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RESUMO 

As propriedades ópticas não lineares (NLO) de nanomateriais semicondutores têm despertado 

interesse crescente devido à sua relevância em fotônica ultrarrápida e aplicações 

optoeletrônicas. Nesta tese, investigamos as respostas NLO de terceira ordem e de ordens 

superiores de nanoplaquetas coloidais de seleneto de cádmio (CdSe) e de estruturas 

núcleo/casca CdSe/CdS em tolueno, utilizando as técnicas de varredura-Z com pulsos de 

femtossegundos e efeito Kerr ótico (OKG). Nossos resultados revelam uma forte concordância 

entre ambos os métodos e demonstram um comportamento complexo dependente da 

intensidade, incluindo inversão de sinal na refração não linear e evidências de absorção efetiva 

de três fótons. Medidas resolvidas no tempo mostram dinâmicas orientacionais ultrarrápidas, 

com respostas em escala sub-picosegundo moduladas pelo design das nanoestruturas. Sob 

excitação ressonante, foram observados efeitos de absorção saturável e autofocalização 

intensificada, especialmente nas nanoplaquetas de CdSe. As estruturas núcleo/casca de 

CdSe/CdS exibem características de absorção mais amplas e limiares de saturação mais 

elevados, indicativos de alargamento inhomogêneo. Comparativamente, pontos quânticos de 

perovskita haleto CsPbBr₃ mostram forte não linearidade do tipo Kerr em baixas intensidades, 

que satura sob excitação mais intensa devido ao preenchimento dos estados excitônicos e forte 

efeito não-linear do solvente. Esses achados destacam o papel crucial do confinamento quântico 

e da engenharia estrutural na otimização do comportamento óptico não linear, oferecendo 

subsídios para o desenvolvimento de materiais fotônicos avançados. 

 

Palavras-chave: Nanoplaquetas de CdSe; nanoestruturas 2D núcleo/casca; perovskitas; técnica 

Z-scan; efeito Kerr ótico (OKG); caracterização óptica não linear. 

  



ABSTRACT 

The nonlinear optical (NLO) properties of semiconductor nanomaterials are of growing interest 

due to their relevance in ultrafast photonics and optoelectronic applications. In this work, we 

investigate the third-order and higher-order NLO responses of colloidal cadmium selenide 

(CdSe) nanoplatelets (NPLs) and core/shell CdSe/CdS structures in toluene using femtosecond 

Z-scan and optical Kerr gate (OKG) techniques. Our results reveal strong agreement between 

both methods and demonstrate complex intensity-dependent behavior, including sign reversal 

in nonlinear refraction and evidence of effective three-photon absorption. Time-resolved 

measurements show ultrafast orientational dynamics, with sub-picosecond responses 

modulated by nanostructure design. Under resonant excitation, both saturable absorption and 

enhanced self-focusing effects were observed, particularly in CdSe NPLs. The CdSe/CdS 

core/shell structures exhibit broader absorption features and higher saturation thresholds, 

indicative of inhomogeneous broadening. Comparatively, CsPbBr₃ halide perovskite quantum 

dots show strong Kerr-type nonlinearities at low intensities, which saturate under stronger 

excitation due to excitonic state filling and strong nonlinear solvent contribution. These findings 

highlight the crucial role of quantum confinement and structural engineering in optimizing 

nonlinear optical behavior, providing insights for the development of advanced photonic 

materials. 

Keywords: CdSe nanoplatelets; CdSe/CdS core/shell 2D nanostructures; halide perovskites; 

Z-scan technique; Optical Kerr gate (OKG); nonlinear optical characterization. 
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1 INTRODUCTION 

 In recent years, the exploration of nonlinear optical (NLO) phenomena in 

semiconductor nanomaterials has garnered considerable attention due to their promising 

applications in ultrafast photonics, optical switching, telecommunications, and quantum 

information technologies. Among these materials, two-dimensional (2D) semiconductor 

nanoplatelets (NPLs), such as those based on cadmium selenide (CdSe), represent an exciting 

frontier due to their quantum confinement in the thickness direction, high oscillator strengths, 

and narrow emission spectra. These properties contribute to enhanced light-matter interactions, 

making them ideal candidates for studying third and higher-order nonlinear effects. 

 Layered CdSe NPLs are particularly appealing for NLO investigations owing to their 

discrete energy levels, strong excitonic transitions, and tunable nonlinear susceptibilities. Their 

well-defined geometry and monodispersity lead to reduced inhomogeneous broadening and 

consistent optical responses. Moreover, by engineering core/shell (CS) heterostructures, such 

as CdSe/CdS NPLs, one can manipulate the carrier dynamics and confine excitons more 

effectively, tailoring the balance between absorptive and refractive nonlinearities. The addition 

of a shell can enhance photostability, increase excitonic lifetime, and modify the relative 

contributions of electronic versus orientational nonlinear responses, offering additional control 

over the material’s optical behavior. 

 Studying the NLO properties of these materials under both resonant and non-resonant 

excitation conditions is essential for understanding the underlying physical mechanisms. 

Techniques such as Z-scan and optical Kerr gate (OKG) allow for the precise characterization 

of third-order susceptibilities ( (3)), nonlinear absorption (NLA), refractive nonlinearities and 

their time response (limited by the laser pulse duration). These measurements enable a 

comprehensive understanding of the interplay between real and virtual transitions, higher-order 

photon absorption processes, and carrier dynamics, which are crucial for developing nonlinear 

devices operating under femtosecond excitation regimes. 

 In parallel, halide perovskites – particularly quantum-confined structures like CsPbBr₃ 

quantum dots (QDs) – have emerged as strong contenders in the NLO field. Their high defect 

tolerance, strong excitonic effects, and broadband optical responses enable them to exhibit 

pronounced Kerr-type nonlinearities and saturable absorption, even under relatively low 

excitation intensities. The presence of discrete energy states and efficient light-matter coupling 
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make them highly suitable for applications in tunable photonics and all-optical signal 

processing. 

 In this work, we investigated the third and higher-order NLO properties of colloidal 

CdSe and CdSe/CdS CS NPLs in toluene using femtosecond Z-scan and OKG techniques. Our 

key findings include: 

 Agreement between methods: Both Z-scan and OKG measurements showed excellent 

agreement in determining  values, indicating no dependence on optical intensity 

depending on the regime and validating the robustness of our analysis. 

 Sign reversal in NLO response: CdSe NPLs displayed a sign reversal in third-order 

nonlinear refraction (NLR) response upon solvent subtraction, while CdSe/CdS CS 

NPLs showed a negative response, suggesting the influence of a fifth-order process due 

to effective three-photon absorption (3PA), which involves an intermediate two-photon 

process followed by free carrier absorption. 

 Time-resolved nonlinear dynamics: OKG results demonstrated ultrafast orientational 

nonlinearities, with response times of 0.7 ps and 1.0 ps for CdSe and CdSe/CdS CS 

NPLs, respectively. These were faster than those of pure solvents, highlighting the 

impact of nanostructure engineering on ultrafast NLO dynamics. 

 Resonant excitation effects: Under resonant excitation at 505 nm and 665 nm, 

pronounced saturable absorption (SA) and positive nonlinear refraction (self-focusing) 

were observed. CdSe NPLs exhibited a two-order magnitude increase in NLR 

coefficients compared to the non-resonant case, underscoring the significant role of real-

state excitations. 

 Inhomogeneous broadening: CdSe/CdS CS NPLs demonstrated higher saturation 

thresholds and broader absorption features, consistent with an inhomogeneously 

broadened medium due to extended excitonic lifetimes. 

 Halide perovskite comparison: CsPbBr₃ QDs dispersed in toluene exhibited strong 

Kerr-type nonlinearities at low excitation intensities, which saturated at higher 

intensities – likely due to excitonic state-filling effects and the increasing dominance of 

the solvent’s nonlinear contribution. Under 800 nm excitation, the observed three-
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photon absorption (3PA) was weaker than in pure toluene, consistent with the expected 

saturation behavior of the QDs’ discrete energy states. 

These results collectively emphasize the critical influence of nanostructure design, excitation 

regime, and quantum confinement on the NLO behavior of semiconductor materials. The 

comparative insights from CdSe-based NPLs and halide perovskite QDs offer valuable 

guidance for tailoring next-generation photonic and optoelectronic devices. 

 Research on the femtosecond third-order nonlinearities of two-dimensional layered 

transition metal dichalcogenides (2D-LTMDs) has been conducted; however, it falls outside 

the scope of this thesis, which focuses on nanostructured semiconductors. Nonetheless, we have 

dedicated a chapter to briefly discuss the findings from this research. The results from this 

study, along with the observations of nonlinearities in CdSe samples, have contributed to the 

publications listed in APPENDICES I to III. Additionally, research on perovskite 

nanostructures is currently in progress, with the aim of producing original publications.  

 Before presenting the results of this study, we begin by discussing the fundamental 

nonlinear optical techniques used to characterize the nonlinearities in all the materials 

investigated. The following chapter introduces the underlying concepts and mathematical 

foundations of two well-established methods: the Z-scan and the Optical Kerr Gate (OKG) 

techniques. 
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2 NONLINEAR OPTICS AND THIRD-ORDER TECHNIQUES 

 Nonlinear optics is the branch of optics that studies how intense electromagnetic fields 

interact with matter in a regime where the material response becomes nonlinear – that is, the 

induced polarization is no longer proportional to the applied electric field. This nonlinear 

interaction leads to a variety of phenomena that are absent in the linear regime and only become 

significant at high light intensities, such as those produced by pulsed or focused laser sources. 

 In linear optics, well-known effects such as absorption, refraction, and dispersion 

dominate. Absorption describes the attenuation of light as it propagates through a medium, 

while refraction refers to the bending of light due to spatial variations in the refractive index. 

Dispersion, in turn, accounts for the wavelength dependence of the refractive index, explaining 

phenomena like the separation of white light by a prism. Total internal reflection occurs when 

light is confined within a medium of higher refractive index and strikes a boundary at an angle 

greater than the critical angle, resulting in complete reflection. These effects, however, do not 

depend on the intensity of light. A detailed discussion of the linear regime of light-matter 

interaction is presented in APPENDIX A, section A.1. 

 When the intensity of the incident light is sufficiently high, the linear approximation 

breaks down, and nonlinear optical (NLO) effects emerge. Among the most important are 

second-order nonlinear effects, which arise from the second-order susceptibility tensor ( ) of 

the material. These include second-harmonic generation (SHG), sum- and difference-frequency 

generation (SFG/DFG), optical rectification, and nonlinear scattering. Second-order processes 

are only allowed in non-centrosymmetric media and are extensively used in laser frequency 

conversion, generation of entangled photons, and electro-optic modulators. Due to their high 

efficiency and ultrafast response, second-order effects are foundational to modern photonics. 

 In materials that possess inversion symmetry, however, the second-order susceptibility 

vanishes, and third-order nonlinear effects – governed by the  tensor – become dominant. 

These include third-harmonic generation (THG), self-focusing, self-phase modulation, two-

photon absorption, nonlinear refraction, and the optical Kerr effect. Third-order processes are 

crucial for applications such as optical switching, all-optical signal processing, and ultrafast 

spectroscopy. 

 To experimentally probe third-order nonlinearities, techniques such as the Z-scan and 

the Optical Kerr Gate (OKG) are widely employed. The Z-scan technique provides detailed 
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information on both the sign and magnitude of nonlinear absorption and refractive index 

changes, while the OKG technique enables the observation of ultrafast birefringence dynamics 

induced by intense light pulses, essential for time-resolved optical gating and pulse 

characterization. 

 At even higher light intensities or in more exotic material systems, higher-order 

nonlinearities – such as those arising from , , and beyond – can become relevant. These 

contribute to phenomena like five-wave mixing, high-order harmonic generation, and 

extremely nonlinear propagation regimes, although they typically require very high field 

strengths or engineered materials like plasmonic nanostructures or metamaterials. 

 For a detailed discussion of second-, third-, and higher-order nonlinear effects – 

including their mathematical descriptions and selection rules – please refer to the APPENDIX 

A, section A.2 , at the end of this document. 

 The study of third-order NLO effects is fundamental for understanding light-matter 

interactions in various materials and has significant applications in photonics, optical signal 

processing, and ultrafast spectroscopy. Among the widely used experimental techniques to 

measure third-order nonlinearities, the Z-scan and OKG techniques stand out due to their 

sensitivity and versatility. The Z-scan technique, is a single-beam method that provides direct 

measurements of both the nonlinear refractive index ( ) and nonlinear absorption coefficient 

( ) [1]. By translating a sample through the focal region of a Gaussian beam and recording the 

transmitted intensity, this method distinguishes between self-focusing and self-defocusing 

behaviors of materials, making it a crucial tool for characterizing nonlinear optical mediums 

[2]. On the other hand, the OKG technique exploits the ultrafast Kerr effect (see section A.2.3), 

where an intense pump beam induces birefringence in a medium, allowing a probe beam to be 

modulated based on the nonlinear response time. This method, widely used in ultrafast 

spectroscopy, enables the study of femtosecond nonlinear optical phenomena, particularly in 

transparent and semiconductor materials [3]. 

 This chapter builds on the discussion of third-order NLO effects by introducing these 

two key experimental techniques: Z-Scan and OKG. Widely applied to semiconductors, 

polymers, and nanostructures [4], these methods are essential tools in photonics, ultrafast 

spectroscopy, and the development of NLO devices [5, 6], offering a comprehensive approach 

to characterizing third-order nonlinearities.  
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2.1 Z-scan Technique 

 The Z-scan technique is a highly sensitive and widely used experimental method for 

characterizing the NLO properties of materials, particularly their nonlinear refractive index and 

nonlinear absorption coefficients. Introduced by Sheik-Bahae et al. in 1990, this technique 

relies on translating a sample through the focal plane of a tightly focused Gaussian laser beam 

and monitoring changes in the beam’s intensity profile [1]. By analyzing the transmittance of 

the sample as a function of its position ( ) relative to the focal point, the Z-scan technique can 

simultaneously determine both the magnitude and sign of the material’s NLO response. Its 

simplicity, versatility, and high sensitivity make it a crucial in the study of third-order NLO 

effects in a wide range of materials, including semiconductors [5], polymers [4], and 

nanomaterials [7]. Furthermore, the Z-scan technique has found extensive applications in 

photonics [6], ultrafast spectroscopy [8], and the development of nonlinear optical devices [9], 

making it an indispensable tool in modern optical research. 

 The next subsection will focus on the theoretical development of the Z-scan technique 

following the Sheik-Bahae fundamental approach. It will clearly outline the relationships 

between the transmission curves and the NLO refraction and absorption coefficients of the 

materials. These relationships are the primary objectives of the investigation using the Z-scan 

technique. Furthermore, a general standard Z-scan experimental setup configuration will also 

be presented.  

2.1.1 The Standard Z-scan Technique 

 The mathematical theory of the Z-scan technique can be divided into two 

configurations: closed-aperture (CA) Z-scan and open-aperture (OA) Z-scan. The 

experimental setup consists of a Gaussian laser beam focused onto the sample, which is 

translated along the beam propagation axis ( -axis) using a motorized stage. A detector records 

the transmitted intensity, either with an aperture (CA) or without (OA), to isolate different 

nonlinear optical effects. Figure 2.1 shows the basic experimental apparatus to perform a Z-

scan measurement in the CA configuration in which the ratio  is recorded as a function 

of the sample position . 

 In the CA Z-scan, where a finite aperture is placed in front of the detector (Figure 2.1), 

the experiment primarily probes nonlinear refraction (NLR). As the sample moves through the 

focal region, a self-induced lensing effect modifies the beam divergence, leading to 
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characteristic peak-valley or valley-peak transmittance variations, depending on whether the 

material exhibits self-focusing (positive ₂) or self-defocusing (negative ₂  behavior [2]. In 

the other hand, in OA Z-scan, no aperture is used, and the transmission directly reflects 

nonlinear absorption (NLA) effects. For a material exhibiting two-photon absorption (

), transmission decreases symmetrically around the focus due to increased absorption at 

higher intensities. Conversely, for saturable absorption ( ), transmission increases near 

focus as absorption saturates [10]. 

 To compute the transmission expressions for both CA and OA Z-scan configurations, 

we systematically analyze the interaction of the Gaussian laser beam with the nonlinear 

material. In this discussion, we present a derivation of these expressions, closely following the 

methodology outlined in the foundational work by Sheik-Bahae et al. [1]. 

Figure 2.1 – Standard Z-scan experimental setup. Removing the aperture the system is an OA configuration and 

can be used to measure NLA. In this setup, PD1 serves as the transmittance signal photodetector, while PD2 acts 

as the reference photodetector to correct pulse-to-pulse fluctuations during the scan. The motorized stage that 

moves the sample through the focal plane is not shown in the picture. 

Source: The author (2025). 

 The Gaussian beam description is the starting point for analyzing the beam’s interaction 

with the nonlinear material. The electric field of a Gaussian beam propagating along the -axis 

is given by: 

exp exp , (2.1) 

where  is the electrical field amplitude at the focus and contains the temporal envelope of the 

laser pulse,  is the beam radius at the position , and  is 

the Rayleigh range – the distance over which the beam remains sufficiently focused. At 

 the beam intensity drops half of that at the focus [5].  is the radius 
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of curvature of the wave front,  is the wave number,  is the wavelength of the laser 

beam, and  is the radial distance from the beam axis [1, 5].   

 Considering a third-order nonlinear process the intensity-dependent refractive index 

 and absorption coefficient  are given by the following expressions [5]: 

, (2.2) 

, (2.3) 

where,  is the linear refractive index,  is the third-order nonlinear refractive index,  is the 

linear absorption coefficient,  is the third-order nonlinear absorption coefficient, mostly 

related to 2PA process, and  is the laser beam intensity [5, 11].  These expressions describe 

the material’s nonlinear response to the intense laser beam and are crucial to the Z-scan 

technique development. For a sample of thickness  and considered thin (that means, ), 

in the SEVA approximation (see section A.2.3) the wave equation evolution inside the material 

can be analyzed from a pair of phase and intensity equations as: 

, (2.4) 

, (2.5) 

where  is the wave propagation depth in the sample,  (from equation (2.2)), and 

 is given in equation (2.3). Note that  should not be confused with the sample position , 

and  is the on-axis intensity neglecting Fresnel reflections losses [1]. For a medium with weak 

NLA, equations (2.4) and (2.5) are solved to give the phase shift  at the exit surface of the 

sample, which simply follows the radial variation of the incident field at a given position of the 

sample  [1]: 

exp . (2.6) 

Where  is the on-axis phase shift induced by the sample and is defined as:  

, (2.7) 

where  is the intensity at the position ,  is the peak intensity at focus 

( ),  is the effective sample length, and  is the physical 

length of the sample [2].  represents the optically active portion of the sample that 

effectively contributes to the NLO process. If , then , meaning that the entire 

sample contributes for the NLO effect. The phase shift given in equation (2.6) arises due to the 

nonlinear intensity-dependent refractive index  [1]. 
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 The nonlinear phase shift  distorts the beam’s wave front, leading to a change in the 

far-field intensity distribution. The distorted complex electric field at the exit plane of the 

sample now contains the nonlinear phase distortion [1, 2]: 

exp exp , (2.8) 

where  is the incident electric field given by equation (2.1). By means of the Huygen’s 

principle one can obtain the far-field patter of the beam at the aperture plane through a zeroth-

order Hankel transformation [12]. However, according to Sheik-Bahae et al. [1], a more 

convenient approach is applicable to Gaussian input beams, the so-called Gaussian 

decomposition (GD) method given by Weaire et al. [13]. Basically, the GD method decompose 

the complex electric field at the exit plane of the sample (equation (2.8)) into a summation of 

Gaussian beams through a Taylor series expansion of the nonlinear phase term exp( ). 

The GD method is useful because for the small phase changes detected by the Z-scan approach 

only a few terms in the Taylor expansion are relevant [1]. Furthermore, the GD method can be 

easily extended to higher order nonlinearities terms. For further details on the GD method 

procedure, please refer to reference [13]. 

 Thus, according to Sheik-Bahae et al. [1], the normalized transmittance through the 

aperture for each sample position  is given by the following equation:  

∞

∞ ∞

. (2.9) 

 is the transmitted power through the aperture and is obtained by spatially 

integrating the far-field electric field at the aperture plane, ,  up to the aperture radius . 

 depends on the output field in the exit plane of the sample propagated in the free space 

through a distance , the distance from the sample to the aperture plane. For an explicit 

expression of  and extra details, the reader can consult references [1] and [2]. 

Furthermore, in equation (2.9),  is the aperture linear transmittance, 

and  denotes the beam radius at the aperture plane in the linear regime (without nonlinear 

sample) [1].  is the instantaneous input power within the sample [1]. 

 If   (the far-field condition), and a small aperture is applied ( ) together with 

the small nonlinear phase change limit, that is, , one can deduce an analytical 

expression for the transmittance given in equation (2.9). This is possible because at these 

conditions only two terms in the Taylor expansion of the nonlinear phase term exp( ) 
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are remaining to compute  at the aperture plane. Thus, the normalized transmittance for 

a third-order nonlinearity in the CA Z-scan configuration can be written as [1, 2]:  

, (2.10) 

 is the on-axis phase shift at the focal region. Figure 2.2 (a) shows the CA 

theoretical curves for . As expected, for a self-focusing effect ( ) a valley-

peak pattern is achieved and for a self-defocusing effect ( ) a peak-valley pattern is 

observed. For a given  the magnitude and shape of  remains independent on 

wavelength or geometry, since the far-field condition for the aperture plane ( ) is 

satisfied. 

Figure 2.2 – Z-scan theoretical curves for a third-order nonlinearity. (a) CA Z-scan and (b) OA Z-scan. The 

horizontal dotted lines are baselines accounting for the linear regime. The parameters used were:  nm, 

 µm,  µm,  mm,  m-1, , and  GW/m2.  

Source: The author (2025). 

 The aperture size  is a crucial parameter, as a larger aperture minimizes variation in 

 particularly at the peak where beam narrowing occurs, leading to a peak transmittance 

that cannot exceed  [1]. Then, for very large apertures or no aperture ( ), the effect 

vanishes and  for all  and . For small phase changes, the peak and valley occur at 

the same distances from the focus. For third-order nonlinearity, this distance is calculated as 

[1]: 

, (2.11) 

where  is the Rayleigh range distance. For larger phase distortions ( ), the peak-valley 

symmetry no longer applies and both, peak and valley move toward  according to the sign 
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of the nonlinearity ( ). Their separation remains nearly constant, defined by the relation 

[1]: 

. (2.12) 

Using equations (2.11) and (2.12), a CA Z-scan allows for the experimental measurement of 

the Rayleigh range of the system, enabling the estimation of the beam diameter at the focal 

point. Furthermore, it is possible to define an easily measurable quantity, , as the 

difference between the normalized peak transmittance ( ) and valley transmittance ( ): 

. These curves exhibit several useful features. First, for a given order of 

nonlinearity, they can be considered universal. In other words, they are independent of the laser 

wavelength, geometry (as long as the far-field condition is met), and the sign of nonlinearity. 

Second, for all aperture sizes, the variation of  is found to be almost linearly dependent 

on . For cases of small phase distortion and small aperture ( ), we have [1, 2]: 

. (2.13) 

Numerical calculations show that this relation is accurate to within  for  [85]. 

This condition ensures that the induced nonlinear phase shift remains within a single optical 

cycle, thus preventing complex self-interference effects that could lead to distortions in the Z-

scan profile and complicate the extraction of the nonlinear refractive index  [2].  

  The relationship between  and , as described in equation (2.13), is highly 

sensitive to changes in the aperture size S. Through numerical fitting, Sheik-Bahae et al. [1] 

derived a more precise relationship that takes into account the variations in S as follows: 

. (2.14) 

This relation is valid for  within an accuracy of . The implications of equations 

(2.13) and (2.14) are quite promising, as they can be used to accurately estimate the nonlinear 

refractive index ( ) after performing a Z-scan. What is particularly intriguing about these 

expressions is that they highlight the highly sensitive nature of the Z-scan technique. For 

instance, if our experimental apparatus and data acquisition systems can detect transmittance 

changes of  of , we will be able to measure phase changes corresponding to less 

than  in wave front distortion [1]. However, achieving such sensitivity requires relatively 

high optical quality of the sample being studied [2].  

  Equations (2.13) and (2.14) were derived based on a cubic nonlinearity, specifically a 

 effect. A similar approach can be used to analyze higher-order nonlinearities, such as a 

fifth-order response (a  effect). Regardless of the order of nonlinearity, the Z-scan analysis 
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is expected to show the same qualitative characteristics. In the following paragraphs, we will 

continue to utilize the Sheik-Bahae approach to derive information about nonlinear absorption 

from the OA Z-scan curve. We will also present an analytical expression for the transmittance 

resulting from an absorptive third-order nonlinearity, particularly for 2PA process. 

 Some materials exhibit both NLR and NLA effects simultaneously. Large refractive 

nonlinearities in materials are often associated with resonant transitions, which can occur 

through either single-photon or multiphoton processes. The NLA in these materials – whether 

caused by direct multiphoton absorption, saturation of single-photon absorption, or dynamic 

free-carrier absorption – significantly affects measurements of NLR when using the Z-scan 

technique [1]. In the presence of NLA, a Z-scan conducted with a fully open aperture ( ) 

remains insensitive to NLR under the thin-sample approximation. Z-scan traces obtained 

without an aperture are expected to be symmetric around the focal point ( ). In these traces, 

a minimum transmittance is observed in the case of multiphoton absorption, while a maximum 

transmittance occurs due to absorption saturation [2]. It is important to note that the nonlinear 

absorption coefficients can be directly extracted from these transmittance curves. For reference, 

see Figure 2.2 (b). 

 To compute the NLA caused by a 2PA process, we have to reexamine equations (2.4) 

and (2.5) considering the intensity-dependent NLA coefficient given by equation (2.3). For a 

low excitation regime, where it is possible to ignore free-carrier effects [2], the intensity 

distribution and phase shift of the beam at the exit surface of the nonlinear sample can be given 

by the following expressions [1]: 

 (2.15) 

and, 

ln , (2.16) 

where, ,  is the wave number of the incident laser beam, 

and  is the sample position as usual. Thus, equations (2.15) and (2.16) are combined to 

compute the complex electric field at the exit surface of the samples as [14]: 

. (2.17) 

Equation (2.17) simplifies to equation (2.8) when 2PA is negligible. Generally, applying a 

zeroth-order Hankel transform to equation (2.17) yields the field distribution at the aperture 

[12]. This distribution can then be used in equation (2.9) to calculate the transmittance. 
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However, for , by employing a binomial series expansion in powers of , equation (2.17)  

can be expressed as an infinite sum of Gaussian beams, similar to the scenario described for 

purely refractive conditions [1]. For more details on the mathematical procedures, the reader 

can refer to references [1] and [2]. 

 The variations in the Z-scan transmittance can be calculated using the same procedure 

described earlier. As indicated in equations (2.16) and (2.17), the contributions from absorption 

and refraction to the far-field beam profile and Z-scan transmittance are interconnected. 

However, when the aperture is removed, the Z-scan transmittance becomes independent of 

beam distortion and relies solely on the nonlinear absorption effect. In this scenario, with 

, the total transmitted fluency can be determined by spatially integrating equation (2.15) 

without needing to include the free-space propagation process. By integrating equation (2.15) 

at the variable  over the radial variable , we can derive the transmitted power  as 

follows: 

ln
, (2.18) 

where  is the instantaneous power as defined in (2.9), , and 

 [1]. For temporally Gaussian pulse, equation (2.18) can be time integrated 

and it is possible to compute the normalized energy transmittance [1, 2]: 

ln , (2.19) 

where, , with  and  is the excitation peak intensity at 

the lens focal region. For weak NLA, that means, , this transmittance can be expressed 

in terms of the peak intensity  in a summation form more suitable numerical and analytical 

evaluation as [1]: 

, for . (2.20) 

For a weak 2PA effect only the first two terms of the sum are significant, then it is possible to 

explicit express the normalized transmittance as follows: 

. (2.21) 

 is an important parameter and by fitting the OA Z-scan data using equation 

(2.21) is possible to compute the NLA coefficient  of a material. Figure 2.2 (b), shows the 
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theoretical OA Z-scan curves for . The red continuum curve represents a 2PA 

process, indicating that , while the yellow dashed curve indicates a saturation effect, 

where . Additionally, when an OA Z-scan is performed ( ), the NLA coefficient  

can be determined unambiguously. Once  is known, the CA Z-scan configuration ( ) 

can be utilized to extract the remaining unknown NLR coefficient, namely . 

 Figure 2.2 (a) and (b) illustrate the theoretical Z-scan curves for the CA and OA 

configurations, displaying the pure NLR and NLA effects. This approach highlights the 

fundamental aspects of both effects, demonstrating that it is possible to separately characterize 

the third-order NLO refractive and absorptive coefficients in such scenarios. However, for 

materials that exhibit both NLR and relevant 2PA, the CA Z-scan transmittance is influenced 

by both phase distortion and intensity-dependent absorption, making it difficult to isolate the 

refractive contribution. In this case, the CA Z-scan transmittance curve ( ) will display an 

asymmetry around the peak-valley or valley-peak pattern due to the contribution from NLA. 

To accurately extract the nonlinear refractive index ( ₂) while mitigating the influence of NLA, 

an effective strategy is to normalize the CA Z-scan data with the OA Z-scan data. Figure 2.3 

presents the theoretical Z-scan curves for a self-focusing and two-photon absorber material. 

Figure 2.3 – Theoretical Z-scan curves. The  transmittance curve is the CA Z-scan ( ) normalized 

with the OA Z-scan ( ). This curve was building considering equations (2.10) and (2.21). The horizontal 

dotted line is a baseline accounting for the linear regime, while the gray vertical line emphasize the focal point 

for symmetry considerations. The parameters are the same as for Figure 2.2. 

 

Source: The author (2025). 

 By dividing the CA transmittance by the OA transmittance, one effectively removes the 

absorption-induced variations, allowing the pure refractive nonlinear phase shift to be analyzed 
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[1], as one can see in the black curve in Figure 2.3. This approach is particularly important in 

semiconductors, where free-carrier effects or excited-state absorption can further complicate 

the interpretation of CA Z-scan results [15]. The normalization method has become a standard 

in nonlinear optical characterization and is widely used for determining third-order nonlinear 

susceptibilities and higher-order effects in various materials [16]. 

 While the standard Z-scan technique is widely used to characterize third-order 

nonlinearities, it is important to consider the influence of thermal effects under certain 

excitation conditions. In Z-scan experiments, thermal effects can significantly distort the 

measured nonlinear optical response, especially in materials with notable linear absorption. 

High-intensity laser irradiation can cause localized heating, leading to thermal lensing and 

refractive index changes that introduce additional phase distortions. These effects are 

particularly pronounced under continuous-wave (CW), quasi-CW (high repetition rate), and 

long-pulse excitation, where insufficient time for thermal relaxation between pulses results in 

heat accumulation. Since thermal effects can mimic or mask intrinsic electronic nonlinearities, 

distinguishing between them is crucial for accurate material characterization. APPENDIX B 

provides a detailed discussion of the origins of thermal effects in Z-scan measurements and 

strategies to minimize their influence. 

