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ABSTRACT

Initializing an isometry in a quantum circuit is a fundamental yet challenging task, espe-
cially when aiming for efficient state preparation and resource optimization. In this work, we
present a comparative analysis of the Householder Decomposition for isometry implementation,
leveraging three distinct state preparation methods starting from the original Pivot method and
extending the study to two additional strategies: Merge and Low Rank. The study investigates
how each method impacts the performance of the isometry decomposition, focusing on key
metrics such as CNOT gate count and circuit depth. To provide a comprehensive evaluation,
we examine variations in matrix size and sparsity levels, capturing the effects of structural
complexity on resource requirements.

Our results reveal that the Merge state preparation method generally outperforms the
other two approaches, particularly in terms of scalability and gate efficiency. Building upon
these findings, we further compare the best-performing method, Merge, with the state-of-
the-art isometry decomposition implementation available in Qiskit, a widely used quantum
computing framework. The analysis demonstrates that, for isometries involving up to 6 qubits,
Qiskit’s implementation exhibits superior performance. However, beyond this threshold, our
proposed decomposition method proves more effective, especially for highly sparse isometries
or those characterized by a smaller number of columns.

This work highlights the potential for optimizing isometry decompositions in scenarios
where sparsity and structural constraints are critical factors. These findings contribute to
advancing state preparation techniques and offer insights into improving the efficiency of
quantum circuits for applications in quantum information processing.

Keywords: Householder Decomposition; isometry; sparse isometry; state preparation.



RESUMO

Inicializar uma isometria em um circuito quântico é uma tarefa fundamental, porém de-
safiadora, especialmente quando se busca uma preparação de estado eficiente e otimização de
recursos. Neste trabalho, apresentamos uma análise comparativa da Decomposição de House-
holder para a implementação de isometrias, explorando três métodos distintos de preparação de
estados — iniciando pelo método original, Pivot, e estendendo o estudo para duas estratégias
adicionais: Merge e Low Rank. O estudo investiga como cada método impacta o desempenho
da decomposição de isometrias, com foco em métricas-chave, como o número de portas CNOT
e a profundidade do circuito. Para fornecer uma avaliação abrangente, analisamos variações
no tamanho da matriz e nos níveis de esparsidade, capturando os efeitos da complexidade
estrutural nos requisitos de recursos.

Nossos resultados mostram que o método de preparação de estado Merge geralmente
supera as outras duas abordagens, especialmente em termos de escalabilidade e eficiência em
portas lógicas. Com base nesses resultados, comparamos o método com melhor desempenho,
Merge, com a implementação de decomposição de isometrias disponível no Qiskit, uma das
bibliotecas de computação quântica mais amplamente utilizadas. A análise demonstra que, para
isometrias envolvendo até 6 qubits, a implementação do Qiskit apresenta desempenho superior.
No entanto, além desse limite, o método proposto revela-se mais eficiente, particularmente
para isometrias altamente esparsas ou caracterizadas por um número reduzido de colunas.

Este trabalho destaca o potencial para otimizar decomposições de isometrias em cenários
onde a esparsidade e restrições estruturais são fatores críticos. Esses resultados contribuem
para o avanço das técnicas de preparação de estados e oferecem insights sobre como melhorar
a eficiência de circuitos quânticos em aplicações de processamento de informação quântica.

Palavras-chaves: Decomposição Householder; isometria; isometria esparsa; preparação de
estados.
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1 INTRODUCTION

Quantum computation is the study of the information processing tasks that can be ac-
complished using quantum mechanical systems (NIELSEN; CHUANG, 2000), that is, advanced
machines inspired by the principles of quantum mechanics: superposition, entanglement, and
interference (SCHNEIDER; SMALLEY, 2024). These principles allow qubits (basic elements
of quantum information) to exist in multiple simultaneous states that can be processed in
parallel. A circuit, the fundamental building block of quantum computers, consists of combi-
nations of sequential and parallel gate operations (YANOFSKY; MANNUCCI; MANNUCCI,
2008). These are represented by wires and elementary gates that carry and manipulate data.

The history of quantum computation dates back to the 1980s, when Paul Benioff, an
American physicist, described the construction of a quantum mechanical model of computers
represented by a Turing machine (BENIOFF, 1980). The idea of a Universal Quantum Com-
puter came in 1985, when David Deustch, a British physicist, published the idea of a device
that would be capable of efficiently simulating any physical system (DEUTSCH, 1985). This
idea came three years after Nobel-winning physicist Richard Feynman proposed the first use
of quantum computation to simulate physical processes, suggesting that classical computers
would struggle to simulate quantum mechanics in an efficient way (FEYNMAN, 1982). After
almost a decade, Peter Shor demonstrated that a quantum computer could efficiently find
discrete logarithms and factor integers, which can be used to break several proposed cryp-
tosystems, such as the RSA system (GIDNEY; EKERå, 2021; RIVEST; SHAMIR; ADLEMAN,
1978). This algorithm is now referred to as "Shor’s Algorithm" (SHOR, 1994). In 1995, Lov
Grover presented another important algorithm, known as "Grover’s algorithm", responsible for
searching unsorted data, with a quadratic acceleration compared to its best classical version
(GROVER, 1996).

Recently, a new wave of quantum algorithms have been proposed in defiance of the narrow
view of what a quantum computer would be useful for, showing how quantum computers might
be used to provide exponential gain compared to its classical adversary (AARONSON, 2015).
Some practical applications include machine learning, clustering, classification, and finding
patterns in huge amounts of data (AARONSON, 2015; BIAMONTE et al., 2017; SCHULD;
SINAYSKIY; PETRUCCIONE, 2014; SCHULD; PETRUCCIONE, 2018). An important mile-
stone in this area was achieved in 2019, when Google announced it had reached quantum
supremacy with its Sycamore processor by completing a complex random circuit sampling
task in minutes, which would take thousands of years to complete on the best supercomputer
existing at the time (ARUTE; AL., 2019). Although many advantages are expected in the
fields of research and industry, there are some challenges that prevent these applications from
being implemented, like noise, limited connectivity, and constraints on qubit count (width)
and circuit depth (number of operation layers) (LEYMANN; BARZEN, 2020; AARONSON,
2015).
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An important component in the operation of these algorithms is the encoding of classical
data into a quantum state (AARONSON, 2015; BIAMONTE et al., 2017; RATH; DATE,
2024). Encoding classical data requires converting it to vector form, after which it is translated
into operations performed on a quantum computer, usually encoded in a quantum circuit. The
execution of this circuit creates the initial desired quantum state (NIELSEN; CHUANG, 2000;
YANOFSKY; MANNUCCI; MANNUCCI, 2008).

The process of encoding classical data into a quantum state is called Quantum State
Preparation Algorithm (QSPA). This step is necessary because quantum algorithms rely
on quantum bits, or qubits, for computation. While a classical bit is limited to the states 0
or 1, a qubit can be in a quantum superposition of the basis states ⋃︀0̃︀ and ⋃︀1̃︀ (SAKURAI;
NAPOLITANO, 2020; EISBERG; RESNICK, 1985). The complexity of initializing a quantum
state plays a crucial role in estimating the cost of QSPA, as it can potentially overcome the
advantages of quantum speedup (RATH; DATE, 2024; VERAS et al., 2021).

1.1 MOTIVATION

Many companies and research institutions, including IBM, Google, Microsoft, and Ama-
zon1, are actively investing in the development of quantum devices. Despite that, the actual
quantum devices are noisy and unreliable. These devices, known as 𝑁𝐼𝑆𝑄 (which stands for
Noisy Intermediate-Scale Quantum), are limited by the amount of qubits, the connectivity
between them, and the presence of noise in their operations (PRESKILL, 2018). This leads
to the difficulty to execute circuits with large depths — corresponding to how many layers of
quantum gates need to be applied in sequence — and width — corresponding to the amount
of qubits used simultaneously in a circuit (PRESKILL, 2018). Figure 1 provides an example of
the depth and width of an illustrative circuit.

As previously discussed, initializing a quantum state can be a complex and time-consuming
process (RATH; DATE, 2024; VERAS et al., 2021). In his well-established book Introduction to
Algorithms, computer scientist Thomas Cormen (CORMEN et al., 2009) explores the growth
of functions in algorithms. This concept of growth provides a straightforward characterization
of an algorithm’s efficiency. To compare growth rates, computer scientists commonly use
three notations: 𝑂 (big O), Ω (big Omega), and Θ (big Theta). These notations describe
the asymptotic behavior of a function in relation to the input size. For example, if 𝑁 is the
input lenght of an algorithm, 𝑔(𝑁) is a function that represents a potential growth rate or
1 To access the official channels of these companies:

• IBM: https://www.ibm.com/quantum
• Google: https://quantumai.google/
• Microsoft: https://quantum.microsoft.com/
• Amazon: https://aws.amazon.com/pt/braket/

https://www.ibm.com/quantum
https://quantumai.google/
https://quantum.microsoft.com/
https://aws.amazon.com/pt/braket/
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Figure 1 – Illustrative image showing the width and depth of an illustrative circuit.

complexity. In the case of Big O, 𝑂(𝑔(𝑁))) represents the upper bound of the algorithm’s
growth rate, indicating that the function will not grow faster than 𝑔(𝑁) multiplied by a
constant for sufficiently large 𝑁 . In contrast, Ω(𝑔(𝑁)) represents the lower bound, meaning
that the function will grow at least as fast as 𝑔(𝑁) for large 𝑁 . Finally, Θ(𝑔(𝑁)) indicates
that the function grows at the same rate as 𝑔(𝑁) both asymptotically from above and below,
meaning the function’s growth is bounded both above and below by 𝑔(𝑁) within constant
factors for large 𝑁 . In all cases, 𝑔(𝑁) serves as a reference function that characterizes the
growth rate of the algorithm or function being analyzed. In this work, we will focus on the big
O notation.

In the context of quantum computing, these same principles of complexity analysis are
applied to quantum algorithms, with particular emphasis on the structure and resources re-
quired by quantum circuits. Depth and width are typically used as parameters to determine the
efficiency of a circuit (NIELSEN; CHUANG, 2000). The worst-case complexity of Quantum
State Preparation is exponential in relation to the number of qubits (SHENDE; BULLOCK;
MARKOV, 2005). In comparison, a hypothetical best-case scenario would have logarithmic
complexity, although this has not yet been achieved.

An alternative to get around the problems of the use of NISQ devices is to find solu-
tions that align with them. In algorithms where Quantum State Preparation is a essential
for achieving quantum speedup (BIAMONTE et al., 2017), the motivation for improving its
efficiency becomes even more evident (AARONSON, 2015; RøNNOW et al., 2014). Hence,
the importance of finding strategies to facilitate the use of such devices.

Figure 2 – Illustration of a possible sparse quantum state. The empty blocks represent zero amplitudes, while
the colored blocks indicate non-zero amplitudes, with their corresponding values displayed below
the arrows. This state can be mathematically expressed as: ⋃︀𝜓̃︀ = 1⌋︂

2 ⋃︀011̃︀ + 1⌋︂
2 ⋃︀101̃︀.
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Not all quantum states are created equal. Quantum speedup (BIAMONTE et al., 2017)
can be more effectively achieved when the initial states for algorithms are easier to prepare.
For example, if a state is considered sparse, meaning it has many zero-amplitude inputs (MAL-
VETTI; ITEN; COLBECK, 2021; VERAS et al., 2021; GLEINIG; HOEFLER, 2021) as shown
in Figure 2, it should be easier to initialize on a quantum computer.

1.2 OBJECTIVES

The main objective of this work is to perform a comparative analysis of various state
preparation methods applied within the Householder Decomposition framework for isometry
decomposition, as introduced by Malvetti et al. (MALVETTI; ITEN; COLBECK, 2021). The
original work employs the Pivot-based state preparation as its core strategy. Here, we extend
that analysis by exploring two alternative approaches – Merge and Low Rank – and compare
them against the original method. Our investigation focuses on how these different techniques
respond to specific structural features of the target isometry, such as its sparsity and number
of columns. These characteristics play a crucial role in determining the circuit’s complexity and
resource requirements, making this comparison particularly relevant for the design of scalable
and resource-efficient quantum algorithms.

Following this analysis, we evaluate the performance of each state preparation method
based on two key metrics: the number of CNOT gates and the circuit depth. The number
of CNOT gates is particularly relevant because two-qubit operations, such as the CNOT, are
significantly more challenging to implement than single-qubit gates. They require an additional
degree of freedom and tighter control over qubit interactions, which increases the chances of
introducing errors. As a result, CNOT gates are a major source of decoherence in quantum
circuits (ITEN et al., 2016).

Circuit depth, on the other hand, measures the number of gate layers that must be executed
sequentially (NIELSEN; CHUANG, 2000). This is a crucial parameter, especially in the context
of NISQ devices, which have limited coherence times (AARONSON, 2015). A deeper circuit
takes longer to execute, increasing the risk that qubits will lose their quantum state before
the computation finishes. Therefore, minimizing circuit depth helps ensure the circuit remains
within the physical limits of current quantum hardware.

Finally, we benchmark the most efficient state preparation approach against the standard
implementation available in Qiskit, one of the most widely used open-source quantum com-
puting libraries (ALEKSANDROWICZ et al., 2019). At the time of this work, it features the
Column-by-column decomposition (ITEN et al., 2016).
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1.3 ORGANIZATION OF THE DISSERTATION

The remainder of this thesis is structured as follows:

• Chapter 2: Provides the theoretical foundation necessary for this work, including an
overview of basic quantum computing concepts, the decomposition of multi-controlled
unitary gates, state preparation techniques, isometries, and the Householder Decompo-
sition.

• Chapter 3: Describes the methodology used in this study, detailing the implementation
of the algorithms and the composition of the corresponding quantum circuits.

• Chapter 4: Presents the experimental procedures and key results, accompanied by a
detailed analysis of the collected data. In addition, this chapter discusses the primary
challenges encountered throughout the work.

• Chapter 5: Concludes the thesis by revisiting the objectives and summarizing the main
findings. It also outlines potential directions for future research.
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2 THEORETICAL BACKGROUND

2.1 QUANTUM COMPUTING

Quantum computing is a novel approach to computation that leverages the principles of
quantum mechanics (YANOFSKY; MANNUCCI; MANNUCCI, 2008; NIELSEN; CHUANG,
2000). When studying quantum computation, it is common to make an analogy to its classical
counterpart.

In classical computing, information is stored and processed using bits, which can take two
different values: 0 or 1 (MACKENZIE, 1980). Mathematically, a classical bit can take one of
either two values:

𝐵𝐼𝑇 = {0,1} (2.1)

This approach is simple and efficient for many tasks used in our common computers, but
imposes limitations when dealing with problems that require massive parallelism or probabilistic
behavior (PRESKILL, 2018).

Just as classical bits form the foundation of classical computing, qubits serve as the basic
units of information in quantum computers (NIELSEN; CHUANG, 2000). In simpler terms,
you can think of classical bits as straightforward on/off switches, while qubits behave more
like spinning coins—until measured, they exist in a state that is both heads and tails at the
same time (WHURLEY; SMITH, 2023). They are usually represented using Dirac’s notation,
with ⋃︀0̃︀ as the quantum analog for 0 and ⋃︀1̃︀ as the quantum analog for 1. They can also be
represented using matrix notation:

⋃︀0̃︀ =
⎨
⎝
⎝
⎝
⎝
⎝
⎪

1

0

⎬
⎠
⎠
⎠
⎠
⎠
⎮

; ⋃︀1̃︀ =
⎨
⎝
⎝
⎝
⎝
⎝
⎪

0

1

⎬
⎠
⎠
⎠
⎠
⎠
⎮

(2.2)

Qubits are unique because they explore the principles of quantum mechanics, which allows
them to exist in a superposition of ⋃︀0̃︀ and ⋃︀1̃︀ simultaneously. Mathematically, we represent a
state ⋃︀𝑣̃︀ in superposition as a two-dimensional vector that is a linear combination of ⋃︀0̃︀ and
⋃︀1̃︀:

⋃︀𝑣̃︀ = 𝑐0 ⋃︀0̃︀ + 𝑐1 ⋃︀1̃︀ (2.3)

where 𝑐0 and 𝑐1 are the complex coefficients that satisfy the normalization condition:

⋃︀𝑐0⋃︀
2 + ⋃︀𝑐1⋃︀

2 = 1 (2.4)

Equation 2.4 indicates that the qubit exists in both states ⋃︀0̃︀ and ⋃︀1̃︀, where ⋃︀𝑐0⋃︀2 is the
probability of measuring ⋃︀0̃︀ and ⋃︀𝑐1⋃︀2 is the probability of measuring ⋃︀1̃︀. It is the property of
superposition that gives quantum computers their power of parallel computing.
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We can also combine multiple qubits to represent more complex states, which are referred
to as basis states. They can be represented as the tensor product of individual qubit states. In
general, any 𝑛-qubit basis state ⋃︀𝑥1𝑥2 . . . 𝑥𝑛̃︀ corresponds to the tensor product ⋃︀𝑥1̃︀ ⊗ ⋃︀𝑥2̃︀ ⊗

⋅ ⋅ ⋅ ⊗ ⋃︀𝑥𝑛̃︀, where each 𝑥𝑖 ∈ {0,1}. We can also simplify the representation of a multiple qubit
state by simply writing ⋃︀𝑏𝑖̃︀

⊗𝑛, which denotes a tensor product of 𝑛 qubits all initialized in the
state ⋃︀𝑏𝑖̃︀. This shorthand is commonly used to represent the initial state ⋃︀0̃︀⊗𝑛 of a quantum
register before any gates are applied, and it corresponds to the full basis state ⋃︀00 . . .0̃︀ with
𝑛 zeros.

