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RESUMO

Definir a resolução correta de imagem para digitalização de documentos é essencial para
garantir a preservação precisa de todas as informações necessárias e, ao mesmo tempo, otimi-
zar a eficiência de aquisição, o tempo de processamento, a demanda de armazenamento e a
largura de banda de transmissão. É fundamental que a resolução de digitalização garanta que
o documento digitalizado, quando impresso em alta resolução nas dimensões originais, mante-
nha integralmente as informações do documento original, de forma a propiciar a preservação
e manutenção da informação. Apesar de sua importância para a engenharia e preservação de
documentos, os atuais padrões e recomendações de digitalização baseiam-se predominante-
mente em evidências experimentais e conhecimento empírico. Considerando esses parâmetros,
a questão crucial “Qual é a resolução de digitalização mais adequada para documentos?” foi
recentemente levantada pelo Professor George Nagy, um dos pesquisadores pioneiros na Enge-
nharia de Documentos, destacando uma preocupação de longa data que não foi devidamente
esclarecida pela comunidade de pesquisa. Este trabalho propõe uma resposta fundamentada
nos princípios do teorema de Nyquist-Shannon da Teoria da Informação, esta abordagem tem
por objetivo fornecer uma fundamentação teórica para a definição adequada da resolução na
digitalização de documentos, de forma a assegurar a preservação das informações.

Palavras-chaves: Resolução de imagem. Digitalização de documentos. Teorema de Nyquist-
Shannon



ABSTRACT

Defining the correct image resolution for document digitization is essential to ensure the accu-
rate preservation of all necessary information while optimizing acquisition efficiency, processing
time, storage demand, and the transmission bandwidth. It is crucial that the digitization res-
olution ensures that the digitized document, when printed in a high resolution at its original
dimensions, fully retains the information from the original document, thus enabling the preser-
vation and maintenance of the information. Despite its importance for document engineering
and preservation, current digitization standards and recommendations are predominantly based
on experimental evidence and empirical knowledge. Considering these parameters, the crucial
question, “Which is the most suitable resolution for document digitization?” was recently
raised by Professor George Nagy, one of the pioneers in Document Engineering, highlighting
a long-standing concern that has not been adequately addressed by the research community.
This work proposes an answer based on the principles of the Nyquist-Shannon theorem from
Information Theory, this approach aims to provide a theoretical foundation for determining the
appropriate resolution for document digitization, ensuring the preservation of information.

Keywords: Image resolution. Document digitization. Nyquist-Shannon Theorem.
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1 INTRODUCTION

The correct determination of scanning resolution is essential to ensure that all information
present in a document, especially in historical documents, is accurately captured. According
to The Library of Congress (2014), the choice of spatial and tonal resolution directly impacts
the quality of document preservation in digital images. If the scanning resolution is set too
low, critical elements of the document may be lost, conversely, excessively high resolution
drastically increases scanner acquisition time yielding too large images that are slow to process
and claim unnecessary storage space and computer bandwidth for network transmission.

Back in 1991, Rafael Dueire Lins was challenged by Graziela Peregrino, head of the Docu-
mentation Department of the Joaquim Nabuco Foundation in Recife, Brazil, to find a way to
preserve all the information on the rich file of letters of Joaquim Nabuco1 to future generations
Lins (2011). Using the only scanner available at the Universidade Federal de Pernambuco in
Brazil then, Lins digitized several letters of Joaquim Nabuco in 75, 150, 200, 300, 500, and 700
dpi in true-color and printed the images using a high-quality color laser printer. The printed
documents were handed to the documentation experts of the Joaquim Nabuco Foundation,
who concluded that the 150 dpi images had good enough quality to preserve all the infor-
mation of the original document. As there was a huge international interest in the letters of
the Nabuco bequest by social science researchers from all over the world, the 200 dpi scan-
ner resolution was adopted by then, as it was compatible with FAX-machine standards, the
technology available to send documents via computer/phone networks.

Over the years, prominent institutions dedicated to document digitization and preserva-
tion, including The Digital Library Federation Benchmark Working Group (2002), The Library
of Congress (2014) and Forschungsgemeinschaft (2016), have conducted empirical studies to
identify and recommend optimal scanning resolutions for different document types. The tech-
nical guidelines provided by those institutions are primarily based on visual inspection of the
images generated in which documents were scanned at different resolutions, with the optimal
resolution selected based on the visual “quality” of the resulting images. Among the findings,
it is possible to observe a consensus of approximately 300 dpi as the ideal minimum resolution
for grayscale and RGB-mode documents. According to Puglia et al. (2004), this resolution
can also serve as a baseline for other document types, such as illustrations, maps, plans, ma-
1 Brazilian statesman, writer, and diplomat, the first Brazilian ambassador to the U.S.A, one of the key

figures in the campaign for freeing black slaves in Brazil (b.1861-d.1910).
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nuscripts, and large-format documents. Despite the agreement of using 300 dpi among those
important institutions, there is no technical justification beyond empirical data analysis to
support such recommendations.

During the welcome reception of the International Conference on Document Analysis and
Recognition (ICDAR) 2023, Professor George Nagy asked Daniel Lopesti and Rafael Dueire
Lins, the fundamental question: “Which is the most suitable scanner resolution for docu-
ments?”. Rafael Dueire Lins promptly answered that the proper way to determine the reso-
lution, considering the maintenance and preservation of information, would be through the
Nyquist-Shannon theorem. Such answer was immediately acknowledged as providing the cor-
rect solution to the problem.

Whenever converting an analog signal into a digital representation two phases are involved.
The first one is determining the number of samples one must take. As explained by Lathi
(2005), the Nyquist-Shannon Theorem (1938) teaches that any (continuous) signal sampled
with twice its maximum frequency may be re-constructed without losses. The second step in the
digitization process is the quantization error, the maximum error tolerated in the representation
of each sample.

Although the response given was immediately recognized as providing the solution to the
question, as the theorem provides a theoretical basis for defining the minimum resolution
required to capture all document details without information loss, ensuring that all the details
of the document are retained whenever viewed or printed on the original size the validity of
the solution had still to be proved. The suggested solution needed to be detailed and proved
correct, which motivated the research developed in this dissertation.

The initial results of this dissertation Lins et al. (2024) was originally published in a short
paper in the proceedings of the ACM Symposium on Document Engineering 2024 (DocEng’24),
which was sent to Professors George Nagy, Daniel Lopesti, and Elisa Barney-Smith. Professor
Nagy main feedback was:

“... your experiments provide reassurance about the adequacy of generally accep-
ted digitization parameters. Testing both bi-level and color scans, and using the
spectral density for estimating the range of image frequencies, seem sound.”

Professor Elisa Barney-Smith informed us that:
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“It is an interesting paper. It was the topic of a WG at the DAS 2002 workshop,
but no detailed experiments were run, just a discussion and WG report paper
(published in IJDAR in 2004).”

Besides that, Professor Barney-Smith listed some important papers of hers on image scan-
ning Barney-Smith (1998), Barney-Smith and Andersen (2005) showing that the quality of
scanner output has evolved drastically:

“Some information about the scanner itself can be measured through the use of
various test targets, including a simple knife edge (to return the step response of
the optics). See several of my early papers where I spent a lot of time exploring
this. Scanners today are much higher quality than scanners 30 years ago, we have
the disk space and the processing power to process over-sampled images, so it
isn’t as critical today, but people still explore the scanner optics.”

This point raised by Professor Barney-Smith is very important because the Shannon-
Nyquist theorem does not address quantization errors. But it is also relevant to notice that such
errors are device-dependent and that their effect would be more noticeable in higher-resolution
images. Another concern raised by Professor Barney-Smith was:

“Another point you should mention in future papers would be a discussion of
WHAT information you want to extract from a scan of a document. You touched
on this when you mentioned historical documents vs maps... If it is just the text
content, it has a much lower frequency content than if one were looking at the
paper fibers of the same document.”

It is important to stress here that this paper aims to determine the “correct” scanner
resolution to keep all the document information making a high-definition same-size print of
the scanned document indistinguishable from the original. However, on two occasions scanning
documents in 300 dpi was enough to distinguish the age of documents as described by Barboza,
Lins and Jesus (2013) and even to detect frauds with latter-added strokes in hand-written
documents as detailed by Barbosa et al. (2014).

This dissertation also widens the scope of Lins et al. (2024) in two ways. The first one
was the inclusion of more complex and fine-detailed images that employ tiny fonts that would
generate very high-frequency components. The second path uses Optical Character Recognition
(OCR) to analyze how the resolution variation affects the recognition rate.
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1.1 OBJECTIVES

The general objective in this dissertation is to bring a theoretical basis and show evidences
that the most suitable resolution for document digitization are based on the principles of the
Nyquist-Shannon theorem from Information Theory and ensure the accurate preservation of
all necessary document information. Thus, this dissertation expands the scope of the study
published in Lins et al. (2024), incorporating new experiments, additional images and detailed
analyses.

Such target is reached by:

• Enlarging and evaluating the datasets of document used considering a diversity of detai-
led images, including those with tiny fonts and high-frequency components, at multiple
resolutions to represent a much wider range of document types in the experiments per-
formed.

• Investigating the effects of the binarization process in enhancing the recognition of text
and fine details at different resolutions.

• Using OCR tools to evaluate the impact of resolution on recognition rates, using the
Levenshtein Distance to analyze the effects of scanner resolution in the accuracy of the
transcription of the texts.

• Experimentally validating the Nyquist-Shannon theorem as a basis for determining op-
timal scanner resolution, considering several practical implications.
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2 THEORETICAL BACKGROUND

According to Gonzalez and Woods (2018), in the context of digital image processing,
an image can be described as a two-dimensional function, f(x,y), where x and y represent
spatial coordinates of a plane and the amplitude of f is referred to as the intensity or gray
level of that specific point. If x, y and the intensity values of f are all finite and discrete, the
image is considered a digital image. The value of f at spatial coordinates (x, y) is regarded
as a scalar quantity physically determined by the image source, with values being proportional
to the energy of the image. Most images are acquired through the interaction between the
lighting source falling on the scene and the reflection or absorption of energy carried out by the
elements within the photographed scene. Thus, the function f(x,y) can be characterized as the
outcome of the combination of the illumination and reflectance elements, defined respectively
by i(x,y) and r(x,y):

𝑓(𝑥, 𝑦) = 𝑖(𝑥, 𝑦)𝑟(𝑥, 𝑦) (2.1)

where
0 ≤ 𝑖(𝑥, 𝑦) < ∞ (2.2)

and
0 ≤ 𝑟(𝑥, 𝑦) ≤ 1 (2.3)

Gonzalez and Woods (2018) asserts that reflectance is determined by the properties of
the imaged objects and constrained between 0 (indicating total absorption) and 1 (indicating
total reflectance). In instances of images formed through transmission, like a chest X-ray,
the function would rely on the transmissivity function rather than the reflectance function.
However, the boundaries remain consistent, and the image function remains represented as
the product in equation 2.1.

Reference Sonka, Hlavac and Boyle (2015) states that computerized image processing relies
on digital image functions. Therefore, an image must be represented using suitable discrete
data, such as a matrix. In Figure 1, there is a representation of a digital image acquisition
process using array sensors. In such an example, the imaging system collects the incoming
energy and focuses it onto an image plane. Since the array sensor coincides with the focal
plane, the resulting outputs will be proportional to each sensor’s integral of the light received.
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These outputs are then converted to an analog signal by digital and analog circuitry, which is
then digitized, resulting in a digital image.

Figure 1 – Representation of an digital image acquisition.

Source: GONZALEZ; WOODS (2018)

Considering the diversity of potential applications for digital image processing, Gonzalez and
Woods (2018) highlights that images can be categorized by source, such as X-ray, visual, and
infrared. The most prevalent energy source utilized today is the electromagnetic spectrum. This
spectrum is grounded in the revelation that the resultant light beam is not white but comprises
a continuous spectrum of colors extending from violet to red. Bushong (2013) describes that
when sunlight passes through a prism, it becomes clear that white light consists of photons
spanning a spectrum of wavelengths, and the prism functions to disperse and organize the
emitted light into colors by refracting various wavelengths through distinct angles. Visible
light comprises only a portion of the electromagnetic spectrum, extending over 25 orders of
magnitude. Figure 2 illustrates the values of energy, frequency, and wavelength and identifies
the three imaging windows of X-ray, visual, and MR imaging according to their associated
values.
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Figure 2 – Representation of different dimensions of pairs of lines.

