
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DAVID JÚNIO MOTA CAVALCANTI

AN ENABLING FRAMEWORK FOR CUSTOMIZATION AND ADAPTATION OF
MIDDLEWARE OF THINGS

Recife
2025

DAVID JÚNIO MOTA CAVALCANTI

AN ENABLING FRAMEWORK FOR CUSTOMIZATION AND ADAPTATION OF
MIDDLEWARE OF THINGS

A PhD thesis presented by David Junio Mota
Cavalcanti in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the Post-
graduate Program in Computer Science at the Uni-
versidade Federal do Pernambuco.

Research Areas: Distributed Systems and Internet
of Things

Supervisor: Prof. Dr. Nelson Souto Rosa

Co-supervisor: Prof. Dr. Danny Hughes

Recife
2025

Cavalcanti, David Junio Mota.
 An enabling framework for customization and adaptation of
middleware of things / David Junio Mota Cavalcanti. - Recife,
2025.
 148f.: il.

 Tese (Doutorado) - Universidade Federal de Pernambuco, Centro
de Informática, Programa de Pós-graduação em Ciência da
Computação, 2024.
 Orientação: Nelson Souto Rosa.
 Coorientação: Daniel Hughes.
 Inclui referências e apêndices.

 1. Internet of Things; 2. Adaptive Middleware; 3. Software
Architecture; 4. Uncertainties; 5. Energy Saving; 6. Smart Water
Management. I. Rosa, Nelson Souto. II. Hughes, Daniel. III.
Título.

UFPE-Biblioteca Central

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central

David Junio Mota Cavalcanti

“AN ENABLING FRAMEWORK FOR CUSTOMIZATION AND ADAPTATION OF

MIDDLEWARE OF THINGS”

 Tese de Doutorado apresentada ao

Programa de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Doutor em Ciência da

Computação. Área de Concentração: Redes

de Computadorea e Sistemas Distribuídos.

 Aprovada em: 16/12/2024.

 Orientador: Prof. Dr. Nelson Souto Rosa

BANCA EXAMINADORA

__

Prof. Dr. Carlos André Guimarães Ferraz

Centro de Informática/UFPE

Prof. Dr. Jó Ueyama

Instituto de Ciências Matemáticas e de

Computação /USP

Prof. Dr. Tiago Pascoal Filomena

Departamento de Engenharia Eletrotécnica

e de Computadores/ Universidade do Porto

Prof. Dr. Kelvin Lopes Dias

 Centro de Informática / UFPE

Prof. Dr. José Neuman de Souza

Departamento de Computação / UFC

I dedicate this thesis to my late brother, Saudade.

AGRADECIMENTOS

À minha mãe, Suzana Mota, pelo seu imenso amor, cuidado e dedicação ao longo de toda
a minha vida. Agradeço também por ser exemplo de vida, pelos sacrifícios na minha criação e
por me ensinar que a educação é a ferramenta mais essencial que um ser humano pode ter.

À minha irmã, Dayse Mota, pela amizade, amor e respeito. Sou profundamente grato por
todas as experiências que compartilhamos. E, especialmente, ao meu irmão, Dayvson Mota
(in memoriam), que me ensinou que o que realmente importa na vida é o que fazemos pelo
outro enquanto estamos vivos, o nosso impacto e as memórias que deixamos nas pessoas que
amamos.

Ao meu orientador e amigo, Prof. Dr. Nelson Rosa, por todos os ensinamentos e pela
oportunidade de realizar esta pesquisa. Agradeço por acreditar em mim e por me apoiar
incansavelmente. Sou e serei eternamente grato pela paciência, amizade e dedicação exemplar
ao longo dessa jornada, e pelo grande incentivo que tornou possível a realização deste trabalho.

Ao meu coorientador, Prof. Dr. Danny Hughes, pelas nossas reuniões e pelo impacto
positivo na jornada desta pesquisa. Quero também agradecer a todos os colegas que conheci
no Networked Embedded Software Taskforce Laboratory da Katholieke Universiteit Leuven,
na Bélgica.

Aos meus amigos de pesquisa no laboratório, Ranieri Valença, Angelo Fernandes, Yeda
Lima e Esdras Bispo, pelas nossas conversas e discussões esclarecedoras, que foram extre-
mamente úteis ao longo do desenvolvimento deste trabalho. Estiveram sempre prontos para
ajudar sempre que necessário.

Aos meus queridos amigos da vida, Eduardo Virães, Agnes Regina e Anderson Queiroz,
que, cada um à sua maneira, contribuiu para tornar este trabalho possível.

Ao Instituto Federal de Pernambuco (Campus Igarassu) e aos meus colegas de trabalho,
Ramon Mota, Lincoln Tavares e demais colegas, pelo incentivo e apoio que tornaram esta
pesquisa possível, incluindo a valiosa experiência de estudar no exterior. Sem a ajuda de vocês,
isso não teria sido possível.

À Universidade Federal de Pernambuco e ao Centro de Informática por me acolherem e
me fornecerem apoio de várias formas ao longo do curso desta pesquisa.

Finalmente, a todos os amigos, colegas e irmãos que contribuíram, direta ou indiretamente,
para a minha jornada, o meu sincero agradecimento.

ACKNOWLEDGEMENTS

To my mother, Suzana Mota, for her immense love, care and dedication throughout my
life. I also thank her for being a life example, for her sacrifices in raising me, and for teaching
me that education is the most essential tool a human can have.

To my sister, Dayse Mota, for her friendship, love, and respect. I am deeply grateful for all
the experiences we’ve shared. And especially to my brother, Dayvson Mota (in memoriam),
who taught me that what truly matters in life is what we do for others while we are alive, our
impact and the memories we leave on those we love.

To my supervisor and friend, Prof. Dr. Nelson Rosa, for all the teachings and the op-
portunity to conduct this research. I thank him for believing in me and for supporting me
tirelessly. I am and will be eternally grateful for his patience, friendship, and exemplary dedi-
cation throughout this journey, and the great encouragement that made completing this work
possible.

To my co-supervisor, Prof. Dr. Danny Hughes, for our meetings and his positive impact
on the journey of this research. I also want to thank all the colleagues I met at the Networked
Embedded Software Taskforce Laboratory at the Katholieke Universiteit Leuven in Belgium.

To my research friends in the lab, Ranieri Valença, Angelo Fernandes, Yêda Lima and
Esdras Bispo, for our insightful conversations and discussions, which were incredibly helpful
throughout the development of this work. They were always ready to assist whenever needed.

To my dear friends in life, Eduardo Virães, Agnes Regina and Anderson Queiroz, who, each
in their own way, contributed to making this work possible.

To the Instituto Federal de Pernambuco (Campus Igarassu) and my colleagues at work,
Ramon Mota, Lincoln Tavares and others, for their encouragement and support, which made
this research possible, including the valuable experience of studying abroad. Without your help,
this would not have been possible.

To the Universidade Federal de Pernambuco and the Centro de Informática for welcoming
me and providing support in various ways throughout the course of this research.

Finally, to all the friends, colleagues, and brothers who contributed, directly or indirectly,
to my journey, my heartfelt thanks.

ABSTRACT

The Internet of Things (IoT) enables the development of applications using smart devices called
things. The increasing processing, storage and communication capacities of devices boosted
the growth of distributed IoT applications. IoT Middleware systems have become essential
for developing these applications by facing distribution, device heterogeneity and application
interoperability. However, IoT environments are highly dynamic and susceptible to changes,
introducing uncertainties, such as changing user requirements (e.g., evolving applications),
changing environmental conditions (e.g., network delays) and varying resource availability,
e.g., battery levels. These uncertainties can lead to failures or compromise application func-
tioning. Self-adaptive middleware systems have been responsible for dealing with uncertainties
by dynamically adapting their behavior/structure and applications built atop them without
system shutdowns. Managing uncertainties at various layers, each requiring a distinct adap-
tive action, making it challenging to manage them simultaneously. This thesis introduces
M iddleware Extendify (MEx), a solution for building and executing IoT self-adaptive middle-
ware systems. MEx simplifies the implementation of middleware and provides an execution
environment for supporting a range of adaptation mechanisms, ensuring that the middleware
meets the evolving demands of applications and copes with changes at runtime. Additionally,
this thesis presents AquaMOM, an adaptive IoT system designed for monitoring water con-
sumption in semi-arid regions, where frequent changes in water availability and usage patterns
justify the need for an adaptive approach. It also includes a low-cost IoT device prototype
equipped with water and energy monitoring sensors. Built using MEx, AquaMOM lever-
ages MEx’s capabilities to manage uncertainties, respond to dynamic changes, and meet
application demands. The evaluation of MEx encompasses different adaptive middleware im-
plementations to measure its adaptation mechanisms’ impact while comparing its performance
with a widely adopted MQTT-based middleware. Results indicate that adaptation comes with
acceptable performance costs while providing significant benefits, such as fine-tuning middle-
ware functionalities or enhancing application alignment, e.g., adaptation increases publishing
time from 4.24 ms to 6.27 ms, while extending battery lifetime from 1.4 to 6.6 days. These
findings show MEx’s potential to enhance IoT middleware, making systems more adaptable
and efficient in real scenarios.
Keywords: Internet of Things. Adaptive Middleware. Software Architecture. Uncertainties.
Energy Saving. Smart Water Management. Challenging Environments.

LIST OF FIGURES

Figure 2.1 – IoT Architecture . 29
Figure 2.2 – Conceptual model of a self-adaptive system 34
Figure 2.3 – MAPE-K . 35
Figure 3.1 – General Overview of MEx . 43
Figure 3.2 – Taxonomy of Self-Adaptation . 50
Figure 3.3 – Library of Middleware Components . 53
Figure 3.4 – MEx Client . 57
Figure 3.5 – MEx Broker. 58
Figure 3.6 – Execution Unit . 60
Figure 3.7 – Managing System . 61
Figure 3.8 – Steps of Evolutive Adaptation . 64
Figure 3.9 – Steps of the DCAM Adaptation . 66
Figure 4.1 – Cistern of Water in Semi-arid Region . 78
Figure 4.2 – Overview of AquaMOM . 80
Figure 4.3 – Graphical User Interface of AquaMOM 81
Figure 4.4 – Prototype of the AquaMOM Device . 83
Figure 5.1 – Scenario 1 . 88
Figure 5.2 – Alternation of the serialization component (𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝑒𝑟 and 𝑃𝑖𝑐𝑘𝑙𝑒) . . . 90
Figure 5.3 – Impact of Adaptation on the Application (one component) 91
Figure 5.4 – Impact of Adaptation on the Application (Two components) 92
Figure 5.5 – MEx versus MQTT . 94
Figure 5.6 – Scenario 2 . 95
Figure 5.7 – Comparison of Publishing Time Between Std-MEx, MEx-MQTT, and

MQTT . 97
Figure 5.8 – Impact of Adaptation on Performance . 98
Figure 5.9 – Impact of Adaptation on Power Consumption 99
Figure 5.10–Power Consumption (varying duty cycle) 101
Figure 5.11–Estimation of Battery Lifetime (Duty Cycle Adaptive Mechanism (DCAM)) 102
Figure 5.12–Estimated lifetime with variable deep-sleep using Time-Based Duty Cycle

Adaptive Mechanism (TDCAM) . 103

Figure 5.13–Comparison of simulation results for different behaviors 106
Figure B.1 – Entity-Relationship Diagram of AquaMOM 145

LIST OF SOURCE CODES

Source Code 1 – Python-based Architecture Description Language 56
Source Code 2 – Configuration File of the MEx . 68
Source Code 3 – Engine of the MEx . 70
Source Code 4 – Agent of the MEx . 71
Source Code 5 – Adaptation Manager . 73
Source Code 6 – Adaptation Factory . 74

LIST OF TABLES

Table 3.1 – Middleware Components and Functions 54
Table 4.1 – Examples of rules implemented in the DCAM’s Analyzer 84
Table 4.2 – Examples of Rules implemented in the TDCAM’s Analyzer 85
Table 5.1 – Factors of Scenario 1 . 89
Table 5.2 – Factors of Scenario 2 . 96
Table 5.3 – Duty Cycle Behavior of Middleware Flavors 100
Table 5.4 – Factors Impacting Water Consumption with AquaMOM 104
Table 6.1 – Summary of Related Works . 118

LIST OF ABBREVIATIONS AND ACRONYMS

pADL Python-based Architecture Description Language

ADL Architecture Description Language

API Application Programming Interface

BLE Bluetooth Low Energy

BNF Backus-Naur Form

CoAP Constrained Application Protocol

DCAM Duty Cycle Adaptive Mechanism

DSL Domain-Specific Language

ENO Energy-Neutral Operation

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IIoT Industrial IoT

IoT Internet of Things

LoRa Long Range

MAPE-K Monitor-Analyzer-Planner-Executor + Knowledge

MEx Middleware Extendify

MOM Message-Oriented Middleware

MQTT Message Queuing Telemetry Transport

OODA Observe, Orient, Decide, Act

OS Operating System

OSGi Open Services Gateway Initiative

PC Personal Computer

QoE Quality of Experience

QoS Quality of Service

RFID Radio Frequency Identification

SAS Self-Adaptive System

SMS Short Message Service

TDCAM Time-Based Duty Cycle Adaptive Mechanism

UML Unified Modeling Language

UN United Nations

CONTENTS

1 INTRODUCTION . 17

1.1 CONTEXT AND MOTIVATION . 17
1.2 THE PROBLEM . 19
1.3 PARTIAL EXISTING SOLUTIONS . 21
1.4 MIDDLEWARE EXTENDIFY . 24
1.5 SUMMARY OF CONTRIBUTIONS . 25
1.6 THESIS ORGANIZATION . 27
2 BACKGROUND . 28

2.1 INTERNET OF THINGS . 28
2.1.1 IoT Architecture . 29

2.1.2 IoT Uncertainty . 30

2.2 SELF-ADAPTIVE SYSTEMS . 32
2.2.1 Model for Self-Adaptive Systems . 33

2.3 MIDDLEWARE SYSTEMS . 36
2.3.1 Middleware for IoT . 38

2.4 SOFTWARE ARCHITECTURE . 39
2.5 CONCLUDING REMARKS . 41
3 MIDDLEWARE EXTENDIFY . 42

3.1 OVERVIEW OF MEX . 42
3.2 DESIGN DECISIONS . 46
3.2.1 MEx Middleware is MOM . 46

3.2.2 MEx Transparencies . 47

3.2.3 IoT-Driven Development . 48

3.2.4 Manage Multiple Uncertainties . 49

3.2.5 Self-Adaptation Capability . 50

3.3 DEVELOPMENT TIME . 53
3.3.1 Library of Middleware Components 53

3.3.2 pADL . 55

3.4 EXECUTION TIME . 56
3.4.1 MEx Client . 57

3.4.2 MEx Broker . 58

3.4.3 Execution Unit . 59

3.4.4 Managing System . 61

3.4.5 Adaptation Mechanisms . 62

3.4.5.1 Composite Adaptation . 63

3.4.5.2 Parametric Adaptation . 63

3.5 IMPLEMENTATION . 67
3.6 CONCLUDING REMARKS . 74
4 MEX BASED SOLUTION FOR WATER MONITORING 75

4.1 CONTEXT AND MOTIVATION . 75
4.1.1 Semi-arid Regions of Brazil . 77

4.1.2 IoT Systems for Challenging Environments 78

4.2 AQUAMOM . 79
4.2.1 AquaMOM Service . 81

4.2.2 AquaMOM Device . 82

4.2.3 Software Stack on AquaMOM Device 83

4.3 IMPLEMENTATION . 85
4.4 CONCLUDING REMARKS . 86
5 EVALUATION . 87

5.1 OBJECTIVES . 87
5.2 SCENARIO 1 . 88
5.2.1 Metrics, Parameters and Factors . 89

5.2.2 Adaptation in Action . 90

5.2.3 Impact of Adaptation . 91

5.2.4 Comparative Evaluation . 93

5.3 SCENARIO 2 . 94
5.3.1 Metrics, Parameters and Factors . 94

5.3.2 Evaluating the MEx’s Performance 96

5.3.3 Impact of Adaptation on Performance and Power Consumption . . . 97

5.3.4 Evaluating the Impact of the Adaptation on Battery Lifetime 100

5.3.5 Evaluating the impact of using AquaMOM 104

5.4 CONCLUDING REMARKS . 106
6 RELATED WORK . 107

6.1 OVERVIEW . 107
6.2 MIDDLEWARE FRAMEWORKS . 107
6.3 ADAPTIVE MIDDLEWARE . 108
6.4 NON-ADAPTIVE MIDDLEWARE . 113
6.4.1 Off-device Middleware . 113

6.4.2 Device-based IoT Middleware . 114

6.5 OTHER WORKS . 114
6.5.1 Energy-saving Approaches . 114

6.5.2 Smart Water Management . 116

6.6 COMPARATIVE ANALYSIS . 117
6.7 CONCLUDING REMARKS . 121
7 CONCLUSION AND FUTURE WORK 122

7.1 CONCLUSION . 122
7.2 CONTRIBUTIONS . 124
7.3 LIMITATIONS . 127
7.4 FUTURE WORK . 128
7.5 PUBLICATIONS . 130

REFERENCES . 132

APPENDIX A – BNF SPECIFICATION FOR PADL LANGUAGE . 144

APPENDIX B – AQUAMOM DATABASE 145

APPENDIX C – SCHEMATIC OF THE AQUAMOM 146

APPENDIX D – PRINTED CIRCUIT BOARD (PCB) OF THE AQUAMOM147

17

1 INTRODUCTION

”The utopia is on the horizon. I move two steps closer; it moves

two steps further away. I walk another ten steps, and the horizon

runs ten steps further away. As much as I may walk, I’ll never

reach it. So, what’s the point of utopia? The point is this: to

keep walking.”
—Eduardo Galeano

This chapter introduces the research conducted in this thesis. First, it presents the context
and motivation for the research. Then, it identifies the research problem and a summary of
existing solutions and how they fail to solve it. Next, it outlines the proposed solution. Finally,
the chapter summarizes the thesis’s contributions and provides an overview of the document’s
organization.

1.1 CONTEXT AND MOTIVATION

The IoT is a technology that enables the development of systems using smart objects,
known as "things". These include sensors, actuators, smartphones, vehicles, household appli-
ances, or even virtual devices, such as software systems that simulate real environments (Atzori

et al., 2019; Gubbi et al., 2013). Powered by communication, computing, and storage tech-
nologies, these devices collectively work to provide applications and services. Essentially, IoT
devices collect and process data from their environment and exchange information with each
other over the Internet to achieve common goals, making environments smarter and benefiting
people (Alfonso et al., 2021; Qadri et al., 2020; Razzaque et al., 2016; Atzori; Iera; Morabito, 2010).

