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ABSTRACT

This study presents a novel model-agnostic framework aimed at enhancing the
explainability of black-box video models by integrating advanced video segmentation
techniques. We propose utilizing the Segment Anything Model 2 (SAM) to generate
semantically meaningful and spatio-temporally coherent segments, which we
subsequently employ within a Local Interpretable Model-agnostic Explanations
(LIME)-inspired approach. Our method addresses the inherent limitations of
traditional image-based explainability techniques, such as temporal inconsistency
and semantic incoherence when applied to video content. By systematically
perturbing these meaningful video segments, we develop intuitive and faithful local
surrogate explanations that highlight the model's decision-making process clearly
and effectively. Experimental evaluations using the Kinetics-400 action recognition
dataset demonstrate that our approach produces superior explanations compared to
baseline methods, significantly improving interpretability and temporal coherence.
The insights provided by this enhanced explainability framework hold particular
relevance for critical domains like surveillance, medical diagnostics, and autonomous
systems, where understanding model decisions is essential for reliability and user

trust.

Keywords: Explainable Al; Video segmentation; Model-Agnostic explanations.



RESUMO

Este trabalho apresenta um método agndstico ao modelo que melhora a
explicabilidade de modelos caixa-preta aplicados a videos, integrando técnicas
avancgadas de segmentacéo de video. Propomos utilizar o Segment Anything Model
2 (SAM) para gerar segmentos espacial e temporalmente coerentes e
semanticamente significativos, que sado posteriormente utilizados em explicacbes
locais baseadas no método Local Interpretable Model-agnostic Explanations (LIME).
Ao empregar a segmentagdo proporcionada pelo SAM, preservamos limites
importantes dos objetos e a consisténcia temporal, proporcionando explicagdes mais
intuitivas e confiaveis. Os resultados experimentais obtidos com o conjunto de dados
Kinetics-400, voltados para o reconhecimento de agdes, mostram que nossa
abordagem gera explicagbes superiores em comparagao com metodos tradicionais,
aumentando significativamente a interpretabilidade e a coeréncia temporal. As
melhorias na clareza das explicagbes proporcionadas por esse método sao
especialmente importantes em areas criticas, como vigilancia, diagnosticos médicos
e sistemas autbnomos, onde compreender as decisbes tomadas pelos modelos &

essencial para garantir confiabilidade e confianga por parte dos usuarios.

Palavras-chave: |IA explicavel; Segmentacao de video; Explicagdes agndsticas de

modelo.
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1 INTRODUCTION

Deep learning models have achieved remarkable success in analyzing video data,
excelling in tasks like action recognition, object detection in dynamic scenes, and event
classification. However, many of these high-performing models operate as black-boxes,
offering little insight into their internal decision making processes. As the reliance on such
models grows in critical domains—such as surveillance, medical diagnostics, and
autonomous systems—ensuring that their outputs are explainable and trustworthy
becomes increasingly important.

Explainable Al (XAl) efforts in vision often focus on static images, utilizing
techniques like saliency maps, class activation mappings, or perturbation-based methods
to identify image regions that strongly influence a model’s prediction. Adapting these
methods directly to video is nontrivial. Videos add a temporal dimension and often involve
complex, evolving scenes. Naive extension of image-based techniques can yield noisy or
temporally inconsistent explanations, ultimately reducing their utility and comprehensibility.

In this study, we propose a novel framework that enhances the explainability of
black-box video models by leveraging advanced segmentation techniques. Our approach
builds upon Local Interpretable Model-agnostic Explanations (LIME) (RIBEIRO; SINGH;
GUESTRIN, 2016) but applies a Segment Anything Model (SAM) (RAVI et al., 2024) to
generate coherent spatio-temporal segments that serve as meaningful units of
explanation. By integrating SAM-based segmentation, we preserve important object
boundaries and temporal consistency, providing explanations that are more intuitive and
faithful.

As our main contribution, we: introduce a SAM-based segmentation procedure
tailored to generate coherent spatio-temporal segments in video data; adapt a
LIME-inspired local surrogate explanation method for videos, utilizing these segments to
enhance temporal consistency and interpretability; and demonstrate that improved
segmentation results in more faithful and comprehensible explanations.

