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RESUMO

Este estudo aplica redes neurais artificiais para classificar leituras de dados de

sequenciamento de alto rendimento (HTS), com foco específico na detecção de vírus

em plantas de mandioca (Manihot esculenta). Doenças virais representam ameaças

significativas à saúde das culturas e à produção de alimentos, e a mandioca, uma

cultura crucial para a segurança alimentar e aplicações industriais no Brasil e global-

mente, não é exceção. As pipelines tradicionais de bioinformática para a descoberta

de vírus baseiam-se principalmente em métodos de alinhamento, que se tornam cada

vez mais caros em termos computacionais à medida que o volume de dados genômi-

cos de referência cresce. Metodologias sem alinhamento (AF), especialmente aque-

las baseadas na análise de k-mers, oferecem uma alternativa promissora, mas muitas

vezes enfrentam desafios relacionados à interpretabilidade e à demanda por memória.

Para enfrentar esses desafios, propomos um modelo de classificador de atenção

multi-head projetado para detectar infecções virais em dados de sequenciamento de

RNA obtidos de amostras de plantas e traduzido para o nível proteico. Este modelo,

treinado para uma planta hospedeira específica, aproveita o mecanismo de atenção

para melhorar a extração de características das distribuições de k-mers. Essa abor-

dagem permite uma codificação mais dependente do contexto das leituras de sequen-

ciamento, melhorando a classificação das sequências genéticas curtas típicas dos da-

dos de HTS. Além disso, implementamos uma pipeline fitossanitária de última geração

na cloud da Amazon Web Services para avaliar o desempenho do modelo proposto.

O modelo alcançou 99% de precisão durante o treinamento, filtrando efetivamente

milhões de leituras do hospedeiro e de outros organismos, retendo apenas leituras

virais. Essa redução substancial na demanda computacional para a identificação de

novos vírus destaca a eficiência da nossa abordagem. Nossos resultados demonstram

que modelos de deep learning, particularmente aqueles que empregam o mecanismo

de atenção, podem classificar eficientemente sequências virais em leituras curtas, re-

duzindo significativamente os custos computacionais associados aos métodos tradi-

cionais de AF. Este trabalho avança na análise genética e na bioinformática, ofere-

cendo um método mais preciso e eficiente para a classificação de leituras de HTS na

descoberta de patógenos em plantas.



Palavras-chaves: Detecção de vírus, Dados de RNA-seq, Classificação de leituras de

sequenciamento, Aprendizado profundo, Métodos livres de alinhamento.



ABSTRACT

This work applies artificial neural networks for classifying reads from high-throughput

sequencing (HTS) data, with a particular focus on detecting plant viruses in cassava

(Manihot esculenta). Viral diseases pose significant threats to crop health and food

production, and cassava, a crucial crop for food security and industrial applications in

Brazil and globally is no exception. Traditional bioinformatics pipelines for virus discov-

ery primarily rely on alignment-based methods, which become increasingly computa-

tionally expensive as the volume of genomic reference data grows. Alignment-free (AF)

methodologies, especially those based on k-mer analysis, offer a promising alternative

but often face challenges related to interpretability and memory demands.

To address these challenges, we propose a multi-headed attention classifier model

designed to detect viral presence in RNA sequencing data obtained from plant sam-

ples and translated to the protein level. This model, trained for a specific host plant,

leverages the attention mechanism to enhance feature extraction from k-mer distri-

butions. This approach enables a more context-dependent encoding of sequencing

reads, thereby improving the classification of the short genetic sequences typical of

HTS data. Additionally, we implemented a cutting-edge phytosanitary pipeline on the

Amazon Web Services Cloud to evaluate the performance of our proposed model.

The model achieved 99% accuracy during training, effectively filtering out millions

of reads from the host and other organisms, and retaining only viral reads. This sub-

stantial reduction in computational demand for identifying new viruses underscores the

efficiency of our approach. Our findings demonstrate that deep learning models, partic-

ularly those employing the attention mechanism, can efficiently classify viral sequences

in short reads, significantly lowering the computational costs associated with traditional

AF methods. This work advances genetic analysis and bioinformatics, providing a more

accurate and efficient method for classifying HTS reads in plant pathogen discovery.

Keywords: Virus detection, RNA-seq data, Sequencing reads classification, Deep learn-

ing, Alignment-free method.
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quence (FABIJAńSKA; GRABOWSKI, 2019a). . . . . . . . . . . . . . . . 43

Figure 14 – DeepVirFinder model architecture (REN et al., 2020). . . . . . . . . . 44

Figure 15 – One-hot encoding for a genomic sequence (AL-AJLAN; ALLALI, 2018). 45

Figure 16 – PACIFIC model overview: (a) Required steps from sample collection

to virus identification; (b) The model’s architecture (MATEOS et al., 2021). 46



Figure 17 – PPR-Meta model architecture: One model path processes the one-

hot matrix for the nucleotide bases and the other one the one-hot

matrix for codons (FANG et al., 2019). . . . . . . . . . . . . . . . . . . 49

Figure 18 – XVir model architecture (CONSUL; ROBERTSON; VIKALO, 2023). . . . 50

Figure 19 – The preprocessing of the reference data for training the VirHunter

model (a) and the architecture of the model (b) (SUKHORUKOV et al.,

2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 20 – The scheme for the entire prediction module. Three models were

trained for different CNN filter sizes performaing feature extraction

for distinct k-mer sizes (SUKHORUKOV et al., 2022). . . . . . . . . . . . 53

Figure 21 – Overview of the proposed model. On the left, the data preprocessing

is illustrated that consists of translating reads from the nucleotide

level to the protein level and of k-mer encoding for 𝑘 = 5. On the

right side, the model architecture is detailed. The model executes

first the embedding layer, then the attention layer, and finally, a fully

connected layer outputs the prediction values for each class. . . . . 57

Figure 22 – Illustration of the process of embedding refinement. . . . . . . . . . 58

Figure 23 – Resources deployed on the Amazon Web Services (AWS) Cloud to

run Phytopipe, a state-of-the-art phytosanitary bioinformatics pipeline

used to label RNA-seq data obtained from cassava plants. . . . . . . 59

Figure 24 – Krona chart built with results of the execution of Kraken2 tool. It

presents the taxonomy of every organism present in RNA-seq data. 61

Figure 25 – Representation of k-mer encoding for 𝑘 = 5. This is an example of

an amino acid sequence, but the scheme works similar for nucleotide

sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 26 – AUROC metric for different nt-length of the DeepVirFinder Model

(REN et al., 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 27 – Flowchart of all steps executed in experiments searching for a well

performing model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Figure 28 – The flowchart of all steps executed by PhytoPipe, a phytosanitary

pipeline for plant pathogen discovery (HU et al., 2023). The follow-

ing abbreviations for non-standard databases have been used: (i)

nr+euk: NCBI non-redundant protein data base (nr) Bacteria, Ar-

chaea, Viruses, Fungi and microbial eukaryotes; (ii) RVDB: Refer-

ence Viral Database <https://rvdb.dbi.udel.edu> . . . . . . . . . . . 72

Figure 29 – Resources deployed on the AWS cloud to run PhytoPipe. . . . . . . 75

Figure 30 – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 31 – An example of an HTML report generated by PhytoPipe for the S27

sample. This image shows identified contigs with a low blastn identity

to viral references but an excellent match to viral proteins, singling

them out as potentially novel as indicated by the header. . . . . . . 79

Figure 32 – Krona pie charts displaying the Kraken2 classification of the sequenced

reads obtained during the Phytopipe analysis of three cassava sam-

ples, S16 (a), S23 (b), and S27 (c). The subfigures (d) and (e) rep-

resent the drill-down view of the viral and bacteria classes. Because

of the high number of non-pathogen reads, these classes are not

visible in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 33 – Krona pie charts displaying the Kaiju classification of the sequenced

reads obtained during the Phytopipe analysis of three cassava sam-

ples, S16 (a), S23 (b), and S27 (c). The subfigure (d) represents the

drill-down view of the viral classes. . . . . . . . . . . . . . . . . . . . 81

Figure 34 – Krona pie charts displaying the reclassification of reads annotated as

viruses when queried against the NCBI virus database using Kraken2.

These charts were generated by reclassifying the initial virus class

by querying against the complete NCBI nt database using Kraken2.

Results are shown for the three samples: S16 (a), S23 (b), and S27

(c). For sample S27, (d) provides a detailed view of the reads reclas-

sified as viral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 35 – The architecture of the proposed DL classifier on protein level. . . . 87

https://rvdb.dbi.udel.edu


Figure 36 – Values for loss and accuracy during training. The upper row show the

loss (a) and the accuracy curves (b) for the three-output-class model.

The lower row displays the same quantities, loss (c) and accuracy

(d), for the two-output-class model. . . . . . . . . . . . . . . . . . . . 88

Figure 37 – Histogram of S27 derived reads grouped into probability bins for be-

ing of viral origin. The upper row shows the classification results of

the two-class model for R1 (a) and R2 (b) reads, the lower row results

of the three-class-model for R1 (c) and R2 (d) reads. . . . . . . . . . 90

Figure 38 – Pre-built files for the NCBI non-redundant nucleotide database that

can be used to run Kraken2 . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 39 – Pre-built files for the NCBI nucleotide BLAST database. The large

number of objects is highlighted. . . . . . . . . . . . . . . . . . . . . 110

Figure 40 – First step to download the viral dataset: Access the NCBI virus portal

and select the protein tab. . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 41 – Second step to download the viral dataset: Filter for Viridiplantae

hosts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 42 – Third step to download the viral dataset: Click on the “Download”

button and select only the option “Protein” in the “Sequence Data”

column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 43 – Fourth step to download the viral dataset: Select “All Records” to opt

for downloading all sequences. . . . . . . . . . . . . . . . . . . . . . 112

Figure 44 – Fifth step to download the viral dataset. Select “Use default” for the

FASTA definition line and click the “Download” button to start the

download. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 45 – First step to download the Cassava dataset: Access the NCBI portal

and search for cassava. . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 46 – Second step to download the Cassava dataset: Click on the “Manihot

esculenta” link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 47 – Third step to download the Cassava dataset: Click on the “Download”

button in the “Reference genome” section. . . . . . . . . . . . . . . . 115

Figure 48 – Fourth step to download the Cassava dataset: Select “RefSeq only”

on the “Select file source” column and select “Protein (FASTA)” on

the “Select file format” column. . . . . . . . . . . . . . . . . . . . . . 115



LIST OF FRAMES

Frame 1 – Comparative analysis of the related works presented in this chapter. 55

Frame 2 – Filters executed while downloading datasets from NCBI. . . . . . . 62

Frame 3 – Results of virus detection by PhytoPipe for three cassava RNA sam-

ples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Frame 4 – Cassava viruses identified by PhytoPipe on the subset of reads pre-

viously classified as viral by the DL models. . . . . . . . . . . . . . . 94



LIST OF TABLES

Table 1 – Download size of sequence data for output classes chosen as refer-

ence for the model for both Nucleotide and Protein levels. The amount

of data is very unbalanced. Source: NCBI. . . . . . . . . . . . . . . . 60

Table 2 – Absolute and relative number of generated artificial reads per class

included in the training dataset. . . . . . . . . . . . . . . . . . . . . . 62

Table 3 – Vector representation of one-hot encoded nucleotide characters. . . . 64

Table 4 – The number of parameters and the size of the models. . . . . . . . . 67

Table 5 – Description of samples used in this work to evaluate the performance

of the proposed model. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 6 – Execution of experiments on the AWS cloud splited by the experiment

file and date. We also added the total cost of AWS cloud for the date,

but it does not represent the cost of the experiment running itself once

that multiple runs was executed on a single day. . . . . . . . . . . . . 77

Table 7 – Number of reads for three samples originating from the cassava genome

and plant viruses as classified and reclassified by Kraken2 using a

viral-only and the complete NCBI nt database in the two annotation

steps, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 8 – Deep learning classification of sequenced RNA reads obtained from

three cassava samples. Only reads with a predicted probability higher

than 98% are grouped into the corresponding output class. Other

reads are considered as unclassified. . . . . . . . . . . . . . . . . . . 89

Table 9 – Probable origin of sequenced reads of three cassava samples as

grouped by the DL models in the classes virus, cassava ans bacte-

ria. To predict the likely origin, PhytoPipe was executed for all reads,

and the Kraken2 classification was recorded. . . . . . . . . . . . . . . 92



LISTA DE ABREVIATURAS E SIGLAS

ASCII American Standard Code for Information Interchange

AUROC Area Under the Receiver Operating Characteristic Curve

AWS Amazon Web Services

BiLSTM Bi-directional Long Short-term Memory

CIn Centro de Informática

CliFiPe Clínica Fitossanitária de Pernambuco

CNN Convolution Neural Networks

CPU Central Processing Unit

DL Deep Learning

DNA Deoxyribonucleic Acid

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen

EBS Elastic Block Storage

EC2 Elastic Compute Cloud

Embrapa Empresa Brasileira de Pesquisa Agropecuária

FAO Food and Agriculture Organization

HMM Hidden Markov Models

HPC High-Performance Computing

HPV Human Papillomavirus

HTML Hypertext Markup Language

HTS High-throughput sequencing

IaaC Infrastructure as a Code

IDF Inverse Document Frequency

LCA Lowest Common Ancestor

LSTM Long Short-term Memory

MB Megabytes



ML Machine Learning

mRNA Messsneger RNA

NCBI National Center for Biotechnology Information

ncRNA Non-coding RNA

NGS Next-generation Sequencing

NLP Natural Language Processing

nt Nucleotide

ORFs Open Reading Frames

PCR Polymerase Chain Reaction

QUAST Quality Assessment Tool for Genome Assemblies

RAM Random Access Memory

RefSeq Reference Sequence

ReLU Rectified Linear Unit

RNA Ribonucleic Acid

RNA-seq RNA sequencing

RNN Recurrent Neural Network

rRNA Ribosomal RNA

RSync Remote Synchronization

S3 Amazon Simple Storage Service

SSD Solid State Drive

SSH Secure Shell

SVM Support Vector Machines

TF Term Frequency

TF-IDF Term Frequency-Inverse Document Frequency

UFPE Universidade Federal de Pernambuco

UFRPE Universidade Federal Rural de Pernambuco



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . 26

2.1 MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING . 26

2.2 EMBEDDINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 CONVOLUTIONAL NEURAL NETWORKS . . . . . . . . . . . . . . . 30

2.4 RECURRENT NEURAL NETWORKS . . . . . . . . . . . . . . . . . . 32

2.5 ATTENTION MECHANISM . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 RNA SEQUENCE CLASSIFICATION USING KRAKEN2 . . . . . . . 37

2.7 TAXONOMIC CLASSIFICATION OF RNA-SEQ DATA WITH KAIJU . 38

2.8 BIOINFORMATICS CONCEPTS . . . . . . . . . . . . . . . . . . . . . 40

2.8.1 Reads and Contigs . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8.2 K-mers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8.3 FASTA and FASTQ Files . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8.4 Forward and Reverse Reads (R1 and R2) . . . . . . . . . . . . . . 42

3 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 VIRAL GENOME DEEP CLASSIFIER . . . . . . . . . . . . . . . . . . 43

3.2 IDENTIFYING VIRUSES FROM METAGENOMIC DATA USING DL . 44

3.3 CNNS FOR METAGENOMICS GENE PREDICTION . . . . . . . . . 45

3.4 A DL CLASSIFIER OF SARS-COV-2 AND CO-INFECTING RNA VIRUSES 45

3.5 A TOOL FOR IDENTIFYING PHAGES AND PLASMIDS USING DL . 48

3.6 A TRANSFORMER ARCHT. FOR ID VIRAL READS FROM CANCER

SAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 VIRHUNTER: PLANT VIRUS DETECTION . . . . . . . . . . . . . . . 51

3.8 DIFFERENCES BETWEEN RELATED WORKS . . . . . . . . . . . . 53

4 PROPOSED APPROACH . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 MODEL ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . 56



4.2 PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . 58

5 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 DATASET CREATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 MODEL TRAINING AND OPTIMIZATION . . . . . . . . . . . . . . . . 63

5.2.1 Encoding Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 Type of Reference Data . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Output Class Number . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.4 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 CASSAVA SAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 COMPUTATIONAL RESOURCES . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Running Training Job on Apuana Cluster . . . . . . . . . . . . . . 70

6 RESULTS: PHYTOPIPE AS CLOUD SERVICE . . . . . . . . . . . . 71

6.1 PIPELINE OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 AMAZON WEB SERVICES OVERVIEW . . . . . . . . . . . . . . . . 73

6.3 PIPELINE IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . 74

6.4 AWS COSTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 VIRUS DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 PRE-BUILT DATABASES . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.7 KRAKEN2 WITH VIRUS-ONLY DATABASE . . . . . . . . . . . . . . . 82

7 RESULTS: ATTENTION-BASED SEQUENCE CLASSIFIER . . . . . 86

7.1 MODEL ARCHITECTURE AND TRAINING . . . . . . . . . . . . . . . 86

7.2 PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . 88

7.2.1 General Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.2 PhytoPipe Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1 FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

APÊNDICE A – PYTHON SCRIPT TO GENERATE RANDOM READS103

APÊNDICE B – TERRAFORM SCRIPT TO MANAGE AWS RESOURCES

FOR PHYTOPIPE . . . . . . . . . . . . . . . . . . . 105

APÊNDICE C – BASH SCRIPT TO RUN A TRAINING JOB ON APUANA108

APÊNDICE D – PRE-BUILT FILES FOR NCBI DATABASES . . . . 109



APÊNDICE E – PROCEDURE FOR DOWNLOADING VIRAL DATASET111

APÊNDICE F – PROCEDURE FOR DOWNLOADING CASSAVA DATASET114

APÊNDICE G – PROCEDURE FOR DOWNLOADING BACTERIA

DATASET . . . . . . . . . . . . . . . . . . . . . . . 116



20

1 INTRODUCTION

1.1 MOTIVATION

According to the United Nations Food and Agriculture Organization (FAO), cassava

ranks among the most significant crops globally, alongside rice, corn, and sweet potato

(RYBICKI, 2015). This root vegetable is a crucial food source for millions of people, par-

ticularly in tropical regions. As of 2009, over 700 million people depended on cassava

as a major part of their diet, with Africa accounting for half of this population (PATIL,

2009). This highlights cassava’s critical role in ensuring food security and nutrition in

many developing countries.