 Building on the standard and thermally influenced Z-scan approaches, several 

alternative techniques have been developed to extend the method’s capabilities and adapt it to 

specific experimental needs. Variants such as eclipse Z-scan, time-resolved Z-scan, 

polarization-resolved Z-scan, and photoacoustic Z-scan offer enhanced sensitivity, temporal 

resolution, or the ability to isolate specific nonlinear contributions. These methods enable the 

investigation of fast dynamics, anisotropic responses, and nonlinear absorption in samples 

where conventional Z-scan techniques may face limitations. A detailed overview of these 

advanced Z-scan variants and their applications is provided in APPENDIX C. 

 In this section, we presented the theoretical fundamentals of the Z-scan technique, as 

developed by Sheik-Bahae et al. [1]. The Z-scan method is a fundamental tool for characterizing 

optical nonlinearities with high sensitivity and simplicity. This method has been widely applied 

in diverse fields, including the characterization of ultrafast optical materials for all-optical 

switching [17], the study of two-photon absorption in semiconductors [15], and the 

development of optical limiters for laser protection [18]. Additionally, it has been employed in 

biological imaging to assess nonlinear properties of biomolecules and nanostructures [19]. The 
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robustness and versatility of the Z-scan technique continue to make it a standard in nonlinear 

optics, contributing to the advancement of photonic technologies. For a deeper understanding 

and more details on the theoretical framework presented, readers can consult the review by E. 

V. Stryland and M. Sheik-Bahae [16], which discusses the Z-scan method and other techniques 

used to measure the nonlinear optical properties of materials. 

 The next section focuses on another powerful technique for probing third-order 

nonlinearities: the Optical Kerr Gate (OKG). Unlike standard Z-scan, which provides 

spatially resolved measurements of nonlinear refraction and absorption, OKG offers ultrafast 

temporal resolution, making it especially suited for investigating the dynamics of the optical 

Kerr effect and fast nonlinear responses. The upcoming section will detail the principles, 

experimental setup, and applications of the OKG technique in characterizing third-order 

nonlinear optical materials. 
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2.2 Pump and Probe Techniques 

 Pump-probe techniques are fundamental tools for characterizing the NLO properties of 

materials by measuring the changes induced in a sample by an intense pump pulse, which are 

subsequently probed by a weaker pulse. Pump-probe techniques are essential for studying 

ultrafast NLO properties, particularly when time-resolved measurements are required. They can 

be used to investigate carrier dynamics in semiconductors [20], NLA mechanisms like two-

photon and excited-state absorption [5, 20], and intensity-dependent refractive index changes 

[5]. Moreover, they can help to analyze coherent phenomena such as wave mixing and photon 

echoes [21], characterize materials for ultrafast optical switching [22], and explore strong field 

interactions like multiphoton ionization [23]. These techniques provide high temporal 

resolution, making them indispensable for understanding transient optical processes beyond 

steady-state methods like the standard Z-scan. 

  Among the widely used pump-probe methods, degenerate and non-degenerate pump-

probe spectroscopy provide insights into ultrafast carrier dynamics, excited-state absorption, 

and refractive index changes, depending on the temporal resolution and spectral properties of 

the pulses used [5]. In transient absorption spectroscopy, variations in probe transmission as a 

function of pump-probe delay time reveal nonlinear absorption mechanisms, such as two-

photon absorption and excited-state absorption [5, 20]. Similarly, time-resolved reflectivity 

techniques monitor dynamic changes in the refractive index and reflectivity, offering insights 

into NLR effects [20]. Furthermore, frequency-domain pump-probe methods, such as four-

wave mixing, enable the study of coherent nonlinear interactions, including optical Kerr effects 

and third-order susceptibilities [21]. These techniques complement time-resolved Z-scan 

methods, previously introduced, by providing a broader understanding of nonlinear responses 

in different temporal and spectral regimes.  

 Particularly, the Optical Kerr Gate (OKG) or Optical Shutter technique is based on 

the intensity-dependent refractive index change induced by a strong pump beam in a nonlinear 

medium, which modulates the transmission of a weaker probe beam. When the pump beam is 

present, it induces birefringence in the material through the optical Kerr effect, allowing the 

probe beam – polarized at 45° relative to the pump – to pass through a crossed polarizer. In the 

absence of the pump, the probe remains blocked, effectively acting as an ultrafast optical shutter 

[5]. This technique is particularly useful for ultrafast time-resolved spectroscopy, as it provides 

a high temporal resolution limited only by the response time of the Kerr medium, typically in 
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the femtosecond range [24]. It is widely applied in fluorescence up-conversion measurements 

and time-gated imaging, enabling the study of fast relaxation dynamics in complex molecular 

and semiconductor systems [25]. 

 In the next subsection, we develop the theoretical framework of the OKG technique and 

highlight its advantages for resolving ultrafast time dynamics in third-order nonlinear materials. 

2.2.1 Optical Kerr Gate Technique 

 The OKG technique is a powerful ultrafast optical switching mechanism based on the 

third-order NLO effect known as the Kerr effect (see equation (A.69)). This phenomenon 

allows for the temporal gating of light transmission through a nonlinear medium by inducing 

birefringence that is proportional to the intensity of an applied optical pump pulse. OKG is 

commonly used in ultrafast spectroscopy, optical signal processing, and time-resolved imaging 

[26, 27].  

 The induced birefringence in the medium modifies the polarization state of a probe 

pulse. If an analyzer is placed orthogonal to the initial polarization, transmission occurs only 

when the pump pulse induces sufficient birefringence. The intensity of the OKG transmitted 

probe signal is expressed as [28]: 

sin sin , (2.22) 

where,  is the initial probe beam intensity,  is the intersecting angle between polarization 

of the probe and pump beams, and  is the phase shift caused by the 

birefringence from the third-order self-induced nonlinearity [28]. , where  is the 

probe beam’s wavelength,  is the sample’s effective length, and  is the NLR coefficient. 

 Positioning the pump and probe beams at a 45° angle optimizes Kerr-induced 

birefringence modulation, which enhances signal contrast and improves gating efficiency in the 

OKG process [5]. Therefore, for small phase changes ( ), the  signal described in 

equation (2.22)) can be reformulated as follows: 

. (2.23)  

The  signal described by equation (2.23) is sensitive to variations in the intensity of the 

probe beam. This sensitivity indicates that the signal can detect the magnitude of the nonlinear 

response ( ), however it does not provide information about its phase, consequently, the 

signal of the nonlinearity. This behavior is characteristic of a homodyne detection system, 
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which is commonly employed to analyze the temporal dynamics of the Kerr effect in materials. 

This method allows for the direct extraction of relaxation times from the decay profile of the 

OKG signal [5]. Figure 2.4 illustrates a simplified scheme of an OKG setup, along with 

examples of decay profiles for various nonlinear materials. 

 Figure 2.4 illustrates the fundamental concept of an OKG setup, where both the pump 

and probe beams are linearly polarized, with their polarizations rotated  with respect to each 

other. PBS2 functions as an analyzer positioned just before the photodetector, and it is set to 

transmit light that has crossed polarization ( ) relative to the probe beam. In some OKG 

systems, even without the presence of the pump beam, a portion of the probe can leak through 

the analyzer due to linear birefringence or the limited extinction ratio of the PBS. The quarter-

wave plate ( ) depicted in Figure 2.4 can help adjust this leakage prior to reaching the 

analyzer. 

Figure 2.4 – Scheme of an optical Kerr gate (OKG) setup. Inset: OKG signals for acetonitrile (ACN), carbon 

disulfide (CS2), and niobium disulfide (NbS2) two-dimensional (2D) nanoflakes suspended in ACN [29]. 

Respectively, black crosses, green open circles, and red stars. 

 

Source: The author (2025).  

 The insert in Figure 2.4 shows the OKG responses of three different nonlinear materials: 

ACN, SC2, and 2D NbS2 nanoflakes suspended in ACN. The OGK signals from ACN and CS2 

display a rapid decay followed by a slower tail response, as illustrated by the black and green 

curves in Figure 2.4. This behavior is typical in some solvents and is attributed to an 

orientational nonlinear response resulting from the inertia of the solvent molecules [29]. In 
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contrast, NbS2 exhibits only a third-order ultrafast electronic response, which is limited by the 

laser pulse duration, measured at approximately 180 femtoseconds in this study [29].  

 In summary, the OKG technique is a powerful tool for ultrafast optical switching and 

time-resolved spectroscopy, by utilizing the intensity-dependent refractive index change in 

nonlinear media. Its ability to achieve high temporal resolution and selective gating makes it 

particularly useful in diverse applications and nonlinear optical studies. Despite challenges 

related to phase distortions and material limitations, ongoing advancements in Kerr media and 

optical configurations continue to enhance the technique’s efficiency and applicability. As 

research progresses, the OKG remains a valuable method for probing ultrafast dynamics in 

various scientific and technological domains. 

 This subsection concludes Chapter 2, which examined the fundamentals and practical 

applications of the Z-scan and OKG techniques. Key references were also provided for readers 

interested in exploring these nonlinear optical methods in greater depth 

 In the next chapter, we will begin discussing the initial results of this thesis, specifically 

the nonlinear optical properties of two-dimensional cadmium selenide (CdSe) nanoplatelets 

(NPLs) suspended in solution, which show promise for all-optical and photonic applications. 
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3 NONLINEAR OPTICAL PROPERTIES OF CdSe NANOPLATELETS 

 Cadmium selenide (CdSe) nanoplatelets (NPLs) have attracted significant attention in 

recent years due to their exceptional optical properties, which stem from their unique quantum 

confinement effects and atomically controlled thickness. These two-dimensional (2D) 

semiconductor nanostructures exhibit sharp excitonic transitions, high photoluminescence 

quantum yields, and tunable bandgaps, making them ideal candidates for optoelectronic and 

photonic applications [30]. Among the various configurations, monolayer and core-shell CdSe 

NPLs offer distinct advantages in tailoring the optical response, particularly in the context of 

nonlinear optical (NLO) properties, which are critical for applications in optical switching, 

frequency conversion, and ultrafast photonics [31]. 

 Their strong excitonic effects and enhanced light-matter interactions primarily govern 

the NLO properties of CdSe NPLs. These materials exhibit significant third-order 

nonlinearities, including two-photon absorption (TPA) and nonlinear refractive index 

modulation, which are essential for their application in laser technology and optical modulation 

devices [32]. The presence of a core-shell architecture, where a shell material such as CdS or 

ZnS encapsulates a CdSe core, further enhances the NLO response by reducing non-radiative 

recombination and improving charge carrier dynamics [33]. This structural modification not 

only extends their stability but also enhances their nonlinear absorption and refraction 

characteristics, thereby making them more suitable for high-power optical applications. 

 Given their superior NLO responses, CdSe NPLs in monolayer and core-shell 

configurations are increasingly being explored for their potential in photonic and optoelectronic 

technologies. Their ability to manipulate light at the nanoscale opens avenues for applications 

in ultrafast photonics, all-optical signal processing, and advanced photodetectors [30]. This 

discussion delves into the underlying mechanisms of the NLO properties of CdSe NPLs, the 

impact of structural modifications, and their potential integration into next-generation optical 

devices. 

 In this chapter, we begin by discussing the fundamental NLO phenomena in 

nanostructured semiconductors to provide the reader with a foundational understanding of these 

effects. Next, we will explore the optical characteristics of all-inorganic CdSe NPLs, 

highlighting their potential as promising materials for nanophotonics. Our focus will then shift 

to layered CdSe NPLs and core-shell structures, particularly CdSe/CdS core-shell NPLs, where 

we will examine their specific characteristics and efficient synthesis protocols. We will also 
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investigate the NLO properties of these nanostructures, focusing specifically on the third-order 

response. This will be done through sub-bandgap excitonic measurements using the Z-scan 

technique, as well as time-resolved results obtained through the OKG method. Finally, we will 

present results and discussions regarding measurements conducted in the resonant excitonic 

femtosecond regime. 
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3.1 Nonlinear Optics in Nanostructured Semiconductors 

 Nonlinear optical (NLO) properties of semiconductors have garnered significant interest 

due to their fundamental role in modern photonics and optoelectronic applications. Unlike 

linear optical phenomena, NLO effects arise from the intensity-dependent response of a 

material to an incident electromagnetic field, leading to processes such as second- and third-

harmonic generation, two-photon absorption (TPA), and self-phase modulation [5]. These 

effects are particularly pronounced in semiconductor nanostructures, where quantum 

confinement enhances excitonic interactions and increases the nonlinear susceptibility [34, 35]. 

Materials such as cadmium selenide (CdSe), gallium arsenide (GaAs), and silicon exhibit strong 

third-order nonlinearities, making them suitable for applications in optical switching, ultrafast 

signal processing, and high-resolution imaging [5, 22]. The design of semiconductor 

heterostructures, including core-shell nanoparticles, quantum wells, and 2D nanomaterials, 

further allows for tailoring of nonlinear optical responses to meet specific technological 

demands [36]. Understanding the mechanisms underlying these NLO effects is crucial for 

optimizing semiconductor-based devices for the next-generation photonic technologies. 

 NLO phenomena in semiconductors arise due to the anharmonic responses of electrons 

to intense optical fields, leading to effects such as third-order nonlinearities ( ) and nonlinear 

cascade process [37]. The quantum confinement of excitons (electron-hole pairs) in 

semiconductor nanostructures (e.g., quantum dots, nanowires, and 2D materials) dramatically 

enhances their NLO response, particularly effects. In bulk semiconductors, excitons are 

typically weakly bound due to the screening effect. The material’s high dielectric constant 

reduces the Coulomb interaction between electrons and holes, leading to a lower exciton 

binding energy. As a result, the exciton radius becomes larger, often spanning several 

nanometers. This behavior is commonly observed in inorganic semiconductors such as gallium 

arsenide (GaAs) and cadmium sulfide (CdS) [38]. However, in nanostructures, such as CdSe 

quantum dots and GaAs quantum wells, quantum confinement can result in higher exciton 

binding energies. This occurs due to a reduced dielectric screening effect, which discretizes 

energy levels and enhances the oscillator strength. As a result, the exciton Bohr radius is 

reduced, leading to stronger Coulomb interactions [34]. Figure 3.1 shows the exciton binding 

energy versus the quantum confinement for different systems dimensionalities. In the case of 

2D nanomaterials, such as CdSe-based NPLs, the exciton binding energies are significantly 
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higher than in bulk materials, reaching values around  meV, similar to those observed in 

monolayer WS2 [39].  

Figure 3.1 – Exciton binding energy versus quantum confinement. The references for the exciton binding energy 

values for bulk, quantum well, quantum wire, and quantum dot are [38], [40], and [41], respectively.

 

Source: The author (2025). 

 This strong exciton binding in nanostructured semiconductors significantly enhances 

resonant NLO effects such as two-photon absorption (TPA) and third-harmonic generation 

(THG). The enhanced excitonic transitions increase the probability of TPA, wherein two low-

energy photons promote an electron to a higher-energy state, thereby boosting the third-order 

susceptibility [5, 22]. It is important to note that, in such cases, the third-order nonlinear 

response may include both instantaneous electronic contributions and population-related 

effects. In particular, under resonant or near-resonant excitation, real-state population 

mechanisms – such as excited-state absorption – can contribute significantly, indicating that the 

observed nonlinearity is not purely of an electronic Kerr-type origin. Moreover, the presence 

of these strongly bound excitons amplifies the nonlinear polarization response, leading to larger 

THG signals in semiconductor nanostructures, particularly in 2D materials, compared to bulk 

[42]. Furthermore, the increased Coulomb interaction in 2D systems enhances exciton-exciton 

interactions, leading to stronger four-wave mixing (FWM) processes, a key mechanism in 

optical signal processing [39, 41]. Table 3.1 exhibits the enhancement of the third-order 

susceptibility for some semiconductors systems due to the quantum confinement effect.  

 Another critical factor contributing to the increased  in nanostructured materials is 

the appearance of discrete energy levels due to the quantum confinement effect. In bulk 

materials, the conduction and valence bands form a continuum of states, leading to smooth 

transitions. However, in nanostructures as 2D systems, the electronic states become quantized, 
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forming well-defined excitonic resonances [45]. This quantization effect significantly enhances 

NLO responses through density of states (DoS) and an increase in nonlinear coefficients at 

excitonic resonances (see Table 3.1). Unlike bulk materials with a DoS rule, 2D materials 

as quantum wells exhibits constant DoS within each sub-band (step-like), enhancing light-

matter interaction [46]. Furthermore, well-defined excitonic states in 2D materials lead to 

strong optical nonlinearities, peaking near excitonic resonances [38]. Figure 3.2, shows a 

simplified representation of DoS for different systems dimensionality. 

Table 3.1 – Third-order susceptibility enhancement for different nanostructured semiconductors systems. 

System Exciton Binding Energy   Enhancement References 

CdSe QDs (  nm)  meV  [35] 

GaAs Quantum Wells  meV  [43] 

MoS2 Monolayers  meV  [44] 

Source: The author (2025). 

Figure 3.2 – Different systems dimensionality, quantum confinements, and DoS diagrams. 

 

Source: The author (2025).  

 The previously discussed high exciton binding energies and discrete electronic states in 

nanostructured semiconductor systems play a vital role in enhancing third-order NLO effects. 

These characteristics lead to increased optical susceptibility, stronger multi-photon absorption, 
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and improved NLO conversion efficiencies. Consequently, nanostructured semiconductors are 

promising candidates for next-generation optoelectronic and photonic applications, such as 

ultrafast optical switches, nonlinear frequency converters, and all-optical signal processing 

devices. 

 In the next section, we will discuss the properties of 2D CdSe-based nanoplatelets 

(NPLs), which are promising photonic nanomaterials for the next generation of all-photonic 

devices. The unique properties of these materials make them suitable for use nonlinear optics, 

as laser emitters, and in quantum optics. These properties are particularly enhanced for fill-

layer structures and core-shell NPLs. 
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3.2 CdSe Nanoplatelets as a Promising Photonic Nanomaterial 

 Colloidal CdSe-based nanoplatelets (NPLs) have emerged as highly promising 

materials for photonic applications due to their unique electronic and optical properties. Unlike 

conventional quantum dots (QDs), which are quasi-zero-dimensional structures, CdSe NPLs 

are quasi-two-dimensional (2D) systems that exhibit strong quantum confinement in the 

thickness direction while maintaining free carrier motion in the lateral dimensions. This 

distinctive structure results in several advantageous photonic properties, making them highly 

suitable for applications in light-emitting diodes (LEDs), lasers, nonlinear optics, and quantum 

optics. 

 CdSe NPLs exhibit strong quantum confinement, which leads to the discretization of 

their energy levels. They have atomically controlled thicknesses, typically ranging from two to 

six monolayers. This results in a strong confinement effect and the formation of distinct 

excitonic transitions. Consequently, CdSe NPLs demonstrate narrow emission line widths and 

efficient optical gain [47]. Furthermore, their emission energy can be precisely tuned by simply 

adjusting the number of monolayers, due to the thickness-dependent bandgap [48, 49]. 

Moreover, because of their 2D-like nature and reduced dielectric screening, CdSe NPLs exhibit 

large exciton binding energies (typically 100–200 meV), enabling stable excitonic emission 

even at room temperature [50, 51]. The high exciton binding energy contributes to high 

photoluminescence quantum yields (near unity) and stable emission properties [52]. Besides 

that, CdSe NPLs exhibit exceptionally large oscillator strengths and high absorption cross-

sections due to the coherence of electronic wave functions across the plane of the platelets [47]. 

This coherence results in ultra-fast radiative lifetimes on the sub-nanosecond scale and 

significantly enhanced absorption cross-sections [53]. These outstanding properties make CdSe 

NPLs excellent candidates for applications in nonlinear optics and high-speed light modulation. 

In addition, due to the in-plane orientation of the transition dipole moment, CdSe NPLs emit 

strongly polarized light, with the emission predominantly confined to the platelet plane [54]. 

This makes them ideal for integration in planar photonic devices where polarized emission is 

advantageous. 

 CdSe NPLs demonstrate enhanced NLO properties, including strong two-photon 

absorption and efficient third-harmonic generation. These effects arise from their large 

oscillator strength and high exciton binding energy. As a result, these materials have been 

investigated for various applications, such as ultrafast optical switching and frequency 
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conversion [55]. Due to their impressive optical characteristics, CdSe NPLs show significant 

promise in photonic devices. They have been utilized in light-emitting diodes (LEDs) with high 

external quantum efficiencies and excellent color purity [49]. Additionally, they are being 

explored for low-threshold optically pumped lasers [56], nonlinear optical limiters [57], Kerr-

based switching devices [55], and single-photon emission sources for quantum optics [58]. 

 In a brief discussion, the potential of CdSe NPLs as the next generation of photonic 

nanomaterials was highlighted. These materials have applications ranging from ultrafast 

photonic devices to quantum optics photon sources. The following section will outline the 

typical synthesis protocols for colloidal CdSe NPLs, with a specific focus on the methods used 

to synthesize 4-monolayer (4 ML) CdSe NPLs and CdSe/CdS core/shell (CS) NPLs. 

Additionally, the section will discuss and present the results and techniques used for 

characterization. 
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3.3 Synthesis Protocols and Materials Characterization 

 The synthesis of CdSe NPLs typically follows colloidal methods, where precise control 

over precursor concentrations, reaction temperature, and ligand environment dictates the final 

morphology and optical properties of the nanostructures. Commonly, a hot-injection technique 

is employed, involving the rapid injection of cadmium and selenium precursors into a high-

temperature solvent containing coordinating ligands [47, 48]. The synthesis of CS NPLs 

involves an additional epitaxial growth step, where a secondary semiconductor material is 

deposited onto the core structure to fine-tune electronic and optical interactions [49]. 

 In the following subsection, we will describe the synthesis protocols used to create the 

4 ML and CS CdSe NPLs structures studied in this thesis. We will emphasize the optical 

properties of these materials, which are fundamental to investigating their NLO properties. 

Additionally, we will present some results regarding their morphological characterization. 

3.3.1 Layered and Core/Shell CdSe NPLs Structures 

 Professor Amitava Patra and his team synthesized the CdSe structures analyzed in this 

study. Professor Patra is a member of the Indian Association for the Cultivation of Science, 

where he works in the Department of Materials Science. He is also affiliated and Director 

(2020-2024) with the Indian Institute of Nano Science and Technology. His group’s research 

focuses on ultrafast excited-state dynamics, energy transfer, and electron transfer in 

multidimensional quantum dots, gold nanoparticles, gold clusters, carbon dots, semiconducting 

polymers, graphene, porphyrin-based luminescent nanoparticles, and both up- and down-

converted luminescent materials for photonic applications. Among their efforts, they also 

investigate efficient synthesis protocols for generating colloidal CdSe-based NPLs for photonic 

applications. 

 The CdSe nanostructures studied here are part of Dr. Ansuri Medda’s doctoral thesis 

and have been detailed in several publications regarding synthesis methods and material 

characterization. This section aims to provide the reader with a fundamental understanding of 

the synthesis method, focusing particularly on the morphological and optical properties of the 

4 ML and CS CdSe NPLs utilized in this research. 

 The synthesis protocol for growing CdSe NPLs was optimized by using cadmium 

(myristate)2 and selenium powder as the cationic and anionic precursors, respectively [59]. 

These precursors were dispersed in 1-octadecene, and anisotropic growth along the -axis was 
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controlled by introducing cadmium acetate dihydrate as a short-chain ligand at 195 °C. The 

reaction proceeded at 240 °C for 12 minutes under an inert atmosphere. The resulting CdSe 

NPLs were purified using a size-selective precipitation method. 

 CdSe/CdS CS NPLs were synthesized via high-temperature colloidal epitaxy by 

depositing CdS layers onto the preformed CdSe cores [60]. In this process, the CdSe NPLs were 

mixed with cadmium oleate in 1-octadecene, and 1-octanethiol was added dropwise at 300 °C. 

Oleylamine was introduced as a capping ligand, and the reaction was maintained for 30 minutes. 

 Structural characterization via X-ray diffraction (XRD) and transmission electron 

microscopy (TEM) revealed that CdSe NPLs predominantly exhibit a zinc blende crystal phase, 

whereas the CdSe/CdS NPLs show a mixture of zinc blende and wurtzite phases. TEM images 

confirmed the rectangular shape of the CdSe NPLs with an average thickness of  nm, and 

a significantly increased thickness of  nm for the CS structures. Figure 3.3 shows the XRD 

patterns and TEM images for 3 ML, 4 ML, and 5 ML CdSe NPLs, while Figure 3.4 and Figure 

3.5 exhibits these results for the CdSe/CdS CS structure.  

Figure 3.3 – (A) XRD patterns of (a) 3 ML, (b) 4 ML, and (c) 5 ML CdSe NPLs. TEM images of (B) 3 ML, (C) 

4 ML, and (D) 5 ML CdSe NPLs (inset: HRTEM). 

 

Source: A. Dutta et al. (2020). Ref. [59]. 

 The lateral dimensions and thicknesses of the NPLs are different for 3, 4, and 5 ML 

NPLs. The measured lateral areas are  , , and  nm2, for 3, 4, 

and 5 ML CdSe NPLs, respectively [59].  The average thickness is found from the high-
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resolution TEM (HRTEM) (inset in Figure 3.3) and is estimated to be ,  and  

nm for 3, 4, and 5 ML CdSe NPLs, respectively. The crystal structure and morphology of the 

CdSe/CdS CS NPLs are also investigated under HRTEM images. A representative top view of 

the images (Figure 3.5 (a, b)) confirms that the CS NPLs are well-dispersed and mostly 

rectangular in shape. Lateral dimensions of CS NPLs are obtained by measuring the statistical 

distribution of length ( ) and width ( ) of the NPLs. The mean length and width of the basal 

plane facets are found to be  and  nm, respectively [60]. The side-view image shown in 

Figure 3.5 (e) with a CdSe/CdS CS NPL “standing up” clearly reveals the total thickness of  

nm, corresponding to a total shell thickness of  nm around core CdSe NPLs of  nm 

thickness. Moreover, the almost uniform thickness of the NPL suggests a consistent growth of 

the CdS shell around the CdSe core [60]. 

Figure 3.4 – (a) Archetypal simulated XRD pattern of CS CdSe/CdS NPLs. The red points and black and olive-

green solid lines represent the observed ( ), calculated ( ), and residual  intensities, respectively. The 

vertical markers indicate the peak positions of WZ and ZB CdS phases. (b) Profiles of WZ (marked in blue color) 

and ZB (marked in dark-yellow color) CdS phases over the entire  range of the XRD pattern. The significant 

reflections from both the phases are marked and indexed using the Miller indices of the corresponding planes in 

their bulk counterpart as a reference. (c) Mismatch in intensity between  and  (highlighted using circles) in 

the absence of a CdSe phase. The goodness-of-fit (GoF) values indicate the quality of refinement. 

 

Source: A. Dutta et al. (2022). Ref. [60]. 

 The optical properties were examined using UV-Vis absorption spectroscopy. CdSe 

NPLs displayed distinct heavy-hole (HH) and light-hole (LH) excitonic transitions at 505 nm 

and 477 nm, respectively. Upon CdS shell deposition, these transitions in the CS structures are 

red-shifted to approximately 665 nm and 600 nm, respectively, and the spectrum broadened due 

to shell growth [60]. Figure 3.6 shows the UV-Visible absorbance spectra for the 4 ML CdSe 
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and CdSe/CdS CS NPLs in toluene suspension. The absorbance of the 4 ML CdSe NPLs at 

400 nm corresponds to 40% of that of the CS sample under identical measurement conditions. 

Assuming similar optical path lengths and extinction coefficients, this suggests a relative 

concentration of approximately 0.4. 

Figure 3.5 – (a, b) Bright-field HRTEM images (top view) of the CdSe/CdS CS NPLs at different magnifications. 

Statistical distributions (histogram plots) shown in the inset of (b) indicating the mean length ( ) and width ( ) 

of the basal plane facets of the NPLs. (c) HRTEM image at a higher magnification. The fast Fourier transform 

(FFT) image along the [010] zone axis from the marked region (yellow square) is shown (inset). (d) Processed 

HRTEM image showing clear lattice planes from the marked region of (c). (d) HRTEM and (e) HRTEM showing 

the side view of a NPL and (f) processed HRTEM images showing lattice planes from both WZ and ZB phases 

inclined on either side of a boundary. 

 

Source: A. Dutta et al. (2022). Adapted from ref. [60]. 

Figure 3.6 – Normalized UV-Visible absorbance spectra. (a) 4 ML CdSe NPLs, and (b) CdSe/CdS CS NPLs. 

Insets: samples’ digital photographs. For the CdSe/CdS CS NPLs, zero absorbance occurs in the near-infrared 

region. 

 

Source: The author (2025). 

 In the next section, we will present the results of our investigation into the NLO 

properties of the colloidal 4 ML and CS CdSe NPLs when excited by femtosecond laser pulses 

in a sub-bandgap excitation regime, which is a form of non-resonant excitation. We will discuss 
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the results related to the NLR and NLA responses of both samples using the Z-scan technique. 

Additionally, by applying the OKG method, we will analyze the time responses of these 

materials, as well as the magnitude of the refractive nonlinearity. 
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3.4 Measurements in the Non-Resonant Excitation Regime 

 In this section, we present the results of our investigation into the NLO properties of 

two-dimensional (2D) 4 ML CdSe and CdSe/CdS CS NPLs suspended in toluene. We utilized 

femtosecond Z-scan and nonlinear OKG techniques with an 800 nm excitation wavelength, 

which is far from any one-photon excitonic resonances. The Z-scan measurements allowed us 

to determine the coefficients for NLR and NLA. Meanwhile, the OKG technique provided 

insights into the time response of the nonlinearity and confirmed the third-order NLO 

coefficient obtained from the Z-scan results. We discuss the observed nonlinearities in relation 

to the electronic band structure of the materials. 

3.4.1 Nonlinear Refraction and Nonlinear Absorption Responses 

 The effect of intensity-induced wave front distortion was investigated using the standard 

Z-scan technique to measure the sign and magnitude of the NLR and NLA coefficients for 

suspended CdSe NPLs samples. In the following subsections, we will provide details on the 

experimental setup, present the results, and discuss the findings. 

3.4.1.1 Experimental Setup 

 The Z-scan experiment utilized an 800 nm amplified Ti:Sapphire laser (Coherent 

LIBRA, 120 fs pulses, 1 kHz repetition rate) as the light source. Departing from the standard 

Z-scan setup (Section 2.1.1), simultaneous open and closed aperture measurements were 

achieved by incorporating a beam splitter (BS) before the aperture (Figure 3.7). A reference 

arm adjusts for intensity fluctuations from pulse to pulse by normalizing the transmittance 

signals measured in both the open and closed aperture arms (see Figure 3.7). Samples are placed 

in a 1 mm transparent quartz cuvette and are scanned along the Z-direction around the focal 

point of a 150 mm lens. In this configuration, the beam waist at the focal point is approximately 

 μm, and the Rayleigh range is about  mm. It is important to note that maintaining a 

repetition rate of 1 kHz helps prevent thermal loading on the samples during scans, which 

ensures that only pure electronic nonlinearities are measured. 