Source: BUSHONG (2013)

2.1 IMAGE RESOLUTION

Regarding the quality of a digital image, Sonka, Hlavac and Boyle (2015) emphasizes that
it is directly proportional to its resolution. The author defines that the resolution of an image
can be categorized into four main types: spatial resolution, spectral resolution, radiometric
resolution and temporal resolution. This work will focus more specifically on spatial resolution
and its impact on document scanning.

2.1.1 Spatial resolution

Bushberg (2012) states that spatial resolution refers to the ability of an imaging system to
identify small details, that is, to distinguish small nearby elements that have different contrasts
in an image. Sonka, Hlavac and Boyle (2015), highlights that the distance of the samples in
the image plane determines this aspect. Therefore, the higher the spatial resolution, the better
the visualization of details in an image.

Gonzalez and Woods (2018) add that, when considering the measurement of the smallest
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detail discernible in the image, the resolution in space is usually quantified in terms of line
pairs per unit distance or dots (pixels) per unit distance. According to Bushong (2013), a line
pair is defined by a high-contrast line separated by a space of width equal to that of the line.
For radiological images, for example, it is common to use the unit line pairs per millimeter
(lp/mm), referring to the lp/mm present in the image composition. According to Gonzalez
and Woods (2018), one point per unit of distance refers to the size of the pixel present in
the image composition. This measurement is generally used for printing files and is usually
represented by the number of pixels in an inch, using the unit of dots per inch (dpi).

In Figures 3 and 4, respectively, representations of dimensions of pairs of lines and points
(pixels) that can be applied concerning distance to determine spatial resolution are illustrated.

Figure 3 – Representation of different dimensions of pairs of lines.

Source: BUSHONG (2013)

Figure 4 – Representation of different sizes of objects formed by points (pixels).

Source: BUSHONG (2013)



21

In figure 5 it is possible to see an example of the impact generated in an image at different
spatial resolutions, considering the image at resolutions of 930 dpi, 300 dpi, 150 dpi, and
72 dpi. Gonzalez and Woods (2018), highlights that the difference in spatial resolution also
affects the size of the image. However, in terms of comparing the impact of spatial resolution,
the images were zoomed in for better visualization.

Figure 5 – Variation of spatial resolution in an image.

Source: GONZALEZ; WOODS (2018)

2.2 HISTORICAL DOCUMENTS IMAGE QUALITY

According to Kenney and Chapman (2001), determining image quality requirements de-
pends on the characteristics of the type of document to be scanned. Capturing a finely detailed
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historical document written in pen and ink, for example, requires a higher resolution to cor-
rectly identify its elements. The author defines that, in general, documents can be classified
into four identification categories as illustrated in table 1.

Table 1 – Documents Category

Document Category Details
TEXTS/DASH Can be produced manually, mechanographed or by ma-

chine. Usually in black and white. Includes books, manus-
cripts, newspapers, reports, typed or laser-printed docu-
ments, architectural plans, maps, line drawings, etchings,
lithographs, and musical scores.

HALF TONE In color or black and white. Reproductions, usually created
from a photograph, made up of small dots or squares or
lines, which are used to represent continuous tones. Most
photographs in publications are halftones.

CONTINUOUS TONE Color or black and white. Includes graphic illustrations in
which all gray and color values can be reproduced: photo-
graphs, crayons, chalk and some pencil drawings, acrylics,
watercolors and photographically reproduced facsimiles.

MIXED Color or black and white. Refers to items containing half-
tone text and images or continuous tone text and images,
such as newspapers, magazines, picture books, programs,
and sheet music covers. Does not include text and line
drawings together.

Source: Prepared by the author based on (KENNEY; CHAPMAN, 2001), 2024

Kenney and Chapman (2001) emphasizes, that in addition to document categories, other
important factors to be considered in the scanning process are: level of detail, type of paper,
level of contrast between ink and paper, sharpness, production process (machine-made or hand-
made) and quality of the document, considering if it is damaged, stained or incomplete. The
quality of the digital image is inherently dependent on the quality of the source. For example,
scanning a blurred image will result in a blurred digital copy, regardless of the resolution. In
addition, the choice of hardware and software used in the digitization process can also influence
the final output.

2.2.1 Historical documents resolution

According to Nagy and Seth (1984), the resolution applied by the scanner in the document
scanning process is defined by the level of detail required in the image. When considering a
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two-level image (black and white), for example, 400 lines per inch would be considered an
adequate value for spatial resolution.

The resolution for scanning documents for printing, according to Gonzalez and Woods
(2018), is defined in terms of dpi. Table 2 contains different categories of documents followed
by their spatial resolution information for printing provided by Gonzalez and Woods (2018)
and Kenney and Chapman (2001).

Table 2 – Documents and their spatial resolutions. (S.R.1 - Spatial Resolution provided by Gonzalez and
Woods (2018), S.R.2 - Spatial Resolution provided by Kenney and Chapman (2001))

Document S. R. 1 S. R. 2
Newspapers ≈ 75 ≈ 120 or 300
Magazines ≈ 133 −
Flyers ≈ 175 ≈ 600
Books ≈ 2400 ≈ 120 or 300
Monographs − ≈ 600
Periodicals − ≈ 600
Office documents − ≈ 300
Tecnical draws − ≈ 600
Maps − ≈ 600
Handwritten materials − ≈ 300

Source: Prepared by the author based on Gonzalez and Woods (2018) and Kenney and Chapman (2001),
2024

2.3 CONTINUOUS-TIME AND DISCRETE-TIME SIGNALS

Gonzalez and Woods (2018) explains that a continuous signal must be converted into
a sequence of discrete values to be processed by a computer, a process that involves both
sampling and quantization. Lathi (2005) emphasizes that continuous-time signals can be ef-
fectively analyzed by processing their discrete samples using discrete-time systems. To ensure
accurate reconstruction of the original signal from its samples, the sampling rate must be suf-
ficiently high, minimizing reconstruction errors. The sampling theorem provides the theoretical
foundation for this process, defining the conditions under which continuous-time signals can
be reliably sampled and reconstructed from their discrete sampled values.

Lathi (2005) further describes sampling theory as the connection between continuous-time
and discrete-time representations. A continuous-time signal is expressed as a sequence of pulses
and is specified in a continuum of time values t, while a discrete-time signal represents the same
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information numerically, as discrete values of t. Thus, both formats represent the same data,
ensuring that each sample’s information is equivalent, regardless of the representation. Some
examples of continuous-time signals include outputs from telephones and analog cameras,
while examples of discrete-time signals include monthly sales figures of a corporation and daily
stock market averages. Figure 6(a) illustrates a continuous function 𝑓(𝑡) sampled at regular
intervals Δ𝑇 , where each sample corresponds to a specific point on the continuous function.
In contrast, Figure 6(b) represents these samples in the discrete 𝑥-domain, where the samples
are indexed sequentially by integers (0, 1, 2, and 3) instead of their exact positions in time.
This highlights that the sampled values at these points remain the same, ensuring information
equivalence between the two domains.

Figure 6 – (a) Left figure: Continuous function 𝑓(𝑡) sampled Δ𝑇 units apart.
(b) Right figure: Samples in the 𝑥-domain, where 𝑥 is discrete.

Source: GONZALEZ; WOODS (2018)

2.4 THE NYQUIST-SHANNON THEOREM

According to Lathi (2005), the basis of the Nyquist-Shannon Theorem is the Sampling
Theorem, originally known as the “Interpolation Formula”. Siebert (1986) describes that the
general formulation of the “Sampling Theorem” was credited by H. S. Black to Cauchy in
1841 and around the 1920s, Nyquist, Carson, and Hartley revisited and refined the established
concepts, laying the foundation for modern communication theory.

In 1948, the work of C. E. Shannon further formalized and popularized the theorem, Shan-
non (1949) even points out in his work that the theorem had already been portrayed previously
by mathematicians in other forms, but had not appeared explicitly in the communication the-
ory literature until Nyquist returned to work on the essential idea of the theorem and stated
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that, considering a 𝑓(𝑡) limited in bandwidth to a maximum frequency 𝑊 and limited to the
time interval 𝑇 , with samples taken at intervals of 1

2𝑊
seconds apart, a total of 2𝑇𝑊 samples

will fully capture the information within the interval. Therefore, approximately 2𝑇𝑊 numbers
are enough to specify the function, based on a Fourier series expansion over the time interval
𝑇 .

A band-limited function is defined as a function 𝑓(𝑡) whose Fourier transform is zero for
frequency values outside a finite interval [−𝜇𝑚𝑎𝑥, 𝜇𝑚𝑎𝑥], as described by Gonzalez and Woods
(2018). This restriction implies that, for a function to be confined within a specific time interval
𝑇 , all frequency values outside this range must be zero, as stated by Shannon (1949).

Shannon articulated the theorem as follows:

If a function of time 𝑓(𝑡) is limited to the band from 0 to 𝑊 cycles per
second, it is completely determined by giving its ordinates at a series of
discrete points spaced 1

2𝑊 seconds apart (SHANNON, 1948, p. 34).

According to Lathi (2005), the samples can be taken arbitrarily at any instants, resulting in
different intervals, as long as the sampling instants are recorded and on average of 2𝐵 samples
per second. Gonzalez and Woods (2018) states that the term Nyquist rate defines a sampling
rate equal to twice the highest frequency.

Based on Lee and Varaiya (2011), figure 7 illustrates an example of a signal sampling and
reconstruction process based on The Nyquist-Shannon Theory in terms of its basis. Each line
of pair graphs in the figure represents a step of the process as follows:

• Step 1: The left image represents the continuous-time original signal 𝑥(𝑡), and the right
image shows its continuous Fourier transform 𝑋(𝑤), where the data is in terms of the
frequency and band-limited to [−𝜋/𝑇, 𝜋/𝑇 ].

• Step 2: The signal 𝑥(𝑡) is sampled at intervals of 𝑇 , resulting in the discrete signal
𝑦(𝑛). On the right, the discrete-time Fourier transform (DTFT) 𝑌 (𝑤) is shown, where
the spectrum is periodically replicated with a period of 2𝜋/𝑇 .

• Step 3: The discrete-time signal 𝑦(𝑛) is converted into a train of impulses 𝑤(𝑡) by the
Impulse Generator. In the frequency domain, 𝑊 (𝑤) represents the scaled and periodic
spectrum 1/𝑇 .

• Step 4: The impulse train 𝑤(𝑡) is filtered by the 𝑆𝑖𝑛𝑐𝑇 function, which is a scaled
version of the sinus cardinalis function, defined as:
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sinc𝑇 (𝑡) = sin(𝜋𝑡/𝑇 )
𝜋𝑡/𝑇

(2.4)

where:

– t = time

– T = the sampling period

This function acts as an interpolation kernel, ensuring that each sampled point contri-
butes correctly to the reconstruction of the original signal. In frequency domain terms,
𝑆𝑖𝑛𝑐𝑇 , performs low-pass filtering, removing spectral replicas and preserving the original
spectrum. Then, the inverse Fourier transform reconstructs the continuous-time signal
𝑧(𝑡), shown on the left, which matches the original signal 𝑥(𝑡).

Figure 7 – Steps in the Nyquist-Shannon sampling theorem.

Source: LEE; VARAIYA (2011)
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2.4.1 The Nyquist-Shannon Theorem applied to Images

In terms of a digital image, Sonka, Hlavac and Boyle (2015) describes that a continuous
function 𝑓(𝑥, 𝑦) can be sampled by applying a discrete grid of sampling points in the plane, or
the image function can also be expanded by applying an orthonormal function as a basis, such
as the Fourier transform, resulting in coefficients of the expansion that represent the digitized
image.

