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ABSTRACT 

 

The development of new equipment technologies constitutes one of the greatest 

challenges in the oil and gas industry, particularly for the well engineering area. It is 

necessary to ensure that new technologies have satisfactory and failure-free 

performance for high mission times, much longer than the typical and viable durations 

of qualification and reliability demonstration tests. Furthermore, the development 

process is complex and iterative, involving different types of data from tests, numerical 

simulations and multiphysics analyses, from its inception to full-scale operation. In this 

context, it is essential to have a way to collect and aggregate these different types of 

data as they become available to monitor and control the technological development 

process, being able to provide equipment developed with the desired reliability 

requirements. However, to achieve this objective two key challenges need to be 

overcome: (i) the heterogeneity of data obtained during development, since tests and 

analyzes are carried out on different models, components, and stressors; (ii) the low 

quality of information collected in tests for such long time horizons (such as mission 

times for completion equipment, which can reach 27 years in Brazilian fields) due to 

infrastructure, technology and cost limitations. To achieve this, the methodology 

presented in this thesis proposes the construction of a multilevel reliability model (MRM) 

and a Bayesian framework that allows the use of heterogeneous data to feed the 

reliability model of the new technology and aggregate test data with information from 

other sources. , such as the opinions of experts and databases of similar systems, 

which are treated as a baseline for the a priori analysis of the reliability of the new 

technology, being updated by the test results. Two methods for obtaining a priori 

reliability prediction with simple and intuitive elicitation are proposed and applied to an 

openhole expandable packer and a sliding sleeve valve, demonstrating the robustness 

and applicability of the solutions for continuously and non-continuously operated 

systems. Furthermore, the model allows the aggregation of new information as it 

becomes available, allowing a residual uncertainty analysis to be carried out at each 

stage of development and thus providing a powerful reliability monitoring tool 

throughout the development process of new equipment. 

 

Keywords: completion technology development; multilevel reliability model 

(MRM); Bayesian reliability; informative prior distribution; residual uncertainty analysis.   
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1 INTRODUCTION 

 

1.1 INITIAL REMARKS 

 

The production development project (PDP) comprises definition and execution 

of the best technical solution to be employed in an oil and gas (O&G) production field 

whose declaration of commerciality has been approved. The O&G industries have 

actively practiced the implementation of remotely monitored and controlled well 

completions in their PDP’s. This technology, referred to as intelligent well completion 

(IWC), has rapidly advanced over the last few years, showing benefits that include 

increased recovery and production acceleration (HU et al., 2021). Applications of IWC 

and their values has been shown in WOSOWEI & SHASTRY (2023), LIU et al. (2022), 

SCHAEFER & SAMPAIO (2020), EREN & POLAT (2020), AVILA (2020), BRONI–

BEDIAKO et al. (2019), AFUEKWE & BELLO (2019), DA SILVA et al. (2017), and 

RAOUFI et al. (2015). 

The employment of IWC has required the development of new equipment 

technologies that are essential for the system operation. For instance, a new open hole 

configuration with electric intelligent completion is being developed in Brazil’s pre-salt, 

and some equipment for use in open hole intelligent completion configurations, such 

as sliding sleeve valve and the open hole expansible packer, have been developed 

and implemented since 2019 (CARVALHO & DA SILVA, 2022). 

The in-progress equipment development projects for electrical completion 

include electric flow valves, the downhole connection and disconnection system with 

inductive coupler or electrical contact, the responsible control cards for the 

management and supply of energy and communication for the well (including sensors 

and actuators of the various installed equipment). In addition, the roadmap for the 

electric intelligent completion also foresees the future incorporation of electrically 

operated gas lift valves, electrically operated well safety valves, intelligent equipment 

and new opportunities in well sensing, such as those based on fiber optics 

(CARVALHO & DA SILVA, 2022). 

In high-reliability applications such as the O&G production, it is necessary to 

assure that new products have the required quality before they are put into operation. 

The time to the first planned intervention may be five years, or even longer, and the 
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installed system should be able to operate properly during this period. For some IWC 

equipment, intervention-free operation may be required throughout the well's entire 

production period (which comprises about 27 years in Brazil). New technologies are 

often met with skepticism in O&G producing field, since the operators fear that they 

may fail and lead to production losses, costly repair interventions, and hydrocarbon 

leakages to the sea (RAHIMI & RAUSAND, 2015). Then, to provide such assurance, 

a technology qualification program (TQP) has been implemented to reduce the 

uncertainty for new products development (AMERICAN PETROLEUM INSTITUTE, 

2018; DET NORSKE VERITAS, 2017). 

Qualification is the process by which systems are examined and evidence is 

provided to demonstrate that the new technology meets the specified requirements for 

the intended use (AMERICAN PETROLEUM INSTITUTE, 2017; LLOYD’S REGISTER, 

2022). It is therefore an application-oriented process, which means that equipment 

technology may be qualified for one specific application. The operator will usually 

specify strict goals and requirements for the new equipment and require the supplier 

to follow an agreed TQP during the design, development, and manufacturing phases 

of the system (AMERICAN BUREAU OF SHIPPING, 2017; DET NORSKE VERITAS, 

2017). Such requirements typically include regulatory, functional, and technical 

specifications (AMERICAN PETROLEUM INSTITUTE, 2018). The latter should cover 

reliability and integrity performances, since they are core business values that O&G 

companies are seeking to achieve. Reliability requirements to be addressed in a TQP 

may be (AMERICAN PETROLEUM INSTITUTE, 2017): 

i. Management related goals: specify an analysis (e.g.: Failure Modes and 

Effects Analysis – FMEA) to be implemented within the scope of 

technology development process. 

ii. Qualitative: it requires the probability of occurrence of a specific failure 

mode to be negligible or very low. 

iii. Quantitative: it specifies a level of reliability required for an item. 

 

Most of works found in the literature deal primarily with qualitative requirements 

and/or management goals for qualifying new technologies in a PDP against reliability 

requirements as in  ABBASZADEH et al. (2022) ARIF et al. (2022), DENNEY (2003), 

FEDER (2019), KLEYNHANS et al. (2016), MCGEORGE et al. (2019), PATEL et al. 

(2019), RATNAYAKE et al. (2014), SOLOVYEVA et al. (2023), WILKINS (2018), and 
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WRIGHT (2017). The same is seen in the industry standards used for qualifying 

subsea/downhole systems, components and materials, such as ISO 14310 (2008), 

ISO 23936 (2011), API 17F (2014), API SPEC 14A (2024), ISO 11960 (2020), ISO 

15156 (2020), AWES RP 3362 (2017), API 11D1 (2022), API 19G2 (2020), API 5CT 

(2019b), API 19V (2019a). 

In these types of qualification activities, a “pass/fail” test approach is adopted to 

select materials and validate components designs. Then, if the result satisfies a 

previously established acceptance criterion, or if some qualitative or management 

analysis is performed, then the technology is qualified (pass) for the respective 

requirement (LLOYD’S REGISTER, 2022), but no quantification can be made about 

the new technology reliability level. 

When a quantitative reliability requirement is adopted, it is needed to predict the 

reliability level of the new system in its future operational context. The procedure 

requires the development and application of statistical techniques for collecting and 

analyzing reliability data during the development process.  

 

1.2 LITERATURE REVIEW ON RELIABILITY PREDICTION OF NEW O&G 

TECHNOLOGIES AND THE PROPOSED SOLUTION 

 

Within the investigated literature base, just a few articles were found in the O&G 

context. RAHIMI & RAUSAND (2013) present a practical approach for failure rate 

prediction of new subsea systems based on available operational data from similar, 

known systems from the topside environment and a comparison between the two 

systems. The author’s procedure however does not use data from the new system 

itself (e.g.: from test), becoming a highly subjective approach based on the judgement 

about the impact of the reliability-influencing factors in the new and similar systems. 

Also, the recommended practice API 17Q (2018) presents a reliability 

demonstration test (RDT) approach for planning a test protocol capable of proving that 

the technology meets some target of reliability with a certain confidence level if it runs 

successfully according to an acceptance criterion. However, for systems with high 

reliability, standard RDTs are no longer preferred because test plans often require long 

test durations and pose high risks to producers and consumers (JIANG et al., 2022). 

Besides that, an RDT is typically limited to a set of components and failure mechanisms, 

which can be covered by the single testing protocol. This means that reliability targets 
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and RDT plans should be defined for each of them in order to demonstrate the reliability 

of a complex equipment at a system level, or the reliability is assessed only for the 

prioritized failure mechanisms. 

Furthermore, in the technology development, an RDT is typically performed for 

prototype validation step at an advanced phase of the development process. Predicting 

system reliability at early stages in the system development process is important due 

to the high cost of design modifications later in the development process. This risk is 

relevant if the RDT is the unique way to demonstrate the system reliability level 

quantitatively. For more about RDT approach, see GRUNDLER et al. (2022). 

Therefore, this thesis proposes a methodology for predicting the system 

reliability, and updating it, along the steps of the development process, by aggregating 

the available information at each of them. In earlier phases of the development process, 

a high uncertainty level is expected for the reliability prediction. As new data is gathered 

and aggregated during the process, the uncertainties are reduced until a satisfactory 

remaining uncertainty is met according to the defined reliability requirement. By using 

this reliability evolution all along the process, the decision-makers can take more 

informed and supported decisions about the project actions, design changes, and 

continuity of the developing technology. 

In the development phases, reliability data from the system itself is only 

available through reliability tests carried out on prototypes of the equipment or its 

components. The probabilistic physics of failure (PPoF) methods (MODARRES et al., 

2017) have been used, in a general manner, to gathering and analyzing these types 

of data. Reliability tests are performed, normally in accelerated conditions, to evaluate 

the system (or component) lifetime for specific failure mechanisms. A PPoF model is 

formulated to model the system reliability against the failure mechanism and the results 

of the tests are used to estimate the PPoF model parameters (MUHAMMAD et al., 

2020; POURGOL et al., 2018; RANE et al., 2019; REGATTIERI et al., 2017; WEI et 

al., 2022; XIE & HUANG, 2016; ZAHARIA et al., 2020). 

However, the development of an engineering system is a process that evolves 

from basic research to prototype validation, through concept development and 

validation, and it is usually characterized by continuing updates and modifications in 

design specifications in order to overcome observed technical difficulties as well as 

implement engineering improvements. In this way, from some specific test or analysis 

performed at each phase, the reliability data are provided for different hierarchical 
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structure (system, subsystem, module, component, part, material, etc.), in different 

forms (lifetime, pass/fail data, degradation measure, etc.), and regarding different 

failure mechanism (fatigue, corrosion, etc.). Classical PPoF models are useful for 

modeling individual test or analysis. Then, a method for aggregating this 

heterogeneous data set is mandatory for the objective pursued in this thesis. 

In WANG et al. (2013), special consideration is given to the inclusion of 

accelerated degradation data in conjunction with field data (lifetime) for a specific 

component. This work is enlarged in WANG et al. (2017), by including the possibility 

of pass/fail data to be aggregated in the model proposed in 2013. However, despite 

providing a solution for the multitype data set, these works don’t deal with multilevel 

data problem. On the other hand, multi-level integration methods, such as those 

proposed in JACKSON & MOSLEH (2016), YONTAY; PAN (2016), and LI et al.,  

(2014), have aimed to solve the problem of evaluating the reliability of a complex 

system, but they assume that each component has only one data source and/or one 

data type. 

If one wants to integrate multi-source reliability information in a systematic way, 

Bayesian approach is a natural choice, just as it happened in these above-mentioned 

papers. However, there is still a gap for a method that aggregates into a unique 

Bayesian framework data from various sources, in multiples forms and hierarchical 

level, and relative to different PPoF failure mechanisms models. For that end, a 

Multilevel Reliability Model (MRM) is built-up in this thesis, and a Bayesian framework 

is developed to estimate and update the MRM parameters and reliability metrics in 

each phase of the development process, from the heterogeneous data sources. The 

MRM and Bayesian framework proposed makes possible the consideration of design 

changes. 

Specifically, prior distributions are a key component for Bayesian analysis, being 

classified as informative or non-informative. The main idea of non-informative prior is 

that it should slightly affects the likelihood information. However, when limited data is 

available, the likelihood constructed is sometimes weak and, using non-informative 

prior may end in a posterior distribution with high uncertainty. Therefore, it is essential 

to incorporate every possible information to build the prior distribution (KONG et al., 

2020; YANG; GUO; KONG, 2019). Informative prior distributions, in turn, improve the 

precision of the reliability estimates and, even if they are weakly informative, they help 

reduce convergence issues for algorithms for the posterior probability calculation, such 
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as Markov Chain Monte Carlo (MCMC) (GELMAN et al., 2017; WILSON & FRONCZYK, 

2016). 

It is worth highlighting that difficulties are found for collecting quality reliability 

data from the tests due to limitations of cost, time, and test infrastructure and 

technology, besides the possibility of design changes after running a test. Thus, data 

gathered from reliability tests may characterize "poor" likelihood functions for Bayesian 

updating and special attention is given for integrating them with other available source 

such as expert’s judgement and data from similar equipment (including previous 

system design versions) and/or components (some components may have already 

been used in another project). These alternative sources are treated as a prior 

information.  

Given the need to develop informative prior distributions for reliability 

parameters of O&G equipment technologies that are under development, we have 

developed two methods, described in MAIOR et al. (2022) and MACEDO et al. (2023). 

The former applies to continuously operated O&G equipment, while the latter focuses 

on non-continuously operated technologies (on demand systems). Both are based on 

experts’ opinion and generic database information and propose an approach to define 

informative prior distributions for the MRM parameters that does not require direct 

elicitation of parameters, facilitating the elicitation process. 

Finally, from posterior distributions of the MRM parameters, which can be 

inferred from an MCMC based technique, a Monte Carlo (MC) method will be used for 

assessing the uncertainty on reliability prediction (and its updates) at each 

development phase and compared them to the target defined in the reliability 

requirement planning. The target must be reached at the end of the development 

process, and then a residual uncertainty analysis is performed whenever an updated 

measurement is obtained, providing a powerful tool to control the development process 

by monitoring the uncertainty on the system reliability. 

 

1.3 OBJECTIVES 

 

1.3.1 General Objective 

 

This thesis aims to present a methodology for the reliability assessment of O&G 

systems under development based on various sources of information such as in-house 
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test data under both accelerated and nominal test conditions, experts’ judgments, and 

observed performance of similar equipments such as the ones recorded in generic 

databases. Specifically, the methodology is elaborated for well completion systems 

that are essentially non-repairable equipment, and it encompass continuously and non-

continuously (on-demand) operated equipment, by modelling their different operating 

modes. 

 

1.3.2 Specific Objectives 

The followings specific objectives are pursued: 

• To propose a Multilevel Reliability Model (MRM) that translates the system 

reliability based on reliability models of the different failure mechanisms. 

• To prepare a Bayesian framework capable of estimating uncertainty for the 

MRM parameters from heterogeneous data sources (multitype and multilevel 

data). 

• To define a methodology for using expert opinions and historic data of similar 

components to obtain prior distributions for the MRM parameters of 

continuously operated equipment. 

• To define a methodology for using expert opinions and historic data of similar 

components to obtain prior distributions for the MRM parameters of non-

continuously operated equipment. 

• To employ MCMC and MC techniques to calculate posterior distributions and 

uncertainty on the system reliability in order to perform a residual uncertainty 

analysis about the achievement of the reliability target. 

• To apply all above objectives to new technologies of an open hole expansible 

packer and a dual position sliding sleeve mechanical valve, which are 

equipment used in recent IWC projects for zonal isolation and control flow. 

 

1.4 THESIS STRUCTURE 

 

This thesis is structured as follows: The Multilevel Reliability Model (MRM) and 

the Bayesian framework are described in Chapter 2. Chapters 3 and 4 present the 

application of the MRM formulation and the proposed methods for obtaining prior 

distributions for continuously and non-continuously operating pieces of equipment 
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respectively, based on the papers published in MAIOR et al. (2022) and MACEDO et 

al. (2023).  

Specifically, the continuously operated system comprises an open hole 

expandable packer (Figure 1) developed for isolation of production zones, while the 

non-continuous one embraces a mechanical sliding sleeve valve (Figure 2 shows a 

traditional sliding sleeve valve) designed to control the in-flow of product from a 

reservoir zone to the production string. Both systems have been used in recent IWC 

projects deployed on the pre-salt field in Brazil. Figure 3 illustrates an example of their 

application in a well completion. Chapter 5 illustrates the Bayesian updates for the 

results of Chapters 3 and 4, from the tests performed for the systems under analysis. 

Finally, Chapter 6 gives the conclusions, methodology limitations and suggestions for 

future works. 

 

Figure 1 – Open hole expandable packer 

 
Source: JACINTO et al.,  (2015) 

 
Figure 2 – Traditional sliding sleeve valve 

 
Source: ZHANG et al (2017) 

 
Figure 3 – Schematic of the open hole completion string with packers and sliding sleeves. 
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Source: LIANG et al.,  (2020)  
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2 THE METHODOLOGY FOR PREDICTING RELIABILITY AND UNCERTAINTY 

OF NEW EQUIPMENT TECHNOLOGIES IN O&G INDUSTRY 

This chapter is based on the list of conference papers below (most published in 

extended abstract format), all of which I co-authored; it is worth noting that the content 

of this chapter is not limited to the contents of the papers listed below. There is an 

additional contribution, especially in the details of the models used in each stage of the 

methodology, which does not occur in the papers cited: 

• Methodology for extracting reliability parameters from the qualification 

standard tests ISO-23936 (AZEVEDO et al., 2023). 

• Methodology for Assessing the Reliability of Equipment under Development 

(AZEVEDO et al., 2022a) 

• The use of Weibull-GRP Virtual Age Model for Addressing Degradation due 

to Demand Induced Stress in Reliability Analysis of On-demand Systems 

(AZEVEDO et al., 2022b) 

• Technical assurance in new technology development projects: a reliability-

based approach (AZEVEDO et al., 2020) 

• Development of a software tool to implement reliability assessment of 

developing technologies (SANTANA et al., 2023) 

• Proposal of a Test Protocol for Reliability Evaluation of O&G Equipment 

(MENEZES et al., 2022) 

• Reliability-based Guidelines for Elaborating Technical Specifications of New 

Technologies (SANTANA et al., 2022) 

• A Bayesian Prior Distribution for Novel On-Demand Equipment Based on 

Experts's Opinion: A Case Study in the O&G Industry (MACEDO et al., 2022) 

• Physics-Based Accelerated RDT Testing for High Reliable Equipment 

(MAIOR et al., 2021) 

 

The methodology is designed to make quantitative assessments of the reliability 

behavior of equipment or systems that are still in the design stage of their life cycle and 

must be qualified for use in a production development project (PDP). Specifically, it 

supports qualification against quantitative reliability requirements. Despite the lack of 

data originating from the equipment operation/test itself, it is often possible to find 

alternative data sources, such as engineering judgements and operating history or 
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testing of similar equipment/components (whether heritage or generic ones), that, even 

though only partially relevant, provide information on which an assessment of the new 

technology reliability can be based.  

The methodology allows incorporating these various types of evidence from the 

development process, as they become available, to produce reliability prediction and 

evaluate the residual uncertainty that needs to be reduced to meet the reliability 

requirement from the earliest stages. One of the main challenges is that these various 

data may be in different formats (e.g., pass-fail, lifetime, degradation measures) and 

related to different hierarchical levels (system, subsystem, component) or failure 

modes and/or failure mechanisms.  

Figure 4 shows the methodology steps, and a detailed explanation of its 

modules is given in the following sections. 

 

Figure 4 – General steps of the methodology. 

 
Source: The author 

 

2.1 RELIABILITY REQUIREMENTS PLANNING 

 

The requirements planning process within a qualification program is an activity 

that involves developing a plan for identifying and validating goals and requirements 

from stakeholders, as well as agreed-upon criteria for adapting the general definitions 

of the development activities to the specific technology to be qualified. These 

requirements should address, but not be limited to, regulatory requirements, function 

and performance requirements, and technical requirements which includes standards 

to be used, operational and process conditions, internal and external environmental 
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conditions, reliability performances, etc. (AMERICAN PETROLEUM INSTITUTE, 

2018). 

Specifically, the methodology presented in this document is concerned with the 

definition of the quantitative level of reliability to be reached by the new equipment 

technology in a specific application. This reliability target works as a parameter for key 

decisions and test planning along the development process, and it is typically defined 

by the customer, for example through a reliability allocation procedure (Souza et al, 

2022), from the risk analysis of the well configuration selected in the PDP. This thesis 

does not intent to proposes a method for setting the system reliability target, but just 

indicate how it should be typified in the methodology, as described above. Whatever 

process is used for planning the reliability requirements, the following points are 

relevant: 

• The target for the system reliability in a mission time and the confidence level 

should be determined (AMERICAN PETROLEUM INSTITUTE, 2017). For 

example, the new technology should have a minimum of 90% reliability over 

10 years, with 80% confidence level at least. 

• The reliability target must be stated at system level and not for specific 

components or failure mechanisms. However, setting different targets for 

different system failure modes may be necessary, as their consequences is 

eventually associated with different severities. For instance, for process 

shutdown valves, such as the downhole safety valve (DHSV), a higher level 

of reliability should be required for the failure mode "fail to close when 

demanded" compared to the failure mode "spurious closing" since the first 

can result in consequences for the safety of operation. 

• The evidence that the equipment will meet the reliability goal should be 

provided as design/development requirement, for prototype validation and 

qualification. It means that the target for reliability does not encompasses 

qualification for manufacturing, assembly, testing, installation, and 

commissioning (MATIC). In the design/development activities, reliability 

analysis is oriented towards causes of failure related to design uncertainties 

and expected wear and tear resulting from normal operation of the equipment 

unit, as described in ISO 14224 (2016). Failures related to fabrication, 

installation, operation/maintenance errors are not included in the 

methodology and should not be considered for defining the reliability target. 
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• Other types of reliability metrics are discouraged in defining the quantitative 

reliability target. Most of well completion equipment is treated as a non-

repairable system, then availability and/or maintainability metrics are not 

relevant in the methodology. Also, the mean time to failure (MTTF) is not 

interesting to be used for it does not provide a measure of the equipment's 

ability to perform its function during mission time. 

 

Naturally, the reliability analysis process depends on the definition of system 

failure, which in turn will depend on the definition of other specifications for the system 

such as functional and performance requirements in addition to the 

operational/environmental conditions. For instance, one functional performance 

requirement for a DHSV system is to close on demand within a specified time, then, 

failure occurs if the valve does not close when demanded or if it closes completely after 

the set time. 

Once the reliability target is defined, the next steps of the methodology aim to 

execute evidence collection and analysis procedures throughout the development 

process capable of demonstrating that the project will meet the goal, and they are 

shown in following sections. 