 In the next subsection, we will present the results of the NLR and NLA coefficients 

obtained from the Z-scan experimental curves for all materials: pure toluene, 4 ML CdSe, and 

CdSe/CdS CS NPLs in suspension. 
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Figure 3.7 – Schematic Z-scan setup. Energy control is achieved using a half-wave plate (HWP) and a polarized 

beam splitter (PBS). Ten percent of the laser beam is directed to the reference detector, while the remaining 

ninety percent is sent to the Z-scan arms. Please note that the figure is not drawn to scale. 

 

Source: Campos et al. (2024). Ref. [61]. 

3.4.1.2 Results 

 We begin by presenting the closed aperture (CA) Z-scan curves for the samples. Figure 

3.8 displays the representative experimental CA Z-scan curves along with their respective 

theoretical fits for the CdSe-based NPLs in solution, as well as the results for the pure solvent. 

The peak intensity at the focus ( ₀) for the measurements in Figure 3.8 was ₀  GW/cm². 

The red line is a fitting according equation (2.10) from which the value of the third-order NLR 

coefficient, ,  is obtained.  The calculated  value for the pure toluene from the fit in Figure 

3.8 (a) is cm2/W. The NLR coefficients for the CdSe-based NPLs in 

solution extracted from the theoretical curves in Figure 3.8 (b) and (c) are 

cm2/W and cm2/W, for the 4 ML CdSe and CdSe/CdS CS NPLs, 

respectively. The range of intensity applied for the NLR characterization was  

GW/cm2. For intensities above  GW/cm2, asymmetries appear in the valley-peak Z-scan 

patterns due to strong NLA effects resulting from the toluene response. The sign of  is directly 

determined by observing the CA transmittance from the Z-scan experiments. The Z-scan 

signatures presented in Figure 3.8, reveal a positive sign due to a self-focusing effect, which 

holds for the entire range of intensities employed for all the materials. 

 By varying the intensity, the refractive index  of toluene did not show a dependence 

on ₀ within the applied range. This indicates that only the third-order nonlinearity contributed 

to the solvent’s response. In the case of the CdSe NPLs solutions, a resultant nonlinear phase 

shift occurs due to the combined contributions of the toluene and the NPLs. This results in 
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resultant NLR coefficients, which were extracted directly from Figure 3.8(b) and (c). As the 

changes in the transmittance patterns in Figure 3.8 (b) and (c) are not so significant this indicates 

that the refractive nonlinearity of the CdSe NPLs are suppressed by the solvent response. 

However, the valley-peak transmittance variations ( ) decrease for the CdSe NPLs curves 

as compared with the toluene curve for the same optical intensity (see Figure 3.8). This suggests 

that the refractive responses of the NPLs may have an opposite sign compared to toluene, then 

decreasing the total nonlinear phase shifts.  

Figure 3.8 – Representative CA Z-scan data and theoretical fits. (a) Pure toluene, (b) 4 ML CdSe NPLs in 

toluene, and (c) CdSe/CdS CS NPLs in toluene. Data points are represented by spheres, and fits by red curves. 

Black lines indicate the linear baseline. The NLR index of the pure toluene is  cm²/W. The 

NLR indexes for the solutions are  cm²/W for 4 ML CdSe NPLs, and  cm²/W 

for CS NPLs. The optical peak intensity was 244 GW/cm². 

 

Source: The author (2025). 

 To assess the contribution of CdSe NPLs to the solution’s third-order nonlinearity, we 

conducted a direct experimental comparison between the solution and the solvent. This was 

done by subtracting the nonlinear phase shift of toluene from that of the CdSe NPLs solution 

on a point-by-point basis, allowing the construction of a curve that represents the intrinsic 

nonlinear refraction response of the CdSe NPLs as a function of intensity. Figure 3.9 shows the 

comparison of the magnitude and sign of the third-order refractive index between the solvent 

and the CdSe NPLs in solution as the optical intensity increases. This figure demonstrates that 

the CdSe NPLs contribute to a reversal of the sign, which is “overshadowed” by the solvent’s 

response, which is one order of magnitude stronger. The implications of these results will be 

discussed later. 

 We now turn our attention to the results of NLA extracted from open aperture (OA) Z-

scan curves. Figure 3.10 displays the OA Z-scan results for both pure toluene and the CdSe 

NPLs solutions. The intensity applied at the focus was  GW/cm². The blue lines represent 

theoretical curves that consider only two-photon absorption (2PA), while the red lines, which 
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show a better fit with the experimental data, take into account pure three-photon absorption 

(3PA). Further discussion on the equations and additional physical aspects will be addressed 

later. 

Figure 3.9 –  versus . Comparison of the magnitude and sign of the third-order NLR responses and solvent 

subtraction. (a) Toluene and 4 ML CdSe NPLs in solution, (b) toluene and CdSe/CdS CS NPLs in solution, and 

(c) pure CdSe NPLs NLR responses. 

 

Source: The author (2025). 

 To describe the optical losses within the samples, we used equation (A.74) with , 

focusing solely on the two-photon absorption (2PA) effect. Then, we applied the equation again 

with , which accounts for the three-photon absorption (3PA) process, representing a 

higher-order effect of fifth order. 

Figure 3.10 – Representative OA Z-scan data and theoretical curves. (a) Pure toluene, (b) 4 ML CdSe NPLs in 

toluene, and (c) CdSe/CdS CS NPLs in toluene. Data points are represented by spheres, while theoretical curves 

are depicted with red and blue lines. The NLA coefficients for toluene are  cm/GW, and 

 cm3/GW2. The NLA coefficients for the solutions are  cm/GW and  

cm3/GW2 for the 4 ML sample, and  cm/GW and  cm3/GW2 for the CS sample. 

The optical intensity applied was 732 GW/cm2. 

 

Source: The author (2025). 

 The values of the third and fifth-order NLA coefficients extracted from the models at 

GW/cm2 were  cm/GW and  cm3/GW2 for the 4 ML CdSe 

NPLs, and  cm/GW and  cm3/GW2 for the CdSe/CdS CS NPLs. 



55 

 

 

It is evident from Figure 3.10 (b) and (c) that the 3PA model ( , red curves) fits better the 

experimental absorption data than the 2PA model (blue curves for ). Similar behavior is 

observed for toluene, as shown in Figure 3.10 (a), from where the theoretical curve considering 

3PA shows a better agreement with experimental data, resulting in  cm3/GW2, 

which has the same order of magnitude of the fifth-order NLA coefficients of 4 ML CdSe NPLs 

and CdSe/CdS CS NPLs in suspension. The OA transmittance data indicate that the CS sample 

is less absorbent compared to both the pure solvent and the 4 ML CdSe NPLs solution (see 

Figure 3.10). This indicate that the CdSe/CdS CS NPLs seem to decrease the effective two- and 

three-photon absorption cross-sections, which are directly proportional to the NLA coefficients. 

 For optical intensities ranging from  GW/cm² to  GW/cm², we did not observe 

any dependence of the NLA coefficients on intensity, whether for the CdSe-based NPLs in 

suspension or in pure toluene. In this intensity range, toluene exhibits strong NLA responses, 

making it challenging to determine the specific role of the CdSe-based NPLs in the NLA effects 

observed in the solutions. To address this challenge and better understand the contributions of 

the NPLs, we conducted OA Z-scan experiments using lower intensities ( GW/cm² to  

GW/cm²), where no NLA response is observed in pure toluene (as the threshold for observing 

NLA in toluene via Z-scan is  GW/cm²). Figure 3.11 display representative OA Z-scan 

experimental curves along with theoretical fits for the 4 ML CdSe NPLs and CdSe/CdS CS 

NPLs in solution at GW/cm² and  GW/cm², respectively. 

 The NLA coefficients extracted for 4 ML CdSe NPLs are  cm/GW, and 

 cm3/GW2. For CdSe/CdS CS NPLs, are  cm/GW, and 

 cm3/GW2. The results suggest that 3PA process is likely occurring in these dielectric 

systems, as the theoretical curves show a better fit. Furthermore, the dip in the OA Z-scan 

transmittance trace for the CS sample is less pronounced compared to the 4 ML result, even at 

twice the intensity (see Figure 3.11). This suggests that the CdSe/CdS CS NPLs reduce the 

fifth-order NLA cross-section of the solution. Additionally, it is important to emphasize that, 

within the spectro-temporal regime used in this study, the quartz cuvette does not display any 

nonlinear response. 

 In the following section, we will discuss in detail the results of the refractive and 

absorptive nonlinear responses of the CdSe-based NPLs in solution. 
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Figure 3.11 – Representative OA Z-scan data and theoretical curves below toluene threshold. (a) Solution of 4 

ML CdSe NPLs excited at GW/cm², and (b) solution of CdSe/CdS CS NPLs excited at   GW/cm². The 

insets display the toluene OA Z-scan traces corresponding to the intensities shown in (a) and (b). The orange line 

in the insets indicates the linear baseline where nonlinear absorption is absent. 

 

Source: The author (2025).  

3.4.1.3 Discussion 

 Figure 3.9 (a) and (b) demonstrate that the third-order NLR responses of the CdSe NPLs 

in solution align with the solvent’s self-focusing response. There is a slight increase in the  

value of the 4 ML CdSe sample beginning at approximately  GW/cm². The average value 

for toluene within the tested intensity range is  cm²/W, as indicated by the 

red curves in the figures. After subtracting the toluene phase shift from the CA Z-scan data, 

Figure 3.9 (a) and (b) show the effective  values for the 4 ML CdSe and CdSe/CdS CS NPLs. 

This subtraction reveals that the CdSe NPLs’ contribution causes the sign reversal of the third-

order nonlinearity, an effect masked by the toluene response. From Figure 3.9 (a) and (b), it is 

evident that the CdSe NPLs in suspension transition from a self-defocusing behavior to a self-

focusing behavior. The threshold for the sign change in the ₂ of the 4 ML CdSe NPLs is  

GW/cm². At this threshold, ₂ shifts from  cm²/W to  cm²/W. These 

represent mean values that contribute to the overall response of the solution, causing the NLR 

index value to deviate from the mean value of toluene after the threshold, as illustrated in Figure 

3.9 (a).  CdSe/CdS CS NPLs exhibit a threshold of  GW/cm2 and a predominantly negative 

average  of  cm2/W, with the CS sample contributing to the solution’s 

nonlinearity. The NLR response mirrors the solvent response, as shown in Figure 3.9 (b).  

 Figure 3.9 (c) demonstrates that the CdS core increases the self-focusing threshold by 

showing the refractive response of CdSe NPLs with intensity. CdSe/CdS NPLs are quasi-type-

II semiconductors, where the electron wave function becomes delocalized in the CdS domain 
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while the hole remains confined in the CdSe region [62]. This spatial separation lessens the 

strength of local field interactions at lower intensities. Consequently, a higher intensity 

(meaning more carriers) is required to generate the polarization needed to reverse the sign of 

the Kerr response. Additionally, CdSe/CdS structures generally exhibit lower exciton binding 

energies due to reduced confinement, which results in less significant nonlinear refractive 

contributions from bound excitons [63]. These contributions frequently contribute negatively 

to the . As a result, higher photon densities are necessary to achieve free carrier nonlinearities, 

which usually yield positive  [62]. Moreover, electrons can “escape” into the CdS regions, 

causing the local carrier density to build up more slowly than in pure CdSe. This delay in local 

carrier density accumulation results in a higher threshold for achieving nonlinear refractive 

index inversion. Moreover, both materials demonstrate a positive slope in the ₂ versus ₀ curve 

(Figure 3.9 (c)), indicating that higher-order processes contribute to the nonlinear refractive 

response [64]. The earlier results from the NLA characterization suggest that the CdSe NPLs 

in suspension exhibit fifth-order susceptibility effect once the refractive and absorptive 

responses are connected. 

 Nawrot and collaborators also conducted Z-scan experiments to investigate the NLO 

properties of undoped, Cu-doped, and Ag-doped CdSe NPLs across a wide spectral range of 

500 to 1500 nm using femtosecond optical pulses [64]. The authors observed a significant 

increase in NLA in the doped samples compared to the undoped sample. Notably, there were 

two distinct windows of pronounced NLA: one from 825 nm to 925 nm, which is associated 

with two-photon absorption, and another between 1100 nm and 1225 nm, related to a three-

photon process. In CA Z-scan experiments, the values of the ₂ ranged from  

cm²/W to  cm²/W [64]. Considering these values, the undoped CdSe NPLs with a 

thickness of 4.5 ML, suspended in chloroform, exhibited an ₂ of approximately  

cm²/W at a wavelength of 800 nm, with a pulse duration of 130 fs, a repetition rate of 1 kHz, 

and an optical intensity of about 250 GW/cm² [64]. These conditions closely matched our 

experimental parameters. Nawrot and co-workers argue that even at the relatively high 

concentration of NPLs in solution, the NLR response of the samples is primarily influenced by 

the chloroform response. For the 4 ML CdSe NPLs, the value of  below the threshold of 300 

GW/cm² was found to be  cm²/W. This value corresponds to results obtained 

by Nawrot et al. using the same phase subtraction technique. Table 3.2 summarizes the third-

order refractive indices of the CdSe NPLs and the relevant solvents, as measured by the Z-scan 

technique, highlighting the intensity regime. 
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Table 3.2 - Nonlinear Refractive Index of CdSe NPLs and Relevant Solvents Based on Z-scan Experiments at 

800 nm in the Femtosecond Temporal Regime. 

Material  Intensity range (cm2/W) (cm2/W) Ref. 

4 ML CdSe   GW/cm2  This work 

4.5 ML CdSe  GW/cm2 ----------  [64] 

CdSe/CdS CS  GW/cm2  This work 

Toluene  GW/cm2  ---------- This work 

Source: The author (2025). 

 The results presented in the previous section indicate that toluene activates the 

multiphoton absorption process only when the intensity reaches approximately  GW/cm², 

which is the threshold for NLA mechanisms in the solvent. Table 3.3 summarizes the NLA 

coefficients of the samples based on the applied intensity range. From Table 3.3, it is evident 

that above the toluene threshold, all samples exhibit a 2PA coefficient ( ) within the same 

order of magnitude, and the values correspond to the observed dips in transmittance, as shown 

in Figure 3.10 for toluene and CdSe NPLs in solution, and in Figure 3.11 for the CdSe NPLs in 

solution below the toluene threshold. However, the width of the experimental OA Z-scan curves 

did not align with the theoretical 2PA curve, suggesting that a higher-order process is also 

involved as already discussed. 

 Table 3.3 presents the 3PA coefficients ( ) for all samples extracted from the 

theoretical 3PA curves, which correspond with the dip and width of the experimental OA Z-

scan curves. Above the toluene intensity threshold, the values of the 3PA coefficients are of 

similar order of magnitude, with the coefficient for the CS sample being approximately 1.3 

times smaller than that of the toluene and the 4 ML samples. This difference is attributed to the 

delocalization electron wave function resulting from the presence of CdS in the shell of the 

NPLs, as previously discussed in the context of the refractive behavior. However, below the 

toluene intensity threshold, the  coefficients of the CdSe NPLs increase significantly, 

becoming one order of magnitude higher than their values above the threshold. Notably, the 4 

ML CdSe coefficient is around  times higher than that of the CS sample. This outcome occurs 

because we are measuring effective NLA coefficients. The solvent may possess a very weak 

3PA coefficient that only becomes measurable at high intensities; it is below the detection 

threshold in the low intensity regime, but not truly zero. Consequently, at low intensities, the 
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NPLs dominates, while at high intensities, the NPLs saturates, giving the impression that they 

match. This scenario is likely if the solvent has electronic transitions near the three-photon 

resonance, especially during very short pulse durations (femtoseconds), where even small 

cross-sections can lead to observable effects, as is the case here.  

Table 3.3 - Nonlinear Absorptive Coefficients of CdSe NPLs in Toluene Based on Z-scan Experiments at 800 

nm in the Femtosecond Temporal Regime over an Intensity Range. 

Material  Intensity range (cm/GW) (cm3/GW2) Ref. 

4 ML CdSe  

 GW/cm2   

This work 

 GW/cm2   

CdSe/CdS CS 

 GW/cm2 
  

This work 

 GW/cm2   

Toluene 
 GW/cm2 ------ ------ 

This work 
 GW/cm2   

Source: The author (2025). 

 Indeed, at the excitation wavelength of 800 nm (1.55 eV), two- and three-photon 

absorption (2PA and 3PA) processes may be considered for toluene. However, toluene does not 

exhibit strong two-photon absorption at this wavelength. This is because the combined energy 

of two 800 nm photons (  eV, approximately 400 nm) is insufficient to reach 

its electronic transition bands, which are typically located in the range of 4.0 to 4.8 eV [65]. In 

contrast, the energy of three photons at 800 nm (  eV, ~267 nm) lies within 

the absorption bands of toluene, particularly near the 1
a and 1

b transitions around 260 nm 

[65]. Although three-photon absorption is inherently weaker than two-photon absorption and 

usually requires very high peak intensities, the intensity range used in our experiments (from 

GW/cm² up to TW/cm²) is sufficient to enable this higher-order nonlinear process in toluene. 

 The multiphoton absorption process in the CdSe-based NPLs system can be understood 

as follows: In a direct band gap material, free excitons occur when the energy of the photon 

satisfies the relation  where  is the band gap energy and  is the 

exciton binding energy [67]. Consequently, the energy required to promote electrons from the 

valence band to the conduction band is expressed as . In the case of a 2PA 

process, this energy can be represented as . The photon energy is calculated 
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using the formula where  is the photon wavelength,  is Planck’s 

constant, and  is the speed of light in a vacuum. The exciton binding energy of 4 ML CdSe 

NPLs with approximately  nm in thickness, is  meV [68]. Therefore, the energy 

available in our dielectric system to facilitate 2PA will be approximately  eV. In their 

experiments, S. Ithurria et al. measured the electron/light-hole (LH) and electron/heavy-hole 

(HH) energy transitions for 4 ML CdSe NPLs, finding values of  and  eV, 

respectively [69]. Thus, a 2PA process is feasible in our CdSe-based NPLs system for both LH 

and HH excitonic transitions. For the CdSe/CdS CS NPLs system, the key difference lies in the 

presence of a redshift in the UV-Vis spectrum, which increases the wavelengths of the LH and 

HH excitonic transitions (see Figure 3.6). Nevertheless, the multiphoton absorption process can 

still occur because the condition  is satisfied for both excitonic transitions, 

with  representing the wavelengths of LH and HH transitions, and  being the laser 

excitation wavelength. 

 Furthermore, the observed fifth-order NLA behavior can be attributed not to a genuine 

 intrinsic process, but rather to a cascaded nonlinear mechanism involving free-carrier 

absorption. In this scenario, a 2PA process first excites electrons from the ground state to a 

virtual or real intermediate state using two simultaneous 800 nm photons. These excited carriers 

can then undergo a single-photon absorption from the same excitation beam, leading to an 

effective 3PA sequence. This stepwise process results in an intensity dependence characteristic 

of fifth-order absorption, yet it arises from a third-order nonlinear susceptibility ( ) 

associated with 2PA, followed by a linear absorption ( ) from the excited-state population. 

Therefore, the data suggest that the observed nonlinear response is best interpreted as a 

 cascaded effect, rather than a true  nonlinearity. 

 Given that the observed fifth-order behavior likely results from a cascaded  

process involving free-carrier absorption, the fifth-order coefficients extracted from the Z-scan 

fits should be interpreted phenomenologically rather than as true  material parameters. 

These coefficients effectively describe the intensity dependence of the NLA within the 

experimental conditions but do not correspond directly to an intrinsic fifth-order susceptibility. 

Instead, they capture the outcome of a composite mechanism, where the intensity-squared 

dependence of the absorption coefficient mimics a -like signature due to the sequential 

nature of the underlying absorption events. As such, these coefficients are useful for modeling 
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and comparing experimental results but must be interpreted with caution when inferring 

fundamental material properties. 

 To our knowledge, follows a comparison of a few publications addressing the NLA 

properties of layered CdSe NPLs and CdSe/CdS CS NPLs. Fang and colleagues employed an 

OA Z-scan technique to investigate the NLA properties of CdSe NPLs dispersed in hexane, 

using picosecond optical pulses at a wavelength of 532 nm [57]. They examined a non-resonant 

spectral region for a few-layer CdSe NPLs and a resonant spectral region for the CdSe/CdS CS 

structure. For the layered CdSe NPLs, an effective 3PA was reported, with optical intensities 

ranging from 19 GW/cm² to 78 GW/cm². The effective 3PA coefficient was measured at 

 cm³/GW² for intensities above 25 GW/cm², very close to our value reported in Table 3.3. 

Regarding the CdSe/CdS core/shell structure, the authors observed saturable absorption 

behavior at approximately 3.9 GW/cm², which transitioned to reverse saturable absorption for 

intensities exceeding 7.8 GW/cm². 

 In the following section, we will present a time-resolved analysis of the CdSe-based 

NPLs in suspension using the optical Kerr gate (OKG) technique within the non-resonant 

ultrafast regime. 

3.4.2 Time Resolved Measurements 

 As we previously discussed, the OKG technique relies on the polarization rotation of a 

probe beam and involves a third-order nonlinear process. This technique provides insights into 

the NLR index value of the medium and its response time, giving a clue to the physical 

processes that lead to nonlinearity. In this section, we will present the results of the OKG 

measurements conducted on CdSe-based NPLs in suspension, as well as the responses observed 

from the solvent. 

3.4.2.1 Experimental Setup 

 In the OKG experiment, the beam from a mode-locked Ti:Sapphire laser (Mira, 

Coherent), which operates at 76 MHz with a pulse duration of 185 femtoseconds at a 

wavelength of 800 nm, was divided into pump and probe beams. After adjusting the time delay, 

these beams were recombined at the focal point of a 100 mm lens, where a sample (a 1 mm 

quartz cuvette containing the suspension) was placed. The polarizations of the pump and probe 

beams were rotated by  degrees to guarantee maximum OKG signal. A polarized beam 
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splitter (PBS) with crossed polarization (  degrees) relative to the probe was used as an 

analyzer. Figure 3.12 shows in details the OKG setup used in the measurements. 

Figure 3.12 – Experimental apparatus for the OKG measurements. The figure is out of scale.

 

Source: Carvalho et al. (2023). Ref. [29]. 

 In the figure, the optical delay line at the pump arm enables time-resolved superposition 

of the two beams. Half-wave plates (HWPs), along with polarizers in each arm, are used to 

control the power of both the pump and probe beams. When a Kerr medium is present, the 

pump beam induces a third-order intensity-dependent change in the medium’s refractive index. 

This change creates a nonlinear birefringence that the probe beam experiences, functioning as 

an optically gated optical switch. The signal transmitted by the analyzer, known as the OKG 

signal, is measured using a free-space amplified photodetector (PDA100A, Thorlabs), which is 

triggered by a chopper and a lock-in amplifier (SR830 DSP, Stanford Research Systems). The 

system operates in the heterodyne regime, with a portion of the probe intensity leakage 

controlled by a quarter-wave plate (QWP). The duration of the pulses obtained from the 

intensity autocorrelation measurement is 180 fs at the sample position.  

3.4.2.2 Results 

 The results for the OKG measurements are presented in Figure 3.13 (a) – (c). The OKG 

system was calibrated using carbon disulfide (CS2), a well-characterized NLO material [69]. 

Figure 3.13 (a) illustrates typical OKG curves, highlighting the response times of Beta Barium 

Borate (BBO) crystal, CS2, toluene, 4 ML CdSe, and CdSe/CdS CS NPLs in solution. These 

curves are normalized to facilitate a clear observation of the decay time. Notably, the laser pulse 

duration was measured to be 185 fs, determined through intensity autocorrelation of the pulses, 
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for which we used a BBO crystal for second-harmonic generation. Figure 3.13 (b) and (c) 

display the evolution of the Kerr response as a function of pump intensity, ranging from 185.1 

MW/cm² to 834.4 MW/cm². This intensity range is three orders of magnitude lower than that 

of the Z-scan measurements. It is important to note that, despite using a high repetition rate 

excitation source, thermal response does not influence the OKG measurements as it does in 

other experimental methods, such as Z-scan or spatial self-phase modulation. This is because 

the OKG experiments focus on polarization rotation. 

 From the OKG data, the information about the materials’  modulus can be retrieved 

by comparing their OKG signals with the OKG signal of a standard medium according to the 

following relation [29]: 

𝑛2
𝑆

𝑛2
𝑅 =

𝐼𝑂𝐾𝐺/𝐼𝑝𝑢𝑚𝑝
𝑆

𝐼𝑂𝐾𝐺/𝐼𝑝𝑢𝑚𝑝
𝑅 (

𝐿𝑒𝑓𝑓
𝑅

𝐿𝑒𝑓𝑓
𝑆 ) √

𝑇0
𝑅

𝑇0
𝑆 √

𝐼𝑝𝑟𝑜𝑏𝑒,𝑅

𝐼𝑝𝑟𝑜𝑏𝑒,𝑆
 (3.1) 

where the superscript indices  and  refer, respectively, to sample and reference. As the 

reference nonlinear material, we employed CS2, for which we considered 

, as reported by Couris et al. based on the well-established Z-scan technique [69]. 

It is important to note that our OKG apparatus operates in a heterodyne regime. This means that 

any linear phase shift caused by probe leakage (  in equation (3.1)) through the PBS analyzer 

must be considered, as per the method described in equation (3.1). A detailed mathematical 

development of this method can be found in reference [29].  

Figure 3.13 – OKG measurements for four different samples (a) highlighting the time response; (b) by changing 

the optical intensity for 4 ML CdSe NPLs; and (c) by changing the optical intensity for CdSe/CdS CS NPLs. The 

NLR values obtained are  cm2/W for 4 ML CdSe NPLs and  cm2/W for 

CdSe/CdS CS NPLs. 

 

Source: Gonçalves et al. (2023). 

 The time response of the nonlinearity is clearly illustrated in the plots of Figure 3.13. 

The presence of characteristic tails indicates a slow orientational nonlinearity, which occurs 
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over a time scale of approximately 2 picoseconds (ps), superimposed on a fast response that 

follows the femtosecond pulse width of the optical signal. For CS2, the time decay was 

measured at 2.0 ps, which aligns well with reported values in the literature [70, 71]. In contrast, 

toluene exhibited a decay time of 3.2 ps, roughly five times longer than that of the sample 

containing 4 ML CdSe NPLs. This suggests that the fast response of the NPLs significantly 

contributes to the overall signal observed in the OKG measurements. Additionally, a shorter 

response time is noted for the suspension of CdSe/CdS CS structures, which displayed a decay 

time of 1.0 ps, further affirming that the nanostructures enhance the observed nonlinear effects. 

However, it is essential to highlight that the presence of tails in the OKG signal from the CdSe-

based samples in solution, despite their slower decay time, indicates that the nonlinear 

properties of the samples are comparable to those of the solvent, as supported by the Z-scan 

measurements presented in Table 3.4. 

 In the following section, we will discuss the results of the third-order nonlinear time 

responses of the CdSe-based NPLs in solution and the relevant solvents. 

Table 3.4 – Nonlinear Refractive Index of 4 ML CdSe NPLs, CdSe/CdS CS NPLs, and Relevant Solvents Based 

on Z-scan Experiments and OKG Technique Around 800 nm, Femtosecond Temporal Regime*. 

Material 
    

(cm2/W) 

 

 (cm2/W) 

 

(cm2/W) 

Response 

Time 
Ref. 

4 ML CdSe    
Fast(0.185 ps)  

slow (0.7 ps) 

This 

work 

CdSe/CdS CS    
Fast(0.185ps) 

slow(1.0 ps) 

This 

work 

Toluene ------  ------ 
Fast(0.185 ps) 

slow (3.2 ps) 

This 

work 

CS2 ------  ------ 
Fast(0.185 ps) 

slow (1.9 ps) 
[71] 

* Response time from the OKG technique is also presented. 

Source: The author (2025). 

3.4.2.3 Discussion 

 In molecular solvents such as CS₂ and toluene, the nonlinear signal is dominated by 

molecular reorientation under the influence of the optical field. The decay time measured for 

CS₂ was 2.0 ps, in excellent agreement with values reported in the literature [70, 71], validating 
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the experimental approach. Toluene exhibited a longer decay time of 3.2 ps, reflecting its 

comparatively slower molecular reorientation, likely due to higher viscosity and molecular 

inertia.  

 Upon introducing CdSe NPLs into toluene, a substantial shift in the nonlinear temporal 

dynamics was observed. The suspension containing 4 ML CdSe NPLs exhibited a significantly 

shorter decay time of approximately 0.7 ps. This pronounced acceleration in the nonlinear 

optical response can be attributed to the strong polarizability anisotropy and rapid field-induced 

alignment of the quasi-two-dimensional NPLs. Their flat geometry and strong in-plane 

transition dipole moments contribute to a fast, coherent third-order response that dominates 

over the slower molecular background of toluene.  

 Interestingly, the CdSe/CdS CS NPLs displayed a slightly longer decay time of 1.0 ps 

compared to the bare 4 ML CdSe NPLs. This indicates that the presence of the CdS shell 

introduces a modest delay in the orientational relaxation. The CdS shell, with its larger bandgap 

and increased mechanical rigidity, likely enhances the structural stability and modifies the 

overall dielectric environment of the NPLs [72]. However, it also adds mass and changes the 

aspect ratio of the nanostructures, which could contribute to slightly slower rotational dynamics 

under the influence of the optical field. 

 The presence of characteristic long decay tails in all cases signals a slow orientational 

contribution superimposed on a rapid electronic response that follows the femtosecond laser 

pulse envelope. The faster decay times observed in the NPLs suspensions – particularly in the 

layered CdSe NPLs – demonstrate that these nanostructures provide a strong and ultrafast 

contribution to the third-order nonlinearity. The slightly slower response of the CS samples 

highlights the trade-off introduced by structural modifications: while the shell may enhance 

optical stability and field confinement, it can simultaneously influence the dynamics of 

orientational relaxation. 

  It is important to highlight that the decay time extracted from the OKG signal of the 

NPLs in solution represents a composite response arising from both the nonlinear contribution 

of the solvent (toluene) and the intrinsic response of the CdSe-based nanostructures. As a result, 

the measured temporal dynamics do not correspond exclusively to the NPLs but rather to an 

effective time constant that reflects the superposition of both components. Isolating the pure 

NPLs response would require either deconvolution approaches or complementary time-

resolved techniques, such as transient absorption spectroscopy. 
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 In the following section, we will discuss the results of the nonlinear response of the 

CdSe-based NPLs in resonance with the heavy-hole (HH) excitonic transitions using the Z-scan 

approach. 
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3.5 Measurements in the Resonant Excitation Regime 

 In this section, we present the NLO refractive and absorptive responses of 4 ML CdSe 

NPLs and CdSe/CdS CS NPLs suspended in toluene. These were excited at resonance with the 

heavy-hole (HH) excitonic transitions in the femtosecond regime using the Z-scan method. This 

study took place during a three-week scientific visit in 2023 at the Physics Institute of São 

Carlos (IFSC) at the University of São Paulo (USP), Brazil.  

