to access the machines. Therefore, solutions that adapt to attackers’ changing
behavior are required.

To identify atypical logons, we model the problem as discovering low-probability links in a
graph. In this graph, users and computers are represented by nodes, and authentication events
are denoted by edges. We then use GNNs to learn the graph structure and identify those links.

To uncover unauthorized access to machines within a computer network, we focused on
proposing a new GNN architecture to predict anomalous logins, which are built upon the multi-
head attention mechanism derived from transformers. Essentially, the proposal incorporates
two crucial mechanisms. Firstly, we introduce a residual soft-attention scheme that facilitates
the aggregation of node representations through a weighted sum, resulting in enhanced node
representations and improved filtration of irrelevant information. Secondly, we incorporate a
gating mechanism that aids the model in determining the relative importance of edges during
the message-passing process.

Our proposed method outperforms the state-of-the-art in anomalous link detection with
significantly improved FPR at the cost of longer training times than other models. This trade-
off between training time and performance is a common consideration in model development.
Reducing false positives justifies the training time difference, especially in cybersecurity ap-
plications, where lower FPR is paramount. We believe further optimization efforts can bridge
this gap while maintaining these gains. Sparse attention frameworks, specifically designed for
graph data, hold significant promise in this direction.
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5 SECOND APPROACH – DETECTING SUSPICIOUS ENDPOINTS IN COM-

PUTER NETWORKS VIA SCALABLE SPATIOTEMPORAL GRAPH TRANS-

FORMERS FOR NODE CLASSIFICATION

When managing large and complex networks, additional layers of protection are essential.
While lateral movement detection methods, such as the approach proposed in Chapter 4, can
help hinder an adversary’s ability to establish a presence across the network, detecting and
isolating suspicious endpoints—including those involved in other APT phases—can further
enhance security by providing additional protection layers. Understanding the node roles within
the network is a key step for that purpose.

GTs are well-suited for node classification in large-scale networks due to their ability to
capture long-range dependencies and aggregate global information. Unlike traditional GNNs,
GTs enable each node to attend to all other nodes, allowing for information aggregation
from distant nodes and overcoming GNN limitations in capturing long-range dependencies,
particularly in the context of large graphs.

However, scaling algorithms for node classification in large graphs, like those commonly
encountered in cybersecurity, pose two significant challenges. First, the quadratic complexity
of self-attention in standard GTs makes them computationally infeasible for large datasets.
Second, allowing each node to attend to all others results in noise aggregation from irrelevant
nodes and leads to ambiguous attention weights. Furthermore, existing techniques neglecting
time-based data may miss significant details, as anomalies are often part of a sequence of
events rather than isolated incidents, requiring considering both spatial and temporal contexts
for accurate identification.

This chapter explores the application of efficient GTs for node classification in the context
of anomaly detection to detect anomalous endpoints (hosts) involved in abnormal activities.
Essentially, we use node classification to understand the role of each node within the network,
allowing us to detect and isolate suspicious hosts.

In particular, we focus on recent advancements in attention mechanisms that aim to over-
come the scalability challenges associated with traditional graph transformers. To further im-
prove the model quality by effectively reducing the influence of irrelevant data that often
hamper the accuracy of graph transformer-based node classification, our approach employs a
soft-attention mechanism applied to node representations, enabling the model to selectively
prioritize relevant connections within the graph. Our approach incorporates temporal infor-
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mation into different granularity levels. Specifically, we leverage short-temporal dependencies
through node features and contextual time embeddings by including edge features.

Experimental results demonstrate our approach consistently outperforms existing GNNs
in terms of both generalization and stability. While achieving ROC-AUC results superior to a
significant portion of competitors, it remains at least competitive when not surpassing them.

5.1 THE NEED FOR TEMPORAL DYNAMICS IN ANOMALY DETECTION

While adept at leveraging graph structure, most traditional GNN architectures struggle
to incorporate edge features effectively into their node representations. In many real-world
graphs, the edges hold crucial information about node interactions. GNNs can derive more
nuanced and informative node representations by considering edge features. This is because
the edges provide context about how a node relates to others in the network, which can be
critical for tasks like anomaly detection.

Moreover, as pointed out by authors in (WU et al., 2022) and (CHEN; TAO; WONG, 2021),
existing GNNs face other limitations, particularly in the context of large graphs, where issues
like over-smoothing, over-squashing, and the inability to capture long-range dependencies
hinder their performance. These limitations are especially pronounced in cybersecurity appli-
cations, where the ability to capture global context and detect subtle, long-range interactions
is critical for identifying anomalous behavior, such as Advanced Persistent threats (APTs)
(ALSHAMRANI et al., 2019), a class of sophisticated attacks launched by resourceful adversaries
using a wide spectrum of attack techniques and tools.

Furthermore, existing techniques that typically neglect the temporal dynamics of data
(ZOLA et al., 2022; GONçALVES; ZANCHETTIN, 2024a; SUN; YANG, 2022; POWELL, 2020), and
analyzing graph structures without a time-based perspective may only uncover general trends
that have limited significance for cybersecurity threats. In fact, anomalies are rarely isolated
events. To accurately identify them, we must consider the spatial relationships and the temporal
context of an entity’s interactions (KING; HUANG, 2023).

To illustrate the need for considering temporal context, consider the example in Figure 17.
This figure depicts a network with two users, A and B, and three devices, 𝐶0, 𝐶1, and a
shared drive. The first two time slices show typical network behavior. At time 𝑡0, users A and
B authenticate with their respective computers, 𝐶0 and 𝐶1. Subsequently, at 𝑡 = 1, both
computers access the shared drive. During time slices 𝑡 = 2 and 𝑡 = 3, we observe that
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Figura 17 – This figure illustrates a challenging scenario for detecting anomalous activity in a network. It
depicts a network with two users (A and B) and three devices (𝐶0, 𝐶1, and a shared drive).
The typical sequence of events is for a user to authenticate with a computer, followed by that
computer accessing the shared drive. However, at time 𝑡 = 5, computer 𝐶1 accesses the shared
drive without user B having first authenticated. This suggests a potential malicious process running
on 𝐶1, operating outside the control of the machine’s primary user.
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when user B does not first authenticate with computer 𝐶1, the latter does not communicate
with the shared drive. This demonstrates a normal pattern where access to the shared drive is
contingent on user authentication.