As IoT systems continue to increase in complexity and connectivity, the number of con-
nected devices reached 20 billion in 2020 (Xu et al., 2020) and is expected to reach 500 billion
by 2030 (Mahamuni, 2023; Mathur et al., 2023; Karie; Sahri; Haskell-Dowland, 2020). This growth,
along with advances in device capabilities, such as processing, storage, and communication,
has driven the development of distributed IoT applications in different domains, e.g., smart
homes (Albany et al., 2022), smart cities (Costa et al., 2022), smart water management (Singh;

18

Ahmed, 2021), and Industrial IoT (IIoT) (Peter; Pradhan; Mbohwa, 2023).
In this context, middleware systems play an essential role in facilitating the development

and deployment of IoT applications (Razzaque et al., 2016). Middleware bridges between IoT
applications, services, and devices by enabling communication, dealing with heterogeneity, and
allowing interoperability (Blair; Schmidt; Taconet, 2016). This support allows developers to focus
primarily on the core system requirements, i.e., the business logic (Borges et al., 2023; Bandy-

opadhyay et al., 2011; Schmidt; Buschmann, 2003). IoT middleware addresses the heterogeneity of
systems and services at the application level by supporting their interoperability while offering
essential services such as data and resource management, event and context detection, and
security features (Sethi; Sarangi, 2017). At the device level, the middleware abstracts device
details from applications and facilitates seamless communication between devices.

As IoT applications continue to evolve in complexity and connectivity, recently, there has
been growing interest in developing IoT applications for challenging environments, such as ex-
treme locations (e.g., nuclear plant management and emergency responses) or urban settings,
including remote and economically needy regions, e.g., semi-arid areas (Cavalcanti et al., 2024).
In such settings, IoT applications facilitate monitoring critical parameters, such as extreme
temperatures, radiation, and water levels. They can help relieve humans from costly and dan-
gerous tasks, such as inspecting hazardous environments and disaster sites and monitoring
water consumption in remote areas (Kant; Jolfaei; Moessner, 2024).

However, these systems often face unexpected harsh conditions due to aging infrastruc-
ture, demand exceeding capacity, and increasingly intense operating conditions brought on
by climate change or the nature of the application (Kant; Jolfaei; Moessner, 2024). Addressing
the advance of IoT applications brings new challenges, including diversity of communication
protocols, technological diversity, and resource management considerations, especially concern-
ing power consumption and strict demands for Quality of Service (QoS) (e.g., performance,
scalability, and security) based on application requirements (Alfonso et al., 2021). Despite mid-
dleware support, fulfilling these commitments remains challenging due to the distributed nature
of IoT systems. These systems are dynamic and subject to continuous changes, unexpected
events, and harsh environmental conditions, introducing uncertainties at different layers of the
IoT (Kant; Jolfaei; Moessner, 2024; Cavalcanti; Hughes; Rosa, 2023; Alfonso et al., 2021; Muccini et

al., 2018). Uncertainties may appear due to changes in user needs, workloads, software aging
(application), loss of connectivity or delays (communication). Additionally, devices may have
fluctuations in resource availability, affecting sensors’ reliability or degrading components (Al-

19

fonso et al., 2021; Moreno; Cámara Javier andGarlan; Schmerl, 2015). These uncertainties can impact
the QoS of the IoT applications, affecting integrity and trustworthiness or significantly reduc-
ing devices operating lifetime (Kant; Jolfaei; Moessner, 2024; Cavalcanti; Hughes; Rosa, 2023; Weyns;

Ramachandran; Singh, 2018).
Consider, for example, a simple, smart water application designed to monitor poorly struc-

tured water cisterns in rural areas. The application can use sensors to monitor water level and
the device’s battery, transmitting these data to a messaging service, which forwards them to
the dashboard web application to display digital metering feedback. Reliable communication
with low latency and efficient transmission power are crucial for sending packets, as they ensure
accurate delivery and minimize delays between sending and receiving data, which is essential
for dynamic applications. However, uncertainties like network interference (e.g., weather con-
ditions or weak/nearby Wi-Fi signals), traffic load fluctuations (e.g., system monitoring rate
congestion) and resource limitations (e.g., battery power) can affect the application’s opera-
tion. These uncertainties can lead to data collection errors or system failures, compromising
integrity and trust—critical factors in many IoT systems (Kant; Jolfaei; Moessner, 2024; Weyns;

Ramachandran; Singh, 2018).
Given these complexities, it is essential for IoT middleware to also handle harsh condi-

tions and uncertainties at runtime. Adopting self-adaptive principles is a crucial strategy to
address such uncertainties by modifying IoT applications’ behavior or structure in response to
system or environmental changes (Weyns, 2020; Lemos et al., 2013). Recently, developers have
incorporated adaptive capabilities into middleware systems to face uncertainties (Cavalcanti;

Carvalho; Rosa, 2021; Soojin; Sungyong, 2019; Rausch; Nastic; Dustdar, 2018). The middleware be-
comes self-adaptive by adapting its behavior or structure to fix bugs and accommodate user
and environmental changes.

1.2 THE PROBLEM

With the rapid evolution of technology, IoT significantly influences how people interact
with devices in daily life. IoT allows the interconnection of devices from the digital, virtual,
and physical world to the Internet with minimal human involvement. This connectivity allows
users to control devices and access sensor data remotely. The data generated by these devices
can unveil users’ habits and trends, which can be utilized to enhance various services.

The inherent dynamic nature and need for continuous operation introduce a variety of un-

20

certainties during the operation of the IoT applications. At the same time, IoT applications may
face uncertainties caused by variations in user and application goals, changes in environmental
conditions (e.g., network delays), and dynamics in resource availability. These uncertainties can
lead to issues in data collection, resulting in failures in IoT application execution and ultimately
putting these applications in insecure situations, such as loss of connection and incorrect re-
sults (Alagar; Wan, 2019; Magruk, 2015). Therefore, facing these uncertainties and assessing,
adjusting, or enhancing the system before, during, and after uncertainties appear is essential
to minimize service degradation, maximize coverage, and improve offered services (Kant; Jolfaei;

Moessner, 2024; Sunny et al., 2021). IoT applications are expected to operate under conditions
of uncertainty and without interruption.

The IoT middleware self-adaptation capabilities form the foundation for ensuring IoT appli-
cations function properly (Moghaddam; Rutten; Giraud, 2020; Nundloll et al., 2019). As challenges
in developing adaptive middleware for IoT persist and continue to be an active research area,
this thesis focuses on a novel middleware solution capable of exploring and tackling these chal-
lenges and provides new contributions to the field. This solution aims to develop and execute
self-adaptive middleware systems for IoT.

With this context in mind, the research problem identified for this thesis is:

• How can middleware systems for IoT be designed and implemented with adap-

tive capabilities as a first-class concept while addressing their fundamental

requirements?

These systems must meet common middleware requirements such as distribution support,
interoperability, resources and data management, programming abstraction, and scalability
while addressing common design issues associated with self-adaptive software, including: Why
adapt the software? When is adaptation necessary? Where should changes occur? What arti-
facts need to be modified? How is the adaptation performed? (Rosa et al., 2020; Razzaque et al.,
2016; Krupitzer et al., 2015; Salehie; Tahvildari, 2009).

Furthermore, the development of such middleware systems needs to consider the partic-
ularities of IoT environments, such as constrained resources (e.g., disk space, memory, and
processing power), power consumption, dynamic changes, diversity of applications, and het-
erogeneity of devices (Razzaque et al., 2016). A key aspect is successfully combining adaptability
concerns with these particular characteristics of IoT environments. Dealing with this aspect is

21

crucial for creating effective middleware solutions operating efficiently in diverse and challeng-
ing settings.

Despite ongoing efforts to develop self-adaptive IoT middleware systems, IoT applications
are subject to various uncertainties during operation, which increases the complexity of imple-
menting middleware systems capable of effectively addressing all these uncertainties. Moreover,
the uncertainties encountered may require distinct adaptation strategies. Therefore, a key re-
search aspect of this thesis is enabling multiple comprehensive adaptation mechanisms to
handle as many uncertainties as possible in IoT environments. The approach must provide the
ability to use customizable mechanisms that can be selected and switched based on the spe-
cific needs of IoT applications, thereby enhancing the overall effectiveness of the middleware
in addressing diverse uncertainties.

In this context, the main objective of this thesis is to propose a middleware-based solution
to facilitate the development and execution of self-adaptive middleware systems for IoT that
address uncertainty in IoT applications. The research hypothesis is that self-adaptive middle-
ware systems offer an adequate approach to managing these uncertainties. To achieve this, the
proposed solution needs to enable the development of customizable and dynamically adaptable
self-adaptive IoT middleware, allowing it to evolve in response to changes and uncertainties in
IoT environments.

This adaptability involves adjusting to varying environmental conditions, enhancing applica-
tion functionalities, and addressing changes. The solution incorporates adaptation mechanisms
that ensure the middleware can handle a wide range of uncertainties during application op-
eration, guaranteeing the proper functioning of IoT applications in diverse and unpredictable
settings.

1.3 PARTIAL EXISTING SOLUTIONS

Developing middleware for IoT has been extensively investigated but remains an active
field due to challenges such as distribution, heterogeneity, interoperability, and communication.
Despite advancements, addressing the dynamism and resource limitations of IoT environments
continues to be a significant open issue (Taconet et al., 2023; Medeiros; Fernandes; Queiroz, 2022;
Razzaque et al., 2016).

Recent studies have explored self-adaptive systems, with IoT emerging as a critical area
for their application (Pekaric et al., 2023; Wong; Wagner; Treude, 2022). Middleware for IoT has

22

become an essential approach for integrating self-adaptive features into these systems.
Existing IoT middleware solutions remain static, either have no support for adaptation,

or provide limited adaptability, focusing only on specific application- or network-level goals.
Moreover, these solutions frequently fail to address the dynamic and unpredictable nature of
IoT environments.

This thesis categorizes existing IoT middleware into three groups: off-device IoT middle-
ware, device-based IoT middleware, and adaptive IoT middleware, with the latter being the
most significant for the research. Off-device IoT middleware (Agostinho et al., 2018; Joseph et

al., 2017; Elkhodr; Shahrestani; Cheung, 2016) typically operates in the cloud, handles distribution
aspects, and requires a gateway for device integration.

Device-based IoT middleware systems such as those using MQTT (e.g., Mosquitto (Light,
2017) and HiveMQ1), run on devices but lack the adaptability needed to handle IoT’s dynamic
nature. They have static configurations, i.e., they do not support adaptations. They cannot
handle the dynamics of IoT environments, as updates and reconfigurations after deployment
are only possible by stopping the device.

Finally, adaptive IoT middleware systems include some adaptive capabilities. However,
such adaptations target specific adaptation goals and fail to address the broader uncertainties
inherent to IoT systems.

For example, solutions focused on adaptation, such as ARM (Achilleos et al., 2017), SAM-
SON (Portocarrero et al., 2016), and InteropAdapt (Mohalik et al., 2016), are designed to enhance
interaction and efficiency by adapting application parameters or structure. These solutions
typically incorporate runtime adaptations to adjust to changing dynamically environments.
For instance, some systems emphasize distributed IoT applications, facilitating dynamic adap-
tation through modular components that can be adjusted to meet immediate needs. These
adaptations often include saving energy consumption, fine-tuning communication protocols,
ensuring device interoperability, improving system performance and extending the longevity of
devices, particularly in wireless sensor networks.

Similarly, some middleware systems focused on adaptation at the application level, focus-
ing on user interface (Uribarren et al., 2008; Park; Song, 2015) aim to enhance user experience
and ensure that applications remain relevant to users’ needs. These solutions dynamically
adjust mobile application interfaces and IoT applications based on user behavior and contex-
tual changes. This adaptation ensures the user interface is continually optimized for the best
1 https://www.hivemq.com/

23

possible experience, responding to user preferences and shifting environmental factors.
There are middleware solutions (Pradeep; Krishnamoorthy; Vasilakos, 2021; Hassan et al., 2023)

that focus on contextual and integration adaptation; the emphasis shifts toward ensuring in-
teroperability across various IoT systems and applications. AUM-IoT (Pradeep; Krishnamoorthy;

Vasilakos, 2021), for example, adapts services based on changes in context, managing differ-
ent domains to ensure optimal performance. Similarly, PlanIoT (Hassan et al., 2023) focus on
adapting to evolving requirements, such as QoS or resource availability, facilitating seamless in-
tegration across various devices and services. These solutions are vital to maintaining fluid data
exchange and ensuring diverse IoT systems can work together effectively, even as conditions
change.

To adapt to the network level, solutions such as PlanEMQX (Hassan et al., 2024), MPaS (Ahmed,
2022), Ermis (Peros; Joosen; Hughes, 2021), and EMMA (Rausch; Nastic; Dustdar, 2018) aim to
enhance the efficiency of data management and communication. These systems implement
strategies like QoS planning, fractal replication, and adaptive sensor sampling to optimize
data flow and network efficiency. Such approaches are vital in large-scale IoT deployments,
where balancing system responsiveness with resource use is essential to maintaining long-term
functionality.

Finally, some solutions focus on specific environmental adaptations to address unique chal-
lenges within particular domains. AquaEIS (Han; Mehrotra; Venkatasubramanian, 2019), for ex-
ample, adapts water infrastructure networks to prevent system failures and optimize resource
management, making water systems more resilient and efficient. Similarly, ImmunoPlane (Jung

et al., 2024) designs adaptive deployment plans that minimise potential failures and optimize
resource usage in IoT systems, ensuring greater robustness and fault tolerance in specific
applications.

Currently, no solution handles the different uncertainties that arise during the operation of
the IoT systems. This limitation significantly increases the complexity of developing adaptive
middleware capable of addressing uncertainties across different layers of the IoT architecture.

24

1.4 MIDDLEWARE EXTENDIFY

This thesis proposes Middleware Extendify (MEx)2, a comprehensive solution designed to
assist developers in implementing and executing self-adaptive middleware systems tailored for
IoT environments. MEx consists of a framework and an underlying execution environment.
The framework facilitates the development of self-adaptive IoT middleware systems, and the
execution environment manages the functioning and adaptations of the middleware system
and applications relying on it.

MEx’s framework uses software architecture principles as an enabling technology for de-
veloping adaptive middleware systems and incorporating adaptability issues. MEx simplifies
the development process by providing a library of pre-implemented middleware components
and an Architecture Description Language (ADL), namely Python-based Architecture Descrip-
tion Language (pADL), which allows developers to define middleware software architectures
using middleware components belonging to the library. Developers build architectures as a col-
lection of loosely coupled components having well-defined functionalities. Such organizational
strategy is widely recognized as facilitating adaptation (Rosa; Campos; Cavalcanti, 2017; Garlan;

Schmerl; Cheng, 2009a).
Components of the MEx’s framework provide functionalities of message-oriented mid-

dleware systems (Goel; Sharda; Taniar, 2003), structured using the publish/subscribe pat-
tern (Tarkoma, 2012), which is commonly found in IoT applications (Al-Fuqaha et al., 2015).
The middleware components of MEx are specifically designed to run directly on IoT devices,
possessing an awareness of IoT ’s resource limitations and the ability to evolve dynamically.
Developers implement these components using low-cost, low-power, and low-CPU-consuming
operations whenever possible. MEx is customizable and extensible, allowing developers to
combine components to create middleware systems in diverse ways. Developers can also im-
plement and integrate new components as needed.

MEx’s underlying execution environment manages the execution and adaptation of the
middleware systems and applications built atop them. Developers only need to deploy the
middleware architecture, its components, and associated applications into this execution en-

vironment for their operation and adaptation.
Regarding adaptations, the execution environment includes a managing system that acts

2 MEx is an acronym for "M iddleware Extendify", where "Extendify" is formed by blending the words
"extend" and "modify."

25

as an adaptation manager. This managing system manages all actions related to adaptive
capabilities at the middleware and application levels during runtime. It triggers adaptations
through adaptation mechanisms based on predefined goals to address uncertainties, which may
arise from user goal variations, resource availability fluctuations, or changes in the application
context.

Different uncertainties may require distinct adaptation goals. Hence, the managing system
is a central hub for adaptation mechanisms to deal with as many uncertainties as possible.
Hence, MEx supports various customizable adaptation mechanisms that can be switched to
enhance middleware performance, meet application demands, and handle continuous changes
and uncertainties at runtime. This flexibility allows for integrating new adaptation mechanisms,
making the framework customizable and adaptable as IoT environments evolve.

The adaptation mechanisms, operating at the application level, enable the (re)configuration
of execution parameters without stopping or recompiling the application, enhancing operational
efficiency and adjusting to environmental conditions or behavioral changes based on context. At
the middleware level, dynamic changes focus on improving middleware operations to respond
to evolving conditions. These enhancements may involve fixing bugs, adding new functionality,
or updating the middleware with the latest improvements.

1.5 SUMMARY OF CONTRIBUTIONS

The contributions of this thesis are summarized as follows:

• Middleware framework: MEx is the main contribution, a framework designed to sim-
plify the development of self-adaptive middleware systems for IoT. This simplification
is achieved through pre-implemented and loosely coupled middleware components so
that developers only have to define a high-level artifact of the implemented middleware,
i.e., software architecture. MEx also supports adding customized components, enabling
developers to implement various self-adaptive middleware configurations by reusing ex-
isting components. Leveraging software architecture principles, MEx enables developers
to easily define middleware architectures.

The development of MEx followed a design science research approach (Lacerda et al.,
2012), iteratively refining its architecture and adaptation capabilities based on experi-
mental validation. MEx was evaluated in a real practical IoT scenario (see Chapter 5),

26

demonstrating its effectiveness in managing uncertainties, adjusting energy consumption,
and enabling dynamic middleware adaptation.

• Architecture Description Language: MEx includes pADL, a Python-based archi-
tecture description language designed to describe and facilitate the implementation of
self-adaptive middleware architectures. It serves as a tool for outlining the structure of
middleware systems, aiding in the development process. Developers only need to use it
to define and deploy different self-adaptive middleware architectures in the execution
environment. The results showed that pADL simplifies the definition and deployment
of self-adaptive middleware architectures (see Chapter 5), reducing development effort,
requiring no programming from the developer, and improving maintainability.

• Adaptive Middleware Execution Environment: MEx provides an execution environ-
ment responsible for executing IoT applications and their self-adaptive middleware sys-
tems. This environment manages applications and orchestrates the adaptation process,
ensuring smooth operation in dynamic IoT environments. As a key contribution of this
execution environment, MEx currently includes three adaptation mechanisms: Evolu-

tive, Duty Cycle Adaptation, and the Time-based Duty Cycle Adaptation. The Evolutive

mechanism allows structural adaptation by allowing the middleware to be continuously
updated, incorporating new features, fixing bugs, or enhancing performance. The other
two mechanisms are parametric, enabling the adjustment of application parameters to
save energy—a critical uncertainty for IoT applications. In addition, MEx provides devel-
opers with the flexibility to integrate custom adaptation mechanisms, thereby expanding
its capacity to meet various adaptation goals and address different uncertainties.