 The measurements were conducted using the facilities of the IFSC’s photonics group 

(GFo), coordinated by Prof. Dr. Leonardo De Boni, specifically in the nonlinear optics 

laboratory. This laboratory is equipped with Ti:Sapphire laser amplifier systems (mJ and kHz) 

that produce femtosecond pulses at 800 nm. Wavelength tunability is achieved by utilizing 

Optical Parametric Amplifiers that are pumped by the Ti:Sapphire laser. 

3.5.1 Experimental Setup 

 The experimental setup was based on the standard Z-scan apparatus described in Section 

2.1. The setup included a femtosecond laser source (PHAROS, Light Conversion), which 

delivered pulses with a temporal width of 190 fs and a repetition rate of 750 Hz to avoid thermal 

effects. This was coupled with a collinear optical parametric amplifier (TOPAS, Light 

Conversion), allowing for tuning of the wavelength from 189 to 2000 nm. The arrangement 

facilitated both open- and closed-aperture measurements and included a reference arm to correct 

for pulse-to-pulse fluctuations. The samples were placed in 1 mm transparent quartz cuvette 

and scanned along the  direction through the focal point of a 150 mm converging lens. The 

wavelengths chosen for the Z-scans were 505 nm and 665 nm, corresponding to the HH 

excitonic transitions of the 4 ML CdSe NPLs and CS NPLs, with beam waists at the focal point 

of approximately 20 μm and 18 μm, respectively. The absorption spectra of the NPLs in toluene 

are presented in Figure 3.6. 

3.5.2 Results 

 Figure 3.14 (a) displays the closed-aperture (CA) pattern along with the theoretical fit 

(shown by the red line) for the solvent at an intensity of 17.54 GW/cm². From the experimental 

and theoretical curves, it is possible to calculate the signal (which is positive, indicating a self-

focusing NLR) and the magnitude of the toluene NLR coefficient, given by ₂⁵⁰⁵

−15 cm²/W. The empty 1 mm quartz cuvette does not exhibit any NLR response at 

this intensity level. Figure 3.14 (b) and (c) present the CA Z-scan signatures at 505 nm of 
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excitation, along with the fitted curves for the 4 ML CdSe and CS NPLs in solution, 

respectively. The 505 nm wavelength corresponds to the HH exciton resonance of the 4 ML 

sample, and the CS sample possess significant linear absorption in this spectral region. 

Additionally, Figure 3.14 (b) and (c) illustrate the CA Z-scan patterns and theoretical 

adjustments for the 4 ML CdSe NPLs and CS NPLs at ₀ GW/cm². However, the 

theoretical fits for the CdSe-based NPLs at 505 nm are not well-aligned due to the influence of 

strong one-photon saturable absorption (SA) at this wavelength. This theoretical approach will 

be discussed later in the text. 

Figure 3.14 – CA Z-scan signatures at 505 nm of excitation. (a) Toluene, (b) 4 ML CdSe NPLs in solution, and 

(c) CdSe/CdS CS NPLs in solution. The red curves represent theoretical predictions for a third-order refractive 

nonlinearity, while the horizontal gray lines indicate the linear baseline. The optical intensity applied was 

 GW/cm2. The NLR coefficients extracted from the fits are: , 

 cm2/W, and  cm2/W. 

 

Source: The author (2025). 

 Figure 3.15 (a) displays the open-aperture (OA) measurement for pure toluene in a 1 

mm quartz cuvette, demonstrating that there is no nonlinear optical absorption or saturated 

absorption observed up to the maximum intensity of 140 GW/cm². Figure 3.15 (b) and (c) 

present the OA Z-scan signatures along with the theoretical fits for the CdSe-based NPLs, 

confirming that a one-photon SA process occurs in these dielectric systems. The focused 

intensity ( ) applied was 35.07 GW/cm². Based on the OA theoretical fits, we can extract the 

one-photon saturation intensities ( ) at 505 nm for the CdSe-based NPLs samples. The system 

is examined in a non-perturbative regime, requiring a complete intensity-dependent model. In 

this context, the response cannot be attributed solely to third-order nonlinearity. A discussion 

of the theoretical treatment will be provided later in the text. 

 We conducted Z-scan experiments at a wavelength of 665 nm, which corresponds to the 

HH excitonic transitions of colloidal CS NPLs, as shown in Figure 3.6. For comparison, we 
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also performed Z-scan experiments on the sample of 4 ML CdSe NPLs at the same wavelength. 

In this case, we did not observe any SA response, as 665 nm is far from the excitonic transitions 

of this material (which occur at 505 nm) and exhibits very low absorption in the 600 nm region. 

Figure 3.15 – OA Z-scan signatures at 505 nm of excitation. (a) Toluene, (b) 4 ML CdSe NPLs in solution, and 

(c) CdSe/CdS CS NPLs in solution. The red curves represent theoretical predictions for saturated absorbing 

mediums, while the horizontal gray lines indicate the linear baseline. In Figures (b) and (c) the optical intensity 

applied was  GW/cm2. The saturation intensities are  GW/cm2 for 4 ML CdSe NPLs and 

 GW/cm2 for CS NPLs. 

 

Source: The author (2025). 

 Figure 3.16 (a) – (c) exhibits the CA Z-scan traces for the excitation at 665 nm for all 

the samples studied. Figure 3.16 (a) exhibits the pure toluene CA representative signal and its 

theoretical adjustment (red line). It is possible to compute the solvent NLR contribution at 665 

nm of excitation at  GW/cm2, resulting in GW/cm2. 

Figure 3.16 (b) and (c) are the CA Z-scan signals for the 4 ML and CS CdSe NPLs, respectively. 

The intensities are  GW/cm2 and  GW/cm2 to achieve the signals showed 

in the figures. The NLR coefficients for the CdSe-based dielectric systems in suspension are 

 cm2/W and  cm2/W for CS NPLs and 4 ML CdSe NPLs, 

respectively. 

 Figure 3.17 (a) shows the OA Z-scan curve for pure toluene, which indicates that no SA 

or multiphoton signals are observed up to 173.3 GW/cm² for the solvent in a quartz cuvette at 

an excitation wavelength of 665 nm. The OA Z-scan signatures for the CdSe-based NPLs in 

toluene are displayed in Figure 3.17 (b) and (c). Figure 3.17 (b) demonstrates that no NLA 

mechanism occurs for the 4 ML CdSe NPLs. This finding is consistent with the absorption 

spectrum of this sample (Figure 3.6 (a)), as 665 nm lies far from the excitonic absorption peaks, 

resulting in negligible linear absorption. In contrast, the OA signal indicates that one-photon 

SA occurs for the CS NPLs system at 665 nm, as shown in Figure 3.17 (c). This result is 

expected, given that 665 nm corresponds to the HH excitonic transition of the CS NPLs (refer 
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to Figure 3.6 (b)). The intensity at focus used in this measurement was ₀  GW/cm², 

which achieved the OA Z-scan amplitude presented in Figure 3.17 (c). 

Figure 3.16 – CA Z-scan signatures at 665 nm of excitation. (a) Toluene, (b) 4 ML CdSe NPLs in solution, and 

(c) CdSe/CdS CS NPLs in solution. The red curves represent theoretical predictions for a third-order refractive 

nonlinearity, while the horizontal gray lines indicate the linear baseline.  

 

Source: The author (2025). 

Figure 3.17 – OA Z-scan signatures at 665 nm of excitation. (a) Toluene, (b) 4 ML CdSe NPLs in solution, and 

(c) CdSe/CdS CS NPLs in solution. The red curves represent theoretical predictions for a saturated absorbing 

medium, while the horizontal gray lines indicate the linear baseline. The saturation intensity is  GW/cm2 

for CS NPLs. 

 

Source: The author (2025). 

 The following section discusses the presented results, including the extracted nonlinear 

coefficients for the applied excitation wavelengths. It also compares the resonant nonlinearities 

with the previously studied non-resonant case. 

3.5.3 Discussion 

 By setting Φ
0

(3)
as a free parameter in equation (2.10), we can generate theoretical 

normalized transmittance curves that fit the experimental CA Z-scan curves. This approach 

allows for the indirect measurement of the sample’s ₂ value as described in equation (2.10). 

The CdSe-based NPLs in toluene exhibit a positive ₂, indicated by a valley-peak pattern in the 

 direction. This suggests an electronic contribution to the third-order NLR, as shown in 
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Figure 3.14 (b), (c) and Figure 3.16 (b), (c). Moreover, the solvent displays the same NLR sign 

signature, as illustrated in Figure 3.14 (a) and Figure 3.16 (a). 

 For the CA Z-Scan experiments at 505 nm, and in the intensity range of 17.54 to 105.3 

GW/cm2, the average NLR coefficient of pure toluene is cm2/W. 

For the CA Z-Scan experiments at 665 nm, and in an intensity range of 43.32 to 216.6 GW/cm2, 

the average NLR coefficient of pure toluene is cm2/W. The 

valley-peak pattern for the toluene response is maintained for all intensity values and 

wavelengths.  

 CA Z-Scan signatures show the symmetric valley-peak pattern and the theoretical fits 

are accurately adjusted in Figure 3.16 (b) and (c). The intensity range used to perform the CA 

Z-Scan at 665 nm was 43.32 to 259.8 GW/cm2 and the average NLR coefficients of 

cm2/W for 4 ML CdSe NPLs and cm2/W for CS sample. It can be 

concluded that the ₂ value of the 4 ML CdSe NPLs sample is approximately three times larger 

than that of the solvent and twice as large as the value for the CdSe/CdS CS sample. Notably, 

the valley-peak variations ( ) for the solvent and the 4 ML sample are of the same order 

of magnitude, indicating a positive sign of refractive nonlinearity (see Figure 3.16 (a) and (b)). 

The decrease in  for the CS sample, shown in Figure 3.16 (c), is due to the smaller optical 

intensity applied compared to the other cases in Figure 3.16. Additionally, for the CS sample at 

655 nm a SA behavior is also present contributing to the  decreasing. When comparing 

the CdSe NPLs, it is expected that the 4 ML CdSe NPLs will exhibit a greater NLO response 

than the CdSe/CdS CS NPLs sample, attributed to the electron delocalization effect caused by 

the CdS shell, as previously discussed for the non-resonant case. It is important to note that the 

refractive effect at 665 nm for both toluene and the 4 ML CdSe NPLs in solution is solely 

intensity-dependent. This is because neither material exhibits absorptive mechanisms at this 

excitation wavelength, as illustrated in Figure 3.17 (a) and (b). This observation aligns with the 

absorbance spectra of these materials, which show no linear absorption around 600 nm. 

Consequently, the third-order susceptibility is purely refractive (real), as indicated by the 

relationship |χ(3)|
2

= (χ𝑅
(3)

)
2

+ (χ𝐼
(3)

)
2

, with χ𝐼
(3)

 equal to  in this case. 

 The observed valley-peak asymmetries in Figure 3.14 (b) and (c) for the CA Z-scan 

experiments at 505 nm can be explained by the results from OA studies shown in Figure 3.15 

(b) and (c). These results indicate that the samples exhibit strong SA behavior at this 
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wavelength. The asymmetry in the CA Z-scan pattern, along with the poor fit quality across 

varying intensities, is attributed to the robust SA absorption, which dynamically alters the 

spatial beam profile near the focus. This is further coupled with third-order and possibly higher-

order NLR. These factors lead to a breakdown of the standard perturbative Z-scan assumptions, 

necessitating the use of extended or numerical models to fully capture the NLO behavior. 

 The asymmetry observed in Figure 3.14 (c) is less pronounced than that in Figure 3.14 

(b) because the CS NPLs are excited at wavelengths far from their exciton resonances. This 

results in fewer bound electron states, leading to weaker SA behavior compared to the case of 

4 ML CdSe NPLs (as seen in Figure 3.15 (b) and (c)). The absorption feature near 505 nm in 

CdSe/CdS CS NPLs is a result of strain-induced modifications to the band structure and electron 

delocalization into the CdS shell. This phenomenon enables interfacial interactions and higher-

energy transitions beyond the core excitonic states [72]. The mean NLR coefficient for 4 ML 

CdSe NPLs at 505 nm is approximately  cm²/W. However, this 

value may not be entirely accurate due to the reasons outlined above. Table 3.5 summarizes the 

NLR coefficients of the samples studied in both resonant and non-resonant regimes under 

femtosecond excitation at 800 nm. For the non-resonant case, the NLR coefficients obtained 

were an order of magnitude lower than those in the resonant regime, attributable to the virtual 

states compared to the real electronic states discussed here. 

Table 3.5 – Obtained nonlinear coefficients from the studied materials at 505 nm, 665 nm, and 800 nm*.  

Material 

Wavelength (nm) 

  505 655 800 

𝑛2(cm2/W) 𝐼𝑆(GW/cm2) 𝜎𝑆(cm2) 𝑛2(cm2/W) 𝐼𝑆(GW/cm2) 𝑛2(cm2/W) 

4 ML ~ + 3.3 × 10−14 1.15 ± 0.30 ~2.3 × 10−11 +4.9 × 10−15 --------- +1.5 × 10−16 

CS ~ + 5.9 × 10−15 1.60 ± 0.20 --------- +2.9 × 10−15 2.9 ± 0.1 +1.3 × 10−16 

Toluene +1.8 × 10−15 --------- --------- +1.3 × 10−15 --------- +1.4 × 10−16 

*NLR values in solution for the CdSe samples (effective values). 

Source: Gonçalves et al. (2023). Ref. [73]. 

 As we discussed earlier, in the high-intensity regime, SA exceeds the capabilities of the 

third-order perturbative model. Therefore, it is necessary to employ an intensity-dependent non-

perturbative method to study the SA mechanism observed in CdSe-based NPLs. During the 

one-photon resonant excitation OA Z-scan experiment, we observe an increase in transmittance 
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near the lens’s focal point. This allows us to quantify the saturation intensity threshold of a 

material based on the OA Z-scan curves. The optical intensity losses in an SA medium within 

a thin sample, can be described by the following differential equation [74, 75]: 

 (3.2) 

where  and  are the propagation distance and the optical intensity within the SA sample, 

respectively.  is the intensity-dependent absorption coefficient and the index  states for a 

homogeneous medium  or for an inhomogeneous broadened system . The 

following equations provide for the SA coefficients as defined above [74 – 76]: 

𝛼1(𝐼) = 𝛼0 (1 + 𝐼 𝐼𝑆⁄ )⁄                                                         (3.3) 

𝛼2(𝐼) = 𝛼0 (1 + √𝐼 𝐼𝑆⁄ )⁄ , (3.4) 

where  is the linear extinction coefficient,  is the excitation intensity, and  is the saturation 

intensity of the medium.  relates to the saturation cross-section  of the medium by the 

relation  for a homogenous system; where  is the Planck’s reduced constant,  

is the photon angular frequency, and  is the lifetime of the excited-state population [77]. We 

can formally integrate equation (3.2) to calculate the output optical intensity, , in the SA 

medium as follows [74, 75]:  

𝐼𝑗
𝑜𝑢𝑡 = 𝐼𝑗

𝑖𝑛 − ∫ 𝛼𝑗(𝐼)
𝐿

0
𝐼𝑑𝑧′, (3.5) 

where  is the optical intensity at the entrance face of the SA sample (in our case a 1 mm 

quartz cuvette containing the CdSe-based NPLs in toluene),  is the sample geometrical length. 

Based on equations (3.3) or (3.4) and considering the incoming laser pulses traveling in  

direction as being spatially and temporally Gaussian profiles, it is possible to numerically solve 

equation (3.5). Considering  as a free parameter, we can determine the normalized 

instantaneous transmittance curves to fit the OA Z-scan experimental data as shown in Figure 

3.15 (b) and (c), and Figure 3.17 (c).  

 The macroscopic average saturation intensities  at 505 nm are  

GW/cm2 for 4 ML CdSe NPLs and  GW/cm2 for CS NPLs for an intensity 

range of  to  GW/cm2, as showed in Table 3.5. The CS sample exhibits a slightly 

higher  value compared to the 4 ML CdSe NPLs. This is attributed to the lower linear 

absorption of CS NPLs at 505 nm (see Figure 3.6), resulting in a higher optical intensity to 

achieve the SA state as compared to 4 ML CdSe NPLs. In addition, the average excitonic HH 

state lifetime of our 4 ML CdSe NPLs sample is  ns [78, 79], which is in agreement 

with reported results [80, 81]. Therefore, the macroscopic HH excitonic transition cross-section 
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is  cm2, which is 1000 greater than the value of individual 4 ML CdSe NPL 

cross-section [82]. This result is expected because our  value takes into account the number 

 of NPLs excited by the beam at the lens focal region during the scan. It is important to report 

the  values because the CdSe-based NPLs are in solution and a large number of NPLs are 

excited by the beam cross-section of the femtosecond laser pulse.  

 The  values of the CS NPLs at 665 nm retrieved by the fitting curves in an excitation 

intensity range of 13.0 to 86.5 GW/cm2 are  GW/cm2 ( ), and 

 GW/cm2 ( ). Figure 3.17 (c) shows that the red curve ( ) accurately represents the 

experimental data for the SA behavior of the CS sample, although with some slight deviation. 

However, the overall result suggests that when excited at one-photon resonance, the CS NPLs 

suspension exhibits characteristics of an inhomogeneous broadening system, which is 

consistent with the model described in equation (3.4). In addition, the HH average lifetime of 

CS NPLs in solution  gradually increases as the CdS shell grows on the CdSe NPLs core, 

resulting in  ns [60]. This indicates that the macroscopic SA cross-section of colloidal 

CS NPLs decreases. As a result, the excitonic transition probability of HH states diminishes, 

which causes the CS NPLs system to reach the saturated absorptive state more slowly. This 

behavior is characteristic of inhomogeneously broadened systems [83]. Consequently, the  

value of CS NPLs must be increased to enhance the photon flux to reach a saturated steady state 

during resonant excitation. Furthermore, in an inhomogeneously broadened system like CS 

NPLs, not all absorbers resonate with the laser. This lack of resonance can occur due to local 

strain from the CdS shell over the CdSe core in each NPL, as well as variations in the 

orientations of the nanostructures within the volume being excited by the laser pulse. 
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3.6 Conclusion 

 We measured the NLO coefficients of CdSe and CdSe/CdS CS NPLs suspended in 

toluene by both Z-scan and OKG methods far from the materials excitonic transitions with 

femtosecond pulses. We found that the  values for CdSe-based NPLs in suspension from both 

techniques are in excellent agreement, showing no dependence on the optical intensity. When 

the solvent contribution is subtracted, it is demonstrated that the CdSe NPLs exhibit a sign 

reversal in their third-order NLO response. Specifically, the CdSe/CdS CS NPLs show a 

predominantly negative response within the applied intensity range. This suggests that a higher-

order susceptibility term is influencing the behavior of the system.  In the non-resonant regime, 

our results showed that the macroscopic NLA coefficients of CdSe-based NPLs appear to be a 

nonlinear cascade fifth-order effect related to an effective 3PA, compatible with the refractive 

result. It means that, in the range of intensities employed, probably an instantaneous 2PA 

process occurs exciting electrons to the conduction band and, subsequently a third photon is 

absorbed (free carrier absorption) exciting the system to higher energy levels in the conducting 

band. Fang et al. have reported similar behavior under different experimental conditions [57]. 

Additionally, the presence of NPLs in suspension lowers the threshold for observing NLA 

compared to pure toluene.  

 The time response of the suspensions measured by OKG shows an orientational 

nonlinearity characterized by a tail with a picosecond response, following a fast femtosecond 

response that is limited by the duration of the laser pulse. The orientational dynamics of 

colloidal suspensions are crucial in determining their third-order NLO responses, as 

demonstrated by time-resolved OKG measurements. The 4 ML CdSe NPLs exhibit the fastest 

nonlinear response (0.7 ps), followed by the CdSe/CdS CS structures (1.0 ps), with pure toluene 

and CS₂ showing much slower decay times (3.2 ps and 2.0 ps, respectively). These findings 

emphasize the key role of nanostructure design – specifically, the presence and characteristics 

of a shell – in tuning the balance between electronic and orientational contributions to the 

ultrafast nonlinear optical response. 

 Under femtosecond pulse excitation resonant with heavy-hole (HH) excitonic 

transitions by using the Z-scan technique, both SA and third order NLR were investigated at 

two key wavelengths – 505 nm and 665 nm – corresponding to excitonic transitions in 4 ML 

CdSe NPLs and CS NPLs, respectively. The results reveal a pronounced SA behavior and 

positive NLR coefficients for both materials, indicating self-focusing nonlinearities. Notably, 
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the NLR coefficient of 4 ML CdSe NPLs at 505 nm reached  cm²/W, representing 

a significant enhancement – about two orders of magnitude – compared to non-resonant 

excitation conditions. This enhancement evidences the impact of resonant excitation near real 

electronic states, as opposed to virtual transitions observed in the non-resonant regime. It is 

important to note that the strong SA of 4 ML CdSe NPLs at 505 nm affects the refractive 

response. This situation requires additional treatment to combine the SA with Kerr-like 

refraction. Consequently, the Z-scan technique for characterizing the third-order nonlinearity 

may not provide a clear indication of pure third-order effects, leading to inaccuracies in the 

value of ₂ derived from this analysis. 

 The saturation intensities and SA cross-sections extracted from the open-aperture Z-

scans further indicate that the CS NPLs system exhibits features of an inhomogeneously 

broadened medium, likely due to longer excitonic lifetimes induced by the CdS shell. The 

measured macroscopic excitonic cross-sections and higher saturation thresholds in CS NPLs 

support this behavior. 

 Overall, the significant resonant enhancement of third-order optical nonlinearities in 

these 2D systems confirms their potential for integration into ultrafast optical switching and 

photonic devices. This work not only enriches the understanding of the NLO behavior of 2D 

semiconductor NPLs but also provides a foundation for tuning these responses through 

nanostructure engineering. 

 In summary, the NLO response and the photophysical properties of CdSe NPLs in 

solution under non-resonant and resonant excitation regimes with femtosecond pulses have 

been studied and explained. Based on these results, potential applications of these 

nanomaterials can be envisioned. These findings resulted in two publications in prestigious 

peer-reviewed scientific journals, which can be found in APPENDICES I and II, respectively. 

  Additionally, another study on the femtosecond third-order nonlinear electronic 

responses of layered 2D NbSe2, also conducted using the Z-scan method and the OKG 

technique. A briefly discussion about this work can be found in Chapter 5 and the result 

publication can be found in APPENDIX III. 
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4 NONLINEAR OPTICAL RESPONSES OF HALIDE PEROVSKITES QUANTUM 

DOTS: AN INITIAL ANALISES 

 In this chapter, we present the results on the nonlinear optical (NLO) refractive and 

absorptive properties of halide perovskite CsPbBr3 cubic quantum dots in solution, particularly 

focusing on the far exciton resonance in the infrared femtosecond laser excitation regime. In 

addition to preliminarily investigating the NLR and NLA properties of these structures at a non-

resonant wavelength of 800 nm, we utilize the measurements to validate the use of a digital 

camera for capturing the beam profile as a function of the sample position in a Z-scan setup. 

While this method is already established in the literature, we employ a novel approach to extract 

the transmittance curves. 

 This study was supported by a one-year Doctoral Sandwich Program (SWE) internship 

funded by the National Council for Scientific and Technological Development (CNPq, Brazil) 

under public call 14/2023. The internship was conducted at the Nano Institute of the Ludwing-

Maximilian-Universität (LMU, Germany) in the Chair in Hybrids Nanosystems – Hybrids 

Nanophotonics, under the supervision of Prof. Dr. Leonardo de Souza Menezes, head of the 

ultrafast nanophotonics subgroup, which focuses on single nano-emitters and photon-phonon 

energy conversion. 

 The following sections will highlight the NLO properties of halide perovskites. We will 

then briefly describe the synthesis protocol, morphology, and optical characterization of the 

perovskite quantum dots (QDs) studied. Subsequently, we will present the simplified Z-scan 

setup used with a digital camera, detailing the post-processing of data obtained from a single 

scan capturing beam profiles at each sample position ( ). Finally, we will show and discuss the 

preliminary NLR and NLA properties and mechanisms of the perovskite QDs in solution, 

concluding with perspectives for future analysis of various halide perovskite quantum-confined 

nanostructures, such as nanoplatelets. 
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4.1 Nonlinear Optical Properties and Applications of CsPbBr₃ Quantum Dots 

 All-inorganic cesium lead bromide (CsPbBr₃) QDs have rapidly emerged as front-

runners among perovskite materials for advanced optoelectronic and photonic technologies. 

Their outstanding optical characteristics, including tunable bandgaps, high photoluminescence 

quantum yield, and excellent environmental stability, have made them ideal candidates for a 

wide range of devices such as light-emitting diodes (LEDs), lasers, and photodetectors. More 

recently, their NLO properties have attracted substantial interest due to the potential for 

applications in ultrafast optics, optical switching, and integrated photonic circuits. 

 CsPbBr₃ QDs synthesized via the ligand-assisted reprecipitation (LARP) method 

exhibit uniform cubical morphology with an average size of approximately 8 to 10 nm, as 

confirmed by transmission electron microscopy. These QDs possess a crystalline cubic phase 

and a direct bandgap of approximately 2.36 eV. Photoluminescence (PL) measurements reveal 

a narrow emission centered at 518 nm with a full-width at half-maximum (FWHM) of 21 nm, 

indicating a strong and pure green light emission. Their absorption spectrum spans from 400 to 

650 nm, with a peak at around 508 nm, positioning them as efficient visible-light absorbers and 

emitters [84, 85].  

 Beyond these linear optical properties, CsPbBr₃ QDs demonstrate significant NLO 

behavior. Spectroscopic ellipsometry studies reveal a high refractive index of approximately 

1.97 at 521 nm and an extinction coefficient of 0.12 at 510 nm, suggesting robust light–matter 

interaction and strong third-order nonlinear susceptibility ( ) [84, 86]. The complex dielectric 

constants ( ₁ ₂) derived from ellipsometric data show prominent absorption edges 

and dispersion peaks in the visible and near-infrared regions. Specifically, the ₁ values are 

reported as 3.7, 3.32, and 3.07 at 521 nm, 617 nm, and 973 nm, respectively, while ₂ values 

of 0.74, 0.45, and 0.30 are observed at 507 nm, 575 nm, and 861 nm, respectively [84]. These 

optical constants underscore the capacity of CsPbBr₃ QDs to exhibit enhanced nonlinear 

interactions under high-intensity illumination. 

 The nonlinear response of these QDs arises from several intrinsic mechanisms. 

Quantum confinement in nanoscale CsPbBr₃ structures enhances exciton localization, thereby 

increasing oscillator strength and third-order nonlinearities. Their high exciton binding energies 

and low dielectric screening support the generation of strong multiphoton processes and inter-

band transitions. Additionally, surface symmetry breaking and interface effects in 

nanostructured or layered assemblies can enable second-order processes such as second-
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harmonic generation (SHG), which are typically forbidden in centrosymmetric bulk perovskites 

[87 – 89]. 

 Empirical investigations have reported strong NLO responses in CsPbBr₃ under 

femtosecond laser excitation, including third-harmonic generation (THG), optical Kerr effect, 

and self-phase modulation, demonstrating ultrafast temporal dynamics suitable for applications 

in high-speed photonic systems [88]. Furthermore, symmetry engineering in quasi-two-

dimensional or interface-structured CsPbBr₃ has enabled measurable SHG, opening new 

directions in nonlinear frequency conversion and electro-optic modulation [90]. These 

capabilities are supported by other studies that highlight the impact of film smoothness and 

interface design on enhancing the optical response in perovskite-based devices [87]. 

 The strong NLO properties of CsPbBr₃ QDs make them highly promising materials for 

a broad range of applications. In optical limiting systems, they offer protection to sensors and 

human eyes by modulating transmission at high light intensities [91]. In all-optical switches 

and modulators, the intensity-dependent refractive index of CsPbBr₃ enables dynamic control 

of light without the need for electrical gating, which is vital for integrated photonic circuits. 

Their fast nonlinear response under pulsed excitation also supports their use in ultrafast signal 

processing devices [92]. Moreover, due to their strong multiphoton absorption and emission 

properties, CsPbBr₃ QDs are suitable for nonlinear bioimaging techniques such as two-photon 

microscopy, which allows deep-tissue imaging with reduced photodamage [93]. 

 In summary, CsPbBr₃ QDs present a compelling combination of strong linear 

absorption, high refractive indices, and significant NLO susceptibility. These features position 

them as a versatile platform for next-generation photonic and optoelectronic applications, 

ranging from tunable lasers and light modulators to ultrafast switches and nonlinear bioimaging 

tools. The following section briefly describes the synthesis, morphology, and optical 

characterization of the perovskite QDs studied. 
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4.2 Synthesis, Optical Characterization, and Morphology 

 The CsPbBr₃ QDs were synthesized by Dr. Anna Abfalterer member of  Prof. Alexander 

Urban’s Nanospectroscopy Research group at the Nanoinsitut (LMU, Germany). Prof. Urban’s 

group focuses on developing novel materials for renewable energy and efficient light generation 

in optoelectronic components. Dr. Abfalterer specializes in the synthesis, characterization, and 

optical spectroscopy of semiconductor nanocrystals, particularly perovskite nanocrystals. 

 CsPbBr₃ nanocrystals were synthesized following a modified hot-injection method 

under inert conditions using a Schlenk line. Cesium oleate was prepared by reacting Cs₂CO₃ 

with oleic acid in 1-octadecene (ODE) at 170 °C. Separately, PbBr₂ was dried in ODE at 100 °C 

under vacuum, followed by injection of dried oleylamine and oleic acid. After dissolution, the 

mixture was heated to 180 °C, and preheated cesium oleate was swiftly injected. After 15 

seconds, the reaction was quenched using an ice-water bath. Nanocrystals were purified by 

centrifugation and toluene rinsing, then redispersed and combined into a single colloidal 

suspension. This synthesis procedure is similar as in ACS Energy Lett. 2019, 4, 1, 63–74 [94]. 

 To assess the optical properties of CsPbBr₃ nanocrystals (labeled as AA111), UV-Vis 

absorption and photoluminescence (PL) spectra were recorded using a Horiba Fluoromax-Plus 

photospectrometer. An initial absorption measurement was conducted by diluting 50 µL of 

AA111 in 2950 µL of toluene. The absorbance at 390 nm was found to be 1.352, exceeding the 

recommended threshold (~0.1) for reliable optical measurements. To correct this, a second 

dilution was prepared using 3.7 µL of AA111 in 2996.3 µL of toluene, achieving an appropriate 

absorbance at 390 nm. Both absorbance and PL spectra were measured for this optimized 

sample. PL data were normalized to the maximum intensity value for comparative evaluation. 

Figure 4.1 shows the absorbance and PL spectra of the AA111 sample for a concentration 

corresponding to  of absorbance at 390 nm of excitation. The NLO measurements were 

preformed using this sample in a 1 mm transparent quartz cuvette as in the figure. The insert 

exhibits the pure toluene spectra as a reference. 

