
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

Nathalia Paiva Lima

An Eye Tracking Perspective on Harmfulness of Code Smells: A Systematic
Literature Review and Experiment Design

Recife

2025

Nathalia Paiva Lima

An Eye Tracking Perspective on Harmfulness of Code Smells: A Systematic
Literature Review and Experiment Design

Recife

2025

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Lima, Nathalia Paiva.
 An Eye Tracking Perspective on Harmfulness of Code Smells: A Systematic
Literature Review and Experiment Design / Nathalia Paiva Lima. - Recife,
2025.
 60 p : il., tab.

 Orientador(a): Leopoldo Motta Teixeira
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Engenharia da Computação - Bacharelado,
2025.
 Inclui referências, apêndices, anexos.

 1. software engineering. 2. code smell. 3. eye-tracking. I. Teixeira,
Leopoldo Motta. (Orientação). II. Título.

 000 CDD (22.ed.)

NATHALIA PAIVA LIMA

AN EYE TRACKING PERSPECTIVE ON HARMFULNESS OF CODE SMELLS: A
Systematic Literature Review and Experiment Design

Trabalho de Conclusão de Curso
apresentado ao Curso de Graduação em
E n g e n h a r i a d a C o m p u t a ç ã o d a
Universidade Federal de Pernambuco,
como requisito parcial para obtenção do
título de bacharel em Engenharia da
Computação.

Aprovado em: 10/04/2025

BANCA EXAMINADORA

 __

Prof. Dr. Leopoldo Motta Teixeira (Orientador)

Universidade Federal de Pernambuco

Prof. Dr. Kiev Santos da Gama (Examinador Interno)

Universidade Federal de Pernambuco

Dedico este trabalho à minha mãe Andiara e ao meu pai Paulo, por todo amor e apoio

incondicional. Ao Felipe, meu parceiro, por estar ao meu lado nos momentos mais difíceis e me

dar forças para continuar. À Adora e ao Teemo, que, com presença e afeto, transformaram o

cansaço em aconchego e os dias difíceis em abrigo. Aos amigos que fiz nos cursos de Sistemas

de Informação e, depois da transferência, em Engenharia da Computação, que tornaram essa

jornada mais rica e divertida. Ao professor Fernando Castor, meu orientador de Iniciação

Científica, por me inspirar desde cedo. E ao professor Leopoldo Texeira, meu orientador de

TG, por toda a orientação e confiança.

AGRADECIMENTOS

Agradeço pelo apoio financeiro do CNPq durante minha Iniciação Científica e da PRO-

GRAD durante minha atuação como monitora na disciplina de Introdução à Programação.

Essas experiências foram essenciais para minha formação acadêmica e pessoal.

ABSTRACT

This work aims to update a prior systematic review focusing on the application of eye-

tracking methodologies in software engineering, particularly concerning code smells. Code

smells are features within source code that are di!cult to read, understand, and maintain, yet

their direct harmfulness remains insu!ciently explored. Through a comprehensive literature

review, 28 papers were identified showcasing recent advancements in eye-tracking studies

from 2015 onward, highlighting new insights and limitations. It was observed that eye-trackers

are used to study model comprehension, code comprehension, debugging, and traceability

tasks. Based on these insights, we propose an experimental design employing eye-tracking

methodology to analyze the harmful e"ects of code smells.

Keywords: software engineering, code smell, eye-tracking.

SUMÁRIO

1 INTRODUCTION . 7

2 METHODS . 8

2.1 RESEARCH QUESTIONS . 8

2.2 LITERATURE SEARCH . 8

2.2.1 Search Query . 9

2.3 SELECTION . 9

2.4 SNOWBALLING . 10

2.5 DATA COLLECTION AND ANALYSIS 10

2.6 STUDY QUALITY AND RISK OF BIAS 12

3 DISCUSSION . 14

3.1 RQ1. HOW MANY STUDIES HAVE BEEN PUBLISHED USING EYE-

TRACKERS IN SOFTWARE ENGINEERING RESEARCH SINCE THE PRE-

VIOUS SLR? . 14

3.2 RQ2. WHAT RESEARCH TOPICS HAVE BEEN EXPLORED IN RECENT

EYE-TRACKING STUDIES WITHIN SOFTWARE ENGINEERING? 17

3.2.1 Code Comprehension . 17

3.2.2 Debugging . 19

3.2.3 Model Comprehension . 19

3.2.4 Traceability . 19

3.3 RQ3: HOW HAVE RECENT EYE-TRACKING STUDIES CONTRIBUTED

TO ADVANCEMENTS IN SOFTWARE ENGINEERING? 20

3.3.1 Source code vs. natural text . 20

3.3.2 Navigation strategies . 21

3.3.3 Developer Background . 22

3.3.4 Code layouts, complex code structure, and syntax 23

3.4 RQ4. IN WHAT WAYS HAVE RESEARCHERS USED EYE-TRACKERS

TO COLLECT AND VISUALIZE QUANTITATIVE MEASUREMENTS IN

RECENT STUDIES? . 25

3.4.1 Eye-tracking metrics . 25

3.4.2 Experiment design . 26

3.4.3 Artifacts . 30

3.5 RQ5: WHAT ARE THE KEY LIMITATIONS IDENTIFIED IN RECENT

EYE-TRACKING STUDIES WITHIN SOFTWARE ENGINEERING? 31

3.5.1 Participant Selection . 31

3.5.2 Technical limitations with Eye-Tracker technology 32

3.6 RQ6: WHAT EYE-TRACKERS ARE MOST FREQUENTLY USED IN RE-

CENT EYE-TRACKING STUDIES? . 33

3.7 RQ7: HOW COULD EYE-TRACKING METHODOLOGY BE USED TO

ANALYZE THE HARMFULNESS OF CODE SMELLS? 34

3.7.1 Hypothesis . 35

3.7.2 Procedure . 35

3.7.3 Artifacts . 35

3.7.4 Study Variables . 35

3.7.5 Participants . 36

4 CONCLUSION . 37

REFERÊNCIAS . 38

.1 SUMMARY OF SELECTED STUDIES 47

.2 SUMMARY OF PAPERS REMOVED DURING ELIGIBILITY ASSESSMENT 55

.3 TABLE OF SELECTED STUDIES . 58

7

1 INTRODUCTION

Over recent years, eye-tracking technology has emerged as a valuable tool in software

engineering research [1]. It allows researchers to capture and analyze the visual attention of

developers while they look at di"erent parts of the code, which can provide insights into the

cognitive process of our brains during code development.

According to Martin Fowler, "code smell is a surface indication that usually corresponds to a

deeper problem in the system."(M. Fowler. Refactoring: Improving the design of existing code,

2018) [2]. These smells are indicators of potential issues in the code that may not necessarily

be bugs, but can lead to problems in the future, such as challenges for maintainability and

increased complexity. They signal the need for further investigation in order to proactively

prevent these issues.

8

2 METHODS

2.1 RESEARCH QUESTIONS

The following research questions were based on the study executed by Sharafi et al. [3].

The current study updates these questions and further examines their validity on the context

of determining the harmfulness of code smells.

• RQ1. How many studies have been published using eye-trackers in software engineering

research since the previous SLR?

• RQ2. What research topics have been explored in recent eye-tracking studies within

software engineering?

• RQ3: How have recent eye-tracking studies contributed to advancements in software

engineering?

• RQ4: In what ways have researchers used eye-trackers to collect and visualize quantitative

measurements in recent studies?

• RQ5: What are the key limitations identified in recent eye-tracking studies within soft-

ware engineering?

• RQ6: What eye-trackers are most frequently used in recent eye-tracking studies?

• RQ7: How could eye-tracking methodology be used to analyze the harmfulness of code

smells?

To address them, a systematic literature review of recent studies on the usage of eye-

tracking in software engineering will be conducted. This methodical approach will enable us

to critically analyze existing research to identify gaps, contradictions, and potential areas for

further exploration.

2.2 LITERATURE SEARCH

With Sharafi et al. [3] Systematic Literature Review (SLR) as a starting point for con-

tributions on the usage of eye-tracking on software engineering studies, this work replicates

9

the search process. However, instead of using Engineering Village, an aggregation platform

that integrates with multiple database portals, the search was performed directly on the ACM

Digital Library and the IEEE Xplore Digital Library. These databases were chosen due to their

comprehensive collections of articles in the fields of computer science and engineering and

also because they o"er a free alternative to Engineering Village. The search was performed on

August of 2023.

2.2.1 Search Query

The search query was based on the query coined by Sharafi et al. [3], with the goal of

maintaining consistency and ensuring comparability of results. Such search query aims to

identify a comprehensive set of relevant studies using various terms related to eye-tracking

technology and its application in software engineering. The final query used was as follows:

Código Fonte 2.1 – Search Query
1 ("eye -track*" OR "eye track" OR "RFV" OR "Restricted Focus Viewer")

AND ("source code" OR program* OR UML OR model* OR representation *)

3 AND (comprehen* OR understand* OR debug* OR navigat* OR read* OR scan*)

Due to IEEE Xplore’s limitation of allowing a maximum of 9 wildcards in a single query, the

original query was split into two parts to ensure comprehensive coverage. The results of both

queries were combined to ensure that there were no missing results from the query variations.

To avoid duplicating the work of the SLR previously executed by Sharafi et al. [3], only

studies published after 2015 were included.

2.3 SELECTION

To ensure that only relevant studies were captured, records were selected through a sys-

tematic filtering process. Relevant studies are defined as primary studies using eye-tracking

technology to study and investigate software engineering activities.

Initially, only the title and abstracts of the records were screened to remove studies that

meet the following exclusion criteria:

• Not published in English.

• Papers in grey literature (i.e. not peer-reviewed).

10

• Do not utilize an eye-tracker.

• Unrelated to software engineering.

Following this, full-text articles were reviewed to refine the selection. Therefore, studies

were removed that:

• Were not a primary study (i.e. studies that do not collect and analyze new data)

• Do not primarily use eye-tracking as research approach

• Do not investigate software engineering activities (i.e. the purpose of the study should

be to research or analyze behavior, performance, or cognitive aspects.)

2.4 SNOWBALLING

For each reviewed paper, references within it were systematically reviewed, beginning with

the titles and publication venues (conference proceedings or journal names) and, where neces-

sary, a full-text analysis was conducted to ascertain relevance.