Brazil stands out as a major producer of cassava, holding the position of the fifth-

largest producer worldwide. In 2022, Brazil produced more than 17 million tons of

cassava, accounting for 13.46% of global production. This significant contribution un-

derscores Brazil’s pivotal role in the cassava supply chain and its importance to the

country’s agricultural economy. The extensive cassava cultivation in Brazil supports lo-

cal consumption and contributes to various industrial applications (GOMES, 2024; IBGE,

2024).

The widespread cultivation and utilization of cassava underscore its global impor-

Figure 1 – Distribution of cassava production in the world. (KIM et al., 2017)
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tance. Cassava is consumed in its natural form and processed into diverse products.

These include biofuel, bioplastic, medicines, and other industrial products, showcasing

the crop’s versatility and economic value. The numbers and trends in cassava pro-

duction and consumption illustrate its critical role in food security and industrial appli-

cations, making it a vital crop for millions of people worldwide (PATIL, 2009; GOMES,

2024). Figure 1 depicts the worldwide distribution of cassava production in the year

2017.

The extensive cultivation of cassava presents significant challenges, particularly

concerning the spread of viral diseases. Plant viruses are a major concern for large-

scale crops in developing countries (RYBICKI, 2015). One of the most critical issues

affecting cassava production is cassava mosaic disease. This disease is prevalent in

regions like the African continent and the Indian subcontinent. Cassava mosaic disease

is caused by a family of viruses known as cassava mosaic geminiviruses, which belong

to the Begomovirus genus. These viruses are highly detrimental to cassava plants,

causing symptoms such as leaf distortion, chlorosis, and stunted growth, which can

lead to significant yield losses (PATIL, 2009).

In Brazil, viral diseases pose a significant threat to cassava production, with cassava

mosaic disease caused by the potexvirus cassava common mosaic virus leading to

potential losses of up to 30% in the country’s cassava output. Other notable viruses

affecting cassava in Brazil include cassava american latent virus, cassava polero-like

virus, cassava new alphaflexivirus, and cassava torrado-like virus. Understanding the

dynamics of these viral communities is crucial for managing and mitigating their impact

on cassava crops. RNA sequencing (RNA-seq) data analysis offers valuable insights

into the temporal and spatial patterns of these viral populations, enabling researchers

to characterize and study the viruses present in the ecosystem and assess their overall

impact.

RNA-seq data in plant samples primarily represent the transcriptome, including

mRNA, rRNA, ncRNA, and potentially RNA from associated organisms (e.g., viruses,

bacteria, fungi) and organelles (mitochondria and chloroplasts). The specific content

depends on the RNA extraction and library preparation protocols used. The libraries

used in this study deplete the rRNA content.

Recent advancements in viral detection tools have significantly enhanced our abil-

ity to analyze viral sequences in metadata samples. The global pandemic caused by
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SARS-CoV-2 has accelerated the development and improvement of these tools, lead-

ing to innovations such as the Serratus platform (<https://serratus.io/>). This platform,

along with other practical and specific pipelines, has been instrumental in discover-

ing new plant viruses and analyzing various sample types.High-throughput sequenc-

ing (HTS) combined with molecular detection techniques have become essential for

uncovering viral diversity in plants and are particularly effective for detecting and mon-

itoring viruses in propagative material.

The application of these advanced technologies allows for a more comprehensive

understanding of the viral landscape affecting cassava crops. By employing HTS and

molecular detection methods, researchers can identify and monitor the presence of

multiple viruses, including those that may not have been previously detected. This de-

tailed knowledge is crucial for developing effective strategies to combat viral diseases

and minimize their impact on cassava production. It also facilitates the early detection

of emerging viral threats, enabling prompt and targeted responses to protect the crops.

Overall, the integration of RNA-seq data analysis and advanced sequencing tech-

niques represents a significant step forward in managing viral diseases in cassava.

These approaches not only enhance our understanding of the viruses affecting cas-

sava but also provide the necessary data to inform better agricultural practices and

disease management strategies. By leveraging these technologies, Brazil can improve

the resilience of its cassava production systems, ensuring the sustainability and pro-

ductivity of this vital crop in the face of viral challenges.

1.2 PROBLEM

Accurate virus disease identification is crucial for implementing effective treatment

strategies targeting the causative agents; new and old virus infection identification

plays an important role. By diagnosing diseases correctly, farmers can take timely pre-

harvest prevention and treatment measures, applying the appropriate phytosanitary

products and dosages to minimize harm to crops, the environment, and human health.

This precision in disease management enhances crop yields and sustainability and

reduces the risk of resistance development among pests and pathogens, ultimately

supporting a more resilient and productive agricultural system.

Traditionally, the identification of viral infections can be performed using various

https://serratus.io/
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tools and methods. One of the methods that has recently gained prominence is iden-

tification using RNA-seq data obtained through HTS. This activity aims to match a

given sequence to a group of already known sequences that share similar characteris-

tics (FABIJAńSKA; GRABOWSKI, 2019b), or to identify which group a particular sequence

belongs to based on its specific content, using a model trained to perform this task

(MATEOS et al., 2021). The comparison between two RNA sequences, base by base,

is called sequence alignment. However, this technique has shown to be inefficient be-

cause genomes can diverge significantly, making this method unreliable or impossible

(SIMS et al., 2009).

Historically, some tools have been developed to compare a RNA sequence with

a database of known references. Kraken (WOOD; SALZBERG, 2014) and Kaiju (MENZEL;

NG; KROGH, 2016) are examples of well-established tools used to identify viral infections

by comparing sequences with a reference database. These tools perform this task

deterministically, and the biggest challenge faced when attempting to use them is the

high computational power required to run them.

As a result, some tools based on machine learning techniques have been pro-

posed to address this problem of identifying viral infections more efficiently (FABIJAńSKA;

GRABOWSKI, 2019b; MATEOS et al., 2021). However, it was observed that despite the ex-

cellent performance in executing the task, some of these tools lost accuracy when used

on sequences about 100nt in length. Another limitation of these tools is the selection

of samples used for training the models, which means the model needs to be retrained

to address specific cases.

The present work proposes a deep-learning model to identify viral infection from

RNA-seq data obtained through HTS where sequences has between 100nt and 300nt

size. The model was developed in partnership with experts from the Clínica Fitossan-

itária de Pernambuco (CliFiPe), or Phytosanitary Clinic of Pernambuco, hosted by the

Universidade Federal Rural de Pernambuco (UFRPE). The goal is to provide technical

aid in plant disease diagnosis, prevention, and treatment more efficiently. Furthermore,

the efficiency gain shall enable the experts from CliFiPe to faster detect and identify

new viral infections from cassava RNA-seq data.
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1.3 OBJECTIVES

The main objective of this project is to develop and implement a deep learning

model capable of identifying the presence of viral particles infecting cassava from sam-

pled RNA-seq data. To achieve this goal, the following specific objectives have been

defined:

• Develop a method to generate artificial reads from viral, bacterial, and cassava

genome sequences. This step is essential for creating datasets that will be used

to train and validate the models.

• Configure and execute a phytosanitary pipeline to serve as a performance base-

line for evaluating future models.

• Review and assess models proposed in related works to determine their applica-

bility within the context of this project.

• Design and implement a deep learning model specifically tailored to detect viral

infections from RNA-seq data.

1.4 CONTRIBUTIONS

This dissertation advances the detection of viral infections in cassava through the

analysis of RNA-seq data obtained via high-throughput sequencing (HTS) and aids in

the identification of novel viruses that infect cassava. The key contributions of this work

are as follows:

• Developed an algorithm for collecting data from NCBI databases and constructing

datasets for training deep learning models.

• Implemented a state-of-the-art phytosanitary pipeline as a cloud service to iden-

tify novel viruses.

• Constructed tailored reference databases in the cloud, enabling the execution of

bioinformatics tools on resource-limited hardware.

• Provided proof of concept that machine learning algorithms can successfully ex-

tract features for virus detection from short sequencing reads at the protein level.
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• Introduced the attention mechanism as a viable tool for bioinformatics applica-

tions, demonstrating its potential for enhancing viral detection.

• Analyzed RNA-seq data sampled from cassava plants showing disease symp-

toms.
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2 THEORETICAL BACKGROUND

This chapter will explore various concepts to establish the theoretical basis for the

research conducted. First, Section 2.1 introduces the use of machine learning to solve

Natural Language Processing (NLP) problems. Section 2.2 presents recurrent models.

Section 2.3 presents the attention mechanism. Finally, Section 2.4 explains transformer

models, the state-of-the-art model for NLP problems.

2.1 MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING

Machine Learning (ML) is a field of study that employs algorithms that allow com-

puters to learn without being explicitly programmed (MAHESH, 2019). There’s a variety

of ML algorithm types that are applied to different problem categories (MAHESH, 2019),

and to solve these problems, all those algorithms execute a step that is called learn-

ing (SZE et al., 2017). This learning step relies on the data available to execute the

learning process, and the choice of the proper ML algorithm depends on the volume,

characteristics, and structure of the data (MAHESH, 2019).

Nowadays, Machine Learning is widely used to solve several problems in society.

ML algorithms have several applications: image recognition, behavior analytics, pre-

dictive analytics, and natural language processing. Figure 2 shows an example of an

application of NLP called sentiment analysis. This NLP sub-field identifies and extracts

mood within a given text (SARKER, 2021).

Figure 2 – An application of Natural Language Processing: Sentiment analysis (NATURAL. . . , 2024).

Natural language processing, or computational linguistics, is the study area focused
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on creating computer systems and methods to address real-world challenges in un-

derstanding human languages (OTTER; MEDINA; KALITA, 2020). Therefore, NLP enables

computers to perform tasks such as reading text, listening to speech, understanding its

meaning, analyzing emotions, and determining important elements. Machine learning

techniques can be applied in this process. Examples of NLP applications include vir-

tual personal assistants, chatbots, speech recognition, document summarization, and

language translation (SARKER, 2021).

Another important application of NLP models is to solve text classification problems.

This traditional problem focuses on assigning labels to text segments like sentences,

queries, paragraphs, and documents. It has many applications, including question an-

swering, spam detection, sentiment analysis, news categorization, user intent classi-

fication, and content moderation (MINAEE et al., 2021). To address this problem, many

machine-learning models have been applied through the decades; popular choices in-

clude Naïve Bayes, Support Vector Machines (SVM), Hidden Markov Models (HMM),

tree-based models, and Neural-based models (MINAEE et al., 2021).

Popular neural-based approaches apply deep learning models to their architec-

tures. Machine-learned embedding, convolutional neural networks, recurrent models,

and attention-based models are very popular choices, being the last two of them the

state-of-the-art nowadays. All these deep learning concepts and models will be de-

scribed in more detail in the next sections.

2.2 EMBEDDINGS

When developing machine learning models for NLP problem domains, the first chal-

lenge is efficiently representing human language so the model can extract information

from text and thus learn from input data. This challenge is formally known as feature

(or information) representation, and it has received considerable attention in recent

decades. It is relevant to highlight this task as one of the most important steps in NLP

models because this enables the model to execute useful operations on texts (e.g.,

addition, distance measures, etc.) (ALMEIDA; XEXéO, 2023).

Outlining the technique in a few words: Embedding maps words from a vocabulary

to a numerical representation or vector. The simplest approaches to achieve this use

statistical functions called frequency-based embeddings; others are called prediction-
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based embeddings and leverage neural networks to create the numerical representa-

tions.

Frequency-based embedding is a technique that creates vector representations of

words based on how frequently they appear in a text corpus. These methods use statis-

tical measures of word occurrence to capture and encode the meanings of words (5. . . ,

2024). The most classical method of this type of embedding is the Count Vectorizer,

which creates a sparse matrix containing a simple count of the number of occurrences

of a feature in the data set (TRIPATHY; AGRAWAL; RATH, 2015). However, this technique

reaches its limit when dealing with more complex scenarios that require large datasets,

often containing millions or billions of words (MIKOLOV et al., 2013b).

One popular frequency-based embedding technique is Term Frequency-Inverse

Document Frequency (TF-IDF). It compares how often a word appears in a specific

document to how rare it is across a collection of documents. This calculation helps de-

termine how important a word is to a particular document. Words frequently appearing

in just one or a few documents get higher TF-IDF scores, indicating their relevance.

In contrast, common words like "the" or "and" have lower TF-IDF scores because they

appear in many documents and are less informative (RAMOS, 2003). Figure 3 shows

the score calculation for Term Frequency (TF) in blue - this is the frequency of words

- and the term frequency multiplied by the Inverse Document Frequency (IDF) in pink.

A very interesting application of TF-IDF is to balance the weight between the most

frequent or general words and the less commonly used words in a text classification

problem (TRIPATHY; AGRAWAL; RATH, 2015).

Figure 3 – Visualization of TF-IDF scores showing that the frequency of words and frequency of words
across documents can be different (PONNE, 2023).

Prediction-based embeddings have grown in popularity in recent years. They are
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created by models that learn to predict a word based on the words around it in sen-

tences. These methods aim to place words that appear in similar contexts near each

other in the embedding space. This often produces more detailed word vectors that

capture various linguistic relationships (5. . . , 2024). As there are several ways of de-

signing these types of embedding models, it’s possible to split prediction-based embed-

dings into static and contextualized categories. Static word embedding assigns proba-

bilities to words and represents each word as a vector. These embeddings are learned

by training lookup tables that convert words into dense vectors. They are called "static"

because, once trained, the vectors do not change based on the context of different

sentences, and the embedding tables remain the same across all sentences (BIRUNDA;

DEVI, 2021). On the other hand, contextualized embeddings generate a representation

of each word based on its context in the sentence. For example, the contextualized

representation of the word “bank” would be different in bank deposits and riverbanks

(MACAVANEY et al., 2019).

A static prediction-based embedding called Word2Vec initially proposed by Mikolov

et al. (MIKOLOV et al., 2013a) was improved by Ge et al. (GE; MOH, 2017). This tech-

nique uses a neural network that extracts an optimal word representation learned from

a large dataset (5. . . , 2024). The model is trained to predict the surrounding context

words of a given word, and with that, the model can learn the relationship between

the words. Figure 4 shows the relationship learned from data and illustrates how the

model can organize concepts (MIKOLOV et al., 2013a). Another important aspect of this

model is feature reduction. When training an embedding model, one can find that the

relationship is stored in the model weights. Thus, the relationship of millions of words

is stored compactly, making it easy to embed this knowledge in other models (GE; MOH,

2017).

Matthew et al. (PETERS et al., 2018) propose an embedding model called ELMo that

addresses two main challenges: To learn the complex features of the use of words like

syntax and semantics and how the use of these words varies across linguistic context

(PETERS et al., 2018). This model uses neural networks but applies deep learning to

build its deep contextualized word representation. When used with neural networks,

ELMo achieved 97% accuracy when classifying texts (BIRUNDA; DEVI, 2021).

Another example of embedding is proposed by Dai et al. (DAI et al., 2017) called

Sequence2Vec. The main difference of this model is that it is trained to represent DNA



30

Figure 4 – Relationship between city names and countries learned by a Word2Vec model from context
(MIKOLOV et al., 2013a).

sequences instead of human language. The method starts by representing DNA bind-

ing sequences as a hidden Markov model, which captures the sequence’s position-

specific information and long-range dependency. Finally, the model transforms these

hidden Markov models into a shared nonlinear feature space and then uses these

embedded features to construct a predictive model. Our approach uniquely combines

the advantages of probabilistic graphical models, feature space embedding, and deep

learning.

2.3 CONVOLUTIONAL NEURAL NETWORKS

Brain-inspired models have driven innovation in machine learning and deep learn-

ing fields, and the Convolution Neural Networks (CNN) model is a classic example.

This model was initially proposed by LeCun et al. (LECUN et al., 1998) to identify hand-

written digits, outperforming several other machine learning algorithms on this task.

The inspiration for this type of network is the hierarchical model of the visual nervous

system (FUKUSHIMA, 1980). CNNs are usually the most popular choice for image and

video-related tasks, like image classification, object recognition, object detection, etc.,
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but they also have applications in other tasks like NLP.

Figure 5 – An example of a simple Convolution Neural Networks (CNN) architecture for image classifi-
cation (ALZUBAIDI et al., 2021).

Figure 5 shows a simple CNN model to classify whether an image depicts a dog.

