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RESUMO

Modelos de visao computacional sao fundamentais para aplicacdes de cidades inteligentes.
Esses modelos permitem que a cidade interprete dados visuais, advindos de sensores como
cameras de seguranca, para otimizar suas tarefas e impactar positivamente a vida dos cidadaos.
Contudo, esses modelos requerem quantidades cada vez maiores de dados anotados para serem
treinados, os quais sao custosos e trazem questdes éticas quando coletados no mundo real.
Por outro lado, motores graficos 3D e simuladores permitem uma geracdo barata e em larga
escala de dados sintéticos automaticamente anotados. Este trabalho propde um gerador de
bases de dados sintéticos no contexto de cidades inteligentes usando o simulador CARLA.
O gerador proposto permite a geracdo fim-a-fim de bases de dados massivas com um (nico
comando, o que inclui a simulacdo de elementos de cidades, como veiculos e pedestres, a
coleta e a anotacdo de dados visuais. Para demonstrar a capacidade do gerador, uma base
de dados com mais de 300 mil imagens anotadas foi gerada e comparada com outras bases
do estado da arte. Resultados da comparacdo evidenciam que o gerador proposto é capaz de
gerar bases equiparaveis ao estado da arte em nimero de dados e de anotacdes. Espera-se
que nosso gerador possa ser usado para criar bases de dados (teis para o treino e validacao
de modelos de visdo computacional no campo de cidades inteligentes. Além disso, espera-se
também que esse trabalho traga atencdo para o uso de dados sintéticos em modelos para

cidades inteligentes.

Palavras-chaves: Dados Sintéticos. Cidades Inteligentes. Visao Computacional.



ABSTRACT

Computer vision models are fundamental for smart city applications. These models enable
the city to interpret visual data, obtained from sensors such as surveillance cameras, to optimize
its tasks and positively impact the citizens' lives. However, these models require ever-growing
amounts of labeled data for training, which is expensive and raises ethical concerns when
collected in the real world. Conversely, 3D engines and simulators allow the cheap and large-
scale generation of automatically annotated synthetic data. This work proposes a synthetic
dataset generator for the smart cities field using the CARLA simulator. The proposed generator
allows the end-to-end generation of massive datasets with a single command, which includes
the simulation of city assets, such as vehicles and pedestrians, and the recording and annotation
of visual data. To prove the generator's competence, a dataset with over 300K annotated
frames was generated and compared with others from the state-of-art. The comparison results
show that the proposed generator is capable of producing datasets comparable to the state of
the art in terms of data volume and number of annotations. It's expected that the proposed
generator could be used to create useful datasets for training and evaluating computer vision
models in the smart cities area. It's also expected that this work bring attention to the synthetic

data usage for smart city models.

Keywords: Synthetic Data. Smart Cities. Computer Vision.
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1 INTRODUCTION

Urban spaces must be capable of ensuring the well-being of their citizens, guaranteeing
them a pleasant quality of life and easy access to resources and services. However, the rapid
urbanization of the world makes cities increasingly populated, bringing challenges to the man-
agement of resources and the assurance of a good quality of life for their citizens.

In light of these problems, smart cities integrate advanced technological solutions to im-

prove the quality of life of their residents and to optimize their tasks. Technologies from the

fields of |Artificial Intelligence (Al), Internet of Things (loT)| and big data are commonly used

in smart city applications to achieve this, allowing the city to understand its context and make

informed decisions about it.(SILVA et al., 2018; ZAMAN et al., 2024)

In this context, [Computer Vision (CV)| models play a fundamental role in enabling smart

cities to analyze and understand events occurring in their streets by processing visual data col-
lected from sensors such as RGB cameras (SYAHIDI; KIYOKAWA; OKURA, 2023). These models
can be applied in diverse contexts, such as traffic monitoring (BARTHELEMY et al.,, 2019),
accident detection (ADEWOPO et al., [2023), and safety (YAR et al., [2023).

However, supervised deep learning models require an increasing amount of labeled data to
be trained (DOSOVITSKIY et al., [2020)). Traditionally, this data is obtained by collecting images
and videos from the real world for a given period and annotating them afterward (GEIGER; LENZ;
URTASUN, [2012; |[CORDTS et al., [2016)). However, this approach is time-consuming (requiring
more than 1.5h per image for fine annotations in (CORDTS et al., 2016))), expensive, and raises
concerns regarding the privacy of the data and possible biases associated with the dataset.

On the other hand, synthetic datasets are collections of data generated in digital environ-
ments, such as game engines (GAIDON et al., 2016)), specific software (HERZOG et al., 2023), or
even computer games (RICHTER et al., [2016]). These datasets simulate real-world physics, en-
vironments, and rules in the digital world, enabling the creation of data that closely resembles
real-world datasets (GAIDON et al., [2016)).

Compared to real-world datasets, synthetic datasets are a cheaper and faster alternative to
gathering data to train [CV| models. These datasets can be generated with a massive amount
of data, are automatically annotated, and offer better control of the dataset environment,
allowing adjustments on the data diversity (PATHIRAJA; LIU; SENANAYAKE, 2024)) and allowing

the recording of rare real-world events (GAIDON et al., 2016)).



13

Additionally, the constant improvements in computer graphics enhance the data quality
of synthetic datasets. Modern game engines enable data to be recorded with photorealistic
graphics and pixel-perfect annotations (LI et al., 2023; |TURKCAN et al., 2024)), resulting in high-
quality dataset (see in Figure [1)). Experiments described in (ROS et al), [2016) demonstrated
that augmenting real-world datasets with synthetic data for training [CV] models can lead to

improved results.