Considering the contributions of MEx, particularly in the dynamic nature and the uncer-
tainties they face, this thesis presents additional contributions that show the capabilities of
MEx.

• AquaMOM: A self-adaptive smart water consumption monitoring system designed to
assist humans (e.g., customers) in improving efficient water conservation in challenging
environments, such as semi-arid regions. Leveraging MEx’s capabilities, AquaMOM uti-
lizes the IoT device to collect, transmit data, and automatically adapt, focusing on man-
aging water and energy consumption, ensuring efficient use, and effective monitoring.

27

• IoT Device: A specialized low-cost IoT device equipped with sensors for measuring
water level and energy consumption was designed and built. This device can execute
MEx, run IoT applications, and connect to the Internet to transmit data, serving as
essential components in IoT systems.

The results of this research were validated through experiments (see Chapter 5), including
the deployment of AquaMOM, performance benchmarks of the adaptation mechanisms,
and analysis of middleware overhead. These evaluations confirmed that MEx effectively sup-
ports self-adaptive IoT middleware while maintaining low computational costs. Specifically,
AquaMOM demonstrated its ability to reduce water waste and energy consumption by dy-
namically adjusting operational parameters based on environmental conditions.

The IoT device was also designed and tested to run MEx efficiently on low-power hard-
ware. Performance tests confirmed that it can collect and transmit data with minimal energy
consumption while executing self-adaptive middleware operations.

1.6 THESIS ORGANIZATION

The remaining chapters are organized as follows:

• Chapter 2 introduces the basic concepts necessary for understanding the research: IoT,
middleware for IoT, self-adaptive systems, and software architecture.

• Chapter 3 presents details of MEx, including its design decisions, software modules,
architecture, components, and adaptation mechanisms. In addition, the details of imple-
mentation and operation are presented.

• Chapter 4 presents AquaMOM an IoT application that uses MEx capabilities. It is
used as a proof-of-concept of how MEx can be utilized in practice.

• Chapter 5 presents the experimental evaluation conducted with the MEx solution and
its results.

• Chapter 6 discusses related work on self-adaptive middleware for IoT and self-adaptive
system solutions for IoT, which have contributed to the development of MEx.

• Chapter 7 concludes the thesis, presenting the main contributions to self-adaptive
middleware for IoT. It also discusses limitations of the MEx and possible future work.

28

2 BACKGROUND

”Ideas improve. The meaning of words participates in the

improvement. Plagiarism is necessary. Progress implies it. It

embraces an author’s phrase, uses his expressions, erases a false

idea, and replaces it with the right idea.”
—Guy Debord

This chapter introduces the concepts necessary for understanding MEx. It initially gives
the basic definitions of IoT, followed by the elements of self-adaptive systems and middleware.
Finally, it presents the definition of software architecture.

2.1 INTERNET OF THINGS

The Internet of Things (IoT) has been defined in various ways by various authors (Atzori;

Iera; Morabito, 2010; Bandyopadhyay et al., 2011; Razzaque et al., 2016; Cruz et al., 2018; Cavalcanti

et al., 2024). In simple terms, IoT connects physical and virtual devices, such as sensors,
actuators, smartphones, vehicles, home appliances, and software systems, enabling them to
work together over the Internet. These connected devices are often referred to as things that
can interact with each other anytime, anywhere, creating services and applications to achieve
shared common goals. This connectivity has introduced a new dimension to information and
communication technologies, allowing not only communication at any time, anywhere, and
with anyone but also with anything (ITU-T Study Group 20, 2012)

IoT has received great attention from academia and industry due to its potential to
improve various aspects of society and interact with people, thereby enhancing infrastruc-
ture efficiency and quality of life (Nižetić et al., 2020a). IoT advances have enabled develop-
ments of smart homes (Agostinho et al., 2018), smart cities (Costa et al., 2022), digital health
(eHealth) (Mukhopadhyay; Sreenadh; Anoop, 2020), smart water management (Singh; Ahmed, 2021)
and Industrial IoT (IIoT) (Sisinni et al., 2018)).

The diversity of applications results in the interconnection of different devices and commu-
nication technologies, creating challenges, such as limited interoperability, lack of standard-

29

ization, and uncertainties in these environments. These factors complicate IoT application
development, as different architectures, functionalities, and components are often without
standardization, regulations, and security (Medeiros; Fernandes; Queiroz, 2022; Al-Fuqaha et al.,
2015).

2.1.1 IoT Architecture

While no single globally accepted IoT architecture exists (Burhan et al., 2018), various
proposals have been presented (Karie; Sahri; Haskell-Dowland, 2020; Khan et al., 2012; Yang et al.,
2011; Wu et al., 2010). In this thesis, the IoT architecture consists of four layers, as shown in
Figure 2.1.

Figure 2.1 – IoT Architecture

Source: (Weyns; Ramachandran; Singh, 2018)

The Business layer (top), although not explicitly indicated, represents the IoT domains,
such as Industrial, Healthcare, Smart City, Smart Water, among others. It manages overall
activities within these domains, including the development of business models, flowcharts, and
ensuring application integrity (Burhan et al., 2018; Al-Fuqaha et al., 2015; Khan et al., 2012). Addi-
tionally, it also enables decision-making and monitoring of other layers, e.g., by implementing
solutions that compare the output of each layer with the expected service results (Burhan et

al., 2018; Al-Fuqaha et al., 2015).

30

The Application layer encompasses the applications and services provided by IoT ap-
plications. These applications must be reliable to meet diverse user needs in various areas,
such as smart homes, smart cities, transportation, smart water management, healthcare, and
IIoT (Nižetić et al., 2020b; Kavre; Gadekar; Gadhade, 2019; Khan et al., 2012).

The Platform layer, also known as the Middleware layer, hides the complexity of distribution
among IoT applications. It enables interoperability and integration of devices and applications
and hides heterogeneity. Additionally, the middleware can also process data and events from
IoT devices, provide data management services (e.g., collecting and maintaining data), make
decisions regarding these data (e.g., storing or sending them to a requesting application), and
ensures scalability and security (Nižetić et al., 2020b; Burhan et al., 2018; Razzaque et al., 2016).

The Communication layer (or Network layer) handles data transmission between IoT de-
vices, services and applications. It also gets data produced by the things layer and sends it
to the information processing system. This layer can also function as a gateway, supporting
various communication technologies, such as Radio Frequency Identification (RFID), Blue-
tooth, Long Range (LoRa), ZigBee, 5G, and Wi-Fi. Other functions, such as processing and
managing data in the cloud, can also be performed in this layer (Nižetić et al., 2020b; Burhan et

al., 2018; Al-Fuqaha et al., 2015).
The Things layer, also known as Perception layer (or Device layer) includes IoT devices

responsible for data collection and processing, e.g., sensors, actuators, or micro-controllers
for measuring temperature, humidity, weight, and so on. Data are measured, digitized, and
passed to the communication layer for further processing (Nižetić et al., 2020b; Burhan et al.,
2018; Al-Fuqaha et al., 2015).

2.1.2 IoT Uncertainty

Another characteristic of IoT is uncertainty (Weyns, 2021; Magruk, 2015), as it experiences
continuous changes, primarily due to context modifications. Uncertainty refers to any unan-
ticipated event, deviation, change, or error that unexpectedly manifests in a system, making
predicting the system’s behavior challenging (Hezavehi et al., 2021; Baresi; Ghezzi, 2010). An
indication of uncertainty occurs when the results of ongoing activities cannot be determined
with absolute confidence. In this sense, uncertainty concerns changes challenging to estimate
or events whose probability cannot be predicted because the available information is too lim-
ited (Magruk, 2015; Calinescu et al., 2012; Baresi; Ghezzi, 2010).

31

Due to their complexity, high dynamism, inherent resource constraints, and integration
with other systems, IoT applications are especially susceptible to several sources of uncertainty.
These uncertainties can appear at different layers of the IoT technology stack during operation,
requiring considerable effort in management (Weyns; Ramachandran; Singh, 2018; Magruk, 2015).

IoT applications usually have several kinds of elements, such as sensors and actuator things,
storage and data processing units, compute servers, and communication technologies (Sethi;

Sarangi, 2017). Each of these elements represents a potential source of uncertainty. For example,
the heterogeneity of things may require diverse processing capabilities and support for different
communication protocols (e.g., Wi-Fi and Bluetooth). The heterogeneity can also introduce
uncertainty through measurement errors, environmental variations, packet loss in the network,
and thing malfunctions. The dynamism of IoT applications can also introduce uncertainty
related to the evolution of software. New components may become available, enabling the
system to adapt to the evolving capabilities of IoT applications, devices, and protocols while
maintaining compatibility and optimizing performance. Continuous middleware updates are
essential to manage these uncertainties, ensuring the system remains adaptable, resilient, and
effective as the IoT environment evolves.

To better illustrate the uncertainty of IoT environments, consider an IoT application that
monitors water. Each sensor transmits data directly to the IoT gateway when in range. Oth-
erwise, the sensor can relay data through other sensors until it reaches the gateway. In such
a case, this application demands reliable communication with low latency and transmission
power and a selected path for relaying packets towards the gateway. Ensuring the required
communication quality is challenging, given that the application is susceptible to various un-
certainties. Two primary uncertainties include network interference, encompassing factors like
weather conditions, and wireless signals such as Wi-Fi in the neighborhood, which may lead
to potential packet loss. The second uncertainty involves fluctuating traffic loads influenced
by the rate of data generation or network congestion, which can also introduce uncertainty.
Furthermore, changes in application requirements, such as adding user feedback dashboards or
alert systems (e.g., email or Short Message Service (SMS)), can introduce new uncertainties
by altering the original system design.

Finally, a typical source of uncertainty in IoT applications is the need for devices to remain
operational for long periods, often powered by batteries. Power consumption is a critical uncer-
tainty in this context, as these systems operate in unpredictable environments, and replacing
batteries can be costly or sometimes even impossible (Cavalcanti; Hughes; Rosa, 2023; Weyns,

32

2018). Moreover, the applications themselves can be subject to change, which may affect the
configuration of underlying layers and cause uncertainties in the system’s state and surrounding
environment. Furthermore, when several systems communicate, uncertainty caused in a par-
ticular system may have a cascading effect and threaten other interconnected systems (Weyns,
2018; Magruk, 2015).

2.2 SELF-ADAPTIVE SYSTEMS

A Self-Adaptive System (SAS) adapts its behavior or structure at runtime in response to
system or environmental changes. Adaptations allow the system to evolve or even fix bugs
during execution, ensuring it continues to achieve its goals with minimal or no human inter-
vention while maintaining a certain QoS (Wong; Wagner; Treude, 2022; Alfonso et al., 2021; Weyns,
2020; Weyns; Ramachandran; Singh, 2018; Krupitzer et al., 2015; Kephart; Chess, 2003).

The concepts of SAS emerged as a response to the software complexity crisis at the begin-
ning of 2000 (Sinreich, 2005; Kephart; Chess, 2003). As systems became more interconnected,
distributed, and heterogeneous, developers found it increasingly difficult to predict and de-
sign interactions among components, leading to system failures and issues with hardware
and software. These complexities required highly skilled system developers to install, config-
ure, operate, tune, and maintain the systems. The development of SAS relieves developers
from the maintenance burden, which requires human intervention and is both costly and time-
consuming (Salehie; Tahvildari, 2009). Self-adaptive systems help solve this maintenance problem
autonomously and at runtime.

Self-adaptation is essential for configuring and maintaining IoT applications, which are
highly dynamic and prone to uncertainties. IoT applications need to operate continuously in
environments that frequently change their conditions. Unexpected events can occur anytime,
potentially compromising QoS (Alfonso et al., 2021; Patel; Ali; Sheth, 2017). In this context, the
SAS collects data about itself and its environment and uses those data to reason and adapt
itself to meet the required QoS (Weyns; Ramachandran; Singh, 2018; Salehie; Tahvildari, 2009;
Kephart; Chess, 2003).

More formally, the adaptation can be understood as defined in the following equation:

𝑆, 𝐷 |= 𝑅 (2.1)

33

where, |= denotes satisfaction or logical consequence, 𝑆 represents the system specification,
𝐷 denotes the domain assumptions, and 𝑅 represents the system requirements. This equation
means that the system specification 𝑆 and the domain assumptions 𝐷 together satisfy the
system requirements 𝑅.

In software evolution, changes in requirements (𝑅) as new business rules are usually han-
dled through perfective maintenance and done offline through human intervention during the
development phase. Changes in the specification (𝑆) must accommodate evolving require-
ments (𝑅) or adapt to changing domain assumptions (𝐷). These assumptions (𝐷) are highly
uncertain and can change dynamically. In this case, changes are done by the software itself;
they use sensors that monitor the environment, detect such changes and trigger self-adaptive
mechanisms. The software’s ability to meet its requirements (𝑅) depends on the accuracy of
its domain assumptions (𝐷). These assumptions are defined in terms of adaptation goals and
need to be corrected due to flawed analysis or environmental changes; the requirements might
no longer be satisfied, necessitating adaptation to the software.

Finally, SAS has four self-management properties that a self-adaptive system can fulfill:
self-configuration, self-healing, self-optimization, and self-protection. Self-configuration refers
to systems that automatically and dynamically reconfigure themselves in response to changes
by installing, updating, integrating and composing software entities. Self-healing describes sys-
tems capable of detecting, diagnosing, and reacting to errors and failures, including the ability
to predict potential problems and take proactive actions to prevent a failure. Self-optimization

involves systems continuously seeking ways to improve and evolve their functionalities, qual-
ity, and resource utilization. Finally, self-protection systems can defend themselves against
malicious attacks or failures.

2.2.1 Model for Self-Adaptive Systems

Weyns (2018) introduced two fundamental principles that complement each other and help
define a self-adaptive system. The first principle, the External principle, defines that a SAS can
autonomously handle uncertainties and changes within the system, its goals, or its environment
with minimal or no human intervention. The second principle, the Internal principle, mentions
that a SAS consists of two distinct parts. The first part is responsible for the domain concerns
(i.e., business logic) and interacts with the environment. The second part manages the first
part and is responsible for the adaptation concerns.

34

Adopting these principles, Weyns (2018) proposed a conceptual model for a self-adaptive
system, as shown in Figure 2.2. This model describes the basic concepts and elements of a
self-adaptive system, its components, and the relationship between them.

Figure 2.2 – Conceptual model of a self-adaptive system

Source: (Weyns, 2018)

The first component is the Environment that comprises external elements interacting with
the self-adaptive system. The environment can include physical and virtual elements where
the effects of adaptation can be observed and evaluated. In IoT environments, these elements
might be devices and applications or the broader environment in which the system operates,
e.g., smart cities, smart homes, smart water systems, and so on. The environment can be
sensed and effected through sensors and effectors, respectively. However, as the SAS does
not control the environment, there may be uncertainty regarding what is sensed or what the
outcomes will affect.

The second component of the model is the Managed System. It is part of the self-adaptive
system that implements the application’s domain functionality (business logic) and suffers the
adaptation processes. To support adaptations, sensors must be used to collect information,
and actuators to execute the adaptations. It is essential to ensure that adaptations in managed
systems are safe, meaning they should occur when the system is idle or in stable conditions to
avoid interfering with its functionality, i.e., the system is in a quiescence state (Kramer; Magee,
2007).

35

The third component is the Adaptation Goals, usually related to the quality and proper
functioning of the managed system. If a goal is violated, an adaptation should be triggered.
For example, a self-optimisation goal might specify a maximum execution time. Similarly,
a self-configuration goal could ensure that the managed system is always up to date. It is
important to note that adaptation goals can change over time. Adding or removing goals
during operation requires updates to the managing system and may also necessitate updates
in sensors and effectors.

The last component is the Managing System, responsible for implementing the adaptation
logic and ensuring that the managed system meets its adaptation goals. To achieve this, the
managing system contains subsystems that monitor and analyze both the environment and
the managed system to decide the need for adaptation. To work autonomously with minimal
human intervention, the managing system is typically implemented using autonomic feedback
control loops, known as feedback adaptation loops (Alfonso et al., 2021; Weyns, 2020; Muccini

et al., 2018; Salehie; Tahvildari, 2009; Kephart; Chess, 2003). These loops have been identified as
crucial elements in developing self-adaptation systems. Existing control loops include Observe,
Orient, Decide, Act (OODA) (Muccini; Moghaddam, 2017), Cognitive Cycle (sensing, analysis,
decision, action) (Muccini; Moghaddam, 2017) and the Monitor-Analyzer-Planner-Executor +
Knowledge (MAPE-K) (Sinreich, 2005).

The MAPE-K is the most popular control loop (Muccini et al., 2018; Muccini; Sharaf; Weyns,
2016) and consists of the elements shown in Figure 2.3.

Figure 2.3 – MAPE-K

Source: (Sinreich, 2005)

The Monitor element collects data from the managed system and its environment. It can

36

also aggregate and filter this data to align it with the adaptation goals for analysis. Additionally,
the Monitor updates the Knowledge base with newly collected data.

After collected, monitored data are forwarded to the Analyzer. The Analyzer evaluates
the collected data and determines if an adaptation is needed. It identifies when the managed
system is not meeting adaptation goals. Common techniques used by the Analyzer include
directly checking system parameters, time series analysis, and rule engines. The analysis relies
on data stored in the Knowledge. If an adaptation is necessary, the Analyzer informs this need
to the Planner.

Having received the Analyzer decision, the Planner creates an adaptation plan for the
managed system. The plan can range from a simple command action to change a variable to a
series of procedures that must be executed in the managed system. Once the plan is created,
it is sent to the Executor responsible for executing it.

The Executor performs the required adaptations in the managed system. Adaptations may
involve changing the managed system’s parameters, components, or both.

Finally, the Knowledge base is a repository that stores data about the whole adaptation
process. This repository is shared between all MAPE-K elements.

2.3 MIDDLEWARE SYSTEMS

Middleware facilitates interaction or communication between applications, networks, or
operating systems in distributed systems. It hides the complex connections required in such
systems, easing the implementation process for developers (Schmidt; Buschmann, 2003; Bishop;

Karne, 2003; Bernstein, 1996). This way, middleware simplifies the complexities of developing
distributed applications by managing communication, heterogeneity, and interoperability issues.
It allows developers to focus on application-specific concerns, such as business logic, rather
than dealing with complex and error-prone details associated with underlying programming
infrastructure (Cavalcanti; Carvalho; Rosa, 2021; Schmidt; Buschmann, 2003; Bishop; Karne, 2003).

