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Resumo

As memórias de tradução (TMs) são componentes cruciais das ferramentas modernas de Tradução
Assistida por Computador (CAT). As TMs armazenam textos traduzidos de uma língua de origem
para uma língua de destino, servindo como um repositório de segmentos previamente traduzidos
que são essenciais para a produtividade e redução de custos no processo de tradução. No entanto,
as bases de dados de TMs atuais dependem principalmente de regras lexicais, como distância de
edição ou correspondências de n-gramas, o que limita sua capacidade de identificar traduções
semanticamente semelhantes.
Recentemente, os pesquisadores têm explorado o uso de modelos neurais para tarefas de re-
cuperação em TM, porém com um escopo limitado que não aproveita totalmente a natureza
multilíngue das TMs e dos modelos e ferramentas neurais disponíveis.
Neste trabalho, exploramos a aplicação de modelos neurais de ponta para o problema de Recu-
peração de Memória de Tradução e apresentamos nossa pipeline Robust Translation Memory
Retrieval (RTMR), que combina modelos neurais e técnicas de recuperação de informações para
alcançar resultados de ponta. Além, realizamos amplos experimentos usando uma variedade de
TMs e diferentes idiomas de origem e destino, expandindo o escopo de estudos anteriores.
Demonstramos que os modelos neurais não apenas produzem traduções candidatas superiores,
mas também oferecem maior flexibilidade e aplicação mais ampla em comparação com abor-
dagens lexicais convencionais. Além disso, mostramos que a integração de técnicas de Rank
Fusion (RF) e modelos neurais multilíngues resulta em desempenho de ponta para Recuperação
de Memória de Tradução. Nossas descobertas destacam o potencial dos modelos neurais para
aumentar significativamente a eficácia dos sistemas de Memória de Tradução.

Palavras-chave: Memória de Tradução, Neural Information Retrieval, Rank Fusion, Ranking,
Aprendizado Profundo





Abstract

Translation memories (TMs) are crucial components of modern Computer-Assisted Translation
(CAT) tools. TMs store translated texts from a source language to a target language, serving as a
repository of previously translated segments that are essential for productivity and cost reduction
in the translation process. However, current TM databases rely mostly on lexical rules, such
as edit distance or n-gram matches, which limit their ability to identify semantically similar
translations.
Recently, researchers have been exploring the use of neural models for retrieval tasks, but with a
limited scope that fails to fully leverage the multilingual nature of Translation Memories (TMs)
and available neural models and tools.
In this study, we explore the application of state-of-the-art neural models for the Translation
Memory Retrieval problem and present our Robust Translation Memory Retrieval (RTMR)
pipeline, which combines neural models and information retrieval techniques to achieve state-of-
the-art results. Furthermore, we conduct experiments using a wide range of TMs and different
languages as source and target, expanding the scope of previous studies that have often been
limited to a single TM and language direction.
Through extensive experimentation, we demonstrate that neural models not only yield superior
candidate translations but also offer greater flexibility and wider applicability compared to
conventional lexical approaches. Furthermore, we show that the integration of rank fusion
techniques and multilingual neural models results in state-of-the-art performance for Translation
Memory Retrieval. Our findings highlight the potential of neural models to significantly enhance
the effectiveness of Translation Memory systems.

Keywords: Translation Memory, Neural Information Retrieval, Rank Fusion, Ranking, Deep
Learning
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1
Introduction

Translation Memory (TM) is an essential component in today’s computer-assisted trans-
lation applications. They are essentially databases of pre-translated segments in a particular
domain, aimed at streamlining the translation process. According to REINKE (2018), the core
concept of TM revolves around its function as a "memory"or cache designed to facilitate future
translations. A TM can be viewed as a database that stores segments of text that have been
previously translated into one or more languages. These translated segments can then be reused
in new translations. The stored text within a Translation Memory can vary in content, size,
ranging from small segments to entire paragraphs.

Figure 1.1 presents an illustrative example of a TM. The columns in the figure correspond
to different languages, namely English, Portuguese, and Spanish. Each row in the TM contains
an identical text unit or segment, translated into the respective languages. These identical text
units or segments are referred to as TU. For instance, the texts in the third row, "to the EEA
Agreement", "do Acordo EEE", and "del Acuerdo EEE", convey the same meaning despite
being in different languages. It is important to notice, a TM does not require translations for
all languages covered by a Translation Memory (TM). In fact, it is quite common and more
frequently encountered to have translations for only a single language pair within a TU.

Normally, a TM serves as a resource for translation tasks. Given a new source text, the
TM system assists the translation process by searching for matching segments within its database.
Typically, two primary scenarios arise when attempting to match a new source text with the
stored segment texts in a TM:

■ Exact Match: The source text aligned precisely, with an entry in the database.

■ Fuzzy Match: The TM contains similar segments, but none match the new text
completely.

Figures 1.2 and 1.3 presents both scenarios. First, the exatch match sceneario, when the
input text has been previously translated and can be directly retrieved from the TM. The second
case, the fuzzy match scenario, arises when the input text does not have an exact match within
the TM. In this situation, the TM still needs to identify and retrieve the most closely matching
segment.
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Figura 1.1: A Translation Memory: An example of a TM encompassing English, Portuguese, and
Spanish languages.

The first Translation Memory proposal date back to 1978, due to ARTHERN (1978),
"...given portion of text in any of the languages involved can be located immediately, simply from
the configuration of the words, without any intermediate coding, together with its translation into
any or all of the other languages...". The primary concept was to leverage previously translated
content in "controlled"scenarios, as these texts would be considered as grammatically correct
and any new similar text to be translated would require only few modifications.

A TM has also proved invaluable even when there is no text to be translated. As
highlighted in SOMERS (1997), "an aligned bilingual corpus can also be consulted on a word-
by-word basis, where the translator seeks insights into how a particular word or phrase has been
previously translated.". Therefore, TMs not only enhance productivity but also elevate the quality
of the final translated segments.

TMs are frequently utilized in Computer-aided Translation (CAT) tools, often in com-
bination with other resources such as glossaries and machine translation. A glossary is a
comprehensive collection of terms specific to a particular domain, providing definitions for
technical terminology and explanations for complex concepts. Additionally, it may include
relevant abbreviations, acronyms, and synonyms. Although a glossary can store translations of
terms from the source language to a target language, its primary use is to provide definitions and
explanations for domain-specific terms. On the other hand, machine translation is a technology
that uses algorithms, statistical models or neural models to automatically translate text from one
language to another.

Currently, there is an abundance of high-quality Translation Memories (TMs) and paral-
lel corpora available online. These resources are often used in fields like machine translation
and other natural language processing tasks. Open source and public TMs can be found from
different sources, as government institutions (STEINBERGER et al., 2012), intergovernmental
organizations (ZIEMSKI; JUNCZYS-DOWMUNT; POULIQUEN, 2016) and open source pro-
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Figura 1.2: Exact Match: An illustration of an exact match in a Translation Memory, where the
input text has a 100% match with a previously translated segment.

jects such as CommonCrawler 1 and ParaCrawl 2. One notable resource is Opus (TIEDEMANN,
2012), a language resource of parallel corpora and related tools, where a large number of TMs
and alignment tools are catalogued, preprocessed and made available for download.

Additionally, a wide range of open-source Computer-Assisted Translation (CAT) tools
incorporate TMss into their platforms. Examples include OmegaT (OmegaT Team, 2024),
BasicCAT (BasicCat, 2024), and Virtaal (Virtaal, 2024), among others. These tools integrate TMs
into the translation process, often complemented by glossaries and Machine Translation (MT)
capabilities.

In Figure 1.4, we observe the interface of the OmegaT CAT tool. In the upper left corner,
the top-k segments retrieved from the Translation Memory (TM) are presented. In the upper
right corner, we see the output of the Machine Translation (MT), and at the bottom is the file
being translated.

As mentioned before, a TM can be applied in two distinct scenarios: firstly, for an exact
match, where a new source segment aligns perfectly with a previously translated segment; and
secondly, a fuzzy match, where a similar segment is retrieved from the TM to aid the linguists in
the translation process.

Thus there needs to be a way of assessing the similarity between a new segment and the
segments stored in the TM when there is not a 100% match. The usual algorithms applied for
this task mostly depend on the overlap of characters as edit distance or some combination of
n-gram precision (BLOODGOOD; STRAUSS, 2015). These approaches predominantly rely on
lexical matching and tend to favor texts with identical sets of words. Furthermore, it falls short

1https://commoncrawl.org/
2https://paracrawl.eu/
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Figura 1.3: Fuzzy Match: An illustration of a fuzzy match in a Translation Memory, where the
input text does not have a 100% match with any previously translated segment. The TM should

retrieve the closest matching segment(s)

in recognizing semantic similarities between segments that may encompass different wordings
or tokens, yet convey a similar meaning.

Recently, Deep Learning (DL) has led to significant advancements in fields such as
machine translation, computer vision, and speech recognition. This success has also prompted
the employment of neural models to generate improved semantic representations of text inputs,
models such as Universal Sentence Encoder (USE) (CER et al., 2018), LaBSE (FENG et al.,
2020), and more (REIMERS; GUREVYCH, 2019). These models produce dense representations
of texts in embedding space, where semantically similar sentences are positioned close together,
and dissimilar sentences are positioned farther apart. Many of these models are multilingual,
meaning that similar texts in different languages are also positioned close together, while
dissimilar texts are positioned farther apart. The dense vector generated by these models enables
more accurate comparisons of textual data based on their semantic meaning in a multilingual
scenario.

Regarding the TM Retrieval problem, RANASINGHE; ORASAN; MITKOV (2020) have
previously applied neural models, specifically the Universal Sentence Encoder (USE). However,
their approach has a limited scope as it only utilizes source segments for comparison, which does
not fully leverage the multilingual data within TMs and available multilingual neural models
and tools. Furthermore, many studies have evaluated TM Retrieval only for a specific language
pair, a particular TM, and using lexical evaluation rules that may not be suitable for all cases
(KIM et al., 2021), (CAI et al., 2021). In contrast, our work aims to address these limitations by
exploring a wider range of TMs, language pairs, and semantical evaluation metrics.
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Figura 1.4: OmegaT: An open source CAT tool with Machine Translation and Translation
Memory.

1.1 Problem Definition

A general definition of the Transltion Memory Retrieval problem can be given as follows:
Starting by defining the small individual components of a TM the Translation Unit (TU) (GALA
Global., 2024). Each TU consists of segments in various languages that convey the same meaning
or can be deemed equivalent. A Translation Memory is then simply defined as a collection of
TUs. In addition we can refer to TM as bilingual, if there is only a source and a target language,
Or multilingual if it encompasses more than two languages.

Translation Memory Retrieval is the process of finding matching or similar translations
to a given segment in a Translation Memory (TM). When presented with a new source segment,
with its language and a desired target language, a well-designed TM system would retrieve the
most closely corresponding translation accessible for the specified target language.

In a formal setting, let us represent a translation unit as TUi = (xi,1,xi,2, . . . ,xi,n), with
L = 1, . . . ,N languages, where each xi, j corresponds to a segment in a specific language j.

So given a TM of size M, a new source segment to be translated x, a desired target
language, the objective is to retrieve the most similar translation unit TU j from the TM. Usually
this is achieved by employing a similarity function, denoted as f (x,TUi), which quantifies the
degree of similarity between the source segment x and some segment from the translation unit
TUi. We can summarize this in the following equation 1.1.

TU j = argmax f (x,TUi)
1...M

�
 �	1.1

Here, it’s important to highlight that the selection of a similarity function has a big
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influence on the results. The nature of f , whether it employs a lexical or semantic approach
and whether languages beyond the source language are involved, can lead to substantial result
variations.

Translation Memory Retrieval falls into the symmetric search category. In symmetric
search, there is a notable similarity between the indexed texts and the query texts in terms of
content and length. Translation memories serve as a good example of this category, where
the indexed data comprises translated texts, and queries typically involve pieces of text to be
translated. Conversely, asymmetric search presents a different dynamic. For instance, queries
in a search engine exemplify asymmetric search, where the query itself tends to be concise,
reflecting the user’s needs, while the resulting answers are typically lengthy texts.

1.2 Main Objectives

In this work, we delve in the application of Neural Information Retrieval (Neural IR)
for the task of Translation Memory Retrieval. For this, we explore a spectrum of approaches,
ranging from baselines implementations of dense retrievers to use of multilingual models with
rank fusion techniques. We’ve also expanded the common evaluation framework to incorporate
multiple TMs, with different source and target languages directions, and a more appropriate
evaluation metrics that takes into account the semantic similarities.

Here is a short list of our main contributions for the task of Translation Memory Retrieval:

■ Baseline Models Comparison: We evaluate a wide array of baseline approaches
for the first stage ranking, including BM25, Universal Sentence Encoder, LaBSE,
ME5-Multiligual, and others open source models, and more.

■ Second stage ranker: We believe to be the first to assess the effectiveness and
challenges associated with reranking for the task of Translation Memory Retrieval.

■ Appropriate Metrics for Evaluation: We choose neural metrics for assessing the
performance of TM Retrieval. Previous works only focus on lexical metrics as the
METEOR, which we find not suitable for the problem.

■ Incorporating Multilingual Texts: We delve into harnessing the multilingual aspect of
Translation Memories, specifically leveraging multilingual texts to enhance retrieval
results.