Figure 1 — Example of photorealistic urban synthetic dataset and it characteristics.

Source: [Li et al.| (2023).

However, while there are plenty of urban synthetic datasets available, they often are cre-
ated from very specific viewpoints. For example, synthetic datasets for autonomous driving
applications are often generated using cameras placed on top of vehicles or in the perspective
of vehicles' hoods (ROS et al,, 2016; |GAIDON et al., 2016). Other datasets contain top-down
camera views that are useful for example to drone tasks (TURKCAN et al., 2024)), for example.
Although useful, these datasets are not focused on the city as a whole, which is limiting to
tasks in which the city should be an active agent that perceives its context and actuates on
it.

Additionally, even though these synthetic datasets can be modified, their frameworks often
do not provide an end-to-end approach, which makes the generation of new data difficult.
We consider a dataset generation framework to be end-to-end if it encapsulates all steps of

dataset generation in a single command.

In this work, we propose the [ExpaNdable Datasets Labeled and Empowered by Synthetic|

ISimulation (ENDLESS)|framework, an end-to-end dataset generation framework developed on

top of the CARLA Simulator (DOSOVITSKIY et al} 2017) that enables the generation of large

urban synthetic datasets by a simple script execution after the initial CARLA setup. Users can
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change various parameters of the generated dataset such as weather, city maps, crowd density,
and traffic intensity, allowing the generation of customized datasets. The generated datasets
are automatically annotated regarding 2D bounding-boxes, instance segmentation, and depth
maps.

To prove the competence of our generator, we used it to generate a novel dataset with
over 300K frames and compared it with state-of-the-art urban synthetic datasets. Our analysis
shows that our framework can generate datasets with a comparable number of frame and
annotation counts as the literature's state-of-the-art.

This work is structured as follows: first, in|chapter 2, we provide the necessary background
to support this work. Next, in [chapter 3] we present related works of urban synthetic datasets
and dataset generation tools. After that, we present our generator at [chapter 4 Then, we
introduce our generated dataset and analyze it at [chapter 5 Furthermore, we compare our
dataset to others from the state-of-the-art urban synthetic datasets in [chapter 6] Finally, we
present our conclusions and discuss limitations and future works in [chapter 7] Additionally,
preliminary experiments with CARLA's digital twin tool are presented in [Appendix Al
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2 BACKGROUND

The constant advances in the field of [Deep Learning (DL)| have led to the widespread

adoption of these models in various tasks, making them present in multiple aspects of everyday

life. In particular, [DL] models for [Computer Vision (CV)| can interpret the real world through

images and videos, making them essential for smart city tasks (SYAHIDI; KIYOKAWA; OKURA,
2023).

These models typically use a supervised learning approach, in which the model learns
from examples provided in a labeled dataset. To make this training possible, the dataset
must be annotated according to the task the model is designed to perform. However, as the
field advances, [DL] models are increasingly large and require ever-growing amounts of data to
be trained (DOSOVITSKIY et al} [2020)). Nonetheless, obtaining fine annotations of real-world
datasets is a time-consuming task (CORDTS et al., 2016)) and the recorded dataset may contain
intrinsic biases related to the location and conditions in which it was recorded.

In this chapter, we provide the necessary background to support our work and to better
understand its placement within the current literature. First, we provide an overview of the
fields of smart cities and [CV] Second, we present the types of annotations used in [CV] models.

Finally, we present simulation engines used to generate synthetic datasets.

2.1 SMART CITIES

In an increasingly urbanized world, cities must be able to address challenges related to
citizens' quality of life, service provision, air pollution, and other challenges arising from con-
stant urbanization. The smart city concept emerges to describe a city that can tackle these
challenges and thrive.

Although in increasing popularity, a unique definition of what constitutes a smart city is
not universally accepted and many works provide different definitions of it (CHOURABI et al.,
2012)). |Giffinger et al.[(2007) provide a holistic definition of the term, involving various sectors
of urban areas. According to them, a smart city should thrive in economy, people, governance,
mobility, environment, and living; and their citizens must have active participation in the city.
To better describe these characteristics, the authors provided 33 factors that provide a better

understanding of them, as shown in Figure 2]
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Figure 2 — Characteristics and factors of a smart city.

Source: (Giffinger et al.| (2007)).

A concept also associated with smart cities is that these cities should be able to capture

information about their context and interpret it to enable informed decision-making (ZAMAN

et al, 2024} [SILVA et al), 2018)). In this regard, [Information and Communication Technologies|
(ICT)| solutions, such as [Artificial Intelligence (Al), big data, and |Internet of Things (loT)| are
widely explored in research on the field (SILVA et al., [2018; ZAMAN et al., [2024]).

loT| devices enable information exchange between city assets through the internet, creating
a network where each asset contributes to improving its own performance and the city as a
whole. These devices also provide real-time data from multiple regions and sectors of the city,
providing a holistic overview of its context (ZAMAN et al., 2024). The high volume of data

collected from all these devices can be processed by big data techniques, enabling the filtering
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of redundant or erroneous data and normalizing it. The processed data can then be stored
for future use and be analyzed to generate insights on how to improve different aspects of
the city (SILVA et al., [2018). The raw or processed obtained device data can be used by
models to enable the city to detect events and autonomously react to them through its devices
(ADEWOPO et al., 2023; BARTHELEMY et al., 2019).

To illustrate how these technologies improve urban dynamics in smart cities, imagine the
following situation: a traffic accident occurred on a busy avenue just before rush hour. A
smart city should be able to automatically detect the accident, through surveillance cameras
for example, and notify emergency services to assist those involved. At the same time, the

city would work to prevent traffic jams by informing citizens of the incident and suggesting

alternative routes to them. In a [Vehicle-to-Everything (V2X)| scenario, the city would also be

able to communicate directly with autonomous vehicles so that they could recalculate their

routes.

