

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

CIÊNCIA DA COMPUTAÇÃO

NILO BEMFICA MINEIRO CAMPOS DRUMOND

MACRO USAGE IN THE RUST PROGRAMMING LANGUAGE IN OPEN SOURCE

REPOSITORIES

Recife

2025

NILO BEMFICA MINEIRO CAMPOS DRUMOND

MACRO USAGE IN THE RUST PROGRAMMING LANGUAGE IN OPEN SOURCE
REPOSITORIES

Undergraduate thesis submitted in partial
fulfillment of the requirements for the
degree of Bachelor of Science in
Computer Science.

Advisor: Leopoldo Motta Teixeira, PhD.

Recife

2025

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Drumond, Nilo Bemfica Mineiro Campos.
 Macro usage in the Rust programming language in open source repositories
/ Nilo Bemfica Mineiro Campos Drumond. - Recife, 2025.
 43 p. : il.

 Orientador(a): Leopoldo Motta Teixeira
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Ciências da Computação - Bacharelado,
2025.

 1. Metaprogramação. 2. Macros. 3. Rust. 4. Compiladores. I. Teixeira,
Leopoldo Motta. (Orientação). II. Título.

 000 CDD (22.ed.)

NILO BEMFICA MINEIRO CAMPOS DRUMOND

MACRO USAGE IN THE RUST
PROGRAMMING LANGUAGE IN OPEN

SOURCE REPOSITORIES

Trabalho de Conclusão de Curso
apresentado ao Curso de Graduação em
Ciência da Computação da Universidade
Federal de Pernambuco, como requisito
parcial para obtenção do título de
bacharel em Ciência da Computação.

Aprovado em: _03__/_04__/__2025____

BANCA EXAMINADORA

 __

Prof. Dr. Leopoldo Motta Teixeira (Orientador)

Universidade Federal de Pernambuco

Prof. Dr. Leopoldo Motta Teixeira (Examinador Interno)

Universidade Federal de Pernambuco

Prof. Dr. Breno Alexandro Ferreira de Miranda (Examinador Interno)

Universidade Federal de Pernambuco

ABSTRACT

This work presents an analysis of macro usage in the 100 most popular open-source

Rust projects hosted on GitHub. The study aims to uncover patterns in the use of

macros, which play a critical role in the Rust ecosystem by providing

metaprogramming capabilities and improving code efficiency. By scraping project

repositories, we identify the types of macros most frequently employed, analyze

which projects rely heavily on macros, and delve into specific categories to determine

the most commonly used macros. The results offer valuable insights into macro

adoption trends in the Rust community and may assist developers in understanding

how and why macros are applied in large-scale projects.

TABLE OF CONTENTS

1. INTRODUCTION..7
1.1 Goals...7
1.2 Structure..8

2. RUST PROGRAMMING LANGUAGE...9
2.1 Overview of the Rust Programming Language... 9

2.1.1 Memory Safety and Ownership.. 9
2.1.2 Core Constructs of Rust: Structs, Enums, Impl, and Traits.................... 10

2.1.2.1 Structs.. 10
2.1.2.2 Enums.. 10
2.1.2.3 Impl Blocks... 11
2.1.2.4 Traits...11

2.2 Macros in Rust.. 11
2.2.1 Differences Between Macros and Functions.. 12
2.2.2 Declarative Macros...12
2.2.3 Procedural Macros..14

2.2.3.1 Derive Macros.. 14
2.2.3.2 Attribute Macros... 16
2.2.3.3 Function-like Macros.. 17

2.2.4 Hygiene in Macros..19
2.2.5 Advantages of Using Macros in Rust..19
2.2.6 Comparison with Macros in Other Languages..20
2.2.7 Practical Use Cases... 20

3. METHODOLOGY...21
3.1 Listing Repositories...21
3.2 Cloning Repositories...22
3.3 Identifying Rust Crates..22
3.4 Filtering Unwanted Files..23
3.5 Code Analysis... 24
3.6 Presenting Results..25

4. RESULTS AND ANALYSIS... 26
4.1 Macro Invocation Patterns.. 26

4.1.1 Most Used Built-In Attribute Macros... 27
4.1.2 Most Used User-Made Attribute Macros...28

4.2 Function-Like and Declarative Macros..29
4.3 Derive Macros...30

4.3.1 Derives per derive macro..31
4.4 Macro Definition Patterns..31

4.5 Macro Usage by Repository..32
4.5.1 Macro Invocations per Repository.. 34
4.5.2 Macro Definitions per Repository..36

5. CONCLUSION AND FUTURE RESEARCH..40
5.1 Summary of Findings.. 40
5.2 Implications for Developers...41
5.3 Limitations of the Study...41
5.4 Directions for Future Research... 42

BIBLIOGRAPHY...43

7

1. INTRODUCTION

​ Rust is a modern programming language focused on memory safety,

performance, and concurrency. One of its most powerful features is macros, which

provide metaprogramming capabilities that allow developers to generate code,

reduce redundancy, and improve maintainability. Macros are widely used in Rust

projects for code abstraction, automatic trait implementation, and compile-time

transformations.

This thesis examines the usage of macros in the 100 most popular open-source Rust

repositories hosted on GitHub. By analyzing these widely used projects, the study

aims to uncover trends in macro usage and provide insights into their role in

large-scale Rust development. Key questions explored include:

●​ Which types of macros are most commonly used?