2.5 DATA COLLECTION AND ANALYSIS

Given the diversity of the included studies in terms of approaches, a narrative synthesis

was conducted to summarize and analyze the findings.

Through the search on the digital libraries, the following information was obtained: authors,

publication year, publisher, publication title, DOI, abstract, keywords, and author a!liations.

After reading and analyzing each paper, the following data and key insights were obtained:

• Programming language used in the study

• Number and types of participants (students, faculty members, and/or professionals)

• Eye-trackers utilized in the research

• Objective: the goal of the paper

• Methodology: how the experiment was conducted

• Results: what were the key findings

11

• Limitations: what limited or added challenges to the study

• Variables: which metrics were used to track the experiment

If any piece of information was missing from a paper, it was noted as "not mentioned".

After analyzing the refined selection, there was a noticeable lack of standard when it comes

to describing the eye-tracking metrics. Thus, in this research, the nomenclature adopted was

the one used by Bryn Farnsworth in Eye Tracking: The Complete Pocket Guide [4], that defines

key eye-tracking metrics as:

• Gaze points: The raw data points that indicate a snapshot of where the user is looking

on the visual stimulus at any given moment.

• Fixations: A series of gaze points within a close time range.

• Saccades: Movements between di"erent fixations, when the eyes move and pause across

di"erent sequences.

• Areas of Interest: Specific regions of a displayed stimulus predefined by researchers.

• Perceptual span: number of characters we can recognize on each fixation, between each

saccade.

• Fixation Duration: how long the user spent looking at a specific area of interest.

• Fixation sequences: The order and pattern of fixations over time.

• Time to First Fixation: The time it took for the user to first look at a specific area of

interest from the experiment for the first time.

• Regression: The number of times the gaze returns to a previously viewed area, indicating

re-reading or reevaluation behavior.

• Heat Maps: Visual representations that uses color coding to show the frequency and

duration of gaze points on di"erent areas.

• Pupil Size: Measurements of the dilation or constriction of the pupils.

• Blinks: The delay and frequency of blinks.

12

The extracted information was used to identify a set of categories, then such components

were aggregated to highlight the similarities, di"erences, and patterns across the studies. Based

on the topic domains proposed by Sharafi et al. [3], the studies were classified accordingly to

the following tasks performed by participants:

• Code Comprehension: How programmers read and understand source code.

• Model Comprehension: How developers interpret models and diagrams.

• Debugging: How developers identify, locate, and fix bugs in the software.

• Traceability: How developers create and follow links between related artifacts — like

requirements, designs, and code — to maintain and improve software systems.

• Collaborative interactions: How developers coordinate, share attention, and interact du-

ring collaborative work.

2.6 STUDY QUALITY AND RISK OF BIAS

One potential threat to the validity of this study lies in the absence of an additional checker.

That could introduce bias or oversight, impacting the overall reliability of the results.

During the selection process of this study, in order to avoid manual mistakes, a new tool

called "Review Wise"(Fig. 1) was developed to help analyze papers in an interactive way.

This tool allows for a one-by-one interactive screening of the search query results, allowing

papers to be flagged with a custom list of exclusion criteria. The user is then presented with

a curated list of papers that do not match any exclusion criteria, and also includes a list of

removed papers alongside their exclusion reasons. Review Wise is an open source software and

is available at https://github.com/naftalima/review-wise.

Figura 1 – Screenshot of Review Wise: a user interface showing the classification tool for applying the exclusion
criteria on papers.

13

During the data extraction process, the relatively small number of selected studies and the

objective nature of the extracted data helped to reduce errors.

Additionally, the review process was executed on two separate occasions, allowing an in-

terval between revisions. The goal behind this was to assert a more objective evaluation of the

selected studies.

14

3 DISCUSSION

3.1 RQ1. HOW MANY STUDIES HAVE BEEN PUBLISHED USING EYE-TRACKERS IN

SOFTWARE ENGINEERING RESEARCH SINCE THE PREVIOUS SLR?

A systematic literature review was conducted using digital libraries to identify recent stu-

dies employing eye-trackers in software engineering research. The initial search returned 134

matches from the ACM Digital Library and 215 matches from the IEEE Xplore Digital Library.

To gather novel insights, building upon the previous systematic literature review by Sharafi

et al. [3], the search was refined to include only studies published after 2015, resulting in the

exclusion of 78 records from ACM and 42 records from IEEE.

Subsequently, a data wrangling process was conducted to ensure consistency in naming con-

ventions and formatting, thereby facilitating the identification and removal of duplicate entries.

Seven duplicate records were identified and eliminated, resulting in a total of 222 unique re-

cords. The entire data wrangling process is fully replicable and available at https://github.com/naftalima/tg.

During the preliminary screening, 162 records were excluded. Approximately 8% of these

records were removed because they did not utilize eye-trackers, and approximately 67% per-

tained to unrelated fields such as mathematics, geoinformatics, bioinformatics, and robotics.

No records were excluded due to grey literature or language constraints, likely because the

search was limited to well-focused databases.

Finally, the 60 remaining records underwent an in-depth, full-text analysis to further refine

the selection. The remaining papers were discussed in more detail in Appendix .2. This process

led to the exclusion of 35 additional records for the following reasons:

• Five papers did not collect new empirical data; instead, they reviewed existing literature,

discussed future research directions, or revisited earlier studies. [5] [6] [7] [8] [9]

• One study did not primarily use eye-tracking as a research method, employed eye-tracking

only as a supplement to fNIRS to investigate the impact of source code readability on

cognitive load [10].

• Twenty-nine papers focused on tools, frameworks, or modeling visual attention rather

than directly addressing software engineering activities. [11] [12] [13] [14] [15] [16] [17]

15

[18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36]

[37] [38] [39]

A snowballing approach was applied and 3 additional studies were identified [40] [41] [42].

Consequently, a total of 28 relevant studies using eye-trackers in software engineering

research have been identified since the previous SLR. Figure 2 summarizes the Systematic

Literature Review process performed.

16

Figura 2 – Systematic Literature Review workflow

17

3.2 RQ2. WHAT RESEARCH TOPICS HAVE BEEN EXPLORED IN RECENT EYE-TRACKING

STUDIES WITHIN SOFTWARE ENGINEERING?

resented on the methods. Since there were no papers identified as Collaborative Interacti-

ons, the remaining selection was categorized into four distinct groups: Code Comprehension,

Debugging, Model Comprehension, and Traceability.

As shown in Fig. 3, code comprehension has been the most consistently studied topic do-

main throughout the years, with a notable peak in 2019. However, there is a visible decline in

overall publications from 2020 onward (Fig. 4), which may be partially attributed to the impact

of the COVID-19 pandemic on human subjects research [71], such as eye-tracking research.

Figura 3 – Number of studies published per topic domain per year, based on selected papers from the SLR.

3.2.1 Code Comprehension

Code comprehension studies explore how programmers read and interpret source code.

Within this research domain, a total of 17 studies analyze navigation strategies, emphasizing

18

Figura 4 – Number of studies published per year, based on selected papers from the SLR.

specific aspects of code or programmer backgrounds.

Researchers have investigated how code structure, formatting, and syntax influence reada-

bility. Studies on code structure evaluate how code organization a"ects readability, considering

factors such as repetitive code [43], nesting and the use of do-while loops [44], and source

code linearity—particularly its impact on readability and reading order [45].

Code formatting pertains to the visual presentation and style, including elements such

as indentation levels [46] and comparing crowded versus spaced layouts [47]. Code syntax

analyses examine specific syntactic elements like LINQ’s query-based versus method-based

syntax [48], the use of di"erent language constructs [49], and the e"ects of polyglot program-

ming (using multiple languages within a single project) versus monoglot programming (using

a single language) [50].

Additionally, studies have considered how programmers learn new language concepts, in-

cluding specialized executable specification languages such as CASM [51].

Moreover, researchers investigate the reading process by comparing how programmers com-

prehend source code versus natural language text [40] [52] and how they interact with code

during practical tasks. Such tasks include: leveraging Stack Overflow discussions for code

comprehension and summarization [42] [53]; examining how correlated information is better

display in supporting documentation, such as the example captured in [54] that explores how

embedding security information within the API documentation influences developers’ unders-

19

tanding and their ability to write secure code. Furthermore, researchers extend their analysis

by considering developers themselves by investigating the influence of programming expertise

when comparing navigation strategies employed by novices and experts [45] [40] [52] [55], as

well as dyslexia on code comprehension [47].

3.2.2 Debugging

These seven debugging studies explore how programmers identify and resolve software bugs

by examining the influence of both the nature of issues and developer experience on debugging

strategies.

Research in this area includes studies analyzing how programmers navigate through code

to locate errors, investigating the e"ectiveness of error messages in facilitating debugging [56],

evaluating di"erent debugging approaches depending on the type of bug [57], and examining

challenges when debugging software with variability introduced by conditional compilation

flags [58] [59]. Further studies consider the role of developer expertise by comparing the de-

bugging strategies employed by novices and experts [60], as well as between high and low

performing programmers [61].

3.2.3 Model Comprehension

Two studies on model comprehension explore how developers interpret models and dia-

grams. Andrzejewska and Stoli#ska [62] evaluate e!ciency when solving algorithmic tasks

presented as pseudocode versus flowcharts, and Störrle [63] investigating how modelers read

and interpret UML diagrams.

3.2.4 Traceability

Research on traceability investigates how developers track or maintainlinks between related

artifacts—such as requirements, designs, and code— over time or across systems. Kevic [41]

examines developers’ detailed behavior while performing software change tasks.

20

3.3 RQ3: HOW HAVE RECENT EYE-TRACKING STUDIES CONTRIBUTED TO ADVAN-

CEMENTS IN SOFTWARE ENGINEERING?

3.3.1 Source code vs. natural text

Programmers read source code less linearly than natural text

Peachock et al. [40] replicated Busjahn et al. [52] original study, and both found that

programmers read source code significantly less linearly than natural language text, with more

regressions. However, they diverged on whether programming expertise influences reading

behavior.

Clear documentation with code examples enhances comprehension

Saddler et al. [53] show how developers leverage Stack Overflow discussions. This study found

that clear text combined with code examples draws the most attention, while longer paragraphs

reduce focus on comments. It also found that developers who are used to use Stack Overflow

spend less time on querying for possible solutions and navigate through the website faster.