2.2 COMPUTER VISION

Computer vision is a field of [Al] that studies how computers can interpret visual inputs,
such as images and videos, in an attempt to replicate the mechanisms of the human brain
and vision. This field is rapidly expanding due to improvements on [DL] models, which enabled
various [CV] tasks to be performed.

Classic algorithms in the field use image processing and statistics to extract features from
images. These features could be used as input for traditional machine learning models to
perform [CV] tasks. Today, [DL] models have become the new standard in the field, allowing
automatic extraction of features from images and more accurate predictions.

Most [DL] models for [CV] are trained using supervised learning, meaning they generally
require labeled data for training. Just as other [Al] models, labeled datasets for [CV| contain
input data and ground-truth annotations for those inputs (GEIGER; LENZ; URTASUN, 2012).

Image classification may be the best-known task in the field. In this task, the model's
objective is to predict the class of an image from a predefined set of classes. The LeNet model
(LECUN et al} 1998)) enabled handwritten digit recognition by classifying grayscale images of
digits as one of ten possible classes. Today, with the advancements in the [DL] field, image
classification models are capable of identifying the class of an image among thousands of

categories for which the model has been trained (DOSOVITSKIY et al., [2020).
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Object detection models also provide the class of objects from an image, but they also
provide the location and dimension of these objects. The location of the objects is given by
enclosing the object in bounding-boxes (REDMON et al., 2016, which will be better explained
in Section 2.3.11

Segmentation models take a step further by classifying each pixel in the image rather than
just detecting objects, providing more detailed results (HE et al., 2017). These models require
segmentation maps for training, which will be detailed in Section [2.3.2]

Depth estimation is another common task in [CV] enabling the generation of depth maps,
which estimate the distance of each pixel in an image from the camera (BHAT et al., 2023)).

More details on depth maps can be found in Section [2.3.3]

2.3 COMMON COMPUTER VISION ANNOTATIONS

As mentioned before, the training of [CV| models usually requires annotated data. The
annotation process is usually slow and requires human annotators to manually obtain ground-

truth data from images or the usage of specific hardware or software solutions. Nowadays,

tools such as Roboflow[l] and [Computer Vision Annotation Tool (CVAT)F| speed up the anno-

tation processes by using [Al] techniques, but still requires human annotators to generate finer
annotations.

In this section, we present common annotations used to train [CV] computer vision models.
We specifically focus on bounding-boxes, segmentation, and depth maps once these are the

annotations we provide in our synthetic data generation framework.

2.3.1 Bounding-Boxes

Bounding-Boxes are a type of annotation used to specify the position and dimensions of
objects in images. This is done by enclosing the object within a box that contains it, as shown
in Figure [3] This annotation is fundamental for training [All models in tasks that require the
location or dimension of objects in the image, such as object detection (REDMON et al., 2016)).

Just as there are various ways to represent squares, there are various ways to represent

bounding-boxes of objects. The [You Only Look Once (YOLO)| models (REDMON et al., 2016)

Available at: |<https://roboflow.com/>. Accessed on: Mar. 18, 2025
2 Available at: <https://www.cvat.ai/>. Accessed on: Mar. 18, 2025


https://roboflow.com/
https://www.cvat.ai/
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Figure 3 — Example of 2D bounding boxes.

Source: [Redmon et al.| (2016)).

utilize bounding-boxes represented by the center of the box and its dimensions. Other works
represent the bounding-boxes storing their top-left and bottom-right vertices coordinates such
as the Faster-RCNN (REN et al., [2015).

Extending the conventional 2D bounding-boxes, 3D bounding-boxes contain additional
depth information, using rectangles to enclose objects. The additional depth information makes
3D bounding-boxes useful for applications in the field of autonomous driving, 3D reconstruc-
tion, and extended realities. However, obtaining 3D bounding-boxes is more challenging as it

requires depth data and a more complex annotation process.

2.3.2 Segmentation Maps

Segmentation maps are pixel-level annotations that encode information in the RGB values
of each pixel of an image, making it rich in detail and precision. There are different types of
segmentation maps, which differ in the information stored in the RGB values. For semantic
segmentation maps, the RGB value stores the class of the object comprising the pixel. For
instance, segmentation maps, both the object class and a unique ID for each object are
encoded in the RGB values in the image. This is often achieved by storing the object class
in one channel and the object ID in the remaining channels. Figure [4| provides examples of

semantic segmentation maps.
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Figure 4 — Example of semantic segmentation map.

Source: [Richter et al | (2016)).

2.3.3 Depth Maps

Depth maps store the distance from a given pixel to the camera, typically in meters, adding
depth information to 2D images. Obtaining these maps required expensive sensors such as
LiDAR, stereo cameras, or structured light systems, limiting the obtaining of this data.

However, improvements in [DL] and [CV] techniques democratized the obtaining of depth
maps by enabling accurate depth estimation. Depth estition models such as the ZoeDepth
(BHAT et al., 2023)), can generate high-fidelity depth maps from monocular images captured by
a conventional RGB camera (see in Figure [5), reducing the costs associated with specialized
Sensors.

Figure 5 — Example of depth maps estimated from deep learning model.