●​ Which projects make extensive use of macros?

●​ What are the most frequently used macros within specific categories?

To conduct this analysis, a custom tool was developed in Rust, utilizing GitHub's

GraphQL API for data collection and TreeSitter for syntax analysis. The latter tool

enables detailed tracking of macro definitions and invocations, allowing for a

comprehensive analysis of how macros are employed across different projects.

The project tool is hosted on the following repository:

https://github.com/STAR-RG/rust-macro-analyzer

1.1 Goals

The primary goal of this thesis is to analyze macro usage in Rust projects, with the

following objectives:

●​ Identify the most commonly used types of macros: This will help

categorize macros by their usage frequency and reveal which types

predominate in popular projects.

●​ Determine which projects rely heavily on macros: By comparing macro

usage across projects, we aim to uncover patterns of reliance on macros in

https://github.com/STAR-RG/rust-macro-analyzer

8

different contexts. Understanding what types of projects make more use of

macros, and what types of projects define more macros, and if these two

groups are the same or not.

●​ Examine the most frequently used macros within each category:

Highlighting the most used macros will offer insights into how Rust developers

apply metaprogramming in practice.

Through this investigation, the study seeks to offer valuable information for

developers, whether they are experienced in Rust or transitioning from other

languages, providing guidance on the practical use of macros in large projects.

1.2 Structure

This thesis is organized as follows:

●​ Chapter 2 overviews the Rust programming language, focusing on macros

and metaprogramming.

●​ Chapter 3 details the methodology used to collect and analyze the data from

Rust repositories, including the tools and libraries employed.

●​ Chapter 4 presents the results, discussing macro usage trends, the most

commonly used macros, and how they are distributed across projects.

●​ Chapter 5 concludes the study by summarizing the key findings, discussing

their relevance to Rust developers, and proposing suggestions for future

research.

9

2. RUST PROGRAMMING LANGUAGE

This chapter introduces key aspects of Rust that set it apart from other programming

languages, providing essential context for understanding the analysis of macros in

later chapters.

2.1 Overview of the Rust Programming Language

Rust is a modern systems programming language known for its focus on safety,

performance, and concurrency. Initially developed by Mozilla, Rust has quickly

gained popularity in areas such as systems development, web applications, and

embedded systems. Its unique features, particularly around memory safety, make it a

powerful tool for building reliable and efficient software without sacrificing

performance.

2.1.1 Memory Safety and Ownership

One of Rust’s most distinguishing features is its ownership system, which ensures

memory safety without needing a garbage collector. Rust enforces strict rules about

how memory is accessed and managed, preventing common errors like null pointer

dereferencing or data races in concurrent code.

The key concepts of Rust’s memory model are:

●​ Ownership: Every value in Rust has a single owner, and when the owner

goes out of scope, the value is automatically deallocated. This ownership rule

ensures that memory is cleaned up safely and efficiently.

●​ Borrowing: Rust allows references to a value through borrowing, either

mutably (one mutable reference) or immutably (multiple immutable

references). These rules prevent data races at compile time, making

concurrency safer and easier to reason about.

●​ Lifetimes: Lifetimes are used to ensure that references remain valid as long

as they are needed, further guaranteeing memory safety. Rust’s compiler

checks lifetimes to prevent dangling references, where a value is dropped

while it’s still being referenced elsewhere.

10

Rust’s approach to memory management allows it to achieve performance

comparable to languages like C or C++, while providing strong guarantees against

memory safety issues.

2.1.2 Core Constructs of Rust: Structs, Enums, Impl, and Traits

Rust provides several key constructs to define and manage data and behavior. They

will be briefly explained in the following sections, as macros often are associated with

them. These constructs are: Structs, Enums, Impl Blocks and Traits.

2.1.2.1 Structs

Structs are used to define custom data types. They allow grouping related fields

together into a single entity. Although similar to Objects in other languages, structs

carry no behavior.

struct Person {​
 name: String,​
 age: u8,​
}

2.1.2.2 Enums

Enums allow defining a type that can have multiple variants. This is particularly useful

for modeling different states or conditions in a type-safe manner. Like structs, they

carry no behavior. Rust’s enums can store data in their variants, making them more

versatile than those found in languages like C or Java.

enum Message {​
 Text(String),​
 Signal(i32, i32),​
 Leave,​
}

11

2.1.2.3 Impl Blocks

The impl keyword is used to implement methods for structs and enums, allowing the

definition of functions associated with a type. This enables behavior encapsulation,

making Rust’s type system more expressive.

impl Person {​
 fn salute(&self) {​
 println!("Hello, my name is {}", self.name);​
 }​
}

2.1.2.4 Traits

Traits in Rust define shared behavior across different types. They are similar to

interfaces in other languages but provide more flexibility. A trait defines a set of

methods that types can implement. Rust’s trait system also enables polymorphism,

allowing functions to accept parameters of any type that implements a given trait.

trait Salutations {​
 fn salute(&self);​
}​
​
impl Salutations for Pessoa {​
 fn salute(&self) {​
 println!("Hello, I'm {}!", self.nome);​
 }​
}

2.2 Macros in Rust

Macros in Rust provide a mechanism for metaprogramming, allowing developers to

generate and manipulate code at compile time. They are extensively used to

eliminate redundancy, implement automatic code transformations, and enable

domain-specific abstractions. Rust provides two main categories of macros:

12

●​ Declarative Macros: These macros use pattern matching to transform input

syntax into generated code. They are primarily used to reduce repetition and

simplify common patterns.​

●​ Procedural Macros: These operate by manipulating Rust’s Abstract Syntax
Tree (AST), allowing more complex transformations. They are further divided

into:​

○​ Derive Macros: Automatically implement predefined traits for structs

and enums.