However, at times 𝑡 = 4 and 𝑡 = 5, an atypical pattern is observed: computer 𝐶1 accesses
the shared drive without prior authentication by user 𝐵. This deviation from expected behavior
may indicate potential malicious activity, such as remote service hijacking (T1563) or an
attempt to compromise shared content (T1080), as categorized in the MITRE ATT&CK
framework (ATT&CK®, 2018). Both techniques are commonly employed during APT attacks.

Detecting such attacks requires a model that understands the temporal context of events.
Simply looking at an individual event in isolation is insufficient. The model must consider the
sequence of events that led to it and the broader network interactions occurring simultaneously.
For example, a connection between a computer and a shared drive might be considered normal
in one scenario but suspicious in another if the user hasn’t authenticated.
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Current graph-based approaches, which lack a time dimension, and many event-based
approaches (ALMEIDA et al., 2023; GONçALVES; ZANCHETTIN, 2024b; BIAN et al., 2021) that treat
each event independently, wouldn’t be able to discern the difference between the computer
accessing the shared drive at time 𝑡 = 1 (following user authentication) and at time 𝑡 = 5

(without authentication).
We propose representing the network as a temporal continuous-time graph, where each

edge is associated with a timestamp indicating when it was formed. This approach allows for
a detailed modeling of interactions, capturing the network’s structure at every moment while
preserving the dynamic nature of the connections over time. By doing so, we can analyze how
these connections evolve and identify anomalies based on their temporal context.

5.2 CHALLENGES OF SCALING GRAPH TRANSFORMERS

The global attention mechanism in Graph Transformers enables them to capture relati-
onships between any two nodes, regardless of their distance within the graph. This global pers-
pective makes GTs well-suited for tasks requiring a comprehensive understanding of network
interactions, such as anomaly detection in large-scale networks. In particular, the attention
module at the heart of every Transformer architecture is responsible for computing pairwise
similarity scores between each position in an input sequence. However, this approach has a
major scalability limitation: it requires a significant amount of computational resources and
memory to compute all these similarity scores in parallel, leading to quadratic complexity with
respect to the length of the input sequence (TAY et al., 2022). Specifically, this results in both
computationally expensive processing time and substantial memory requirements to store the
resulting matrix of similarity scores. That quadratic complexity poses significant challenges
when scaling to large graphs.

5.3 OUR CONTRIBUTION: EXPLORING EFFICIENT GRAPH TRANSFORMERS FOR DE-
TECTING UNAUTHORIZED ACCESS TO COMPUTER NETWORKS

Graph Transformers are particularly well-suited for node classification in large-scale networks
due to their ability to capture long-range dependencies and aggregate global information. De-
tecting the node responsible for malicious activity is critical to prevent further harm and boost
security. Node classification (XIAO et al., 2021) is a fundamental technique in graph analy-
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sis with promising cybersecurity applications. Labeling nodes (e.g., devices, users) within a
network as “normal"or “malicious"based on their behavior and connections allows us to iden-
tify and isolate suspicious nodes, effectively preventing or blocking ongoing attacks such as
APTs. This enables security professionals to gain valuable insights into the behavior of entities,
allowing them to identify potential threats and mitigate risks.

This chapter explores the application of efficient Graph Transformers for node classification
in the context of anomaly detection and cybersecurity. We focus on recent advancements in at-
tention mechanisms that aim to overcome the scalability challenges associated with traditional
Graph Transformers (GTs). Our proposed GT model incorporates short-temporal dependencies
through node features and contextual time embeddings by including edge features. Moreover,
we further enhance its performance by employing a soft-attention mechanism to selectively
prioritize the most representative nodes.

5.4 METHODOLOGY

Figura 18 – The flowchart of our proposal. Our approach explores efficient Graph Transformers (GT) for node
classification in the context of anomaly detection and cybersecurity. Especially, the proposed model
leverages temporal information from node and edge features through Short-Term Embedding
and Contextual Time Embedding components while also employing a soft-attention mechanism
to selectively prioritize the most relevant nodes. The Message Passing step incorporates recent
advancements aimed at reducing computational complexity in graph tasks using GT.
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In dynamic networks, modeling and predicting overall network behavior requires careful
attention to both network topology and the chronological sequence of events. Our proposal
introduces a methodology that addresses the temporal dimension through two complementary
approaches. The first approach integrates temporal dependencies directly into node embed-
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dings by embedding time-based features as node attributes, employing a pre-encoding tech-
nique we designate as Short-Term Embedding. The second approach explicitly captures the
temporal evolution of events through a contextual embedding process based on edge features,
termed Contextual Time Embedding. Together, these approaches enable a nuanced represen-
tation of temporal dynamics, effectively capturing the network’s dynamic behavior at multiple
granular levels.

Firstly, let 𝒢 = (𝒩 , ℰ) represent a graph where 𝒩 is a set of nodes (|𝒩 | = 𝑁) and
ℰ ⊆ 𝒩 × 𝒩 is a set of edges. Each node 𝑢 ∈ 𝒩 has associated features x𝑢 ∈ R𝐷 and
a corresponding label 𝑦𝑢. We define an adjacency matrix A = {𝑎𝑢𝑣} ∈ {0, 1}𝑁×𝑁 , where
𝑎𝑢𝑣 = 1 if the edge (𝑢, 𝑣) ∈ ℰ exists and 𝑎𝑢𝑣 = 0 otherwise. The objective is to develop a
function for predicting node-level outcomes, which means estimating labels for unlabeled or
new nodes within the graph (e.g., when a given input represents a normal or abnormal network
behavior).

5.4.1 SHORT-TERM EMBEDDING VIA NODE FEATURES

Our approach first executes a short-term embedding (Figure 18) to learn a network repre-
sentation from continuous-time dynamic networks through temporal random walks (NGUYEN

et al., 2018). Our goal is to capture the essential temporal dependencies at the most detailed
level while also addressing the issue of missing node features in the datasets we are evaluating.

5.4.1.1 Temporal Random Walk

Temporal walks can capture valuable information about network interactions, including
malicious activities like lateral movement. By modeling fine-grained temporal dependencies,
temporal walks are particularly useful for detecting complex threats like APTs, enabling the
tracking of attacker movements.

Methods that ignore time order are highly likely to miss crucial information and are prone
to learning inappropriate node embeddings that do not accurately capture the dynamics in the
network.