The remainder of the study is structured as follows. Section 2 reviews related work
on explainable Al in images and video. Section 3 details our methodology, describing the
SAM-based segmentation and the adaptation of LIME to video. Section 4 outlines the
experimental setup, datasets. In Section 5, we present qualitative results. Section 6
discusses insights, limitations, and implications for future research. Finally, Section 7

concludes and highlights potential extensions of our approach.
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2 RELATED WORK

Explainable Al methods aim to provide insights into why a model produces certain
predictions. By “explaining a prediction,” we mean presenting textual or visual artifacts that
provide qualitative understanding of the relationship between the instance’s components
(e.g., words in text, patches in an image) and the model’s prediction, as proposed in the
LIME paper. Trust in Al can be understood in two dimensions: trusting a
prediction—whether a user finds an individual prediction reliable enough to act on it, and
trusting a model—whether the user believes the model will behave reasonably when
deployed (RIBEIRO; SINGH; GUESTRIN, 2016). We argue that explaining predictions is
an important aspect of enabling humans to trust and effectively use machine learning,
provided the explanations are faithful and intelligible. In image analysis, popular
techniques include saliency maps (SIMONYAN; VEDALDI; ZISSERMAN, 2013),
Grad-CAM (SELVARAJU, et al., 2020), and perturbationbased methods like LIME. These
methods highlight pixels or regions of interest but were initially designed for static images,
where temporal coherence is not a concern.

When extending explanations to video, methods must consider both spatial and
temporal dimensions. Prior work often adapts image-based techniques frame-by-frame,
potentially leading to inconsistent explanations over time (RAVI et al., 2024).

Although video.explainability is a highly relevant area, it remains significantly
underexplored. Some approaches focus on spatio-temporal saliency estimation (WANG et
al., 2016), while others attempt to adapt perturbation strategies by sampling multiple
frames (ROY et al., 2023). However, these methods often struggle to maintain coherent
units of explanation that map onto meaningful objects or events. Our work builds upon
REVEX: A Unified Framework for Removal-Based Explainable Artificial Intelligence in
Video (GAYA-MOREY; RUBIO; MANRESA-YEE, 2016), which provides a robust
foundation for architecture independent video explanations. By leveraging the concepts
introduced in REVEX, we extend the framework to develop model-agnostic explanations
that address the limitations of prior methods and ensure coherent, meaningful
interpretations across spatial and temporal dimensions.

In image contexts, segment-based perturbation methods—such as LIME—rely on
superpixels or segmented regions to generate local surrogates. Good segmentation is
crucial for coherent explanations. Extending this concept to video requires the use of

supervoxels, which represent spatio-temporal regions that group pixels across both spatial



11

and temporal dimensions. Supervoxels provide a natural way to create stable and
interpretable explanation units that can track objects or actions over time.

High-quality supervoxels play a critical role in simplifying the task for the surrogate
model by enabling it to more accurately predict the importance of each supervoxel cluster.
Moreover, meaningful supervoxel segmentation helps users clearly identify which regions
of the video are most relevant to the model’s predictions, improving the interpretability and
usability of explanations. By creating temporally consistent and spatially meaningful
clusters, good supervoxels enhance both the computational and visual clarity of
video-based explanations.

The Simple Linear Iterative Clustering (SLIC) algorithm (ACHANTA et al., 2012) has
been a popular choice for generating superpixels in image analysis due to its
computational efficiency and ability to maintain temporal consistency. SLIC operates by
adapting the k-means clustering algorithm to work in a combined space of color and
spatial coordinates, creating compact and nearly uniform supervoxels. For video
applications, SLIC extends this approach to include the temporal dimension, clustering
pixels based on their color similarity and spatio-temporal proximity.

While SLIC provides a reasonable baseline for video segmentation, it has
limitations. The algorithm relies heavily on low-level features (color and position) and can
sometimes fail to capture semantic object boundaries, especially in complex scenes with
varying lighting conditions or motion.

Our approach utilizes SAM 2, the successor to SAM specifically designed for video
segmentation, to generate what are referred to as masklets. A masklet, a concept
introduced in the SAM 2 paper (RAVI et al., 2024), represents a spatio-temporal mask that
tracks an object or region of interest across multiple frames in a video. For our purposes, a
masklet serves a similar function to a supervoxel, we will use these terms interchangeably
throughout the text.