○​ Attribute Macros: Modify code components such as functions,

modules, structs, or enums.

○​ Function-like Macros: Generate arbitrary Rust code from their inputs.

2.2.1 Differences Between Macros and Functions

In Rust, although macros and functions both aim to promote code reuse and

abstraction, they have fundamental differences:

●​ Compile-Time Expansion: Macros are expanded during compilation,

enabling them to generate code structures that functions cannot, such as

implementing traits or generating new modules.

●​ Variable Number of Arguments: Macros can accept a variable number of

parameters, providing greater flexibility in their usage.

●​ Code Manipulation: Macros can manipulate code syntax and structure,

whereas functions operate on values at runtime.

These differences make macros particularly suitable for tasks that require code

generation or transformations that are not possible with regular functions.

2.2.2 Declarative Macros

Declarative macros use pattern matching to transform input tokens into output code.

Defined using a specific construct, they are similar to pattern-matching logic but

apply it to code syntax. Each macro consists of one or more rules, with a pattern to

match and a transformation that generates the corresponding output.

13

These macros are especially useful for repetitive tasks, allowing developers to

specify patterns for code generation based on various inputs. They are also generally

considered the easiest type of macro to write in Rust.

Here is what a declarative macro might look like. We will create a declarative macro

called vec that will instantiate a Vector with some initial items already in it.

#[macro_export]​
macro_rules! vec {​
 ($($x:expr),*) => {​
 {​
 let mut temp_vec = Vec::new();​
 $(​
 temp_vec.push($x);​
 ​)*​
 ​ temp_vec​
 }​
 };​
}

It always starts with a macro_rules!, followed by its name and then the body of the

macro. They can them be invoked by their name followed by a bang (!) and the

parameters like this such:

vec![1,2,3];

The resulting code after the compilation for this invocation in specific would be:

{​
 let mut temp_vec = Vec::new();​
 temp_vec.push(1);​
 temp_vec.push(2);​
 temp_vec.push(3);​
 temp_vec​
}

14

2.2.3 Procedural Macros

Procedural macros provide more flexibility by allowing direct manipulation of Rust's

Abstract Syntax Tree (AST). They are functions that take a stream of tokens as input

and produce a transformed stream of tokens as output.

This approach of manipulating the Abstract Syntax Tree (AST) at compile-time aligns

with concepts from Lisp-like macro systems, as discussed in “Programmable Syntax

Macros” (Weise & Cew, 1993). Unlike simple token substitution in languages like C,

Rust's macros operate at the syntactic level, enabling safe and powerful code

transformations in syntactically rich languages without requiring a separate macro

language or manual code templates.

Procedural macros operate on streams of tokens, which represent the basic

elements of code, such as keywords, identifiers, and punctuation. These tokens are

parsed from the code and passed to the macros for manipulation. The macro then

generates a new set of tokens that replaces or extends the original code.

This process allows macros to interact with the underlying structure of the code at a

very low level, enabling complex transformations and code generation.

Procedural macros are categorized into three types: Derive macros, Attribute macros

and Function-like macros. The following sections will describe each of them.

2.2.3.1 Derive Macros

Derive macros automate the implementation of traits for data types such as structs or

enums. They are particularly useful for standard traits like Clone or Debug, where

the implementation follows predictable patterns.

As an example of a derive macro, we will create one that automatically implements

Debug and Serialize (from the crate serde) for a struct, allowing it to be printed in

both regular and JSON formats.

To implement a derive macro, we need to use the proc_macro_derive macro.

#[proc_macro_derive(JsonDebug)]​

15

pub fn json_debug_derive(input: TokenStream) -> TokenStream {​
 let ast = parse_macro_input!(input as DeriveInput);​
 let name = &ast.ident;​
​
 let expanded = quote! {​
 impl std::fmt::Debug for #name {​
 fn fmt(&self, f: &mut std::fmt::Formatter) ->

std::fmt::Result {​
 write!(f, "{}",

serde_json::to_string_pretty(self).unwrap_or_else(|_| "Error

serializing to JSON".to_string()))​
 ​ }​
 ​ }​
​
 impl #name {​
 pub fn to_json(&self) -> String {​

serde_json::to_string_pretty(self).unwrap_or_else(|_|

"{}".to_string())​
 ​ }​
 ​ }​
 };​
​
 TokenStream::from(expanded)​
}

​

We can then use this macro in the #[derive(...)] of a struct.

#[derive(JsonDebug, Serialize)]​
struct User {​
 name: String,​
 age: u32,​
}​
​
fn main() {​
 let user = User {​
 name: "Alice".to_string(),​
 age: 30,​
 };​
​
 println!("{:?}", user); // Prints JSON format using Debug​

16

 println!("{}", user.to_json()); // Explicitly prints JSON

format​
}

2.2.3.2 Attribute Macros

Attribute macros define custom attributes that can be attached to various items in the

code, such as functions, structs, or modules. These macros can modify the behavior

of the items or generate additional code based on the provided attributes.