Specifically, to generate node features that are aware of time order, the input graph re-
presenting the events across the network is navigated using a temporal walk. A temporal walk
explores a graph in ascending time order, capturing the essential temporal dependencies of the
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Figura 19 – Understanding, modeling, and predicting network behavior accurately requires a clear grasp of
the temporal sequence of events. In a dynamic graph with edges labeled by their arrival times, a
sequence of nodes like 𝑢1 → 𝑑1 → 𝑑2 → 𝑑3 constitutes a valid temporal walk, as it follows the
edges chronologically. On the other hand, a typical random walk approach may mistakenly accept
a sequence such as 𝑢3 → 𝑑2 → 𝑑4, which fails to represent a legitimate temporal walk.

u1 u2

u3

d1 d2

d3

d4

1 5

2,6

7

3,8

9

4,5

network at the finest granularity (e.g., at a time scale of seconds or milliseconds).
A temporal walk starting at node 𝑣𝑖1 and ending at node 𝑣𝑖𝐿+1 is represented by a series

of edges {(𝑣𝑖1 , 𝑣𝑖2 , 𝑡𝑖1), (𝑣𝑖2 , 𝑣𝑖3 , 𝑡𝑖2), . . . , (𝑣𝑖𝐿
, 𝑣𝑖𝐿+1 , 𝑡𝑖𝐿

)}, where the edge timestamps satisfy
the condition 𝑡𝑖1 ≤ 𝑡𝑖2 ≤ · · · ≤ 𝑡𝑖𝐿

. In this context, a temporal walk denotes a time-respecting
path in which edges are traversed in the non-decreasing order of their corresponding times.

In a computer network, the connections of a node may symbolize the interactions between
users and devices, and the pattern of a temporal walk could provide substantial insights into a
user’s lateral movements within the network. Consider the sequence of events 𝑒1 = (𝑢1, 𝑑1, 1),
𝑒2 = (𝑑1, 𝑑2, 2), and 𝑒4 = (𝑑2, 𝑑4, 4) depicted in Figure 19. If event 𝑒1 represents user 𝑢1

authenticating with device 𝑑1 (e.g., a workstation, laptop, or smartphone) at time 1, and events
𝑒2 and 𝑒4 correspond to device 𝑑1 communicating with 𝑑2 at time 2 and 𝑑2 communicating with
𝑑4 at time 4, respectively, then the sequence {𝑒1, 𝑒2, 𝑒4} may indicate the lateral movement
of user 𝑢1 within the network after authentication with device 𝑑1.

The simple example illustrates the importance of modeling the actual sequence of events,
such as user authentications within a computer network. Embedding methods that ignore
time are prone to many issues, such as learning inappropriate node embeddings that do not
accurately capture the dynamics in the network. For instance, the event sequence {𝑒7, 𝑒4} such
that 𝑒7 = (𝑢3, 𝑑2, 7) and 𝑒4 = (𝑑2, 𝑑4, 4) can be considered a valid walk by using a general
random walk but does not provide information on valid temporal events.
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5.4.1.2 Traversing the graph via a temporal walk to incorporate temporal dependencies in
node features

For a graph 𝒢 with temporal information on its edges, we select the initial edge 𝑒𝑡 =

(𝑢, 𝑣, 𝑡) ∈ ℰ𝑇 , where ℰ𝑇 represents the set of temporal edges, using a uniform random distri-
bution, where each edge has the same probability of being selected:

P(𝑒𝑡) = 1
|ℰ𝑇 |

(5.1)

Next, to start the temporal walk from the initial edge 𝑒𝑡 at time 𝑡, we select the temporal
neighbors of the outgoing node 𝑣, considering edges originating from 𝑣 after time 𝑡. The
temporal neighborhood of a node 𝑣 at time 𝑡 is denoted as Ω𝑡(𝑣) and is defined as the set of
nodes 𝑤′ connected to 𝑣 by an edge, with a timestamp 𝑡′ greater than 𝑡:

Ω𝑡(𝑣) = {(𝑤′, 𝑡′)|(𝑣, 𝑤′, 𝑡′) ∈ 𝐸 ∧ 𝑡′ > 𝑡} (5.2)

For example, suppose, from Figure 19 the initial edge is (𝑑1, 𝑑2, 2). The temporal neigh-
borhood Ω2(𝑑2) would consist of all edges originating from 𝑑2 after time 2, resulting in the
sequence {(𝑑3, 3), (𝑑4, 4), (𝑑4, 5), (𝑑3, 8)}.

It is important to note that the same node can appear multiple times in Ω𝑡(𝑣) because
multiple temporal interactions between two nodes can occur. For example, a user could have
multiple authentication attempts on a host machine at different times. In contrast, a generic
random walk without temporal consideration would only account for the static graph structure,
resulting in Ω𝑡(𝑑2) = {𝑑3, 𝑑4}, leading to information loss.

The next node in the temporal walk 𝒲𝑇 = {(𝑤1, 𝑡1), ..., (𝑤𝑙, 𝑡𝑙)}, where 𝑙 is the walk
length, is chosen from Ω𝑡(𝑣) using a uniform random distribution, as depicted in Equation 5.3:

P(𝑤) = 1
|Ω𝑡(𝑣)| (5.3)

5.4.1.3 Modeling Short-term Temporal Dependencies in Temporal Random Walks

To capture both the network’s structure and its short-term temporal dynamics, a skip-
gram model (MIKOLOV et al., 2013a) is employed. This approach, successfully utilized in graph
embedding techniques such as CTDNE (NGUYEN et al., 2018) and recent network anomaly
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detectors like Pikachu (PAUDEL; HUANG, 2022), optimizes the temporal order-preserving node
embeddings. Specifically, we aim to maximize the log-probability of observing a temporal walk
𝒲𝑇 for a node 𝑣, conditioned on its embedding, represented by the function 𝑓 : 𝑣 → R𝑑.

max
𝑓

∑︁
𝑣𝑗∈𝑉𝑇

logP(𝒲𝑇 |𝑓(𝑣𝑗)) (5.4)

The optimization problem is made tractable by assuming the conditional independence of
the node in the temporal walk 𝒲𝑇 when observed with respect to the source node 𝑣:

P(𝒲𝑇 |𝑓(𝑣𝑗)) =
∏︁

𝑤𝑖∈𝒲𝑇

P(𝑤𝑖|𝑓(𝑣𝑗)) (5.5)

The conditional likelihood of each source-neighborhood node pair can then be modeled
using a softmax unit parametrized by a dot product of their embedding vectors.

