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ABSTRACT 

Catastrophic accidents have been an issue in complex industries like oil and gas (O&G), 

chemical, and nuclear sectors, despite ongoing efforts to improve safety. While physical 

systems have advanced, human factors such as fatigue, drowsiness, and inattention remain 

significant risks, leading to reduced performance, errors in judgment, and an increased 

likelihood of accidents. Fatigue-related factors—poor rest, sleep deprivation, night shifts, 

stress, and prolonged monotony—are common in safety-critical environments and frequently 

result in drowsiness and lapses in attention. However, the subjective nature of self-reported 

drowsiness presents a challenge in detecting early signs to reduce potential risks and prevent 

accidents in organizations with high safety and environmental demands. Thus, this thesis 

presents an all-encompassing framework addressing operator performance and attention-related 

challenges in safety-critical industrial systems through several key contributions. First, it 

explores the application of machine learning (ML) and quantum machine learning (QML) for 

electroencephalogram (EEG) signal analysis, leveraging ensemble models and advanced neural 

network architectures to improve accuracy in detecting drowsiness. The introduction of 

variational quantum algorithms applied to EEG data analysis, which highlights quantum 

computing’s potential to process large, complex datasets in industrial safety contexts, emerges 

as one of novel contribution of this work. Second, the thesis proposes a data fusion approach 

that combines physiological and visual (EEG and facial) data to enhance the robustness of 

drowsiness detection systems. This fusion is implemented at both the decision and feature 

levels, with experimental results showing significant improvements in recall and accuracy 

compared to single-modality approaches. Third, the development of a real-time web-based 

application, DrowsinessNET, integrates the detection model into a practical tool for monitoring 

drowsiness in high-risk environments. This application highlights the feasibility of applying 

advanced detection models in real-world scenarios. Finally, a simulator-based experiment was 

conducted to assess operator performance in automated O&G operations, particularly focusing 

on the impact of automation-related factors such as overconfidence, boredom, and inattention. 

The experiment reveals that automation can induce human errors and reduce attentiveness in 

monotonous tasks, further emphasizing the critical need for integrating human reliability 

technologies in safety-critical systems. Thus, this thesis pushes the boundaries of research field 

in human performance and operational safety by introducing multimodal data-driven models 

(ML/QML/DL), data fusion techniques, and practical applications to prevent accidents and 

enhance safety in high-risk industries. 

Keywords: EEG, O&G, Data fusion, Computer Vision, Machine Learning, Deep 

Learning, Quantum Machine Learning. 



RESUMO 

Acidentes catastróficos têm sido um problema em indústrias complexas como petróleo e gás 

(O&G), química e nuclear, apesar dos esforços contínuos para melhorar a segurança. Embora 

os sistemas físicos tenham avançado, fatores humanos como fadiga, sonolência e desatenção 

continuam sendo riscos significativos, levando à redução do desempenho, erros de julgamento 

e maior probabilidade de acidentes. Fatores relacionados à fadiga — descanso insuficiente, 

privação de sono, turnos noturnos, estresse e monotonia prolongada — são comuns em 

ambientes críticos de segurança e frequentemente resultam em sonolência e lapsos de atenção. 

No entanto, a natureza subjetiva da sonolência autorrelatada apresenta um desafio na detecção 

de sinais precoces para reduzir riscos potenciais e prevenir acidentes em organizações com altas 

demandas de segurança e ambientais. Assim, esta tese apresenta uma estrutura abrangente que 

aborda o desempenho do operador e os desafios relacionados à atenção em sistemas industriais 

críticos de segurança por meio de várias contribuições. Primeiro, ela explora a aplicação de 

aprendizado de máquina (ML) e aprendizado de máquina quântica (QML) para análise de sinal 

de eletroencefalograma (EEG), alavancando modelos de conjunto e arquiteturas avançadas de 

rede neural para melhorar a precisão na detecção de sonolência. A introdução de algoritmos 

quânticos variacionais aplicados à análise de dados de EEG, que destaca o potencial da 

computação quântica para processar conjuntos de dados grandes e complexos em contextos de 

segurança industrial, surge como uma das novas contribuições deste trabalho. Segundo, a tese 

propõe uma abordagem de fusão de dados que combina dados fisiológicos e visuais (EEG e 

faciais) para aumentar a robustez dos sistemas de detecção de sonolência. Essa fusão é 

implementada nos níveis de decisão e de recurso, com resultados experimentais mostrando 

melhorias significativas na recuperação e precisão em comparação com abordagens de 

modalidade única. Terceiro, o desenvolvimento de um aplicativo baseado na web em tempo 

real, DrowsinessNET, integra o modelo de detecção em uma ferramenta prática para monitorar 

a sonolência em ambientes de alto risco. Este aplicativo destaca a viabilidade de aplicar 

modelos avançados de detecção em cenários do mundo real. Finalmente, um experimento 

baseado em simulador foi conduzido para avaliar o desempenho do operador em operações 

automatizadas de O&G, focando particularmente no impacto de fatores relacionados à 

automação, como excesso de confiança, tédio e desatenção. O experimento revela que a 

automação pode induzir erros humanos e reduzir a atenção em tarefas monótonas, enfatizando 

ainda mais a necessidade crítica de integrar tecnologias de confiabilidade humana em sistemas 

críticos de segurança. Assim, esta tese expande os limites do campo de pesquisa em 

desempenho humano e segurança operacional ao introduzir modelos multimodais orientados a 

dados (ML/QML/DL), técnicas de fusão de dados e aplicações práticas para prevenir acidentes 

e aumentar a segurança em indústrias de alto risco. 

Palavras-chave: EEG, O&G, Fusão de Dados, Visão Computacional, Aprendizado de 

Máquina; Aprendizado de Máquina Profundo, Aprendizado de Máquina Quântico.
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1. INTRODUCTION 

1.1. Initial Remarks 

Catastrophic accidents have occurred over the years in complex and critical 

systems, such as the oil and gas (O&G), chemical, and nuclear industries (Sadeghi & 

Goerlandt, 2023). It is known that despite the numerous interventions made by 

governments and industries around the world to improve safety (including the existence 

of highly reliable equipment), human operators continue to play an important role in 

safety-critical operations (Zarei et al., 2023).  

In the O&G industry, disasters such as Piper Alpha in 1988, the P-36 platform in 

the Campos Basin (Brazil) in 2001 and the Deepwater Horizon platform in the Gulf of 

Mexico in 2010, resulted in dozens of deaths, infrastructure and environmental disasters, 

with reports pointing out that human factors were elements, directly or indirectly, 

contributing to the occurrence of these accidents (Figueiredo et al., 2018). Other events, 

where human errors in emergency response are considered relevant factors, are discussed 

by (Almeida & Vinnem, 2020).  

In these high-risk environments, human errors can grow into process inefficiency 

and, ultimately, major consequences such as life and property losses and environmental 

impact (Ferraro & Mouloua, 2021; Selvik & Bellamy, 2020; Theophilus et al., 2017; Zhou 

et al., 2017). It is already understood that some factors (e.g., poor resting habits, drug 

reactions, nutritional imbalances and sleep deprivation) or task-related conditions (e.g., 

night shift, stress and boredom) are associated with fatigue, which degrades the 

employee's overall performance in work environments and induces drowsiness (B & 

Chinara, 2021; Camden et al., 2019). In fact, drowsiness is linked to several types of 

accidents with drivers (Bekhouche et al., 2022; Bhandari, 2014; Cui et al., 2022; 

Hajinoroozi et al., 2016; P. Wang et al., 2018), but it is also investigated in the daily lives 

of industrial professionals. Researchers have already evaluated occupational accidents 

associated with drowsiness in systems such as railway or aviation operations, estimating 

the proportion of accidents involving operator fatigue, with values ranging from 3.8 to 

21% for aviation, for example (Gander et al., 2011). In the road context, it is estimated 

that 10–30% of deaths are related to drowsiness (Vicente et al., 2016). (Forsman et al., 

2014) indicate that 28% of private drivers and 47% of long-distance truck drivers 

admitted to dozing off at the wheel at least once. There are some drowsiness studies in 
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the field of civil construction, chemical/petrochemical industries and metallurgy (Lavie 

et al., 1982; Waage et al., 2012). Particularly in O&G industries, operators report 

drowsiness in the first days of night shifts (Parkes, 2012; Waage et al., 2012). However, 

these studies have a more subjective character, without dealing with the challenge of 

detecting early signs and, then, reduce potential risks and prevent accidents in 

organizations with operations critical to safety and the environment. 

Traditionally, detection of drowsiness and inattention has relied on two major 

approaches: computer vision - CV (e.g., images/videos) or biological (e.g., 

electroencephalogram, EEG) information (Bekhouche et al., 2022; Belakhdar et al., 2018; 

Cui et al., 2022; Murthy et al., 2022). Indeed, the biological approach provides a detailed 

characterization that associates, for example, EEG patterns with the subject's drowsiness 

level (Bajaj et al., 2020; Belakhdar et al., 2018; Lotte et al., 2018). The distinction 

between states of alertness and drowsiness can then be perceived through neurological 

changes in the subject's state of attention (G. Li et al., 2015) or through body language 

and facial expressions (You et al., 2019). 

Brain waves have already been used to investigate drowsiness through sleep stage 

analysis, providing basic insights into EEG patterns to assess and categorize different 

sleep states (Hong & Baek, 2021). The brain produces electrical impulses (i.e., brain 

waves) that take different forms when a change in psychosomatic states occurs (i.e., from 

alertness to drowsiness). Transitions between different phases can be observed and 

recorded by multiple channels using strategically placed electrodes to obtain balanced 

measurements of all brain areas. Typically, researchers studying drowsiness use different 

EEG channels as well as various feature extraction methods to detect alertness and 

drowsiness. However, based on investigations, there is no strict consensus on which EEG 

channels are most appropriate for differentiating states of alertness and drowsiness 

(Belakhdar et al., 2016; Garcés Correa et al., 2014; Greenblatt et al., 2023; W. Li et al., 

2012; Vanhollebeke et al., 2022; Yu et al., 2013). In spite of this, there seems to be a high 

correlation in the detection of drowsiness with the central and posterior regions of the 

cerebral area (Lin et al., 2005; Picot et al., 2008; Vanhollebeke et al., 2022; C. Zhao et 

al., 2017). 

On the other hand, applying CV techniques proved valuable in capturing visual 

symptoms associated with drowsiness. By analyzing facial expressions, eye movements 

and other visual features, CV methods can capture additional information about an 

individual's level of alertness (C. B. S. Maior et al., 2020; Pandey & Muppalaneni, 2023). 
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Eye movements, yawning, and slow or dull facial movements are visual signs that can be 

tracked and analyzed using CV techniques. By monitoring these visual indicators, it 

becomes possible to infer the level of drowsiness of individuals (You et al., 2019). Indeed, 

researchers employ various approaches for detection, with a predominant focus on 

utilizing eye-related resources (Nayak & Kim, 2021; Paneru & Jeelani, 2021). 

Nevertheless, other facial components, such as the mouth or the entire face, have also 

been adopted, although it is important to note that certain facial expressions may provide 

misleading information (Ngai et al., 2022).  

However, despite the potential of these two data sources (EEG and computer 

vision), there remains a notable gap in the literature regarding the combination of multiple 

data modalities and the use of more advanced methods. For instance, EEG, as an 

independent data source, has been extensively analyzed with various machine learning 

(ML) techniques to detect patterns associated with drowsiness. However, the combination 

of different signals in complex architectures, especially in critical industrial 

environments, remains an area that requires further exploration. The integration of 

multiple signals holds great promise for improving the accuracy and robustness of 

drowsiness and inattention detection systems.  

Additionally, recent advancements in quantum computing have opened new 

avenues for solving computational problems over classical methods, such as in the prime 

factorization of a number (Shor, 1997) or simulation of quantum systems (Georgescu et 

al., 2014). Variational Quantum Algorithms (VQAs) (Cerezo et al., 2021) are considered 

one of the most promising through Quantum Machine Learning (QML) approaches for 

achieving heuristic quantum advantages with Noisy Intermediate Scale Quantum (NISQ) 

devices, enables the processing of high-dimensional EEG data, leading to more accurate 

detection and cognitive states. 

Research has demonstrated the potential of QML for various EEG-related tasks. 

For instance, Y. Li et al. (2022) used QML to extract features from EEG data and classify 

them using a Quantum Support Vector Machine, which outperformed existing linear 

methods. Other studies have utilized techniques such as the Quantum Radial Wavelet 

Neural Network  (M.R.Taha & K. Nawar, 2014) and the Quantum Recurrent Neural 

Network for the classification of epileptic EEG signals (Karayiannis et al., n.d.), and 

Quantum Neural Network for uncertainty measurement in neonatal seizures. However, in 

the applicability of drowsiness detection with EEG, QML approaches remain unexplored. 
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Beyond the application of ML and QML to EEG data, there is still a significant gap 

in the literature regarding the fusion of EEG and facial data for drowsiness detection, 

especially in high-stakes industrial operations. While several studies have examined these 

data sources individually, few have explored the fusion of multiple modalities. Generally, 

data fusion occurs at three distinct processing levels based on the degree of convergence 

according Cai et al. (2020) and Meng et al. (2020): pixel level, feature level, and decision 

level. Pixel-level fusion involves combining the original data layer, encompassing a 

thorough analysis of information before preprocessing. Feature-level fusion integrates 

various features linearly or nonlinearly after feature extraction to generate new fused 

features. Decision-level fusion entails making individual decisions based on different 

models and subsequently coordinating or merging them into a global decision. 

The study by Mehmood et al. (2023) addressed mental fatigue in construction 

equipment operations, incorporating EEG, electrodermal activity, and video signals. 

However, their performance analysis was confined to the use of ML models (Artificial 

Neural Network, k-Nearest Neighbors, and Decision Tree). Other works have explored 

different fusion approaches when addressing drowsiness, such as Shahbakhti et al. (2023) 

study, which employed EEG data and eye blink analysis extracted from the EEG data 

itself for driver fatigue detection, using machine learning models (SVM, LDA, KNN, 

AdaBoost, ANN, and RF). L. Zhao et al. (2022) work adopted a multimodal fusion 

approach, combining ECG (electrocardiogram) data and video signals. It is noteworthy 

that other studies have focused on data fusion beyond physiological information, 

integrating and combining information from multiple sources or modalities to enhance 

the overall understanding or performance in drowsiness detection. For instance, Cheng et 

al. (2012) and B.-G. Lee & Chung (2012) considered participant-oriented and vehicle-

oriented data, such as abnormal eye behavior, steering wheel activity, and vehicle 

trajectory.  

Thus, these studies underscore the need to explore more comprehensive strategies 

for effective drowsiness detection in critical environments, such as in a monitoring 

control room in an oil and gas industry. 

1.2. Motivation 

Identifying fatigue in O&G operators is of current interest to global petroleum 

industries (National Transportation Safety Board, 2023). In fact, accident reports from 

these industries have highlighted that, directly or indirectly, human factors are the main 
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causes of accidents on platforms (Zarei et al., 2023). Based on knowledge in other fields 

of research, drowsiness is understood as one of the consequences of human fatigue and 

one of the precursor to inattention, and can be identified through physical aspects as well 

as through neurological changes  (Bajaj et al., 2020) and also, through changes in heart 

patterns and muscle activity (Qi et al., 2018; Shiwu et al., 2011).  

It is known that the advancement of current technology and lower costs allow 

people to use wearable sensory devices on a daily basis in order to capture information 

that may be useful for a certain purpose. Drowsiness detection mechanisms have been 

extensively studied in recent years. 

1.2.1. Gaps in drowsiness detection approaches 

Several studies (Bekhouche et al., 2022; Bhandari, 2014; da Silveira et al., 2016; 

Guarda et al., 2022; Murthy et al., 2022; Phan et al., 2023) have attempted to assess 

drowsiness levels using behavioral analyses based on camera’s eye tracking systems and 

physiological markers found in EEG signals with individual approaches and classical 

models. Given that drowsiness patterns can vary across different populations, detection 

systems often rely on specific indications from a single method, increasing the possibility 

of missed detection (Kartsch et al., 2018). Thus, systems that integrate multi-source data 

or incorporate recent data processing techniques are suitable. Hence, one may highlight 

current gaps in the literature: 

• Limited exploration of drowsiness detection methodologies, primarily 

relying on classical machine learning models for analyzing EEG data. 

However, there has been a notable absence in the investigation of more 

advanced approaches, such as quantum machine learning.  

• Limited exploration of the data fusion approach involving the analysis of 

video and EEG data in the context of drowsiness, with most instances found 

in studies related to emotions. 

• The predominant trend in data fusion studies leans towards evaluation and 

classification models, using mainly traditional machine learning methods. 

There is just a couple of studies exploring the application of more advanced 

models, such as deep learning or quantum-based methods, in the domain of 

drowsiness detection through the data fusion approach. 
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1.2.2. Experimental Setup for Assessing Operator behavior in a Refinery 

Control Room 

Control rooms are ubiquitous in industries such as O&G (e.g. oil refineries, offshore 

and onshore production platforms, storage and distribution terminals). They serve as 

central hubs, where critical decisions are made to ensure efficient and safe operations. 

However, at the best of authors’ knowledge, previous research has had substantial focus 

on driver-related drowsiness studies (Cheng et al., 2012; Hajinoroozi et al., 2016; Katsis 

et al., 2008; B.-G. Lee & Chung, 2012; Phan et al., 2023; Shahbakhti et al., 2023; P. Wang 

et al., 2018), neglecting investigations into attention-related tasks as expected in an O&G 

industry control room environment.  

On the other hand, studies that focused on experimental set-up in control rooms 

have not addressed specific investigations into activities related to the O&G industry, and 

monitoring tasks that could induce operators to report changes in alertness. Instead, these 

works have focused primarily on operator performance at different levels of automation 

and task complexity (Bye, 2023; Jang et al., 2021; Omidi et al., 2018; M. A. Ramos & 

Mosleh, 2021).   

This study utilizes an experimental setup to evaluate the impact of automation on 

operator performance in a simulated refinery control room. The simulation focuses on 

monitoring tasks, where operators must maintain acceptable water levels in boilers and 

ensure safe steam pressure. The simulation replicates refinery some challenges, such as 

low water levels affecting steam circulation or high-water levels risking equipment 

damage. This experimental phase is crucial for understanding how automation affects 

operator attention, leading to screen fatigue and lapses in decision-making in critical 

environments. 

By studying how automation influences inattention in operators, this research aims 

to contribute new insights and in the creation of an EEG and video data repository, which 

will serve as a foundation for future research in human reliability. This database provides 

high-quality data that reflects the variability of human responses in real-world conditions, 

particularly in automated environments where monotony and reduced attention pose 

significant risks. 

1.3. Objectives 

This section describes the general and specific objectives of this thesis. 
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1.3.1. General Objective 

The main objective of this thesis is to develop data-driven solutions for automatic 

drowsiness detection, integrating EEG and facial data, aiming to increase human 

reliability in safety-critical systems that require constant attention and rapid response. In 

addition, to propose an experimental setup within a simulated control room environment 

adapted to the oil and gas industry to evaluate operator performance.. 

1.3.2. Specific Objectives 

Given the general objective of this research, some specific objectives can be listed 

as follows: 

• Implement and evaluate ensemble machine learning models to analyze EEG 

data for detecting drowsiness, focusing on improving accuracy and reliability. 

• Explore the applicability of variational quantum algorithms (VQAs) for 

drowsiness detection by utilizing VQC to classify patterns in EEG signals, 

offering a novel approach for high-dimensional data analysis. 

• Develop a data fusion methodology that integrates EEG signals and computer 

vision techniques, creating a multi-modal system for enhanced drowsiness 

detection. 

• Develop DrowsinessNET, a web-based interface for real-time drowsiness 

detection, incorporating the models developed in this research, to provide an 

accessible tool for monitoring operator fatigue in high-risk environments. 

• Design and conduct a simulated experiment to evaluate the effects of 

automation and monotonous tasks on operator performance in a simulated oil 

and gas refinery control room. 

• Critically analyze the performance of the developed models, highlighting their 

innovative contributions to the field and evaluating their impact on improving 

human reliability in safety-critical environments. 

• Develop a systematic modeling approach for data extraction, feature 

engineering, and classification, ensuring a robust pipeline for drowsiness 

detection. 

• Build final classifiers using advanced machine learning models to perform 

supervised tasks, evaluating the results against the baseline and determining 

their impact on model performance. 
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• Utilize the resulting drowsiness data from the methodology to perform 

practical classification tasks, demonstrating the practical application of the 

models for decision-making in safety-critical environments. 

1.4. Outline of the Thesis 

Besides this introduction chapter, this thesis has five additional chapters briefly 

described as follows: 

• Chapter 2 provides a theoretical background on operator fatigue, drowsiness, and 

machine learning and deep learning techniques, setting up the stage for 

understanding their application in drowsiness detection; it also presents works that 

applied machine learning and deep learning to the drowsiness context. 

• Chapter 3 introduces a comprehensive visual summary outlining the diverse 

approaches explored in the thesis in the upcoming chapters. Before delving into 

specific applications, the chapter provides a general overview of the DROZY 

dataset. This dataset, a curated collection of multimodal data capturing various 

aspects of drowsiness, stands as a foundational element for the applications. 

• Chapter 4 dedicated to improving the identification and prediction of drowsiness 

from EEG data. The main objective is to contribute to the prevention of accidents 

through the development of robust data-driven models of multiple EEG sources, 

capable of effectively recognizing various characteristics associated with 

drowsiness. The models are applied to a real public database and evaluated 

regarding their accuracy in detecting drowsiness.  

• Chapter 5 delves into the exploration of quantum machine learning techniques for 

the detection and analysis of drowsiness. Building upon the theoretical foundation 

established in earlier chapters, this chapter introduces the novel approach of 

utilizing quantum computing principles in the context of drowsiness detection. It 

describes the methodology in detail, including the preprocessing steps for 

quantum data encoding and the implementation of quantum model for drowsiness 

prediction. 

• Chapter 6 presents the proposed framework that integrates machine and deep 

learning methods based on EEG signals and CV techniques to detect and analyze 

drowsiness. This chapter describes the methodology and framework architecture 

in detail. It then applies the proposed methodology to a public available database 
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of drowsiness. The analysis includes training the models and evaluating their 

performance in drowsiness prediction. Additionally, an application of the 

resulting models is demonstrated, showcasing their ability to accurately predict 

drowsiness based on the information extracted from EEG signals and facial 

images.  

• Chapter 7 presents an experimental setup addressing the impacts of automation 

on human factors and human performance, highlighting potential challenges such 

as overconfidence, boredom, and automated systems transparency issues. The 

proposed experimental setup aims to assess human performance in control room 

operations of automated O&G systems, utilizing a low-fidelity simulation of a 

refinery process. This setup considers factors like task complexity, execution time, 

screen fatigue, and automation failures, ultimately recommending the application 

of a machine learning model for non-intrusively detecting drowsiness in 

monitoring tasks. Additionally, the chapter introduces the development of a web 

application interface for data analysis that allows early detection of signs of 

drowsiness, providing operators with the opportunity to act proactively to prevent 

accidents and ensure safe operations. 

• Chapter 8: concludes remarks. This chapter consolidates the findings from 

previous ones, drawing overarching remarks and insights. It emphasizes the 

practical implications of the developed methodologies for enhancing safety in 

critical industries. Furthermore, the chapter highlights the limitations of the 

current research and suggests potential directions for future studies. 
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2. THEORETICAL BACKGROUND 

This chapter provides key concepts and definitions about human factors and 

drowsiness and describes classic and advanced machine learning techniques that have 

been used to detect drowsiness, in addition to providing a literature review on relevant 

topics. The application discussed in Chapters 4, 5, 6 and 6.4 draws upon these concepts 

and insights from the literature review. 

2.1. Human Reliability in the Context of Risk Management in Critical Safety 

Industries 

There is an enormous effort and interest in different industries and societies to 

manage risks. The industrial landscape has traditionally focused primarily on equipment 

reliability, neglecting the significant impact of human reliability (Abílio Ramos et al., 

2020). However, there has been a growing recognition of the importance of human factors 

in risk analysis, especially when considering accident reports in the critical safety 

industry. 

For example, the O&G industry has suffered numerous catastrophic accidents, most 

attributed to organizational and operational human errors. The BP Texas City refinery 

explosion (2005) resulted in approximately 15 deaths, and the oil industry offshore 

disaster, Piper Alpha (1988), claimed the lives of 167 individuals and left dozens seriously 

injured. Investigations revealed that some of the tools and measures adopted were not 

robust enough to prevent such accidents (Almeida & Vinnem, 2020). 

To address these concerns, the international standard ISO 14224 was established to 

provide essential guidelines for obtaining information about failures in the O&G sector, 

including specific guidance on data collection concepts and recording and categorizing 

failure causes (Morag et al., 2018). Indeed, fault and reliability performance information 

often receive significant attention in the design, operation and maintenance of equipment 

in the O&G industry, particularly for safety-critical systems. Nevertheless, the third 

edition, released in September 2016, focuses primarily on equipment failures, but places 

greater emphasis on human errors compared to previous editions (Selvik & Bellamy, 

2020). For example, the definition used in ISO 14224 (Technical Committee ISO/TC 67. 