Source: Adapted from (BHAT et all, [2023)).
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2.4 SIMULATION ENGINES FOR SYNTHETIC DATASETS

Advancements in computer graphics and game development fields resulted in improved
realism in digital environments, both in terms of graphical quality and physical accuracy. In this
context, simulation engines emerge as computer graphics software that enables the simulation
of real-world rules and environments in a digital setting, allowing experiments to be conducted
in the virtual world. In particular, the fields of autonomous vehicles and smart cities have
strong incentives to use these tools, as simulations make it possible to carry out experiments
that would otherwise be costly or difficult to carry out in the real world (DOSOVITSKIY et al.,
2017)).

Various of these engines make it possible to obtain visual data through simulated sensors,
which include RGB images, depth and segmentation maps, LiDAR scans, and others. The
availability of these visual sensors combined with the realism of these engines enables their
use to generate synthetic datasets that accurately replicate real-world dynamics, making them
suitable for training [CV] models.

The BeamNG.tech] is a simulation engine aimed for applications on the autonomous vehi-
cles and driver training fields. The engine has its own physical simulator, which uses a custom
soft-body physics that helps to realistically simulate vehicle kinematics.

The engine provides a set of sensors for data acquisition through simulation, including

cameras, LiDAR, [Inertial Measurement Unit (IMU), and ultrasonic sensors. Additionally, it

enables the acquisition of ground-truth data, such as bounding-boxes and segmentation. These
features enable synthetic datasets to be recorded using the engine, exploiting the realistic
vehicle kinematics.

One of the most notable simulation engines is the CARLA simulator (DOSOVITSKIY et al.,
2017)), built using a fork of the popular Unreal EngineE] and focused on experiments with
autonomous driving models. The simulator provides digital cities in which vehicles can roam
and simulate traffic agents such as vehicles, pedestrians, traffic lights, and others. Figure [f]
shows the CARLA simulation interface on Unreal Engine 4.

The simulator also contains a great sensor suite that was originally designed to simulate how
an autonomous car could interact with the environment. These sensors can be either attached

to vehicles or placed around the available cities and include RGB, depth, and segmentation

Available at: <https://beamng.tech/>. Accessed on: Mar. 17, 2025.

*  Available at: |<https://www.unrealengine.com/>. Accessed on: Mar. 17, 2025.


https://beamng.tech/
https://www.unrealengine.com/
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Figure 6 — Carla simulator interface on Unreal Engine 4.

Source: Created by the authors (2025).

cameras and others such as LiDAR, IMU, and optical flow.
Thanks to the traffic realism, great range of sensors, and open-source nature, the CARLA
simulator is extensively used to record synthetic data aimed for urban tasks (HERZOG et al.,

2023; [KLOUKINIOTIS et al, |2022; DESCHAUD, [2021; DESCHAUD et al., 2021).
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3 RELATED WORKS

In this chapter, we present related works in the field of urban synthetic datasets and
synthetic data generation tools. We describe an overview of the field and prominent works on
it. Subsequently, we compare these works with our own to discuss our contributions to the

current literature.

3.1 URBAN SYNTHETIC DATASETS

Urban synthetic datasets simulate elements from city streets and avenues, such as vehicles,
pedestrians, and traffic lights, which make them especially suitable for autonomous vehicles
and smart city tasks. Due to the versatility of synthetic data, there are synthetic datasets
available for diverse tasks, such as vehicle tracking (GAIDON et al., 2016} [HERZOG et al., [2023)),
pedestrian detection (STAUNER et al., [2022; FABBRI et al., 2021, and 3D mapping (DESCHAUD
et al, 2021)).

The camera positioning on urban synthetic datasets can also be tailored for different appli-
cation domains. Examples of camera positioning found on available urban synthetic datasets
are egocentric vehicle cameras for autonomous vehicles tasks (GAIDON et al., [2016; |ROS et al.
2016)), aerial cameras (TURKCAN et al., 2024)) and surveillance cameras (HERZOG et al., [2023).

The Synthehicle dataset (HERZOG et al., 2023) is a synthetic dataset built using the CARLA
simulator (DOSOVITSKIY et al., 2017)) and contains 17 hours of video recorded by cameras
positioned similarly to surveillance cameras. It contains annotations for 2D and 3D bounding-
boxes, depth, multi-camera tracking, and segmentation (instance, class, and panoptic).

A medium-altitude aerial dataset was developed to prove the effectivity of the “Boundless”
simulator, developed by |Turkcan et al. (2024). The dataset consists of 8K frames collected
over a single intersection with 2D and 3D bounding-box annotations. The authors further
created similar datasets using CARLA's simulator (22K frames) and their simulator to create
a digital twin of a real-world intersection (8.7K frames).

We noticed that existing works predominantly focus on autonomous vehicles tasks, con-
taining egocentric camera viewpoints that capture the vehicle perspective (DESCHAUD, 2021;
GAIDON et al., 2016; ROS et al., [2016; |KLOUKINIOTIS et al., 2022) while overlooking surveillance

camera perspectives, which are crucial for smart city applications. Furthermore, many of these
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datasets do not offer a simple end-to-end process for expanding them with new data under

customizable settings, keeping their size fixed.

3.2 TOOLS FOR SYNTHETIC DATA GENERATION

Synthetic datasets can be generated by various tools, including game engines, simulation
engines, and even computer games (PAULIN; IVASIC-KOS| |2023)). Game engines, such as UnityE]
and Unreal Engindﬂ are commonly employed to generate synthetic data from simulated envi-
ronments, which can be done by obtaining data from simulated virtual cities (LI et al., [2023;
ROS et al., 2016; KERIM et al., 2021)) or by digitally cloning real-world dataset scenes (GAIDON et
al., 2016)). The increasing realism of computer games has also made them a valuable source for
data generation. A notable example is Grand Theft Auto \/E] developed by Rockstar Games,
which was used in the works of [Fabbri et al. (2021 and Richter et al. (2016) to generate
synthetic datasets.