 The CsPbBr3 nanocrystals morphology and size was evaluated through transmission 

electron microscopy (TEM). One drop of the sample AA111 was dropcasted onto a TEM grid 

(Electron Microscopy Sciences, FCF200-Cu-50, Formvar/Carbon 200 Mesh, Copper, Lot 

240812) under ambient conditions. The solvent was allowed to dry. TEM images were taken 

using a JEOL JEM-1011 transmission electron microscope with a tungsten filament operating 

at 80 kV. Figure 4.2 shows representative TEM images of the CsPbBr3 nanocrystals. The 
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nanocrystals appear in cubic shape. A particle size analysis of the edge length of the 

nanocrystals was performed. The edge length of 300 nanocrystals was measured using the 

scientific image analysis software ImageJ, processing data from 13 TEM images. The average 

edge length was determined to be 9.2 nm ± 1.1 nm. The standard deviation (STD) was 

calculated using the formula: 𝑆𝑇𝐷 =  √∑ (𝑥𝑖 − 𝑥̅)2
𝑖 (𝑛 − 1)⁄ , where  is the edge length,  

the average edge length, and . The smaller, dark dots appearing in the TEM images in 

Figure 4.2 are expected to be metallic Pb, caused by the electron beam irradiation as previously 

reported for similar CsPbBr3 nanocrystals [95]. 

Figure 4.1 – Absorbance and PL spectra of the CsPbBr3 nanocrystals. The PL maximum is at 511 nm, the 

photoluminescence full-width at half maximum is ~18 nm. Inset shows the toluene absorbance with the 

maximum near 275 nm. 

 

Source: The author (2025). 

Figure 4.2 – TEM images of CsPbBr3 nanocrystals for different magnifications. 

 

Source: The author (2025). 

 In the next section, we will describe the digital camera Z-scan setup and the 

methodology for extracting transmittance data from the beam’s transversal images. 
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4.3 Digital Camera Z-scan Setup and Method 

 The digital camera Z-scan (DGZ-scan) setup closely resembles the standard Z-scan 

apparatus described in section 2.1.1. The key difference is the use of a single digital camera 

instead of photodetectors to capture the light transmitted through the sample during scans. This 

configuration offers advantages such as reduced physical space requirements and fewer optical 

components, eliminating the need for photodetectors, mirrors, and beam splitters for reference 

measurements. The digital camera used in our DGZ-scan was a Zelux 1.6 MP CMOS 

monochrome camera (Thorlabs, CS165MU(/M)), featuring  active pixels and an 

imaging area of  mm², with a pixel size of 3.45 μm  3.45 μm.  

 In this setup, images of a Gaussian beam distorted by a nonlinear sample are captured 

by a single-shot CMOS camera as the sample position, , varies. The OA and CA Z-scan 

normalized transmittance curves are numerically processed from the acquired images. This 

method allows for the simultaneous measurement of the nonlinear refractive index and the 

nonlinear absorption coefficient. The CMOS camera records the complete 2D transmitted beam 

profile at each -position. By extracting both OA and CA data from the same set of images, this 

approach automatically eliminates the influence of fluctuations in laser pulse energy, removing 

the necessity for a simultaneous reference beam. Subsequently, the images are processed using 

a custom Matlab program that implements a 2D Z-scan algorithm to extract spatial and 

energetic metrics from each frame. 

 The OA response is computed as the total integrated intensity of each image as: 

(4.1) 

where,  represents the reference transmission measured far from the focal region, while 

 denotes the spatial intensity distribution. The sums are taken over the  and  

dimensions. This curve indicates the presence of nonlinear absorption and is utilized to 

determine the coefficient , for instance. Figure 4.3 (a) illustrates a typical three-dimensional 

intensity distribution image that is used to compute , as shown in equation (4.1). 

 To simulate an aperture, a centered square region of interest (e.g.,  pixels) is 

extracted from each image. The intensity within this window is integrated to represent the 

amount of light passing through a virtual aperture placed at the center of the beam. This method 

allows retrieval of the CA signal directly from the CMOS data as: 

(4.2) 
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The sums are also taken over the  and  dimension, and  is the spatial intensity 

distribution within the squared region as illustrated by Figure 4.3 (b) that shows the CA intensity 

distribution to compute  as defined in equation (4.2). The ratio of  

isolates the effect of nonlinear refraction independently of absorption as usual. 

Figure 4.3 – Intensity distribution profiles for open aperture (a) and closed aperture (b) transmittance curves 

calculation. 

 

Source: The author (2025). 

  An additional and innovative quantity extracted from the CMOS data is the beam 

width evolution, calculated via the spatial second moment (variance) of the intensity 

distribution as: 

𝜎2(𝑧) =
∑ ∑( (𝑥 −  𝑥̄)2 +  (𝑦 −  ȳ)2) ·  𝐼(𝑥, 𝑦, 𝑧)

∑∑𝐼(𝑥, 𝑦, 𝑧)
 (4.3) 

where (𝑥̄, ȳ) is the intensity-weighted centroid of the beam. This parameter provides a direct 

and model-free measurement of the beam’s spatial expansion or contraction as a function of 

. A local minimum in 𝜎(𝑧) indicates beam self-focusing due to a positive , while a maximum 

indicates self-defocusing (negative ). The ability to track the beam width in real space across 

-positions, without relying on pinholes or scanning detectors, is a significant advantage of this 

CMOS-based 2D approach. This method also allows for the visualization of beam distortions 

or asymmetries that scalar OA/CA measurements alone might not capture. 
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4.4 Sub bandgap Nonlinear Measurements 

 In this section, we will present preliminary results of the NLR and NLA of CsPbBr₃ 

nanocrystals under 800 nm excitation. This wavelength is far from the one-photon excitation 

range of the perovskite nanocubes. The linear absorption spectra of both the perovskites and 

toluene are negligible near 800 nm, indicating that the effective length of interaction ( ) is 

approximately equal to the actual length ( ) for both materials. The light source used for this 

experiment was a femtosecond laser source (PHAROS, Light Conversion) coupled with a 

collinear optical parametric amplifier (ORPHEUS, Light Conversion). The ORPHEUS 

produces femtosecond pulses that are tunable from ultraviolet (UV) to mid-infrared (MIR) 

wavelengths, with repetition rates of up to 2 MHz, making it an invaluable tool for ultrafast 

spectroscopy and nonlinear microscopy. PHAROS generates pulses with a temporal width of 

175 fs and a repetition rate set to 1 kHz to prevent thermal buildup. The femtosecond pulses are 

focused at the focal point of a 15 mm lens, resulting in a beam waist of approximately 30 

micrometers. 

 The choice of 800 nm excitation is significant because it corresponds to double the 

wavelength of the absorbance maximum near 400 nm (as shown in Figure 4.1), thus enabling 

multiphoton absorption. The strong absorption observed near 400 nm in CsPbBr₃ nanocrystals 

is primarily due to excitonic transitions at the band edge, which are enhanced by quantum 

confinement effects that increase both the exciton binding energy and the oscillator strength 

[84, 96]. 

4.4.1 Preliminary Results 

 Figure 4.4 (a) and (b) displays the representative CA transmittance curves for pure 

toluene in a 1 mm transparent quartz cuvette, illustrating low and high intensity regimes, 

respectively. Figure 4.4 (c) shows the NLR coefficient ( ) as a function of peak intensity, 

ranging from 133 to 830 GW/cm², along with the  mean value for toluene indicated by the 

red horizontal curve. This figure demonstrates that self-focusing behavior occurs in the solvent, 

resulting in a positive third-order nonlinearity. The mean NLR for pure toluene is calculated as  

 cm²/W, following the established procedures. This value aligns with the 

result reported in Chapter 3 for a similar spectro-temporal regime.  
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Figure 4.4 – CA Z-scan curves of pure toluene. (a) Low intensity, (b) high, and (c)  curve. In (a) and (b) 

the continuum lines are theoretical curves, while in (c) corresponds for the mean  value. 

 

Source: The author (2025). 

 Figure 4.5 (a) and (b) present the CA Z-scan results for perovskite nanocrystals in 

solution. Figure 4.5 (c) illustrates the ₂ ₀ curve over an intensity range of 30 to 800 

GW/cm², which is similar to the range used for the solvent. The CA Z-scan curves for the 

nanocrystals in toluene indicate a positive third-order NLR across the entire intensity range 

examined. Additionally, it is worth noting that, at approximately the same intensity level, the 

valley-to-peak separation in the transmittance curve of the nanocrystals in solution is smaller 

compared to that of the pure solvent (see Figures 4.4(b) and 4.5(b)). This suggests that the third-

order nonlinearity of the perovskite nanocubes is likely negative.  Another interesting trend can 

be observed in the results shown in Figure 4.5 (c): at an intensity of approximately 30 GW/cm², 

the effective nonlinear refractive index ( ₂) for the nanocrystals is about six times greater than 

that of the solvent. As the intensity increases, this value approaches that of the solvent. This 

behavior will be discussed further later on. 

Figure 4.5 - CA Z-scan curves of the CsPbBr3 nanocrystals in solution. (a) Low intensity, (b) high, and (c) 

 curve. In (a) and (b) the continuum lines are theoretical curves, while in (c) corresponds for the toluene mean 

value  cm2/W. 

 

 Source: The author (2025). 

 Figure 4.6 presents the representative open-aperture (OA) Z-scan curves for toluene and 

the QDs in solution. In Figure 4.6 (a), there is clear evidence of strong three-photon absorption 
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(3PA) in the solvent’s response at very high intensities, suggesting that a fifth-order process is 

more likely to occur. The multiphoton absorption behavior of toluene was previously discussed 

in Chapter 3, referring to intensities of up to 1222 GW/cm². In Figure 4.6 (b), the OA curves 

for the perovskite QD solution demonstrate that a 3PA model fits the experimental data more 

accurately. The fitting procedure used is detailed in Section 3.4. It is important to note that the 

transmittance for the QDs in solution is considerably lower than that for the solvent, even at the 

same intensity levels (see Figure 4.6 (b)). This observation indicates that the 3PA mechanism 

becomes saturated in the solution due to the strong NLA effect of toluene. This finding aligns 

with the results from the refractive index investigation. The intensity range applied in the OA 

Z-scan experiments was 100 – 3000 GW/cm2. 

Figure 4.6 – OA Z-scan curves for toluene (a) and the perovskites QDs in solution (b). The continuum curves are 

the theoretical curves. 

 

 Source: The author (2025). 

 In the next section, we will discuss this prelaminar results presented here. 

4.4.2 Discussion 

 At the highest intensity the CA transmittance curve for toluene exhibits a twisted bend 

in the near the focal point indicating that a higher order effect is play a role and no longer the 

third-order analysis satisfies the experimental CA data resulting in a poor fitting (see Figure 4.4 

(b)). The result in Figure 4.4 (c) corroborates this statement once near 700 GW/cm2 the  values 

starts to deviates from the mean value and the curve  appears to gain a positive slope 

evidencing that a higher order effect is present. The Z-scan CA experiments with CsPbBr₃ 

quantum dots in toluene reveal a higher  value compared to the pure solvent at low intensities, 

attributed to strong Kerr-type excitonic effects (see Figure 4.5(c)). As the intensity increases, 

the overall refractive nonlinearity of the solution begins to resemble that of the solvent. This 
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behavior is consistent with the known high nonlinear response of toluene above 100 GW/cm², 

which ultimately dominates the solution’s refractive behavior, as shown in Figure 4.5(c). 

 In our experiments with CsPbBr₃ QDs dispersed in toluene, using femtosecond pulses 

at 800 nm, the OA Z-scan measurements reveal that the 3PA in the QD solution is weaker than 

in pure toluene at similar intensity levels. While pure toluene exhibits strong, unsaturable 3PA 

due to nonresonant virtual transitions involving its wide electronic gap, the CsPbBr₃ quantum 

dots show a reduced 3PA response because of their discrete and confined electronic states. 

Under high excitation intensities, these quantum states undergo rapid state-filling, which limits 

the availability of transitions for further multiphoton absorption. Consequently, the NLA in the 

QD solution saturates, leading to a smaller transmittance decrease near the focus compared to 

pure toluene. Despite this saturation, some residual 3PA still occurs in the quantum dots. This 

behavior reflects the general trend that, in nanostructured systems with strong quantum 

confinement, multiphoton nonlinearities can diminish with increasing intensity due to the 

saturation of accessible energy states, while conventional solvents like toluene maintain a more 

robust and intensity-independent multiphoton absorption. It is important to note, however, that 

this represents an initial analysis. At high intensity regimes, other nonlinear optical effects such 

as strong self-focusing, filamentation, or possible thermal lensing can emerge in toluene, 

meaning that the observed transmittance curves may deviate from a purely three-photon 

absorption behavior. 
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4.5 Conclusion and Perspectives 

 In conclusion, the Z-scan results demonstrate that at high intensities, toluene exhibits 

higher-order NLO effects beyond third-order contributions, as evidenced by the twisted 

bending in the CA transmittance curve and the deviation of  values near 700 GW/cm². For 

CsPbBr₃ QDs dispersed in toluene, a strong Kerr-type excitonic nonlinearity is observed at low 

intensities, resulting in a significantly higher  compared to the solvent. However, as the 

excitation intensity increases, excitonic state filling appears to saturate the QDs’ nonlinear 

response, causing the overall  of the solution to converge toward that of pure toluene. This 

intensity-dependent behavior highlights the transition from exciton-dominated nonlinearities to 

solvent-dominated responses under strong optical fields, consistent with saturable refractive 

nonlinearity mechanisms typical in QDs under off-resonant femtosecond excitation. 

 In CsPbBr₃ QD solutions under femtosecond 800 nm excitation, 3PA occurs but is 

weaker than in pure toluene because the QDs’ discrete energy levels saturate quickly at 

moderate intensities. Pure toluene, lacking saturable states, maintains strong 3PA. As a result, 

the QD solution exhibits less absorption near focus in OA Z-scan compared to the solvent. 

 The perspective is to investigate the NLO properties of the cubic QDs with 

approximately 10 nm edge length at the exciton resonance and at twice the exciton resonance 

wavelength to explore multiphoton absorption. The measurements were conducted duringthea 

stay at the Nano-institute (LMU, Germany). Our initial findings reveal saturable absorption at 

the exciton resonance and 2PA at twice the exciton absorption wavelength. Additionally, we 

performed similar measurements on QDs with a smaller edge length of around 3 nm, as well as 

on CsPbBr₃ nanoplatelets (NPLs) with three monolayers in toluene. This was done to 

investigate how the shape of these nanostructures affects their NLO responses. The size of the 

QDs and the number of layers in the NPLs can be tuned to adjust the exciton resonances of 

these structures, making them ideal for all-optical devices. The regime of intensity applied was 

low compared the study presented here to avoid the strong nonlinearities of toluene. 

 Another experiment is underway in the Physics Department of the Federal University 

of Pernambuco (UFPE, Brazil) to examine how these different shapes influence third-order 

polarization rotation nonlinearity using the Optical Kerr Gate (OKG) setup. We aim to assess 

the time responses under sub-bandgap excitation in the femtosecond domain. It is anticipated 

that the 3 ML NPLs of perovskites probably will exhibit a slower time response compared to 

the QD structures, due to the presence of an orientational nonlinearity effect. 
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5 FEMTOSECOND THIRD-ORDER ELECTRONIC NONLINEARITIES OF 

EXFOLIATED 2D NbSe2 

 Although the primary focus of this thesis is on the third-order nonlinear optical 

properties of nanostructured semiconductors, this chapter presents a complementary study 

involving a distinct class of materials: two-dimensional metallic layered transition metal 

dichalcogenides (2D-LTMDs). Specifically, we report on the nonlinear optical characterization 

of metallic NbSe₂ in suspension, carried out using the same experimental techniques employed 

throughout this thesis – namely, the Z-scan and Optical Kerr Gate (OKG) methods. This work 

was conducted as part of a collaborative effort with research groups investigating the ultrafast 

optical responses of 2D materials, in which I participated as a co-investigator. The inclusion of 

this chapter serves both to document my contributions to this related study and to illustrate the 

broader applicability of the nonlinear optical techniques discussed in the core chapters of this 

thesis. 
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5.1 Two-dimensional layered transition metal dichalcogenides 

 Two-dimensional layered transition metal dichalcogenides (2D-LTMDs) have emerged 

as a versatile class of nanomaterials due to their tunable electronic structures and ease of 

fabrication. Unlike graphene, LTMDs exist in semiconducting, semimetallic, and metallic 

forms, enabling a wide range of photonic and optoelectronic applications [98]–[105]. Their 

strong light–matter interaction and atomic-layer thickness allow for enhanced NLO responses. 

Recent reviews [106]–[110] highlight that both second- and third-order nonlinearities have been 

observed in various LTMDs, including MoS2, MoTe2, WTe2, NbS2, and NbSe2, using 

techniques such as second-harmonic generation, Z-scan, and the optical Kerr gate (OKG). 

 In particular, third-order nonlinearities – associated with the cubic susceptibility χ(3) –

enable functionalities such as self-focusing, two-photon absorption, optical limiting, and 

ultrafast switching. These properties are especially important for the development of ultrafast 

photonic devices. Prior studies by our group have characterized the NLO behavior of LTMD 

suspensions in liquids, showing that their responses span a wide temporal range – from 

milliseconds in thermally dominated regimes to sub-200 fs in the electronic regime. 

 The next section provides a comprehensive examination of the structural, electronic, 

and nonlinear optical characteristics of the metallic NbSe₂ nanoflakes explored in this work. 

These findings are supported by systematic experimental measurements, with additional 

datasets and methodological details available in published work in APPENDIX III for further 

reference. 

 

 

 

 

 

 

 

 

 



91 

 

 

5.2 Two-Dimensional Metallic NbSe2 

 Among metallic LTMDs, NbSe2 in its 2H trigonal prismatic phase stands out due to its 

room-temperature metallic behavior and superconductivity below 7 K [111, 112]. The flakes 

used in this study were obtained via redox exfoliation [111, 112], where polyoxometalates assist 

in delaminating the bulk structure. The exfoliated NbSe2 flakes had lateral sizes of 

approximately  nm and thicknesses of  nm, suspended in acetonitrile 

(ACN). 

 Extensive morphological and compositional characterizations, including AFM, 

HRTEM, XPS, Raman, and UV-vis-NIR spectroscopy, confirmed the structure and purity of 

the suspension [111]. Figure 5.1 shows the absorbance spectra of NbSe2 in ACN. While the 

spectrum lacks discrete excitonic peaks due to its metallic nature, it exhibits low linear 

absorption at 790 nm. Nevertheless, thermal nonlinearities may still arise under specific 

excitation regimes, necessitating careful control and interpretation of measurements [110]. 

Figure 5.1 –  Absorbance spectra of the 2D metallic NbSe2 in ACN suspension (red) and the pure ACN spectra 

(black). Notice that the pure ACN exhibits a deficient absorption. 

 

Source: Campos et al. (2024). Ref [61]. 

 In the next section, we briefly discuss the experimental setups for the Z-scan and OKG 

methods – previously detailed in earlier chapters – used to evaluate the nonlinear optical 

properties of NbSe₂ nanoflakes. 
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5.3 Experiments: Z-scan and OKG 

 Using femtosecond laser pulses (190 fs, 790 nm, 750 Hz), we performed closed-aperture 

(CA) Z-scans to determine the nonlinear refractive index (𝑛2) and open-aperture (OA) Z-scans 

to measure nonlinear absorption (NLA). According to the apparatus scheme illustrated in Figure 

3.7, the sample was translated along the beam’s focal axis while monitoring transmittance 

changes. As discussed previously, low repetition rate pulses prevent cumulative heating, 

allowing us to probe purely electronic nonlinearities. Theoretical fitting of transmittance curves 

enabled the extraction of NLR and NLA coefficients, under the assumption of Gaussian spatial 

and temporal profiles, as ilucidated in prevoius chapters. 

 The OKG technique, shown in Figure 3.12, complements Z-scan by offering ultrafast 

temporal resolution. We used a Ti:sapphire mode-locked laser (185 fs, 800 nm, 76 MHz) to 

perform pump-probe measurements. The Kerr-induced birefringence rotated the polarization of 

the probe beam, which was detected using a polarization beam splitter and photodiode system. 

By scanning the pump-probe delay, we captured the temporal evolution of the nonlinear 

response. Using CS2 as a reference material, we calibrated the system and calculated the 

magnitude of 𝑛2 for NbSe2 (see procedure in 3.4.2). As discussed, OKG is insensitive to thermal 

effects, as it relies on instantaneous polarization rotation rather than integrated thermal effects. 

 In the following section, we present the findings on the femtosecond electronic response 

of 2D NbSe₂ in CAN suspension, as characterized by Z-scan and OKG measurements. 
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5.4 Results and Discussion 

 Figure 5.2 presents CA and OA Z-scan results for intensities up to 300 GW/cm2. The 

CA data show a positive peak–valley pattern, indicating a self-focusing nonlinearity. The OA 

scans reveal symmetric transmittance dips, characteristic of two-photon absorption (2PA). 

From these, we determined an average nonlinear refractive index of  

cm2/W and an absorption coefficient of  cm/GW (Figure 5.3). Figure 

5.4 shows the OKG signal for NbSe2. A linear dependence between the OKG peak and pump 

intensity was observed, allowing us to retrieve cm2/W. The temporal 

width matched the laser pulse (170 fs), confirming an ultrafast electronic response. This fast 

behavior contrasts with the slower decay of ACN (1.66 ps) and CS2 (1.82 ps). 

Figure 5.2 – Experimental results (dots) and theoretical fits (red lines) from the Z-Scan method: (a) CA Z-Scan 

results at 70.2 GW/cm2; (b) CA Z-Scan results at 210.4 GW/cm2; (c) OA Z-Scan results at 70.2 GW/cm2; (d) OA 

Z-Scan results at 140.3 GW/cm2. The errors (bars for CA and shadows for OA) are the standard deviation of the 

mean for four successive transmittance measurements for each pump intensity.  

 

Source: Campos et al. (2024). Ref [61]. 

 Comparative analysis (Table 5.1) shows that the NbSe2 coefficients exceed those of the 

solvent and also surpass those of NbS2 measured under similar conditions [114, 115]. Unlike 

NbS2, no sign reversal or nonlinear scattering was observed, supporting a stable third-order 
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response. The occurrence of 2PA at high intensities is consistent with DFT-based electronic 

structure models, which predict transitions near 1.56 eV [116]. Van Hove singularities in the 

band structure likely contribute to this nonlinear behavior [117]. 

Figure 5.3 – NLR and NLA coefficients versus peak intensity at focus: (a)    plot in the intensity range 

from ∼30 to 270 GW/cm2, exhibiting the average value (red line) of   cm2/W; (b)  

 plot in the intensity range from ∼50 to 140 GW/cm2, showing a two-photon NLA coefficient of  

cm/GW. 

 

Source: Campos et al. (2024). Ref [61]. 

Figure 5.4 – OKG signal measured for  NbSe2 suspended in ACN. The inset is the maximum (peaks) OKG 

signal versus pump intensity. The error bars are the standard deviations of 10 successive measurements for each 

pump intensity. 

  

Source: Campos et al. (2024). Ref [61]. 

 It is worth noting that the  values extracted from the OKG measurements for NbSe₂ 

are at least one order of magnitude higher than those obtained from the Z-scan experiments. 

The higher  value measured with OKG arises from its sensitivity to ultrafast Kerr-induced 

polarization changes under low-intensity, high-repetition-rate conditions, free from propagation 

distortions or thermal artifacts. In contrast, Z-scan measurements include nonlinear propagation 

effects and are performed at higher intensities, where saturation or multiphoton absorption 
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processes can reduce the effective . This highlights the complementary nature of both 

techniques in capturing distinct aspects of the nonlinear refractive response. 

Table 5.1 – Nonlinear optical coefficients for 2D metallic NbSe2 and NbS2 suspended in ACN obtained in the 

present work and related literature for similar spectro-temporal regimes. 

Material Technique (cm2/W) 𝜶𝟐(cm/GW) Ref. 

NbSe2 
Z-Scana 

This work 
OKGb     Not observed 

NbS2 

Z-Scan [114] 

OKG     Not observed [115] 

ACN Z-Scan      Negligible [115] 

CS2 Z-Scan [69] 

 a790 nm, 190 fs, 750 Hz, 30-300 GW/cm2; b800 nm, 180 fs, 76 MHz, 200-600 MW/cm2. 

Source: The author (2025). 
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5.5 Conclusion 

 In summary, this study has demonstrated that 2D metallic NbSe₂ suspended in 

acetonitrile exhibits strong and ultrafast third-order nonlinear optical responses under 

femtosecond excitation. Using both the Z-scan and OKG techniques, we quantified the 

nonlinear refractive index and two-photon absorption coefficients, revealing values 

significantly higher than those of the host solvent and even greater than those reported for 

similar LTMDs such as NbS₂. The nonlinear refractive index measured through OKG further 

confirmed the material’s femtosecond-scale electronic response, underscoring its potential for 

ultrafast optical modulation. 

 These findings suggest that NbSe₂ is a promising candidate for various electro-optical 

applications. Its large and fast third-order nonlinearities can be exploited in the development of 

all-optical switches, ultrafast modulators, optical limiters, and signal processing devices. 

Additionally, the compatibility of NbSe₂ with solution processing makes it attractive for 

integration into flexible photonic circuits and layered heterostructures. As research into 2D 

materials continues to expand, metallic NbSe₂ stands out as a viable component for next-

generation photonic and optoelectronic systems operating in the near-infrared region. For 

further details on this study, please, refer to APPENDIX III or reference [61].  
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APPENDIX A: FUNDAMENTALS OF NONLINEAR OPTICS 

 In general, the average amount of energy of a propagating electromagnetic field spread 

in space per unit of time is directly proportional to the intensity of this field, and for 

nonmagnetic mediums it’s directly related to the electric field component magnitude, . In this 

way,  determines how strong the intensity of the field is. For example, in the visible 

electromagnetic spectrum region (typically between  to  nm of wavelength),  vary 

widely depending on the light source used and its intensity (power per unit area). As an 

example, for the sunlight at the Earth’s surface the irradiance is about  W/m2 [1,2] 

(considering atmospheric absorption and scattering) corresponding to  V/m1. Thus, 

these typical values characterize what is defined as the linear regime of light-matter interaction, 

which is responsible for some phenomena such as dispersion, reflection, refraction, scattering 

and so on. Moreover, when a high-intensity electromagnetic radiation field (typically of the 

order of  W/m2 or higher) interacts with matter, numerous new phenomena starts to appear. 

These phenomena depends on the wavelength of the incident radiation, the intensity magnitude, 

and on the material’s geometrical and structural properties. This high-intensity regime 

characterizes the nonlinear regime, leading to effects such as harmonic generation, multiphoton 

absorption, and self-focusing. 

Herein we will discuss the fundamentals of nonlinear optical regime, beginning with an 

understanding of the linear regime and examining the origins of some fundamental linear 

phenomena such as reflection, refraction, absorption, transmission, and scattering. By 

introducing nonlinear terms in the polarization vector of the material, we can develop the theory 

to explore the multitude of new phenomena that emerge when the incoming electromagnetic 

radiation has high intensity. We will examine phenomena that depends on the second- and/or 

third-order nonlinear terms in the material polarization vector, such as, parametric second-order 

effects and nonlinear absorption and nonlinear refraction. 

 

 

  

                                                           
1 To estimate  one can use the follow relation:  V/m, where,  is the average intensity, 

m/s  is the speed of light in a vacuum, and F/m  is the electric permittivity of free 

space. 
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A.1 Light-Matter Interaction: Linear Regime 

 In this section we will discuss light-matter interaction in the low intensity regime where 

the light polarization vector, , varies linearly with the electric field vector component . This 

dependence gives rise to fundamental phenomena such as reflection, refraction, transmission, 

absorption, and scattering. To gain a deeper understanding of these phenomena, we will develop 

the theoretical framework and present detailed phenomenological discussions. We will examine 

how these interactions govern the behavior of light as it interacts with matter, leading to a 

comprehensive understanding of the linear optical regime and its implications in various 

applications. 

A.1.1 Liner Polarization 

 When an external electric field  is applied to a material, the charges within the atoms 

and molecules shift slightly, leading to the formation of electric dipoles. The polarization 

vector, , mathematically describes the collective effect of these small dipoles within the 

material. In the linear regime (i.e., when  is not too strong compared to the internal electric 

fields binding the charges in atoms and molecules)  is directly proportional to the external 

electric field applied, and this relation can be expressed by the follow equation: 

 , (A.1) 

where,  is the permittivity of free space and  is the linear susceptibility of the material. 

 is a dimensionless constant that characterizes the material’s response to , depending on 

its microscopic structure and external conditions like temperature. Moreover, there exists a 

class of dielectric materials in nature that possess a spontaneous electric polarization even in 

the absence of an external electric field. These dielectrics are known as ferroelectric materials, 

and their permanent polarization arises from the non-centrosymmetric arrangement of atoms 

within their crystal lattice [3]. Examples of ferroelectric materials are the Barium Titanate 

(BaTiO3) [4] and the Lead Zirconate Titanate (PZT), widely used in sensors, actuators and 

memory devices [5]. In the case when an external electric field  is applied on a ferroelectric 

material, and its spontaneous polarization contribution  has significant magnitude as 

compared with the material’s linear response due to , the material total polarization is 

expressed as: 

 . (A.2) 
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It is worth mentioning that there are other polarization origins that do not depend on an external 

electric field to appear. In piezoelectric materials, an electric polarization response is generated 

due to a mechanical stress, typically linear concerning the applied mechanical force [5, 6].  

 In the next section, we will begin the analysis of several fundamental optical phenomena 

resulting from the linear polarization of a material. Specifically, we will apply equation (A.1) 

to a monochromatic electromagnetic wave in a low-intensity regime to describe its propagation 

through the material and at its boundaries. Section A.1.2 will focus on elucidating the 

theoretical and phenomenological aspects of two key optical phenomena that occur when an 

electromagnetic wave interacts with the boundary between two media: reflection and refraction. 

A.1.2 Reflection and Refraction 

 Reflection and refraction are fundamental phenomena governed by linear optics. When 

an electromagnetic (EM) wave meets the boundary of two different dielectric materials, part of 

the wave is reflected back into the original medium while the rest transmits into the other 

medium. The properties of the reflected and transmitted EM fields are governed by the 

boundary conditions in the dielectric’s interface. To accurately determine these properties, it is 

essential to consider the behavior of EM fields within the linear regime (equation (A.1)), and 

analyzing Maxwell’s Equations (MEs) under this framework, as defined below [7]: 

 (i) , (iii)  ,  

(A.3) 

 (ii)  ,  (iv)  . 

 and  are the materials constitutive relations, where ,  are, respectively, 

the electric displacement and magnetic fields of the material.  and  are the material’s electric 

permittivity and magnetic permeability, respectively. If the dielectric is not a magnetic material, 

then , and .  it is directly related to  (equation (A.1)) by the relation: 

, from each one can define the material’s dielectric constant as 

 [7].  it is a crucial constant because it helps define another important 

characteristic of a dielectric material, the refractive index : 

 . (A.4) 

  relates directly to the EM wave phase velocity  in the material by:  

  (A.5) 
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Since,  is almost greater than , then, the EM wave propagates more slowly inside the 

medium. 