A great example of how powerful these procedural macros can be is manifested in an

attribute macro called tokio::main, from the tokio crate. This one line of macro

changes the entire runtime to one built for multi-threading.

#[tokio::main]​
async fn main() {​
 // ...​
}

Attribute macros are defined with a #[proc_macro_attribute]. Here is an example of

a macro that automatically logs when a function starts and ends execution, along

with its runtime.

#[proc_macro_attribute]​
pub fn log_execution(_attr: TokenStream, item: TokenStream) ->

TokenStream {​
 let input = parse_macro_input!(item as ItemFn);​
 let func_name = &input.sig.ident;​
 let block = &input.block;​
 let inputs = &input.sig.inputs;​
 let output = &input.sig.output;​
​
 let expanded = quote! {​
 fn #func_name(#inputs) #output {​
 use std::time::Instant;​
 ​ println!("Starting function: {}",

17

stringify!(#func_name));​
 ​ let start = Instant::now();​
​
 ​ let result = (|| #block)();​
​
 ​ let duration = start.elapsed();​
 ​ println!("Finished function: {} (Execution time: {:?})",

stringify!(#func_name), duration);​
​
 ​ result​
 ​ }​
 };​
​
 TokenStream::from(expanded)​
}

It essentially adds some code before and after the function block, without caring what

the function does at all, which makes it highly reusable. All we need to do is attach it

to a function using it as an attribute.

#[log_execution]​
fn compute_sum(n: u32) -> u32 {​
 (1..=n).sum()​
}

Now whenever compute_sum is called, we will have a log similar to this:

Starting function: compute_sum​
Finished function: compute_sum (Execution time: 2.3ms)

2.2.3.3 Function-like Macros

Function-like macros resemble function calls but operate at the syntax level, taking a

series of tokens as input and generating corresponding output. They are often used

to create custom syntax constructs or to simplify repetitive code patterns.

18

We will later see that function-like macros are the ones least used. That is because it

can be replaced by a declarative macro – which is easier to write – most of the time.

Still, it has its niches.

As an example of a function-like macro, we will create a macro that wraps an

expression and measures its execution time, printing the duration. To define it we use

#[proc_macro].

#[proc_macro]​
pub fn measure_time(input: TokenStream) -> TokenStream {​
 let expr = parse_macro_input!(input as syn::Expr);​
​
 let expanded = quote! {​
 {​
 use std::time::Instant;​
 ​ let start = Instant::now();​
 ​ let result = { #expr };​
 ​ let duration = start.elapsed();​
 ​ println!("Execution time: {:?}", duration);​
 ​ result​
 }​
 };​
​
 TokenStream::from(expanded)​
}

It can then be invoked similarly to a declarative macro:​

fn main() {​
 let sum = measure_time!({​
 let mut total = 0;​
 for i in 0..1_000_000 {​
 total += i;​
 }​
 total​
 });​
​
 println!("Result: {}", sum);​
}

19

2.2.4 Hygiene in Macros

Macro hygiene refers to the scoping rules that ensure macros do not unintentionally

interfere with the surrounding code. In Rust:

●​ Declarative Macros: Automatically manage scope and avoid naming conflicts

by keeping track of where identifiers are introduced. However, when a macro

needs to refer to items within the defining crate, the $crate metavariable can

be used to ensure proper resolution of those items.

●​ Procedural Macros: Provide more flexibility but require careful handling of

scope. Although procedural macros have more control over naming and scope

management, Rust’s proc_macro API allows developers to manage hygiene

explicitly.

Although declarative macros manage conflicts automatically, the $crate metavariable

is an important tool to ensure correct references to external items, especially when

used across crates. Rust’s hygiene system helps generate unique names for internal

variables or functions, preventing unintentional naming conflicts.

Rust’s macro system also benefits from clear phase separation between

compile-time and runtime, similar to the approach taken by MzScheme as detailed in

“Composable and compilable macros: you want it when?” (Flat, 2002). This design

choice helps prevent the mingling of compile-time and runtime values, enhancing the

safety and tooling support of the language.

2.2.5 Advantages of Using Macros in Rust

●​ Reduced Code Duplication: Macros can automatically generate repetitive

code patterns, minimizing manual repetition.

●​ Enhanced Abstraction: They enable developers to create higher-level

abstractions that are difficult to achieve with functions alone.

●​ Compile-Time Optimization: Macros allow for code generation and

transformation at compile time, potentially improving runtime performance.

●​ Conditional Compilation: Macros can selectively include or exclude code

based on compile-time conditions, which is useful for platform-specific or

feature-dependent code.

20

2.2.6 Comparison with Macros in Other Languages

Macros are present in several programming languages, but their capabilities and

limitations vary significantly. In most cases, macros provide some level of code

generation, but they differ in terms of safety and expressiveness. Below is a

comparison of how macros work in different languages:

●​ C/C++ Preprocessor Macros (#define): Expanded at preprocessing time,

they lack scope awareness and type safety. They perform simple textual

substitution, which can lead to unintended side effects and debugging

difficulties.

●​ Rust Macros (Declarative Macros, Procedural Macros): Rust macros are

expanded at compile-time while maintaining full type safety. Unlike C macros,

they operate on structured syntax (AST), preventing common pitfalls like

unintentional variable substitution or lack of scoping.