It is possible to notice that the model has several layers, initially proposed by LeCun

et al. (LECUN et al., 1998) for its first CNN network called LeNet. The idea is that each

layer is responsible for executing a step on the model task, from feature extraction to

classification. Every CNN may be significantly different from others, but a typical model

will have the following layers:

• Convolution: It is the feature extraction stage of the model. It is responsible for

creating a feature map containing information about the input. For image classifi-

cation example, it will contain borders, contours, etc. (YAMASHITA et al., 2018).

• Activation Function: It introduces non-linearity into the model. It enables the

model to learn and perform very complex tasks (CONVOLUTIONAL. . . , 2024). The

most common activation functions used are Rectified Linear Unit (ReLU), Sig-

moid, and hyperbolic tangent (Tanh) (YAMASHITA et al., 2018).

• Pooling: The step executes the sub-sampling of the feature maps. This reduces

the size of the feature map, creating smaller maps (ALZUBAIDI et al., 2021).

• Fully-connected: This type of layer exists at the end of every CNN model. This

step is responsible for flattening the feature maps as a vector. Based on the value

of the last vector outputted, it is possible to get the classification result of the

model (ALZUBAIDI et al., 2021).
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It is important to mention that, as deep learning evolved over the years, CNN archi-

tecture became increasingly complex. A typical CNN model has several convolution,

activation, and pooling layers blocks. Each block is responsible for increasing the ab-

straction level of the feature map. For example, the first block will be responsible for

extracting borders, the second block will be responsible for some basic shapes, and

finally, the third will be responsible for some objects.

Nowadays, CNN is not only used to perform image classification, object detection,

and object recognition but also on NLP tasks (YIN et al., 2017). Min et al. (MIN; LEE;

YOON, 2016) shows that CNN also has application in many bioinformatics tasks, for

example, DNA and RNA classification and function prediction.

2.4 RECURRENT NEURAL NETWORKS

Recurrent Neural Network (RNN) are a type of model that is very popular for ad-

dressing tasks that require processing sequential data. This data sequence can in-

clude documents, social media posts, genomic data, numerals, etc. It’s possible to

create models for various problems like language modeling, image or video captioning,

speech recognition, text generation, etc. The main difference between recurrent and

non-recurrent networks is the way information is propagated through the network; a

recurrent model processes data in cycles (SCHMIDT, 2019).

Figure 6 – Basic structure of a Recurrent Neural Network (RNN) (MIN; LEE; YOON, 2016).

Figure 6 shows the basic structure of recurrent neural networks. This diagram also

shows how the RNN processes sequential data: A cyclic connection is present, mean-

ing the hidden unit gets inputs from both the hidden unit’s state at the previous time
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step and the input unit at the current time step (MIN; LEE; YOON, 2016). RNN models

are great for capturing dependencies between elements of sequential input. These

dependencies can be easily interpreted in NLP problems. Figure 7 indicates relation-

ships between words in a simple sentence. RNNs models are very good in recognizing

the relationships between words in close vicinity, e.g., in capturing the year Gwathmey

was born. However, as the model tries to capture longer dependencies, e.g., Rosalie’s

son’s name, the model will begin to suffer from "vanishing gradients" and "exploding

gradients" issues (SHERSTINSKY, 2020).

Figure 7 – (a) A simple sentence describing the relationship between three people; (b) The dependen-
cies between terms (the subjects) need to be extracted, a prevalent problem in NLP tasks (LI
et al., 2021).

Schmidt (SCHMIDT, 2019) defines the problem of vanishing and exploding gradients.

The issue will emerge for too long (exploding gradients) or too short (vanishing gradi-

ents) input sentences. In the case of a vanishing gradient, the model does not give

enough attention to critical elements for comprehension of the input sequence. For

exploding gradients, the model assigns an exaggeratedly high weight value to some

elements. Those issues motivated the introduction of a novel model type addressing

these challenges (SHERSTINSKY, 2020) and outperforming traditional RNNs on a variety

of tasks (SCHMIDT, 2019).

Long Short-term Memory (LSTM) is a recurrent neural network designed to ad-

dress the vanishing and exploding gradients problem. While traditional RNNs did not

scale to long-time dependencies, the LSTM models performs well on capturing long-

term temporal dependencies (GREFF et al., 2017). The main difference between con-

ventional RNN and LSTM models is the idea of memory cells. LSTM cells have three

gates—input, forget, and output gates—that modify a cell state vector, which is repeat-
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edly updated to capture long-term dependencies. This controlled flow of information

within the cell allows the network to remember various time dependencies with differ-

ent properties (LINDEMANN et al., 2021).

Figure 8 – Detailed schema of an LSTM block (GREFF et al., 2017).

Figure 8 shows the gates, activation function, and information flow of an LSTM

block. The output gate displays the entire cell, the input gate reads data into the cell,

and the forget gate resets the cell’s content. Basic LSTM setups have been used to

address a variety of tasks that require sequential data processing. However, Greff et

al. (GREFF et al., 2017), and Lindemann et al. (LINDEMANN et al., 2021) show that several

variations of this model were proposed to address specific tasks, e.g., bidirectional

LSTM, LSTM autoencoder, etc.

2.5 ATTENTION MECHANISM

Attention is a crucial cognitive function that allows humans to selectively focus on

specific parts of information when needed, rather than processing everything at once.

This selective focus improves the efficiency and accuracy of perceptual information

processing. Human attention mechanisms are divided into two types: bottom-up un-

conscious attention (saliency-based), driven by external stimuli, and top-down con-

scious attention (focused), driven by specific tasks and goals. In deep learning, most
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attention mechanisms are designed as focused attention to enhancing task-specific

performance (NIU; ZHONG; YU, 2021).

Following this inspiration, Bahdanau et al. (BAHDANAU; CHO; BENGIO, 2016) pro-

posed an RNN model to address a machine translation task. This task belongs to

the NLP universe and is related to translating a sentence from one idiom to another.

The RNN model incorporated an attention mechanism to determine which parts of the

sentence to focus on. This method enables information to be distributed across the

sequence of annotations, and the decoder can selectively access the relevant infor-

mation as needed. This new approach outperformed other state-of-the-art recurrent

models on the task of English-to-French translation (BAHDANAU; CHO; BENGIO, 2016).

After that, the attention mechanism approach obtained a lot of focus and was used in

several other domains.

Figure 9 – Attention model diagram (NIU; ZHONG; YU, 2021).

Defining a general attention mechanism that can be applied to any sequence-to-

sequence task is possible. This general form is depcited in Figure 9 and has three

main components (CRISTINA, 2023):

• The Query (𝑞) symbolizes the request for information (BRAUWERS; FRASINCAR,

2023). Each element in the input sequence may generate a 𝑞-vector that is com-

pared against all available information.

• The Keys (𝑘𝑗) describe the various pieces of information in the input data and

determine which parts of the data are relevant to the Query. Keys can be repre-

sented differently depending on the specific tasks and neural architectures. For

example, keys could be the features of a particular region in an image, word em-

beddings in a document, or the hidden states of RNNs (NIU; ZHONG; YU, 2021).
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• The Values (𝑣𝑗) represents the actual input information that needs to be aggre-

gated or attended to. Each element in the input sequence is associated with a

𝑣-vector that is used to generate the final output based on the attention score

obtained from the Query and Keys.

Figure 9 shows in detail the attention mechanism depicting the query, keys, and

values as input for the entire model. The model outputs a context vector for each el-

ement (e.g., a single word) to be analyzed taking into account it’s relationship with all

other elements of the input sequence (NIU; ZHONG; YU, 2021). Finally, attention-based

implementations must perform additional computation on the context vector to execute

some tasks. Usually, another model - called the output model - runs predictions using

the values of the context vector.

Figure 10 – Visualization of attention weight values for each token on an English-French translation task
(BAHDANAU; CHO; BENGIO, 2016).

An essential inner component of the attention module is the matrix of attention

weights. The attention weights offer a clear interpretation of the attention module. Each

weight shows how important a specific feature vector is compared to the others for a

given problem. Visualizing the attention weights matrix helps to better understand how

the model behaves and to recognize the connections between the model inputs and

outputs (BRAUWERS; FRASINCAR, 2023). Figure 10 shows the values for the attention

weights matrix on the English-French translation task. It’s possible to notice that the

model gives higher weights to the words with the same meaning in both languages.

We hypothesize that the attention mechanism is especially well suited to elucidate

k-mer relations in short reads obtained from RNA-seq data and likely will outperform
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other approaches like CNNs and RNNs.

2.6 RNA SEQUENCE CLASSIFICATION USING KRAKEN2

When executing virus identification on RNA-seq samples, one popular determinis-

tic and traditional approach is to use the “Kraken”. This tool was initially developed by

Wood et al. (WOOD; SALZBERG, 2014) and further improved in a second version (WOOD;

LU; LANGMEAD, 2019). Understanding how the first version works gives a better picture

of how the second version works. Currently, Kraken2 is a widely used tool by bioin-

formaticians and researchers (LU; SALZBERG, 2020) and is also an integral part of the

phytosanitary pipeline employed in this work.

Figure 11 – The classification algorithm executed by the first version of Kraken (WOOD; SALZBERG, 2014).

As depcited in Figure 11, Kraken’s algorithm classifies sequences by mapping each

k-mer from an input sequence to the Lowest Common Ancestor (LCA) of all reference

sequences that contain that k-mer. This mapping is done using a pre-built database.

The data for this database are sourced from the National Center for Biotechnology

Information (NCBI). By default, Kraken uses complete microbial genomes, such as

those from archaea, viruses, and bacteria, available in the NCBI Reference Sequence

(RefSeq) collection. Alternatively, genomes from the broader Nucleotide (nt) collection

can be used. Users can further customize the library by adding specific sequences

as required. Once the base reference data are selected, Kraken utilizes the Jellyfish

k-mer counting algorithm to generate a database that includes every distinct 31-mer
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present in the reference library. Each k-mer is then associated with a taxonomic ID

that represents the LCA of all RNA sequences containing that k-mer. This taxonomic

information is also retrieved from the NCBI database (WOOD; SALZBERG, 2014).

Once the database is created, sequences can be classified. Figure 11 shows how

the classification of sequences is executed as implemented by the first version of

Kraken. The initial stage shown in the figure is the assignment of LCAs to each k-mer of

the query sequence employing the pre-built database. Then, a classification tree is cre-

ated from the taxonomic relations formed by the taxa associated with the sequence’s

k-mers and the taxa’s ancestors. The numbers on the nodes in the classification tree

represents weights equal to the number of k-mers in the sequence associated with the

node’s taxon. The next step is to create a classification path given by the root-to-leaf

path with the maximum weight sum. The leaf of this classification path is the output

class for the query sequence (WOOD; SALZBERG, 2014).

The second version of Kraken implemented some changes to improve the query

performance. The main change is executing a hash function on the database’s k-mers.

This hash code is associated with the LCA information composing a database record.

The Kraken2 algorithm achieved lower memory usage and higher processing speed

during database queries. However, Kraken2 requires many computational resources

to create and store the database, primarily if the complete NCBI “nt” data are used.

The computation of the Kraken2 database usually takes several days to finish for large

collections of reference genomes.

2.7 TAXONOMIC CLASSIFICATION OF RNA-SEQ DATA WITH KAIJU

Another traditional and deterministic tool used to classify RNA sequences is Kaiju

proposed by Menzel et al. (MENZEL; NG; KROGH, 2016). The main difference between

Kraken and Kaiju is that the second one is conceived to work mainly on the protein

level, while Kraken is most used on the nucleotide level.

Figure 12 illustrates the steps executed by the Kaiju algorithm during sequence

classification. The first step in Kaiju’s workflow involves translating the nucleotide se-

quence into amino acid sequences (referred to as the protein level) by considering all

six possible reading frames. These sequences are then split into fragments at stop

codons. Depending on the execution mode, these fragments are either sorted by their



39

Figure 12 – The classification algorithm of Kaiju (MENZEL; NG; KROGH, 2016).

length (in MEM mode) or by their BLOSUM62 score (in Greedy mode). Once sorted,

the list of fragments is queried against a reference database of microbial proteins (MEN-

ZEL; NG; KROGH, 2016). The classification of the queried sequence is based on the

taxon of the best match found in the database.

In MEM mode, only exact matches are considered, focusing on the longest possible

fragment matches. In contrast, Greedy mode analyzes approximate matches by ex-

tending exact matches at their left end, allowing for amino acid substitutions based on

the BLOSUM62 substitution matrix. This sorting of fragments offers a significant advan-

tage in speeding up the query process. By ranking the fragments before the database

search, Kaiju can stop the search early when it is unlikely that a better match will be

found. Specifically, in MEM mode, the search can be terminated once the remaining

fragments are shorter than the length of the best match already identified. In Greedy

mode, the search stops when the remaining fragments have a lower BLOSUM62 score

than the best match found so far.

The BLOSUM62 score is used to evaluate how closely related two protein se-

quences are based on the likelihood of amino acid substitutions observed in evolution-

arily related proteins. In Greedy mode, the score for each fragment can be computed

before querying the database by applying the BLOSUM62 substitution matrix. This in-

volves comparing the original amino acid sequence with modified sequences, allowing

for substitutions to account for likely evolutionary variations. Higher scores indicate a

greater likelihood that the fragment corresponds to a real protein sequence found in

the database.

Kaiju also has a database build step that needs to be executed before any sequence

classification can be performed. Like Kraken, it is possible to use the complete NCBI
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database or its subsets, but all on the protein level. Kaiju runs the Burrows-Wheeler

transform, converting the original reference sequence into an easily searchable rep-

resentation (MENZEL; NG; KROGH, 2016). Also similar to Kraken, Kaiju requires high

computational resources for database creation and storage, and building the Kaiju ref-

erence database usually takes several days.

2.8 BIOINFORMATICS CONCEPTS

This section presents some bioinformatics concepts that will help the reader to

better understand the solution proposed by this work. Advanced DNA sequencing

technologies, such as Next-generation Sequencing (NGS) and the more recent third-

generation sequencing, provide an efficient and cost-effective way to explore the gene

sequences of living organisms. These methods have also been adapted for RNA se-

quencing (RNA-seq), allowing researchers to detect and measure the expression levels

of different RNA populations, including mRNA and total RNA. RNA-seq has revolution-

ized biomedical research by significantly enhancing the ability to study and interpret

complex biological data (DESHPANDE et al., 2023).

2.8.1 Reads and Contigs

In NGS, a “read” is the nucleotide sequence describing a single fragment of RNA.

Typically, NGS technologies break the RNA molecules into smaller fragments before

sequencing, and each fragment corresponds to a read. The length and number of

reads depend on the size of the fragments and the specific technology used. Since

these RNA fragments usually overlap, the reads can be assembled to reconstruct the

original molecules. However, some NGS methods do not involve fragmenting; these are

known as long-read sequencing techniques, as they produce much longer continuous

reads (READ, 2019).

When one assembles many reads together, the resulting sequence is called a “con-

tig”. By definition, contig refers to a collection of overlapping RNA sequences that to-

gether form a continuous segment of a genomic region. The term “contig” comes from

“contiguous”, reflecting how these sequences align to represent a stretch of RNA with-

out gaps. For instance, a clone contig offers a physical map of overlapping cloned RNA
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segments across a particular genomic region, while a sequence contig provides the

complete RNA sequence for that region (CONTIG, 2024).

2.8.2 K-mers

K-mers are short sequences of nucleotides of length 𝑘 that are derived from a longer

DNA or RNA sequence. For example, if k = 3, the possible 3-mers from the sequence

“AGCTGAC” would be “AGC”, “GCT”, “CTG”, “TGA”, and “GAC”. The concept of k-mers

is fundamental in bioinformatics, as these small sequences can be used to represent

and analyze longer genetic sequences. K-mers are valuable because they capture

information about the local structure and composition of a RNA sequence, which can

be critical for various analyses such as sequence alignment, genome assembly, and

motif finding.

In bioinformatics, k-mers are used extensively in tasks like genome assembly, where

they help to piece together short reads of RNA into a complete sequence. By break-

ing down the reads into k-mers and finding overlaps between them, algorithms can

reconstruct the original sequence. K-mers are also used in sequence comparison and

searching, where the presence, absence, or frequency of specific k-mers can indicate

similarities or differences between sequences. Additionally, k-mers are employed in

tasks like error correction in sequencing data and identifying unique genomic signa-

tures, making them a versatile tool in bioinformatics research and applications.

2.8.3 FASTA and FASTQ Files

FASTA and FASTQ are both widely used text-based file formats for storing nu-

cleotide sequences, such as DNA and RNA, and can also store amino acid sequences

for proteins in the case of FASTA. While they both serve as repositories for sequence

data, they have different purposes and structures.

The FASTA format is simpler and typically used to store plain sequence data with-

out any additional information. Each entry in a FASTA file begins with a single-line

description, usually preceded by a “>” symbol, followed by the sequence itself. This

format is versatile and is commonly used in various bioinformatics applications, partic-

ularly when sequence alignment, searching, or database queries are needed. FASTA
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can handle both nucleotide and protein sequences, making it a fundamental format for

many types of biological data.

On the other hand, the FASTQ format is more complex and is specifically designed

to store nucleotide sequences along with quality scores for each base. This additional

information is crucial in Next-generation Sequencing (NGS) workflows, where assess-

ing the accuracy of each base call is important. Each entry in a FASTQ file consists of

four lines: a sequence identifier, the nucleotide sequence, a plus sign (which may be

followed by the same identifier), and a line of quality scores corresponding to the se-

quence. These quality scores, usually encoded as ASCII characters, help researchers

determine the reliability of the sequencing data, making FASTQ the preferred format in

NGS pipelines.