P(𝑤𝑖|𝑓(𝑣𝑗)) = exp(𝑓(𝑤𝑖) · 𝑓(𝑣𝑗))∑︀
𝑣𝑘∈𝑉𝑇

exp(𝑓(𝑣𝑘) · 𝑓(𝑣𝑗))
(5.6)

Finally, the optimization objective in Equation 5.4 simplifies to:

max
𝑓

∑︁
𝑣𝑗∈𝒱𝑇

⎡⎣− log 𝑍𝑣𝑗
+

∑︁
𝑤𝑖∈𝒲𝑇

𝑓(𝑤𝑖).𝑓(𝑣𝑗)
⎤⎦ (5.7)

where 𝑍𝑣𝑗
= ∑︀

𝑣𝑘∈𝑉𝑇
exp(𝑓(𝑣𝑗) · 𝑓(𝑣𝑘)) is a per-node partition function and can be appro-

ximated using negative sampling. The Skip-gram model will generate the node embedding X

of the graph by encoding spatial information and short-term temporal information.
The time complexity for Short-Term Embedding is 𝒪(𝑀 + 𝑁(𝑅 log 𝑀 + 𝑅𝐿Δ + 𝐷)),

where 𝑀 = |ℰ𝑇 | represent the number of temporal edges in the graph, 𝑁 denotes the number
of nodes, 𝐷 represents the embedding dimension, 𝑅 represents the number of temporal walks
per node, 𝐿 the maximum length of a temporal random walk, and Δ indicates the maximum
degree of a node. Essentially, the Short-Term Embedding method exhibits a time complexity
comparable to that presented by authors in (NGUYEN et al., 2018).

In particular, we highlight a linear relationship between the algorithm’s runtime and the
graph’s number of edges and nodes. Furthermore, the runtime is sensitive to parameters
related to the temporal walk configuration, exhibiting linear dependence on the number of
walks per node, the maximum walk length, and the embedding dimension. Consequently, the
algorithm’s efficiency is particularly susceptible to the size and density of the graph, as well as
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the dimensionality of the embeddings. Large, dense graphs and high-dimensional embeddings
will inevitably lead to increased processing time.

5.4.2 MESSAGE PASSING: ACHIEVING EFFICIENT MESSAGE PASSING TH-

ROUGH A KERNELIZED GUMBEL-SOFTMAX OPERATOR.

Our Graph Transformer model is inspired by the Transformer architecture (VASWANI et

al., 2017) and incorporates recent advances aimed at reducing computational complexity in
graph tasks, as seen in (WU et al., 2022; JANG; GU; POOLE, 2017). We begin by defining
a full-graph attentive network. Assuming z(0)

𝑢 = x𝑢 as the initial node representation, this
structure is designed to estimate latent interactions between individual nodes within the graph
and enable the dense message passing between all nodes, fostering a rich and interconnected
representation of the network:

𝑎̃(𝑙)
𝑢𝑣 =

exp
(︂(︁

𝑊
(𝑙)
𝑄 z(𝑙)

𝑢

)︁⊤ (︁
𝑊

(𝑙)
𝐾 z(𝑙)

𝑣

)︁)︂
∑︀𝑁

𝑤=1 exp
(︂(︁

𝑊
(𝑙)
𝑄 z(𝑙)

𝑢

)︁⊤ (︁
𝑊

(𝑙)
𝐾 z(𝑙)

𝑤

)︁)︂ , z(𝑙+1)
𝑢 =

𝑁∑︁
𝑣=1

𝑎̃(𝑙)
𝑢𝑣 ·

(︁
𝑊

(𝑙)
𝑉 z(𝑙)

𝑣

)︁
(5.8)

Where 𝑊
(𝑙)
𝑄 , 𝑊

(𝑙)
𝐾 , and 𝑊

(𝑙)
𝑉 are learnable parameters in 𝑙-th layer.

As previously discussed in the literature (WU et al., 2022), the attention weights 𝑎̃(𝑙)
𝑢𝑣 (as

defined in Equation 5.8) can be used to create a categorical distribution for generating latent
edges. We can effectively obtain its neighbors by sampling from this categorical distribution
multiple times for each node. Unfortunately, the computational cost of updating node repre-
sentations in a single layer using Equation 5.8 is prohibitively high, scaling quadratically with
the number of nodes.

To accelerate the full-graph model, recent researchers resort to approximations using kernel
functions and random features (WU et al., 2022), which enable us to rewrite Equation 5.8:

z(𝑙+1)
𝑢 =

𝑁∑︁
𝑣=1

𝜑
(︁
𝑊

(𝑙)
𝑄 z(𝑙)

𝑢

)︁⊤
𝜑
(︁
𝑊

(𝑙)
𝐾 z(𝑙)

𝑣

)︁
∑︀𝑁

𝑤=1 𝜑
(︁
𝑊

(𝑙)
𝑄 z(𝑙)

𝑢

)︁⊤
𝜑
(︁
𝑊

(𝑙)
𝐾 z(𝑙)

𝑤

)︁ · 𝑊
(𝑙)
𝑉 z(𝑙)

𝑣

=
𝜑
(︁
𝑊

(𝑙)
𝑄 z(𝑙)

𝑢

)︁⊤∑︀𝑁
𝑣=1 𝜑

(︁
𝑊

(𝑙)
𝐾 z(𝑙)

𝑣

)︁
· 𝑊

(𝑙)
𝑉 z(𝑙)⊤

𝑣

𝜑
(︁
𝑊

(𝑙)
𝑄 z(𝑙)

𝑢

)︁⊤∑︀𝑁
𝑤=1 𝜑

(︁
𝑊

(𝑙)
𝐾 z(𝑙)

𝑤

)︁
(5.9)

where 𝜑(a)⊤𝜑(b) ≈ ⟨Φ(a), Φ(b)⟩𝒱 = 𝜅(a, b), with 𝜅(·, ·) : R𝑑 × R𝑑 → R being a
positive-definite kernel measuring the pairwise similarity, and Φ : R𝑑 → 𝒱 a basis function
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with a high-dimensional space 𝒱 , where Φ : R𝑑 → R𝑚 is a low-dimensional feature map with
random transformation. Positive Random Features (PRF) represent a promising choice for
the feature map 𝜑, as explored by (CHOROMANSKI et al., 2021). Their work demonstrated the
efficacy of PRF in efficiently training softmax-based linear Transformers.