There are various models of middleware (Bishop; Karne, 2003), each designed to facilitate
communication and interoperability between distributed applications. One of these models is
Procedure Oriented Middleware, which uses synchronous methods to request remote service
execution. This model employs client stubs and server skeletons to manage interactions be-
tween applications. The client stub converts the procedure parameters into messages and sends
them to the server, which converts them back into procedures for processing. This conversion

37

process is called marshaling. After processing, the reverse process returns the results. This
middleware model has advantages, such as using standard naming services and supporting
multiple data formats. However, it is not very scalable or flexible due to its tight coupling
with the procedure, since clients must wait until they receive a reply from the server before
continuing (Menasce, 2005; Bishop; Karne, 2003).

Another model is Object Oriented Middleware, which supports synchronous and asyn-
chronous communication between client and server objects. In this case, the client makes a
method call on a remote object, and a local proxy marshals and sends the data to a broker. The
broker contacts data sources, organizes and forwards the data to the server, which processes
it and returns results. This model supports load management, scalability, and multi-threading
but may require prelinked execution and wrapper code for legacy systems (Voelter; Kircher; Zdun,
2004; Zdun; Kircher; Völter, 2004; Bishop; Karne, 2003).

Finally, Message-Oriented Middleware (MOM) can be divided into Message Passing/Queu-
ing and Publish/Subscribe. In Message Queuing, applications send messages using the client
MOM. A MOM server picks these messages in a predetermined order and routes them via a
message broker to the appropriate clients through a queue. The MOM server functions pri-
marily as a message router and typically does not interact with the content of the messages.
This approach enables asynchronous messaging. In the publish/subscribe pattern, which is
event-driven, clients can act as publishers, subscribers, or both. Publishers send messages to
topics managed by a broker. The broker manages topics, messages, and subscribers and no-
tifies subscribers. Subscribers request or are notified of specific data from the publisher, sent
via the broker (Rausch; Dustdar; Ranjan, 2018; Tarkoma, 2012; Bishop; Karne, 2003).

Middleware usually operates between applications and operating systems and provides
transparencies in different aspects of distributed systems (Coulouris et al., 2011; Tanenbaum;

Steen, 2006):

• Access Transparency: Users can access the application without knowing the system
details, such as how data is represented or a resource is accessed.

• Location Transparency: Developers do not need to know where the resources are
located; even if the resource is remote, it should appear local to the user.

• Technology Transparency: The underlying technology used in the system is hidden
from users, including differences in operating systems, programming languages, plat-

38

forms, and communication technologies.

• Concurrency Transparency: The system allows multiple users to access the same
resources simultaneously without conflicts, with little or no perception of other users.

In addition, middleware systems can also offer services, such as queuing, security, and
concurrency control for applications built on top of them (Cavalcanti; Carvalho; Rosa, 2021).
For example, it can encapsulate and enhance native Operating System (OS) mechanisms,
providing reusable event (de)multiplexing, inter-process communication, and synchronization
objects. These characteristics allow developers to create applications without hard-coding
dependencies on specific locations, programming languages, OS platforms, or communication
protocols.

2.3.1 Middleware for IoT

IoT middleware plays a crucial role in addressing challenges related to distribution, hetero-
geneity, interoperability, and communication in IoT environments. It facilitates communication
between devices and applications (Razzaque et al., 2016). IoT middleware hides the heterogeneity
of devices, making communication possible among them. In practice, IoT middleware provides
connectivity for devices. It also enables interaction between various devices while working as a
layer for data management, security and concurrency control, and scalability for IoT applica-
tions (Sethi; Sarangi, 2017).

IoT middleware is essential for several reasons: (1) it allows interoperability between hetero-
geneous devices belonging to different IoT domains; (2) it also acts as an abstraction layer for
data communication and representation, allowing transparent communication between diverse
applications and (3) it provides an Application Programming Interface (API) for communicat-
ing between the physical layer, providing the necessary services for applications while hiding
the complexity of devices and services (Zhang et al., 2021; Kassab; Darabkh, 2020; Bandyopadhyay

et al., 2011).
IoT middleware systems are versatile, functioning across various layers of the IoT appli-

cation architecture (see Section 2.1.1). At the application layer, they can offer mechanisms
that support efficient and secure processing of streaming data from many sensors. It also
provides services and other functionalities linked to the application level, which help applica-
tion developers add new components, integrate additional functionalities, and fine-tune their

39

resource capabilities. These mechanisms may encompass several elements, such as a runtime
environment and programming APIs.

At the platform layer, middleware simplifies the development process by integrating het-
erogeneous computing and communication things, managing resources to ensure acceptable
QoS for all applications and environments, and promoting interoperability among diverse ap-
plications and services. IoT middleware manages the communication protocols, such as Wi-Fi
and Bluetooth, within the communication layer. Finally, the thing layer abstracts the hetero-
geneity and details of things from different vendors, irrespective of their connectivity protocols,
ensuring compatibility and seamless operation.

2.4 SOFTWARE ARCHITECTURE

Software Architecture is a crucial concept in software engineering, serving as a bridge be-
tween requirements and implementation. Although no universal definition exists, it is generally
understood as a high-level abstract representation of the software’s structure (Medvidovic; Tay-

lor, 2010; Fuxman, 1999; Garlan; Shaw, 1993). Software Architecture is described using various
methods, including informal diagrams, descriptive terms, module interconnection languages,
domain-specific frameworks, and formal models (Mckenzie; Petty; Xu, 2004; Medvidovic; Taylor,
2000).

Software Architecture defines the system’s organization, components, and interactions.
As software systems grow in size and complexity, new challenges arise, extending beyond
algorithms and data structures. These challenges include designing and specifying the overall
system structure, including software organization, communication protocols, synchronization,
data access, and functionality assignment.

In practice, software architecture is often developed by composing three essential ele-
ments: components, connectors, and configurations (Rosa et al., 2020; Medvidovic; Taylor, 2010;
Medvidovic; Taylor, 2000). Components represent a system’s computation units, such as applica-
tion clients, servers, functions, or entire applications and data storage systems like databases.
Connectors describe the interactions between software components, such as function calls,
database queries, or pipelines. Finally, configurations describe information about the system,
such as how components are connected, including any constraints, rules, settings, and non-
functional properties. Architectural patterns guide the composition of these elements.

There are different ways of representing the system’s architecture. Informal graphical nota-

40

tions like box-and-line diagrams are typically used. In these diagrams, boxes usually represent
system components, while lines represent some data flow or control connections between the
components. Although helpful, these diagrams usually lack detail (Medvidovic; Taylor, 2010;
Mckenzie; Petty; Xu, 2004; Garlan; Shaw, 1993).

A more structured approach for describing a software architecture is Unified Modeling
Language (UML), a graphical language that provides diagrams representing different aspects
of a system. For example, class diagrams show structural aspects, while interaction diagrams
represent behavioral aspects. Despite the availability of such tools, informal textual descriptions
are still commonly used in practice, often referring to architectural patterns, such as client-

server, without providing detailed explanations (Mckenzie; Petty; Xu, 2004; Medvidovic; Taylor,
2010).

Architecture Description Languages (ADLs) provide a more formal and precise represen-
tation. As the name suggests, an ADL is a declarative language that offers features like a
defined syntax and a conceptual framework for describing software architectures (Rosa; Campos;

Cavalcanti, 2017; Mckenzie; Petty; Xu, 2004; Garlan; Shaw, 1993). ADLs facilitate the validation
and analysis of the architecture before implementation, making it easier to communicate with
stakeholders and maintain the system over time. ADLs and their associated frameworks and
tool-sets offer a solution to the limitations of informal methods by providing a formal approach
to architecture-based software development. These languages and tools can be processed com-
putationally to support the creation, analysis, and refinement of architectural specifications,
ensuring a robust foundation for the software system.

Considering these characteristics, ADLs and their frameworks provide reusable infrastruc-
tures with well-defined components, allowing developers to customize systems to systematically
meet specific goals and concerns. This capability allows some approaches to leverage software
architecture concepts to guide self-adaptation logic during the system adaptation process, a
practice referred to as architecture-based self-adaptation (Rosa et al., 2020; Rosa; Campos; Cav-

alcanti, 2017; Garlan; Schmerl; Cheng, 2009b). These approaches offer structured frameworks to
monitor the system and its environment, reflecting observations in the system’s architecture
model, detecting opportunities for improvement, selecting actions, and implementing changes
in a closed loop.

41

2.5 CONCLUDING REMARKS

This chapter presented the fundamental concepts necessary to understand the proposed
MEx system. Initially, fundamental IoT concepts were introduced. Next, SAS concepts and
middleware for IoT were discussed. Finally, the concept of software architecture was presented.

42

3 MIDDLEWARE EXTENDIFY

"You may learn something, and whether what you see be fair or

evil, that may be profitable, and yet it may not. Seeing is both

good and perilous. Yet I think, Frodo, that you have courage

and wisdom enough for the venture, or I would not have brought

you here. Do as you will!"
—J.R.R. Tolkien

This chapter presents MEx. Firstly, it presents an overview of the solution, followed by a
discussion of the design principles considered in its development. Then, the main modules and
components of MEx are detailed. Finally, implementation details are presented.

3.1 OVERVIEW OF MEX

MEx (M iddleware Extendify) is a comprehensive, customiZable and adaptable solution for
designing and implementing self-adaptive middleware systems tailored to IoT. Comprehensive

means that MEx offers tools and guidelines needed for developing and adapting these middle-
ware systems and the IoT applications atop them. Customizable means that MEx allows the
addition of new components and adaptation mechanisms, which can be added and removed
at any time. Adaptable refers to the ability of middleware systems to be adjusted for different
IoT contexts, combining components in various ways to create different types of self-adaptive
middleware systems (Cavalcanti; Rosa, 2024).

MEx consists of a middleware framework and an underlying execution environment, which
help developers create and manage self-adaptive middleware systems and distributed applica-
tions. Figure 3.1 shows a general overview of MEx, along with its support in developing
(Development Time) and executing (Execution Time) self-adaptive middleware systems.

At Development time, MEx has a framework that simplifies the development of mid-
dleware systems. It uses software architecture principles (see Section 2.4) as an enabling
technology for implementing the middleware and its associated adaptation mechanisms. The
middleware is structured as a collection of loosely coupled components with well-defined func-

43

Figure 3.1 – General Overview of MEx

Source: Author

tionalities. This organizational strategy facilitates adaptations, as these components can be
easily manipulated (e.g., swapped out) at runtime (Rosa; Campos; Cavalcanti, 2017; Garlan; Schmerl;

Cheng, 2009a).
The framework provides a Library of Middleware Components used by Middleware De-

velopers for implementing the middleware. This library includes pre-implemented middleware
components supporting communication, distribution, and adaptation. It also has an ADL,
named pADL, for describing middleware software architectures. Developers only use compo-
nents from MEx’s library and define the software architecture using pADL. MEx supports
adaptability at the middleware and application levels. In this sense, application-level adap-

44

tations are parametric, so developers can also configure adaptable parameters adjusted at
runtime.

The components in MEx have been designed for the development of message-oriented
middleware (Goel; Sharda; Taniar, 2003) structured using the publish/subscribe pattern (Tarkoma,
2012), which has been widely used to support communication and distribution of IoT applica-
tions. Furthermore, MEx supports the automated deployment of software architectures into
the execution environment. This automatic process is crucial for scalability and error reduction,
as manual configuration of numerous IoT devices can be costly and error-prone. Thus, the
middleware architecture, IoT applications, and configurations are stored in a database linked to
each device’s unique identifier. Upon connection, the device initiates the deployment process
by sending a start message. Once the deployment concludes, the execution begins immediately.

At Execution Time, the execution environment manages the execution and adaptation
of middleware and applications. It comprises five main modules: MEx Client, MEx Broker,
Execution Unit, Managing System, and a Knowledge Database. Each module ensures efficient
deployment, execution, communication, and adaption of middleware systems and applications.

The Execution Unit, a central module of MEx, manages the automated deployment and
execution of middleware architectures and applications. This component triggers the deploy-
ment process and acts as the execution engine, managing the life-cycle of each component,
including automatic loading, instantiation, starting, and execution. It also handles adapta-
tions by sending adapt messages to implement runtime changes, such as adding, replacing,
or removing components or adjusting adaptable parameters. Furthermore, it actively manages
shared resources, fostering interactions among these components.

The MEx Client is the middleware component executed on IoT devices. It provides com-
munication and distribution services to achieve interoperability between IoT devices and ap-
plications. MEx Client provides the traditional operations of a publish/subscribe middleware
to applications executing in the device, e.g., publish and subscribe. The MEx Broker is the
messaging service that mediates asynchronous message exchanges between MEx Clients. IoT

applications built on MEx Client use the MEx Broker to publish messages without explicitly
specifying recipients. Likewise, subscribers use the MEx Broker in the subscription process to
receive messages. MEx Broker stores messages, manages topics and subscribers and notifies

subscribers interested in a particular topic.
The Managing System is the main module in the cloud side of MEx. It is responsible

for initializing the execution and coordinating all actions related to the adaptation process. It

45

receives start messages from the Execution Unit and orchestrates automatic deployment into
the IoT device. The Knowledge Database assists the Managing System in the initialization
and adaptation process.

Managing System manages adaptations at middleware and application levels. Adaptation
at the application level allows (re)configuration of execution parameters without stopping or
recompiling the application. The dynamic changes of these parameters aim to improve the ap-
plication’s operation and adjust it to the environment conditions or its behavior based on the
context. At the middleware level, dynamic changes are intended to improve the operation of the
middleware and adjust it to changing environmental conditions. These middleware improve-
ments include the ability to address bugs, add new functionality, or keep the middleware up to
date with the latest advancements. It receives adapt messages from the Execution Unit and
triggers adaptations using its Adaptation Mechanisms, which determine the necessary changes.
These mechanisms are developed according to predefined goals to address uncertainties (see
Section 2.1.2) inherent to IoT environments. These uncertainties may arise from modifica-
tions in user goals (e.g., varying user requirements and workloads), changes in operational
environments (e.g., temporary loss of connectivity and degraded performance or security), and
fluctuating resource availability, such as decreasing battery levels. However, different uncer-
tainties may require other different adaptation goals. For this reason, the Managing System

is designed as a central hub for Adaptation Mechanisms. It allows the integration of custom
mechanisms according to the needs of the IoT environment, making MEx customizable and
flexible as IoT environments evolve. Integrating different mechanisms is crucial for dealing with
as many uncertainties as possible, as no single mechanism can be considered the best in all
situations.

For example, in a smart water application for monitoring cistern consumption, a device
monitoring the water level initially sends a start message to the Managing System. The Man-

aging System then accesses the Knowledge Database and retrieves the necessary components
and configurations (e.g., adaptation interval and adaptive mechanism) to deploy on the device.
While executing, the device measures the execution cycle times and at the end of each cycle,
the Execution Unit sends an adapt message. Different devices may require distinct adaptation
mechanisms. Therefore, the Managing System instantiates the needed adaptation mechanism
(e.g., a parametric adaptation) to trigger and execute adaptations. For instance, an adap-
tation might be adjusting the monitoring interval based on the cistern’s level. Suppose the
cistern’s level is critical; the system might change the monitoring frequency to every minute.

46

Conversely, suppose the water level is at peace level. In that case, the system might change
the frequency to every 60 minutes to save energy. Another potential adaptation mechanism
could dynamically adjust the operation frequency based on the battery level.

At this point, it is worth noting that all adaptation mechanisms in MEx are implemented
according to the MAPE-K (Monitor, Analyzer, Planner, Executor, and Knowledge Database)
feedback loop (Sinreich, 2005) (see Section 3.4.4). The Monitor monitors the execution en-
vironment, and the Analyzer receives monitored data and decides whether an adaptation is
necessary. If an adaptation is required, the Planner creates an adaptation plan, and the Ex-
ecutor carries it out. The Knowledge Database, also part of MAPE-K and shared among all
elements, stores relevant information to support the adaptation process.

In the following sections, the design decisions of MEx (Section 3.2) are discussed, followed
by the details of its development time (Section 3.3) and execution time (Section 3.4) support,
along with implementation details (Section 3.5).

3.2 DESIGN DECISIONS

The following sections present design decisions established to guide MEx development.
These decisions were based on a systematic review of related works and surveys on implement-
ing self-adaptive middleware for IoT (Al-Fuqaha et al., 2015; Razzaque et al., 2016; Moghaddam;

Rutten; Giraud, 2020; Zhang et al., 2021; Medeiros; Fernandes; Queiroz, 2022).

3.2.1 MEx Middleware is MOM

As mentioned in Section 2.3, middleware systems can vary in their models and imple-
mentations. Among these, MOM (see Section 2.3) is a crucial technology for today’s IoT
environments (Rausch; Dustdar; Ranjan, 2018; Razzaque et al., 2016; Al-Fuqaha et al., 2015). A
message-oriented approach is a popular choice for developing IoT middleware for several rea-
sons, which is why it was also selected for this thesis.

Firstly, the distributed nature of IoT applications means that devices are often in different
locations and must communicate efficiently. MEx asynchronous communication allows devices
to exchange data without requiring a direct connection, which is essential in scenarios where
connectivity may be intermittent.

Secondly, MOM offers scalability, allowing new devices to be integrated into the archi-

47

tecture without the need for reconfiguration (Sheltami; Al-Roubaiey; Mahmoud, 2016; Razzaque

et al., 2016). Each device using MEx client can independently send and receive messages,
simplifying communication. This approach also enhances system resilience; if one device fails,
messages can still be delivered to others, allowing the overall system to continue operating.

MOM provides a centralized message broker enabling decoupled device-to-device commu-
nication. MEx broker decouples publishers and subscribers, meaning that devices do not need
to be aware of each other to communicate. This feature facilitates maintenance and updates
without disrupting operations. Additionally, it is crucial for lightweight, resource-constrained
IoT environments. It supports asynchronous communication, essential for distributed systems
where components may move, fail, or disconnect from the network.

Moreover, a MOM allows for greater flexibility in integrating various types of devices
and communication protocols, resulting in diverse technology choices (e.g., programming lan-
guages) and platform options (e.g., micro-controllers and Arduino) (Rausch; Dustdar; Ranjan,
2018; Razzaque et al., 2016; Al-Fuqaha et al., 2015). Lastly, it efficiently manages data gener-
ated by IoT devices, enabling dynamic data collection and processing. The MEx framework
addresses several issues by supporting different programming languages, such as C, Python
and JavaScript, implementing its communication protocol, and enabling communication with
Message Queuing Telemetry Transport (MQTT).