 Due to the MEs’ nature and the constitutive relations (equations (A.3)), the boundary 

conditions applied to the EM fields at the interface between two dielectrics materials, assumed 

to be free of any free charges or currents, can be written as [7]:  

 (i)  , (iii)        ,  

(A.6) 
 (ii)  ,  (iv)  . 

Where  labels the medium , while  states for the medium  in which the EM wave 

it is transmitted. The symbols  and  states for the perpendicular and parallel components of 

the electric  and the magnetic induction  fields, respectively.  

Consider now an incident monochromatic plane EM wave as it reaches the interface 

between these two distinct dielectrics. These materials are characterized by their respective 

wave vectors  (see Figure A.1with magnitudes defined as: 

 , (A.7) 

where, , ,  and states for the incident wave , the reflected , and transmitted 

.  is the EM wave angular frequency. In the case of Figure A.1,  is the refraction 

index for the incident and reflected EM waves, while  is the refractive index of the transmitted 

(or refracted) EM wave, the appropriate coordinate system is also defined in the figure.  

Figure A.1 – Schematic representation of wave vectors for a monochromatic EM wave at the interface of two 

different media, depicted by the grey and soft yellow regions. The boundary is defined to be the plane . 

 

Source: The author (2024). 

For a linearly polarized EM plane wave we can write the incident (I), reflected (R), and 

transmitted (T) fields as follows [8]: 



112 

 

 

 (I)  , (R)  , (T)  , 

(A.8) 
    , , . 

, , and  are the electric fields amplitudes,  indicates the position of the wave in space, 

while  is the imaginary unit as usual. At  the boundary conditions must be satisfied, that 

means that all the fields’ phase factors in equations (A.8) should be the same, mathematically 

we can state this through the expression: 

 . (A.9)  

This equation is valid independent of the nature of the boundary conditions and the dielectrics.  

  Immediately, from equation (A.9), one can conclude that all the wave vectors lie in the 

same plane, known as the plane of incidence, along with the normal vector to the interface 

surface, in this case, the unitary vector that defines the direction of the  axis, . Moreover, in 

the notation of Figure A.1we can rewrite equation (A.9) as: 

 . (A.10)  

Since  (from equation (A.7)), then , meaning that the incidence angle is equal to 

the reflection angle (reflection law). Furthermore, from the second equality in equation (A.10), 

one can conclude that: 

 . (A.11)  

Equation (A.11), known as Snell's law, calculates the degree of light deviation when it passes 

from one medium to another. These results define the kinetic properties of light propagation 

between two dielectric media and are a consequence of the wave nature of the phenomenon, as 

well as the boundary conditions that must be satisfied.  

 The properties that determine the reflected and transmitted intensities of the radiation, 

as well as phase changes and polarization, are dynamic in nature and depend entirely on the 

boundary conditions. By applying, the boundary conditions defined in equation (A.6) to the 

fields described in equation (A.8) at , we can express the following: 

, 

 

(A.12)  

, 

, 

 

To apply these boundary conditions it is convenient to consider two different situations, one 

considering the incident EM wave with the polarization vector perpendicular to the plane of 
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incidence (the plane defined by  and  in Figure A.1), and other in which the polarization 

vector is parallel to the incidence plane. The general case of arbitrary elliptic polarization can 

be derived as a suitable linear combination of these two cases [8]. 

 First, let us consider the electric field component perpendicular to the plane of 

incidence, as shown in the F(a). The orientations of the  vectors were chosen to ensure a 

positive flow of energy in the direction of the  vectors. Since the  fields are all parallel to 

the surface interface between the media (  plane), the first equation in equation (A.12) reduce 

to zero. The third and fourth boundary conditions in equation (A.12) ensures the linear system: 

 , 
(A.13)  

  

Figure A.2 – Reflection and refraction in the linear regime with polarization perpendicular (a) and parallel (b) to 

the plane of incidence. 

 

Source: The author (2024). 

We use equation (A.7) to express the wave vectors in terms of the media's refractive indexes. 

Moreover, for optical frequencies (i.e., in nonmagnetic materials), one can assume  and 

. Furthermore, together with the Snell’s law (equation (A.11)), the second boundary 

condition in equation (A.12) also ensures the second equation in equation (A.13). From the 

linear system in equation (A.13), we can determine the relative amplitudes of the refracted and 

reflected waves, which are as follows: 

, 

(A.14) 

. 

Here, Snell's law was applied to express the relative amplitudes solely in terms of the incident 

angle and the refractive indexes of the materials. In the case of Figure A.2 (b), where the  
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vectors are parallel to the incidence plane, the relevant boundary conditions are given by the 

first, third, and fourth equations in equations (A.12) since the second one guarantees . 

Then, from the third and fourth equations, one can obtain the following linear system:  

 , 
(A.15)  

 . 

The first boundary condition in equation (A.12) together with the Snell’s law (equation (A.11)), 

simply duplicates the second equation in equation (A.15). Thus, resolving this linear system for 

the amplitudes  and , one can determine the relative amplitudes as: 

 , 

(A.16)  

 . 

 For the particular case of normal incidence, i.e., , the relative amplitudes in 

equations (A.14) and (A.16) reduces to the following: 

, 

(A.17)  

. 

Notice that for the reflected wave, the sign convention is that for polarization parallel to the 

plane of incidence (Figure A.2 (b)). This means that if  there is a phase reversal of the 

reflected wave.  

 Two interesting aspects regarding the dynamical relations derived in equations (A.14) 

and (A.16) on reflection and refraction must be considered. First, for polarization components 

parallel to the plane of incidence, there is an angle of incidence, called Brewster’s angle2, in 

each the reflected wave amplitude is zero. This occurs because the reflected light becomes 

completely polarized perpendicular to the plane of incidence at this angle. In contrast, the 

refracted light with initial polarization parallel to the plane of incidence is entirely transmitted. 

This means that there is minimal reflection of the initial parallel-polarized light.  

                                                           
2 Sir David Brewster (11 December 1781 – 10 February 1868) was a Scottish scientist, inventor, author, and 

academic administrator, best known for his experimental contributions to physical optics, particularly in the study 

of light polarization and the discovery of Brewster’s angle [9]. His pioneering work on polarization of light by 

reflection was cited as Ref. [10]. 
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At the Brewster’s angle ( ), the reflected and refracted light rays are at  angle to 

each other, mathematically one can write: 

, (A.18)  

where  is the reflection angle and  is the refraction angle, as  defined previously in Figure 

A.2 (b). Applying equation (A.18) together with the reflection law ( ) and the Snell’s 

law (equation (A.11)), one can derive the  value as [7]: 

, (A.19)  

where  and  are the refractive indexes of the dielectric mediums as in Figure A.2. As 

discussed previously,  is the angle of incidence at which light with a particular polarization 

is perfectly transmitted through a surface, with no reflection. This phenomenon has various 

practical applications, including polarizing filters, optical coatings, laser optics, optical sensors, 

and light-matter interaction studies [11 – 13]. One fascinating application of Brewster’s angle 

is Brewster Angle Microscopy (BAM). BAM is a technique used to study thin films at air-liquid 

interfaces. By illuminating the surface at the Brewster angle, uniformly flat areas appear dark 

due to minimal reflection, while regions with different refractive indices reflect light and 

become visible. This method enables real-time visualization of monolayers and surface 

phenomena [14]. 

 The second important phenomena that appears because of the dynamical relations 

(equations (A.14) and (A.16)), is the possibility of Total Internal Reflection (TIR). TIR occurs 

when a light wave traveling in a medium with a higher refractive index hits the boundary of a 

medium with a lower refractive index at an angle greater than the critical angle. Under these 

conditions, all the light is reflected into the original medium, and none passes into the second 

medium. Snell’s law (equation (A.11)) shows that if, , then , consequently 

, when  where 

. (A.20)  

 is the TIR critical angle and for incident waves at , the refracted wave is parallel to 

the interface surface. Hence, there can be no energy flow through the surface, and then at  

there must be total reflection. Thus, for TIR occur, the light must travel from a denser medium 

to a less dense medium  and the incidence angle must satisfy the requirement: 

. (A.21)  
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TIR is a fundamental phenomenon that underlies several important applications. One of its 

primary uses is in optical fibers, where it guides light signals through the fiber core, enabling 

long-distance communication with minimal signal loss [15]. Another interesting application is 

the sparkle of diamonds; their high refractive index ( ) leads to strong internal 

reflections, enhancing their brilliance [16]. TIR is also essential in optical instruments such as 

right-angle prisms, periscopes, and binoculars, where it facilitates light reflection [17]. In the 

field of medicine, TIR is employed in endoscopes that use optical fibers to transmit light for 

imaging internal body structures [18]. Furthermore, TIR helps explain natural phenomena like 

rainbows and mirages by reflecting light within droplets or air layers. 

 To conclude this section, it is worth introducing an interesting approach to 

understanding reflection and refraction phenomena: the application of Fresnel’s coefficients3. 

These coefficients precisely quantify the intensity of light that is reflected and transmitted at 

the interface of different dielectric materials. By examining equations (A.14) and (A.16), which 

detail the amplitude ratios of transmitted and reflected electrical fields for perpendicular (s) and 

parallel (p) polarizations; we can derive the Fresnel’s coefficients as follows: 

, 

(A.22)  and, 

 

 and  quantify the fraction of an EM wave’s intensity that is reflected at the interface for 

s and p polarizations, often referred to as reflectance in some textbooks. Due to the conservation 

of energy, the transmitted intensity fraction can be determined as the remaining portion of the 

incident intensity that is not reflected [20]:  

, 

(A.23)  and, 

. 

As for the reflection coefficients defined in equation (A.22), the transmission coefficients,  

and , often are referred as transmittance coefficients. Note that equations (A.22) the (A.23) 

are what would be measured right at each side of an interface and do not account for attenuation 

                                                           
3 Augustin-Jean Fresnel (May 10, 1788 – July 14, 1827) was a French civil engineer and physicist. His research in 

optics advanced the understanding that light is a transverse wave and played a significant role in the acceptance 

of the wave theory of light [19].  
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of an EM wave in an absorbing medium following transmission or reflection [20]. Considering 

an interface between glass ( ) and air ( ), it is possible to graph the reflectance 

and transmittance coefficients vs. the angle of incidence as exhibited in Figure A.3.  

Figure A.3 – Fresnel’s coefficients as a function of the angle of incidence for a glass-air interface. The dashed 

vertical lines indicate the Brewster’s angle and the critical angle for TIR. 

 

Source: The author (2024). 

Observe that when the angle of incidence exceeds the critical angle ( ) for TIR, the inverse 

sine function, , cannot produce a valid real angle in equation (A.20). This limitation is 

expected when calculating the transmitted angle for incidence angles that surpass the critical 

angle. To address this issue, one can filter out invalid values and substitute them with π/2, which 

represents the angular region of TIR, as illustrated in Figure A.3. 

 In this section, we discussed linear reflection and refraction, which appear due to the 

boundary conditions (equations (A.6)) imposed by the MEs when an EM wave passes through 

an interface between two dielectric materials. These effects lead to intriguing phenomena such 

as polarization by reflection at Brewster’s angle and TIR. These concepts give rise to numerous 

technological applications and enhance our understanding of optical phenomena. For further 

details and applications, see Refs. [7, 8, 21]. 

In the next section, we will expand the discussion on the linear regime of light-matter 

interaction by introducing two new concepts: absorption and dispersion.  
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A.1.3 Absorption and Dispersion 

In the linear regime, a medium’s response to an EM wave is proportional to the electric 

field magnitude, as discussed in section A.1.1. Absorption and dispersion are key phenomena 

that describe the interaction of EM waves with materials, particularly in terms of energy 

dissipation and wave phase velocity. Furthermore, absorption refers to the loss of energy as an 

EM wave travels through a medium, transferring energy typically as heat or other forms of 

energy. This occurs when the wave’s frequency matches the natural frequencies of the 

material’s molecules, atoms, or electrons, converting the wave’s energy into vibrational, 

rotational, or electronic excitation within the medium [21 – 23].  

Generally, to mathematically represent an absorptive medium and understand its effect 

on the wave propagation, we need to consider the medium's complex refractive index [20]: 

. (A.24)  

The real part, , relates to the phase velocity and reflects the energy-storing capacity of the 

medium, affecting how strongly is the wave-matter interaction; while the imaginary part, , 

represents the losses (energy dissipation within the medium) and directly governs absorption. 

In this way, one can consider a monochromatic plane wave propagating in the  direction within 

a medium and write the electric field as [20, 24]:    

, (A.25)  

where,  is the complex wave number, with  and  in which 

 is the wave number in free space. Notice that the appearance of the term  in 

equation (A.25) means that the wave amplitude is attenuated while the wave travels within the 

material. Moreover, in terms of the EM wave intensity, as , we have: 

, (A.26)  

where ; that is  is the intensity at  (in the interface of the material), and 

 is called the absorption or attenuation coefficient of the material. The absorption 

coefficient can be expressed in terms of the wave frequency as: 

. (A.27)  

The distance necessary to reduce the wave amplitude by a factor of  (about a third) is known 

as the skin or penetration depth [7]:  

. (A.28)  
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 measures how far the wave penetrates the material. For a material to be considered 

transparent, its penetration depth must be large compared to its thickness. The penetration depth 

for metals, for instance, is exceedingly small. For example, copper at ultraviolet wavelengths 

(  nm) has a miniscule penetration depth about  nm [20]. Table A.1, exhibits the 

absorption coefficients and the respective penetration depth for some materials.  

 Based on the values in Table A.1, it is clear that metals have very high absorption 

coefficients due to their strong interaction with EM waves, resulting in correspondingly shallow 

penetration depths. In the case of semiconductors, such as Germanium, absorption is influenced 

by the wavelength in relation to the material’s bandgap energy, with notable absorption 

occurring in the infrared (IR) range. Water also demonstrates strong absorption in the 

microwave frequency range, making it an effective medium for energy transfer. Additionally, 

transparent materials like glass and plexiglass exhibit very low absorption coefficients and high 

penetration depths in the visible and radiofrequency ranges. Furthermore, seawater allows 

relatively high penetration at very low frequencies, which is advantageous for submarine 

communication, for example [27]. 

 The understanding of linear absorptive responses in various materials is crucial due to 

its wide range of technological applications. For example, in solar cells, materials such as 

silicon and perovskites are specifically engineered for optimal absorption within the solar 

spectrum [30, 31]. Linear absorption in dyes and coatings is useful to create optical filters that 

selectively transmit certain wavelengths while absorbing others [21]. In medical imaging and 

diagnostics, the absorption properties of tissues are essential for techniques such as X-rays and 

near-infrared spectroscopy. Contrast agents like iodine and barium sulfate enhance absorption, 

resulting in clearer images [32, 33].  

Table A.1 – Absorption coefficients and penetration depth of diverse materials by the range of frequency. 

Material 

Frequency 

Range 

Absorption 

coefficient 

( ) [cm-1] 

Penetration depth 

( ) [cm] 

Reference 

Copper Radio Frequency (RF)   [25] 

Silicon Infrared (IR)   [26] 

Water Microwave (  GHz)   [27] 

Glass Visible light   [28] 
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(e.g. SiO2) 

Aluminum Radio Frequency (RF)   [29] 

Germanium Infrared (IR)   [30] 

Seawater 
Very Low Frequency 

(VLF: Hz kHz) 
  [27] 

Plexiglas 

(acrylic) 

Radio Frequency (RF)   [20] 

Source: The author (2024). 

Moreover, effective absorber materials are vital for the development of scientific 

devices like photodetectors. The principle behind photodetectors relies on the absorption of 

photons to generate an electrical response. To create fast photodetectors, materials such as 

germanium and silicon are tailored for specific wavelengths (e.g., visible light and infrared) to 

achieve a higher absorptive response [34, 35]. Additionally, good linear absorber materials also 

are useful in areas such as laser protection, environmental sensing, display technologies, and 

photothermal therapy [35 – 38].  

Certain materials display a variation in its refractive index based on light’s wavelength 

(or frequency); in literature, this property is referred as dispersion. Dispersion is a phenomenon 

that describes how the phase velocity of waves changes with frequency. It occurs due to the 

interaction between the waves and the medium through which they travel, causing different 

frequency components to travel at different speeds. The mechanism behind dispersion involves 

EM waves exciting oscillations in the charged particles of the medium, resulting in propagation 

characteristics that vary with frequency.  

To represent mathematically the phenomenon of dispersion, we must consider that the 

materials’ complex refractive index varies with the frequency: 

, (A.29)  

where, as in the equation (A.24),  and , are the real and imaginary parts of the 

refractive index, respectively; however, this now depends on the wave frequency . The 

dependence of the materials’ absorption coefficient with  (equation (A.27)) must also 

depends on  as: 

. (A.30)  
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Then, we consider the interaction between a light wave and an atom by means of the Lorentz 

oscillator model. This model describes how the material’s complex dielectric function ( ), 

and hence the refractive index, varies with frequency due to resonances in the material. The 

modeling considers the displacement of the atomic dipoles as damped harmonic oscillators – 

the inclusion of damping results from the fact that the oscillating dipoles can lose their energy 

by collisional processes. In solids, this would typically occur through an interaction with a 

phonon that has been thermally excited in the crystal [29].  

Thus, an electron bound to an atom experiences a restoring force, leading to the equation 

of motion [7]: 

, (A.31)  

where  is the electron displacement,  is the damping coefficient,  is the oscillator 

resonant frequency,  is the electron’s mass,  is the fundamental electron charge, and  is 

the amplitude of the electric field. Notice that equation (A.31) it is not considering the motion 

of the nucleus because the nucleus’ mass is much greater than the electron’s mass . 

Furthermore, in the steady state, the system oscillates at the EM wave’s frequency , and then 

we look for solutions of the form: , where  is the electron’s equilibrium 

position. Therefore, from equation (A.31), this implies the follow result [7, 8, and 29]: 

. (A.32)  

The displacement of the electrons from their equilibrium position produces a time varying 

dipole moment, . Figure A.4, illustrates the appearance of the time-dependent dipole 

moment oscillating at the natural frequency .  is the time-dependent displacement of the 

negative charge from its equilibrium position caused by the electric force. The natural vibrations 

of the dipole around the equilibrium length at frequency  generate a time-dependent dipole 

moment  as indicated in the figure.  gives a resonant contribution to the macroscopic 

polarization (dipole moment per unit volume) of the medium [24, 29]. 
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Figure A.4 – Oscillations of a classical dipole composed of a heavy positive charge and a light negative charge 

connected by a spring. The horizontal dotted line represents the electron equilibrium positon . 

 

Source: The author (2024). 

 

Considering  as the number of atoms per unit volume, we can write the resonant 

polarization magnitude as: 

.
 (A.33)  

Notice that the magnitude of  in is small unless the frequency  is close to . This a 

typical characteristic of a damping oscillator, i.e., the maximum amplitude occurs when the 

system oscillates near the fundamental frequency.  

Moreover, from equation (A.33), is it possible to obtain the complex dielectric 

constant . Using the MEs’ constitutive relations (equations (A.3)), one can write the 

electric displacement vector  in terms of the medium’s polarization  as follow: 

. (A.34)  

However, our focus is on optical responses at frequencies close to , and so is necessary to 

split the polarization  into two terms to account for a non-resonant background and the 

resonance arising from the driven response of the oscillator. Therefore, one can write: 

.
 (A.35)  

To simplify the mathematics, we can consider an isotropic medium. In this case, we can define 

the complex dielectric constant  through the relationship (see equations (A.3) in Section 

A.1.2): 

. (A.36)  
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Combining equations (A.33) and (A.35), and then comparing with equation (A.36), we can 

obtain: 

. (A.37)  

As for the refractive index (equation (A.29)), we can split the complex dielectric constant as 

real and imaginary parts as: . Then, from equation (A.37), we can 

explicit write  and  as: 

Re , 

(A.38)  and 

Im . 

Equations (A.38) describes the real and imaginary parts of the dielectric function, , 

deduced form the Lorentz oscillator model for one single resonance frequency. Some textbooks 

defines the constant  as the plasma frequency, and  as the 

high-frequency dielectric constant –  takes into account contributions from non-resonant 

electrons [8]. In this way, we can rewrite equations (A.38), as follow: 

, 

(A.39)  and 

. 

From equation (A.29), we can relates equations (A.39) directly to the medium’s refraction 

indexes,  and . It is very common in the literature define the imaginary part of the 

refractive index ( ) as the extinction coefficient: . Moreover, is also common to 

refer to the real part of the refractive index ( )) as the medium’s refraction index:

. These constants,  and , are related with  and  by the follow expressions [24, 29]:  

, 

(A.40)  and 

. 

Thus, we can explicitly solve equations (A.40) for  and  in terms of the dielectric constants 

as: 
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, 

(A.41)  and 

. 

These relations highlight how the phenomena of dispersion ( ) and absorption ( ) contribute 

to the material's optical properties.  describes the phase velocity of light in the material, while 

 describes the attenuation of the wave as it propagates through the material.  

 It is important to evaluate the behavior of the dielectric constants, and consequently,  

and , in some frequency domains; that is, for the low frequency regime ( ), resonant 

regime ( ), and for the high-frequency regime ( ). Thus, equations (A.39) and 

(A.41) allowing us to evaluate the frequency dependence of these constants. 

 Table A.2, summarizes the expressions for each frequency domain, which helps 

understand their physical implications. From the expressions in Table A.2, it is evident that in 

the low frequency regime ( ), the material behaves like a static dielectric, with negligible 

absorption (  and  goes to ). Near resonance ( ), both  and  are significant, thus 

dispersion and absorption effects are dominant. In this regime, is expected a peak in the  

curve due to the resonant absorption. For the high-frequency regime ( ), the material has 

a reduced dielectric constant due to negligible interaction of the wave bound charges, and 

absorptive effects are negligible. Figure A.5, shows the frequency dependence of the dielectric 

functions and the refraction/extinction coefficients near resonance calculated from equations 

(A.39) and (A.41). 

 Observing Figure A.5 (b), it is clear that function  exhibits a strongly peaked 

behavior, reaching its maximum value at  and having a full width at half-maximum equal to 

. In contrast, the frequency dependence of  is more intricate (see Figure A.5 (a)). As   

approaches  from below,  gradually increases from its low frequency value, peaking at 

. It then sharply decreases, reaching a minimum at , before rising again toward its 

high-frequency limit (see Table A.2). The frequency range over which these variations occur is 

governed by  and for both  and . This behavior illustrates how oscillator damping causes 

line broadening. The frequency dependence of  and , depicted in Figure A.5 , is known as 
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Lorentzian, named after the originator of the dipole model [7, 29]. It is important to note that 

we experimentally measured the refractive index  and the absorption coefficient , which is 

related to the extinction coefficient  by equation (A.30). 

Table A.2 – Reduced expressions for the dielectric constants. Low, Resonance, and High-Frequency Regimes*. 

Frequency  

Regime 

    

Low 

Frequency 

( ) 

  

Near 

Resonance 

 ( ) 

√𝜖𝑅 + √𝜖𝑅
2 + 𝜖𝐼

2

2
 √−𝜖𝑅 + √𝜖𝑅

2 + 𝜖𝐼
2

2
 

High 

Frequency 

( ) 

  

*For simplicity, we assume a weak damping oscillator model ( ). 

Source: The author (2025). 

The Lorentzian oscillator model provides a classical approach for understanding 

dispersion by considering the response of a single resonance to an EM wave. While this model 

effectively captures the essential features of frequency-dependent dielectric functions near 

resonance, it is limited to a single oscillatory mode and does not account for more complex 

material behaviors. Modern approaches, such as the Drude model for free-electron systems or 

quantum mechanical models like the Kramers-Kronig relations, offer more comprehensive 

insights into dispersion and absorption phenomena [8, 24, 29]. These models extend the 

understanding of optical properties by incorporating multiple resonances and quantum effects, 

thereby providing a more complete description of real materials. 

In the next section, we will explore linear scattering, a fundamental phenomenon in 

light-matter interactions where electromagnetic waves are redirected without frequency 

alteration. This process is crucial in various applications, from explaining the sky’s color 

through Rayleigh scattering to developing advanced optical materials and technologies. By 

examining the mechanisms and implications of linear scattering, we will reveal its importance 

in both natural phenomena and technological advancements. 
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Figure A.5 - Frequency dependence of the real and imaginary parts of the complex dielectric function of a dipole 

oscillator at frequencies close to resonance. The curves are calculated for an oscillator with ,  

and   (weak damping).  

 
 

Source: The author (2025). 

A.1.4  Linear Scattering  

Linear scattering is a fundamental optical phenomenon that occurs when an EM wave 

interacts with matter and is redirected without any change in its frequency. This process is 

influenced by the size, shape, and refractive properties of the scattering particles in relation to 

the wavelength of the incoming wave. Linear scattering is essential for explaining a wide range 

of natural and technological phenomena, including the blue color of the sky, the appearance of 

fog and clouds, and the performance of optical fibers and photonic devices [20, 39].  

In this section, we will explore the basic principles of linear scattering, including 

Rayleigh, Mie, and Tyndall scattering, along with their applications and implications in both 

scientific research and practical engineering. 

Linear scattering occurs when the electric field of a wave interacts with charged 

particles within a medium. This interaction causes oscillations and the re-emission of light in 

various directions. The size of the scattering particles relative to the wavelength of the incoming 

wave is a crucial factor in this process. If the particles are much smaller than the wavelength, 
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stronger scattering occurs at shorter wavelengths. This phenomenon is commonly referred to in 

the literature as Rayleigh scattering4. 

To have an insight of Rayleigh scattering phenomena, let us consider a plane 

monochromatic EM wave to be incident on a particle (scatterer) whose size  satisfies , 

where  is the wavelength of the incident light. The electric field of the incident EM wave 

induces an oscillating dipole moment  in the particle as: 

. (A.42)  

 is defined as the polarizability of the particle, and it is determined by the material properties 

and size. As usual,  is the electric field of the incident wave. The scattered power, that is, the 

power radiated by the induced dipole  is given by the following formula [8]:  

. (A.43)  

, is the angular frequency of the incident EM wave. From equation (A.43) is possible 

to conclude that the scattered intensity  is proportional to , which explains the strong 

dependence of scattering on wavelength: 

. (A.44)  

This relationship is the reason due to shorter wavelengths (blue) scatter more than longer 

wavelengths (red). Additionally, the angular dependence of Rayleigh scattering is given by 

following expression [8, 24]:   

, (A.45)  

where  is the scattering angle. This expression indicates that the scattered light is symmetric 

about the incident direction, with the maximum intensity in the forward and backward 

directions. Moreover, the scattered light is partially polarized. Light scattered at 90º is 

completely polarized because the electric field oscillations are confined to a plane perpendicular 

to the scattering direction. At other angles, the degree of polarization depends on the scattering 

geometry and incident polarization [24]. 

 As mentioned earlier, one of the applications of the Rayleigh scattering is to explain 

atmospheric phenomena, such as the blue sky and sunsets. Equation (A.44) indicates that 

shorter wavelengths (blue light) scatters more efficiently. Then, as sunlight crosses a region of 

                                                           
4 The phenomenon is named after 19th-century British physicist Lord Rayleigh (John William Strutt), who, in 

1871, analyzed scattered sunlight in terms of a molecular oscillator and concluded that the intensity of the 

scattered light is proportional to  [40]. 
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widely spaced air molecules (scatterers), the light laterally scattered is mostly blue, and that is 

why the sky is seen to be blue. The unscattered light, which is rich in red, is viewed only when 

the Sun is low in the sky at sunrise and sunset. Solar rays reach about  beyond the daytime 

terminator because of atmospheric scattering; then, over this twilight band, the skylight fades 

to the complete darkness of night [20].  

Rayleigh scattering is vital in other areas, such as in LiDAR (Light Detection and 

Ranging) and remote sensing to evaluate atmospheric composition and density [41, 42]. It also 

plays a crucial role in optical instrumentation, facilitating the design of anti-reflective coatings, 

optical filters, and photonic devices to manage unwanted scattering [43 – 45]. Rayleigh 

scattering is a classical model, and a deeply explanation of the scattering phenomena in the 

regime   can be given by quantum electrodynamics and extended to complex media 

through statistical models [39].  

One fundamental concept in light-matter interactions appears when the scatterers 

possess sizes comparable to the wavelength of the incident light. This characterizes what is 

kwon as Mie scattering. Unlike Rayleigh scattering, which applies to particles much smaller 

than the wavelength, Mie scattering provides a more comprehensive framework, accounting for 

a wide range of particle sizes and refractive indices. This theory, developed by Gustav Mie5, 

plays a critical role in understanding natural phenomena such as the white appearance of clouds 

and the scattering of light in colloidal solutions. Moreover, it plays a crucial role in various 

technological applications, including atmospheric science, biomedical imaging, and optical 

communication, making it an indispensable tool in the study of light propagation in complex 

media [47 – 49].  

The Mie scattering theory describes the scattering of light by a spherical particle with 

radius  and a refractive index . The theory gives a series of equations that determine the 

scattering coefficients, angular distribution, and other characteristics of scattered light based on 

the properties of the particle and the incident wave. The key parameters of the Mie’s scattering 

theory are the wavelength of the incidence EM wave , the particle radius , the sphere’s 

refractive index , the surrounding medium refractive index , and the size parameter defined 

as: 

                                                           
5 Gustav Adolf Feodor Wilhelm Ludwig Mie (German: [miː]; 29 September 1868 – 13 February 1957) was a 

German physicist. His work included Mie scattering, Mie potential, the Mie–Grüneisen equation of state and an 

early effort at classical unified field theories [46]. 
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, (A.46)  

which is related to the ratio of the particle’s size to the wavelength. Mie scattering theory 

involves finding the expansion coefficients in a series of spherical harmonics. The total 

scattered field consists of both electric and magnetic components, and the solution involves 

spherical Bessel functions.  

 The scattered field is expressed in terms of spherical multipoles, utilizing the Mie 

coefficients  and . The electric and magnetic field components of the scattered field are 

defined as follows [39]: 

𝐸𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 = ∑ (𝑎𝑛

𝐻𝑛
(1)

(𝑘𝑟)

𝑘𝑟
+ 𝑏𝑛

𝐻𝑛
(2)

(𝑘𝑟)

𝑘𝑟
) ⋅ 𝑒𝑖𝑛𝜃, 

∞

𝑛=1

 (A.47)  

where  and  are the spherical Hankel functions of the first and second kinds, 

respectively.  and  are the Mie scattering coefficients for the electric and magnetic fields, 

 is the wave number, and  is the radial distance from the center of the particle.  and 

 are given in terms of the spherical Bessel functions as follow [39]: 

, 

(A.48)  and 

. 

In equation (A.48),  is the size parameter as defined in equation (A.46),  and 

, where  and  are the spherical Bessel and Hankel functions, 

respectively.  and  are the first derivatives with respect to its arguments. Moreover, 

the parameter  is the relative refraction index.  From equations (A.47) and (A.48), the 

Mie’s theory predicts the scattering and extinction cross-sections,  and , from 

those one can derive the material’s absorption cross-section: . 