 

2.2 THE MULTILEVEL RELIABILITY MODEL (MRM) 

 

This step consists in formulating the reliability model for the new system; this is 

not performed by simply setting a parametric probability distribution to the time to 

failure (e.g., Weibull). An important characteristic of the development process 

integrated in a TQP is that the analyses are made gradually on key parts or 

components prior to the entire system or subsystem, and from laboratory testing 

environments (without integration into a broader system) to a simulated environment 

(e.g. hyperbaric chamber) or actual intended environment (e.g. subsea environment, 

well-laboratory), and so on. Also, different tests and analysis could cover only specific 

failure mechanisms due to limitation in test technology and infrastructure. 

This means that, data and information about the system reliability are related 

with different levels in the system breakdown and different failure mechanisms. In this 

way, the system reliability model must be defined as a function of the reliability models 

of fundamental failure mechanisms (formulated at the item level), hence the name 
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“Multilevel Reliability Model”. Failure mechanisms will compete to cause the system 

failure, and the system reliability is interpreted as the probability that none of them can 

do that in an interval time (0, 𝑡]. Then, let 𝑅𝑖(𝑡|𝜃𝑖) be the parametric reliability model 

for the failure mechanism 𝑖 , with parameter 𝜃𝑖 ; the system reliability (𝑅𝑠(𝑡) ) is 

formulated as a function of failure mechanisms reliability models, i.e., 𝑅𝑠(𝑡) =

𝑔[𝑅𝑖(𝑡|𝜃𝑖)], with 𝑖 = {1,… ,𝑚}, where 𝑚 is the number of failure mechanisms and 𝑔[. ] 

models the logical representation among them in the competition to cause the system 

failure.  

The approach to formulate the system reliability as a function of failure 

mechanisms reliability models brings flexibility to the methodology to be applied for 

different types of developing equipment (on-demand, continuously running, etc.), and 

allows updating the model parameters estimate with information from tests on different 

hierarchical levels. Three tasks are therefore central in formulating MRM: (i) the 

identification of the failure mechanisms 𝑖 = {1,… ,𝑚}, (ii) the definition of the parametric 

reliability models 𝑅𝑖(𝑡|𝜃𝑖)  of each failure mechanism, and (ii) the modeling of the 

system reliability as a function of 𝑅𝑖(𝑡|𝜃𝑖) , i.e., modeling of 𝑔[. ] . The following 

subsections discuss these steps. 

 

2.2.1 FMECA for identifying relevant failure mechanisms. 

 

A key tool used in the formulation of the MRM is the failure modes, effect, and 

critically analysis (FMECA). In this section, it is described the format and content of 

some fields to be covered in the FMECA form. Basically, it will provide details regarding 

threats and weaknesses that should be considered in the reliability model and 

prioritized in the testing planning. The FMECA output may also identify design actions 

and improvements to be made before testing commences. 

Naturally, the FMECA should be used for other purposes such as 

manufacturing/operating procedures in order to avoid the occurrence of some failure 

mechanisms during MATIC activities. A process FMECA (P-FMECA) could be used in 

this sense (AMERICAN PETROLEUM INSTITUTE, 2017). However, as discussed in 

Section 2.1, only risks associated with normal use of the hardware design in the 

specific application are considered. Then a design/hardware FMECA (AMERICAN 

PETROLEUM INSTITUTE, 2017) must be applied for the methodology purposes. 
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The format of the fields proposed in this section is based upon existing design-

hardware FMECA types with a focus on identifying the logical representation of the 

system failure modes and the detailed identification of failure mechanisms. The 

FMECA should be performed at a component function level. The Sections 2.2.1.1 

through 2.2.1.4 describe a set of recommended columns for a standard FMECA to be 

used in the methodology, and Section 2.2.1.5 provide additional recommendations. 

 

2.2.1.1 System Function Breakdown 

 

Breakdown of the system to a level of detail required to discretely identify 

independent failure mechanisms that are to be verified during reliability qualification 

activities. The latest level in the system breakdown is the item for which the failure 

analysis is to be performed. Figure 5 illustrates a general example for the system 

breakdown of a DHSV project. The system breakdown may also be used to identify 

combinations of items required for reliability qualification testing as an assembly. This 

is useful where a specific failure mechanism only applies to an assembled unit or if it 

is not feasible to test items separately. 

 

Figure 5 – Example of system breakdown for the DHSV 

 
Source: Adapted from ISO 14224 (2016) 

 

Once the items are defined, it is necessary to identify the functions and 

performance required for each of them within the system functions. This is useful to 

correlate the identified reliability qualification activities to a specific item function and 

performance requirement. For example, a DHSV system has the function of closing 

and keeping closed the production string flow on demand. The seal of the valve unit 
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(Figure 5) contributes for this system function by sealing the region between the control 

sleeve and valve body when the DHSV is in the closed position.  

Table 1 illustrates the FMECA columns referring to the system function 

breakdown. 

 

Table 1 – FMECA columns referring to system function breakdown. 

System Function Breakdown 

Subsystem Component (item) Item function 

   

Source: The author 

 

2.2.1.2 Failure Identification 

 

Identification of all potential failure modes, mechanisms, and root causes for 

each functional entity examined, addressing potential deviations from performance 

expectations. The inducing agents (stressors) the inducing agents of the failure 

mechanisms and the mode of operation in which they occur should be recognized in 

the form to support tests planning and reliability modeling activities. Also, the technical 

consequence (effect) should be documented to inform the criticality and risk 

assessments.  

Table 2 shows the fields in FMECA related to the failure identification. The 

following definitions are useful: 

• A failure mode is the description of a failure, i.e., the manner in which failure 

occurs (ISO 14224, 2016). The failure modes typically refer to not obtaining 

a desired function (e.g. failure to start) or to a specified function lost or outside 

accepted operational limits (e.g. spurious stop, high output). 

• The failure mechanism is the physical, chemical or other process or 

combination of processes that leads to the failure (ISO 14224, 2016). It is an 

attribute of the failure event that can be deduced technically, as an apparent, 

observed cause of the failure (e.g.: fatigue, corrosion, etc.). 

• The cause of failure is the initiating event (“root causes”) in the sequence 

leading up to a failure of the item, that is, the reason for the occurrence of the 

failure mechanism process. 
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• The stressors of a failure mechanism are the failure-inducing agents, i.e., the 

environmental/operational variables (temperature, humidity shock pressure, 

etc.) that stress and age the item (MODARRES et al., 2017). 

 

Table 2 – FMECA columns referring to failure identification. 

Failure Identification 

Failure Mode Failure Mechanism Root Cause Stressors Operating Mode 
Effect 

(at system level) 

      

Source: The author 

 

A general picture of the relationship between failure modes, cause, and effect 

is that a failure mode of an item is one of the failure causes of a failure mode of the 

item at the next higher level in the system breakdown, and the failure effect of a failure 

mode of an item corresponds to the failure mode of the item at the next higher level. 

The failure mechanism is therefore the cause of the failure mode at the lowest items 

as if it were the failure mode of the materials and the root cause comprises why failure 

mechanism occurs. 

For example, abrasive particles in the fluid can cause seal wear during operation, 

when DHSV is open. Hard particles can become embedded in soft elastomeric and 

metal surfaces, leading to abrasion of the harder mating surfaces forming the seal, 

ultimately resulting in loss of sealing capacity of the seal unit. The loss of sealing 

capacity of the seal unit will cause an internal leakage on the valve unit when it is in 

the closed position. Finally, if there is an internal leakage in the valve unit, the DHSV 

system will not be able to close flow when demanded. The root cause in this scenario 

could be a poor lubrication during DHSV test/maintenance intervals, a wrong material 

specification, or even expected degradation during normal operation (impossible to be 

avoided with certainty by design actions and operating procedures). 

This example is illustrated at Figure 6 and will result in the following description 

in a row of the FMECA: 

• Item: seal unit 

• Failure mode: loss of sealing capacity 

• Failure Mechanism: Abrasive wear 

• Root cause: (i) poor lubrification (operating error); (ii) wrong material 

specification; (iii) expected material degradation. 

• Stressors: fluid flow containing solid particles 
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• Operating mode (in which the failure mechanism occurs): keep flow open 

(production) 

• Effect (system failure mode): DHSV does not close flow on demanded. 

 

Figure 6 – Relationship between failure cause, failure mode and failure effect. 

 
Source: The author 

 

2.2.1.3 Criticality Assessment 

 

Assessment of each potential failure mechanism to determine means of failure 

detection and to facilitate categorizing and prioritizing the qualification program. Table 

3 presents the content to be included in FMECA for the criticality assessment. The risk 

priority number (RPN) is a function of the three numeric parameters in the criticality 

assessment, viz, the probability of occurrence, the severity of the effect of failure, and 

the ease of detection for each failure mechanism. RPN is calculated by multiplying 

these three numbers as per the Equation 1 below, where 𝑂 is the probability of failure 

occurrence, 𝑆 is the severity of the effect of failure, and 𝐷 is the ease of detection 

(KIRAN, 2017). Values of 𝑂, 𝑆 and 𝐷 are defined from a numeric scale built previously. 

Some works have proposed adequate definitions for these numeric scales in the 

context of O&G industries (CATELANI; CIANI; VENZI, 2018; NI et al., 2022). This 

thesis does not intend to propose them. The qualifier or end user risk matrix may be 

used to assign a severity level to the identified consequences. 

 

𝑅𝑃𝑁 = 𝑂 × 𝑆 × 𝐷 1 

 

RPN may not play an important role in the choice of an action against failure 

mechanisms but will help in indicating the threshold values for determining the areas 
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of greatest concentration. In other words, a failure mechanism with a high RPN number 

should be given the highest priority in the analysis and corrective action. 

 

Table 3 – FMECA columns referring to criticality assessment. 

Criticality Assessment 

Detection 

Mode 

Occurrence 

(by numeric scale) 

Severity 

(by numeric scale) 

Detection likelihood 

(by numeric scale) 

Risk priority number 

(RPN) 

     

Source: The author 

 

2.2.1.4 Activities 

 

Identification of qualification activities needed, which can include 

design/engineering actions, operational/maintenance procedures and reliability tests 

(Table 4). Where underlying failure mechanisms and causes are not fully understood, 

FMECA actions should include investigations including those involving testing and 

research, to improve knowledge and understanding of failure. 

 

Table 4 – FMECA columns referring to qualification activities. 

Activities 

Design/Engineering actions Operational/Maintenance procedures Reliability tests 

   

Source: The author 

 

2.2.1.5 Other considerations on FMECA 

The following recommendations should be observed in the processes of 

developing and reviewing the FMECA form: 

• For modifications to existing technology, the system breakdown should 

identify all elements of the technology and be of sufficient granularity to 

detect which items are affected by the design or application changes.  

• Following implementation of identified qualification activities and follow-up 

actions, the technology assessment and FMECA should be updated and 

include an update of the RPN associated with each failure mechanism or 

the addition of a new potential failure mechanism identified in the 

qualification analysis. 
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• The FMECA is intended to be a living document throughout the 

qualification process, and it should be updated as the technology 

advances in development stages. 

 

2.2.2 Definition of failure mechanism reliability model 

 

2.2.2.1 General rule 

 

The proposed general rule for selecting the reliability modes of each failure 

mechanism is based on evaluation of the physics of failure (PoF) model (MODARRES, 

2021) and illustrated in Figure 7. At first, the frequency at which the component is 

subjected to the stressor agent must be evaluated. Demand-induced stresses act 

“instantaneously” on a component only during a demanded procedure, such as 

installation, actuations (e.g: open/close valve), interventions, etc. These type of failure 

mechanisms are associated a probability of failure on demand (PFD), 𝜌, which means 

that when demand occurs the failure mechanism will occur with a probability 𝜌. For 

example, during the installation of an expansible packer, a pressurization procedure is 

carried out, providing a stress on the metallic expansible sleeve. The expansible sleeve 

may burst during this procedure with probability 𝜌. 

Installation-induced stresses comprise demand stresses that occur only once 

on the system, i.e., at its installation. However, other types of stresses on demand can 

be repeated throughout the life of the equipment, as long as the causing procedure is 

demanded again. For example, a mechanical flow valve used for zonal control is under 

axial force stress every time it is actuated. In this case, 𝜌 is probability that the failure 

mechanism, related to the axial force applied, will occur in one actuation procedure, 

i.e., the PFD. However, if the component degrades over time and/or due to stresses 

suffered in the actuations, the probability 𝜌 also increases with time and/or with number 

of demands. So, a time and/or demand dependent PFD. 

The time/demanded-dependent PFD can be formulated as Equation 2 (based 

on MARTORELL et al., 2017), where 𝜌[𝑑, 𝑡𝑑|. ] is the probability of failure mechanism 

occurrence in the 𝑑𝑡ℎ  demand occurring at 𝑡𝑑 , 𝜌0  is the residual PFD (i.e. the 

probability of the failure mechanism in a pseudo first demanded procedure occurring 

at 𝑡0 = 0), 𝜀 is the demand degradation factor and 𝛾 is the time degradation factor. This 
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formulation models a linear degradation on time and by demand for 𝜌0, but other types 

of degradation models (logarithmic, power law, etc.) can be easily formulated. Whether 

a classic PFD or a time/demand-dependent PFD, the reliability against failure 

mechanism 𝑖 in a demand can be modeled by the Bernoulli distribution, according to 

Equations 3 and 4. 

 

Figure 7 – General rule for selecting failure mechanism’s reliability model. 

 
Source: The author 

 

𝜌[𝑑, 𝑡𝑑|𝜌0, 𝜀, 𝛾] = 𝜌0 + 𝜌0 × (𝜀. 𝑑 + 𝛾. 𝑡𝑑) 2 

𝑅𝑖(𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑|𝜌𝑖) = 1 − 𝜌𝑖 3 

𝑅𝑖(𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑|𝜌0𝑖𝜀𝑖, 𝛾𝑖) = 1 − 𝜌𝑖[𝑑, 𝑡𝑑|𝜌0𝑖𝜀𝑖, 𝛾𝑖] 4 

 

For failure mechanisms whose stressors affect continuously the item, or in a 

high frequency, a time-to-failure distribution is used. This includes environmental 

variables that constantly act on item (e.g.: temperature, axial loads, pressure 

differential, vibration, humidity, electrical potential, etc.) causing it to fail due to 

mechanisms such as fatigue, corrosion, erosion, and so on. The suitable choice for the 

time-to-failure distribution depends on the form of PoF model that better represents the 

failure mechanism. The PoF modeling framework is subject to the nature of underlying 

failure and degradation mechanism. The main ones are described below (MODARRES, 

2021): 

• Stress-Strength model: In this model, the item fails if the applied stresses 

exceed its strength (see Figure 8). This failure model may depend on 

environmental conditions, applied operating loads and the occurrence of 
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critical events, rather than the passage of time or cycles. Stress and strength 

are treated as a random variable encompassing variability in all conditions. 

An example of this model includes a metal item under a tensile stress lower 

than its yielding point, but which will be randomly subjected to load that 

exceeds the yielding point over time. The likelihood of failure is estimated 

from the probability that the stress random variable exceeds the strength 

random variable, which is obtained from a convolution of the two respective 

distributions. 

• Damage-Endurance Model: This model differs from the stress-strength 

model in that although the stress (load) applied to an item may be below of 

its strength it brings about a small but accumulating amount of irreversible 

damage, for example, corrosion, wear, embrittlement, creep, or fatigue. The 

repeated application of these stresses results in the accumulation of damage, 

until the damage surpasses the endurance of the item. For example, a crack 

grows on a structure until it reaches a critical length beyond which the growth 

will be catastrophically rapid. Accumulated damage does not disappear when 

the stresses are removed, although sometimes treatments can repair 

cumulative damage. Figure 9 shows a depiction of this model with multiple 

traces of damage starting with an uncertain amount of initial damage (shown 

by a probability density function) and growing until it exceeds the endurance 

limit. Each damage accumulation trace produces one instance of time to 

failure. All such instances result in the time-to-failure distribution of the item 

as shown in Figure 9. At each instant of time, so long as the distribution of 

cumulative damage does not surpass the endurance limit, no failure will occur. 

However, when the cumulative damage exceeds the endurance level, a 

failure will be expected. 

 

The assumption behind the stress-strength model for reliability modeling is that 

so long as the stresses applied to a unit are below its strength, no damage will occur, 

and it remains as good as new. The overlap between the two distributions represents 

cases where a random stress value in the high tail of its distribution occurs at some 

instant of the system life and coincides with the item having a random strength on the 

weak tail of the strength distribution at that moment. Then it is possible that strength 

falls short of the applied stress and a failure will occur. This type of failure usually 
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results from temporal random application of high stresses, or from insufficient strength 

due to poor design, manufacturing or maintenance. Thus, the time until item failure is 

independent of how long it has already lasted, and the exponential time-to-failure 

distribution is suitable to model this feature. The reliability model of a failure mechanism 

𝑖 with an exponential time-to-failure distribution is given in Equation 5, were 𝜆𝑖 is the 

rate parameter. 

 

Figure 8 – Stress-strength modeling 

 
Source: GAO & XIE (2015) 

 

Figure 9 – Damage-endurance model 

 
Source: MODARRES (2021) 

 

For damage-endurance model, the mathematical concept determining the 

failure of an item at a given time is similar to the strength-strength modeling approach, 

however with the assumption that the strength reduces in time due to the degradation 

process caused by the cumulative damage (see Figure 10). The endurance limit, 

therefore, represents the level of accumulated damage at which the strength becomes 
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less than the stress. Naturally, in a probabilistic dimension, the endurance limit is 

uncertain, even because of the stochastic nature of the stress level, but it is possible 

to realize that the interference section (Figure 8) increases in time. This mean that the 

rate parameter also increases in time. Weibull and Lognormal time-to-failure 

distributions are most used for these cases (O’CONNOR et al. 2016). Equations 6 and 

7 present the reliability model of a failure mechanism 𝑖 with, respectively, Weibull and 

Lognormal time-to-failure distribution, where 𝛼𝑖  and 𝛽𝑖  are the scale and shape 

parameters of Weibull distribution, while 𝜇𝑖  and 𝜎𝑖  are the mean and the standard 

deviation of the time-to-failure’s natural logarithm, and Φ is the cumulative distribution 

function of the standard normal distribution. 

 

𝑅𝑖(𝑡|𝜆𝑖) = 𝑒
−𝜆𝑖𝑡 5 

𝑅𝑖(𝑡|𝛼𝑖 , 𝛽𝑖) = 𝑒
−(

𝑡
𝛼𝑖
)
𝛽𝑖

 
6 

𝑅𝑖(𝑡|𝜇𝑖 , 𝜎𝑖) = 1 − Φ(
(ln 𝑡) − 𝜇𝑖

𝜎𝑖
) 7 

 
Figure 10 – Damage-endurance model based in stress-strength relationship. 

 
Source: PAGGI et al. (2017) 

 

2.2.2.2 The use of life-stress models 

 

Figure 7 previous Section outlined three life distributions (Exponential, Weibull 

and Lognormal) for modeling the time-to-failure of mechanisms acting continuously in 

time. However, not rarely, accelerated life testing (ALT) and/or accelerated 

degradation testing (ADT) are performed during technology development process. 
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These models not only deal with determining the life distribution at each tested stress 

level, but more importantly, life distribution conditional on the level of stress and 

estimation of parameters of the corresponding life-stress relationship. Based on the 

distribution of life-stress models, we can extrapolate and predict the life distribution and 

other metrics of interest at the use stress level. For this reason, a distribution of life 

conditional on the level of stress is used in place of classical statistical distributions. 

Basically, a life-stress model relates the life of an item with the level of stress, 

with respect to a specific failure mechanism. The formulation of the appropriate life-

stress model for a failure mechanism is within the scope of PoF analysis. Let 𝑆 be the 

level of stress, Equations 8, 9 and 10 show respectively the exponential, the power, 

and the Eyring formulation for life-stress models, where 𝑎, 𝑏, 𝑐  and 𝑛  are model 

parameters related to material constants.  

 

𝐿(𝑆) = 𝑏. 𝑒
𝑎
𝑆  8 

𝐿(𝑆) =
1

𝑎. 𝑆𝑛
 9 

𝐿(𝑆) =
1

𝑆
. 𝑒−(𝑐−

𝑎
𝑆
)
 10 

 

The exponential life-stress model (Equation 8) is one of the most common 

models used in accelerated life testing of items subject to temperature stresses. This 

model derived from the well-known Arrhenius reaction rate expression (Equation 11), 

where 𝑅 is the reaction rate, 𝐴 is thermal constant, 𝐸𝑎 is the activation energy, the 

energy that a molecule must possess in order to participate in the reaction (i.e., it is a 

measure of the effect that temperature has on the reaction), 𝐾 is Boltzmann’s constant 

(8.617385×10-5e𝑉𝐾-1), and 𝑇 is the absolute temperature (in Kelvin). The power life-

stress model (Equation 9) is another popular life-stress model, commonly used in 

applications where the applied stresses are non-thermal in nature (e.g. vibration), and 

the Eyring life-stress relationship (Equation 10) is a special form of the exponential life-

stress model that is commonly used when the acceleration variable is thermal in nature 

(e.g., temperature or relative humidity). 

 

𝑅(𝑇) = 𝐴. 𝑒−
𝐸𝑎
𝐾𝑇 11 
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Sometimes, the failure mechanism involves two or more stress conditions, each 

accelerating the degradation and reducing the life. Equation 12 shows the dual-stress 

exponential life-stress model, which is commonly used in electronics when 

temperature (𝑇) and humidity (𝐻) are considered as agents. However, the dual stress 

exponential model can be used when both variables independently affect life in any 

application. The power-exponential life-stress model (Equation 13) is used when a 

combination of temperature 𝑇 (or humidity) acceleration variable along with a second 

non-thermal stress 𝑆 (e.g. mechanical or voltage) accelerated variable is used. 

 

𝐿(𝑇, 𝐻) = 𝑐. 𝑒(
𝑎
𝑇
+
𝑏
𝐻
)
 12 

𝐿(𝑇, 𝑆) = 𝑐. 𝑆−𝑛. 𝑒
𝑎
𝑇 13 

 

Whichever life-stress model best represents the relationship between the failure 

time and stress level for a failure mechanism; in order to use it with a time-to-failure 

distribution, it is important to first define the conditional combined model. It can be 

made by replacing the scale parameter of the time-to-failure distribution with the stress-

dependent life model. This comprises the branch of the probabilistic physic of failure 

(PPoF) analysis, where the relationship between life and stress is given in a 

probabilistic dimension rather than the deterministic one. Scale parameters for 

Exponential, Weibull and Lognormal distributions are respectively the 𝜆 , 𝛼  and 𝜇 

parameters in Equations 5, 6 and 7. Then these equations can be transformed in the 

equations bellow by combining a conditional life-stress model with the probabilistic 

time-to-failure distribution, where 𝐿𝑖(𝑆|𝛿𝑖) is the life-stress model that better represents 

the failure mechanism 𝑖, with stress S and parameter 𝛿𝑖 vectors. 