In summary, the components in MEx support the development of message-oriented middle-
ware systems (Goel; Sharda; Taniar, 2003) structured using the publish/subscribe pattern (Tarkoma,
2012). Its benefits include asynchronous communication, lightweight implementation, low re-
source consumption, scalability, decoupling, heterogeneity and distribution (Sheltami; Al-Roubaiey;

Mahmoud, 2016; Razzaque et al., 2016). Additionally, MEx supports adaptability in IoT environ-
ments.

3.2.2 MEx Transparencies

MEx middleware provides transparencies (see Section 2.3) for IoT application develop-
ers. These transparencies release developers from dealing with distribution concerns, allowing
them to focus on application-specific requirements. Challenges such as concurrent process-
ing, cooperation between devices in different locations, network delays, failures, and device
heterogeneity (e.g., varying programming languages, operating systems, and communication
protocols) are addressed by transparencies offered by MEx.

48

In this sense, one of the critical transparencies offered by MEx is location transparency

allows applications or developers to access resources without knowing their physical location
on the network. MEx ensures that the location of resources does not affect how developers
or applications interact with them. For example, in a water level monitoring system that sends
alerts about issues such as water shortage or excessive consumption, MEx ensures messages
and notifications are delivered to subsystems (e.g., Web applications) regardless of the physical
location.

Another important transparency is access transparency, which abstracts the difference
between accessing local and remote resources. MEx provides a simplified interface to appli-
cations. Then, applications exchange messages without specifying recipients or knowing how
messages will be processed and received.

MEx also supports technology transparency, enabling applications to be developed in
different programming languages, as it has been developed in Python, JavaScript, and C.
Consequently, applications can execute on different platforms, such as Linux-based systems,
embedded devices running FreeRTOS, and micro-controller environments, such as MicroPy-
thon. MEx also accommodates different hardware devices, including Personal Computer (PC),
ESP8266, and Raspberry Pi, simplifying the development process by enabling interoperability
among diverse computing and communication environments.

Finally, concurrency transparency ensures that resources can be accessed simultaneously
without compromising the correctness of the processing results. While this mechanism ensures
the integrity of concurrent operations, it may introduce overheads that affect QoS, such as
increased latency or reduced throughput. Nonetheless, it facilitates effective resource manage-
ment by balancing the needs of different applications and environments, helping to achieve
performance and maintain acceptable QoS.

3.2.3 IoT-Driven Development

As mentioned in Section 2.1, the development of IoT applications has several challenges.
Characteristics of IoT involve diverse hardware and software components, each with distinct
development processes and constrained resources, and having highly dynamic and distributed
interactions among multiple parties (Fahmideh et al., 2022).

Most research in IoT has focused on the technical and empirical aspects of IoT implementa-
tion (Fahmideh et al., 2022). MEx follows a technical approach, i.e., an implementation-oriented

49

method, addressing characteristics of IoT environments, especially the resource constraints.
The proposed approach involves developing, testing, iterating and adapting solutions based on
researched concepts, refining them for improvement.

MEx implements a communication protocol between applications and includes a compo-
nent for communication with MQTT, which has become a de facto standard for IoT applica-
tions (Al-Fuqaha et al., 2015).

Resource limitations are another critical challenge in IoT. While some IoT applications may
eventually require more powerful computing resources for tasks like routing, switching, and data
processing, many IoT devices are small, low-cost, and embedded, with significant constraints on
processing power, memory, and communication. These limitations must be carefully considered
during development to ensure that applications remain efficient and functional even on the most
resource-constrained devices. For this reason, MEx prioritizes low-cost, low-power, and low-
CPU operations, for example, by avoiding loops and list comprehensions, using local variables,
and optimizing the code whenever possible.

3.2.4 Manage Multiple Uncertainties

To face the uncertainties inherent in IoT operations (see Section 2.1.2), MEx utilizes
self-adaptation mechanisms based on adaptation goals to enhance resilience and adaptability
in dynamic and resource-constrained environments.

For uncertainty related to application evolution, specifically component updates and com-
patibility, MEx uses a strategy of continuous updates and component replacement. The
middleware is regularly updated to the latest component versions, improving compatibility
and performance. When new versions are available, outdated components are automatically
replaced, allowing the system to evolve without manual intervention.

To face uncertainty related to device lifetime, MEx incorporates energy-saving mecha-
nisms. The application reduces power consumption during idle periods or low battery levels,
extending device operation. It also monitors the battery level, allowing dynamic adjustments
to energy usage based on environmental conditions.

For uncertainty associated with environmental changes, MEx has an adaptive approach
that adjusts operating parameters based on environmental changes. The parametric mecha-
nisms modify settings (e.g., data collection intervals) to balance resource efficiency and data
accuracy, ensuring reliable operation under diverse conditions.

50

3.2.5 Self-Adaptation Capability

The final design decisions concern the self-adaptation capabilities. Common issues associ-
ated with the design and development of self-adaptive systems include: When to adapt? Why

to adapt? Where to adapt? What to adapt? and How to adapt?. The design decisions to ad-
dress these questions are systematically organized using the taxonomy proposed by Krupitzer
et al. (2015) shown in Figure 3.2.

Figure 3.2 – Taxonomy of Self-Adaptation

Reason
Time

Self-
Adaptation

Adaptation
Control

Change in the
Technical Resources

Proactive
Reactive

Application

Technique

Parameter

Structure

Change in the Context

Change Caused by
the User(s)

Level

System
Software

Communication Technical
Resources

Context

Context

Degree of
Decentralization

Adaptation
Decision
Criteria

Approach Internal

External

Models

Rules/Policies

Goals

Utility

Decentralised

Hybrid

Centralised

Single
Application

Ensemble of
Applications

Middleware

(Operating)
System

Network
Infrastructure

Communication
Pattern

Source: (Krupitzer et al., 2015)

The issue Why to adapt concerns reasons for adaptation, which can be classified into three
main categories: Change in Context, Change in Technical Resources, and Change Caused by the

User(s). Change in Context refers to environmental modifications, such as network instability
or changes in application behavior. Change in Technical Resources involves adaptations due
to resource limitations or failures, such as power loss. Change Caused by the User(s) refers to
evolving user preferences, such as adding new features or replacing components.

In MEx, adaptation strategies were primarily developed for Change in Context and Change

Caused by the User(s). For example, MEx updates the middleware by replacing components
to fix bugs or enhance performance and security. It also adjusts parameters, such as increasing
the frequency of sensor readings in response to environmental changes. Although primarily

51

focused on these aspects, MEx allows customization to address further adaptation reasons,
such as Change in Technical Resources.

The issue When to adapt refers to the time the adaptation occurs. Adaptation can be
proactive when the system anticipates and acts before undesirable events (e.g., performance
issues) or reactive when the system responds after the event. MEx supports reactive adap-
tation and can be customized for proactive one. The choice between proactive and reactive

adaptation depends on how the adaptation logic is implemented, and both approaches can
coexist in MEx.

MEx provides three adaptation mechanisms (see Section 3.4.5). Two mechanisms adjust
application parameters in response to context changes, and the third one adapts the mid-
dleware when a new version of a given middleware component becomes available. Moreover,
MEx follows the quiescence principle (Kramer; Magee, 2007), ensuring that adaptations are only
triggered under stable conditions, such as when components are inactive or have no pending
tasks.

The issue Where to adapt refers to the location or level of adaptation in the system.
According to the taxonomy, adaptation can occur at the Application Level, System Software

Level (Middleware and Operating System), and Communication Level. In MEx, adaptations
happen at the application and middleware levels. At the application level, adaptations are
needed due to the dynamic nature of IoT applications, which often face context changes or
evolving user preferences. For example, the application may adjust sensor reading frequencies
based on environmental changes.

Adaptation is a natural choice at the middleware level, as MEx is a middleware framework.
Here, adaptations ensure the middleware remains stable by replacing outdated components or
integrating new versions to improve performance, security, or functionality. In both levels,
MEx responds to changes while maintaining system stability and performance.

The issue What to adapt refers to the attributes or artifacts modified during adapta-
tion. According to the taxonomy, adaptation techniques fall into three categories: parameter,
structure, and context.

At the application level, adaptation involves parameter changes, such as adjusting sen-
sor reading frequencies. At the middleware level, MEx allows structure adaptation, allowing
dynamic replacement or reconfiguration of components at runtime. Components can be up-
dated, replaced, or integrated to improve performance, security, or functionality. Additionally,
MEx supports simultaneous replacement of multiple components.

52

Finally, How to adapt addresses how adaptation actions are implemented and the criteria
that guide the decision-making process for adaptation. According to the taxonomy, two com-
mon approaches for implementing adaptation logic are internal (logic is integrated with the
system) and external (logic is separated from the system).

The external approach is used in MEx, as proposed by Weyns, Schmerl et al. (2013)
(see Section 2.2). This decision considered the context of IoT applications, where resource
constraints demand a flexible and easily modifiable architecture. By separating the adaptation
logic from the system, MEx can more easily adapt to changes and be customized without
compromising system stability or performance.

Additionally, a metric is needed to determine how the system should adapt. These met-
rics include models, rules and policies, goals, and utility functions. In MEx, the adaptation
logic follows the MAPE-K loop, where the Analyzer evaluates the system’s state to identify
adaptation needs.

MEx uses goals, rules, and policies as the primary metrics for making adaptation decisions.
For example, adaptation goals are set to maintain system performance and stability, while rules
and policies guide how specific adaptations are executed based on context or user requirements.
However, MEx is designed to be flexible, allowing developers to customize the self-adaptation
mechanisms and integrate additional metrics as needed to suit specific use cases.

Finally, the degree of decentralization of adaptation logic is also a concern. Centralized
logic is often suitable for systems with few resources to manage. A decentralized approach
can improve adaptation performance by distributing responsibilities across multiple compo-
nents; each component has its adaptation logic, enabling various communication patterns.
Hybrid approaches combine centralized components with decentralized elements, distributing
the adaptation logic across subsystems.

A hybrid decentralized adaptation logic was chosen. This approach operates both on the
device and externally, addressing the specific challenges of the IoT environment (Razzaque et

al., 2016), such as the resource constraints of devices (e.g., to save computational and power
resources of the devices) and fluctuating environmental conditions (Razzaque et al., 2016). This
hybrid approach is based on decentralized control patterns for self-adaptive systems (Weyns;

Schmerl et al., 2013).
In summary, MEx implements its adaptive capabilities by offering solutions to common

design issues related to when, why, where, what, and how to adapt. The system provides
mechanisms for adaptation at the application and middleware levels. The primary reasons for

53

adaptation focus on changes in the application context, changes in technical resources and
changes caused by the users. MEx supports reactive adaptation but can also be customized
for proactive approaches. It uses external adaptation logic to ensure flexibility and ease of
modification, which is particularly important for IoT applications with resource constraints.
Finally, MEx has a hybrid decentralized approach to enhance adaptation performance by
distributing adaptation logic across the system. This approach allows better handling of the
dynamic and resource-limited conditions typical in IoT environments.

3.3 DEVELOPMENT TIME

As mentioned in Section 3.1, during the development time, MEx facilitates the implemen-
tation of self-adaptive middleware systems by providing a library of middleware components
and an ADL. These elements will be detailed in the following sections.

3.3.1 Library of Middleware Components

The components library is a collection of pre-implemented, well-defined, and loosely coupled
components that developers can (re)use to build adaptive middleware systems. The library
contains twelve components, as shown in Figure 3.3: Queue Proxy, Marshaller, Client Request
Handler, Server Request Handler, Broker Proxy, Broker Engine, Subscription Manager, Notifier
Proxy, Notification Consumer, Broker Service, MQTT Proxy, and Pickle.

Figure 3.3 – Library of Middleware Components

Client Request
Handler

Server Request
Handler

Queue Proxy

Marshaller

Notifier Proxy

Broker Proxy
Notification
Consumer

Broker Engine

Broker
Service

Subscription
Manager

Pickle

MQTT Proxy

Source: Author

54

These components are software blocks that provide essential functionality within a middle-
ware system. For example, they offer interfaces for applications that use middleware services,
handle data serialization and implement communication mechanisms. They were designed
and implemented according to the remoting patterns (Voelter; Kircher; Zdun, 2004) and generic
publish/subscribe components (Tarkoma, 2012), as shown in Table 3.1.

Table 3.1 – Middleware Components and Functions

Component Function/Purpose
Queue Proxy It is used for remote invocations and serves as an entry

point to the middleware. This proxy provides publish/sub-
scribe operations invoked by applications running on de-
vices and executed remotely in the messaging service.

Marshaller It marshalls local objects into a byte stream before sending
them through the network. Similarly, it unmarshalls byte
streams into objects after receiving them from the network.

Client Request Handler It encapsulates communication issues on the client side, in-
cluding opening and closing the network connections, send-
ing requests, and receiving replies to/from the MEx Bro-
ker.

Broker Service It is the MEx messaging service.
Broker Proxy It implements a listening operation that dispatches the start

request from the Broker Service to initiate the Server Re-
quest Handler.

Server Request Handler It manages communication issues on the MEx Broker,
e.g., accepting connections to receive requests from the
MEx Clients.

Notifier Proxy It implements the operation for the message service to no-
tify subscribers used by the notification consumer.

Broker Engine It implements the traditional operations of a messaging
service, namely publish, subscribe, and unsubscribe.

Subscription Manager It manages subscriptions and stores them in a database.
Notification Consumer This component notifies subscribers when new messages

arrive in the Broker.
MQTT Proxy Similarly to the Queue Proxy, it acts as a proxy for the

MQTT middleware, providing MQTT operations and trans-
parently abstracting the interoperability between MEx and
MQTT.

Pickle This component (de)serializes messages using the Python
Pickle library. It has the same role as the Marshaller.

Source: Author

It is essential to observe that developers can customize and build different adaptive middle-
ware systems by reusing the components provided in the library. Constructing self-configuring

55

middleware using the MQTT to implement IoT applications is possible. Thus, MEx incorpo-
rates a dedicated component, the MQTT Proxy, specifically designed for this purpose.

3.3.2 pADL

In addition to its library of middleware components, MEx provides pADL, a declara-
tive architecture description language that allows developers to describe adaptive middleware
software architectures. It establishes rules governing the composition of components, which
determine and ensure the execution order of elements in the middleware architectures.

pADL follows principles introduced by Medvidovic (Medvidovic; Taylor, 2000) and further
extended by Rosa (Rosa et al., 2020) to have simple syntax and semantics. In practice, developers
only need to specify the middleware architecture using the pADL and then deploy it in the
execution environment. For this purpose, a pADL architecture has four explicit sections for
specifying middleware architectures: components, attachments, adaptability, and configuration.
The Backus-Naur Form (BNF) of pADL can be found in Appendix A.

Section Components declares the components that make up the architecture. Each com-
ponent has a name and an associated type. The architecture shown in Source Code 1 declares
three components (Lines 2-6).

The Attachments defines the interactions between two components. Semantically, the
execution of the components happens sequentially, based on the sequence of interactions
defined in the attachments. For example, queueproxy interacts with marshaller, which in turn
interacts with crh (Lines 7-10).

The Adaptability section defines the parameters of the adaptation strategy, namely the type
and adaptation interval. In the example, the defined adaptation mechanism is evolutive (Line
12), aiming to keep the middleware updated. As mentioned in Section 3.4.5.1, the architecture
is updated whenever a new version of any component used in middleware architecture is
available. The interval (Line 13) defines an interval between checks of the need for adaptation.
In this example, every 1200 seconds, the adaptation mechanism checks if a new version of the

56

architecture components becomes available.

Source Code 1 – Python-based Architecture Description Language

1 padl = {

2 "components" = {

3 "QueueProxy": "queueproxy",

4 "Marshaller": "marshaller",

5 "ClientRequestHandler": "crh"

6 },

7 "attachments" = {

8 "queueproxy": ’marshaller ’,

9 "marshaller": "crh"

10 },

11 "adaptability" = {

12 "type": "evolutive",

13 "interval": 1200

14 },

15 "configuration" = {

16 "starter" = "queueproxy",

17 "other_configs": {}

18 }

19 }

Source: Author

Finally, the Configuration section defines properties and rules governing architecture exe-
cution. For example, the starter field (Line 16) indicates the first component to be executed.
This component is typically associated with the application running on top of MEx. Each
component and application is an independent software module which executes sequentially
several times without entering an infinite control loop. In practice, the execution unit starts
the application and manages the sequential execution of each component based on the pADL
attachments. Therefore, it is essential to define which component initiates the execution,
ensuring the proper order of operations.

3.4 EXECUTION TIME

At execution time, MEx comprises five elements: MExClient, MEx Broker, Execution

Unit, Managing System, and Knowledge Database. These elements are responsible for exe-
cuting the software architecture defined at development time and deployed in the execution
environment.

57

3.4.1 MEx Client

MEx Client executes directly on the IoT devices. It isolates IoT applications from com-
munication, distribution, and interoperability issues. Publishers use the MEx Client to publish
messages without explicitly specifying recipients, selecting only the topics where the messages
are published. Similarly, subscribers use the MEx Client to subscribe to some topic and receive
messages from topics.

Figure 3.4 shows the application and the components that make up a standard architecture
of the MEx Client based on the pADL defined in Source Code 1. An IoT application is a
software system that implements business logic to interact with IoT devices, enabling the
collection, processing, and analysis of data from the environment.

Figure 3.4 – MEx Client

IoT Device

MEx Client

Queue Proxy Marhaller Client Request
Handler

IoT Application

Method Calls

Source: Author

The Queue Proxy serves as an intermediary between the IoT application and the messaging
service. It simplifies application development by providing a local interface for remote com-
munication, abstracting the complexities of interacting with remote systems. The application
only interacts with the Queue Proxy locally for remote invocations, making the process of
remote communication simple and transparent.

Queue Proxy provides operations to publish, subscribe, check, and notify messages. These
operations are used by applications to interact with the MEx Broker. Applications can publish
messages without specifying recipients or knowing the intended recipients. They can also
subscribe to one or more topics to receive messages or be notified when new messages arrive
in the MEx Broker. These operations enable asynchronous and decoupled communication.
The Queue Proxy exposes the same publish/subscribe interface to local IoT applications that
the MEx Broker implements remotely, allowing them to invoke operations without concern
for the underlying details of remote execution, which are managed by the MEx Broker.

58

The Marshaller is the middleware component that serializes and deserializes messages,
ensuring they are correctly converted into a format that can be transmitted over the network.
Serialization involves converting the messages into a byte stream, while deserialization is the
reverse process, transforming the byte stream back into messages. This capability is crucial
for supporting interoperability in heterogeneous environments. The Marshaller ensures that
applications do not need to manage low-level serialization logic, allowing them to focus on
higher-level functionality.

Finally, the Client Request Handler deals with communication activities in the MEx.
It is responsible for opening and closing network connections using the operating system’s
socket API, sending requests, and receiving responses to/from the network. In MEx, the
Client Request Handler handles asynchronous invocations and manages timeouts and error
detection.