Simulation engines, such as BeamNG.tedﬂ and CARLA simulator (DOSOVITSKIY et al.,
2017)). are also valuable tools for generating synthetic datasets. More details about simulation
engines, including CARLA and BeamNG.tech, can be found at [section 2.4]

Boundless (TURKCAN et al., [2024)) is a dataset generation tool built on top of the CitySample
assetE] from Unreal Engine. It can generate photorealistic RGB images with associated 2D and
3D bounding-box annotations. The simulator supports dynamic weather conditions and time-
of-day progression throughout the same simulation.

The NOVA (KERIM et al., 2021)) framework is also focused on generating synthetic data from
urban scenes but with particular emphasis on virtual humans. The generator allows various
camera positions, including surveillance positioning, and features four scenarios in its gallery. A
procedural human generator system randomly selects features from a predefined set to create
diverse, highly varied virtual humans. Ground-truth annotation is generated for 2D bounding-
boxes (for humans), body part segmentation, body pose, optical flow, depth, surface normals,
and instance and semantic segmentation.

Current methods for generating synthetic datasets still require some level of user inter-

Available at: |<https://unity.com/>. Accessed on: Mar. 17, 2025.

Available at: <https://www.unrealengine.com/>. Accessed on: Mar. 17, 2025.

Available at: <https://www.rockstargames.com/gta-v>. Accessed on: Mar. 17, 2025.

Available at: <https://beamng.tech/>. Accessed on: Mar. 17, 2025.

Available at: |<https://www.fab.com/listings/4898e707-7855-404b-af0e-a505ee690e68>. Accessed on:
Mar. 17, 2025.
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vention during the generation process. This intervention can range from developing a data
collection system to making smaller adjustments, such as modifying weather, map settings, or

camera positioning.

Comparison with related works

In this work, we propose an end-to-end synthetic dataset generation framework capable of
producing large and diverse datasets with a single command. The datasets are easily expand-
able, as the generator can continuously produce new data. Furthermore, the generated data
is captured in the perspectives of surveillance cameras, making the generated datasets well
suited for training smart city models.

Comparing our work with the aforementioned related works, we can map how our proposal
differs in two ways: (1) Our framework for synthetic dataset generation can create customized
and on-demand datasets in an end-to-end fashion, allowing the generation of large datasets
and eliminating the need to manually define how the data will be collected. (2) Different from
most works, our generated synthetic dataset was designed for smart city applications and is

easily expandable due to our framework.
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4 THE ENDLESS DATASET GENERATION FRAMEWORK

In this chapter, we describe how the |[ExpaNdable Datasets Labeled and Empowered by

ISynthetic Simulation (ENDLESS)| framework was implemented and provide an overview of the

data generation pipeline. We start the chapter presenting the reasons we developed ENDLESS]
on top of the CARLA Simulator (DOSOVITSKIY et al., 2017)). Next, we provide an overview of
the data generation pipeline from the user interaction to the post-processing step, in which

the videos are generated from the recorded data.

4.1 DATASET GENERATOR

In order to allow a generator to simulate dynamics from cities and capture relevant ground-
truth data, we argue that there are several benefits in using established simulators from the
fields of autonomous driving and smart cities. The main benefit is the access to built-in tools
that help to simulate city dynamics automatically, such as traffic and pedestrian flow, and to
capture data from the environment. Without needing to develop these features from scratch,
researchers can focus on generating meaningful and rich data, which may lead to better
datasets.

Our main reasons for building our simulation on top of CARLA were its large catalog of
assets, widespread adoption in the literature, and the vast range of built-in features. These
features include automatic control of city assets, weather manipulation, and sensor simulation
for data retrieval. More details about the CARLA simulator can be found at [section 2.4

Our framework follows an automated end-to-end pipeline, simplifying the dataset gener-
ation process to the execution of a single Python script after the initial CARLA setup. We
represent the full generation pipeline in Figure[7] and explain the steps from the user execution

to dataset generation in the subsections below.

4.1.1 User Interaction

As we built our framework on top of the CARLA simulator, users must have it installed
on their machines to use our framework. After starting the simulator, our framework can be

executed by running a single Python script using the operational system terminal.
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Figure 7 — Data generation pipeline

Source: Created by the authors (2025)

To allow users to create customized datasets easily, we provided arguments for the Python
script. These arguments allow users to adjust various settings in their datasets. Specifically,
users can define the target number of vehicles and pedestrians, enabling the generation of
data from environments with varying levels of crowd density—from highly crowded cities to
areas with fewer agents. Additionally, users can toggle settings for weather conditions, times
of day, and city maps, as outlined in Table[I] Furthermore, these arguments offer control over
technical settings related to the generated data, such as frame resolution, video frame rate,
and video duration. Users can also specify the number of videos to be generated, allowing for
further customization of the data.

Table 1 — Possible values for map, weather, and time of day

Setting Possible Values

Maps Town01_Opt, Town02_Opt, Town03, Town04_Opt,
Town05_ Opt, Town06_Opt, Town07_0Opt,
Town1OHD_Opt

Weathers clear_sky, rainy, cloudy, foggy, after_rain

Times of Day morning, afternoon, night

Source: Created by the authors (2025)

Arguments also provide control over technical settings from the generated data such as
image resolution, and target video frame rate and duration. The number of videos to be

generated can also be tailored using arguments.