For notational convenience, let us define q𝑢 = 𝑊
(𝑙)
𝑄 z(𝑙)

𝑢 , k𝑣 = 𝑊
(𝑙)
𝐾 z(𝑙)

𝑣 , and v𝑣 = 𝑊
(𝑙)
𝑉 z(𝑙)

𝑣 .
With these definitions, Equation 5.9 can be rewritten as follows:

z(𝑙+1)
𝑢 =

𝑁∑︁
𝑣=1

𝜑(q𝑢)⊤𝜑(k𝑣)∑︀𝑁
𝑤=1 𝜑(q𝑢)⊤𝜑(k𝑤)

· v𝑣 = 𝜑(q𝑢)⊤∑︀𝑁
𝑣=1 𝜑(k𝑣) · v⊤

𝑣

𝜑(q𝑢)⊤∑︀𝑁
𝑤=1 𝜑(k𝑤)

(5.10)

This approximation enhances computational efficiency, allowing for linear complexity in
full-graph message passing. Reducing the algorithmic complexity of structure learning to linear
with respect to the number of nodes allows us to work with larger graphs, which is typically
the case in cybersecurity. A key advantage of Equation 5.10 lies in its ability to share the two
summations across all nodes (𝑢). This means we compute them only once and reuse them for
all subsequent nodes, leading to considerable time savings. Such modifications are critical for
effectively scaling graph structure learning to handle large-scale datasets.

While Equation 5.8 can be used as a basis to assign categorical weights to edges, directly
sampling edges using these weights through a categorical distribution introduces discontinuities
that hinder backpropagation. To optimize discrete graph structures in a differentiable way, we
need to reformulate categorical sampling as a differentiable operation. The Gumbel-Softmax
technique addresses this need, as it acts as a reparameterization method to approximate the
discretely sampled edges through continuous relaxation. (WU et al., 2022; JANG; GU; POOLE,
2017).

Crucially, the Gumbel-Softmax (JANG; GU; POOLE, 2017) uses the softmax function as
a continuous approximation to argmax, enabling the use of standard backpropagation for
training neural networks with categorical outputs by controlling the closeness to hard discrete
samples (MADDISON; MNIH; TEH, 2017):

z(𝑙+1)
𝑢 ≈

𝑁∑︁
𝑣=1

exp ((q⊤
𝑢 k𝑢 + 𝑔𝑣)/𝜏)∑︀𝑁

𝑤=1 exp ((q⊤
𝑢 k𝑤 + 𝑔𝑤)/𝜏)

· v𝑢, 𝑔𝑤 ∼ Gumbel(0, 1) (5.11)

where 𝜏 is a temperature coefficient and particular, 𝑔𝑣 values are independent and iden-
tically distributed (i.i.d.) samples drawn from the Gumbel(0, 1) distribution. This distribu-
tion was independently discovered by Maddison, Mnih e Teh (2017). To sample from the
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Gumbel(0, 1) distribution, we can use inverse transform sampling: first, draw 𝑢 from a uni-
form distribution Uniform(0, 1), and then compute 𝑔 = − log(− log(𝑢)).

The Gumbel distribution arises naturally in extreme value theory (PINHEIRO; AND, 2016),
meaning it is useful when working with max operations. If we take independent Gumbel-
distributed random variables 𝐺𝑘, their maximum follows a well-defined distribution. This makes
it ideal for selecting the most probable category in a discrete distribution. However, the argmax
function is not differentiable, so the softmax function is used as an approximation to allow
backpropagation through discrete variables by making them continuous, enabling gradient-
based optimization.

The Gumbel-Softmax distribution is smooth for temperatures 𝜏 > 0, ensuring a well-
defined gradient. When it comes to learning, there is a trade-off between small temperatures,
where samples are close to one-hot encoding but the gradients have high variance, and large
temperatures, where samples are smoother but the gradients have low variance.

As Equation 5.11 requires 𝒪(𝑁2) to compute embeddings for 𝑁 nodes, the kernelized
Gumbel-Softmax operator is then used, as depicted in the Equation 5.12:

z(𝑙+1)
𝑢 ≈

𝑁∑︁
𝑣=1

𝜑(q𝑢/
√

𝜏)⊤𝜑(k𝑣/
√

𝜏)𝑒𝑔𝑣/𝜏∑︀𝑁
𝑤=1 𝜑(q𝑢/

√
𝜏)⊤𝜑(k𝑤/

√
𝜏)𝑒𝑔𝑤/𝜏

· v𝑣

= 𝜑(q𝑢/
√

𝜏)⊤∑︀𝑁
𝑣=1 𝑒𝑔𝑣/𝜏 𝜑(k𝑣/

√
𝜏) · v⊤

𝑣

𝜑(q𝑢/
√

𝜏)⊤∑︀𝑁
𝑤=1 𝑒𝑔𝑤/𝜏 𝜑(k𝑤/

√
𝜏)

(5.12)

To achieve a more robust representation, the averaged results are aggregated across 𝐾

samples for each node, per layer, as depicted in Equation 5.13. Thus, for each layer, we sample
𝐾 times for each node, such that there will be 𝐾 sampled neighbored nodes for each node 𝑢.
In practice, Equation 5.13 achieves message passing over a sampled latent graph with linear
complexity.

z(𝑙+1)
𝑢 = 1

𝐾

𝐾∑︁
𝑘=1

𝜑
(︁

q𝑢√
𝜏

)︁⊤∑︀𝑁
𝑣=1 𝑒𝑔𝑘𝑣/𝜏 𝜑

(︁
k𝑣√

𝜏

)︁
· v⊤

𝑣

𝜑
(︁

q𝑢√
𝜏

)︁⊤∑︀𝑁
𝑤=1 𝑒𝑔𝑘𝑤/𝜏 𝜑

(︁
k𝑤√

𝜏

)︁ (5.13)