 

𝑅𝑖(𝑡, 𝑆|𝛿𝑖) = 𝑒−𝐿𝑖(𝑆|𝛿𝑖)𝑡 14 

𝑅𝑖(𝑡, 𝑆|𝛿𝑖, 𝛽𝑖) = 𝑒
−(

𝑡

𝐿𝑖(𝑆|𝛿𝑖)
)

𝛽𝑖

 
15 

𝑅𝑖(𝑡, 𝑆|𝛿𝑖, 𝜎𝑖) = 1 − Φ(
(ln 𝑡) − 𝐿𝑖(𝑆|𝛿𝑖)

𝜎𝑖
) 16 

 

Another measure of the effect that the stress has on the life distribution can be 

made by a modifier function to be applied in the hazard rate function of a time-to-failure 
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distribution. This modifier function can be a combination of different independent life-

stress models such as exponential, inverse power law, etc. This type of PPoF model 

is known as proportional hazards (PH) model. For more about PH models and other 

PPoF formulations used for failure mechanisms occurring in mechanical and electrical 

components see MODARRES (2021), MCPHERSON (2019), MODARRES et al. 

(2017), HAGGAG et al. (2005) and OHGATA et al. (2005). 

 

2.2.2.3 Modelling for non-continuously (on-demand) operated systems. 

 

The formulations in previous sections can describe the reliability model of failure 

mechanism for continuously operated systems. However, when dealing with non-

continuously (on-demand) operated systems, the dependence on the operating modes 

must be considered. For these cases, the time-to-failure distributions and reliability 

models presented so far only describe the probability of occurrence (or non-occurrence) 

of the failure mechanism in a time interval since the system is subject to that 

mechanism in that interval. However, during a period, a failure mechanism only will 

compete for causing the system failure if the system stays in the operating mode in 

which it can happen. Therefore, the distributions of the transitions among operating 

modes should be evaluated, as well as their impact on the probability of failure 

mechanism occurrence. That can be made by a Markov-based analysis. 

Related operating modes for each failure modes are mapped in FMECA. Taking 

as example the scenario in Figure 6, the loss of sealing capacity (due to abrasive wear) 

of the sealing unit occurs only during the “keep flow open” operating mode. It is 

noteworthy that the operating mode in which the component failure mechanism takes 

place is not always the same as the corresponding one for the system failure mode. 

For example, the internal leakage (failure mode) resulting of the abrasive wear only 

appears during the demand for closing (and keep closed) the flow, even though the 

failure mechanism (abrasive wear) had happened during the “keep flow open” 

operating mode. It can be said that the system was in a fault state (hidden failure) while 

it keeps the flow open. The system failure mode state (do not close the flow when 

demand) only manifests when the operating mode is “keep flow closed”. A Markov-

based diagram (LIANG et al., 2020) can be constructed to model failure mechanism 

as a function of the system states.  
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Figure 11 illustrates the general Markov-based diagram used in methodology to 

that end. The first state of a system in field is its installation, represented by node "0" 

(in blue) in Figure 11. All nodes in red represent failure modes which can happen during 

each operating mode. Two failure modes may occur during installation (illustrated by 

the nodes “0.1” and “0.2”). If the installation completes successfully, the system 

migrates to state "1", the first operating mode immediately after installation. From then 

on, the system will transition among its 𝑁 operating modes (green nodes) until the end 

of mission time or until a failure mechanism (red nodes) occurs. 

 

Figure 11 – Generic Markov-based diagram for system states in methodology. 

 
Source: The author 

 

It is possible to notice that the reliability models 𝑅𝑖(𝑡|𝜃𝑖), presented in previous 

sections, represent the probability that system does not go to the faulty state (failure 

mechanism) 𝑖 when it is in the operating mode state (0, 1, 2, …, N) in which the failure 

mechanism 𝑖 can occur. Furthermore, classic parametric probability density functions 

(PDF), such as the Exponential distribution, can be used to model the transitions 

among the operating mode states. Then, let Λ be the set of PDF’s representing the 

transitions among operating states, the general formulation for the reliability model of 

the failure mechanism 𝑖, 𝑅𝑖(𝑡|𝜃𝑖 , Λ), is given by the probability that the system does not 

go to the state 𝑖 during the interval (0,t]. Given the complexity of the reliability models 

𝑅𝑖(𝑡|𝜃𝑖)  as seen in previous sections, an analytical formulation for 𝑅𝑖(𝑡|𝜃𝑖 , Λ)  is 

infeasible and it should be inferred via simulation techniques. 
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2.2.3 Modeling the system reliability via fault tree analysis 

 

2.2.3.1 Selecting FMECA scenarios 

 

After analyzing failure scenarios via FMECA, design actions are usually 

performed to reduce the probability and/or severity of some specific failure 

mechanisms. Following implementation of these actions, an update to the RPN 

assessment must take place. Typically, frequency and severity scales (section 2.2.1.3) 

are defined in such way that some very low RPN values correspond to risks that can 

be neglected in the operation of the system for the specific application.  Then, a lower 

limit in RPN value should be set to select the failure mechanism to be considered in 

the quantification. Failure mechanisms with RPN lower than the threshold must be 

neglected when formulating the reliability model, as if there is sufficient confidence that 

it is avoided by design, in normal use conditions. 

 

2.2.3.2 Fault tree analysis (FTA) to model the system reliability for each failure mode. 

 

As seen in section 2.2.1.2, system failure modes are captured in the “Effect” 

column of FMECA. So, it is possible to identify the failure mechanisms that causes 

each system failure mode. A fault tree (FT) diagram can be built for a system failure 

mode where basic events comprise the failure mechanisms resulting in that system 

failure mode, and the corresponding item failure modes are the intermediate events. 

Some additional information may be needed to determine the logical gates connecting 

events of a lower level to the one in the level immediately above. At first, a system 

failure mode occurs if any of the item failure modes resulting in it happens, which would 

result in the use of “OR” gate. However, the existence of redundancies and 

conditionalities must be known to better specify the gates. 

If a redundancy for some item is applied in the system design, then it is 

necessary that all redundant items suffer the failure modes resulting in the same effect 

to the system. An “AND” gate should be used to connect the failure modes of the 

redundant items. Sometimes, an item has a safety function and the loss of it does not 

result immediately in a system failure mode, but it only removes the system protection. 

Another item failure mode must occur (now, without the protection) for the system to 

fail. For example, if an anode protection against corrosion is connected to the metal 
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surface of the casing of a submarine control module (SCM), for corrosion to occur in 

the SCM, first the anode must lose its protective function, and from then on the casing 

must fail due to corrosion. The “INHIBITY” or “PRIORITY AND” gates can be used for 

this case.  

Be the Table 5 a generic example of an excerpt from FMECA, Figure 12 

illustrates the resulting FT diagram for the generic system failure mode (system effect) 

𝑆𝐹𝑀 1. Note that the item A failure mode 𝐴_𝐹𝑀 2 was not included in FT diagram once 

it doesn’t cause the system failure mode 𝑆𝐹𝑀 1. Also, an “AND” gate connect n failure 

modes 𝐵_𝐹𝑀 1 due to existing redundancy for item B. 

 

Table 5 – generic example of FMECA. 

... Item Failure Mode Failure Mechanism … Effect (at system level) ... 

... A 

A_FM 1 
A_FM 1.1 … 

SFM 1 
... 

A_FM 1.2 ... ... 

A_FM 2 
A_FM 2.1 ... 

SFM 2 
... 

A_FM 2.2 ... ... 

... B B_FM 1 
B_FM 1.1 ... 

SFM 1 
... 

B_FM 1.2 ... ... 

... ... ... ... ... ... ... 

Source: The author. 

 

Figure 12 – FT diagram for the system failure mode 𝑆𝐹𝑀 1 

 
Source: The author. 
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Reliability models of basic events (failure mechanisms) 𝑅𝑖(𝑡|𝜃𝑖) are formulated 

according to section 2.2.2. The event top reliability model (system failure mode) can 

be built as a function of 𝑅𝑖(𝑡|𝜃𝑖) from the logic gates of FTA. Equations 17 and 18 show 

how we can obtain the reliability of an intermediate FTA event (𝐼𝐸) from the reliability 

models of the events immediately below considering respectively "OR" and "AND" logic 

gates, where Δ𝐼𝐸 is the set of events (intermediates and/or basics) at the next lower 

level that are connected to the IE event. Note that 𝜃𝐼𝐸 = {𝜃𝑖 , 𝑖 ∈ Δ𝐼𝐸} , this is, the 

parameter of an FTA event reliability model is formed by the set of reliability model 

parameters of the basic events that cause it (i.e., a multilevel reliability model - MRM). 

Then, in a bottom-up perspective, and using the equations below, the reliability model 

of the FTA top event (the system failure mode) can be obtained. For the FTA in Figure 

12, the reliability model of top event would be given by Equation 19, by assuming that 

reliability models of item B failure mechanisms are the same for any redundant part. 

 

𝑅𝐼𝐸(𝑡|𝜃𝐼𝐸) = ∏ 𝑅𝑖(𝑡|𝜃𝑖)

𝑖∈ΔIE

 17 

𝑅𝐼𝐸(𝑡|𝜃𝐼𝐸) = 1 − ∏[1 − 𝑅𝑖(𝑡|𝜃𝑖)]

𝑖∈ΔIE

 18 

𝑅𝑡𝑜𝑝(𝑡|𝜃𝑡𝑜𝑝) = 𝑅1(𝑡|𝜃1). 𝑅2(𝑡|𝜃2). {1 − [1 − 𝑅3(𝑡|𝜃3). 𝑅4(𝑡|𝜃4)]
𝑛} 19 

 

2.3 RELIABILITY DATA COLLECTION 

 

During the development of a new system, the reliability tests are the unique 

direct evidence available for the current system design. However, secondary sources 

of evidence can be adopted in order to overcome a possible low quality of data arising 

from the reliability tests due to limitations in cost, time, and infrastructure for performing 

them. In general, the additional sources of information consist of (i) experts’ opinions 

and (ii) information from similar systems (partially relevant information). The last can 

include: 

• Historical raw data (field or test) on a previous design and from similar 

heritage systems: Sometimes, the design under development is an 

improvement of an earlier design and/or comprises the use of commercial 

components already used in other applications. Although these data sets are 



32 

 

not 100% relevant, they do provide useful background information for the 

events related to such components. 

• Reliability estimates for similar systems/components from generic databases 

(e.g., Oreda, Wellmaster): Generic databases directly or indirectly provide 

reliability estimates for a set of equipment previously defined by the user’s 

query. Suppose this set is deemed to be similar to the system under 

development (in design and application). In that case, the estimate can be 

used for analyzing reliability of related events/components. 

 

Whatever the source, there is a tough challenge in aggregating the various 

evidence since they can be presented with significant differences in: 

• Type: different types of reliability evidence include pass/fail data, lifetime data, 

degradation data, and reliability metrics estimates (failure rate, reliability level, 

MTTF, etc.) 

• Hierarchical level: the collected evidence may refer to system, subsystem, 

component, part, or material level, and only cover a specific set of failure 

modes or mechanisms. 

• Operating conditions: for example, a reliability test can be executed under 

use or accelerated conditions (ALT or ADT). Also, historic data from similar 

system usually match to different operational and environmental conditions. 

• Timeline: portions of this heterogenous evidence are usually made available 

in different stages of the development process. 

 

The use of the heterogeneous evidence presented in this section for estimating 

the MRM parameters will be described in the next section. 

 

2.4 BAYESIAN INFERENCE OF MRM PARAMETERS 

 

This section depicts of the Bayesian framework proposed to estimate the MRM 

parameters by using the multitype and multilevel reliability evidence from the sources 

described in the previous section. The methodology implements an analysis procedure 

which breaks down the problem into a number of analysis steps that are part of different 

stages in the system’s development process. Each analysis step consists of a 
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Bayesian updating in a particular stage of the development. Therefore, different 

posterior distributions for the MRM parameters are estimated at each step in the 

analysis. The result of the estimation at each step consists of uncertainty distributions 

over the MRM parameters. 

The analysis steps in each of these stages and the data source used are 

showed in Figure 13. The first step in this analysis flow is to establish prior distributions 

for MRM parameters. In this moment, no evidence from reliability tests is available and 

this baseline analysis should be based on partially relevant data and/or expert’s 

opinions. We will use the notation 𝐸𝑖,0 to refer to this prior evidence and 𝜋0(𝜃𝑖|𝐸𝑖,0) to 

describe the prior distribution of the set of parameters 𝜃𝑖 , related to the failure 

mechanism 𝑖. 

Since the prior distributions are defined, the likelihood functions must be 

constructed from the test data carried out in the following stages of the development 

process. Naturally, if the failure mechanism 𝑖 is covered by a specific test, then the 

likelihood of the evidence extracted from that test can be obtained as a function of 𝜃𝑖, 

based on the reliability model 𝑅𝑖(𝑡|𝜃𝑖) (see section 2.2.2). Then, let 𝑇𝑖,𝑘 be the set of 

tests performed at stage 𝑘 that cover event 𝑖 and 𝐸𝑖,𝑘 the evidence gathered from each 

test in 𝑇𝑖,𝑘. 𝐿(𝐸𝑖,𝑘|𝜃𝑖) denotes the likelihood function of the tests run at stage 𝑘 that 

updates the prior distribution of 𝜃𝑖. 

 

Figure 13 – Bayesian framework for estimating the MRM parameters 

 
Source: The author 

 

Then, the posterior distribution of 𝜃𝑖  is obtained by applying the Bayesian 

update Equation 20, where the prior distribution of 𝜃𝑖  at stage 𝑘  is the posterior 
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distribution calculated in the previous stage (𝑘 − 1). Therefore, using the evidence from 

various sources, an updated distribution for MRM parameters is estimated at each 

stage in the analysis. Equation 20 shows the Bayesian equation for 𝜃𝑖  at stage 𝑘, 

where 𝑘 = 0 comprises the stage immediately prior to performing the first reliability test. 

Some methods to solve Equation 20 include the analytical approach (when a conjugate 

prior can be obtained for the likelihood functions), and the approximative approach via 

Markov Chain Monte Carlo (MCMC) and/or Variational Inference (VI) (BLEI; 

KUCUKELBIR; MCAULIFFE, 2017; ROSSI, 2018; SPADE, 2020). 

The chosen between MCMC and VI, in case of approximative approach, 

normally comprises the precision x scalability analysis. The MCMC method is 

asymptotically exact but computationally intensive, i.e. given enough time, which can 

be computationally expensive for high-dimensional problems, it can provide samples 

that are very close to the true posterior distribution. To the other side, the VI methos is 

faster than MCMC methods and can be scaled to handle large datasets and complex 

models, however the quality of the approximation depends on the chosen family of 

distributions, which might not capture all the complexities of the true posterior. 

 

𝜋𝑘(𝜃𝑖|𝐸𝑖,𝑘) ∝ 𝜋𝑘−1(𝜃𝑖|𝐸𝑖,𝑘−1) × 𝐿(𝐸𝑖,𝑘|𝜃𝑖) 20 

 

2.4.1 Implementation of Bayesian methodology 

 

Two problems arise for implementing the Bayesian framework presented in 

previous section: (i) the creation of a methodology for getting suitable prior distributions 

for 𝜃𝑖  from expert’s opinions and/or PRD, in the O&G context, and (ii) be able to 

construct likelihood functions as a function of parameter 𝜃𝑖 from the data gathered from 

various separate reliability tests for the components, subsystems, and system in 

different forms. For (i), two methods are proposed, and a comprehensive literature 

review are given, in Chapters 3 and 4 respectively for continuously and non-

continuously operated systems. 

Regarding item (ii), the reliability tests data commonly include the pass-fail, 

lifetime, and degradation data sets collected for individual components or pass-fail, 

and lifetime data sets collected for the subsystems, and the overall system, which may 

be under accelerated or nominal conditions. So, let us consider a basic failure event 𝑖 
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with reliability model 𝑅𝑖(𝑡, 𝑆|𝜃𝑖), such as in Equations 14-16, those heterogeneous data 

sets are incorporated through their contributions to the joint likelihood function, if the 

corresponding test cover the failure mechanism 𝑖, as follow: 

• The contribution of pass-fail data: Suppose 𝐾 lots of pass-fail tests covering 

the failure mechanism 𝑖. In each of them, 𝑛𝑘 samples are tested separately, 

at different observation times 𝑡𝑘, and stress levels 𝑆𝑘, where 𝑘 = 1,… , 𝐾. The 

number of units 𝑦𝑘 ≤ 𝑛𝑘 that pass each test is observed. The probability that 

a unit passes the test, against the failure mechanism 𝑖 , at time 𝑡𝑘  is 

determined by its reliability at that time, as 𝑅𝑖(𝑡𝑘, 𝑆𝑘|𝜃𝑖). The likelihood model, 

as a function of 𝜃𝑖, for that pass-fail data is based on the binomial distribution 

and described as Equation 21. 

 

𝐿(𝐾|𝜃𝑖) =∏(
𝑛𝑘
𝑦𝑘
) [𝑅𝑖(𝑡𝑘, 𝑆𝑘|𝜃𝑖)]

𝑦𝑘[1 − 𝑅𝑖(𝑡𝑘, 𝑆𝑘|𝜃𝑖)]
𝑛𝑘−𝑦𝑘

𝐾

𝑘=1

 21 

 

• The contribution of lifetime data: Suppose 𝑛 units are tested at stress level 𝑆𝑗 

(𝑗 = 1, … , 𝑛), of which 𝑛𝐹 failed due to basic event 𝑖 with exact failure time 

points 𝑡𝑘
𝐹 (𝑘 = 1,…𝑛𝐹), and 𝑛𝐶 operated successfully (with no occurrence of 

basic event 𝑖) by the end of the test with right-censored time points 𝑡𝑘
𝐶 (𝑘 =

1,…𝑛𝐶), where 𝑛 = 𝑛𝐹 + 𝑛𝐶. Then, the likelihood function for the lifetime data 

can be obtained as Equation 22, where 𝑓𝑖(. |𝜃𝑖) is the PDF of the time to 

failure due to failure mechanism 𝑖.  

 

𝐿(𝑡𝑘
𝐹 , 𝑡𝑘

𝐶 , 𝑆𝑘|𝜃𝑖) =∏𝑓𝑖(𝑡𝑘
𝐹 , 𝑆𝑘|𝜃𝑖)

𝑛𝐹

𝑘=1

∏𝑅𝑖(𝑡𝑘
𝐹 , 𝑆𝑘|𝜃𝑖)

𝑛𝐶

𝑘=1

 22 

 

• The contribution of degradation data: Suppose 𝑛  components have been 

tested at a stress level 𝑆𝑘 and a number of degradation measurements has 

been taken for each, in relation to the failure mechanism 𝑖, at different time 

points, from which a set of degradation curves 𝑌𝑘(𝑡|𝛽𝑘
𝐷𝑒𝑔

)  is get, 

conventionally assumed to be monotonically increasing, where 𝑘 = 1, … , 𝑛 

and 𝛽𝑘
𝐷𝑒𝑔

 being the parameter of the degradation curve obtained for the 𝑘𝑡ℎ 
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component. The component fails when the degradation curve crosses a 

predefined threshold value 𝑌𝐷, such as in a damage-endurance model (see 

Section 2.2.2.2). Then, a prediction for the lifetime can be made by finding 

the time point 𝑡𝑙
𝑘  for which 𝑌𝑘(𝑡𝑙

𝑘|𝛽𝑘
𝐷𝑒𝑔

) ≥ 𝑌𝐷  and the likelihood model of 

Equation 23 is defined. 

 

𝐿(𝑡𝑙
1, … , 𝑡𝑙

𝑛|𝜃𝑖) =∏𝑓𝑖(𝑡𝑙
𝑘 , 𝑆𝑘|𝜃𝑖)

𝑛

𝑘=1

 23 

 

Given the measurement error 𝜉𝑘~Normal(0, 𝜎𝑘), an uncertainty model for the 

predicted lifetime of the 𝑘𝑡ℎ  component can be estimated as a Gaussian 

distribution with mean 𝑡𝑙
𝑘 and standard deviation 𝜎𝑘. The likelihood function 

that takes into account the uncertainty about the estimated degradation curve 

can be obtained by averaging the likelihood functions for each possible 

realization of 𝑡𝑙
𝑘 , as showed in Equation 24, where 𝑁(𝜏|𝑡𝑙

𝑘 , 𝜎𝑘)  is the 

Gaussian PDF for 𝜏 with mean 𝑡𝑙
𝑘 and standard deviation 𝜎𝑘 

 

𝐿(𝑡𝑙
𝑘 , 𝜎𝑘|𝜃𝑖) =∏∫𝑓𝑖(𝜏, 𝑆𝑘|𝜃𝑖) × 𝑁(𝜏|𝑡𝑙

𝑘 , 𝜎𝑘)𝑑𝜏
𝜏

𝑛

𝑘=1

 24 

 

From solutions presented above likelihood functions can be constructed for 𝜃𝑖 

whatever the type and taxonomic level of the test, as long as the failure mechanism 𝑖 

is being covered by the test.  

 

2.5 RELIABILITY ASSESSMENT AND RESIDUAL UNCERTAINTY ANALYSIS 

 

The result of the posterior distribution is not a point estimate for the 𝜃𝑖 ’s but a 

distribution of uncertainty about their real value. A similar distribution of uncertainty for 

the system reliability can be obtained through Monte Carlo (MC) sampling technique 

(SINGH & MITRA, 1995), where random samples for 𝑅𝑆(𝑡)  is attained from the 

samples randomly generated for the 𝜃𝑖 ’s by calculating the MRM, i.e., 𝑅𝑠(𝑡) =

𝑔[𝑅𝑖(𝑡|𝜃𝑖)],   𝑖 = {1, … ,𝑚}, for a specific time 𝑡. The 𝜃𝑖 ’s samples are found from the 
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posterior distributions, then the distribution of 𝑅𝑆(𝑡) is updated at each development 

stage. 

As the reliability uncertainty is updated, it is possible to evaluate the behavior of 

the uncertainty levels at each gate. Thus, we can obtain uncertainty distributions over 

the system reliability as a function of the gates. The curve that illustrates the level of 

uncertainty of the reliability measure in 𝑡 operating years, for each gate can be used to 

analyze the technological risk of the development project associated with reliability for 

including the new technology in the future production configurations. Indeed, the 

technological risk is related to the level of uncertainty regarding the technology 

attainment to a target reliability requirement (API 17N, 2017). 