Materials petrochemical and natural gas industries, 2016) is as follows: 

human error: “discrepancy between the human action taken or omitted and that 

intended”. 
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Other definitions used are: 

error: “discrepancy between a computed, observed or measured value or condition 

and the true, specified or theoretically correct value or condition” 

Thus, while the primary focus is on understanding equipment behavior in terms of 

reliability performance, there is an inherent relationship with human factors. Even though 

this relationship may seem familiar to those involved in risk assessment of hazardous 

systems (nuclear, oil and gas, chemicals), it was largely ignored in previous editions of 

the standard (Selvik & Bellamy, 2020). Finally, in the third edition, a step is taken towards 

linking equipment reliability performance to human factors. 

Furthermore, it is important to consider initiatives undertaken by regulatory bodies, 

such as the National Petroleum, Natural Gas and Biofuels Agency (ANP), which plays a 

fundamental role in Safety Management System (SMS) in the oil and gas industry in 

Brazil(ANP, 2023). The ANP, through its SMS, highlights the importance of human 

factors in risk analysis. 

The latest version of the ANP's SMS explicitly recognizes human factors as an 

integral part of risk management. By mentioning the dissemination of the sector's best 

practices in Human Factors, the SMS reinforces the importance of considering 

organizational, environmental, technological and individual elements that influence 

behavior in the workplace and can impact health and safety. 

Within the scope of management practices, the ANP SMS clearly establishes, in 

section 12.3.e, that the risk identification and analysis methodology must consider layout, 

human factors and external causes, as applicable(ANP, 2023). This reflects a deep 

understanding of the need to incorporate human factors considerations from the earliest 

stages of risk analysis. Furthermore, human reliability analysis is highlighted as the most 

appropriate methodology for evaluating human factors in tasks, especially those 

involving human-machine interactions. 

This demonstrates that developments such as these have sparked discussion in the 

fields of human reliability analysis and human factors about how current systems, even 

the most automated ones, affect human performance and human error (Bye, 2023; 

Theophilus et al., 2017; Tinga et al., 2023). The implementation of an effective SMS is 

crucial in addressing the impact of human factors on risk management. An SMS is a 

comprehensive framework that integrates various elements, including organizational 

policies, procedures, and practices, to ensure the safety and security of personnel and 

assets within an industry (Pilanawithana et al., 2023). Within the O&G sector, the 
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adoption of a robust SMS can help mitigate the risks associated with human reliability. 

By incorporating human factors considerations into the system, organizations can identify 

and address potential sources of error among operators, thereby reducing the likelihood 

of accidents (Uflaz et al., 2022). 

2.2. Drowsiness 

Drowsiness is a state of reduced alertness that can result in decreased concentration, 

impaired decision-making, and fatigue (Sharma et al., 2021). It can be caused by a variety 

of factors, including poor sleep hygiene, age, and monotonous work. In industries 

demanding shift work, such as the O&G, nuclear, or in the transportation sector, including 

air, sea, and road transport, drowsiness plays a key role in workplace accidents and 

mishaps (Ramos et al., 2022). Indeed, environmental variables (e.g., noise, vibrations, 

temperature, poor lighting conditions) and lack of adequate rest and recovery due to stress 

contribute to increased drowsiness and fatigue (Sadeghi & Goerlandt, 2023). 

Organizations can identify and address potential sources of error among operators, 

thereby reducing the likelihood of accidents (Uflaz et al., 2022). 

Shift work is prevalent in many industries (e.g., O&G), and sleep disturbance (i.e., 

poor sleep quality, insomnia, and daytime drowsiness) often results in accidents and 

errors in the workplace (Iridiastadi, 2021; Sadeghniiat-Haghighi et al., 2020). In fact, it 

has been reported that, compared to 8 hours of shift work, the risk of an incident or 

accident after 10 hours of shift work nearly doubles (Folkard, 2003).  

Similarly, fatigue is one of the leading factors contributing to accidents in the 

transport sector, such as aviation, road, public transport (e.g., buses, trains), large vehicle 

industries (e.g., bulldozers and excavators) as well as in several other sectors, such as 

construction (Gu & Guo, 2022; J. Li et al., 2020), mining (Gruenhagen et al., 2021), 

maritime (Andrei et al., 2020; van Leeuwen et al., 2021). For example, 4–8% of civil 

aviation mishaps are caused by drowsy pilots (Caldwell, 2005). In 2017, the US National 

Highway Traffic Safety Administration (NHTSA) estimated that fatigue caused 91,000 

accidents, 50,000 injuries, and 800 fatalities in the US alone. Besides, concerns regarding 

the risk of accidents due to fatigue have been identified by the mining sector, where 

operators often work 12-hour shifts (Kartsch et al., 2018), and for maritime transport, for 

which it is reported the highest number of incidents between 3:00 am and 7:00 am, 

portraying a period when humans are not at their maximum alert level (van Leeuwen et 

al., 2021). 
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In this context, safety remains a major challenge for almost all critical operations 

activities. At the same time, human reliability plays an important role not only in service 

industries but also in manufacturing companies. Indeed, operators with a decreased level 

of vigilance reduce their skills of perception, recognition, and control of the workplace 

and, therefore, may pose a danger to their own lives and, in most cases, the lives of other 

people (Ji et al., 2004; Ramos et al., 2022). 

2.3. Drowsiness experimental set-up 

Despite the evident challenges posed by drowsiness in the O&G industry, there 

remains a notable lack of dedicated datasets and experiments addressing this critical issue 

within this sector, particularly in environments such as refinery control rooms. The 

demanding nature of offshore work, characterized by harsh conditions and stressful 

environments, has long been acknowledged (Parkes, 2012). The physical and 

psychosocial stressors, coupled with intensive work patterns, make the O&G industry 

particularly susceptible to fatigue-induced lapses in performance and attention. 

Indeed, the existing body of literature on the offshore environment highlights the 

complexities of shift schedules, stressors, and their impact on the health and safety of 

personnel. Various studies have delved into the effects of extended work schedules, 

day/night shift rotations, and the implications of intensive rosters on offshore installations 

(Waage et al., 2012). Research conducted in other sectors, such as the automotive 

industry, has extensively examined driver drowsiness (Cheng et al., 2012; Hajinoroozi et 

al., 2016; Katsis et al., 2008; B.-G. Lee & Chung, 2012; Phan et al., 2023; Shahbakhti et 

al., 2023; P. Wang et al., 2018). However, when it comes to the O&G industry, there's an 

evident gap in dedicated experiments and datasets directly addressing the issue of 

drowsiness for control operations centers such as a refinery. 

For example, in the Jacobé de Naurois et al. (2018) study, the driving protocol 

lasted 100 to 110 minutes in a static driving simulator, installed in a temperature-

controlled room at 24 °Celsius. Participants drove right after lunch, a time recognized as 

risky for inducing drowsiness. The simulated environment, generated with SCANeR 

Studio, featured a drowsiness-inducing monotonous stretch of highway, with a sudden 

introduction of traffic intended to alter the driver's level of drowsiness. Data including 

driving performance, eyelid and head movements, and physiological indicators were 

recorded. Physiological, behavioral and car-related variables were collected, along with 
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participant information and driving time, and were used in models specifically developed 

for this study. 

The study of Arefnezhad et al. (2020) utilized a fixed-base driving simulator 

(Automated Driving Simulator of Graz, ADSG) at the Graz University of Technology. 

The simulator incorporated visual cues through eight large LCD displays, a sound system 

generating engine sounds and vibrations, and a full car setup with an automatic gearbox. 

Participants controlled the vehicle using a force feedback steering wheel, electronic gas 

pedal, and force feedback brake pedal. Facial-based and physiological measures, 

including eye movement data (SmartEye® eye-tracking system), heart rate variability 

signals (mobile ECG and wearable biosignal recorder), were recorded. The driving tests 

involved 93 sessions with 47 participants, all licensed drivers covering different age and 

gender groups. Tests were conducted in rested and tired states, with participants driving 

in a monotonous simulated environment for 30 minutes, covering a closed path 

resembling a three-lane motorway. Ground truth for drowsiness levels (alert, moderately 

drowsy, extremely drowsy) was established through video observations. The 

methodology involved features extraction from vehicle-based measures and ECG signals. 

In another context (Eskandarian & Mortazavi, 2007), experiments were conducted 

at the Center for Intelligent Systems Research (CISR) Truck Driving Simulator 

Laboratory using a fixed-base driving simulator with a full-size real truck cab. The 

simulator included advanced features such as sophisticated vehicle dynamics, superior 

graphics, a five-channel projection system, and an instrumented truck cab with original 

displays and controls. The scenario simulated a 52-mile stretch of Interstate 70 to induce 

monotony and drowsiness. Thirteen truck drivers participated, aged between 23 and 60, 

each carrying out morning and evening driving sessions. The evening session aimed to 

induce drowsiness due to sleep deprivation. Drowsiness was assessed subjectively using 

a five-level rating scale based on driver behavior, performance, and eye closure. Severity 

of Drowsiness (SEVD) was introduced as a variable measured by the total time with 

drowsiness level divided by driving time. 

Developments in refinery simulations can be seen in (Andrade, 2018) that is 

concerned with human behavior and performance in economic activities, especially in 

industrial environments such as refineries. The study proposes an alternative approach to 

collecting data for Human Reliability Assessment from simulation sessions. Using Game 

Engines to create 3D Virtual Environments (VE), the study explores a more budget-
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friendly approach. An experiment was conducted to validate this approach by creating a 

VE to simulate the evacuation of a refinery plant in the event of a toxic cloud release. 

In turn, (Soares, 2019)highlights the importance of training emergency teams in 

O&G refineries, given the dangerous characteristics of the environment and the risks 

associated with accidents. The study proposes the creation of a Virtual Reality (VR) 

scenario to simulate emergencies in a refinery, aiming to improve team training. Through 

techniques such as Preliminary Risk Analysis and the use of ALOHA software, potential 

dangers were identified and critical regions for LPG leaks were defined. The virtual 

scenario was developed based on an emergency simulation, using the Unreal Engine 4 

game engine, and tested by volunteers who work at the refinery. The results indicated that 

VR can be an effective tool for training firefighters, bringing them close to real emergency 

scenarios. Although the studies discussed advances in refinery simulations, focusing on 

improving the training of emergency responders and collecting data on human behavior, 

it is important to highlight that they do not directly address drowsiness, but rather the use 

of simulators for different purposes. 

2.4. Exploring Drowsiness via Data 

Over the years, technology improvements have enabled several methodologies to 

address fatigue monitoring and drowsiness detection. Models using CV approaches (from 

camera sensors) as well as biological approaches (from heart rate sensors or 

electrooculogram signals) have already been used to identify drowsiness (Kim et al., 

2017; C. B. S. Maior et al., 2020; Wei et al., 2013). Among these approaches, EEG signal 

analysis is one of the most used method to detect drowsiness (Hong & Baek, 2021; 

Kartsch et al., 2018; Ramos et al., 2022).  

Drowsiness, presenting a multifaceted nature, requires deeper exploration from 

multiple data sources. Thus, exploring drowsiness through two dimensions (EEG and 

facial data) aims to discover insights into and between physiological and visual signals 

for the development of robust detection systems. 

2.4.1. Electroencephalogram - EEG 

Brain waves have been used to investigate drowsiness through sleep stage analysis 

based on EEG patterns (Hong & Baek, 2021). The brain produces electrical impulses (i.e., 

brain waves) that take different forms when a change in psychosomatic states happens 

(e.g., from alertness to drowsiness). These brain waves may be recorded over time, and 
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distinct bandwidths (i.e., delta (𝛿), theta (𝜃), alpha (𝛼), beta (𝛽) and gamma (𝛾)) can be 

determined (Okello et al., 2016). Table 1 summarizes the brainwave frequencies and 

functions in normal activities. 

Table 1 - Different EEG bandwidths and frequencies. 

Bandwidth Frequency Normal Activities 

Delta (𝜹) 0.1–4 Hz artifacts, sleep, hyperventilation 

Theta (𝜽) 4–8 Hz drowsiness, idling 

Alpha (𝜶) 8–12 Hz closing the eyes, inhibitory control 

Beta (𝜷) 12–30 Hz alertness, stress, active thinking, focus 

Gamma (𝜸) 30–70 Hz 
voluntary motor movement, learning, and 

memory 

Source: Adapted from (Birjandtalab et al., 2017). 

 

During different stages of sleep, neuronal activities from different cerebral areas 

interact with each other and manifest as a distinct EEG activity, leading to the 

differentiation of the night sleep into stages (I, II, III, and IV followed by rapid eye 

movement (REM) stage) (Sriraam et al., 2016). In particular, stage I may be separated 

into two parts: (i) stage I immediately following wake and (ii) stage I immediately 

preceding stage II (Picchioni et al., 2008). The transition from awake to stage I represents 

the change from alertness to drowsiness (Shepovalnikov et al., 2012). Transitions 

between the different stages can be observed in a multi-channel recording using 

strategically positioned electrodes that aim to achieve balanced measurements from all 

cerebral areas. The locations of the electrodes are based on the international system of 

electrode placement (Acharya et al., 2016), as illustrated in Figure 1.  

The abbreviations in Figure 1 represent the pre-frontal (Fp), temporal (T), parietal 

(P), and occipital (O) cerebral lobes, and the central (C) area. The ‘z’ symbolizes ‘zero’ 

in the midline. The subscribed numbers of the remaining electrodes indicate the left (odd) 

or right (even) hemisphere of the brain from a relative distance from the zero line. Thus, 

this EEG information can be used to create models able to identify the first signs of 

drowsiness. 
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Figure 1 - 12-electrode placement system 

 

Source: Adapted from (Hong & Baek, 2021). 

In recent years, advancements in EEG technology have opened new avenues for 

monitoring cognitive states such as drowsiness with greater precision and convenience. 

EEG devices offer lightweight and user-friendly solutions for real-time brainwave 

monitoring, suitable for both research and personal use applications. Moreover, emerging 

technologies such as dry electrode systems or helmet-mounted EEG devices present 

promising opportunities for operators in industries like oil and gas. These innovations 

enable non-invasive and comfortable monitoring of cognitive states, providing valuable 

insights into operators' alertness levels without disrupting their workflow. 

2.4.2. Facial data 

CV involves the use of algorithms and techniques to process and analyze visual 

data, allowing systems to understand and extract meaningful information from digital 

images or videos, replicating the functionality of human visual systems (Paneru & Jeelani, 

2021). In detecting drowsiness, CV can play a key role in identifying patterns and facial 

features associated with drowsiness, thus providing an effective means of continuously 

monitoring operators' alertness (Bekhouche et al., 2022). 

One of the most common methods of detecting drowsiness with CV is tracking the 

eyes of individuals (Arshad et al., 2023; Kolus, 2024; C. B. S. Maior et al., 2020; Nayak 

& Kim, 2021; Paneru & Jeelani, 2021; Rahman et al., 2022). This process involves 

capturing images of the operators' faces using cameras and applying algorithms to analyze 

the opening and movement of the eyes, as well as the frequency and duration of blinks. 
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Abnormal changes in these patterns can indicate drowsiness, signaling the need for 

immediate intervention. 

It is important to emphasize that CV for drowsiness detection is not limited to 

analyzing just the eyes. Other facial features such as sleepy facial expressions, head tilt 

and involuntary movements, can also be considered for drowsiness identification 

(Bhandari, 2014; Murthy et al., 2022; You et al., 2019). Combining multiple facial 

indicators may provide a more comprehensive and accurate approach to drowsiness 

detection, despite involving a higher computational cost. 

Furthermore, CV can be combined with deep learning techniques, such as 

convolutional neural networks (CNNs) and combination of CNN and Long Short-Term 

Memory (LSTM), to improve the accuracy and efficiency of drowsiness detection 

systems (Kolus, 2024; Murthy et al., 2022). The training of models with datasets of facial 

images of people who are drowsy and in alert states allows the system to recognize 

specific patterns associated with drowsiness, thus increasing its detection capacity. 

However, it is important to mention some limitations of CV in detecting 

drowsiness. Environmental conditions, image quality and individual variations can affect 

the accuracy of the systems(Bekhouche et al., 2022). Therefore, it is essential to carry out 

adequate tests and validations to guarantee the reliability and effectiveness of these 

systems before their implementation in industrial environments. In contrast, CV offers a 

non-intrusive approach to monitoring individuals' alertness (Kolus, 2024; C. B. S. Maior 

et al., 2020). Thus, this advantage supports the scalability of the CV approach, helping to 

prevent health and safety risks in critical industries.  

2.5. Related Works  

Drowsiness detection is an area where ML and DL models have been successfully 

applied, especially when considering EEG data and CV techniques individually (B & 

Chinara, 2021; Bajaj et al., 2020; Belakhdar et al., 2018; Farhangi, 2022; Ramos et al., 

2022; Sharma et al., 2021; Sors et al., 2018; P. Wang et al., 2018). In this section, we will 

explore examples of these models and address the application of feature extraction 

methods that contribute to enhancing drowsiness detection. 

2.5.1. Feature extraction 

Nonlinear analytic advancements have made possible quickly and accurately 

extracting information from signals captured during the physiological processes in the 
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human brain. However, currently, there is no standard feature extraction method for EEG 

(Bajaj et al., 2020). 

The combination of internal and external factors that influence the human 

organism is the cause of the nonlinear behavior of biological (including the nervous) 

systems, which is characterized by a high degree of variability in the time domain (non-

stationarity) and randomness (Kesić & Spasić, 2016). A nonlinear measure often used for 

signal analysis is the Higuchi fractal dimension (HFD) (Higuchi, 1988). Hjorth 

parameters (Hjorth, 1970) are indicators of statistical properties commonly used in the 

analysis of EEG signals for feature extraction, and which have been used in many studies 

to effectively describe the characteristics of EEG (B & Chinara, 2021; Bajaj et al., 2020; 

Kesić & Spasić, 2016). 

2.5.1.1. HFD  

Given the EEG signal is represented as 𝑋 of 𝑁 data points 𝑥1, 𝑥2, … , 𝑥𝑁, we first 

construct a new time series “𝑋𝑑
𝑚”, where 𝑚 and 𝑑 indicate the initial time and the interval 

time, respectively (Higuchi, 1988). For this work, we consider the default parameters 

from the eeglib library in the Python language (Cabañero-Gomez et al., 2021). Then, the 

new time series is defined as in Equation (1): 

𝑋𝑑
𝑚 =  𝑥𝑚, 𝑥𝑚+𝑑 , 𝑥𝑚+2𝑑 , … , 𝑥

𝑚+[
𝑁−𝑚

𝑑
]𝑑

 (1) 

For each 𝑋𝑑
𝑚, the length 𝐿𝑚(𝑑) is computed as Equation (2): 

𝐿𝑚(𝑑) =  

{[∑ |𝑋𝑚+𝑖𝑑 − 𝑥𝑚+(𝑖−1)𝑑|
[
𝑁−𝑚

𝑑
]

𝑖=1
]

𝑁 − 1

[
𝑁 − 𝑚

𝑑
] 𝑑

}

𝑑
 

(2) 

The mean of 𝐿𝑚(𝑑)is computed to find the HFD as shown below in Equation (3): 

𝐿(𝑑) =  
1

𝑑
∑ 𝐿𝑚(𝑑)

𝑑

𝑀=1

 

(3) 

 

Polynomial curve fit is computed on a logarithmic value of “log (𝐿(𝑑))” and 

“log (𝑑)” with a degree one. Finally, Higuchi Fractal Dimension is the coefficient 

(𝑝1) of a polynomial curve 𝑃(𝑥) show in Equation (4): 

 

𝑃(𝑥) =  𝑝1(𝑥) + 𝑐 (4) 

 

2.5.1.2. Hjorth parameters 
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Hjorth Mobility (HM) and Hjorth Complexity (HC) were introduced to describe 

the general characteristics of an EEG trace.  

• Complexity: measures the neurophysiological changes in terms of frequency 

(B & Chinara, 2021). It is expressed by the square root of differences of two 

ratios as shown in Equation (5). 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  √[
𝑟𝑚𝑠 (

𝑑(𝑋′)
𝑑𝑡

)

𝑟𝑚𝑠(𝑋′)
] − [

𝑟𝑚𝑠(𝑋′)

𝑟𝑚𝑠(𝑋)
] (5) 

 

where 𝑋′ =
𝑑𝑋

𝑑𝑡
 is the rate of change of EEG signal (𝑋) with respect to time (𝑡) and 

𝑟𝑚𝑠 is the root mean square. 

• Mobility: is expressed as a ratio per unit of time and can also be conceived as 

a mean frequency (Hjorth, 1970). Mobility is measured as shown in Equation 

(6). 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑟𝑚𝑠(𝑋′)

𝑟𝑚𝑠(𝑋)
 (6) 

 

2.5.1.3. Discrete Wavelet Transform 

Another commonly used technique is the Discrete Wavelet Transform (DWT), 

which allows for the decomposition of the EEG signal into different frequency sub bands. 

The DWT decomposes a signal into approximation and detail signals, enhancing the 

reliability of estimations compared to the original signal (Mokarram et al., 2023). It can 

reliably localize non-stationary signals in the time and frequency domains and capture 

them. By applying the scale and shift technique, DWT breaks down the transient signal 

with short window scale for the high-frequency band and long window scale for the low-

frequency band (Equation 7) (Tajani et al., 2023). 

𝐷𝑊𝑇(𝑚, 𝑛) =  
1

√𝑎0ₘ
∑ 𝑥(𝑘)𝜓 (

(𝑛 − 𝑘)𝑏0ₘ 𝑎0ₘ

𝑎0ₘ
)

𝑘
  (7) 

 

where 𝑥(𝑘) is the input discrete signal, 𝜓(𝑛) is the mother wavelet (window function), 𝑚 

and 𝑛 are time scale parameters, 𝑘 is the number of coefficients, 𝑎0
𝑚 is the variable for 

scale, 𝑘𝑏0𝑎0
𝑚  is the variable for shift, and 1/(𝑎0

𝑚)−1/2 is the energy normalization 
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component to guarantee that the scale is the same as the mother wavelet. After the signal 

is filtered, it is down-sampled with low pass and high pass filters. A signal processing 

technique called down-sampling reduces the information size by changing the sampling 

rate of a digital signal. 

In this thesis, the Daubechies wavelets (Daubechies, 1992), specifically Daubechies 

10 wavelets, were selected as the preferred mother wavelet among various other 

candidates. The choice was based on the tightly supported nature of Daubechies wavelets, 

which possess the maximum number of vanishing moments for a certain support length. 

Thus, DWT operates by applying a set of wavelet functions, known as mother 

wavelets, to the signal, resulting in a decomposition into approximation and detail 

coefficients. Using DWT for preprocessing EEG data, we can effectively extract relevant 

features that contribute to accurate drowsiness detection and analysis. The resulting 

decomposition coefficients serve as input for subsequent classification or pattern 

recognition algorithms, improving the overall performance of the drowsiness detection 

system. 

2.5.2. Machine and Deep Learning Models 

EEG is a widely used technique for recording the electrical activity of the brain. 

As already mentioned, it provides information about brain wave patterns, which can vary 

according to the individual's state of alert. In the domain of sleep pattern identification, 

one popular approach is the utilization of Machine Learning algorithms, including K-

Nearest Neighbor (KNN), Support Vector Machines (SVM), MLP, and Random Forests 

(RF). These models are trained with labeled datasets, where samples are classified into 

different sleep states (drowsy, alert, extreme drowsy, etc.).  

In recent years, various disciplines and industries have successfully used (ML) to 

perform tasks that were intractable, tedious, or too expensive for humans (C. Maior et al., 

2016). For example, (Farhangi, 2022) used six ML algorithms - decision trees, extra trees, 

K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), random forest (RF), and 

Support Vector Machine (SVM) -- to evaluate the effectiveness of EEG signal 

classification in detecting drowsiness while driving, and to understand how data pre-

processing and hyperparameter tuning can improve drowsy EEG signal modeling. Based 

on features extracted from EEG data, these models can effectively learn to recognize 

patterns indicative of drowsiness. For instance, 

https://www.sciencedirect.com/topics/engineering/high-pass-filter
https://www.sciencedirect.com/topics/engineering/signal-processing
https://www.sciencedirect.com/topics/engineering/signal-processing
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• KNN assigns to an unmarked point the dominant class among its 𝑘 closest 

neighbors within the training set. These closest neighbors are usually 

obtained using a metric of distance. KNN can approach any function that 

allows it to produce non-linear decision limits, depending on the 𝑘 value 

and the size of training samples (Lotte et al., 2018; P. Wang et al., 2018). 

• RF is defined as a group of classification trees trained on samples of 

training data using variables or resources selected at random in the tree 

generation process (P. Wang et al., 2018). Classification is performed 

based on the average prediction values of multiple decision trees. The 

number of trees and the depth of the tree are two parameters that can be 

adjusted. 

• While classical approaches are designed to minimize errors in the training 

data set, SVM is based on the principle of structural risk minimization 

rooted in statistical learning theory (Widodo & Yang, 2007). SVM aims 

to build an optimal hyperplane that maximizes the margin between classes 

and handles large feature spaces (Lotte et al., 2018). 

• MLP is one of the most popular networks that contain multiple successive 

layers, being the input layer, one or more hidden layers, and an output layer 

(X. Wang et al., 2020). Information is propagated from the input layer to 

the output layer through hidden layers and the weights of the network are 

updated during the training phase (Belakhdar et al., 2016). 

For CV, as mentioned earlier, tracking the eyes, eyelids, and facial expressions 

can be used to identify visual indicators of drowsiness. The Deep Learning approach is 

widely adopted in this context (Kim et al., 2017; C. Lee & An, 2023; Liu et al., 2021). 