■ Rank Fusion for TM Retrieval: We employed rank fusion to enhance the performance
of Translation Memory Task retrieval.
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2
Foundations

This chapter introduces the fundamental concepts underlying our work. Firstly, we pro-
vide an overview of ranking strategies, starting with traditional information retrieval approaches
and progressing to more recent neural models. Specifically, we delve into the Transformer neural
architecture and its today’s significance for information retrieval and neural search. Finally, we
provide detailed explanations of the translation metrics utilized in this work, highlighting their
relevance and applicability to our research objectives. By establishing a strong foundation in
these key areas, we aim to provide a comprehensive understanding of the methods and techniques
that underpin our work.

2.1 Information Retrieval

Information Retrieval (IR) as a research field is defined by SCHÜTZE; MANNING;
RAGHAVAN (2008) as: "Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from within large collections
(usually stored on computers)". Typically, users search for stored information in a database, and
in contrast with relational systems, where data is stored in a well-structured format, in IR systems,
data is stored in an unstructured manner, often in various textual formats such as paragraphs,
documents, web pages, and more. The IR system is tasked with locating and delivering the most
pertinent content from the database to the user.

For most IR systems, the users’ needs or desires are also expressed in a plain text format,
the query. GARCIA (2009) points out that the query serves as a representation of an individual
user’s information need or search intent. However, this definition alone does not guarantee its
adequacy or comprehensiveness.

So given a query and a database of stored documents, we need a way to evaluate the
relevance of user queries to the stored documents, it is necessary to establish a method for
comparison. The following section will discuss traditional techniques for transforming both the
query and the documents to enable relevance assessment. Subsequently, we will explore more
recent approaches to further enhance this process.
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2.1.1 Vector Space Model

The Vector Space Model (VSM) encapsulates queries or documents within a multi-
dimensional vector or embedding. Each dimension of the vector corresponds to a specific word
or term from the vocabulary, with the value of each dimension indicating the term’s significance
within the text. The relevance of a document for a query is calculated as the distance between
the angles, cosine similarity 2.1, of the query embedding and document embedding. At Figure
2.1 we can see an example of a query q and two documents d1 and d2. Document embeddings
that assign greater significance to terms present in the query are more likely to be ranked higher
compared to those that do not prioritize these terms to the same extent.

Figura 2.1: Query and document example in a vector space model.

cos(a,b) =
< a.b >

||a.b||
�
 �	2.1

2.1.1.1 Term Frenquency

A more plausible approach to give involves determining the weights of each dimension
based on Term Frequency (TF). Term frequency tft, D is computed by counting the occurrences
of a term t within a document D and dividing it by the total number of times the terms appears in
the text. TF gives more importance to terms that occur frequently within a document.

The weight for a term t for a document D with N terms is defined in the equation 2.2.

tft, D =
Number of times term t appears in document d

Nd

�
 �	2.2

Some tft, D variations are shown in Table 2.1:

2.1.1.2 Inverse Document Frequency

Inverse Document Frequency (IDF) is another way of assessing the terms relevance in
IR. It measures how rare or common the term is across the entire collection of documents. So
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Name Name Term Frequency
TF Log Normalization 1+ log(tft, D)

TF Double Normalization K 0.5+0.5∗ tft, D
maxitft, D

IDF Inverse Frequency Smooth log
(

1+ N
nt

)
IDF Inverse Frenquecy Max log

(
1+ maxini

nt

)
IDF Probabilistic Inverse Frequency log

(
1+ N−ni

nt

)
Tabela 2.1: TF and IDF variants.

given the number of documents in the collection N, and nt the number of documents that the
term t appears, the IDF is calculated as follows 2.3:

idft, D = log
(

N
nt

) �
 �	2.3

Some idft, D variations shown in Table 2.1:

2.1.1.3 TF-IDF

Integrating both Term Frequency (TF) and Inverse Document Frequency (IDF), we
calculate the Term Frequency-Inverse Document Frequency (TF-IDF) score for each term t as
represented by 2.4. This captures the significance of a term by considering both its frequency and
rarity within a corpus. Its one of the most common and used methods for assessing the relevance
of terms in IR BAEZA-YATES (1999).

TF-IDF(t, D) = T F(t,D) x IDF(t,D)
�
 �	2.4

2.1.1.4 BM25

BM25 is a probabilistic retrieval model that is widely used in information retrieval
and text mining applications (ROBERTSON; ZARAGOZA et al., 2009). It is based on the
Probabilistic Relevance Framework (PRF), which models the relevance of a document given a
query as a probability P(d|q).

Given a document D and a query Q the BM25 relevance score is calculated as follows:

score(D,Q) =
n

∑
i=1

IDF(qi) ·
f (qi,D) · (k1 +1)

f (qi,D)+ k1 · (1−b+b · |D|
avgdl)

�
 �	2.5

Where:

■ qi: The ith query term.

■ f (qi,D): Term frenquency in the document.
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■ IDF(qi): IDF for the qi term.

■
|D|

avgdl : The length of the document divived by the average length in the database.

■ b: Influences how much the ratio of the length of the documents affects the final
score. If set to zero, the effects of the ratio length would be canceled.

■ k1: A parameter that limits how much a single query term can affect the final score.

2.1.2 Learning to Rank

In contrast to previous methods for ranking and assessing the relevance of query and
documents, LTR techniques leverage the supervised Machine Learning (ML) framework ZHOU
(2021) to help improve the relevance of search results or recommendations. LTR techniques use
data to train a function that directly ranks documents based on their relevance to a given query.

At Figure 2.2 we have a a full view of the LTR framework, given a dataset of queries
and features of documents, the LTR employs classical machine learning techniques to train a
model that accurately predicts the relevance ranking of queries and documents. The model is
first trained on a train dataset and subsequently evaluated on a separate test dataset to assess its
performance on unseen data.

Figura 2.2: Learning to Rank Framework. Source LIU et al. (2009)

According to LIU et al. (2009), LTR approaches can be classified in:

■ Pointwise: In this approach, the input to a LTR model consists of a feature vector
derived from both the query and the document. The model is trained to compute the
relevance of a document to a given query based on its feature vector.

■ Pairwise: In contrast, the pairwise approach takes pairs of feature vectors representing
two different documents. The model’s output indicates the preference between these
two documents for a particular query. By comparing pairs, the model learns to rank
documents in the order of their relevance to the query.
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■ Listwise: In this methodology, the input comprises a list of documents along with their
corresponding feature vectors, representing various possible rankings of documents
for a given query

LTR models are commonly used alongside previous approaches like VSM or BM25 in
a multi-stage ranking pipeline (ANAND et al., 2021), (HAN et al., 2020). A VSM as TF-IDF
with cosine or BM25 would serve as a first-stage ranker, fast filtering and returning the top-k
segments from the index. Subsequently, an LTR model is employed to further refine the output.

2.2 Neural Information Retrieval

Neural IR is the application of neural networks to common IR tasks (MITRA; CRASWELL
et al., 2018), like assessing a query and document relevance, semantic first-stage retrieval, ques-
tion answering, recommender system and others. In the following section, we will focus on two
primary Neural IR approaches: the Cross Encoder and the Bi-Encoder.

Figura 2.3: Cross encoder schema vs Bi-encoder schema

2.2.1 Cross Encoders

A cross-encoder model takes two sentences as input and computes the relevance score
between them. Given a query sentence q and a document sentence d, a cross-encoder model
f outputs the similarity of q and d as f (q,d) ∈ (0,1), where values closer to zero indicate
dissimilarity between q and d, while values closer to 1 signify a high degree of similarity.

Cross encoders are a type of pointwise LTR, that takes the text input directly instead of a
feature vector. Therefore, it requires a training dataset before it can be effectively employed for
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downstream tasks. Although there are pre-trained cross-encoders available that can be used out
of the box (REIMERS; GUREVYCH, 2019), it is important to note that they may not always
deliver optimal performance for a specific domain.

2.2.2 Bi-encoders

Bi-encoders, also known as dual encoders or sentence embedding models, are a class of
neural network architectures that are commonly used in natural language processing tasks such as
semantic search and text classification. Given two sentences x and y, a bi-encoder model works
by producing a dense representation of the input text in embedding space, where semantically
similar sentences are positioned close together and dissimilar sentences are positioned farther
apart. This type of models have been widely use for bi-text mining (GUO et al., 2018), translation
memory retrieval (RANASINGHE; ORASAN; MITKOV, 2020), passage retrieval (LU et al.,
2022) and more.

Figure 2.3 shows the framework of using a bi-encoder model for semantic search. In this
approach, two sentences are passed through the same transformer model, which outputs a dense
embedding representation of the text. The embeddings are then compared using a similarity
function, such as cosine similarity or dot product, to determine the semantic similarity between
the two sentences.

2.2.3 Rank Fusion

Rank Fusion (RF) is a technique that combines multiple ranked lists, typically from
different ranking methods, into a single merged rank. Rank fusion aims to create a new rank
that outperforms individual ranks by combining their unique strengths and representations in
matching queries to documents, and thus resulting in a more accurate ranking.

The CombSUM method is a simple rank fusion technique used for combining results
from multiple searches (FOX; SHAW, 1994). It relies on the score output of each document in
each rank. The new rank is formed by summing the individual scores for each document in each
rank into a final score. Given a list of ranks R the CombSUM scores a document d as follows:

CombSUM(d) = ∑
r∈R

Score(d,r)
�
 �	2.6

Where Represents the set of all ranks being combined, r represents an individual rank
in R, and Score(d,r) represents the score of the document d in rank r. The CombSUM method
sums up the scores of document d across all ranks in L to produce a final score, which is used to
rank the documents in the merged list.

Reciprocal Rank Fusion (RRF) is a rank fusion technique that shows better performance
when compared to other techniques (CORMACK; CLARKE; BUETTCHER, 2009). Instead of
using the individual scores, the RRF leverages the rank position of a document in each rank to



2.3. FOUNDATION MODELS 35

generate a new rank score.

Given a set of documents D and a list of rankings R, the RRF score is computed as
follows:

RRF(d ∈ D) =
n

∑
i

1
k+ r(d)

�
 �	2.7

Where n is the number of rankings for merging, k is a free parameter that weights the
importance of the document position. A higher value of k will result in a lower importance being
assigned to the document’s rank, while a lower value of k will assign greater importance to the
document’s rank. The RRF score is determined by calculating the multiplicative inverse of the
rank position. The method accumulates the reciprocal rank scores for each document across
all the input rankings, giving greater weightage to documents that appear at the top of multiple
rankings, while still taking into account the rank positions of all documents in the input rankings.

2.3 Foundation Models

In recent years, significant advancements have been made in fields such as machine
translation, computer vision, speech recognition, and many others (LECUN; BENGIO; HINTON,
2015). Many of these breakthroughs stem from progress in training new architectures of neural
networks, particularly Deep Neural Networks (DNN), which are characterized by their deep
architectures, consisting of multiple layers that when trained with enough data can discovers
intricate patterns. Nowdays networks are generally trained with the self-supervised learning
paradigm JAISWAL et al. (2020), which involves generating pseudo-labels for training.

Recently, the Transformers architecture (VASWANI et al., 2017) has been sucefully
use and deploy for problems that involves text. The original architecture shown in Figure 2.4,
consists of two main parts, the encoder and decoder. In the encoder all tokens attend to one
another, allowing each token to consider information from all other tokens in the input sequence.
Conversely, in the decoder block, tokens can only attend to preceding input tokens.

This transformers models have also been called as Foundation Models: "A foundation
model is any model that is trained on broad data (generally using self-supervision at scale)
that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks..."BOMMASANI
et al. (2021). These models show remarkable adaptability and performance when fine-tuned for
specific tasks, including scenarios where there is limited labeled data for the final tasks. This
adaptability comes from their understanding of underlying patterns and structures of texts they
gained during the pre-training. The whole evolution of AI paradigma is shown at figure 2.5.

BERT (Bidirectional Encoder Representations from Transformers) is one of the most
known and used foundation models. It achieved many state of the art results for natural language
tasks like, question answering, text classification and more (DEVLIN et al., 2018). At the core of
BERT’s functionality is its ability to generate contextually rich representations of words, This is
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Figura 2.4: The Transformer architecture, by (VASWANI et al., 2017).

Figura 2.5: The evolution of the AI paradigma. Source BOMMASANI et al. (2021)

achieved through the use of transformer encoder layers, where each layer of the encoder process
input text in a way that allows each token to attend to all other token in the sentence, therefore
capturing the complex linguistic patterns and dependencies.

When applying BERT to specific downstream tasks, the input text is first tokenized and
then formatted in a task-specific manner. For instance, in the case of comparing the relevance of
two texts x and y, the input is formatted as [CLS]+ x1, ...,xn +[SEP]+ y1, ...,yp, where [CLS] is
a special token representing the beginner of a sentence, [SEP] a special token for BERT used to
separate two sentences and x1, ...,xn the list of tokens from sentence x and y1, ...,yp the list of
tokens from sentence y.

For downstream tasks such as text classification or sentence pair classification, the
embedding corresponding to the [CLS] token is typically used as input to a task-specific head.
The input is formatted as follows:
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input = [x1, . . . ,xn] and [y1, . . .yp]

embeddings = BERT([CLS],x1, . . . ,xn, [SEP],y1, . . . ,yp)

The embedding corresponding to the [CLS] token is then passed through a feedforward
neural network with a softmax activation function to produce a probability distribution over the
possible output labels. This can be represented as:

output = softmax(W · [CLS]embedding +b)
�
 �	2.8

Figure 2.6 shows the input and output of a BERT model for the classification problem.

Figura 2.6: BERT Architecture: A simplified view of the BERT architecture. At the bottom, the
two sentences are first tokenized. Then, the initial embeddings are retrieved for each token, which
then pass through layers of the BERT model. The output consists of embeddings of the same size
as the input. Typically, a language head model is attached to the [CLS] token to provide a way of

classifying examples.