Accordingly, we define basis states as follows:

Definition 1 Basis states of a qubit system are a set of 2𝑛 orthonormal vectors. A general
state ⋃︀𝑣̃︀ of a 𝑛-qubit quantum system is a normalized linear combination of basis states:

⋃︀𝑣̃︀ = ∑
𝑥∈{0,1}𝑛

𝑐𝑥 ⋃︀𝑥̃︀ , ∑
𝑥∈{0,1}𝑛

⋃︀𝑐𝑥⋃︀
2 = 1 (2.5)

where 𝑐𝑥 are the amplitudes of the basis state ⋃︀𝑥̃︀ (GLEINIG; HOEFLER, 2021).

In general, describing a quantum state requires describing all 𝑐𝑥 amplitudes. For these
states, we define the following properties:

Definition 2 Letting 𝑆 ⊂ {0,1}𝑛 denote the set of basis states with nonzero coefficients. A
quantum state is called dense if

⋃︀𝑣̃︀ = ∑
𝑥∈𝑆

𝑐𝑥 ⋃︀𝑥̃︀ , (2.6)

where ⋃︀𝑆⋃︀ ≈ 2𝑛, that is, when most of the basis states have nonzero coefficients.

Definition 3 Letting 𝑆 ⊂ {0,1}𝑛 denote the set of basis states with nonzero coefficients. A
quantum state is called sparse if

⋃︀𝑣̃︀ = ∑
𝑥∈𝑆

𝑐𝑥 ⋃︀𝑥̃︀ , (2.7)

where ⋃︀𝑆⋃︀ ≪ 2𝑛, that is, when only a small amount of bases states have nonzero coefficients
(GLEINIG; HOEFLER, 2021).

To manipulate the basis states, we use quantum operators – also called quantum gates.
They are mathematically represented as unitary matrices that act on the state vector of a
qubit or a set of qubits. These gates transform the quantum state while preserving the total
probability, as required by the principles of quantum mechanics. For example, the Hadamard
gate 𝐻, represented by the matrix:
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• H gate:

𝐻 =
1
⌋︂

2

⎨
⎝
⎝
⎝
⎝
⎝
⎪

1 1

1 −1

⎬
⎠
⎠
⎠
⎠
⎠
⎮

(2.8)

This gate creates a superposition state when applied to a qubit in the ⋃︀0̃︀ or ⋃︀1̃︀ state:

𝐻 ⋃︀0̃︀ = 1
⌋︂

2
(⋃︀0̃︀ + ⋃︀1̃︀), 𝐻 ⋃︀1̃︀ = 1

⌋︂
2
(⋃︀0̃︀ − ⋃︀1̃︀)

Other basic gates, called Pauli Gates, consist of single qubit operations represented as:

• X gate:

𝑋 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

0 1

1 0

⎬
⎠
⎠
⎠
⎠
⎠
⎮

(2.9)

Swaps the ⋃︀0̃︀ and ⋃︀1̃︀ states:

𝑋 ⋃︀0̃︀ = ⋃︀1̃︀ , 𝑋 ⋃︀1̃︀ = ⋃︀0̃︀

• Y gate:

𝑌 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

0 −𝑖

𝑖 0

⎬
⎠
⎠
⎠
⎠
⎠
⎮

(2.10)

Introduces a complex phase during the state transition:

𝑌 ⋃︀0̃︀ = 𝑖 ⋃︀1̃︀ , 𝑌 ⋃︀1̃︀ = −𝑖 ⋃︀0̃︀

• Z gate:

𝑍 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

1 0

0 −1

⎬
⎠
⎠
⎠
⎠
⎠
⎮

(2.11)

This gate flips the phase of the ⋃︀1̃︀ state while leaving ⋃︀0̃︀ unchanged:

𝑍 ⋃︀0̃︀ = ⋃︀0̃︀ , 𝑍 ⋃︀1̃︀ = − ⋃︀1̃︀

Another commonly used set of gates is the rotation gates, which introduce an arbitrary
angle 𝜃 into the circuit, allowing for more flexibility in manipulating quantum states. They are
particularly useful for changing the phase or amplitude of quantum states and are implemented
through mathematical rotations, which are used to represent unitary operators that act on a
single qubit.
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• 𝑅𝑥 gate:

𝑅𝑥 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

cos(𝜃⇑2) −𝑖 sin(𝜃⇑2)

−𝑖 sin(𝜃⇑2) cos(𝜃⇑2)

⎬
⎠
⎠
⎠
⎠
⎠
⎮

(2.12)

In a quantum circuit, this performs a unitary operation on a single qubit, rotating the state
of the qubit by the angle 𝜃 around the 𝑥-axis of the Bloch sphere.

• 𝑅𝑦 gate:

𝑅𝑦 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

cos(𝜃⇑2) − sin(𝜃⇑2)

sin(𝜃⇑2) cos(𝜃⇑2)

⎬
⎠
⎠
⎠
⎠
⎠
⎮

(2.13)

This gate rotates a qubit’s state by an angle 𝜃 around the 𝑦-axis of the Bloch sphere.

• 𝑅𝑧 gate:

𝑅𝑧 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

𝑒−𝑖 𝜃
2 0

0 𝑒𝑖 𝜃
2

⎬
⎠
⎠
⎠
⎠
⎠
⎮

(2.14)

This gate is used to rotate the phase of the qubit’s state without affecting its amplitude.
The 𝑅𝑧 gate modifies the qubit’s state by adding a phase factor, where the phase is dependent
on the angle 𝜃.

Another common type of quantum gate is the controlled gate, which introduces conditional
logic into quantum circuits. Unlike the gates discussed earlier, controlled gates operate based
on the state of one or more designated control qubits. An operation 𝑈 , which can be any
unitary transformation, is applied to a target qubit only if the control qubits satisfy a specific
condition, such as being in the state ⋃︀1̃︀ or ⋃︀0̃︀. Figure 3 illustrates a circuit for a controlled
unitary gate with a closed control, meaning that the unitary gate will only act if the control
qubit is in the state ⋃︀1̃︀. In contrast, Figure 4 shows a circuit for a controlled unitary gate with
an open control, which means that the unitary gate will only act if the control qubit is in the
state ⋃︀0̃︀.

●

𝑈

Figure 3 – Representation of a controlled unitary gate acting on a single qubit, with a closed control. The gate
𝑈 is activated only when the control qubit is in the state ⋃︀1̃︀.

The most used example of a controlled gate is the Controlled-NOT (CNOT) gate. This
gate flips the state of the target qubit if the control qubit is in the state ⋃︀1̃︀. Mathematically,
the CNOT gate acting on two consecutive qubits is represented by the matrix:



27

𝑋 ● 𝑋
=

𝑈 𝑈

Figure 4 – Representation of a controlled unitary gate acting on a single qubit, with an open control. The
gate 𝑈 is activated only when the control qubit is in the state ⋃︀0̃︀. This configuration is equivalent
to placing a NOT gate (X gate) before and after the control qubit.

• CNOT gate:

𝐶𝑁𝑂𝑇 =

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎪

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎮

(2.15)

It works by checking if the control qubit is ⋃︀0̃︀ or ⋃︀1̃︀. If it is in the state ⋃︀0̃︀, the target
remains unchanged. If it is in the state ⋃︀1̃︀, the target is flipped from ⋃︀0̃︀ to ⋃︀1̃︀ or vice versa.
In a circuit, it is represented as seen in the figure 5:

⋃︀1̃︀ ● ⋃︀1̃︀
⋃︀0̃︀ 𝐶𝑁𝑂𝑇 ⋃︀0̃︀ = ⋃︀1̃︀

Figure 5 – Quantum circuit representing the application of a CNOT gate.

If a controlled gate has multiple control qubits, it is referred to as a multi-controlled gate.
One special case of the Multi-controlled gate is when the unitary gate is the operation NOT.
For two control qubits, the gate is known as a Toffoli gate (TOFFOLI, 1980). For three or
more controls, the multi-controlled NOT (or multi-controlled Toffoli) gate is represented as:

• Multi-controlled Toffoli gate:

●

●

⋮

●

Similar to multi-controlled gates, the Toffoli gate can be implemented in various ways;
however, this is not the primary focus of this work.

The Toffoli gate can be generalized for an arbitrary unitary operation 𝑈 , and is represented
as:
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• Multi-controlled gate:

●

●

⋮

●

𝑈

There are different ways to implement a multi-controlled gates, but we will focus on a
decomposition that presents a linear depth (see Section 2.2).

In addition to the gates previously introduced, there exists a set of gates known as "universal
gates". These gates are called universal because any unitary operation can be approximated to
arbitrary accuracy using only combinations of them. A common universal gate set includes the
Hadamard, Phase, CNOT, and 𝜋⇑8 (T) gates. To complete this universal set, we now present
the following gates:

• Phase gate (S):

𝑆 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

1 0

0 𝑒𝑖 𝜋
2

⎬
⎠
⎠
⎠
⎠
⎠
⎮

=

⎨
⎝
⎝
⎝
⎝
⎝
⎪

1 0

0 𝑖

⎬
⎠
⎠
⎠
⎠
⎠
⎮

(2.16)

Introduces a phase shift to the ⋃︀1̃︀ component of a qubit state, leaving the ⋃︀0̃︀ component
unchanged.

𝑆 ⋃︀0̃︀ = ⋃︀0̃︀ , 𝑆 ⋃︀1̃︀ = 𝑖 ⋃︀1̃︀

• 𝜋⇑8 gate (T):

𝑇 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

1 0

0 𝑒𝑖 𝜋
4

⎬
⎠
⎠
⎠
⎠
⎠
⎮

=

⎨
⎝
⎝
⎝
⎝
⎝
⎪

1 0

0 1
⌋︂

2(1 + 𝑖)

⎬
⎠
⎠
⎠
⎠
⎠
⎮

(2.17)

It adds a phase of 𝜋⇑4 radians to the ⋃︀1̃︀ component of a qubit, while leaving the ⋃︀0̃︀
component unchanged:

𝑇 ⋃︀0̃︀ = ⋃︀0̃︀ , 𝑇 ⋃︀1̃︀ = 𝑒𝑖 𝜋
4 ⋃︀1̃︀

2.2 DECOMPOSITION OF MULTI-CONTROLLED UNITARY GATES

2.2.1 Linear-depth quantum circuits for multiqubit controlled gates

The work presented by (SILVA; PARK, 2022) aims to decompose multi-controlled gates,
denoted as 𝐶𝑛𝑈 , where a single qubit unitary operator 𝑈 is applied to a target qubit conditioned
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on the state of 𝑛 control qubits. The circuit is structured in a pyramid-like shape and uses
rotation gates 𝑅𝑥, which allows for an implementation of linear depth 𝑂(𝑛) and a quadratic
cost 𝑂(𝑛2) of CNOT gates.
⋃︀𝑎1̃︀ ● ●

⋃︀𝑎2̃︀ ● 𝜋 ● ● −𝜋 ●

⋃︀𝑎3̃︀ ● 𝜋⇑2 𝜋⇑2 −𝜋⇑2 ● ● 𝜋⇑2 −𝜋⇑2 −𝜋⇑2 ●

⋃︀𝑎4̃︀ ● 𝜋⇑2 𝜋⇑4 𝜋⇑4 −𝜋⇑4 −𝜋⇑2 ● 𝜋⇑2 𝜋⇑4 −𝜋⇑4 −𝜋⇑4 −𝜋⇑2

⋃︀𝑎5̃︀
⌋︂
𝑈

4
⌋︂
𝑈

8
⌋︂
𝑈

8
⌋︂
𝑈 8

⌋︂
𝑈

† 4
⌋︂
𝑈

† ⌋︂
𝑈

†

Figure 6 – Decomposition of a multicontrolled unitary gate of five qubits, with {𝑎1, 𝑎2, 𝑎3, 𝑎4} acting as con-
trols and {𝑎5} acting as the target. The 𝑅𝑥 gates are represented by boxes labeled with their
respective angles in the form 𝜋⇑𝑘, where 𝑘 ∈ 𝑁 .

This method uses controlled rotations 𝑅𝑥, represented as boxes with their respective angles
𝜋⇑𝑘, where 𝑘 ∈ 𝑁 , as shown in Figure 6. The rotations are applied to all qubits, except the
first, which acts solely as a control. The total number of control qubits is 𝑘 = 𝑛−1. In addition,
the approach utilizes 2𝑗-th roots of the unitary operator 𝑈 , where 𝑗 ∈ {1,2,⋯, 𝑘 − 1}.

The main advantage of this circuit is that it enables multiple operations to be executed
in parallel, provided they do not act on the same target qubit. For instance, the first layer
consists of the unitary gate

⌋︂
𝑈 applied to qubit ⋃︀𝑎5̃︀, controlled by qubit ⋃︀𝑎4̃︀. The second

layer applies the gate 4
⌋︂
𝑈 to the same target qubit ⋃︀𝑎5̃︀, again controlled by ⋃︀𝑎4̃︀. Parallelism

becomes more evident in the third layer, which includes a rotation gate 𝑅𝑥(𝜋⇑2) acting on
qubit ⋃︀𝑎4̃︀, controlled by ⋃︀𝑎3̃︀, and simultaneously the gate 8

⌋︂
𝑈 applied to ⋃︀𝑎5̃︀, controlled by

qubit ⋃︀𝑎2̃︀. This pattern continues, following a diagonal distribution on the pyramid shape.
As illustrated in Figure 6, for a circuit with 4 controls, notice that if any of the control qubits

doesn’t attend the required criteria (i.e., is in the state ⋃︀0̃︀ rather than ⋃︀1̃︀), the operator 𝑈 is not
applied to the target qubit. This happens because the controlled 𝑅𝑥 rotations (represented by
gates with angles of the shape 𝜋⇑𝑗) effectively cancel each other out. In this way, the structure
of the decomposition ensures that the operation is applied only when all control qubits are in
the desired state.

2.3 STATE PREPARATION

When a task requires loading classical data into a quantum computer, the first step is to en-
code this data into a quantum format, commonly referred to as a quantum state (CORTESE;
BRAJE, 2018). Consequently, quantum state preparation algorithms (QSPA) emerge as a
means of acting as an intermediary in the interaction between classical and quantum com-
puters (SCHULD; PETRUCCIONE, 2018). These algorithms receive a set of classical data
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and construct a corresponding quantum state. This is necessary because quantum computers
require the initialization of quantum states to perform their functions.

We define a general quantum ⋃︀𝑣̃︀ state as:

Definition 4 A quantum state ⋃︀𝑣̃︀ can be expressed as a linear combination of elements of
an orthonormal basis within a complex Hilbert space 𝐻, expressed as:

⋃︀𝑣̃︀ =
1

⌋︂
𝑁
∑
𝑥

𝑐𝑥 ⋃︀𝑥̃︀ ; 𝑁 = ∑
𝑥

⋃︀𝑐𝑥⋃︀
2 = 1 (2.18)

where ⋃︀𝑥̃︀ is an orthonormal basis for the space, 𝑐𝑥 are complex probability amplitudes that
determine the probability of measuring the state ⋃︀𝑥̃︀ and 𝑁 ensures that the total probability
sums to one.

Implementing a quantum state refers to the process of transforming a set of qubits, usually
in a simple or known state, into a desired quantum state (RATH; DATE, 2024; CORTESE;
BRAJE, 2018). That said, we say define:

Definition 5 An unitary operator 𝑆𝑃𝑣 implements a state preparation of a state ⋃︀𝑣̃︀ on 𝑛

qubits if:
𝑆𝑃𝑣 ⋃︀0̃︀𝑛 = ⋃︀𝑣̃︀ (2.19)

Quantum states can often be grouped into different classes based on their structural prop-
erties, such as sparse, dense, entangled, separable, and uniform states, etc. This classification
can present opportunities for optimization in quantum algorithms.

In the following sections, we will present examples of state preparation for quantum states.

2.3.1 Merge Algorithm

The state preparation proposed by (GLEINIG; HOEFLER, 2021) describes their contribu-
tion as an efficient algorithm designed to take advantage of the sparsity of quantum states.
By using this sparsity, the algorithm generates quantum circuits of size 𝑂(⋃︀𝑆⋃︀𝑛), where 𝑆

denotes the set of basis states with nonzero coefficients, ⋃︀𝑆⋃︀ is the amount of nonzero coef-
ficients and 𝑛 is the number of qubits. The method operates in polynomial classical runtime
𝑂(⋃︀𝑆⋃︀2 log(⋃︀𝑆⋃︀𝑛)).

The goal of this method is to construct a quantum circuit applicable to any sparse quantum
state (see Definition 4). We describe a general idea of this circuit in Algorithms 1 and 2. This
process iteratively combines two sets of basis states in a controlled manner, gradually merging
them to construct the desired quantum state. To ensure efficiency, the applied transformations
are chosen as general 𝑆𝑈(2) rotations, since controlled operations on such matrices have a
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linear cost. This reduces the overall complexity of the algorithm while maintaining accuracy in
state preparation.

Along with the following algorithms, you can also follow a detailed step-by-step example
in APPENDIX A.
Algorithm 1

Input: Classical representation of a quantum state ⋃︀𝑣̃︀ = ∑𝑥∈𝑆 𝑐𝑥 ⋃︀𝑥̃︀.
Output: Quantum circuit 𝐶 that prepares the desired superposition.

1. Start with the initial circuit 𝐶 = ⋃︀0̃︀⊗𝑛 and define the set 𝑆 = {𝑥1, 𝑥2,⋯𝑥𝑘} containing
the nonzero amplitudes of the target state.