Colarusso et al. (1999) points out that the Nyquist-Shannon theorem is essential to direct
imaging applications, as the signal is sampled through discrete pixel elements in an array.
Sonka, Hlavac and Boyle (2015) also emphasizes that, there is a connection between the digital
sampling density and the details that an image will contain. The Nyquist-Shannon principle
implies that the sampling rate should be at least twice the highest spatial frequency to ensure
accuracy. For example, Colarusso et al. (1999) describes that considering a diffraction-limited
arrangement, the product of the lateral spatial resolution and the total magnification must be
twice the pixel size of the image, as defined by Equation 2.5:

𝑀𝑡𝑜𝑡𝑅𝐿 ≥ 2𝑝 (2.5)

where:

• 𝑀𝑡𝑜𝑡:total magnification

• 𝑅𝐿: lateral spatial resolution

• 𝑝: pixel size

Adhering to the Nyquist rate helps maintain the spatial fidelity of images and prevents
sampling artifacts. In this context, oversampling does not provide additional information, re-
sulting in a scenario commonly referred to as "empty magnification."Conversely, undersampling
below the Nyquist-Shannon limit leads to distortions or artifacts, such as Moiré patterns, a
phenomenon known as spatial aliasing Gonzalez and Woods (2018). Sonka, Hlavac and Boyle
(2015) describes that aliasing happens when there is an overlapping of the periodically repea-
ted results of the Fourier transform 𝑓(𝑢, 𝑣) of an image with band-limited spectrum, a result
that can be prevented by choosing a sampling interval that it is less than half of the smallest
interesting detail in the image.
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Colarusso et al. (1999) explains that the resolution of an imaging device is primarily de-
termined by its maximum capability. In terms of document scanning, Barney-Smith (1998)
points out that the bitmap resulting from a two-level scan depends greatly on the parameters
of the scanner used. The most common and simplest way to digitize a document in companies,
or even at home, is through a flatbed scanner. Federal Agencies Digital Guidelines Initiative
(2016) states that these models are easy to use, versatile and can achieve different resolution
ranges, with values from 75 to 1200 dpi depending on the model used. Therefore, selecting
the appropriate scanner resolution is essential to capture all document details effectively while
avoiding the drawbacks of prolonged image acquisition and processing times, excessive storage
requirements, and unnecessary network bandwidth usage.

2.5 EVALUATION MEASURE

2.5.1 Levenshtein Distance

Defined by Levenshtein (1966) in “Binary codes capable of correcting deletions, insertions

and reversals”, the Levenshtein Distance (LD) refers to the minimal number of insertions,
deletions and replacements needed to to make two strings identical. The metric was proposed
in the context of the code theory to solve problems in detecting and correcting transmission
data. According to Navarro (2001) the Levenshtein distance is also known as Edit distance

and, in a simplified definition, all the operations involved to guarantee the string matching are
assigned as a cost of 1. The LD is widely used in applications such as evaluating spell-checkers,
OCR systems, and DNA sequence analysis.

Shuwandy et al. (2020) defines that mathematically, the Levenshtein distance between two
strings 𝑎, 𝑏 with respectively length of |𝑎| and |𝑏| is given by 𝑙𝑒𝑣𝑎,𝑏 and detailed in Equation
2.6. The 𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) is the distance between the first 𝑖 characters of 𝑎 and the first 𝑗 characters
of 𝑏.
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𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0,

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1, (deletion),

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1, (insertion),

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖 ̸=𝑏𝑗), (match or mismatch).

(2.6)

According to Shuwandy et al. (2020), the first element in the minimum refers to deletion,
the second to insertion and the third refers to the match or mismatch of symbols, depending
on their similarity. The 1(𝑎𝑖 ̸=𝑏𝑗) is the indicator function in the match or mismatch elements,
where:

⎧⎪⎪⎨⎪⎪⎩
1(𝑎𝑖 ̸=𝑏𝑗) = 0 if 𝑎𝑖 = 𝑏𝑗

1(𝑎𝑖 ̸=𝑏𝑗) = 1 if 𝑎𝑖 ̸= 𝑏𝑗

(2.7)

Shuwandy et al. (2020) reports an LD example between the words ‘GEEI’ and ‘GEELY’
to evaluate their similarity, considering ‘GEELY’ as the password of a system. Board 1 shows
that the LD is 2, because of the two last characters.

Board 1 – Example of Levenshtein distance metric

G E E I
G E E L Y

Source: SHUWANDY et al. (2020)
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3 MATERIALS AND METHODS

A distinct set of diversified files, representing the scope of document engineering, was
selected to establish the optimal scanning resolution that balances image quality, processing
time and storage space in document digitization. This selection was referred to as the “Test
dataset"and is broadly divided into two main categories: text-only documents (“Text”) and
documents containing both text and images (“General”). The test dataset includes twenty-
eight distinct documents scanned at resolutions: 75, 150, 200, 300, 500, 700, and 1200 dpi.
These documents are book pages and single paper files in different papers, font styles, sizes,
formats and colors. The content includes:

• Typed Texts, in English, Portuguese and Spanish;

• Handwritten Texts in Portuguese;

• Maps;

• Architectural Plan,

• Images and Illustrations.

In figure 8 it is possible to observe samples of images from the text-only dataset followed
by samples of images from the general dataset in figure 9.

Figure 8 – Samples of images from the Text-only Dataset

Source: The author (2024)
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Figure 9 – Samples of images from the General Dataset.

Source: The author (2024)

The eighteen images of English texts were classified into the “Text Dataset”, while the
remaining ten images were organized into a separate group referred to as the “General Dataset”.
The flowchart in Figure 10 presents the process carried out to prepare each data set for the
Fourier Transform application.

Figure 10 – Datasets Workflow

Source: The author (2024)

As mentioned in the previous section, the Nyquist-Shannon theorem applies to continuous
signals that are bandwidth-limited. It is a principle in Fourier analysis that sharper signals
(those with higher derivatives in the time or spatial domain) exhibit higher frequency com-
ponents. When signals display “discontinuities” in time or space, a phenomenon known as
“frequency overshooting” occurs, resulting in intense oscillations in the frequency domain. By
closely examining a color document image, one observes that the pixel colors at boundaries
transition smoothly, whereas binary images have sharp edges, which can introduce perceived
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signal discontinuities. The selected documents were examined in true-color and binary formats,
to facilitate a more thorough frequency domain analysis.

To determine the optimal scanning resolution, the approach here involved analyzing the
spectral density of various resolutions of the same image to locate the “maximum frequency”.
The smallest resolution to yield such a frequency is considered the most efficient choice, ba-
lancing scanning time, storage requirements, network transmission bandwidth, and processing
time, as processing time typically scales with file size. This study also evaluates the effect of
different scanning resolutions on the transcription quality of text-only documents by comparing
the Levenshtein distances between transcribed texts and their ground-truth counterparts.

3.1 SCANNING PROCESS

In this study, the first step in determining the optimal resolution for scanned documents
was to digitize each document at 75, 150, 200, 300, 500, 700, and 1200 dpi. The files were
scanned in color mode and saved in Portable Networks Graphics (PNG) format, a widely used
raster format known for its efficient lossless compression and high bit-depth compatibility, as
described by Puglia et al. (2004).

The scanning process was performed using three scanners: Epson EcoTank L4160, Epson
EcoTank L8180, and HP LaserJet Pro Color M479FDW. The technical specifications of each
device, as provided in their respective manuals, are summarized in Table 3. Based on these
specifications, the first two scanners were capable of digitizing documents at all seven prede-
fined resolutions. However, the HP LaserJet Pro Color M479FDW scanner was limited to the
following resolutions: 75, 200, 300, and 1200 dpi.
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Table 3 – Scanners specifications.

Specification Epson L4160 Epson L8180 HP M479FDW

Scanner type Flatbed Flatbed Flatbed

Photoelectric device CIS CIS CIS

Effective pixels 10200 × 14040 pixels

(1200 dpi)

- -

Maximum document

size

US letter or A4 (8.5

× 11.7 inches (in) or

216 × 297 millimeters

(mm))

Legal (8.5 × 14 in or

216 × 356 mm)

Legal (8.5 × 14 in or

216 × 356 mm)

Optical resolution 1200 x 2.400 dpi 1.200 x 4.800 dpi 1200 x 1200 dpi

Output resolution 50 to 9600 dpi in 1 dpi

increments

- -

Image data Color: 48 bits per pi-

xel (bpp) (internal),

24 bpp (external).

Grayscale: 16 bpp

(int.), 8 bpp (ext.).

Black and White:

16 bpp (int.), 1 bpp

(ext.)

Color: 48 bpp (inter-

nal), 24 bpp (exter-

nal).

Grayscale: 16 bpp

(int.), 8 bpp (ext.).

Black and White:

16 bpp (int.), 1 bpp

(ext.)

-

Light source LED LED LED

Source: Prepared by the author based on EPSON (2019), EPSON (2021) and HP (2019), 2025.

3.2 CROPPING PROCESS

The Test Dataset was processed using a cropping algorithm, presented in Appendix A, to
remove visible scanner edges and ensure a clear focus on the document page.

The Source Code 1 begins by selecting the image to be processed and defining its path.
After verifying the existence of the image according to the specified path, the function
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“cv2.imread(path)” loads the found images and displays an error message if the image is
not located. The cropping parameters are manually and individually adjusted for each image,
considering its specific characteristics. The parameters ‘top‘, ‘bottom‘, ‘left‘, and ‘right‘ define
the cropping percentages for the top, bottom, left, and right edges of the image, respectively.
These values are stored in the dictionary “cut_values”, ensuring a clear mapping between
cropping directions and their respective values.

The cropping function cut_and_save calculates the number of pixels to be cropped based
on the defined percentages and performs the cropping operation using image[top:bottom,

left:right]. This function takes the following parameters:

• image: the image to be cropped;

• output_path: the path to save the cropped image;

• resolution: the resolution of the image being processed;

• cut_percent: the cropping percentages.

It is important to highlight that the cropping percentages were applied across all different
image resolutions, in line 43 of the Source Code 1, it is established as follows:

top , bottom , left , right = [int(p * max(image.shape) / 100) for p in

cut_percent]

The line defines that, the cropping values are calculated as a percentage of the maximum
image dimension (max(image.shape)). Thus, the cropping process is proportional to the
image size, adapting to different resolutions. This approach helps maintain relative consistency
in the visual content regardless of varying resolutions.

At the end of the process, the new cropped images are saved in PNG format and the
applied cropping parameters are saved in an Excel file. An example of the cropping result for
Image 01 across different resolutions is shown in Figure 11.
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Figure 11 – Example of the different resolutions of Image 01 in the original scan size and after the cropping
process.

Source: The author (2025)

3.3 BINARIZATION PROCESS

After the cropping process, the images were subjected to binarization. According to Lins
et al. (2021), the binarization of document images remains a significant research area, parti-
cularly due to its importance in processing stages of document analysis and optical character
recognition (OCR). In this study, the Otsu binarization algorithm Otsu (1979) was applied to
the test images due to its accessibility, ease of implementation, and consistent image quality.
The implementation of this method can be found in Appendix B.

Initially, the Source Code 2 defines the specific image to be processed and sets its cor-
responding path. Subsequently, a validation step is performed to verify if the image exists. If
the image is successfully found, it is loaded using the function cv2.imread(path) from the
OpenCV library. In the event of an invalid path or missing image, an error message is displayed.

The main function responsible for the binarization process is binarize_and_save. This
function begins by converting the original image to grayscale using the OpenCV function
cv2.cvtColor(image, cv2.COLOR_BGR2GRAY). This conversion is essential because Otsu’s
thresholding technique operates more effectively on grayscale images, where pixel intensities
range from 0 (black) to 255 (white). According to the OpenCV documentation Doxygen
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(2024), the use of the conversion code cv2.COLOR_BGR2GRAY ensures a reduction in compu-
tational complexity, facilitating the accurate application of the binarization technique.

As defines by Doxygen (2024), the subsequent step in line 30 of the Source Code 2, applies
the Otsu thresholding method using the following OpenCV flags:

• cv2.THRESH_BINARY: Performs binary thresholding, where pixel values below the th-
reshold are set to 0 (black) and values equal to or above the threshold are set to 255
(white);

• cv2.THRESH_OTSU: Automatically calculates the optimal global threshold for the image,
minimizing the intra-class variance between the foreground and background pixel inten-
sities.

Otsu’s method is effective with images that exhibit a bimodal histogram, that presents two
distinct peaks corresponding to the foreground and background, by automatically selecting the
ideal threshold. It eliminates the subjectivity associated with manually determining a suitable
threshold value, thus reducing the likelihood of misclassification.

Finally, the binarized image is saved to the specified path using the cv2.imwrite(output_path,
binarized_image) function. This approach ensures that the resulting binarized images can
be utilized for further analytical steps. Figure 12 presents an example of the binarized result
for Image 01 in its different resolutions.
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Figure 12 – Example of the different resolutions of Image 01 in the original scan color and after the binarization
process.

Source: The author (2025)

3.4 SPECTRAL ANALYSIS

The images were prepared as described previously and then the Fourier Transform was
applied to each one using the NumPy library in Python, a tool widely used for scientific
computing. The source code of the Fourier transform algorithm applied in the dataset is in
Appendix C

The Source Code 3 starts locating the defined images, followed by checking for their exis-
tence. The images are loaded in grayscale mode using “cv2.IMREAD_GRAYSCALE”, considering
that Red Green Blue (RGB) images require separate transforms for each channel, the use of
grayscale images reduces complexity, improving computational efficiency while still preserving
meaningful frequency data based on the different intensities.