4.1.2 Video Settings Generation

Once executed, our framework receives the user-defined settings and begins generating

the dataset by defining the scene settings. We define a scene as the simulated environment
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from where data will be collected in one iteration of the data generation process. The scene
settings include the desired number of pedestrians and vehicles, the name of the city that will
be loaded on the CARLA simulator, the weather and time of day that will be simulated, and
a pair of camera positions.

Using the user-defined settings, our framework obtains all possible scene settings by calcu-
lating the cartesian product from the values of city, weather, time of day, and distinct camera
pairs. The resulting combination list is shuffled to prevent scenes with similar settings from
being generated sequentially.

Since the number of possible combinations can differ from the desired number of videos,

the system does one of the following changes:

» If the number of combinations is higher than the desired number of videos, the system

selects a subset of combinations to match the number of videos;

» If the number of combinations is lower than the required number of videos, the system
oversamples the combination list by repeating elements proportionally to match the

required count.

Finally, the system groups combinations by city to minimize the number of times the
CARLA simulator needs to change the active city. The settings from each scene are exported

to JSON files, becoming available after the generation as metadata.

4.1.3 City Simulation and Camera Positioning

After the scene settings are generated, the framework retrieves the first of them to obtain
the settings for the city simulation process. The city simulation process follows the steps of
Algorithm [1]

Firstly, our framework loads the city map from the current scene. To allow the generation of
diverse environments, we utilized the eight standard city maps from the CARLA catalog, which
range from downtown streets to rural cornfields. Although we experimented with generating
cities from a digital twin approach, as we explain in [Appendix A we decided that using the
standard cities would allow an improved implementation of the annotation process, which is
the critical step we are solving in this work.

After that, we simulate the time of day and weather specified on the scene settings. By using

the CARLA Weather API, we predefined a set of weather and time-of-day conditions that can
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Algorithm 1 City Simulation

1:
2:
3:

10:
11:
12:

13:
14
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
20:

30:
31:
32:
33:

34:
35:
36:
37:
38:
390:
40:

© o N gk

Load city map
Set weather and time of day
Set TrafficManager parameters
> Spawn Vehicles
BatchVehiclesSpawnCommands < ]
MapSpawnPoints <— Get Map Spawn Points
for SpawnPoint € MapSpawnPoints do
if Reached desired vehicle count then
break
end if
VehicleModel <~ Get Random Vehicle Model
Set VehicleModel Settings
Append (Spawn VehicleModel at SpawnPoint, SetAutoPilot) to BatchVehiclesSpawn-
Commands
end for
VehiclesList <— Execute Commands at BatchVehiclesSpawnCommands
Enable Vehicle Lights Control on TrafficManager
> Spawn Pedestrians
PedestrianSpawnLocations < |]
for i € [0..Target Number of Pedestrians| do
PedestrianSpawnPoint <— Get Random Pedestrian Spawn Point
Append PedestrianSpawnPoint to PedestrianSpawnLocations
end for
BatchPedestriansSpawnCommands < ]
PedestrianSpeeds <+ ]
for PedestrianSpawnLocation in PedestrianSpawnLocations do
PedestrianModel <— Get Random Pedestrian Model
Append PedestrianModel.Speed to PedestrianSpeeds
Append (Spawn PedestrianModel at PedestrianSpawnLocation) to BatchPedestriansS-
pawnCommands
end for
PedestriansList <— Execute Commands at BatchPedestriansSpawnCommands
Remove speeds of unspawned from PedestrianSpeeds
> Spawn Pedestrian Controllers
PedestrianControllerModel <— Get Pedestrian Controller Model
BatchPControllerSpawnCommands <« |]
for i € [0.. Number of Spawned Pedestrians| do
Append (Spawn PedestrianControllerModel as child of PedestriansList[i]) to BatchP-
ControllerSpawnCommands,
end for
PedestrianControllersList <~ Execute Commands at BatchPControllerSpawnCommands
for PedestrianController € PedestrianControllersList do
Start PedestrianController
Set Random Target to PedestrianController
Set Pedestrian Max Speed to PedestrianController
end for
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be applied in each scene. The available weather conditions include clear sky, rain, clouds, fog,
and post-rain; while the possible time of day includes morning, afternoon, and night. To ensure
that the generated data can reflect diverse and challenging real-world scenarios, we designed
our framework to enable the weather and time-of-day conditions to be adjusted independently.

Figure |8] presents the weather and time-of-day conditions available in the simulation.

Figure 8 — Weather and time-of-day conditions

Source: Created by the author (2025)

The city is then populated with agents to simulate the city dynamics. To do this, pedes-
trians and vehicles are randomly selected from the CARLA catalog and spawned in predefined
positions on the city map. Each agent moves to random positions in a non-oriented and in-
finite path. In particular, vehicles are controlled by the CARLA's TrafficManager, which is
responsible for their paths and behaviors, such as stopping at red traffic lights or stop signs,
slowing down in speed signs, turning on the vehicle lights in reaction to traffic events, and so
on.

To enable the data recording, the pair of cameras is positioned in the city according to
the scene settings. To grant diversity of views on the recorded data, we positioned 5 cameras
for each city simulating positions of real-world surveillance cameras, similar to (HERZOG et
al, 2023). The cameras were spread around the city attached to building walls, streetlights,
fences, and other structures. During the camera positioning, we tried to maximize the diversity
of scenarios that the camera could capture. We included cameras capturing data from road

intersections, highways, sloped roads, rural roads, urban parks, and so on.



31

4.1.4 Recording Data

While the city is being simulated, the framework uses the pairs of cameras, previously
positioned, to record RGB images, depth maps, and instance segmentation maps from the
environment for the video duration. We can achieve this by placing RGB, depth, and instance
segmentation cameras in the same location and with the same settings. This allows us to
obtain a perfect match between the sensors’ data without any calibration process.