5.4.3 TIME EMBEDDING: ENCODING CONTEXTUAL INFORMATION ABOUT

THE TIME-DOMAIN VIA EDGE FEATURES

While Equation 5.13 effectively captures spatial relationships between nodes, it neglects
the crucial temporal dimension. We introduce a mechanism for incorporating temporal context
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into the node representations to address this.
Specifically, we leverage edge features X𝐸 to extract contextual information about the

temporal characteristics of each interaction. This information is then embedded into the edge
representation E𝑢𝑣. As depicted in Figure 18, we introduce a dedicated contextual time em-
bedder for this purpose. By incorporating these contextual embeddings into Equation 5.13, we
enrich the node representations with temporal information, enabling our model to effectively
capture both spatial and temporal relationships within the graph via message-passing. We per-
form 𝐾 sampling iterations per node and compute the average over the aggregated outcomes.
Specifically, at each layer of the Graph Transformer, 𝐾 neighboring nodes are sampled for
every node 𝑢, resulting in 𝐾 distinct neighbor selections per node at that layer:

z(𝑙+1)
𝑢 = 1

𝐾

𝐾∑︁
𝑘=1

𝜑
(︁

q𝑢√
𝜏

)︁⊤∑︀𝑁
𝑣=1 𝑒𝑔𝑘𝑣/𝜏 𝜑

(︁
k𝑣√

𝜏

)︁
· v⊤

𝑣

𝜑
(︁

q𝑢√
𝜏

)︁⊤∑︀𝑁
𝑤=1 𝑒𝑔𝑘𝑤/𝜏 𝜑

(︁
k𝑤√

𝜏

)︁ ⊙ E𝑢𝑣 (5.14)

5.4.4 SOFT-ATTENTION MECHANISM

To further refine our node representations, we introduce (Equation 5.15) a soft-attention
mechanism that operates directly on node embeddings during the test. This mechanism se-
lectively amplifies the contributions of more significant nodes, allowing the model to focus on
crucial information for accurate node classification.

A = softmax(
𝑁∑︁

𝑖=1
z𝑙+1

𝑢𝑖 ⊙ z𝑙+1
𝑢𝑖 )

Z = z𝑙+1
𝑢 ⊙ A

(5.15)

5.5 EXPERIMENTAL SETUP AND DATASETS

The node classification models were trained using Binary Cross-Entropy (BCE) loss. For
evaluation, the ROC-AUC metric was utilized. The AUC-ROC metric is particularly chosen
for assessing node classification models because it is effective in managing class imbalance.
This reliability makes AUC-ROC a suitable choice, especially in situations where the dataset
is imbalanced, which is common in intrusion detection tasks.

All models were two-layer architectures. Each dataset was split into training, validation,
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and testing sets with ratios of 50%, 25%, and 25%, respectively. Each model was trained five
times, and the average performance across these runs was considered. The learning rate used
for the CERT R5.2 dataset was 0.001, and for Pivoting, it was 0.001.

The datasets used to evaluate the models in the present chapter were CERT R5.2, whose
details were previously discussed in Chapter 4, and Pivoting (APRUZZESE et al., 2020). The
Pivoting dataset comprises network traffic data in the form of network flows collected from
a large organization over a single workday. These flows represent internal-to-internal network
communications within the monitored environment. It is labeled through a manual process
verified by the authors. The dataset is provided as a compressed .tar.gz file of approximately
1.5GB. Upon extraction, it yields a single CSV file of approximately 6GB containing nearly 75
million network flows.

5.6 RESULTS AND DISCUSSIONS

Table 4 presents a summary of our results, where we compare the performance of our model
with various other state-of-the-art GNN models on different datasets. In the “model"column,
we highlight Proposal and ProposalCONTEXTUAL, which refer to our model trained without
contextual information and with contextual information provided via edge features, respectively.
Both models utilize soft-attention during testing.

As shown in Table 4, our approach generally outperforms others, considering that the
proposed model is more stable and achieves ROC-AUC results that surpass a significant por-
tion of competitors. When not superior, it is at least competitive. Furthermore, our model
exhibits greater stability, with lower results variability than its counterparts. In certain cases,
the variability is substantially lower. Nonetheless, we observe that the use of contextual time
embeddings enhances results but introduces variability. This opens the door for future research
aimed at minimizing this variability.

Additionally, our experiments explored the impact of soft-attention on the quality of node
embeddings under various scenarios, analyzing model performance when applied during both
training and testing, only during training, only during testing, and without application. Our re-
sults showed that applying soft-attention during the testing phase yielded superior performance
compared to applying it during training and testing or solely during training.

For example, consider the model performance when using contextual time embeddings via
edge features, as illustrated in Figure 20 (left side). We observe that the model with soft-
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Model Pivoting CERT r5.2

APPNP (GASTEIGER; BOJCHEVSKI; GÜNNEMANN, 2019) 0.3621 ± 2.5991 0.3363 ± 21.4327
GAT 0.7221 ± 6.2165 0.6698 ± 0.2903
GCNJK (XU et al., 2018) 0.9079 ± 1.1291 0.7335 ± 0.4385
GATJK (XU et al., 2018) 0.9506 ± 2.9972 0.6899 ± 2.8179
GCN 0.168 ± 4.7431 0.6152 ± 0.477
GPRGNN (CHIEN et al., 2021) 0.502 ± 0.5154 0.6765 ± 4.6965
H2GCN (ZHU et al., 2020) 0.9621 ± 2.9956 0.7632 ± 1.8408
SGC (WU et al., 2019) 0.2972 ± 24.6716 0.6923 ± 0.0175
MixHop (ABU-EL-HAIJA et al., 2019) 0.8407 ± 6.8044 0.737 ± 0.9206
Proposal 0.9146 ± 0.5782 0.7930 ± 0.0629
ProposalCONTEXTUAL 0.9217 ± 1.8939 0.7951 ± 0.2030

Tabela 4 – Performance in (%) on AUC-ROC metric for datasets Pivoting and CERT r5.2. Proposal and
ProposalCONTEXTUAL refer to our model trained without contextual information and with contex-
tual information provided via edge features, respectively. For baseline models, we use the imple-
mentation provided by (WU et al., 2022)

Figura 20 – We compared the application of self-attention on node representations in different scenarios on
CERT r5.2. These results are evaluated when the model is trained with and without edge features,
respectively (left and right side of the figure). Note that using self-attention at test time yields
the best results.
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Figura 21 – Using the Pivoting dataset, we analyzed the use of self-attention on node representations across
different scenarios. Once again, the results were evaluated based on whether the model was
trained with or without contextual time embedding through edge features, as shown on the left
and right sides of the figure, respectively. It’s worth noting that applying self-attention during
testing produces the best results.

attention during the testing phase (green bar) achieved a ROC-AUC of 79.5148 ± 0.21 on the
CERT r5.2 dataset. In contrast, applying soft-attention during training & testing (orange bar)
resulted in a ROC-AUC of 78.4303 ± 0.74, while not using soft-attention (blue bar) yielded
77.32 ± 0.23. This trend also holds when contextual time embeddings are not used, as shown
in Figure 20 (right side).