For each image, the Fourier Transform was applied considering the following code, located
in lines 75-77 of the Source Code 3

transform_image = np.fft.fft2(image)

center_transform_image = np.fft.fftshift(transform_image)

magnitude_spectrum = np.log(np.abs(center_transform_image) + 1)
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where:

• np.fft.fft2(image): computes the 2D Fourier Transform, performing the calculation
of the two-dimensional discrete Fourier transform across specified axes within an M-
dimensional matrix;

• np.fft.fftshift(): moves to center the zero-frequency component within the spec-
trum, providing better visualization;

• np.log(np.abs(center_transform_image) + 1): converts the frequency domain to
a log scale for improved contrast, calculating the logarithm of the magnitude of the
spectrum.

The function calculate_max_frequency finds the maximum frequency component in
the transformed image, corresponding to the dominant structure in the image. The highest
frequency was identified with the numpy.argmax, which finds the indices of maximum values
and was used here to pinpoint the peak frequency within the magnitude spectrum as defined
by Numpy (2024). With the magnitude spectrum results, it was possible to plot a frequency
map and frequency range for each image resolution.

Following the same Fourier-based spectral analysis on the Source Code 3, the Source
Code 4 shows the results in a Spectral Density Plot. The Spectral Density function 𝑆(𝑓)

represents the distribution of energy across different frequency components and, as described
by Oppenheim, Willsky and Nawab (1994), is defined as:

𝑆(𝑓) = |𝑋(𝑓)|2 (3.1)

where

• X(f) = Fourier transform of the signal x(t)

Considering that the signal has finite energy:

𝐸 =
∫︁ ∞

−∞
|𝑥(𝑡)|2 𝑑𝑡 < ∞ (3.2)

To estimate the Spectral Density, the magnitude spectrum was calculated using the Fourier
Transform, and then a normalized histogram of the frequency magnitudes was created. This
histogram represents the relative occurrence of different frequencies in the image and the
spectral analysis functions were defined as:
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def calculate_spectral_energy(magnitude_spectrum):

return np.sum(magnitude_spectrum **2)

• calculate_spectral_energy: calculates the total spectral energy by summing the
squares of the magnitude of the spectrum. This value represents the total energy of the
signal in the analyzed frequency components;

def calculate_max_frequency(magnitude_spectrum):

row_center , col_center = np.unravel_index(np.argmax(magnitude_spectrum),

magnitude_spectrum.shape)

return magnitude_spectrum[row_center , col_center]

• calculate_max_frequency: finds the pixel with the highest frequency magnitude in
the spectrum;

def calculate_frequency_distribution(magnitude_spectrum):

hist , bins = np.histogram(magnitude_spectrum.flatten (), bins=50, range

=(0, magnitude_spectrum.max()))

hist = hist / hist.sum()

predominant_frequencies = bins [:-1][ hist > 0.1]

return hist , bins , predominant_frequencies

• calculate_frequency_distribution: creates a histogram of frequency magnitudes to
identify the frequency distribution of the image. The relative frequency threshold above
0.1 was used, as defined by “bins[:-1][hist > 0.1]”, which facilitated the generation
of a frequency recurrence graph for the spectrum, normalizing the values so that the
sum is 1 and considering values above 10% of occurrence according to Numpy (2024);

The frequencies in the resulting spectrum are based on the image resolutions and corres-
pond to cycles per pixel. The Fourier Transform allowed the extraction of a frequency map, the
identification of the frequency range, the determination of the highest frequency and the cre-
ation of a Spectral Density plot for each image, all using the Numpy library based on NumPy
(2024) and subsequently visualized with the Matplotlib library as stated in the Matplotlib
(2024) documentation.

Figures 13 to 19 show the frequency maps and ranges for Image 01 across different resolu-
tions, accompanied by the Spectral Density graph. The maps are displayed using Matplotlib’s
jet colormap model described in Matplotlib (2024).
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Figure 13 – Image 01, the frequency map and the Spectral Density of 75 dpi resolution.

Source: The author (2024)

Figure 14 – Image 01, the frequency map and the Spectral Density of 150 dpi resolution.

Source: The author (2024)

Figure 15 – Image 01, the frequency map and the Spectral Density of 200 dpi resolution.

Source: The author (2024)
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Figure 16 – Image 01, the frequency map and the Spectral Density of 300 dpi resolution.

Source: The author (2024)

Figure 17 – Image 01, the frequency map and the Spectral Density of 500 dpi resolution.

Source: The author (2024)

Figure 18 – Image 01, the frequency map and the Spectral Density of 700 dpi resolution.

Source: The author (2024)
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Figure 19 – Image 01, the frequency map and the Spectral Density of 1200 dpi resolution.

Source: The author (2024)



43

3.5 OPTICAL CHARACTER RECOGNITION (OCR)

According to Puglia et al. (2004), digital images must meet quality standards to en-
sure that OCR conversion achieves a certain level of accuracy. Barney-Smith and Andersen
(2005) highlights that specific combinations of parameters governing scanning degradations
can cause characters to appear either similar or significantly different when degraded. Beyond
the influence of the optical resolution of the scanner on the document quality, factors such as
contamination, manual underlining, or annotations can also pose challenges and interfere with
the OCR process, as detailed by Forschungsgemeinschaft (2016).

Given the impact of document resolution on transcription accuracy, text-based documents
were transcribed using optical character recognition (OCR), and the Levenshtein Distance was
calculated for each resulting file. The implemented algorithm is presented in Appendix D.

The Source Code 5 begins by selecting the image to be processed and defining its path.
After verifying the existence of the image according to the specified path, the function
“cv2.imread(path)” loads the images and displays an error message if the image is not
located. For the OCR process, Python-tesseract, a Python wrapper for the Google Tesseract-
OCR Engine, was used, as referenced in PyPi (2024). Specifically, Tesseract OCR version
4.1.1 was applied and accessed by the pytesseract library (version 0.3.13) within the Python
environment. The algorithm was executed without using the language dictionary or loading
frequent words, this approach eliminates the influence of predefined words on OCRbased word
recognition, prioritizing character-level identification for evaluating text element recognition.
Based on doxygen (2015) and tesseract-ocr (2024), these settings were defined in line 60 of
the Source Code 5, using the commands:

tesseract_config = --psm 6 load_system_dawg =0 load_freq_dawg =0]

where:

• - -psm 6: sets the Page Segmentation Mode (PSM) to assume a single uniform block
of text;

• load_system_dawg0̄ load_freq_dawg0̄: disables the dictionary-based correction to al-
low a raw text extraction without auto-correction.
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The OCR transcription of each document was saved in the correspondent TXT file for-
mat and the Python-Levenshtein library was employed by applying the code “distance =

levenshtein(reference_text, ocr_text)” to calculate the Levenshtein distance between
each transcribed text and the corresponding ground-truth text as described in PyPi (2024),
the LD results were then saved in an Excel file and analyzed considering the OCR accuracy at
the different image resolutions, based on measuring how many character changes (insertions,
deletions, substitutions) were needed.
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4 RESULTS

The data collected using the scanner Epson L4160 for the color and binary versions of the
documents are summarized in four tables. Tables 4 and 5 contain data from the Text Dataset,
while Tables 7 and 8 contain information from the General Dataset.

4.1 TEXT DATASET

Table 4 contains detailed information for the 18 images of the text dataset considering
the colored images scanned with the Epson L4160 scanner. The information includes image
size in centimeters (cm), text size in points (pt), resolution in dpi, file size for both PNG
and Windows Bitmap (BMP) formats in megabytes (MB), the Highest frequency (HF) and
Levenshtein distance measurements for each document across the seven previously defined
resolution levels.

Table 4 – Text Dataset - Original images results (Image size in centimeters (cm), Font size in points (pt),
dpi - image resolution in dots per inch, png/bmp - file size of the png/bmp image in megabytes
(MB), HF - Highest frequency, LD - Levenshtein distance.)

Image dpi png bmp HF LD Image png bmp HF LD

75 0.35 0.59 18 97 0.25 0.6 18 101
150 1.28 2.37 19 12 0.75 2.4 19 11
200 2.28 4.21 20 22 1.21 4.28 20 11
300 5.12 9.47 20 21 2.39 9.61 21 9
500 13.74 26.27 21 22 5.74 26.69 22 12
700 25.82 51.49 22 24 9.91 52.27 22 11

1200 69.81 151.27 23 28 25.18 153.59 23 12
75 0.39 0.75 18 490 0.32 0.48 17 945

150 1.29 2.98 19 164 1.18 1.92 19 912
200 2.25 5.29 20 164 1.99 3.41 19 909
300 4.51 11.9 21 170 4.76 7.66 20 912
500 12.12 33.03 22 172 12.2 21.26 21 914
700 21.71 64.75 22 178 23.02 41.67 22 916

1200 54.9 190.23 23 180 59.57 122.44 23 913
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Image dpi png bmp HF LD Image png bmp HF LD

75 0.42 0.87 18 28 0.27 0.68 18 196
150 1.44 3.49 19 14 0.87 2.71 19 6
200 2.54 6.2 20 14 1.44 4.82 20 6
300 5.47 13.94 21 18 2.84 10.85 21 9
500 14.39 38.69 22 19 6.94 30.1 22 8
700 26.06 75.8 23 20 11.95 58.98 22 9

1200 66.77 222.75 24 19 30.5 173.31 23 12
75 0.35 0.58 18 36 0.56 0.84 18 3071

150 1.24 2.31 19 7 1.96 3.35 19 3110
200 2.14 4.11 20 7 3.29 5.97 20 3104
300 4.49 9.26 20 7 6.92 13.4 21 3205
500 11.81 25.7 21 7 17.68 37.24 22 3211
700 21.68 50.35 22 7 31.94 72.95 22 3201

1200 56.13 147.98 23 12 81.99 214.32 24 3205
75 0.34 0.95 18 66 0.42 0.59 18 59

150 1.06 3.81 20 23 1.43 2.37 19 1
200 1.86 6.77 20 23 2.46 4.21 20 1
300 3.9 15.23 21 25 5.36 9.47 20 1
500 10.07 42.31 22 24 14.11 26.27 21 1
700 18.12 82.89 23 23 25.97 51.49 22 2

1200 46.59 243.54 24 27 68.84 151.27 23 4
75 0.15 0.25 17 1638 0.05 0.18 17 442

150 0.53 1.01 18 55 0.18 0.71 18 48
200 0.87 1.8 19 46 0.33 1.26 19 47
300 1.87 4.05 20 44 0.74 2.83 19 39
500 4.62 11.25 21 45 2 7.85 20 42
700 8.41 22.04 21 43 3.85 15.39 21 39

1200 22.18 64.78 22 45 10.33 45.2 22 44
75 0.03 0.05 15 210 0.03 0.07 15 279

150 0.11 0.21 16 56 0.12 0.27 17 71
200 0.18 0.37 17 52 0.22 0.47 17 62
300 0.43 0.84 18 39 0.5 1.07 18 32
500 1.12 2.31 19 20 1.3 2.95 19 25
700 2.13 4.53 20 29 2.5 5.79 20 37

1200 5.69 13.32 21 49 6.66 17 21 54
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Image dpi png bmp HF LD Image png bmp HF LD

75 0.03 0.06 15 279 0.03 0.07 16 786
150 0.12 0.25 17 71 0.12 0.27 17 282
200 0.21 0.45 17 62 0.2 0.47 17 41
300 0.5 1 18 32 0.44 1.06 18 24
500 1.3 2.78 19 25 1.11 2.94 19 20
700 2.45 5.44 20 37 2.04 5.76 20 21

1200 6.51 15.99 21 54 5.33 16.91 21 22
75 0.1 0.18 17 2586 0.87 1.14 18 4049

150 0.4 0.74 18 1906 3.04 4.54 20 4152
200 0.66 1.31 19 1960 5.12 8.09 20 4158
300 1.44 2.94 19 1978 10.94 18.18 21 4153
500 3.57 8.16 20 1982 27.47 50.5 22 4155
700 6.43 15.99 21 1976 50.1 98.93 23 4158

1200 16.94 46.97 22 1978 130.4 290.75 24 4169

Source: The author (2024)

Table 5 shows data for the 18 images in the Text Dataset considering the binarized images
scanned with the Epson L4160 scanner. The information includes image size in cm, text size
in pt, resolution in dpi, file size for PNG, BMP and Tagged Image Format (TIFF) formats in
MB, the highest frequency and Levenshtein distance measurements for each document across
the seven previously defined resolution levels.