In summary, while both FASTA and FASTQ formats are used to store nucleotide se-

quences, FASTA is more straightforward and versatile, suitable for storing sequences

without quality information. FASTQ, however, is specifically designed for next-generation

sequencing data, providing both the sequence and the corresponding quality scores,

which are essential for evaluating the accuracy of sequencing results.

2.8.4 Forward and Reverse Reads (R1 and R2)

In paired-ended sequencing, there are two ways of reading the sequence: forward

read and reverse read. It improves accuracy by providing information from both ends

of the RNA fragment, allowing for better alignment and detecting structural variations,

insertions, and deletions. Some FASTA or FASTQ data indicate the read direction in

the file name: "sample_1_R1.fastq" or "sample_1_R2.fastq". This example refers to

sequences or reads from a single origin but sequenced in a forward way (R1) and in

the reverse way (R2).

Using R1 and R2 together helps accurately reconstruct the original RNA sequence,

especially in repetitive or complex regions where single-end sequencing might struggle.

By overlapping or bridging gaps between the paired reads, researchers can achieve

higher confidence in sequence assembly, mapping, and variant calling, making R1 and

R2 crucial in high-throughput sequencing workflows.
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3 RELATED WORKS

3.1 VIRAL GENOME DEEP CLASSIFIER

Fabijańska et al. (FABIJAńSKA; GRABOWSKI, 2019a) proposed a CNN-based model

to execute virus classification from RNA-seq data. The paper details the model archi-

tecture, the dataset construction, and how the training process was conducted. The

manuscript also compares the proposed model with other well-established tools. The

reference provides clues on how to use deep learning models for RNA sequence clas-

sification tasks.

The model aims to propose a feature-based method for classifying genomic se-

quence data, detecting the presence of one of the following virus types: Dengue, Hep-

atitis B, Hepatitis C, HIV-1, or Influenza A. The first step is to create a dataset that will be

used to train and evaluate the model’s performance. All sequence data was gathered

from NCBI (NCBI, 2024), LANL (LANL, 2024), and HBVdb (HBVDB, 2024) databases.

The encoding strategy was to replace the nucleotide symbols - A, C, G, and T - with

the corresponding ASCII code - 65, 67, 71, and 84, respectively.

Figure 13 – Architecture proposed to detect virus presence in a genomic sequence (FABIJAńSKA;
GRABOWSKI, 2019a).

Figure 13 shows the architecture of the proposed model. Essentially, the model

uses uni-dimensional convolution layers and fully connected layers, where the first one

is responsible for extracting features from the input sequence, and the second is re-

sponsible for using those features to perform the classification. The option for a net-
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work with five convolutional layers architecture was due to challenges when classifying

longer genomes like Dengue, HIV-1, and Hepatitis C.

Finally, the model was trained using a K-fold cross-validation strategy, where 80%

of the dataset was used for training and 20% for validation. Analyzing the performance

metrics and performance comparison with state-of-the-art approaches, it was possible

to conclude that the model can execute its proposed task with high confidence.

3.2 IDENTIFYING VIRUSES FROM METAGENOMIC DATA USING DEEP LEARN-

ING

Ren et al. (REN et al., 2020) state that the identification of viral sequences from

metagenomic samples is a crucial step for the analysis of viruses. This work proposes

a deep-learning CNN-based model for predicting viral sequences. The proposed model

can be seen as a successor to the VirFinder model, a state-of-the-art model also used

to identify viral sequences but not using a deep learning approach.

The model was trained using viral sequences and prokaryotic (bacteria and ar-

chaea) sequences obtained from the NCBI database. The viral genomes are frag-

mented into non-overlapping short sequences to mimic the real metagenomic contigs.

The authors employed one-hot encoding as representation strategy with a "N" sym-

bol coded as [1
4
, 1
4
, 1
4
, 1
4
]. This sepcial symbol is required to represent ambiguous nu-

cleotides.

Figure 14 – DeepVirFinder model architecture (REN et al., 2020).

Figure 14 shows the architecture of the model. Basically, it consists of convolutional,

max pooling, and fully-connected layers and outputs a prediction score between 0 to

1 for a binary classification between virus and prokaryote. The DeepVirFinder outper-

formed other state-of-the-art models, and significantly improved the accuracy of virus

identification.
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3.3 CNN-MGP: CONVOLUTIONAL NEURAL NETWORKS FOR METAGENOMICS

GENE PREDICTION

Al-Ajlan et al. (AL-AJLAN; ALLALI, 2018) propose a CNN-based model to classify

metagenomic fragments executing a gene prediction task. Metagenomics involves an-

alyzing the genomes found in environmental samples like soil, seawater, and human

gut samples. This paper also compares the performance of the proposed model with

other machine learning-based methods.

The paper uses the Orphelia (ORPHELIA, 2024) and MGC (ALLALI; ROSE, 2013)

datasets to train and evaluate the model’s performance. The dataset includes millions

of Open Reading Frames (ORFs) extracted from 700nt long fragments and was divided

into ten parts to run the training step in a K-fold approach. One-hot encoding was used

as a strategy to convert the sequence symbols into a representation that the model

can process. Figure 15 shows how the one-hot encoding works. Each nucleotide is

represented by a unique one-hot vector: A = 1000, T = 0001, C = 0100 and G = 0010.

Figure 15 – One-hot encoding for a genomic sequence (AL-AJLAN; ALLALI, 2018).

Since the input is converted from an one-dimensional vector of nucleotides to a

two-dimensional matrix, the authors use layers of two-dimensional convolution together

with a fully connected layer as model architecture. The performance metrics show that

the model was 98% accurate, and the work concludes that the proposed approach

performs well compared to state-of-the-art gene prediction programs.

3.4 PACIFIC: A LIGHTWEIGHT DEEP LEARNING CLASSIFIER OF SARS-COV-2

AND CO-INFECTING RNA VIRUSES

Mateos et al. (MATEOS et al., 2021) emphasize that the Polymerase Chain Reac-

tion (PCR) is a suitable COVID-19 identification method but can’t identify co-infecting
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viruses. Identifying co-infection is essential because it can alter disease severity and

modify survival rates. High-throughput RNA sequencing (RNA-seq) offers an unbiased

way to collect information about the RNA molecules in a sample, allowing for the sys-

tematic detection of SARS-CoV-2 infections and co-infections. To fast and reliably iden-

tify in a clinical setting virus infections from patient blood samples, the authors devel-

oped PACIFIC, a lightweight deep-learning model that detects SARS-CoV-2 and other

common respiratory RNA viruses in RNA-seq data as shown in Figure 16(a).

Figure 16 – PACIFIC model overview: (a) Required steps from sample collection to virus identification;
(b) The model’s architecture (MATEOS et al., 2021).

PACIFIC classifies RNA-seq reads into five respiratory virus classes — SARS-CoV-

2, Rhinovirus, Influenza, Coronaviridae, and Metapneumovirus — and a sixth class for

reads originating from the human genome. The model architecture is composed of

an embedding layer, a CNN, and a Bi-directional Long Short-term Memory (BiLSTM)
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network that ends in a fully connected layer. Figure 16(b) depcits the model architec-

ture. An important aspect of this work is the direct encoding of k-mers and the use

of an embedding layer. As shown in Figure 16(b), this encoding strategy transforms a

group of nucleotides into a numerical representation. The authors state that using an

embedding layer improved the model performance compared to a model without this

layer.

PACIFIC was trained using 7.9 million 150nt random fragments from 362 viral genome

assemblies, categorized into five viral classes (SARS-CoV-2, Influenza, Metapneu-

movirus, Rhinovirus, and Coronaviridae) along with the human transcriptome. In sil-

ico fragments from both strands were generated without errors to support paired-end

sequence reads and capture natural genome variation within each class. 90% of the

data was allocated for training and 10% for tuning hyperparameters and network archi-

tecture. The chosen virus classes aimed to ensure accurate detection of SARS-CoV-2

as a distinct class, distinguish it from other coronaviruses, include viruses recently re-

ported to co-infect with SARS-CoV-2, and focus on viruses listed in the NCBI taxonomy

database with humans as hosts. Additionally, the human class was included to prevent

the misclassification of human reads into viral classes, as most sample reads are ex-

pected to be from human RNA.

The 362 genomes corresponding to the five classes of single-stranded RNA viruses

were downloaded from the NCBI assembly database. The separate class for SARS-

CoV-2 contained 87 assemblies. The Coronaviridae class contained 12 alpha, beta,

gamma, and unclassified coronavirus genomes. The Influenza class included assem-

blies of influenza A and B viruses. For the Rhinovirus class, assemblies of rhinovirus A,

B, C, and unlabelled enterovirus were grouped. Five distinct assemblies for metapneu-

movirus were grouped into a single class. Human GENCODE47 canonical transcript

sequences (downloaded from the Ensembl v99 database) were included as an addi-

tional class to distinguish sequencing reads derived from the human transcriptome. A

custom script generated between 0.44 and 3.5 million 150nt-long fragments in silico

for each class. These training sequences were randomly sampled without base substi-

tutions and were derived from both strands of the genome assemblies.

The authors concluded that PACIFIC can be used as a powerful end-to-end tool

to identify virus infection from RNA-seq data with high sensitivity and specificity. The

model achieved more than 99% accuracy for virus detection, enabling the systematic
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identification of co-infections to improve clinical management and surveillance during

the COVID pandemic.

3.5 PPR-META: A TOOL FOR IDENTIFYING PHAGES AND PLASMIDS FROM METAGE-

NOMIC FRAGMENTS USING DEEP LEARNING

Fang et al. (FANG et al., 2019) propose a model to identify phage and plasmid frag-

ments called PPR-Meta. Effectively identifying these elements is still quite challenging.

Currently, the fragment assembly performance for both plasmid and phage sequences

from high-throughput sequencing data is not as good as for host-derived fragments.

This suggests that phage or plasmid sequences are present as many short fragments,

making their identification difficult. Despite the difficulty, several tools were proposed

to detect phages or plasmids from metagenomic data. Even though related tools have

been created, the latest tools for detecting short fragments have not performed satis-

factorily. This scenario motivated the proposal of a model for identifying phages, plas-

mids, or chromosomes using deep learning approaches.

Due to the lack of real metagenome datasets with reliable annotations, simulated

datasets with artificial contigs generated from fully sequenced genomes were used

to benchmark the study. Complete genomes of prokaryote chromosomes, plasmids,

and phages, including prophages predicted by ProphET (PROPHET, 2024), were down-

loaded from the NCBI (NCBI, 2024) genome database and organized into training and

test sets. Additionally, MetaSim (METASIM, 2024) was used to create artificial contigs of

varying lengths to simulate different sequencing technologies, and real metagenomic

data were used to estimate PPR-Meta’s reliability.

The paper states that k-mer frequencies are a popular approach to represent biolog-

ical sequences, but they perform poorly when used in short sequences. This motivated

the authors to propose a different application of one-hot encoding. Each sequence is

represented in two ways: A one-hot matrix for the nucleotide base sequence (BOH) and

a one-hot matrix for the codon (i.e., a group of three nucleotides) sequence (COH). The

first one is a simple one-hot representation of the sequence, giving each nucleotide a

unique feature vector, so A, C, G, and T are represented by [0,0,0,1], [0,0,1,0], [0,1,0,0],

and [1,0,0,0], respectively. The second representation strategy expands the sequence

in codons and assigns to each codon its one-hot vector. Since there are 43 codons,
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Figure 17 – PPR-Meta model architecture: One model path processes the one-hot matrix for the nu-
cleotide bases and the other one the one-hot matrix for codons (FANG et al., 2019).

the corresponding feature vectors have 64 elements. Figure 17 shows the approximate

representation of the following example sequence 5’-ACGTTCGAACG-3’.

The model implements a strategy to process both sequence representations in par-

allel. The authors call this architecture a BiPathCNN. As shown in Figure 17, the model

has two paths of bi-dimensional CNN layers. Both paths have CNN, Max Pooling, and

Normalization layers ending in a global pooling layer. Finally, the features extracted

by the paths are concatenated and processed by a fully connected layer that will out-

put the classification result. Four models were trained for different sequence lengths,

namely, 100-400nt, 400-800nt, 800-1200nt, and 5000-10000nt, to ensure the model

can adapt to different sequencing platforms.

The paper concluded that PPR-Meta has shown better performance than similar

tools such as VirFinder, VirSorter, PasFlow, and cBar. So, the PPR-Meta tool is ex-

pected to meet the demand for metagenomics analysis when considering the microbial

community tangled with phages and plasmids. It certainly qualifies as a powerful tool
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for the research community.

3.6 XVIR: A TRANSFORMER-BASED ARCHITECTURE FOR IDENTIFYING VIRAL

READS FROM CANCER SAMPLES

Consul et al. (CONSUL; ROBERTSON; VIKALO, 2023) propose a model to identify

viruses from sequence information extracted from human cancer samples. This work is

motivated by the understanding that viruses linked to human tumors produce viral on-

coproteins that affect the regulatory processes in host cells, eventually leading to tumor

development. High-throughput sequencing of genomic content of tumor cells produces

a massive amount of short sequenced reads. The main task of the proposed model is

viral identification, i.e., the model tries to identify if those short reads have viral origin

or not.

The dataset is built with artificially generated 150nt-long sequences from Human

Papillomavirus (HPV) and human genomes. The sequences are partitioned into train-

ing (80%), validation (10%), and test (10%) data sets. Sequenced reads are repre-

sented as a series of k-mers. The authors varied the length of the k-mers from 3 to 7

nucleotides choosing 6 as the optimal value.

Figure 18 – XVir model architecture (CONSUL; ROBERTSON; VIKALO, 2023).

Figure 18 shows the architecture of the model. The first step is k-mer mapping.

The embedding includes positional information. After this step, the encode step em-
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ploys a multi-headed self-attention mechanism that leverages learned relationships

of k-mers in viruses. Every matrix produced by each of the attention heads is con-

catenated, condensed, and, finally, passed to a feed-forward network that will output

the predicted probability for the read having a viral origin. The authors showed that

the model achieved performance comparable with others optimal models like Deep-

VirFinder but having 25% less parameters.

3.7 VIRHUNTER: A DEEP LEARNING-BASED METHOD FOR DETECTION OF NOVEL

RNA VIRUSES IN PLANT SEQUENCING DATA

Sukhorukov et al. (SUKHORUKOV et al., 2022) propose a model to detect (known and

novel) RNA viruses in plant sequence data. The deep-learning model architecture is

based on CNNs trained to identify viruses in assembled sequences. The authors com-

pared the performance of VirHunter with traditional alignment-based tools like trans-

lated BLAST (tBLASTx, alignment of non-redundant nucleotide sequences based on

the encoded proteins) (TBLASTX, 2024) and with other state-of-the-art deep-learning

sequence classification models like DeepVirFinder.

The paper downloaded extensive training data from several NCBI databases (NCBI,

2024), using different approaches for the various classes. Figure 19 gives an overview

about the model. The authors developed a model with three classes - Bacteria, Virus,

and Plant. Model building started with downloading all viruses that infect plants, i.e., vi-

ral sequences with a host taxonomic ID equaling Viridiplantae. The reference genomes

for the following plant species were added: Prunus persica (peach), Vitis vinifera (grape-

vine), Beta vulgaris (sugar beet), and Oryza sativa (rice). Finally, the authors down-

loaded all representative bacterial reference genomes from NCBI RefSeq. As part of

testing the performance of the model, 12 novel virus sequences were assembled from

RNA-seq data extracted from peach, grapevine, and sugar beet samples. All down-

loaded sequences were artificially fragmented into 500bp and 1000nt. The model uses

one-hot encoding as the input’s representation strategy.

Figure 19(b) shows the architecture of the model. The proposed approach uses

a two-path CNN model. One path processes the fragmented raw sequence, and the

other processes its reverse complement. Each path implements a simple pattern of a

single convolutional layer with a pooling layer. Then, both paths are flattened, concate-
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Figure 19 – The preprocessing of the reference data for training the VirHunter model (a) and the archi-
tecture of the model (b) (SUKHORUKOV et al., 2022).

nated, and passed as input to a fully connected layer to compute the output probability

distribution. The authors used one-hot encoding to convert the input text into a numer-

ical representation but also interpreted the CNN filters as a k-mer processing. In other

words, when the CNN filter is set to have a size equal to 5, it works similar to 5-mer ex-

traction. When using CNNs, the convolutional step extracts the features. Therefore, in

the context of processing RNA sequences, convoluting the nucleotide string of symbols

generate nt groups that serve as characteristic features of the sequence.

Figure 20 shows how the classification works. The prediction module is composed

of three CNN models trained for the following filter sizes: 5, 7, and 10. In addition to the

three CNN models, the model also contains a random forest classifier to assemble the

outputs of the CNNs and predict the final output using a majority vote strategy.

Figure 20 also illustrates how all parts of the prediction module were trained. All

training steps were executed for each plant host species (peach, grapevine, and sugar

beet) and fragment sizes of 500nt and 1,000nt. The CNN models were initially trained



53

Figure 20 – The scheme for the entire prediction module. Three models were trained for different CNN
filter sizes performaing feature extraction for distinct k-mer sizes (SUKHORUKOV et al., 2022).

separately, one for each filter size. The data for training the random forest model were

selected as follows. First, 100,000 fragments were randomly selected from the output

of the trained CNN models and split into two groups based on the prediction value for

the viral class; the first group has values greater than or equal to 0.8, and the second

group has values lower than 0.8. 10,000 fragments were randomly selected from each

group to train and test the random forest model.