Since its initial success in many challenging image classification problems, it has rapidly 

developed and achieved success in many domains, such as speech recognition, sensor 

readings, spectrographs, electrocardiograms, and simulated data (Cui et al., 2022). These 

algorithms can be trained with datasets containing facial images of drowsy and alert 

people. This allows models to learn to recognize specific visual patterns associated with 

drowsiness, improving detection accuracy. 

CNNs are architectures specifically designed for CV tasks. As one of the major 

deep learning models, CNN are capable of learning patterns and relevant features in 

images by using convolutional layers, which apply convolutional filters over the input 
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image, capturing local information and detecting features. A typical CNN structure 

consists of alternating convolutional and pooling layers, and then, plug fully connected 

layers at the end. Some extension layers, such as batch normalization (Ioffe & Szegedy, 

2015) and dropout (Srivastava et al., 2014), have also been useful to accelerate 

convergence of the model and prevent overfitting (Cui et al., 2022). 

In recent years, residual neural networks (ResNet) and their optimization are one 

of the hotspots in deep learning research that has emerged as a significant milestone in 

the field of CV (He et al., 2015; Xu et al., 2023). As the deep learning-based network 

evolves, its structure is deepening; while this helps the network to perform more complex 

feature pattern extraction, it may also introduce the problem of gradient disappearance or 

gradient explosion, which can lead to the following shortcomings: (1) Long training time 

but network convergence becomes very difficult or even non-convergent. (2) The network 

performance will gradually saturate and even begin to degrade, known as the degradation 

problem of deep networks (Feng et al., 2021). One of the key differentiators of ResNet 

compared to previous convolutional architectures is the utilization of residual 

connections, also known as "skip connections" or "identity shortcuts." These connections 

enable the direct transmission of the original input information to subsequent layers, 

bypassing certain intermediate layers. This helps address the problem of gradient 

degradation. 

By incorporating residual connections, ResNets can be extremely deep, with 

hundreds of layers, while mitigating the performance degradation issue associated with 

deeper networks. Additionally, ResNets employ residual blocks, which consist of 

convolutional and activation layers, to learn feature representations at different levels of 

abstraction (Nijaguna et al., 2023). 

The ResNet architecture has been widely used and adapted for various CV tasks, 

including image classification, object detection, and semantic segmentation. Several 

ResNet variants, such as ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-

152, have been proposed, differing in terms of the number of layers and complexity(Du 

et al., 2022; He et al., 2015; Zhuang et al., 2022). These pre-trained variants, trained on 

large datasets like ImageNet (Deng et al., 2009), serve as a foundation for transfer 

learning in many applications. Specifically, ResNet50 consists of 50 layers in the 

architecture, as can be seen in Figure 2. 

There are a series of convolutional (conv) layers in ResNet50 architecture. First, 

the conv layer is made of 7 × 7 kernel size and 64 different kernels with a stride size of 
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2. Then, 3 × 3 max pooling with the stride of size 2 is applied. In the next convolution, 

there are three conv layers (1 × 1, 64 kernels), (3 × 3, 64 kernels) and (1 × 1, 256 kernels), 

respectively, and these three layers are repeated 3 times. In the same process, three conv 

layers (1 × 1, 128 kernels), (3 × 3, 128 kernels) and (1 × 1, 512 kernels), respectively, are 

repeated four times; three conv layers (1 × 1, 256 kernels), (3 × 3, 256 kernels) and (1 × 

1, 1024 kernels) respectively are repeated six times and other three conv layers (1 × 1, 

512 kernels), (3 × 3, 512 kernels) and (1 × 1, 2048 kernels) respectively are repeated 3 

times. Then, average polling (avg pool) is applied. Most of the hidden layers use Batch 

Normalization, and ReLU followed by a conv layer. The final layer of the original 

ResNet50 model is a fully connected (fc) layer with 1000 out-features (for 1000 class).  

ResNet50 is much deeper and has fully connected layers. Without increasing the 

training error percentage, ResNet50 makes it straightforward to train networks with 

numerous layers. As the number of model layers increases, the consumption of computing 

resources becomes substantial, leading to the issue of the "disappearing gradient". Thus, 

ResNet provides a solution to the problem of gradient disappearance (Tian et al., 2022); 

this is one of the reasons why this model is used in this study. In addition, this study 

compared some algorithm models and selected ResNet-50 as the image recognition and 

feature extraction network as it achieved the best results in a series of experiments. 

Nevertheless, ResNet50 frequently needs longer training time as well (Nijaguna et al., 

2023). 
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Figure 2 - Network architecture for ResNet50 

 

Source: Adapted from (He et al., 2015) . 
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In addition, it is important to highlight that using ML/DL models for drowsiness 

detection requires a significant amount of labeled data and an adequate training process. 

Hence, it is necessary to collect a representative dataset containing EEG information and 

facial images from individuals in different alert states. Moreover, an integrated approach, 

combining EEG and CV data, allows the capture of information from different modalities, 

providing a more comprehensive and accurate view of the sleep state of individuals. 

2.5.3. Automated Machine Learning 

AutoML represents the automation of some or even all ML steps, such as 

preprocessing and cleaning the data, feature selection and feature engineering, model 

creation, model tuning, model ensembling, and model deployment, to cite a few steps 

(Goes et al., 2021). It is important to distinguish two AutoML approaches: 

Hyperparameter Optimization (HPO) and Neural Architecture Search (NAS). HPO 

automates finding a well-performing hyperparameter configuration of a given machine 

learning model on the dataset considered, including the kind of machine learning itself, 

its hyperparameters, and other data processing steps. Thus, HPO helps expert and non-

expert personnel to avoid the laborious and vulnerable hyperparameter tuning process. 

For the HPO approach, we have used TPOT (Olson et al., 2016). On the other hand, NAS 

aims to find the architectural design of neural networks, optimizing the whole topology 

of the networks, for instance, the number of neurons, how to connect nodes, and which 

operators to choose. The user generally defines which metrics to optimize, the limiting 

model size regarding trainable parameters, or even the total time to search for an optimal 

architecture for specific applications. For the NAS approach, we used AutoKeras (Jin et 

al., 2023). Due to the extremely large search space, AutoML algorithms tend to be 

computationally expensive.  

2.5.4. Quantum Machine Learning 

QML is an emerging field at the intersection of quantum computing and machine 

learning. QML encompasses the application of quantum computing techniques to develop 

new algorithms and enhance existing ones for machine learning tasks (García et al., 

2022). Understanding the basics of quantum computing is essential for comprehending 

the potential of QML. Quantum machine learning (QML) represents a novel intersection 

between quantum computing and machine learning, with the potential to overcome 

significant challenges faced by traditional methods. The fundamental properties of 
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quantum computing, such as superposition and entanglement, offer a robust approach for 

the analysis of complex signals, such as EEGs. Recent studies demonstrate that QML can 

improve signal classification and pattern detection in critical areas, such as the 

identification of epilepsy and other neurological disorders. In this context, this thesis 

proposes to explore the capabilities of QML for drowsiness detection, investigating 

whether this approach can offer advantages in terms of accuracy and speed in identifying 

states of reduced alertness in industrial workers. 

The distinction between classical computing and quantum computing is crucial in 

addressing significant problem challenges. Quantum computing utilizes fundamental 

quantum properties like superposition, entanglement, and the measurement paradox to 

provide optimal solutions to complex problems. It also offers the advantage of computing 

much more powerful functions using number of quantum units, (i.e., qubits) and quantum 

gates.  

In a Quantum Computer, the smallest unit of information is the qubit, which can 

exist in states of 0, 1, or a superposition of both (Y. Wang & Liu, 2022). Dirac's notation, 

known as bra/ket, is employed to represent quantum states and their transformations. The 

ket, represented by |𝜓⟩, has a dual called bra ⟨𝜓| (Rieffel & Polak, 2011). 

The state of a qubit can be expressed using |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, where α and β are 

complex numbers representing amplitudes, satisfying the relation |𝛼|2 + |𝛽|2 = 1, and 

|𝛼|2 and |𝛽|2 are the probabilities of a qubit collapsing to states "0" or "1" upon 

measurement. It can be rewritten as |𝜓⟩ = 𝑒𝑖𝛾(𝑐𝑜𝑠𝜃2|0⟩ + 𝑒𝑖𝜙𝑠𝑖𝑛𝜃 2|1⟩), where 𝜃, 𝜙, 

and 𝛾 are real numbers (García et al., 2022). 

The Bloch Sphere (Figure 3) serves as a geometric representation of the pure state 

space of a two-level quantum mechanical system, aiding in quantum mechanics and 

computation (Scherer, 2019). The angles θ and ϕ correspond to spherical coordinates 

representing a single qubit state. The vector |𝜓⟩ is defined as a Hilbert Space vector 

extending from the origin to the surface of the sphere, with dimensions in ℝ³. 

Additionally, the Bloch sphere visually demonstrates quantum state operations, 

with rotations representing unitary transformations and projections depicting 

measurements. It serves as a useful tool for understanding the impact of quantum gates 

on quantum circuits, facilitating the development and analysis of quantum algorithms and 

error correction techniques. Finally, the Bloch sphere illustrates entangled states between 
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two quantum systems, where their combined state is represented by a region on the sphere 

rather than a single point.  

 

Figure 3 - Bloch Sphere which represents the qubit 

 

Source: (Prakash, 2021) 

2.5.5. EEG-based drowsiness detection 

EEG is a brain imaging technique utilized to identify various mental states, 

including distinct emotions, varying levels of mental workload, stress, and fatigue (Cui 

et al., 2022). Many studies show the association between drowsiness and the oscillation 

patterns of EEG signals. As previously mentioned, some studies used different EEG 

channels as information sources to detect drowsiness. For example, W. Li et al. (2012) 

initially analyzed 16 EEG channels and, using Gray Relational Analysis (GRA) and 

Kernel Principal Component Analysis (KPCA), decreased the number of electrodes 

analyzed for the two most significant (𝐹𝑝1 and 𝑂1). The drowsiness assessment model 

was based on a straightforward regression analysis. In another example, Yu et al. (2013) 

used a model based on support vector machine (SVM) for detecting drowsiness using 11 

EEG channels, presenting an accuracy of approximately 95%. However, in practice, the 

use of multiple electrodes to collect many EEG signals may become invasive when 

monitoring the cognitive status of human operators, such as in safety-critical 

environments.  

Indeed, single-channel analysis has inspired some research. For example, Garcés 

Correa et al. (2014) developed a method to detect the stage of drowsiness in EEG records 

using temporal, spectral, and wavelet analysis, from 19 features extracted from a single 

EEG channel. The method obtained 83.6% of correct detection rates for drowsiness. In 
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Belakhdar et al. (2016), the authors used features based on fast Fourier transform (FFT) 

to infer drowsiness based on EEG. Using a single signal from a differential EEG channel 

(i.e., C3-O1 electrodes), nine features are extracted from the power spectral density 

(PSD). Then, the performance of two well-known ML classifiers, SVM and MLP, was 

compared, with the latter presenting the best result of 83.5% accuracy. In another study, 

Belakhdar et al. (2018) also reduced the number of EEG features while still achieving a 

high accuracy level (i.e., 86%), considering the same differential EEG channel. However, 

this model trains and tests specific models for each person in the database, not addressing 

a general model.  

Relying on the investigations mentioned, there is no consensus about which EEG 

channel is more appropriate to infer alert and drowsy states. Additionally, we mention 

that the performance of the drowsiness model is impacted by interindividual variability, 

and the selection of EEG channels also depends on electrode availability (see Figure 1). 

Nevertheless, EEG signals provide large time-series sampled at a particular 

frequency, typically measured in hertz (Hz). Therefore, pre-processing techniques may 

be used to deal with complex series, creating more manageable data, even though still 

carrying important information (C. B. S. Maior et al., 2019). 

Conventional methods for drowsiness recognition rely on feature extraction from 

EEG signals, which requires expertise and/or a priori knowledge of the data in order to 

model some special EEG characteristics of interest. For example, (Ogino & Mitsukura, 

2018) compared three methods for feature extraction, which are Power Spectral Density 

(PSD), Autoregressive (AR) modeling, and Multiscale Entropy (MSE). They achieved a 

classification accuracy of 72.7% using the PSD features with Stepwise Linear 

Discriminant Analysis (SWLDA) for feature selection and SVM for classification. (da 

Silveira et al., 2016) performed Discrete Wavelet Transform (DWT) on single-channel 

EEG signals and selected the most significant M−terms from the wavelet expansion as 

features for classification. Considering that the alpha frequency contains personal 

information about age and memory performance of a subject, (B & Chinara, 2021) 

proposed a drowsiness detection model using time-domain features extracted by utilizing 

Wavelet Packet Transform (WPT). 

In contrast to traditional approaches that involve crafting features manually, deep 

learning offers a distinct advantage by automatically capturing essential characteristics 

from the data. Models built on deep learning principles can directly learn a cascade of 

representations from raw and high-dimensional data, fine-tuning parameters through 
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backpropagation. Deep learning methods have received more attention in the field of EEG 

signal processing, including for drowsiness. For single-channel EEG signal classification, 

(Yıldırım et al., 2020) proposed a CNN model with 23 layers for automatic recognition. 

(Fahimi et al., 2019) explored an end-to-end deep CNN to detect the attentive mental state 

from single-channel raw EEG data. 

2.5.6. CV-based drowsiness detection 

In recent years, researchers have made significant strides in developing robust 

systems for detecting drowsiness, especially in contexts where CV is possible. Studies 

involving the detection of drowsiness from facial images are primarily in the context of 

car driving. For instance, (You et al., 2019) have proposed a drowsiness driving detection 

algorithm that considers individual driver differences. They built a deep cascaded 

convolutional neural network for the face region, and from the Dlib (Bhandari, 2014; 

King, 2009) toolkit, the landmarks of a frontal facial driver in a frame are found. In 

addition, they trained the classifier based on SVMs, which take as input the parameter 

called eyes aspect ratio. In simulated driving applications, the proposed algorithm detects 

the drowsy state of the driver quickly with 94.80% accuracy. Yang & Yi (2024) described 

a Deep Learning-based Intelligent Driver Drowsiness Detection for Advanced Driver-

Assistance Systems (DLID3-ADAS) technique, which employs a combination of median 

filtering, feature extraction with ShuffleNet, hyperparameter optimization with the 

Northern Goshawk Optimization (NGO) algorithm, and final classification using Extreme 

Learning Machine (ELM). This system achieved an accuracy of 97.05% and a 

computational time of only 0.60 seconds, proving to be superior to traditional models. 

Meanwhile, (Murthy et al., 2022) proposed a method that involves detecting the 

movement of the driver's face, eyes and head. Face detection is achieved using the Viola-

Jones Algorithm, and other functions are built to invoke methods for eye detection. An 

SVM classifier is used to analyze eye movement. As a limitation, the authors argue that 

even if the algorithm detects face movement in all scenarios, it does not detect eye closure 

if the eyes are not fully visible in the video footage. Another method of detecting 

drowsiness based on images from driver cameras is seen in the study by Bhandari (2014). 

In this case, a camera was used to capture yawning characteristics (i.e., mouth shape and 

lip corner positions) to determine driver alertness. The main limitation of this system is 

that it is not able to function in poor lighting conditions. (C. B. S. Maior et al., 2020) 

address the need for vigilance in automated systems, focusing on operators' eye patterns 
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monitored through video streams. Employing CV and machine learning, the study 

proposes a real-time, non-intrusive system using a simple web camera. The model, 

validated on the DROZY database, demonstrates promising results, emitting warnings 

with 94.44% accuracy for drowsy subjects. 

(Bekhouche et al., 2022) delve into the complex issue of driver drowsiness using 

a CV solution. The proposed framework detects the driver's face, extracts deep features 

through transfer learning, and applies temporal feature aggregation for drowsiness 

detection. Experiments on the NTHU Drowsy Driver Detection dataset showcase the 

framework's outperformance compared to existing approaches. (Rahman et al., 2022) 

introduce a real-time driver monitoring system utilizing CNN and CV techniques. 

Operating with an onboard camera module, the system achieves a 97.44% accuracy in 

fatigue detection, proving its efficacy in real-world scenarios.  

Pandey & Muppalaneni (2023) work centers on road safety, employing a sizable 

drowsiness video dataset to develop two distinct models, emphasizing temporal and 

spatiotemporal characteristics. While Model-A, incorporating CV techniques and LSTM, 

exhibits a lower accuracy (86%), Model-B, focusing on spatial information and LSTM, 

achieves 97.5% accuracy. (Phan et al., 2023) approach integrates the Internet of Things 

(IoT) and deep neural networks to detect driver drowsiness efficiently. By considering 

multiple signs of fatigue, including facial landmarks, head tilting, blinking, and yawning, 

the model achieves an impressive accuracy of up to 98%. Incorporating transfer learning 

and time-varying factors enhances its robustness across diverse driving conditions, 

making it a comprehensive solution. 

Although these studies contribute significantly to the field of drowsiness 

detection, it is essential to recognize certain limitations. Most of the research discussed 

focuses primarily on the context of drivers, and there is a notable absence of work 

considering attentional tasks such as in safety-critical operations control rooms. The 

complexities of vigilance and drowsiness may differ between these contexts. 

Furthermore, the absence of recent models, such as ResNet50, in studies raises questions 

about the application to contemporary approaches. These limitations highlight 

opportunities for future research to address existing gaps and improve the robustness and 

applicability of drowsiness detection systems in diverse environments. 
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2.5.7. Data fusion-based drowsiness detection 

To take advantage of complementary information from different data sources, 

some data fusion strategies are proposed to concatenate data before classification. In the 

domain of data fusion-based fatigue detection, several studies have addressed the issue 

from diverse perspectives. Mehmood et al. (2023) focused on the construction industry, 

emphasizing that high-attention operations can induce mental fatigue, leading to 

inefficiencies and accidents. They proposed a novel approach using three machine 

learning models and multimodal data fusion, incorporating EEG, electrodermal activity, 

and video signals. The decision tree model, employing multimodal sensor data fusion, 

outperforms other models with 96.2% accuracy and 96.175%–98.231% F1 scores, 

showcasing the potential of multimodal sensor data fusion for real-time mental fatigue 

classification in construction sites. 

Shahbakhti et al. (2023) delved into driver fatigue detection using multi-channel 

EEG, prioritizing the comfort of users by employing a single prefrontal EEG channel. 

Their method simultaneously analyzes EEG and eye blinks, utilizing an Fp1 EEG 

channel. The process involves identifying eye blink intervals using the moving standard 

deviation algorithm, filtering the EEG signal using discrete wavelet transform, and 

extracting features for classification. The proposed method exhibits robustness in 

detecting fatigue while driving, demonstrating promising results through the AdaBoost 

classifier. 

L. Zhao et al. (2022) recognize the implications of fatigue on efficiency, especially 

in educational settings, where it can impact learning outcomes. Their study develops a 

fatigue detection system using a multimodal approach with ECG and video signals. The 

system classifies a learner's state into three categories: alert, normal, and fatigued. Tested 

on both the DROZY dataset and a self-collected dataset from a learning environment, the 

system achieves high detection accuracy, outperforming state-of-the-art approaches with 

99.6% and 91.8% accuracy on the respective datasets. 

Cheng et al. (2012) focus on driver drowsiness, a major cause of on-road accidents. 

They conduct a detailed study of abnormal eye behavior, steering wheel activity, and 

vehicle trajectory during different drowsiness stages. To overcome the limitations of 

single-sensor approaches, they developed a two-stage data fusion framework employing 

Fisher's linear discriminant and Dempster-Shafer evidence theory. The recognition 



48 

system achieves 90.7% accuracy, demonstrating the enhanced reliability and accuracy of 

the fusion method compared to single sensors. 

In the context of data fusion-based fatigue detection, in addition to the substantial 

body of research focusing on driver-related drowsiness, at the best of author’s knowledge, 

the fusion of video and EEG data for drowsiness studies remains an underexplored 

avenue, especially in the context of control rooms such as in an O&G industry. 

Furthermore, there is a notable gap in exploring more advanced models, such as quantum 

machine learning approach for EEG data, in the domain of drowsiness detection. This 

represents an opportunity for the proposed study to contribute new insights into the fusion 

of these two distinct data modalities (EEG and facial data), and investigate new models, 

thus increasing the comprehensiveness of drowsiness detection methodologies. 
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3. PROPOSED DROWSINESS DETECTION FRAMEWORK 

In this chapter, we present a comprehensive visual summary that encompasses the 

diverse approaches explored throughout this thesis. Figure 5 serves as a roadmap, 

describing the main components, methodologies, and applications that will be examined. 

This visual aid serves as a guide, providing a clear and concise visualization of the 

structure developed and tested in upcoming chapters. Before delving into specific 

applications, we provide a general overview of the DROZY dataset, which is a curated 

collection of multimodal data capturing various aspects of drowsiness and stands as a 

foundational element of our application. 

3.1. Dataset 

The “ULg multimodality sleepiness database”, also called DROZY (Massoz et al., 

2016), is a database that contains various types of data related to drowsiness, including 

EEG and webcam images. For the first case, the system recorded the Fz, Pz, Cz, C3, and 

C4 channels sampled at 512 Hz. For each video, a pair of near infrared (NIR) intensity 

and range images (I-image and R-image) are used. The NIR images are 512x424 pixels 

in size and recorded at 30 fps. In total, fourteen subjects/participants (3 males, 11 females) 

with a mean age of 22.7 years old and a standard deviation of 2.3 years old were 

considered (Massoz et al., 2016). 

The experimental protocol considered that each subject performed three 

psychomotor vigilance tests (PVTs) during two consecutive days, in conditions of 

increased induced and prolonged sleep deprivation. After the subjects performed the first 

PVT, they were not allowed to sleep before the third PVT, resulting in a total sleep 

deprivation of 28 to 30 hours. Each PVT was around 10 minutes long. Figure 4 shows a 

measurement scheme for the three PVTs. 

Figure 4 - Scheme for three PVTs in two consecutive days. 

 

Source: Adapted from (Massoz et al., 2016.) 
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In DROZY, subjects were also asked to fulfill a Karolinska Drowsiness Scale (KSS) 

form, an established method to measure the subjective level of drowsiness at a particular 

period of the day (Kaida et al., 2006). The KSS consists of a nine-point scale with 

drowsiness rated 1 = extremely alert, 2 = very alert, 3 = alert, 4 = fairly alert, 5 = not alert 

or drowsy, 6 = some signs of drowsiness, 7 = drowsy, but no effort to keep alert, 8 = 

drowsy, some effort to keep alert and 9 = very drowsy, effort to stay awake (Waage et al., 

2012). Here, for the binary classification, we consider two possible categorizations, which 

have been previously used in the literature and are also suitable for EEG: alert (KSS ≤ 3) 

and drowsy (KSS ≥ 7) (C. B. S. Maior et al., 2020; Ogino & Mitsukura, 2018; Sandberg 

et al., 2011), while for 3<KSS<7 the subject would not be alert or drowsy.  

According to these categories, among the 14 participants in the database, only 

those who classified themselves as a KKS ≤ 3 for the first PVT and KKS ≥ 7 for the third 

PVT were selected for analysis. Thus, as shown in Table 2, 8 subjects classified 

themselves as alert in the first PVT and 10 subjects classified themselves as drowsy in 

the third PVT. Moreover, there are specific subjects (i.e., subjects 1, 5, 6, 8, and 10) that 

alternate the classification of alert to drowsy from the first PVT to the third PVT, which 

enables a direct analysis for those in the two tests. Other subjects did not have the third 

PVT performed or it was not recorded. 

Table 2 - KSS classification for the selected subjects 

Subject PVT 1 (KSS) PVT 3 (KSS) 

1 3 7 

2 3 - 

3 2 - 

4 - 9 

5 3 8 

6 2 7 

7 - 9 

8 2 8 

9 - 8 

10 3 7 

11 - 7 

12 2 - 

13 - - 
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14 - 8 

Source: Adapted from (Massoz et al., 2016.) 

 

In addition, the EEG signals of all participants were grouped as a ‘single-subject’, 

as a generalist representation in a sequential manner. In this case, the EEG channel signals 

belonging to each participant eligible for PVT1 (8 subjects), were grouped as single-

subject channels and assigned as alert. Likewise, the signals from 10 subjects in PVT3 

were designated as drowsiness signals for that ‘single-subject’. From now on, we call this 

“single-subject” as ‘multiple subject’, since it gathers available signals from several 

subjects participating in the experiment. For further descriptions of these subjects (and 

PVTs) as well as the previously mentioned selection, see (C. B. S. Maior et al., 2020). 

During each PVT, a light was randomly turned on every few seconds and the 

subject should press a button as soon as the light appears; then, their reaction times (RT) 

were registered. Thus, for each subject and for each PVT, the database contains the raw 

data perfectly time-synchronized with KSS data, PVT data (including RT), 

polysomnography signals (PSG) (e.g. EEG and EOG) and NIR intensity and range images 

of the face. We will use video and EEG data in our study. 

3.2. Methodology framework 

The methodology framework of this study is structured into four main parts, each 

dedicated to a distinct aspect of the research objectives. This section outlines the 

comprehensive framework that guides the upcoming chapters, summarizing the essence 

of the study. 
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Figure 5 - Thesis methodologies framework 

 
Source: The Author (2024). 