Unlike SLIC, which relies on a geometric clustering technique, SAM 2 employs a
deep learning-based method that comprehends semantic content and object relationships
within the video. This enables SAM 2 to produce segmentations that more closely align
with human perception and accurately capture object boundaries. By leveraging SAM 2,
we achieve robust and consistent segmentation across frames, facilitating the creation of
meaningful, temporally coherent explanation units that reflect the dynamic nature of video
data. Moreover, the semantic understanding embedded in SAM 2 allows for more intuitive

and interpretable explanations compared to the purely geometric approach used by SLIC.
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LIME introduced the concept of generating local surrogate models around a given
instance to explain the predictions of any black-box model. It works by perturbing the input
data and observing how the model's predictions change. For each instance to be
explained, it creates a set of perturbed samples by randomly removing or modifying
features, then trains an interpretable linear model on this data, the linear model will try to
learn the behavior of the black-box model only in this instance. The weights of this linear
model reveal which features were most important for the original prediction.

While its application to video presents unique challenges, LIME remains a versatile
tool for model-agnostic explanations, allowing compatibility with any classification or
detection algorithm and maximizing its applicability. The removal based approach in LIME
is particularly suitable for video analysis as it allows us to understand which
spatial-temporal regions most influence the model's decision by systematically removing
them and measuring the impact on the prediction.

LIME has already demonstrated superior performance compared to other methods
in removal-based explanation tasks, making it the preferred algorithm for this approach
(GAYA-MOREY; RUBIO; MANRESA-YEE, 2016). The removal-based methodology
provides intuitive explanations by identifying which parts of the video, when removed, most
significantly affect the model's output. This approach is more interpretable than
attribution-based methods as it directly shows the causal relationship between video
regions and predictions.

Building on REVEX, we adopt LIME as our core removal based explanation
algorithm. By integrating LIME with SAMbased segmentation, we extend its functionality to
address the added spatial and temporal complexities of video data, enabling robust and
interpretable explanations. This combination allows for more precise and semantically
meaningful perturbations, as SAM provides high-quality segmentation masks that can be

used to remove coherent objects or regions.



13

3 METHODOLOGY

We consider a black-box video model f that takes as input a video V = {frame 4,
frame ,, ... ,frame ;} consisting of T frames. The model produces a prediction y = f (V),
where y can represent a class label (e.g., for action recognition) or a set of bounding
boxes and classes (e.g., for object detection).

To analyze f, we leverage SAM 2 to generate a segmentation map S with the same
shape as V. Each pixel in V is assigned a number in S, representing the supervoxel to
which the pixel belongs. The segmentation map S consists of N supervoxels s, where each
supervoxel groups together spatiotemporally coherent regions of the video.

A perturbation set is a copy of S and we create N perturbation sets by randomly
perturbing the supervoxels. For each perturbation set, each supervoxel s has a 50%
probability of being “removed.” This process generates diverse perturbations of V, allowing
us to train an explainable model that can better infer the importance of different
supervoxels.

The objective is to explain the prediction y by identifying the supervoxels s € S that
most significantly influence the decision of f.

The key idea is to generate spatio-temporally coherent segments that capture
semantically meaningful entities (objects, actions, or events) throughout the video. SAM
(RAVI et al., 2024) provides a robust segmentation backbone designed primarily for image
data. In our framework, we leverage SAM 2, which supports video processing by utilizing
SAM'’s image segmentation capabilities to create automatic mask encodings for individual
video frames and aggregating and aligning these frame-level encodings to generate
temporally consistent spatio-temporal segments.

While SAM 2 effectively segments many regions, it does not automatically assign
every pixel to a cluster. To address this, we include all unassigned pixels in an additional
cluster, ensuring complete coverage of the video frames.

To enhance the quality of explanations, we carefully tune SAM 2’s parameters,
optimizing them to produce segments that better align with meaningful objects, actions, or
events in the video. The specific parameter values and tuning process are provided in the
appendix for reproducibility and further exploration. This process yields a set of N+1
spatio-temporal segments S = {s;, s,, ..., sy} , with an extra segment s,,; containing the

unassigned pixels. Each segment ideally represents a coherent object or activity,
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maintaining spatio-temporal consistency across frames while ensuring no pixel is excluded
from analysis.