Peterson et al. [42] describes how developers primarily focus on the body text and code

snippets of Stack Overflow posts, and they rarely view titles, tags, or votes, highlighting that

text and code are most valuable for tasks like code summarization.

E!ective documentation includes relevant examples

In Gorski et al [54], developers were found to mainly focus on code examples and skim the

rest of the documentation. In this experiment, the API specification was presented alongside

information on how to make access to such API in a secure manner. What was discovered was

that placement matters: security info near functional examples is more e"ective in promoting

secure integration for applications onboarding to this API. As a guidance, API providers should

embed security guidance near core examples to support secure coding.

21

Code reviews require attention to comments and error lines

Chandrika et al [66] compares the visual attention of subjects with programming skills and

subjects without programming skills, and recognizes the eye-tracking traits required for source

code review. During this, it was found that the attention span on error lines and comments,

as well as better code coverage, was a key aspect for code review.

3.3.2 Navigation strategies

Developers do not read the code linearly from top to bottom, but explored

lines are connected through code flow

Peterson et al. [49] highlight that developers focus their attention on certain small sections

of the code instead of scanning the entire program. Kevic et al. [41] observed that while

performing a change task, developers focus on small portions of methods, and explored lines

are typically connected through data flow.

Rodeghero et al. [64] and Abid et al. [65] agree that developers do not read code linearly

from top to bottom, but rather selectively allocate their attention to specific code elements

or areas.

Rodeghero et al. [64] finds that programmers read method signatures more closely than

method bodies or invocations and states that developers pay the least attention to control flow

statements. Abid et al. [65] argues the opposite, suggesting programmers pay more attention

to the method body rather than the signature, and instead observed programmers frequently

revisit control flow terms, indicating more repeated interactions with control flow structures.

The e!ort of reading error messages is comparable to reading source

code

Barik et al. [56] provides empirical justification for the need to improve compiler error mes-

sages. The developers are reading error messages, but spent a substantial amount of time

understanding these error messages, despite the fact that most of them had only a single error

present.

There is a more e!ective debugging strategy for each type of bug

22

Peng et al. [57], found that for data flow bugs, it was more helpful to dedicate attention to

how the data values change during debugging. As for control flow bugs, the better approach

was to dedicate attention at the source code to understand the logical structure.

Katona et al. [67], found di"erent debugging approaches were observed: those who at-

tempted to find errors with many minor changes, and those who first interpreted the source

code.

Lin et al. [61], found that low-performance students tend to debug programs aimlessly,

while high-performance students debug programs in a more logical manner.

Structured flowcharts improve task-solving e"ciency and accuracy

Andrzejewska and Stoli#ska [62] found solving tasks with a structured flowchart required

less time for re-examining the algorithm and data, leading to more accurate outcomes than

when using pseudocode. The study indicate that the use of structured flowcharts in various

educational materials, including textbooks, should be encouraged.

Diagram complexity and layout flaws increase cognitive load

Störrle et al. [63] found that ordinary diagram elements and layout flaws increased cognitive

load. Also, no patterns were identified for activity and class diagrams with poor layout, use

case diagrams regardless of layout quality, or expertise levels.

3.3.3 Developer Background

Experience modulates the linearity of reading

According to Beelders [55], novices read code more linearly, focusing on method signatures

and comments, whereas experts e!ciently skip irrelevant parts, focusing more on complex

logic. Peachock et al. [40] and Busjahn et al.’s [52] diverged on that, but there were some

di"erences in their experiment design.

In replication, Peachock et al. [40] used code snippets with di"erent programming lan-

guages, and a di"erent definition of expertise, that did not invite expert programmers, but

advanced undergraduate students, which they refer to as “non-novice” participants. As a result,

no significant di"erences in reading behavior between novices and non-novices were found.

23

Nivala et al. [60] found that on error finding tasks, novice developers spent more time

reading the code, while experts identified issues sooner and spent more time describing the

error.

The type of language variant, polyglot or monoglot programming, can

increase understanding depending on the type of task

In Peterson [50], the type of language variant (monoglot, embedded SQL, or hybrid) did not

significantly a"ect how long participants took to complete the tasks. Developer gaze behavior

— used as a proxy for cognitive e"ort and processing — was influenced by the language

context, particularly depending on the type of task.

Prior concept knowledge outweighs experience in understanding new pro-

gramming languages

According to Simhandl et al. [51], foreknowledge of specific programming concepts rather than

the programming experience is decisive in learning new programming language concepts.

Dyslexia does not reduce programming ability

McChesney and Bond [47] investigate how code layout (crowded vs. spaced) impact code

comprehension, particularly in programmers with dyslexia. The experiment found no signifi-

cant evidence that programmers with dyslexia are more negatively a"ected by code crowding

compared to non-dyslexic programmers. Therefore, dyslexia is not a detrimental condition

when it comes to programming, at least in terms of code reading and program comprehension.

3.3.4 Code layouts, complex code structure, and syntax

Linearity of source code modulates reading behavior

Peitek et al. [45] decided to investigate the influence of the linearity of the source code itself.

It also found that experience modulates the reading behavior of participants; however, the

linearity of source code is a major driving factor determining programmers’ reading order, even

more important than experience.

24

Developers renewed focus on the last segment of the repeated code

According to Jbara and Feitelson [43], when in repeated segments, developers tend to invest

more e"ort on the initial repetitions, and less on successive ones. They also renewed focus on

the last segment of the function which is not part of the repetitive segments.

Indentation is simply a matter of task and style

Bauer et al. [46] conducted a non-exact replication of a Miara et al. [68] previous study using

Java code snippets with varying indentation levels, and did not find any e"ect of indentation

depth on program comprehension, perceived di!culty, or visual e"ort.

Developers focus more on code that follows readability rules

Peterson et al. [44] showed two versions of the same code, one following the readability

rule and one not. When asked to choose, developers focused more on code snippets that

followed readability rules, especially for avoiding nested if statements, showing their preference.

Specifically, minimizing nesting and avoiding do-while loops.

Debugging time increases with variability in code

Santos and Sant’ Anna [59] shows that comprehensibility was more negatively a"ected when

a variable which is shared between features was defined in a point far from where it was used.

Melo et al. [58] found that for data flow bugs, it was more helpful to dedicate attention to how

the data values change during debugging. And for control flow bugs, to dedicate attention at

the source code to understand the logic structure.

Method syntax is more di"cult than Query Syntax

Katona et al. [48] evaluated Microsoft’s statement that LINQ query syntax-based queries are

easier for people to read and interpret than method syntax-based ones. It found that for

method syntax, the information retrieval was more di!cult and less e!cient, requiring more

mental e"ort to determine the query results.

25

3.4 RQ4. IN WHAT WAYS HAVE RESEARCHERS USED EYE-TRACKERS TO COLLECT

AND VISUALIZE QUANTITATIVE MEASUREMENTS IN RECENT STUDIES?

3.4.1 Eye-tracking metrics

In these studies, researchers collect eye-tracking metrics, as described in the methods

section, to provide valuable insights into visual attention and cognitive load during tasks.

To understand visual attention:

• Fixations: Indicates where the user is focusing their attention for extended periods.

• Fixation sequences: Indicates how information is processed and the cognitive strategy

used

• Fixation Duration: Reveals how long the user remains focused on a specific area (AOI).

• Time to First Fixation: Indicates how quickly an element in a visual display captures the

user’s attention.

• Heat Maps: Shows the distribution of visual attention across the screen. Areas with more

attention will be highlighted in “hotter"colors.

• Saccades: Quick and e!cient saccades may suggest a smooth reading process, while

long or irregular saccades might indicate di!culty in processing information.

• Regression: indicating re-reading or reevaluation behavior.

To understand Cognitive Load and Mental E"ort:

• Pupil Size: Variations in pupil size can suggest cognitive load and mental e"ort. Larger

pupils often indicate greater mental processing.

• Blinks: Increased blink frequency can be a sign of mental strain or stress.

• Fixation sequences: Complex sequences may indicate a higher cognitive load as users

shift attention to process di"erent areas.

As shown in Table 1, the most frequently reported being fixations, fixation duration, and

fixation sequences.

26

Tabela 1 – Eye-tracking metrics used in the reviewed studies

Metric Count
Fixations 16
Fixation duration 14
Fixation sequences 9
Saccades 8
Heat maps 5
Pupil dilation 4
Regression 3
Time to First Fixation (TFF) 1
Perceptual span 1
Blink rate 1

3.4.2 Experiment design

Across the debugging studies, participants were asked to examine source code to identify

programming errors, although specific tasks varied according to each research design. While

not all studies included every step shown, the flowchart (Fig. 5) summarizes the core activities

participants engaged in across experiments.

Figura 5 – Flowchart summarizing developer actions during debugging tasks in selected studies.

• In [Barik et al., 2017] [56], the task was time-constrained, giving developers five minutes

27

to identify compiler-related issues.

• In [Katona et al., 2019] [67], participants had to debug an insertion sort algorithm with

hidden errors (Incorrect Loop Condition, Premature Loop Termination and Incorrect

Index Assignment).

• In [Nivala et al., 2016] [60], participants were given eight C code snippets—five with

common bugs such as surface-level errors, control flow issues, plan structure bugs, and

structure interaction problems—and were asked to identify and describe errors, or write

the expected output if none were found.

• In [Peng et al., 2016] [57], participants had to debug a heap sort algorithm with control

flow bugs, and a quick sort algorithm with data flow bugs in an IDE with marked interest

areas: debug thread, variables, code, outline, and console.

• In [Melo et al., 2017] [58] and Santos and Sant’ Anna [59], participants were briefly

trained on variability and feature-related concepts before identifying bugs tied to feature

dependencies. In [Melo et al., 2017] [58], this task was followed by interviews in which

participants reflected on their debugging experiences and strategies.

• In [Lin et al., 2016] [61], participants had to debug two programs (including iterative

and recursive structures) while their performance was graded. The researchers used this

grade to divided participants into high and low-performing groups based on debugging

e!ciency.

• In [Chandrika et al., 2017] [66], participants were asked to review source code with the

intention of findings bugs, and talk aloud the error line and description.

Across the code comprehension studies, participants were asked to read source code and

perform tasks such as summarizing the code, predicting program outputs, answering com-

prehension questions, or comparing and evaluating alternative code versions. While not all

studies included every step shown, the flowchart (Fig. 6) summarizes the core activities parti-

cipants engaged in across experiments.