2. Divide the set 𝑆 into two subsets by selecting a qubit 𝑏 ∈ {1,2,⋯, 𝑛} in such a way that:

𝑆0 = {𝑥 ∈ 𝑆 ⋃︀ 𝑥(︀𝑏⌋︀ = 0}; 𝑆1 = {𝑥 ∈ 𝑆 ⋃︀ 𝑥(︀𝑏⌋︀ = 1}

Choose 𝑆0 and 𝑆1 such that the difference in the number of basis states between the
two sets is maximized, ensuring that neither set is empty.

3. Select a basis state from each set 𝑆0 and 𝑆1, choosing the pair with the fewest differing
qubits, i.e., the most similar states. Then, calculate the angle 𝜔 of these states and the
relative phase 𝛼 between them. Let’s say we want to merge the arbitrary state ⋃︀𝜑̃︀:

⋃︀𝜑̃︀ = 𝑎 ⋃︀𝑥̃︀ + 𝑏𝑒𝑖𝜃 ⋃︀𝑦̃︀

Then,
𝜔 = 𝑎𝑟𝑐𝑡𝑎𝑛(

𝑎

𝑏
)

And 𝛼 is the relative phase between states ⋃︀𝑥̃︀ and ⋃︀𝑦̃︀. If 𝑎 and 𝑏𝑒𝑖𝜃 are the amplitudes:

𝛼 = 𝐴𝑟𝑔(𝑏𝑒𝑖𝜃) −𝐴𝑟𝑔(𝑎) = 𝜃

4. Apply CNOT gates to the circuit 𝐶 where the control qubit is 𝑏 and the target qubits
are those that differ between the two states. To merge the set 𝑆0 into 𝑆1, select an open
control. To merge the set 𝑆1 into 𝑆0, select a closed control.

5. In the circuit 𝐶 apply an M gate to the qubit 𝑏 to "merge" the amplitudes of the two
most similar states in 𝑆0 and 𝑆1. This operation is controlled by the other qubits selected
for the merge, which should all have the same value at this stage, determining whether
the controls are open or closed. 𝑀 is defined as:

𝑀 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

sin(𝜔) 𝑒𝑖𝛼 cos(𝜔)

𝑒−𝑖𝛼 cos(𝜔) − sin(𝜔)

⎬
⎠
⎠
⎠
⎠
⎠
⎮
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6. Replace 𝑆 with the resulting set after merging.

7. Return the circuit 𝐶.

Figure 7 provides a visual representation of Algorithm 2 and its functionality. As shown,
after identifying two suitable basis states, the algorithm merges them to form a new state.
This results in the system having one fewer basis state, enabling the process to repeat, as
illustrated in Algorithm 2.

Figure 7 – Illustration of the first step of Algorithm 2, where two suitable basis states are identified and merged
to form a new state, reducing the system by one basis state and allowing the process to repeat.

Algorithm 2

Input: Classical representation of a quantum state ⋃︀𝑣̃︀ = ∑𝑥∈𝑆 𝑐𝑥 ⋃︀𝑥̃︀.
Output: Quantum circuit 𝐶 that prepares the desired state preparation.

1. Start with an initial empty quantum circuit 𝐶.

2. While the set 𝑆 contains more than one state, use Algorithm 1 to find a circuit 𝐶 ′.

3. Update the state as: ⋃︀𝑣̃︀ = 𝐶 ′ ⋃︀𝑣̃︀

4. Update the quantum circuit as: 𝐶 = 𝐶 ′ ⋅𝐶

5. Once 𝑆 contains only one state ⋃︀𝑥̃︀, apply NOT gates to transform ⋃︀𝑥̃︀ → ⋃︀0̃︀⊗𝑛 and
update the circuit.

6. Invert the circuit 𝐶 to construct a circuit that prepares the original target state ⋃︀𝑣̃︀ from
⋃︀0̃︀⊗𝑛.
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7. Return the final circuit 𝐶.

In summary, Algorithm 1 iteratively reduces the set of basis states by merging pairs of states
one at a time until only a single state remains. The algorithm constructs a quantum circuit
𝐶 to prepare a target state by iteratively merging basis states. It begins with 𝐶 = ⋃︀0̃︀⊗𝑛 and
defines 𝑆, the set of computational basis states with nonzero amplitudes. The set is repeatedly
partitioned using a chosen qubit 𝑏 that maximizes the imbalance between subsets 𝑆0 and 𝑆1,
ensuring that neither set is empty. The algorithm then selects the most similar states from
each subset and computes the merging parameters: the angle 𝜔 and the relative phase 𝛼.

To align the states for merging, CNOT gates are applied with 𝑏 as control qubit and the
other target qubits corresponding to the different qubits of the states. Then, an 𝑀 gate – a
controlled 𝑆𝑈(2) rotation – is applied to 𝑏, merging the selected states while preserving their
amplitudes and phases. Algorithm 2 builds on this process by applying Algorithm 1 repeatedly
to construct a quantum circuit that prepares the desired sparse state. The final steps involve
transforming the remaining state into the ⋃︀0̃︀⊗𝑛 state and then inverting the constructed circuit
to reverse the operations, ultimately constructing a circuit that prepares the target state from
the initial ⋃︀0̃︀⊗𝑛.

2.3.2 CVO-QRAM Algorithm

The state preparation method proposed by (VERAS; SILVA; SILVA, 2022) introduces an
efficient algorithm that leverages the sparsity of quantum states. It does so by taking into
account the characteristics of a double sparse state, that is, states that are sparse in the
number of nonzero probability amplitudes (as described in Definition 3), and are also sparse
in the number of 1’s in the binary representation of the basis states. To illustrate, consider an
arbitrary 3-qubit system ⋃︀𝑣̃︀. A double sparse quantum state might look like this:

⋃︀𝑣̃︀ =
1
⌋︂

2
⋃︀000̃︀ + 1

⌋︂
2
⋃︀010̃︀

In this example, the total number of possible basis states is 2𝑛 = 23 = 8. Out of these, only
2 have nonzero amplitudes (⋃︀000̃︀ and ⋃︀010̃︀). Also, the basis state ⋃︀010̃︀ only has a single 1 in
its binary representations, whereas ⋃︀000̃︀ has none. Both this characteristics make this state
be considered double sparse.

The associated quantum costs can be seen in the Table 1.
The goal of this method is to construct a quantum circuit applicable to any sparse quantum

state, as described in Definition 4. We describe a general idea of this circuit in Algorithm 1.
Along with it, you can follow a detailed step-by-step example in APPENDIX B.

Algorithm 1
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CNOT Counts
Sparse States ∑

𝑛
𝑡=1 𝜇𝑡(8𝑡 − 4) − 𝑡𝑚𝑎𝑥

Dense States ∑
𝑛
𝑡=1𝐶(𝑛, 𝑡)(8𝑡 − 4) − 𝑛

Table 1 – CNOT and Depth Counts for Sparse and Dense States using CVO-QRAM State Preparation. Read
𝜇𝑡 as the number of input patterns 𝑐𝑥 with 𝑡 bits with value 1 in the binary string, 𝑡𝑚𝑎𝑥 as the
highest value of 𝑡 and 𝐶(𝑛, 𝑡) as the binomial coefficient of 𝑛 and 𝑡.

Input: Data consisting of 𝑆 pairs 𝑑𝑎𝑡𝑎 = ∑𝑥∈𝑆{(𝑥, 𝑐𝑥)}

Output: Quantum state of the form ⋃︀𝑣̃︀ = ∑𝑥∈𝑆 𝑐𝑥 ⋃︀𝑥̃︀

1. Start with the initial state ⋃︀𝑣0̃︀ = ⋃︀𝑢̃︀ ⋃︀𝑚̃︀, where:

• ⋃︀𝑢̃︀ is an ancilla qubit initialized to ⋃︀1̃︀.

• ⋃︀𝑚̃︀ is a memory register initialized to ⋃︀0̃︀⊗𝑛, where 𝑛 is the number of qubits in
the system.

2. Sort the input patterns 𝑥 in ascending order based on the number of bits with value
1. This ordering reduces the number of controlled operations required when processing
sparse patterns. The sorted data should be stored in a variable data with the form:

𝑑𝑎𝑡𝑎 = ∑
𝑥∈𝑆

{(𝑥, 𝑐𝑥)}

where 𝑐𝑥 is the coefficient associated with each 𝑥 (see Definition 2.5).

3. For each pair (𝑥, 𝑐𝑥), perform the following steps:

a) Calculate 𝑡, the number of bits with value 1 in 𝑥, and identify the list 𝑙 of the
positions of the active bits.

b) To compute the basis states, apply CNOT operations with the auxilary qubit ⋃︀𝑢̃︀
as the control, targeting the qubits ⋃︀𝑚(︀𝑙𝑖⌋︀̃︀, where 𝑙𝑖 ∈ 𝑙, that is:

⋃︀𝑣1̃︀ = Π𝑙𝑖∈𝑙𝐶𝑋(𝑢,𝑚(︀𝑙𝑖⌋︀) ⋃︀𝑣0̃︀

c) Compute the operator 𝑈(𝑥, 𝛾) controlled by the qubits 𝑚(︀𝑙⌋︀ and targeted at the
qubit ⋃︀𝑢̃︀.

𝑈(𝑥, 𝛾) =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

⌉︂
𝛾−⋃︀𝑥⋃︀2

𝛾
𝑥
⌋︂

𝛾

−𝑥∗
⌋︂

𝛾

⌉︂
𝛾−⋃︀𝑥⋃︀2

𝛾

⎬
⎠
⎠
⎠
⎠
⎠
⎮

Calculate 𝛾 based on the coefficients that have been processed:

𝛾𝑘 = 𝛾𝑘−1 − ⋃︀𝑥𝑘−1⋃︀
2

By definition, 𝛾0 = 1
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d) If it is not the final iteration, revert the previously applied CNOT gates.

4. After processing all the pairs (𝑥, 𝑐𝑥), the final state will be:

⋃︀𝑣̃︀ = ∑
𝑥∈𝑆

𝑐𝑥 ⋃︀0̃︀ ⋃︀𝑥̃︀

The ancilla qubit ⋃︀𝑢̃︀ will be in ⋃︀0̃︀ and can be discarded, resulting in the desired state.

After all patterns are processed, the memory register ⋃︀𝑚̃︀ contains the quantum state
desired and the ancilla qubit ⋃︀𝑢̃︀ will be in state ⋃︀0̃︀, indicating that the computation is complete.

Figure 8 – Illustration of Algorithm 1. The first step is the pre-processing of classical data 𝐷. After that, the
circuit is started as an empty state with one ancilla. After that, each iteration of the process is
responsible for initializing the binary pattern and its corresponding amplitudes, progressing from
the simplest to the most complex, enabling system initialization.

Figure 8 illustrates Algorithm 1. After pre-processing the classical data, the algorithm
sequentially incorporates binary patterns and their corresponding amplitudes into the circuit,
progressing from the simplest to the most complex in each iteration. This process enables the
initialization of the entire system.
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2.3.3 Pivot Algorithm

The state preparation method introduced by (MALVETTI; ITEN; COLBECK, 2021) offers a
strategy for preparing sparse quantum states. It can be implemented using a two-step approach:
the first step uses a Pivoting Algorithm, a permutation-based technique that rearranges the
amplitudes of the quantum state so that all nonzero entries are clustered together in a specific
block of the computational basis. The second step involves applying a dense state preparation
algorithm to this nonzero block, reducing the number of qubits involved and consequently
minimizing the number of required quantum gates.

By grouping all nonzero entries in a single block and then applying a decomposition used
for dense states on the grouped entries, the authors achieve a CNOT count of (𝑛 + 16𝑠 −
9)𝑛𝑛𝑧(𝑣) + 23

242𝑠, where 𝑛 is the number of qubits of the state 𝑣, 𝑛𝑛𝑧(𝑣) is the number of
nonzero entries and 𝑠 = [︂log2 𝑛𝑛𝑧(𝑣)⌉︂. This method requires no ancilla or at max, one dirty
ancilla.

The first step is a pivoting procedure that reorganizes the nonzero amplitudes of the state
⋃︀𝑣̃︀ so that they are concentrated within a single block of computational basis states, referred
to as the target block 𝑇 . To achieve this, the 𝑛 qubits are conceptually divided into two groups:

• The first 𝑛 − 𝑠 qubits index the target block 𝑇 .

• The remaining 𝑠 = [︂log2(𝑛𝑛𝑧(𝑣))⌉︂ qubits are used to encode the positions of the nonzero
amplitudes within the target block 𝑇 .

This reorganization is performed by a unitary transformation denoted 𝑃𝑖𝑣𝑣, which consists
of a sequence of controlled permutations (e.g., multi-controlled NOT gates) that swap zero
and nonzero entries until all nonzero amplitudes lie within a block indexed by some ⋃︀𝑖̃︀

⊗𝑛−𝑠.
After applying 𝑃𝑖𝑣𝑣, the state is transformed as follows:

𝑃𝑖𝑣𝑣 ⋃︀𝑣̃︀ = ⋃︀𝑖̃︀
⊗𝑛−𝑠
⊗ ⋃︀𝑣′̃︀

⊗𝑠 (2.20)

where ⋃︀𝑣′̃︀
⊗𝑠 is a normalized quantum state defined on the remaining 𝑠 qubits.

This pivoting function can be achieved through the application of Algorithm 1, as described
by the original work (MALVETTI; ITEN; COLBECK, 2021). Along with it, you can follow a
detailed step-by-step example in APPENDIX C.

Algorithm 1

Input: List representation of a quantum state ⋃︀𝑣̃︀ = ∑ 𝑐𝑥 ⋃︀𝑥̃︀.
Output: Quantum circuit 𝑃𝑖𝑣𝑣 that reorganizes the nonzero amplitudes.

1. Let ⋃︀𝑣̃︀ be a quantum state composed of 𝑛 qubits. If all the nonzero components of ⋃︀𝑣̃︀
are grouped within block 𝑇 , stop the algorithm.



37

2. Select a component outside block 𝑇 with a nonzero amplitude and rewrite it in the form
⋃︀𝑡′̃︀
⊗𝑛−𝑠

⋃︀𝑟′̃︀
⊗𝑠. Select an entry inside block 𝑇 with a zero amplitude and rewrite it in the

form ⋃︀𝑡̃︀
⊗𝑛−𝑠

⋃︀𝑟̃︀
⊗𝑠.

3. Choose a qubit where ⋃︀𝑡′̃︀
⊗𝑛−𝑠 and ⋃︀𝑡̃︀

⊗𝑛−𝑠 differ.

4. Using ⋃︀𝑡′̃︀⊗𝑛−𝑠 as the control qubit, apply at most 𝑛−1 CNOT gates to adjust ⋃︀𝑡′̃︀⊗𝑛−𝑠
⋃︀𝑟′̃︀
⊗𝑠

to a new state ⋃︀𝑡′′̃︀
⊗𝑛−𝑠

⋃︀𝑟̃︀
⊗𝑠, ensuring that 𝑡′′ and 𝑡 differ only in the control qubit.

5. Apply an 𝑠-controlled NOT gate (controlled by ⋃︀𝑟̃︀
⊗𝑠) to transform ⋃︀𝑡′′̃︀

⊗𝑛−𝑠
⋃︀𝑟̃︀
⊗𝑠 into

⋃︀𝑡̃︀
⊗𝑛−𝑠

⋃︀𝑟̃︀
⊗𝑠. Note that no other entries in block 𝑇 are affected during this process.

6. Return to step 1.

Figure 9 provides an illustrative representation of Algorithm 1, showing the initial state ⋃︀𝑣̃︀
and the final state ⋃︀𝑢̃︀. The qubits marked with the block 𝑇 represent the target block, while
the components highlighted in gray have amplitudes of 1

⌋︂

2 . All other components have zero
amplitude.

Figure 9 – Illustration of Algorithm 1, showing the initial state ⋃︀𝑣̃︀ and the final state ⋃︀𝑢̃︀. The block 𝑇 highlights
the target qubits, while components in purple have amplitudes of 1⌋︂

2 . All other components have
zero amplitude.

After the permutation steps, the relative phases of the amplitudes may no longer match
those of the original state ⋃︀𝑣̃︀. To address this, a diagonal gate Δ is applied after the pivoting
procedure to correct any relative phase errors introduced. It acts only on the 𝑠 qubits, controlled
by the 𝑛 − 𝑠 qubits that index the target block 𝑇 . This gate performs the operation:
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Δ𝑃𝑖𝑣𝑣 ⋃︀𝑣̃︀ =Δ(⋃︀𝑖̃︀
⊗𝑛−𝑠
⊗ ⋃︀𝑣′̃︀

⊗𝑠
)

=(𝐼⊗𝑛−𝑠 ⊗Δ)(⋃︀𝑖̃︀
⊗𝑛−𝑠
⊗ ⋃︀𝑣′̃︀

⊗𝑠
)

= ⋃︀𝑖̃︀
⊗𝑛−𝑠
⊗ ⋃︀𝑣̃︀

⊗𝑠
,

where ⋃︀𝑣̃︀
⊗𝑠 is a phase corrected version of ⋃︀𝑣′̃︀⊗𝑠.