2.4 Machine Translation

Machine Translation refers to the use of statistical or machine learning approaches
to automatically translate texts or speech from one language to another. These approaches
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utilize algorithms and models to analyze and understand the source language and generate a
corresponding translation in the target language.

Over the years, MT has been studied within different paradigms (GARG; AGARWAL,
2018). Initially, rule-based approaches were used, which relied on morphological, syntactic,
semantic, and knowledge about the source and target sentences to perform the translation
(SHIWEN; XIAOJING, 2014).

Following we had Statistical Machine Translation (SMT) approaches, where it is assumed
that every source sentence S has a possible translation T . SMT assigns a probability P(T |S) for
every sentence pair from the source and target language. So the statistical approach defines the
goal of finding the sentence T that maximizes this probability. SMT is divided into Word-based
and Phrase based, more details in LOPEZ (2008).

Currently, DL based neural networks have been the state-of-the-art for performing
translation tasks. The Transformer architecture itself was first applied for the translation task and
achieved state-of-the-art results for the translation of texts from English-to-German (VASWANI
et al., 2017). In this scenario, encoder-decoder transformers are typically trained on parallel
datasets to learn how to map the initial sentence to the translated one.

MT research has focused on a set of points: the training and releasing open-source
state-of-the-art models for specific language pairs (ÖSTLING et al., 2017). On the ability to
translate between any language pairs without the need to use English as an intermediate language
(TANG et al., 2020) and extending models to handle languages with limited bi-text data available
(COSTA-JUSSÀ et al., 2022). Moreover, there has been a growing interest in developing
multimodal models that can translate speech-to-speech, text-to-speech, and text-to-text, such as
the SeamLessM4T model from BARRAULT et al. (2023).

2.5 Machine Translation Metrics

Machine translation systems can be evaluated through human evaluation or automated
evaluation. However, human evaluation is a costly and time-consuming process PAPINENI et al.
(2002) that primarily relies on a group of linguists to assess the quality of a machine translation
system. Moreover, human evaluation can be highly subjective since it depends on individual
judgments of what constitutes a good or bad translation (LEE et al., 2023). Additionally, it can
be challenging to apply human evaluation to different domains or systems as it requires manual
work. On the other hand, automated evaluation metrics have a very low cost and can be used to
quickly compare multiple machine translation systems.

MT metrics were initially designed to compare translated segments with reference
translations using some lexical matching rules to generate a translation quality score. Similar
to traditional information retrieval (IR) methods and Neural IR, these lexical MT metrics rely
on matching subparts of the translated target with a reference. However, they tend to fall short
in capturing more nuanced, semantic meanings. In other words, these metrics may not fully
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account for the meaning of the text beyond simple word-for-word matching.
With the advent of new methods and models from deep learning, discussed in section 2.3,

there are now metrics available that are more semantically oriented and can provide evaluations
that are closer to human judgments.

Below, we list a set of very common traditional metrics for evaluating machine translation
(MT) systems, including lexical metrics like BLEU and chrF, as well as metrics that attempt to
capture more semantic meaning from the text like METEOR. In addition, we will also discuss
newer learned approaches that use neural networks, such as BLEURT and COMET.

2.5.1 BLEU

The BLEU (Bilingual Evaluation Understudy) (PAPINENI et al., 2002) is one of the
most widely used metrics for evaluating the quality of machine translation output. It is based on a
modified n-gram precision, which counts the number of times an n-gram appears in the candidate
translation and in the reference translation. To avoid a MT system producing an excessively long
translation, the total count of n-grams in the candidate translation is clipped by the number of
n-grams in the reference translation.

Specifically, BLEU is defined as as bellow:

BLEU = BP · exp

(
N

∑
n=1

wn log pn

) �
 �	2.9

Where N is the maximum n-gram order, normally up to 4, wn is the weight for each
n-gram, typically set to 1/N, and BP (Brevity Penalty) is a factor for discouraging short sentences.

BLEU is a purely lexical metric, meaning that it only considers exact matches of n-grams
between the candidate translation and the reference translation. It does not take into account
any kind of semantic or syntactic similarity between words. Therefore even if a translation uses
synonyms or the sentence has the same meaning as the reference, BLEU could not give credit
for these matches. BLEU was also designed to evaluate the quality of MT systems on a corpus
level, although there are some variants that use smoothing techniques to address the issue of low
n-gram counts (CHEN; CHERRY, 2014).

2.5.2 chrF

The chrF metric computes the F-score based on the overlapping n-grams found in the
source text and the reference text. According to (POPOVIĆ, 2015), the chrF Score is defined as:

chrF = (1+B2)
chrP∗ chrR

B2 ∗ chrP∗ chrR

�
 �	2.10

where chrP represents the percentage of n-grams in the source text that have a matching counter-
part in the reference text, and chrR denotes the percentage of n-grams found in the reference text
that also appear in the source text.
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B defines how much importance we give for chrP and chrR, a higher B gives more
importance to chrR and a lower B more importance to chrP.

chrF does not rely on the input texts to be tokenized, as it defines each n-gram as a
sequence of characters, normally a sequence of 6 characters, rather than as a sequence of words.
This makes chrF a more stable metric for languages where there are no clear or defined word
boundaries, such as Chinese or Japanese.

2.5.3 METEOR

METEOR (BANERJEE; LAVIE, 2005) works by creating an alignment between the
candidate text and reference text, where each alignment is a mapping between unigrams from the
candidate translation to the reference translation. In this mapping, a single candidate unigram can
only map to another reference unigram or remain unmapped. METEOR evaluates a candidate
translation by computing a score based on the harmonic mean of precision and recall of the
correct unigram matches between the candidate and reference texts, with a penalty factor applied
given the final alignment. The mapped unigrams are grouped into the fewest number of chunks,
where a chunk is as a continuous sequence of unigrams that are mapped to the same continuous
sequence of unigrams in the reference text.

The score is calculated as follows:

Penalty = 0.5∗ ( chunks
unigrams matched

)3
�
 �	2.11

METEOR =
10PR

R+9P
∗ (1−Penalty)

�
 �	2.12

The alignment process in METEOR consists of three main steps. First, the candidate and
reference texts are tokenized into individual words, and exact matches between the two texts
are aligned. In the second step, the remaining words are stemmed using a Porter Stemmer-type
algorithm, which reduces each word to its base form. The stemmed words are then mapped
between the candidate and reference texts. Finally, in the third step, any remaining unmapped
words are matched using WordNet, a large lexical database for English that groups words into
sets of cognitive synonyms, the synsets. If the remaining words belong to the same synsets, they
are also mapped.

METEOR . was developed to address some of the weaknesses of previous metrics, such
as the BLEU, which rely on the exact matches between n-gram from the translation text and the
reference text (BANERJEE; LAVIE, 2005). However, as we can see METEOR still depends on
the availability of specific tools, such as tokenizers and WordNet, to align words with the same
base form and to match related words. These tools may not be available or may not work well
for all languages, which can limit the effectiveness of METEOR for evaluating translations in
certain language pairs.
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2.5.4 BLEURT

BLEURT is a learned evaluation metric based on the BERT transformers architecture
SELLAM; DAS; PARIKH (2020). Given a candidate translation x = (x1, ...,xr) of length r with
each xi is a token, a reference translation x̂ = (x̂1, ..., x̂p) of length p, BLEURT team trained a
BERT model to to predict the human quality score of the translatation f : (x, x̂)− > y. When
y ∈ [0,1], a value close to zero signifies poor translation quality, whereas a value closer to one
indicates high translation quality.

BLEURT model was trained initially on a large synthetic data of translations, built but
perturbing 1.8 million segments from the Wikipedia with back translation, mask-filling and
randomly dropping out words. After pre-training the model was fine tuned with the WMT
Metrics Shared Task data.

BLEURT also comes with a version trained with the RemBert, a transformer model
(CHUNG et al., 2020), fine-tuned on the WMT Metrics Shared Task data collected between 2015
to 2019 and a synthetic data with 160K sentence pairs derived from the WMT corpus.

There are number of other BLEURT versions and checkpoints available online. Table
2.2 presents details about them (PU et al., 2021). The BLUERT-20 checkpoint emerges as the
superior model and is the recommended model by the authors to run and report experiments.

Model Agreement w. Human, to-En. Agreement w. Humans from-En. Parameters
BLEURT-20 0.228 0.520 579M
BLEURT-20-D12 0.219 0.467 167M
BLEURT-20-D6 0.211 0.429 45M
BLEURT-20-D3 0.191 0.385 30M

Tabela 2.2: BLEURT Model Performance Metrics

1
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3
Background

This chapter showcases two primary illustrations of how our solution integrates into the
translation pipeline. By examining these cases, we aim to provide a clear context for the operation
Robust Translation Memory Retrieval (RTMR) solution, and to highlight its significance.

3.1 Traditional Scenario

In a typical TM application, translators use CAT tools with integrated TM systems to
translate documents (GARCIA, 2009). The CAT tool searches the TM for matching segments,
offering exact or fuzzy matches to the translator. The translator then accepts, edits, or rejects
the suggested translations. The updated translations are saved back in the TM, enabling more
efficient and consistent translations.

In this scenario, our proposed RTMR solution will replace the matching process from
the default TM system, offering improved translation suggestions and enhancing the overall
efficiency and quality of the translation process within the CAT tool.

Figura 3.1: Translation Memory Traditional Use Case: The figure shows the collaboration
between linguist, CAT Tool, and TM in the Translation Process.

3.2 Translation Memories for In-context learning

Translation Memories can also be utilized for in-context learning in Large Language
Model (LLM) generation tasks, particularly for translation. By providing similar text segments,
TMs can assist LLMs in generating improved translations (LIU et al., 2021). Our proposed
RTMR solution will replace the matching process to find the top-k siilar segments, instead of
returning only the most similar example. Figure 3.2 details how a TM, can be integrate into this
pipeline:
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Figura 3.2: Translation Memory used for In-context Learning: The illustration demonstrates how
TM results is integrated into the generation process of LLM, for the translation task.
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4
Related Work

In this chapter, we provide a comprehensive review of previous works related to trans-
lation memory retrieval, as well as those in other fields where a translation memory retrieval
pipeline is a component of the larger system. We highlighted the similarities and differences
between these prior works and our own research. We divided the next sections into two main
categories: Lexical and Semantic approaches. Lexical Approaches will typically rely on more
traditional and lexical rule-based ranking systems and Semantic Approaches tend to leverage
foundational models for retrieval.

4.1 Lexical Approaches

KIM et al. (2021) address the challenge of Translation Memory Retrieval by focusing on
efficient retrieval methods. They employ the vector space model (VSM) along with a WordNet
type query expansion technique to try to handle the issue of matching sentences with similar
meanings but different vocabulary. Given a TM they propose the following matching algorithm.
First they define a V matrix as the word-sentence relation, where the ith row is representing a
source segment VSi = (vi1,vi2, ...,viT ), and each vi j indicates the importance of a word to the
source segment. The input sentence is defined as Us0 = (u1,u2, ...,ur), with each u j indicating
the weight of each word for the input sentence. Then given two vectors from VSi and Us0 their
similarity is simply the cosine from the two vectors.

The weights vi j are computed as the minimum term frequency of the word w j between
the indexed source sentences Si and the input sentence Us0. This is formally represented as:

vi j = min{t f (w j,S0), t f (w j,Si)}

For ui is assigned the inverse document frequency score of the term w j if the term is present in
the source sentence Us0. Otherwise, it is assigned a value of 0. This can be formally written as:

ui =

idf(w j), w j ∈ S0

0, w j /∈ S0
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To account for semantically similar translations that might use different vocabulary but convey
similar meanings, the authors expanded the input sentence query with the help of WordNet
FELLBAUM (1998). For each word w j in the source sentence Us0, all other words in the same
synset as w j are assigned a value of α , where α is a real number between 0 and 1. This can be
formally written as:

vi j =

α, if w j ∈ synset(wk) for some wk ∈US0

min{t f (w j,S0), t f (w j,Si)}, otherwise

�
 �	4.1

The strategy of expanding words using Wordnet, has certain limitations. This approach
does not take into account the contextual meaning of words and remains dependent on language-
specific tokenizers.

The researchers in (GUPTA et al., 2016) utilized a hybrid approach that integrated edit
distance and paraphrasing techniques to detect and retrieve comparable segments. To prevent
the application of edit distance to an extensive set of paraphrases that could potentially become
unmanageable, they leverage dynamic programming and greedy algorithms. They used the
PPDB 1.0 paraphrases database (GANITKEVITCH; VAN DURME; CALLISON-BURCH,
2013), which contains over 220 million paraphrases pairs for the English language. In order to
mitigate the cost of applying edit distance to a large group of paraphrases, they categorized the
paraphrases into four distinct groups, followed by the application of filters to remove sentences
that could negatively impact the edit distance algorithm’s speed. In contrast to the methodology
presented in (KIM et al., 2021), where word representation was altered according to the synset
group, this approach utilizes paraphrasing while maintaining edit distance as the lexical relevance
function. The approach also depends on available paraphrases in the database, which may limit
its applicability in certain scenarios. For instance, when dealing with Translation Memories in
specialized domains or containing lengthy sentences, this method might offer no gains.

4.2 Semantical Approches

The study by RANASINGHE; ORASAN; MITKOV (2020) represents one of the first
attempts to apply neural models to the field of translation memory retrieval. The authors
investigated whether the quality of retrieved segments could be improved by using neural models
from the Universal Sentence Encoder (USE) collection in the translation memory retrieval
pipeline.

The authors evaluated two types of architectures from USE, the Deep Averaging Network
(DAN) and a transformer encoder architecture based on the attention mechanism. The DAN
architecture averages together word and bi-gram level embeddings and passes them through
feedforward layers. The second model is a default Transformer achitecture detailed at 2.3.