1. EEG Data Approach 

Chapter 4 focuses on the detailed exploration of EEG data for effective drowsiness 

detection. The main components include: 

• Use of multiple EEG channels: Employs a multichannel EEG setup to 

capture a comprehensive view of brain activity. 

• Proposition of Ensemble Models: Use of two robust models through the 

integration of multiple machine learning algorithms, increasing predictive 

power. 

• Use of AutoML: Application of AutoML techniques for efficient model 

selection and hyperparameter tuning, streamlining the model development 

process. 

• Integration of RT data with EEG patterns: EEG data is aligned with the 

duration of each RT, predicting lapses and non-lapses based on EEG 

features at each time point. 

This part represents a significant advance in understanding drowsiness patterns 

using EEG data, exploring ensemble methodologies and incorporating automation for 

model refinement. 

2. Quantum EEG Approach 
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In Chapter 5, building upon the insights gained from the EEG Data Approach, we 

delve into the innovative Quantum EEG approach, which leverages quantum computing 

principles for drowsiness detection. Key aspects of this approach include: 

• Quantum Computing Integration: Incorporation of quantum computing 

techniques to process EEG data, offering the potential for exponential 

computational speedups and improved pattern recognition capabilities. 

• Quantum Feature Extraction: Exploration of quantum algorithms for 

feature extraction from EEG signals, aiming to capture subtle patterns that 

are indicative of drowsiness with higher fidelity. 

• Quantum Machine Learning Models: Development of quantum machine 

learning models tailored for EEG data analysis, utilizing quantum circuits 

and algorithms for classification tasks. 

• Hybrid Quantum-Classical Framework: Adoption of a hybrid quantum-

classical framework to combine classical machine learning methods with 

quantum processing, optimizing the balance between computational 

resources and model accuracy. 

This pioneering approach represents a frontier in drowsiness detection research, 

harnessing the power of quantum technologies to unlock new insights and capabilities in 

EEG data analysis. 

3. Data Fusion Approach 

In Chapter 6, based on the knowledge gained from the EEG-focused approach, we 

introduce the concept of data fusion for a more comprehensive drowsiness detection 

system. The main components include: 

• Approach with three distinct models: one for image data analysis, another 

for EEG data analysis and a third model for data fusion. A flow of the 

methodology is shown in Chapter 5 highlighting the sequential steps of the 

approach. 

• Training Data: All models are trained using labeled data generated in the 

database itself, specifically the alert and drowsy states indicated by PVT1 

and PVT3. 

• Data Processing: For processing data, it is initially separated, pre-

processed and transformed into a manageable format suitable for input into 

learning algorithms. 
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• Classifier Development: Classifiers are developed using Multilayer 

Perceptron (MLP) and the ResNet50 pre-trained model. These classifiers 

are trained on the extracted data for two main classification tasks: i) 

drowsiness detection from EEG data and ii) drowsiness detection from 

images. 

• Decision Rule: A decision rule is implemented to combine the results of 

individual classifiers, with the aim of improving overall prediction 

performance. 

This phase represents an improvement over the previous chapter by combining 

EEG data and CV, demonstrating the synergistic power of data fusion in improving 

accuracy and reliability. 

4. Experimental Set-up 

Chapter 7 shifts the focus to practical experimentation in the control room domain 

of the O&G industry. That includes: 

• Simulation of an O&G industry operating room: Creating a simulated 

environment representative of real-world conditions in the O&G industry 

control room. 

• Operator Performance in Monitoring Task: Evaluate operator performance 

through monitoring tasks within the simulated environment, allowing the 

observation of human responses and behaviors. 

This applied phase takes the theoretical advances from the previous sections and 

tests them in an industry-relevant scenario, offering insights into real-world applicability 

and effectiveness. Thus, in summary, the methodology framework progresses from an in-

depth analysis of EEG data and machine learning, to an exploration of data fusion 

techniques that incorporate EEG and facial data. Finally, it ends in a practical experience 

simulating an O&G industry operation, demonstrating the holistic application of the 

methodologies developed to improve safety and performance. Each step distinctively 

contributes to the overall goal of advancing safety measures in critical industrial 

environments. 
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4. MODELS FOR AUTOMATIC DROWSINESS DETECTION 

USING EEG SIGNALS 

Part of this chapter has been published in Process Safety and Environmental 

Protection journal (Ramos et al., 2022). This chapter centers on advancing the 

identification and prediction of operator drowsiness in critical safety systems, such as the 

O&G industries. We aspire to extract more nuanced and accurate information critical for 

improving accident prevention measures by EEG patterns. The primary objective is to 

contribute to accident prevention by developing a robust, multi-source model capable of 

effectively recognizing diverse features associated with drowsiness. Our focus extends 

from ensemble machine learning (Ramos et al., 2022), to Automated Machine Learning 

(AutoML) approaches and advanced deep learning models. 

The chapter also conducts an in-depth analysis, leveraging results from the paper 

published in the Expert Systems with Applications journal (C. B. S. Maior et al., 2020), 

mainly focusing on reaction times. A unique aspect of our approach involves creating a 

ground truth for reaction times by aligning EEG data with specific time windows, offering 

a comprehensive understanding of the temporal dynamics associated with drowsiness. 

4.1. Proposed Bagging based model 

Here, we adapted the classical bagging model to take the different sub-samples 

monitored synchronously from the same subject in different EEG channels. Bagging, or 

Bootstrap Aggregating, is an ensemble approach commonly used to increase the accuracy 

of results in classification problems. Initially developed by Breiman (1996), this 

technique generates diversity through the creation of subsets of data, known as bootstrap 

samples. These samples are constructed from the training set, involving replication and 

omission of some data. Using the same classification algorithm, base learners are 

generated from these samples and, finally, are combined using strategies such as majority 

voting. 

Thus, it is possible to create a new hybrid model, coupling a single classifier with 

different sub-samples (i.e., EEG channels) to detect drowsiness. Initially, our model 

considers five EEG channels (Fz, Cz, C3, C4, and Pz) available in the database. Note that 

the signal has different behaviors and frequencies, as illustrated in Figure 6. The signals 

from each channel are separated into training and test sets for the five subjects for which 

the first and third PVTs are available (i.e., 1, 5, 6, 8, and 10). The remaining subjects, 
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who have only the first or third PVT available (recall Table 2), are grouped in the test 

data for their respective states of alertness or drowsiness. As the proposal is a real-time 

drowsiness detection, different sizes of signal segments were tested from raw data that 

were equal to or smaller than 1s, but maintained important characteristics. 

Figure 6 - Difference in signals for the five EEG channels available 

 
Source: The author (2024). 

As the ensemble model requires different sub-samples but only a single classifier, 

the four ML classifiers discussed in section 2.5.1 (KNN, RF, SVM, MLP) were tested in 

order to verify which one presents the best accuracy. Furthermore, to make the approach 

less intrusive, different schemes were developed with different numbers of channels in 

this ensemble model. Figure 7 shows the scheme of the bagging-based ensemble model 

with five channels and Figure 8 presents the pseudo-code for this scheme.  

Figure 7 - Scheme of the proposed bagging model 
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Source: The author (2024). 

 
Figure 8 - Algorithm for scheme of bagging model 

 
Source: The author (2024). 

 

Figure 9 explains how the proposed bagging ensemble model works. First, the 

segments of each EEG channel containing a specific size of values, from a sampling 

frequency, are trained in the ML model. Through a simple vote, the ensemble model 

combines the responses of the models of each previously executed channel. The result 

combines the most votes for a given class, thus producing its final prediction. This model 

is further tested with the test sets and, finally, the accuracy is measured. 

 

Figure 9 - General example of how the proposed bagging-based works 
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Source: The author (2024). 

 

The set of these classifiers considering different EEG channels makes the bagging-

based model a strong classifier with low bias and low variance. Furthermore, bagging has 

been reported to consistently deliver good performance despite its simplicity (Hassan & 

Haque, 2016). 

 

4.2. Proposed voting model  

Here, the ensemble model considers hard voting using a single set of signals but 

distinct classification methods trained and tested in all five EEG channels available. As 

in the previous model, the training data of each subject are also grouped with the other 

data of subjects who had only one type of state. For voting, the method takes a 

conservative approach (i.e., if at least two out of the four models classify drowsiness, the 

ensemble model will classify the signal segment as drowsiness). Figure 10 below shows 

the scheme of the model described. 

 

Figure 10 - Scheme of the Proposed voting model 
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Source: The author (2024). 

 

Figure 11 and Figure 12 show the algorithm and a fictitious example of the voting model, 

respectively. 

 
Figure 11 - Algorithm for scheme of voting model 

 
Source: The author (2024). 

 
Figure 12 - General example of how the voting model works 

 
Source: The author (2024). 

4.3. Results and discussion for the ensemble models 

Input: 

• Single-channel of EEG signals of 512Hz each. 

• Function to separate vectors with EEG data into smaller vectors for analysis. 

• Functions with classifiers algorithms. 

for model in models: 

 if (features): 

  feature extraction: 'HDF', 'Complexity', 'Mobility'. 

end 

 Separates training and testing data; 

Train the EEG channel; 

Test the EEG channel; 

Predictions: Keep the prediction of each ML model. 

end 

Voting model (Predictions): 

Hard voting. 

Output: 

• Accuracy of the ensemble model. 
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In this study, both ensemble models, Bagging and Voting, were executed 

considering two representations of the EEG signals: (i) raw data and (ii) the three time-

domain EEG features (HDF, complexity, Mobility) presented in Section 2.5.1. Numerous 

tests were performed to identify the most suitable ML for the bagging mode and the most 

suitable channel for the voting model. For the sake of brevity, the results presented are 

for the best-performed one, achieved for the MLP classifier for the bagging case and for 

the C4 channel for the voting case. To consider real-time drowsiness detection, an EEG 

time-window containing 100 points was selected, which, at a sampling frequency of 512 

Hz, represents <0.2 s. All the experiments were run on a GPU running Python Version 

3.9 with a 3.6 GHz Intel CORE i9-9900K processor, 32 GB of RAM . 

The results are presented in three parts, as in Figure 13. Case 1 contains information 

from all subjects, in which, after grouping the data from the alertness and drowsiness 

categories, they are separated into training and test data to verify if the representations 

in the time-domain and the ML techniques are appropriate for this detection. Case 2 

makes use of this generic training model, containing information from all subjects but 

tested on data from the five specific subjects discussed in the Chapter 3. Finally, in Case 

3, the data from the five specific subjects are separated and tested individually, in which 

a dedicated model for each subject is created. For the sake of brevity, we only present 

Case 3 in this chapter, the results for Cases 1 and 2 will be in the APPENDIX A – Case 

1: All subjects and   
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APPENDIX B - Case 2: Specifics subjects with a general model. 

 

 

 

Figure 13 - Scheme of the three Cases 

 
Source: The author (2024). 

4.3.1. Parameter tuning 

Each ML algorithm requires a set of hyper-parameters in its formulation, and their 

proper estimation demands attention to best adjust the mapping function. Thus, we here 

applied the grid-search (GS) algorithm to fine-tune their hyper-parameters. GS looks into 

a specified searching space (a subset of hyper-parameters). Table 3 presents the search 

spaces for GS approach for each ML model; see (Pedregosa FABIANPEDREGOSA et 

al., 2011) for further details). 

Table 3 - Search space for GS for each classifier and description of the hyper-parameters. 

Classifier Hyper-parameters Value / Type range 

SVM 
gamma [10-5, 10-4, 10-3

, 10-2] 

C [10, 102, 103, 104] 

MLP 

hidden layers size [(100), (100, 100), (100, 100, 100)] 

activation  [‘tanh’, ‘relu’] 

solver [‘sgd’, ‘adam’] 

RF 
max depth [20, 30, 40, 50] 

n estimators [50, 83, 116, 150, ‘None’] 

KNN 

n neighbors 3, 5, 10 

weights ['uniform', 'distance'] 

algorithm ['auto', 'ball_tree', 'kd_tree', 'brute'] 

metric ['euclidean', 'manhattan', 'minkowski'] 
Source: The author (2024). 

4.3.2. Specific subjects with dedicated model 

• Raw data 
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The third case considers data from the five specific subjects trained and tested 

individually, creating a dedicated model for each of them. For the bagging-based method 

(Figure 14), subject 5 presents the lowest accuracy. This may be explained by the low 

accuracy from some channels (Fz and Cz), which can reduce performance in the final 

prediction, as can also be seen in subject 1. For subject 8, even though few channels have 

accuracy near 80%, the final prediction of the ensemble model was above 90%.  

Figure 14 - Bagging-based model for five specifics subjects in a dedicated model from the MLP technique 

with raw data and five channels 

 
Source: The author (2024). 

 

Therefore, the remaining 3-channel (C3, C4 and PZ) training is performed, and the 

results are shown in the   
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APPENDIX C - Case 3: Specifics subjects with dedicated model. In this case, 

almost all ensemble predictions presented an accuracy above 90%, achieving better 

performance than the single-channels in nearly all subjects, except for subject 5 (a slightly 

lower accuracy compared to the single-channel C4) and subject 8 (accuracy of MLP of 

the single-channel Pz was superior to the bagging-based model). Compared with the 

previous five-channel bagging-based model, the accuracy of almost all data samples was 

surpassed by the three-channel model, except for subjects 5 and 8, which presented a 

similar result. 

For the voting model with raw data (Figure 15), when compared to the results of 

the bagging-based model, the accuracy was slightly lower, being below 80% for subjects 

5 and 8. However, the result is somehow expected as the models are fed by data from 

only a single-channel (C4) and less information is provided, which is, therefore, a 

satisfactory result. 

Figure 15 - Voting model for five specific subjects in a dedicated model from the C4 channel with raw 

data  

Source: The author (2024). 

 

• EEG features 

The same processing was applied to the three features. In Figure 16, subjects 1 

and 5 present the poorest results in all channels, while subject 8 provided an accuracy of 

99% in the five available channels. This demonstrates the interpersonal variability, 

considering that even the appropriate EEG features cannot always accurately classify 

between awake and drowsy. Indeed, this interpersonal variability is in close agreement 

with the results (C. B. S. Maior et al., 2020), who mentioned that even though the subject 

1 is drowsy, it remained quite attentive, with only one lapse (i.e., reaction time greater 

than 0.5 seconds) during the whole PVT. 
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Figure 16 - Bagging-based model for five specific subjects in a dedicated model from the MLP technique 

with features extraction and five-channels 

 
Source: The author (2024). 

 

Then, the channel reduction process was replicated, performing the three-channel model 

and similar results were obtained when compared to the five-channel model. In fact, the 

improvement was only made in reducing the number of channels required, and the 

results can be seen in the   
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APPENDIX C - Case 3: Specifics subjects with dedicated model. Similar results 

were obtained for the voting model when compared to the bagging-based model for the 

three features. Furthermore, we realized that for the three feature extractions, regardless 

of the ML technique or EEG channel, accuracy achieves similar results. The 

performances are shown in Figure 17. 

However, when comparing the models considering the raw data, the results are 

clearly better in the latter, especially when considering the raw data through the three-

channel model. Nevertheless, even if the ensemble models do not benefit because the 

single model presented similar performances, the adoption of features can be useful if you 

consider the use for some specific subjects (e.g., 6, 8 and 10). In addition, the presented 

results suggest that it is possible to extract significant information even within a short 

period of time (~ 0.2 s). Finally, it is noteworthy that the superior performance of bagging 

for our presented scheme benefits from the extraction features dedicated to EEG signals 

and the consideration of diverse signals as different samples when compared to traditional 

bagging. 

Figure 17 - Voting model for five specific subjects in a dedicated model from the C4 channel with 

features extraction 

 
Source: The author (2024). 

 

4.4. AutoML approach 

In this section, we provide information about three different tools used. Apart from 

a vanilla implementation of MLPClassifier() from scikit-learn, we used two AutoML 

APIs: TPOT and AutoKeras. Overall, their usage for classification tasks is 

straightforward. TPOT uses a generative algorithm to achieve the best pipeline. The most 

relevant parameters for the TPOTClassifier() are: 
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o Generations: The number of iterations needed to complete the pipeline 

optimization procedure. Default value: 100; 

o Population size: Number of individuals to keep in the genetic 

programming population each generation. Default value: 100; 

o Offspring size: Number of offspring to be born in each generation of 

genetic programming. Default value: 100; 

o CV: Number of folds to evaluate each pipeline over k-fold cross-validation 

during the optimization process. Default value: 5; 

o Early stop: Maximum number of generations to check whether there is no 

improvement in the optimization process. Default value: None; 

o Scoring: Function used to evaluate the quality of a given pipeline in 

solving the task. Default value for classification: ‘accuracy’. 

AutoKeras is an open-source software library for AutoML. It is developed to make 

it easier for users to apply deep learning techniques to their own datasets by providing a 

high-level interface for building and training machine learning models. AutoKeras is built 

on top of the popular deep learning framework Keras, which is a Deep Learning 

Application Programming Interface (API). 

One of the main advantages of AutoKeras is that it is designed to be user-friendly 

and requires minimal knowledge of machine learning to use. It allows users to specify 

their own dataset and the type of model they want to build. Then, it uses an automated 

search algorithm to find the best model architecture and hyperparameters for the given 

dataset without having to specify each one manually. We used the AutoKeras 

StructuredDataClassifier() tool whose most important arguments are: 

o num classes: The number of classes. If None, it will be inferred from the 

data; 

o loss: A Keras loss function. Default: ‘binary cross-entropy’ or ‘categorical 

crossentropy’ based on the number of classes; 

o metrics: A Keras metrics. Default: ‘accuracy’; 

o objective: Name of model metric to minimize or maximize. Default: to 

‘val accuracy’ (computed in the test set); 

o seed: An integer seed number, important for reproducibility; 

o max model size: Maximum number of scalars in the parameters of a 

model. 
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4.4.1. Results and discussions for AutoML 

Ramos et al. (2022) performed numerous tests to identify the EEG channel that is 

most suitable for drowsiness inference for DROZY database, and based on the findings, 

channel C4 was selected to discuss the results. A 100-point EEG time window was used 

for real-time drowsiness detection, for which 512 Hz sampling frequency corresponds to 

∼ 0.2 seconds. Thus, as the DROZY database comprises 18 videos of 10 minute-length, 

each has 307,200 data points, and overall, there are over 5.5 million data points available. 

Each time window feature vector has an associated label (either ‘drowsy’ or ‘alert’); the 

same occurs for each feature vector. Data were split into 80/20 for training/testing (i.e., 

2456 points for training and 614 for testing). 

After taking the same MLP application, found in (Ramos et al., 2022), as a 

baseline, we sought AutoML solutions with TPOT and Autokeras. We discuss the results 

in terms of performance, cost of implementation, and training duration for both TPOT 

and AutoKeras. For each subject, the comparison contains (i) raw data (RD), (ii) feature 

vectors (F), and (iii) the combination of both (F+RD). In addition, we adopted two 

approaches: (a) training a specific model for each subject separately; and (b) training a 

unique model with all subjects together, as explained in chapter 3 (i.e., five dedicated 

models and one generalist). 

In Table 4, there are the obtained accuracy values for all models (MLP, TPOT, 

and AutoKeras), input data arrangement (RD, F, F+RD) and subject approach – dedicated 

models for each subject and a generalist one (All). The best performance by subject is 

highlighted in gray. We noticed that there is no consensus on the best data arrangement, 

although F+RD is better in four out of six subjects (1, 6, 10, All). 

Table 4 - MLP and AutoML results, in %; RD: raw data, F: Features; best performance per subject 

highlighted in gray 

Subject 
MLP 

AutoML 

TPOT AK 

RD F F+RD RD F F+RD RD F F+RD 

1 91.30 58.77 91.29 93.00 57.85 95.36 94.06 59.48 94.79 

5 75.85 56.97 79.02 77.54 56.14 80.07 82.83 57.53 76.89 

6 98.69 95.13 99.10 99.59 95.52 99.92 99.67 95.85 99.92 

8 77.15 98.13 90.89 82.42 99.27 98.54 85.53 99.43 99.27 

10 95.54 86.90 96.66 94.55 86.25 97.64 98.13 87.22 98.37 

All 66.33 63.40 67.93 75.78 63.92 79.70 77.21 64.29 82.54 

Source: The author (2024). 
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Still in Table 4, subjects 1 and 5 had the poorest results when considering features 

(F) exclusively, regardless of the model used. Indeed, this finding is in close agreement 

with the results of (C. B. S. Maior et al., 2020), where it was noted that subject 1, despite 

being drowsy, remained relatively effective throughout the entire PVT. This could 

potentially account for the low accuracy observed for this subject. Subject 8, in turn, had 

an accuracy of around 99% for F, regardless of the model employed. This variation in 

performance among individuals demonstrates the presence of interpersonal variability, 

highlighting the challenge of accurately classifying between awake and drowsy states 

based solely on specific EEG features. 

Additionally, the best outcomes belong to AutoML models, mainly AutoKeras, 

which provided better results in four out of six subjects (5, 8, 10, All) presenting in Table 

5. In fact, using algorithms to automatically identify the best combination of ML 

approaches and hyperparameters for the EEG dataset made the models stand out when 

compared with the MLP models. 

Table 5- Best pipelines. In the notation (i, o), i and o represent the input and output sizes, respectively 

AutoML Subject Input ML model Main Parameters and Hyperparameters 

TPOT 1 F + RD MLP 1 layer, 100 neurons, lr = 0.001 

AK 5 RD ANN Normalization (103,103) 

Dense (103,1024) 

ReLU 

Dense (1024,1) 

TPOT 6 F + RD MLP 1 layer, 100 neurons, lr = 0.001 

AK 8 F ANN Normalization (3,3) 

Dense (3,16) 

BatchNormalization (16,16) 

ReLU 

Dropout 

Dense (16,1) 

AK 10 F + RD ANN Normalization (103,103) 

Dense (103,1024) 

BatchNormalization (1024,1024) 

ReLU 

Dense (1024,1) 

AK All F + RD ANN Normalization (103,103) 

Dense (103,256) 

ReLU 

Dropout 

Dense (256,256) 

ReLU 

Dropout 

Dense (256,64) 

ReLU 

Dropout 

Dense (64,1) 
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Source: The author (2024). 

 

In addition, the presented results reveal interesting information about the 

performance of EEG resources in the classification between awake and drowsy states. It 

suggests that it is possible to extract significant information even within a short period of 

time (∼ 0.2 s), demonstrating the potential of the EEG as a tool to assess cognitive states. 

These insights have implications for developing EEG-based systems for real-time 

monitoring of cognitive states, which may be useful in several domains beyond those here 

explained.  

In a binary classification problem for risk situations, the accuracy metric 

(percentage of correct predictions made by the model relative to the total number of 

predictions) is informative, but the incidence rate of type I and type II errors must be 

investigated. A type I error, also known as a false positive, happens when the model 

predicts that an event will occur (e.g., a subject is drowsy), but the event does not actually 

do (the subject is not drowsy). On the other hand, a type II error, also known as a false 

negative, arises when the model predicts that an event will not happen (e.g., a subject is 

not drowsy) but the event does actually do (the subject is drowsy). However, despite 

minimizing both types of errors would be ideal, there is often a trade-off between them, 

meaning that they cannot be simultaneously minimized. The optimal balance between 

type I and type II errors depends on the specific application and their relative costs. 

Confusion matrices are used to evaluate the overall performance of classification 

ML models; they summarize the number of correct and incorrect predictions and enable 

calculating various performance metrics such as accuracy, precision, recall, and F1 score. 

Table 6 shows the metrics for the F+RD case. The highlight is the high precision and 

recall obtained for both classes in all subjects. This indicates that the model was 

successful in accurately identifying both awake and drowsy states and in recovering the 

majority of true positive cases for both classes. However, it is important to note that 

results vary between different subjects. For example, subjects 6 and 10 show particularly 

high results in terms of precision, recall and F1 score for both classes, indicating robust 

and reliable detection of drowsiness and wakefulness. On the other hand, subject 5 shows 

slightly lower results compared to the other subjects, especially in terms of accuracy for 

the drowsy class. 
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Table 6 - Metrics per subjects with F+RD inputs 

Subjects Label Precision Recall F1 score 

1 0 91% 91% 91% 

1 91% 91% 91% 

5 0 78% 81% 79% 

1 80% 77% 79% 

6 0 100% 98% 99% 

1 98% 100% 99% 

8 0 90% 92% 91% 

1 92% 90% 91% 

10 0 96% 97% 97% 

1 97% 96% 97% 

All 0 69% 67% 68% 

1 67% 69% 68% 

Source: The author (2024). 

 

In our case, type I error suggests an unneeded use of human and time resources. 

For example, as a consequence of a false positive, a manager would unnecessarily check 

the actual operator status, or the operator could have their attention diverted while 

performing a task. The type II error, in turn, is the most important situation in the 

drowsiness detection context. It represents conditions where the lack of an alert emission 

leads to the drowsy operator’s unawareness not only about its own state but also about 

the tasks they should perform, which may lead to errors and even an accident. In fact, we 

noticed that the MLP model achieves good results when considering F+RD for subject 6, 

and all subjects, as we can see in the confusion matrices (a) and (b), respectively (Figure 

18). The drowsiness prediction is fairly accurate. 
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Figure 18- Confusion matrices per subject (1, 5, 6, 10, and all, for (c), (a), (e), (d), and (b), respectively); 

all cases with F + RD as input. 

Source: The author (2024). 