Now, the final step consists of applying a state preparation algorithm 𝑆𝑃𝑣 on the 𝑠 qubits
that hold the state ⋃︀𝑣̃︀ to map it to ⋃︀0̃︀⊗𝑠. This gives us:

(𝐼⊗𝑛−𝑠 ⊗ 𝑆𝑃 †
𝑣 )(⋃︀𝑖̃︀

⊗𝑛−𝑠
⊗ ⋃︀𝑣̃︀) = ⋃︀𝑖̃︀

⊗𝑛−𝑠
⊗ ⋃︀0̃︀⊗𝑠

Thus, Sparse State Preparation 𝑆𝑆𝑃𝑣 can be implemented inverting the operations we
derived before:

𝑆𝑆𝑃𝑣 = (Δ𝑃𝑖𝑣𝑣)
†(𝐼⊗𝑛−𝑠 ⊗ 𝑆𝑃𝑣)

The state preparation unitary 𝑆𝑃𝑣 implemented in this work employs the Low Rank algo-
rithm (Section 2.3.4). While the Column-by-column approach (ITEN et al., 2016) represents
a standard technique within Low Rank state preparation, it was not directly adopted in this
work.

2.3.4 Low-Rank Algorithm

The state preparation method proposed by (ARAUJO et al., 2023) reduces the circuit
depth of the algorithm by offloading some computational tasks to a classical computer. This
method is connected to the Schmidt decomposition, utilizing the Schmidt coefficients as a
measure of the entanglement of a quantum state.

Given a quantum state ⋃︀𝑣̃︀ defined on a Hilbert Space 𝐻𝐴 ⊗𝐻𝐵, where 𝐻𝐴 has 𝑛𝐴 qubits
and 𝐻𝐵 has 𝑛𝐵 qubits (the whole system has 𝑛 = 𝑛𝐴 +𝑛𝐵 qubits), its Schmidt decomposition
can be expressed as:

⋃︀𝑣̃︀ =
𝑘

∑
𝑖=1
𝜎𝑖 ⋃︀𝑖𝐴̃︀ ⋃︀𝑖𝐵̃︀ (2.21)

where:

• 𝑘 is the Schmidt rank, which characterizes the degree of entanglement between the
subsystems 𝐴 and B;

• 𝜎𝑖 are the Schmidt coefficients, which are non-negative real numbers that satisfy the
normalization condition;

• ⋃︀𝑖𝐴̃︀ and ⋃︀𝑖𝐵̃︀ are orthonormal bases for the subsystems 𝐴 and 𝐵; and
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• 1 ≤ 𝑖 ≤𝑚𝑖𝑛(𝑑𝑖𝑚(𝐻𝐴), 𝑑𝑖𝑚(𝐻𝐵)).

The authors achieve a computational cost of𝑂(2𝑚+𝑛𝐵) CNOT counts, where𝑚 = [︂log2(𝑘)⌉︂ <

𝑛𝐴. If 𝑚 = 𝑛𝐴, this cost becomes 𝑂(2𝑛) CNOT counts. This method doesn’t require any an-
cilla.

The general idea of this algorithm is to take advantage of the entanglement structure of
the target state. The algorithm is described in the following. Along with it, you can follow a
detailed step-by-step example in APPENDIX D.

Figure 10 – Illustration of the Low-Rank Algorithm flow. The classical stage performs the Schmidt decompo-
sition. The quantum state initializes a quantum state in a specific form, followed by the addition
of CNOT gates. Finally, unitary gates are applied to generate the desired state.

Algorithm 1

1. Compute the Schmidt coefficients 𝜎𝑖 and the corresponding basis states ⋃︀𝑖𝐴̃︀ and ⋃︀𝑖𝐵̃︀

by performing the Schmidt decomposition on a classical computer.

2. Initialize a quantum state in the first register enconding the Schmidt coefficients as:

∑
𝑖

𝜎𝑖 ⋃︀𝑖̃︀ ⋃︀0̃︀

3. Apply ⟨︀𝑛⇑2⧹︀ CNOT operations to generate entanglement:

∑
𝑖

𝜎𝑖 ⋃︀𝑖̃︀ ⋃︀𝑖̃︀



40

4. Use unitary operations 𝑈 to the first register and 𝑉 𝑇 to the second register to map
computational bases to Schmidt bases:

𝑈 ⋃︀𝑖̃︀ = ⋃︀𝑖𝐴̃︀ , 𝑉 𝑇 ⋃︀𝑖̃︀ = ⋃︀𝑖𝐵̃︀

For states with low Schmidt rank, where the Schmidt measure 𝑚 = [︂log2(𝑘)⌉︂ < ⟨︀𝑛𝐴⧹︀

(where 1 ≤ 𝑛𝑎 ≤ 𝑛), the Low-Rank algorithm substitutes full unitary operations with
smaller isometries: 2𝑚 × 2𝑛𝐴 in place of unitary 𝑈 and 2𝑚 × 2𝑛𝐵 in place of 𝑉 𝑇 .

Figure 10 illustrates the basic flow of the Low-Rank Algorithm. In the classical stage, the
Schmidt decomposition is performed on the input state vector. In the quantum stage, the
singular values are initialized as a quantum state, followed by the addition of CNOT gates,
and finally, unitary gates are applied to generate the desired state.

2.4 ISOMETRY

An isometry refers to a transformation that preserves distance between metric spaces
(WEISSTEIN, n.d.). Given 𝑓 the function that maps the transformation and 𝑑 the distance
between 𝑥 and 𝑦, elements of two different metric spaces, we have:

𝑑(𝑓(𝑥), 𝑓(𝑦)) = 𝑑(𝑥, 𝑦)

Reflection, rotation and translation are particular cases of an isometry. A particular example
of this is given two pairs of corresponding points (𝑃,𝑃 ′) and (𝑄,𝑄′), we have 𝑃𝑄 = 𝑃 ′𝑄′;
i.e., 𝑃𝑄 and 𝑃 ′𝑄′ are congruent segments (have the same shape and size). Also, two figures
are said to be congruent if they can be transformed into one another through an isometry
(COXETER, 1969).

Definition 6 An isometry from 𝑚 to 𝑛 qubits (where 𝑚 ≤ 𝑛 and 𝑛 ≥ 2) can be represented
as a 2𝑛 × 2𝑚 complex matrix 𝑉 that satisfies:

𝑉 †𝑉 = 𝐼2𝑛×2𝑛 (2.22)

where 𝑉 † is the conjugate transpose and 𝐼2𝑛×2𝑛 is the 2𝑛 × 2𝑛 identity matrix. Unlike unitary
operations, 𝑉 𝑉 † is not possible unless 𝑚 = 𝑛. When 𝑚 = 𝑛, the isometry 𝑉 becomes an
unitary matrix, preserving both dimensionality and inner product.

From a pactical perspective, consider a quantum circuit where one input qubit remains fixed
in a particular state (e.g., ⋃︀0̃︀), as illustrated in Figure 11. While the circuit’s full evolution is
described by a unitary matrix, the fixed input reduces the effective degrees of freedom. That
is, we can "remove" some of the columns of the matrix without altering the functionality of
the circuit. The altered matrix is called isometry.
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When we remove some of the columns of the matrix, we reduce the dimensionality without
affecting the functionality of the circuit. This allows us to simplify and optimize the circuit
representation without sacrificing its properties.

m = 3 n = 4

⋃︀0̃︀

Figure 11 – Example of an isometry in a quantum circuit.

In regards to its content, an isometry can be classified as dense or sparse:

• Similar to dense basis states (see definition 2), we call an isometry dense if it has no (or
very few) zero entries, meaning most matrix elements are nonzero. They usually require
more quantum gates to implement due to the lack of structure that could be exploited
for simplification.

• Like sparse basis states (see definition 2), we call an isometry sparse if it has mostly
zero entries. Sparse isometries can often be implemented more efficiently using fewer
quantum gates, by taking advantage of their structure.

That said, in this work we focus on sparse isometry decompositions.

2.5 DECOMPOSITION OF SPARSE ISOMETRIES

Among the broad class of isometries, sparse isometries tend to stand out because of
their potential for optimization (MALVETTI; ITEN; COLBECK, 2021; VERAS et al., 2021;
GLEINIG; HOEFLER, 2021). This structure arises in real-world applications, such as simulation
of physical open systems (ZHANG et al., 2023; HU et al., 2022), and data encoding for
applications in machine learning (LLOYD; MOHSENI; REBENTROST, 2013; REBENTROST;
MOHSENI; LLOYD, 2014).

The motivation for studying the initialization of sparse isometries on quantum computers
lies in the constraints of current quantum hardware. Devices in the NISQ (Noisy Intermediate-
Scale Quantum) era have limited coherence times and gate fidelities, making resource-efficient
initialization schemes essential (PRESKILL, 2018). Leveraging the sparsity of a target isometry
can significantly reduce the number of quantum gates required, particularly multi-qubit gates
such as CNOTs, which are more error-prone (ITEN et al., 2016).

Understanding how to decompose and initialize sparse isometries efficiently is therefore
a key step toward scalable quantum algorithms. That said, we will be exploring a tailored
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method for preparing sparse isometries based on Householder reflections in the next section
(see Section 2.5.1).

2.5.1 Householder Decomposition

Householder Decompositions are a mathematical tool for transforming matrices into sim-
plified forms (HOUSEHOLDER, 1958). In quantum computing, these decompositions are par-
ticularly useful for their ability to enable circuit design, such as those implementing isometries.
By iteratively transforming a matrix column by column to a simpler form (e.g., diagonal or
identity) using Householder reflections, Householder decompositions preserve the orthogonality
and unitary properties required by quantum mechanics, enabling efficient and accurate matrix
transformations in quantum algorithms.

In this section, we will explore the principles of Householder decompositions and their gen-
eralizations to quantum circuits, as demonstrated in the work by (MALVETTI; ITEN; COL-
BECK, 2021). A key concept in understanding Householder decompositions is the Householder
reflection. To illustrate this, consider the geometric representation shown in Figure 12.

Figure 12 – Geometric representation of the Householder reflection.

We begin by considering two unit vectors, Ð→𝑥 and Ð→𝑦 , and assume there exists an operator
𝐻 that satisfies:

𝐻Ð→𝑥 = Ð→𝑦 (2.23)

This is the starting point of the deduction, where we seek the operator 𝐻 that performs
a reflection on the vector Ð→𝑥 to map it to Ð→𝑦 . From the geometric interpretation of the
Householder reflection, as illustrated in Figure 12, we express the vector Ð→𝑣 as the difference
between Ð→𝑥 and Ð→𝑦 :

Ð→𝑣 = Ð→𝑦 −Ð→𝑥 (2.24)

Next, we recognize that the projection of Ð→𝑥 onto the space spanned by Ð→𝑣 is related to
the reflection process, and we express this projection as:
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Ð→𝑣 = −2PÐ→𝑥 (2.25)

where 𝑃 is the projection matrix. By isolating the vector Ð→𝑦 in terms of Ð→𝑥 from equations
2.24 and 2.25, we obtain the equation:

Ð→𝑦 = (𝐼 − 2P)Ð→𝑥 (2.26)

Equation 2.26 demonstrates, when compared to equation 2.23, how the reflection operator
𝐻 can be expressed as:

𝐻 = 𝐼 − 2P (2.27)

Since 𝑃 represents the projection onto the space spanned byÐ→𝑣 , we express 𝑃 as 𝑃 = ⋃︀𝑣̃︀ ∐︀𝑣⋃︀,
leading to the Householder reflection operator:

𝐻𝑣 = 𝐼 − 2 ⋃︀𝑣̃︀ ∐︀𝑣⋃︀ (2.28)

At this point, we arrive at the definition of the standard Householder reflection. If we
introduce a phase 𝜑, the reflection operator becomes generalized:

𝐻𝜑
𝑣 = 𝐼 + (𝑒

𝑖𝜑 − 1) ⋃︀𝑣̃︀ ∐︀𝑣⋃︀ (2.29)

Thus, we conclude that the equation for the generalized Householder reflection is equivalent
to the standard form when 𝜑 = 𝜋, completing the deduction. This process leads us to the formal
definition:

Definition 7 Given an unity vector ⋃︀𝑣̃︀, the standard Householder Reflection with respect to
⋃︀𝑣̃︀ is defined as:

𝐻𝑣 = 𝐼 − 2 ⋃︀𝑣̃︀ ∐︀𝑣⋃︀ (2.30)

The generalized Householder Reflection of phase 𝜑 with respect to ⋃︀𝑣̃︀ is defined as:

𝐻𝜑
𝑣 = 𝐼 − (𝑒

𝑖𝜑 − 1) ⋃︀𝑣̃︀ ∐︀𝑣⋃︀ (2.31)

The implementation of the Generalized Householder Reflection can take different ap-
proaches. For quantum circuits, we can use the state preparation algorithms to execute the
Householder Reflections (see Section 5 and Lemma 1).

Lemma 1 Let 𝑆𝑃𝑣 be an unitary operator that performs state preparation for the state ⋃︀𝑣̃︀,
and let 𝐻𝜑

0 be the Householder reflection with respect to ⋃︀0̃︀. Then:

𝐻𝜑
𝑣 = 𝑆𝑃𝑣 ⋅𝐻

𝜑
0 ⋅ 𝑆𝑃

†
𝑣 (2.32)
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Proof 1 We want to show that:

𝐻𝜑
𝑣 = 𝑆𝑃𝑣 ⋅𝐻

𝜑
0 ⋅ 𝑆𝑃

†
𝑣 (I)

= 𝐼 + (𝑒𝑖𝜑 − 1) ⋃︀𝑣̃︀ ∐︀𝑣⋃︀ (II)

Let’s consider the action of 𝐻𝜑
𝑣 acting on a state ⋃︀𝑣̃︀. By definition 5, we know that:

𝑆𝑃𝑣 ⋃︀0̃︀ = ⋃︀𝑣̃︀ , 𝑆𝑃 †
𝑣 ⋃︀𝑣̃︀ = ⋃︀0̃︀

On the first step shown in equation (𝐼):

𝐻𝜑
𝑣 ⋃︀𝑣̃︀ =(𝑆𝑃𝑣 ⋅𝐻

𝜑
0 ⋅ 𝑆𝑃

†
𝑣 ) ⋃︀𝑣̃︀ =

𝑆𝑃𝑣 ⋅𝐻
𝜑
0 ⋅ (𝑆𝑃

†
𝑣 ⋃︀𝑣̃︀) =

𝑆𝑃𝑣 ⋅ (𝐻
𝜑
0 ⋃︀0̃︀) =

𝑆𝑃𝑣(𝑒
𝑖𝜑 ⋃︀0̃︀) =

𝑒𝑖𝜑(𝑆𝑃𝑣 ⋃︀0̃︀) = 𝑒𝑖𝜑 ⋃︀𝑣̃︀

On the second step shown in equation (𝐼𝐼):

𝐻𝜑
𝑣 ⋃︀𝑣̃︀ =(𝐼 + (𝑒

𝑖𝜑 − 1) ⋃︀𝑣̃︀ ∐︀𝑣⋃︀) ⋃︀𝑣̃︀ =

⋃︀𝑣̃︀ (𝑒𝑖𝜑 − 1) ⋃︀𝑣̃︀ =

⋃︀𝑣̃︀ (1 + 𝑒𝑖𝜑 − 1) = 𝑒𝑖𝜑 ⋃︀𝑣̃︀◻

Lemma 2 The operator 𝐻𝜑
0 can be implemented on 𝑛 qubits using (𝑛 − 1) controlled gates

acting on a single qubit. In the particular case where 𝜑 = 𝜋, 𝐻0 can be implemented using
the same number of CNOT gates and auxiliary qubits, along with a NOT gate controlled by
(𝑛 − 1) qubits.

Proof 2 To demonstrate the validity of Lemma 2, let’s consider a simple example.
The operator Householder reflection 𝐻 when 𝜑 = 𝜋 applied to qubit ⋃︀0̃︀ is:

𝐻 ⋃︀0̃︀ = (𝐼 − 2 ⋃︀0̃︀ ∐︀0⋃︀) ⋃︀0̃︀ = ⋃︀0̃︀ − 2 ⋃︀0̃︀ = − ⋃︀0̃︀

Applied to qubit ⋃︀1̃︀ is:

𝐻 ⋃︀1̃︀ = (𝐼 − 2 ⋃︀0̃︀ ∐︀0⋃︀) ⋃︀1̃︀ = ⋃︀1̃︀

That is, the matrix representation of the operator 𝐻 with respect to ⋃︀0̃︀, denoted as 𝐻0,
is:

𝐻0 =
⎛
⎜
⎝

−1 0

0 1

⎞
⎟
⎠
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Note that implementing the operator 𝐻0 is equivalent to implementing the operator −𝑍.
Thus, we can achieve this using three operators on a single qubit: 𝐻, 𝑋 and 𝑍 (see Section
2.1 for more details):

−𝑍 =𝑋𝑍𝑋 =𝑋(𝐻𝑋𝐻)𝑋

To make the operation controlled:

𝐻0 = 𝐶𝑛−1(−𝑍) =𝑋𝐻 ⋅𝐶𝑛−1(𝑋) ⋅𝐻𝑋 ◻

See Figure 13 for a visual representation of this operation on an arbitrary system.

−𝑍

Figure 13 – Controlled −𝑍 operation in a 3-qubit circuit.

The Householder Decomposition process works by receiving as input an isometry 𝑉 (Section
2.4) of size 2𝑛 × 2𝑚 (𝑚 ≤ 𝑛) and has as a goal to reduce 𝑉 to a simpler form 𝐼2𝑛×2𝑚 (first 2𝑚

columns of the identity matrix). If 𝐺 = 𝐺𝑘⋯𝐺1𝐺0 ∀𝑘 ∈ 𝑁 is a product of elementary gates
on 𝑛 qubits such that:

𝐺𝑉 = 𝐼2𝑛×2𝑚 (2.33)

Then 𝐺† implements 𝑉 :

𝐺𝑉 = 𝐼2𝑛×2𝑚

𝐺†𝐺𝑉 = 𝐺†𝐼2𝑛×2𝑚 (since 𝐺 is unitary, 𝐺†𝐺 = 𝐼)
𝑉 = 𝐺†𝐼2𝑛×2𝑚 ◻

The first step is to reduce the first column of 𝑉 denoted ⋃︀𝑣0̃︀ by applying a Householder
Reflection 𝐻𝑣0 to map ⋃︀𝑣0̃︀ → ⋃︀0̃︀ up to a phase. Then, update the isometry matrix 𝑉 by
applying 𝐻𝑣0 to it, which reduces the first column and modifies the other columns. the process
involves iteratively applying a sequence of Householder reflections until the isometry is fully
reduced to a diagonal form.