To evaluate the models, the authors first tested them on Semantic Textual Similarity
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(STS) datasets, specifically SICK and STS2017, and compared the results with edit distance.
The DAN architecture performed better on the SICK dataset, while the transformer-based
architecture performed better on the STS2017 dataset. In both cases, edit distance showed very
low performance for semantic textual similarity. One of the main conclusions is that the neural
models handled better when two or more words were changed from the input sentence, but the
meaning remained the same.

In the second phase of their study, the researchers aimed to assess the effectiveness of
USE models in the retrieval of translation memories. They use an open source DGT-TM, same
that we use for our experiments, they set the volume 1 from year 2018 as the index TM and
the volume 3 from the year 2018 as the query TM. The TM was indexed using a vector store
database AquilaDB.

The authors evaluated the quality of the top 1 retrieved segment using METEOR. They
argue that METEOR, due to its use of multistage alignment that includes not only exact matches
but also matches words by their base form or synonyms, is a more suitable metric for this type
of semantic model analysis. However, we contend that neural models have demonstrated better
correlations with human judges (FREITAG et al., 2022), and therefore, should be a better way of
evaluating semantic models, as we discuss later.

In the problem of improving machine translation with translation memories, CAI et al.
(2021) have utilized monolingual data in the translation generation process. Given a source
sentence x and a translation memory, a transformer model trained to generate the target sentence
y based on the conditional probability p(y|x,x1, ...,xk), where (x1, ...,xk) are target segments
most similar to x, that serves as a context for translation. These top k segments are retrieved
calculating the dot product of the representations from x and segments stored in the TM. The
authors primarily focused on the quality of the translated texts and did not make a deeper study
into how this retrieval phase impacts the overall translation quality. A similar approach, but using
statistical machine translation that uses paraphrases in the context translation context, can be
found in (BIÇICI; DYMETMAN, 2008).

In addition to the aforementioned approach, a Translation Unit (TU) retrieval pipeline
has been implemented for in-context learning of new Large Language Models (LLMs) as
demonstrated in studies such as HENDY et al. (2023), LIU et al. (2021), and PENG et al. (2023).
These studies have utilized sentence encoders like LaBSE to encode sentences from a translation
memory and retrieve the top-k results to be used as context for an LLM, such as GPT-3 BROWN
et al. (2020), or LAMMA TOUVRON et al. (2023). However, the primary focus of these studies
is evaluating the quality of the final translation generated by the LLM models, without directly
assessing the impact of TU retrieval models in this scenario. Furthermore, these studies often
employ a top-k retrieval approach, with k sometimes reaching as high as 50, but little is done to
evaluate how the order and quality of the retrieved segments would impact the final translation.

A work from AGRAWAL et al. (2022) investigated the previously mentioned scenario
and proposed an optimized approach for selecting the top-k results in the context of in-context
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learning for machine translation tasks. The authors demonstrated that choosing top-k examples
that covered all the terms from the input text, yields better translations results. The authors
also tested the results against BM25 GARCIA (2009), having a better results in every language
direction for the WMT 19 test dataset. While the findings from the study by AGRAWAL et al.
(2022) suggest that their proposed ranking approach enhances the performance of machine
translation systems, the ranking itself may not be directly applicable for TM purposes. This is
because the approach primarily aims to maximize the coverage of words from the input sentence,
which might not necessarily return the best matching and most semantically similar sentence
from the translation memory.

Traditional machine learning approaches have been investigated for their potential in
assessing the similarity between two text segments in the context of Translation Memories. In
the study conducted by (GUPTA; BECHARA; ORǎSAN, 2014), the authors employed a support
vector machine (SVM) to develop a regression model capable of predicting semantic similarity
between two text sentences. The features for the SVM model comprised various linguistic
features, including surface form, part of speech, lemmas, dependency parsing, paraphrasing,
machine translation evaluation, and others. The authors conducted experiments using the DGT-
Translation Memory and randomly selected segments for both the training and testing sets. They
employed English as the source language and French as the target language for their evaluation.
To assess the performance of their approach, they compared it against an edit distance baseline,
utilizing the OmegaT software (OmegaT Team, 2024) as a reference for comparison. The results
of the experiments consistently showed that the edit distance method, despite its widespread use
in open-source Translation Memories software, yielded again relatively poor performance when
compared to more semantic approaches.

Cross encoder models, or reranking models, have also gained significant traction within
the research community. Notably, the 2019 Deep Learning Track at the Text REtrieval Conference
(TREC) (CRASWELL et al., 2020) provided a comprehensive evaluation of the efficacy of BERT
model for retrieval tasks. Specifically, on the application of BERT models for reranking coupled
with an initial phase that employed the BM25. For Cross-lingual Information Retrieval (CLIR),
a problem closely related to Translation Memory Retrieval, the multilingual BERT model was
employed by JIANG et al. (2020) to estimate the relevance of queries and documents in different
languages. The inputs for the BERT model were a pair of a query q in English and a sentence s

in a foreign-language. The output of the [CLS] is then passed through a feed-forward layer to
predict the relevance score p(q|s) of the query given the sentence. In the study by Nogueira et al.
(2019) on passage re-ranking, a BERT model was fine-tuned for second-stage retrieval. The first
stage involved retrieving important documents using BM25, after which the BERT model was
employed as a re-ranker. The fine-tuning process utilized a cross-entropy loss function (MAO;
MOHRI; ZHONG, 2023) to optimize the model’s performance in the re-ranking task.
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5
Datasets

This chapter presents and analyzes the key characteristics of the Translation Memories
we have used in this work, the DGT-TM, United Nations, Global Voices, and KDE4 Translation
Memories. First we introduce and describe each one, following we detail its characteristics, such
as the number of Translation Units, percentage of missing segments and segment lengths. The
chapter also provides illustrative examples to highlight the unique domains of each dataset.

5.1 Translation Memories

We assessed the efficiency of our approach across a wide spectrum of domains. For that,
we utilized the following four public available translation memories for our experiments:

DGT-TM: The DGT Translation Memory is a multilingual resource provided by the Euro-
pean Commission STEINBERGER et al. (2012). It primarily encompasses summaries of EU
legislation, including treaties, regulations, and directives adopted by the European Union (EU).
It provides translations in the 24 european languages. This Translation Memory is commonly
used by researchers for translation memory retrieval experiments RANASINGHE; ORASAN;
MITKOV (2020), KIM et al. (2021). We have included it in our Translation Memory list to
facilitate method comparison with previous approaches. The DGT-TM, which has been released
since 2007, is organized into different volumes by year. For our experiments, we selected Volume
1 and Volume 3 from the year 2018. Translation Units extracted from Volume 1 will be used to
construct the index, while those from Volume 3 will comprise the query dataset.

United Nations: The United Nations Parallel Corpus version one is a collection of official
records and parliamentary documents sourced from the United Nations ZIEMSKI; JUNCZYS-
DOWMUNT; POULIQUEN (2016). These documents have undergone manual translation into
the six official UN languages over the years. To align the sentences and paraphrases in these
documents, an alignment process was employed using the Bleu-Champ Sentence Alignment
method1. This method requires a translation model to generate sentences in the same language,

1https://github/emjotde/bleu-champ
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which are then compared based on matching n-grams to achieve alignment.

The corpus was created mainly to support and provide access to multilingual resources
for research in natural language processing tasks, including machine translation. The corpus is
available online 2 as bilingual and in a six-language parallel corpus subset.

We divided the TM into yearly segments. For our index TM, we designated the data
from 1994, and for our query dataset, we used the data from 1995. To expedite the experimental
process, we chose to extract a sample of 10,000 from the 1995 dataset. We believe this sample
size does not affect the final results significantly, as it has enough examples to represent the data
from 1995.

Global Voices: The Parallel Global Voices is a collection of parallel corpora derived from the
Global Voices group websites PROKOPIDIS; PAPAVASSILIOU; PIPERIDIS (2016). Global
Voices is a diverse community of volunteers and journalists engaged in writing, summarizing,
and translating any event.

The Global Voices TM differs from the DGT-TM and United Nations TM in that it
lacks a structured temporal division for creating index TM and query segments. Unlike the first
two TMs, Global Voices data is not released by volumes or years. Consequently, performing
a train-test split based on time was not feasible. Instead, we chose to randomly select 10,000
translation units for the test dataset and kept the remainder for training.

KDE4: The KDE4 Application collection is openly accessible through the Opus project
TIEDEMANN (2012). This corpus encompasses an extensive array of 92 languages and more
than 4,000 bilingual text files from the KDE4 localization files, an open source software for
desktop and portable computing. Similar to the approach taken with the Global Voices parallel
corpus, we applied English pivoting to create the multilingual dataset. The subdivision into
training and testing datasets was done through a random sampling procedure, resulting in the
allocation of 10,000 samples within the test dataset.

5.2 Size of the Translation Memories

The total number of translation units is presented at Table 5.1 for both the index and
query sets for each dataset. While most numbers are similar across datasets, Global Voices
notably contains a large number of translation units. However, it is important to note that not
all translation units encompass segments from all languages. Both Global Voices and KDE4
exhibit a substantial degree of missing data, as we will explore further in the next section. For the
query segments of the United Nations, KDE4, and Global Voices datasets, we sampled 10,000
segments for each.

2https://conferences.unite.un.org/UNCorpus
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Dataset Index size Query size
DGT-TM 145,490 49,634
United Nations 151,480 10,000
KDE4 160,776 10,000
Global Voices 450,197 10,000

Tabela 5.1: Translation Memories splits, for the train and test set.

5.3 Missing Segments

A TM can store N different languages, where each TU may have a set of segments in
different languages, which may not necessarily be the same set of languages for every TU. We
define missing segments as those instances where a TU does not have a segment for a specific
language. In Table 5.2, we present a comprehensive overview of the total number of missing
segments for each language within our Translation Memories. Initially, we observe that the
United Nations TM encompasses all segments for every language, with no missing segments,
for this TM. The DGT-TM has a relatively small number of missing segments for each of its
languages, with most languages having less than 5% of the total number of segments missing.
The Global Voices and KDE4 datasets exhibit a significant proportion of missing segments,
particularly noticeable in Global Voices. In the case of Global Voices, where the source query
segments are in Portuguese (PT), we observe a 79% rate of missing segments. Implementing
methods that leverage and retrieve data beyond solely relying on the source segments index
proves highly advantageous in such scenarios.

As evident from the data, English (EN) appears consistently across all cases. This
prevalence stems from the common practice of aligning translations with English as the source
language, as observed in our approach for both the Global Voices and KDE4 datasets using
pivoting techniques.

5.4 Segments Length

The length of segments in both the source and target sentences can significantly influence
the performance of neural models. For instance, models such as LaBSE and XLM-R are trained
with input lengths limited to 512 tokens. Exceeding this limit may lead to errors or hinder the
model’s ability to generalize effectively. To analyze any potential effects, we pass the source
and target segments through the XLM-R tokenizer and examine the distribution for each TM, as
depicted in Figure 5.1, the majority of the data fall below 200 tokens, with DGT-TM and Global
Voices exhibiting longer text lengths, while KDE with the overall lower mean across all TMs.

Additionally, Table 5.3 displays the number of examples from each TM where the token
count exceeds the 512-token limit. In all instances, only a small number of examples surpass this
limit.
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Translation Memory Language Missing Percentage

DGT-TM

en,es 0%
pt,fi,et,bg,lv 2%
de,da,it,cs,hu,cs,pl,sl,sk 3%
el,fr,sv,hr 4%
mt 8%

United Nations en,fr,ar,es,ru,zh 0 %

Global Voices

en 0%
it 69%
es 7%
fr 26%
pt 79%
ru 78%
zh 82%

KDE4

en, de 0%
fr 8%
ru 18%
zh_CN 35%
pt_BR 3%
es 5%
ja 37%

Tabela 5.2: Missing Segments: Number of missing segments per language for each Translation
Memory. DGT-TM exhibits a relatively low missing percentage, with the majority below 5%.
United Nations shows no missing data for any language. Global Voices, due to its automated

alignment, displays a significant number of missing data for almost all languages. KDE4 stands in
the middle, although for the English-German pairs (our translation direction), there is no missing

data.

Translation Memories >512 Tokens
DGT-TM 73

United Nations 107
Global Voice 2

KDE 108
Tabela 5.3: Number of input instances that have a count greater than 512 tokens.
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Figura 5.1: Exploring Token Counts: This box plot illustrates the distribution of token counts
across input examples for each TM. The majority of data points fall below the maximum 512

token limit for both LaBSE and XLM-R models

5.5 Segment Examples

Below, we provide examples from the Translation Memory, each featuring a collection
of five source and target segment pairs sourced and extracted. These examples highlight the
distinctions and unique characteristics of each chosen TM.

DGT-TM: For the DGM-T as shown in Table 5.4, we observe that the predominant data
pertains to legislation. This ranges from short segments referring to formatting, such as "ANNEX
II (A)", section titles like "Decision of the EEA Joint Committee".", and segments from the
European Union legislation.

United Nations: The United Nations offers texts similar to those found in the DGT-TM but
within the context of United Nations legislation and treaties. Examples are presented in Table
5.5, instances of formatting and titles (examples 1 and 2), along with transcriptions from United
Nations meetings.

Global Voices: The Global Voices examples are depicted in Table 5.6. This TM primarily
consists of translated news articles or website pages that have been automatically aligned. As
evidenced by the examples, the content spans a wide range of subjects but is predominantly
sourced from news sites.