 

For subjects 1, 5, 8, and 10, the Type II error was slightly higher when compared 

to the Type I error; however, there is no notable difference, as we can see in Figure 18 

the confusion matrices (c) and (d) that show the confusion matrices of subjects 1 and 10, 

respectively, for F+RD as input. 

4.5. Integrating Reaction Time and EEG patterns 

In the study conducted by C. B. S. Maior et al. (2020), a drowsiness detection 

model was proposed based on the Eye Aspect Ratio (EAR), which is a variable 

determined by the proportion between the width and height of the eye, computed from 

eye landmarks (Figure 19). This method provided a low computational cost for extracting 

eye-based variables, allowing for efficient inference. Specifically, EAR was employed to 

identify blinks and assess eye openness. To establish a ground truth, EEG data was 

synchronized with reaction time (RT) data in each PVT, categorizing lapses (RT >= 0.5s) 

and non-lapses (RT < 0.5s). Subject 6 was chosen for this integration, exhibiting the 

highest number of lapses (40) and non-lapses (52) during PVT 3. 
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Figure 19 - Eyes landmarks 

 

Source: (Soukupova & Cech, 2016) 

For the long blink detection model, (C. B. S. Maior et al., 2020) employed a 

threshold method, defining fixed limits for EAR. If the user's EAR fell below the 

threshold for a specific number of frames, a blink was detected. An alternative method 

involved concatenating EARs from 15 consecutive frames, creating a user state feature 

classified as open eye, short blink, or long blink. The model was tested on the DROZY 

dataset, where subjects performed PVTs with randomized light stimuli. Lapses, defined 

as reactions exceeding 500 msec, were primary outcomes. The model used real-time 

video input to detect drowsiness, with specific analysis focusing on transitions from 

alertness to drowsiness states in subjects, exemplified by subject 6 shown in Figure 20. 

Figure 20 - Subjective and objective drowsiness-related metrics for subject 6 analyzed. 

Source: Adapted from (C. B. S. Maior et al., 2020) 

 

Quantitative metrics such as mean RT, RT variance, and the number of lapses 

were considered. Subject 6 exhibited a 47% increase in mean RT from PVT1 to PVT3, 

correlating with an increase in lapses from two to 40. The long blink detection model, (C. 

B. S. Maior et al., 2020), issued 19 drowsiness warnings in PVT3 for subject 6, indicating 

its effectiveness in capturing the declining performance during drowsiness.  

In our case, we applied a similar integration approach, aligning EEG data with the 

duration of each RT and using the model to predict lapses and non-lapses based on EEG 

features at each reaction time point. Considering the 3 specific EEG features (HFD, 

Complexity, and Mobility), we input the number of varied points for each recorded 

reaction time (for example, 2000 points of EEG signals for RT 1 and 2500 for RT2) and 

extract the characteristics of each of them. To create the labels, we considered lapses to 

be those that took more than 0.5s and non-lapses to be those shorter than that, as 

previously mentioned, summing up 40 lapses and 52 non-lapses. 
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The confusion matrix indicates a 74% accuracy. In the confusion matrix depicted 

in Figure 21, it is evident that the detection of non-lapses achieved a precision of 100%, 

as also illustrated in Table 7. The detection of lapses reached a precision of 50%. This 

outcome may be attributed to the imbalance in the training dataset (40 lapses and 52 non-

lapses), causing the model to better learn from non-lapse data. However, in this small 

sample, it implies that non-lapse data were erroneously considered as a lapse, indicating 

that what the model identifies as a lapse indeed is, even though it may not have 

successfully identified all instances. This aligns with part of the results presented by (C. 

B. S. Maior et al., 2020) model, which managed to identify half of the lapses using a blink 

detection model, demonstrating that other potential factors might contribute to lapses that 

were not detected in both the EEG-based model and the blink detection model.  

Figure 21 - Confusion matrix for subject 6 in classification of lapses and non-lapses 

 
Source: The author (2024). 

Table 7 - Metrics of confusion matrix for subject 6 of lapses and non-lapses 

Label Precision Recall F1-score 

0 1.00 0.64 0.78 

1 0.50 1.00 0.67 

Source: The author (2024). 
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5. QUANTUM EEG 

This chapter delves deeper into the realm of drowsiness detection QML. Part of 

this chapter has been published in Process Safety and Environmental Protection journal 

(Lins et al., 2024).We present a hybrid classical-quantum algorithm based on a Quantum 

Neural Network for extracting features from EEG signals and, then, classifying 

individuals as drowsy or awake. To that end, parameterized quantum circuits are obtained 

from the extracted features, allowing the detection of drowsiness. 

Although traditional machine learning methods such as MLP have been explored 

for EEG-based drowsiness detection, the integration of quantum mechanical concepts 

presents new ways to address the problem. Various quantum circuit architectures here are 

employed with different layer configurations. The findings highlight the suitability of 

QML models for analyzing sleepiness-related EEG data, indicating potential advances as 

quantum computing evolves. 

5.1. Variational Quantum Circuits 

One particular Noisy Intermediate Scale Quantum (NISQ)-friendly QML 

technique is that of variational/parameterized quantum circuits, leading to hybrid 

(classical-quantum) machine learning models (Benedetti et al., 2019). If these models are 

applied to classification problems, they are known as Variational Quantum Circuits 

(VQCs). In a classification problem, the trained model aims to assign one out of several 

discrete classes to a given observation according to a pattern learned from a set of labeled 

(previously classified) examples. In our case, VQC should categorize EEG data into either 

“drowsy” or “awake” classes. 

A VQC is also called a Parameterized Quantum Circuit (PQC), which refers to the 

way these models work: they are quantum circuits whose gates (most often, rotations) are 

parameterized by a free parameter vector 𝜃. In this sense, we can think of the quantum 

circuit as implementing a hypothesis function whose functional form is given by the 

particular quantum circuit architecture and whose parameterization arises directly using 

parameterized quantum gates. One important point is that the loss function is classically 

optimized, so we often refer to VQCs as hybrid (classical-quantum) machine learning 

models. This point will be detailed further on. 

The quantum circuits associated with VQCs may be schematically thought of as 

composed of three layers: 
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• The feature map 𝒰𝛷(𝑥): part of the circuit responsible for encoding 

classical data 𝑥 into quantum states that will be processed in the quantum 

circuit; 

• Variational layer 𝑊(𝜃): part of the circuit parameterized by 𝜃. These are 

the parameters learned in the training process; 

• Measurement: the final part of the circuit, consisting of measurements of 

the quantum register(s), thus producing classical information. 

In Figure 22, the feature map and variational layers were schematically 

represented by boxes (or algebraically by 𝒰𝛷(𝑥), 𝑊(𝜃)), but, naturally, they represent 

unitary operations. This comes with a very important caveat: the feature map and 

variational layers can be constructed in several ways, using different ansätze, consisting 

of diverse quantum gates in different compositions. The choice of particular constructions 

is often referred to as the architecture of the VQC.  

 

Figure 22- Basic VQC architecture 

 

Source: The author (2024). 

 

As aforementioned, VQC is a hybrid algorithm because it uses classical routines 

to optimize the parameters 𝜃 according to the minimization of a loss function calculated 

on the training data; this process is illustrated in Figure 23. Notice that the construction 

of a classical loss function is achieved directly from the measurements of the quantum 

registers in the last layer of the circuit, which produces classical data. 

The main components of a VQC are detailed below. First, we initialize the 

computation with a standard initial state where all N qubits are in the computational basis 

|0⟩ (eigenstate of the Pauli matrix 𝜎𝑧 with eigenvalue +1). That is, the initial N-qubit state 

is given by 
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| 𝜓0⟩  = | 0 ⟩⊗𝑁 (8) 

 

Figure 23 - Hybrid VQC routine. Here, we are representing the composition of the variational layer and 

the feature map by 𝑈(𝒙; 𝜽) = 𝑊(𝜽)𝑈𝛷(𝑥) 

 

Source: The author (2024). 

 

The encoding of classical data into a quantum state vector can be done in different 

manners. Here, we choose an encoding such that each feature from a given data point is 

mapped to a rotation angle. Each qubit in the initial state evolves by a rotation 𝑅𝑥
𝑖  around 

the 𝑋 axis of the Bloch sphere (for the 𝑖-th qubit), where 

𝑅𝑥(𝜙) = 𝑒−𝑖
𝜙
2

𝑋 = [
cos 

𝜙

2
−𝑖sin 

𝜙

2

−𝑖sin 
𝜙

2
cos 

𝜙

2

], 

 (9) 

resulting in the state 

∣𝜓1,k⟩ ⇒ ∏ Rx
i ;(𝜙𝑖,𝑘) ∣𝜓0⟩

𝑁−1

𝑖=0

, 
(10) 

where 𝜙{𝑖,𝑘} is the angle used to encode the 𝑖-th feature (𝑖 =  0, 1, … , 𝑁 − 1) of 

the 𝑘-th training observation. Notice that 𝜙{𝑖,𝑘} can be equal to (a normalized value of) 

the feature itself 𝑥{𝑖,𝑘}, or it may be a function thereof. In our case, as seen in Eq. (13), we 

use 𝜙𝑖,𝑘 =  
𝜋

2
𝑥𝑖,𝑘. This is known as the angle encoding feature map. 

The variational layer is the part of the quantum circuit made of entanglers and 

parameterized rotations, whose parameters will be learned by classically minimizing a 

loss function calculated on the training data. The parameters of the rotations will be 

collectively represented via the variational parameters vector 𝜃, whose dimension 

depends on the chosen number of parameters. As with classical neural networks, the 
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particular topology (architecture) of the variational circuit will influence the final model, 

and one should iterate different architectures to tune and improve it. 

As with any quantum algorithm, the qubits must be measured, and the 

measurement results must be post-processed. The answer to a classification problem, i.e., 

the predicted class, may be encoded in the measured outcome of the first qubit when 

measured in the 𝜎𝑧 basis or by a combination of the measurement of different qubits, 

which determines the specific function 𝑓(𝑥, 𝜃) indicated in Figure 23. Then, the 

measurement may be directly identified with the model prediction with no post-

processing, or one can additionally process the circuit measurements, yielding a hybrid 

model in the sense that even the prediction mechanism has a quantum and a classical part. 

The training of a VQC is done by choosing a loss function 𝐿𝑘(ŷ,𝑦) to be minimized 

with respect to the variational parameters vector 𝜃. Here, ŷ is the predicted class, whilst 

y is the true class. For instance, one could employ the squared error 𝐿𝑘(ŷ,𝑦) =

 (𝑦𝑘–  𝑃(𝑦𝑘))
2
, where 𝑃(𝑦𝑘) ≡  𝑃(𝑦𝑘|𝑥𝑘) is the probability of observing the specified 

target value of the k-th observation, 𝑦𝑘, given its features 𝑥𝑘. In Figure 23, the predicted 

probability is identified by 𝑓(, 𝜃), a classical loss built from the measurements of the 

quantum circuit, which clearly depends on the features 𝑥 and the variational parameters 

𝜃 and indirectly on the circuit architecture chosen for both the feature map and the 

variational layer. 

In the context of neural networks, this optimization is often achieved with the 

gradient descent algorithm, which consists of the update of the variational parameter 

vector according to 

𝜃 → 𝜃 − 𝜂𝜕𝜃Lk (11) 

where 𝜂 is the learning rate and 𝜕𝜃 ≡
𝜕

𝜕𝜃
 denotes the directional derivative with 

respect to the variational parameters vector 𝜃. More specifically, in our implementation, 

we perform a stochastic gradient descent for the Loss optimization, which is characterized 

by the fact that the weight update step outlined above is performed for every observation 

of the training dataset. Here, we are using the TensorFlow default for the optimization 

algorithm. 

5.2. Quantum EEG approach 

The TensorFlow-Quantum® library and Cirq simulator were used to create the 

circuits and run the models without considering the quantum noise. In this study, we use 
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a QML framework to classify the subjects according to Figure 24. This approach is 

composed of four main steps. 

Figure 24- QML framework for drowsiness classification 

 

Source: The author (2024). 

 

The first step consists of the quantum data set preparation. The usual procedure of 

normalization and feature extraction used for ML or DL as pre-processing is adopted. 

Here, we used eight features to extract from the EEG signal. Three of them are related 

specifically to EEG data: HFD, Complexity, and Mobility and the others are common 

statistical features: Mean, Variance, Root Mean Square (RMS), Peak-to-Peak, and 

Maximum Amplitude. The peak-to-peak (PP) value of a waveform is defined as the 

difference between its maximum positive and maximum negative amplitudes. For a time 

series of length 𝐿, 𝑠𝑖, the variance is given by 𝜎2 =  
1

𝐿
∑ (𝑠𝑖

𝐿
𝑖=1 − 𝑠̅)2. The mean is written 

as 𝑠̅ =
1

𝐿
∑ (𝑠𝑖

𝐿
𝑖=1 ). The RMS is calculated as the square root of the mean square. It is 

calculated as 𝑃𝑃 =  𝑠𝑚𝑎𝑥  −  𝑠𝑚𝑖𝑛, where 𝑠𝑚𝑎𝑥 represents the maximum positive 

amplitude and 𝑠𝑚𝑖𝑛 represents the maximum negative amplitude. The maximum 

amplitude refers to the greatest displacement or distance a point travels on a vibrating 

body or wave, measured from its equilibrium position. It is denoted by the symbol 

$s_{max}$, representing the maximum displacement or amplitude.                

As shown in Figure 24, the vectors 𝑋1̂, 𝑋2̂ and 𝑋3̂ contain the number of columns 

relative to the number of features extracted(Sierra-Sosa et al., 2020). Eq. (12) is the 

mathematical formulation of the encoding process, where the tensor product of the vector 

space S is achieved. 
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𝑥 → |𝜓⟩ = S(𝑥0) ⊗ 𝑆(𝑥1) ⊗ ⋯

⊗ S(𝑥𝑁−1) 

(12) 

The operation performed in S(𝑥𝑖) can be developed as follows in Equation (13): 

S(𝑥𝑖) = cos (
𝜋

2
𝑥𝑖) ⋅ |0⟩ + sin (

𝜋

2
𝑥𝑖) ⋅ |1⟩ (13) 

In the second step, the objective is to evaluate the quantum circuit. The PQC is 

created by defining the logic gates that will operate the qubits. The gates’ parameters, for 

example, the rotation angles, will be adjusted during the QML model training according 

to the backpropagation effect. For performance comparison purposes, different PQCs 

architectures will be used in this study, based on the (Rasmussen & Zinner, 2022) model, 

which combines Euler rotations with entanglement. The first one consists of a sequence 

of three rotation gates (see Figure 25), namely 𝑅𝑦, 𝑅𝑥, and 𝑅𝑦, where the rotations have 

a matrix representation given by 

𝑅𝑦(𝜉) = [
𝑐𝑜𝑠

𝜉

2
−𝑠𝑖𝑛

𝜉

2

𝑠𝑖𝑛
𝜉

2
𝑐𝑜𝑠

𝜉

2

], 

(14) 

and 

𝑅𝑧(𝜉) = [𝑒−𝑖
𝜉
2 0

0 𝑒𝑖
𝜉
2

] 

(15) 

 
Figure 25 - PQC with rotation gates architecture 

 

Source: The author (2024). 

 

The second configuration is based on the Variational Quantum Eigensolver 

(VQE). An Euler rotation is defined, i.e., a sequence of 𝑅𝑦, 𝑅𝑥, and 𝑅𝑦 (C. B. S. Maior et 

al., 2023; Rasmussen & Zinner, 2022). This study tested three two-qubit gates: 𝐶𝑁𝑂𝑇, 

𝐶𝑍, and 𝑖𝑆𝑊𝐴𝑃. Their matrices are shown in Eq. (16) to (18) respectively. A generic 

visualization of the PQC scheme can be observed in Figure 26. 
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Figure 26 - PQC with VQE and generic entanglement gates architecture 

 

Source: The author (2024). 

 

CNOT = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] 

(16) 

CZ = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

] 

(17) 

𝑖SWAP = [

1 0 0 0
0 0 𝑖 0
0 𝑖 0 0
0 0 0 1

] 

(18) 

 

The third step performs the measurement operations corresponding to Pauli Z-

gate given by 

𝑍 = [
1 0
0 −1

] (19) 

In the fourth and last step, the traditional ML structure of the model is defined. In 

this work, we consider a traditional Neural Network (NN), which receives features that 

have been encoded and extracted from the database. Backpropagation is introduced into 

the PQC and flows through the NN’s weights. We here employ the numeric finite 

difference method to compute the derivatives. That is, we perform the approximation 

𝜕𝐿𝑘

𝜕𝜃𝑖

≈
𝐿𝑘(𝑦̂(𝜃𝑖 + 𝛿), 𝑦) − 𝐿𝑘(𝑦̂(𝜃𝑖), 𝑦)

𝛿
 

(20) 
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where 𝜃𝑖 denotes the 𝑖-th component of 𝜃, and 𝛿 is a small deviation. Naturally, 

as long as 𝛿 is finite, this difference will only approximate the actual derivative, achieved 

as 𝛿 →  0. If we choose a small enough 𝛿, we, in general, obtain a good approximation, 

although some care is needed to avoid numerical blowups. 

5.3. Results and discussions for QEEG 

The results obtained from the QML models in this chapter were tested on five 

individuals separately (subjects 1, 5, 6, 8 and 10), as in the previous chapter, as well as 

on all individuals together. For drowsiness detection, an EEG time window of 100 points 

was used, where the sampling frequency of 512 Hz corresponds to approximately 0.2 

seconds, similar to the previous chapter. 

Here, the metric evaluated is the test accuracy. The 12 PQCs settings and the 

classic MLP were run 10 times, and the mean and standard deviation of the accuracy were 

extracted, as shown in Table 8. Importantly, another metric extracted was the loss of the 

models; for more details see   
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APPENDIX D - Kruskal-Wallis tests  

Subject 5. Referring to Table 8, the first set of results pertains to Subject 1 

(following the same identification as in the previous chapter). Among the average 

accuracy values obtained, the hybrid quantum configuration achieved the highest result 

utilizing the 𝑖𝑆𝑊𝐴𝑃 entanglement gate with only 1 repetition layer in the circuit 

(80.08%). This value is close to the second-best configuration, which is the classic MLP 

model (79.99%). Conversely, the lowest average accuracy was observed in the 

configuration utilizing the CNOT entanglement gate with only one layer (75.92%). In our 

study, configurations involving the CNOT entanglement gate yielded the lowest results, 

along with CZ with ten layers. 
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Table 8-Accuracy results in percentage for all trained models, including the mean value 

  

Source: The author (2024). 

 

Here, we applied the Kruskal-Wallis test to assess if there is a significant 

difference among all the models employed, including the classic MLP. The Kruskal-

Wallis test is a non-parametric statistical method suitable for situations when data does 

not follow a normal distribution or when there is heterogeneity in variance among the 

groups(Lybeck et al., 2007). It allows us to determine if there is statistical evidence to 

reject the null hypothesis, thus helping us ascertain if there are significant differences in 

accuracy among the different models. The null hypothesis being evaluated is whether the 

medians of the accuracy obtained from each model are equal.  
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Using a significance level of 5%, we assessed whether a difference exists between 

the models. As depicted in Figure 27, the p-value obtained from the test was found to be 

lower than the aforementioned significance level. As a result, we have sufficient statistical 

evidence to reject the null hypothesis. Therefore, we conclude that there is indeed a 

significant difference between the models. Note that in the graphs, the labels with “rot” 

are related to the configurations 𝑅𝑦, 𝑅𝑥, 𝑅𝑦, and the numbers following them are 

associated with the amount of layers 1, 5, or 10. On the other hand, the labels “cnot,” 

“cz,” and “is” correspond, respectively, to the configurations 𝑅𝑦, 𝑅𝑥, 𝑅𝑦 +  𝐶𝑁𝑂𝑇 , 𝑅𝑦, 

𝑅𝑥, 𝑅𝑦 +  𝐶𝑍, and 𝑅𝑦, 𝑅𝑥, 𝑅𝑦 +  𝑖𝑆𝑊𝐴𝑃. The box plot presented in Figure 27 further 

illustrates this observation, with the boxes representing the models with 𝑖𝑆𝑊𝐴𝑃 and one 

circuit layer (is1), CZ, and one circuit layer (cz1), and the classic MLP (mlp) being the 

three highest. Here, the CNOT-based models exhibit considerably lower values than the 

others. 

Figure 27 - Kruskal-Wallis test to assess the factor architecture models of Subject 1 

 

Source: The author (2024). 

 

Finally, we also conducted the Kruskal-Wallis statistical test to assess the effect 

of the number of layers inserted into the circuit on the results to observe if increasing the 

number of layers leads to improvement. Our null hypothesis is as follows: The medians 

of the accuracies, considering the factor of circuit layers, are equal. We performed the 

test for each type of circuit structure. There was not enough statistical evidence to 

conclude that there is a difference between the number of layers in the configuration with 

only rotation gates (𝑅𝑦, 𝑅𝑥, 𝑅𝑦). However, the null hypothesis was rejected in the 
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configurations 𝑅𝑦, 𝑅𝑥, 𝑅𝑦 +  𝐶𝑁𝑂𝑇, Ry 𝑅𝑦, 𝑅𝑥, 𝑅𝑦 +  𝐶𝑍, and 𝑅𝑦, 𝑅𝑥, 𝑅𝑦 +  𝑖𝑆𝑊𝐴𝑃 (p-

values, respectively, 0.0003, 0.00001, and 0.00001). We observe that for CNOT, the 

higher the number of layers, the higher the result of the median of the accuracy. On the 

other hand, for CZ and iSWAP, the median is the highest in the configuration with 1 layer, 

followed by 5 layers, and then 10 layers. 

Aiming to observe if the increase of circuit layers in the QML models causes a 

better accuracy performance, a graph was plotted for Subject 10, as shown in Figure 28. 

In this illustration, the configuration used was with the two-qubit CNOT gate since the 

accuracy behavior was increased when running the model with 1, 5, and 10 layers. Thus, 

we ran the model varying the layers by units from 1 to 10. It can be seen that, from layers 

1 to 2, the increase is approximately 7 percentage points. From that to layer 5 the accuracy 

continues to increase but in smaller intervals. Between layers 5 and 10 the behavior is 

unstable; that is, there was growth, as expected. This is because the accuracy decreases 

from layer 5 to layer 7, increases in the eighth layer, decreases in the ninth and increases 

again in the tenth. Therefore, it is not possible to assume that by increasing the number 

of layers in the circuit, the model improves. 

Figure 28 - Subject 10 mean accuracy with the Ry, Rz, Ry + CNOT 

 

Source: The author (2024). 

One crucial insight gleaned from this chapter is the pivotal role of heuristics in 

determining optimal parameterized circuit architectures for VQCs. In fact, as it was 

shown, more entanglement does not invariably translate to superior predictive 

performance. Moreover, while this study focused on noiseless simulations, computations 

performed on actual quantum hardware are still deeply affected by noise, and, in fact, 

noise also has an effect in the trainability of VQCs.  
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Our research, which focus on application-oriented classical noiseless simulations, 

are important to navigate through the enormous variety of VQCs architectures, as the 

pursuit of true quantum advantage demands the identification of VQC architectures 

capable of not only outperforming classical counterparts but doing so while eluding 

efficient classical simulation. Moving forward, further research should focus on refining 

parameterized circuit designs and mitigating quantum noise, which should be explored 

via deployments on actual quantum hardware. 

The results obtained by applying quantum methods, although still limited by the 

current stage of development of quantum technologies, indicate a promising path for 

drowsiness detection in critical industrial systems. The comparison between traditional 

and quantum algorithms reveals that, even in NISQ (Noisy Intermediate-Scale Quantum) 

devices, quantum methods can offer advantages in terms of classification accuracy when 

analyzing large volumes of data. These results reinforce the potential of quantum 

algorithms as a complementary or even superior tool for complex machine learning tasks, 

especially in contexts where accuracy is critical.  
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6. DATA FUSION METHODOLOGY TO DETECT DROWSINESS 

IN INDUSTRIAL ENVIRONMENTS WITH CRITICAL SAFETY 

SYSTEMS 

This chapter focuses on enhancing the identification and prediction of drowsiness 

for operators of critical safety systems, as an operation of O&G industries. The goal is to 

aid the detection and prevention of accidents resulting from human fatigue. To that end, 

our objective is to develop a combined and multi-source model that can effectively learn 

and recognize various features associated with drowsiness. By integrating multiple data 

sources, we aim to extract more accurate information, which can be utilized to improve 

accident prevention measures.  

6.1. Proposed Methodology 

We propose two models for drowsiness detection based on data fusion: one 

operating at the decision level and another at the feature level. Our approach leverages 

the strengths of both facial and EEG data to enhance the accuracy and reliability of 

drowsiness detection in industrial environments.  

We utilized CV techniques to extract visual data of participants from a publicly 

available drowsiness database. Simultaneously, feature extraction was applied to the EEG 

raw data to facilitate identifying brain patterns related to two states of alertness during an 

attention task. Our approach involved the implementation of three distinct models: one 

for image data analysis, another for EEG data analysis and, finally, a model for data 

fusion. An overview of the proposed methodology is presented in Figure 29, highlighting 

the sequential flow of our approach. To ensure efficient processing, the collected data 

was initially separated, pre-processed, and transformed into a manageable format suitable 

for input into the learning algorithms.  

Figure 29 – General overview of the proposed methodology. 