Figure 14 illustrates the Householder Decomposition process. It begins with an isometry
𝑉 composed by zeros and arbitrary complex numbers ∗, where the first step involves applying
the Householder reflection 𝐻𝑣0 , transforming 𝑉 into a new isometry. Through a sequence of
operations, at most 2𝑚 in total, the isometry is progressively reduced to a diagonal matrix.
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𝑉 =

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎪

0 0 0 ∗

∗ ∗ ∗ ∗

0 0 0 0
0 ∗ ∗ 0
0 0 0 0
∗ 0 0 ∗

0 0 0 0
0 ∗ 0 0

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎮

𝐻𝑣0
ÐÐ→ 𝐻𝑣0𝑉 =

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎪

1 0 0 0
0 0 ∗ 0
0 ∗ 0 ∗

0 ∗ 0 0
0 0 0 ∗

0 0 0 0
0 0 0 0
0 ∗ 0 ∗

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎮

⋯

Ð→ (𝐻𝑣3𝐻𝑣2𝐻𝑣1𝐻𝑣0)𝑉 =

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎪

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎮

Figure 14 – Illustration of the Householder decomposition. The process begins with an isometry 𝑉 , composed
by zeros and arbitrary complex numbers ∗, where the first step involves applying the Householder
reflection 𝐻𝑣0 , transforming 𝑉 into a new isometry. After at most 𝑚 operations, the isometry is
reduced to a diagonal matrix.

𝑆𝑃 †
𝑣 𝑆𝑃𝑣

−𝑍

Figure 15 – Quantum circuit illustrating the first step of a possible Householder decomposition. In this step,
a state preparation is applied, followed by a controlled −𝑍 gate acting on the third qubit, and
concluding with the application of the transposed conjugate of the state preparation.

Figure 15 illustrates the first step of a potential Householder decomposition in a quan-
tum circuit. The process starts with the application of the conjugate transpose of the state
preparation, followed by the application of a controlled −𝑍 gate, which represents one possible
implementation of the Householder reflection (see the Proof for Lemma 2), on the third qubit.
The step concludes with the application of the state preparation, completing the operation.
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3 METHODOLOGY

The main goal of this work is to analyze and compare different state preparation methods
for decomposing sparse isometries. To do that, we explore three approaches based on House-
holder decomposition: Pivot (see subsection 2.3.3), Low Rank (see subsection 2.3.4), and
Merge (see subsection 2.3.1). We focus on evaluating how these methods perform, especially
in terms of efficiency and suitability for quantum devices with limited resources.

The original work by Malvetti et al. (MALVETTI; ITEN; COLBECK, 2021) employs the
Pivot-based state preparation as the core strategy for isometry decomposition. In this study,
we extend that analysis by applying the Merge and Low Rank methods in place of Pivot and
comparing their results. This allows us to investigate how different state preparation strategies
impact the overall resource cost and circuit structure of the final isometry implementation.

We also compare our results with existing tools available online, particularly the Column-
by-column Decomposition (ITEN et al., 2016) implemented by Qiskit—currently the most
widely used quantum computing library for Python. The idea is to see how our methods stack
up against what is already out there.

We use the CNOT count and circuit Depth as key metrics to assess the impact of state
preparation on the Householder decomposition. These metrics provide insights into the effi-
ciency and complexity of implementing the decomposition in quantum circuits.

To evaluate the effect of state preparation, we consider different values of 𝑠, a sparsity
parameter that grows with the density of the isometry, where 𝑠 = {1,2,3,4}, across a range of
number of qubits from 2 to 12 (see section 3.2). This allows us to analyze how the choice of
𝑠 influences the structure and performance of the quantum circuit. Additionally, the analysis
spans isometries with dimensions corresponding to 𝑚 = {1,2,3,4} (see Definition 6, where
2𝑚 is the number of columns of the isometry), enabling a comprehensive exploration of how
varying matrix sizes affect the overall complexity of the decomposition process.

This comparison helps highlight the strengths and weaknesses of each approach and pro-
vides useful insights into improving state preparation techniques, especially for cases involving
sparse states and specific structural patterns.

In this chapter, we take a closer look at how the algorithm works and how it can be
implemented. We will go through the main ideas behind it and provide some practical insights
into its design and execution.

3.1 HOUSEHOLDER DECOMPOSITION ALGORITHM

The Householder Decomposition Algorithm implements isometries in quantum circuits by
breaking them down into simpler operations using Householder reflections. These reflections
map columns of the matrix to basis vectors, ensuring orthogonality and preserving unitary
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nature throughout the process (see section 2.5).
To implement this algorithm, we divide the process into three key steps: the Householder

Reflection with respect to the state ⋃︀0̃︀ (see Lemma 2), the Householder Reflection with respect
to the state ⋃︀𝑣̃︀ (see Lemma 1), and the Householder Decomposition.

3.1.1 Implementation of Householder Reflection with Respect to the State ⋃︀0̃︀

The algorithm for implementing the Householder Reflection with respect to the state ⋃︀0̃︀ or
𝐻𝜑

0 (see Lemma 2), described in Algorithm1, constructs a quantum circuit that performs this
reflection. It is a subcircuit (gate) used to implement the Householder Reflection with respect
to ⋃︀𝑣̃︀. It achieves this by defining a unitary operation 𝑈 and applying its multi-controlled
version within the circuit. The resulting quantum circuit effectively realizes the Householder
reflection as a multi-controlled unitary gate.

Algoritmo 1: 𝐻𝜑
0 or Householder Reflection with respect to ⋃︀0̃︀

Input: Number of qubits 𝑛 and angle 𝜑
Output: Multicontrolled unitary gate circuit

1 Function Householder Reflection( 𝑛, 𝜑):
2 Initialize quantum circuit:
3 𝑐𝑖𝑟𝑐𝑢𝑖𝑡← ⋃︀0̃︀⊗𝑛

4 Initialize unitary operation:

5 𝑈 =

⎨
⎝
⎝
⎝
⎝
⎪

𝑒𝑖𝜑 0
0 1

⎬
⎠
⎠
⎠
⎠
⎮

6 Create controlled operation:
7 𝑀𝐶𝑈 ← 𝐶𝑛−1(𝑈)
8 Apply controlled operation to circuit:
9 𝑐𝑖𝑟𝑐𝑢𝑖𝑡←𝑀𝐶𝑈

10 return 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

11 end

The algorithm takes as input two parameters: the number of qubits 𝑛 and the angle 𝜑
used in the unitary transformation, which will control the phase in the reflection operation. In
line 3, the quantum circuit is initialized with the state ⋃︀0̃︀⊗𝑛 , which is the tensor product of 𝑛
qubits, all initialized to the state ⋃︀0̃︀. In line 5, a unitary operation 𝑈 is defined in matrix form
and represents a phase shift by 𝜑 applied to the first component of the state vector. Then,
in line 7, a multi-controlled unitary operation 𝑀𝐶𝑈 is constructed by applying the controlled
version of 𝑈 on the quantum circuit, where 𝐶𝑛−1(𝑈) represents applying 𝑈 to the target qubit,
controlled by the 𝑛 − 1 control qubits. We chose the controlled operation defined in section
2.2.1. In line 9 the controlled operation 𝑀𝐶𝑈 is applied to the quantum circuit and, finally,
in line 10, the algorithm returns the modified quantum circuit with the Householder Reflection
with respect to ⋃︀0̃︀.
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The quantum circuit representation of this algorithm is illustrated in Figure 16. It features
open controls on the control qubits and the gate 𝑈 is applied to the target qubit only when
all preceding qubits are in the ⋃︀0̃︀ state. It adds a phase 𝜑 to the ⋃︀0̃︀ components only.

⋮

⎨
⎝
⎝
⎝
⎝
⎪

𝑒𝑖𝜑 0
0 1

⎬
⎠
⎠
⎠
⎠
⎮

Figure 16 – Controlled 𝑈 operation in a 𝑛-qubit circuit. It is a subcircuit used to implement the Householder
Reflection with respect to ⋃︀𝑣̃︀ algorithm (see Section 3.1.2), where a single-qubit phase gate that
applies a phase 𝜑 to the ⋃︀0̃︀ component only.

3.1.2 Implementation of Householder Reflection with Respect to the state ⋃︀𝑣̃︀

The algorithm for implementing the Householder Reflection with respect to the state
⋃︀𝑣̃︀, described in Algorithm 2 constructs a quantum circuit that performs this reflection by
leveraging state preparation techniques and controlled unitary operations.

Algoritmo 2: 𝐻𝜑
𝑣 or Householder Reflection with respect to ⋃︀𝑣̃︀

Input: Amplitude vector 𝑣 representing the state ⋃︀𝑣̃︀
Number of qubits 𝑛
State preparation 𝑆𝑃

Output: Quantum circuit implementing the Householder Reflection
1 Function Generalized Householder Reflection(𝑣, 𝑛, 𝑆𝑃):
2 Initialize quantum circuit:
3 𝑐𝑖𝑟𝑐𝑢𝑖𝑡← ⋃︀0̃︀⊗𝑛

4 Compute angle 𝜑 for the Householder reflection:
5 𝜑← angle(𝑣)
6 Applies the inverse of the state preparation to the circuit:
7 𝑐𝑖𝑟𝑐𝑢𝑖𝑡← 𝑆𝑃 †(𝑣) (see Section 2.3)
8 Apply Householder reflection with respect to ⋃︀0̃︀ to circuit:
9 𝑐𝑖𝑟𝑐𝑢𝑖𝑡← HouseholderReflectionZero(𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠, 𝜑) (see algorithm 1)

10 Apply state preparation to circuit:
11 𝑐𝑖𝑟𝑐𝑢𝑖𝑡← 𝑆𝑃 (𝑣)
12 return 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

13 end
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The algorithm takes as input three parameters: an amplitude vector 𝑣, that represents the
quantum state ⋃︀𝑣̃︀, which defines the reflection axis. This vector encodes the amplitudes of the
state to be reflected; the number of qubits 𝑛, needed to represent the quantum state ⋃︀𝑣̃︀ in the
computational basis; and a state preparation operator 𝑆𝑃 , a quantum operation responsible
for preparing the state ⋃︀𝑣̃︀ from the initial zero state ⋃︀0̃︀⊗𝑛. As an output, we have quantum
circuit that implements the Householder Reflection about the state ⋃︀𝑣̃︀.

In line 3, the quantum circuit is initialized in the state ⋃︀0̃︀⊗𝑛, representing 𝑛 qubits in the
zero state. In line 5, the algorithm computes an angle 𝜑, which parameterizes the phase shift
needed for the Householder reflection. This angle depends on the amplitudes of the input vector
𝑣. To enable reflection with respect to ⋃︀𝑣̃︀, the inverse state preparation operator 𝑆𝑃 †(𝑣) is
applied, as shown on line 7. This operation maps ⋃︀𝑣̃︀ back to ⋃︀0̃︀⊗𝑛, effectively transforming the
reflection problem into one with respect to ⋃︀0̃︀. The pre-computed Householder Reflection with
respect to ⋃︀0̃︀ is applied to the circuit as inversed (see section 1). This operation introduces
the desired phase shift 𝜑 around the ⋃︀0̃︀ axis, effectively simulating the reflection about ⋃︀𝑣̃︀ in
the original space. After applying the reflection, the original state preparation operator 𝑆𝑃 (𝑣)
is re-applied in line 11 to return the quantum state to its original configuration. The resulting
circuit implements the desired Householder Reflection with respect to ⋃︀𝑣̃︀.

𝑆𝑃 †
𝑣 𝑆𝑃𝑣⋮

𝑈

Figure 17 – Quantum circuit of the Generalized Householder Reflection. The inverse of a state preparation is
applied, followed by a controlled unitary gate 𝑈 acting on the target qubit, and concluding with
the application of the state preparation.

3.1.3 Implementation of Householder Decomposition

The algorithm for implementing the Householder Decomposition, described in Algorithm
3, constructs a quantum circuit that implements an isometry by performing a sequence of
Householder Reflections in the columns of the isometry until the final isometry the sequence
of these reflections turns the original isometry to a diagonal matrix.

This algorithm takes as input an isometry 𝑊 with dimensions 2𝑛 × 2𝑚 and outputs a
quantum circuit that implements the isometry. In line 3, we determine the number of qubits
𝑛 required for the circuit by computing the logarithm of the number of rows in the isometry.
Next, in line 5, we initialize a quantum circuit with 𝑛 qubits, which serves as the foundation
for implementing the transformation. In line 7, we define a diagonal matrix, which is simply an
identity matrix with the same dimensions as the input isometry. This matrix acts as a reference
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point to iteratively transform the input isometry into a diagonal form. The loop starting at
line 9 iterates through the columns of the isometry matrix, processing them sequentially. This
iterative approach allows us to apply Householder Reflections column by column, progressively
simplifying the isometry until it matches the diagonal form. In the conditional statement at line
13, we check whether the current column of the isometry already matches the corresponding
column of the diagonal matrix. If they are equal, we skip further processing for that column and
proceed to the next iteration. In line 18, we compute the Householder vector by subtracting
the current column of the isometry from the corresponding column of the diagonal matrix.
This vector is used to construct the reflection that aligns the isometry with the diagonal
matrix. In line 20, we normalize the Householder vector. This step is essential because the
vector must have unit length to properly define the reflection applied in line 22. In line 24,
the Householder reflection is applied to the initialized quantum circuit, implementing the
transformation associated with the current column. Subsequently, in line 26, we update the
isometry by applying the same reflection, ensuring it progressively aligns with the diagonal
matrix as the loop continues. After processing all columns, the final circuit inversed is returned
as the output. When applied in a quantum computation, this circuit implements the desired
isometry, enabling transformations required for state preparation, data embedding, or other
quantum algorithms.

The figure 18 illustrates the quantum circuit for the Householder Decomposition applied
to 𝑛 qubits, processing 𝑚 columns of the matrix. In the figure, 𝑆𝑃𝑣𝑖

represents the state
preparation applied at step 𝑖, while 𝑆𝑃 †

𝑣𝑖 denotes its Hermitian adjoint, corresponding to the
inverse operation. The unitary gate 𝑈𝑖 is a multi-controlled operation associated with the
vector ⋃︀𝑣𝑖̃︀, enabling the transformation required for each step of the decomposition process.

𝑆𝑃 †
𝑣0

𝑆𝑃𝑣0 𝑆𝑃 †
𝑣1

𝑆𝑃𝑣1 𝑆𝑃 †
𝑣𝑚

𝑆𝑃𝑣𝑚
⋮ ⋮ ⋯ ⋮

𝑈0 𝑈1 𝑈𝑚

Figure 18 – Illustration of a Householder Decomposition circuit applied to 𝑛 qubits, processing 𝑚 columns of
the matrix. The operation 𝑆𝑃𝑣𝑖 represents the state preparation at step 𝑖, while 𝑆𝑃 †

𝑣𝑖
denotes its

Hermitian adjoint (conjugate transpose). The gate 𝑈𝑖 corresponds to the multi-controlled unitary
operation associated with the vector ⋃︀𝑣𝑖̃︀.
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Algoritmo 3: Householder Decomposition for Isometry
Input: Isometry 𝑊 (2𝑛 × 2𝑚)

Output: Quantum circuit implementing 𝑊
1 Function Householder Decomposition(𝑊):
2 Calculate amount of qubits 𝑛 in the isometry:
3 𝑛← 𝑙𝑜𝑔2(Number of rows of 𝑊 )

4 Initialize quantum circuit:
5 𝑐𝑖𝑟𝑐𝑢𝑖𝑡← ⋃︀0̃︀⊗𝑛

6 Initialize a 2𝑛 × 2𝑚 diagonal matrix:
7 𝐷 ← 𝐼2𝑛,2𝑚

8 𝑗 ← 0
9 while (𝑊 ≠𝐷) and (𝑗 <𝑚) do

10 Extract columns:
11 𝑤𝑗 ← Column 𝑗 of 𝑊
12 𝑑𝑗 ← Column 𝑗 of 𝐷
13 if 𝑤𝑗 ≈ 𝑑𝑗 then
14 𝑗 ← 𝑗 + 1
15 continue
16 end
17 Compute Householder vector:
18 𝑣𝑗 ← 𝑑𝑗 −𝑤𝑗

19 Normalize:
20 𝑣𝑗 ←

𝑣𝑗

∏︁𝑣𝑗∏︁

21 Compute Householder Reflection:
22 𝐻𝑗 ← HouseholderReflection(𝑣𝑗) (see Algorithm 2)
23 Apply reflection to the circuit:
24 𝑐𝑖𝑟𝑐𝑢𝑖𝑡← 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 ⋅𝐻𝑗

25 Update isometry:
26 𝑊 ←𝐻𝑗 ⋅𝑊
27 𝑗 ← 𝑗 + 1
28 end
29 return 𝑐𝑖𝑟𝑐𝑢𝑖𝑡.𝑖𝑛𝑣𝑒𝑟𝑠𝑒()

30 end

3.2 SPARSE MATRICES

To generate random sparse matrices, we first need to define the number of qubits 𝑛 of the
system, as it defines the Hilbert space size for the quantum system.