Let the target reliability requirement, stated according to section 2.1, be a 

minimum of 𝑋% in 𝑡0 years, with a maximum uncertainty level of 𝑌%. The uncertainty 

level can be interpreted as the probability that the reliability of the new system in 𝑡0 

years of operation is less than 𝑋%, for a specific application, i.e., 𝑃[𝑅𝑆(𝑡0) < 𝑋%], 

which can be obtained by MC sampling at each stage.  

Figure 14 shows an example of the residual uncertainty analysis; we visualize 

the distance between the estimated and targeted uncertainty levels over the gates. 

Figure 14 exemplifies a situation with two already carried out development stages out 

of 𝑁; gate 0 corresponds to the prior analysis before the test runs, in which a high 

uncertainty level is expected. 

 

Figure 14 – Residual uncertainty analysis example. 

 
Source: The author 
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The behavior of the residual uncertainty is expected to decrease when a small 

number of failures (or no failures) is observed in the tests (or failures would have 

occurred long after 𝑡0. When the curve crosses the threshold of 𝑌%, the target is met, 

which is desired to occur until the last stage 𝑁. If the tests indicate a low system 

reliability, the residual uncertainty tends to increase over the gates. In this last case (or 

when the reduction is not significant enough from gate 0 to the current gate), design 

modifications can be implemented in the test plan or in the system design to improve 

the uncertainty level in which the system will meet the reliability requirements. The 

gates represent the points in the project evolution in which must be decided if the 

original planning will be followed or if modifications should be considered. 

For equipment to be qualified using a TQP, planning for qualification should start 

as early as practicable. An early appreciation of qualification activities is especially 

important where there is a significant gap between the current technology maturity 

level, and the required one (API 17N, 2017). The residual uncertainty analysis 

proposed in this section emerges as a powerful tool in planning qualification tests, by 

assessing the tests protocols that contribute most satisfactorily to reducing residual 

uncertainty, and in defining changes in design, by identifying the failure mechanisms 

that most contribute to uncertainty. 
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3 PRIOR ANALYSIS FOR CONTINUOUSLY OPERATED EQUIPMENT BASED 

ON GENERIC DATA AND EXPERTS’ OPINION 

In the fourth step of the methodology proposed in Chapter 2 (Bayesian Inference 

of the MRM parameters), informative prior distributions 𝜋0(𝜃𝑖|𝐸𝑖,0) must be defined for 

the MRM parameters 𝜃𝑖 , with 𝑖 = 1,… ,𝑚 and 𝑚 being the number of basic events 

modeled in the MRM, based on indirect evidence 𝐸𝑖,0 about the reliability of the new 

technology failure events. Indirect evidence comprise those obtained from sources 

other than direct observation of the performance of the equipment or its prototype 

(whether in the field or testing laboratory), such as expert opinions or data from similar 

systems. 

This chapter presents a methodology for getting these informative prior 

distributions and is based on the paper titled “Bayesian prior distribution based on 

generic data and experts’ opinion: a case study in the O&G industry” (MAIOR et al., 

2022), and published in the Journal of Petroleum Science and Engineering (JPSE) of 

which I am co-author. Below are my contributions to the paper: 

• Direct conception and validation of the proposed methodology. 

• Direct conception and validation of the models (Fault Tree Analysis, Top-

down propagation of the events contribution, Method of Moments, Maximum 

Entropy, and Monte Carlo). 

• Participation in the development and validation of questionnaires to elicit 

experts. 

• Participation in the development and validation of the computational 

implementation of the models. 

• Results analysis. 

 

3.1 INTRODUCTION 

 

Often, expert opinions are the available knowledge to estimate the prior 

distribution for new technology (or its components), which is still preferable to non-

informative prior distributions. In this case, experts can either provide direct parameter 

estimations of prior distributions or present key values of these distributions, such as 

an expected failure probability or reliability or a lower or upper percentile (GUO et al., 

2018).  
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However, the direct elicitation of the parameters is not always straightforward 

its interpretation may be overly complicated. For instance, the Arrhenius-Weibull model 

is a three parameters Weibull model adopted to assess the probability of the time to 

failure at different temperatures. One of its parameters is given by 𝐵 = 𝐸𝑎/𝑘, where 𝐸𝑎 

is the activation energy and 𝑘 is Boltzmann’s constant (8.62 × 10−5  𝑒𝑉. 𝐾−1). Thus, the 

experts must understand the activation energy concept, which may not always be true. 

Therefore, some parameters’ elicitation might end up being a simple guess 

(MODARRES; AMIRI; JACKSON, 2017). 

Distinct procedures have been proposed to establish informative prior 

distributions. From subjective information and historical data, PENG et al. (2013) 

proposed an approach applying an encoding method to elicit information through a 

series of questions in an interview process. However, the authors consider system-

level information (i.e., aggregated data), which encompasses subsystems and 

components. Indeed, for complex systems, the direct elicitation performing interviews 

with several questions for each component may be unfeasible. Alternatively, GUO et 

al. (2018) applied a Bayesian melding approach using pooling operations on the 

system/subsystems’ reliability to integrate the available information (e.g., qualitative or 

quantitative, fragmentary or extensive, expert knowledge-based or empirical-based), 

while KRIVTSOV (2017) determine the prior distribution through random sampling 

using prior data, in form of a random sample, about the parameters. However, these 

methods require raw equipment data (e.g., failure times) or direct elicitation of 

parameters, which may not be available or accessible. Indeed, different methods, like 

empirical Bayes and hierarchical Bayes (BAHOOTOROODY et al., 2020; GELMAN, 

2006; LI et al., 2019) also make use of raw equipment data, which limit applicability.  

In order to define the Bayesian prior distribution 𝜋0(𝜃|𝐸0) for the reliability of 

equipment under development, we propose a methodology that does not require direct 

elicitation of parameters to define informative distribution for FT’s basic events 

(component level) but rather uses expert opinion and/or generic data for the top event 

(the system level). Thus, the proposed methodology allows keeping elicitation simple 

and intuitive. To that end, we adopted two estimation procedures, one of them is based 

on the method-of-moments (MM) (WANG et al., 2021) and the other relies on the 

maximum-entropy (ME) method (DUBEY; ABEDI; NOSHADRAVAN, 2021). Here, MM 

is applied to get the distribution of the probability of occurrence of the basic FTA events. 

If the probability of occurrence of the basic event is time dependent and a parametric 
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continuous distribution (e.g. Weibull) is assumed to model the variability of the time of 

occurrence of this event, then the ME method is applied to estimate the uncertainty 

about the parameters of this continuous distribution. 

We apply the proposed methodology in a case study of a novel completion 

expansion packer that will operate in an open hole well of the O&G industry. We 

consider that failures may occur in two different moments: equipment (i) installation 

and (ii) operation. In each moment, an FT is used to model the logical relationships 

between the failure causes and mechanisms that lead to equipment failure. The goal 

is to propose a framework to determine the prior distributions of the failure events. The 

Bayesian analysis allows us to evaluate and monitor the reliability uncertainty 

throughout the equipment development stage as new information becomes available. 

To defined target for the prior reliability, we considered a reliability of 90% with a 

minimum confidence level of 80% (or maximum uncertainty level of 20%). 

 

3.2 METHODOLOGY 

 

3.2.1 Overview 

 

Commonly, in the early stages of technology development, the only available 

data is from generic databases and engineering judgment. As it is frequently performed 

in risk and reliability analysis, we consider that after an initial investigation (e.g., FMEA), 

FTs are created to evaluate a limited number of top events, which may represent failure 

during specific periods of equipment life (e.g., installation and/or operation). Our 

proposed methodology is illustrated in Figure 15, in which the challenge is to propagate 

‘downward’ this top event ( 𝐸𝑇 ), information gathered from generic database, 

throughout the failure modes (𝐸𝐹𝑀1 and 𝐸𝐹𝑀2) until the basic events (𝐸𝐴, 𝐸𝐵, 𝐸𝐶, 𝐸𝐷 and 

𝐸𝐸) of the novel technology. To that end, we consider expert opinions and two distinct 

approaches (MM and ME) to define the prior distribution for each basic event. Finally, 

these distributions are used in a Monte Carlo simulation algorithm to propagate 

‘upward’ the uncertainty from the basic events and obtain a probability distribution of 

the system’s reliability. Then, the results may be compared to the desired target 

reliability measure to assess the risk associated with the equipment’s application. The 

next sub-sections detail each step of the proposed methodology. 
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Figure 15 – Overview of the proposed methodology and how the contributions of the basic events are 

computed. 

 
Source: Maior et al. (2022) 

 

3.2.2 Expert opinion for FT events  

 

FT is a well-known graphical model commonly applied in reliability engineering 

to describe how failures propagate through the system and lead to its failure 

(RUIJTERS et al., 2019). To illustrate, consider the FT from Figure 15, which shows 

that 𝐸𝐴  and 𝐸𝐵  contribute to 𝐸𝐹𝑀1  while 𝐸𝐶 , 𝐸𝐷 , and 𝐸𝐸  contribute to 𝐸𝐹𝑀2 . Since the 

events are related to different consequences and probabilities, the event i contributes 

with a weight 𝑤𝑖  to the immediate upper event (e.g., if 𝐸𝐹𝑀1  has occurred, 𝑤𝐴 

represents the probability that this failure was caused by 𝐸𝐴). These weights allow us 

to build relations between the top and basic events used to estimate the equipment 

reliability.  

In this work, only the weights for each event are elicited, avoiding the direct 

estimation of parameters. Hence, to understand the experts’ opinions about each 

failure event and its immediate causes, it is beneficial to consider two types of data:  

• Qualitative data: by assuming that a failure has occurred (e.g., 𝐸𝑇, 𝐸𝐹𝑀1 or 

𝐸𝐹𝑀2), the specialist indicates the relative frequency (very unlikely, unlikely, 

likely, very likely, or extremely likely) of the failure being due to each of the 

immediate lower events. 
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• Quantitative data: by assuming that the failure has occurred (e.g., 𝐸𝑇, 𝐸𝐹𝑀1 

or 𝐸𝐹𝑀2 ), the specialist assigns numerical values (weights) to each of the 

immediate events representing the probability that the specific lower basic 

event has caused the failure. 

 

In this case, it is possible to assess the consistency of the expert answers by 

comparing the qualitative vs. quantitative responses, which is paramount when 

considering subjective data evaluation such as expert opinion. In addition, as distinct 

experts may have different knowledge about the new equipment, one may assign 

specific relevance factors for each expert (i.e., the 𝑗 -th specialist may receive a 

relevance factor, 𝑟𝑗, validated by other reliable sources such as senior experts or a 

consensus). Then, the quantitative responses of experts with 𝑟𝑗 = 𝑥, ∀𝑥 ∈ 𝑍+
∗ , are 

considered 𝑥 times to compute a weighted median value (CORMEN et al., 2009).  

The elicited contributions define the relations between the system level and the 

other events. Since the failure probabilities are small, the probability of one event can 

be considered as the sum of the probabilities of its immediate causes (MODARRES; 

AMIRI; JACKSON, 2017). For example, in Figure 15, given 𝑝̂ (i.e., the estimate of the 

failure probability related to 𝐸𝑇), one defines the probability of the failure mode 𝐸𝐹𝑀1 as 

𝑝𝐹𝑀1 = 1 − (1 − 𝑝̂ )𝑤𝐹𝑀1  (I), where 𝑤𝐹𝑀1  represents the contribution of 𝐸𝐹𝑀1  to 𝑝̂ . 

Analogously, the failure probability of basic event 𝐸𝐴, an immediate cause of 𝐸𝐹𝑀1, can 

be defined as 𝑝𝐴 = 1 − (1 − 𝑝𝐹𝑀1)
𝑤𝐴

 (II), where 𝑤𝐴 is the weight of 𝐸𝐴 to 𝑝𝐹𝑀1 . Then, 

combining (I) and (II), and setting 𝑤𝐴
′ = 𝑤𝐹𝑀1 ×𝑤𝐴 as the weight of 𝐸𝐴 to 𝑝̂, we get 𝑝𝐴 =

1 − (1 − 𝑝̂)𝑤𝐴
′
  . This procedure is numerically illustrated in the case study presented 

in Section 3. 

 

3.2.3 Downward propagation 

 

Due to the complexity when considering a multilevel hierarchical structure, the 

system’s reliability can be represented by a multilevel reliability model (MRM), which 

consists of specific probabilistic models to describe the failure of basic components 

(GRISHKO et al., 2017; SWAMINATHAN & SMIDTS, 1999). These models can be 

parametric probability distributions (e.g., Bernoulli, Exponential, Weibull) or physics-
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based reliability models, like Arrhenius-Weibull (MODARRES, 2021) and Gaussian 

Degradation Process (BAE et al., 2007). Here, the MRM model uses the logic gates of 

the FT, in which each basic event 𝑖 (𝐸𝑖) has a set of parameters 𝜃𝑖  that model the 

probability of occurrence of the corresponding mechanism/cause of failure. Then, the 

reliability function of the entire system is a function of 𝜃𝑖 , 𝑓[𝑅𝑖(𝑡|𝜃𝑖)] , ∀𝑖  , which 

translate the possible pathways leading to equipment, for example, failure during 

installation (𝑡 = 0) or over a mission time (e.g., 𝑡 = 27 years) (BOUDALI; DUGAN, 

2005). 

Here, the propagation through two types of FTs is discussed: (1) one related to 

a failure in equipment installation, and (2) the other associated with a failure during 

equipment operation for a defined mission time. We adopt distinct approaches 

depending on the characteristics of the basic event: the first approach is adopted if 

success/fail event (Bernoulli Distribution) are considered, and the second approach is 

adopted if continuous distributions describe the basic events, such as Exponential, 

Weibull, or Arrhenius-Weibull.  

 

3.2.3.1 Method of Moments 

 

The occurrence of an event 𝐸𝑖 is assumed to be well described by a Bernoulli 

distribution (success/fail event) with parameter 𝑝𝑖. This probabilistic model is adequate, 

for example, to account for installation events typically related to operational 

procedures in which success and failure are the only two possible outcomes. Then, 

𝑅(0|𝜃), the equipment reliability in installation (when 𝑡 = 0), is provided by the MRM 

and is given in Equation 25, where θ is the set of MRM parameters. 

 

𝑅(0|𝜃) =∏(1 − 𝑝𝑖)

𝑖

 25 

 

We assumed there is uncertainty in 𝑝𝑖, modeled by 𝜋(𝑝𝑖) as a beta distribution 

𝐵(𝛼𝑝𝑖 , 𝛽𝑝𝑖), ∀𝑖. In this approach, in order to obtain the mean, 𝜇𝑝𝑖, and variance, 𝜎𝑝𝑖
2, 

the PERT method is adopted, where a triangular distribution is first obtained from an 

optimistic estimate, 𝑎𝑝𝑖, a most likely estimate , 𝑚𝑝𝑖
, and a pessimistic estimate, 𝑏𝑝𝑖, of 

𝑝𝑖 . Thus, the triangular distribution can be approximated to a Beta distribution by 
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estimating the expected value and variance of the Beta distribution of 𝑝𝑖  from 

Equations 26 and 27, respectively (VOSE, 2008). 

 

𝜇𝑝𝑖 =
𝑎𝑝𝑖 + 4𝑚𝑝𝑖

+ 𝑏𝑝𝑖
6

 26 

𝜎𝑝𝑖
2 = (

𝑏𝑝𝑖 −𝑚𝑝𝑖

6
)

2

 27 

 

The usage of (i) most likely, (ii) pessimistic, and (iii) optimistic values are 

adopted in order to make the elicitation process more intuitive when compared to 

directly estimating the hyperparameters of the beta distribution. Also, these values 

allow us to analytically estimate the prior distribution through MM using Equations 28 

and 29 (MUNKHAMMAR; MATTSSON; RYDÉN, 2017). MM is an estimation technique 

in which the unknown parameters are estimated by matching theoretical moments 

(functions of the unknown parameters) with the appropriate sample moments. For 

details, see (KUERSTEINER; MATYAS, 2000; WOOLDRIDGE, 2001). 

 

𝛼𝑝𝑖 = 
𝜇𝑝𝑖

2 × (1 − 𝜇𝑝𝑖)

𝜎𝑝𝑖
− 𝜇𝑝𝑖 28 

𝛽𝑝𝑖 = (
𝜇𝑝𝑖 × (1 − 𝜇𝑝𝑖)

𝜎𝑝𝑖
− 1) × (1 −  𝜇𝑝𝑖) 29 

 

Then, based on the central limit theorem it is possible to consider confidence 

intervals obtained from a normal approximation to the Binomial distribution (WALLIS, 

2013). The estimate 𝑝̂ is the most likely value and we assume that percentile 1, 𝑃1, and 

percentile 99, 𝑃99, are the optimistic and pessimistic values, respectively. Thus, we 

obtain the confidence interval using Equation 30. 

 

(𝑃1; 𝑃99) = (𝑝̂ + 𝑍1%√
𝑝̂(1 − 𝑝̂)

𝑛
; 𝑝̂ + 𝑍99%√

 𝑝̂(1 − 𝑝̂)

𝑛
) 30 
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As mentioned, basic event 𝐸𝑖 contributes with a weight 𝑤𝑖 to upper event. Thus, 

the relations 𝑚𝑝𝑖
= 𝑝̂ × 𝑤𝑖

′, 𝑎𝑝𝑖 = 𝑃1 × 𝑤𝑖
′, and 𝑏𝑝𝑖 = 𝑃99 ×𝑤𝑖

′ were used to compute 𝜇𝑝𝑖 

and 𝜎𝑝𝑖, where 𝑤𝑖
′ is the contribution of event 𝑖 to the top event. 

 

3.2.3.2 Maximum Entropy 

 

Here, the occurrence of event 𝐸𝑖  is time-dependent and described by a 

continuous distribution (e.g. Weibull). In these cases, the MM approach presented in 

previous section is applied to get the distribution of 𝑝𝑖 = 𝐹𝑖(𝑡|𝜃𝑖), the probability that 

event 𝑖 will occur until 𝑡 (normally, the mission time), where 𝜃𝑖 is the set of parameters 

of the chosen distribution (e.g. Weibull). Then, the ME method is adopted to estimate 

the distribution of 𝜃𝑖  from the distribution of 𝐹𝑖(𝑡|𝜃𝑖) . The ME method was first 

introduced in Jayne’s information theory (JAYNES, 1957; KANG; KWAK, 2009) to 

assign probability incorporating information as constraints (MERUANE et al., 2017). 

ME method involves maximizing the entropy measure 𝐻 (Equation 31), where 𝜋(𝜃𝑖) is 

the probability density function (PDF) for the parameters of event 𝑖  and 𝛩𝑖  is the 

parameter space of 𝜃𝑖 (WANG; LIU, 2020).  

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐻 = ∫ −𝜋(𝜃𝑖) × 𝑙𝑜 𝑔[𝜋(𝜃𝑖)] 𝑑𝜃𝑖
𝛩𝑖

  31 

 

The constraints here are related to percentiles of the reliability function, 𝑅𝑖(𝑡|𝜃𝑖) 

(where 𝑅𝑖(𝑡|𝜃𝑖) = 1 − 𝐹𝑖(𝑡|𝜃𝑖)). Specifically, we consider that the expected value as 

well as the percentiles 5 and 95 of each event 𝑖 have to be equal to the expected value, 

percentiles 5 and 95 of the reliability 𝑅𝑇 of the top event 𝐸𝑇 weighted (exponentially) 

by its specific contribution 𝑤𝑖
′ (Equations 32 to 34). 

 

𝐸[𝑅𝑖(𝑡|𝜃𝑖)] = 𝐸 [𝑅𝑇(𝑡)
𝑤𝑖
′
] 32 

𝑃5[𝑅𝑖(𝑡|𝜃𝑖)] = 𝑃5 [𝑅𝑇(𝑡)
𝑤𝑖
′
] 33 

𝑃95[𝑅𝑖(𝑡|𝜃𝑖)] = 𝑃95 [𝑅𝑇(𝑡)
𝑤𝑖
′
] 34 
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Then, to define the model parameters, 𝜃𝑖, it is necessary to solve Equation 31 

subject to constraints 32 to 34, for each event. Note that such an optimization problem 

may not be simple to solve analytically, becoming more difficult as the number of 

hyperparameters increases. In this context, we use a Particle Swarm Optimization 

(PSO) algorithm to obtain the solution of the maximization problem. PSO is a 

metaheuristic algorithm that mimics the social behavior of organisms (e.g., the bird 

flocking), and has been explored in many risk and reliability contexts to optimize 

functions (BAI et al., 2021; BEZERRA SOUTO MAIOR et al., 2016; GARCÍA NIETO et 

al., 2015; LINS et al., 2012; SOUTO; DAS CHAGAS MOURA; LINS, 2019).  

PSO consists of several particles exploring a search space, each particle moves 

with an associated velocity and random position. At each iteration, these particles’ 

movements are guided by their own best (i.e., the best position of each particle 

achieved so far among all iterations) and the global best (i.e., the best position that any 

particle has achieved so far among all the particles). When a better position is found, 

the best position(s) are updated to guide the particles’ movements in the next iteration. 

This process is repeated and eventually converges to a solution (MASON; DUGGAN; 

HOWLEY, 2018; PAREEK et al., 2021). This seeking behavior artificially modeled by 

PSO provides useful results in the quest for solutions of non-linear optimization 

problems in a real-valued search space (BRATTON; KENNEDY, 2007). Here, PSO 

outcome is an estimate for the hyperparameters {ℎ1, ℎ2, … , ℎ𝑛𝑖} that describe the prior 

distribution of the parameters 𝜃𝑖 , 𝜋0(𝜃𝑖|ℎ1, ℎ2, … , ℎ𝑛𝑖) , where 𝑛𝑖  is the number of 

hyperparameters for each event 

 

3.3 CASE STUDY 

 

The proposed methodology is applied to a case study of a novel offshore 

expansible production packer, which is a common completion equipment of the O&G 

industry. In a simplistic view, the packer’s function is to grip and seal, and it must 

remain anchored stationery with the casing, maintaining pressure sealing integrity with 

differential pressures, either below or above the tool (FOTHERGILL, 2003; LI, 2012). 

Production packers are complex equipment designed for a wide range of situations to 

cover the entire life of the well and resist the most diverse and hostile environments. 

Specifically, the equipment here analyzed is developed for open wells to isolate 
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production zones working on an operational envelope of 25°C to 90°C of temperature 

and a maximum pressure differential of 5000 psi. As previously mentioned, in this 

paper, we discuss the new equipment installation and operation. Both approaches 

were implemented in Python programming language using the SciPy (VIRTANEN et 

al., 2020) and Pyswarm (MARINI; WALCZAK, 2015) libraries. More specifically, the 

module scipy.stats that contains a large number of probability distributions, summary 

and frequency statistics, and Monte Carlo functionality. 