We adapt the LIME framework for explaining video model predictions by employing
a perturbation approach similar to that introduced by REVEX. Specifically, we simulate the
removal of selected regions by masking their corresponding pixels in video frames with
black color. This perturbation strategy maintains methodological consistency with REVEX.
Alternative masking techniques exist but may unintentionally introduce out-of-domain data
due to changes in pixel color distributions. REVEX identifies additional masking strategies,
including median colors, grayscale, blurring, and up-scaled black. Future research could
explore the comparative effects of these alternative perturbation techniques on the
interpretability and accuracy of our video model.

To estimate the importance of each region, we employ a linear model to fit the
black-box model’s predictions using the perturbed data. The linear model assigns weights
to regions, representing their contributions to the prediction.

To account for the temporal aspect of videos, we adapt the segmentation process to
generate spatiotemporal superpixels. For this, we use both SAM 2 and SLIC as
segmentation algorithms, enabling a comparative evaluation of their impact on the
explanation results. SAM 2 generates supervoxels by grouping spatiotemporally coherent
regions across frames, while SLIC creates spatially contiguous regions within individual
frames. By considering both methods, we aim to provide insights into the effectiveness of
these approaches for videospecific explainability. Our approach does not require access to
model internals (weights, activations) and can be applied to any type of video
model—ranging from CNN-based classifiers to transformer-based detectors. As long as
we can query the model with perturbed video inputs and obtain predictions, we can

produce explanations.
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4 EXPERIMENTAL SETUP

We evaluate our approach using the Kinetics-400 dataset (KAY et al., 2017), a
benchmark for action recognition tasks. This dataset consists of diverse videos spanning
400 human activity classes, offering a comprehensive testbed for assessing our method’s
performance.

We conduct our experiments using the Swing3D T model (LIU et al., 2022), a
transformer-based architecture designed for spatiotemporal action recognition. The model
leverages attention mechanisms to capture both spatial and temporal features, making it
particularly suited for tasks requiring fine-grained motion analysis.

SAM 2 is a computationally heavy model, which posed challenges during our
experiments. Despite utilizing a powerful consumer GPU (NVIDIA RTX 4090), processing
a single video containing 300 frames often takes hours. This extended runtime highlights
the demanding nature of generating spatiotemporally coherent segments with SAM 2.

For the initialization of spatio-temporal segments, we also employed SAM 2 in its
image mode to generate mask auto-encodings for individual frames. While this process is
relatively faster compared to video processing, it required careful tuning of parameters.
Finding the optimal parameters was challenging, as they needed to maximize the utility of
generated masks—capturing meaningful regions—without consuming excessive storage
or computational resources.

These computational considerations and parameter tuning processes were critical
to achieving high-quality results, and we provide detailed configurations and guidelines in
the appendix to facilitate reproducibility and github repo.

At the time these experiments were conducted, there was no official implementation
of LIME for video data. Consequently, we developed our own implementation tailored for
video analysis. To streamline the segmentation process, we utilized the slic
implementation from the skimage library, which supports 3D data and is optimized for
efficiency. This allowed us to generate super-voxels effectively, ensuring compatibility with

our LIME-based framework.
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For our implementation, we utilized the SAM 2.1 tiny version for both image and
video mask generation. The automatic image mask generator was configured with the

following parameters:

“mask_generator = SAM2AutomaticMaskGenerator( model=sam2,
pred_iou_thresh=0.7,
stability_score_thresh=0.5,
stability_score_offset=0.5,
crop_n_layers=1,
box_nms_thresh=0.7,
crop_n_points_downscale_factor=2,
min_mask_region_area=25.0,
use_m2m=True,
Y’
This configuration was chosen by trying different combinations to try and balance

segmentation quality and cover all possible areas of image, without leaving a gap of
background. The SAM 2.1 tiny model was selected for its reduced computational
requirements while still providing sufficient segmentation quality for our explanation

framework.
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5 RESULTS AND ANALYSIS

To provide interpretable visual feedback of our model’s decision-making process,
we implemented a visualization scheme that highlights the most significant regions
identified by our adapted LIME algorithm. Following the established visualization approach
used in image-based LIME explanations, we represent the importance of different video
segments through a selective masking process.