For a quantum system with 𝑛 qubits, the total dimension of the Hilbert space is 2𝑛 × 2𝑛.
This size determines the final shape of the output matrix. For example:

• 1 qubit: 21 × 21 = 2 × 2

• 2 qubit: 22 × 22 = 4 × 4

• 3 qubit: 23 × 23 = 8 × 8
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The function partitions this large space into smaller blocks of dimension 2𝑠 × 2𝑠, where
𝑠 is the number of qubits that defines each block. Consequently, the number of blocks 𝑥 is
given by 𝑥 = 2𝑛−𝑠. This means the number of blocks decreases as 𝑠 increases, leading to larger
blocks and lower sparsity.

The parameter 𝑠 must satify the condition that 𝑠 ≤ 𝑛, so that we can ensure that the block
size (2𝑠 × 2𝑠) does not exceed the overall dimension of the the final matrix (2𝑛 × 2𝑛).

Given a list of unitary 2𝑠 × 2𝑠 matrix 𝑈 = {𝑈1, 𝑈2,⋯, 𝑈𝑥}, in the shape:

𝑈𝑖 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑢
(𝑖)
11 𝑢

(𝑖)
12 ⋯ 𝑢

(𝑖)
1,2𝑠

𝑢
(𝑖)
21 𝑢

(𝑖)
22 ⋯ 𝑢

(𝑖)
2,2𝑠

⋮ ⋮ ⋱ ⋯

𝑢
(𝑖)
2𝑠,1 𝑢

(𝑖)
2𝑠,2 ⋯ 𝑢

(𝑖)
2𝑠,2𝑠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

To construct the full sparse unitary matrix, we place the blocks 𝑈𝑖 along the diagonal,
resulting in a block diagonal matrix of shape 2𝑛 × 2𝑛 with 𝑥 = 2𝑛−𝑠 blocks, the structure
becomes:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑈1 0 ⋯ 0

0 𝑈2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑈𝑥

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Next, we randomly permute the rows and columns of the matrix. Notice that when 𝑠 = 1,
the blocks are the smallest possible unitary matrices (i.e., 2×2), resulting in a sparse structure
with many zeros filling the off-diagonal elements, having maximum sparsity. On the other
hand, increasing 𝑠 leads to larger blocks, reducing sparsity and making the matrix more dense.
If 𝑠 = 𝑛, the matrix becomes entirely dense, containing a single block.
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4 EXPERIMENTS AND RESULTS

In this chapter, we present the results of our experiments, which were conducted using
numerical simulations of Householder Decompositions (see Section 2.5) applied to random
sparse isometries (see Section 3.2). To generate the unitary matrices used, we use the function
unitary_group.rvs from scipy.stats.unitary_group. The distribution of these matrices
is not arbitrary but follows the Haar distribution on the unitary group. This means that the
matrices are uniformly distributed across the unitary group, ensuring that all possible unitary
matrices have an equal probability of being selected. The Haar distribution also does not
change under multiplication, meaning that the probability of any particular matrix being chosen
is invariant regardless of the matrix’s position within the group (MEZZADRI, 2007). As a
result, the random isometries generated for our experiments accurately reflect the variety
of unitary transformations, offering a solid foundation for evaluating the performance of the
decomposition methods.

The primary objective of these experiments is to assess the effectiveness and efficiency of
reducing the computational complexity associated with decomposing sparse isometries, aiming
to achieve better performance than existing methods. For practical implementation, the state
preparation methods used in these experiments are available in the publicly accessible library
qclib, which offers a comprehensive set of tools for quantum computing.

4.1 CNOT ANALYSIS

We begin by analyzing the cases where 𝑚 = 1. For this scenario, we fix the value of 𝑚 and
vary 𝑠 within the range 1 ≤ 𝑠 ≤ 4.

The Merge state preparation (see Subsection 2.3.1) demonstrates the greatest advantage
among the methods analyzed. Compared to both Pivot State Preparation (see Subsection
2.3.3) and the Low Rank methods (see Subsection 2.3.4), the Merge State Preparation within
the Householder decomposition exhibits superior performance starting from 6 qubits, as illus-
trated in Figure 19. In particular, the growth rate of the Merge curve shows minimal sensitivity
to variations in 𝑠 when the isometry is small (𝑚 = 1). Moreover, its error bars are too small
to be visible relative to the other state preparation methods.

The Pivot State Preparation exhibits behavior similar to the Merge method when 𝑠 is small.
However, for denser isometries, it displays a noticeable peak in values, particularly within the
range of 4 to 9 qubits, as shown in Figures 20c and 20d. In these regions, the error bars are
considerably larger, reflecting greater variability and instability. More investigation is needed
to fully understand this outcome.

In contrast, the Low Rank State Preparation demonstrates the highest growth rate among
the three methods but maintains a relatively consistent behavior overall. An interesting

https://github.com/qclib/qclib
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(a) 𝑠 = 1, 𝑚 = 1 (b) 𝑠 = 2, 𝑚 = 1

(c) 𝑠 = 3, 𝑚 = 1 (d) 𝑠 = 4, 𝑚 = 1

Figure 19 – Number of qubits versus number of CNOT gates for varying 1 ≤ 𝑠 ≤ 4 with 𝑚 = 1 fixed. The curves
correspond to different state preparation methods applied to Householder Decompositions—green
represents Pivot, blue represents Low Rank, and orange represents Merge .

(a) 𝑠 = 1, 𝑚 = 1 (b) 𝑠 = 1, 𝑚 = 2

(c) 𝑠 = 1, 𝑚 = 3 (d) 𝑠 = 1, 𝑚 = 4

Figure 20 – Number of qubits versus number of CNOT gates for varying 1 ≤𝑚 ≤ 4 with 𝑠 = 1 fixed. The curves
correspond to different state preparation methods applied to Householder Decompositions—green
represents Pivot, blue represents Low Rank, and orange represents Merge.
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observation regarding the Low Rank method is its error bars, which tend to decrease for denser
isometries. It should be noted that the Low-Rank method assumes, by default, a dense state.
As a result, they naturally produce more complex circuits when compared to approaches op-
timized for sparse states. This inherent characteristic explains their higher resource overhead,
particularly in scenarios where state sparsity could otherwise be exploited. However, an excep-
tion occurs in the case where 𝑠 = 3 and 𝑚 = 1 (Figure 20c), where a single data point exhibits
a notable large error bar, indicating an anomaly in this particular instance. The anomaly likely
arises from states that are exactly separable under the fixed Low-Rank bipartition, making the
decomposition less costly and producing outliers.

(a) 𝑠 = 1, 𝑚 = 1 (b) 𝑠 = 1, 𝑚 = 2 (c) 𝑠 = 1, 𝑚 = 3

(d) 𝑠 = 2, 𝑚 = 1 (e) 𝑠 = 2, 𝑚 = 2 (f) 𝑠 = 1, 𝑚 = 3

(g) 𝑠 = 3, 𝑚 = 1 (h) 𝑠 = 3, 𝑚 = 2 (i) 𝑠 = 3, 𝑚 = 3

(j) 𝑠 = 4, 𝑚 = 1 (k) 𝑠 = 4, 𝑚 = 2 (l) 𝑠 = 4, 𝑚 = 3

Figure 21 – Number of Qubits vs Number of Cnots for varying 1 ≤ 𝑠 ≤ 4 and 1 ≤ 𝑠 ≤ 3. The curves correspond
to isometry decompositions – red represents the Column-by-column isometry method and orange
represents The Householder Merge Decomposition.
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Next, by fixing the value of 𝑠 and varying 𝑚 within the range 1 ≤ 𝑚 ≤ 4 we observe
the behavior shown in Figure 20. Once again, the Merge state preparation demonstrates the
lowest number of CNOTs among the three methods. The overall trend of the graphs remains
relatively unchanged with varying 𝑚. However, the CNOT cost increases as 𝑚 grows, which
is expected, as the isometry becomes larger with increasing 𝑚.

Compared to the isometry decomposition method implemented by Qiskit, the Column-by-
column method (ITEN et al., 2016), our proposed approach demonstrates clear advantages for
highly sparse isometries, starting from 7 qubits. This observation is evident in the experimental
cases where 1 ≤ 𝑠 ≤ 2 and 1 ≤𝑚 ≤ 2, as well as in the case where 𝑠 = 3 and 𝑚 = 1 (see Figures
21a through 21g). As the isometry becomes denser and the system size increases, our method
continues to outperform Qiskit, with advantages appearing at 8 qubits. However, it is important
to note that, for denser states, our algorithm exhibits some variability in its performance,
particularly for smaller base cases (see Figure 21l). The reason behind this variability is still
unclear and requires further investigation.

This performance can be understood by considering that the method used (ITEN et al.,
2016) assume dense state preparation. Consequently, they naturally produce more complex
circuits, as they are not optimized to exploit sparsity. While these methods provide reliable
performance across general cases, their circuit complexity remains higher, particularly when
compared to our method’s ability to leverage sparsity for more efficient decompositions.

4.2 DEPTH ANALYSIS

Just like in section 4.1, we start by comparing the cases where 𝑚 = 1. We fix the value of
𝑚 and vary 𝑠 within the range 1 ≤ 𝑠 ≤ 4. See figure 22.

We observe that the Merge State Preparation exhibits the most significant advantages in
terms of circuit depth when compared to the Pivot and Low Rank State Preparation methods
within the framework of the Householder Decomposition. These advantages become evident
for systems with at least 7 qubits, as illustrated in Figures 22a through 22c. It is worth noting
that the standard deviation bars are so small that they are not clearly visible in all cases. In
addition to achieving the lowest circuit depth, the Merge State Preparation also demonstrates
the slowest growth rate relative to the other methods.

In contrast, the Pivot State Preparation displays the most variable behavior among the
approaches analyzed. Specifically, it exhibits a pronounced growth peak as the parameter 𝑠
increases, particularly within the range of 5 ≤ 𝑛 ≤ 9 qubits, as highlighted in Figure 22d.
Furthermore, its standard deviation increases as the isometry becomes denser.

The Low Rank State Preparation, while exhibiting the highest growth rate among the three
methods, appears more consistent than the Pivot State Preparation. Unlike the Pivot method,
the standard deviation bars for the Low Rank approach tend to increase with the number
of qubits. This behavior occurs because as the system size grows, more states happen to
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(a) 𝑠 = 1, 𝑚 = 1 (b) 𝑠 = 2, 𝑚 = 1

(c) 𝑠 = 3, 𝑚 = 1 (d) 𝑠 = 4, 𝑚 = 1

Figure 22 – Number of qubits versus Depth count for varying 1 ≤ 𝑠 ≤ 4 with 𝑚 = 1 fixed. The curves correspond
to different state preparation methods applied to Householder Decompositions—green represents
Pivot, blue represents Low Rank , and orange represents Merge.

satisfy the separability condition under the default bipartition configuration, leading to greater
variance in the decomposition costs. However, an anomaly is observed in Figure 22d, where the
experimental results are exceptionally consistent despite the expected discrepancies. This can
be explained by considering that with denser states, the probability of encountering a separable
state under the default bipartition configuration drops rapidly, leading to greater variance in
the decomposition costs.

Next, by fixing the value of 𝑠 and varying 𝑚 within the range 1 ≤ 𝑚 ≤ 4, we observe
the behavior shown in Figure 23. For low sparsity, we observe that the Merge and Pivot State
Preparation methods exhibit similar growth patterns, with Merge demonstrating slightly better
performance, as seen through Graphs 23a through 23d. Notably, Merge achieves the lowest
circuit depth, a trend observable from as early as 7 qubits. In the initial base cases – up to 6
qubits – the depth counts are comparable across all state preparation methods.

As the size of the isometry increases (i.e., larger 𝑚), the Pivot method displays a pro-
nounced growth peak in the earlier cases, as seen particularly in Graph 23d.This behavior
warrants additional investigation. In contrast, the Low Rank method exhibits the largest over-
all growth, although its standard deviation decreases for larger isometries. The Pivot method’s
growth peak is accompanied by the highest standard deviation, whereas the Merge method
maintains consistently low standard deviation values throughout.

Compared to the isometry decomposition method available in Qiskit (ITEN et al., 2016),
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(a) 𝑠 = 1, 𝑚 = 1 (b) 𝑠 = 1, 𝑚 = 2

(c) 𝑠 = 1, 𝑚 = 3 (d) 𝑠 = 1, 𝑚 = 4

Figure 23 – Number of qubits versus Depth count for varying 1 ≤𝑚 ≤ 4 with 𝑠 = 1 fixed. The curves correspond
to different state preparation methods applied to Householder Decompositions—green represents
Pivot, blue represents Low Rank, and orange represents Merge.

our approach demonstrates advantages beginning at 7 qubits for the ranges 1 ≤ 𝑠 ≤ 2 and
1 ≤𝑚 ≤ 3, as well as for the specific case where 𝑠 = 3 and 𝑚 = 1. These trends are illustrated
in Figures 24a through 24f, and Figure 24g.

For denser or larger isometries, these advantages are observed starting at 8 qubits, as shown
in Figures 24i through 24l. Additionally, it is noteworthy that the Merge State Preparation
exhibits a distinct growth peak as the isometries become denser and larger.

As in the CNOT analysis, the observed performance is likely explained by the fact that
Qiskit’s method (ITEN et al., 2016) assumes dense state preparation. Consequently, it tends
to generate more complex circuits, as it does not exploit the potential sparsity of the target
states.
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(a) 𝑠 = 1, 𝑚 = 1 (b) 𝑠 = 1, 𝑚 = 2 (c) 𝑠 = 1, 𝑚 = 3

(d) 𝑠 = 2, 𝑚 = 1 (e) 𝑠 = 2, 𝑚 = 2 (f) 𝑠 = 2, 𝑚 = 3

(g) 𝑠 = 3, 𝑚 = 1 (h) 𝑠 = 3, 𝑚 = 2 (i) 𝑠 = 3, 𝑚 = 3

(j) 𝑠 = 4, 𝑚 = 1 (k) 𝑠 = 4, 𝑚 = 2 (l) 𝑠 = 4, 𝑚 = 3

Figure 24 – Number of Qubits vs Depth count for varying 1 ≤ 𝑠 ≤ 4 and 1 ≤ 𝑠 ≤ 3. The curves correspond to
isometry decompositions – red represents the Qiskit isometry method and orange represents The
Householder Merge Decomposition.

4.3 CHALLENGES IN APPLYING HOUSEHOLDER DECOMPOSITIONS

Despite the advantages discussed in the previous sections, the decomposition method is not
without its challenges. The following points highlight limitations and considerations associated
with its implementation:

• The Householder decomposition introduces fill-in (additional nonzero values) during the
column-by-column decomposition of the isometry, resulting in a denser representation
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and increased computational costs. However, for highly sparse and/or small isometries,
the amount of fill-in (that is, the numbers that appear in the isometry during the decom-
position in places that were originally zero) remains minimal and does not significantly
impact the overall decomposition process.

• To better characterize the computational cost of Householder decompositions, a ded-
icated cost function would need to account for both the sparsity and the number of
columns in the isometry. Such an analysis would require additional data to identify
consistent patterns and trends. But the execution of the Householder decomposition
is computationally intensive due to the substantial number of CNOT gates required.,
which leads to prolonged execution times, making it impractical for larger datasets with-
out further optimization.

• Since their initial publication and development, the state preparation methods used have
undergone optimizations that have reduced their computational costs compared to those
presented in the original papers. That said, assuming the existence of a comprehensive
cost function that accounts for all relevant variables, it would need to incorporate all three
algorithms presented in chapter 3. However, such an analysis is currently constrained by
limitations in time and resources.
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5 FINAL CONSIDERATIONS

In this work, we performed a comparative analysis of Householder decomposition em-
ploying three distinct state preparation methods: Pivot, Merge, and Low Rank. The original
work in which this dissertation was inspired (MALVETTI; ITEN; COLBECK, 2021) was ex-
tended to evaluate how alternative state preparation strategies—beyond the original Pivot
method—affect the efficiency, circuit depth, and resource requirements of sparse isometry
decomposition.

For systems with up to six qubits, the state preparation methods exhibit similar behaviors.
However, as the isometry becomes denser, Pivot and Merge closely compete to minimize the
number of CNOT gates, whereas Low Rank demonstrates instability even for a relatively small
number of qubits. In scenarios where the isometry increases in size while preserving sparsity,
the experimental data reveal no significant disruptions, and this trend is mirrored in the depth
count measurements.

Beyond six qubits, for highly sparse isometries, Merge consistently achieves the lowest
CNOT count among the three state preparation methods. Conversely, as the isometry density
increases, Low Rank exhibits the steepest growth rate in CNOT usage, followed by Pivot. For
larger but sparsity-preserving isometries, the results maintain stability, with minimal variability.
Depth count analysis reveals instability in Low Rank for smaller isometries, as indicated by
the error bars, while Pivot also demonstrates fluctuations before stabilizing as the system
size increases. Merge, in contrast, remains largely unaffected by sparsity variations. When the
isometry size increases while maintaining sparsity, Low Rank initially appears unstable but
progressively stabilizes as the size grows. Pivot shows a slight peak when the matrix size
increases significantly, while Merge remains robust and unaffected.

Based on this analysis, we identify Merge as the most effective state preparation method
for the cases examined. Consequently, Merge was selected to compare against Qiskit’s isom-
etry function. For smaller systems, up to six qubits, Qiskit’s implementation proves superior,
requiring fewer CNOT gates and achieving lower depth. However, for larger systems, starting
at seven qubits, the Householder Merge method outperforms Qiskit. Our findings indicate that
while each method possesses distinct advantages, for highly sparse matrices and matrices with
fewer columns, beginning at seven qubits, the techniques for sparse isometries demonstrates
superior performance.