 

3.3.1 Equipment installation 

 

The FT in Figure 16 is related to the equipment failure during its installation, in 

which there exist three failure modes: (i) unexpanded packer (𝐸𝐹𝐸 ); (ii) annulus to 

annulus communication (𝐸𝐴𝐴); and (iii) bore to annulus communication (𝐸𝐵𝐴). These 

failure modes cover failure during either the equipment assembly, makeup (assembly 

of equipment in the production column to be introduced into the well), the run-in-hole 

(RIH) (introduction of the column into the well), or the failure to install the equipment 

system (equipment expansion). Intermediate events may be defined to facilitate the 

extrapolation for the basic events. Then, based on the equipment FMEA, twelve 

specific basic events (𝐸1, … , 𝐸12) were extracted, in which the occurrence of at least 

one of them causes one of the three previously mentioned failure modes. In addition, 

we define intermediate events failure of the seal assembly (𝐸𝑆𝐴) and loss of sealing 

capacity of one seal unit (𝐸𝑆𝐶) to facilitate elicitation. The descriptions of the basic 

events are given in Table 6, each one is designed to represent important 

characteristics.  

For example, basic event 1 (𝐸1) corresponds to the premature closing of the 

installation valve. From the engineering point of view, the installation valve is used to 

pressurize the inside of the packer by injecting fluid from the bore. The pressure build-

up inside the packer causes the expansion sleeve to expand until a satisfactory contact 

pressure against the wall of the annular region is achieved. Then, differential pressure 

closes the installation valve, preventing it from continuing to expand until rupture. 

However, if an external event causes the annular pressure to suddenly drop (e.g., 

formation fracture required pressure to close), the installation valve closing may be 

reached prematurely, not sealing the annular region. 
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Figure 16 – FT diagram representing the equipment failure during its installation. 

 
Source: MAIOR et al. (2022) 

 

Table 6 – Description of basic events of the fault tree diagram for the failure during the packer 

installation. 

Basic 

event 
Description 

𝐸1 
Installation valve closes prematurely, during the RIH procedure, due to differential 

pressure in the annular region. 

𝐸2 Leak in the weld of the bore packer, during the expansion, due to excessive loads. 

𝐸3 
Expansion sleeve rupture caused by wall-thinning, during expansion, due to material 

defect or due to the expansion operation in a larger diameter than specified. 

𝐸4 
Damage of one of the seals on the expansion sleeve during the makeup or RIH 

procedure. 

𝐸5 
The porosity of the formation in the contact region prevents the seal from obtaining 

sufficient compression. 

𝐸6 Lack of uniformity of the expansion generates trapped pressure between the seals. 

𝐸7 
The occurrence of pressure trapped between the seal and the formation wall in an airtight 

region prevents the seal from obtaining sufficient compression. 

𝐸8 
Before expansion provides sufficient compression to the seals, the installation valve 

prematurely closes due to pin manufacturing defects. 

𝐸9 The installation valve fails to close due to pin manufacturing defects. 
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Basic 

event 
Description 

𝐸10 The installation valve fails to close due to lock mechanism failure. 

𝐸11 
Contact with the debris during the RIH and/or expansion process causes the filter to clog, 

which prevents the installation valve from reaching the proper pressure to close. 

𝐸12 
Contact with the debris during RIH and/or expansion causes the filter to rupture, allowing 

the presence of debris inside the installation valve, which prevents it from closing 

Source: MAIOR et al. (2022) 

 

For the equipment installation, the MRM is easily obtained by the multiplication 

of the reliability models of the basic events since all logic gates of the FT are of the 

“OR” type, which is presented in Equation 35: 

 

𝑅(0|𝜃) =∏(1 − 𝑝𝑖)

12

𝑖=1

 35 

 

where the parameter set is 𝜃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝10, 𝑝11, 𝑝12}. In this case 

study, the only initially available information is for the system level (i.e., FT’s top event) 

accessible in generic database by Wellmaster report. The Wellmaster database 

provides information on completion equipment to improve reliability through systematic 

collection, analysis, and feedback of reliability data to participating O&G companies 

and equipment manufacturers (MOLNES; STRAND, 2000). Here, the relevant data for 

assessing the reliability of the novel equipment is related to the packer’s information 

from other open well applications. As a premise, we have considered the prior 

uncertainty about the reliability of the novel equipment to be equal to the uncertainty 

for the reliability of the similar equipment in database Wellmaster. In this case, the 

number of production packers installed (𝑛 ) and the number of failures during its 

installation (𝑓) are 573 and 16, respectively. 

  

3.3.1.1 Elicitation results 

 

In this phase, the weights 𝑤𝑖  to perform the downward propagation are 

extracted. Six experts took part in this step, each of them assigned with 𝑟𝑗 validated by 

the company: two specialists, involved in the equipment design since the very first 
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stages of its development, were assigned with 𝑟𝑗 =  2; two specialists with experience 

with the production packer installation and operation were assigned with 𝑟𝑗 =  2; two 

specialists with less time experienced with the equipment, were assigned with 𝑟𝑗 = 1. 

The weighted median of the elicited values was used as 𝑤𝑖 for each basic event to 

consider the opinion of all experts (see Figure 17). 

As previously mentioned, for each upper event, the median values of the lower 

events (e.g., 𝑚1 and 𝑚2) were scaled between 0 and 1 (e.g., 𝑤𝑘 =
𝑚𝑘

𝑚1+𝑚2
, for 𝑘 = 1,2) 

and, then, these values were adopted as the contributions (weghts) of the events to 

the occurrence of the immediate event above. The weight calculations procedure is 

detailed in Figure 17 considering realistic values and preserving the original elicited 

order for the O&G application. For the failure mode, most experts believe that 𝐸𝐴𝐴 is 

the one that contributes most to the failure during installation (followed by 𝑤𝐹𝐸, and 

𝑤𝐵𝐴). Then, suppose that its weight 𝑤𝐴𝐴 has been assigned 0.5, the weight of the event 

𝐸𝐹𝐸, 𝑤𝐹𝐸, has been set as 0.3, and the contribution of 𝐸𝐵𝐴, 𝑤𝐵𝐴, has been determined 

as 0.2. Then, the contribution for 𝐸𝐹𝐸 from the immediate causes are related to 𝐸1 and 

𝐸2 and may be elicited. As shown in Figure 17, the median value assigned by the 

experts to 𝐸1 was 𝑚1 = 0.35 and to 𝐸2 was 0.7. Then, scaling the medians between 0 

and 1 results in 𝑤1 =
0.35

0.35+0.7
= 0.333 and 𝑤2 =

0.7

0.7+0.35
= 0.667. Thus, the contributions 

of these events to the installation failure are given by 𝑤𝑖
′  = 𝑤𝐹𝐸 × 𝑤𝑖; thus, 𝑤1

′ = 0.10 

and 𝑤2
′ = 0.20. 

Analogously, the experts provide their opinions about the contribution of the 

immediate causes to 𝐸𝐴𝐴 (i.e., 𝐸3, and 𝐸𝑆𝐴). In fact, 𝐸𝑆𝐴 was unanimously considered 

as the most likely cause of the 𝐸𝐴𝐴. Next, the experts analyze the immediate causes of 

𝐸𝑆𝐴 , which are 𝐸𝑆𝐶  and 𝐸8 , assigning the same weight for both events. Then, the 

experts consider the events associated with 𝐸𝑆𝐶 , represented by 𝐸4, 𝐸5, 𝐸6, and 𝐸7, 

with most experts assigning greater weight to 𝐸6. Finally, the experts evaluate the 

causes of 𝐸𝐵𝐴 (i.e., 𝐸9, 𝐸10, 𝐸11, and 𝐸12). All responses were validated by the senior 

expert of the company as well as the failure contribution of basic events (𝑤𝑖
′). 

In the end, the weights of the twelve previously mentioned basic events are 

defined. The descending order of the event weights is presented in Table 7. As one 

can see, based on expert opinion, 𝐸8  (‘premature close due to pin manufacturing 
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defects’) was the one with greater weight while 𝐸12 (‘debris causing the filter to rupture’) 

was considered the less influencing basic event. 

 

Figure 17 – Example containing illustrative values 

 
Source: Maior et al. (2022) 

 

Table 7 – Failure contribution of basic events for the installation FT diagram 

Order 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 

Event 𝒊 𝐸8 𝐸2 𝐸3 𝐸5 𝐸1 𝐸7 𝐸4 𝐸6 𝐸9 𝐸10 𝐸11 𝐸12 

Source: Maior et al. (2022) 

 

3.3.1.2 Uncertainty propagation 

 

As previously mentioned, we assumed that the failure occurrence of all basic 

events during installation (𝐸𝑖, 𝑖 = 1,… , 12) are described by a Bernoulli model with 

parameter 𝑝𝑖  with only two possible outcomes: success or failure. Therefore, the 

equipment reliability in installation, 𝑅(0|𝜃), given in Equation 35 have 𝜃 = {𝑝1, … , 𝑝12}, 

as set of MRM parameters. Given the generic database (Wellmaster) evidence, we 

can estimate 𝑝 as 𝑝̂ =
𝑓

𝑛
, in which 𝑓 is the number of reported failures for the 𝑛 packers 

registered. We can also obtain the confidence intervals 𝑃1 and 𝑃99 (Equation 30). From 

the elicitation procedure, the contributions 𝑤𝑖
′ were used to obtain 1 − (1 − 𝑝̂)𝑤𝑖

′
= 𝑚𝑝𝑖

, 

1 − (1 − 𝑃1)
𝑤𝑖
′
= 𝑎𝑝𝑖, and 1 − (1 − 𝑃99)

𝑤𝑖
′
= 𝑏𝑝𝑖. These estimates allow computing 𝜇𝑝𝑖 
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and 𝜎𝑝𝑖 (Equations 26 and 27) for the PERT distribution. Because a beta distribution is 

assumed to model 𝑝𝑖, 𝑖 = 1,… ,12,  the hyperparameters 𝛼𝑝𝑖 and 𝛽𝑝𝑖 can be estimated 

analytically using MM (Equations 28 and 29). Finally, the prior beta distributions 

𝜋0(𝑝𝑖|𝛼𝑝𝑖 , 𝛽𝑝𝑖) for each event 𝑖 are achieved, completing the downward propagation. 

The results are summarized in Table 8. 

 

Table 8 – Prior distributions obtained through MM. 

𝑬𝒊 𝒑𝒊 

Hyperparameters 

 

𝑬𝒊 𝒑𝒊 

Hyperparameters 

𝜶𝒑𝒊 𝜷𝒑𝒊(𝟏𝟎
𝟑) 𝜶𝒑𝒊 𝜷𝒑𝒊(𝟏𝟎

𝟑) 

1 𝑝1 15.20 8.85 7 𝑝7 15.20 9.34 

2 𝑝2 15.09 2.93 8 𝑝8 15.02 2.05 

3 𝑝3 15.14 4.13 9 𝑝9 15.23 17.96 

4 𝑝4 15.22 12.46 10 𝑝10 15.23 22.47 

5 𝑝5 15.15 4.65 11 𝑝11 15.23 22.47 

6 𝑝6 15.22 12.46 12 𝑝12 15.23 17.96 

Source: Maior et al. (2022) 

 

Then, in possession of all the basic event distributions, we used a Monte Carlo 

simulation algorithm to perform upward propagation, i.e., to propagate the uncertainty 

through the FT until the top event, determining the probability of failure in installation 

for the novel O&G equipment. The method consists of generating random samples of 

𝑝𝑖  from 𝜋0(𝑝𝑖|𝛼𝑝𝑖 , 𝛽𝑝𝑖) , for 𝑖 = 1,… ,12 , then, calculating the samples of 𝑅(0|𝜃) , 

according Equation 35 (SINGH; MITRA, 1995). 

Yet, the system’s reliability is obtained as the probability of the complementary 

event. For the real case study, equipment reliability during its installation,  𝑅(0), is 

represented in Figure 18. One can see that the simulation returned high reliability 

(close to 1) with low variability. The resulting narrow confidence/uncertainty intervals 

for 𝑅(0) reflect the low uncertainty about the parameters caused by the large number 

of packers installed with few failures (recall the information from the Wellmaster report). 

Indeed, the results meet the metric recommended by API 17 as the failure probability 

tends to 0. 
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Figure 18 – Estimate of the reliability of the equipment during its installation 𝑅(0) 

 
Source: Maior et al. (2022) 

 

 

3.3.2 Equipment operation 

 

Figure 19 shows the FT diagram related to the equipment failure during its 

operation. The related failure modes are: (i) annular-annular communication (𝐸𝐴𝐴) and 

(ii) bore-annular communication (𝐸𝐵𝐴). They represent the loss of annular isolation 

during the well production. Based on the equipment FMEA, seven specific basic events 

(𝐸13, … , 𝐸19) were extracted, in which the occurrence of at least one causes one of the 

two previously mentioned failure modes. 𝐸𝑉𝐹 is an intermediate event related to the 

valve failure, which may be caused by aging (𝐸15), microparticle accumulation (𝐸16), 

or loads (𝐸17). Table 9 describes all the basic events for the operation FT.  

Here, it is necessary to determine the most suitable statistical analysis for each 

basic event, regarding the event characteristics as well as possible tests to be 

performed. An Exponential model, with parameter 𝜆𝑖, was adopted for basic events in 

which it is not expected degradation effects during the equipment’s mission time. As a 

result, the Exponential model was selected for 𝐸13, 𝐸17, and 𝐸19, as the project avoids 

(verified by tests) the occurrence of fatigue in the equipment body and other failure 

mechanisms related to the incidence of cyclical load/stress.  

 



55 

 

Figure 19 – FT diagram representing equipment failure during well operation. 

 
Source: Maior et al. (2022) 

 

 

Table 9 – Description of basic events of the FT diagram for the equipment failure during well 

operation. 

Basic 

Event 
Description 

𝐸13 
The incidence of loads during operation/interventions in well production causes the 

expansion sleeve to buckle, which leads to annular-annular communication. 

𝐸14 
Aging of the mechanical properties of each of the expansion sleeve’s seals causes 

leakage in the expansion sleeve's set of seals. 

𝐸15 
Aging of the compensation valve seal, due to long-term exposure to fluids and high 

temperatures, causes leakage through the pressure compensation valve. 

𝐸16 

The accumulation inside the pressure compensation valve of microparticles, which 

naturally pass through the filter, over time, blocks the movement of the valve piston, which 

prevents pressure compensation inside the production packer. 

𝐸17 
The load caused by pressure differentials mechanically deforms the sealing surfaces of 

the pressure compensation valve, which causes leakage through the valve. 

𝐸18 
Loss of the sealing capacity of the seals and sealing surfaces of the installation valve, over 

time, reopens communication with the bore. 
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Basic 

Event 
Description 

𝐸19 Load on the production packer causes a leak in the annular region with the bore. 

Source: Maior et al. (2022) 

 

For events in which degradation is expected, the Weibull model, with 

parameters 𝛼𝑖  and 𝛽𝑖 , was adopted. Moreover, because 𝐸14  and 𝐸15  are tested at 

different temperatures, a particular Weibull model, the Arrhenius-Weibull model with 

parameters 𝑎𝑖 , 𝑏𝑖 , and 𝛽𝑖 , was considered. The Arrhenius-Weibull model is a 3-

parameter Weibull model that allows assessing the probability of time to failure at 

different temperatures (MODARRES, 2021). Specifically, for this novel O&G packer, 

fifteen seal assemblies are arranged in parallel. Therefore, as the Arrhenius-Weibull 

model represents the failure distribution of one seal assembly, the reliability model for 

𝐸14 is provided by Equation 36, where 𝑡 is the mission time, 𝜏 is the temperature and 

𝑎14, 𝑏14, and 𝛽14 are the Arrhenius-Weibull model parameters. 

 

𝑅14(𝑡, 𝜏|𝑎14, 𝑏14, 𝛽14) = 1 −

[
 
 
 
 

1 − 𝑒
−(

𝑡

𝑏14𝑒
𝑎14
𝜏

)

𝛽14

]
 
 
 
 
15

 36 

 

Finally, the MRM of the equipment operation is given in Equation 37, where the 

parameter set is 𝜃 = {𝜆13, 𝑎14, 𝑏14, 𝛽14, 𝑎15, 𝑏15, 𝛽15, 𝛼16, 𝛽16, 𝜆17, 𝛼18, 𝛽18, 𝜆19} . Once 

again, the MRM was obtained by the multiplication of the reliability models of each 

basic event since all FT logic gates are of the “OR” type. 

 

𝑅(𝑡|𝜃) =

{
 
 

 
 

1 −

[
 
 
 
 

1 − 𝑒
−(

𝑡

𝑏14𝑒
𝑎14
𝜏

)

𝛽14

]
 
 
 
 
15

}
 
 

 
 

× 𝑒
−𝜆13𝑡−(

𝑡

𝑏15𝑒
𝑎15
363

)

𝛽15

−(
𝑡
𝛼16

)
𝛽16

−𝜆17𝑡−(
𝑡
𝛼18

)
𝛽18

−𝜆19𝑡

 

37 
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As in the installation case, the only available information is the data presented 

by the Wellmaster. The report provides the scale (𝛼) and shape (𝛽) parameters of the 

Weibull for the time to failure related to the failure modes annulus communication (𝐸𝐴𝐴) 

and column-annulus communication (𝐸𝐵𝐴) during the operation, which concerns the 

intermediate events for this FT. Table 10 summarizes this information. 

 

Table 10 – Completion expansion packer Wellmaster report (operation of similar equipment). 

Failure mode 
Scale parameter 

(years) 

Shape 

parameter 

annular-annular communication (𝐸𝐴𝐴) 63,521.0 0.605 

bore-annular communication (𝐸𝐵𝐴) 860.2 1.372 

Source: Maior et al. (2022) 

 

The ME method was applied (Equation 31) to aggregate this information as 

probability distributions for the parameters of each event 𝐸𝑖. As constraints of the ME 

method, we considered that each basic event 𝑖  has a contribution 𝑤𝑖
′  to the 

corresponding failure mode (𝐸𝐴𝐴 and 𝐸𝐵𝐴). The basic events 13 to 17 contribute to 𝐸𝐴𝐴, 

and the occurrence of the basic events 18 and 19 cause 𝐸𝐵𝐴. 

 

3.3.2.1 Elicitation results 

 

Five specialists took part to evaluate the events weights related to the operation 

of the novel equipment. Each of them was assigned with 𝑟𝑗 validated by the company: 

two experts involved in the equipment design since the very first stages of its 

development had 𝑟𝑗 = 2; for the two specialists with experience with the production 

packer installation and operation, 𝑟𝑗 = 2; for one specialist with less time experienced 

with equipment, 𝑟𝑗 = 1. The median values of the elicited weights were used as 𝑤𝑖 to 

obtain the prior distributions for each basic event. 

Once again, for each upper event (e.g., 𝐸𝑉𝐹), the median values of the lower 

events (𝑚15, 𝑚16 and 𝑚17) were scaled between 0 and 1 (e.g., 𝑤15 =
𝑚15

𝑚15+𝑚16+𝑚17
). For 

example, Table 11 shows hypothetical values for the opinions of the five experts 

regarding the weights of the events 15, 16 and 17 when the compensation valve fails 

(𝐸𝑉𝐹 ). Following the procedure in Figure 17, the median values weighted by the 
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experts' relevance factors are 𝑚15 = 20%, 𝑚16 = 35% and 𝑚17 = 35%. Then 𝑤15 =

20%

20%+35%+35%
= 22%, which is the contribution of event 15 to the valve failure. 

 

Table 11 – Responses regarding the contribution of events 15, 16 and 17 to the valve failure (𝐸𝑉𝐹). 

Expert  
(relevance factor) 

Contribution of events 

15 16 17 

1 (1) 10% 40% 50% 

2 (2) 30% 35% 35% 

3 (2) 25% 60% 15% 

4 (2) 20% 35% 45% 

5 (2) 50% 30% 20% 

 

Finally, the weights of the seven previously mentioned basic events (Figure 19 

and Table 9) are presented in descending order in Table 12. As one can see, 𝐸18 (‘loss 

of the sealing capacity of the seals and sealing surfaces of the installation valve over 

time’) was the one with greater weight while 𝐸17  (‘mechanical deformation of the 

sealing surface of the compensation valve due to pressure differentials’) was 

considered the less impacting basic event. 

 

Table 12 – Failure contribution of basic events for the operation FT diagram 

Order 1st 2nd 3rd 4th 5th 6th 7th 

Event 𝒊 𝐸18 𝐸14 𝐸15 𝐸19 𝐸13 𝐸16 𝐸17 

Source: Maior et al. (2022) 

 

3.3.2.2 Uncertainty propagation 

 

Here, we assumed that each 𝜋0(𝜃𝑖) ,  ∀𝑖 , is a lognormal distribution with 

independent hyperparameters 𝜇𝜃𝑖 ,  and 𝜎𝜃𝑖 . Thus, Equation 31 was formulated as the 

sum of the entropies of each individual hyperparameter (JAYNES, 1957). and we 

compute the entropy of the random variables lognormally distributed. Then, the 

optimization problem (Equation 31) subject to the constraints in Equations 32-34 is 

solved through ME method and using the PSO algorithm.  
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A summarization of the process used to solve the optimization problem is 

illustrated in Figure 20. From the hyperparameters of Wellmaster (generic database) 

we calculate the expected value and percentiles of 𝑅𝐺𝐷 via Monte Carlo simulation, 

which define the problem constraints (the right side of the constraints Equations 32-

34). Then, at each iteration, PSO searches a set of hyperparameters (𝜇 and 𝜎) that 

maximize the entropy (max𝐻) and meet the constraints. Then, the left side of the 

constraints is also computed via Monte Carlo simulation: at each iteration of PSO, 

using the hyperparameters selected, we generate 100,000 random values for 𝜃𝑖, using 

scipy.stats.lognorm.rvs, which allows the estimation of the cumulative distribution 

function (CDF) of 𝑓(𝑡|𝜃𝑖)  and its expected value and percentiles. This process is 

repeated until it reaches a minimum step size of swarm’s best position of 10−8 or a 

minimum of 10−8 change of swarm’s best objective value; thus, it converges until to an 

optimal solution (𝜇∗ and 𝜎∗). 

 

Figure 20 – Procedure adopted to solve the constrained ME method. 

 
Source: Maior et al. (2022) 

 

For example, the maximum-entropy optimization problem related to 𝐸13, which 

is governed by an Exponential distribution, to estimate the distribution of 𝜆13  is 

presented in Equation 38 subject to the constrains 39-41. The right side of the 
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constraints is computed via Monte Carlo simulation using the Weibull parameters for 

the 𝐸𝐴𝐴 presented in Table 10. 