 

Source: The author (2024). 
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6.2. Decision level model  

At the decision level, classifiers were developed using the MLP and the pre-trained 

model ResNet50, which was selected after some model tests, presenting a deep ResNet 

architecture with 50 layers and which has obtained good results when facing performance 

degradation problems. These classifiers were trained on the extracted data to perform two 

main classification tasks: i) drowsiness detection from images, and ii) drowsiness 

detection from EEG data. Furthermore, a decision rule was implemented to combine the 

outputs of the individual classifiers and enhance the overall prediction performance. It is 

worth noting that all models were trained using labeled data generated from the database 

itself, that is, the state of alertness and drowsiness given by PVT1 and PVT3. In the 

following sections, we provide a more detailed description of each of these steps. 

6.2.1. Preprocessing EEG data 

In the analysis of EEG data for drowsiness detection, preprocessing plays a crucial 

role in enhancing the quality of the data and extracting relevant features. Another 

commonly used technique (different from those covered in chapter 4) is the DWT, which 

allows for the decomposition of the EEG signal into different frequency sub bands. This 

section provides an overview of the preprocessing steps involving the application of DWT 

to EEG data. 

6.2.1.1. EEG preprocessing steps 

The steps are described below: 

• Data Acquisition: Initially, our model considers five EEG channels (Fz, 

Cz, C3, C4, and Pz) available in the database.  

• Segmentation: Before applying DWT, the EEG signal is divided into 

smaller segments, typically of fixed length, to facilitate analysis and 

feature extraction. Each segment represents a specific time window of the 

EEG recording. In our case, the DROZY database comprises 18 videos of 

10 minute-length, each has 307,200 data points, and overall, there are more 

than 5.5 million data points available. Thus, a 512-point EEG time window 

was used for real-time drowsiness detection, for which 512 Hz sampling 

frequency corresponds to ∼ 1 second.  

• DWT Decomposition: The segmented EEG signal is subjected to the 

DWT, which decomposes the signal into approximation coefficients (low-
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frequency components) and detail coefficients (high-frequency 

components) across different scales or levels.  

• Feature Extraction: DWT provides valuable information about the 

distribution of different frequency components in the EEG signal. After 

conducting numerous tests, we have found that considering only the 

approximation coefficients is sufficient for our application due to better 

performance. 

6.2.2. Preprocessing Facial data 

Preprocessing plays a crucial role in analyzing video data for drowsiness detection. 

In this section, we discuss pre-processing steps performed using CV techniques to extract 

relevant information for further analysis. 

6.2.2.1. Computer Vision Preprocessing Steps  

The following steps are performed using the cv2 library (Bradski, 2000) in 

Python: 

• Video Processing: In the video processing step, the code loads the video 

using cv2.VideoCapture. It then reads frames from the video using 

cap.read(), allowing access to each individual frame. To enhance the 

visibility or brightness of the frames, the image is normalized using 

cv2.normalize. 

• Face Detection: To detect faces in the frames, the image is converted to 

grayscale using cv2.cvtColor. The code utilizes the dlib library, 

specifically the pre-trained face detector dlib.get_frontal_face_detector(), 

which employs advanced algorithms to identify and locate faces in the 

image. 

• Facial Landmark Detection: Once the faces are detected, the shape 

predictor model (dlib.shape_predictor) comes into play. This model 

analyzes the detected faces and identifies specific facial landmarks, such 

as the corners of the eyes or the nose. By extracting the coordinates (x, y) 

of these facial landmarks, the code obtains valuable information for 

subsequent image cropping. 

• Image Cropping: Using the extracted facial landmark coordinates, the 

code defines a region of interest (ROI) that focuses on the relevant facial 

area to be cropped. The ROI is adjusted to include a specific area around 
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the detected region of interest, ensuring that the important facial features 

are captured. Finally, the cropping operation is performed using the 

defined ROI, extracting the desired portion of the image for further 

analysis. 

These preprocessing steps using CV techniques are crucial for isolating and 

extracting the necessary visual information from the video frames. Through the 

combination of face detection, facial landmark detection, and image cropping, the 

preprocessing step prepares the video frames for subsequent analysis, such as 

classification, improving the overall accuracy and performance of the drowsiness 

detection system. 

6.2.3. Data-driven models used  

After conducting numerous tests with various machine learning classifiers, it has 

been determined that utilizing the MLP Classifier for the classification of EEG data is an 

effective approach (Ramos et al., 2022). This classifier demonstrates the ability to extract 

pertinent information and identify meaningful patterns within brain signals. Thus, we use 

MLP Classifier of scikit-learn (Pedregosa et al., 2011) in conjunction with features 

extracted from DWT to perform EEG data classification. For the facial data, we explore 

the utilization of the ResNet50 architecture in CV tasks, followed by the implementation 

of an LSTM model for sequential data analysis. The ResNet models are a powerful DL 

architecture for image recognition tasks, while LSTM is commonly used for sequential 

data analysis, such as frames of video. 

6.2.3.1. MLP classifier  

To use the MLP Classifier with EEG data, the first step is to extract relevant 

features from the DWT of the EEG signals. The extracted features include spectral 

characteristics such as power and peak frequency in each subband, as cited previously. 

Once the features are extracted from the DWT of the EEG data, they are used as input to 

train and evaluate the MLP classifier. The scikit-learn MLP classifier has various 

parameters that can be adjusted to customize the model's behavior, such as the number of 

hidden layers, the number of neurons in each layer, and the activation function used in 

each neuron. 

The MLP classifier is created with a single hidden layer containing 100 neurons 

and the 'relu' activation function. The model is, then, trained with the training data, and 
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predicted labels are obtained for the test data. Finally, the performance of the model is 

evaluated. 

6.2.3.2. ResNet50 

The ResNet model was implemented using the ResNet50 architecture from the 

TensorFlow Keras library (Abadi et al., 2015). Using the model, we created an input 

tensor of the desired shape and, then, instantiated the ResNet50 class as the input. In our 

case, the model expects input images of size 125x125 pixels with three color channels. 

After processing the images using the ResNet50 model, we proceed with the 

utilization of the LSTM model for sequential data analysis. The LSTM model was 

implemented using the Sequential class from the TensorFlow Keras library (Abadi et al., 

2015). We defined the model architecture by adding LSTM layers, followed by dense 

layers with dropout regularization. We defined an LSTM layer with 1000 neurons to pass 

the output sequences to the subsequent layers. The Flatten layer was, then, added to 

convert the output into a one-dimensional vector. The model continued with dense layers. 

The final dense layer used the activation function to obtain the classification probabilities. 

In our example, the LSTM model was defined with an input shape of (75, 1000), 

indicating that it expected input sequences of length 75 with 1000 features. The training 

was implemented using the Adam optimizer (Kingma & Ba, 2014), which is a stochastic 

gradient descent method based on adaptive estimation of first-order and second-order 

moments. It is computationally efficient and suitable for complicated models with many 

trainable parameters. The learning rate was set at 0.00005. The loss function was binary 

cross-entropy, which is the most widely used in classification purposes. It measures the 

performance of a classification model whose output is a probability value between 0 and 

1. Cross-entropy loss increases as the predicted probability diverges from the actual label. 

Parameters were initialized using ImageNet (Deng et al., 2009).  

6.2.4. Data fusion 

In order to achieve a more robust and reliable drowsiness classification, a decision 

rule is employed to combine the results obtained from both the MLP and the ResNet50 

models. The goal of this strategy is to leverage the strengths of each model and make a 

collective decision based on their combined predictions (Ramos et al., 2022). 

During the classification process, each model independently assigns a class label 

to the input data, indicating whether the subject is alert or drowsy. These individual 
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predictions are then combined through a decision mechanism to determine the final 

classification. In this study, the decision-level fusion was used, as discussed in Cai et al. 

(2020). The decision rule operates as follows:  

• For each instance, the predictions from both models are considered. If 

there is a majority where one class receives more votes than the other, that 

class is chosen as the final classification.  

• However, in the event of a tie where an equal number of votes is obtained 

for both classes, a predefined rule is applied. In this case, the decision is 

made to classify the subject as drowsy. 

By employing this decision rule, our aim is to improve the metrics and overall 

performance of the drowsiness classification system. The combination of the MLP 

model's analysis of EEG features and the CV model's evaluation of visual signals provides 

complementary information, leading to a more comprehensive evaluation of drowsiness 

levels. 

6.3. Results and discussion for decision level model 

This section presents the results and discusses our proposed drowsiness detection 

system. The section is divided into three parts, and each one focuses on a specific model 

as well as its contributions to system performance: (1) drowsiness detection based on 

EEG data, (2) drowsiness detection based on facial image data, and (3) the fusion model 

for combined data detection. All the experiments were run on a GPU running Python 

Version 3.9 with a 3.6 GHz Intel CORE i9-9900K processor, 32 GB of RAM. 

6.3.1. Drowsiness detection model from EEG Data 

Numerous tests were performed to identify the most suitable ML as well as the most 

suitable channel for representation. The results presented are for the best-performed one, 

achieved for the MLP classifier and for the C4 channel. To consider real-time drowsiness 

detection, an EEG time-window containing 512 points was selected, which, at a sampling 

frequency of 512 Hz, represents <1 s, as can be seen in Figure 30.  
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Figure 30 - Representation of EEG data to feed the model. 

 

Source: The Author (2024). 

 

To assess the learning and generalization ability of the drowsiness detection model 

from EEG Data, the test data, representing 1s, was aligned with the seconds of test data 

from the video image window. In this way, each subject presented a different amount of 

test data for different alert states, as shown in Table 9. 

This same amount of alertness and drowsiness test data was also considered for 

the CV model. Thus, the accuracy of the EEG data, which passed through the DWT 

feature extraction, is presented in Table 10. 

Table 9 - Amount of test data for the five subjects. 

Subject Alertness 

test data 

Drowsiness 

test data 

1 84 87 

5 84 81 

6 81 87 

8 81 87 

10 87 90 

Source: The author (2024). 

Table 10 - Results of the accuracy of the EEG data 

Subjects 1 5 6 8 10 

Accuracy 85.38% 57.10% 97.12% 72.62% 84.71% 

Source: The author (2024). 
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Three out of 5 subjects achieved a more significant performance (i.e., subjects 1, 

6 and 10), with an accuracy above 80% of detection. Still in Table 10, subject 5 had the 

worst result, when exclusively considering the DWT feature extraction in the MLP model. 

In fact, this finding agrees with the results of (Ramos et al., 2022), where it was observed 

that subject 5, despite the use of other extraction features, presented the poorest results 

compared to other subjects. Subject 8, in turn, presented an accuracy of around 70%. This 

variation in performance among individuals demonstrates the presence of interpersonal 

variability, highlighting the challenge of accurately distinguishing between awake and 

drowsy states based solely on EEG features. The confusion matrices and metrics for each 

subject in this case are shown in the Figure 31 and Table 11, respectively. 

 

Figure 31- Confusion matrix from EEG model per subject (1, 5, 6, 8, 10, for (a), (b), (c), (d), and (e), 

respectively)  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Source: The Author (2024). 

 

Table 11 - Per-subject metrics for the EEG model 

Subject Label Precision Recall F1-score 

1 0 0.82 0.89 0.86 
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1 0.89 0.82 0.85 

5 
0 0.57 0.61 0.59 

1 0.57 0.53 0.55 

6 
0 0.94 1.00 0.97 

1 1.00 0.94 0.97 

8 
0 0.71 0.73 0.72 

1 0.74 0.72 0.73 

10 
0 0.86 0.83 0.84 

1 0.84 0.87 0.85 

Source: The Author (2024). 

 

For subjects 1, 6, and 10, we observed consistently high results across all metrics, 

indicating robust performance of the model in detecting both states. These subjects 

achieved accuracies, recalls, and F1-scores above 0.80 for both states, demonstrating a 

reliable ability to distinguish between alertness and drowsiness. However, for subject 5, 

the results were significantly lower, with precisions, recalls and F1-scores around 0.57 

for both states. This suggests an additional difficulty in detecting drowsiness for this 

specific subject, which may be related to unique individual characteristics in their EEG 

patterns. Subject 8 presented intermediate results, with metrics around 0.70 for both 

states. This indicates reasonable model performance, but with room for improvement in 

terms of precision and recall. Highlighting the importance of personalization and 

adaptation of the model to deal with interpersonal variability and achieve accurate and 

reliable detection of drowsiness in diverse individuals. 

6.3.2. Drowsiness Detection Model from Facial Data 

In this part, we evaluate the performance of the ResNet50 model using the images 

extracted from CV-based techniques. In this analysis, a 5-second time window was 

employed for each test data to enhance the detection of facial information 

comprehensively. To prevent any time overlap between the test and training data, the 

seconds within each test data time window were excluded from the training data. This 

approach ensures that the model is evaluated on unseen facial (more specifically, eye 

crop) images and provides a more accurate assessment of its performance in detecting 

drowsiness, as can be seen in Figure 32. Table 12 shows the computational times, 

measured in seconds, necessary to process the data for training and testing the models. 
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We highlight that the processing time for subject 10 is almost double the average for the 

other subjects because the camera recorded in the experiment was different, having twice 

as many frames per second. 

Figure 32 - Representation of image data to feed the model. 

 

Source: The Author (2024). 

Table 12- Run times in seconds by model for the five subjects. 

Subject Train Test 

1 2510.845 850.693 

5 2267.739 769.462 

6 2269.260 752.608 

8 2270.812 744.312 

10 4925.148 1593.598 

Source: The Author (2024). 

We measure the performance of the ResNet50 model using various evaluation 

metrics, including accuracy, precision, recall and F1 score. These metrics provide 

information about the model's ability to correctly classify drowsiness and alertness states 

based on facial features. In addition, we analyzed the model's confusion matrix to 

understand any misclassifications and identify potential areas for improvement. Thus, 

accuracy of the facial data is presented in Table 13. 

Table 13 - Results of the accuracy of the facial data 

Subjects 1 5 6 8 10 

Accuracy 94.73% 100% 92.86% 76.78% 91.80% 

Source: The author (2024). 
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CV-based drowsiness detection results show promising accuracy rates for subject 

tests. Four out of the five evaluated subjects achieved accuracy levels above 90%. Subject 

5 demonstrated a perfect accuracy rate of 100%, indicating that the model correctly 

classified all cases of drowsiness and alertness. Subjects 1, 6 and 10 also achieved high 

accuracy rates of 94.73%, 92.86% and 91.80%, respectively, indicating a reliable 

performance and validating the effectiveness of the CV approach from the model 

ResNet50. However, Subject 8 continued to show a low accuracy rate (i.e., 72.61%), 

suggesting some challenges in accurately classifying drowsiness in this specific case. The 

confusion matrices and metrics for each subject in this case are shown in the Figure 33 

and Table 14, respectively. 

 

Figure 33 - Confusion matrix from CV model per subject (1, 5, 6, 8, 10, for (a), (b), (c), (d), and (e), 

respectively)  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Source: The author (2024). 

 

It is worth noting that the test dataset used to evaluate the CV-based drowsiness 

detection model is relatively small, with a limited number of instances for each subject 

(see Table 9). The number of samples of alertness and drowsiness test data varies from 

81 to 90 depending on the subject, with the smallest being for subject 5. Although these 
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sample sizes may be considered small, it is important to recognize that the model still 

achieved high accuracy rates despite the limited amount of data. However, it is essential 

to further validate the performance of the model in different formats from the datasets to 

ensure its robustness and generalization ability across different individuals and scenarios. 

Table 14 - Per-subject metrics for the CV model 

Subject Label Precision Recall F1-score 

1 
0 0.90 1.00 0.95 

1 1.00 0.90 0.95 

5 
0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

6 
0 0.89 0.98 0.93 

1 0.97 0.89 0.93 

8 
0 0.70 0.75 0.73 

1 0.75 0.70 0.73 

10 
0 0.93 0.90 0.91 

1 0.90 0.93 0.92 

Source: The author (2024). 

For subjects evaluated in the CV model, we consistently observed high results 

across all metrics, indicating robust performance of the model in detecting both states. 

Specifically, four of the five subjects achieved precision, recall, and F1-score rates above 

90%.   

However, as with the EEG-based model, subject 8 continued to show a relatively 

low accuracy rate (i.e., 72.61%), indicating some difficulties in accurately classifying 

drowsiness in this specific case. This variation in performance across subjects once again 

highlights the importance of considering interpersonal variability when evaluating the 

effectiveness of drowsiness detection models. It is also worth mentioning that these 

models were trained for each individual subject, with no generalization of facial 

information. 

6.3.3. Drowsiness Detection Fusion Data Model 

In the data fusion approach, we combined the predictions from both the MLP 

model using features extracted from DWT of EEG data and the CV-based model. By 

assessing the recall of class 1 (Table 15), that is, the ratio between the number of true 

positives for drowsiness and the total number of positive cases for drowsiness, the data 
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fusion model demonstrated superior performance to both individual models (EEG and 

CV). Despite a slightly lower accuracy compared to the CV model in most cases (Table 

17), the drowsiness detection reached values close to or equal to 100% in 4 out of 5 

subjects and surpassed the CV result for Subject 8. For instance, for Subject 6, the CV 

model made incorrect predictions for 10 test data of the drowsiness class, whereas the 

data fusion model got all of them right, showcasing the significant benefit of 

incorporating EEG data. 

However, it's crucial to mention that, considering the recall for the alert state, we 

observed a decrease in almost all subjects in the data fusion model compared to the 

separate CV model. Subject 5, in particular, showed a significant drop, going from a recall 

of 100 in the CV model to 61 in the data fusion model. This decline can be attributed to 

the less robust performance of the EEG model and the conservative nature of the decision 

rule in the data fusion model. However, the recall per subject for drowsiness had a 

significant improvement in the data fusion model, compared to previous models, as can 

be seen in Table 15. 

Table 15 - Per-subject recall for drowsiness state for the three models 

Subject 
Recall 

EEG CV Data fusion 

1 0.82 0.90 0.98 

5 0.53 1.00 1.00 

6 0.94 0.89 1.00 

8 0.72 0.70 0.72 

10 0.87 0.93 1.00 

Source: The author (2024). 

 

In Table 16, we observed an accuracy performance of the data fusion model 

compared to individual EEG and CV models. In terms of accuracy, the data fusion model 

outperformed EEG results in 4 out of 5 subjects, matching only Subject 8. Regarding CV 

results, the data fusion model surpassed only Subject 6, and was comparable to Subject 

1. 

Table 16 – Accuracy performance of the three models 

Data source 
Subjects 

1 5 6 8 10 

EEG 85.38% 57.10% 97.12% 72.62% 84.71% 
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CV 94.73% 100% 92.86% 76.78% 91.80% 

Data fusion 93.57% 80% 98.81% 72.62% 88.70% 

Source: The author (2024). 

 

These results highlight the effectiveness of combining both EEG-based and facial-

based features for detecting drowsiness. The data fusion approach yielded improved 

accuracy in most subjects compared to individual models of the EEG data. This suggests 

that leveraging the complementary information extracted from both modalities can 

enhance the overall performance of drowsiness detection systems. It is important to note 

that the data fusion approach achieved the highest accuracy in Subject 6, indicating the 

significance of integrating multiple sources of information for accurate drowsiness 

detection in different individuals. The confusion matrices and metrics for each subject in 

this case are shown in Figure 34 and Table 17, respectively. 

Figure 34 - Confusion matrix from data fusion model per subject (1, 5, 6, 8, 10, for (a), (b), (c), (d), and 

(e), respectively)  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Source: The author (2024). 
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Table 17 - Per-subject metrics for the data fusion model 

Subject Label Precision Recall F1-score 

1 
0 0.97 0.89 0.93 

1 0.90 0.98 0.94 

5 
0 1.00 0.61 0.59 

1 0.71 1.00 0.76 

6 
0 1.00 0.98 0.83 

1 0.98 1.00 0.99 

8 
0 0.71 0.73 0.72 

1 0.74 0.72 0.73 

10 
0 1.00 0.77 0.87 

1 0.82 1.00 0.90 

 

The results from Table 17 suggest that the fusion model generally outperformed 

the individual EEG and CV models in terms of accuracy, precision, recall, and F1-score. 

This improvement in performance underscores the potential benefits of combining 

multiple modalities for drowsiness detection. Additionally, the fusion model may be less 

prone to biases inherent to individual methods, as it integrates diverse sources of 

information, thereby providing a more holistic and neutral assessment of drowsiness. 

However, it is important to note that, similar to the individual models, the fusion 

model still exhibited some variability in performance across different subjects. Subject 8 

continued to show relatively lower accuracy rates compared to other subjects, indicating 

ongoing challenges in accurately detecting drowsiness in this specific case. This 

highlights the continued importance of considering interpersonal variability and fine-

tuning model parameters to optimize performance for different individuals. 

Discussion of the results focused on the overall performance of the fusion model 

compared to individual models, highlighting the improvements achieved through the 

integration of EEG and facial image data. We also address the implications of decision 

rule, its impact on decision-making, and the potential benefits of using multiple 

modalities in enhancing drowsiness detection accuracy. 

By analyzing the results, we gained valuable insight into the effectiveness of the 

ResNet50 model and the benefits of integrating EEG and CV techniques for drowsiness 

detection. The findings provide a solid foundation for further advances in the 
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development of robust and reliable systems to prevent accidents caused by drowsy 

operators in critical safety systems. 

6.4. Feature level model 

At the feature level, the approach involves transforming EEG signals into 

spectrograms, preprocessing both EEG and facial data, and aggregating the features 

before feeding them into a deep learning model for training and evaluation. 

6.4.1. Processing EEG Data 

The first major step in our methodology is the transformation of raw EEG signals 

into spectrograms. This involves the following steps: 

• Data Acquisition: EEG data is loaded from EDF files using the MNE 

library. For this study, we focus on the C4 channel as it has shown 

significant relevance in previous tests. 

• Segmentation: The continuous EEG data is segmented into 1-second or 5-

second windows. This is achieved by dividing the data into segments of a 

fixed length corresponding to the sampling frequency. 

• Spectrogram Generation: Each EEG segment is transformed into a 

spectrogram using the SciPy library's spectrogram function. This 

transformation involves applying a Hamming window and converting the 

power spectral density to a decibel scale. 

• Saving Spectrograms: The spectrograms are saved as images in specific 

folders, each representing a 1-second or 5-second window of consecutive 

EEG segments. 

6.4.2. Aggregating Data and Model Training 

After preprocessing the EEG data into spectrograms and organizing the facial 

frames, the next step involves aggregating these features and passing them to a deep 

learning model for training. The steps include: 

• Loading and Preprocessing Images: Both the frames from video data and 

the spectrograms are loaded and preprocessed using the OpenCV library. 

Each image is resized to a target size suitable for the ResNet50 model and 

normalized using the preprocess_input function from TensorFlow. 
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• Feature Extraction: Features are extracted from both the frames and 

spectrograms using the ResNet50 model pre-trained on ImageNet. The 

model is used without its top layer, and the output features are pooled using 

global average pooling. 

• Data Aggregation: The extracted features from the frames and 

spectrograms are concatenated to form a single feature vector for each 

instance. This aggregated feature set provides a comprehensive 

representation of both visual and EEG data. 

• Model Training: The aggregated feature vectors are used to train a dense 

neural network. The network architecture includes several dense layers 

with ReLU activation, followed by a sigmoid activation function in the 

output layer for binary classification (alert vs. drowsy). 

• Evaluation: The model's performance is evaluated using standard metrics 

such as accuracy, precision, recall, and the confusion matrix. The 

evaluation helps assess the model's effectiveness in detecting drowsiness 

based on the data fusion. 

By following this methodology, we aim to leverage the complementary information 

from EEG spectrograms and visual frames to improve the robustness and accuracy of the 

drowsiness detection system. The combination of features from multiple data sources is 

expected to provide a more holistic assessment of the operator's cognitive state, leading 

to more reliable drowsiness detection in industrial environments. 

6.5. Results and discussion for feature level model 

This section presents the results and discusses our proposed feature-level 

drowsiness detection system. The section is divided into three parts: (1) presentation of 

the results using confusion matrices and classification metrics for 1s data, (2) presentation 

of the results using confusion matrices and classification metrics for 5s data, and (3) 

discussion of the findings and comparison with the results of the decision-level model. 

6.5.1. Presentation of results (1-second window) 

The results for the feature level model with a 1-second window, focusing on the 

C4 channel, are summarized in the following confusion matrices (Figure 35) and 

classification reports (Table 18) for each subject. Confusion matrices for additional 
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channels (FZ, C3, CZ, and PZ) for the same subjects, are provided in APPENDIX E - 

Extended performance of feature-level models. 

The results for the feature-level model demonstrate strong performance in 

classifying drowsiness across multiple subjects. The model consistently achieved high 

precision, recall, and F1 scores, particularly for Subjects 5 and 6, who achieved perfect 

scores across all metrics. 

For Subject 1, the model achieved an overall accuracy of 93%, with a precision of 

1.00 for awake states and a recall of 0.85. The slightly lower recall for the drowsy state 

indicates that some instances of drowsiness were missed, which is a critical consideration 

for further improving the model. 

Subjects 5 and 6 exhibited exceptional performance, with 100% precision, 

accuracy, recall, and F1 scores. This indicates that the model was highly effective in 

distinguishing between drowsy and awake states for these subjects, demonstrating the 

potential of the feature-level model in real-world applications. 