VirHunter’s ability to detect novel viruses was validated using 12 newly acquired

RNA-seq datasets from peach, grapevine, and sugar beet. In these datasets, at least

90% of all expert-annotated viral contigs were detected by VirHunter, compared to

73% by DeepVirFinder and 26% by VirSorter2. In seven of the datasets VirHunter

achieved even 100% detection. Additionally, VirHunter produced a low rate of false

positives, resulting in only 19 to 277 contigs per dataset needing expert inspection.

These findings demonstrate that the use of VirHunter effectively reduces the number

of contigs that require manual expert curation.

3.8 DIFFERENCES BETWEEN RELATED WORKS

This chapter presented different models to address similar challenges in virus de-

tection in RNA-seq data. Although they share the same objective—to identify the pres-

ence of viruses in sequence data—the models differ in their deep learning approach,
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maximum and minimum input size, supported hosts, etc.

Frame 1 shows a comparative analysis between the works presented in this chap-

ter. Most solutions are CNN-based models trained for detecting viruses in human or

prokaryote hosts. The models are trained to detect different virus species. An essen-

tial aspect of the proposed solutions is the input size; some models are trained using

different sequence sizes, and others use sequences of fixed lengths. However, most

models accept inputs longer than those used in the training set by expanding the input

and adding special characters at the end of the sequence. Finally, all models work with

nucleotide-level inputs; none of the models analyzed worked with protein-level inputs.

VirHunter stands out from the related approaches. Like the deep learning model

proposed in this work, VirHunter detects viral sequences in RNA-seq data acquired

from plant samples. Thus, the used training data and procedure is similar. However,

there are significant differences: VirHunter is CNN based, uses viral sequences on nu-

cleotide level as reference, and classifies contigs instead of reads, i.e., nucleotide frag-

ments with a larger length than typical reads obtained from HTS. Thus, in the context of

a phytosanitary pipeline, VirHunter is a tool employed downstream of the classification

flow whereas the proposed model here addresses challenges in the upstream part of

the pipeline.
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4 PROPOSED APPROACH

The previous chapter presented approaches to run viral identification or sequence

classification tasks. Most models perform virus identification that infects humans or

prokaryotes, working at the nucleotide level and accepting sequences or reads with

300nt or larger. This work developed a deep learning model to detect viral plant infec-

tion based on RNA-seq data obtained from samples of leaves or roots. RNA-seq data

are not encoded directly but first translated to the protein level. The main goal is to

improve the identification of sequenced reads of viral origin including both known and

novel viruses.

4.1 MODEL ARCHITECTURE

This work proposes to improve HTS-based plant disease diagnostics by develop-

ing a novel deep-learning model for detecting viral reads in RNA-seq data of cassava

plants. The main innovations in the proposed approach compared to most state-of-the-

art deep-learning models for RNA-seq based virus detection described in the literature

are the following:

• Classification of sequenced reads that are not pre-assembled

• Data encoding on the protein level

• Use of multi-head attention for feature extraction of k-mer relations

Figure 21 shows an overview of the proposed solution. The first step for read classi-

fication is the translation of the short sequences from the nucleotide level to the protein

level. Every input nucleotide (nt) read generates 6 translated amino acid (aa) reads,

three aa reads originate from translating the RNA sequence from left to right (starting

from the first, second and third nucleotide in the sequence) and three from translating

in the reverse direction. If a read on the protein level contains a stop codon, this read

is discarded from the input. We hypothesize that such reads do not contain sufficient

information to be reliably classified.

All further steps are executed for each protein-level translated read that does not

contain the stop codon. Reads are encoded as a series of k-mers. A k-mer length of
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Figure 21 – Overview of the proposed model. On the left, the data preprocessing is illustrated that con-
sists of translating reads from the nucleotide level to the protein level and of k-mer encoding
for 𝑘 = 5. On the right side, the model architecture is detailed. The model executes first
the embedding layer, then the attention layer, and finally, a fully connected layer outputs the
prediction values for each class.
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Figure 22 – Illustration of the process of embedding refinement.

𝑘 = 5 amino acids is chosen in the present work. The main step is the application of the

deep learning model, shown on the right side of Figure 21. The first step of the model

execution is the embedding layer that creates a numeric representation for every k-mer

token in the sequence, also adding the positional information for every token. Then, the

multi-headed attention step is executed, i.e., the model identifies all important k-mer

relations for the final classification. As shown in Figure 22, this process can be seen

as an embedding refinement where each k-mer is grouped in feature groups making

it easier for the model to execute the classification step. Final classification runs on

a fully connected network that will output the probability for every output class (plant,

virus, or bacteria) indicating the likely origin of the analyzed sequenced read.

4.2 PERFORMANCE EVALUATION

The proposed machine learning model is trained with RNA sequences obtained

from the NCBI nt database. All available data are used for training and validation. To

test the model, RNA-seq data obtained from cassava leaves and roots were provided

by the Phytovirology Laboratory at UFRPE. However, these samples needed to be

analyzed first by state-of-the-art bioinformatic tools to serve as labeled benchmark

data.

None of the DL models described in the literature were trained for detecting cas-

sava infecting viruses. Moreover, most models classify contigs, i.e., assembled reads.

However, assembling all sequenced reads present in a RNA-seq data comes at high

computational cost. In addition, assembly can introduce errors, e.g., in the form of cre-

ating chimeric sequences, i.e., artifact sequences formed by two or more biological
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sequences incorrectly joined together. Out of these reasons, a direct comparison with

other DL models was out of scope of the present work.

Figure 23 – Resources deployed on the Amazon Web Services (AWS) Cloud to run Phytopipe, a state-
of-the-art phytosanitary bioinformatics pipeline used to label RNA-seq data obtained from
cassava plants.

The outlined considerations led to the decision to implement and apply a state-of-

the-art phytosanitary bioinformatics pipeline for plant pathogen detection. The pipeline

of choice was PhytoPipe (HU et al., 2023) since the pipeline is open source, well docu-

mented, and used by the USDA Plant Germplasm Quarantine Program for HTS-based

diagnostics. Due to the high computational demands, the pipeline was deployed on the

Amazon Web Services (AWS) Cloud. Figure 23 shows the resources used to build and

run Phytopipe. Once this pipeline was deployed, it was possible to label the RNA-seq

data obtained from cassava plants and assess the performance of the proposed DL

model. Moreover, a deeper understanding of the bioinformatic tools employed in HTS-

based disease diagnostics helps to identify the challenges that deep learning models

might able to overcome. In the context of the present work, the developed DL model

could select the sequenced reads that should be passed to the assembly unit, thereby

significantly decreasing the computational costs of any phytosanitary pipeline.
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5 METHODS

This chapter details the applied methods for executing and evaluating experiments

to validate a working model for classifying sequenced reads at the protein level ob-

tained from RNA-seq data obtained from cassava plants. Section 5.1 explains how

the dataset for training the model was built. Section 5.2 shows the approach used

to conduct the experiments for building and evaluating the models proposed. To test

the performance of the model, samples were classified collected from cassava plants.

These samples are described in Section 5.3. Finally, Section 5.4 discusses the setup

used to run all experiments.

5.1 DATASET CREATION

An important task in constructing the proposed model was the creation of the

dataset. A challenge faced by this work was the unbalanced nature of the data that

could be used to train the model. RNA sequences are retrieved from the NCBI database

and artificially fragmented into short reads. The model shall sort the reads in three

classes: host, virus and bacteria. Thus, a naive approach would include the genomes

of cassava (the host), all viruses (taxid=10239) that are known to infect green plants

(host viridiplantae, taxid=33090) and all bacteria . Note that for bacteria the database

does not allow to specify a host taxid. Table 1 shows that this approach leads to a very

unbalanced dataset.

Species Download Size (Nu-
cleotide Level)

Download Size
(Protein Level)

Cassava (Manihot esculenta) 639.6 Mb 28 Mb
Viruses (host is Viridiplantae) 370 Mb 84 Mb
Bacteria (RefSeq) 23 Gb 15 Gb

Table 1 – Download size of sequence data for output classes chosen as reference for the model for both
Nucleotide and Protein levels. The amount of data is very unbalanced. Source: NCBI.

Another challenge was that the dataset often occupied more space in RAM than

the download size during the training of the deep learning model. Moreover, the final

model should be lightweight to allow its routinely application in a phytopathological

clinic facility with access to only limited hardware resources.
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Figure 24 – Krona chart built with results of the execution of Kraken2 tool. It presents the taxonomy of
every organism present in RNA-seq data.

These facts motivated the analysis of a typical cassava microbiome in order to cre-

ate a dataset that is representative, balanced and feasible to be used in model training

on common commercial computing clusters. However, plant microbiomes are not yet

well studied and understood. Instead of a profound analysis, a randomly selected RNA-

seq data obtained from cassava plants with clear disease symptoms was characterized

using tools like Kraken (WOOD; SALZBERG, 2014) and Kaiju (MENZEL; NG; KROGH, 2016).

These tools identify all organisms present in the RNA-seq data by running search

algorithms on tailored gigabyte-sized reference databases (WOOD; SALZBERG, 2014;

MENZEL; NG; KROGH, 2016). Figure 24 displays the results obtained from the Kraken2

analysis in the form of a pie chart created by the Krona tool. This interactive pie chart

shows the taxonomy hierarchy for every organism identified in the sample. When ex-

amined for several different RNA-seq data samples, a reasonable picture of the most

common bacteria species present in the cassava microbiome may be obtained. Frame

2 gives on overview about the predominant bacteria identified by this analysis.

The data discrepancy and size also motivated us to move from identifying reads

on the nucleotide-level to a protein-level approach. The FASTA files for proteins are

smaller than for genome sequences since only annotated coding regions are trans-

lated to the protein level. In other words, difficulties of identifying all proteins encoded by
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Class Filters
Cassava —
Virus Host is Viridiplantae
Bacteria Genus is Kitasatospora | Acinetobacter | Streptomyces | Pseudomonas

or Phylum is FCB group

Frame 2 – Filters executed while downloading datasets from NCBI.

complete reference nucleotide sequences is one of the reasons for dramatically reduc-

ing the dataset size. Moreover, not only the size of the dataset is naturally decreased

but also the discrepancy between the classes diminished (although not removed).

All the datasets were downloaded from the NCBI database. The cassava data

was obtained by accessing the NCBI web page, searching for cassava, and access-

ing the download genome page, choosing only the protein level. The virus data was

also downloaded via the NCBI web page, accessing the NCBI virus portal, searching

by all viruses that infect plants (setting the filter to a host equal to viridiplantae). Fi-

nally, the bacteria data were downloaded using the NCBI download utility executed via

the command line, which allows for filtering some taxonomy. Appendix E, Appendix

F, and Appendix G show the procedure to download the viral, bacteria, and bacteria

sequences procedure respectively. Frame 2 shows all filters executed on the different

NCBI endpoints to build the reference data for our dataset.

The last step in the dataset construction was the artificial read generator. A script

was executed to get random pieces of a RNA sequence in a way that there are no

repeated regions or repeated reads. Table 2 shows the number of fragments generated

for each class in the dataset. All fragments were 100aa long. Appendix A contains the

Python code for the script that generates the random reads.

Class Name Number of Reads Reads/Protein Sequence
Cassava 14,762,927 300
Virus 14,406,394 67
Bacteria 12,818,976 4

Table 2 – Absolute and relative number of generated artificial reads per class included in the training
dataset.
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5.2 MODEL TRAINING AND OPTIMIZATION

All attempts to find the optimal deep-learning model architecture to execute virus

identification tend to start with a baseline model inspired by related works and change

the hyperparameters or even some minor architectural aspects of the model. The fol-

lowing subsections describe the experiments targeted to validate four aspects of the

optimization:

• Encoding strategy

• Type of reference data

• Output class number

• Model architecture

5.2.1 Encoding Strategy

Initially, one-hot was chosen as the encoding strategy as it is an easy but effective

way to transform the genomic symbols into a numeric and vectorized representation.

Table 3 shows how the representation is built for every nucleotide symbol. This strategy

was well-suited when working with CNNs because it transforms the uni-dimensional se-

quence information into a bi-dimensional one, making it possible to use bi-dimensional

CNNs. Despite its popularity, a model developed in this work using this approach didn’t

perform well when classifying sequenced reads from cassava RNA-seq data as will be

discussed later. Another challenge when choosing this encoding strategy is that the

input data become sparse as the number of characters increases because most of the

vector will be mainly composed of zeros. Also, the one-hot encoding isn’t a good choice

when employing NLP models.

The outlined limitations of one-hot encoding motivated the usage of k-mers. Figure

25 shows how the encoding strategy works for a k-mer length of 𝑘 = 5. The encoding

starts by getting the first 5 symbols, grouping them together as a unique feature group,

a k-mer. Then, the encoding window shifts by 1 symbol to create the next feature

group. The process is repeated until reaching the end of the input sequence generating

several groups of symbols.
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Nucleotide Character Vector Representation
A [1, 0, 0, 0]

T [0, 0, 0, 1]

C [0, 1, 0, 0]

G [0, 0, 1, 0]

N [1
4
, 1
4
, 1
4
, 1
4
]

Table 3 – Vector representation of one-hot encoded nucleotide characters.

Figure 25 – Representation of k-mer encoding for 𝑘 = 5. This is an example of an amino acid sequence,
but the scheme works similar for nucleotide sequences.

This approach is very intuitive when working with RNA-seq data because a group

of nucleotides encodes the proteins of an organism. Also, k-mers are the best choice

when using a recurrent model because when transforming a sequence in a group of

k-mers, it is possible to see the sequence as a group of words (the k-mers) and thus

use embeddings.

Several experiments were conducted to find the optimal k-mer size. The tested

k-mer length 𝑘 varied from 3 to 11. Short k-mers might have the effect of not group-

ing enough symbols to represent relevant features. Long k-mers, on the other hand,

might group too many symbols, creating embeddings with a high number of tokens.

The size that presented the best performance was 𝑘 = 5. Another important aspect

that drives the choice of an optimal k-mer size is whether nucleotide or amino acid

sequences are encoded. This is due to the fact that three consecutive nucleotides in

an RNA molecule, a codon, translate into one amino acid. Thus, k-mer encoding at the

protein level is equivalent to three times larger groups of nucleotides fragmenting the

organism’s genome.
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5.2.2 Type of Reference Data

In principle, two types of reference data can be used to train the model: nucleotide

sequences or amino acid sequences. In RNA-seq classification, the standard approach

is often to classify samples at the nucleotide level. This preference is largely due to the

abundance of nucleotide data in popular databases like NCBI and the straightforward

implementation of models that operate directly on nucleotide sequences. Initially, our

project also aimed to classify HTS data at the nucleotide level. However, this approach

posed significant challenges, primarily due to the highly unbalanced nature and the

size of the data. The genomic data from cassava and the viruses differ substantially in

size and representation, complicating the classification task.

There are several biological and computational advantages to encoding amino acid

sequences rather than nucleotide sequences. One key reason is the degeneracy of the

genetic code, where multiple codons can encode the same amino acid. By translat-

ing nucleotide sequences into amino acid sequences, this degeneracy is naturally ac-

counted for, which can simplify the comparison process. Furthermore, different viruses

might code for similar proteins even if their nucleotide sequences are significantly dif-

ferent. Focusing on amino acid sequences can thus enhance the detection of viral

infections and make it easier to discover novel viruses with divergent nucleotide se-

quences but similar protein products.

The HTS data analyzed by our model are derived from RNA molecules extracted

from cassava samples, such as leaves or roots. These RNA molecules include mes-

senger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and viral RNA if

present. Typically, rRNA is depleted in the sequencing library. The use of the NCBI pro-

tein database is appropriate in this context, as it contains translated sequences from

annotated coding regions, which are sufficient for identifying viral proteins.

To validate this approach, we conducted experiments comparing models with iden-

tical hyperparameters but operating at the nucleotide level versus the protein level.

Implementing a model at the protein level necessitates a modification in the classifica-

tion workflow during inference. Since high-throughput sequencing produces nucleotide

reads, these reads must first be translated into amino acid sequences before classifi-

cation can occur. Our results demonstrated that the protein-level model outperformed

the nucleotide-level model, highlighting the effectiveness of this strategy in improving
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the accuracy and robustness of virus detection in RNA-seq data.

5.2.3 Output Class Number

Since the model should detect the presence of viruses in cassava samples, a bi-

nary output might be sufficient: either a read is classified as cassava or virus. However,

the experiments showed that this strategy does not provide a model with good perfor-

mance. The reason is that organisms other than just viruses and plants (in this case,

cassava) are also present in the sequence data. RNA-seq data obtained from cassava

plants and analyzed with traditional tools like Kraken2 and Kaiju confirmed that the

plant has a rich microbiome, see Figure 24. As it turned out, these reads, e.g., orig-

inating from bacteria, are frequently mistaken as viral reads leading to an increased

number of false positives.

This motivated us to change the model to have three output classes: Cassava,

Virus, or Bacteria. These three were chosen for two reasons: First, by analyzing the

cassava microbiome, it was observed that these are the three most common kingdoms

present in real-world samples. Second, adding other kingdoms like Archea significantly

increased the size of the dataset, and it became intractable with the computational

resources available and envisioned for a phytopathological clinic.