• In Jbara and Feitelson [43], researchers followed a between-subject design to assign

developers tasks with di"erent versions of a program. Participants were asked if they

understood what the program did, and to evaluate the code di!culty on a 5-point scale

along with the evaluation reason.

28

Figura 6 – Flowchart summarizing developer actions during code comprehension tasks in selected studies.

• In Peterson et al. [44], participants were shown two versions of the same code, one

following the readability rule and one not, and had to choose between the two and

justify their preference.

• In McChesney and Bond [47], participants had to read and understand Java programs

(presented in either crowded or spaced formats), then describe the function of each

program verbally, rate their own confidence in understanding, and were also evaluated

by researchers on their comprehension.

• Participants had to create summaries explaining the code functionality or usage:

– In Rodeghero et al. [64], participants had to read Java methods and write a sum-

mary for each one using a custom interface during a controlled, one-hour session.

– In Peterson et al. [42], participants were asked to create summaries describing

the implementation and usage of two methods and two classes, using both the

Java source code and Stack Overflow (starting from the homepage) to search for

relevant information.

– In Abid et al. [65], developers had to read methods from a pool of 63 Java methods

of 5 di"erent open source programs, and write a summary for them.

– In Saddler et al. [53], participants were tasked with summarizing four API elements

— two methods and two classes — using Stack Overflow resources, without access

to the source code.

29

• Participants had to answer comprehension questions:

– In Peachock et al. [40], participants read three natural language texts and seven

small C++ programs, then answered randomized comprehension questions (sum-

mary, multiple choice, or factual) and self-assessed di!culty.

– In Busjahn et al. [52], developers were asked one of three possible questions: (1)

write a summary of the code, (2) write the value of a variable after program

execution, or (3) answer a multiple-choice question about the program.

– In Simhandl et al. [51], the participants had to read and complete sentences about

the specification of the code.

• Participants had to predict the output of the code:

– In Peitek et al. [45], researchers conducted a non-exact replication of a previous

study comparing the reading order of novices and expert programmers. Participants

had to read the code snippet and give the final output of the code.

– In Peterson et al. [49], participants had to read the three programs and were

assigned one of three comprehension questions about the program’s output, a

short answer, or a multiple choice question.

– In Bauer et al. [46], researchers conducted a non-exact replication of a previous

study using Java code snippets with varying indentation levels. Participants had

five minutes to read the code snippet and give the final output of the code. At the

end, participants rated the di!cult of the code snippets.

– In Beelders [55], developers had to read a short code snippet from four programs

with similar complexity, size, and structures, but with di"erent indentation levels

applied.

• Participants had up to a minute to observe each query.

• Participants read code/documentation and performed implementation-based tasks:

– In Peterson [50], participants had to solve real database manipulation tasks using

di"erent programming language variants.

– In Gorski et al. [54], participants had to perform a real-world integration task with

di"ering documentation, integrating the Google Maps API and configuring a CSP

policy using varied documentation.

30

Across the model comprehension studies, participants were asked to comprehend and

analyze visual and textual abstractions:

• In Andrzejewska and Stoli#ska [62], participants had to solve algorithmic tasks presen-

ted as pseudocode and structured flowcharts, focusing on true-false and output-answer

assignments.

• In Störrle et al. [63], users were presented various UML diagrams to analyze.

Related to traceability, in Kevic et al. [41], to investigate developers’ detailed behavior

while performing a change task, the participants had to work on three bugs for a total of 60

minutes.

3.4.3 Artifacts

Among the various artifacts analyzed, Java was the most widely used, appearing across

multiple studies and topic domains (see Fig. 7). In contrast, studies focusing on model com-

prehension often relied on more abstract or visual artifacts, such as UML diagrams, flowcharts,

or English pseudocode, which are more appropriate for representing high-level system models

and design concepts.

Several of the top-used artifacts—Java, C++, C#, and JavaScript—share a common trait:

they are object-oriented programming languages. This preference is likely influenced by both

the structure and reusability o"ered by these languages, as well as the participants’ familiarity.

As illustrated in Fig. 8, studies focused particularly on students who had prior exposure to

such languagues through academic programming courses.

31

Figura 7 – The type of artifact used, grouped by Topic Domain.

Figura 8 – Distribution of Programming Artifacts Across Participant Types in Research Studies

3.5 RQ5: WHAT ARE THE KEY LIMITATIONS IDENTIFIED IN RECENT EYE-TRACKING

STUDIES WITHIN SOFTWARE ENGINEERING?

3.5.1 Participant Selection

Studies frequently had small sample sizes, lacked diversity, leading to questionable gene-

ralizability. As illustrated in Fig. 9, the majority involved between 20 and 30 participants.

Larger studies were uncommon—only two included more than 50 participants, with the largest

involving 114 participants [62]. Notably, one-third (33%) of the studies had fewer than 20

32

participants, with the smallest including just 9 participants [51].

Figura 9 – Distribution of total participants across selected studies.

Figure 10 highlights a lack of diversity in participant expertise across the reviewed literature.

Most studies primarily involved students, which appeared in 24 out of 28 studies. Professional

participants were included in about 12 of those studies, although typically in smaller numbers

compared to students. Only one study included faculty members, and two studies did not

report participant backgrounds at all.

In the majority of those studies, experts were defined as individuals who had already

completed a bachelor’s degree and/or is a professional with experience in the field. Peachock

et al. [40] was an exception, categorizing senior computer science students as experts, causing

di!culties in detecting nuanced di"erences between novices and experts.

The language background or familiarity of the participants with the chosen Integrated

Development Environment (IDE) might have influenced the comprehension and introduced an

additional cognitive load. In Gorski et al [54], it was observed that developers mainly focus

on code examples and skim through the rest of the documentation. However, in this study,

the participants were German native speakers reading English documentation, which may have

influenced comprehension and introduced an additional cognitive load.

3.5.2 Technical limitations with Eye-Tracker technology

Eye-tracking data was often incomplete due to equipment limitations or restricted tracking

environments.

33

Figura 10 – Composition of study participants by type across reviewed studies.

Commodity eye trackers had lower sampling rates, which prevented detailed line-level or

word-level analyses. Those eye-trackers struggled with accurately mapping gaze data to se-

mantic code elements during dynamic contexts like actual code editing or writing. Studies

commonly select small, non-scrollable code snippets or restricted participants from performing

realistic actions such as freely browsing code or using external search engines, significantly

limiting generalizability.

Eye-trackers also struggled with participants wearing glasses, and data quality was often

compromised, resulting in discarded datasets. Some studies performed an occasionally neces-

sary manual correction of fixation data, introducing potential bias and inaccuracies.

3.6 RQ6: WHAT EYE-TRACKERS ARE MOST FREQUENTLY USED IN RECENT EYE-

TRACKING STUDIES?

In the reviewed studies, non-intrusive trackers were predominantly used. The screen-based

(remote) eye-trackers do not require the participant to wear any equipment, and the tracker

records the eye movements at a distance while mounted below or placed close to a computer

or screen. Intrusive eye-trackers are mounted onto lightweight eyeglass frames, and record eye

activity from a close range. Only Simhandl et al [51] used such type of tracker.

As shown in Figure 11, Tobii emerged as the most popular manufacturer for tracking

34

visual attention of participant in relation to programming. Tobii’s models were used in 14

studies, including the X60, TX300, EyeX, and X3-120 models. SMI appears as the second

most common, featured in 5 studies, employing models such as iViewX, REDm, RED 4, and

RED Professional; GazePoint GP3 was reported in 3 studies; and EyeTribe, Eyelink, and Pupil

Labs with one study each. Three studies did not specify which device was used.

Figura 11 – The version of eye-tracker used, grouped by manufacturer

Several eye-trackers have been discontinued: EyeTribe ceased operations following its ac-

quisition by Meta in 2016 [70]; SMI ceased all eye-tracking products and support following its

acquisition by Apple in 2017 [69]; Tobii models such as the X60, TX300, EyeX, and X3-120

are no longer manufactured and have been succeeded by newer devices.

3.7 RQ7: HOW COULD EYE-TRACKING METHODOLOGY BE USED TO ANALYZE THE

HARMFULNESS OF CODE SMELLS?

Martin Fowler defined “Refactoring"as “a change made to the internal structure of soft-

ware to make it easier to understand and cheaper to modify without changing its observable

behavior"(M. Fowler. Refactoring: Improving the design of existing code, 2018) [2]. Thus, a

refactored code leads to savings in terms of time and resources. Understanding the harmfulness

of code smells could assist programmers in identifying opportune moments for refactoring.

To harmfulness of code smells, in Lima et al. [72], it was adopted the categories CLEAN,

SMELLY, BUGGY, and HARMFUL:

35

• CLEAN: code with no smells or bugs

• SMELLY: code with smells

• BUGGY: code with one or more defects or bugs that have been reported

• HARMFUL: a SMELLY code element having one or more bugs reported

3.7.1 Hypothesis

Debugging harmful code requires more cognitive e"ort for error-finding compared to de-

bugging buggy code.

3.7.2 Procedure

Use eye-tracking technology to measure visual attention and cognitive load while partici-

pants look for errors in di"erent snippets of code. Compare the performance and correctness

across the buggy and harmful programs.

3.7.3 Artifacts

Buggy and Harmful code snippets in Python language, due to its popularity and simplicity

for novices, especially given the impact of language familiarity as a limitation commonly noted

on this study’s analyzed papers.

3.7.4 Study Variables

These metrics will be obtained through the use of eye-tracker to support the experiment:

• Fixation sequences: to understand participants’ cognitive behavior while looking at the

segment containing an error, as well as shifting attention to areas with smells

• Fixation Duration: to measure the complexity of understanding and fixing the error

• Time to First Fixation: to quantify how long the participant takes to find the error

36

• Heat Maps: to understand visual focus on the smell and how it impacts the time spent

on error finding

• Saccades: to identify the reading process while switching between the smelly and normal

code

• Pupil Size and Blinks: to measure the cognitive e"ort while being exposed to the smell

Additionally, we will consider whether the participant locates the bug and the time it took.

3.7.5 Participants

Based on the documents reviewed as part of this updated SLR, it is possible to notice

that the majority of the studies use a sample of 30 participants or less. In order to abide to

the standard set by these previous researches, it is proposed that future studies use a diverse

group with at least 40 participants, 20 novices and 20 experts.