Table 5 – Text Dataset - Binarized images results (Image size in centimeters (cm), Font size in points (pt),
dpi - image resolution in dots per inch, png/bmp/tiff - file size of the png/bmp/tiff image in
megabytes (MB), HF - Highest frequency, LD - Levenshtein distance).

Image dpi png bmp tiff HF LD Image png bmp tiff HF LD

75 0.01 0.2 0.01 18 229 0.01 0.2 0.01 18 264
150 0.04 0.79 0.02 19 16 0.04 0.8 0.02 19 12
200 0.06 1.4 0.02 20 12 0.06 1.43 0.02 20 14
300 0.12 3.16 0.03 20 10 0.11 3.21 0.03 21 13
500 0.25 8.77 0.06 21 12 0.24 8.9 0.05 22 12
700 0.38 17.16 0.08 22 14 0.36 17.42 0.08 22 11
1200 0.73 50.42 0.15 23 15 0.68 51.22 0.14 23 12
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Image dpi png bmp tiff HF LD Image png bmp tiff HF LD

75 0.02 0.25 0.01 18 839 0.01 0.16 0.01 17 983
150 0.05 0.99 0.03 19 172 0.03 0.64 0.01 19 912
200 0.09 1.77 0.03 20 164 0.04 1.14 0.01 19 914
300 0.17 3.97 0.05 21 166 0.08 2.55 0.02 20 911
500 0.36 11.01 0.08 22 169 0.16 7.09 0.04 21 912
700 0.54 21.6 0.12 22 179 0.25 13.89 0.05 22 917
1200 1.02 63.41 0.22 23 178 0.48 40.81 0.1 23 915
75 0.02 0.29 0.01 18 66 0.01 0.23 0.01 18 395
150 0.05 1.17 0.02 19 14 0.04 0.9 0.02 19 10
200 0.08 2.07 0.03 20 14 0.06 1.61 0.02 20 9
300 0.16 4.65 0.04 21 21 0.12 3.62 0.03 21 7
500 0.31 12.9 0.07 22 19 0.24 10.03 0.06 22 9
700 0.47 25.28 0.1 23 20 0.37 19.68 0.09 22 10
1200 0.89 74.25 0.19 24 20 0.71 57.77 0.16 23 14
75 0.02 0.19 0.01 18 107 0.03 0.28 0.02 18 3090
150 0.05 0.77 0.02 19 12 0.08 1.12 0.04 19 3187
200 0.08 1.38 0.03 20 7 0.13 1.99 0.05 20 3163
300 0.15 3.09 0.04 20 7 0.24 4.47 0.07 21 3204
500 0.3 8.57 0.07 21 7 0.52 12.41 0.12 22 3208
700 0.45 16.78 0.1 22 7 0.78 24.32 0.18 22 3205
1200 0.85 49.33 0.18 23 12 1.47 71.44 0.32 24 3210
75 0.02 0.32 0.01 18 79 0.02 0.2 0.01 18 159
150 0.05 1.27 0.02 20 29 0.05 0.79 0.02 19 2
200 0.07 2.26 0.02 20 20 0.09 1.4 0.03 20 2
300 0.12 5.09 0.03 21 25 0.17 3.16 0.04 20 1
500 0.25 14.11 0.05 22 26 0.33 8.77 0.07 21 1
700 0.38 27.65 0.07 23 20 0.5 17.16 0.11 22 2
1200 0.71 81.21 0.14 24 22 0.94 50.42 0.19 23 3
75 0.007 0.09 0.006 17 1602 0.002 0.06 0.002 17 442
150 0.02 0.34 0.01 18 107 0.006 0.24 0.003 18 49
200 0.03 0.6 0.02 19 63 0.009 0.42 0.004 19 46
300 0.06 1.36 0.02 20 47 0.02 0.94 0.005 19 41
500 0.14 3.76 0.04 21 46 0.04 2.62 0.009 20 43
700 0.23 7.36 0.05 21 43 0.06 5.13 0.01 21 45
1200 0.45 21.6 0.1 22 47 0.14 15.08 0.04 22 58
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Image dpi png bmp tiff HF LD Image png bmp tiff HF LD

75 0.001 0.02 0.0004 15 210 0.0008 0.02 0.0004 15 279
150 0.003 0.07 0.001 16 85 0.004 0.09 0.002 17 104
200 0.005 0.13 0.002 17 53 0.005 0.16 0.002 17 65
300 0.009 0.28 0.004 18 43 0.01 0.36 0.004 18 53
500 0.02 0.77 0.008 19 25 0.02 0.99 0.009 19 39
700 0.04 1.51 0.01 19 24 0.04 1.93 0.01 20 45
1200 0.08 4.44 0.02 21 49 0.09 5.67 0.03 21 48
75 0.0008 0.02 0.0005 15 294 0.002 0.02 0.002 15 783
150 0.004 0.09 0.002 17 116 0.005 0.09 0.004 17 360
200 0.006 0.15 0.002 17 69 0.008 0.16 0.005 17 65
300 0.01 0.34 0.005 18 47 0.02 0.35 0.007 18 32
500 0.03 0.93 0.009 19 52 0.04 0.98 0.01 19 22
700 0.04 1.82 0.01 20 48 0.06 1.92 0.02 20 25
1200 0.09 5.33 0.03 21 42 0.13 5.64 0.03 21 20
75 0.006 0.06 0.006 16 2586 0.04 0.38 0.03 18 4066
150 0.02 0.25 0.01 18 2325 0.11 1.52 0.05 20 4152
200 0.03 0.44 0.02 18 1976 0.18 2.7 0.07 20 4153
300 0.06 0.98 0.03 19 1981 0.35 6.06 0.11 21 4148
500 0.13 2.72 0.04 20 1983 0.75 16.83 0.18 22 4156
700 0.21 5.34 0.06 21 1979 1.13 32.98 0.25 23 4150
1200 0.45 15.66 0.1 22 1982 2.15 96.93 0.46 24 4162

Source: The author (2024)

The analysis of the images in the Text Dataset shows that applying a low scan resolution, such

as 75 dpi, leads to very poor OCR performance, with minimal document details preserved. In these

cases, the Levenshtein distances were significantly higher than those at 150 dpi, highlighting that

low resolutions hinder accurate recognition of document features, including finer character details.

For binarized images, low resolution further exacerbates this issue, especially in images with small

details. For instance, a small image from the dataset is illustrated in Figure 20, measuring 4.71 x 4.47

centimeters and with a font size of 5 pt. The figure shows that during binarization all text content

was lost, resulting in an illegible image.

At higher resolutions, when analyzing the density of frequencies exceeding the maximum fre-

quency obtained at 300 dpi, the difference in spectral densities observed approaches the level of

scanning noise, with values typically below 0.001. This suggests that increasing the resolution beyond
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Figure 20 – Small image, measuring 4.71 x 4.47 centimeters, in the resolution of 75 dpi.

Original Binarized

Source: The author (2024)

300 dpi adds minimal useful detail, as the spectral density for such high frequencies does not signi-

ficantly contribute to document clarity.

The maximum frequency observed in the 200 to 300 dpi range tends to be consistent, generally

falling between 19 and 21. This stability in maximum frequency across these resolutions indicates

that further increases in resolution yield diminishing returns in terms of detail capture. Consequently,

the maximum frequency difference between 300 dpi and even higher resolutions is minor, with a

maximum discrepancy of about three units. Such findings imply that 300 dpi may be an optimal

balance point, as higher resolutions lead to larger file sizes without substantial improvements in

detail discernment or spectral information.

Table 6 presents the percentage of frequency density exceeding the maximum frequencies obtained

at 200 dpi and 300 dpi for the original text images. The results show that the use of different scanners

did not result in significant changes in the frequency results, and the observed difference in density

values can be considered a scanning error of the device.
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Table 6 – Proportion of highest frequency density above the maximum frequency of 200 and 300 dpi in the
General dataset - Original images

Image dpi Epson L4160 Epson L8180 HP M479FDW
200dpi 300dpi 200dpi 300dpi 200dpi 300dpi

75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1761% 0.0000% 0.1832% 0.0000% 0.3225% 0.0000%
500 0.5880% 0.1843% 0.5502% 0.1455% - -
700 0.9939% 0.4210% 0.8421% 0.3093% - -

1200 1.2763% 0.7350% 0.9576% 0.3971% 1.7536% 0.8336%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.2400% 0.0000% 0.1377% 0.0000% 0.1707% 0.0000%
500 1.2415% 0.4823% 0.6000% 0.2044% - -
700 1.7568% 0.8456% 0.8859% 0.3397% - -

1200 1.8204% 1.0146% 1.2866% 0.6932% 1.7131% 0.8698%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.0000% 0.0000% 0.1362% 0.0000% 0.4593% 0.0000%
500 0.4851% 0.1886% 0.5081% 0.1905% - -
700 0.8319% 0.3965% 0.7758% 0.3259% - -

1200 1.0326% 0.7835% 1.1232% 0.6761% 1.8980% 0.4013%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1707% 0.0000% 0.1447% 0.0000% 0.1925% 0.0000%
500 0.7210% 0.1802% 0.4661% 0.1687% - -
700 0.9952% 0.4215% 0.7909% 0.3424% - -

1200 1.1225% 0.6127% 0.9789% 0.5623% 1.0115% 0.5206%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1576% 0.0000% 0.1611% 0.0000% 0.1615% 0.0000%
500 0.6866% 0.2405% 0.7174% 0.1990% - -
700 0.8531% 0.3534% 0.9929% 0.4385% - -

1200 1.0343% 0.6024% 1.2005% 0.7363% 1.3622% 0.7875%
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Image dpi Epson L4160 Epson L8180 HP M479FDW
200dpi 300dpi 200dpi 300dpi 200dpi 300dpi

75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.0000% 0.0000% 0.4237% 0.0000% 0.1810% 0.0000%
500 0.2566% 0.1633% 1.1932% 0.1792% - -
700 0.3839% 0.3000% 1.5859% 0.3264% - -

1200 0.6848% 0.3939% 1.6612% 0.5077% 1.5448% 0.8194%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 3.8212%
300 0.0000% 0.0000% 0.2335% 0.0000% 0.1679% 8.0493%
500 0.1417% 0.1417% 0.7729% 0.2639% - -
700 0.1387% 0.1387% 1.0906% 0.5209% - -

1200 0.0000% 0.0000% 1.2987% 0.8255% 0.8636% 14.3764%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1622% 0.0000% 0.2316% 0.0000% 0.1615% 0.0000%
500 0.5178% 0.1711% 0.7481% 0.2823% - -
700 1.0329% 0.4078% 1.1366% 0.4747% - -

1200 1.1921% 0.6618% 1.3727% 0.7650% 0.9998% 0.4669%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.2068% 0.0000% 0.4196% 0.0000% 0.1668% 0.0000%
500 1.1964% 0.4877% 1.2297% 0.1695% - -
700 1.5840% 0.8494% 1.7359% 0.3271% - -

1200 1.3543% 0.9224% 1.4636% 0.5573% 1.1400% 0.7245%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.4489% 0.0000% 0.2411% 0.0000% 0.1794% 0.0000%
500 0.9904% 0.1568% 0.9393% 0.4603% - -
700 1.3210% 0.2917% 1.2009% 0.6165% - -

1200 1.4147% 0.4168% 1.3511% 0.7556% 1.3881% 0.7763%
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Image dpi Epson L4160 Epson L8180 HP M479FDW
200dpi 300dpi 200dpi 300dpi 200dpi 300dpi

75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.8463% 0.0000% 0.1748% 0.0000% 0.3930% 0.0000%
500 2.5246% 0.2690% 1.0470% 0.2753% - -
700 3.4287% 0.6810% 1.7451% 0.6810% - -

1200 3.7217% 1.1440% 2.3127% 1.2318% 3.8615% 1.6708%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.0099% 0.0000% 0.0095% 0.0000% 0.1924% 0.0000%
500 0.5667% 0.5317% 0.5033% 0.4721% - -
700 1.2616% 1.1879% 1.0458% 0.9786% - -

1200 1.8711% 1.8147% 1.5301% 1.4701% 2.0657% 0.9401%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0872% 0.0000% 0.0795% - -
200 0.0000% 0.1244% 0.0000% 0.1796% 0.0000% 0.0000%
300 0.0000% 0.0000% 0.0000% 0.0000% 0.0442% 0.0000%
500 0.0000% 0.0636% 0.0000% 0.0629% - -
700 0.0000% 0.1703% 0.0000% 0.1939% - -