3.4.2 MEx Broker

The MEx Broker is the messaging service of MEx. It runs in the cloud, stores messages
published by IoT applications, manages topics and subscribers, and delivers/notifies messages
to subscribers. Figure 3.5 shows the architecture of the MEx Broker, including components
of a messaging service as proposed by Tarkoma (Tarkoma, 2012).

Figure 3.5 – MEx Broker.

MEx Broker

Broker Proxy MarshallerServer Request
Handler

Broker Service

Method Calls

Notify

Subscribe

Broker EngineNotification
Consumer

Message
Storage

Subscription
Storage

Subscription
Manager

Source: Author

The Broker Service starts the messaging service by invoking the Broker Proxy, which im-
plements the operations responsible for initializing the service. Next, it calls the Server Request

59

Handler that manages the communication on the MEx Broker side and handles interactions
with the Client Request Handler, such as accepting connections and receiving/sending data
from/to the MEx Client.

The Broker Engine is the main component of MEx Broker. It manages the back-end
processing of the messaging service, e.g., publish, subscribe, and unsubscribe. When messages
are published, the Broker Engine receives and stores them in the Message Storage. Upon
receiving subscription requests, the Broker Engine forwards them to the Subscription Manager,
which stores the subscriptions in the Subscription Storage. This storage maintains an updated
list of subscribers and the topics they are interested in, enabling it to identify which subscribers
should be notified quickly.

The Broker Engine also sends stored messages to subscribers. It manages the relationship
between topics in the Message Storage and the subscribers. When a notification is needed,
the Broker Engine retrieves messages from the Message Storage and passes them to the
Notification Consumer.

The Notification Consumer is an intermediary in the notification process. It receives mes-
sages from the Broker Engine, filters them to identify which subscribers are registered for each
notification, and then notifies them through the notify operation.

However, some applications work slightly differently. Instead of being notified directly, these
applications may retrieve messages using a checkMessage operation. In this case, the Broker

Engine delivers messages to subscribers through the checkMessage operation, referencing the
topics in which the subscribers have expressed interest. This dual functionality accommodates
push-based and pull-based message delivery models, providing flexibility depending on the
application’s needs.

3.4.3 Execution Unit

The Execution Unit loads, starts and manages the life-cycle of each component of the
software architecture. It also executes the adaptation process. Figure 3.6 shows the architecture
of the Execution Unit, which consists of two modules: the Engine and the Agent.

The Agent deploys the components of the middleware and performs adaptations locally
on the IoT device, where it works as the executor within the MAPE-K adaptation loop. The
Agent initially sends a start message to the Managing System. Next, it receives the middleware
architecture, components, and configurations from the Managing System. Then, it passes these

60

Figure 3.6 – Execution Unit

IoT Device

Execution Unit

MEx Middleware

Deploy

Executes

Engine

Agent

Executor

Managing System

Start

IoT Application

Setup/Loop

Adapt

Adapt

Source: Author

elements to the Engine.
The Engine instantiates, loads, and executes the software architecture. Initially, the Engine

processes the software architecture to obtain information about components, their interactions,
and adaptation configurations. Next, the components are loaded, and the Engine starts an
infinite loop that instantiates and executes all components, including the IoT application.

At the end of each execution cycle, the Engine checks the time elapsed since the last adap-
tation. When the elapsed time exceeds the adaptation interval, the Engine prompts the Agent

to assess if an adaptation is necessary. The Agent gathers data about running components,
applications, and the environment, depending on the adaptation mechanism in place. Then,
it sends an adapt message to the Managing System, which handles the remote execution of
adaptations.

Next, the Agent receives an adaptation plan along with any required elements (e.g., new
components or configuration parameters) from the Managing System to adapt the MEx mid-
dleware or the application. At this stage, the Agent assumes the role of the Executor within
the MAPE-K. In practice, executing the adaptation plan may involve removing existing compo-
nents from the IoT device, loading new components, updating component records or adjusting
application parameters. It is important to note that all these tasks occur at runtime without
stopping the device or recompiling the software. This adaptation process is also transparent
to the device and application, as it only occurs during application and middleware quiescence.

61

3.4.4 Managing System

The Managing System is responsible for the initialization and adaptation in the MEx.
For the initialization, it performs a uniform, automatic, and transparent deployment of the
IoT applications (Vögler et al., 2016) and the middleware. It is worth observing that manual
deployment can be costly, especially for applications with several IoT devices (Razzaque et al.,
2016; Vögler et al., 2016).

For the adaptation, the Managing System operates in a distributed manner, delegating
some tasks to the Agent running on the device (see Section 3.4.3). It also implements the
MAPE-K.

Figure 3.7 shows the main components of the Managing System. The Device Controller

works as the interface for the Managing System, handling requests received from the MEx Client

or MEx Broker to performing deployment or adaptation tasks. When an IoT device starts,
the Device Controller receives a request from the device and forwards it to the Device Loader.
The Device Loader automatically deploys the necessary middleware components on the device.

Figure 3.7 – Managing System

Managing System

Adaptation MechanismAdaptation MechanismAdaptation MechanismLoad Components

Starts

Starts

Device Loader

Device Controller

Library of Middleware
Components

Adaptation ManagerAdapts

Adaptation Factory

Get Adaptation

A B C

Execution Unit

Starts Adapts

Monitor Knowledge
Database

Analyze Plan

Execute

IoT Application
sensors/affect

sensors/affect
MEx Middleware

Source: Author

For adaptations, the Managing System triggers and executes them. It works as a hub

62

of adaptation mechanisms, extensible and customizable, enabling quick adjustments to these
mechanisms according to the needs of the IoT environment.

MEx’s adaptive mechanisms support dynamic adjustments at both application and mid-
dleware levels. At the application level, adaptations reconfigure execution parameters without
stopping or recompiling the application, e.g., modifying sensing frequencies to better respond
to environmental changes. At the middleware level, adaptations allow fixing bugs, adding new
functionality, or updating it.

MEx supports reactive adaptations, i.e., adaptations occur in reaction to a given event.
MEx implements a decentralized MAPE-K in which the Monitor, Analyzer and Planners

executes on the cloud and the Executor runs on the IoT devices. The Monitor may operate on
both devices and the cloud, collecting data for the adaptation process, such as battery level
and new component versions. The Analyzer analyses monitored data and decides whether an
adaptation is necessary. The Planner builds an adaptation plan if an adaptation is needed. The
Executor runs directly on the devices. Finally, the Knowledge Base stores information about
things and applications, including their IDs, current component versions, and adaptation types
and parameters.

For adaptations, when the Managing System receives an adaptation request, the Device

Controller forwards it to the Adaptation Manager, who orchestrates the whole adaptation
process. The Adaptation Manager interprets this request by including the type of adaptation
required and the required adaptation elements, such as components to be replaced and pa-
rameter values. Then, it forwards this information to the Adaptation Factory responsible for
creating instances of the requested adaptation mechanisms. Next, these adaptive mechanisms
trigger and execute the adaptation process.

The decentralization of the MAPE-K is essential in IoT deployment. It helps to save
devices’ computational and energy resources by offloading adaptation processing. Moreover,
the adaptation logic in MEx differs slightly from traditional MAPE-K implementations. The
Executor, which typically has a passive role, is active in MEx.

3.4.5 Adaptation Mechanisms

The adaptation mechanisms in MEx address the uncertainties inherent to IoT applications
and environments. They implement strategies based on specific goals, using computational
resources such as rule engines and upload and download operations. MEx implements two

63

adaptation mechanisms: Evolutive Mechanism, and DCAM.

3.4.5.1 Composite Adaptation

In the composite adaptation, the software behavior is altered by adding, removing, replacing
or reconnecting components (McKinley et al., 2004). The composite adaptation in MEx is
implemented through an Evolutive Mechanism.

The Evolutive Mechanism (Cavalcanti; Carvalho; Rosa, 2021) continuously updates the mid-
dleware to incorporate new features, fix bugs, or enhance performance. To achieve this, it
implements a strategy that replaces middleware components running on the device whenever
a new component becomes available in the component library. Figure 3.8 shows the steps of
Evolutive Mechanism in action.

When a new version of a given component (e.g., A’) appears in the library (1), this new
version is perceived by the Monitor. Next, when the Device Controller receives an adaptation
request from the IoT device (2), it forwards the request to the Evolutive Mechanism, which
dispatches this information to the appropriate Monitor (3). The Analyzer then receives the
information of the request. The Monitor continuously monitors and gathers data about the
current versions of the specified components installed on the device from the Knowledge

Database and forwards this information to the Analyser (4). The Analyzer then compares
these component versions with those available in the library (5) and decides the necessity
for adaptation. This decision verifies if a newer version of a specific middleware component
is available. Upon detecting a new version, the Analyzer prompts the Planner (6) to build
an adaptation plan for replacing the component’s versions running on the device (the old
version) with the newly available one. Next, the new component is transmitted to the Executor

operating on the device (7). Finally, the Executor executes the adaptation by reloading the
new components and discarding the old ones (8).

3.4.5.2 Parametric Adaptation

Parametric adaptations alter parameters to adjust the application’s behavior at runtime.
Generally, IoT applications consist of IoT devices performing sensing and actuation tasks
coupled with software modules responsible for data processing and visualization. Dynamic
configurations are necessary given the inherent uncertainties in IoT environments. For example,

64

Figure 3.8 – Steps of Evolutive Adaptation

Execution Unit

Managing System

Evolutive Mechanism

Load Components

Starts

Start

Device Loader

Device Controller

Library of Middleware
Components

Adaptation ManagerAdapt

Get Adaptation

A B C

Start Adapt

Monitor Knowledge
Database

Analyze Plan

Execute

IoT Application
sensors/affect

sensors/affect
MEx Middleware

Executor

A'

4

6

7

5

8

2

1

3

A'

Source: Author

changing communication parameters (e.g., thing mobility, dynamic broker provisioning, and
broker load balancing) without stopping the IoT device operation helps to solve communication
uncertainties.

DCAM (Duty Cycle Adaptive Mechanism) is a parametric adaptive mechanism to save
battery of IoT devices. DCAM automatically adjusts the device operating mode to shorten
or extend its operation according to the application context, which adjusts the power con-
sumption. It uses the duty cycle to save energy and maximize the battery lifetime(Abdul-Qawy;

Almurisi; Tadisetty, 2020). The duty cycle allows devices periodically to switch between active
(e.g., sampling and radio transmission) and non-active (e.g., sleeping) periods in the operating
mode to use minimal energy. Duty Cycle is defined as shown in Equation 3.1.

65

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 = 𝑇𝑤

𝑇
100%, (3.1)

where Tw is the active application time, and T is the total operation time. For example, a
duty cycle of 30% means that the application works for 30% and sleeps for 70% of the time.

Although periods of activity/sleeping always happen when the duty cycle strategy is
adopted, there is no typical pattern in how they are appropriately defined for IoT applica-
tions. Hence, it is possible to simplify this issue by dividing these periods into three stages:
sampling, transmission, and sleeping (Abdul-Qawy; Almurisi; Tadisetty, 2020). The device is ac-
tive in the sampling and transmission stages, and its components execute tasks and consume
energy. In the sleeping stage, less energy is consumed because the device suspends the energy
supply of most components, does not realize any processing task, and the communication is
switched off. Therefore, it is easy to notice that power consumption is more significant in the
first two stages than in the sleeping stage.

Those stages are usually statically configured regarding the duty cycle. After deployment,
it cannot be updated without stopping the application. In this sense, the device can lead to
application unreliability/uncertainties because it may be sleeping when it should be running
or consuming energy when it should be sleeping. For this reason, the duty cycle adaptive
mechanism adjusts the duty cycle ratio based on the application’s sleep time.

DCAM is customizable and employs a declarative, rule-based approach. It uses an engine1

that allows the creation of conditional business rules simply and flexibly, with an easily under-
standable and configurable syntax. The engine evaluates a set of rules, where each rule consists
of conditions (predicates) and actions to be triggered when those conditions are met. When
provided with data (referred to as facts), the engine checks whether the conditions are true,
and if so, executes the corresponding actions. The engine also supports the creation of complex
rules with boolean logic, comparison operators, and custom functions. This approach makes
it easier to implement dynamic business logic in systems that need to respond to changing
situations based on varying data.

Figure 3.9 shows a general overview of the parametric adaptation.
The adaptation process starts with the Monitor receiving parameters for adaptation deci-

sions (1). These parameters are stored in the device configuration, generated in the application
context or environment, or are directly generated by the device. For example, the Monitor run-
1 https://www.npmjs.com/package/json-rules-engine

66

Figure 3.9 – Steps of the DCAM Adaptation

Execution Unit

Managing System

DCAM

Device Controller Adaptation ManagerAdapt

Get Adaptation

Start Adapt

Monitor Knowledge
Database

Analyze Plan

Execute

IoT Application
sensors/affect

sensors/affect
MEx Middleware

Executor

5

6

4

7 1

3

Monitor

App
CFG

Rules Engine

2

Source: Author

ning on the device may collect data such as temperature, humidity, or water levels from the
device’s sensors. It may also gather the device’s battery level, a parameter generated internally
by the device. When the Device Controller receives an adaptation request from the IoT device
(2), it forwards the request to the DCAM, which dispatches this information to the Analyzer

(3).
The Analyzer determines whether an adaptation is necessary based on the defined adapta-

tion goals. It uses a goal declarative based on the rule-based approach. A rule-based system is
an expert system that uses rules to store and manipulate knowledge to interpret information
and make decisions. The Analyzer passes the adaptation parameters to the rules engine2, which
processes these parameters according to defined rules to determine the need for adaptation
(4). If adaptation is necessary, the Analyzer asks the Planner (5) to build an adaptation plan
2 https://www.npmjs.com/package/json-rules-engine

67

to adjust the application’s parameters. The updated configuration is then transmitted to the
Executor operating on the device (6).

Finally, the Executor executes the adaptation by replacing the old configuration with a
new one (7). It is worth observing that the adaptation process occurs without stopping the
application or the device entirely.

3.5 IMPLEMENTATION

MEx3 modules were implemented in MicroPython4, JavaScript, and C. Components run-
ning on IoT devices are implemented in MicroPython or C, while cloud components utilize
JavaScript.

To have MEx running on any device, it is initially necessary to manually deploy the
Engine, Agent, and application on the device. The Engine executes the middleware’s software
architecture defined in the pADL, while the Agent is responsible for the automatic deployment
of other required elements and for adaptation actions.

When the device starts, the Agent automatically deploys the architecture, configuration file,
and middleware components. Next, it passes them to the Engine for instantiation, initialization,
and execution.

In addition, MEx was implemented using concepts of object-oriented programming. Each
middleware component is a Python class with a particular generic method for communicating
among the middleware components within the Engine. The Engine interprets the middleware
architecture and a configuration file to execute the middleware. It receives the data from the
attached component as arguments, according to pADL attachments (see Section 3.3.2).

Once MEx is primarily based on Python, the language’s resources enrich the pADL. In
this sense, the identifier corresponds to the Python file name encapsulating the component’s
functionality, while the type represents the component class. Also, the entire pADL is built as
a Python collection structure. This Python-oriented approach adds dynamism to the pADL in
the MEx.

Similar to pADL, the configuration file is Python-based and structured as a dictionary
containing three main settings sections: application, device, and environment, as shown in
Source Code 2. Each section has specific settings with different parameters to define how the
3 <https://github.com/davidjmc/middleware-extendify>
4 <https://micropython.org/>

https://github.com/davidjmc/middleware-extendify
https://micropython.org/

68

IoT application and MEx should behave. These configurations allow MEx to customize and
adapt the software’s functionality without changing the source code.

Source Code 2 – Configuration File of the MEx

1 configurations = {

2 "application" = {

3 "loop_interval": 30,

4 "publish_in": "1b:e2 :51:97:31:42",

5 "subscribe_to": None

6 },

7 "device" = {

8 "id": "1b:e2 :51:97:31:42",

9 "location": None

10 },

11 "environment" = {

12 "broker_host": "172.22.64.223",

13 "broker_port": 60000,

14 "await_broker_response": 1

15 }

16 }

Source: Author

The application section (Lines 2-6) defines settings for the IoT application. For example,
loop_interval (Line 3) sets the interval in seconds for executing a loop or cycle of operations of
the applications. The publish_in (Line 4) identifies the topic to which the application should
send (publish) data to the MEx Broker. The subscribe_to (Line 5) identifies the topics to
which the application should subscribe to receive data. This example is set to None, indicating
that the application is a publisher. Otherwise, it would be a subscriber. If both publish_in and
subscribe_to were configured, the application would be both a publisher and subscriber.

The device section (Lines 7-10) contains settings about the IoT device. For example, id
(Line 8) represents the device’s unique identifier, usually using the device’s MAC address
as the identifier. The location parameter (Line 9) indicates the device’s location. Although
this parameter is currently not used, it shows that various parameters can be included and
customized to the application’s context.

The environment section (Lines 11-15) specifies settings for the environment. For example,
broker_host and broker_port (Lines 12-13) are the IP address or hostname of the Broker and
the network port used by the Broker, respectively. These parameters are used for communi-
cation. The await_broker_response parameter (Line 14) determines if the system should wait

69

for a response from the Broker. It is set to 1, indicating it should wait. This setting is set to
0 when the client is both publishing and subscribing, meaning it should not wait for a server
response after publishing to stay ready to receive messages.

It is essential to highlight that this configuration file is used for the parametric adaptation
(see Section 3.4.5.2). It becomes possible to change the software’s behavior without modifying
the code. This action includes changing loop intervals, configuring devices for publishing and
subscribing, defining device details, and specifying broker settings. By changing this file at
runtime, MEx can adjust the software’s settings for different environments and requirements,
maintaining flexibility and ease of maintenance.

The Engine is also responsible for executing the IoT application. In practice, applications
run several times without a continuous control loop, as it is part of the main loop provided by
the Engine. The steps of the engine are summarized in Source Code 3.

Initially, the Engine extracts information from the software architecture (pADL), such as
middleware components (Line 2), attachments (Line 3), adaptation settings like the type of
adaptation and the adaptation interval (Line 4), and MEx configurations, e.g., the component
that starts the architecture execution (Lines 5). It also reads a separate configuration file
specific to the application, environment, and device, which contains details such as the Broker’s
IP and adaptation parameters (Line 6).

Next, it dynamically loads the component instances (Lines 11-13) and the application
setup (Line 17). Once everything is loaded, the Engine enters an infinite loop, running the

70

application (Line 22-40) and middleware components.