 

Figure 35 - Confusion matrix from data fusion feature level model (1s-w) per subject (1, 5, 6, 8, 10, for 

(a), (b), (c), (d), and (e), respectively)  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Source: The author (2024). 
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Table 18 - Per-subject metrics for the data fusion feature level model (1s-w)  

Subject Label Precision Recall F1-score 

1 
0 0.87 1.00 0.93 

1 1.00 0.85 0.92 

5 
0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

6 
0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

8 
0 1.00 0.95 0.97 

1 0.95 1.00 0.98 

10 
0 0.70 0.97 0.81 

1 0.94 0.59 0.72 

Source: The author (2024). 

 

 

Subject 8 also showed high performance, with an accuracy of 98%, precision of 

0.95 for awake states, and an F1 score of 0.98. Subject 10 exhibited a lower accuracy of 

78%, with a precision of 0.94 for awake states, but a significantly lower recall of 0.59. 

This suggests that the model struggled to accurately identify all instances of drowsiness 

for this subject. 

6.5.2. Presentation of results (5-second window) 

The results for the feature level model with a 5-second window are presented in 

the following confusion matrices (Figure 1) and classification reports (Table 19) for each 

subject: 
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Figure 36 - Confusion matrix from data fusion feature level model (5s-w) per subject (1, 5, 6, 8, 10, for 

(a), (b), (c), (d), and (e), respectively)  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Source: The author (2024). 

 

Table 19 - Per-subject metrics for the data fusion feature level model (5s-w)  

Subject Label Precision Recall F1-score 

1 
0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

5 
0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

6 
0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

8 
0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

10 
0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

Source: The author (2024). 
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The feature level fusion model with a 5-second window also demonstrates high 

accuracy across all subjects. Key observations include: 

• Subjects 1, 2, 6, 8, and 10: Achieved near-perfect precision, recall, and F1-scores, 

indicating the model's ability to maintain high performance over longer windows. 

• The 5-second window allows for the capture of more comprehensive patterns over 

time, which may contribute to the slight improvement in performance metrics 

compared to the 1-second window model but suffers from a decrease in 

operational performance due to having to process five times more data. 

Overall, the feature level fusion model, whether using a 1-second or 5-second 

window, shows significant improvements over the decision level model. This approach 

leverages the combined strengths of both EEG and facial data, leading to a more robust 

and reliable drowsiness detection system. 

6.5.3. Comparison with decision-level model 

When comparing the results from the feature-level model to the decision-level 

model presented in section 6.3, several key differences and improvements can be 

observed: 

• Overall Accuracy: 

The feature level model generally shows higher accuracy across most subjects 

compared to the decision-level model. For example, subjects 5 and 6 achieved 100% 

accuracy with the feature-level model (1-second window), while their performance was 

slightly lower with the decision-level approach. For the 5-second window models, the 

results are better, but with a computational increase compared to the 1-second model. 

• Precision and Recall: 

The feature level model provides higher precision and recall for most subjects. 

Specifically, for Subjects 5 and 6, indicating an excellent ability to correctly identify both 

drowsy and awake states without any false positives or false negatives. 

For Subject 10, however, the feature level model shows a noticeable drop in recall 

for the awake state (0.59) compared to the decision-level model; for the 5-second window 

model, this issue is resolved. 

• F1-Score: 

The F1-scores, which balance precision and recall, are generally higher for the 

feature level model. This indicates a more balanced performance in identifying drowsy 

states accurately. 



108 

Subject 8, for example, had an F1-score of 0.98 with the feature level model, 

demonstrating a significant improvement over the decision-level approach. 

• Error Analysis: 

The feature level model reduces the type II errors (false negatives) significantly 

for most subjects, ensuring that fewer instances of drowsiness go undetected. This is 

critical in safety-critical environments where missing a drowsy state can lead to severe 

consequences. 

The feature level model's ability to aggregate and leverage both EEG and facial 

data features results in more accurate and reliable drowsiness detection. This enhanced 

performance is particularly valuable in industrial environments, where maintaining high 

levels of alertness is crucial for safety and operational efficiency. 

By integrating data at the feature level, the model benefits from a richer 

representation of the underlying patterns associated with drowsiness. This approach can 

significantly improve the robustness of drowsiness detection systems, reducing the risk 

of accidents and enhancing overall safety. 

6.6. DrowsinessNET: A proposal of a web-based friendly interface to detect 

drowsiness 

Overall, the proposed methodology for identifying drowsiness risk factors has 

shown promising results, indicating its potential usefulness as a tool to support safety 

personnel and operators in high-risk industries. In line with this objective, we have 

developed a user-friendly web application called DrowsinessNET that incorporates 

trained classifiers based on our proposed model. 

The aim of DrowsinessNET is to assist operators and safety personnel in 

identifying and assessing drowsiness-related scenarios, particularly in environments 

where sustained attention and vigilance are crucial, such as control rooms in industries 

like oil and gas. The application operates by allowing users to input real-time biological 

data, including video images and/or EEG signals, to predict drowsiness levels accurately. 

DrowsinessNET utilizes advanced machine learning models to provide real-time 

predictions of drowsiness levels, enabling users to take proactive measures and, then, 

prevent potential safety incidents. 

In addition to real-time drowsiness prediction, DrowsinessNET includes a feature 

that allows users to upload recorded video and/or EEG data for testing and training the 
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prediction model. This feature provides users with the flexibility to customize and refine 

the prediction model based on their specific requirements and scenarios. 

By offering a streamlined approach to drowsiness prediction, DrowsinessNET 

simplifies the process of assessing and managing drowsiness-related risks in high-risk 

environments. Rather than relying solely on subjective assessments, operators and safety 

personnel can harness the application's predictive capabilities to identify and mitigate 

potential safety hazards proactively. 

DrowsinessNET is developed in Python, leveraging libraries such as Streamlit for 

web application development, Keras for building machine learning models, and other 

essential tools like TensorFlow for deep learning tasks (Chollet et al., 2015). The 

application is structured into four main sections: i) What is DrowsinessNET, ii) User's 

Guide, iii) Data Upload, and iv) Real-Time Drowsiness Detection. As depicted in Figure 

37, a sidebar menu on the left side of the screen allows users to navigate between these 

sections. 

Figure 37 - What is DrowsinessNET 

Source: The author (2024). 

The first section provides an overview of DrowsinessNET and its capabilities. The 

primary objective of the application is to predict drowsiness levels based on real-time 

biological data input by users. By analyzing video images and EEG signals, 

DrowsinessNET identifies potential drowsiness episodes, enabling users to take 

preventive measures to ensure safety. 

6.6.1. User’s Guide 

The User Manual section provides comprehensive guidance on how to navigate 

and utilize DrowsinessNET effectively. It includes step-by-step instructions on accessing 

different features of the application, such as uploading data, configuring settings, 
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interpreting results, and troubleshooting common issues (Figure 38). Users can refer to 

this section to understand the functionalities of DrowsinessNET and make the most out 

of its capabilities. 

Figure 38 - User’s guide interface 

 

Source: The author (2024). 

6.6.2. Data Upload 

In the Data Upload section, users can easily upload their biological data, typically 

consisting of video images and/or EEG signals, to initiate the drowsiness detection 

process. The interface allows users to select and upload files from their local storage or 

input data from compatible external devices (Figure 39). DrowsinessNET seamlessly 

processes the uploaded data, extracting relevant features and utilizing machine learning 

algorithms to predict drowsiness levels accurately. Upon selecting the files, 

DrowsinessNET performs a synchronization check to ensure temporal alignment between 

the two input streams. For instance, if the EEG data consists of a 10-minute recording and 

the video data also spans 10 minutes, the synchronization process ensures that 

corresponding moments in both streams are matched, which is essential for accurate 

drowsiness detection. 
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Figure 39 - Data upload interface 

 

Source: The author (2024). 

6.6.3. Real-Time Drowsiness Detection 

The Real-Time Drowsiness Detection feature enables users to monitor drowsiness 

levels continuously in real-time. By interfacing with live video feeds and EEG devices, 

DrowsinessNET analyzes incoming data streams to detect signs of drowsiness as they 

occur (Figure 40). Users can observe drowsiness predictions in real-time through intuitive 

visualizations and receive timely alerts or notifications to take appropriate actions, such 

as initiating rest breaks or alerting supervisors. This functionality enhances situational 

awareness and enables proactive interventions to mitigate the risks associated with 

drowsiness in high-risk environments. 

Figure 40 - Real-time drowsiness detection interface 

 

Source: The author (2024). 
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7. OPERATOR PERFORMANCE IN AUTOMATED OIL AND 

GAS OPERATION 

Part of this chapter has been presented at 33rd European Safety and Reliability 

Conference (Esrel) (Ramos et al., 2023), and describes the proposed experiment that aims 

at analyzing the human performance of control room operators of automated O&G 

operations. The experiment objective is to evaluate the impact of automation-related 

factors on operator performance based on a microworld simulation, with variables 

controlled and measured. The experiment in an O&G process proposes to investigate 

whether operators can maintain a water level within the pre-established limits to have an 

acceptable vapor pressure level in the High Pressure (HP), Medium Pressure (MP) and 

Low Pressure (LP) steam collectors. Additionally, we will collect information on 

automation complacency, human errors, and assess the level of attention/drowsiness 

among operators.  

7.1. Experiment description 

The experiment, inspired by real oil refineries, simulates a hypothetical steam 

system comprising two gas turbines with dedicated Heat Recovery Steam Generators 

(HRSG) and a three-pressure steam distribution system. In addition, the system includes 

a steam generator boiler, a boiler drum supply and drain system, a burning system, and a 

heated gas output system; Figure 41 shows the steam system. 

 

Figure 41-Schematic representation of the steam system in a refinery. 

 

Source: Adapted from MIURA (2023). 

 

The fired boiler is part of a process in which a liquid is heated and vaporized. 

Normally, water serves as the working fluid, and the separation into liquid water and 

steam takes place in the boiler drum. In this type of process, it is extremely important to 
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control the water level in the boiler drum, which cannot be too high or too low. Thus, for 

our simulation, some simplified scenarios were proposed: 

• If the water level is low: it can disrupt the circulation of steam within the system, 

potentially causing adverse effects on the pipes; 

• If the water level is extremely low: the boiler can run dry, causing mechanical 

damage to the equipment and not taking steam to the parts needed in the rest of 

the process (causing major consequences); 

• If the water level is high, it can affect the steam’s purity and result in more water 

droplets entering the superheater with the saturated steam. To vaporize these water 

droplets, more heat will be required, increasing the thermal load, also causing 

adverse effects on pipes; 

• If the water level is extremely high, some amounts of liquid may be carried 

downstream and damage the equipment. 

Thus, the operator and/or the system must act to maintain standard operational 

control. Keeping the boiler drum level at 50% during operation is normally the standard. 

Thus, the actions taken are presented in Table 20 depending on the scenario. 

Table 20 – Summary of scenarios, consequences and actions that should be taken. 

Scenarios  Consequences Actions 

Low water 

level 

Tubes can be affected by a lack of optimal 

steam circulation; 

Open water injection 

valve 

Too low water 

level  

Boiler running dry, causing mechanical 

damage to the equipment; 

Open water injection 

valve 

High water 

level 

Steam purity is affected, increased heat load to 

vaporize water droplets, pipes affected; 

Open drain valve 

Too high water 

level  

Transported liquids causing mechanical 

damage to the equipment. 

Open drain valve 

Source: The author (2024). 

 

7.2. Process Plant Simulation  

The plant is simulated using AVEVA, a dynamic simulation software (AVEVA 

2020), which focuses on dynamic simulation studies and emphasizes key modeling 

assumptions and expected results. The software was selected for the process plant 
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simulation due to its robustness and industry recognition as a reliable tool for dynamic 

modeling in the oil and gas industry. AVEVA provides an intuitive interface and features 

designed to replicate complex operating environments, which align well with the needs 

of this study. 

Other options, such as Aspen HYSYS (AspenTech, 2024) and CHEMCAD 

(Chemstations, 2024), were considered during the study planning phase. While these tools 

also offer interesting features, AVEVA was specifically chosen for its ease of integration 

with other software used in this study (subsection 7.4) and its ability to simulate dynamic 

process behaviors with a high degree of accuracy. From this, among the thirteen default 

processes available in the software, we specifically utilize the Steam Drum Three Element 

Control simulation for our study. 

A gas turbine generator/heat recovery steam generator (GTG/HRSG) is shown in 

Figure 42. High-pressure steam is produced in the HRSG and sent to the Refinery North 

End via the gas turbine exhaust, which has a temperature of 958ºF. A superheater, a boiler, 

an economizer, and a steam drum constitute the HRSG that supports the supplemental 

firing of natural gas using excess oxygen in the gas turbine exhaust. The steam drum level 

is maintained with a three-element control system. Table 21 comments on the main 

components of the system. 

 

Source: The author (2024). 

 

Figure 42- Dynamic simulation of a refinery steam from AVEVA 
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Table 21 - Main components of the system 

Name Component Unit 

SHA  Superheater A K 

DRUMA Drum A kPa 

BOILA Boiler A K 

ECONA Economizer A K 

HRSG  Heat recovery steam 

generator 

- 

GTG Gas turbine generator Kg/sec 

Source: The author (2024). 

 

7.3. Human-System Interface  

The system is deemed to be highly automated, but it still needs to be monitored by 

an operator. The control and management of a system in a petrochemical industry can be 

performed with a graphical user interface known as a control panel or dashboard. Thus, 

we implemented through Wonderware InduSoft web studio software (AVEVA, 2023) a 

control panel that schematizes the simulation (Figure 43). 

 

Figure 43-Preliminary dashboard proposed in InduSoft 

 

Source: The author (2024). 
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In this type of control mechanism, water is fed into the boiler drum through one or 

more pipes and, therefore, through one or more control valves. Only the water level in the 

drum is measured using a level transmitter and the information is sent to the controller. 

The information is compared with the set point and, then, the control valves are manually 

operated to increase or decrease the flow of water inside the boiler drum. 

7.4. Integration with Matrikon OPC Server for Simulation 

To ensure seamless communication between the simulated plant components and 

the control system interface, the Matrikon OPC Server for Simulation was utilized. 

Matrikon OPC is an industry-standard software that facilitates Open Platform 

Communications (OPC), enabling real-time data exchange between different systems, 

including simulation environments and human-machine interfaces (HMIs). 

7.4.1. Role of Matrikon OPC in Simulation 

The Matrikon OPC Server for Simulation acts as an intermediary between the 

AVEVA dynamic simulation software and the Wonderware InduSoft Web Studio control 

panel. In this setup, Matrikon OPC serves as a bridge, ensuring that data from the 

simulated plant’s key variables—such as water level, steam pressure, and valve status—

are communicated to the operator’s dashboard in real time. 

• Data Flow: The OPC server continuously transfers critical data points such as 

boiler drum water levels and HRSG component statuses to the control panel. The 

operator can then monitor and adjust these variables based on the real-time 

feedback provided by the system. 

• Interoperability: One of the advantages of Matrikon OPC is its interoperability 

with various control systems and platforms, ensuring compatibility between the 

AVEVA software and the InduSoft interface. This allows for the creation of a 

realistic control room environment, where real-time decisions can be simulated 

based on the data generated by the plant model. 

7.4.2. Importance of OPC for Human Performance Analysis 

The use of the Matrikon OPC Server is critical for accurately simulating the 

operator's role in controlling the refinery system. By providing real-time data, the server 

ensures that operators are exposed to realistic operational conditions, including varying 

water levels in the boiler drum and potential system errors, as reflected in the dashboard 
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interface. This level of integration allows for a thorough evaluation of human 

performance under both normal and emergency conditions. 

• Event Handling: The OPC server also facilitates the triggering of system events, 

such as automation failures or process disturbances, which the operator must 

respond to. This allows for a detailed analysis of reaction times, decision-making 

processes, and human errors in a highly automated environment. 

• Scalability for Future Experiments: Additionally, Matrikon OPC provides 

scalability for future experiments. More complex scenarios, including multiple 

process variables or the introduction of additional error conditions, can be 

integrated into the simulation environment with minimal modifications to the 

OPC server configuration. 

 

7.5. Control and measurement variables of the experiment  

The experiment aims to assess the impact of certain factors related to an automated 

system on human performance. Firstly, human performance must be defined in the 

context of the task. In this task, an adequate performance is to open or close the valves 

when needed by the plant, where the water level significantly deviates from the optimal 

range, either exceeding predetermined upper (water level is high or too high) or lower 

(water level is low or too low) thresholds.  

Human Failure Events (HFEs) in this task are: (1) opening/closing the valve too 

early or too late, (2) manipulating the incorrect equipment, or (3) not performing the 

action. These HFEs are translated into measurable variables: reaction time and correct 

action (Table 22). Reaction time refers to the time interval between the moment a 

deviation (e.g., water level change) occurs in the system and the moment the operator 

initiates an action. Correct action refers to the appropriateness and accuracy of the 

operator's response to a given deviation. A correct action is characterized by performing 

the right operation (e.g., opening or closing the correct valve) at the appropriate time to 

address the system issue effectively. Furthermore, the factors to be analyzed must be 

translated into control variables, namely, monitoring time, task complexity, and failure in 

automation, further described in following sub-sections. 
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Table 22 – Experiment’s control and measurable variables 

 

 

 

 

 

Source: The author (2024). 

7.5.1. Monitoring time 

In automated operations, it is common for operators to go for extended periods 

without any actions required on their part, leading to a potential decrease in situational 

awareness. Situational awareness, as defined by Endsley (1995), involves perceiving 

elements in the environment, understanding their meaning, and projecting their status into 

the near future. The lack of immediate stimuli or occurrences can cause complacency, 

making it challenging to be prepared to quickly recognize newly emerging problems. 

When monitoring automated systems, it frequently takes people a long time to 

notice that a situation calls for action, and even longer to fully comprehend it and respond 

appropriately (Endsley, 2017). This gap between problem detection and action can result 

in critical delays and negatively impact the effectiveness of needed interventions. 

Therefore, it is essential to adopt strategies to mitigate the decrease in situational 

awareness.  

7.5.2. Task complexity 

In general, procedures lessen the likelihood that human operators would forget or 

skip an activity they need to do, reduce their physical and/or cognitive workload by 

providing explicit instructions, and maintain their performance over time. However, 

complicated procedures (i.e., incomplete, inaccurate, inconsistent, or difficult to 

understand) reduce human performance, suggesting that tasks’ complexity has an impact 

on it (Jang et al., 2021). 

The level of complexity also can negatively affect human performance. Hence, 

there are points of attention that the operator must focus on; however, there are several 

other points that bring information about the system but do not necessarily impact its 

action. For example, when the water level is rising (or decreasing), the operator can see 

the variation in the water level display (right side of the steam generator drum) and in the 

Measurable variables 
Reaction time 

Correct action 

Control variables 

Monitoring time 

Task complexity 

Failures in automation 
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water level over time (left side of the steam generator drum) shown in Figure 43. The 

system is also proposed to alarm (box at the bottom left) if the level exceeds certain pre-

established limits.  

7.5.3. Failures in automation  

In our example, automation is designed to function correctly for a period, to build 

operator' confidence in the system, which may lead to complacency. Automation 

complacency is a critical topic in automation safety. Complacency manifests in 

inadequate monitoring and checking of automated functions, as exemplified by pilots who 

overly rely on their autopilot's proper functioning and consequently fail to monitor and 

check it appropriately (Bahner et al., 2008). According to (Parasuraman & Manzey, 

2010), automation complacency is found for both inexperienced employees and experts 

and cannot be overcome with simple training practice and can affect decision-making in 

individuals as well as in teams. 

Thus, we randomly induce an automation error over time, which can only be noticed 

when one of the events occurs and the visual alarm does not go off. The event is 

implemented in the simulation itself, to induce a reduction in the water level, behaving 

like a leak. 

In our simulation, the automation error will perhaps be interpreted by a 

communication error between the monitored equipment and the control panel, where even 

with the water level exceeding the pre-established limits, the alarm is not activated. 

However, the variation in the dashboard display (right side of the steam generator drum) 

and in the water level over time (left side of the steam generator drum) shown in Figure 

43 will continue to be reported correctly. We can assess participant' reaction time and 

actions to determine their perception of water level changes without relying on the alarm 

and evaluate their accuracy. 

7.6. Material and methods 

We conducted an experiment to collect EEG and facial data to observe participants' 

reactions to the outcomes. The data collected will also be used to create a database for 

monitoring alertness levels. The research methodology flowchart is presented in Figure 

44. Details of the experiment's data collection, processing, and results are described 

below. 
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Figure 44- Flow chart of research methodology 

 

Source: The author (2024). 

7.6.1. Data collection 

• Participants 

Twelve researchers participated in the experiment (mean age ± standard deviation: 

24.47 ± 3.59 years). They were instructed to get their usual amount of sleep the night 

before the experiment to avoid any effects on drowsiness. Individuals without any alcohol 

dependence, medication use, or any sleep disorder were required. They were not informed 

in advance of the automation failure in the experiment and participated without any 

preconceptions about the expected results. 

• Protocol  

The experiment was conducted in Recife - PE - Brazil, with the approval of the 

internal Ethics Review Committee, process number 69415423.8.0000.5208, confirming 

the protection of all participants in scientific research to safeguard the dignity, rights, 

safety and well-being of each one of them without distinction, in an ethical and 

responsible manner. 

Initially, a brief training was carried out with individuals who were willing to 

participate in the experiment. The training consisted of explaining, through a video 

recording, which parameters (temperature, pressure, flow) the individual needs to pay 

great attention to in relation to their limits, activating a button in the simulated program 

when observing any abnormality (parameters above or below the pre-established 

specification limit). 
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The data collection procedure began shortly after the participant setup and training 

time; collection took place while the participants carried out the process of responding to 

the simulation through inspection operations with different complexities when they 

agreed that they were in a state of alert, without any signs of drowsiness. This simulation 

took around 30 min.  

A webcam installed in front of the participants captured their face at 30 frames 

per second (fps), while they were in the simulation. Furthermore, EEG headsets EMOTIV 

INSIGHT (EMOTIV, 2024) are designed for scalable and contextual research of the 

human brain and provides access to brain data (Figure 45). The EMOTIV product is 

intended for research and personal use applications only. It is not designed or intended to 

be used for the diagnosis or treatment of diseases, nor for medical purposes; therefore, it 

does not require a specialized professional to configure it. The EMOTIV INSIGHT, with 

its long-life semi-dry polymer and user-friendly design, is ideal for research contexts and 

personal use applications.  

Figure 45 - Participant experimental setup 

  

Source: The author (2024). 

The Emotiv INSIGHT 2 features 5 EEG signal capture channels, positioned at 

AF3, AF4, T7, T8, and Pz locations, according to the 10-20 electrode placement system 

(Figure 46). It performs sequential sampling, with a rate of 128 SPS (internal rate of 2048 

Hz) and a 16-bit resolution, where 1 LSB equals 0.128 μV. The device operates within a 

bandwidth of 0.5 to 45 Hz, using digital notch filters at 50 Hz and 60 Hz to reduce 

interference. Connectivity is via Bluetooth 5.0, which is backward compatible, and the 

430 mAh lithium polymer (LiPo) battery provides up to 20 hours of autonomy. The device 

also measures impedance in real-time to evaluate the quality of electrode-skin contact, 

using a patented system. These characteristics make the Emotiv INSIGHT 2 a robust and 



122 

efficient tool for EEG data collection in research contexts, especially in environments like 

the proposed experiment, where monitoring cognitive states is essential. 

Figure 46 - Electrode Locations in the 10-20 EEG System Used by the Emotiv INSIGHT 2 

 

Source: The author (2024). 

However, in industrial settings like oil and gas, there's a growing interest in 

wearable EEG technology, including dry electrode systems or helmet-mounted devices. 

These innovations offer potential advantages for operators, providing non-invasive and 

comfortable monitoring of cognitive states, such as drowsiness, without disrupting their 

workflow. AVEVA Software – Dynamic Simulation 2021 was used to execute critical 

safety operation simulation, while Wonderware InduSoft web studio software was 

adopted to present a control panel that outlines the simulation and where the experiment 

participants performed the actions. 

7.6.2. Data processing 

To ensure the accuracy and integrity of the data collected during the experiments, 

several processing steps were adopted, which include: 

• Data Filtering: Initially, the raw EEG data and process variables were filtered 

to remove noise and artifacts that could distort subsequent analyses.  

• Format Conversion: The collected data were converted from CSV files to 

Excel format, facilitating manipulation and analysis using Python language 

tools and programs. 
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• Data Synchronization: The synchronization of EEG data and process variables 

was performed using timestamps. This step is crucial to ensure that subsequent 

analyses correctly reflect the experimental conditions at specific times. 

• Calculation of Means and Deviations: For each timestamp, the means and 

standard deviations of the EEG signals that were sampled at 128 µV were 

calculated. This allows for a more detailed analysis of the variations in the 

signals during the experiment. 

• Exclusion of Invalid Data Lines: Data lines that contained missing or 

inconsistent values were excluded to ensure the quality of the analyzed data. 

To ensure transparency and reproducibility, the entire dataset used in this thesis 

will be made available online, enabling other researchers to access and cite it. The 

database can be found at the following link: DrowsinessNET database. 

7.6.3. Results 

This section is divided into three parts to discuss the results obtained based on the 

changes in the EEG signals and the process variables. 