KDE4: The KDE4 examples are displayed in Table 5.7. As previously showed, KDE4 TM
exhibits relatively short lengths, primarily comprised of small components from the KDE4
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Source Segment Target Segment

ANNEX II (A) ANEXO II BIS

Decision of the EEA Joint Committee Decisión del Comité Mixto del EEE

information systems, tools or
equipment for sharing information
between Member States and third
countries,

sistemas, herramientas o equipos de
información para el intercambio de
información entre los Estados
miembros y terceros países,

gal person governed by private law
(Article 51(3) of the Rules of
Procedure)

presentación del poder si la parte
representada es una persona jurídica
de Derecho privado (artículo 51,
apartado 3, del Reglamento de
Procedimiento)

the following point is inserted after
point 19ab (Commission Regulation
(EU) No 1213/2010):

Después del punto 19ab [Reglamento
(UE) n.o 1213/2010 de la Comisión],
se inserta el punto siguiente:

Tabela 5.4: DGT-TM Source and Target Segments Examples.

OS interface. This is exemplified by segments in the table as "The passwords are Different"or
"Configure the networks". KDE4 also presents examples where the source and target formats
differ. For instance, in examples 2 and 4, the source segment does not utilize -"or "&"as seen in
the target segment.
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Source Segment Target Segment

Beds a/ Lits a/

PRINCIPLE 28. RESTRICTIONS
ON THE PRACTICE OF AMNESTY

PRINCIPE 28 - RESTRICTIONS A
LA PRATIQUE DE L’AMNISTIE

The Government, on 28 October 1997,
did not deny the arrest and trial of
Hendrique Belmiro da Costa, but
replied that he was never subjected to
torture, and that the source of the
allegation was merely exploiting the
fact of his very poor health.

Le 28 octobre 1997, le Gouvernement
n’a pas nié l’arrestation et le procès de
Hendrique Belmiro da Costa mais a
répondu qu’il n’avait jamais été
torturé et que la source d’information
ne faisait qu’exploiter le fait qu’il était
en très mauvaise santé.

10. Urges all the Afghan parties to
provide efficient and effective
remedies to the victims of grave
violations of human rights and of
accepted humanitarian rules and to
bring their perpetrators to trial in
accordance with internationally
accepted standards;

10. Prie instamment toutes les parties
afghanes d’offrir des recours effectifs
aux victimes de violations graves des
droits de l’homme et des règles
humanitaires acceptées et de déférer
les auteurs de ces violations aux
tribunaux, conformément aux normes
internationalement acceptées;

360. The Committee strongly
recommends that the Hong Kong
Government consider again the
adoption of a universal,
comprehensive retirement—protection
scheme which seeks to ensure that
disadvantaged groups are accorded
full access to social security.

360. Le Comité recommande
vivement au Gouvernement de Hong
Kong d’envisager à nouveau d’adopter
un système général, d’application
universelle, de protection sociale des
retraités permettant aux groupes
défavorisés d’avoir pleinement accès à
la sécurité sociale.

Tabela 5.5: United Nations TM Source and Target Segments Examples.
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Source Segment Target Segment

Praticar yoga e meditação e seguir
uma rotina diária de aquietamento e
paz são a proposta maior do Yoga pela
Paz.

Practicing yoga and meditation and
following a daily routine of peace and
quieting are the main proposals of
Yoga for Peace.

Graffitis estão aparecendo nas paredes
de Beirute, sob a forma de placas de
sinalização apontando na direção da
Palestina.

Graffitti is appearing on the walls of
Beirut in the form of signposts
pointing in the direction of Palestine.

Por outro lado, Michel, um blogueiro
pró-governista, usa o mesmo
argumento da Procuradora Geral ao
dizer que a liberdade de expressão
deve ser equilibrada com a segurança
do cidadão e cita a irresponsabilidade
de algumas empresas de comunicação
[es]:

On the other hand, Michel, a
pro-government blogger, uses the
same argument as the Attorney
General in saying that freedom of
expression should be balanced with
the citizen security and cites the
irresponsibility of some media outlets
[es]:

Koffi também publica em seu blog
estórias ou críticas produzidas por
seus colegas.

Koffi also puts on his blog stories or
critiques written by his colleagues.

Você pode experimentar cores, fotos,
palavras, etc. O fato que eu comecei a
blogar é algo surpreendente; eu nunca
achei que pudesse desenvolver um
blogue, escrever textos e documentar
as coisas novas que estou aprendendo.

You can experiment with colors,
photos, words, etc. That I got started
with blogging was somewhat
surprising; I never thought that I could
develop a blog, write texts, and
document the new things that I am
learning.

Tabela 5.6: Global Voice TM Source and Target Text Examples.

Source Segment Target Segment

Die PasswÃ¶rter stimmen nicht
überein

The passwords are different

UNIX-Erweiterungen UNIX extensions
In %1 existiert bereits ein Attribut mit
dem Namen.

An attribute with that name already
exists in %1.

Absteigend sortieren Sort & Decreasing
Netzwerk einrichten Configure the network

Tabela 5.7: KDE4 TM Source and Target Segments
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6
Robust Translation Memory Retrieval

In this chapter we address the challenge of retrieving more refined and semantically
similar segments, particularly when there is no exact match between the source text within the
translation memory. For that, we leverage the multilingual nature of Translation Memories.
Specifically, we utilize the fact that each translation unit can contain multiple representations of
a segment text in different languages. By doing so, we have more context that can be used to
increase the likelihood of finding relevant matches within the translation memory.

We take advantage of the latest advances in multilingual encoder models and cross-
encoder models and integrate them into the translation memory retrieval pipeline. These models
are more capable of capturing the semantic meaning of text, even across different languages and
can help identify translation units that are semantically similar to the source text, even if they are
not an exact match and are in different languages.

Moreover, we employ Rank Fusion techniques to merge multiple ranks from the TMs.
By doing so, we generate a final unified rank that is more robust and exhibits higher quality,
enhancing the overall effectiveness of our retrieval process.

In the subsequent sections, we present our proposed solution to the translation memory
retrieval problem, namely the RTMR pipeline. We begin by providing an overview of the main
components of our pipeline. Then, we delve into each of the components in detail, starting
with the neural search and its implementation within our pipeline. We also discuss the use of
cross-encoder models and provide details on the training and inference processes. Finally, we
describe the used of rank fusion techniques to merge the results of multiple language indexes.

6.1 Robust Translation Memory Retrieval Pipeline

Our pipeline, as depicted in Figure 6.1, consists of two primary steps and an optional
one. The first step involves a retrieval process to find the best-matching Translation Unit (TU
Retrieval) for a given source segment that a user provides for translation, along with the desired
source and target locales. In this step, the user expects to find an exact match, if it exists, or the
most semantically similar segment within the TM. To achieve this, first, RTMR employs a neural
search across all language indices built from the TM.
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For each language, RTMR indexes the segments with a multilingual sentence encoder,
which embeds similar segments in different languages in close regions in the embedding space.
Then RTMR conducts a similarity search to identify the top k segments that are closest to the
source text within each language index.

Once it has identified the most relevant segments for each index, RTMR can proceed
to an optional step. This step involves the application of cross-encoder models to re-rank the
retrieved segments, basing the new order on their semantic similarity to the source text. This
process serves to further enhance the retrieval process, provided that the cross-encoder model
can augment each language index beyond the initial neural search.

Finally, in our final step, RTMR employs rank fusion techniques to merge the results
of multiple language indexes, here RTMR expects that each rank has its own strength when
matching with the source text, and merging them will result in a more stable and robust result.
RTMR anticipates that each rank will possess its unique strength when matching with the source
text. By merging these ranks, RTMR aims to achieve a more stable and robust outcome. This
step is especially beneficial when handling multilingual TMs, as it allows us to harness the
strengths of various language models, thereby improving overall retrieval performance.

Figura 6.1: TM Retrieval with Reciprocal Rank Fusion: The figure illustrates the query phase for
our TM Retrieval solution. Given a new text in language X to be translated to language Y, RTMR
generates the input text embedding and for each of our N languages indices RTMR, search for the

top k most similar texts. Then RTMR merges the N ranks with Reciprocal Rank Fusion.
Optionally each top k results from each rank can be reranked with a Cross Encoder model, then

RRF is used to merge the ranks.
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6.2 TU Retrieval

The TU Retrieval is essentially a neural search application tailored to address the problem
of TM Retrieval within our specific domain. In our context, we deal with TM Retrieval that
involves symmetric search and contains multiple representations within each TU. It can be
divided into two primary phases: the Indexing phase and the Query phase. Figure 6.2 provides
an illustration of both phases, and we will delve into the details of each one below:

Indexing: In this phase, a multilingual bi-encoder model is employed to convert textual data
from TUs into dense vectors. The bi-encoder model maps sentences into an embedding space,
where semantically similar sentences are close to each other, and dissimilar ones are far distant.
These embeddings are subsequently stored using FAISS (JOHNSON; DOUZE; JÉGOU, 2019),
an open source library for efficient similarity search and clustering of dense vectors.

Query: In this phase the system receives a text and generates a dense vector with the same
multilingual bi-encoder model that transforms the source segment into a dense vector. Then,
the dense vector representation of the new segment is compared with the pre-indexed segments
stored in the index. The comparison is carried out with the cosine similarity metric 6.1, as our
similarity function f from

�
 �	1.1 . The top k segments are returned as the answer.

cos(a,b) =
< a.b >

||a.b||
�
 �	6.1

The TU Retrieval is essentially a symmetric search since the indexed texts in the TM and
the query texts are relatively similar in content and length, although it can vary a little depending
on the source and target languages. As opposed to search engine queries, which is a type of
asymmetric search, whereby the query itself is usually small, while the results are typically long
texts. This is the main criteria that we used to choose the sentence embedding models.

In our RTMR pipeline, the TU Retrieval stage serves as the initial retrieval phase,
responsible for selecting the top k segments that will be further processed in the following stages,
wheter the individual ranks are reranked with the optional cross-encoder step or directly merged
with rank fusion. The primary goal of this stage could be seen as to filter out less relevant
segments and narrow down the search space for the next stages.

6.3 Re-ranking models

The re-ranking stage in our RTMR pipeline is an optional step after the TU Retrieval.
This step is considered optional because it can make the RTMR solution more computationally
expensive. The purpose of this stage is to refine each language rank before proceeding to the
rank fusion step. The idea is that a fine tuned cross-encoder model can refine and better rank the
top-k segments retrieved for rank.



60 ROBUST TRANSLATION MEMORY RETRIEVAL

Figura 6.2: TU Retrieval: The figure illustrates the query phase and index phase for TU retreival.
During the index phase, all TUs from the TM are indexed. For a selected language, the language
segment is passed through a sentence embedding model, and the resulting embeddings are stored
in a TM index. In the query phase, a new segment of text to be translated is received and passed
through a sentence embedding model. A list of the top k most similar TUs is then returned, based

on the similarity of their embeddings to the embedding of the query segment.

The RTMR pipeline leverages the XLM-Roberta (XLM-R) model, a transformer-based
multilingual model pre-trained on over 100 languages (CONNEAU et al., 2019). Given a source
sentence in a specific language and a target sentence in a different language, the model assesses
the relevance between the sentences. It generates a similarity score that can be utilized for
re-ranking, effectively treating the task as a Point-Wise Learning to Rank (LTR) problem.

Cross Encoder Architecture The proposed model architecture aligns with the approach
presented in section 2.3, where the downstream task is designed to evaluate the relevance score
between two sentences, potentially in different languages. The input tokenized format for this
model varies slightly from the conventional BERT model. For the XLM-R model the two
sentences are demarcated using the [PAD] token, which is also added at the end of the sentence.

First, we tokenize the input sentences, X and Y , using the BERT tokenizer. This
process breaks down each sentence into a list of tokens, resulting in two token sequences:
[x1, . . . ,xn] and [y1, . . .yp]. These token sequences are then fed into the XML-R model as follows.

input = [x1, . . . ,xn] and [y1, . . .yp]

embeddings = XML-R([CLS],x1, . . . ,xn, [PAD],y1, . . . ,yp, [PAD])
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Similar to the BERT fine-tuning process, a final language model head is required. The
[CLS] token is passed through a feedforward neural network. However, instead of applying a
Softmax function, we are only interested in generating a single score value, resulting in a single
relevance score output. The final score output can be represented as:

output =W · [CLS]embedding +b
�
 �	6.2

Loss Function: We used two rank loss functions for finetuning our model, the first is presented
at FORMAL; PIWOWARSKI; CLINCHANT (2021) and showed in equation 6.3.

Lrank =− log
es(qi,d+

i )

es(qi,d+
i )+ es(qi,d−

i )

�
 �	6.3

Where:

■ s representes our model.

■ qi the source sentence.

■ di a target sentence, where d+
i a target sentence there is a positive example and d−

i a
negative example.

The rank loss function penalizes the model when it assigns a higher score to the negative
example compared to the positive one, as example, s(qi,d−

i )> s(qi,d+
i ). However, if s(qi,d+

i )>

s(qi,d−
i ) the model weights will not be significantly adjusted because the model correctly ranks

the examples, regardless of the relevance magnitude.
The second rank loss is an upgrade of the previsouly one, with the use of in-batch-

negative sampling (FORMAL et al., 2021). The use of in-batch-negatives is simply to add
negative examples from the training batch. The model also penalizes cases where the ranking is
incorrect for the examples within the batch, specifically when s(qi,dINB

i )> s(qi,d+
i ).

Lrank =− log
es(qi,d+

i )

es(qi,d+
i )+ es(qi,d−

i )+∑
N
j es(qi,d−

i, j)

�
 �	6.4

In this equation:

■ N is the size of the batch.

■ and d−
i, j is the j negative example from the batch.