37

4 CONCLUSION

The systematic literature review presented here rea!rms eye-tracking technology as an

e"ective means of investigating developer interactions and cognitive processes related to soft-

ware engineering activities. The review shows advancements in research methodologies since

2015 and limitations such as small participant groups, limited diversity, and technological

constraints of eye-tracking equipment. Recognizing these insights, an eye-tracking experi-

ment targeting the assessment of code smells’ harmfulness was proposed, through measurable

cognitive load and debugging performance metrics. Future work will focus on executing this

proposed experimental setup to empirically understand the impact of code smells, o"ering

practical implications for code refactoring practices. Additionally, further enhancements to the

Review Wise tool can expand its capabilities across additional phases of systematic literature

reviews.

38

REFERÊNCIAS

“Exploring Software Development with Eye Tracking: An Interview with Dr. Bonita Sharif.”

Tobii, https://www.tobii.com/resource-center/research-spotlight-interviews/exploring-

software-development-with-eye-tracking

M. Fowler (2018). Refactoring: Improving the design of existing code. Addison-Wesley.

Sharafi, Zohreh and Soh, Zephyrin and Gueh’eneuc, Yann-Ga. "A systematic literature review

on the usage of eye-tracking in software engineering", in Inf. Softw. Technol., 2015, pp.

79–107, doi: 10.1016/j.infsof.2015.06.008

Bryn Farnsworth (2022). Eye Tracking: The Complete Pocket Guide. iMotions.

https://imotions.com/blog/learning/best-practice/eye-tracking/

D. G. Feitelson, “Eye Tracking and Program Comprehension”, in 2019 IEEE/ACM 6th

International Workshop on Eye Movements in Programming (EMIP), 2019, pp. 1-1, doi:

10.1109/EMIP.2019.00008

N. Mansoor, “Empirical Assessment of Program Comprehension Styles in Programming

Language Paradigms”, in 2021 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), 2021, pp. 1-2, doi: 10.1109/VL/HCC51201.2021.9576333

Q. Mi, J. Keung, J. Huang, and Y. Xiao, “Using Eye Tracking Technology to Analyze the

Impact of Stylistic Inconsistency on Code Readability”, in 2017 IEEE International Conference

on Software Quality, Reliability and Security Companion (QRS-C), 2017, pp. 579-580, doi:

10.1109/QRS-C.2017.102

U. Obaidellah, A. L. M. Haek, and P. C. Cheng, “A Survey on the Usage of Eye-Tracking in

Computer Programming”, in Unknown Conference, 2018, pp. xx-xx, doi: 10.1145/3145904

K. Kevic, “Recognizing Relevant Code Elements during Change Task Navigation”, in 2016

IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C),

2016, pp. 851-854, doi: Unknown DOI

S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The E"ect of Poor Source

Code Lexicon and Readability on Developers’ Cognitive Load”, in 2018 IEEE/ACM 26th

39

International Conference on Program Comprehension (ICPC), 2018, pp. 286-28610, doi:

Unknown DOI

A. Abbad-Andaloussi, T. Sorg, and B. Weber, “Estimating Developers’ Cognitive

Load at a Fine-grained Level Using Eye-tracking Measures”, in 2022 IEEE/ACM 30th

International Conference on Program Comprehension (ICPC), 2022, pp. 111-121, doi:

10.1145/3524610.3527890

M. Ahrens, K. Schneider, and M. Busch, “Attention in Software Maintenance: An Eye

Tracking Study”, in 2019 IEEE/ACM 6th International Workshop on Eye Movements in

Programming (EMIP), 2019, pp. 2-9, doi: 10.1109/EMIP.2019.00009

Z. Ahsan, and U. Obaidellah, “Predicting expertise among novice programmers with prior

knowledge on programming tasks”, in 2020 Asia-Pacific Signal and Information Processing

Association Annual Summit and Conference (APSIPA ASC), 2020, pp. 1008-1016, doi:

Unknown DOI

J. Behler, P. Weston, D. T. Guarnera, B. Sharif, and J. I. Maletic, “iTrace-Toolkit:

A Pipeline for Analyzing Eye-Tracking Data of Software Engineering Studies”, in 2023

IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings

(ICSE-Companion), 2023, pp. 46-50, doi: 10.1109/ICSE-Companion58688.2023.00022

B. Clark, and B. Sharif, “iTraceVis: Visualizing Eye Movement Data Within Eclipse”, in

2017 IEEE Working Conference on Software Visualization (VISSOFT), 2017, pp. 22-32, doi:

10.1109/VISSOFT.2017.30

F. Deitelho", and A. Harrer, “Towards a Dynamic Help System: Support of Learners

During Programming Tasks Based Upon Historical Eye-Tracking Data”, in 2018 IEEE 18th

International Conference on Advanced Learning Technologies (ICALT), 2018, pp. 77-78, doi:

10.1109/ICALT.2018.00116

F. Deitelho", A. Harrer, and A. Kienle, “The Influence of Di"erent AOI Models in Source

Code Comprehension Analysis”, in 2019 IEEE/ACM 6th International Workshop on Eye

Movements in Programming (EMIP), 2019, pp. 10-17, doi: 10.1109/EMIP.2019.00010

S. Fakhoury, D. Roy, H. Pines, T. Cleveland, C. S. Peterson, V. Arnaoudova, B. Sharif,

and J. Maletic, “gazel: Supporting Source Code Edits in Eye-Tracking Studies”, in 2021

40

IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings

(ICSE-Companion), 2021, pp. 69-72, doi: 10.1109/ICSE-Companion52605.2021.00038

H. Hijazi, J. Duraes, R. Couceiro, J. Castelhano, R. Barbosa, J. Medeiros, M. Castelo-

Branco, P. de Carvalho, and H. Madeira, “Quality Evaluation of Modern Code Reviews

Through Intelligent Biometric Program Comprehension”, in IEEE Transactions on Software

Engineering, 2023, pp. 626-645, doi: 10.1109/TSE.2022.3158543

C. Ioannou, P. Bækgaard, E. Kindler, and B. Weber, “Towards a tool for visualizing

pupil dilation linked with source code artifacts”, in 2020 Working Conference on Software

Visualization (VISSOFT), 2020, pp. 105-109, doi: 10.1109/VISSOFT51673.2020.00016

P. Jermann, and K. Sharma, “Gaze as a Proxy for Cognition and Communication”, in 2018

IEEE 18th International Conference on Advanced Learning Technologies (ICALT), 2018, pp.

152-154, doi: 10.1109/ICALT.2018.00043

T. Kano, R. Sakagami, and T. Akakura, “Modeling of cognitive processes based on gaze tran-

sition during programming debugging”, in 2021 IEEE 3rd Global Conference on Life Sciences

and Technologies (LifeTech), 2021, pp. 412-413, doi: 10.1109/LifeTech52111.2021.9391940

J. Katona, A. Kovari, I. Heldal, C. Helgesen, C. Costescu, A. Rosan, A. Hathazi, S. Thill, and

R. Demeter, “Recording Eye-tracking Parameters during a Program Source-code Debugging

Example”, in 2019 10th IEEE International Conference on Cognitive Infocommunications

(CogInfoCom), 2019, pp. 335-338, doi: 10.1109/CogInfoCom47531.2019.9089941

K. Kevic, “Using Eye Gaze Data to Recognize Task-Relevant Source Code Better and More

Fine-Grained”, in 2017 IEEE/ACM 39th International Conference on Software Engineering

Companion (ICSE-C), 2017, pp. 103-105, doi: 10.1109/ICSE-C.2017.152

X. Li, W. Liu, H. Liu, J. Xu, and W. Cheng, “Task-oriented Analysis on Debugging

Process Based on Eye Movements and IDE Interactions”, in 2021 16th International

Conference on Computer Science & Education (ICCSE), 2021, pp. 379-384, doi:

10.1109/ICCSE51940.2021.9569438

X. Li, W. Liu, W. Wang, J. Zhong, and M. Yu, “Assessing Students’ Behavior in Error

Finding Programming Tests: An Eye-Tracking Based Approach”, in 2019 IEEE International

Conference on Engineering, Technology and Education (TALE), 2019, pp. 1-6, doi:

10.1109/TALE48000.2019.9225906

41

L. Liu, W. Liu, X. Li, W. Wang, and W. Cheng, “Eye-tracking Based Performance Analysis

in Error Finding Programming Test”, in 2020 15th International Conference on Computer

Science & Education (ICCSE), 2020, pp. 477-482, doi: 10.1109/ICCSE49874.2020.9201882

N. Al Madi, C. S. Peterson, B. Sharif, and J. I. Maletic, “From Novice to Expert: Analysis

of Token Level E"ects in a Longitudinal Eye Tracking Study”, in 2021 IEEE/ACM 29th

International Conference on Program Comprehension (ICPC), 2021, pp. 172-183, doi:

10.1109/ICPC52881.2021.00025

K. Mangaroska, K. Sharma, M. Giannakos, H. Trætteberg, and P. Dillenbourg, “Gaze

Insights into Debugging Behavior Using Learner-Centred Analysis”, in Proceedings of the

8th International Conference on Learning Analytics and Knowledge, 2018, pp. 350-359, doi:

10.1145/3170358.3170386

J. Mucke, M. Schwarzkopf, and J. Siegmund, “REyeker: Remote Eye Tracker”, in

ACM Symposium on Eye Tracking Research and Applications, 2021, pp. xx-xx, doi:

10.1145/3448018.3457423

D. Roy, S. Fakhoury, and V. Arnaoudova, “VITALSE: Visualizing Eye Tracking and Biometric

Data”, in 2020 IEEE/ACM 42nd International Conference on Software Engineering:

Companion Proceedings (ICSE-Companion), 2020, pp. 57-60, doi: Unknown DOI

T. R. Sha"er, J. L. Wise, B. M. Walters, S. C. Müller, M. Falcone, and B. Sharif, “ITrace:

Enabling Eye Tracking on Software Artifacts within the IDE to Support Software Engineering

Tasks”, in Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, 2015, pp. 954-957, doi: 10.1145/2786805.2803188

Z. Sharafi, I. Bertram, M. Flanagan, and W. Weimer, “Eyes on Code: A Study on Developers’

Code Navigation Strategies”, in IEEE Transactions on Software Engineering, 2022, pp.