5.2.4 Model Architecture

CNNs were used in initial experiments similarly to other state-of-the-art models

discussed in Chapter 3. However, this initial setup did not reach sufficient performance,

although various model aspects were varied, such as the encoding strategy, type of

reference data, and even the architecture and hyperparameters of the model. One of

the reasons is that CNNs are good for capturing short-term dependencies, like the

immediate neighborhood of a k-mer, but are not so great for revealing the relationships

between k-mers at the beginning and the end of a sequence.

The poor performance of initial models motivated us to move from CNNs to recur-

rent models. The main idea was to enable the model to capture long-term dependen-

cies. The initial attempts used LSTM models, but those models didn’t perform well in

training. Finally, attention-based NLP models were tested. These models performed
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better compared to the previous models. Another advantage of using recurrent mod-

els and an NLP approach for read classification is that the same model can be used

to classify different sequence lengths, which enables the model to work in the 100nt-

300nt length range. Table 4 shows the number of paramters and the size of the model

in Megabytes (MB).

Table 4 – The number of parameters and the size of the models.

Model Number of Parameters Size (MB)
3-Class Model 102,716,243 391.83
2-Class Model 83,849,758 319.86

5.2.5 Performance Evaluation

An important aspect of the proposed solution in this work is that the model em-

ploys protein data as reference. This choice led to a performance boost. However, the

proposed model is unique in this aspect, which hampers a direct performance compar-

ison with other state-of-the-art models like DeepVirFinder (REN et al., 2020). The main

reason is that those models only work at the nucleotide level, and protein-level mod-

els must execute a pre-processing step before running the inference step because the

employed reference data in the models aren’t the same.

Nevertheless, it is known that DL models described in the literature do not per-

form well when classifying short reads. Figure 26 shows a chart taken from the Deep-

VirFinder paper (REN et al., 2020) that presents the value of the Area Under the Receiver

Operating Characteristic Curve (AUROC) by contig length. The AUROC metric mea-

sures the ability of a classification model to distinguish between classes. We see that

the larger the input length, the easier the DeepVirFinder model can distinguish the dif-

ferent classes. However, for input shorter than 300nt, the AUROC curve drops sharply

and the classification performance of the model deteriorates.

Since it was not feasible to directly compare the performance of the developed

deep learning model with that of other well-established models, we opted to verify

its accuracy using traditional bioinformatics tools. An optimal model should accurately

classify viral reads while avoiding the misclassification of reads originating from known

non-viral sources. To evaluate this, we employed tools such as Kraken2 and Kaiju
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Figure 26 – AUROC metric for different nt-length of the DeepVirFinder Model (REN et al., 2020).

to analyze the reads that were labeled as viral by our deep learning model. These

tools can help confirm whether the reads flagged as viral indeed belong to known viral

sequences.

However, this approach has its limitations, as not all viruses are known, and the

identification of novel viruses remains a complex task. To address this challenge, we

used PhytoPipe (HU et al., 2023), a comprehensive phytosanitary pipeline that performs

data cleaning, preprocessing, and the identification of novel viruses. By using Phy-

toPipe, we aimed to validate that the sequences classified as viral by the deep learning

model correspond to sequences that PhytoPipe also identifies as viral. Additionally,

this method allows us to determine if the deep learning model can detect novel viruses

identified by PhytoPipe that were not included in the training data. Successfully clas-

sifying such sequences would demonstrate that the model can correctly identify viral

reads from previously unknown viruses, showcasing its robustness and capability to

generalize beyond the training set.

Figure 27 shows a flow chart with the steps executed for every modification of the

proposed approach.
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Figure 27 – Flowchart of all steps executed in experiments searching for a well performing model.

5.3 CASSAVA SAMPLES

Table 5 shows an overview of samples used in the present work to evaluate the

performance of the model for the discovery of novel and known viruses. The data and

sample descriptions were provided by the Phytovirology Laboratory of the Universidade

Federal Rural de Pernambuco (UFRPE). Germplasm (seeds or plant parts used for

breeding, conservation, and research) accessions from the collection of the Empresa

Brasileira de Pesquisa Agropecuária (Embrapa) were maintained and propagated at

the Plant Virus Department of the Leibniz Institute Deutsche Sammlung von Mikroor-

ganismen und Zellkulturen (DSMZ). Plantlets were transferred to the soil and accli-

mated, and a growing-on test was conducted for a 6-8 months period in glasshouse
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conditions. The libraries were sequenced on MiSeq (paired reads 2x301) or NextSeq

(paired reads 2x151) platforms at the Leibniz Institute DSMZ.

Table 5 – Description of samples used in this work to evaluate the performance of the proposed model.

Code Name Platform Sample Type Reads

S16 DSCG1 MiSeq Leaf 424,616

S23 DSCG12 MiSeq Leaf 467,798

S27 P27-4C NextSeq Tuber 98,271,182

5.4 COMPUTATIONAL RESOURCES

For running the model’s training step, the Apuana cluster from the Centro de In-

formática (CIn) at UFPE was used with the following specifications: 8 vCPUs, 64GB

RAM, and 1 Nvidia A100 GPU. The PhytoPipe pipeline was executed on Amazon Web

Services (AWS) Cloud, where we deployed a virtual server with 48 vCPUs, 384 GB of

memory, and 3TB of storage.

5.4.1 Running Training Job on Apuana Cluster

To run training tasks on the Apuana cluster, it was first necessary to establish con-

nection using the Secure Shell (SSH) protocol. Then, the dataset required to train the

model was uploaded employing the Remote Synchronization (RSync) Protocol. Ap-

pendix C shows the script used to start a training job on the cluster.
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6 RESULTS: PHYTOPIPE AS CLOUD SERVICE

The following chapter presents results obtained by executing a complete phytosani-

tary pipeline. The implementation of the pipeline as cloud service is an important contri-

bution of the present work. The outlined techniques allow the access of state-of-the-art

bioinformatics tool to facilities with limited hardware resources, either by direct exe-

cution in the cloud or by the generation of tailored reference databases. Section 6.1

presents an overview of the pipeline. Section 6.2 summarizes the main AWS services

used to execute the pipeline. Section 6.3 explains how all necessary infrastructure

resources were deployed and which modifications were needed to run the pipeline

properly on AWS. Section 6.5 presents classification results of RNA-seq data obtained

from Cassava plants.

6.1 PIPELINE OVERVIEW

PhytoPipe is an open-source pipeline for identifying plant pathogens using RNA

sequence data. The pipeline can detect pathogens like bacteria, fungi, viruses, and

viroids (HU et al., 2023). While developing the pipeline, the authors tested it on plant

species like apple, pear, peach, potato, sweet potato, cassava, rice, sugarcane, and

bamboo. Figure 28 shows all the steps executed by the pipeline. It can be divided into

four main tasks: (i) preprocessing, (ii) classification, (iii) assembly-based annotation,

and (iv) reference-based mapping. PhytoPipe supports both single- and paired-end

FastQ files as input.

Preprocessing cleans the input data by removing host ribosomal RNAs, PCR dupli-

cates, and low-quality reads.

The classification step uses Kraken2 to run a nucleotide-level classification by query-

ing reads against the NCBI “nt” database. The pipeline also uses Kaiju to assign reads

to taxa using the NCBI taxonomy and a microbial non-redundant database (nr+euk) of

bacterial, viral, fungal, and other microbial eukaryotic proteins.

During the assembly-based annotation phase, the pipeline removes the host reads

identified by Kraken2 and assembles the remaining reads with Trinity. The assemblies

are then evaluated with Quality Assessment Tool for Genome Assemblies (QUAST)
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Figure 28 – The flowchart of all steps executed by PhytoPipe, a phytosanitary pipeline for plant pathogen
discovery (HU et al., 2023). The following abbreviations for non-standard databases have
been used: (i) nr+euk: NCBI non-redundant protein data base (nr) Bacteria, Archaea,
Viruses, Fungi and microbial eukaryotes; (ii) RVDB: Reference Viral Database <https:
//rvdb.dbi.udel.edu>

https://rvdb.dbi.udel.edu
https://rvdb.dbi.udel.edu
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and finally annotated at the nucleotide level against the NCBI “nt” database and at

the protein level gainst the NCBI “nr” database using the alignment-based blastn and

blastx tools, respectively.

At the end, the pipeline executes a reference-based mapping step, mapping the

clean reads to the references identified by read classification and contig annotation,

calculating read coverage, drawing a coverage graph, and generating consensus se-

quences. The consensus sequences receive their final annotation by an online query

against the NCBI nucleotide BLAST database.

The PhytoPipe output for each sample provides several key reports and analyses.

The generated results include FastQC/MultiQC reports for assessing the quality of the

provided HTS reads. Krona taxonomy pie charts are generated from the Kraken2/Kaiju

read classification and the blastn/blastx contigs identification. Additionally, the output

features a QUAST report to evaluate assembly quality. Detailed blastn/Diamond blastx

search result tables, mapping statistics, and coverage graphs for viruses and viroids

are given. All of these findings are summarized in an Hypertext Markup Language

(HTML) report (report.html). The authors set minimum system requirements to run the

pipeline under Linux, Mac OS, or Windows (Docker only) operating systems that a very

demanding: 300 GB of RAM, more than 32 cores CPU, and 1TB fast storage. However,

as discussed later in this chapter, the actually system requirements are even higher,

especially concerning the necessary storage space.

6.2 AMAZON WEB SERVICES OVERVIEW

Due to the high requirements for running PhytoPipe, we faced challenges in ex-

ecuting the pipeline locally. This motivated us to use Amazon Web Services (AWS)

resources to run PhytoPipe at its maximum capacity. The AWS cloud has hundreds

of services, and running any solution might be a challenge since a suboptimal con-

figuration could increase costs dramatically. The PhytoPipe implementation fits the

High-Performance Computing (HPC) use case, and we could use the basic comput-

ing services.

AWS’s most popular and basic computing service is the Elastic Compute Cloud

(EC2), which offers a computing platform that allows us to choose processor, memory,

and storage capacity. The storage capacity is offered as integral part of another AWS
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service called Elastic Block Storage (EBS), which makes it possible to configure the

size and performance of the store for a virtual service. The configuration of a virtual

server can be saved by configuring an image. As a result, the EC2 can be easily cre-

ated with the target configuration. In addition, it is possible to save generated data on

storage units so it can persist between different virtual server runs. Those are very

important aspects of virtual computing cost optimization enabling to stop running all

resources while not being used.

Another important AWS service for our use case is the Amazon Simple Storage Ser-

vice (S3), which provides object storage. As it isn’t block storage, S3 can’t be mounted

on virtual servers, but the greatest advantage of this service is the cost. The objects

represent the files stored in S3 and are saved into buckets - the name AWS gave to the

containers for objects. As we need to run experiments on several High-Performance

Computing (HPC) files, which generate a dozen output files, the best choice for storing

the input and output files of PhytoPipe is the S3.

6.3 PIPELINE IMPLEMENTATION

Deploying the resources into the AWS cloud is the first step before running Phy-

toPipe. Analyzing the tutorial provided by the PhytoPipe developers, we observed that

we need to run a database-building step before running the pipeline. Tools like Kraken2,

Kaiju, and Blast need high-performance storage to build the databases that will execute

the classification and annotation tasks. We chose to deploy all resources in two config-

urations, one for database building and the other for experiment execution. Figure 29

shows a diagram containing the services we used to build and run the PhytoPipe.

For the building phase of the pipeline, we deployed an r5a.12xlarge EC2 instance

type with 48 CPUs, 384GB of RAM, and 5TB SSD storage. Once the virtual server

was running, we could execute the updateDatabase.sh script provided on the Phy-

toPipe repository. We needed to apply two changes to run the script on AWS in a

cost-effective way. The first change was related to the Kraken2 database. By default,

this tool needs more than 700GB of RAM to query the sequenced reads against the

NCBI nt database. However, the size can be reduced by setting a parameter called

maximum database size at build time. A reduction to 256GB does not significantly de-

crease the accuracy of the Kraken2 classification. The second change was related to
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Figure 29 – Resources deployed on the AWS cloud to run PhytoPipe.

building the Kaiju database. Kaiju provides pre-built databases that can be retrieved

from a file server. The download eliminates the need to build the Kaiju database, which

reduces the costs of executing the PhytoPipe assembly script by reducing the execu-

tion time. After applying these changes, the build step was initiated and took five days

to conclude due to the high data volume processed by tools like Kraken2 and Blast.

Once the pipeline was successfully assembled, we created a snapshot of EBS storage

to restore it when running the pipeline to analyze a new HTS sample.

To execute the pipeline for analyzing a FastQ input file, an r5a.12xlarge EC2 in-

stance type with 48 CPUs, 384 GB of RAM, and 5 TB magnetic storage was deployed.

The change from SSD to magnetic storage significantly decreased the cost for every

execution without dramatically affecting the performance. To run the pipeline, we first

upload the FastQ files into an S3 bucket, create the EC2 and EBS resources, and start

PhytoPipe. When the pipeline execution was finished, we uploaded the results into the

S3 bucket and deleted the EC2 and EBS resources to avoid unnecessary costs. To

make the creation and deletion of resources easy, we used Terraform, an Infrastruc-

ture as a Code (IaaC) tool used to manage resources on the cloud programmatically.

Appendix B shows the script we developed using Terraform to manage the resources

we used on AWS to run Phytopipe. Table 6 shows the major experiment files that were

processed using the AWS cloud infrastructure.
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6.4 AWS COSTS

(a) Total Cost for AWS execution of the pipeline for
experiments executed on specific days.

(b) Cost per Service for AWS execution of the
pipeline for experiments executed on specific
days.

Figure 30

We executed an analysis on the costs generated by the execution of the pipeline on

the AWS Cloud. Analyzing the total cost it was possible to notice that the average cost

of the execution for each experiment processed by the Phytopipe was USD6 1.00, but

the total cost for some executions reached USD 100.00. Also, we analyzed the cost by

the AWS services used during the processing. Basically, during the processing it was

used the EBS (storage) and the EC2 (computing) services. For each experiment, the

average cost for the EBS service was USD 32.70 and for the EC2 service was USD

28.90, this shows that the our configuration had a higher cost for the storage of the

virtual machine when compared with the cost of the virtual machine itself. This was

due to the high volume of data generated by the datasets for the Blast, Kraken2, and

Kaiju, and the high amount of input and output operation on the disk generated by the

same tools.
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Experiment File Preprocessed by
(or raw file)

Date AWS cost
for this
date

DSCG1_S1 R1 & R2 raw 24/01/2023 $ 24.00
DSCG1_S1 R1 kraken2_virus

24/03/2024 $ 67.00
DSCG1_S1 R2 kraken2_virus
DSCG1_S1 R1 2-class model 04/03/2024 $ 98.00
DSCG1_S1 R2 2-class model 17/03/2024 $ 35.00
DSCG1_S1 R1 3-class model 28/02/2024 $ 73.00
DSCG1_S1 R2 3-class model 14/03/2024 $ 161.00
DSCG12_S12 R1 & R2 raw 04/02/2024 $ 50.00
DSCG12_S12 R1 kraken2_virus

24/03/2024 $ 67.00
DSCG12_S12 R2 kraken2_virus
DSCG12_S12 R1 2-class model 04/03/2024 $ 98.00
DSCG12_S12 R2 2-class model 24/03/2024 $ 67.00
DSCG12_S12 R1 3-class model 28/02/2024 $ 73.00
DSCG12_S12 R2 3-class model 14/03/2024 $ 161.00
P27-4C R1 & R2 raw 06/05/2024 $ 149.00
P27-4C R1 kraken2_virus

01/09/2024 $ 19.00
P27-4C R2 kraken2_virus
P27-4C R1 2-class model 15/06/2024 $ 48.00
P27-4C R2 2-class model 16/06/2024 $ 113.00
P27-4C R1 3-class model

27/05/2024 $ 48.00
P27-4C R2 3-class model

Table 6 – Execution of experiments on the AWS cloud splited by the experiment file and date. We also
added the total cost of AWS cloud for the date, but it does not represent the cost of the exper-
iment running itself once that multiple runs was executed on a single day.

6.5 VIRUS DETECTION

We analyzed three cassava sample files executing PhytoPipe, each containing dif-

ferent scenarios of viral infections. Those sample files were provided by the Phytovi-

rology Laboratory from UFRPE and previously analyzed by bioinformatics specialists.

The findings of PhytoPipe confirmed the initial assessments. Frame 3 summarizes

the results of the Phytopipe execution for each file. The S16 sample doesn’t contain

nucleotide reads originating from any known or unknown virus. The S23 sample ev-

idenced viral infection of the cassava plant by the known viruses Cassava common

mosaic virus and Cassava Torrado-like virus. Finally, in the S27 sample, the following
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viruses were detected: Cassava Torrado-like virus, Cassava ampelovirus 1, Cassava

torrado-like virus 2 and Cassava satellite virus. The table indicates also that some con-

sensus sequences for the latter two have lower blast identity and, thus, may represent

novel variants.

Sample Name (Code) Viruses Detected Novel Viruses / Isolates
DSCG1 (S16) — —
DSCG12 (S23) Cassava common mosaic virus —

Cassava Torrado-like virus
P27-4C (S27) Cassava torrado-like virus 2 Cassava torrado-like virus 2

Cassava ampelovirus 1 Cassava satellite virus

Frame 3 – Results of virus detection by PhytoPipe for three cassava RNA samples.