Training Data: In the context of Information Retrieval (IR), a common scenario involves a
collection of query-document pairs used to train a neural model. Typically, the query is a concise
text representing the user’s need, while a document can range from a paragraph to an entire
document. However, in Translation Memory Retrieval (TMR), our training data is restricted to
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the textual content found within translation units. The model should be capable of assessing
the relevance of a new input segment to a specific translation unit segment, regardless of the
language in which this segment is written.

A source segment qi, a positive segment d+
i , and a negative segment d−

i . We define these
as the anchor, positive, and negative segments, respectively.

To construct the training dataset for fine-tuning our XLM-R model, we need to establish
a method for selecting positive examples, where the target segment is relevant to the source
segment, and negative examples, where the target segment is not relevant.

One issue we encounter is that we cannot construct pairs with the same language. Doing
so would make it excessively easy for the model to distinguish positive pairs, as the source
and target segments would essentially be identical, and negative pairs would simply consist of
different texts. This would result in the model quickly overfitting. To prevent this, we ensure that
the pairs always have different languages.

Given a TM, our training dataset is constructed as follows: First, the anchor and positive
examples are randomly selected from a TU within the TM. Then, we randomly select two
different languages from the TU, and extract their segments. For the negative pairs, we employ
two different approaches: Random Sampling and Hard Sampling, which are described below.

For Random Sampling we randomly select a translation unit TU j from the TM. Then, we
randomly select a language from the TU j and extract its segment. This approach may provide
easy examples to the model, as there is a high probability that the source segment will be very
different from the target, even in basic lexical aspects, like the lenght of text. To mitigate this,
we filter the initial TU set so that only those with similar length, at least 20 characters within,
can be selected.

In situations where the model needs to rank closely related sentences, the Random
Sampling approach might not be effective, as the resulting negative segment could still be very
different from the source segment. To create hard samples, we first apply TU Retrieval to index
our Translation Memory (TM). For each anchor segment, we perform a neural search to find the
top k most similar segments. The last returned segment, the top k sentence, is used as a hard
negative sample. Given that the top k segments are ranked based on their similarity to the anchor
segment, from the TU Retrieval, the last returned segment serves as a more difficult negative
example, as it is still somewhat similar to the anchor segment but less than the other segments in
the top k result.

6.4 Rank Fusion

Previous approaches utilized only a single index for the Translation Memory Retrieval
problem (RANASINGHE; ORASAN; MITKOV, 2020), (KIM et al., 2021). In contrast, our
solution takes advantage of the multiple translated segments for the same Translation Unit by
retrieving the top-k segments of each language index for a given source segment. This strategy
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allows our model to benefit from the diverse representations provided by the different languages.
Our solution combines the results from the multiple language indices into a final rank

using a rank fusion algorithm. Specifically, we use the Reciprocal Rank Fusion (RRF) algorithm
(CORMACK; CLARKE; BUETTCHER, 2009), to return an unified top-k segments for the input
source segment. Given a set of TU from the TM, an input segment q, the RRF score for our
problem is calculaed as follows:

RRF(tu ∈ T M) = ∑
r∈R

1
k+ r(tu)

�
 �	6.5

Where:

■ R is a list of ranks for each language, returned from the TU Retrieval phase for the q

input segment..

■ r(tu) a function that returns the TU position for the r rank.

The RRF algorithm favors higher-positioned segments and those segments that appear in
multiple ranks.

Since a Translation Memory can have a varying number n of individual language indexes,
there are a total of 2n − (n+ 1) ways of selecting the ranks for merging. In our research, we
explored a diverse set of strategies for selecting subsets of indexes and narrowed them down to
two different approaches:

■ Source and Target: In this method, we exclusively utilized the source and target
indexes, taking into account the source sentence language and the desired translation.
This approach emerged as the most promising and effective out-of-the-box solution
in our investigation.

■ Multiple Indexes: This approach involved selecting and indexing all available langua-
ges within our translation memory, followed by merging the indices.
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7
Experimental Setup

This chapter outlines the experimental setup for our RTMR solution. First, it details the
chosen translation directions, cleaning and alignment. Following our evaluation methods and
statistical tests for the Translation Memory Retrieval problem. The chapter concludes with a list
of models presented in the results chapter, including our own solution, baselines, and related
work, along with their respective parameters.

7.1 Translation Directions

The ultimate goal of a TU Retrieval pipeline is to provide the top-k most similar segments
in a target language based on a given source segment input. In our experiments, we have the
flexibility to select from various combinations of source and target languages. To streamline
the process, we opted to fix a specific set of source and target languages for each Translation
Memory (TM). The selected language directions are outlined in Table 7.1.

For the DGT-TM, we maintained the English to Spanish direction, a common choice
among practitioners in this field (RANASINGHE; ORASAN; MITKOV, 2020), (KIM et al.,
2021), to facilitate comparison with existing results. In the case of the United Nations TM,
we chose the English to French direction. As for our last two TMs, KDE4 and Global Voices,
we deliberately switched the language roles, making English the target language for both. For
KDE4, German serves as the source language, while for Global Voices, Portuguese is the source.

By utilizing a diverse set of Translation Memories with distinct translation directions, we
aim to demonstrate the robustness of our results across various scenarios.

7.2 Preprocessing and Cleaning

We employ a straightforward pipeline to clean and prepare our Translation Memories for
experimentation. Initially, we purged all duplicate Translation Units entries featuring identical
source and target texts. This step is crucial for all the methods that depend on Rank Fusion or
Reranking. Oftentimes, the returned top-k segments retrieved from an index can be overloaded
with repeated segments, compromising the efficacy of such methods. For Rank Fusion, it
enhances the score of repeated segments, boosting their importance. As for reranking methods,
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Dataset Name Source Target
DGT-TM English Spanish
United Nations English French
KDE4 German English
Global Voices Portuguese English

Tabela 7.1: Translation Memories source and target languages direction.

it decreases the number of unique segments that require ranking, thereby lowering the overall
recall.

Secondly, we retained only Translation Units where the target segment is present. Trans-
lation Units without the target segment would be useless for TU Retrieval, although we could
match the source to similar Translation Units, we wouldn’t be able to return a target segment for
this Translation Unit.

Finally, the Translation Unit segments were not modified at any stage of the pipeline. We
retained both very short and long texts while preserving their case sensitivity. Although lengthy
text can impact neural models’ output 1, for our TU Retrieval task, we focus on assessing the
performance of each approach in real-world scenarios, where the presence of very long segment
text can be a reality.

7.3 Evaluation Metrics

In this work, we assess the performance of these systems by examining the overall
translation quality of the top 1 retrieved segment from the translation memory. In order to
accurately evaluate performance systems, we need to choose one of the many available machine
translation metrics, and one that is well-suited to our experimental setup and can effectively
capture the differences in scenarios where there is no predefined correct translation stored in the
translation memory.

The BLEU score is a widely adopted machine translation metric PAPINENI et al. (2002).
It heavily relies on the overlapping n-grams between the target and reference text, which can
result in a low BLEU score for text segments that are semantically similar but have a very
different vocabulary. To overcome this limitation, another metric called METEOR BANERJEE;
LAVIE (2005) has been used for testing translation memory retrieval. METEOR uses stemming
and WordNet to go beyond exact matches of the terms, which allows it to better capture semantic
similarity. However, in our experiments, we found that METEOR falls short in identifying
similar and closer translations. Additionally, its implementation requires a specific tokenizer for
each language and a WordNet-like resource for specific languages, which can be a limitation for
its use in certain scenarios. It is worth noting that there are different types and versions of these

1The number of tokens can be greater than the model supports. This is generally handled with truncating the
text, meaning some information might be lost. For encoder models, this means the text might not fully represent the
original. In translation evaluation, the target text length may be limited, resulting in inaccurate assessments of the
translation quality.
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METEOR metrics, and implementation issues have been found in some cases. For example, a
bug was reported in the implementation of the METEOR metric in the Natural Language Toolkit
(NLTK) library BIRD; KLEIN; LOPER (2009) 2.

Newly developed neural-based learned metrics exhibit stronger correlations with human
judgment as we can see in the WMT 2022 Metrics Tasks by FREITAG et al. (2022), unlike
traditional overlap metrics such as BLEU, METEOR, and chrF. These new metrics consist of
large language models (LLMs) trained on a large quantity of synthetic and accurate translation
data. As a result, they have achieved better results when compared to human evaluation. This
suggests that these neural-based learned metrics may be more effective in capturing the semantic
similarity between the source and target texts, given that they have a better correlation for the
problem of evaluating machine translation. Table 7.2 presents a comparison of 13 translation
metrics evaluated in the WMT 2022 Metrics Task. Among these metrics, BLEU has one of the
worst results, with a very low correlation with human ratings. On the other hand, neural models
like COMET-22 and BLEURT-20, which have been used as alternatives to traditional machine
translation evaluation metrics, show a better correlation with human judgment.

Metric avg rank
METRICX XXL 1.20
COMET-22 1.32
UNITE 1.86
BLEURT-20 1.91
COMET-20 2.36
MATESE 2.57
COMETKIWI* 2.70
MS-COMET-22 2.84
UNITE-SRC* 3.03
YISI-1 3.27
COMET-QE* 3.33
MATESE-QE* 3.85
MEE4 3.87
BERTSCORE 3.88
MS-COMET-QE-22* 4.06
CHRF 4.70
F101SPBLEU 4.97
HWTSC-TEACHER-SIM* 5.17
BLEU 5.31
REUSE* 6.69

Tabela 7.2: Official ranking of all primary submissions of the WMT22 Metric Task. Low values
means better correlation with human evaluation. Source FREITAG et al. (2022).

In our experiments, we chose to evaluate and compare translation retrieval systems using
the BLEURT-20 3 and chrF metrics.

2https://github.com/nltk/nltk/issues/2655
3The best metric "METRICX XXL"consist of a very large model that would make the evaluation times
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In addition to BLEURT-20, we also decided to report a lexical metric for comparison
purposes. Since we are running experiments in different languages, we chose chrF as it avoids
the need for special tokenizers, and it is a metric with better correlation among the lexical
ones, as shown in Table 7.2. By using both neural-based and lexical metrics, we aim to
provide a comprehensive evaluation of the performance of the translation retrieval systems under
investigation.

7.4 Edit Distance Bins

In our study, we adopt a methodology similar to that of RANASINGHE; ORASAN;
MITKOV (2020), where the test dataset is partitioned into five distinct segments based on the
translation edit distance between the source text and the closest matching text in the training
dataset. This segmentation approach allows us to evaluate the effectiveness of the retrieval
process in scenarios where there is limited overlap between the words in the source and target
texts.

To calculate these bins, we follow a specific procedure. For each translation unit in
the query set, we identify all segments with the same source language. We then compute the
minimum edit distance between the source text and each of the identified segments. The edit
distance is normalized but the size of the query segment text.

By analyzing the retrieval results across these different bins, we aim to gain a deeper
understanding of the impact of using neural models for semantic retrieval. Specifically, we
aim to investigate the effectiveness of these models in scenarios where the search segment is
significantly different from the pre-translated segments available in the translation memory.
By evaluating the retrieval performance in these scenarios, we hope to better understand the
strengths and limitations of neural models for semantic retrieval, and identify potential areas for
improvement in future research.

7.5 Hypothesis Tests

Some final comparison of our evaluated TM retrieval systems can show rather similar
translation score results, for this we employed the Kruskal-Wallis (KRUSKAL; WALLIS, 1952)
test to determine whether there were significant differences in the performance of the translation
memory systems under investigation. The Kruskal-Wallis test is a nonparametric statistical test
that assesses the differences among three. The Kruskal-Wallis test is nonparametric and does not
depend on the sampled distribution being normal.

In addition, if the results of the test indicated that there were indeed significant differences
among the groups we proceeded to then conducted a pairwise comparison using the Wilcoxon
signed-rank test WOOLSON (2007).

impossible.
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7.6 Evaluated Methods

Below, we provide a comprehensive list of all the models and approaches evaluated in
the subsequent chapters, along with their specific setup details.

BM25: The BM25 is a commonly employed function for estimating the relevance of queries
and documents in Information Retrieval (IR) (ROBERTSON; ZARAGOZA et al., 2009). In our
configuration, we utilized BM25 to estimate the relevance between the new input segment and
the source text for each TU.

Efficient Retrieval with WordNet: Following the approach in KIM et al. (2021), as explained
in Section 4.1, we conducted tests both with and without the expansion of terms using WordNet.
In our results, we refer to the former as Kim-VSM (Kim-Vector Space Model), and the latter as
Kim-VSM-WN (Kim-Vector Space Model-WordNet). For the approach utilizing WordNet, we
assigned a value of one to the α parameter for the terms in the query expansion.

Multilingual Models: The LaBSE (FENG et al., 2020), Universal Sentence Encoder (CER
et al., 2018), and Multilingual E5 Text Embeddings (WANG et al., 2024) are all bi-encoder
models, each capable of generating multilingual embeddings used for TU Retrieval, as detailed in
section 6.2. In our analysis, we refer to the Universal Sentence Encoder, LaBSE, and Multilingual
E5 Text Embeddings as USE, LaBSE, and ME5 Large (ME5-L) 4, respectively. Within the TU
Retrieval framework, each of these models functions by comparing the source language texts
from the input with those from the translation memories.

Cross Encoder: For the experiments, a Cross Encoder (CE) is utilized, which integrates a TU
Retrieval phase with a subsequent re-ranking phase. The model’s characteristics and training are
detailed in Section 6.3. Initially, the CE receives as input the new segment in a source locale,
and a TU Retrieval is conducted as the first step. Subsequently, the CE model is employed for
re-ranking using the top-k returned segments.