 

𝑚𝑎𝑥
𝜇𝜆13 ,𝜎𝜆13

𝐻 ≡ −∫

𝑒𝑥𝑝(−
(𝑙𝑛 𝜆13 − 𝜇𝜆13)

2

2𝜎𝜆13
2 )

𝜆13𝜎𝜆13√2𝜋

× [−
(𝑙𝑛 𝜆13 − 𝜇𝜆13)

2

2𝜎𝜆13
2 − 𝑙𝑛(𝜆13𝜎𝜆13√2𝜋)] 𝑑𝜆13 

38 

 

subject to: 

𝐸[𝑅13(27|𝜇𝜆13 , 𝜎𝜆13)] = 𝐸[𝑅𝐴𝐴(27|𝛼𝐴𝐴, 𝛽𝐴𝐴)
𝑤13] 39 

𝑃5[𝑅13(27|𝜇𝜆13 , 𝜎𝜆13)] = 𝑃5[𝑅𝐴𝐴(27|𝛼𝐴𝐴, 𝛽𝐴𝐴)
𝑤13] 40 

𝑃95[𝑅13(27|𝜇𝜆13 , 𝜎𝜆13)] = 𝑃95[𝑅𝐴𝐴(27|𝛼𝐴𝐴, 𝛽𝐴𝐴)
𝑤13] 41 

 

In this case, PSO searches through a 2-dimension space (i.e., 𝜇𝜆13  and 𝜎𝜆13), 

and, at each iteration of PSO, another Monte Carlo simulation is executed using the 

current hyperparameters to compute the expected value and percentiles of the 

reliability 𝑅13(27|𝜇𝜆13 , 𝜎𝜆13) that are the left side of the constraints. Thus, the solution 

provides the estimates of 𝜇𝜆13
∗  and 𝜎𝜆13

∗  describing the prior lognormal distribution of 

𝜆13, completing the downward propagation.  

Note that for events dealing with a statistical distribution of more than one 

parameter (e.g., Weibull and Arrhenius-Weibull), the number of terms in the objective 

function increases, generating a more complex problem to be optimized. Despite being 

a difficult problem, the PSO algorithm achieved satisfactory solutions for all basic 

events in our case study. The results for our real case are summarized in Table 13. 

Finally, in possession of the prior distributions for the basic events, we again 

used Monte Carlo simulation to propagate the uncertainty through the FT until the top 

event (probability of failure in operation) in the upward propagation, by generating 

random samples for 𝜃𝑖  from 𝜋0(𝜃𝑖), with 𝑖 = 13, . . ,19, and calculating the sample of 

𝑅(𝑡) from Equation 37.The considered mission time of operation is 𝑡 = 27 years (a 

common oil well concession period), and the reliability estimation, 𝑅(27), is shown in 
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Figure 21. The mean value for the reliability of the MRM is 93.48%, while 28.1% is the 

probability that the reliability is less than 90% (red line).  

 

Table 13 – Prior distributions obtained through ME. 

𝑬𝒊 𝜽𝒊 

Hyperparameters 

 

𝑬𝒊 𝜽𝒊 

Hyperparameters 

𝝁𝜽𝒊 𝝈𝜽𝒊 𝝁𝜽𝒊 𝝈𝜽𝒊 

13 𝜆13 -16.378 4.082 

16 

𝛼16 6.924 0.694 

14 

𝑎14 5.428 0.173 𝛽16 1.416 0.559 

𝑏14 2.912 0.367 17 𝜆17 -11.362 1.500 

𝛽14 0.185 0.240 

18 

𝛼18 6.944 0.208 

15 

𝑎15 5.670 0.824 𝛽18 0.263 0.463 

𝑏15 6.929 0.673 19 𝜆19 -13.477 4.249 

𝛽15 0.348 0.310  

Source: Maior et al. (2022) 

 

Figure 21 – Estimate of the equipment reliability for 27 years of operation, 𝑅(27) 

 
Source: Maior et al. (2022) 

 

3.4 CONCLUSION 

 

After the presented analysis, the level of uncertainty for 𝑅 ≥ 90% is 28.82% 

and, thus, above the required maximum limit of 20%, resulting in a residual uncertainty 
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of 8.82% after prior analysis. This is somehow expected because we are only 

considering the prior distribution of the equipment based on generic data and expert 

opinion. Evidence related to specific tests (e.g., functional, degradation, accelerated, 

and numerical) from components, subsystems, and systems (many of them from 

mandatory standard tests) may become available during the equipment development. 

Therefore, it is possible to update the prior distribution considering this likelihood 

information. And, because we included more knowledge during the definition of the 

prior distribution, fewer empirical/physical tests may be required to overcome the 

residual uncertainty and confirm the feasibility of the novel equipment. 

The posterior distribution is, then, required to meet the target at the end of the 

product development. In this sense, the methodologies presented in this work may be 

the starting point of a more comprehensive framework to update and monitor 

equipment reliability uncertainty during its development process. 
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4 PRIOR ANALYSIS FOR NON-CONTINUOUSLY OPERATED EQUIPMENT 

BASED ON EXPERTS’ OPINION 

This chapter is based on the paper titled “Using experts’ opinion for Bayesian 

prior reliability distribution of on-demand equipment: A case study of a novel sliding 

sleeve valve for open-hole wells” (MACEDO et al., 2023), and published in the 

Reliability Engineering and System Safety (RESS) journal, of which I am co-author. 

Below are my contributions to the paper: 

• Direct conception and validation of the proposed methodology. 

• Direct conception and validation of the models (Fault Tree Analysis, Top-

down propagation of the events contribution, Population Variability Analysis, 

Method of Moments, Maximum Entropy, and Monte Carlo). 

• Participation in the development and validation of questionnaires to elicit 

experts. 

• Participation in the development and validation of the computational 

implementation of the models. 

• Results analysis. 

 

4.1 INTRODUCTION 

 

In Chapter 3, it was proposed a methodology to define informative Bayesian 

prior distribution 𝜋0(𝜃𝑖) based on experts’ knowledge and generic data that does not 

require direct elicitation of parameters to define distribution for the equipment failure 

mechanisms but rather uses data at the system level. The proposed methodology was 

applied to estimate the prior distribution of a novel completion expansive packer that 

would operate in an open hole well of the O&G industry. However, that methodology 

is only suitable for equipment that operates continuously and does not consider the 

uncertainty related to the experts’ knowledge.  

Knowledge of different experts varies from each other, and this leads to 

variations in estimates provided by different experts. Several methods have been 

proposed to aggregate different experts’ opinions. Linear or logarithmic pooling 

methods are intuitive and easy to apply, they construct an additive or multiplicative 

mixture across experts (associated with a specific weight) (GRIBOK; AGARWAL; 

YADAV, 2020). On the other hand, pooling techniques do not capture expert 
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differences from the consensus and the key output of a pooling approach may be an 

unparametrized distribution; however, to feed a further model a parametrized 

distribution is desired (BOLGER; HOULDING, 2017). Bayesian models treat the 

elicited information as data. Early Bayesian models treated experts as completely 

exchangeable, this often resulted in very narrow posterior distributions which 

demonstrate high overconfidence. The supra-Bayesian hierarchical approach has 

been applied for combining indirect elicitation across multiple experts. This approach 

allows us to model the imprecision and incoherence of individual experts as well as 

their variability (HARTLEY; FRENCH, 2021).  

This chapter proposes a methodology to build informative prior distribution 

based on experts’ knowledge about different failure mechanisms, i.e., modelled by 

distinct probability distributions, of novel equipment operating in standby mode and 

working on demand. To that end, we aggregated the failure probability estimates, 

provided by multiple experts via Population Variability Analysis (PVA) (DAS CHAGAS 

MOURA et al., 2016), to define the variability distribution of these estimates within a 

group of non-homogeneous experts. Then, the resulting variability distributions are 

used to estimate the probability distribution of all failure mechanisms of novel 

equipment. 

We apply the methodology in a case study for a novel large-diameter sliding 

sleeve valve that operates in an open hole well in the O&G industry. Most of the time 

the valve remains on standby and is demanded during the well operations when it is 

necessary to isolate specific areas. Thus, the valve must be able to open and close 

multiple times under different pressures while maintaining the flow rate.  

The main contribution of this section is the development of a Bayesian 

methodology to define an informative prior distribution for novel equipment that is 

flexible enough to consider events that degrade over time and/or with past demands 

and takes into account the uncertainty regarding different experts’ opinions.  

 

4.2 METHODOLOGY 

 

Here, we propose a methodology to provide the prior reliability distribution, 

which is defined based on the distribution of all failure mechanisms leading to 

equipment failure. Figure 22 illustrates the main steps of the methodology, which are 

detailed in later sections. 
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The input data considers a dependability study for the analyzed equipment and 

experts’ opinions, which are extracted through elicitation. Since it is frequently 

performed in the early stages of risk and reliability analysis, we assume that FTs are 

created to evaluate a limited number of top events, which may represent failure during 

specific moments of the equipment life (e.g., during installation or operation). Each 

basic event, 𝐸𝑖, of the FT, relates a failure mechanism leading to the occurrence of the 

top event, 𝐸𝑇. Figure 23 illustrates the possible status for equipment that operates on-

demand and remains on standby mode. We consider that failures may occur in two 

different moments: (i) during equipment actuation, when the equipment is demanded 

and in its transition state (i.e., status 2 and 4), and (ii) during operation (i.e., status 1 

and 3) when the equipment is on standby (e.g., valve completely opened allowing fluid 

to flow) or working (e.g., valve actuated to close and, consequently, it blocks the flow).  

 

Figure 22 – Main steps of the proposed methodology for obtaining an informative Bayesian prior 

distribution for on-demand equipment based on experts’ opinions. 

 
 

Source: Macedo et al. (2023) 

 

Figure 23 – Possible status of on-demand equipment. 

 
Source: Macedo et al. (2023) 
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4.2.1 Probabilistic Modeling  

 

In this section, we describe how we specified the parametric distribution that 

can describe a given failure mechanism. We assume that failure mechanisms related 

to success/failure events are described by a demand (𝑑) and time (𝑡) dependent 

probability model. Equation 42 models the failure probability 𝑝𝑖(𝑑, 𝑡) for basic event 𝐸𝑖 

based on MARTORELL et al., (2017), where 𝜌𝑖   is the residual failure probability, 𝛾𝑖 is 

the degradation factor due to past demands (𝑑) associated with demand failures and 

𝜏𝑖 represents the degradation factor associated with time-related failures. 

 

𝑝𝑖(𝑑, 𝑡) = 𝜌𝑖 + 𝛾𝑖 × 𝑑 + 𝜏𝑖 × 𝑡 42 

 

Moreover, an Exponential model, with parameter 𝜆𝑖 , is adopted for failure 

mechanisms with unexpected degradation effects during the equipment’s mission time, 

such as the ones related to the incidence of cyclical load/stress. For events in which 

degradation is expected, the Weibull model, with parameters (𝛼𝑖, 𝛽𝑖), is used, and for 

failure mechanisms also influenced by temperature, the Arrhenius-Weibull model, with 

parameters (𝑎𝑖, 𝑏𝑖, 𝛼𝑖) is adopted (SHAKHATREH; LEMONTE; MORENO–ARENAS, 

2019). Then, each FT event, 𝐸𝑖, follows a distribution with a set of parameters 𝜃𝑖. Thus, 

to determine the prior distributions of all 𝐸𝑖, one must estimate the respective 𝜃𝑖.  

In the third step of Figure 22, the resulting distribution from experts’ opinions is 

used to determine the parameters of the distributions that describe the failure 

mechanism of the basic events in the FTs. First, the Method of Moments (MM) is used 

to estimate the Beta distribution over the probability of occurrence of each event. If a 

continuous distribution describes the time in which 𝐸𝑖 occurs, the Maximum Entropy 

Method (MEM) is applied to estimate its parameters. In the last step, the equipment 

reliability probabilistic model can be obtained through Monte Carlo (MC) sampling 

using the distributions obtained in the last step for all basic events (JIA; GUO, 2022). 

 

4.2.2 Data Source  

 

As mentioned, for novel technologies reliability data from field or tests are 

scarce or non-existent. Here we consider that the only reliability information available 
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is the experts’ opinion. Thus, to define the set of parameters 𝜃𝑖  for all failure 

mechanisms we need to perform an elicitation process to build our prior evidence about 

𝜃𝑖. If one directly elicits the parameters of a distribution, the information extracted from 

the experts might end up being a simple guess, since the interpretation of such 

parameters may be overly complicated (MODARRES; AMIRI; JACKSON, 2017). 

Therefore, to make the process more intuitive we adopted an indirect elicitation. The 

elicitation process involves asking the experts for estimates of the probability of failure 

at the system level only. In other words, expert 𝑗 provides estimates of the probability 

of equipment failure, 𝑥𝑗, for the considered failure modes. In this sense, the elicitation 

process provides system-level information that is, in turn, used to estimate the 

probability of the basic events, 𝑥𝑗,𝑖 , which are related to failure mechanisms. 

Specifically, to propagate the information about the FT top event to the basic events 

(𝐸𝑖), we considered that each event contributes with a specific weight (𝑤) to the failure 

event immediately above.  

For instance, as illustrated in Figure 24, expert 𝑗 believes that the probability of 

occurrence of 𝐸𝑇 is 10% and that the chance of 𝐸𝑇 occurring due to 𝐸𝑀1 is 40% (i.e., 

𝐸𝑀1  contributes with 𝑤𝑀1 = 0.4  to 𝐸𝑇 ). Furthermore, according to the expert, the 

chance of 𝐸𝑀1  occurring due to a failure mechanism 𝐸1 is 80%. Thus, both events’ 

contributions, i.e., all 𝑤𝑖 and 𝑤𝑀𝑖
, and estimates for the equipment probability of failure, 

𝑥𝑗, are gathered from experts’ opinions.  

 
Figure 24 – Elicited values in red boxes and downward propagation methodology; how the 

contributions of the basic events are computed. 

 
Source: Macedo et al. (2023) 
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Thus, we extract, through elicitation forms, estimates of the failure probability of 

the equipment during actuation and operation. More specifically, the form related to 

the failure mechanisms that may occur during the equipment actuation aims to elicit:  

• An estimate of the probability of equipment failure during actuation given the 

number of actuations, 𝑑, at a specific time, 𝑡, i.e., an estimate for 𝑝(𝑑, 𝑡); 

• The contributions of the possible causes that lead to actuation failure. 

 

In turn, the form related to the failure mechanisms that may occur during 

equipment operation intends to obtain:  

• An estimate of the probability of equipment failure during operation for a given 

mission time, 𝑇, i.e., an estimate for 𝑝(𝑡 = 𝑇); 

• The contributions of the possible causes that lead to operation failure. 

 

Thus, we use the elicited information to estimate the failure mechanisms’ 

probabilities of occurrence. The elicited contributions define the relations among the 

basic events and the information available at the system level and other events. Thus, 

given the estimate of the failure probability related to the top event provided by expert 

𝑗, we compute 𝑥𝑖𝑗, which is the probability estimate for the basic event 𝐸𝑖 (recall Figure 

24). We assume that all logic gates of the FT are “OR” type and all events are 

independent. Moreover, the reliability estimate of 𝐸𝑇  (1 − 𝑥𝑗) is the product of the 

reliability estimates of its immediate causes 𝐸𝑇 = ∏  (1 − 𝑥𝑖𝑗)
𝑖 . For instance, since the 

exemplified failure probability of 𝐸𝑇 in Figure 24 is 10% and the contribution of 𝐸𝑀1 to 

𝐸𝑇 is 𝑤𝑀1 = 0.4, the probability 𝑥𝑀1𝑗, is given by 𝑥𝑀1𝑗 = 1 − (1 − 0.1)0.4. Similarly, one 

can compute 𝑥1𝑗. For further details, see MAIOR et al.,  (2022). 

We consider that a distribution models the uncertainty of the estimate 𝑥𝑖𝑗 related 

to expert 𝑗. To account for the uncertainty in the expert opinion, 𝑥𝑖𝑗  is modeled as a 

continuous variable from 0 to 1. Since the elicitation process involves multiple experts, 

it results in various estimates, and, consequently, multiple distributions for each failure 

mechanism. Thus, after eliciting experts’ opinions, an aggregation process based on 

PVA is performed to obtain a unique distribution describing the experts’ uncertainty on 

the probability of occurrence of the basic events. This aggregation process is detailed 

in the following section. 
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4.2.3 Aggregation process 

 

PVA provides a probability distribution to represent the variability of some 

measure of reliability between ‘populations’. In our case, ‘populations’ are the experts, 

and the measure is the failure probability. A representation of this variability of the 

failure probabilities, in the form of a probability distribution, is referred to as the 

population variability distribution. The assessment of such population variability 

distributions is referred to as population variability analysis (GRECO; PODOFILLINI; 

DANG, 2021a).  

Let 𝑝𝑖 be a continuous random variable that defines the failure probability of 

event 𝑖 and 𝜑 (𝑝𝑖|𝜃𝑖) = 𝜑(𝑝𝑖|𝜃1, … , 𝜃𝑛)  denotes a parametric distribution with 𝑛  

parameters. In addition, a probability distribution 𝜋𝑝𝑖 (𝜃𝑖) = 𝜋
𝑝𝑖(𝜃1, … , 𝜃𝑛)  over the 

parameters of the model describes the uncertainty over the unknown distribution 

𝜑 (𝑝𝑖|𝜃𝑖). The posterior distribution of the population variability parameters based on 

𝜀𝑝𝑖, 𝜋𝑝𝑖 (𝜃𝑖|𝜀
𝑝𝑖), is developed by applying Bayes' theorem (Equation 43). 

 

𝜋𝑝𝑖 (𝜃𝑖|𝜀
𝑝𝑖) = 𝑘−1𝐿𝑖(𝜀

𝑝𝑖|𝜃)𝜋0
𝑝𝑖 (𝜃𝑖)   43 

 

where 𝜀𝑝𝑖 = {𝑥𝑖1, … , 𝑥𝑖𝐽}   is the evidence that provides information about 𝜋𝑝𝑖 (𝜃𝑖), 𝜋0
𝑝𝑖 

is the prior distribution over 𝜃𝑖, 𝐿𝑖 (𝜀
𝑝𝑖|𝜃𝑖) is the likelihood function of the evidence 𝜀𝑝𝑖, 

given that the actual distribution of the quantity of interest, 𝑝𝑖 , is a parametric 

distribution 𝜑 (𝑝𝑖|𝜃𝑖), and 𝑘 = ∫ 𝐿𝑖 (𝜀
𝑝𝑖|𝜃𝑖) 𝜋0

𝑝𝑖 (𝜃𝑖)
⬚

𝜃
𝑑𝜃𝑖 is the normalization factor of 

the Bayesian equation (DAS CHAGAS MOURA et al., 2016; ZHAO, 2022). 

Assuming that the experts’ estimates, 𝑥𝑖𝑗 ,  are independent, the likelihood 

function for the entire set of evidence, 𝐿𝑖 (𝜀
𝑝𝑖|𝜃𝑖), for the basic event 𝑖 is the product of 

the likelihood functions for each expert 𝑗 = 1,… , 𝐽 (Equation 44). 

 

𝐿𝑖 (𝜀
𝑝𝑖|𝜃𝑖) =∏𝐿𝑖𝑗 (𝑥𝑖𝑗|𝜃𝑖)

𝐽

𝑗=1

 44 
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where 𝐿𝑖𝑗(𝑥𝑖𝑗|𝜃𝑖) is the probability density that expert 𝑗 estimate 𝑥𝑖𝑗. Note that 𝑥𝑖𝑗 is an 

estimate of 𝑥𝑖 which is only one of the possible values of failure probability 𝑝𝑖, since 𝑝𝑖 

is distributed according to 𝜑 (𝑝𝑖|𝜃𝑖). Then, 𝜋𝑥𝑖𝑗 = 𝜋𝑥𝑖𝑗(𝑥𝑖𝑗|𝑥𝑖) is the probability density 

that the expert’s estimate is 𝑥𝑖𝑗 when the expert is attempting to estimate is 𝑥𝑖 (KELLY; 

SMITH, 2009). Thus, by allowing the failure probability to assume all possible values 

we write 𝐿𝑖𝑗(𝜀
𝑝𝑖|𝜃𝑖) as ∫ 𝜋𝑥𝑖𝑗(𝑥𝑖𝑗|𝑥𝑖)𝜑(𝑝𝑖|𝜃)𝑑𝑝𝑖

⬚

𝑝𝑖
. Then, we can rewrite Equation 43 as: 

 

𝜋𝑝𝑖 (𝜃𝑖|𝜀
𝑝𝑖) = 𝑘−1𝜋0

𝑝𝑖 (𝜃𝑖)∏∫ 𝜋𝑥𝑖𝑗(𝑥𝑖𝑗|𝑥𝑖)𝜑 (𝑝𝑖|𝜃𝑖) 𝑑𝑝𝑖

⬚

𝑝𝑖

𝐽

𝑗=1

 45 

 

To determine 𝜃𝑖  we adopted an Empirical Bayes that involved using to 

Maximum-Likelihood Method to fit the distribution to our evidence. The likelihood 

function to be maximized is given by Equation 44 (GRIBOK; AGARWAL; YADAV, 

2020).  

Thus, to perform a PVA of the failure probability of event 𝑖 , 𝑝𝑖, we need to select 

the appropriate distributions 𝜑 (𝑝𝑖|𝜃𝑖)  and 𝜋𝑥𝑖𝑗(𝑥𝑖𝑗|𝑥𝑖) . The specification of 

𝜑 (𝑝𝑖|𝜃𝑖) may be guided by the nature of the reliability measure; thus, we assume that 

the real value of 𝑝𝑖 is modeled by a beta distribution (𝜃𝑖 = 𝑎𝑖, 𝑏𝑖), 𝐵𝑒𝑡𝑎(𝑝𝑖|𝑎𝑖, 𝑏𝑖), which 

is used to model continuous variables, like failure probabilities in the range [0, 1] 

(SABRI-LAGHAIE et al., 2022). On the other hand, the construction of 𝜋𝑥𝑖𝑗(𝑥𝑖𝑗|𝑥𝑖) 

depends on the type of available evidence. We know that the failure probability 

estimates, 𝑥𝑖𝑗, are imprecise estimates of the real failure probability 𝑝𝑖. The uncertainty 

inherent in the experts’ estimates about 𝑝𝑖 can be represented using Error Factors with 

each estimate (𝐸𝐹𝑖𝑗) such that 𝑥𝑖𝑗 = 𝐸𝐹𝑖𝑗 × 𝑝𝑖. Thus, the error factors will be such that 

0 <  𝐸𝐹𝑖𝑗 <  ∞. The range of 𝐸𝐹 can be visualized to increase in more inconsistent 

experts’ opinion representing lesser degrees of expertise and 𝐸𝐹𝑖𝑗  will be 1 for a 

perfectly consistent judgment. 