Compared to C/C++, Rust's macro system is more robust and secure, allowing

complex code transformations while enforcing compile-time correctness.

2.2.7 Practical Use Cases

Rust macros are employed in a wide range of applications, including:

●​ Automatic Trait Implementations: Macros are commonly used to implement

traits like Debug or Clone for custom types, saving developers the effort of

writing repetitive code.

●​ Domain-Specific Languages (DSLs): Macros are frequently used to create

custom syntax or DSLs for specific purposes, such as testing frameworks or

concurrency abstractions.

●​ Boilerplate Code Generation: Macros can generate common code patterns,

such as error handling or logging, reducing the amount of code developers

need to write manually.

By understanding the key features and advantages of Rust's macro system, we gain

insights into how they are used across real-world projects. In the following chapters,

we will explore how macros are applied in practice within the Rust community,

examining usage patterns and best practices among popular GitHub repositories.

21

3. METHODOLOGY

This chapter outlines the methodology used to scrape and analyze macro usage in

the 100 most popular Rust repositories on GitHub. The process was divided into six

key stages: listing repositories, cloning them locally, identifying Rust projects (crates),

filtering unwanted files, analyzing the code, and finally presenting the results in a

visual format. All the code used for the tool is available in a github repository:

https://github.com/STAR-RG/rust-macro-analyzer

Here is a diagram of the steps taken by the tool.

3.1 Listing Repositories

The first step involved identifying the most popular Rust repositories on GitHub. This

was achieved using the GitHub GraphQL API with specific filters to ensure relevance.

The filter criteria were:

https://github.com/STAR-RG/rust-macro-analyzer

22

●​ Language: The primary programming language of the repository must be

Rust.

●​ Sorting: Repositories were sorted in descending order based on the number of

stars to prioritize those with the highest popularity.

●​ First 100: We limited this study to the 100 most popular repositories only.

This approach provided a curated list of popular Rust projects, ensuring that the

analysis focused on widely used, real-world codebases.

3.2 Cloning Repositories

Once the repositories were listed, the next step was to clone them locally. This was

done using the git clone command, along with the --recurse-submodules flag to

ensure that any submodules within the repositories were also included. Submodules

are often used in large-scale projects to include dependencies, so capturing them

was essential for a comprehensive analysis.

3.3 Identifying Rust Crates

In Rust, a project that can be compiled is referred to as a crate. A crate is defined by

the presence of a Cargo.toml file, which contains metadata about the project,

including dependencies and compilation instructions.

Since a GitHub repository can contain multiple crates (sub-projects), the next step

was to identify all crates within the cloned repositories. Although a crate is defined by

the presence of a Cargo.toml, a Cargo.toml doesn’t necessarily imply a crate. This

is because a Cargo.toml with the field workspace indicates that the folder is not of a

crate, but of a workspace (collection) of crates.

To properly identify all the crates, we followed the following flow. With it, we were able

to properly list all crates.​

23

​

3.4 Filtering Unwanted Files

Before beginning the core analysis, we needed to filter which files to parse with

Treesitter. We aimed to include every Rust file in each crate, excluding those listed in

an ignore list. This ignore list was created to bypass intentionally malformed Rust

code, which some projects use for showcasing or testing purposes.

Instead of identifying all the correct Rust files before starting the analysis, we

adopted a streamlined approach: as soon as a file was identified, we immediately

parsed its code with Treesitter.

24

3.5 Code Analysis

For each Rust file that passed the previous stage’s filtering, we parse it with

Treesitter, a tool that constructs a syntactic tree from source code files. Here is an

example of Rust code and it’s corresponding syntactic tree parsed by Treesitter:

fn main() {​
 println!("Hello, world!");​
}

​

Corresponding syntactic tree:

source_file [0, 0] - [4, 0]​
 function_item [0, 0] - [2, 1]​
 name: identifier [0, 3] - [0, 7]​
 parameters: parameters [0, 7] - [0, 9]​
 body: block [0, 10] - [2, 1]​
 expression_statement [1, 4] - [1, 28]​
 macro_invocation [1, 4] - [1, 27]​
 macro: identifier [1, 4] - [1, 11]​
 token_tree [1, 12] - [1, 27]​
 string_literal [1, 13] - [1, 26]​
 string_content [1, 14] - [1, 25]

For each file, a tree is generated. We then iterated through the tree from the root

node downward, identifying macro invocations, macro definitions, and registering

their occurrences.

Treesitter enabled the extraction of specific information regarding macro usage,

including:

●​ Macro Definitions: The presence and usage of custom-defined macros within

the codebase.

●​ Macro Invocations: The frequency and type of macros invoked within the

code.

○​ Derive Macros: For derive macro invocations, additional details, such

as the number of traits passed to the macro, were also collected.

25

○​ Attribute Macros: For attribute macro invocations, we were able to

immediately identify if they were a built-in macro or an user defined

on.e

This structured approach provided a granular view of macro usage across different

types and projects.

This need for parsing without preprocessing parallels the challenges faced in

languages like C, where conditional compilation and lexical macros complicate

automatic analysis. The “Variability-aware parsing in the presence of lexical macros

and conditional compilation” (Flat, 2002) paper discusses these issues and

introduces strategies, such as those in the TypeChef project, to parse code variability

soundly and efficiently—issues that Rust also faces in macro-heavy codebases.