Furthermore, the Mie’s theory is capable to predict accurately the normalized phase 

function, , that describes the angular distribution of the scattered light as [39]: 

sin . (A.49)  

 is the intensity of the scattered light in a given direction, and is related to the angular 

functions  and , where the index  states for the multipole’s expansion order. 

 can be decomposed into two orthogonal polarizations,  and . The detailed 
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mathematical expressions for the cross-sections and the phase function   can be found in 

Refs. [39] and [50]. For simplicity, Figure A.6 shows the normalize phase function curve for a 

scattering system where . 

From the  curve exhibited in Figure A.6, we can infer some specific characteristics 

about the particle size and its interaction with the scattering system. ) exhibits strong 

symmetry about , which indicates dipole-like scattering. Then, we can conclude that the 

particle size is small compared to the wavelength of the incident light, since dipole scattering 

prevails for small particles. Therefore, the size parameter for this system can be expressed 

as: , indicating Rayleigh scattering.  

Figure A.6 – Angular scattering intensity distribution of the Mie’s theory phase function. The vertical dashed 

lines indicate some highlighted angles: red ( ) forward scattering, blue ( ) side scattering and orange 

( ) backscattering. 

 

Source: The author (2025). 

Observing Figure A.6, is noticeable that forward ( ) and ( ) backward 

scattering are stronger as compared with side scattering for , characteristics present in 

Rayleigh-like scattering systems. The cosine pattern of  also give us information regarding 

the polarization of the incident light: the light is likely polarized. For unpolarized light,  is 

usually more isotropic and would not exhibit a pure  dependence, as exhibited in Figure 

A.6. Thus, from the scattering angular intensity distribution curve, we can gather crucial aspects 

about the scattering system. The case illustrated in Figure A.6, emulates a Rayleigh-like 

scattering system possessing scatters likely spherical or nearly isotropic in shape, with the 

medium likely uniform without significant contributions from multiple scattering [39].  
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In addition to Rayleigh and Mie scattering, Tyndall scattering6 plays a significant role 

in how light interacts with particles. This phenomenon, often observed in colloidal suspensions 

and fine emulsions, occurs when particles are large enough to scatter light but still small 

compared to the wavelength of the light resulting in a visible scattering effect [51, 52]. Tyndall 

scattering is responsible for the characteristic blue appearance of illuminated smoke or mist [24, 

50]. It serves as a bridge between Rayleigh and Mie scattering, highlighting the continuum of 

light-matter interactions that depend on particle size and wavelength. Table A.3, summarizes 

the regimes, size parameters, and notable applications for Rayleigh, Mie, and Tyndall scattering 

phenomena. 

Table A.3 – Regimes, size parameters, and applications of different linear scattering phenomena. 

Scattering 

type 

Size parameter 

( ) 

Particle size relative to 

wavelength  
Notable applications 

Rayleigh  
Particle size much smaller 

than wavelength ( ) 

Blue color of the sky, sunsets, 

and atmospheric optics. 

Mie  
Particle size comparable to 

wavelength ( ) 

Cloud formation, fog, aerosol 

behavior, particle 

characterization. 

Tyndall 

 

(but larger than 

Rayleigh) 

Particle size slightly smaller 

but comparable to the 

wavelength ( ) 

Visible beams in colloids, milk’s 

blue hue, mist scattering. 

Source: The author (2025). 

The purpose of this section was to provide a brief and clear overview of fundamental 

linear light-matter interaction effects in low-intensity regimes, offering essential insights into 

these effects, based on current and standard literature. It is important to note that the 

understanding of linear effects remains an active area of scientific investigation and has 

applications in modern technology, such as BAM and LiDAR applications as discussed 

previously.  

Linear optical effects such as refraction, reflection, absorption, dispersion, and 

scattering offer insights of light-matter interactions at low to moderate intensities. However, 

                                                           
6 The phenomenon is named for the 19th-century British physicist John Tyndall, who first studied it extensively. 

Some textbooks refer to it as the Tyndall effect. The pioneering work made by J. Tyndall on the scattering of 

particles large enough to scatter light is cited as Ref. [51].  
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this understanding shift significantly at high-intensities (typically in the GW/m² range), where 

the material’s response becomes nonlinear and numerous new effects emerge. The next section 

will cover the fundamentals of nonlinear optical effects. 
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A.2 Light-Matter Interaction: Nonlinear Regime 

The light-matter interaction enters a fascinating regime under high-intensity 

illumination, where the induced polarization is no longer directly proportional to the electric 

field. This leads to nonlinear optical effects. In this regime, the material’s response to the 

electromagnetic field becomes intensity-dependent, leading to phenomena such as harmonic 

generation, multi-photon absorption, self-phase modulation, and optical rectification. These 

effects not only highlight the complexity of light-matter interactions within a theoretical 

framework but also serve as the foundation of nonlinear optics. They enable powerful 

applications in modern photonics, including nonlinear spectroscopy, imaging, and laser 

technology, providing essential tools for probing and manipulating materials at both the 

molecular and atomic levels. 

 In the upcoming sections, the aim is to establish a foundation on the fundamental 

principles of nonlinear optics, providing the reader with insights into key phenomena, with a 

particular emphasis on third-order effects. 

A.2.1 Nonlinear Polarization Tensor 

 Section A.1.1 introduced an expression for the polarization vector  of a material under 

a weak external electric field  applied. In this context,  is directly proportional to , with a 

proportional constant defined as the first-order linear susceptibility tensor of the material, 

denoted as  (a scalar for isotropic media). However, the tensorial behavior of polarization is 

evident in nonlinear optics, particularly at high field intensities, because the response of a 

material to an electric field is not isotropic in general. The nonlinear polarization  depends on 

the electric field  in a way that reflects the symmetry and anisotropy of the material’s 

molecular or crystal structure [53 – 55]. Thus, a more complete mathematical expression for  

must be: 

, (A.50)  

where,  is the first-order component (the linear polarization term), and , , etc., 

represent the second-order, third-order, and higher-order nonlinear polarization components, 

these components will be significant at high-intensity regimes. Notice that, in equation (A.50), 

we are not considering a medium with spontaneous polarization contribution, that means, the 

zero-order term must be: .   

 Thus, the polarization vector  at each order of nonlinearity can be expressed as [53]: 
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, (A.51) 

where  is the -th order polarization vector as defined in equation (A.51), is the -th 

order susceptibility tensor, which is of rank , and  are the Cartesian components of the 

electric field. The indices  denotes the Cartesian components of the tensors and 

vectors. From equation (A.51), we can explicitly derive the second- and third-order nonlinear 

components. Then, for , the second-order polarization component is: 

. (A.52)  

This means that the components  depends on all combinations of the electric field  

components, weighted by the susceptibility tensor . For   in equation (A.51), one can 

write the third-order polarization component as:  

. (A.53)  

Here, the third-order susceptibility tensor  is a rank-4 tensor, and it accounts for effects like 

third-harmonic generation and self-focusing [54].  

 The second and third-order polarization components exhibited in equations (A.53) and 

(A.52) can be shortened by employing Einstein’s summation convention. This mechanism is 

widely used to compactly represent sums over the components of tensors and vectors [53, 54]. 

Applying the Einstein’s summation rules one can rewrite these expressions as follows: 

, 

(A.54)  and 

. 

The vertical dots means summation over repeated indexes in tensorial notation. Notice that in 

equation (A.52) the indices  and  are summed over all spatial dimensions (e.g., , ,  or , 

,  in Cartesian coordinates). In this case, Einstein’s notation replace the summation over the 

indexes for the two vertical dots to produce the total second-order polarization vector , as 

one can see in equation (A.54). The same strategy is applied for express  and any other 

nonlinear higher-order component of .  

 The following section will concentrate on the study and implications of applying the 

 as polarization’s first correction term and discuss the myriad of nonlinear phenomena that 

appear, such as second harmonic generation. 
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A.2.2 Second-order Effects 

 Second-order nonlinear optical effects arise when the induced polarization in a material 

responds nonlinearly to the applied electric field according to equation (A.52). This indicates 

that  depends quadratically on the electric field components. The second-order effects occur 

predominantly in materials lacking inversion symmetry (non-centrosymmetric), such as certain 

crystals, because centrosymmetric materials have  [53, 54]. For example, lithium 

niobate (LiNbO3) and potassium titanyl phosphate (KTP) are commonly used nonlinear crystals 

due to its absence of inversion symmetry [55, 56].  

 Moreover, to ensure efficient nonlinear interactions, the Phase Matching requirement 

is another important condition that must be achieved for generating second-order effects. This 

condition ensures that the interacting waves remain in phase as they propagate through the 

medium. Basically, the phase matching condition means that the interacting waves 

constructively interfere as they propagate through the nonlinear medium, maximizing energy 

transfer between the fundamental and generated waves [53, 54]. For a second-order nonlinear 

process, the phase matching condition can be expressed as: 

, (A.55)  

where , ,  are the wave vectors of the interacting waves (e.g., fundamental and second-

harmonic waves), and  is the wave vector mismatch. When , means that the process 

is perfectly phase-matched, leading to efficient energy transfer. However, if , then 

destructive interference process reduces the efficiency of the nonlinear interaction [53, 54]. 

Several experimental techniques exist to achieve phase matching conditions, including 

birefringent phase matching (BPM), quasi-phase matching (QPM), and temperature tuning [57 

– 59].    

 Let us explore the mathematical fundamentals of second-order nonlinear effects and the 

key phenomena involved, including second harmonic generation (SHG), sum-frequency 

generation (SFG), difference-frequency generation (DFG), and optical rectification (OR). 

 The second-order nonlinear effects are governed by the nonlinear polarization  

(equation (A.54)), which can be expressed as: 

, (A.56)  

where  is a third-rank tensor possessing 27 elements, and  is the electric field of the 

light wave. If the electric field  contains multiple frequency components, the quadratic 
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dependence of  on  generates new frequency as will be discussed in the following 

paragraphs. 

 Let us consider an electric field  possessing two optical frequencies components as 

follows: 

, (A.57)  

where  and  are the complex amplitudes of the respective frequency components,  and 

. The term  stands for the complex conjugate term to ensure  as a real quantity. The 

product term  in equation (A.56) produces new frequencies through the second-order 

nonlinear interaction [53, 54, and 60]:  

. (A.58)  

Thus, from equation (A.58), it is clear that the second-order polarization gives rise to terms 

oscillating at the double, the sum and difference of the fundamentals frequencies.  

 The first phenomenon that will be discussed is caused by the double frequency 

oscillation term in equation (A.58) and oscillates by a factor of . This effect is kwon as 

second-harmonic generation (SHG), and means that two photons of the same frequency  

interacts to generate a photon of frequency . The polarization component of the SHG effect 

one can be expressed as: 

. (A.59)  

The nonlinear polarization term  acts as a source term for the second-harmonic field, and 

the wave equation for this field amplitude is [53 – 61]: 

. (A.60)  

From equation (A.60), it is possible to deduce the phase matching condition for the SGH [53 – 

61]:  

, (A.61)  

 where  is the wave vector of the fundamental frequency . Figure A.7 (a) gives a 

geometrical idea of the SHG effect. SHG phenomenon is widely used in various scientific and 

technological fields, such as microscopy [62], frequency doubling lasers [53], optical 

communications [63], material characterization [54], quantum optics and photonics, and 

diagnostic and sensing [64, 65].   
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Figure A.7 – Second-order nonlinear process. (a) SHG, (b) SFG, (c) DFG, and (d) OR. The insets illustrates the 

energy level diagrams, where the continuous and dashed horizontal lines represents the ground states and the 

virtual states involved in the process, respectively. The sign of  depends on the relative orientations of the 

interacting waves and the material’s optical axes.  

 

Source: The author (2025). 

 The next second-order nonlinear effect to be discussed is the sum-frequency generation 

(SFG). In SFG process, two photons of frequencies  and  are combined to generate a 

photon of frequency , as illustrated in Figure A.7 (b). The bases of SFG is the 

term  that appears in the nonlinear polarization due to the first term in equation (A.58) 

oscillating at the frequency .  is given by:  

. (A.62)  

Following similar procedure as for SHG, it is possible to deduce the phase matching condition 

for the SFG as [53 – 61]: 

. (A.63)  

SFG is a very interesting phenomenon and widely used in scientific and technological 

approaches. One can cite applications such as in surface and interface studies [66], biological 

imaging and spectroscopy [67], nonlinear optical microscopy [68], and frequency conversion 

for new laser sources [69]. 

 The follow second-order effect originates from the second term in equation (A.58), 

where the wave generated oscillates in a component frequency that is the difference between 

the fundamental frequencies, that is, . This effect is called difference-frequency 
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generation (DFG). DFG has a myriad of technological applications such as terahertz (THz) 

wave generation [70], mid-infrared (Mid-IR) laser sources [71], quantum optics and photon 

generation [72], and coherent tunable laser sources in the far-IR and UV [73].  

 The basic geometrical configuration of DFG is showed in Figure A.7 (c). The second-

order polarization component followed by the phase matching condition for DFG are [53 – 61]: 

, 

(A.64)  and 

. 

  An interesting second-order nonlinear polarization effect arises if we consider the 

component frequency  in equation (A.58). Then, the expansion of the electric field 

product will be:  

. (A.65)  

The term  mean that there is a field component oscillating a frequency . This term 

originates from the SFG term in equation (A.58) that ensures . The DFG term 

in equation (A.58) guarantees high-frequency components oscillating at the frequency  [53, 

61]. This phenomenon is called optical rectification (OR), and creates a nonlinear static 

polarization (DC field) from the nonlinear mixing of frequencies  and . OR is essential 

in generating terahertz radiation in nonlinear crystals, as the DC field modulates at low 

frequencies [53]. Figure A.7 (d) exhibits the geometrical scheme to generates OR in a second-

order nonlinear material.  

 An interesting aspect of the OR phenomenon is that the phase matching requirement is 

less stringent compared to other second-order nonlinear processes like SHG. The reason is that 

the DC field generated from OR is static (or very low frequency), reducing the sensitivity to 

small wave vector mismatches [53, 60]. However, achieving good phase matching improves 

the efficiency of THz radiation generation, which is often a goal in OR applications. Good 

phase matching is important to guarantee that the electric field constructively interfere with 

itself as it propagates through the coherent length of the nonlinear material [60]. The phase 

match condition for the OR generation is [53]: 

. (A.66)  

 This section definitively introduces the fundamental concepts of second-order nonlinear 

effects that arise in non-centrosymmetric materials. These effects play a crucial role in 

numerous scientific and technological applications, such as the implementation of second SHG 
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for innovative laser sources and the generation of terahertz (THz) radiation via OR.  Table A.4 

explicitly summarizes the second-order nonlinear effects covered in this section, clearly 

outlining their phase matching requirements and key optical applications. 

Table A.4 – Second-order nonlinear effects, polarization expressions, and respective phase match requirements. 

Second-

order 

Effect 

Polarization 

Expression 

Phase Matching  

Condition 
Applications 

SHG   
Laser frequency 

doubling 

SFG   
Nonlinear microscopy, 

signal upconversion 

DFG   Tunable Mir-IR sources 

OR   
Terahertz radiation 

generation 

Source: The author (2025). 

 It is worth mentioning that all the second-order effects discussed in this section are 

parametric process. In optics, a nonlinear optical light-matter interaction in which energy and 

momentum conservation (phase matching) govern the energy exchange between light waves 

without a net transfer of energy to or from the medium is considered parametric [63]. The term 

“parametric” implies that the process is governed by the intrinsic parameters of the medium, 

such as the nonlinear susceptibility  [54]. Parametric process does not involve the absorption 

of photons by the medium nor changes in the internal energy states of the medium. In parametric 

processes, the medium remains “transparent” in the sense that no material transitions occur, and 

the photon energies are redistributed among interacting waves according to the nonlinear 

interaction [53 – 70]. 

 In summary, second-order nonlinear optical effects such as SHG, SFG, DFG, and 

optical rectification (OR) demonstrate the profound ability of non-centrosymmetric materials 

to generate new frequencies and manipulate light. These effects, enabled by the inherent 

asymmetry of the material’s second-order susceptibility tensor, have opened doors to numerous 

scientific and technological advances, from frequency conversion to terahertz generation. 

However, when a material possess the centrosymmetry property, the second-order nonlinear 

susceptibility vanishes, and third-order nonlinear effects become dominant.  



140 

 

 

 The following section will focus on the third-order nonlinearities, highlighting key 

phenomena such as self-focusing, self-phase modulation, and third-harmonic generation. These 

effects manifest in both centrosymmetric and non-centrosymmetric materials, and they 

unequivocally demand higher light intensities for their occurrence because of modulus-squared 

dependence of the electric field, as will be shown. 

A.2.3 Third-order Effects and Centrosymmetric Mediums  

  The third-order nonlinear polarization, , arises due to intense optical fields and is 

fundamental to numerous nonlinear optical effects. These effects are critical in advanced optical 

technologies, particularly in high-intensity laser systems and ultrafast optics. This section will 

establish the development of the fundamental theoretical treatment to these new phenomena 

based on standard and contemporary literature, besides bringing to the reader scientific and 

technological applications regarding third-order effects. 

 The mathematical formulation of third-order effects relies on the nonlinear polarization 

term given by equation (A.53), that we can explicitly rewrite as:  

,  (A.67) 

where  is the third-order susceptibility tensor and  are the electric field components. 

 is a rank-four tensor and has 81 possible nonzero elements; however, symmetry often 

reduces this number significantly, especially for centrosymmetric materials [53].  

 In isotropic media (e.g., glasses),  reduces significantly due to permutation 

symmetry among the indices , , . This symmetry guarantees that , reducing 

the number of independent elements to , and then the polarization becomes [53 – 63]: 

. (A.68)  

The  term indicates that the nonlinear interaction depends on the intensity of the field, 

leading to intensity-dependent effects [70].  

 Third-order nonlinear optics deals with some key phenomenon, such as the optical Kerr 

effect. In a Kerr medium, an intensity-dependent refractive index causes a light beam to focus 

due to higher refractive index in the beam’s center. This effect appears due to a third-order 

nonlinear correction in the material’s refractive index as [53 – 70]: 

, (A.69)  
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where  is the linear refractive index (as defined in section A.1),  is the electric 

field intensity, and  is the third-order nonlinear refraction index. The subscript 2 indicates a 

quadratic dependence on the amplitude of the field , which implies a linear dependence on 

. In this notation, the refractive nonlinearity of order  is represented by a  coefficient. 

Notice that the term  accounts for the intensity-dependent refractive index effect. If , 

then the medium exhibits a self-focusing effect, while  leads to a self-defocusing effect 

[70]. For a self-focusing medium, when a high-intensity beam propagates through it, the 

intensity is highest at the center of the beam and decreases radially outward. As a result, the 

total refractive index is higher at the center than at the edges, creating a lens-like effect known 

as a positive nonlinear lens. This causes the light to bend toward the region of higher refractive 

index, effectively focusing the beam [53 – 70].  

 The mathematical description of the self-focusing phenomenon is described by the 

spatial nonlinear Schrödinger equation, which governs the propagation of light in a nonlinear 

medium [53 – 70]:  

, (A.70)  

where,  is the complex electric field amplitude,  is the propagation distance,  is the 

transverse Laplacian component, and  is the wave vector ( ). The term   

represents the nonlinear phase shift induced by the intensity-dependent refractive index [54]. 

In equation (A.70), is consider the slowly varying envelop approximation (SVEA). SVEA 

considers that  changes slowly over distances comparable to the wavelength  and time scales 

of the optical period ( ), then higher-order -derivatives are neglected [53]. 

Additionally, the paraxial approximation is also taking into account, as a result, is assumed 

that the beam divergence is small, meaning that the propagation is predominantly along the -

axis, with only gradual spreading in the transverse - and -directions. Consequently, the 

parallel Laplacian component in equation (A.70) is consider as  [53, 61].    

 However, the self-focusing effect it is only achieved if the beam’s power exceeds a 

critical threshold known as the critical power for self-focusing ( ). From equation (A.70), it 

is possible to deduce this power threshold as [71]: 

, (A.71)  
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where  is the wavelength of light and  is a dimensionless constant that depends on the beam 

profile (e.g., Gaussian, flat-top, etc.), and may vary slightly depending on the specific intensity 

profile of the beam or the boundary conditions. For a Gaussian-like beam profile  [71]. 

Physically, the critical power, , is the threshold above which self-focusing dominates beam 

propagation in a nonlinear medium. Below , diffraction tends to dominate and prevents 

catastrophic collapse [71]. In this scenario  describes the beam propagation in a nonlinear 

medium, where self-focusing occurs due to the intensity-dependent refractive index. 

Consequently, the beam width  as a function of the propagation distance  is [71]: 

, (A.72)  

where  is the beam waist at the focal point (minimum width),  is the actual power of the 

beam, and the term  accounts for the self-focusing effect. is the Rayleigh 

range, and term accounts for the beam diffraction as usual.  

 The Figure A.8 illustrates the self-focusing effect in a third-order nonlinear medium by 

showing the intensity profile of a Gaussian-like beam as it propagates, the refractive index as a 

function of radial distance from the beam center, and the evolution of beam width at various 

powers relative to the critical power . Figure A.8 (a), is the 3-dimensional representation of 

how the intensity distribution evolves as the beam propagates through the nonlinear medium 

following the intensity relation: , where 𝑟 = √𝑥2 + 𝑦2 is the 

radial distance, and  is computed for the case . Figure A.8 (b), shows how the total 

refractive index (equation (A.69)) changes radially due to the intensity-dependent effect.  

Figure A.8 (c) depicts the variation in beam width for different powers relative to the critical 

power (equation (A.72)). Notice that, when  the beam behaves similarly to the linear 

case but diverges more slowly. When ,  goes linearly with  and the beam remains 

collimated because self-focusing perfectly balances diffraction (orange curve in Figure A.8 (c)). 

However, when , the term  becomes negative, as a result  to decrease sharply, 

leading to beam collapse (self-focusing). Then, equation (A.72) becomes invalid for  values 

near collapse due to the square root of a negative number (see the green curve in Figure A.8 

(c)).  
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Figure A.8 – Self-focusing effect in a third-order nonlinear material. (a) Beam propagation in a nonlinear 

medium, (b) refractive index profile, and (c) beam width dependence with the propagation distance. The 

parameters used for the beam and the medium were:  nm, , m2/W, 

W/m2, and m. 

 

Source: The author (2025). 

 Self-focusing is an important phenomenon with various physical implications. As 

discussed, when the power of a beam significantly exceeds a certain threshold, it can experience 

catastrophic collapse, resulting in a drastic increase in intensity at the focal point. Another 

consequence of self-focusing is self-phase modulation. This effect causes a self-induced phase 

change due to the intensity-dependent refractive index, which leads to the spectral broadening 

of the beam [61]. In real-world scenarios, other physical mechanisms, such as plasma 

generation and higher-order nonlinearities, can counteract beam collapse, resulting in the 

formation of stable light filaments [71]. Moreover, the self-focusing phenomenon is used in 

various fields, including high-intensity laser applications for damage control [54], nonlinear 

microscopy to enhance resolution and contrast in imaging techniques [72], and filamentation, 

which allows for the long-range propagation of laser beams through the atmosphere for 

applications such as LIDAR and remote sensing [73]. 

 Another interesting phenomenon related to the optical Kerr effect is self-phase 

modulation (SPM). Similar to the self-focusing effect, SPM occurs due to the intensity-

dependent refractive index of a medium. When light travels through this medium, the high-

intensity areas of the beam cause a local change in the refractive index. This result in a phase 

shift that varies over time as the light propagates [53, 54]:  

, (A.73)  

where as usual  is the propagation distance. For SPM, the temporal aspect is relevant and 

equation (A.73) results in a frequency modulation across the pulse’s temporal profile, leading 
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to spectral broadening [53]. Unlike processes that involve transferring energy to different 

frequencies, SPM redistributes existing energy across a broader spectrum [70]. This 

phenomenon is crucial in ultrafast optics, particularly in generating supercontinuum light and 

shaping ultrashort pulses [74, 75]. For instance, in optical fibers, SPM is often used to create 

broadband sources for applications in spectroscopy and microscopy [63, 76]. Figure A.9 (a), 

illustrate the appearance of new optical frequencies due to the SPM effect in a Kerr medium. 

 SPM deals with the temporal domain of the nonlinear phase shift cause by a Kerr 

medium. However, notice from equation (A.73), that should exist a spatial counterpart of this 

effect, that is, a spatial self-phase modulation (SSPM). Indeed, SSPM is the spatial 

counterpart to temporal SPM, where the intensity profile of a laser beam induces spatially 

varying phase shifts in a nonlinear Kerr medium. Unlike SPM, which results in spectral 

broadening over time, SSPM manifests as spatially distinct patterns, such as concentric rings, 

due to the Kerr effect [53, 63] (see Figure A.9 (b)). These patterns are often observed when a 

beam passes through materials like liquid crystals or photorefractive media and are viewed 

through crossed polarizers to enhance visibility [77]. SSPM has practical applications in various 

fields. For example, it is used in nonlinear optics to measure the nonlinear refractive index ( ) 

of materials, aiding in characterizing optical media [78]. In laser beam diagnostics, SSPM 

provides insights into beam intensity profiles and nonlinear effects [79]. Additionally, SSPM 

plays a role in beam shaping and optical switching technologies, where spatial modulation of 

light is crucial for developing advanced all-optical devices [63, 79, and 80]. This phenomenon 

complements SPM by offering a spatial perspective on the third-order nonlinear interactions of 

light with matter. 

 Optical Kerr media, when subjected to high-intensity excitation, can generate another 

crucial phenomenon: third-harmonic generation (THG). THG is a coherent frequency-

conversion process in which three photons at the fundamental frequency ( ) combine to 

generate a single photon at three times the frequency ( ). THG is a third-order nonlinear 

process and is mediated by the material’s third-order susceptibility, , and its efficiency is 

highly dependent on phase-matching conditions [53, 54]. THG often occurs at interfaces or 

boundaries where symmetry is broken, as bulk centrosymmetric materials, typically suppress 

even-order nonlinearities [53, 54, and 81]. In practical applications, THG is widely used in 

nonlinear microscopy to image interfaces and boundaries within biological samples without the 

need for external labeling [82]. Its sensitivity to material structure also makes it a powerful tool 
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for studying nonlinear properties of materials. Figure A.9 (c), shows schematically how the 

THG process could be generated in a nonlinear material with . 

Figure A.9 – Representation of third-order nonlinear effects. (a) Self-phase modulation (SPM), (b) Spatial self-

phase modulation (SSPM), and (c) third-harmonic generation (THG). The inset in (c) represents the energy level 

diagram of the THG. 

 

Source: The author (2025). 

 It is important to highlight the differences in energy dynamics among the third-order 

processes discussed so far. Self-focusing concentrates energy by narrowing the beam waist, 

whereas SPM redistributes energy within the existing spectrum. In contrast, SSPM redistributes 

energy spatially across the beam profile. For THG, energy is transferred to the component. 

These distinct effects enable unique applications: SPM drives advancements in ultrafast optics, 

such as supercontinuum generation and pulse compression; SSPM is crucial for beam shaping 

and nonlinear material diagnostics; self-focusing supports processes like laser filamentation and 

high-intensity beam control; and THG facilitates frequency conversion and high-resolution 

microscopy. 

 These third-order nonlinear processes commonly occur in materials with 

centrosymmetric properties, meaning that the material’s structure remains unchanged under 

inversion through a central point. In simpler terms, for every point  in the material, there 

is a corresponding point  with identical properties [53, 54]. This inversion 

symmetry imposes strict limitations on the material’s nonlinear optical behavior. Specifically, 

in centrosymmetric media, the second-order nonlinear susceptibility  vanishes because 

second-order nonlinear processes, such as second-harmonic generation (SHG), require a break 

in inversion symmetry, which these materials lack [63]. Consequently, only odd-order 

nonlinearities, such as those governed by the third-order susceptibility, , can manifest. 

Therefore, in centrosymmetric materials, the first nonlinear contribution to the polarization 
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tensor is the third-order term, which enables effects like self-phase modulation and third-

harmonic generation as discussed in this section. 

 In summary, SPM, SSPM, self-focusing, and THG are fundamental third-order 

nonlinear optical effects with distinct mechanisms and technological relevance. Together, they 

illustrate the diversity of nonlinear optics, emphasizing the importance of third-order 

nonlinearities in advancing both fundamental research and practical applications across fields 

such as ultrafast optics, imaging, and beam manipulation. 

 In the next subsection, we will examine two fundamental phenomena in Kerr media: 

third-order nonlinear absorption and third-order nonlinear refraction.  

A.2.3.1 Third-order nonlinear absorption and refraction 

 Third-order nonlinear optical effects play a crucial role in understanding the interaction 

of intense light with matter, particularly in materials exhibiting the Kerr effect. Among these 

effects, third-order nonlinear absorption and refraction are two key phenomena that arise due 

to the material’s third-order susceptibility,  [53]. Nonlinear absorption, such as two-photon 

absorption (2PA) or saturable absorption (SA), involves the simultaneous absorption of 

multiple photons, enabling applications in optical limiting and ultrafast laser dynamics [63]. 

Nonlinear refraction, on the other hand, manifests as an intensity-dependent change in the 

refractive index, giving rise to effects like self-focusing, self-phase modulation, and optical 

soliton formation [83]. Together, these third-order nonlinear processes are essential for 

advancing technologies in ultrafast optics, laser-material interactions, and photonic device 

engineering. 

 In this section, we will focus on developing the theory to extract analytical expressions 

for the third-order nonlinear coefficients related to two-photon absorption (2PA) and the 

refractive phenomenon, highlighting some fundamental scientific and technological 

applications. 

 Third-order nonlinear absorption describes how the intensity-dependent absorption 

coefficient alters light propagation, primarily through two-photon absorption (TPA) and 

higher-order multiphoton absorption. In a medium with nonlinear absorption, the intensity 

inside the material  evolves according to the Beer-Lambert law modified to include 

nonlinear terms [83]: 
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. (A.74)  

In equation (A.74) only odd-terms of the polarization tensor are considered. Consequently, the 

absorption coefficients indexes are denoted as , with  representing the nonlinear odd-

order of the term. Thus, for a third-order absorptive effect, the relevant coefficient becomes , 

predominantly resulting in a 2PA effect if the material is excited off-resonance with at least 

twice of the energy necessary to promote its electrons to an upper state. 