These characteristics are satisfied by many non-negative distributions, such as 

the log-normal, Weibull, beta, and gamma distributions. In this context, the log-normal 

model has been widely adopted (DAS CHAGAS MOURA et al., 2016; GRECO; 
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PODOFILLINI; DANG, 2021b, 2023; PANDYA et al., 2020; ZHAO, 2022). The 𝐸𝐹 

range increases in more inconsistent experts’ opinion, representing lesser degrees of 

expertise, and 𝐸𝐹𝑖𝑗 will be 1 for a perfectly consistent judgment (PANDYA et al., 2020). 

Several non-negative distributions, including the log-normal, Weibull, beta, and gamma, 

meet the required characteristics for reliability analysis. In this context, the log-normal 

distribution is commonly used in this context, as it is effective in emulating the fact that 

experts, albeit inherently imprecise, should be able to provide the correct estimates in 

terms of median. 

Thus, we adopted the log-normal error model (GRECO; PODOFILLINI; DANG, 

2023) with parameters (𝜇𝑖𝑗, 𝜎𝑖𝑗) to represent 𝜋𝑥𝑖𝑗(𝑥𝑖𝑗|𝑥𝑖). Since 𝑝𝑖 can only take values 

between 0 and 1 the log-normal is then truncated to meet this requirement (GRECO; 

PODOFILLINI; DANG, 2021b; ZHAO, 2022). In this case, 𝑥𝑖𝑗  is the median of the 

distribution and the standard deviation 𝜎𝑖𝑗  reflects the analyst’s confidence of the 

expert 𝑗 and it can be expressed in terms of Error Factor (𝐸𝐹𝑖𝑗 = 𝑒
1.645×𝜎𝑖𝑗), where 

1.645 is the 95𝑡ℎ percentile of the standard normal distribution (PANDYA et al., 2020).  

During elicitation the 𝑗-th expert provide 𝑥𝑗 (estimate on system level, described 

in Section 4.2.2); then, 𝐸𝐹𝑖𝑗 = 𝐸𝐹𝑗. To make the methodology more practical, instead 

of assessing individual expert credibility we adopted degrees of expertise. Thus, the 

𝐸𝐹𝑗 of each expert, which is related to the expert’s knowledge about equipment, was 

assigned by the analyst. Experts with field experience (design and operational) are 

supposed to have low 𝐸𝐹𝑗  and experts involved with development (research and 

development qualification, or homologation) are supposed to have moderate 𝐸𝐹𝑗. Here, 

we consider the values of 3 and 5 as the low and moderate 𝐸𝐹𝑗, respectively. Those 

𝐸𝐹𝑗  values are defined based on authors expertise and literature review (DAS 

CHAGAS MOURA et al., 2016; ZHAO, 2022).  

Finally, the likelihood (𝐿𝑖𝑗) that the expert provides an estimate 𝑥𝑖𝑗, as a function 

of the values of 𝑎𝑖 and 𝑏𝑖, is given by Equation 46 (KELLY; SMITH, 2009): 

 

𝐿𝑖𝑗(𝑥𝑖𝑗 |𝐸𝐹𝑗 , 𝑎𝑖, 𝑏𝑖) = ∫ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑥𝑖𝑗|𝑝𝑖, 𝐸𝐹𝑗) × 𝐵𝑒𝑡𝑎(𝑝𝑖|𝑎𝑖, 𝑏𝑖)𝑑𝑝𝑖

⬚

𝑝𝑖

   46 
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Thus, we estimate 𝑎𝑖  and 𝑏𝑖  via the Particle Swarm Optimization (PSO) 

algorithm, which has been successfully applied in many reliability problems (BEZERRA 

SOUTO MAIOR et al., 2016; DROGUETT et al., 2015), as the values that maximize 

this likelihood (Equation 47) (SOUTO; DAS CHAGAS MOURA; LINS, 2019). 

 

𝐿𝑖(𝜀
𝑝𝑖|𝐸𝐹𝑗 , 𝑎𝑖, 𝑏𝑖) =∏𝐿𝑖𝑗(𝑥𝑖𝑗|𝐸𝐹𝑗 , 𝑎𝑖, 𝑏𝑖)

⬚

𝑗=1

 47 

 

Then, the aggregation results are the parameters of the beta distribution that 

described the probability 𝑝𝑖. The resulting beta distributions are used to define, for all 

basic events, the distribution of each parameter of 𝜃𝑖, 𝜋(𝜃𝑖) = {𝜋(𝜃𝑖1), … , 𝜋(𝜃𝑖𝑛)}, that 

define the distribution of the basic event 𝑖. 

 

4.2.4 Prior distribution definition 

 

Depending on the probabilistic distribution of the basic event (defined according 

to Section 664.2.1), two approaches are proposed to determine the hyperparameters 

of the prior distribution: (i) MOM is adopted for getting the prior Beta distributions of 𝑝𝑖, 

(ii) MEM is adopted if the 𝑝𝑖 is modeled by a continuous distribution (Figure 25).  

 

Figure 25 – The approach applied to define the hyperparameters of the prior distributions. 

 
Source: Macedo et al. (2023) 
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In a nutshell, when 𝐸𝑖 follows a discrete distribution with a set of parameters 𝜃𝑖 

we apply MOM to estimate the hyperparameters that describe each parameter of 𝜃𝑖. 

For example, for a Bernoulli distribution with a parameter 𝑝𝑖, it (i.e., 𝑝𝑖) follows a log-

normal distribution with hyperparameters 𝜇𝑖 and 𝜎𝑖, 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑖, 𝜎𝑖). Then, the beta 

distributions resulting from the aggregation process provide the expected value 𝐸[𝑝𝑖] 

and variance 𝑣𝑎𝑟[𝑝𝑖] of 𝑝𝑖. These values allow one to estimate the prior distribution 

through the MOM, in which the unknown parameters match the theoretical moments 

(functions of the unknown parameters) with the appropriate sample moments, by 

analytically solving Equations 48 and 49 (MUNKHAMMAR; MATTSSON; RYDÉN, 

2017). 

 

𝜇𝑖 = log (
𝐸[𝑝𝑖]

2

√(𝑣𝑎𝑟[𝑝𝑖]+𝐸[𝑝𝑖]
2)
)  48 

𝜎𝑖
2 = log (

𝑣𝑎𝑟[𝑝𝑖]

𝐸[𝑝𝑖]2
+ 1) 49 

 

Similarly, when 𝐸𝑖 follows a continuous distribution, 𝑓(𝑡|𝜃𝑖), where 𝜃𝑖 is a set of 

parameters, a constraint MEM is solved to obtain the hyperparameters that describe 

each parameter of 𝜃𝑖. For instance, if 𝐸𝑖 follows an Arrhenius-Weibull distribution; then, 

𝜃𝑖 = (𝛼𝑖, 𝛽𝑖, 𝑎𝑖). The maximization problem is given by Equations 50, 51 and 52, where 

𝜋(𝜃𝑖) is the probability density function for the parameters of event 𝑖, 𝜃𝑖 (MAIOR et al., 

2022; WANG; LI, 2021). The constraints are related to the expected value and variance 

of the beta distribution from the aggregation process and the expected value and 

variance of the continuous distribution, 𝐸[𝑓(𝑡|𝜃𝑖)] and 𝑣𝑎𝑟[𝑓(𝑡|𝜃𝑖)], respectively. 

  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐻 =∫ −𝜋(𝜃𝑖) × 𝑙𝑜𝑔 [𝜋(𝜃𝑖)]𝑑𝜃𝑖

⬚

𝛳𝑖

 50 

 

s.t. 

 

 

𝐸[𝑓(𝑡|𝜃𝑖)] = 𝐸[𝑝𝑖] 51 

𝑣𝑎𝑟[𝑓(𝑡|𝜃𝑖)] = 𝑣𝑎𝑟[𝑝𝑖] 52 
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Here, the maximization problem presented in Equation 50 and subject to 

Equations 51 and 52, which are not solved analytically, is determined also using PSO. 

The hyperparameters provided by PSO at each iteration were used to generate 

100,000 random values for each parameter of 𝜃𝑖  , allowing the computation of 𝑓(𝑡|𝜃𝑖) 

and its moments 𝐸[𝑓(𝑡|𝜃𝑖)] and 𝑣𝑎𝑟[𝑓(𝑡|𝜃𝑖)]. The right sides of the constraints are 

computed via MC simulation. This process is repeated and eventually converges into 

a solution for the maximization problem (𝜇∗, 𝜎∗). Thus, the outcome of the algorithm is 

the estimates for the hyperparameters that describe the prior distribution of the 

parameters of the set 𝜃𝑖. This process is illustrated in Figure 26. For details, see Maior 

et al. (2022). 

The resulting distributions are used in another MC simulation algorithm to 

propagate ‘upward’ the uncertainty from the basic events and obtain a probability 

distribution of the system's reliability. 

 

Figure 26 – The procedure adopted to solve the constrained maximum entropy method. 

 
Source: Macedo et al. (2023) 

 

All steps described in Section 4.2 were implemented in Python programming 

language and, when possible, optimized with Numba (LAM; PITROU; SEIBERT, 2015). 

In the aggregation process, the SciPy (VIRTANEN et al., 2020) and Pyswarm (HAIR, 

2015) libraries were adopted to maximize the likelihood function and to determine the 

hyperparameters of the beta distributions. In both approaches (i.e., MOM and MEM), 

we used the SciPy library (VIRTANEN et al., 2020), more specifically, the module 

scipy.stats (MARINI; WALCZAK, 2015) that contains a large number of probability 

distributions, summary and frequency statistics, and MC functionality. 
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4.3 CASE STUDY 

 

The proposed methodology is applied to a sliding valve underdevelopment used 

to regulate the flow of material and to isolate areas of the well in the O&G industry. The 

valve may be adopted for both production or injection purposes and must be able to 

open and close multiple times under different pressures while maintaining the flow rate. 

For this system, the goal at the end of the development is to have 90% reliability for a 

time mission of 27 years. The desired confidence target is 60%. 

As previously mentioned, we consider that failures may occur in two different 

moments: (i) valve actuation (i.e., opening or closing movement), and (ii) operation (i.e., 

the valve is completely closed or opened). In each moment, an FT is used to model 

the logical relationships between the failure causes and mechanisms that lead to 

equipment failure over a mission time of 27 years. The FT related to the equipment 

failure during its actuation (Figure 27) contains nine basic events (𝐸𝑖 , 𝑖 = 1 to 9), the 

description of each basic event is presented in Table 14. 

 

Figure 27 – Fault tree diagram representing the valve failure during actuation, where green and yellow 

blocks represent basic and intermediate events, respectively. 

 
Source: Macedo et al. (2023) 

 

 



76 

 

Table 14 – Description of basic events of the FT for the valve failure during actuation. 

𝑬𝒊 Description 

1 
The sleeve is severed, opening the connection to the annulus, due to mechanical 

damage due to excessive force applied. 

2 
The seals suffer extrusion or breakage during actuation, opening the connection 

to the annulus due to sealing failure when closed. 

3 
The seals are compromised by erosion due to rapid gas decompression, opening 

a connection to the annulus. 

4 Uneven wear of the seals due to particle contamination. 

5 
The sliding seals suffer extrusion due to failure in the pressure equalization 

system caused by the insufficient time to equalize. 

6 
The shifter suffers mechanical due to excessive force applied. Such damage 

renders the valve closing impossible due to the damaged shifter profile. 

7 

The shifter suffers mechanical damage due to excessive force applied. Such 

damage renders the disengage of the valve impossible due to the damaged 

shifter profile. 

8 
It is impossible to engage the shifter due to wear caused by abrasion on the 

shifter profile, thus the opening/closing of the valve cannot be executed. 

9 
Undesired movement or no confirmation of valve status occurs due to excessive 

force applied in the collet lock. 

Source: Macedo et al. (2023) 

 

Since the resistance of a component to certain demand-induced stress can 

reduce over time and/or with previous demands, this probability is dependent on the 

time instant and on the index of the demand in question. Thus, each of these basic 

events is modeled by a time-and-demand-dependent probability of failure (Equation 

42), 𝑝𝑖 (𝑖 = 1 to 9). 

During operation, the valve is continuously subject to pressure, temperature, 

debris, friction, and chemical attack stresses, which can cause an accumulation of 

degradation in the valve components, and then lead them to a failed state. The FT 

related to the valve failure during operation has fifteen basic events (𝐸𝑖 , 𝑖 = 10 to 25). 

A Weibull distribution with parameters 𝛼𝑖 and 𝛽𝑖 is adopted to model the probability of 

the occurrence of 𝐸𝑖  , 𝑖 = 10 to  25  at time 𝑡 , which can capture the failure rate 

degradation over time (if 𝛽𝑖 > 1) since these events are related to the ageing of 

components. Similar to the failure during actuation, there are two failure modes during 

operation: annulus-tubing communication and shifting failure, which represent the loss 

of isolation during a workover or the fault in the valve movement (open/close). A 

simplified version of the FT is depicted in Figure 28 and described in Table 15.  
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Figure 28 – Fault tree diagram representing the valve failure during operation, where green and yellow 

blocks represent basic and intermediate events respectively. 

 
Source: Macedo et al. (2023) 

 
Table 15 – Description of basic events of the FT for the valve failure during operation. 

𝑬𝒊 Description 

10 
The valve body is broken due to excessive loads, which cause communication annulus-

tubing. 

11 
The valve body suffers a metal loss due to erosion over the operation mission time. Such 

loss causes communication annulus-tubing. 

12 
There is a compromise in the valve sealing surface on the flow trim in the valve body due to 

erosion along operation mission time, which causes communication annulus-tubing. 

13 The valve seals fail due to plugged flow path, which causes communication annulus-tubing. 

14 The valve seals fail due to abrasion, which causes communication annulus-tubing. 

15 
The seals fail to seal against the valve body due to ageing along operation mission time, 

which causes communication annulus-tubing. 

16 Rupture of the sleeve due to excessive differential pressure. 

17 Collapsed sleeve due to differential pressure. 

18 Damaged sleeve due to erosion. 

19 
It is impossible to engage the sliding sleeve due to wear on the sleeve, which makes it 

impossible to open or close the valve. 

20 
It is impossible to engage the sliding sleeve due to the scale on the sleeve, which makes it 

impossible to open or close the valve. 
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𝑬𝒊 Description 

21 
It is impossible to engage the shifter due to the scale on the shifter, which makes it 

impossible to open or close the valve. 

22 
It is impossible to engage the shifter due to debris on the shifter, which makes it impossible 

to open or close the valve. 

23 
The sleeve is stuck due to debris on the sleeve’s exposed surfaces, which makes it 

impossible to open or close the valve. 

24 The sleeve is stuck due to scale, which makes it impossible to open or close the valve. 

25 
There is a positioning failure due to the sleeve’s unwanted movement not being locked in 

position because of wear on the collet lock. 

Source: Macedo et al. (2023) 

 

4.4 RESULTS 

 

Four experts were involved in the elicitation process, two of them with high 𝐸𝐹 

and the other two with moderate 𝐸𝐹. First, the experts provided the contribution of the 

events that can lead to valve failure during actuation (Figure 27). Then, the experts 

provided the contribution of the events that can lead to valve failure during operation 

(Figure 28). The contributions, 𝑤𝑖 , of each 𝐸𝑖  to their respective top event (failure 

during actuation or failure during operation) were computed. The distribution of the 

values of 𝑤𝑖 is presented in Figure 29.  

In addition, the experts provided three estimates related to the failure during 

actuation (top event of Figure 27): 

• The probability of failure in the first actuation at 𝑡 = 0, 𝑝(𝑡 = 0, 𝑑 = 0); 

• The probability of failure in the fifth actuation at 𝑡 = 0, 𝑝(𝑡 = 0, 𝑑 = 5); 

• The probability of failure in the first actuation at 𝑡 = 10 years, 𝑝(𝑡 = 10, 𝑑 = 0). 

 

It is worth mentioning that the values of 𝑡 and 𝑑 were chosen based on the 

analyst's knowledge regarding the valve’s expected lifetime and the expected number 

of actuations in the oil well. The probabilities estimate (𝑥𝑗) provided by the expert 𝑗 and 

its contributions are used to compute the estimates (𝑥𝑖𝑗) for each basic event 𝑖 as 

described in Section 4.2.2. The distribution of the values of the probabilities estimate 

for 𝐸𝑖  (𝑥𝑖𝑗 ) related to the opinion of expert 𝑗  about the failure during actuation is 

illustrated in Figure 30a, Figure 30b, and Figure 30c. 
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Figure 29 – Distribution of the contributions of each basic event, 𝑤𝑖, to actuation failure (𝑖 = 1 to 9) and 

to operation failure (𝑖 = 10 to 25). 

 

 
Source: Macedo et al. (2023) 

 

Figure 30 – Distribution of probability estimates of (a) failure during actuation for each basic event 

𝑝𝑖(𝑡 = 0, 𝑑 = 0); (b) failure during actuation for each basic event 𝑝𝑖(𝑡 = 0, 𝑑 = 5); and (c) failure during 

actuation for each basic event 𝑝𝑖(𝑡 = 10, 𝑑 = 0). 

  
(a) (b) 

 
(c) 

Source: Macedo et al. (2023) 
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Moreover, the experts provided one estimate related to the failure during 

operation: 

• The probability of failure during its operations at 27 years, 𝑃(𝑡 = 27).  

 

Hence, the distribution of the values of the probabilities estimated for 𝐸𝑖(𝑥𝑖𝑗) 

related to the opinion of expert 𝑗 about the failure during operation is illustrated in 

Figure 31. Then, the estimates are adopted as modes of log-normal distributions with 

low or moderate 𝐸𝐹 are aggregated using PVA resulting in a single beta distribution, 

as described in Section 2.3. From Figure 31, note that the experts with low EF (more 

experience and knowledge about the project), represented in blue and grey, generally 

provide more optimistic estimates than the experts with moderate error factor. Then 

the aggregation process balances these views by considering the uncertainty related 

to the experience level of each expert. 

 

Figure 31 – Distribution of estimates of the probability of failure in 27 years of operation 𝑝𝑖(𝑡 = 27). 

 
Source: Macedo et al. (2023) 

 

Thus, the parameters and median of the beta distributions that describe 

𝑝𝑖(𝑑 = 0, 𝑡 = 0), 𝑝𝑖(𝑡 = 0, 𝑑 = 5), 𝑝𝑖(𝑡 = 10, 𝑑 = 0), for 𝑖 = 1  to 9, and 𝑝𝑖(𝑡 = 27), for 

𝑖 = 10 to 25, were found via PSO. For instance, Figure 32 presents the log-normal 

distributions related to the expert's opinion about the probability of failure during 

actuation at 𝑡 = 0 and 𝑑 = 0 (𝑃0) for 𝐸9  and the resulting beta distribution that has 

mode 2.2 × 10−2, median 2.5 × 10−2, and variance 1.3 × 10−4. 

The resulting beta distributions for the probability of failure during actuation are 

summarized in Table 16. Since all log-normal distributions from elicitation have a mode 

close to zero, values of 𝑎 less than 1 provide a likelihood function of greater value. 
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Thus, to ensure the bell shape of the Weibull distribution, we set the lower bound of 

the hyperparameter 𝑎 as 1.1. 

 

Figure 32 – Example of aggregation result, beta distribution for 𝐸9 obtained through PVA. 

 
Source: Macedo et al. (2023) 

 

Table 16 – Beta distribution that represents, for each basic event, the probability of the first actuation 

failure 𝑝𝑖(𝑡 = 0, 𝑑 = 0), the probability of actuation failure after 5 demands in t=0, 𝑝𝑖(𝑡 = 0, 𝑑 = 5), and 

the probability of the first actuation failure in t=10 without demands, 𝑝𝑖(𝑡 = 10, 𝑑 = 0). 

 𝒑𝒊(𝒕 = 𝟎, 𝒅 = 𝟎) 

Event 𝐄𝟏 𝐄𝟐 𝐄𝟑 𝐄𝟒 𝐄𝟓 𝐄𝟔 𝐄𝟕 𝐄𝟖 𝐄𝟗 

b
e
ta

 

p
a
ra

m
e
te

r 

𝒂 1.10 1.10 1.10 1.10 1.10 1.89 1.15 2.41 5.24 

𝒃 75.69 85.40 85.40 96.95 96.95 159.93 123.01 149.22 192.90 

Median 
(%) 

1.04 0.92 0.92 0.81 0.81 0.98 0.68 1.38 2.48 

 𝒑𝒊(𝒕 = 𝟎, 𝒅 = 𝟓) 

b
e
ta

 

p
a
ra

m
e
te

r 

𝒂 1.10 1.10 1.10 1.10 1.10 1.96 1.35 1.85 5.24 

𝒃 75.69 68.08 85.40 79.03 96.95 97.02 85.32 61.98 192.90 

Median 
(%) 

1.04 1.15 0.92 0.99 0.81 1.67 1.20 2.42 2.48 

 𝒑𝒊(𝒕 = 𝟏𝟎, 𝒅 = 𝟎) 

b
e
ta

 

p
a
ra

m
e
te

r 

𝒂 1.99 1.11 1.10 1.34 1.10 1.89 1.15 2.41 1.86 

𝒃 72.22 58.23 58.09 69.45 96.95 159.93 123.01 149.22 27.23 

Median 
(%) 

2.27 1.36 1.35 1.46 0.81 0.98 0.68 1.38 5.41 

Source: Macedo et al. (2023) 
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One can see, highlighted with a lighter color in Table 16 that the beta 

distributions for 𝐸1, 𝐸3, 𝐸5 and 𝐸9 remained the same as comparing 𝑝𝑖(𝑡 = 0, 𝑑 = 0) to 

𝑝𝑖(𝑡 = 0, 𝑑 = 5). This is because, according to the experts, the probability of failure due 

to 𝐸1, 𝐸3, 𝐸5 and 𝐸9 are not affected by previous demands. Similarly, the probabilities 

of failure due to 𝐸5, 𝐸6, 𝐸7 and 𝐸8 are not affected by time. Thus, 𝑝𝑖(𝑡 = 0, 𝑑 = 0) and 

𝑝𝑖(𝑡 = 10, 𝑑 = 0) related to 𝐸5, 𝐸6, 𝐸7  and 𝐸8  remained the same, highlighted with a 

darker color in Table 16. As expected, the medians of the beta distributions related to 

the probabilities considering the degradation due to previous demands and to time 

were equal or higher than the median of the corresponding beta distribution of the initial 

probability of failure during actuation 𝑝𝑖(𝑡 = 0, 𝑑 = 0). 

Moreover, the beta distributions for the probability of failure during operation 

over a mission time of 27 years are summarized in presented in Table 17. 