The data from the cameras are recorded as PNG images and named according to the
current simulation frame. Instance segmentation images are stored in a way that the red
channel defines the pixel class and the green and blue channels, the unique ID from the pixel's
object. Depth is stored in RGB images in a way that the distance in meters from the object to
the camera can be calculated, as described in the CARLA documentationT} with the following

equation:

R+ G x 256 + B x 2562
2563 — 1

Dmeters = 1000 x

4.1.5 Post-Processing

Once the video recording finishes, a post-processing step generates videos from the col-
lected data and uses the instance segmentation maps to calculate pixel-perfect bounding-boxes,
similar to the method present in (PATHIRAJA; LIU; SENANAYAKE, 2024), from pedestrians and
vehicles (which are labeled according to their class such as bus, car, truck, etc). Bounding-
Boxes from objects with fewer than fifty visible pixels are discarded as they may represent
highly occluded or distant objects. After the post-processing is complete, the generation pro-
cess until the number of videos generated matches the number of user-defined number of
videos on the dataset. Figure [9] shows an example of data that can be generated using our

framework.

1 Available at:<https://carla.readthedocs.io/en/0.9.15/ref _sensors/# depth-camera>. Accessed on: Mar.
17, 2025.
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Figure 9 — Example of output data provided by the generator

(a) RGB image (b) Bounding-Boxes

(c) Instance Segmentation (d) Depth Map

Source: Created by the authors (2025)
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5 A NOVEL DATASET FOR SMART CITIES APPLICATIONS

In this chapter, we present a novel synthetic dataset created to prove the
[Datasets Labeled and Empowered by Synthetic Simulation (ENDLESS)| framework capability

of generating large and automatically annotated datasets. We describe the dataset and provide
further analysis of the data distribution and dataset parameters to provide insights about the

generated data.

5.1 DATASET DESCRIPTION

To demonstrate the ENDLESS] capability, we used the framework to create a substantial

synthetic dataset, consisting of 378,751 frames distributed across 244 HD videos recorded at a

frame rate of 30 [Frames Per Second (FPS)| Figure |10| contains image samples collected from

the generated dataset. Notice the diversity of environments, viewpoints, and environmental
conditions obtained by using the framework.

Figure 10 — Samples from the dataset images

Source: Created by the authors (2025)

The final dataset was made composing six mini-datasets (hereafter referred to as “minisets”)

generated on different days using a consumer-grade computer equipped with an RTX 3090

|Graphics Processing Unit (GPU)| Notably, the final dataset is expandable, as users can use the
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[ENDLESS] framework to generate additional minisets to extend the dataset size. Furthermore,

as mentioned in [subsection 4.1.1 the additional user-generated minisets can be customized

to allow greater control over the generated data.
To better demonstrate our framework features, all minisets were generated with all the
weather, times of day, and city maps enabled. The only distinction regarding their settings is

the maximum number of pedestrians and vehicles and the number of videos to be generated.

5.2 DATASET ANALYSIS

In this section, we analyze the generated dataset to have better insights into the data
distribution and verify the data generation. To achieve that, we analyzed the data
distribution of the 6 generated minisets and also of parameters such as weather, time of day,
and city maps from the final dataset.

In Table [2, we present the data distribution for the six minisets along with their target
number of vehicles and pedestrians. The results evidence that the second miniset exceeds the
number of frames and videos from the other minisets by a high margin. This result indicates

that this miniset has the highest influence on the final dataset compared with the others.

Table 2 — Minisets specifications

Miniset #Videos #Frames Max Vehicles Max Pedestriabs

1 18 27,632 30 20
2 104 157,269 30 20
3 30 44,957 30 20
4 40 64,050 100 60
5 30 46,840 100 60
6 22 38,003 150 100
Total 244 378,751

Source: Created by the author (2025)

An analysis of the dataset city map distribution is presented in Figure [11] It's visible that
the cities were not used evenly across the video generation. We suppose that this is due to the

random city selection and order by the city map process effectuated during the scene settings

generation, as mentioned in [subsection 4.1.2]

To better analyze the environmental conditions of the dataset, we analyzed the time of
day and weather distributions both independently and in combination. This distribution is

presented on Figures [12] [13| and [14 From the graphs, we note that the least represented
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Figure 11 — Dataset City Map Distribution

Source: Created by the authors (2025)

weather condition in our dataset is “rainy”, while the most represented is “cloudy”. It is also
observed that the nighttime period has the most data, whereas the morning has the least.
Additionally, it is worth noting that the three most representative environmental conditions in
the dataset, which consider both the video's weather and time of day, have different weather
and times of day values, namely “clear-sky afternoon”, “cloudy morning”, and “foggy night".

From the environmental graphs, we also observe that the disparity in the number of videos
across classes increases as the number of classes grows. This is expected due to the random
selection of weather and time of day values. This trend can be verified by comparing the time
of day distribution, which has only three possible values, with the combined time of day and

weather distribution, which has 15 possible values.
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Figure 12 — Dataset weather distribution

Source: Created by the author (2025)

Figure 13 — Dataset time of day distribution

Source: Created by the authors (2025)
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Figure 14 — Dataset environmental condition distribution

Source: Created by the authors (2025)
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6 RESULTS AND DISCUSSION

To prove that our generator can create competitive synthetic datasets, we compared the
generated dataset with three related synthetic datasets that are publicly available. The datasets
we chose for comparison were the Synthehicle dataset (HERZOG et al., 2023), and the Boundless,
Boundless+Digital Twin, and CARLA datasets (TURKCAN et al,, 2024). Further information
about these datasets can be found in [section 3.1

We have chosen the Synthehicle dataset for comparison because its camera positioning
and focus on smart city applications make it the most similar to ours. Boundless datasets were
selected because they were released to prove the efficiency of a similar generator developed
in the Unreal Engine 5T We consider that comparing the resulting dataset with real-world
datasets is out of the scope of this work.