3.6 Presenting Results

After collecting the data, the results were serialized into a JSON format file. A web

interface that was developed in React reads from this file to show the data. The

front-end used Recharts and ApexCharts libraries to render graphs, offering an

interactive representation of the macro usage statistics. These visualizations allowed

for easy interpretation of patterns, trends, and outliers in macro usage across the

analyzed Rust repositories.

This structured methodology ensured that the analysis was comprehensive,

capturing the intricacies of macro usage in large-scale Rust projects. The following

chapters will discuss the findings in detail, presenting the results of the macro usage

analysis across different types of Rust projects.

26

4. RESULTS AND ANALYSIS

This chapter presents the results of the analysis on macro usage in the 100 most

popular Rust repositories hosted on GitHub. The study examined a total of 1893

crates within these repositories, uncovering patterns in macro invocations and

definitions, categorized by macro type and their frequency across projects.

4.1 Macro Invocation Patterns

Across the analyzed repositories, a total of 782,765 macro invocations were

recorded, broken down into several categories, including derive macros, attribute

macros (both user-made and built-in), and function-like or declarative macros. The

distribution of macro invocation counts by type can be seen in Macro Invocation

Count by Type chart.

The majority of macro invocations belong to function-like and declarative macros,

with a total of 388,638 invocations, making up approximately 49.6% of the total.

Unfortunately, Treesitter cannot differentiate between the two, as their invocation

method is identical. Moving on, Built-in attribute macros account for 183,667

27

invocations, or about 23.5%, followed by derive macros with 144,443 invocations

(18.4%) and user-made attribute macros with 66,017 invocations (8.4%).

The prevalence of function-like and declarative macros suggests that developers in

large Rust projects heavily rely on macros that perform more complex, reusable code

operations. Built-in attribute macros are also significant, and we will see why in the

following section.

4.1.1 Most Used Built-In Attribute Macros

Among the built-in attribute macros, the top six were as follows:

●​ test: 47,486 invocations

●​ derive: 45,905 invocations

●​ cfg: 33,770 invocations

●​ inline: 21,285 invocations

●​ doc: 9,442 invocations

●​ allow: 8,558 invocations

The test macro's prominence indicates the widespread use of Rust's built-in unit

testing framework. The derive macro being so heavily used is not a surprise, as it is

essential for type derivation and polymorphism in Rust. Meanwhile, cfg allows for

platform-specific code and conditional compilation, both of which are essential for

cross-platform development. Not too far off, the inline macro is used for performance

optimization, which reinforces the usage of Rust for performance critical applications.

28

4.1.2 Most Used User-Made Attribute Macros

In addition to built-in macros, user-made attribute macros were analyzed. The

following user-made macros appeared most frequently:

●​ serde: 10,164 invocations

●​ tokio::test: 6,834 invocations

●​ error: 5,698 invocations

●​ test_case: 3,371 invocations

●​ arg: 2,461 invocations

●​ clap: 1,945 invocations

The dominance of the serde macro indicates the high reliance on serialization and

deserialization tasks, a critical part of many Rust projects, especially those involving

data exchange and APIs. Similarly, the frequent use of tokio::test reinforces the

widespread use of unit testing, but also reflects the increasing popularity of

asynchronous programming in Rust, where tokio is a widely adopted runtime. The

error macro is a utility helper for creating error types from one of the most popular

Rust crates called thiserror.

29

4.2 Function-Like and Declarative Macros

Function-like and declarative macros, as noted earlier, represent the largest category

of macro invocations in the dataset. Among them, the seven most commonly used

were built in macros:

●​ assert_eq: 85,854 invocations

●​ vec: 40,210 invocations

●​ assert: 34,878 invocations

●​ format: 32,176 invocations

●​ write: 13,817 invocations

●​ println: 8,999 invocations

●​ panic: 8,353 invocations

The assert_eq and assert macros are frequently used for debugging and test cases,

suggesting that they are an integral part of code validation processes. The high

usage of format and write come as no surprise as they are key in manipulating

strings in Rust. Similarly, the vec macro, although technically a simple macro for

initializing Vectors (dynamic arrays), being so common indicates how common the

usage of Vectors is.

The T macro is used inside the compiler, and it’s an utilitary for token. One of the

most used custom macros was json!, which is used to write json inside Rust, and is

provided by serde. Another group of frequently used custom macros is the ones

used for logging, such as debug!, info!, and warn!.

30

4.3 Derive Macros

Derive macros, which simplify the implementation of common traits, were invoked a

total of 144,443 times, in a total of 45,905 different #[derive(...)] calls. The most used

derive macros are:

●​ Debug: 32,407 invocations

●​ Clone: 28,229 invocations

●​ PartialEq: 15,976 invocations

●​ Eq: 12,223 invocations

●​ Copy: 8,339 invocations

●​ Default: 8,224 invocations

●​ Serialize: 7,888 invocations

●​ Deserialize: 7,211 invocations

The first six are built in derive macros, used to implement common traits in Rust,

such as Clone and Copy, which are crucial traits for dealing with Rust’s ownership

system. Debug being the most used is natural, as it is standard for debugging in

Rust. Additionally, the Serialize and Deserialize macros from serde indicate that

Rust is often used from projects that communicate with other projects such as server

API and need to handle data serialization and deserialization.