All CE models were trained with the source and target sentences being in different
languages. Therefore, we match the input segment to the target segment stored in the TMs.

Robust Translation Memory Retrieval: We have experimented with various combinations
outlined in Section 6, employing Reciprocal Rank Fusion (RRF) to consolidate the retrieved
results from each index.

For all cases, the LaBSE model serves as the base model for generating multilingual
embeddings in the TU Retrieval phase.

4ME5: The ME5 contains different checkpoints, including the base, large, and instruct-large checkpoints. We
abbreviate it as ME5-L for the best performing variant, ME5 Large.
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■ RRF with Source and Target: This involves conducting TU Retrieval on both the
source and target indexes, followed by merging the results using RRF.

■ RRF with Multiple Indices: Here, TU Retrieval is performed across multiple language
indexes, and the results are merged using RRF.

■ RRF + Cross Encoder: In the initial phase, TU Retrieval is executed separately for
both the source and target indexes. Subsequently, each index undergoes individual
re-ranking using a cross encoder model before being merged using RRF.
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8
Results

In this chapter, we present the results for both our proposed RTMR approaches and
the baseline methods. We begin by showcasing the primary outcomes of our experiments,
demonstrating how our RTMR pipeline enhances translation retrieval quality across various TMs.
We discuss the implications of employing Cross Encoder models in our approach and evaluate
the performance of lexical models. Additionally, we conduct an analysis of translation memory
retrieval performance based on different edit distance bins and provide an overview of the overall
performance of neural models and the gains obtained by employing our RTMR approach.

8.1 RTMR Results

Table 8.1 presents the chrF and BLUERT scores across all approaches. RTMR consisten-
tly outperformed other approaches in terms of BLUERT scores. Specifically, RRF with Src/Tgt
(ME5-L) yielded the highest BLUERT scores for DGT-TM (0.344) and United Nations (0.351)
datasets, RRF with Multiple Indices for Global Voices (0.334), and RRF + CE Src/Tgt for KDE4
(0.450).

DGT-TM: When comparing RRF with Src/Tgt (ME5-L) to the baseline ME5 Large, while
there was no improvement in BLEURT scores, chrF scores increased from 0.330 to 0.338.
Additionally, RRF with Src/Tgt showed improvement over the LaBSE baseline, achieving a
BLUERT score of 0.34 and the best chrF score of 0.351.

United Nations: RRF with Src/Tgt (ME5-L) achieved the highest BLUERT score for the
United Nations dataset. Both RRF with Src/Tgt and RRF + CE Src/Tgt showed improvement
over the LaBSE baseline. Notably, USE achieved the best chrF score for this dataset.

Global Voices: In contrast to the others TMs, the RRF with Many Indexes obtained the best
BLUERT result (0.334), with a big gap against the second one RRF + CE Src/Tgt (0.314). This
performance can be attributed to the segment distribution in the TM, particularly with over 80%
of missing data for the source locale pt (refer to Section 5.3). The utilization of Many Indices
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Dataset Languages Model chrF BLEURT

DGT-TM en → es

BM25 0.347 0.31
Kim-VSM 0.311 0.291
Kim-VSM-WN 0.296 0.256
USE 0.347 0.324
LaBSE 0.349 0.337
ME5 Large 0.330 0.344
Cross Encoder 0.345 0.332
RRF with Src/Tgt 0.351 0.340
RRF with Src/Tgt (ME5-L) 0.338 0.344
RRF with Many Indexes 0.345 0.332
RRF + CE Src/Tgt 0.34 0.337

United Nations en → fr

BM25 0.407 0.313
Kim-VSM 0.372 0.299
Kim-VSM-WN 0.368 0.273
USE 0.409 0.328
LaBSE 0.399 0.331
ME5 Large 0.401 0.350
Cross Encoder 0.382 0.329
RRF with Src/Tgt 0.405 0.335
RRF with Src/Tgt (ME5-L) 0.403 0.351
RRF with Many Indexes 0.401 0.331
RRF + CE Src/Tgt 0.390 0.334

Global Voices pt → en

BM25 0.217 0.269
Kim-VSM 0.187 0.261
Kim-VSM-WN 0.156 0.223
USE 0.221 0.297
LaBSE 0.222 0.304
ME5 Large 0.213 0.301
Cross Encoder 0.278 0.31
RRF with Src/Tgt 0.224 0.307
RRF with Src/Tgt (ME5-L) 0.208 0.303
RRF with Many Indexes 0.242 0.334
RRF + CE Src/Tgt 0.228 0.314

KDE4 de → en

BM25 0.241 0.336
Kim-VSM 0.231 0.320
Kim-VSM-WN 0.202 0.281
USE 0.266 0.392
LaBSE 0.281 0.421
ME5 Large 0.279 0.413
Cross Encoder 0.281 0.432
RRF with Src/Tgt 0.291 0.445
RRF with Src/Tgt (ME5-L) 0.280 0.428
RRF with Many Indexes 0.259 0.414
RRF + CE Src/Tgt 0.296 0.450

Tabela 8.1: Comparing translation quality across TMs using BM25, Kim-VSM-*, USE, LaBSE
and ME5-L baselines. Our approach employs two indexing approaches: source and target

(Src/Tgt), and Many Indexes, both applying Reciprocal Rank Fusion (RRF) to merge the indexes
at the end. We also show the results for the Cross Encoder (CE) models for reranking source index.
Additionally, we demonstrate CE with RRF, where both source and target outputs from the LaBSE

model are reranked, followed by a final merging of indexes using RRF (CE Src/Tgt + RRF).
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likely led to a significant increase in recall for the English target. Despite this, all other RRF
approaches demonstrated overall better results compared to the baselines.

KDE4: The top BLEURT scores for KDE4 were achieved by RRF + CE Src/Tgt (0.450) and
RRF Src/Tgt (0.445), outperforming TU Retrieval with LaBSE (0.421). RRF with Src/Tgt (ME5-
L) also showcased improvement over its single index counterpart ME5 Large, with BLEURT
scores of 0.428 and 0.413, respectively.

Results confirm that our strategy of using multilingual indices combined with Rank
Fusion is effective for translation memory retrieval. A possible reason for that is that performing
this task using multiple languages present in the translation memory makes the solution more
robust than the ones based on the source language since it might better deal with potential noise
in the source index. The results also further confirm the superior ability of neural models to
identify semantically similar segments from the TM compared to lexical approaches like BM25
and Kim-VSM-WN.

To emphasize the efficiency of applying RRF to merge the source and target ranks from
a TM, Figure 8.1 presents a boxplot comparing BLUERT scores between RRF with Src/Tgt
(where LaBSE is used for the TU Retrieval phase) and LaBSE. In this analysis, we excluded
cases where the two models produced the same top-1 output, as these instances are likely to
represent straightforward or easy cases where both models agree. As it is shown in the plot RRF
has a better BLUERT score across all quartiles on the four TM. This indicates the effectiveness
of RRF in improving translation quality compared to relying solely on LaBSE.

Figura 8.1: RRF Src/Tgt vs Labse boxplot: Applying RRF improved the top-1 TU retrieval
performance for all TMs.

Statistical Tests To ensure the validity of our analysis, we conducted statistical tests to
determine if the differences between the base model (LaBSE and ME5-L) and the RTMR were
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statistically significant. First, we applied the Kruskal test to check for any differences in the
groups, and then we validated pairwise comparisons between the base model and RRF.

Table 8.2 presents the results of the Kruskal test. For the DGT-TM, United Nations, and
KDE4 datasets, we can conclude that the groups come from different distributions. However,
for the Global Voices dataset, the null hypothesis is not rejected. This can be attributed to the
fact that ME5-L and ME5-L with RTMT did not show statistically significant differences in the
subsequent Wilcoxon tests.

Method Test Statistic P-value Conclusion
DGT 295 8.6e-64 Reject the null hypothesis.
United Nations 317 1.4e-68 Reject the null hypothesis.
Global Voices 0.57 0.44 Fail to reject the null hypothesis.
KDE 106 6.1e-23 Reject the null hypothesis.

Tabela 8.2: Results of the Kruskal-Wallis test for different methods

Table 8.3 presents the pairwise results of the Wilcoxon test, where we compare the effect
of the RRF approach with the LaBSE and ME5-Large models. The purpose of this test is to
determine if there is a statistically significant difference between the performance of the RRF
approach and the two baseline models. Results indicate that using RRF significantly improved
the performance of the LaBSE model for all TMs. However, for the ME5-Large model, the
RRF approach only showed statistically significant improvements for the DGT-TM and KDE4
datasets.

Dataset Model Wilcoxon statistic P-value Significance
DGT-TM Labse 558867463.5 4.73e-32 Statistically significant
DGT-TM ME5 Large 324413.5 7.98e-08 Statistically significant
UN Labse 2534248.5 1.16e-16 Statistically significant
UN ME5 Large 23770780.5 0.95 Not statistically significant
Global Labse 5617639.5 0.003 Statistically significant
Global ME5 Large 24303988.5 0.47 Not statistically significant
KDE4 Labse 6574163.0 1.12e-60 Statistically significant
KDE4 ME5 Large 22669614.5 2.12e-17 Statistically significant

Tabela 8.3: Comparison of Combine With Labse and ME5 Large Model, ordered by dataset

Impact of Cross Encoder Models The results presented in Table 8.1 demonstrate an improve-
ment over the performance by reranking the source index with a fine tuned cross encoder model,
particularly evident in the KDE4 and Global Voices TMs. However, for the DGT-TM and United
Nations TM the performance is worse than the baseline model. We believe this discrepancy can
be attributed to the varying degrees of curation and cleanliness within these TMs.

The KDE4 and Global Voices TMs exhibit a less curated nature compared to the meti-
culously curated DGT-TM and United Nations TMs. Notably, the Global Voices TM contains
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numerous instances where texts in different languages strict literal translations but rather convey
information on the same topic or news. Similarly, within the KDE4 TM, variations exist where
the structure of the source text differs from that of the target text.

While the performance for the DGT and United Nations Translation Memories appear to
be negatively impacted by reranking, the use of RRF improves its results. Moreover, when RRF
is employed on the output of reranked cross encoder models for the KDE4 and Global Voices
TMs, where the reranking had a positive effect, a noticeable performance enhancement is also
observed. This shows that even for a low or a high quality ranking of the individual indices,
applying RRF with Src/Tgt tends to improve the performance. The overall gains can be seen in
the following Table 8.4.

TM BLUERT
DGT-TM +0.005

United Nations +0.005
KDE4 +0.018

Global Voices +0.004
Tabela 8.4: Cross Encoder with source and target indices merged with RRF. The table shows the

improvements over the re-raking only the source index.

8.2 Edit Distance Bin Performance

Similar to RANASINGHE; ORASAN; MITKOV (2020), to provide insights about
the models’ performance regarding how similar is the source segment to its correspondent
TU’s segment in the same language. For that, we present in Table 8.5, the mean BLEURT
scores for each TM divided into five edit distance chunks. The results are presented as 1−
Normalized Edit Distance, so lower values suggest scenarios whereby a closely related text may
not be available in the TM, while higher values indicate the presence of more similar matching
text.

Regarding the results of the DGT-TM dataset, comparing RRF with Src/Tgt (ME5-L)
and ME5 Large, both approaches yielded very similar results, with the former showing slight
improvements in the first and last bins. However, RRF with Src/Tgt consistently outperformed
LaBSE across all bins, with the best results in the (0.2-0.0) bin for all methods.

For the United Nations TM RTMR had better results in the initial (1.0-0.8), (0.8-0.6),
and (0.6-0.4) bins, indicating that a higher semantic match for when there is not a similar enoug
segment in the TM. The Cross Encoder baseline had the better result for the (0.4-0.2) bins and
the LaBSE for the (0.2-0.0) bin.