Figure 31 gives an example of an HTML report generated by Phytopipe summa-

rizing the analysis of the sample file S27. The shown part of the report focus on the

mapping of reads to novel contigs. Phytopipe employs two criteria to identify a novel

virus, a low identity at the nucleotide level but a high match at the protein level. In the

standard configuration a novel contig has a blastn identity smaller than 80% to the

closest viral reference but an expectation value (e-value) lower than 1 × 10−100 when

aligned against the closest viral protein, indicating a highly significant match. Figure 31

shows that some contigs close to the reference virus Cassava torrado-like virus 2 or

Cassava satellite virus might be novel.

The output report shows several other pieces of information, such as the identified

known viruses, the amount of raw reads, the amount of reads after cleaning, etc. It’s

possible to access the Krona charts generated by the executions of Kraken2 and Kaiju

directly from the file report.html.

The Krona pie charts for the sequenced reads classified by Kraken2 for the three

samples S16, S23 and S27 are shown in Figure 32 (a), (b) and (c), respectively. The

virus and bacteria classes identified for the sample S27 are separately displayed in

Figure 32(d) and (e), respectively, for better visibility. The provision of partial results

obtained during the execution of the phytosanitary pipeline helps to deepen the under-

standing of the classification flow. The interactive pie charts generated by Phytopipe

allow for better comprehension and visualization of the sample’s microbiome.

Figure 33 shows the Krona pie charts for sequenced reads that Kaiju classified

for the same three samples (S16, S23, and S27). A comparison of the Kraken2 and
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Figure 31 – An example of an HTML report generated by PhytoPipe for the S27 sample. This image
shows identified contigs with a low blastn identity to viral references but an excellent match
to viral proteins, singling them out as potentially novel as indicated by the header.

Kaiju results is interesting since we gain insights about the differences of nucleotide-

versus protein-level classification, although the Kaiju reference does not include plant

proteins. Thus, an obvious difference is that Kaiju does not identify reads from the plant

host. Additionally, Kaiju does not show unclassified or unknown reads as “No Hits” and

“Other Root” in the charts.

The results obtained for the disease free sample S16 are shown in Figure 33a.

Kaiju identified mostly bacteria reads, while Kraken2 identified mostly Cassava reads.

For the S23 sample shown in Figure 33b, Kaiju also identified mostly bacteria reads

and the Cassava common mosaic virus. Kraken2 does not identify bacteria on this

sample but identified viral pathogens similar to Kaiju. Finally, for the S27 sample, Fig-

ure 33c demonstrate that Kaiju identified more bacterial and viral taxons than Kraken2.

However, both tools identified the Cassava-torrado like virus 2 and the Cassava am-

pelovirus 1 on this sample. Other viral reads identified by Kaiju do nor represent plant

infecting viruses. As a general trend, we can state that Kaiju gives a more detailed

view of the plant’s microbiome. However, since the identification of plant proteins is not

included, the tool cannot serve as a filter for passing only pathogen reads (defined as

not host) to the assembly unit in a phytosanitary pipeline.
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6.6 PRE-BUILT DATABASES

Another result achieved in this work was to facilitate the PhytoPipe implementation

for other potential users by publishing pre-built database files for Kraken2 and Blast.

This was motivated by the challenges faced when trying to build those databases.

Much more computational capacity is needed to build the reference databases than to

run the pipeline. Additionally, a stable internet connection over a longer period of time

is required to download large or multiple files from the NCBI server.

Figure 38 in the appendix D shows the pre-built files for the NCBI non-redundant

nucleotide Kraken2 reference database. By default, this database requires more than

700GB of memory, but Kraken2 offers a parameter to limit the maximum size of the

database through downsampling of minimizers (for both the database and query se-

quences) using a hash function (WOOD; LU; LANGMEAD, 2019). In this work, the max-

imum size of the database was set to 256GB, the size recommended by Phytopipe’s

authors. However, we created also a 120GB database to enable users with less com-

putational resources to run Phytopipe.

Figure 39 in the appendix D shows the pre-built files for the NCBI nucleotide BLAST

database. The challenge faced when users try to download these files from the orig-

inal source - the NCBI servers - is that a stable connection is required allowing the

download of thousands of files. Sometimes, the connection with NCBI servers faces

instability, so the download fails, forcing the users to retry this process several times

or even preventing the user from downloading them. As we used AWS servers, set-

ting a stable and fast connection with NCBI servers was possible. Finally, by using the

Amazon Simple Storage Service (S3), other users can download this database from a

more stable source, as Amazon offers a global connection infrastructure to access its

services.

Researchers from UFRPE and the Leibniz Institute DSMZ successfully used the

pre-built files described in this section to run Phytopipe.

6.7 KRAKEN2 WITH VIRUS-ONLY DATABASE

Another investigation we conducted evaluated the performance of Kraken2 using

the NCBI virus database as a reference, which is a virus-only database. As mentioned
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in Section 2.6, Kraken2 allows the construction of different databases with various

configurations. For the results presented in this section, we used:

kraken2-build –download-library viral –db kraken2_viral

For optimal sequence classification, using the complete NCBI nt reference database

is recommended due to its comprehensive nature, but this comes with high compu-

tational demands. In contrast, using a virus-only database reduces computational re-

quirements, making it feasible to run Kraken2 on most personal computers. This sec-

tion examines whether the accuracy of viral sequence classification is significantly af-

fected by using a reduced reference database.

We classified the raw reads of three cassava samples (S16, S23, and S27) us-

ing Kraken2 with the NCBI virus reference, an approach we refer to as viral Kraken2.

We then reclassified the reads initially annotated as viral using the complete NCBI nt

database. Figure 34 shows the Krona charts generated after this second classification.

In the S16 sample (Figure 34a), most reads initially categorized as viral by the viral

Kraken2 approach were actually identified as cassava reads when using the complete

nt database.

Figure 34b shows that in the S23 sample, most viral reads were correctly identified

as originating from cassava-infecting viruses. Specifically, Cassava common mosaic

virus accounted for 66% of the viral reads, and Cassava Torrado-like virus for 1%.

However, 33% of reads initially classified as viral were misclassified, with the complete

database revealing them as belonging to the categories "Eukaryota," "Other Root" (It

can’t determine the taxonomy), or resulting in "No hits" (It can’t find similar reference).

For the S27 sample, Figure 34c indicates that 84% of the initial virus class reads

originated from the plant host. A closer look at the reads classified as viral when

queried against the complete NCBI nt database (Figure 34d) showed that only a few

reads from Cassava Torrado-like virus and Cassava Torrado-like virus 2 were included

in the original virus classification.

Table 7 provides the total number of viral reads classified by the viral Kraken2 ap-

proach and reclassified using the complete NCBI nt database. In samples S16 and

S27, viral Kraken2 showed poor performance, with most reads initially annotated as

viral actually originating from the cassava genome. This indicates a significant overes-

timation of viral diversity in these samples by the viral Kraken2 approach. Additionally,

the method was insufficient in identifying relevant virus species, as seen with the low
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Figure 34 – Krona pie charts displaying the reclassification of reads annotated as viruses when queried
against the NCBI virus database using Kraken2. These charts were generated by reclassify-
ing the initial virus class by querying against the complete NCBI nt database using Kraken2.
Results are shown for the three samples: S16 (a), S23 (b), and S27 (c). For sample S27, (d)
provides a detailed view of the reads reclassified as viral.

Sample #Total Reads #Cassava Reads #Viral Reads / Species
S16 511 493 (96%) 2 / Cassava Satellite virus

1 / Cassava brown streak virus
S23 4494 1058 (24%) 2985 / Cassava common mosaic virus
S27 14844 12465 (84%) 13 / Cassava Torrado-like virus

2 / Cassava Torrado-like virus 2

Table 7 – Number of reads for three samples originating from the cassava genome and plant viruses as
classified and reclassified by Kraken2 using a viral-only and the complete NCBI nt database
in the two annotation steps, respectively.
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detection rates for Cassava Torrado-like viruses in sample S27 (13 reads for Cassava

Torrado-like virus and 5 for Cassava Torrado-like virus 2 out of 98 million total reads).

In conclusion, reliable Kraken2 classification of HTS reads requires including the

host genome in the reference data. Part of the cassava genome appears to resemble

viral sequences, at least for fragments of the size of typical HTS reads. We confirmed

this by generating over six million artificial reads (100 nt each) from the Manihot es-

culenta reference genome, finding that 0.2% were classified as viral by viral Kraken2.

Furthermore, to enable Kraken2 to accurately score classification paths, diverse refer-

ence data covering different taxa are necessary. Therefore, in the context of this study,

a reliable benchmark of deep learning models demands significant computational re-

sources. While using a virus-only database offers low computational costs, it cannot

replace the comprehensive analysis provided by the NCBI nt database.
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7 RESULTS: ATTENTION-BASED SEQUENCE CLASSIFIER

The following chapter presents the results obtained for the deep-learning model

proposed to classify plant RNA-seq data, identifying viral reads at the protein level.

Section 7.1 shows the model’s architecture and how the model was trained. Section

7.2 discusses the results obtained when running the model on real-world data and

evaluates the performance by comparison with a PhytoPipe analysis.

7.1 MODEL ARCHITECTURE AND TRAINING

Figure 35 shows the architecture of the proposed model. The first step is the

nucleotide-to-protein translation. This translation step generates six aa sequences for

every nucleotide read. Some combinations of three nucleotides represent a stop codon

not coding for an amino acid. If any aa fragment contains the corresponding symbol,

it is removed from the input group. The presence of a stop codon signifies the end of

a valid protein-coding region. Any amino acids that appear after a stop codon during

in silico translation are generally non-biological artifacts and should be ignored. Thus,

we decided to exclude the corresponding fragments completely since they may contain

only limited information.

The following classification steps are executed for every aa fragment. If the model

classifies any protein read as originating from a pathogen, then the original nucleotide-

level read is labeled correspondingly. If an aa fragemt has a finite probability to belong

to both pathogen classes, virus and bacteria, the class with the higher probability is

used for the labeling. After translation to the protein level, we employ k-mer encoding

with 𝑘 = 5. The consecutive embedding represents the k-mers in a dense vector space

and adds positional information to the transformation into numerical data. The embed-

ding is refined by the attention mechanism employing four parallel heads. Finally, a

fully-connected layer computes the output probabilities for every class.

We trained two different models and employed them in inference experiments. The

first model has two output classes: cassava and virus. The second model has three

output classes: cassava, bacteria, and virus. The models were trained with over 39

million artificial reads for five epochs. For the two-class-model, the loss value varied
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Figure 35 – The architecture of the proposed DL classifier on protein level.
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(a) (b)

(c) (d)

Figure 36 – Values for loss and accuracy during training. The upper row show the loss (a) and the accu-
racy curves (b) for the three-output-class model. The lower row displays the same quantities,
loss (c) and accuracy (d), for the two-output-class model.

from 2.24×10−2 to 1.17×10−5 and the accuracy from 0.9904 to approximately 1 through

the training epochs as shown in Figure 36c and 36d, respectively. Figure 36a displays

the loss and 36b the accuracy curve during training the three-output-class model. Loss

improved from 7.69× 10−2 to 1.21× 10−3 and accuracy from 0.9523 to 0.9997.

The actual performance of the models, when classifying real-world data, will be

evaluated in the next section.

7.2 PERFORMANCE EVALUATION

We applied the trained models to classify sequenced reads obtained from three

cassava samples to evaluate the performance in each case. This experiment aimed

to verify whether the proposed models could be used as a trustful classifier. To this

extent, the reads classified as viral by each model were further analyzed by well estab-

lished bioinformatics tools. As mentioned in Subsection 5.2.5 and shown in Figure 27

we executed the developed models on the raw sample reads. Then, we analyzed the

model predictions by the traditional tools executed as part of PhytoPipe.
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A stage of high computational cost in a phytosanitary pipeline is the filtering of se-

quenced reads that will be passed to the assembler unit. Only pathogen or unclassified

reads shall be passed. Since most reads originate from the host, see Figure 24, their

elimination from the downstream data analysis of the pipeline decreases hardware

demands, reduces execution time and improves contig and consensus sequence qual-

ity. Thus, a high number of identified viral reads without contamination by sequences

known to originate from other kingdoms (false positives) is an interesting performance

metric for the intended use of the DL model.

We discuss the model performance first by comparing with the findings in Section

6.5. Second, by channeling the reads of the virus output class into PhytoPipe, the

pipeline reveals if the DL model kept enough viral information that traditional tools could

confirm. In addition, we aimed to verify if the model has improved its performance by

adding an output class. Thus, we report on the findings for both models.

7.2.1 General Trends

For each model, we ran inference for three cassava samples and grouped all reads

with a class probability higher than 98%. We chose such a stringent criteria because

the main goal is to identify reads matching viral proteins with high confidence. This

performance metric is well suited for the intended use as a filter: keep a small number

of reads that are most likely of viral origin. Table 8 summarizes the obtained number of

viral, cassava, and bacteria reads as predicted by the two models.

Sample Total Reads
2 Class Model

>98% probability
3 Class Model

>98% probability
Virus Cassava Virus Cassava Bacteria

S16 (R1) 72,603 5,090 31,841 249 16,574 18,324
S16 (R2) 76,722 6,191 33,556 401 14,737 22,278
S23 (R1) 136,919 13,999 64,707 2,578 24,225 47,948
S23 (R2) 147,139 15,804 68,232 2,591 20,690 55,734
S27 (R1) 47,958,919 1,789,807 12,303,556 2,542 3,294 14,642,441
S27 (R2) 47,958,919 2,099,988 12,149,422 2,421 3,169 14,793,205

Table 8 – Deep learning classification of sequenced RNA reads obtained from three cassava samples.
Only reads with a predicted probability higher than 98% are grouped into the corresponding
output class. Other reads are considered as unclassified.
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(a) 2-class R1 predictions (b) 2-class R2 predictions

(c) 3-class R1 predictions (d) 3-class R2 predictions

Figure 37 – Histogram of S27 derived reads grouped into probability bins for being of viral origin. The
upper row shows the classification results of the two-class model for R1 (a) and R2 (b)
reads, the lower row results of the three-class-model for R1 (c) and R2 (d) reads.

The S16 sample has the lowest number of reads. Analyzing Figure 32a, we expect

that this sample has no virus pathogens. Thus, ideally, no nucleotide read should be

labeled as viral. In this respect, the 3-class model achieves better results than the 2-

class model. Interesting are the findings concerning the bacteria class. Based on the

analysis shown in Figure 32a, we also do not expect to find bacterial reads contrary to

the classification provided by the 3-class model. However, the nucleotide level analysis

provided by Kraken2 does not reveal the whole microbiome. In fact, the Kaiju analysis

on protein level also finds a considerable amount of bacterial reads very similar to the

3-class model. We hypothesize that Kraken2 may sort most bacterial reads into the

category “Unclassified” due to the huge variability of bacterial genomes. However, the

translated proteins are less varying and classification on protein level might be a better

strategy for bacteria discovery.

The S23 sample has a small but relevant number of viral reads as shown in Figure

32b. Both, the Kraken2 and the Kaiju analysis labeled ca 3000 viral reads. The number

of viral reads identified by the 2-class model is much larger. The 3-class model on the
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other hand grouped a similar amount of reads into the virus class.

The viral and bacterial load is very high in sample S27, as shown in Figure 32d and

32e, respectively. For this sample, the 3-class model assigned a relatively low number

of reads as viral. The sample S27 is the only one from the investigated exemplary

cassava samples that may include novel viruses or variants. Thus, the finding raises

the concern that the 3-class model is too conservative when labeling viral reads. The

impact of the threshold probability on the model performance needs to be investigated

in more detail.

As a first step, we analyzed the number of viral reads grouped into different pre-

diction probability bins. Figure 37 shows the resulting histograms for the S27 sample

for both R1 and R2 reads and for both models. We see that most reads predicted as

viral have class probabilities in the 0.95 to 1.0 range in both models. Thus, a careful

fine-tuning of the threshold probability might be required.

To summarize, the expected general trends in the classification of the sequenced

reads obtained from three exemplary cassava samples are well reproduced by the 3-

class model. The 2-class model performed significantly poorer and the inclusion of the

bacterial class is required. When employed as a filter in the context of a phytosanitary

pipeline, the 3-class model is capable of removing most reads keeping only some with

a high probability of being a pathogen read.

7.2.2 PhytoPipe Analysis

A more detailed performance assessment is obtained when the reads assigned

by the DL model to each class is channeled through PhytoPipe. This analysis exam-

ined whether the DL classification results could be confirmed by traditional and well-

established bioinformatics tools. Table 9 summarizes the Kraken2 results as part of

PhytoPipe for all reads previously processed by the deep learning model. As expected,

the 3-class model outperformed the 2-class model for predicting all three classes, virus,

bacteria, and cassava.
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To fully appreciate the findings, we need to comment on the two Kraken2 classifi-

cations called “No Hits” and "Other Root". Both are categories used to describe reads

that do not fit neatly into well-defined taxonomic classifications. The category “No Hits”

refers to reads that could not be matched to any sequence in the Kraken2 reference

database. In other words, none of the k-mers derived from these reads had significant

matches in the reference database. The category “Other Root” includes reads that are

somewhat matched to sequences in the reference database but cannot be confidently

assigned to a specific, lower-level taxonomic group. These reads have ambiguous clas-

sification results, leaving them categorized at the highest possible taxonomic level (the

“root”). Thus, reads classified as “No hits” by Kraken2 but sorted into one of the three

classes by the DL model call for further analysis since these reads may represent novel

sequences very different from the established taxonomy tree.