31

4.3.1 Derives per derive macro

An interesting piece of information we were able to extract from derive macros is the

amount of derives used inside a #[derive(...)] macro. The most common amount of

derives is a single derive, only decreasing from there. The median is 3 derives, which

is close to the average, which is 3.14.

4.4 Macro Definition Patterns

In total, 4,156 macro definitions were identified across the 1893 crates analyzed. The

distribution of macro definitions by type is as follows:

●​ Declarative macros: 3,855 definitions

●​ Attribute macros: 102 definitions

●​ Derive macros: 122 definitions

●​ Function-like macros: 77 definitions

32

Declarative macros account for the vast majority of definitions, suggesting that the

main use for projects is to create their own specialized macros to automate repetitive

tasks. For some use cases you could technically use other types of macros, but this

overwhelming dominance highlights the ease of use of Declarative macros that rely

on easy to understand match-like syntax, in contrast with Procedural macros that

require manipulating the AST.

Procedural macros, although more powerful are harder to work with and are likely

reserved for complex cases that usually become their own crate and shared, so each

user doesn’t have to come up with it again on their own.

4.5 Macro Usage by Repository

The distribution of macro invocations and definitions per repository on its own doesn’t

reveal much as the size of the repository affects the numbers a lot. To counteract

that, we have divided the invocations and definitions by lines of code, which we

called “Lines Normalized”.

33

As we can see from the Lines per Repository chart, the sizes of these repositories

vary a lot. The biggest one being diem/diem with 549904 lines, while the smallest,

casey/just, is only 293 lines long.

34

4.5.1 Macro Invocations per Repository

Starting with invocations we can see 2 categories of projects on the top.

The first category is courses and tutorials. We have sunface/rust-course,

rust-lang/rustling, and TheAlgorithms/Rust which are repositories dedicated for

studying materia, occupying second, third and sixth place respectively. With the

normalization by lines, it makes sense that they would appear here, as their purpose

is to highlight Rust’s features, meaning both that they feature a variety of macros but

also with a low amount of lines of code, as the code is mainly composed of example

codes.

35

The second category is composed of projects where performance is crucial, that

generally deal with lower-level integrations and most of them are extensible. On the

top of this category we have:

●​ fish-shell: a complete and extensible command-line shell.

●​ zola: a static site generator that uses “fast” as its main word for advertisement.

●​ coreutils: a cross-platform implementation of GNU utils.

●​ Starship: a highly extensible cross-shell prompt.

36

4.5.2 Macro Definitions per Repository

When it comes to macro definitions the results are not too unlike invocations. We can

still see the courses sunface/rust-course and TheAlgorithms/Rust, as well as

fish-shell, pyxel and RustScan that were also on the top of invocations. In first

place we have fathyb/cabonyl, an ambitious project of a Chromium based browser

running inside the terminal.

Not too far we have the repository for the Rust language itself. Which is interesting

because it didn’t appear on the top invocations per repository when normalized due

to its size. We can see that even with its size it managed to get sixth place on

37

definitions normalized by virtue of hosting Rust’s builtin macros. This can be

explained by looking at the raw data, that is, without normalizing by lines:

38

The Rust language repository comes in first with 598 different macro definitions,

followed by polars with only 242. The same discrepancy does not appear on

invocations per repository:

39

Which seems to be way more proportional to the size of the repository itself:

Which suggests that invoking macros is standard practice for large projects, while

defining macros vary a lot according to the project context and goals.

40

5. CONCLUSION AND FUTURE RESEARCH

This thesis set out to analyze the usage of macros in the 100 most popular

open-source Rust projects on GitHub, focusing on uncovering trends and identifying

the most commonly used types of macros, projects that heavily rely on macros, and

specific macro categories. Through an extensive analysis of 1893 crates and over

780,000 macro invocations, several key findings were revealed, shedding light on

how macros are integrated into large-scale Rust development.

5.1 Summary of Findings

The analysis provided insights into the diverse ways macros are utilized in the Rust

ecosystem. Several important trends were identified:

●​ The widespread use of testing related macros, such as #[test], further

indicates the Rust community’s focus on code quality and testing, making the

testing framework a cornerstone in most Rust projects.

●​ Declarative macros stood out not only in usage but in sheer definition count,

vastly outnumbering procedural macros. This suggests that developers

prioritize ease of implementation when creating project-specific tooling. While

procedural macros offer greater flexibility, their complexity appears to limit their

use to more sophisticated or reusable libraries

●​ The frequent use of attribute macros from popular crates like tokio and serde
points to a strong ecosystem-wide preference for macro-based extensibility in

both asynchronous and data-centric applications. the areas of web services,

asynchronous programming, and data processing

●​ Although macros in Rust are broadly used, some types of projects appear to

require more of them than others. Notably, performance sensitive applications

for optimization and reusable applications for abstractions.

Overall, the analysis demonstrated that macros are not only fundamental to Rust's

metaprogramming features but also widely adopted across a variety of project types,

even more on high-performance system libraries.

41

5.2 Implications for Developers

The insights gained from this study suggest several actionable takeaways:

●​ Strategic Use of Declarative Macros: Developers can confidently adopt

declarative macros for internal project tooling and abstraction, especially

where performance and maintainability intersect.