1200 0.1592% 0.5337% 0.1721% 0.6931% 1.9900% 1.7066%
75 0.0000% 0.0113% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.1026% 0.0000% 0.0939% - -
200 0.0000% 0.0807% 0.0000% 0.1832% 0.0000% 0.0000%
300 0.0000% 0.0000% 0.0000% 0.0000% 0.2167% 0.0000%
500 0.0941% 0.1968% 0.0000% 0.0617% - -
700 0.0605% 0.1967% 0.0000% 0.1907% - -

1200 0.3266% 0.7406% 0.1496% 0.6592% 2.2168% 0.7389%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.1087% 0.0000% 0.2236% - -
200 0.0000% 0.0815% 0.0000% 0.1731% 0.0000% 0.0000%
300 0.0000% 0.0000% 0.0000% 0.0000% 0.0543% 0.0000%
500 0.0872% 0.2101% 0.0000% 0.0710% - -
700 0.1865% 0.3763% 0.0000% 0.2615% - -

1200 0.4501% 0.9327% 0.1572% 0.8157% 1.0271% 0.8403%
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Image dpi Epson L4160 Epson L8180 HP M479FDW
200dpi 300dpi 200dpi 300dpi 200dpi 300dpi

75 0.0000% 0.0000% 0.1722% 0.3560% 0.0000% 0.0000%
150 0.0107% 0.0000% 0.0000% 0.1598% - -
200 0.0000% 0.0000% 0.0000% 0.1164% 0.0000% 0.0000%
300 0.2360% 0.0000% 0.0000% 0.0000% 0.2684% 0.0000%
500 1.2629% 0.3359% 0.0000% 0.0000% - -
700 2.7519% 0.8205% 0.0000% 0.0000% - -

1200 3.9866% 2.0043% 0.0000% 0.0000% 4.7040% 2.0457%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1662% 0.0000% 0.1666% 0.0000% 0.3770% 0.0000%
500 0.7108% 0.1727% 0.7647% 0.1858% - -
700 1.8023% 0.5432% 2.0381% 0.6429% - -

1200 3.4152% 1.7602% 3.4642% 1.7633% 6.0758% 2.7101%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1725% 0.0000% 0.1515% 0.0000% 0.1584% 0.0000%
500 0.6136% 0.1534% 0.5106% 0.1687% - -
700 0.9497% 0.3855% 0.8566% 0.3639% - -

1200 1.2721% 0.6811% 1.2115% 0.6637% 0.8021% 0.3238%

Source: The author (2024)

The results shown in Table 6 indicate that increasing the resolution does not lead to a significant

rise in higher frequencies. The slight increase in higher frequency density observed is likely due to

digitization noise.

Figure 21 depicts how often each resolution achieved the minimum Levenshtein Distance value,

indicating the optimal Levenshtein Distance performance across various resolutions for each image.

Notably, the 1200 dpi resolution did not achieve the best results for any of the 18 images assessed.

In contrast, the 150 dpi resolution achieved the best outcomes in terms of the minimum Levenshtein

Distance for 8 of the 18 images examined.

In some cases, as demonstrated in Figure 22, the identical Levenshtein distance outcomes were

achieved across a range of five different resolutions. Specifically, the resolutions 150, 200, 300, 500,

and 700 dpi all yielded the same text recognition results.

Therefore, in terms of choosing the best resolution equalizing all the digitizing aspects, it could

be said that 200 dpi was the optimal resolution in this case, considering the identification of image
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Figure 21 – Quantitative of image resolutions with minimal Levenshtein distance - 18 images (𝜇: mean, 𝜎2:
variance).

Source: The author (2024)

Figure 22 – Image illustrating the same Levenshtein Distance results to different resolutions.

Source: The author (2024)

details, file size and processing time linked.

The complete text dataset contains images with varying font sizes, ranging from 4 to 12 pt.

When analyzing only the first ten images with a standard font size of 10 to 12 pt, Figure 23 shows
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that the best Levenshtein distance was generally achieved at 150 or 200 dpi. This suggests that

these resolutions are likely aligned with the OCR training data. Notably, even for images with smaller

text sizes, 150 and 200 dpi remained the best resolutions. Moreover, these results remain optimal

even when evaluating all eighteen images, as illustrated in Figure 23, where the performance is more

balanced across all resolutions.

However, the results may vary depending on the use of a dictionary in the OCR process and the

structural characteristics of the pages, such as whether they contain single or double columns. In

general, the best Levenshtein distance was consistently found at 150 or 200 dpi, demonstrating that

these resolutions already provide good results in terms of information retention and preservation.

Figure 23 – Quantitative of image resolutions with minimal Levenshtein distance - 10 images (𝜇: mean, 𝜎2:
variance).

Source: The author (2024)

4.2 GENERAL DATASET

Table 7 display the results obtained using the scanner Epson L4160 for the colored images in the

General Dataset. The information includes image size in cm, resolution in dpi, file size for both PNG
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and BMP formats in MB and the highest frequency for each image across the seven resolution levels.

Table 7 – General Dataset - Original images results. (Image size in centimeters (cm), Font size in points (pt),
dpi - image resolution in dots per inch, png/bmp - file size of the png/bmp image in megabytes
(MB), HF - Highest frequency).

Image dpi png bmp HF Image png bmp HF

75 0.47 0.72 17 0.36 0.67 18
150 1.75 2.88 19 1.18 2.66 19
200 3.04 5.13 19 1.97 4.74 20
300 7.23 11.54 20 4.01 10.66 21
500 19.3 32.05 21 10.03 29.62 22
700 36.61 62.8 22 17.38 58.03 22

1200 99.61 184.55 23 44.3 170.47 23
75 0.35 0.59 18 0.69 0.98 18

150 1.25 2.37 19 2.54 3.9 19
200 2.22 4.22 20 4.4 6.93 20
300 4.91 9.48 20 11.78 15.59 21
500 13.27 26.34 21 31.04 43.3 22
700 24.71 51.64 22 60.25 84.83 23

1200 65.27 151.69 23 162.8 249.23 24
75 0.62 0.95 18 0.62 1 18

150 2.23 3.78 20 2.48 3.99 20
200 3.76 6.73 20 4.29 7.1 20
300 8.5 15.12 21 10.4 15.97 21
500 22.11 42.02 22 27.18 44.36 22
700 41.49 82.31 23 52.34 86.92 23

1200 111.64 241.84 24 137.95 255.43 24
75 0.79 1.55 19 1.17 1.55 19

150 2.89 6.22 20 4.28 6.22 20
200 5.21 11.07 21 7.28 11.07 20
300 12.22 24.89 21 16.61 24.89 21
500 32.88 69.17 22 43.1 69.17 22
700 62.73 135.52 23 79.64 135.52 23

1200 175.47 398.27 24 214.77 398.27 24
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Image dpi png bmp HF Image png bmp HF

75 0.32 0.5 18 0.78 1.28 18
150 1.12 2 19 2.73 5.14 20
200 1.91 3.56 19 4.91 9.13 20
300 4.16 8.01 20 12.67 20.51 21
500 10.81 22.25 21 33.31 56.97 22
700 19.92 43.61 22 61.64 111.64 23

1200 52.31 128.08 23 166.26 328.13 24

Source: The author (2024)

Table 8 show the results obtained using the scanner Epson L4160 to digitize the binarized images

in the General Dataset, presenting the same information present in Table 7 for each image across

the seven resolution levels but with the tiff file size beyond the PNG and BMP formats.

Table 8 – General Dataset - Binarized images results (Image size in centimeters (cm), Font size in points
(pt), dpi - image resolution in dots per inch, png/bmp/tiff - file size of the png/bmp/tiff image
in megabytes (MB), HF - Highest frequency).

Image dpi png bmp tiff HF Image png bmp tiff HF

75 0.01 0.24 0.01 17 0.02 0.22 0.01 18
150 0.04 0.96 0.02 19 0.05 0.89 0.02 19
200 0.06 1.71 0.03 19 0.08 1.58 0.03 20
300 0.15 3.85 0.08 20 0.15 3.56 0.04 21
500 0.34 10.7 0.19 21 0.29 9.88 0.06 22
700 0.61 20.94 0.31 22 0.44 19.35 0.09 22

1200 1.46 61.52 0.65 23 0.81 56.82 0.16 23
75 0.01 0.2 0.01 18 0.03 0.33 0.02 18

150 0.04 0.79 0.02 19 0.08 1.3 0.04 19
200 0.06 1.41 0.02 20 0.13 2.31 0.06 20
300 0.12 3.16 0.03 20 0.3 5.2 0.19 21
500 0.24 8.78 0.05 21 0.69 14.44 0.38 22
700 0.37 17.21 0.08 22 1.3 28.29 0.7 23

1200 0.7 50.58 0.14 23 3.34 83.11 1.52 24
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Image dpi png bmp tiff HF Image png bmp tiff HF

75 0.02 0.32 0.02 18 0.01 0.23 0.01 18
150 0.07 1.26 0.03 20 0.02 0.34 0.01 18
200 0.11 2.24 0.04 20 0.06 1.33 0.02 20
300 0.2 5.04 0.06 21 0.08 2.37 0.03 20
500 0.42 14.01 0.09 22 0.35 14.79 0.14 22
700 0.64 27.44 0.14 23 0.59 28.98 0.22 23

1200 1.2 80.61 0.25 24 1.32 85.14 0.42 24
75 0.02 0.52 0.01 19 0.05 0.52 0.03 19

150 0.06 2.07 0.02 20 0.14 2.07 0.05 20
200 0.09 3.69 0.03 21 0.21 3.69 0.07 21
300 0.18 8.31 0.06 21 0.37 8.31 0.12 21
500 0.36 23.06 0.1 22 0.75 23.06 0.21 22
700 0.56 45.2 0.16 23 1.15 45.2 0.31 23

1200 1.19 132.76 0.36 24 2.28 132.76 0.6 24
75 0.01 0.17 0.01 18 0.02 0.43 0.01 18

150 0.03 0.67 0.02 19 0.07 1.71 0.04 20
200 0.05 1.19 0.02 20 0.11 3.04 0.06 20
300 0.1 2.68 0.03 20 0.31 6.84 0.22 21
500 0.22 7.43 0.05 21 0.72 19 0.37 22
700 0.33 14.55 0.07 22 1.27 37.22 0.53 23

1200 0.62 42.69 0.13 23 2.98 109.4 0.98 24

Source: The author (2024)

When analyzing the General Dataset, similar trends were observed regarding maximum frequency

variation and spectral density as in the Text Dataset. For example, Figures 4 to 10 in Table 7 illustrate

the spectral density across frequencies, showing that the density beyond the 200 or 300 dpi cutoff

is minimal, a pattern consistent across all images tested in the dataset. Table 9 also illustrates the

percentage of frequencies higher than the maximum frequencies obtained in 200dpi and 300dpi,

demonstrating that higher resolutions do not result in a significant amount of higher frequencies.