Source Code 3 – Engine of the MEx

1 class Engine:

2 self.components = adl.adl[’components ’]

3 self.attachments = adl.adl[’attachments ’]

4 self.adaptability = adl.adl[’adaptability ’]

5 self.configuration = adl.adl[’configuration ’]

6 self.configurations = configurations

7

8 def __init__(self):

9

10 # load components

11 for component in self.components:

12 component_file = self.components.get(component)

13 current[component] = __import__(’components.’ + component_file)

14

15 def run(self , app):

16 self.app = app

17 self.app.setup()

18

19 if self.last_adaptation == 0:

20 self.last_adaptation = time.time()

21

22 while True:

23 try:

24 # application execution loop

25 self.app.loop()

26

27 # components execution starting with the starter

28 for component in self.configuration[’starter ’]:

29 component_instance = self.current[component]

30 component_instance.run()

31

32 if (self.adaptability[’type’] not in [’’, None]

33 and (time.time() - self.last_adaptation) >

34 self.adaptability[’interval ’]):

35 # it will adapt

36 updated = self.agent.adapt()

37 if updated:

38 self.reload_components ()

39 self.configurations = configurations

40 self.last_adaptation = time.time()

Source: Author

At the end of each execution cycle, if the adaptation interval is exceeded (Lines 32-34),

71

the Engine invokes an adaptation mechanism using the Engine (Line 39). This mechanism
runs remotely, monitoring the system and making decisions about the need for adaptation. If
adaptation is required, it is executed (Lines 37-39).

Another critical component is the Agent, responsible for deployment and adaptations on
the IoT device and whose partial implementation is shown in Source Code 4.

Source Code 4 – Agent of the MEx

1 class Agent:

2 conn = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

3 conn.connect(socket.getaddrinfo(managing_sytem , port)

4

5 def start ():

6 msg = b’START\nThing:’ + bytes(THING_ID)

7 data = self.send_receive(conn , msg)

8 data = str(data , ’ascii’)

9 try:

10 [headers , data] = data.split(’\x1e’)

11 except:

12 pass

13 AmotAgent.update_files(data)

14

15 def adapt ():

16 msg = b’ADAPT\nThing:’ + bytes(THING_ID)

17 for info in self.app_context:

18 msg += b’\n’ + bytes(info , ’ascii’) + b’:’ + self.app_context[info]

19 for info in self.env_context:

20 msg += b’\n’ + bytes(info , ’ascii’) + b’:’ + self.env_context[info]

21 data = self.send_receive(conn , msg)

22 data = str(data , ’ascii’)

23 if data == None:

24 return

25

26 if len(data) > 0:

27 self.update_files(data , False)

28 print(’Adapted ’)

29 return True

30 return False

Source: Author

The Agent is directly triggered by the Engine and implements two functions, start() and
adapt(). When the device starts, the Engine calls Agent.start(), which connects to the Man-

aging System (Lines 2-3) and initiates the startup sequence (Lines 5-13). It sends a START

72

request along with the device ID (Lines 6-7), receives the middleware software architecture
and components (Line 8), and deploys them (Line 13).

When the adaptation interval is exceeded, the Engine calls Agent.adapt(). In this case, the
Agent acts as an Executor and can also work as a Monitor. It collects data from the application
and environment, such as component versions or sensor readings (e.g., water and battery
levels) necessary for the adaptation process. The Agent then aggregates this information into
an adaptation message (Lines 16-20) and sends an ADAPT request (Line 21). If adaptation
is required, the Agent executes the adaptation plan on the device (Lines 26-29).

The Managing System and Adaptation Mechanism were implemented using JavaScript
within Node.js5. The Managing System plays a crucial role in executing adaptation processes,
applying the appropriate mechanisms for each situation. To achieve this, it includes an Adap-

tation Manager module, which orchestrates the entire adaptation process. A partial imple-
5 <https://nodejs.org/en/about>

https://nodejs.org/en/about

73

mentation of the Adaptation Manager is presented in Source Code 5.

Source Code 5 – Adaptation Manager

1 export class AdaptationManager {

2 constructor(thing) {

3 this.thing = thing

4 this.adapters = this.loadAdapters ()

5 }

6

7 loadAdapters () {

8 let adapters = this.thing.adaptability.type.map(type => {

9 return AdapterFactory.for(this.thing , type)

10 }). filter(adapter => !! adapter)

11 // return a list of Adapter objects

12 return adapters

13 }

14

15 with(request) {

16 if (!this.adapters.length) {

17 return null

18 }

19 let adapter = this.adapters.pop()

20 let adaptation = adapter.adaptFor(request)

21 this.adapters.map(adapter => {

22 adaptation.merge(adapter.adaptFor(request))

23 })

24 return adaptation

25 }

26 }

Source: Author

This code includes functions to load existing adaptation mechanisms (Lines 7-13) and map
and return the appropriate mechanism for the requesting device (Lines 15-25), respectively.

When an adaptation request is received, the Managing System directs it to the Adaptation

Manager, which processes the request by gathering device information (Line 3) and loading
the necessary adaptation mechanisms directly within its constructor (Lines 2-5). Next, these
mechanisms are passed to the Adaptation Factory (Lines 6-7), which instantiates and returns
the requested adaptation mechanism. The Adaptation Factory acts as the central hub for
adaptation mechanisms, maintaining a list of available mechanisms, as shown in Source Code 6
(Lines 5-19).

74

The Adaptation Manager receives the desired adaptation mechanism. Finally, the mecha-
nism used triggers and executes adaptations.

Source Code 6 – Adaptation Factory

1 import EvolutiveAdapter from ’./ EvolutiveAdapter.js’;

2 import ParametricAdapter from ’./ ParametricAdapter.js’;

3 import TDCAM from ’./TDCAM.js’;

4

5 export default class AdapterFactory {

6 static for(thing , type) {

7 if (type == ’evolutive ’) {

8 return new EvolutiveAdapter(thing)

9 }

10 if (type == ’dcam’) {

11 return new ParametricAdapter(thing)

12 }

13 if (type == ’tdcam’) {

14 return new TDCAM(thing)

15 }

16 //...

17

18 return null

19 }

20 }

Source: Author

Finally, as much as possible, the MEx implementation uses low-cost, low-CPU, and low-
power-consuming operations. For example, avoid using loops and list comprehensions and use
local variables to optimize the code whenever possible. In addition, using MicroPython is crucial
because it is compact enough to fit and run within just 256k of code space and 16k of RAM.
It was also necessary to avoid external libraries and focus on adopting native MicroPython
objects (built-ins) to optimize the code with faster execution operations.

3.6 CONCLUDING REMARKS

This chapter presented MEx. Initially, an overview of MEx was introduced. Next, the
design decisions of MEx were presented, followed by its development time, where the frame-
work and its elements were outlined. Then, the execution environment of MEx was described,
including its adaptation mechanisms. Finally, implementation aspects were discussed.

75

4 MEX BASED SOLUTION FOR WATER MONITORING

”If we had computers that knew everything there was to know

about things—using data they gathered without any help from

us—we would be able to track and count everything and greatly

reduce waste, loss and cost. We would know when things needed

replacing, repairing or recalling and whether they were fresh or

past their best. The Internet of Things can change the world,

just as the Internet did. Maybe even more so.”
—Kevin Ashton

This chapter presents AquaMOM, an adaptive IoT system for water monitoring in chal-
lenging environments, which utilizes the capabilities of MEx. This chapter begins by intro-
ducing the context and motivation behind the AquaMOM. Next, it presents an overview of
the system and details the critical modules of AquaMOM. Finally, it concludes with aspects
of AquaMOM’s implementation.

4.1 CONTEXT AND MOTIVATION

A primary goal of IoT is to distribute functionality to physical and virtual devices, improving
system infrastructure and efficiency. In this context, the World Economic Forum recognizes
global water scarcity as a significant risk (Forum, 2023; Forum, 2018), emphasizing the urgent
need for efficient water management solutions.

The growing concerns over water scarcity are driven by rapid population growth and in-
creasing water demand. According to theUnited Nations (UN), water consumption is expected
to outstrip supply by 40% by 20301. This water crisis is complex, involving ecological, eco-
nomic, and social factors. Urban growth and agricultural expansion have increased competition
for water resources, leading to conflicts between sectors and communities. Additionally, climate
change is intensifying this issue by altering rainfall patterns and increasing the frequency and
severity of droughts and floods2.
1 <https://www.theguardian.com/environment/2023/mar/17/global-fresh-water-demand-outstrip-supply-by-2030>
2 <https://www.un.org/pt/climatechange/science/causes-effects-climate-change>

https://www.theguardian.com/environment/2023/mar/17/global-fresh-water-demand-outstrip-supply-by-2030
https://www.un.org/pt/climatechange/science/causes-effects-climate-change

76

Searching for effective water management and conservation solutions is crucial in this con-
text. These solutions include monitoring and alert systems, public conservation policies, and
wastewater reuse to ensure the sustainability of water resources (Getirana; Libonati; Cataldi, 2021;
Brito; Lopes; Neta, 2019). An alternative to face this challenge is developing smart water manage-
ment solutions, which can measure water consumption, detect leaks, and predict waste (Han;

Mehrotra; Venkatasubramanian, 2019). Smart water solutions, a subdomain within smart city ini-
tiatives, utilize IoT technology to enhance water infrastructure, making urban environments
more sustainable and efficient. These solutions optimize water monitoring, sourcing, treat-
ment, and delivery. The evolution of IoT has spurred the development of many such systems,
which lead with sourcing, treatment, and delivery (Singh; Ahmed, 2021; Han; Mehrotra; Venkata-

subramanian, 2019). For example, Liu and Mukheibir (2018) shows that simply implementing
an automatic feedback system for customers can reduce water consumption by 4.2% to 8.5%

without additional interventions.
In Brazil, particularly in the Northeast region, water scarcity is intensified by rainfall vari-

ability and extensive semi-arid areas. These facts make water conservation critical, especially
in remote, economically disadvantaged regions with limited resources (Gondim et al., 2017).
Water cisterns are widely used to collect rainwater for dry periods, but optimizing water usage
demands advanced solutions. Meanwhile, the critical need for rational water use and man-
agement can be achieved through IoT systems, which can improve water infrastructure and
conservation.

Implementing IoT systems in semi-arid regions is challenging due to harsh conditions that
introduce uncertainties in sensor accuracy, battery life, and maintenance. Addressing these
uncertainties is essential for effective system operation. IoT systems require a robust design to
face dynamic conditions, including aging infrastructure, limited capacity, and climate changes
that affect sensor reliability, power management, and system durability.

This thesis also proposes AquaMOM, an adaptive IoT system designed for monitoring
water consumption and built on the MEx middleware. The choice of a smart water manage-
ment application is driven by the urgent need for water conservation strategies in the Northeast
region of Brazil, where environmental and socioeconomic factors prioritize efficient water use.
Beyond its technical contributions, AquaMOM also addresses a critical social challenge by
promoting more sustainable water management in resource-constrained environments.

AquaMOM leverages MEx’s capabilities to manage uncertainties, respond to dynamic
changes and meet application demands. The MOM architecture of MEx plays a key role

77

in handling dynamic network conditions, supporting adaptive mechanisms, and ensuring re-
liable message exchange, even in challenging environments. By integrating this approach,
AquaMOM shows how an IoT system built atop a MEx middleware can manage uncertain-
ties and adapt to real-world deployments.

4.1.1 Semi-arid Regions of Brazil

Brazil’s semi-arid region covers approximately 1,322,680 km2, which is 15% of the national
territory, and comprises 1,477 municipalities across eleven states. This region faces critical
water scarcity, affecting around 53.1 million people, many of whom live in poverty (Barbosa,
2024). Irregular rainfall and prolonged droughts exacerbate water shortages, resulting in in-
sufficient water supplies that directly affect quality of life, health, and community resilience.
These facts have provoked a pressing need for effective water conservation and management
solutions (Rodriguez; Pruski; Singh, 2016).

Historically, the Brazilian government has employed various policies to mitigate the effects
of drought (Rodriguez; Pruski; Singh, 2016), like building cisterns for rainwater storage to support
families during dry periods. Each cistern (see Figure 4.1) is 1.8 meters tall and 3.4 meters in
diameter, holding 16 m3 of water—sufficient to sustain a family of four for up to five months
at a rate of 25 liters per person per day (Rodriguez; Pruski; Singh, 2016), aligning with the World
Health Organization’s recommended minimum daily water requirement (França et al., 2010).

Despite these government efforts, water shortages persist, signaling the need for improved
solutions. Implementing new actions and measures to ensure population access to water is
necessary. For example, there is a critical need for rational water use and better customer
management. In this context, technological solutions, such as smart water systems, which
incorporate IoT devices (e.g., sensors and actuators), can play a pivotal role in enhancing water
infrastructure and conservation efforts (Singh; Ahmed, 2021; Han; Mehrotra; Venkatasubramanian,
2019).

The implementation of IoT solutions in these regions presents significant challenges. Harsh
environmental conditions, such as high temperatures and low humidity, can reduce the lifespan
of sensors, batteries, and other electronic components and affect measurement accuracy and
system durability. The distance from urban centers makes maintenance costly and complex,
and aging infrastructure and unreliable Internet and mobile networks further complicate data
transmission and remote monitoring. These factors demand the development of robust and

78

Figure 4.1 – Cistern of Water in Semi-arid Region

Source: Author

resilient IoT solutions that can withstand harsh climates and operate reliably, even in the face
of connectivity and maintenance challenges.

4.1.2 IoT Systems for Challenging Environments

IoT systems have gained widespread use in diverse domains, including smart cities, health-
care, and industrial applications, each with specific requirements. These systems have recently
been deployed in challenging environments, such as extreme areas, such as chemical facilities
or nuclear plants, and emergency management systems for disaster response scenarios (Kant;

Jolfaei; Moessner, 2024).
However, such IoT systems must be specifically designed to operate in these harsh envi-

ronments. They must be robust and capable of functioning under extreme conditions. Remote
and underserved areas, such as small towns far from urban centers or semi-arid regions, can
present unexpected challenges. They are due to aging infrastructure, demand exceeding capac-
ity, resource limitations, and increasingly harsh operating conditions caused by climate change,
e.g., dry heat climate (Kant; Jolfaei; Moessner, 2024).

Designing and implementing IoT systems for such environments is difficult. The main
challenge is to assess potential damage with minimal manual effort and adjust or improve
the system before, during, and after an event according to its needs. This approach aims to

79

maintain service quality, maximize coverage, and optimize the resources offered (Kant; Jolfaei;

Moessner, 2024).

4.2 AQUAMOM

AquaMOM is a holistic and adaptive IoT system designed specifically for monitoring
water consumption. It provides customers with digital feedback and assists them in improving
water conservation efforts in demanding settings. It informs consumers about volume, usage
control, and water depletion forecasts (Cavalcanti et al., 2024).

While the AquaMOM can be customised for whatever environment, it is primarily tailored
for water cisterns in Brazil’s semi-arid regions, as shown in Figure 4.1. AquaMOM combines
a distributed software stack and a low-cost IoT device. The stack includes a Web application
for digital feedback on water usage and an IoT application running on IoT devices to collect
water data. Both applications are built on a middleware developed with MEx.

AquaMOM instantiates the components of the MEx middleware and validate its con-
cepts. During the development of AquaMOM, a dedicated IoT device was required to collect
and transmit water consumption data.

The device is equipped with sensors to measure water usage. The choice of micro-controllers
and sensors was driven by the need for an affordable solution that supports MEx’s require-
ments and ensures low-cost production. This included selecting a micro-controller that sup-
ports a programming language capable of handling socket implementations and off-the-shelf
components to ensure functionality and cost-effectiveness.

The essential difference of AquaMOM from existing solutions is the use of adaptive con-
cepts, which ensure proper functioning in challenging environments while minimizing deploy-
ment and maintenance costs. Figure 4.2 presents a general overview of AquaMOM, including
the AquaMOM Client, AquaMOM Service, AquaMOM device, and the MEx middlware
distributed over IoT devices and the cloud.

The AquaMOM Client is an application running on the AquaMOM device, whose
primary function is periodically measuring the water level in a home cistern using a sensor (1).
After collecting data, the AquaMOM Client publishes it to a specific topic associated with
the device in the MEx Broker in the cloud through MEx middleware (2).

In the cloud, the AquaMOM Service, subscribed to this topic on the MEx Broker,
listens for the sensed data (3). When new data is published, the MEx Broker, functioning as

80

Figure 4.2 – Overview of AquaMOM

Cloud

MEx Broker

Managing
System Web Application

MEx Middleware

notifypublish

start/adapt

AquaMOM
Device

AquaMOM Client

MEx Middleware AquaMOM
Service

Dadabase

subscribe

start/adapt

1

2
3

4
5

6

Source: Author

a messaging service, notifies the AquaMOM Service (4). The AquaMOM Service processes
the received data based on predefined business rules, stores it in a relational database (5), and
makes it available to a Web application (6). This web application displays digital feedback
on water usage, helping to engage customers and promote behavior change through dynamic
water consumption updates.

In Figure 4.2, the green arrows represent communication between the AquaMOM Client
(on the device) and the Managing System of MEx. These arrows depict messages related to
the automatic deployment of the application and its middleware components (start message)
and adaptation messages (adapt message) that trigger changes in the middleware or the
application itself.

The blue arrows represent the middleware operation messages, specifically the publish,
subscribe, and notify operations the application uses to communicate with the MEx Broker.

Finally, the grey arrows illustrate the internal communication between the AquaMOM Ser-
vice, the database, where the data is stored, and the dashboard, where the water information
is displayed. This communication is essential for providing users with feedback on water con-
sumption.

81

The AquaMOM uses MEx concepts for managing communication, data distribution and
execution. Additionally, these concepts allow AquaMOM to adapt dynamically. AquaMOM uses
parametric adaptation (see Section 4.2.3) to save energy by (re)configuring measurement fre-
quency of sensed data; close a smart water valve in the house may also be necessary. More
details on the adaptation process are provided in Sections 3.4.4, 3.4.5 and 5.

4.2.1 AquaMOM Service

The AquaMOM Service is a Web application responsible for processing data received
from each device. This MEx middleware abstracts the subscription to a topic in the MEx Bro-
ker (see Section 3.5) and receives the sensed data from AquaMOM devices. The AquaMOM Ser-
vice is notified whenever new data is published in the MEx Broker, establishing communication
with each AquaMOM device via a topic.

Once the data is received, the AquaMOM Service analyses, processes, and stores it in
a database, making it accessible to the customers through a Web graphical user interface, as
shown in Figure 4.3.