As a proposal for future work, a key area of focus should be on reducing both the depth
and the number of CNOT gates in the base cases, as these factors directly influence the overall
efficiency of the quantum circuit. Several strategies can be pursued to achieve this goal, some
of which can be immediately implemented.

One promising path involves leveraging recent advancements in the implementation of
multi-controlled gates. Specifically, the work by (NIE; ZI; SUN, 2024) presents a more efficient
method for realizing multi-controlled Toffoli and unitary gates by utilizing a combination of a
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single clean ancilla and what is referred to as "conditionally clean" ancillas—qubits that are
already involved in the circuit. This approach significantly reduces the overhead associated
with the ancilla qubits. To incorporate this technique, modifications would need to be made
to the existing framework, particularly to the function presented in 1, ensuring that the new
gate implementation can be integrated into the existing quantum circuit.

Additionally, optimization techniques from (MALVETTI; ITEN; COLBECK, 2021) could
be applied to further improve the circuit’s efficiency. This work introduces methods aimed at
minimizing the "fill-in" during the decomposition process, which in turn reduces the number of
required CNOT gates. By lowering the number of gates, these techniques make the isometry
representation of the quantum circuit less dense, thereby improving its overall performance.
Implementing these optimizations would not only reduce gate count but also streamline the
decomposition process.

Another critical aspect of improving efficiency involves optimizing the underlying code to
reduce memory consumption. Given the resource-intensive nature of quantum computations,
especially when dealing with large circuits, memory requirements can grow quickly, leading
to significant slowdowns. By refining memory management strategies, the algorithm can run
more efficiently, with faster execution times and less risk of encountering memory bottlenecks.
These optimizations would ensure that the quantum circuit can scale more effectively, allowing
for more complex operations to be performed within practical resource limits.

Additionally, further analysis of cost functions is needed to better evaluate trade-offs be-
tween gate count, depth, and resource utilization. Investigating hybrid approaches that com-
bine features of different state preparation methods may also yield promising results. Further-
more, extending this work to incorporate noise-aware optimization techniques and fault-tolerant
quantum error correction strategies could enhance the practical applicability of the methods
in realistic quantum computing scenarios.

In summary, incorporating state-of-the-art techniques for multi-controlled gate implemen-
tation, applying optimization strategies to minimize fill-in during decomposition, and improving
memory management are key steps that could substantially enhance the efficiency of quantum
circuits in future work. These improvements would not only reduce the overall gate count but
also accelerate the execution of the algorithm, making it more feasible for real-world quantum
computing applications.
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APPENDIX A

MERGE STATE PREPARATION
Let us illustrate the operation of the Merge State Preparation on a sparse quantum state

through a detailed example.

Example 1 Given an initial state ⋃︀𝑣̃︀, we want to reach a final state ⋃︀𝑢̃︀:

⋃︀𝑣̃︀ =
1

⌋︂
14
(⋃︀001̃︀ + 2 ⋃︀100̃︀ + 3 ⋃︀111̃︀) → ⋃︀𝑢̃︀ = ⋃︀000̃︀

Algorithm 1
Step 1. Since the state ⋃︀𝑣̃︀ has 𝑛 = 3 qubits, we initialize an empty circuit 𝐶:

𝐶 = ⋃︀0̃︀⊗𝑛
= ⋃︀000̃︀

We define the set 𝑆 that contains the indices of the non-zero amplitudes in the target
state:

𝑆 = {001,100,111} → ⋃︀ 𝑆 ⋃︀= 3

Step 2. We select a qubit 𝑏 ∈ {1,2,3} in a way that satisfies:

𝑆0 = {𝑥 ∈ 𝑆 ⋃︀ 𝑥(︀𝑏⌋︀ = 0}; 𝑆1 = {𝑥 ∈ 𝑆 ⋃︀ 𝑥(︀𝑏⌋︀ = 1}

Let’s analyze the cases individually.

• 𝑏 = 1 (qubit in the first position)

𝑆0 = {001}

𝑆1 = {100,111}

• 𝑏 = 2 (qubit in the second position)

𝑆0 = {001,100}

𝑆1 = {111}

• 𝑏 = 3 (qubit in the third position)

𝑆0 = {100}

𝑆1 = {001,111}
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Since we want to merge the states of 𝑆1 into 𝑆0, we choose 𝑏 in a way that minimizes
the amount of states in 𝑆1. In this case, we choose 𝑏 = 2.

Step 3. To select the basis states for merging, we choose the ones that are most
similar, which means those with the fewest differing qubits. For example, the states ⋃︀001̃︀
and ⋃︀111̃︀ differ in two qubits (qubits 1 and 2), while ⋃︀100̃︀ and ⋃︀111̃︀ also differ in two
qubits (qubits 2 and 3). Since both pairs differ by the same number of qubits, we choose
the first pair in increasing numerical order.

Then, the basis states ⋃︀𝜑̃︀ we want to merge are:

⋃︀𝜑̃︀ =
1

⌋︂
14
(⋃︀001̃︀ + 3 ⋃︀111̃︀)

Calculating the angle 𝜔 of the merging states:

tan(𝜔) = ⋃︀1⇑
⌋︂

14⋃︀
⋃︀3⇑

⌋︂
14⋃︀
=

1
3 → 𝜔 = arctan(1

3)

The relative phase between these states is:

𝛼 = 𝐴𝑟𝑔(3) −𝐴𝑟𝑔(1) = 0

Step 4. We want to merge the states ⋃︀001̃︀ and ⋃︀111̃︀ by the application of CNOT
gates in such way that the control qubit is the qubit 𝑏 = 2.

⋃︀𝑞1̃︀ ⋃︀𝑞′1̃︀
⋃︀𝑞2̃︀ ● ⋃︀𝑞′2̃︀
⋃︀𝑞3̃︀ ⋃︀𝑞′3̃︀

The state becomes:

⋃︀𝑣′̃︀ =
1

⌋︂
14
(⋃︀001̃︀ + 2 ⋃︀100̃︀ + 3 ⋃︀011̃︀)

Step 5. Now we use 𝑀 gate to "merge" the amplitudes of these states. Remember,
𝑀 is defined as:

𝑀 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

𝑠𝑖𝑛(𝜔) 𝑒𝑖𝛼𝑐𝑜𝑠(𝜔)

𝑒−𝑖𝛼𝑐𝑜𝑠(𝜔) −𝑠𝑖𝑛(𝜔)

⎬
⎠
⎠
⎠
⎠
⎠
⎮

→𝑀1 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

1
⌋︂

10
3

⌋︂

10
3

⌋︂

10 −
1

⌋︂

10

⎬
⎠
⎠
⎠
⎠
⎠
⎮

We apply the matrix 𝑀1 to the differing qubit 𝑏 = 2. The matrix 𝑀1 is controlled by
the other qubits, which should all have the same value at this stage, determining if the
control is open or closed.

In our example, qubits 1 and 3 in the merging states have values ⋃︀0̃︀ and ⋃︀1̃︀, respec-
tively. Since we only want to merge these basis states, we set the control for qubit 1 to
open and the control for qubit 3 to closed. The circuit becomes:
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⋃︀𝑞1̃︀

⋃︀𝑞2̃︀ ● 𝑀1

⋃︀𝑞3̃︀ ●

We can verify that the final state is:

⋂︀𝑣′̃︁ =
1

⌋︂
14
(
⌋︂

10 ⋃︀001̃︀ + 2 ⋃︀100̃︀)

Step 6. Now that the first merge is complete, we replace the set 𝑆 with our resulting
set after the merge:

𝑆 = {001,100}

Step 7. Return the circuit C.

With the first merge completed, the Merge State Preparation proceeds by applying Algo-
rithm 2 to begin constructing the desired circuit. The procedure is as follows:

Algorithm 2
Step 1. Start with an initial empty quantum circuit 𝐶 and define a set containing the

basis states 𝑆 = {001,100,111} of the target state ⋃︀𝑣̃︀.
Step 2. Since ⋃︀ 𝑆 ⋃︀> 1, we use algorithm 1, we find the circuit 𝐶 ′:

⋃︀𝑞1̃︀

⋃︀𝑞2̃︀ ● 𝑀1

⋃︀𝑞3̃︀ ●

Step 3. We update the state as: ⋃︀𝑣̃︀ = 𝐶 ′ ⋃︀𝑣̃︀ = 1
⌋︂

14(
⌋︂

10 ⋃︀001̃︀ + 2 ⋃︀100̃︀)
Step 4. We update the quantum circuit as: 𝐶 = 𝐶 ′ ⋅𝐶

Since the set 𝑆 has ⋃︀ 𝑆 ⋃︀= 2 elements, so we use Algorithm 1 again.

Algorithm 1
Step 1. Since the state ⋃︀𝑣̃︀ has 𝑛 = 3 qubits, we initialize an empty circuit ⋃︀𝜓̃︀:

⋃︀𝜓̃︀ = ⋃︀0̃︀⊗𝑛
= ⋃︀000̃︀

We define the set 𝑆 that contains the indices of the non-zero amplitudes in the target
size:

𝑆 = {001,100} → ⋃︀ 𝑆 ⋃︀= 2

Step 2. We select a qubit 𝑏 ∈ {1,2} in a way that satisfies:
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𝑆0 = {𝑥 ∈ 𝑆 ⋃︀ 𝑥(︀𝑏⌋︀ = 0}; 𝑆1 = {𝑥 ∈ 𝑆 ⋃︀ 𝑥(︀𝑏⌋︀ = 1}

Let’s analyze the cases individually.

• 𝑏 = 1 (qubit in the first position)

𝑆0 = {001}

𝑆1 = {100}

• 𝑏 = 2 (qubit in the second position)

𝑆0 = {001,100}

𝑆1 = ∅

• 𝑏 = 3 (qubit in the third position)

𝑆0 = {100}

𝑆1 = {001}

We choose 𝑏 = 1.
Step 3. The basis states ⋃︀𝜑̃︀ we want to merge are:

⋃︀𝜑̃︀ =
1

⌋︂
14
(
⌋︂

10 ⋃︀001̃︀ + 2 ⋃︀100̃︀)

Calculating the angle 𝜔 of the chosen states:

tan(𝜔) = ⋃︀
⌋︂

10⇑
⌋︂

14⋃︀
⋃︀2⇑

⌋︂
14⋃︀

=

⌋︂
10
2 → 𝜔 = arctan(

⌋︂
10
2 ) (APPENDIX A.1)

The relative phase between these states is:

𝛼 = 𝐴𝑟𝑔(2) −𝐴𝑟𝑔(
⌋︂

10) = 0

Step 4. We want to merge the states ⋃︀001̃︀ and ⋃︀100̃︀ by the application of CNOT
gates in such way that the control qubit is the qubit 𝑏 = 1.

⋃︀𝑞1̃︀ ● ⋃︀𝑞′1̃︀
⋃︀𝑞2̃︀ ⋃︀𝑞′2̃︀
⋃︀𝑞3̃︀ ⋃︀𝑞′3̃︀

The state becomes:
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⋃︀𝑣′̃︀ =
1

⌋︂
14
(
⌋︂

10 ⋃︀001̃︀ + 2 ⋃︀101̃︀)

Step 5. Now we use 𝑀 gate to "merge" the amplitudes of these states. Remember,
𝑀 is defined as:

𝑀 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

𝑠𝑖𝑛(𝜔) 𝑒𝑖𝛼𝑐𝑜𝑠(𝜔)

𝑒−𝑖𝛼𝑐𝑜𝑠(𝜔) −𝑠𝑖𝑛(𝜔)

⎬
⎠
⎠
⎠
⎠
⎠
⎮

=

⎨
⎝
⎝
⎝
⎝
⎝
⎪

⌉︂
5
7

⌉︂
2
7⌉︂

2
7 −

⌉︂
5
7

⎬
⎠
⎠
⎠
⎠
⎠
⎮

We apply the matrix 𝑀 to the differing qubit 𝑏 = 1. The matrix 𝑀 is controlled at the
other qubits, which should be at the same value at this point, determining if the control
is open or closed.

Now, qubit 2 is open and qubit 3 is closed. The circuit becomes:

⋃︀𝑞1̃︀ ● 𝑀2

⋃︀𝑞2̃︀

⋃︀𝑞3̃︀ ●

We can verify that the final state is:

⋂︀𝑣′̃︁ = ⋃︀001̃︀

Step 6. Now that the second merge is complete, we replace the set 𝑆 with our
resulting set after the merge:

𝑆 = {001}

Step 7. Return the circuit C.

Algorithm 2
Step 1. Start with an initial empty quantum circuit 𝐶.
Step 2. After Algorithm 1, we find the circuit 𝐶 ′:

⋃︀𝑞1̃︀ ● 𝑀2

⋃︀𝑞2̃︀

⋃︀𝑞3̃︀ ●

Step 3. We update the state as: ⋃︀𝑣̃︀ = 𝐶 ′ ⋃︀𝑣̃︀ = ⋃︀001̃︀
Step 4. We update the quantum circuit as: 𝐶 = 𝐶 ′ ⋅𝐶

Step 5. Now, the set 𝑆 has ⋃︀ 𝑆 ⋃︀= 1 element. So, we apply NOT gates to transform the
state to a zero state:

⋃︀𝑞1̃︀
⋃︀𝑞2̃︀

⋃︀𝑞3̃︀ 𝑋
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The circuit 𝐶 becomes:

⋃︀𝑞1̃︀ ● 𝑀2

⋃︀𝑞2̃︀ ● 𝑀1

⋃︀𝑞3̃︀ ● ● 𝑋

Step 6. Invert the gates from 𝐶 and reverse their order, so 𝐶 becomes:

⋃︀𝑞1̃︀ 𝑀2 ●

⋃︀𝑞2̃︀ 𝑀1 ●

⋃︀𝑞3̃︀ 𝑋 ● ●

Step 7. Return the final circuit 𝐶.
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APPENDIX B

CVO-QRAM STATE PREPARATION
Let us illustrate the operation of the CVO-QRAM State Preparation on a sparse quantum

state through a detailed example.

Example 2 Given an initial state ⋃︀𝑣̃︀:

⋃︀𝑣̃︀ =
1
⌋︂

2
(⋃︀001̃︀ + ⋃︀101̃︀)

Step 1. Start with an initial state ⋃︀𝜓̃︀ = ⋃︀𝑢̃︀ ⋃︀𝑚̃︀, where ⋃︀𝑢̃︀ is an ancilla initialized in the
state ⋃︀1̃︀ and ⋃︀𝑚̃︀ is a memory register initialized in the state ⋃︀0̃︀⊗𝑛, where 𝑛 is the number
of qubits of the system. That gives us:

⋃︀𝑢̃︀ = ⋃︀1̃︀ ; ⋃︀𝑚̃︀ = ⋃︀0̃︀⊗3
= ⋃︀000̃︀

So, we get the initial state ⋃︀𝜓0̃︀:

⋃︀𝜓0̃︀ = ⋃︀𝑢̃︀ ⋃︀𝑚̃︀ = ⋃︀1̃︀ ⋃︀000̃︀

Step 2. We sort the input patterns in ascending order of the number of bits with
value 1.

Here:

• 𝑥0 = 001

• 𝑥1 = 101

Thus, the sorted order is:

data = {(001, 1
⌋︂

2
), (101, 1

⌋︂
2
)}

Now we enter a loop that computes each pair (𝑥, 𝑐𝑥), following the algorithm.

Computing the first pair (001, 1
⌋︂

2)

Step 3. For each set (𝑥, 𝑐𝑥):

a) Compute the number of bits with value 1 in a variable 𝑡 and identify and compute
a list containing the positions of the input patterns 𝑥 where the processing term is
equal to 1.

• Number of bits with value 1: 𝑡 = 1
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• Position of the bits with value 1: 𝑙 = (︀2⌋︀

b) To compute the desired basis state, apply CNOT operations controlled at the ancilla
and targeting the memory register ⋃︀𝑚̃︀ where it has value 1, that is:

⋃︀𝜓1̃︀ = Π𝑙𝑖∈𝑙𝐶𝑁𝑂𝑇(𝑢,𝑚(︀𝑙𝑖⌋︀) ⋃︀𝜓0̃︀

= 𝐶𝑁𝑂𝑇(1,𝑚(︀2⌋︀) ⋃︀𝜓0̃︀

In other words, we need CNOT operations controlled in the qubit ⋃︀𝑢̃︀ and target at
⋃︀𝑚(︀2⌋︀̃︀:

⋃︀𝑢̃︀ = ⋃︀1̃︀ ● ⋃︀1̃︀
⋃︀𝑚(︀0⌋︀̃︀ = ⋃︀0̃︀ ⋃︀0̃︀
⋃︀𝑚(︀1⌋︀̃︀ = ⋃︀0̃︀ ⋃︀0̃︀
⋃︀𝑚(︀2⌋︀̃︀ = ⋃︀0̃︀ ⋃︀1̃︀

The state becomes:

⋃︀𝜓1̃︀ = ⋃︀1̃︀ ⋃︀001̃︀

c) Initialize the amplitudes by applying the rotation operator 𝑈(𝑥0, 𝛾0) targeting ⋃︀𝑢̃︀,
controlled by the qubits where 𝑥(︀𝑙𝑖⌋︀ = 1, with 0 ≤ 𝑖 ≤ 𝑡 − 1. We apply:

⋃︀𝜓2̃︀ = 𝐶
𝑡𝑈(𝑚(︀𝑙0,𝑙1,⋯,𝑙𝑡−1⌋︀,𝑢) ⋃︀𝜓1̃︀

= 𝐶1𝑈(𝑚(︀2⌋︀,𝑢) ⋃︀𝜓1̃︀

By definition, 𝛾0 = 1, and based on our data, 𝑥0 =
1
⌋︂

2 .