1692-1704, doi: 10.1109/TSE.2020.3032064

B. Sharif, A. Begel, and J. I. Maletic, “Conducting Eye Tracking Studies in Software

Engineering - Methodology and Pipeline”, in 2023 IEEE/ACM 45th International Conference

on Software Engineering: Companion Proceedings (ICSE-Companion), 2023, pp. 340-341,

doi: 10.1109/ICSE-Companion58688.2023.00097

42

B. Sharif, C. Peterson, D. Guarnera, C. Bryant, Z. Buchanan, V. Zyrianov, and J. Maletic,

“Practical Eye Tracking with iTrace”, in 2019 IEEE/ACM 6th International Workshop on Eye

Movements in Programming (EMIP), 2019, pp. 41-42, doi: 10.1109/EMIP.2019.00015

B. Sharif, and J. I. Maletic, “iTrace: Overcoming the Limitations of Short Code Examples in

Eye Tracking Experiments”, in 2016 IEEE International Conference on Software Maintenance

and Evolution (ICSME), 2016, pp. 647-647, doi: 10.1109/ICSME.2016.61

T. Sorg, A. Abbad-Andaloussi, and B. Weber, “Towards a Fine-grained Analysis of

Cognitive Load During Program Comprehension”, in 2022 IEEE International Conference

on Software Analysis, Evolution and Reengineering (SANER), 2022, pp. 748-752, doi:

10.1109/SANER53432.2022.00092

L. Zhang, J. Sun, C. Peterson, B. Sharif, and H. Yu, “Exploring Eye Tracking Data on Source

Code via Dual Space Analysis”, in 2019 Working Conference on Software Visualization

(VISSOFT), 2019, pp. 67-77, doi: 10.1109/VISSOFT.2019.00016

V. Zyrianov, D. T. Guarnera, C. S. Peterson, B. Sharif, and J. I. Maletic, “Automated

Recording and Semantics-Aware Replaying of High-Speed Eye Tracking and Interaction Data

to Support Cognitive Studies of Software Engineering Tasks”, in 2020 IEEE International

Conference on Software Maintenance and Evolution (ICSME), 2020, pp. 464-475, doi:

10.1109/ICSME46990.2020.00051

P. Peachock, N. Iovino, and B. Sharif, “Investigating Eye Movements in Natural Language and

C++ Source Code - A Replication Experiment”, in Augmented Cognition. Neurocognition

and Machine Learning, 2017, pp. xx-xx, doi: 10.1007/978-3-319-58628-1_17

K. Kevic, B. Walters, T. Sha"er, B. Sharif, D. Shepherd, and T. Fritz, “Tracing

software developers’ eyes and interactions for change tasks”, in Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering, 2015, pp. xx-xx, doi:

10.1145/2786805.2786864

C. Peterson, J. Saddler, N. Halavick, and B. Sharif, “A Gaze-Based Exploratory Study on the

Information Seeking Behavior of Developers on Stack Overflow”, in Extended Abstracts of

the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. xx-xx, doi:

10.1145/3290607.3312801

43

A. Jbara, and D. G. Feitelson, “How Programmers Read Regular Code: A Controlled

Experiment Using Eye Tracking”, in 2015 IEEE 23rd International Conference on Program

Comprehension, 2015, pp. 244-254, doi: 10.1109/ICPC.2015.35

C. S. Peterson, K. -i. Park, I. Baysinger, and B. Sharif, “An Eye Tracking Perspective on

How Developers Rate Source Code Readability Rules”, in 2021 36th IEEE/ACM International

Conference on Automated Software Engineering Workshops (ASEW), 2021, pp. 138-139, doi:

10.1109/ASEW52652.2021.00037

N. Peitek, J. Siegmund, and S. Apel, “What Drives the Reading Order of Programmers?

An Eye Tracking Study”, in 2020 IEEE/ACM 28th International Conference on Program

Comprehension (ICPC), 2020, pp. 342-353, doi: 10.1145/3387904.3389279

J. Bauer, J. Siegmund, N. Peitek, J. C. Hofmeister, and S. Apel, “Indentation: Simply

a Matter of Style or Support for Program Comprehension?”, in 2019 IEEE/ACM 27th

International Conference on Program Comprehension (ICPC), 2019, pp. 154-164, doi:

10.1109/ICPC.2019.00033

I. McChesney, and R. Bond, “The E"ect Of Crowding On The Reading Of Program Code For

Programmers With Dyslexia”, in 2021 IEEE/ACM 29th International Conference on Program

Comprehension (ICPC), 2021, pp. 300-310, doi: 10.1109/ICPC52881.2021.00036

J. Katona, A. Kovari, I. Heldal, C. Costescu, A. Rosan, R. Demeter, S. Thill, and T. Stefanut,

“Using Eye- Tracking to Examine Query Syntax and Method Syntax Comprehension in

LINQ”, in 2020 11th IEEE International Conference on Cognitive Infocommunications

(CogInfoCom), 2020, pp. 000437-000444, doi: 10.1109/CogInfoCom50765.2020.9237910

C. S. Peterson, J. A. Saddler, T. Blascheck, and B. Sharif, “Visually Analyzing Students’

Gaze on C++ Code Snippets”, in 2019 IEEE/ACM 6th International Workshop on Eye

Movements in Programming (EMIP), 2019, pp. 18-25, doi: 10.1109/EMIP.2019.00011

C. S. Peterson, “Investigating the E"ect of Polyglot Programming on Developers”, in 2021

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2021, pp.

1-2, doi: 10.1109/VL/HCC51201.2021.9576404

G. Simhandl, P. Paulweber, and U. Zdun, “Design of an Executable Specification Language

Using Eye Tracking”, in 2019 IEEE/ACM 6th International Workshop on Eye Movements in

Programming (EMIP), 2019, pp. 37-40, doi: 10.1109/EMIP.2019.00014

44

T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B. Sharif,

and S. Tamm, “Eye Movements in Code Reading: Relaxing the Linear Order”, in 2015

IEEE 23rd International Conference on Program Comprehension, 2015, pp. 255-265, doi:

10.1109/ICPC.2015.36

J. A. Saddler, C. S. Peterson, S. Sama, S. Nagaraj, O. Baysal, L. Guerrouj, and B. Sharif,

“Studying Developer Reading Behavior on Stack Overflow during API Summarization

Tasks”, in 2020 IEEE 27th International Conference on Software Analysis, Evolution and

Reengineering (SANER), 2020, pp. 195-205, doi: 10.1109/SANER48275.2020.9054848

P. L. Gorski, S. Möller, S. Wiefling, and L. L. Iacono, ““I just looked for the solution!”On

Integrating Security-Relevant Information in Non-Security API Documentation to Support

Secure Coding Practices”, in IEEE Transactions on Software Engineering, 2022, pp.

3467-3484, doi: 10.1109/TSE.2021.3094171

T. Beelders, “Eye-tracking analysis of source code reading on a line-by-line basis”, in 2022

IEEE/ACM 10th International Workshop on Eye Movements in Programming (EMIP), 2022,

pp. 1-7, doi: Unknown DOI

T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill, and C. Parnin, “Do

Developers Read Compiler Error Messages?”, in 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE), 2017, pp. 575-585, doi: 10.1109/ICSE.2017.59

F. Peng, C. Li, X. Song, W. Hu, and G. Feng, “An Eye Tracking Research on

Debugging Strategies towards Di"erent Types of Bugs”, in 2016 IEEE 40th Annual

Computer Software and Applications Conference (COMPSAC), 2016, pp. 130-134, doi:

10.1109/COMPSAC.2016.57

J. Melo, F. B. Narcizo, D. W. Hansen, C. Brabrand, and A. Wasowski, “Variability through

the Eyes of the Programmer”, in 2017 IEEE/ACM 25th International Conference on Program

Comprehension (ICPC), 2017, pp. 34-44, doi: 10.1109/ICPC.2017.34

D. Santos, and C. Sant’ Anna, “How Does Feature Dependency A"ect Configurable

System Comprehensibility?”, in 2019 IEEE/ACM 27th International Conference on Program

Comprehension (ICPC), 2019, pp. 19-29, doi: 10.1109/ICPC.2019.00016

45

M. Nivala, F. Hauser, J. Mottok, and H. Gruber, “Developing visual expertise in software

engineering: An eye tracking study”, in 2016 IEEE Global Engineering Education Conference

(EDUCON), 2016, pp. 613-620, doi: 10.1109/EDUCON.2016.7474614

Y. -T. Lin, C. -C. Wu, T. -Y. Hou, Y. -C. Lin, F. -Y. Yang, and C. -H. Chang, “Tracking

Students’ Cognitive Processes During Program Debugging—An Eye-Movement Approach”,

in IEEE Transactions on Education, 2016, pp. 175-186, doi: 10.1109/TE.2015.2487341

M. Andrzejewska, and A. Stoli#ska, “Do Structured Flowcharts Outperform Pseudocode?

Evidence From Eye Movements”, in IEEE Access, 2022, pp. 132965-132975, doi:

10.1109/ACCESS.2022.3230981

H. Störrle, N. Baltsen, H. Christo"ersen, and A. M. Maier, “Poster: How Do Modelers Read

UML Diagrams? Preliminary Results from an Eye-Tracking Study”, in 2018 IEEE/ACM 40th

International Conference on Software Engineering: Companion (ICSE-Companion), 2018, pp.

396-397, doi: Unknown DOI

P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An Eye-Tracking Study of Java

Programmers and Application to Source Code Summarization”, in IEEE Transactions on

Software Engineering, 2015, pp. 1038-1054, doi: 10.1109/TSE.2015.2442238

N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I. Maletic, “Developer Reading

Behavior While Summarizing Java Methods: Size and Context Matters”, in 2019 IEEE/ACM

41st International Conference on Software Engineering (ICSE), 2019, pp. 384-395, doi:

10.1109/ICSE.2019.00052

K. R. Chandrika, J. Amudha, and S. D. Sudarsan, “Recognizing eye tracking traits for source

code review”, in 2017 22nd IEEE International Conference on Emerging Technologies and

Factory Automation (ETFA), 2017, pp. 1-8, doi: 10.1109/ETFA.2017.8247637

J. Katona, A. Kovari, C. Costescu, A. Rosan, A. Hathazi, I. Heldal, C. Helgesen, S. Thill, and

R. Demeter, “The Examination Task of Source-code Debugging Using GP3 Eye Tracker”, in

2019 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom),

2019, pp. 329-334, doi: 10.1109/CogInfoCom47531.2019.9089952

R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman, “Program indentation and

comprehensibility,” Communications of the ACM, vol. 26, no. 11, pp. 861–867, 1983.