 

7.6.3.1. Averages of the Pz Signals Before and After Manual Action 

 

During the analysis of the collected data, it was observed that the Pz signals 

presented significant changes before and after the manual action of the operator, that is, 

when there was a manual increase in the water level in the drum. For each change point 

identified, the data were segmented into two periods: (1) the 10 records prior to the 

change, and (2) the 10 records after the change, with each record representing one second. 

The average of the EEG signals (AF3, T7, Pz, T8, AF4) was calculated for these 

periods, and the differences between the averages were analyzed for each subject. Figure 

47 shows the changes in Pz signals, which are primarily associated with sensory 

processing and information integration. 

https://1drv.ms/f/s!Al4xM4K3OiIYgezCHpPUd6pywJz4E4Q?e=skLkqO
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Figure 47 - Average changes in Pz signals for subjects 

 

Source: The author (2024). 

 

For the sake of brevity, our analysis focused on the Pz signal. The decision to 

prioritize Pz stems from previous sections (see Section 4), where the central-parietal 

region was identified as one of the key areas associated with sensory integration and 

attention in similar tasks. The Pz signal is considered representative in detecting cognitive 

engagement during manual interventions, making it a suitable choice for this analysis. 

The increase in the central-parietal (Pz) signal following manual action reflects a 

heightened level of attention and decision-making by the operator. This brain region is 

known to be involved in integrating sensory information and directing motor actions, 

which aligns with the cognitive processes needed to manually adjust the water levels in 

the system. These findings suggest that operators become more engaged when 

transitioning from passive monitoring to active control. 

While the Pz signal changes were observed across all subjects, the degree of 

change may have varied. This could be attributed to individual differences in attention, 

experience, or fatigue levels. Subjects with more significant changes in the Pz signals 

might have had higher engagement or were more attentive to the task at hand. In contrast, 

those with lower changes could indicate less cognitive activation, potentially due to 

complacency or fatigue. Investigating the variability between subjects could help identify 

patterns in operator performance and situational awareness under different levels of 

automation. 

In addition, although the Pz signal was a focal point in this analysis, other channels 

such as AF3, T7, T8, and AF4 also provide valuable insights into operator performance. 
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These regions correspond to frontal and temporal areas associated with executive 

function, attention, and motor control. For the sake of completeness, the graphs 

representing the data from these additional channels have been included in the 

APPENDIX F - Bar Plot Representation of EEG Channels (AF3, T7, T8, AF4), allowing 

for further exploration and comparison of their relevance in relation to operator 

engagement and task performance. 

 

7.6.3.2. Reaction Time 

The analysis of operator reaction time focused on two simulated events designed 

to assess their responsiveness to abnormalities in water levels. These events were 

intended to evaluate the operators' situational awareness, particularly under conditions 

where system automation failed to provide explicit alerts. 

• Events Conducted: 

1. First Event: 

o A simulated abnormality in water levels required manual intervention by 

the operator. 

o Operators were expected to detect the deviation and take corrective actions 

to stabilize the system promptly. 

o This event established a baseline for reaction times under normal 

conditions. 

2. Second Event: 

o A simulated automation error was introduced at a later stage of the 

simulation. 

o During this event, the water level exceeded pre-established limits without 

triggering any alarms. 

o Operators had to rely solely on dashboard displays and visual cues to 

detect the anomaly and respond appropriately. 

o This event specifically tested the operators' ability to identify and respond 

to system errors without automated support, highlighting their situational 

awareness and cognitive engagement. 

Throughout the experiment, two out of twelve subjects did not react to the second 

event, while other two reacted before the expected time. This reduced the number of valid 

subjects for subsequent statistical analysis to eight, as shown in Table 23. 
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Table 23 - Reaction Times in seconds of Subjects Before and After the Second Event 

Event Subj 2 Subj 3 Subj 4 Subj 6 Subj 8 Subj 9 Subj 10 Subj 11 

1st 6 4 5 2 2 2 3 4 

2nd 9 5 7 3 5 2 4 5 
Source: The author (2024). 

 

To investigate whether there was a significant change in reaction times before and 

after the second event, a Wilcoxon signed-rank test was conducted. The Wilcoxon test is 

appropriate for this type of analysis because it evaluates differences between two distinct 

moments for the same group of subjects without assuming that the data follow a normal 

distribution. 

• 𝑯𝟎: There is no significant difference in operator reaction times before and after 

the second event. 

• 𝑯𝟏: There is a significant difference in operator reaction times before and after 

the second event. 

The test results indicated a p-value of 0.0158. This p-value, being lower than the 

conventional significance level of 0.05, allows us to reject the null hypothesis. Thus, the 

analysis suggests that the operators indeed exhibited different reaction times after the 

second event. 

To visualize the differences in reaction times for the two events, a comparative 

boxplot was created (Figure 48), which displays the distribution of reaction times for both 

periods. The median reaction time is visibly higher after the second event, indicating an 

overall increase in response time. The interquartile range (IQR) for the first event is 

slightly larger, suggesting greater variability in reaction times. Additionally, an outlier is 

observed in the second event, which represents a subject who had an atypically high 

reaction time compared to others. 

The increase in reaction time and variability following the second event may be 

attributed to multiple factors. One possible explanation is fatigue, which could have been 

accumulated as the simulation progressed, slowing down operator responses. Similarly, 

cognitive overload may have set in, as operators were required to process some tasks over 

time, leading to reduced responsiveness.  

Another important factor to consider is situational awareness, as defined by 

Endsley (1995), refers to an operator’s ability to perceive, understand, and project 

elements of the environment in time to respond effectively. In automated environments, 

situational awareness can degrade over time, particularly when operators are exposed to 
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repetitive tasks or prolonged periods of passive monitoring. This could explain the longer 

reaction times observed after the second event, where operators may have struggled to 

maintain the same level of attentiveness as in the earlier stages of the simulation. 

 

Figure 48 - Comparative Boxplot of Reaction Times Before and After the Second Event 

 

Source: The author (2024). 

 

Furthermore, the failure to react by some operators, as well as premature reactions, 

may suggest a breakdown in their situational awareness, where they either missed the 

critical cues or misinterpreted system information. Such lapses in awareness can delay or 

hinder necessary corrective actions, highlighting the importance of continuously 

monitoring and maintaining a high level of situational awareness in automated 

environments. 

However, it is important to recognize that the nature of the simulation itself may 

have also influenced the operators' behavior. Since participants were aware that the 

experiment posed no real-world consequences, some may have adjusted their strategies 

accordingly. For instance, they may have delayed their reactions intentionally during the 

second event, or approached it with less urgency, knowing it was part of a controlled 

environment. 

These results underline the need for mitigation strategies that enhance situational 

awareness and reduce the cognitive load on operators, such as incorporating decision 

support systems, providing regular stimuli to maintain alertness, or improving training 

programs focused on handling automation complacency. Addressing these factors can 

lead to better performance and increased safety in critical operational settings. 

 



128 

7.6.3.3. Cognitive Load and Pz Signal Responses During Automation 

Errors 

When the machine was induced into an error state, it was observed in subjects 1 

and 12 that the Pz signals exhibited increases, even though no manual intervention was 

performed by either subject. The change that occurred in the water variable may have 

been perceived by the display and/or dashboard, but it was not shown in the alarm. The 

results are presented below: 

Table 24 - Pz Signal Changes Before and After Perception of Machine Error 

Subjects Before Perception 

of Change (µV) 

After Perception of 

Change (Without 

Manual Actuation) 

(µV) 

Differences in 

Means 

(µV) 

1 4155.67 4158.70 3.03 

12 4080.06 4082.44 2.38 

Source: The author (2024). 

 

The increase in the Pz and T7 signals during the error state, despite no manual 

intervention, suggests that both operators experienced an increase in cognitive load as 

they processed the information presented by the system. This increase may reflect the 

mental processing required to interpret the information displayed on the dashboard, even 

in the absence of immediate action. The changes in this signal could indicate that the 

operators were preparing for a possible intervention but chose not to act due to the lack 

of a corresponding alarm.  

The absence of manual action in response to the error detected may reflect a 

reliance on automation or alarm systems. Operators may delay their response when they 

do not receive a clear signal (such as an alarm) that intervention is necessary. This could 

be an indication of automation complacency, where the operator trusts the automated 

system to handle the situation. The increase in EEG signals may reflect the operator's 

uncertainty about whether to intervene, which could explain why no action was ultimately 

taken. 

However, this behavior was not consistent among the other subjects. Eight 

operators responded to the automation error despite the absence of an alarm, indicating 

that not all participants relied on the alarm system to the same extent. These operators 

acted based on the visual displays or their perception of changes in the system, without 
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waiting for a formal alarm, demonstrating a higher level of situational awareness and a 

more proactive approach to managing system errors. Additionally, two operators adjusted 

the water levels before the thresholds were exceeded, effectively preempting the error but 

failing to recognize the automation malfunction. This variability in responses underscores 

the differences in operator performance and situational awareness when dealing with 

system errors, highlighting the importance of individual cognitive engagement and 

attention in automated environments. 

Finally, this raises important considerations regarding the design of alarm systems 

in automated environments. Situational awareness can be compromised if operators 

become overly reliant on alarms rather than on their own interpretation of system data. 

This also indicates that visual displays and dashboards play a critical role in maintaining 

situational awareness, even when alarms are not activated. These results highlight the 

importance of monitoring EEG signals and process variables to better understand operator 

performance in automated oil and gas environments. 
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8. CONCLUDING REMARKS 

This thesis focused on developing a comprehensive methodology that can be 

applicable to various companies with critical safety systems, aiming to enhance both work 

safety and process safety. The findings of this study support the notion that valuable 

information extracted from human operators can be automatically captured and processed 

using innovative data-driven solutions, to support human reliability studies and 

consequently improve risk management and safety in the work/industrial environment. 

By capturing data from facial information and EEG recordings and processing them with 

ML/QML/DL algorithms, it is possible to identify early signs of fatigue/drowsiness, such 

as states that could compromise safety. In this way, companies can proactively implement 

preventive measures, reducing the risk of accidents and improving both worker safety and 

the integrity of industrial processes. The results highlight the potential of this 

methodology to impact safety practices across different industries positively. 

Our research advances the identification and prediction of operator drowsiness with 

emphasis on the development of a robust, multi-source model capable of recognizing 

several characteristics associated with drowsiness. Chapter 4 explores ensemble machine 

learning models, automated machine learning approaches. Notably, our unique approach 

involves creating a ground truth for reaction times by aligning EEG data with specific 

time windows, providing a comprehensive understanding of the temporal dynamics 

associated with drowsiness.  

The inclusion of quantum methods in this thesis (Chapter 5) represents a 

groundbreaking contribution to the field of drowsiness detection and human reliability in 

critical industrial environments. The results obtained suggest that quantum computing, 

despite still being in its early stages of development, has significant potential to transform 

the way we approach complex machine learning problems. The use of these models 

significantly improved the accuracy of drowsiness and inattention detection, showcasing 

their effectiveness in dealing with real-world datasets. 

In this study, we also developed a data fusion approach that combines EEG and 

facial data (Chapter 6). This fusion is implemented at both the decision and feature levels, 

resulting in significant improvements in drowsiness detection systems. The experimental 

results show that combining EEG and facial data provides enhanced recall and accuracy 

compared to single-modality approaches. The methodology was divided into three parts 

for the model in decision level: i) the model based on EEG data, ii) the model based on 



131 

CV and iii) the final model of data fusion. The first model used features extracted from 

EEG data using DWT within an MLP, while the second used a pre-trained model 

ResNet50 and CV techniques focusing on facial images. The experimental results 

confirmed the effectiveness of the fusion approach. For example, subject-specific results 

showed accuracy levels exceeding 97% when using EEG-based models, while CV-based 

models reached over 90% accuracy. The data fusion model, which combined both 

modalities, achieved recall rates between 72.61% and 98.81%, further validating the 

complementary nature of EEG and CV data for robust drowsiness detection. 

The second approach in data fusion involves, at the feature level, aggregating the 

features before feeding them into a deep learning model for training and evaluation. The 

1-second and 5-second window approaches were compared, and it was found that the 5-

second window consistently outperformed the shorter time window in terms of detection 

accuracy. This approach provided a more detailed understanding of an operator's state, 

highlighting how data fusion enhances the system's ability to capture subtle signs of 

drowsiness over time. The results were considered satisfactory, demonstrating the 

effectiveness of the data fusion approach to improve the accuracy and reliability of 

drowsiness detection systems. Both fusion approaches offer a more holistic view of an 

operator's state. 

Another contribution is the creation of DrowsinessNET, a real-time web-based 

application that integrates the developed detection models for practical use in high-risk 

environments such as control rooms in O&G industries. This application provides real-

time monitoring and allows for early detection of drowsiness, enabling timely 

interventions to prevent accidents. By making the system accessible through a web-based 

platform, this thesis bridges the gap between theoretical research and practical 

application, ensuring that safety technologies are readily deployable in real-world 

industrial operations. 

In addition to technological advancements, this thesis also conducted a simulator-

based experiment to assess operator performance in automated O&G operations (Chapter 

7). The experiment specifically evaluated how automation-related factors, such as 

overconfidence, boredom, and inattention, influence operator performance. The results 

revealed that automation, while beneficial in many aspects, can lead to reduced 

attentiveness and increased human errors in monotonous tasks. This highlights the 

pressing need for integrating human reliability technologies, such as the developed 

drowsiness detection systems, into automated safety-critical environments. The findings 
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emphasize that supervision supplemented by advanced monitoring systems remains 

crucial even in highly automated industries. 

It is worth highlighting that, in addition to its contributions to safety enhancement 

in critical industrial settings, this thesis acknowledges the paramount importance of 

adhering to data protection regulations. Specifically, in the context of the Brazilian 

General Data Protection Law (LGPD), the methodologies developed herein prioritize 

privacy and ethical considerations. The extraction and processing of valuable information 

from human operators, involving facial images and EEG recordings, must ensure the 

confidentiality and protection of sensitive data. Our study is aligned with the principles 

of the LGPD, emphasizing transparency, security and respect for individuals' privacy 

rights. 

Overall, our study underscores the importance of integrating multiple sources of 

information for robust drowsiness detection. The combination of EEG data analysis and 

CV techniques provides a comprehensive understanding of the operator's cognitive state 

and facial expressions, leading to enhanced accuracy in predicting drowsiness. This 

approach has significant implications for accident prevention in critical safety systems, 

as it enables timely interventions to mitigate the risks associated with human error. 

Furthermore, the implementation of drowsiness detection technologies can have 

significant environmental, social and financial impacts by supporting the reduction of 

accidents, thereby minimizing damage to lives, the environment, infrastructure and 

equipment. By promoting operator alertness, drowsiness detection technologies improve 

the overall safety of critical industrial operations, creating a safer work environment for 

operators and all individuals involved, as well as contributing to incident prevention, 

safeguarding ecosystems and mitigating environmental degradation. In addition, 

implementing drowsiness detection can help reduce interruptions to industrial operations 

caused by accidents, whether temporary interruptions or complete shutdowns. 

Despite promising results, our study recognizes certain limitations and identifies 

avenues for future research. Further validation of the proposed approach is needed on 

larger datasets and in real-world scenarios to ensure its effectiveness in diverse contexts. 

An important area for future work involves enhancing the existing database with alertness 

information, which can be used to train unsupervised models, such as autoencoders. This 

approach would enable the detection of anomalies and the development of more robust 

and generalized drowsiness detection systems. Additionally, exploring additional 

modalities such as ECG and EOG, and employing advanced fusion techniques could 
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potentially increase the accuracy and robustness of the drowsiness detection system 

Moreover, future research could focus on studying individuals with insomnia, providing 

insights into how sleep disorders impact drowsiness detection and system performance. 

The integration of QML models for handling combined data could be explored. These 

considerations underscore the need for continued research and development efforts to 

refine and expand the application of drowsiness detection technologies in safety-critical 

systems. 
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APPENDIX A – Case 1: All subjects 

• Raw data 

For the raw data, results from bagging with five channels present good accuracy 

(80%), as seen in Figure 49. The ensemble models could take advantage of the good 

predictions, surpassing all other models for the bagging approach. 

Figure 49 - Bagging-based model for all subjects from the MLP technique with raw data and five-

channels 

 
Source: The author (2024). 

 

Then, we also investigate the performance in the bagging-based model reducing 

the number of channels to three (i.e., C3, C4, Pz), which is less intrusive. Once again, 

majority voting is used for the prediction and the result is shown in Figure 50 indicates 

the best performance from the ensemble model. 

Figure 50 - Bagging-based model for all subjects from the MLP technique with raw data and three-

channels 

 
Source: The author (2024). 

 

Compared to the result for the five-channels bagging models, the three-channels 

ensemble model obtained the same performance of accuracy, once again surpassing all 

single-channel models, however using less of them. Thus, it is noted that although it is 

important to have a significant number of channels to provide greater robustness to the 
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model's prediction, it is equally important that these channels are able to provide good 

predictions so as not to harm the output of the ensemble model. 

For the voting model for all subjects, the results can be seen in Figure 51. Here, 

the result of the ensemble model was at least equal to or greater than the results of the 

individual classifiers. Comparing with the results obtained previously, despite having 

considered only one channel (C4), the result was slightly inferior to those of the bagging-

based model. 

Figure 51 - Voting models for all subjects from the C4 channel with raw data 

 
Source: The author (2024). 

 

• EEG features 

For the three features, the performance of the bagging-based approach considering 

the five-channels brought poor results and with all models presenting similar 

performances (Figure 52).  

Figure 52 - Bagging-based model for all subjects from the MLP technique with features extraction and 

five channels 

 
Source: The author (2024). 

 

Considering the reduction of the bagging-based model to three-channels, the 

performance of the ensemble model is competitive to the best result of the classifier (C3) 

for this approach.  
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A similar pattern is seen in the voting approach, with all models presenting a close, 

but poor result, around 55% (Figure 53). This suggests that feature extractions 

considering coupled information from all subjects for training and testing, makes 

performances not only similar in all approaches, but also poor in detecting drowsiness in 

random subjects. 

Figure 53 - Voting model for all subjects from the C4 channel with features extraction 

 
Source: The author (2024). 

 

Thus, considering Case 1, the performance of ensemble models, whether bagging-

based or voting, was better for raw data. The advantages of these models can be seen 

when tested on different subjects in the next subsection. 

 
Bagging-based model for all subjects from the MLP technique with features extraction and three-channels 
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APPENDIX B - Case 2: Specifics subjects with a general model 

• Raw data 

In this case, the model is trained with data from all participants but tested in data 

from the five specific subjects individually. Analogously to the previous case, we 

analyzed raw data, applying the bagging-based model with five-channels and, then, for 

three-channels considering a specific ML model (i.e., MLP). Figure 54 shows the results 

for bagging-based model and five-channels. 

Figure 54 - Bagging-based model for five specific subjects from the MLP technique with raw data and 

five-channels 

 
Source: The author (2024). 

 

Once again, the ensemble model is useful. Comparing the best results, for a few 

subjects, channel C3 present brought a more significant performance (i.e., subjects 1 and 

6), for other subjects (i.e., 5 and 10) the results are equivalent to the proposed ensemble 

model. But in subject 8 the performance of the C3 channel is better compared to the 

ensemble model. Moreover, the mean performance of the model based on C3 and on 

bagging are 73.2% and 70.4%, respectively, but the standard deviation using C3 is 

15.75% compared to 11.88% for the bagging approach. These variabilities may be 

explained by the interpersonal characteristics of each participant, endorsing the use of the 

ensemble model as a positive and generalist contribution. 

When considering only three-channels for the bagging-based model, the ensemble 

model remains with the second-highest accuracy, but no specific channel has a dominant 

characteristic over the proposed ensemble model, leaving it in a competitive position. 

For the voting model, results are similar to those of the previous models, and can 

be seen in Figure 55 . The performances of the ensemble model are slightly lower than 
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the best accuracy of the different ML techniques tested, except for subject 8. Furthermore, 

no specific ML technique presents dominant results over the ensemble. 

Figure 55 - Voting model for five specific subjects from the C4 channel with raw data 

 
Source: The author (2024). 

 

 
Bagging-based model for five specific subjects from the MLP technique with raw data and three-channels 

 

 

• EEG features 

Here, the relatively good performance of using the ensemble model is presented 

again. For the bagging-based model, Figure 56 bring the results with five-channels. From 

it, compared to the ensemble model, the single-channel C3 presents superior results in 

subjects 1, 5, and 10 and inferior in subjects 6 and 8. Particularly in this model, 

considering the EEG feature, the single-channel Fz seems to leverage the results of the 

ensemble, while the single-channel Pz does not seem to contribute significantly to the 

results in any subject. 
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Figure 56 - Bagging-based model for five specifics subjects from the MLP technique with features 

extraction and five-channels 

 
Source: The author (2024). 

 

For the three-channel configuration, the ensemble model presents good results 

when comparing the accuracies of the best classifiers and, once again, no single-channels 

presented a result strictly dominant to the ensemble model. The performance can be seen 

in supplementary material. 

For the voting model (Figure 57), learners behave very similarly, except for 

subject 6, which shows a greater difference between the performance of the ensemble and 

the KNN technique. Furthermore, for that specific model, the ensemble model remains in 

a competitive position (except for subject 8) with the performance of the RF technique. 

Figure 57 - Voting model for five specific subjects from the C4 channel with features extraction 

 
Source: The author (2024). 

 

Likewise, raw data results continue to show better achievement when contrasted 

with features extraction. The next subsection aims to present the behavior of these same 

subjects tested, from now on, with classifiers trained with data from the subjects 

themselves. 
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Bagging based model for five specific subjects from the MLP technique with features extraction and three channels 
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APPENDIX C - Case 3: Specifics subjects with dedicated model 

• Raw data 

 
Bagging-based model for five specifics subjects in a dedicated model from the MLP technique with raw data and 

three-channels 

 

• EEG features 

 
Bagging-based model for five specifics subjects in a dedicated model  from the MLP technique with features 

extraction and three-channels 
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APPENDIX D - Kruskal-Wallis tests  

Subject 5 

 

 

        Subject 5 - all architecture models.                                          Subject 5 - Ry Rz Ry . 

 

                           Subject 5 - Ry Rz Ry + CNOT                                                   Subject 5 - Ry Rz Ry + CZ 

 

Subject 5 in Ry Rz Ry + iSWAP. 
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Subject 6 

 

                        Subject 6 - all architecture models.                                          Subject 6 - Ry Rz Ry . 

 

 

                              Subject 6 - Ry Rz Ry + CNOT                                                   Subject 6 - Ry Rz Ry + CZ 

 

 

Subject 6 in Ry Rz Ry + iSWAP. 
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Subject 8 

 

                           Subject 8 - all architecture models.                                          Subject 8 - Ry Rz Ry . 

 

Subject 8 - Ry Rz Ry + CNOT                                                   Subject 8 - Ry Rz Ry + CZ 

 

Subject 8 in Ry Rz Ry + iSWAP. 
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Subject 10 

 

                           Subject 10 - all architecture models.                                          Subject 10 - Ry Rz Ry . 

 

 

Subject 10 - Ry Rz Ry + CNOT                                                   Subject 10 - Ry Rz Ry + CZ 

 

 

Subject 10 in Ry Rz Ry + iSWAP. 

 



158 

All Subjects 

 

All Subjects - all architecture models.                                          All Subjects - Ry Rz Ry . 

 

 

All Subjects - Ry Rz Ry + CNOT                                                   All Subjects - Ry Rz Ry +CZ 

 

All Subjects in Ry Rz Ry + iSWAP. 
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APPENDIX E - Extended performance of feature-level models 

Subject 1 

                          

Confusion Matrix for Subject 1,     Confusion Matrix for Subject 1,  

Channel FZ (1-Second Window)    Channel C3 (1-Second Window) 

                           

Confusion Matrix for Subject 1,     Confusion Matrix for Subject 1,  

Channel CZ (1-Second Window)    Channel PZ (1-Second Window) 
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Subject 5 

                            

Confusion Matrix for Subject 5,     Confusion Matrix for Subject 5,  

Channel FZ (1-Second Window)    Channel C3 (1-Second Window) 

 

                              

Confusion Matrix for Subject 5,     Confusion Matrix for Subject 5,  

Channel CZ (1-Second Window)    Channel PZ (1-Second Window) 
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Subject 6 

                             

Confusion Matrix for Subject 6,     Confusion Matrix for Subject 6,  

Channel FZ (1-Second Window)    Channel C3 (1-Second Window) 

 

                             

Confusion Matrix for Subject 6,     Confusion Matrix for Subject 6,  

Channel CZ (1-Second Window)    Channel PZ (1-Second Window) 
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Subject 8 

                            

Confusion Matrix for Subject 8,     Confusion Matrix for Subject 8,  

Channel FZ (1-Second Window)    Channel C3 (1-Second Window) 

 

                             

Confusion Matrix for Subject 8,     Confusion Matrix for Subject 8,  

Channel CZ (1-Second Window)    Channel PZ (1-Second Window) 
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Subject 10 

                              

Confusion Matrix for Subject 10,     Confusion Matrix for Subject 10,  

Channel FZ (1-Second Window)    Channel C3 (1-Second Window) 

 

                             

Confusion Matrix for Subject 10,     Confusion Matrix for Subject 10,  

Channel CZ (1-Second Window)    Channel PZ (1-Second Window) 
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APPENDIX F - Bar Plot Representation of EEG Channels (AF3, T7, 

T8, AF4) 

 

Average changes in EEG signals for subjects across channels (AF3, T7, T8, AF4) 