Based on the observations, non-historically significant files can be digitized at 200 dpi, which

results in raster file sizes 2.25 times smaller than those at 300 dpi and offers over twice the file size

reduction in PNG format.
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Table 9 – Proportion of highest frequency density above the maximum frequency of 200 and 300 dpi in the
Text dataset - Original images

Image dpi Epson L4160 Epson L8180 HP M479FDW
200dpi 300dpi 200dpi 300dpi 200dpi 300dpi

75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.0000% 0.0000% 0.0000% 0.0000% 0.1829% 0.0000%
500 0.1739% 0.1739% 0.1991% 0.1991% - -
700 0.3401% 0.3401% 0.3627% 0.3627% - -

1200 0.4561% 0.4561% 0.7504% 0.7504% 1.4719% 0.6643%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1567% 0.0000% 0.1400% 0.0000% 0.1653% 0.0000%
500 0.5437% 0.1614% 0.5848% 0.1904% - -
700 0.8412% 0.3623% 0.8718% 0.3346% - -

1200 1.0642% 0.5784% 0.9640% 0.5272% 0.6736% 0.3319%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1658% 0.0000% 0.1392% 0.0000% 0.2803% 0.0000%
500 0.6387% 0.2244% 0.5532% 0.2114% - -
700 0.9439% 0.4204% 0.8171% 0.3416% - -

1200 1.2231% 0.7238% 1.1250% 0.6915% 1.6518% 0.8943%
75 0.0000% 0.0000% 0.0000% 0.0000% 1.2229% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1750% 0.0000% 0.2145% 0.0000% 4.5415% 0.0000%
500 0.7548% 0.2599% 0.8297% 0.2478% - -
700 1.4052% 0.5967% 1.5002% 0.5903% - -

1200 1.6978% 0.8975% 0.1737% 0.0000% 15.6025% 0.9139%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.2299% 0.0000% 0.2531% 0.0000% 0.2568% 0.0000%
500 0.9183% 0.3665% 1.0455% 0.4420% - -
700 1.3367% 0.6662% 1.5035% 0.7234% - -

1200 1.2570% 0.6966% 1.3554% 0.7342% 1.7939% 0.9430%
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Image dpi Epson L4160 Epson L8180 HP M479FDW
200dpi 300dpi 200dpi 300dpi 200dpi 300dpi

75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1870% 0.0000% 0.0135% 0.0000% 0.1891% 0.0000%
500 0.3562% 0.1450% 0.2116% 0.1864% - -
700 0.3787% 0.0958% 0.4905% 0.4638% - -

1200 0.7148% 0.3492% 0.7261% 0.6995% 0.8922% 0.4309%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1520% 0.0000% 0.1537% 0.0000% 0.1560% 0.0000%
500 0.5009% 0.1817% 0.5374% 0.1549% - -
700 0.6664% 0.3228% 0.7438% 0.3294% - -

1200 0.8160% 0.5120% 0.1691% 0.0000% 0.6554% 0.3202%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1652% 0.0000% 0.1521% 0.0000% 0.1327% 0.0000%
500 0.3020% 0.1656% 0.2983% 0.1591% - -
700 0.3620% 0.1034% 0.3502% 0.0973% - -

1200 0.4672% 0.2773% 0.4971% 0.2937% 0.6587% 0.3190%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.2295% 0.0000% 0.1542% 0.0000% 0.1591% 0.0000%
500 1.1176% 0.4638% 0.7368% 0.2220% - -
700 1.4892% 0.7468% 1.0632% 0.4667% - -

1200 1.5833% 0.8906% 1.2826% 0.7881% 1.1653% 0.5329%
75 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

150 0.0000% 0.0000% 0.0000% 0.0000% - -
200 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
300 0.1722% 0.0000% 0.1572% 0.0000% 2.0679% 0.0000%
500 0.1495% 0.0093% 0.1572% 0.0196% - -
700 0.3703% 0.0994% 0.3599% 0.1028% - -

1200 0.7404% 0.3279% 0.7280% 0.3697% 7.7849% 0.5799%

Source: The author (2024)
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5 CONCLUSIONS

Professor George Nagy’s inquiry regarding the most suitable scanner resolution for capturing

all details and information from a document can be addressed by considering the optimal balance

between quality and efficiency, particularly through the lens of the Nyquist-Shannon theorem. The

analysis of spectral density and frequency maps of images is essential in determining the ideal digi-

tization resolution, as it highlights the primary frequencies present in each image and reinforces the

importance of operating within the limits established by this theorem.

As demonstrated in this study, scanning at 150 or 200 dpi generally captures all the essential

details required for accurate OCR transcription of standard documents. These resolutions align well

with the principles outlined by the Nyquist theorem, ensuring that necessary frequencies are ade-

quately represented while maintaining manageable file sizes. This efficiency makes 150 dpi and 200

dpi the optimal minimum resolutions for storage and transmission, allowing for excellent lossless

compression using formats like PNG for color images and TIFF-G4 for binary files.

Scanning at 300 dpi provides an additional "safety margin"by capturing finer details, which may be

relevant for historical documents or those with very small text. While modern storage capacities and

processing power can accommodate this higher resolution, it comes with trade-offs, including longer

scanning times, increased storage requirements, greater network bandwidth usage, and extended

processing durations. Notably, even with this increase in resolution, the primary frequency ranges of

each image remain unchanged, as observed in the frequency maps and spectral density analyses. A

comparative analysis with different scanners also confirms that increasing the resolution does not

lead to a significant rise in higher frequency density. The slight increase observed is likely due to

digitization noise rather than additional meaningful details.

Furthermore, this study has shown that binarizing document images does not significantly affect

the maximum frequency captured, suggesting that increasing the digitization resolution beyond 300

dpi is generally unnecessary. Higher resolutions do not necessarily translate into proportional impro-

vements in image quality and can lead to inefficiencies, such as increased scanning time, excessive

storage and bandwidth consumption, and longer processing durations due to larger raster file sizes.

Thus, the findings suggest that resolutions between 150 and 300 dpi provide the best balance

between quality and efficiency for most digitization needs, ensuring accurate OCR transcription and

effective digital storage without unnecessary computational overhead.
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Appendix A – CROPPING ALGORITHM

Source Code 1 – Cropping Algorithm applied in the dataset.
1 # Selecting the image

image_file = "Home_original" #@param [" Home_original "," Callidus_original", "

Saltu_original "]

3 selected_image = "Image 01" #@param ["Image 01", "Image 02", "Image 03", "Image

04", "Image 05", "Image 06", "Image 07", "Image 08", "Image 09", "Image 10",

"Image 11", "Image 12", "Image 13", "Image 14", "Image 15", "Image 16", "

Image 17", "Image 18", "Image 19", "Image 20", "Image 21", "Image 22", "Image

23", "Image 24", "Image 25", "Image 26", "Image 27", "Image 28"]

5 # Setting destination folder based on image_file

if image_file == "Callidus_original":

7 cropped_folder = "Callidus_cropped"

elif image_file == "Saltu_original":

9 cropped_folder = "Saltu_cropped"

elif image_file == "Home_original":

11 cropped_folder = "Home_cropped"

else:

13 raise ValueError("Invalid image_file. Choose 'Home_original ' or '

Callidus_original '.")

15 image_resolutions = ["75ppp", "150ppp", "200ppp", "300ppp", "500ppp", "700ppp", "

1200 ppp"]

17 # Creating a list of paths to the original images

images_paths = [f"{images_path }/{ selected_image }/{ image_file }/{res}.png" for res

in image_resolutions]

19

# Initializing the 'images ' list before the loop

21 images = []

23 # Checking if images exist

timages = []

25 for path in images_paths:

img = cv2.imread(path)

27 if img is None:

print(f"Error: Image not found at {path}")

29 else:

print(f"Image {path} loaded")

31 images.append(img)

33 # Defining the cutting parameters

top = 0 # @param {type:" slider", min:0, max:85, step :1}

35 bottom = 5 # @param {type:" slider", min:0, max:90, step :1}
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left = 2 # @param {type:" slider", min:0, max:75, step :1}

37 right = 12 # @param {type:" slider", min:0, max:75, step :1}

cut_values = {"Top": top , "Bottom": bottom , "Left": left , "Right": right}

39

# Function to crop and save the image

41 def cut_and_save(image , output_path , resolution , cut_percent =(top , bottom , left ,

right)):

if image is not None:

43 top , bottom , left , right = [int(p * max(image.shape) / 100) for p in

cut_percent]

cut_image = image[top:image.shape [0] - bottom , left:image.shape [1] -

right]

45 cv2.imwrite(output_path , cut_image)

return cut_image

47 else:

print(f"The image ({ resolution }) is empty.")

49 return None

51 # Function to save the cutoff values in an Excel file

def save_cut_values(cut_values , excel_path):

53 df_corte = pd.DataFrame ([ cut_values], columns =['Top', 'Bottom ', 'Left', '

Right '])

df_corte.to_excel(excel_path , index=False)

55 print(f"Cutoff values saved in: {excel_path}")

57 # Creating output path list of cropped images

output_paths = [f"{images_path }/{ selected_image }/{ cropped_folder }/{res}.png" for

res in image_resolutions]

59

# Cropping and saving images

61 cut_images = []

for i, image in enumerate(images):

63 resolution = image_resolutions[i]

output_path = output_paths[i]

65 cut_image = cut_and_save(image , output_path , resolution)

cut_images.append(cut_image)

67

# Saving Cutoff Values to an Excel File

69 excel_path = f"{images_path }/{ selected_image }/{ cropped_folder }/ excel_data/

cut_values_{selected_image }.xlsx"

71 # Creating the directory if it doesn't exist

os.makedirs(os.path.dirname(excel_path), exist_ok=True)

73 save_cut_values(cut_values , excel_path)

75 # Showing images

titles_originais = [f'{selected_image} - Original ({res})' for res in
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image_resolutions]

77 titles_cut_images = [f'{selected_image} - Coropped ({res})' for res in

image_resolutions]

exibir_imagens(images + cut_images , titles_originais + titles_cut_images , 2, 7)

Source: The author (2024)
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Appendix B – OTSU BINARIZATION ALGORITHM

Source Code 2 – Otsu binarization Algorithm applied in the dataset.
# Selecting the image

2 image_file = "Home_cropped" #@param [" Home_cropped "," Callidus_cropped", "

Saltu_cropped "]

selected_image = "Image 01" #@param ["Image 01", "Image 02", "Image 03", "Image

04", "Image 05", "Image 06", "Image 07", "Image 08", "Image 09", "Image 10",

"Image 11", "Image 12", "Image 13", "Image 14", "Image 15", "Image 16", "

Image 17", "Image 18", "Image 19", "Image 20", "Image 21", "Image 22", "Image

23", "Image 24", "Image 25", "Image 26", "Image 27", "Image 28"]

4

image_resolutions = ["75ppp", "150ppp", "200ppp", "300ppp", "500ppp", "700ppp", "

1200 ppp"]

6

# Creating a list of paths to the original images

8 images_paths = [f"{images_path }/{ selected_image }/{ image_file }/{res}.png" for res

in image_resolutions]

10 # Initializing the 'images ' list before the loop

images = []

12

# Checking if images exist

14 timages = []

for path in images_paths:

16 img = cv2.imread(path)

if img is None:

18 print(f"Error: Image not found at {path}")

else:

20 print(f"Image {path} loaded")

images.append(img)

22

# Function to binarize and save the image

24 def binarize_and_save(image , output_path , resolution):

if image is not None:

26 # Converting the image to grayscale

gray_image = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)

28

# Applying Otsu thresholding to grayscale image

30 _, binarized_image = cv2.threshold(gray_image , 0, 255, cv2.THRESH_BINARY

+ cv2.THRESH_OTSU)

32 cv2.imwrite(output_path , binarized_image)

return binarized_image

34 else:

print(f"The image ({ resolution }) is empty.")
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36 return None

38 # Binarizing the images and saving them to the binarized_images list

binarized_images = []

40 for i, image in enumerate(images):

resolution = images_paths[i].split("/")[-1]. split(".")[0]

42 output_path = f"{images_path }/{ selected_image }/{ image_file }/ binarized_{

resolution }.png"

44 binarized_image = binarize_and_save(image , output_path , resolution)

46 binarized_images.append(binarized_image)

48 # Showing the original and binarized images

titles_originais = [f'{selected_image} - Original ({ images_paths[i].split ("/")

[-1]. split (".") [0]}) ' for i in range(len(images))]

50 titles_binarized = [f'{selected_image} - Binarized ({ images_paths[i].split ("/")

[-1]. split (".") [0]}) ' for i in range(len(binarized_images))]

exibir_imagens(images + binarized_images , titles_originais + titles_binarized , 2,

7)

Source: The author (2024)
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Appendix C – SPECTRAL ANALYSIS ALGORITHMS

Source Code 3 – Fourier Transform Algorithm applied in the dataset.
1 # Selecting parameters

selected_image = "Image 01" #@param ["Image 01", "Image 02", "Image 03", "Image

04", "Image 05", "Image 06", "Image 07", "Image 08", "Image 09", "Image 10",

"Image 11", "Image 12", "Image 13", "Image 14", "Image 15", "Image 16", "

Image 17", "Image 18", "Image 19", "Image 20", "Image 21", "Image 22", "Image

23", "Image 24", "Image 25", "Image 26", "Image 27", "Image 28"]

3 image_file = "Home_cropped" #@param [" Home_cropped", "Callidus_cropped", "

Saltu_cropped "]

color_image = "Color Image" #@param ["Color Image", "Binarized Image"]

5

# Image resolutions for analysis

7 image_resolutions = ["75ppp", "150ppp", "200ppp", "300ppp", "500ppp", "700ppp", "

1200 ppp"]

9 # Image paths

images_path = "/content/drive/MyDrive/ScanImages"

11 if color_image == "Color Image":

images_paths = [f"{images_path }/{ selected_image }/{ image_file }/{res}.png" for

res in image_resolutions]

13 else:

images_paths = [f"{images_path }/{ selected_image }/{ image_file }/ binarized_{res

}.png" for res in image_resolutions]

15

# Loading images

17 images = []

for path in images_paths:

19 img = cv2.imread(path , cv2.IMREAD_GRAYSCALE)

if img is not None:

21 images.append(img)

else:

23 print(f"Error: Image not found at {path}")

25 def plot_images(images , titles , rows , cols , variables , frequencies):

plt.figure(figsize =(18, 6 * rows))

27 for i in range(len(images)):

plt.subplot(rows , cols , i + 1)

29 if i % cols == 1: # Frequency Map

im = plt.imshow(images[i], cmap='jet')

31 plt.colorbar(im, ax=plt.gca(), fraction =0.05, pad =0.04)

else: # Original and Reconstructed Image

33 plt.imshow(images[i], cmap='gray')

plt.title(titles[i])

35 plt.axis('off')
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if variables and frequencies and i % cols == 0 and i // cols < len(

variables) and i // cols < len(frequencies):

37 plt.text (0.5, 1.1, f"Variable: {variables[i // cols ]}\ nMax Frequency:

{int(frequencies[i // cols])}",

horizontalalignment='center ', verticalalignment='center ',

transform=plt.gca().transAxes)

39 plt.tight_layout ()

plt.show()

41

43 def save_to_excel(variables , frequencies , excel_path):

os.makedirs(os.path.dirname(excel_path), exist_ok=True) # Ensure directory

exists

45 data = {'Variable ': variables , 'Max Frequency ': frequencies}

df = pd.DataFrame(data)

47 df.to_excel(excel_path , index=False)

print(f'Data saved to {excel_path}')

49

def save_frequency_maps(frequency_maps , frequency_map_dir , image_variables):

51 os.makedirs(frequency_map_dir , exist_ok=True)

for i, freq_map in enumerate(frequency_maps):

53 freq_map_path = os.path.join(frequency_map_dir , f"{image_variables[i]}

_frequency_map.png")

plt.imsave(freq_map_path , freq_map , cmap='jet')

55 print(f'Frequency maps saved to {frequency_map_dir}')

57 # Fourier Transform and Frequency Analysis

def calculate_max_frequency(magnitude_spectrum):

59 row_center , col_center = np.unravel_index(np.argmax(magnitude_spectrum),

magnitude_spectrum.shape)

return magnitude_spectrum[row_center , col_center]

61

# Configuring layout for data visualization

63 rows = len(images)

cols = 3 # Original Image , Frequency Map , Reconstructed Image

65 all_images = []

image_variables = []

67 frequencies = []

frequency_maps = []

69

for image_path in images_paths:

71 image_variables.append(image_path.split("/")[-1]. split(".")[0])

73 # Processing each resolution

for image in images:

75 transform_image = np.fft.fft2(image)

center_transform_image = np.fft.fftshift(transform_image)



74

77 magnitude_spectrum = np.log(np.abs(center_transform_image) + 1)

79 # Image Reconstruction and Frequency Map Saving

reconstructed_image = np.abs(np.fft.ifft2(np.fft.ifftshift(

center_transform_image))).astype(np.uint8)

81

max_frequency = calculate_max_frequency(magnitude_spectrum)

83 frequencies.append(max_frequency)

frequency_maps.append(magnitude_spectrum)

85

all_images.extend ([image , magnitude_spectrum , reconstructed_image ])

87

titles = ["Original Image", "Frequency Map", "Reconstructed Image"] * len(images)

89

# Display images and max frequency

91 plot_images(all_images , titles , rows , cols , image_variables , frequencies)

93 # Save results to Excel

output_excel_path = os.path.join(images_path , selected_image , image_file , "

excel_data", f"{selected_image}_frequencies.xlsx" if color_image == "Color

Image" else f"binarized_{selected_image}_frequencies.xlsx")

95 save_to_excel(image_variables , frequencies , output_excel_path)

97 # Save frequency maps

frequency_map_dir = os.path.join(images_path , selected_image , image_file , "

frequency_maps")

99 save_frequency_maps(frequency_maps , frequency_map_dir , image_variables)

Source: The author (2025)
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Source Code 4 – Spectral Density Plot Algorithm applied in the dataset.
1 # Selecting parameters

selected_image = "Image 01" #@param ["Image 01", "Image 02", "Image 03", "Image

04", "Image 05", "Image 06", "Image 07", "Image 08", "Image 09", "Image 10",

"Image 11", "Image 12", "Image 13", "Image 14", "Image 15", "Image 16", "

Image 17", "Image 18", "Image 19", "Image 20", "Image 21", "Image 22", "Image

23", "Image 24", "Image 25", "Image 26", "Image 27", "Image 28"]

3 image_file = "Home_cropped" #@param [" Home_cropped", "Callidus_cropped", "

Saltu_cropped "]

color_image = "Color Image" #@param ["Color Image", "Binarized Image"]

5

# Image resolutions for analysis

7 image_resolutions = ["75ppp", "150ppp", "200ppp", "300ppp", "500ppp", "700ppp", "

1200 ppp"]

resolutions_dpi = ["75dpi", "150dpi", "200dpi", "300dpi", "500dpi", "700dpi", "

1200 dpi"]

9

# Create image paths

11 if color_image == "Color Image":

images_paths = [f"{images_path }/{ selected_image }/{ image_size }/{res}.png" for

res in resolutions]

13 else:

images_paths = [f"{images_path }/{ selected_image }/{ image_size }/ binarized_{res

}.png" for res in resolutions]

15

# Load images , ensuring all are correctly loaded

17 images = [cv2.imread(path , cv2.IMREAD_GRAYSCALE) for path in images_paths]

19 # Define the default output format for images

pio.kaleido.scope.default_format = "png"

21

# Function to calculate spectral energy

23 def calculate_spectral_energy(magnitude_spectrum):

return np.sum(magnitude_spectrum **2)

25

# Function to compute the maximum frequency

27 def calculate_max_frequency(magnitude_spectrum):

row_center , col_center = np.unravel_index(np.argmax(magnitude_spectrum),

magnitude_spectrum.shape)

29 return magnitude_spectrum[row_center , col_center]

31 # Function to calculate the frequency distribution

def calculate_frequency_distribution(magnitude_spectrum):

33 hist , bins = np.histogram(magnitude_spectrum.flatten (), bins=50, range =(0,

magnitude_spectrum.max()))

hist = hist / hist.sum()

35 predominant_frequencies = bins [:-1][ hist > 0.1]
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return hist , bins , predominant_frequencies

37

# Function to display and save frequency recurrence using Plotly

39 def plot_frequency_recurrence(hist , bins , title , xlabel , ylabel , save_path):

fig = go.Figure ()

41 bin_width = bins [1] - bins [0]

43 fig.add_trace(go.Bar(

x=bins[:-1],

45 y=hist ,

marker=dict(color='#008000 ', line=dict(width =0)),

47 width=bin_width ,

opacity =1.0

49 ))

51 fig.update_layout(

title=title ,

53 xaxis_title=xlabel ,

yaxis_title=ylabel ,

55 plot_bgcolor="#E5E5E5",

xaxis=dict(showgrid=False),

57 yaxis=dict(showgrid=True , gridcolor="white"),

bargap=0,

59 bargroupgap =0,

)

61

fig.write_image(save_path , engine="kaleido")

63 fig.show()

65 # Directory to save the graphs

save_dir = os.path.join(images_path , "espectral_density", selected_image ,

color_image , image_size , "original")

67 os.makedirs(save_dir , exist_ok=True)

69 # Apply processing steps for each resolution

frequencies = []

71 energies = []

titles = [f"{selected_image} - {res}" for res in resolutions_dpi]

73

for i, (image , res , res_dpi) in enumerate(zip(images , resolutions ,

resolutions_dpi)):

75 if image is None:

print(f"Image {res} was not loaded correctly , skipping ...")

77 continue

79 transform_image = np.fft.fft2(image)

center_transform_image = np.fft.fftshift(transform_image)
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81 magnitude_spectrum = np.log(np.abs(center_transform_image) + 1)

83 max_frequency = calculate_max_frequency(magnitude_spectrum)

frequencies.append(max_frequency)

85

energy = calculate_spectral_energy(magnitude_spectrum)

87 energies.append(energy)

89 hist , bins , _ = calculate_frequency_distribution(magnitude_spectrum)

91 save_path = os.path.join(save_dir , f"spectral_density_{res_dpi }.png")

print(f"Saving graph at: {save_path}")

93 plot_frequency_recurrence(hist , bins , f"{image_size} | Spectral Density - {

titles[i]}: {color_image}", "Frequency", "Recurrence", save_path)

95 # Create DataFrame with results

data = {

97 'Resolution ': resolutions_dpi ,

'Max Frequency ': frequencies ,

99 'Energy ': energies

}

101 df = pd.DataFrame(data)

103 # Path to save the Excel file

output_excel_path = os.path.join(images_path , selected_image , image_size , "

excel_data", f"{selected_image}_spectral_analysis.xlsx")

105 os.makedirs(os.path.dirname(output_excel_path), exist_ok=True)

df.to_excel(output_excel_path , index=False)

Source: The author (2025)
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Appendix D – OCR AND LEVENSHTEIN DISTANCE ALGORITHM

Source Code 5 – OCR and the Levenshtein Distance Algorithm applied in the dataset.
# Selecting parameters

2 selected_image = "Image 18" #@param ["Image 01", "Image 02", "Image 03", "Image

04", "Image 05", "Image 06", "Image 07", "Image 08", "Image 09", "Image 10",

"Image 11", "Image 12", "Image 13", "Image 14", "Image 15", "Image 16", "

Image 17", "Image 18", "Image 19", "Image 20", "Image 21", "Image 22", "Image

23", "Image 24", "Image 25", "Image 26", "Image 27", "Image 28"]

image_file = "Home_cropped" #@param [" Home_cropped", "Callidus_cropped", "

Saltu_cropped "]

4 color_image = "Color Image" #@param ["Color Image", "Binarized Image"]

6 # Image resolutions for OCR

image_resolutions = ["75ppp", "150ppp", "200ppp", "300ppp", "500ppp", "700ppp", "

1200 ppp"]

8

# Image paths

10 images_path = "/content/drive/MyDrive/ScanImages"

if color_image == "Color Image":

12 images_paths = [f"{images_path }/{ selected_image }/{ image_file }/{res}.png" for

res in image_resolutions]

else:

14 images_paths = [f"{images_path }/{ selected_image }/{ image_file }/ binarized_{res

}.png" for res in image_resolutions]

16 # Loading images

images = []

18 for path in images_paths:

img = cv2.imread(path , cv2.IMREAD_GRAYSCALE)

20 if img is not None:

images.append(img)

22 else:

print(f"Error: Image not found at {path}")

24

# Directory to save OCR results

26 output_dir = f"/content/drive/MyDrive/ScanImages/OCR_Results /{ selected_image }/{

image_file }/{ color_image}"

os.makedirs(output_dir , exist_ok=True)

28

# Tesseract configuration to disable dictionary

30 tesseract_config = "--psm 6 load_system_dawg =0 load_freq_dawg =0"

ocr_texts = []

32

# Performing OCR and saving results

34 for i, image in enumerate(images):
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if image is None:

36 print(f"Error processing image at {images_paths[i]}")

continue

38

# Performing OCR

40 text = pytesseract.image_to_string(image , config=tesseract_config)

42 # Saving OCR result

output_file = os.path.join(output_dir , f"{image_resolutions[i]} _nd_ocr_result

.txt")

44 with open(output_file , 'w') as file:

file.write(text)

46 ocr_texts.append(text)

print(f"Extracted text for resolution {image_resolutions[i]} saved to {

output_file}")

48

# Reading the reference text

50 def read_file(file_path):

with open(file_path , 'r', encoding='utf -8') as file:

52 return file.read()

54 reference_path = f"/content/drive/MyDrive/ScanImages/References /{ selected_image}

_reference.txt"

reference_text = read_file(reference_path)

56

# Computing Levenshtein distances

58 distances = []

for i, ocr_text in enumerate(ocr_texts):

60 distance = levenshtein(reference_text , ocr_text)

distances.append ({

62 'Resolution ': image_resolutions[i],

'Levenshtein Distance ': distance

64 })

66 # Saving results to Excel

output_lev_dir = f"/content/drive/MyDrive/ScanImages/Levenshtein_Dist /{

selected_image }/{ image_file }/{ color_image}"

68 os.makedirs(output_lev_dir , exist_ok=True)

output_file_path = os.path.join(output_lev_dir , f"{selected_image}_nd_levenshtein

.xlsx" if color_image == "Color Image" else f"binarized_{selected_image}

_levenshtein.xlsx")

70 df = pd.DataFrame(distances)

df.to_excel(output_file_path , index=False)

72

print(f"Levenshtein distances saved to: {output_file_path}")

Source: The author (2025)
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