Our visualization method ranks all spatio-temporal segments according to their
importance scores derived from the LIME surrogate model. We establish a threshold at the
80th percentile of these scores, then mask (set to black) all pixels belonging to segments
with importance scores below this threshold.

This approach creates a clear visual distinction between regions the model
considers crucial for its prediction (which remain visible) and less important regions (which
are masked in black). By maintaining the original appearance of the most influential
segments while obscuring the less relevant ones, we provide an intuitive visualization that
allows users to directly observe which parts of the video most strongly influenced the
model’s decision.

This visualization technique effectively communicates the model’s focus areas while
maintaining temporal consistency across frames, as segments are evaluated and masked
based on their importance across the entire temporal sequence rather than frame by

frame.
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Figure 1 — The predicted action in this video is "tying tie." Notice how SAM2 effectively segments the shirt
into a single coherent cluster, and how accurately the tie is segmented compared to the results obtained by
SLIC.

SAM2 super-voxel based LIME

a8

Input video

SLIC super-voxel based LIME

Source: Author (2025).
Figure 1 presents a sample video frame from the KinectTest dataset, comparing the

original video, SAM 2-based segmentation, and SLIC-based segmentation methods. It is
evident that SAM 2 excels at creating semantically meaningful clusters, whereas SLIC
struggles to segment entire objects consistently. SLIC often leaves parts of objects
unsegmented or fails to form coherent superclusters, particularly during camera
movement. We refer to this issue as “cluster collapse”, a problem observed in both
techniques but significantly more pronounced in SLIC. In contrast, SAM 2 successfully
highlights important elements with minimal interference from surrounding regions. For
instance, the tie in the image is clearly identified as a key region by SAM 2, demonstrating

its ability to isolate significant features while maintaining cluster integrity.
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Figure 2 — The predicted action in this video is "water skiing." SAM2 effectively segmented the water,
accurately distinguishing even small objects such as the rope pulling the skier.

Input video ~ SAM2 super-voxel based LIME SLIC super-voxel based LIME

B T NI ————

Source: Author (2025).

Figure 2 demonstrates SAM'’s superior ability to segment challenging objects, such
as separating water from the waves, delineating the horizon line, and isolating the person
in the frame. For color-based algorithms like SLIC, dynamic objects such as water pose
significant challenges due to continuous changes in color and texture. SAM 2, leveraging
its semantic understanding, handles such scenarios more effectively, maintaining
consistent object boundaries even in visually complex scenes. Both images are displayed
in large formats in the appendix.

By comparing these examples, it becomes clear that SAM'’s ability to account for
both semantic and spatial coherence offers a significant advantage in scenarios where
SLIC struggles to adapt, particularly in environments with rapid changes or complex
textures.

Two parameters in SAM 2 can be adjusted, which directly influence the resulting

cluster size. Ideally, clusters should not be unnecessarily large; however, they should
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correspond appropriately to the size of objects in the scene. Often, an object of interest
may be an entire person, though in some cases, better interpretability is achieved by
subdividing a person into separate components, as illustrated in Figure 1. Excessively
large clusters may disproportionately influence predictions due to their size rather than
their actual relevance to the object being predicted. It is important to note that clusters
cannot be removed entirely from an image—only their color can be altered, for instance, to

black—thus, their presence remains relevant to the overall interpretation.

Figure 3 — The predicted action in this video is "riding scooter." In this comparison, neither method shows a
clear advantage; results appear subjective. However, SAM2 generates well-defined boundaries around
clusters, whereas the segmentation produced by SLIC appears more concentrated.

Input Video SAM?2 super-voxel based LIME SLIC super-voxel based LIME
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Figure 4 — This figure demonstrates the superior segmentation performance of SAM2, which correctly
identifies the entire field as a single coherent object rather than dividing it into multiple segments, leading to
improved interpretability.

Input Video SAM2 super-voxel based LIME SLIC super-voxel based LIME
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6 DISCUSSION

Our results show that integrating a robust segmentation model like SAM into the
explanation pipeline significantly improves the quality and coherence of local surrogate
explanations. By treating stable spatio-temporal segments as perturbation units, we
produce explanations that better reflect object boundaries and maintain consistency over
time.