46

Matney, L. "Apple Acquires SMI Eye-Tracking Company."TechCrunch, 26 June 2017,

https://techcrunch.com/2017/06/26/apple-acquires-smi-eye-tracking-company/.

Constine, J. "Oculus Acquires Eye-Tracking Startup The Eye Tribe."TechCrunch, 28 December

2016, https://techcrunch.com/2017/06/26/apple-acquires-smi-eye-tracking-company/.

Korbel, J.O., Stegle, O. E"ects of the COVID-19 pandemic on life scientists. Genome Biol

21, 113 (2020). https://doi.org/10.1186/s13059-020-02031-1

Rodrigo Lima, Jairo Souza, Baldoino Fonseca, Leopoldo Teixeira, Rohit Gheyi, Márcio

Ribeiro, Alessandro Garcia, and Rafael de Mello. 2020. Understanding and Detecting Harmful

Code. In Proceedings of the XXXIV Brazilian Symposium on Software Engineering (SBES

’20). Association for Computing Machinery

47

.1 SUMMARY OF SELECTED STUDIES

[Peterson et al, 2019a] [42]

C. Peterson, J. Saddler, N. Halavick, and B. Sharif (2019). A Gaze-Based Exploratory Study

on the Information Seeking Behavior of Developers on Stack Overflow. In Extended Abstracts

of the 2019 CHI Conference on Human Factors in Computing Systems"

Eye-tracker Tobii X-60

Artifacts Java

Participants 15 Students

[Peterson et al, 2021] [44]

C. S. Peterson, K. -i. Park, I. Baysinger, and B. Sharif (2021). An Eye Tracking Perspective on

How Developers Rate Source Code Readability Rules. In 2021 36th IEEE/ACM International

Conference on Automated Software Engineering Workshops (ASEW)"

Eye-tracker Tobii X60

Artifacts Java

Participants 14 Students and Professionals

[Peng et al, 2016] [57]

F. Peng, C. Li, X. Song, W. Hu, and G. Feng (2016). An Eye Tracking Research on Debugging

Strategies towards Di"erent Types of Bugs. In 2016 IEEE 40th Annual Computer Software

and Applications Conference (COMPSAC)"

Eye-tracker Tobii X60

Artifacts Java

Participants 20 Students

[Rodeghero et al, 2015] [64]

P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan (2015). An Eye-Tracking Study of

Java Programmers and Application to Source Code Summarization. In IEEE Transactions on

48

Software Engineering"

Eye-tracker Tobii TX300

Artifacts Java

Participants 10 Professionals

[Simhandl et al, 2019] [51]

G. Simhandl, P. Paulweber, and U. Zdun (2019). Design of an Executable Specification Lan-

guage Using Eye Tracking. In 2019 IEEE/ACM 6th International Workshop on Eye Movements

in Programming (EMIP)"

Eye-tracker Pupil Labs

Artifacts CASM

Participants 9 Not Mentioned

[Abid et al, 2019] [65]

N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I. Maletic (2019). Developer Reading

Behavior While Summarizing Java Methods: Size and Context Matters. In 2019 IEEE/ACM

41st International Conference on Software Engineering (ICSE)"

Eye-tracker Tobii X60

Artifacts Java

Participants 18 Students and Professionals

[Nivala et al, 2016] [60]

M. Nivala, F. Hauser, J. Mottok, and H. Gruber (2016). Developing visual expertise in software

engineering: An eye tracking study. In 2016 IEEE Global Engineering Education Conference

(EDUCON)"

Eye-tracker SMI

Artifacts C

Participants 23 Students;Professionals

49

[Barik et al, 2017] [56]

T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill, and C. Parnin (2017). Do

Developers Read Compiler Error Messages?. In 2017 IEEE/ACM 39th International Conference

on Software Engineering (ICSE)"

Eye-tracker GazePoint GP3

Artifacts Java

Participants 56 Students

[Andrzejewska and Stoli#ska, 2022] [62]

M. Andrzejewska, and A. Stoli#ska (2022). Do Structured Flowcharts Outperform Pseudo-

code? Evidence From Eye Movements. In IEEE Access"

Eye-tracker SMI iViewX

Artifacts English Pseudocode; Flowcharts

Participants 114 Students

[Busjahn et al, 2015] [52]

T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B. Sharif, and S.

Tamm (2015). Eye Movements in Code Reading: Relaxing the Linear Order. In 2015 IEEE

23rd International Conference on Program Comprehension"

Eye-tracker SMI REDm

Artifacts Java

Participants 20 Students and Professionals

[Beelders, 2022] [55]

T. Beelders (2022). Eye-tracking analysis of source code reading on a line-by-line basis. In

2022 IEEE/ACM 10th International Workshop on Eye Movements in Programming (EMIP)

50

Eye-tracker Not Mentioned

Artifacts C#

Participants 40 Students and Professionals

[Santos and Sant’ Anna, 2019] [59]

D. Santos, and C. Sant’ Anna (2019). How Does Feature Dependency A"ect Configurable

System Comprehensibility?. In 2019 IEEE/ACM 27th International Conference on Program

Comprehension (ICPC)"

Eye-tracker Tobii EyeX

Artifacts C++

Participants 30 Students and Professionals

[Jbara and Feitelson, 2015] [43]

A. Jbara, and D. G. Feitelson (2015). How Programmers Read Regular Code: A Controlled

Experiment Using Eye Tracking. In 2015 IEEE 23rd International Conference on Program

Comprehension"

Eye-tracker EyeTribe

Artifacts Java

Participants 20 Students;Faculty Members

[Bauer et al, 2019] [46]

J. Bauer, J. Siegmund, N. Peitek, J. C. Hofmeister, and S. Apel (2019). Indentation: Simply

a Matter of Style or Support for Program Comprehension?. In 2019 IEEE/ACM 27th Interna-

tional Conference on Program Comprehension (ICPC)"

Eye-tracker Tobii EyeX

Artifacts Java

Participants 22 Students and Professionals

51

[Peachock et al, 2017] [40]

P. Peachock, N. Iovino, and B. Sharif (2017). Investigating Eye Movements in Natural Lan-

guage and C++ Source Code - A Replication Experiment. In Augmented Cognition. Neuro-

cognition and Machine Learning"

Eye-tracker Tobii X60

Artifacts C++

Participants 33 Students

[Peterson, 2021] [50]

C. S. Peterson (2021). Investigating the E"ect of Polyglot Programming on Developers. In

2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Eye-tracker Not Mentioned

Artifacts Java and SQL

Participants 31 Students and Professionals

[Störrle et al, 2018] [63]

H. Störrle, N. Baltsen, H. Christo"ersen, and A. M. Maier (2018). Poster: How Do Modelers

Read UML Diagrams? Preliminary Results from an Eye-Tracking Study. In 2018 IEEE/ACM

40th International Conference on Software Engineering: Companion (ICSE-Companion)"

Eye-tracker SMI RED 4

Artifacts UML

Participants 28 Not Mentioned

[Chandrika et al, 2017] [66]

K. R. Chandrika, J. Amudha, and S. D. Sudarsan (2017). Recognizing eye tracking traits for

source code review. In 2017 22nd IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA)"

52

Eye-tracker SMI Red Professional

Artifacts C#

Participants 26 Professionals

[Saddler et al, 2020] [53]

J. A. Saddler, C. S. Peterson, S. Sama, S. Nagaraj, O. Baysal, L. Guerrouj, and B. Sharif

(2020). Studying Developer Reading Behavior on Stack Overflow during API Summarization

Tasks. In 2020 IEEE 27th International Conference on Software Analysis, Evolution and Re-

engineering (SANER)"

Eye-tracker Tobii X60

Artifacts Java

Participants 30 Students

[McChesney and Bond, 2021] [47]

I. McChesney, and R. Bond (2021). The E"ect Of Crowding On The Reading Of Program

Code For Programmers With Dyslexia. In 2021 IEEE/ACM 29th International Conference on

Program Comprehension (ICPC)"

Eye-tracker Tobii X3-120

Artifacts Java

Participants 31 Students

[Katona et al, 2019] [67]

J. Katona, A. Kovari, C. Costescu, A. Rosan, A. Hathazi, I. Heldal, C. Helgesen, S. Thill, and

R. Demeter (2019). The Examination Task of Source-code Debugging Using GP3 Eye Tracker.

In 2019 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)"

Eye-tracker GazePoint GP3

Artifacts C#

Participants 16 Students

53

[Kevic et al, 2015] [41]

K. Kevic, B. Walters, T. Sha"er, B. Sharif, D. Shepherd, and T. Fritz (2015). Tracing soft-

ware developers’ eyes and interactions for change tasks. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering"

Eye-tracker Tobii X-60

Artifacts Java

Participants 22 Students;Professionals

[Lin et al, 2016] [61]

Y. -T. Lin, C. -C. Wu, T. -Y. Hou, Y. -C. Lin, F. -Y. Yang, and C. -H. Chang (2016). Tracking

Students’ Cognitive Processes During Program Debugging—An Eye-Movement Approach. In

IEEE Transactions on Education"

Eye-tracker Eyelink 1000

Artifacts C

Participants 38 Students

[Katona et al, 2020] [48]

J. Katona, A. Kovari, I. Heldal, C. Costescu, A. Rosan, R. Demeter, S. Thill, and T. Stefanut

(2020). Using Eye- Tracking to Examine Query Syntax and Method Syntax Comprehension in

LINQ. In 2020 11th IEEE International Conference on Cognitive Infocommunications (CogIn-

foCom)"

Eye-tracker GazePoint GP3

Artifacts C

Participants 34 Students

[Melo et al., 2017] [58]

J. Melo, F. B. Narcizo, D. W. Hansen, C. Brabrand, and A. Wasowski (2017). Variability

through the Eyes of the Programmer. In 2017 IEEE/ACM 25th International Conference on

54

Program Comprehension (ICPC)"

Eye-tracker Tobii EyeX

Artifacts Java

Participants 20 Students;Professionals

[Peterson et al., 2019b] [49]

C. S. Peterson, J. A. Saddler, T. Blascheck, and B. Sharif (2019). Visually Analyzing Stu-

dents’ Gaze on C++ Code Snippets. In 2019 IEEE/ACM 6th International Workshop on Eye

Movements in Programming (EMIP)"

Eye-tracker Tobii X60

Artifacts C++

Participants 17 Students

[Peitek et al., 2020] [45]

N. Peitek, J. Siegmund, and S. Apel (2020). What Drives the Reading Order of Program-

mers? An Eye Tracking Study. In 2020 IEEE/ACM 28th International Conference on Program

Comprehension (ICPC)"

Eye-tracker Tobii EyeX

Artifacts Java

Participants 31 Students

[Gorski et al., 2022] [54]

P. L. Gorski, S. Möller, S. Wiefling, and L. L. Iacono (2022). “I just looked for the solution!”On

Integrating Security-Relevant Information in Non-Security API Documentation to Support Se-

cure Coding Practices. In IEEE Transactions on Software Engineering"

55

Eye-tracker Not Mentioned

Artifacts Javascript

Participants 49 Students

.2 SUMMARY OF PAPERS REMOVED DURING ELIGIBILITY ASSESSMENT

• Fakhoury et al. [10] only employ eye-tracking as a supplementary to fNIRS and not

the primary method of investigation. It investigated the impact of poor source code

lexicon and readability on developers’ cognitive load by combining fNIRS (functional

Near Infrared Spectroscopy) brain imaging and eye-tracking data to map cognitive load

to specific code elements.