The 3-class model predicted the virus class for the samples S23 and S27 with only

ca. 10% of false positives originating from eukaryota. Host plants have frequently virus

sequences incorporated in their genome, which might contribute to this classification

result. The viral class of the pathogen-free sample S16 appears to be a random group

of reads belonging to the categories eukaryota, “No hits” and “Others” predicted simi-

larly by both models.

Both DL models correctly grouped mostly reads into the cassava class that indeed

originated from the host plant. Moreover, the 3-class model included no reads from the

category “Others”. The few additional reads (less than 1% for S16 and S23) that could

not be traced to the plant genome are of unknown origin.

The bacteria class was not well predicted by the 3-class model. Most of the included

reads originated from eukaryota. The result may indicate that the model did not have

enough data to correctly classify bacterial reads. On the other hand, there is a huge

discrepancy between the prediction of bacterial read when working on the nucleotide

or the protein level as discussed in the Subsection 7.2.1.

Finally, Frame 4 shows the cassava viruses identified by PhytoPipe on reads la-

beled as viruses by the DL models. The comparison with the PhytoPipe output for

the raw sample reads, see Frame 3, shows that a sufficient number of reads are kept

by the DL models in the virus class to still identify most of the viruses present in the

samples. However, the DL models fail to maintain sufficient reads for Cassava Torrado-

like virus and Cassava satellite virus in sample S27. The absence of the latter can be



94

Sample 2 Class Model 3 Class Model
S16 (R1)

No virus detected
S16 (R2)

S23 (R1) Cassava common mosaic virus
Cassava common mosaic virus
Cassava Torrado-like virus

S23 (R2)
Cassava common mosaic virus
Cassava Torrado-like virus

Cassava common mosaic virus
Cassava Torrado-like virus

S27 (R1)
Cassava torrado-like virus 2
Cassava ampelovirus 1

Cassava ampelovirus 1
Cassava torrado-like virus 2

S27 (R2)
Cassava torrado-like virus 2
Cassava ampelovirus 1

Cassava ampelovirus 1
Cassava torrado-like virus 2

Frame 4 – Cassava viruses identified by PhytoPipe on the subset of reads previously classified as viral
by the DL models.

explained by the fact that the present variant may be novel and the employed cut-off

probability was too high. The absence of the former is curious, since the consensus

sequence of the identified Cassava Torrado-like virus has nearly 99% blastn identity

with the reference genome. We hypothesize that not enough reads are kept for correct

assembly.

The performance analysis of the proposed 3-class model provided proof of con-

cept that deep learning algorithms can successfully extract features for virus detection

even from short not-assembled reads directly obtained from high-throughput sequenc-

ing. This fact has been previously doubted in the literature. We provided evidence that

the key innovations are the attention mechanism and the use of protein references.

Furthermore, the analysis revealed that DL models could be used as lightweight alter-

native for successfully filtering pathogen reads to be used in phytosanitary pipelines.

The fishing for pathogen reads is an essential step, reducing the computational costs

of the downstream tasks, but should not compromise the identification of (known or

unknown) viruses in the sample. We state that the proposed model can be further op-

timized to serve as classification filter that keeps the most relevant viral reads among

millions of others aiding in the timely detection of virus infections.
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8 CONCLUSION

This work proposed a deep learning model for identifying unassembled viral reads

within High-throughput sequencing (HTS) data obtained from RNA samples extracted

from cassava. The primary goal of this model was to reduce the complexity and com-

putational resource requirements of virus discovery. A significant motivation for devel-

oping this model was the lack of effective solutions for classifying short sequences,

as state-of-the-art methods described in the literature typically underperform when ap-

plied to the 100-300nt HTS reads commonly found in most proposed approaches to

similar problems.

We demonstrated that the proposed model could identify viral reads, which are

relatively few in RNA-seq data containing millions of short sequences, and classify

them into a single group. In addition to using protein-level references, a significant

innovation was incorporating the attention mechanism to capture relationships between

different k-mers within a sequenced read. The model effectively separates viral reads

from non-viral reads, such as those from cassava or bacteria, in sufficient numbers to

allow subsequent processing. Downstream tools in a phytosanitary pipeline, such as

BLASTN and BLASTX, can then be used for final virus detection. The computational

costs associated with these tools are significantly reduced when they operate on a

subset of data provided by the proposed model’s virus classification. This capability

allows bioinformatics professionals and researchers to run a reliable virus identification

pipeline on personal computers rather than relying on high-end servers.

However, when analyzing the performance of the model when identifying bacterial

reads we found that the model requires further improvement. One of the main chal-

lenges in building the model for virus identification is the imbalance in available se-

quence data. Viral genomes are generally smaller and less represented in databases

compared to plant and bacterial genomes. This imbalance often leads to overfitting

and underfitting in many versions of the model trained. The imbalance cannot simply

be eliminated by restricting the included plant genomes to the host plant and by choos-

ing a representative reference set for bacteria. The number of fragments generated

in silico is limited by hardware constraints and too small to cover the genomes of all

plant infecting viruses. When analyzed the accuracy and loss values from train (see
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Figure 36), the number of parameters (see Table 4), and the model idenfication perfor-

mance (see Table 9), this leads us to conclude that the final model presents overfitting

behavior.

Another significant contribution of this work was the implementation of a state-

of-the-art phytosanitary pipeline, PhytoPipe, as a cloud service on AWS. This doc-

umented approach facilitates access to advanced bioinformatics tools for detecting

pathogens in RNA-seq plant data, even in environments with limited computational re-

sources. Additionally, generating reference data structures for tools like Kraken2 and

Kaiju broadens the pipeline’s applicability, as creating these structures can be more

computationally intensive than the pipeline’s execution. Finally, the direct comparison

between traditional bioinformatics tools and deep learning-based read classification

provides valuable insights into the relative performance and potential of these ap-

proaches. The source code for the model definition, the training script, and additional

code can be accessed on the following GitHub page: <https://github.com/elissonlima/

CassBERT>.

8.1 FUTURE WORKS

While this dissertation has made significant strides in developing a deep learning

model for identifying viral reads in cassava RNA-seq data, there remain several av-

enues for enhancing the model’s performance and usability. These opportunities for

future work include:

• Improving the training dataset: By adjusting the representation of key bacterial

and other pathogen genera, the model can be better equipped to distinguish be-

tween different types of sequences. This enhancement would likely improve the

model’s overall accuracy and robustness in identifying non-viral reads.

• Expanding dataset size: Increasing the size of the dataset to achieve more com-

prehensive genome coverage could help reduce underfitting. This expansion may

require access to more substantial computational resources for model training but

could lead to a more accurate and reliable model.

• Explore modifications of the model’s architecture: Optimize the hyperparameters

https://github.com/elissonlima/CassBERT
https://github.com/elissonlima/CassBERT
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of the model, for example the number of attention heads, and the embedding size.

Also, it may be good to analyze specialized embeddings designed to represent

sequence data, for example ProtVec (ASGARI; MOFRAD, 2015).

• Examine other modifications of the model design and training: Explore dropout

and batch normalization to prevent overfitting, and try to find a trained foundation

model that can be fine-tuned and applied to the presented problem.

• Analyzing attention maps: Investigating the learned attention maps could pro-

vide insights into k-mer features that are characteristic of viral sequences, be-

yond simple frequency analysis. Understanding these features may enable the

development of more sophisticated detection mechanisms and improve the inter-

pretability of the model’s decision-making process.

• Integrating the deep learning model with PhytoPipe: By directly incorporating

the deep learning model into PhytoPipe, the need to query reads against exten-

sive and complex reference data structures could be eliminated. This integration

would significantly reduce the computational resources required for pathogen de-

tection pipelines, making them more accessible and efficient for bioinformatics

experts.
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APÊNDICE A – PYTHON SCRIPT TO GENERATE RANDOM READS

1 def get_random_reads_from_seq(input_file ,

output_file ,

3 max_read_len ,

depth ,

5 strand='both'):

'''

7 Generate random reads from sequence string

9 Parameters:

sequence (str): Sequence as string

11 seq_name (str): Sequence id

max_read_len (str): Max size of output reads

13 depth:

int value -> How many time Increase the

15 number of out reads

"max" -> Get maximum distinct reads from

17 sequence

strand (str):

19 both -> generate forward or reverse read (randomly)

antisense -> only generate reverse read

21 Returns:

'''

23

fasta_sequences = SeqIO.index(input_file , "fasta")

25 arq_out = open(output_file , "w")

27 for idx in fasta_sequences.keys():

29 sequence = str(fasta_sequences[idx].seq)

31 maxstart = len(sequence) - max_read_len + 1

maxbp = len(sequence) # max number of bp to be generated

33 if depth == "max":

maxbp = float('inf')

35 else:

maxbp *= depth

37 #$thisseq =~ tr/ACGT/TGCA/;

bpcount = 0

39 repetead_count = 0

41 result_set = set()

43 if len(sequence) < max_read_len:

continue
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45 elif len(sequence) == max_read_len:

arq_out.write(">%s\n%s\n" % (fasta_sequences[idx].id,

47 sequence))

49 while bpcount < maxbp and repetead_count < len(sequence):

51 startidx = random.randint(0, maxstart)

new_seq = sequence[startidx:startidx+max_read_len]

53

num_strand = 1

55 if strand == "both":

if startidx % 2 == 0:

57 num_strand = -1

new_seq = rev_comp(new_seq)

59 elif strand == "antisense":

new_seq = rev_comp(new_seq)

61

# new_seq = new_seq [::-1]

63 # translate_dict = new_seq.maketrans ("ACGT","TGCA")

# new_seq = new_seq.translate(translate_dict)

65

if new_seq in result_set:

67 repetead_count += 1

else:

69 repetead_count = 0

result_id = "%s:%d:%d" %\

71 fasta_sequences[idx].id,startidx ,num_strand)

arq_out.write(">%s\n%s\n" % (result_id , new_seq))

73

bpcount += max_read_len
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APÊNDICE B – TERRAFORM SCRIPT TO MANAGE AWS RESOURCES FOR

RUNNING PHYTOPIPE

2 # Create an VPC (Virtual Private Cloud) on the Account

resource "aws_default_vpc" "default" {

4 tags = {

Name = "Default VPC"

6 }

}

8

# Create an security group. This resource enables the virtual machine

10 # to connect to the internet and enable us to access the virtual machine

# using an SSH client.

12 resource "aws_security_group" "ingress -all -test" {

name = "allow -all -sg"

14 vpc_id = "${aws_default_vpc.default.id}"

16 ingress {

cidr_blocks = [

18 "0.0.0.0/0"

]

20 from_port = 22

to_port = 22

22 protocol = "tcp"

}

24

egress {

26 from_port = 0

to_port = 0

28 protocol = "-1"

cidr_blocks = ["0.0.0.0/0"]

30 }

}

32 # Create an Key Pair to authenticate on the SSH.

resource "aws_key_pair" "deployer" {

34 key_name = "deployer -key"

public_key = ""

36 }

38 # This create a Policy for the Virtual Machine. A Policy gives permission to the

# Virtual Machine to access other AWS Service. Here , for example , we give

permission

40 # to the VM access the files on the S3 bucket that contains the input files to

# execute the Phytopipe experiments , and to write the output of the Phytopipe so

42 # these informations will not be lost when the VM is deleted after execution.
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resource "aws_iam_policy" "s3-full -access" {

44 name = "s3-full -access"

path = "/"

46 description = ""

policy = jsonencode(

48 {

Version = "2012 -10 -17"

50 Statement = [

# Permission to access S3 Bucket

52 {

Sid = "VisualEditor1"

54 Effect = "Allow"

Action = "s3:*"

56 Resource = [ "arn:aws:s3:::clovis -phytopipe -inout/*",

"arn:aws:s3:::clovis -phytopipe -inout"]

58 }

]

60 }

)

62 }

64 # A role is a container for 1 or many Policies

resource "aws_iam_role" "ec2 -s3-full -access" {

66 name = "ec2 -s3-full -access"

assume_role_policy = jsonencode(

68 {

Version = "2012 -10 -17"

70 Statement = [

{

72 Action = "sts:AssumeRole"

Effect = "Allow"

74 Sid = ""

Principal = {

76 Service = "ec2.amazonaws.com"

}

78 }

]

80 }

)

82 }

84 # Attach the policy on the IAM Role.

resource "aws_iam_role_policy_attachment" "custom" {

86 role = aws_iam_role.ec2 -s3-full -access.name

policy_arn = aws_iam_policy.s3-full -access.arn

88 }
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90

# It creates the virtual machine that will run the Phytopipe

92 resource "aws_instance" "server_processing" {

# The AMI is the Ubuntu VM Image that contains all necessary software

94 ami = "ami -03 c0b10ce2bbd7bf6"

# The Availability Zone is the geographic region where the VM will be deployed.

96 availability_zone = "us-east -1c"

# The instance type defines the computational resource of the VM. For this case

98 # we created an instance with 387GB of RAM and 48 vCPUs.

instance_type = "r5a.12 xlarge"

100 # Attach the security group created previously

vpc_security_group_ids = ["${aws_security_group.ingress -all -test.id}"]

102 # Attach the SSH Key Pair created previously

key_name = aws_key_pair.deployer.key_name

104 # Attach the permissions created previously

iam_instance_profile = aws_iam_instance_profile.ec2 -profile.name

106

# Create some Tags to identify the VM created.

108 tags = {

Name = "PhytoPipe"

110 Phase = "Process"

}

112 }
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APÊNDICE C – BASH SCRIPT TO RUN A TRAINING JOB ON APUANA

#!/bin/bash

2 #SBATCH --job -name=seqjob

#SBATCH --ntasks =1

4 #SBATCH --cpus -per -task=8

#SBATCH --gpus=1

6 #SBATCH --mem=64G

#SBATCH -w cluster -node10

8 #SBATCH --output=log/output.txt

#SBATCH --error=log/error.txt

10

hostname

12

module load Python /3.8

14 module load CUDA

module load cuDNN

16 source $HOME/venv/bin/activate

18 CUDNN_PATH=$(dirname $($HOME/venv/bin/python -c \

"import nvidia.cudnn;print(nvidia.cudnn.__file__)"))

20 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDNN_PATH/lib

export XLA_FLAGS=--xla_gpu_cuda_data_dir =/opt/easybuild/software/CUDA /11.8.0

22

echo $CUDNN_PATH

24 echo $LD_LIBRARY_PATH

echo $XLA_FLAGS

26

$HOME/venv/bin/python $HOME/CassBERT/run_model.py

28 #$HOME/venv/bin/python $HOME/CassBERT/classificator.py
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APÊNDICE D – PRE-BUILT FILES FOR NCBI DATABASES

Figure 38 – Pre-built files for the NCBI non-redundant nucleotide database that can be used to run
Kraken2
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Figure 39 – Pre-built files for the NCBI nucleotide BLAST database. The large number of objects is
highlighted.
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APÊNDICE E – PROCEDURE FOR DOWNLOADING VIRAL DATASET

Figure 40 – First step to download the viral dataset: Access the NCBI virus portal and select the protein
tab.

Figure 41 – Second step to download the viral dataset: Filter for Viridiplantae hosts.
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Figure 42 – Third step to download the viral dataset: Click on the “Download” button and select only the
option “Protein” in the “Sequence Data” column.

Figure 43 – Fourth step to download the viral dataset: Select “All Records” to opt for downloading all
sequences.
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Figure 44 – Fifth step to download the viral dataset. Select “Use default” for the FASTA definition line
and click the “Download” button to start the download.
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APÊNDICE F – PROCEDURE FOR DOWNLOADING CASSAVA DATASET

Figure 45 – First step to download the Cassava dataset: Access the NCBI portal and search for cassava.

Figure 46 – Second step to download the Cassava dataset: Click on the “Manihot esculenta” link.
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Figure 47 – Third step to download the Cassava dataset: Click on the “Download” button in the “Refer-
ence genome” section.

Figure 48 – Fourth step to download the Cassava dataset: Select “RefSeq only” on the “Select file
source” column and select “Protein (FASTA)” on the “Select file format” column.
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APÊNDICE G – PROCEDURE FOR DOWNLOADING BACTERIA DATASET

import pandas as pd

2 import os

input_file = "kaiju.classified.names.out"

4 cols = ['classified ',

'sequence_id ',

6 'unknow_number_1 ',

'unknow_number_2 ',

8 'unknow_number_3 ',

'ncbi_id ', 'sequence ', 'taxonomy_path ']

10 df = pd.read_csv(input_file , names=cols , sep='\t')

def filter_bacteria(x):

12 line_list = x.split(';')

if line_list [0]. strip() == 'Bacteria ':

14 return line_list [2]

else:

16 return 'NA'

18 paths = df['taxonomy_path ']

more_commons = paths.apply(filter_bacteria).value_counts ()

20 for val in list(more_commons [:5]):

command = f'datasets.exe download genome taxon \"{val}\" --reference\

22 --include protein --assembly -level complete --filename {val}.zip'

os.system(command)

24 os.system(f'move {val}.zip bacterias \\')

print("OK", val)
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