This model-agnostic approach is particularly valuable in complex video analysis
scenarios. As new architectures and tasks emerge, having a flexible, generalizable
explanation method ensures that insights into model behavior remain accessible.
Nonetheless, this flexibility comes with added computational overhead and complexity,
especially for long, high-resolution videos.

While we focused on improving the structural coherence of explanations, there
remains room for incorporating semantic priors, leveraging motion cues more explicitly, or
integrating audio-visual modalities. Addressing these challenges can further enhance
explainability in future work.

Understanding how deep learning models make decisions in video analysis is
crucial for both technical advancement and responsible Al deployment. Our approach to
explainable video analysis has several key implications for the field.

From a development perspective, the ability to visualize and understand model
decisions enables researchers and engineers to identify potential weaknesses or biases in
their models. This insight is invaluable for iterative improvement of video analysis systems,
helping create more robust and reliable models. When models make incorrect predictions,
our explanation method can reveal whether the error stems from focusing on irrelevant
features or missing crucial information in the video sequence.

Fairness in Al systems is becoming increasingly critical as these technologies
impact more aspects of society. Video analysis systems can inadvertently perpetuate or
amplify existing societal biases, particularly in applications like security surveillance, job
interview analysis, or behavior monitoring. Our explanation method provides a crucial tool
for fairness auditing by revealing whether models disproportionately focus on sensitive
attributes like skin color, gender-specific features, or cultural elements. This transparency
enables developers and stakeholders to identify and address potential discriminatory

patterns in model behavior before deployment.
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In terms of accountability, explainability becomes particularly crucial in sensitive
applications such as surveillance, medical diagnosis, or autonomous vehicle systems.
When these systems make critical decisions, stakeholders need to understand the
reasoning behind these choices. Our method provides a transparent way to audit model
decisions, helping identify potential biases or systematic errors that could lead to unfair
treatment of certain groups or dangerous failures in critical situations.

This work contributes to the broader goal of creating more transparent, fair, and
accountable Al systems, particularly in the complex domain of video analysis where

traditional explanation methods may fall short.
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7 CONCLUSION

We presented a novel, model-agnostic approach to explaining black-box video
models by combining advanced segmentation methods with a LIME-inspired framework.
By leveraging the Segment Anything Model, we enhanced spatio-temporal coherence,
resulting in explanations that align more closely with the behavior of the underlying model
while maintaining human interpretability.

For future work, we recognize several avenues to further improve and expand this
approach. One direction involves experimenting with explanations beyond LIME 3D. While
LIME 3D provides a straightforward framework for generating local surrogate explanations,
its reliance on linear approximation limits its capacity to capture complex decision
boundaries. Exploring other paradigms, such as RISE (PETSIUK; DAS; SAENKO, 2018)
or SHAP (KAY et al., 2017), could yield more nuanced insights, particularly for intricate
video models. These methods offer the potential to better capture relationships within the
data and reveal alternative perspectives on model behavior that extend beyond local
fidelity.

Another promising avenue lies in post-processing existing techniques to enhance
the quality of segmentation and clustering outputs. Addressing artifacts or inconsistencies
in these methods can significantly improve the interpretability and coherence of the
generated explanations. For instance, morphological operations or smoothing filters could
refine segment boundaries, while semantic-based strategies for merging or splitting
clusters could produce explanation units that are both computationally efficient and visually
meaningful. Additionally, we propose enabling user-defined segmentation for the first
frame of the video as a way to guide the segmentation process throughout the sequence.
By allowing users to highlight what they consider the most important regions or objects in
the initial frame, the method can propagate this guidance across the video, aligning the
segmentation with human-defined priorities and improving the relevance of the resulting
explanations.

We also aim to test our approach on a broader range of models and datasets to
evaluate its robustness and generalizability. This includes applying the method to diverse
video models, such as transformer-based architectures, convolutional networks,
vision-language models (VLM), and hybrid systems. Expanding our evaluation across
datasets from various domains—including medical imaging, surveillance, sports analysis,

and autonomous driving—will help us identify domainspecific challenges and validate the
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applicability of our method in real-world scenarios. By addressing these dimensions, we
seek to push the boundaries of explainable Al in video analysis, ensuring its relevance and

utility across a variety of contexts and applications.
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