This finding extends to other datasets, such as Pivoting in Figure 21, reinforcing the
conclusion that soft-attention during testing is the most effective strategy. Conversely, applying
soft-attention exclusively during training proved less efficient across all investigated scenarios.

5.7 MERITS OF THE PROPOSED APPROACH

5.7.1 ENABLE BOTH TOPOLOGICAL INFORMATION AND EDGE FEATURE

WHILE SCALABLE

Firstly, our approach leverages the computational efficiency principles found in recent re-
search on scalable Graph Transformer methods. Furthermore, unlike many existing methods,
our model not only considers the graph topology but also learns representations from edge
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features. This dual approach, incorporating both topological information and edge feature
information, proves beneficial for intrusion detection via node classification.

By integrating these additional relational features, we surpass models relying solely on the
node features, enabling more comprehensive and accurate intrusion detection.

5.7.2 APPLY SOFT-ATTENTION TO REINFORCE NODE SELECTION

Our approach employs a soft-attention mechanism applied to node representations, ena-
bling the model to selectively prioritize relevant connections within the graph. This mechanism
significantly diminishes the impact of less informative data, which frequently undermines the
accuracy of node classification in graph transformer models.

This selective attention process helps to disentangle meaningful relationships from irrele-
vant noise, thereby enhancing the quality of the learned node representations and ultimately
improving the accuracy of intrusion detection through node classification.

While existing GNNs struggle with large graphs and capturing long-range dependencies
critical for identifying sophisticated attacks like APTs, Graph Transformers offer a solution by
aggregating global information. However, the large contextual range of GT poses scalability
challenges.

In this chapter, we explore efficient Graph Transformers for node classification in the con-
text of anomaly detection and cybersecurity. In particular, we focus on recent advancements in
attention mechanisms that aim to overcome the scalability challenges associated with traditio-
nal Graph Transformers (GTs). The proposed approach allows us to scale to large graphs with
linear complexity concerning the number of nodes. As previously noted, the linear complexity
allows us to work with bigger graphs, which is typically the case in the cybersecurity context.

Furthermore, we have noted that existing techniques that neglect time-based data analysis
may miss significant details. As anomalies are often part of a sequence of events rather than
isolated incidents, they require consideration of both spatial and temporal contexts for accurate
identification. Thus, our model leverages temporal information from node and edge features
while employing a soft-attention mechanism to selectively prioritize the most relevant nodes.

The experimental results have shown that our approach generally outperforms existing
GNNs, considering that the proposed model is more stable and achieves ROC-AUC results that
surpass a significant portion of competitors in the considered problem. When not superior, it
is at least competitive. Furthermore, our model exhibits greater stability, with lower results
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variability than its counterparts. In certain cases, the difference is substantial.
Moreover, the experimental results demonstrate that applying soft-attention exclusively

during the testing phase significantly improves the quality metric compared to applying it
during both training and testing, solely during training, or not using it at all. This finding
highlights the effectiveness of soft-attention in selectively prioritizing relevant nodes during
the evaluation process.

Furthermore, our model stands out from many existing methods by leveraging not only the
graph’s structure (topology) but also the information embedded within its connections (edge
features). Combining topological and edge feature information, this dual approach significantly
enhances intrusion detection accuracy through node classification. Nonetheless, we observe
that using contextual time embeddings via edge features enhances results but introduces
variability to some extent. This presents an opportunity for future research to explore ways to
minimize this variability.
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6 THESIS CONCLUSION

Highly sophisticated cyber-attacks constantly threaten the modern digital space by stealing
sensitive information, leading to loss of privacy, confidential information, intellectual property,
digital infrastructure, and revenue. Attackers update their knowledge constantly, developing
new attack scenarios nearly daily. As Internet usage rises, cybersecurity companies must create
more sophisticated security schemes.

Signature-based methods are widely employed in traditional IDSs in the industry due to
their high efficiency and reliability in detecting known threats. These systems compare inco-
ming data against a database of predefined signatures, triggering an alarm upon detecting a
match. However, they are unable to identify attacks that do not align with known patterns,
such as lateral movement, and prove ineffective against APT payloads that exploit zero-day
vulnerabilities and leverage prior knowledge of the network environment.

On the other hand, Graph Machine Learning excels in this domain due to its capacity to
discern complex, subtle patterns inherent in graph-structured data, such as those found in
computer networks. By leveraging the natural graph representation of networks, these mo-
dels can identify emerging threats that often evade traditional rule-based or signature-based
methods. Moreover, Graph Machine Learning algorithms are adept at processing large volu-
mes of interconnected data, enabling continuous adaptation to new malicious behaviors and
enhancing the overall resilience of network security systems.

In this thesis, we approach the confluence of GNNs, Transformer architectures, and in-
trusion detection methodologies. Our primary focus is on cyber threats known as APTs, with
particular emphasis on the critical Lateral Movement phase. To this end, we propose novel
detection models based on GTs, a specialized GNN with the ability to capture long-range
dependencies across the graph. Our first proposed model is designed to identify abnormal
login attempts - critical indicators of lateral movement - and incorporates both soft-attention
and gated mechanisms to selectively emphasize relevant node representations. Additionally, we
introduce an innovative model for detecting suspicious endpoints, which integrates temporal
dynamics to effectively capture the evolving nature of network activity and isolate compromised
hosts.

The results indicate that the residual soft-attention aggregation method can produce more
robust models that are less susceptible to the influence of less informative structural repre-
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sentations of nodes. In contrast, methods such as sum and mean aggregation simply combine
node representations without considering their relative importance, which can lead to the in-
clusion and propagation of less informative representations and negatively affect the model’s
performance. Specifically, the residual soft-attention aggregation method has been demons-
trated to outperform competing approaches in terms of the false positive rate (FPR) within
the proposed Gated-Graph Transform model. As previously mentioned, a low FPR is desirable,
indicating that the method is less likely to generate false alarms. These findings address the
first and second research questions presented in this thesis.