RRF with Multiple indices had the best results except for the (0.4-0.2) bin for the The
Global Voices TM. With the RRF with Src/Tgt having the best result for this bin. As discussed
before, these results are greatly influenced by the TM distribution.
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Dataset Model Name 1 - Normalized Edit distance
0.0-0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8-1.0

DGT-TM

BM25 0.171 0.213 0.25 0.367 0.754
Kim-VSM 0.145 0.197 0.232 0.355 0.746
Kim-VSM-WN 0.127 0.168 0.195 0.313 0.703
USE 0.217 0.222 0.25 0.389 0.794
LaBSE 0.24 0.236 0.265 0.414 0.801
ME5 Large 0.250 0.246 0.279 0.418 0.800
Cross Encoder 0.208 0.231 0.259 0.376 0.765
RRF with Src/Tgt 0.246 0.239 0.268 0.419 0.803
RRF with Src/Tgt (ME5-L) 0.253 0.246 0.279 0.418 0.801
BM25 0.496 0.276 0.657 0.736 0.852
Kim-VSM 0.482 0.261 0.681 0.692 0.683
Kim-VSM-WN 0.433 0.237 0.665 0.598 0.633
USE 0.553 0.286 0.708 0.746 0.902
LaBSE 0.576 0.287 0.712 0.746 0.906
ME5 Large 0.573 0.309 0.716 0.743 0.896
Cross Encoder 0.566 0.286 0.708 0.759 0.904
RRF with Src/Tgt 0.582 0.292 0.714 0.747 0.903
RRF with Src/Tgt (ME5-L) 0.582 0.309 0.722 0.751 0.899

United

RRF with Multiple indices 0.576 0.288 0.707 0.72 0.901

Nations

CE Src/Tgt + RRF 0.55 0.292 0.722 0.733 0.897
BM25 0.237 0.26 0.295 0.345 0.355
Kim-VSM 0.283 0.255 0.344 0.461 0.540
Kim-VSM-WN 0.250 0.216 0.318 0.431 0.471
USE 0.333 0.291 0.383 0.449 0.531
LaBSE 0.359 0.296 0.401 0.523 0.524
ME5 Large 0.354 0.293 0.403 0.489 0.529
Cross Encoder 0.344 0.303 0.397 0.475 0.523
RRF with Src/Tgt 0.367 0.297 0.271 0.54 0.52

Global

RRF with Src/Tgt (ME5-L) 0.361 0.294 0.412 0.509 0.536

Voices

RRF with Multiple indices 0.393 0.325 0.438 0.47 0.623
CE Src/Tgt + RRF 0.365 0.305 0.418 0.529 0.529

KDE4

BM25 0.227 0.321 0.367 0.435 0.537
Kim-VSM 0.229 0.300 0.348 0.408 0.502
Kim-VSM-WN 0.207 0.251 0.296 0.362 0.482
USE 0.313 0.367 0.41 0.48 0.586
LaBSE 0.35 0.395 0.435 0.354 0.49
ME5 Large 0.348 0.381 0.430 0.489 0.597
Cross Encoder 0.373 0.403 0.446 0.511 0.573
RRF with Src/Tgt 0.375 0.412 0.459 0.535 0.616
RRF with Src/Tgt (ME5-L) 0.348 0.397 0.451 0.516 0.612
RRF with Multiple indices 0.339 0.393 0.437 0.495 0.556
CE Src/Tgt + RRF 0.386 0.418 0.465 0.53 0.612

Tabela 8.5: Comprehensive BLEURT Score Analysis across Edit Distance Bins: Our approach
has superior performance across all edit distance ranges. Including the unexpected 0.8-1.0 range
for the Global Voice and KDE4, where we would expect that traditional retrieval methods like

BM25 would typically have a better performance.
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Finally, for the KDE4, for high values of edit distance (0.6-0.8 and 0.8-1.0), RRF with
Src/Tgt achieved the best results, whereas CE Src/Tgt + RRF the best for low values of edit
distance. This indicates that the Cross Encoder strategy better captures the semantic similarity
since it worked better for less similar segments.

The results suggest that even in scenarios where sentences are highly similar with low
edit distances, neural models significantly outperform lexical approaches. Additionally, our
RTMR approach exhibited performance improvements across all bins in the United Nations TM,
except for the (0.6-0.8) and (0.8-1.0) bins, indicating enhanced accuracy across various cases.

8.3 Output Comparison

In Table 8.6, we highlight three examples that help explain why our approach performs
well. The table includes the original text, the desired text, and the results from both the USE and
our approach, RRF with Src/Tgt.

The first two examples show instances where the expected translated text is very different
from the source text format, suggesting that the TM can have a low quality of TUs or simply that
the translation to specify target language in this domain follows a different format.

As one can see, RRF with Src/Tgt , which involves comparing not only the source but
also target index, retrieves from the TM the best matches to the translated target text. LaBSE
successfully retrieves the best text for the first example but fails in the second one, whereas
USE fails in both. The third example underscores a case in which both USE and LaBSE models
were able to retrieve quite semantically similar text to the source text. However, our approach
ultimately excelled in identifying the best-matching text. Finally, the fourth example presents
a situation whereby neither approach retrieved the target text. This could be due to either the
absence of such text in the TM or those approaches could retrieve this segment.
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Source Text Target Text USE LaBSE RRF with
Src/Tgt

"Gewehrschuss@item:
inlistbox"

"Gunshot" "Violin" "Gunshot" "Gunshot"

"Telefon@item:
inlistbox"

"Telephone" "Timpani" Email 2 "Telephone:"

"Schneidet
den aus-
gew0̆0e4hlten
Abschnitt aus
und kopiert ihn
in die Zwische-
nablage."

"Cuts the selec-
ted section and
puts it to the
clipboard"

"The selected
sentences are
deleted and
placed on the
clipboard."

The selected
sentences are
deleted and
placed on the
clipboard."

"Cuts the selec-
ted section and
puts it to the
clipboard"

Für die an-
gegebenen
Media-Daten
kann kein
Demultiplexer-
Modul gefun-
den werden.

Cannot find de-
multiplexer plu-
gin for the gi-
ven media data

Unable to find
a Multimedia
Backend

Could not
retrieve multi
session infor-
mation from
disk.

Unable to find
the requested
Multimedia
Backend

Tabela 8.6: Output Examples: Above are illustrative examples showcasing the superiority
performance of our approach compared to previous methods. Notably, RRF with Src/Tgt exhibits
robustness in handling noise, as evidenced in the first example, and returns better segments, even

when the baseline models provide satisfactory answers, as exemplified in the third row.
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9
Conclusions and Future Work

In this chapter, we provide a comprehensive summary of our proposed solution for the
Translation Memory Retrieval problem, along with the results obtained from our experiments.
We recapitulate our contributions to the field and discuss the potential limitations of our approach.
Furthermore, we outline promising avenues for future research to address these limitations and
enhance the overall effectiveness of Translation Memory Retrieval systems.

9.1 Conclusion

In this work, we introduced the Robust Translation Memory Retrieval (RTMR) pipeline.
Our solution integrates deep neural network models into both the first and second retrieval stages,
neural search and cross encoder respectively . Leveraging the multilingual nature of Translation
Memory (TM), RTMR allows the creation of multiple language indices (TU). These indices
enable the search for similar segments, and Reciprocal Rank Fusion is employed to merge and
return the final rank, enhancing the robustness of the retrieval process. An optional step can be
run with a cross encoder model, to futher improve the individual language indices before Rank
Fusion.

Our analysis demonstrates that the RTMR pipeline, which was tested across four TMs,
enhances the quality of returned segments across all scenarios. This improvement is evident
both when there are similar segments with overlapping vocabulary and when there are no stored
segments similar to the input segment. Futhermore, our approach showed to be more robust to
domain specific and quality issues in the TM, where using multiple information improved the
search.

9.2 Main Contributions

The main contributions of this work are outlined below:

■ Introduction of a Robust Translation Memory Retrieval pipeline integrating neural
models, neural search, cross encoders and rank fusion techniques.
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■ The combination of multiple indices from the TM using Rank Fusion techniques to
improve retrieval performance.

■ An extensive evaluation of baseline approaches, such as BM25, along with a wide
range of neural models that had not been previously assessed in research for TM
Retrieval.

■ The first evaluation of the use of Cross Encoders for TM Retrieval, along with an
analysis of their limitations.

9.3 Potential Limitations

Limitations of this work can include include:

■ The applied Rank Fusion techniques assign equal weight to each index, which may
not be optimal. Further research is needed to assess the importance of each language
index and fine-tune their weights accordingly.

■ The proposed pipeline does not take into account efficient retrieval techniques, related
to their impact on performance and cost.

■ The evaluation was performed on a particular set of language directions, demons-
trating improvements over previous research. However, it is important to note that
English was utilized as either the source or target language in all cases. To com-
prehensively assess the pipeline’s effectiveness and generalizability, it is necessary
to conduct further testing on a more diverse range of language pairs that do not
necessarily involve English.

9.4 Future Work

Potential directions and suggestions for future research:

■ Development and implementation of a pretrained Cross Encoder specifically for TM
Retrieval. This encoder should be trained on an extensive dataset to ensure its ability
to generalize effectively for unseen TM domains.

■ Exploration and analysis of alternative methods to fine-tune first stage models, such
as LaBSE, for specific domains.

■ Investigation of the impact of Rank Fusion techniques in scenarios where the initial
stage retrieval is conducted via an approximated search. This could potentially
enhance the efficiency of the retrieval process.
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■ Assessment of the influence of RTMR on few-shot approaches that leverage Large
Language Models.

■ Evaluate the efficiency of the RTMR pipeline for languages that do not involve
English as source or target segments.
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A
Neural Models Comparison

Prior to our study, we carried out an extensive comparison of various multilingual model
checkpoints, focusing primarily on the open-source models provided by SBERT REIMERS;
GUREVYCH (2019). The main objective was to identify and evaluate the most suitable models
for Translation Memory Retrieval, which could then be utilized in our research.

In a typical neural search, there are numerous hyperparameters to explore for all models.
These include various similarity metrics such as Inner Product and L2 distance, the effect of
using normalization, and the considerations specific to multilingual models, like whether to
search and match inputs with the source or target segments. Additionally, there are different
model checkpoints to consider.

Despite exploring these numerous variations, the observed performance showed neglec-
table differences. Table A.1 presents the best results for each model checkpoint. Initially the
LaBSE model, introduced by FENG et al. (2020), demonstrated the highest performance in
this initial evaluation. This outcome is anticipated, as LaBSE is specifically designed for bitext
mining. Consequently, we relied heavily on LaBSE as a first-stage retriever for both the RRF
and cross encoders.

Subsequently, the ME5, a list of models tailored for bi-text mining, was released and
demonstrated a better result over the LaBSE.
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Model chrF BLEURT
ME5 Large 0.330 0.344
ME5 Large Instruct 0.348 0.340
LaBSE 0.349 0.337
multilingual qa mpnet base dot v1 0.316 0.329
multilingual qa mpnet base cos v1 0.313 0.324
paraphrase multi mpnet v2 0.315 0.319
multilingual qa MiniLM L6 cos v1 0.306 0.314
paraphrase multi MiniLM 0.313 0.314
multilingual qa MiniLM L6 dot v1 0.29 0.312

Tabela A.1: Baseline Models Performance on the DGT-TM Dataset: Following the methodology
outlined in Section 6.2, we conducted extensive variations in aspects such as the choice of

similarity function (L2 vs. Inner Product) and whether to index the source or target sentence,
among others. However, due to the marginal nature of these changes, we only show the best

results achieved for each model.



929292

B
Cross Encoder Training Details

For each Translation Memory, we trained an XLM-R model using both base and large
checkpoints. The training process ran for two epochs with a initial learning rate value is set
to 1e−5. For all cross encoder models training we have used a linear decay scheduler with a
warmup step with 1000 examples. We used the Adam optimizer (KINGMA; BA, 2014).

Below, we present the training progress of the KDE4 Cross Encoder. The graph displays
both the train and validation losses, alongside the validation accuracy (indicating whether the
model correctly ranked the anchor and negative examples). Typically, the train loss decreases
rapidly and remains steady throughout the run. However, the validation loss and rank accuracy
continue to increase.

Figura B.1: Train Loss for the KDE4 model.

The Figure B.4 illustrates an example of a problematic training run, where the train
loss rapidly escalates. We encountered numerous instances like this earlier on, and found that
decreasing the learning rate and incorporating warmup helped mitigate this issue. However,
it can still occur in certain scenarios. We hypothesize that this phenomenon occurs due to a
combination of inputs that may cause the model to overfit or induce overflow errors during
backpropagation. Further investigation is necessary to confirm and better understand the root
cause.
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Figura B.2: Validation Loss for the KDE4 model.

Figura B.3: Accuracy for the KDE4 model.

Figura B.4: The graph illustrates an instance where the model followed a wrong optimization
path, leading to a significant increase in error, as evident in the curve.
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C

Failed Attempts

This chapter introduces some earlier failed attempts in our research. First, we discuss
how finetuning models for dense retrieval has not improved performance over baselines. Then
we detail how optimizing individual languages indices weights did not improve results in the test
set.

C.1 Dense Retrieval Finetuning

TU Retrieval 6.2 is the main bulding block of our RTMR pipeline. So one of the first
ideas was to finetune a BERT like model to create specialized representations that could be used
in this phase.

The dataset preparation mirrors the approach outlined in the Cross Encoder Section 6.3.
Each example is processed through an XML-R model, with the [CLS] embedding serving as the
sentence representation

For the training phase, we opted for the Triplet Loss, a popular choice for training neural
models to learn representations. Given the (anchor, positive,negative) triplet, this loss works
by minimizing the distance between the anchor and positive, while maximizing the distances
between the anchor and negative.

Triplet loss is computed as follows, where d is the euclidean distance and α is the c
margin:

triplet loss = max{d(anchor, positive)−d(anchor,negative)+α,0}
�
 �	C.1

Despite successfully training a model, its performance remained inferior to the USE or
LaBSE baselines. We attribute this to the fact that these models were trained on significantly lar-
ger datasets, consequently becoming more proficient at representing sentences in the embedding
space.
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C.2 Optimize RRF Weights

In Chapter 8, we present our findings that demonstrate the state-of-the-art performance
of our RTMT approach, surpassing previous baseline methods in the literature. However, there
was room for improvement in terms of the language indices selection used for subsequent Rank
Fusion. Specifically the Global Voice TM showed that the use of many indices lead to better
results, when for the others the source and target obtained the best results.

For this we conducted an experiment to test whether we could use all indices languages,
but applying weights for each one. The initial proposed setup was the following.

■ Divide the Translation Memory index translations unit into train and dev sets.

■ Build the individual language indices (TU Retrieval index phase)

■ Now we create a function that receives a new input segment, language indices, a
list of weights for each individual rank and it returns the merged rank following our
RTMR approach, but applying the weights in the RRF.

■ Then we use Optune to optimize the weights for the previous function. The algorithm
used for optimization was the TPE (BERGSTRA et al., 2011), (WATANABE, 2023).

Table C.1 provides a comparative analysis of the utilization of weights derived from the
optimization step for the weighting of each respective rank. As we can see the optimization did
not improve, as the results remain largely unchanged.

Translation Memory Optimize RRF RRF Many Indices
DGT-TM 0.332 0.332
United Nations 0.331 0.331

Tabela C.1: The results from the Optimize RRF againts using RRF with no weights. Both
methods used all the avaliable languages in the Translation Memory
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