• Studies that did not collect or analyze new empirical data:

– Feitelson [5] was only a working session at a conference, not presenting original

research;

– Mansoor [6] and Mi et al. [7] only outline future research plans;

– Obaidellah et al. [8] performed a survey that synthesizes and reviews existing lite-

rature;

– Kevic [9] analyzed his previous research [41] that conducts an exploratory work

using eye-tracking to create a model that can predict relevant code elements for

better tool support; this was later included in the snowballing step.

• Studies that had other primary goals and did not focus directly on software engineering

activities:

– Propose a new approach to compute, represent, or predict visual attention patterns:

∗ Jermann and Sharma [21] present a novel dialogue coding scheme that exa-

mines the relationship between gaze patterns, dialogue, and performance in

spatially distributed (remote) pair programming tasks.

∗ Zyrianov et al. [39], Zhang et al. [38], Sharafi et al. [33], and Kevic [24] present

novel experimental designs to capture realistic software maintenance processes

56

in terms of software complexity and IDE interactions, allowing for scrolling,

editing, and navigating large databases.

∗ Abbad-Andaloussi et al. [11] proposes an approach to estimate the mentally

demanding parts of source code using eye-tracking and machine learning.

∗ Madi et al. [28] proposes a machine learning model that uses token frequency

and token length in reading source code to estimate programming proficiency

and classify novices and experts.

∗ Hijazi et al. [19] collects biometric data and uses Artificial Intelligence techni-

ques to estimate the engagement and how well the reviewer has covered and

understood the di"erent regions of the code under review.

∗ Ahsan and Obaidellah [13] uses machine learning to predict expertise among

novice programmers based on their performance and gaze metrics.

∗ Kano et al. [22] analyzes gaze transitions during programming debugging to

create a transition diagram based on a Markov process and a Z-test to re-

present how gaze moves between di"erent components and code blocks in a

programming editor.

∗ Deitelho" et al. [17] proposes one AOI model and compares the influence of

those di"erent AOI models from a methodical point of view.

∗ Sorg et al. [37] proposes a fine-grained analysis of cognitive load during pro-

gram comprehension to identify critical parts of the code (PoCs).

∗ Ioannou et al. [20] proposes to create a tool that visualizes cognitive proces-

ses linked to specific source code artifacts. The paper uses eye-trackers to

capture pupil dilation and fixation as indicators of cognitive load during code

comprehension.

∗ To help teachers evaluate students’ debugging skills and identify areas for

improvement, Li et al. [26] proposes an eye-tracking based assessing framework

for evaluating students’ performance during error-finding tasks. Afterwards,

Liu et al. [27] proposes a new metric, matched ratio of program execution,

to describe the proportion of gaze path matching with program execution.

Subsequently, Li et al. [25] proposes a task-oriented analysis method, which

divides the data analysis work into two levels, focusing on the relevant visual

AoI and the actions in the same task.

57

– Demonstrating or showcasing eye-tracking tools, systems, or frameworks specifically

for data collection or visualization purposes:

∗ Katona et al. [23] details the usage of Gazepoint GP3 eye-tracker and OGAMA

software to record and analyze eye-motion parameters during a program source-

code debugging taks. It emphasizes the recording process, calibration and data

collection to understand how subjects solve errors in an algorithm.

∗ Sha"er et al. [32], Sharif and Maletic [36], and Sharif et al. [35] introduce

iTrace, an Eclipse plugin designed to record developers’ eye movements while

they work on software tasks.

∗ Sharif et al. [34] provides practical guidelines in collecting and analyzing eye-

tracking data through the iTrace software pipeline.

∗ Fakhoury et al. [18] introduces iTrace-Atom and gazel, tools designed to

enhance eye-tracking studies in software engineering by supporting source code

edits. It addresses the problem of traditional eye-tracking tools struggling with

tracking gaze data during source code editing, which limits the scope of rese-

arch.

∗ Behler et al. [14] introduces iTrace-Toolkit, a community eye-tracking infras-

tructure designed to standardize and simplify the analysis process, making it

easier for researchers to handle large datasets and focus on relevant data for

their studies.

∗ Clark and Sharif [15] introduces iTraceVis, an eye-tracking visualization com-

ponent for the iTrace plugin in Eclipse.

∗ Mucke et al. [30] introduces REyeker, a remote eye-tracking tool.

∗ Roy et al. [31] introduces VITALSE, a tool designed for visualizing combined

eye-tracking and biometric data mapped to source code elements.

– Proposing an eye-tracking-based framework designed to enhance developer pro-

ductivity:

∗ Ahrens et al. [12] proposes an approach to help developers navigate and un-

derstand unfamiliar code more e"ectively. It uses eye-tracking to identifying

areas of high and low attention during software maintenance tasks. Transfer

attention by heatmaps in the code’s background, and coloring the class name

in the package explorer to represent class switches.

58

∗ Mangaroska et al. [29] presents a mirroring tool and analyzes how it influences

users’ performance in a debugging task; It applies multimodal user-centered

analysis to design learning strategies that enhance programming and debugging

skills.

∗ Deitelho" and Harrer [16] shows a work-in-progress proposal to use eye-tracking

data to create a dynamic help system for learners solving programming tasks.

.3 TABLE OF SELECTED STUDIES

59

Tabela 2 – Topic domains, eye-tracker, artifacts, and participants (S = Students, FM = Faculty members, P
= Professionals, and NM = Not mentioned) for the selected papers.

Code Topic Domain Eye-trackers Artifacts Participants

Peterson et al., 2019a Code Comprehension Tobii X60 Java 15 S
Peterson et al., 2021 Code Comprehension Tobii X60 Java 9 S; 5 P
Peng et al., 2016 Debugging Tobii X60 Java 20 S
Rodeghero et al., 2015 Code Comprehension Tobii TX300 Java 10 P
Simhandl et al., 2019 Code Comprehension Pupil Labs CASM 9 NM
Abid et al., 2019 Code Comprehension Tobii X60 Java 13 S; 5 P
Nivala et al., 2016 Debugging SMI C 15 S; 8 P
Barik et al., 2017 Debugging GazePoint GP3 Java 56 S
Andrzejewska and Stoli#ska, 2022 Model Comprehension SMI iViewX Pseudocode; Flowcharts 114 S
Busjahn et al., 2015 Code Comprehension SMI REDm Java 14 S; 6 P
Beelders, 2022 Code Comprehension NM C# 36 S; 4 P
Santos and Sant’ Anna, 2019 Debugging Tobii EyeX C++ 6 S; 24 P
Jbara and Feitelson, 2015 Code Comprehension EyeTribe Java 18 S; 2 FM
Bauer et al., 2019 Code Comprehension Tobii EyeX Java 15 S; 7 P
Peachock et al., 2017 Code Comprehension Tobii X60 C++ 33 S
Peterson, 2021 Code Comprehension NM Java; SQL 15 S; 16 P
Störrle et al., 2018 Model Comprehension SMI RED 4 UML 28 NM
Chandrika et al., 2017 Debugging SMI Red Professional C# 26 P
Saddler et al., 2020 Code Comprehension Tobii X60 Java 30 S
McChesney and Bond, 2021 Code Comprehension Tobii X3-120 Java 31 S
Katona et al., 2019 Debugging GazePoint GP3 C# 16 S
Kevic et al., 2015 Traceability Tobii X60 Java 12 P; 10 S
Lin et al., 2016 Debugging Eyelink 1000 C 38 S
Katona et al., 2020 Code Comprehension GazePoint GP3 C# 34 S
Melo et al., 2017 Debugging Tobii EyeX Java 7 S; 13 P
Peterson et al., 2019b Code Comprehension Tobii X60 C++ 17 S
Peitek et al., 2020 Code Comprehension Tobii EyeX Java 31 S
Gorski et al., 2022 Code Comprehension NM Javascript 49 S

	Folha de rosto
	
	Agradecimentos
	Abstract
	Sumário
	Introduction
	METHODS
	Research Questions
	Literature Search
	Search Query

	Selection
	Snowballing
	Data Collection and Analysis
	Study quality and risk of bias

	Discussion
	RQ1. How many studies have been published using eye-trackers in software engineering research since the previous SLR?
	RQ2. What research topics have been explored in recent eye-tracking studies within software engineering?
	Code Comprehension
	Debugging
	Model Comprehension
	Traceability

	RQ3: How have recent eye-tracking studies contributed to advancements in software engineering?
	Source code vs. natural text
	Navigation strategies
	Developer Background
	Code layouts, complex code structure, and syntax

	RQ4. In what ways have researchers used eye-trackers to collect and visualize quantitative measurements in recent studies?
	Eye-tracking metrics
	Experiment design
	Artifacts

	RQ5: What are the key limitations identified in recent eye-tracking studies within software engineering?
	Participant Selection
	Technical limitations with Eye-Tracker technology

	RQ6: What eye-trackers are most frequently used in recent eye-tracking studies?
	RQ7: How could eye-tracking methodology be used to analyze the harmfulness of code smells?
	Hypothesis
	Procedure
	Artifacts
	Study Variables
	Participants

	Conclusion
	Referências
	Summary of selected studies
	Summary of papers removed during eligibility assessment
	Table of Selected Studies