Concerning the third research question, a novel method was proposed for the detection of
suspicious endpoints within a network through a node classification model. As demonstrated
in this thesis, the model exhibits high accuracy and scalability, outperforming other evaluated
GNN-based approaches. Furthermore, the applicability of this model is not limited to the
detection of suspicious activities during APT scenarios; it can also be employed in broader
operational contexts.

Regarding the incorporation of temporal dynamics, the proposed model employs two dis-
tinct architectural components designed to capture temporal information at different levels of
granularity. One of these components is the contextual time embedding, which models tem-
poral data through edge feature embeddings. However, experimental results indicated that
this method does not significantly enhance the model’s performance. These findings suggest
that modeling temporal information through node features — as performed by the short-time
embedding component — is sufficient on its own to achieve satisfactory results.

Nevertheless, there are various alternative strategies for integrating temporal dynamics
into GNN-based architectures, which could be a focus for future research. One such strate-
gies involves generating graph representations in an initial stage according to their temporal
ordering using a GNN, followed by processing these representations with a sequential archi-
tecture such as an LSTM or a Transformer. Another possibility entails the direct integration
of sequential mechanisms into the GNN architecture, thereby yielding a hybrid model capable
of jointly capturing both structural and temporal dependencies. It is important to emphasize
that these approaches open up a range of still underexplored possibilities, each posing its own
methodological challenges and distinct levels of architectural complexity.

Notably, both the proposed models are complementary. While the link prediction model
demonstrates robustness in detecting abnormal login attempts, the suspicious endpoint detec-
tion model provides an additional layer of protection by operating not only in the context of
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APTs but also across a broader range of scenarios.
With regard to the use of the proposed approaches in intrusion detection systems, the

complementary strengths and weaknesses of rule-based and machine learning-based intrusion
detection systems motivate the pursuit of hybrid detection approaches. Despite their reliability
in detecting known threats, rule-based systems are often perceived as more vulnerable to
evasion attacks, given their reliance on predefined patterns. In contrast, machine learning-
based tools, though more robust in detecting novel threats, are susceptible to data poisoning.
In practice, these factors have led security professionals to favor machine learning-based tools
that offer low false positive rates and can be deployed alongside rule-based systems. Such hybrid
deployments aim to leverage the strengths of both paradigms, combining the precision and
explainability of rule-based methods with the adaptability and pattern recognition capabilities
of machine learning, to achieve more comprehensive and resilient intrusion detection.

Regarding the applicability of the proposed solutions in more diverse scenarios, we identify
opportunities for its use in fraud detection systems in e-commerce, banking fraud detection,
as well as in intrusion detection in vehicular networks. However, in the latter case, substantial
challenges would arise due to the limited computational power of the devices operating within
these networks.

It is important to note that while AI-based systems can analyze vast amounts of data,
identify anomalies, and respond to threats faster than human analysts, they also introduce
new vulnerabilities. Attackers can exploit biases and limitations in AI algorithms to deceive or
manipulate these systems. This highlights the need for a deeper understanding of AI’s vulne-
rabilities as well as the development of robust security measures for AI systems. Consequently,
research on adversarial attack detection is critical, particularly with regard to future studies
on adversarial attacks against GNN-based prediction systems. Moreover, a widely recognized
limitation of machine learning models is their lack of interpretability, prompting ongoing rese-
arch into explainable machine learning techniques to enhance transparency and trust in IDS. In
this context, the exploration of explainability methods specifically tailored to GNNs represents
a promising research direction.
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6.1 PUBLISHED WORKS RESULTING FROM THIS THESIS

6.1.1 A SEMI-SUPERVISED AUTOENCODER APPROACH FOR EFFICIENT IN-

TRUSION DETECTION IN NETWORK TRAFFIC

Published in 2023 IEEE Latin American Conference on Computational Intelligence (LA-
CCI), this paper proposed an autoencoder-based solution trained in a semi-supervised manner
to detect anomalies in network traffic. The autoencoder is trained on normal network traffic,
allowing the model to learn a compact representation of the regular traffic data. The model
then uses the reconstruction error as a mechanism for identifying anomalies in the network
traffic and achieves strong performance in anomaly detection.

A. Almeida, L. Gonçalves, C. Zanchettin and B. L. D. Bezerra, "A Semi-Supervised Au-
toencoder Approach for Efficient Intrusion Detection in Network Traffic,"2023 IEEE Latin
American Conference on Computational Intelligence (LA-CCI), Recife-Pe, Brazil, 2023, pp.
1-6, doi: 10.1109/LA-CCI58595.2023.10409491.

6.1.2 SG-RSRNN - SCORE GUIDED ROBUST SUBSPACE RECOVERY-BASED

NEURAL NETWORK FOR NETWORK INTRUSION DETECTION

This work has been published in 2024 International Joint Conference on Neural Networks
(IJCNN). The work introduces a new unsupervised deep learning approach for network intrusion
detection using an autoencoder enhanced with a special regularizer for anomaly-robust feature
extraction. Moreover, we incorporate a scoring network to guide anomaly score distribution,
especially in the data’s transition area, to better distinguish between normal and abnormal
samples. The experimental results demonstrate significant improvement over existing methods
on various datasets, showing the effectiveness of the proposed model in detecting network
traffic anomalies.

L. Gonçalves and C. Zanchettin, “SG-RSRNN - Score Guided Robust Subspace Recovery-
based Neural Network for Network Intrusion Detection,” 2024 International Joint Conference
on Neural Networks (IJCNN), Yokohama, Japan, 2024, pp. 1-8,
doi: 10.1109/IJCNN60899.2024.10650391.
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6.1.3 DETECTING ABNORMAL LOGINS BY DISCOVERING ANOMALOUS LINKS

VIA GRAPH TRANSFORMERS

This work was recently published in the journal Computers & Security. This study pro-
poses a novel approach: a residual soft-attention scheme that employs weighted sums for
aggregation, resulting in improved node representations and better filtration of irrelevant in-
formation. Experimental results on three datasets confirm that this method excels at detecting
abnormal authentications with fewer false positives than competitors.

Gonçalves, Luís, and Cleber Zanchettin. “Detecting abnormal logins by discovering ano-
malous links via graph transformers.” Computers & Security 144 (2024): 103944.
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