The features selected to compare the datasets were: the number of frames; the number
of distinct camera views; and the availability of 2D or 3D bounding-boxes, segmentation, or
depth map annotations. In this work, we consider a camera view as a perspective captured
from the camera based on its positioning in a given city.

Table 3 — Comparison with other datasets

Dataset #Frames #Views 2D Boxes 3D Boxes Segmentation Depth
Synthehicle 612,000 40 X X X X
Boundless 8,000 1 X X

Boundless + Digital Twin 16,700 2 X X

Boundless (Carla) 22,000 1 X X

Ours 378,751 40 X X X

Source: Created by the author (2025)

The results of our comparison are presented in Table[3] Note that we consider the “Digital
Twin+Boundless” dataset to have 2 distinct views as it is a merge of two datasets. Nev-
ertheless, the camera positioning of both mimics the same real-world camera positioning.
Additionally, the number of frames for the Synthehicle dataset was estimated based on the
reported frame count per video and the total number of videos since the exact number was
not provided in the published paper.

Our dataset contains more than seventeen more frames than the largest dataset from
Boundless, made on CARLA, and more than twenty times the number of frames of the “Bound-

less+Digital Twin" dataset. Despite that, the Synthehicle contains approximately 61% more
1

Available at;<https://www.unrealengine.com/en-US /unreal-engine-5>| Accessed on: Mar. 17, 2025.
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frames than our dataset. In terms of view count, our dataset is equivalent to Synthehicle and
surpasses Boundless’ by a big margin, once they are recorded from the same viewpoint.

Regarding recorded ground truth, both Boundless and Synthehicle contain 3D bounding-
box ground-truth data, which are not available on our dataset. Other than that, our dataset
contains depth, instance segmentation, and 2D bounding-boxes annotations, which are also
available on Synthehicle but absent on Boundless.

Regarding the features compared in Table [3, it's noticeable that Synthehicle is a larger
dataset and contains a bigger range of annotations than ours. However, it is important to
notice that our work is not a single dataset, but rather a framework for dataset generation. In
this case, the quantity of frames should not be taken into account as to measure in any way

quality.
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7 CONCLUSION

In this work, we presented an end-to-end synthetic dataset generator for smart city tasks
developed using the CARLA Simulator. The generator can create automatically annotated
synthetic datasets by a single script execution, mitigating the need for costly manual annotation
common in real-world datasets. The generated data includes diverse scenarios with distinct
camera views, weather conditions, time of day, vehicles, and pedestrians, ensuring a diverse
data generation.

To prove the competence of our generator, we used it to generate a proof-of-concept
dataset with over 300K frames and compared it with state-of-the-art related synthetic datasets.
Our comparison shows that the generated dataset is paired with state-of-the-art datasets

regarding frame number and number of sensors, proving the generator’'s competence.

7.1 LIMITATIONS

The main limitation of our work is that synthetic data generated by our framework was

not used yet to train and test [Computer Vision (CV) models to evaluate how they can impact

their metrics. However, we expect that our data can improve these models’ performance as
other works with urban synthetic datasets were able to do.

Another limitation is regarding the data generation. In the initial frames of the city simula-
tion, the vehicles appear “falling from the sky” due to how the CARLA Simulator instantiates
them. This unnatural event was recorded by the cameras during the construction of our dataset.

Finally, recorded videos may contain a different duration from the user-specified duration.

We believe this happened due to how the CARLA simulator processes its ticks.

7.2 FUTURE WORKS

From its current state, there are plenty of possible ways to improve our generator. Adding
new annotations such as 3D bounding-boxes, monk-skin tones of pedestrians, and traffic-light
states would increase the possible usages of the generated data. Additionally, adding new maps
inspired by Latin American scenarios would allow us to simulate representative data with the

specificity of its cities and streets. Finally, testing generated datasets using meaningful deep-
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learning models for smart city tasks would enable us to check how well these models perform

on our data.
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APPENDIX A - GENERATING SYTHETIC DATA FROM LATIN AMERICAN
CITIES

Besides bridging the gap between real and synthetic data, one of the core concepts of our
project is to also allow regional data generation, specifically with the objective of enabling

smart cities interactions in Latin America. In this appendix, we discuss one of our experiments

with generating a digital twin using CARLA from a section of the (Universidade Federal de

|Pernambuco (UFPE) campus. Our goal was to enable the dataset generation for this portion

of the campus as well.
In this experiment, we collected geographic data using OpenStreetMapE] and recreated it

in Unreal Engine using native tools for procedural generation on CARLA. The recreated region

includes the [Centro de Informatica (Cln)| and has a closed-loop traffic circuit where vehicles

could go in and out (see in Figure. Buildings from the real world are replicated procedurally,

respecting their sizes and dimensions contained in the input data.

Figure 15 — Digital twin experiment result.

Source: Created by the authors (2025)

The reconstruction is not perfect, however, it serves as a good starting point for creating
more precise digital twins. In addition, the recreation includes a traffic circuit that resembles the
original, allowing experiments about how autonomous vehicles could navigate in this campus

loop.

1 Available at:<https://www.openstreetmap.org/>. Accessed on: Mar. 17, 2025.
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