●​ Adopting Ecosystem Standards: The popularity of macros from libraries like

serde, tokio, and thiserror reflects community consensus around certain

tasks—serialization, async handling, and error management. New projects

benefit from aligning with these conventions.

●​ Awareness of Complexity Trade-offs: While procedural macros unlock

powerful capabilities, their lower adoption suggests they should be used

judiciously—ideally when general-purpose solutions are intended to be shared

across projects or crates.

●​ Domain-Specific Macro Strategies: Developers building educational tools,

compilers, or high-performance libraries may find distinct value in different

macro styles. Understanding the macro landscape can inform architectural

choices.

5.3 Limitations of the Study

While this thesis provides valuable insights into macro usage trends, it is important to

acknowledge its limitations:

●​ Sample Bias: The focus on the most starred projects may skew results toward

well-documented or community-driven codebases, underrepresenting niche,

experimental, or private repositories.

●​ Parsing Constraints: The use of TreeSitter enabled robust syntax analysis

but imposed restrictions. Notably, it cannot distinguish declarative from

procedural macros at the invocation level, and it does not resolve macro

paths, potentially conflating similarly named macros from different sources.

●​ Lack of Semantic Context: While macro invocations were tracked, this

analysis does not account for the semantic role or impact of those macros,

which would require deeper integration with Rust’s type system or compiler

internals.

42

5.4 Directions for Future Research

While this study provides a broad overview of macro usage in popular Rust projects,

several areas merit further exploration:

1.​ Macro Impact Analysis: Future work could quantify how macro usage affects

compilation speed, runtime performance, and binary size—key factors in

systems programming.

2.​ Temporal Trends: A longitudinal study could explore how macro usage

evolves over time within projects, offering insight into adoption curves,

refactoring trends, or deprecation patterns.

3.​ Cross-Language Comparison: Comparing macro systems in Rust with those

in C++, Zig, or Nim could reveal differences in philosophy, ergonomics, and

safety, benefiting developers transitioning between ecosystems.

4.​ Readability and Maintenance: Macros often obscure control flow or logic.

Research into how they affect code comprehension, onboarding, and bug

rates would be valuable for teams adopting macro-heavy codebases.

43

BIBLIOGRAPHY

FLAT, M. Composable and compilable macros: you want it when. Proceedings of the

Seventh ACM SIGPLAN International Conference on Functional Programming, 37(9),

72-83, 2002.

KASTNER, C. Variability-aware parsing in the presence of lexical macros and

conditional compilation. Proceedings of the 2011 ACM International Conference on

Object Oriented Programming Systems Languages and Applications, 46(10),

805-824, 2011.

KEEP, D. The Little Book of Rust Macros. 2016. https://veykril.github.io/tlborm/

(retrieved October 3, 202).

KLABNIK, S.; NICHOLS, C.; KRYCHO, C. The Rust Programming Language. 2018.

https://doc.rust-lang.org/book (retrieved September 17, 2024)

THE RUST TEAM. The Rust Reference. (s.d.). https://doc.rust-lang.org/reference/

(retrieved September 19, 2024).

WEISE, D.; CREW, R. Programmable syntax macros. Proceedings of the ACM

SIGPLAN 1993 Conference on Programming Language Design and Implementation,

28(6), 156-165, 1993.

https://veykril.github.io/tlborm/
https://doc.rust-lang.org/book
https://doc.rust-lang.org/reference/

	1. INTRODUCTION
	1.1 Goals
	1.2 Structure

	
	
	
	
	
	
	2. RUST PROGRAMMING LANGUAGE
	2.1 Overview of the Rust Programming Language
	2.1.1 Memory Safety and Ownership
	2.1.2 Core Constructs of Rust: Structs, Enums, Impl, and Traits
	2.1.2.1 Structs
	2.1.2.2 Enums
	2.1.2.3 Impl Blocks
	2.1.2.4 Traits

	2.2 Macros in Rust
	2.2.1 Differences Between Macros and Functions
	2.2.2 Declarative Macros
	
	2.2.3 Procedural Macros
	2.2.3.1 Derive Macros
	2.2.3.2 Attribute Macros
	
	2.2.3.3 Function-like Macros

	2.2.4 Hygiene in Macros
	2.2.5 Advantages of Using Macros in Rust
	2.2.6 Comparison with Macros in Other Languages
	2.2.7 Practical Use Cases

	3. METHODOLOGY
	3.1 Listing Repositories
	3.2 Cloning Repositories
	3.3 Identifying Rust Crates
	3.4 Filtering Unwanted Files
	3.5 Code Analysis
	3.6 Presenting Results

	
	4. RESULTS AND ANALYSIS
	4.1 Macro Invocation Patterns
	4.1.1 Most Used Built-In Attribute Macros
	4.1.2 Most Used User-Made Attribute Macros

	4.2 Function-Like and Declarative Macros
	4.3 Derive Macros
	4.3.1 Derives per derive macro

	
	
	4.4 Macro Definition Patterns
	4.5 Macro Usage by Repository
	
	4.5.1 Macro Invocations per Repository
	
	4.5.2 Macro Definitions per Repository

	
	5. CONCLUSION AND FUTURE RESEARCH
	5.1 Summary of Findings
	5.2 Implications for Developers
	5.3 Limitations of the Study
	5.4 Directions for Future Research

	
	BIBLIOGRAPHY