Then:

𝑈0 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

⌉︂
𝛾0−⋃︀𝑥0⋃︀2

𝛾0
𝑥0
⌋︂

𝛾0

−𝑥0∗
⌋︂

𝛾0

⌉︂
𝛾0−⋃︀𝑥0⋃︀2

𝛾0

⎬
⎠
⎠
⎠
⎠
⎠
⎮

=
1
⌋︂

2

⎨
⎝
⎝
⎝
⎝
⎝
⎪

1 1

−1 1

⎬
⎠
⎠
⎠
⎠
⎠
⎮

Applying this rotation to the ancillary qubit ⋃︀𝑢̃︀ controlled by ⋃︀𝑚(︀2⌋︀̃︀, the circuit
becomes:
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⋃︀𝑢̃︀ ● 𝑈0

⋃︀𝑚(︀0⌋︀̃︀
⋃︀𝑚(︀1⌋︀̃︀
⋃︀𝑚(︀2⌋︀̃︀ ●

The state becomes:

⋃︀𝜓2̃︀ =
1
⌋︂

2
(⋃︀0̃︀ + ⋃︀1̃︀) ⋃︀001̃︀

d) If not in the final iteration, apply 𝐶𝑁𝑂𝑇 gates to restore the ⋃︀𝑚̃︀ register. Like we
did in step 4:

⋃︀𝜓3̃︀ = Π𝑙𝑖∈𝑙𝐶𝑁𝑂𝑇(𝑢,𝑚(︀𝑙𝑖⌋︀) ⋃︀𝜓2̃︀

= 𝐶𝑁𝑂𝑇(1,𝑚(︀2⌋︀) ⋃︀𝜓2̃︀

The circuit becomes:

⋃︀𝑢̃︀ ● 𝑈0 ●

⋃︀𝑚(︀0⌋︀̃︀
⋃︀𝑚(︀1⌋︀̃︀
⋃︀𝑚(︀2⌋︀̃︀ ●

The state becomes:

⋃︀𝜓3̃︀ =
1
⌋︂

2
⋃︀0̃︀ ⋃︀001̃︀ + 1

⌋︂
2
⋃︀1̃︀ ⋃︀000̃︀

Now that the first basis state is complete, let’s compute the second.

Computing the second pair (101, 1
⌋︂

2)

Step 3. For each set (𝑥, 𝑐𝑥):

a) We compute the number of bits with value 1 in a variable 𝑡 and identify and compute
a list containing the positions of the input patterns 𝑥 where the processing term is
equal to 1.

• Number of bits with value 1: 𝑡 = 2

• Position of the bits with value 1: 𝑙 = (︀0,2⌋︀
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b) To compute the desired basis state, apply CNOT operations controlled at the ancilla
⋃︀𝑢̃︀ and targeting the memory register ⋃︀𝑚̃︀ where it has value 1, that is:

⋃︀𝜓4̃︀ = Π𝑙𝑖∈𝑙𝐶𝑁𝑂𝑇(𝑢,𝑚(︀𝑙𝑖⌋︀) ⋃︀𝜓3̃︀

= 𝐶𝑁𝑂𝑇(𝑢,𝑚(︀0⌋︀)𝐶𝑁𝑂𝑇(𝑢,𝑚(︀2⌋︀) ⋃︀𝜓3̃︀

Giving us the circuit:

⋃︀𝑢̃︀ ● 𝑈0 ● ● ●

⋃︀𝑚(︀0⌋︀̃︀
⋃︀𝑚(︀1⌋︀̃︀
⋃︀𝑚(︀2⌋︀̃︀ ●

The state becomes:

⋃︀𝜓4̃︀ =
1
⌋︂

2
⋃︀0̃︀ ⋃︀001̃︀ + 1

⌋︂
2
⋃︀1̃︀ ⋃︀101̃︀

c) Applying the rotation operator 𝑈(𝑥1, 𝛾1) targeting ⋃︀𝑢̃︀, controlled by the qubits
where 𝑥(︀𝑙𝑖⌋︀ = 1, with 0 ≤ 𝑖 ≤ 𝑡 − 1. We apply:

⋃︀𝜓5̃︀ = 𝐶
𝑡𝑈(𝑚(︀𝑙0,𝑙1,⋯,𝑙𝑡−1⌋︀,𝑢) ⋃︀𝜓4̃︀

= 𝐶1𝑈(𝑚(︀0,2⌋︀,𝑢) ⋃︀𝜓4̃︀

Calculating 𝛾1:

𝛾1 = 𝛾0− ⋃︀ 𝑥0 ⋃︀
2= 1− ⋃︀ 1

⌋︂
2
⋃︀2=

1
2

Then:

𝑈1 =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

⌉︂
𝛾1−⋃︀𝑥1⋃︀2

𝛾1
𝑥1
⌋︂

𝛾1

−𝑥1∗
⌋︂

𝛾1

⌉︂
𝛾1−⋃︀𝑥1⋃︀2

𝛾1

⎬
⎠
⎠
⎠
⎠
⎠
⎮

=

⎨
⎝
⎝
⎝
⎝
⎝
⎪

0 1

−1 0

⎬
⎠
⎠
⎠
⎠
⎠
⎮

The circuit becomes:
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⋃︀𝑢̃︀ ● 𝑈0 ● ● ● 𝑈1

⋃︀𝑚(︀0⌋︀̃︀ ●

⋃︀𝑚(︀1⌋︀̃︀
⋃︀𝑚(︀2⌋︀̃︀ ● ●

The state becomes:

⋃︀𝜓5̃︀ =
1
⌋︂

2
⋃︀0̃︀ ⋃︀001̃︀ + 1

⌋︂
2
⋃︀0̃︀ ⋃︀101̃︀

d) Since we are in the final step, there’s no need to reverse any 𝐶𝑁𝑂𝑇 gates applied.

Step 4. After loading both patterns, the state is:

⋃︀𝜓5̃︀ =
1
⌋︂

2
⋃︀0̃︀ ⋃︀001̃︀ + 1

⌋︂
2
⋃︀0̃︀ ⋃︀101̃︀

Since the ancilla qubit ⋃︀𝑢̃︀ is in state ⋃︀0̃︀, we can ignore it, and the final state is:

⋃︀𝜓̃︀ =
1
⌋︂

2
⋃︀001̃︀ + 1

⌋︂
2
⋃︀101̃︀◻

With that, ⋃︀𝜓̃︀ = ⋃︀𝑣̃︀ is the state we wanted to prepare.
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APPENDIX C

PIVOT STATE PREPARATION
Let us illustrate the operation of the Pivot State Preparation on a sparse quantum state

through a detailed example.

Example 3 Given an initial state ⋃︀𝑣̃︀, we want to reach a final state ⋃︀𝑢̃︀:

⋃︀𝑣̃︀ =
1
⌋︂

2
⋃︀011̃︀ + 1

⌋︂
2
⋃︀101̃︀ → ⋃︀𝑢̃︀ =

1
⌋︂

2
⋃︀000̃︀ + 1

⌋︂
2
⋃︀001̃︀

Note that this state has 3 qubits, which gives us 23 = 8 possible basis states. Notice that
out of these 8, only 2 of them have nonzero amplitude. In other words, this state is sparse
and 𝑛𝑛𝑧(𝑣) = 2. From equation 2.20:

𝑠 = 𝑙𝑜𝑔22 → 𝑠 = 1

Block 𝑇 is the block where all nonzero entries are grouped. It is determined by the
values of the first 𝑛 − 𝑠 qubits (for example, ⋃︀0̃︀⊗(𝑛−𝑠) by default, but this is flexible).

Step 1.
Step 2. We select a component outside the block 𝑇 whose amplitude is different from

zero and rewrite it as:

• Outside the block 𝑇 :

⋃︀011̃︀ → ⋃︀01̃︀ ⋃︀1̃︀ = ⋃︀𝑡′̃︀⊗𝑛−𝑠
⋃︀𝑟′̃︀
⊗𝑠

Now we select a component inside block T whose amplitude has a zero value and
rewrite it as):

• Inside block T:
⋃︀000̃︀ → ⋃︀00̃︀ ⋃︀0̃︀ = ⋃︀𝑡̃︀⊗𝑛−𝑠

⋃︀𝑟̃︀
⊗𝑠

Step 3. Choose a qubit where ⋃︀𝑡′̃︀
⊗𝑛−𝑠 and ⋃︀𝑡̃︀

⊗𝑛−𝑠 differ. In our case, we select the
second qubit (from left to right) as shown in the equation below.

⋃︀𝑡′̃︀
⊗𝑛−𝑠
= ⋂︀0 1 ̃︁ and ⋂︀0 0 ̃︁

Step 4. With ⋃︀𝑡′̃︀
⊗𝑛−𝑠 as the control qubit, we will use at most 𝑛−1 = 3−1 = 2 CNOT

gates to modify ⋃︀𝑡′̃︀
⊗𝑛−𝑠

⋃︀𝑟′̃︀
⊗𝑠 such that ⋃︀𝑟′̃︀⊗𝑠

= ⋃︀𝑟̃︀
⊗𝑠. That is,

⋃︀𝑡′̃︀
⊗𝑛−𝑠

⋃︀𝑟′̃︀
⊗𝑠
= ⋃︀01̃︀ ⋃︀1̃︀ → ⋃︀01̃︀ ⋃︀0̃︀ = ⋃︀𝑡′′̃︀⊗𝑛−𝑠

⋃︀𝑟̃︀
⊗𝑠
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The circuit becomes:

⋃︀0̃︀ ⋃︀0̃︀
⋃︀1̃︀ ● ⋃︀1̃︀
⋃︀1̃︀ ⋃︀0̃︀

Step 5. Following a similar approach to the previous step, apply an s-controlled NOT
gate to modify the circuit such that

⋃︀𝑡′′̃︀
⊗𝑛−𝑠

⋃︀𝑟̃︀
⊗𝑠
= ⋃︀01̃︀ ⋃︀0̃︀ → ⋃︀00̃︀ ⋃︀0̃︀ = ⋃︀𝑡̃︀⊗𝑛−𝑠

⋃︀𝑟̃︀
⊗𝑠

The circuit becomes:

⋃︀0̃︀ ⋃︀0̃︀
⋃︀1̃︀ ⋃︀0̃︀
⋃︀0̃︀ ⋃︀0̃︀

By combining the previous circuits, we obtain circuit 𝐶1:

⋃︀0̃︀ ⋃︀0̃︀
⋃︀1̃︀ ● ⋃︀0̃︀
⋃︀1̃︀ ⋃︀0̃︀

Note that none of the other components of the initial state should be affected in this
process. Applying circuit 𝐶1 to state ⋃︀𝑣̃︀, we obtain a new state:

⋃︀𝑣1̃︀ = 𝐶1 ⋃︀𝑣̃︀ =
1
⌋︂

2
⋃︀000̃︀ + 1

⌋︂
2
⋃︀101̃︀

Step 6. Since not all nonzero terms are in block T, return to step 1.

Now we repeat the process of the algorithm to the state ⋃︀𝑣1̃︀.

Step 1.
Step 2. We select a component outside block 𝑇 with nonzero amplitude and rewrite

it as:

• Outside block T:
⋃︀101̃︀ → ⋃︀10̃︀ ⋃︀1̃︀ = ⋃︀𝑡′̃︀⊗𝑛−𝑠

⋃︀𝑟′̃︀
⊗𝑠

Now we select a component inside block 𝑇 with zero amplitude and rewrite it as:

• Inside block T:
⋃︀001̃︀ → ⋃︀00̃︀ ⋃︀1̃︀ = ⋃︀𝑡̃︀⊗𝑛−𝑠

⋃︀𝑟̃︀
⊗𝑠

Step 3. Choose a qubit where ⋃︀𝑡′̃︀
⊗𝑛−𝑠 and ⋃︀𝑡̃︀

⊗𝑛−𝑠 differ. In our case, we select the
first qubit as shown in the equation below.
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⋃︀𝑡′̃︀
⊗𝑛−𝑠
= ⋂︀ 1 0̃︁ and ⋂︀ 0 0̃︁

Step 4. Since ⋃︀𝑟′̃︀
⊗𝑠 and ⋃︀𝑟̃︀

⊗𝑠 are already equal, no action is required.
Step 5. Apply an s-controlled NOT gate to adjust the circuit so that

⋃︀𝑡′̃︀
⊗𝑛−𝑠

⋃︀𝑟̃︀
⊗𝑠
= ⋃︀10̃︀ ⋃︀1̃︀ → ⋃︀00̃︀ ⋃︀1̃︀ = ⋃︀𝑡̃︀⊗𝑛−𝑠

⋃︀𝑟̃︀
⊗𝑠

This can be achieved through the application of circuit 𝐶2:

⋃︀1̃︀ ⋃︀0̃︀
⋃︀0̃︀ ⋃︀0̃︀
⋃︀1̃︀ ● ⋃︀1̃︀

Note that none of the other components of the initial state should be affected in this
process. Applying circuit 𝐶2 to the state ⋃︀𝑣1̃︀ yields a new state:

⋃︀𝑢̃︀ = 𝐶2 ⋃︀𝑣1̃︀ = 𝐶2(𝐶1 ⋃︀𝑣̃︀) =
1
⌋︂

2
⋃︀000̃︀ + 1

⌋︂
2
⋃︀001̃︀

Step 6. Since all nonzero terms are now in block T, we finish the algorithm.
We can also express state ⋃︀𝑢̃︀ as:

⋃︀𝑢̃︀ = ⋃︀00̃︀ ⊗ ( 1
⌋︂

2
⋃︀0̃︀ + 1

⌋︂
2
⋃︀1̃︀)

The circuit 𝐶2𝐶1 = 𝑃𝑖𝑣𝑣 is exactly what we sought, as seen in Equation 2.20.
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APPENDIX D

LOW-RANK STATE PREPARATION
Let us illustrate the operation of the Low-Rank State Preparation on a sparse quantum

state through a detailed example.

Example 4 Given an initial state ⋃︀𝑣̃︀:

⋃︀𝑣̃︀ =
1
⌋︂

2
⋃︀00̃︀ + 1

⌋︂
2
⋃︀11̃︀

Step 1. The Schmidt Decomposition is done in a classical regime. For the state ⋃︀𝜓̃︀, this
results in:

⋃︀𝜓̃︀ =
1
⌋︂

2
⋃︀0̃︀𝐴 ⋃︀0̃︀𝐵 +

1
⌋︂

2
⋃︀1̃︀𝐴 ⋃︀1̃︀𝐵

The Schmidt values associated are:

• Schmidt rank 𝑘 = 2 → 𝑚 = [︂𝑙𝑜𝑔2(2)⌉︂ = 1

• Schmidt coefficients 𝜎1 = 𝜎2 =
1
⌋︂

2

• Schmidt basis: {⋃︀0̃︀𝐴 , ⋃︀1̃︀𝐴} and {⋃︀0̃︀𝐵 , ⋃︀1̃︀𝐵}

The demonstration of the calculations is left to the reader.
Step 2. The system is initialized in the zero state with two qubits, that is, ⋃︀0̃︀ ⋃︀0̃︀.

Then, we initialize a quantum state in the first register encoding Schmidt coefficients as:

∑
𝑖

𝜎𝑖 ⋃︀𝑖̃︀ ⋃︀0̃︀ =
1
⌋︂

2
⋃︀0̃︀ ⋃︀0̃︀ + 1

⌋︂
2
⋃︀1̃︀ ⋃︀0̃︀

In the circuit, this can be done by applying a Hadamard gate to the first qubit:

𝑞𝐴 = ⋃︀0̃︀ 𝐻
1
⌋︂

2 ⋃︀0̃︀ +
1
⌋︂

2 ⋃︀1̃︀
𝑞𝐵 = ⋃︀0̃︀ ⋃︀0̃︀

Now the state is:

⋃︀𝜓̃︀ =
1
⌋︂

2
(⋃︀0̃︀𝐴 + ⋃︀1̃︀𝐴) ⊗ ⋃︀0̃︀𝐵

Step 3. Apply, at max, ⟨︀𝑛⇑2⧹︀ = ⟨︀2⇑2⧹︀ = 1 CNOT operations, controlled qubit 𝐴 and
targeting qubit 𝐵, to generate entanglement. In other words, we want to generate:

∑
𝑖

𝜎𝑖 ⋃︀𝑖̃︀ ⋃︀𝑖̃︀
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The circuit becomes:

𝑞𝐴 = ⋃︀0̃︀ 𝐻 ●

𝑞𝐵 = ⋃︀0̃︀
The state becomes:

⋃︀𝜓̃︀ =
1
⌋︂

2
⋃︀0̃︀𝐴 ⋃︀0̃︀𝐵 +

1
⌋︂

2
⋃︀1̃︀𝐴 ⋃︀1̃︀𝐵

Step 4. Now, we need to apply unitary operations 𝑈 to the first register and 𝑉 𝑇 to
the second register to map computational basis to the Schmidt basis:

𝑈 ⋃︀𝑖̃︀ = ⋃︀𝑖𝐴̃︀ , 𝑉 𝑇 ⋃︀𝑖̃︀ = ⋃︀𝑖𝐵̃︀

But in our case, the Schmidt basis are already ⋃︀0̃︀ and ⋃︀1̃︀, which are computational
basis states. Then, 𝑈 = 𝑉 𝑇 = 𝐼. So, there’s no operation needed.
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