 Considering the third-order nonlinear term as the first correction for the polarization 

tensor (see equation (A.54)), the total polarization of a material can be written as: 

 

                          . 
(A.75)  

For simplicity, we assume a monochromatic plane wave propagating along the -direction with 

the field pointing in the -direction in an isotropic medium. Consequently, a tensor contraction 

averaging over all the polarization states is performed and the third-order polarization can be 

written as: , where  now is a scalar quantity [83]. Thus, the total 

polarization for a third-order correction can be rewrite as:   

. (A.76)  

 We can apply the spatial nonlinear Schrödinger equation (see equation (A.70)) to 

describe how the electric field  evolves inside the nonlinear material: 

. (A.77)  

Moreover, we applied the SVEA and paraxial approximations, neglecting diffraction effects, 

which implies that the term  in equation (A.70). Notice that equation (A.77) is scalar 

because the fields are oriented along the -direction. We can assume that for the excitation 

frequency  the medium has no linear absorption contribution, consequently, the losses will be 

only due to the 2PA process. This means that we can neglect the first-order term in equation 

(A.76). Thus, one can rewrite the wave equation (A.77) as follows: 

. (A.78)  

 The complex amplitude of the electric field spatially evolves inside the material as: 

, where  the field amplitude and  is the total phase-shift due to the 

propagation inside the medium [83, 84]. In addition, we can explicitly separate the third-order 

susceptibility  into its real and imaginary parts as: .  
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Consequently, equation (A.78) is separated into two uncoupled differential equations for the 

amplitude and phase evolutions inside the medium as [83]: 

Im , (A.79)  

and  

Re . (A.80)  

 is the linear refractive index for a nonmagnetic material as defined in section A.1.2 . The 

average intensity in one optical cycle varies in terms of the electric field amplitude as: 

. Thus, it is possible to rewrite equation (A.79) in terms of the optical intensity as 

follows: 

Im . (A.81)  

By comparing equation (A.81) with equation (A.74) for a pure third-order correction, one can 

determine the 2PA coefficient as:  

Im . (0.1) 

 Measuring the 2PA coefficient , and consequently, the imaginary part of , is 

crucial for materials’ characterization aiming applications in optical limiting, biomedical 

imaging, photodynamic therapy, and ultrafast photonics. Materials with strong 2PA enable 

optical limiters for sensor protection, multiphoton microscopy for deep tissue imaging, and 

nonlinear optical devices for high-speed photonics [85, 86]. Several experimental techniques 

exist to determine , with the Z-scan method being one of the most widely used due to its 

simplicity and sensitivity. In this technique, a sample is moved along the focus of a Gaussian 

laser beam, and the transmitted intensity is analyzed; a dip in open-aperture z-scan 

measurements indicates nonlinear absorption [53, 85]. Other techniques include pump-probe 

spectroscopy, which provides ultrafast carrier dynamics [87], and two-photon excited 

fluorescence (TPEF), which is valuable for biological imaging and molecular studies [88]. 

Advancing 2PA measurements contributes to the development of high-performance nonlinear 

materials for photonic and biomedical technologies. 

 By solving equation (A.80), we can determine the nonlinear perturbative phase shift  

caused due to the third-order polarization contribution in a distance  as: 

Re . (A.83)  
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In a linear medium, the phase shift  caused by a wave that travel a distance  is [83]: 

. (A.84)  

Then, the total phase shift can be expressed as follows: 

Re . (A.85)  

Notice that the third-order refractive contribution is expressed as a perturbation in the linear 

response. By rewriting equation (A.85) in terms of the optical intensity  and 

comparing with equation (A.69), one can determine an expression for the third-order nonlinear 

refractive index coefficient as: 

Re . (A.86)  

 In conclusion, third-order nonlinear refraction, characterized by the nonlinear refractive 

index , plays a important role in advancing modern photonic technologies. Its applications 

span across optical limiting, all-optical switching, and ultrafast signal processing, enabling the 

development of next-generation communication and computing systems [53]. There are diverse 

experimental techniques to measure the  correction of nonlinear mediums, such as four-wave 

mixing and interferometric methods [53, 85]. However, the z-scan technique is the widely 

adopted method for measuring  due to its high sensitivity and simplicity, while other 

advanced techniques [85]. Research continues to refine these measurement approaches, and the 

potential for harnessing third-order nonlinearities in emerging technologies, including 

integrated photonics and quantum optics, becomes increasingly promising [89]. 

 In the following section, we will briefly discuss absorptive and refractive higher-order 

effects in nonlinear materials, along with presenting some new evidence regarding these 

phenomena. 

A.2.4 Higher-order Effects 

 The study of higher-order nonlinear terms in the polarization expansion provides 

profound insights into complex light-matter interactions that extend beyond the well-known 

second- and third-order effects. These higher-order terms, represented by  for , 

become significant at extremely high intensities or in materials with engineered nonlinearities, 

enabling phenomena such as fifth-harmonic generation, multiphoton absorption, and cascaded 

nonlinear processes [53]. While these effects are often weaker compared to lower-order 
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contributions, they play a critical role in advanced applications, including high-resolution 

imaging, ultrafast laser systems, and the generation of extreme ultraviolet (EUV) and X-ray 

frequencies [90]. Techniques such as high-harmonic generation (HHG) and nonlinear 

spectroscopy have been instrumental in probing these higher-order effects, revealing their 

potential for manipulating light at unprecedented scales [91]. Understanding and harnessing 

these higher-order nonlinearities not only deepens our knowledge of fundamental physics but 

also paves the way for breakthroughs in quantum optics, attosecond science, and nonlinear 

metamaterials [92].  

 This section aims to provide a brief overview of the unique characteristics, measurement 

challenges, and emerging applications of higher-order nonlinear processes, such as cascading 

processes and HHG. We emphasize the increasing significance of these processes in advanced 

photonic technologies. Additionally, we will present relevant and up-to-date literature on these 

phenomena for the reader’s reference.  

 Let us starting discussing the fundamentals of cascade nonlinear process. A cascade 

nonlinear process occurs when multiple nonlinear optical interactions take place sequentially, 

leading to a chain of frequency conversions [53, 54, 63]. This happens when an initial nonlinear 

interaction generates a new frequency component, which then acts as a source for another 

nonlinear process. An excellent example of a material that can generate second-harmonic 

generation (SHG) and subsequently sum-frequency generation (SFG) through a cascade 

process is beta-barium borate (β-BBO). β-BBO is a widely used nonlinear optical crystal due 

to its large nonlinear coefficients, broad transparency range, and high damage threshold, 

making it ideal for frequency conversion processes [93]. 

 In a typical cascade process, β-BBO first generates SHG when an intense fundamental 

beam at frequency  interacts with the crystal, producing light at the second harmonic 

frequency . This occurs due to the  nonlinearity of the crystal, which couples two photons 

of the fundamental frequency to create one photon at the second harmonic, as discussed in 

section A.2.2. Subsequently, the generated second harmonic ( ) can interact with the 

remaining fundamental beam ( ) in the same crystal or a second β-BBO crystal, leading to 

SFG. This process results in the generation of light at the sum frequency , demonstrating the 

cascaded nature of the nonlinear interactions [94]. ]. 

 (a), shows the energy level scheme of the cascade process that can happen in a β-BBO crystal. 

Such cascade processes are essential in applications like ultrafast pulse generation, wavelength 
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tuning, and coherent light sources for spectroscopy [94]. These processes are well-documented 

in standard literature, such as Nonlinear Optics by Robert W. Boyd, which provides a 

foundational understanding of cascaded second-order effects and their role in frequency 

conversion [53]. Additionally, Photonics: Optical Electronics in Modern Communications by 

Yariv and Yeh offers insights into the practical applications of cascaded processes in optical 

communication systems, including wavelength division multiplexing and all-optical signal 

processing [95]. 

Figure 10 – Higher-order nonlinear process energy diagrams. (a) Cascade second-order process and (b) fifth-

order generation (FHG). 

 

Source: The author (2025). 

 Recent advancements have expanded the scope of cascaded nonlinearities, particularly 

in the development of compact and efficient frequency converters. For instance, the use of 

periodically poled lithium niobate (PPLN) waveguides has enabled highly efficient cascaded 

SHG and SFG processes, paving the way for integrated photonic devices [96]. Furthermore, 

emerging research explores cascaded processes in nonlinear metasurfaces and 2D materials, 

such as graphene and transition metal dichalcogenides, which exhibit strong higher-order 

nonlinearities and enable novel applications in ultrafast optics and quantum light sources [97]. 

These developments highlight the transformative potential of cascaded nonlinear processes in 

advancing technologies ranging from telecommunications to quantum computing. 

 In a higher-harmonic generation (HHG) process, a nonlinear optical interaction 

occurs where intense laser light interacts with a medium, generating harmonics at integer 

multiples of the incident frequency (e.g., ). This phenomenon arises from the 

nonlinear polarization induced in the material, typically described by higher-order terms in the 

susceptibility tensor  (see, for example, equation (A.51)). At high intensities, the electric 

field of the laser drives electrons in the medium to oscillate nonlinearly, leading to the emission 
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of coherent radiation at harmonic frequencies [53]. This effect is most commonly observed in 

gases, where ionization and recombination of electrons generate attosecond pulses, but it also 

occurs in solids and plasmas under specific conditions [90]. The physical mechanism can be 

understood through the three-step model: ionization, acceleration, and recombination, which 

explains the generation of high-energy photons [91]. For instance, in the theoretical work of N. 

Nishizawa, was derive wave equations for fifth-harmonic generation (FHG) in cubic 

centrosymmetric crystals in direct and indirect processes when an incident electric field 

propagates along a cubic axis [98]. Figure 10 (b), illustrates the energy diagram scheme for a 

direct FHG process in cubic centrosymmetric crystal.   

 HHG process has revolutionized fields such as attosecond science, enabling the study 

of ultrafast electron dynamics in atoms, molecules, and solids [99]. Additionally, HHG serves 

as a critical tool for producing coherent EUV and soft X-ray sources, which are essential for 

advanced imaging, lithography, and spectroscopy applications [100]. Recent advancements in 

HHG from solid-state materials and nanostructures further expand its potential for compact, 

tabletop light sources in quantum optics and photonic integrated circuits [101]. 

 The objective of this section was briefly discuss nonlinear higher-order processes in 

nonlinear materials, with a focus on the cascade process and high-order harmonic generation 

(HHG), particularly emphasizing the fifth-order direct process, both of which are crucial for 

technological development. Additionally, we aim to provide the reader with some standard and 

up-to-date literature on this subject. For completeness, in the next section we will discuss 

nonlinear scattering, a fundamental nonlinear process that enables frequency generation 

through scattering. 

A.2.5 Nonlinear Scattering 

 Nonlinear scattering encompasses a variety of optical phenomena where the interaction 

of light with a medium results in the generation of new frequencies or altered propagation 

directions due to nonlinear effects. Among these, hyper-Rayleigh scattering (HRS) stands out 

as a second-order nonlinear process that generates scattered light at the second harmonic 

frequency ( ) of the incident beam [101]. Unlike SHG, which requires a non-centrosymmetric 

medium (see section A.2.2), HRS can occur in isotropic materials, including liquids and 

nanoparticles, making it a versatile tool for probing molecular and nanoscale structures [102]. 

The physical basis of HRS lies in the nonlinear polarization induced by the incident electric 

field, which drives dipole oscillations at the second harmonic frequency, leading to coherent 
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scattering [53]. This effect has found significant applications in characterizing the nonlinear 

optical properties of materials, such as molecular hyperpolarizabilities and the symmetry 

properties of nanoparticles [103]. Additionally, HRS is employed in biological imaging and 

sensing, where its sensitivity to local symmetry and environment provides unique insights into 

complex systems [104, 105].  

 This section focuses on the mathematical principles, measurement techniques, and 

technological applications of HRS, highlighting its role in advancing nonlinear optics and 

material science.  

 The HRS phenomenon is a second-order nonlinear optical process mathematically 

described through the nonlinear polarization tensor  as previously defined in equation 

(A.54). In the HRS process, the incident electric field  induces a dipole moment oscillating 

at the second harmonic frequency , which radiates scattered light. The intensity of the 

scattered second harmonic light  is proportional to the square of the induced nonlinear 

polarization: 

. (A.87)  

For an isotropic medium or a suspension of nanoparticles, the second-order susceptibility  is 

averaged over all orientations, leading to a dependence on the molecular 

hyperpolarizability , which describes the second-order nonlinear response of individual 

molecules or particles [53]. Then, the scattered intensity can be expressed as: 

, (A.88)  

where  is the number density of scatterers,  is the orientationally averaged square of the 

hyperpolarizability, and  is the intensity of the incident light at frequency  [102]. The 

angular distribution of the scattered light depends on the scattering geometry and the symmetry 

of the scatterers, with HRS typically being observed in a direction perpendicular to the incident 

beam to minimize background signals [101].  

 The measurement of HRS involves detecting the scattered second harmonic light and 

analyzing its intensity and polarization properties. This allows for the determination of the 

hyperpolarizability , which provides insights into the molecular structure and symmetry of the 

scatterers [106]. HRS is particularly useful for studying systems where traditional SHG is not 

feasible, such as isotropic liquids or randomly oriented nanoparticles, making it a powerful tool 

for characterizing nonlinear optical materials and biological systems [107, 108].  
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 In the work by C. N. Prasad and D. J. Williams titled “Introduction to Nonlinear Optical 

Effects in Molecules and Polymers”, readers can find comprehensive theoretical foundations 

and general principles of HRS. This book provides a strong background on nonlinear optics and 

molecular hyperpolarizabilities and is cited as a reference [108]. For detailed examples of 

optical setups and experimental techniques used to measure HRS signals, refer to the seminal 

paper by K. Clays and A. Persoons, reference [103]. This work clearly describes the 

experimental setup for measuring HRS signals, which includes using a focused laser beam, 

detecting at 90 degrees to the incident beam to minimize background noise, and calibrating the 

system with reference materials. The paper also discusses applications of HRS in characterizing 

molecular hyperpolarizabilities and the nonlinear optical properties of materials [103]. 

Additionally, for further details on experimental setups, references [105], [109], and [110] offer 

examples of optical configurations used in practice. 

 This section concludes the discussion on light-matter interaction in the nonlinear 

regime. The aim was to explore the fundamental aspects of phenomena that occur when higher-

order terms of the polarization tensor become significant, with a focus on second- and third-

order nonlinearities. The goal was to present the essential mathematical concepts related to 

these phenomena, highlight their technological applications, and provide up-to-date literature 

for further study.   
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APPENDIX B: THERMAL EFFECTS IN Z-SCAN EXPERIMENTS 

 In Z-scan experiments, thermal effects arise when the absorption of laser light by a 

material leads to localized heating, causing variations in the refractive index – a phenomenon 

known as thermal lensing [1]. This effect can significantly influence the accuracy of 

measurements, particularly when distinguishing between electronic and thermal contributions 

to the nonlinear optical response. Materials with inherent linear absorption can convert incident 

laser energy into heat, leading to temperature gradients and refractive index changes. Laser 

sources with high repetition rate can cause cumulative heating, as the material may not have 

sufficient time to dissipate heat between pulses, enhancing thermal lensing effects [2].  

 To address thermal lensing effects, several strategies can be employed. One effective 

method is to reduce the laser repetition rate, which allows more time for heat dissipation 

between pulses and helps minimize cumulative thermal effects [3]. Additionally, using pulse 

pickers or mechanical choppers can be beneficial; these devices reduce the effective repetition 

rate and selectively transmit pulses, thereby decreasing the average power and associated 

heating [4]. Another viable approach is to utilize shorter pulse durations by implementing 

femtosecond laser pulses. This technique limits heat diffusion during the pulse duration, 

resulting in reduced thermal effects compared to longer pulses [5, 6]. 

 Additionally, the use of time-resolved techniques, such as time-resolved Z-scan 

methods, can help distinguish between fast electronic responses and slower thermal effects by 

analyzing the temporal dynamics of the nonlinear response [7]. For example, studies have 

utilized femtosecond time-resolved Z-scan methods to investigate NLA and NLR in various 

materials, enabling the separation of electronic and thermal contributions to the nonlinear 

response [8]. The time-resolved Z-scan technique is an advanced modification of the standard 

Z-scan method, designed to investigate the temporal dynamics of nonlinear optical properties 

in materials. By incorporating a temporal dimension, this technique enables the differentiation 

between ultrafast electronic responses and slower processes such as thermal effects or 

molecular reorientations [9].  

 Typically in a time-resolved Z-scan method, a pump-probe setup is employed, where 

an ultrafast pump pulse excites the sample, and a time-delayed probe pulse measures the 

induced changes in transmittance as the sample is translated along the beam’s propagation axis 

( -axis) [10] – see for instance Figure B.1 By systematically varying the delay between the 

pump and probe pulses, one can construct a temporal profile of the material’s nonlinear 
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response, providing insights into both the magnitude and relaxation dynamics of the observed 

nonlinearities [11]. This method has been crucial for investigating, nonlinear time-dependent 

effects, such as carrier relaxation in semiconductors and the dynamics of nonlinear refraction 

in various materials [11]. It enables a more accurate characterization of ultrafast optical 

phenomena.  

Figure B.1 – Example of a two-color time-resolved Z-scan setup.  

 

Source: The author (2025). 

 Figure B.1 illustrates a two-color time-resolved Z-scan method usually used to infer 

nondegenerate nonlinearities in diverse materials [12]. One can choose a strong pump beam to 

generate the nonlinearity resonant with the linear absorption of the material, while probing with 

a weak laser beam in a non-resonant material’s absorption window. The NLR process can be 

achieve via a cross-phase modulation process (XPM) and measured through a CA Z-scan 

configuration [13]. In this scenario, thermal load arises from one-photon absorption of the pump 

beam, leading to heat accumulation, as we consider the material does not thermalize between 

successive pulses. Of course, other parameters, such as temporal pulse width and high-

repetition-rate lasers, also influence this analysis. This heat loading makes thermal effects time-

dependent. Figure B.2 illustrates the time evolution of the transmittance pattern using a time-

resolved Z-scan approach, demonstrating a material that exhibits a thermal load effect. Figure 

B.2 exhibits CA transmittance patterns for different time-delays ( ).  

 When, , no thermal load is present and the transmittance goes to zero (as shown 

by red curve in Figure B.2). As  increases, thermal accumulation begins, causing the variation 

of the peak-valley transmittances to rise until they reach a maximum value at  

(illustrated by the purple continuous curve in Figure B.2). The material represented in this figure 

demonstrates a self-defocusing refractive nonlinearity, which is characteristic of the thermal-

lensing effect. For comparison purposes, the purple dashed curve in Figure B.2, shows the 

instantaneous pure electronic response of a material for all  values clarifying that electronic 
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responses are not time-dependent and the peak-valley pattern are the same for all times. It is 

worthy to mention that in some materials, such as certain organic molecules or liquids, the 

bound electronic Kerr effect can be negative ( ) [14]. This leads to self-defocusing 

behavior, as illustrated in Figure B.2. The insert in Figure B.2, shows the OA Z-scan pattern 

for a pure electronic 2PA material, and in this case, the OA signal should remain constant across 

time delays. 

Figure B.2 – CA transmittance curves for different time-delays ( ) for a two-color time-resolved Z-scan. The 

continuous lines represent the medium nonlinear thermal responses, while the dashed lines are the instantaneous 

electronic responses. Insert: OA transmittance curves. The time-delays are in arbitrary units. 

 

Source: The author (2025). 

 In summary, thermal effects in Z-scan measurements can significantly alter the 

interpretation of NLO properties, particularly in high-repetition-rate experiments or materials 

with slow thermal diffusion. These effects manifest as asymmetric CA traces, delayed nonlinear 

absorption, and long-lived refractive index changes. To mitigate thermal accumulation, several 

strategies can be employed, including reducing the laser repetition rate, using short pulse 

durations, implementing choppers or gated detection systems, and selecting materials with high 

thermal diffusivity. Alternatively, the time-resolved Z-scan separates instantaneous Kerr, free-

carrier, and thermal contributions (see references [12] and [13] for more details). 
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APPENDIX C: ALTERNATIVE Z-SCAN METHODS 

 The standard Z-scan technique has become a fundamental tool for measuring the NLO 

properties of materials, particularly the third-order nonlinear refractive index ( ) and nonlinear 

absorption coefficient ( ). However, while the conventional Z-scan is highly sensitive and 

widely applicable, certain experimental conditions – such as strong nonlinear absorption, 

ultrafast optical responses, anisotropic nonlinearities, and high-repetition-rate laser sources – 

demand modifications to the original method. To address these challenges, various alternative 

Z-scan techniques have been developed over the years to enhance sensitivity, improve 

accuracy, and facilitate new types of nonlinear measurements. This subsection aims to 

introduce the different variations of the Z-scan technique, outlining when each method is most 

suitable.  

 One significant extension of the Z-scan technique is the eclipse Z-scan, which 

introduces an additional spatial filter to enhance the detection of small nonlinear phase shifts, 

increasing sensitivity for weak nonlinearities [1]. Instead of using a small aperture in the 

detection plane, this technique employs an opaque disk to partially block the transmitted beam, 

increasing the detection sensitivity to small phase distortions [2]. This approach is particularly 

effective for materials with low nonlinear refractive indices, where the conventional CA Z-scan 

may not provide sufficient contrast [3]. The eclipse Z-scan technique can increase the sensitivity 

by a factor of 10 to 100 times compared to the conventional Z-scan method, depending on the 

experimental conditions and the material being studied [4]. Studies have demonstrated that the 

eclipse Z-scan can significantly improve the measurement of nonlinear refraction in materials 

such as CS2 and ZnSe, offering better signal-to-noise ratios and enhanced accuracy for weak 

nonlinearities [5]. 

  The two-color Z-scan method extends the standard Z-scan by using separate pump and 

probe beams at different wavelengths, as shown previously in Figure B.1 This two-color 

configuration allows for the measurement of nondegenerate nonlinearities, such as cross-

phase modulation (XPM) and nondegenerate two-photon absorption [3]. This technique is 

particularly valuable for characterizing materials in optical communication and ultrafast 

photonic applications. By introducing a controlled time delay between pump and probe pulses, 

a two-color time-resolved Z-scan can be established, as discussed in APPENDIX B. Time-

resolved Z-scan techniques provides insight into the temporal evolution of nonlinear responses, 

allowing for the differentiation between instantaneous electronic nonlinearities from slow free-
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carrier and thermal effects [6]. This capability is crucial for ultrafast optics and the nonlinear 

characterization of semiconductors.  

 For experiments using high-repetition-rate lasers, thermal-managed Z-scan 

techniques have been introduced to minimize cumulative heating effects that can distort 

nonlinear measurements. These approaches involve modulated excitation schemes, sample 

cooling systems, or alternative normalization procedures to account for residual heat buildup 

[3]. One clever alternative to deal with the thermal load effect is the thermally managed 

eclipse Z-scan technique, an advanced variation of the conventional Z-scan method, designed 

to improve sensitivity and enable the differentiation between thermal and non-thermal 

nonlinearities in optical materials. Figure C.1 shows a typical thermally managed eclipse Z-

scan setup. 

Figure C.1 – Thermally managed eclipse Z-scan setup. The transmittance signals measured by PD1 are trigged 

with the chopper frequency and send to a digital oscilloscope for processing. PD2 is a reference photodetector to 

correct pulse-to-pulse fluctuations. One can measure the OA Z-scan signal by removing the disk or add a new 

detection arm by adding a beam splitter before the disk. 

 

Source: The author (2025). 

 The thermally managed eclipse Z-scan method introduces two key modifications. First, 

instead of using a small aperture to detect beam distortions, it employs an eclipse configuration 

to enhance sensitivity. This improved sensitivity allows for the detection of weaker NLO 

effects, such as those in biomolecules or low-nonlinearity materials [7]. Second, the technique 

incorporates a thermal management strategy using a chopper, which modulates the incident 

laser beam and enables time-resolved measurements of the nonlinear signal at different 

positions relative to the focus [6, 7]. By analyzing the time evolution of the Z-scan signal, this 

approach differentiates between fast electronic nonlinearities and slower thermal nonlinearities, 

which accumulate over time [6 – 8]. In contrast, conventional Z-scan methods typically do not 

provide this temporal discrimination, making it difficult to separate electronic and thermal 
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contributions, especially when using high-repetition-rate laser sources. Figure C.2 illustrates 

the theoretical transmittance curves expected for CA thermally managed eclipse Z-scan 

experiment. 

Figure C.2 – Theoretical CA Z-scan curves for a thermally managed eclipse Z-scan. The thermal evolution times 

are expressed as time factors ( ), which indicate various stages in the development of thermal nonlinearity. The 

time variable is normalized by the chopper period. Insert: Chopper voltage signal. The normalized chopper 

voltage signal features a 50% duty cycle and a rising time of 5% relative to the chopper period. 

 

Source: The author (2025). 

 The blue curve in Figure C.2 exemplifies a fast electronic nonlinearity that occurs within 

a duration 10 times longer than the chopper’s rising time. After this initial period, the phase 

shift caused by the thermal lensing effect becomes predominant. It is important to note that, in 

this Z-scan setup, the transmittance curves display peak-valley or valley-peak patterns contrary 

to the standard Z-scan method. For instance, the self-focusing electronic nonlinearity response 

appears as a “self-defocusing” effect in the transmittance pattern. Additionally, the electronic 

and thermal refractive nonlinearities exhibit opposite signals. For example, at  the total 

nonlinear phase reaches zero, resulting in the cancellation of the transmittance changes. 

 The polarization-resolved Z-scan (PRZS) technique is an advanced version of the 

conventional Z-scan method, designed to distinguish and quantify different types of nonlinear 

optical effects, such as electronic, orientational, and thermal nonlinearities, by exploiting their 

distinct responses to laser polarization [9, 10]. In the PRZS setup, a quarter-wave plate is added 

to control the polarization state of the laser beam, allowing measurements to be taken with both 

linear and circular polarizations [10]. The key difference lies in the fact that the PRZS technique 

explores the tensor nature of the third-order nonlinear susceptibility, where different nonlinear 

effects exhibit unique polarization dependencies. For instance, the ratio of the Z-scan signal 

( ) between linear and circular polarizations varies for electronic ( ), orientational ( ), 
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and thermal ( ) nonlinearities [9, 10]. This enables the discrimination and quantification of 

mixed nonlinear effects, which is not possible with the conventional Z-scan method that 

typically uses only linear polarization. Additionally, the PRZS technique can be combined with 

varying laser repetition rates to further isolate and measure cumulative thermal effects, 

providing a more comprehensive characterization of nonlinear optical materials [10, 11]. 

 The PRZS setup is similar to the conventional Z-scan configuration but incorporates 

additional elements to control and analyze the polarization state of the laser beam. As described 

in [10], the setup includes a broadband quarter-wave plate ( ) placed before the sample to 

switch between linear and circular polarization states. The sample is scanned along the beam 

propagation direction ( -axis) through the focal region, and the normalized transmittance is 

measured using a photodetector with an adjustable aperture. The use of a mechanical chopper 

and a lock-in amplifier ensures low-noise measurements, independent of the laser repetition 

rate [10]. This setup allows for precise control over the polarization state and enables the 

detection of subtle differences in the nonlinear response of the material under study. Figure C.3 

illustrates a typical PRZS apparatus.   

Figure C.3 – Typical polarization-resolved Z-scan setup. The transmittance signal measured by PD is triggered 

with chopper frequency using a lock-in amplifier (not shown in the figure) and connected to a computer for 

signal processing. 

 

Source: The author (2025). 

 Another intriguing variation of the Z-scan technique is the photoacoustic Z-scan (PAZ-

scan). This method adapts the conventional Z-scan approach to measure nonlinear optical 

properties by detecting photoacoustic signals instead of transmitted or reflected light intensity. 

In this technique, a modulated laser beam is focused onto a sample, which moves along the 

optical axis ( -direction), causing localized absorption and subsequent thermal expansion that 

generates acoustic waves [12]. A microphone or piezoelectric detector captures these signals, 

providing information about the sample’s nonlinear absorption and thermal properties [12, 13]. 

Unlike conventional Z-scan, which relies on changes in light transmission through the sample 

to determine nonlinear absorption and refraction, the PAZ-scan is highly sensitive to non-
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radiative relaxation processes and can be used in optically scattering or highly absorbing media 

where traditional methods struggle [12, 13]. This makes it particularly useful for biological 

samples and materials with strong optical absorption. 

 For instance, Maldonado et al. (2020) characterized the nonlinear optical and relaxation 

properties of layered transition metal dichalcogenides (LTMDs) using conventional Z-scan and 

PAZ-scan techniques. This study provides a comprehensive overview of the experimental setup 

for the PAZ-scan, as well as the theoretical methods used to extract information from the 

experimental data obtained through PAZ-scan [14]. 

 Among the alternative techniques to the conventional Z-scan method previously 

discussed, the Hartmann-Shack (HS) wavefront sensing approach stands out as a powerful and 

versatile tool for characterizing third-order nonlinear optical (NLO) properties, particularly the 

nonlinear refractive index 𝑛2. Unlike the standard Z-scan – which relies on monitoring far-field 

transmittance changes as a sample moves through the focal region of a laser beam – the HS 

technique directly measures wavefront distortions induced by nonlinear phase shifts in the 

material when exposed to intense light.  

 The HS sensor comprises a microlens array that decomposes the incoming wavefront 

into localized tilts, which are then reconstructed using Zernike polynomials. Among these, the 

defocus Zernike coefficient (typically labeled 𝐶5 or 𝑍2
0) is most sensitive to changes in beam 

curvature resulting from nonlinear refraction. Two main configurations of the HS method have 

been reported: the collimated beam configuration, where a uniform beam probes the sample at 

varying intensities, and the HS Z-scan, which mimics the traditional Z-scan geometry but 

replaces the far-field aperture and detector with the HS sensor. One key advantage of the HS 

approach is its insensitivity to intensity fluctuations, sample misalignments, and imperfections 

– common issues that can degrade the accuracy of conventional Z-Scan measurements [15]. 

Moreover, the HS technique allows for simultaneous measurement of wavefront distortion and 

beam transmittance without moving parts in some configurations, which simplifies the 

experimental setup. In addition, because the HS method analyzes the entire beam profile, it can 

potentially detect subtle changes in wavefront curvature at lower intensities than the threshold 

required for conventional Z-Scan detection, particularly in cases where transmittance variations 

are below the detection limit due to laser noise. 

 Experimental validation of the technique has shown that the defocus Zernike coefficient 

linearly correlates with the laser intensity, allowing the extraction of 𝑛2 values for materials 
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such as CS₂ and quartz. Notably, the HS method was sensitive enough to detect both the 

magnitude and the sign of 𝑛2, including thermal nonlinearities induced at high repetition rates 

[16]. For example, in carbon disulfide, the HS method successfully distinguished electronic 

(positive 𝑛2) and thermal (negative 𝑛2) contributions depending on the laser repetition rate. 

Additionally, the HS technique has been applied to more complex nanomaterials. In particular, 

it was used to measure the effective nonlinear refractive index of electric-field-aligned gold 

nanorods suspended in an index-matching oil. This study demonstrated that the nonlinear 

response could be modulated by as much as 60% through controlled alignment, with the 

nonlinear refractive index linearly dependent on the orientational order parameter 𝑆 [16]. This 

underscores the technique’s utility not only in static characterization but also in dynamic and 

reconfigurable NLO systems. 

 Thus, the HS wavefront sensing technique offers several distinct advantages such as 

higher robustness to noise and fluctuations, the ability to simultaneously analyze transmittance 

and phase, and suitability for dynamic systems. These features make it a promising tool for 

studying both fundamental NLO properties and practical applications in emerging photonic 

materials. 

 In conclusion, alternative Z-Scan techniques offer distinct advantages that broaden the 

method’s applicability beyond its traditional limitations. This appendix aimed to discuss the 

principles, experimental implementations, and specific benefits of these alternative Z-scan 

techniques, providing the reader with a comprehensive understanding of the variety available 

in literature. 
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