 

Table 17 – Beta distributions of probability of failure during operation in 27 years for each event. 

Event 𝑬𝟏𝟎 𝑬𝟏𝟏 𝑬𝟏𝟐 𝑬𝟏𝟑 𝑬𝟏𝟒 𝑬𝟏𝟓 𝑬𝟏𝟔 𝑬𝟏𝟕 

b
e
ta

 

p
a
ra

m
e
te

r 

𝒂 1.12 1.15 1.15 1.15 1.14 1.15 1.14 1.15 

𝒃 184.78 186.97 187.21 186.92 186.19 187.21 186.22 187.28 

Median 
(%) 

0.44 0.44 0.45 0.45 0.44 0.45 0.44 0.44 

         

Event 𝑬𝟏𝟖 𝑬𝟏𝟗 𝑬𝟐𝟎 𝑬𝟐𝟏 𝑬𝟐𝟐 𝑬𝟐𝟑 𝑬𝟐𝟒 𝑬𝟐𝟓 

b
e
ta

 

p
a
ra

m
e
te

r 

𝒂 1.14 1.15 1.16 1.11 1.13 1.13 1.15 1.15 

𝒃 185.96 187.12 187.37 184.04 185.16 185.53 187.04 187.13 

Median 
(%) 

0.44 0.45 0.45 0.42 0.44 0.44 0.45 0.45 

Source: Macedo et al. (2023) 

 

As mentioned, the probability of failure during actuation follows Equation 42, 

and we assumed that the parameters 𝜌𝑖, 𝛾𝑖, and 𝜏𝑖 follows a log-normal distribution 

with hyperparameters 𝜇𝜃𝑖 and 𝜎𝜃𝑖 (𝜃𝑖 = 𝜌𝑖, 𝛾𝑖, or 𝜏𝑖). Considering the elicited values, we 

have the relations in Equations 53 - 55. 
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𝑝𝑖(0, 0) = 𝜌𝑖 53 

𝑝𝑖(0, 5) = 𝜌𝑖 + 𝛾𝑖 × 5 54 

𝑝𝑖(10, 0) = 𝜌𝑖 + 𝜏𝑖 × 10 55 

 

In possession of the beta distributions of 𝑝𝑖(0,0), 𝑝𝑖(0,5), and 𝑝𝑖(10,0) we can 

use their expected values and variances to obtain the expected value and variance for 

𝜌𝑖, 𝛾𝑖, and 𝜏𝑖. For instance, 𝐸[𝑝𝑖(0, 5)]  = 𝐸[𝜌𝑖] + 5 × 𝐸[𝛾𝑖] and, since we are assuming 

that the parameters are independent 𝑐𝑜𝑣(𝜌𝑖, 𝛾𝑖) = 0 , 𝑣𝑎𝑟[𝑝𝑖(0, 5)] = 𝑣𝑎𝑟[𝜌𝑖] + 25 ×

𝑣𝑎𝑟[𝛾𝑖]. Thus, we define the hyperparameters of log-normal distributions (𝜇, 𝜎) via 

MOM (MAIOR et al., 2022). The results are summarized in Table 18. 

 

Table 18 – Hyperparameters of the prior distribution of the valve actuation failure. 

𝑬𝒊 
Hyperparameter 

𝝁𝝆 𝝈𝝆 𝝁𝜸 𝝈𝜸 𝝁𝝉 𝝈𝝉 

1 -4.56 0.80   -2.97 0.45 

2 -4.68 0.80 -9.21 1.92 -5.17 1.13 

3 -4.68 0.80   -4.65 1.00 

4 -4.81 0.80 -9.50 1.95 -4.45 0.86 

5 -4.81 0.80     

6 -4.66 0.65 -7.59 1.53   

7 -4.99 0.79 -7.98 1.62   

8 -4.31 0.58 -7.12 1.54   

9 -3.72 0.41   -2.05 0.47 

Source: Macedo et al. (2023) 

 

For 𝐸1, 𝐸3, 𝐸5, and 𝐸9, 𝛾 = 0 and for 𝐸5, 𝐸6, 𝐸7 and 𝐸8 𝜏 = 0; in these cases, there are 

no hyperparameters for 𝛾 and/or 𝜏. 

Moreover, the beta distributions for 𝑝𝑖(𝑡 = 27)  were used to define the 

constraints of the ME problem and the optimization problem was solved, as described 

in Section 4.2.4, to define the distributions of 𝛼𝑖 and 𝛽𝑖, for or all events 𝐸𝑖 𝑖 = 10 to 25. 

The results are summarized in Table 19. 

 

Table 19 – Hyperparameters of the log-normal distributions of Weibull parameters 𝛼𝑖 and 𝛽𝑖. 

𝑬𝒊 
Hyperparameters 

𝝁𝜶 𝝈𝜶 𝝁𝜷 𝝈𝜷 

10 4.97 0.22 1.22 0.14 

11 3.96 0.05 2.12 0.16 

12 4.68 0.14 1.41 0.17 

13 4.11 0.10 1.92 0.12 

14 5.11 0.15 1.13 0.16 
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𝑬𝒊 
Hyperparameters 

𝝁𝜶 𝝈𝜶 𝝁𝜷 𝝈𝜷 

15 4.30 0.13 1.68 0.08 

16 5.24 0.20 1.07 0.17 

17 4.48 0.14 1.55 0.15 

20 4.89 0.22 1.27 0.13 

21 5.33 0.26 1.03 0.15 

22 4.27 0.13 1.76 0.12 

23 5.22 0.19 1.09 0.17 

24 4.58 0.11 1.45 0.14 

25 4.92 0.17 1.25 0.17 

Source: Macedo et al. (2023) 

 

Finally, in possession of basic events’ prior distributions, MC simulation was 

performed to obtain the prior distribution of the valve reliability, 𝑅𝑉 (Table 20). 

  

Table 20 – Prior reliability of the valve, values in percentage. 

𝑷[𝑹𝑽 ≥ 𝟗𝟎%] Mean Median 

Percentile 

5 95 

1.96 80.18 80.99 69.99 88.99 

Source: Macedo et al. (2023) 

 

Figure 33 shows that the confidence of 𝑅𝑉 being greater than the required 90% 

(at the end of the development), for 27 years of mission time, is small as this is the first 

stage of development of the valve. Thus, the reliability confidence level obtained has 

not reached the target. Such a result agrees with the experts’ expectations as data are 

rather scarce, and uncertainty is high at early development stages. In addition, the 

distributions obtained at this development stage of the novel valve were only based on 

experts’ opinions, and one possible explanation for this result can be the pessimistic 

estimates provided by some of the experts. Nevertheless, the Bayesian methodology 

allows this first estimate to be updated as soon as test results during development or 

field data are available. In addition, it is believed that Bayesian updates, even with 

‘poor’ likelihood functions, will result in posterior distributions with a lower bias since 

the prior distribution was carefully built with all the available information about the 

equipment. 
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Figure 33 – Prior reliability distribution of the valve; the vertical red line indicates the target reliability of 

90% for 27 years. 

 
Source: Macedo et al. (2023)  
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5 POSTERIOR ESTIMATES AND RESIDUAL UNCERTAINTY ANALYSIS FOR 

THE EXPANDABLE PRODUCTION PACKER CASE 

In section 3.3, the Multilevel Reliability Model (MRM) was built for the novel 

offshore expansible production packer, and the reliability uncertainty distribution during 

operation was estimated for the mission time (Figure 21) based on the MRM 

parameters prior distributions obtained from generic data and expert opinions. This 

prior estimate provided a probability of 28.1% that the operating reliability is less than 

0.9, i.e. 𝑃[𝑅 < 0.9] = 28.1%, which is the uncertainty estimate at Gate 0, characterized 

by the blue dot in the graph in Figure 34, and corresponding to a residual uncertainty 

of 8.1% (the uncertainty level to be reduced in order to reach the target of 𝑃[𝑅 < 0.9] ≤ 

20%, represented by the dashed red line). 

 

Figure 34 – Gate 0 residual uncertainty analysis for the expansible production packer. 

 
Source: The author. 

 

This section shows the updates to reliability uncertainty distributions estimated 

in Section 3 from the reliability tests carried out during equipment development phases, 

and the consequent reduction in residual uncertainty. 

 

5.1 LIKELIHOOD FUNCTIONS 

 

Some reliability tests performed for this equipment can be seen in JACINTO et 

al.,  (2015). For purposes of illustrating the methodology, the temperature and pressure 

cycle test for producer well, described in JACINTO et al.,  (2015), is considered. In this 
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test, temperature and pressure were varied on the compensation valve of the packer, 

as seen in Figure 35, thereby reproducing the well’s life cycle in a conservative fashion. 

The cold temperature was set at 25°C with five temperature steps (90°C, 115°C, 150°C, 

160°C, and 170°) for the hot temperature. The temperature was changed between cold 

and hot temperatures five times in each step. During high temperatures, 10 pressure 

cycles were performed, while this was done only 2 times in cold temperatures. At the 

end of pressure cycles, before changing the temperature, a sealing test was carried 

out to check the functionality of compensation valve. 

 

Figure 35 – Test sequence for producer well 

 
Source: JACINTO et al.,  (2015) 

 

In order to construct likelihood functions from this test, it is necessary to identify 

which failure events are covered by this test. As the test was carried out only on the 

compensation valve, only failure events associated with the compensation valve could 

be covered by the test. These are the events 𝐸15 (temperature ageing of the valve 

seals), 𝐸16  (debris preventing valve to move) and 𝐸17  (mechanical deformation on 

valve body due differential pressure) in Table 9. By analyzing the stressors, it is 

possible to check that only events 𝐸15 and 𝐸17 were stressed, since there is no debris 

applied during the test. Then, the data needed to feed the reliability models of these 

events must be extracted from the test. As seen in Section 543.3.2, the Arrhenius-

Weibull and the Weibull models were chosen for events 𝐸15 and 𝐸17, respectively. 

The input data for Arrhenius-Weibull are the test times at the high temperatures 

(since the high temperature is the stressor for this event) and the high temperature 

levels applied during the test. Since the same item was subjected to all temperature 

steps, and no failure was observed during the sealing inspection, then the right-

censored step-stress Arrhenius-Weibull model was used to formulate the likelihood 

function for the test data, as given in Equation 56 (MODARRES; AMIRI; JACKSON, 
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2017), where 𝑡𝑠 is the total time that the valve was in the 𝑠𝑡ℎ temperature step, 𝑇𝑠 is 

the temperature level of the 𝑠𝑡ℎ  step, 𝑎15, 𝑏15  and 𝛽15  are the Arrhenius-Weibull 

parameters for event 𝐸15, 𝑇𝑢𝑠𝑒 is the expected use temperature of the valve, and 𝑡𝑒 is 

the equivalent total test time at the use temperature (calculated according Equation 

57). Due to the confidentiality of these data, the values of 𝑡𝑠  and 𝑇𝑠  will not be 

presented. 

  

𝐿(𝑡1, … , 𝑡5, 𝑇1, … , 𝑇5|𝑎15, 𝑏15, 𝛽15) =∏𝑒

−(
𝑡𝑒

𝑏15𝑒

𝑎15
𝑇𝑢𝑠𝑒

)

𝛽15

5

𝑠=1

 
56 

𝑡𝑒 =∑𝑡𝑠 × 𝑒
𝑎15×(

1
𝑇𝑢𝑠𝑒

−
1
𝑇𝑠
)

5

𝑠=1

 57 

 

The event 𝐸17 models the mechanical deformation in the compensation valve 

due to pressure cycles. The expected number of cycles during the 27 years of mission 

is 𝐶 (the real value of C is hidden for reasons of secrecy). In the test, a total of 300 

pressure cycles were performed (10 at each hot temperature and 2 at each cold 

temperature), the equivalent time in field that the valve was subjected to the event 𝐸17 

is 300/𝐶 . Since the Weibull reliability model was assigned for event 𝐸17 , and no 

mechanical deformation had occurred during the test, then the right censored Weibull 

distribution is used to formulate the likelihood of Equation 58, where 𝛼17 and 𝛽17 are 

the Weibull parameters for the event 𝐸17. 

 

𝐿 (
300
𝐶 |𝛼17, 𝛽17) = 𝑒

−(
300/𝐶
𝛼17

)
𝛽17
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5.2 RELIABILITY UPDATE AND RESIDUAL UNCERTAINTY ANALYSIS 

 

The procedure of extracting likelihood functions like the one described in 

previous section was accomplished for all tests performed during expandable packer 

development. Then, the posterior distributions for the reliability parameters 𝜃𝑖 

presented in Equation 33, and whose a priori distributions are shown in the Table 13, 

are calculated through the Bayesian equation (Equation 20) as tests are carried out. 
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For example, the posterior distribution for the parameters 𝛼17  and 𝛽17  is obtained 

according to Equation 59 (by assuming independent prior distribution for 𝛼17 and 𝛽17, 

after running the test presented in previous section, where 𝜇𝜃17 and 𝜎𝜃17 (𝜃 = {𝛼, 𝛽}) 

are the hyperparameters of the Lognormal prior distribution of 𝛼17 and 𝛽17, estimated 

in section 3.3.2.2. To solve the Bayesian equations, the MCMC method was applied 

and implemented in the Stan language (BLEI; KUCUKELBIR; MCAULIFFE, 2017; 

ROSSI, 2018; SPADE, 2020). 

 

𝜋 (𝛼17, 𝛽17|
300
𝐶 ) ∝ 𝜋0(𝛼17|𝜇𝛼17 , 𝜎𝛼17) × 𝜋0(𝛽17|𝜇𝛽17 , 𝜎𝛽17) × 𝐿 (

300
𝐶 |𝛼17, 𝛽17) 59 

 

Then, the MC process to generate samples for 𝑅(27)  described in section 

3.3.2.2 is repeated, but now using the posterior distributions to generate the samples 

of the parameters 𝜃𝑖 . Firstly, component-level tests were carried out (such as the 

compensation valve test illustrated in the previous section) and a first update to the 

expandible packer reliability estimate was performed (Gate 1). In a second step, tests 

were carried out at the system level (packer), including qualification tests, making up 

the second update in the packer reliability estimate at gate 2. Figure 36 and Figure 37 

show the uncertainty distributions of 𝑅(27) at Gates 1 and 2, where the red line marks 

the 90% target, and Figure 38 presents the residual uncertainty behavior. 

The probability of 𝑅(27) being less than 90% target was 21.93% at Gate 1 and 

17.89% at Gate 2, meaning a reduction in the residual uncertainty from 8.1% at prior 

analysis (see Figure 34) to 1.93% at Gate 1 and 0% at Gate 2 (in Gate 2, the target of 

𝑃[𝑅 < 0.9] ≤ 20% was reached, so the residual uncertainty is 0%). This reduction in 

residual uncertainty along the gates is expected to be observed for reliable equipment 

design as more information is obtained about the reliability of the technology from the 

tests with no or little failure data. 

In this specific application of the methodology for the new expandable packer, 

the target was reached after system level tests, configuring a successful development 

in terms of qualification against quantitative reliability requirements. This residual 

uncertainty analysis can be used to guide qualification efforts, supporting the planning 

of tests that will most contribute to reducing residual uncertainty and identifying, in case 

failures are observed in any test, failure mechanisms that need to be addressed 

through design improvements in the related component. 
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Figure 36 – Distribution of the samples of 𝑅(27) at Gate 1 

 
Source: The author 

 

Figure 37 – Distribution of the samples of 𝑅(27) at Gate 2 

 
Source: The author 

 

 

Figure 38 – Gate 0-2 residual uncertainty analysis for the expansible production packer 

 
Source: The Author  
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6 CONCLUSIONS 

This thesis has proposed a systematic methodology to predict and update 

reliability metrics and to perform uncertainty analysis of O&G equipment technologies 

that are under development. Effectively, the multilevel reliability model (MRM) 

formulation, the Bayesian framework and the residual uncertainty analysis comprise 

the modules of the methodology. They were presented in Chapter 2 and designed to 

be able to aggregate different types of data, allowing monitoring the evolution of 

uncertainty on reliability as tests and analyzes are carried out on each development 

phase. In this sense, the methodology solves part of the qualification problem of a 

technological development process in the oil and gas industry, namely the 

heterogeneity of information sources and the scarcity of long-term data available for 

new technologies. 

In high reliable equipment of the O&G industry, failure and test data are rather 

scarce, especially for technologies under development. Therefore, limited prior 

knowledge on the system reliability is usually available in terms of generic databases, 

historic of similar heritage components and expert opinions only. Then, it was proposed 

two methods to get prior distributions for the MRM parameters in the Bayesian 

framework module. The first one is presented in Chapter 3 and can be applied for 

continuously operated system. The method described in Chapter 4 aims at the same 

objective but by considering non-continuously operated systems (on demand system). 

The approaches do not involve directly eliciting the expert opinion about the 

hyperparameters; this allows using different distributions to describe the basic events 

without hindering understanding during the elicitation process. 

In Chapter 3, it was adopted an elicitation procedure to fit the Wellmaster 

(generic database) results in the specific scenarios for a novel expandable production 

packer of the O&G industry. The elicitation process engaged specialists from different 

areas involved in the equipment development process, allowing for a balance between 

pessimistic and optimistic analyses. Moreover, the procedure was based on the 

analysis of component failure mechanisms. Although the system is new, the 

components and materials are “old acquaintances” of the experts. The methodology 

considers distinct FTs to deal with different stages of equipment life cycle and, in the 

case study, the two analyzed stages were installation and operation. The results 



92 

 

obtained for the equipment installation and operation can be used to estimate the prior 

equipment reliability and to perform uncertainty analysis.  

Chapter 4 proposed a methodology to define informative Bayesian prior 

distribution, based on experts’ opinions, for novel equipment that works on demand. 

Specifically, it was considered mathematical models that ponder both time and on-

demand degradation simultaneously. Furthermore, the methodology takes into 

account the uncertainty related to the experts’ opinions by using multiplicative error 

and PVA to aggregate the different estimates provided by the experts. The elicitation 

process adopted does not involve directly eliciting the expert opinion about the 

parameters of the distribution. In addition, the process engaged specialists from 

different areas involved in the equipment development process, allowing for a balance 

between pessimistic and optimistic analyses. It was presented a case study in which 

distinct FTs were adopted to deal with different stages of the equipment life cycle and 

the two analyzed stages were actuation and operation. The results obtained for the 

equipment actuation and operation can be used to estimate the equipment reliability 

and evaluating the uncertainties. 

Using a systematic procedure, the methodology was able to satisfactorily 

evaluate reliability metrics of O&G equipment technologies that are under development 

by aggregating the prior distributions obtained in Chapters 3 and 4 with the results of 

the tests performed through the process, providing a powerful tool to drive efforts in 

defining and running reliability tests as well as design changes. Compared to reliability 

methodologies currently used by service companies, which basically involve carrying 

out reliability demonstration tests, the proposed methodology allows control and 

monitoring of the technological process since earlier stages through the residual 

uncertainty analysis. In fact, having a target of reliability and uncertainty, it is possible 

to monitor, throughout the stages, the evolution of these values. The proposed 

methodology makes this feasible thanks to its Bayesian approach and likelihood 

solutions for the heterogeneous data set that gradually updates the reliability function 

as new information becomes available. 

Applied to two practical cases, the proposed methodology was tested on 

different data types and operations, with overwhelming results, demonstrating flexibility 

and robustness. It is expected that it can be applied to an increasing amount of 

equipment under development, ensuring that the product ultimately meets the 

company's intended performance requirements. 
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6.1 IMPACTS OF THE THESIS 

 

6.1.1 Economic Impacts 

 

• Reduction of well operation and intervention costs, reduction of failures, 

operational interruptions, and unscheduled stops, since the reliability of the 

new technology for the mission time is previously known with a certain level 

of confidence. 

• Increased efficiency, with the optimal definition of an oil and gas production 

development project. 

• Reduction of development costs for new technologies, predicting and 

monitoring equipment reliability from the early stages of the development 

process, reducing the chances of changes to the design after the prototypes 

are completed. 

• Support to an efficient and optimized tests planning, by indicating the residual 

uncertainty to be reduced for each alternative plan. 

 

6.1.2 Social Impacts 

 

• Increased worker safety, reducing the risk of failures and accidents during 

the installation and operation of new completion technologies. 

• Negotiation stability for completion equipment manufacturers, as the 

operational efficiency of their technologies can result in continued demand. 

 

6.1.3 Environmental impacts 

 

• Minimization of environmental impacts, since the probability of the new 

technology causing or contributing to the occurrence of leaks, or other 

environmental incidents, is controlled since development, contributing to the 

preservation of ecosystems close to oil exploration sites. 

• Compliance with environmental regulations, given the alignment of the 

proposed methodology with the standards and practical recommendations of 
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the petroleum industry, such as the RP API 17Q, mitigating possible negative 

impacts on the company's reputation and avoiding financial penalties. 

6.2 LIMITATIONS AND FUTURE WORKS 

 

The Bayesian model described in section 2.4 considers that all information 

collected to construct prior distributions and likelihood functions is 100% relevant. This 

may be unrealistic for information obtained during development, as it does not come 

from the actual application of the system, but from expert opinions, prototype tests and 

applications of similar systems, which can introduce additional uncertainties to the 

model and overestimate or underestimate reliability. A possible advance in the 

proposed Bayesian model consists in inserting a factor that weights the distributions 

and likelihood functions based on the relevance of the information used to construct 

them. For example, suppose that the data extracted from a certain test is considered 

70% relevant, compared to the real application of the system, thus the likelihood 

function can be formulated by 𝐿(𝑡𝑒𝑠𝑡|𝜃𝑖)
0.7 . It is worth mentioning that the 

implementation of this solution requires the conception of a procedure to define the 

relevance factors of each information collected throughout development. 

Also, the informative a priori distributions obtained by the procedures proposed 

in chapters 3 and 4 are dependent only on data from expert opinions and generic 

databases (e.g.: Wellmaster), with no limitation on the shape of the resulting 

distributions. This means that "very informative" prior distributions can be obtained, 

with low uncertainty on 𝜃𝑖, so that little or no update is achieved with the likelihoods 

formulated from the test data. As future work, the methodologies described in chapters 

3 and 4 can introduce additional uncertainty into the estimates extracted from generic 

databases and limits for the pessimistic and optimistic opinions of experts, so that the 

resulting distributions have a minimum acceptable dispersion to compose the a priori 

estimate of reliability. 

 Furthermore, the proposed methodology, despite being an operationalization 

of the qualification process defined in API 17Q, does not guarantee that the reliability 

target will be met at the end of development, as there is no process for defining the 

tests necessary for this. Thus, an additional module for optimal test planning can be 

developed and linked to the methodology so that the posterior reliability estimate 

obtained at the last Gate satisfies the reliability requirement of the technology.   
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