Figure 4.3 – Graphical User Interface of AquaMOM

Source: Author

The Graphical User Interface (GUI) was designed to be simple and user-friendly, allowing
customers to register new cisterns by providing details, such as name, ID, and location. The

82

main area features a panel displaying Current Consumption, showing water and battery con-
sumption levels as percentages, and a History Consumption panel, presenting the history of
monthly usage. A user-friendly feedback panel called Reservatory Information provides digi-
tal insights into the cistern’s water supply and characteristics, such as dimensions, capacity,
current water volume, daily consumption, remaining days of water availability, and battery
level. As water is used, the circle’s color changes from green to yellow to red, helping users
easily track their consumption. This digital feedback is expected to be part of a customer
engagement strategy to encourage users to adjust their water usage behaviors.

Regarding adaptation, AquaMOM uses the Managing System (see Section 3.7) to orches-
trate adaptive changes in the MEx execution environment. When an adaptation is required,
the MEx middleware sends an adaptation request to the Managing System. This approach
ensures that AquaMOM can dynamically adjust to changing conditions without recompiling
or stopping altogether.

Since AquaMOM devices are battery-powered and battery life is one of the most critical
uncertainties, preserving it in challenging environments is essential. Therefore, customized
parametric adaptation mechanisms developed in MEx to save energy in IoT devices have
been used, as previously presented in (Cavalcanti; Carvalho; Rosa, 2021; Cavalcanti; Hughes; Rosa,
2023).

4.2.2 AquaMOM Device

Figure 4.4 shows the prototype of the proposed AquaMOM device, where the AquaMOM Client
and MEx middleware are deployed and executed. This device was developed using available
electronic components and could support the implementation of the concepts developed in the
MEx framework.

The AquaMOM device is a hardware platform with off-the-shelf sensors to measure
cistern water levels and a micro-controller. It uses an HC-SR043 ultrasonic sensor and a low-
cost, open-source IoT controller named NodeMCU ESP8266 12E4. The controller features a
single-core 32-bit processor operating at 160 MHz, with 160 KBytes (SRAM), integrated Wi-Fi
(IEEE 802.11 b/g/n, 2.4 GHz), and supports executing software. Additionally, it has a TP40565

module for recharging the battery and preventing overcharging. The platform was selected for
3 <https://www.osepp.com/electronic-modules/sensor-modules/62-osepp-ultrasonic-sensormodule>
4 <https://www.espressif.com/en/products/modules/esp8266>
5 <http://www.tp4056.com/d/tp4056.html>

https://www.osepp.com/electronic-modules/sensor-modules/62-osepp-ultrasonic-sensormodule
https://www.espressif.com/en/products/modules/esp8266
http://www.tp4056.com/d/tp4056.html

83

Figure 4.4 – Prototype of the AquaMOM Device

Source: Author

its cost and limited hardware configuration that can give insight into the performance of MEx.
Although the device is primarily designed for water level monitoring, its application is not

limited and can be adapted for other fluid monitoring applications. The HC-SR04 sensor emits
ultrasonic signals that bounce off the water’s surface and return to the sensor. By measuring
the time taken for the signal to return, the sensor calculates the distance to the water. Using
this distance, combined with information about the cistern’s dimensions and location, the
application calculates the current volume of water in the cistern.

The schematic diagram of the AquaMOM device can be found in Appendix C, and the
printed circuit board of AquaMOM device Appendix D.

4.2.3 Software Stack on AquaMOM Device

The software stack on the AquaMOM device comprises the AquaMOM Client and the
MEx middleware. The AquaMOM Client is an IoT application responsible for measuring the
water level in cisterns and monitoring the device’s current power supply. After collecting this
data, the AquaMOM Client uses the MEx middleware to publish a message containing this
information to the messaging service (MEx Broker). The broker then forwards these messages
to the AquaMOM Service. The MEx middleware is implemented using the MEx framework
described in Section 3).

AquaMOM uses the MEx middleware for communication and parametric adaptation
of the application. The adaptation improves the application’s operation and adjusts it to
environmental conditions or context-specific behaviors. For example, in AquaMOM, DCAM
(see Section 3.4.5.2) was customized to change the frequency of measurements in response
to environmental changes, such as variations in water levels (Cavalcanti; Hughes; Rosa, 2023),

84

decreasing battery life, or even time of day.
Table 4.1 shows the rules applied for adjusting the monitoring frequency of the AquaMOM in

response to water level variations. These rules are inspired by the river water level monitoring
for flood early detection as proposed in Sulistyowati, Sujono and Musthofa (2017). It repre-
sents the water level information by the status of Peace, Safe, Not Safe, and Danger. It adjusts
the deep-sleep time parameter according to the current water level.

Table 4.1 – Examples of rules implemented in the DCAM’s Analyzer

Water Level Condition (%) Event (min)
Peace Volume ≥ 75 deep-sleep_time = 30
Safe 50 ≤ Volume < 75 deep-sleep_time = 15

Not Safe 25 < Volume < 50 deep-sleep_time = 10
Danger Volume ≤ 25 deep-sleep_time = 5

Source: Author

These rules change the monitoring frequency by adjusting the deep-sleep_time parameter
based on the water volume, which serves as the adaptation condition. Each condition has a
fact, for example, Volume of the cistern, a conditional operator, for example, lessThanInclusive,
and a reference value, for example, 25%. The rules engine runs a check to raise an event of
its rules and determine if some condition was satisfied (3). This event should reconfigure
the parameters associated with the rule, for example, deep-sleep_time. In practice, this rule
expresses that an application monitors the water level of a cistern every 30 minutes when it
is at a Peace level. In contrast, it may need to intensify monitoring (e.g., monitor every 1
minute) when the cistern reaches a Danger level, for example, below 25%.

Evaluating these rules makes it possible to decide whether an adaptation is necessary.
If unnecessary, a new loop starts at the Monitor and waits for new adaptations. Otherwise,
the Analyzer passes the adaptation decision to the Planner (4). The Planner receives the
parameters that must change and creates a plan containing the sequence of actions that must
be performed; for example, replace the parameter’s value running on the IoT device with a new
one obtained from the rule engine and update it. In this case, it creates a new configuration
with the new values. It forwards it to the Executor running in MEx on the IoT device (5).

Finally, the Executor adapts the parameters by replacing the old configuration with a new
one from the Planner (6). It is essential to mention that the entire adaptation process occurs
without stopping the application or the IoT device entirely. Furthermore, the adaptation only

85

occurs at the moment of application and middleware quiescence (Kramer; Magee, 2007).
Another adaptation strategy is the TDCAM (Time-Based Duty Cycle Adaptive Mecha-

nism), which is a customized DCAM (see Section 3.4.5.2). TDCAM automatically adapts the
duty cycle based on the time of day and usage patterns, reducing monitoring frequency during
low-demand periods and increasing it during peak times. This dynamic adaptation helps to
prolong battery life and ensures efficient energy consumption.

Table 4.2 shows the customized rules.

Table 4.2 – Examples of Rules implemented in the TDCAM’s Analyzer

Time of Day (h) Event (min)
0 AM ≤ Time of Day < 8 AM deep_sleep = 60
8 AM ≤ Time of Day < 1 PM deep_sleep = 30
1 PM ≤ Time of Day ≤ 11 PM deep_sleep = 1

Source: Author

For example, there is no water consumption during the dawn, so it monitors the cistern’s
water level once an hour. In contrast, from 1𝑃𝑀 to 11𝑃𝑀 , monitoring frequency intensifies
to once every minute.

The adaptation process starts with the Monitor within the IoT device sensing information
used in the adaption process, e.g., the timestamp and duty cycle. Next, the Monitor forwards
these parameters to the Analyzer (2). The Analyzer examines the sensed data, checks with
the historical in the Knowledge Database, and decides whether an adaptation is needed (3). If
an adaptation is required, the Analyzer forwards this decision to the Planner (4). The Planner

creates an adaptation plan, which consists of a sequence of actions (e.g., adjust the duty cycle
parameter and upload it) that must be sent and executed on the IoT device (5). Finally, the
Executor adjusts the parameter in the IoT device (6).

4.3 IMPLEMENTATION

The AquaMOM implementation6 uses different programming languages and technolo-
gies, depending on the software component and device where it runs. The AquaMOM Client
was implemented focusing on low-cost, low-power and low-CPU consuming operations. It was
6 <https://github.com/davidjmc/middleware-extendify/tree/main/aquamom>

https://github.com/davidjmc/middleware-extendify/tree/main/aquamom

86

developed using MicroPython7, compact enough to fit and run within micro-controllers. It was
also necessary to avoid external libraries and focus on adopting native MicroPython objects
(built-ins) to optimize the code with faster execution operations.

The AquaMOM Service is a cloud-based Web application with a GUI that displays
information to customers. In addition to processing data according to business rules, the
AquaMOM Service interacts with a database. It has two components responsible for creating
and updating records and making data available to users. Whenever a new message is received,
it processes and stores the data in the database, allowing user interaction through an API.

The AquaMOM Service was built using JavaScript. Data processing and business logic
are implemented in Nest.js8, a framework for building back-end applications. The Web interface
was built using React.js9, a library to create dynamic user interfaces. Finally, the database
used in AquaMOM is a PostgreSQL10 instance, a relational database system. The database
schema can be found in Appendix B.

4.4 CONCLUDING REMARKS

This chapter presented AquaMOM, a holistic and adaptive IoT system designed to
monitor water consumption in semi-arid regions. Initially, it presented a context and motivation,
followed by some base concepts. Next, an overview of AquaMOM was introduced, followed
by its software and hardware components. The chapter concluded with a summary of the
implementation aspects.

7 <https://micropython.org/>
8 <https://nestjs.com/>
9 <https://react.dev/>
10 <https://www.postgresql.org/>

https://micropython.org/
https://nestjs.com/
https://react.dev/
https://www.postgresql.org/

87

5 EVALUATION

”It is not the strongest of the species that survives, nor the most

intelligent that survives. It is the one that is the most adaptable

to change.”
—Charles Darwin

This chapter presents multiple experiments to evaluate MEx, its adaptation mechanisms,
and AquaMOM. It begins by defining the objectives of the evaluation. Next, it divides the
experiments into two scenarios and describes metrics, factors, and workload parameters used
in the scenarios. Finally, it presents and discusses the obtained results.

5.1 OBJECTIVES

The evaluation presented in this chapter follows the steps proposed in Jain (1991) and has
four main objectives:

• Objective 1: To compare the performance of AquaMOM built atop different MEx mid-
dleware flavors with an existing widely adopted middleware based on MQTT.

• Objective 2: To measure the impact of MEx adaptation on the performance of
AquaMOM.

• Objective 3: To show the adaptive mechanisms in action, evaluating their impact on
reducing uncertainties and improving AquaMOM’s performance to ensure efficient
operation.

• Objective 4: To estimate the potential change in water consumption when using the
AquaMOM.

Two scenarios were defined to achieve these objectives. In the first scenario (Scenario 1),
experiments focus on the implementation aspects of MEx. In the second scenario (Scenario
2), the experiments involve running AquaMOM on top of MEx middleware systems.

88

5.2 SCENARIO 1

Figure 5.1 shows the elements of Scenario 1. This scenario has a publish/subscribe appli-
cation that monitors the temperature and humidity. The Publisher continually measures the
temperature and humidity using a digital DHT111 sensor attached to the IoT device and pub-
lishes them (e.g., TEMP:30ANDHUMI:72) to a topic called TEMPHUMI on the MEx Bro-
ker. A Subscribe interested in these values subscribes to the same topic and is notified by
the MEx Broker when a new message arrives. This application was also implemented atop
Mosquitto (Light, 2017), a widely adopted MQTT-based middleware.

The Publisher and Subscriber were executed on two separate devices having a similar
configuration: NodeMU ESP8266 12E2, with a Tensilica Single-Core 32-bit L106 processor,
160 MHz (megahertz) clock speed, 36 kBytes (kilobytes) of SRAM, integrated Wi-Fi, low-
power consumption and running MicroPython3 Version 1.12. This device was selected due to
its limited hardware configuration and low cost, providing real insight into the performance of
MEx and making it accessible for cheap IoT projets. The MEx Broker and the Managing

System were executed on a PC with an Intel Core i7 processor, 2.70 GHz (gigahertz), 16 GB
(gigabytes) of RAM, running Linux Mint 19.1 Cinnamon4 64-bit and Python 3.6.9.

Figure 5.1 – Scenario 1

IoT
Application

MEx Client

IoT
Application

MEx Client

MEx Broker

Managing
System

{
 ID: d4:6a:6a:fe:23:df,
 OP: Publish,
 MSG: TEMP:30ANDHUMI:72,
 TOPICS: TEMPHUMI
}

{
 ID: d4:6a:6a:ae:24:cf,
 OP: Subscribe,
 TOPICS: TEMPHUMI
}

{
 ID: d4:6a:6a:ae:24:cf,
 OP: Notify,
 MSG: TEMP:30ANDHUMI:72,
 TOPICS: TEMPHUMI
}

{
 OP: Adapt,
 TYPE: Evolutive,
 COMPONENTS: {
 Marshaller: 1,
 QueueProxy: 1
 }
}

{
 OP: Adapt,
 TYPE: Evolutive,
 COMPONENTS: {
 Marshaller: 2,
 QueueProxy: 2
 }
}

Source: Author

1 http://www.aosong.com/en/products-21.html
2 https://components101.com/sites/default/files/2021-09/ESP12E-Datasheet.pdf
3 https://micropython.org/
4 https://www.linuxmint.com/rel_tessa_cinnamon.php

89

5.2.1 Metrics, Parameters and Factors

The performance metric adopted in all experiments was the publishing time, which is
measured on the publisher side. This is the time elapsed between the IoT application on the
IoT device publishing a message and receiving the confirmation that the MEx Broker received
it. The sent message goes through all components of the MEx Client.

Network time (time in the transport layer) was not considered due to its high variability.
It is worth noting that IoT devices use WiFi for Internet access, and network conditions can
fluctuate, causing congestion or intermittent issues. However, experiments were scheduled
during times of lower network usage, primarily at night, to mitigate these issues.

Two parameters were kept fixed in all experiments: publication interval and adaptation
mechanism. The interval between successive message publications was fixed at 5 seconds, and
the publisher sent out 1000 messages. The adaptation mechanism used was the Evolutive

Mechanism (see Section 3.4.5.1). Then, every time a new version of one or more MEx com-
ponents becomes available, the adaptation is triggered to replace the old component with the
new one. In practice, a new version means that a file (the new component version) needs to
be uploaded from the component library to the IoT device.

Several parameters (factors) changed during experiments, as shown in Table 5.1. These
factors exploited different situations when executing the application.

Table 5.1 – Factors of Scenario 1

Factor Level
Adaptation Disabled, Enabled
Replaceable Component Marshaller/Pickle, Queue Proxy, Marshaller+Queue Proxy
Adaptation Interval 5 min, 10 min, 15 min, 20 min
Middleware Flavor Std-MEx, Thin-MEx, MQTT

Source: Author

The first factor (Adaptation) defines whether the adaptation is enabled or not. When en-
abled, MEx triggers an adaptation if necessary. Otherwise, MEx remains static and does
not change at runtime. Factor (Replaceable Component) exploits the possibility of adapt-
ing (replacing) one or more components simultaneously: replace Marshaller(649 bytes) by
Pickle, replacement of QueueProxy(992 bytes) and simultaneous replacement of Marshaller

and QueueProxy. The Marshaller uses a native serialization specifically implemented for MEx,

90

and Pickle5 is an object serialization of Python.
In relation to the Adaptation Interval, four values were configured: 5, 10, 15, and 20 min-

utes. These intervals were used to evaluate different adaptation frequencies, as no standard
values exist, assessing their impact on system performance while balancing responsiveness
and resource usage. Finally, three different middleware flavors were used: Std-MEx, Thin-

MEx and MQTT. The Std-MEx is a basic implementation of an adaptive middleware using
MEx framework. Thin-MEx has the MEx components necessary to provide the same func-
tionality as the MQTT without a marshaller, i.e., the application needs to serialize messages
before sending them. Finally, the MQTT flavor is the Mosquitto (Light, 2017), a widely adopted
implementation of MQTT. It is worth observing that MQTT has been used as a standard pro-
tocol for implementing publish/subscribe middleware systems in IoT environments (Al-Fuqaha

et al., 2015).

5.2.2 Adaptation in Action

The first experiment shows the Evolutive Mechanism in action. In this case, the serialization
component of the middleware is alternated at each adaptation interval, i.e., every 10 minutes in
this experiment. The component Marshaller(faster) is replaced by component Pickle (slower).
Figure 5.2 shows the behavior of the Publishing Time during the experiment.

Figure 5.2 – Alternation of the serialization component (𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝑒𝑟 and 𝑃𝑖𝑐𝑘𝑙𝑒)

Source: Author

The results indicate that the Publishing Time varies depending on the serialization com-
5 https://docs.python.org/3/library/pickle.html

91

ponent used. The Pickle serialization results in higher publication times of 8 ms, while the
Marshaller achieves lower times of 4 ms. Additionally, the experiment shows that MEx se-
rialization is 50% more efficient than Pickle, leading to improved application performance.
This increase in efficiency is likely a result of optimizations made during the development of
MEx serialization, which were specifically designed for the IoT environment.

5.2.3 Impact of Adaptation

Previous experiments demonstrated the effectiveness of the Evolutive Mechanism. To in-
vestigate its impact on IoT applications further, new experiments were conducted in which
the mechanism was either enabled or disabled. When the mechanism was enabled, either one
component (𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝑒𝑟) or two components (𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝑒𝑟 and 𝑄𝑢𝑒𝑢𝑒𝑃𝑟𝑜𝑥𝑦) were replaced
simultaneously. Similarly to the previous experiments, the assessed metric was Publishing Time,
and the intervals between adaptations were set according to the specifications in Table 5.1.

Figure 5.3 shows the publishing time and number of adaptations when the adaptation
mechanism is enabled/disabled and a single component is replaced.

Figure 5.3 – Impact of Adaptation on the Application (one component)

Source: Author

As expected, the effect on Publishing Time is more significant when the adaptation mech-
anism is active. Without adaptation, the average Publishing Time was 4.24 ms. However,
with adaptation, the impact increased as the frequency of adaptations rose. For example, with
the adaptation interval set to 5 minutes, the Number of Adaptations performed was 18, and
the average Publishing Time increased to 16.06 ms. As the adaptation interval increased, for

92

example, with the adaptation interval set to 20 minutes, only 4 adaptations occurred, and
the average Publishing Time was reduced to 6.72 ms, representing a 58.2% reduction. As this
adaptation interval becomes longer, the impact of adaptation is reduced, approaching the pub-
lishing time without adaptation. This point is important because the frequency of adaptations
in this experiment is extrapolated to assess its impact. In a real-world scenario, adaptations
can occur in hours, days, or even months.

Figure 5.4 shows the impact on the publishing time when one (𝑀𝑎𝑟ℎ𝑠𝑎𝑙𝑙𝑒𝑟) or two com-
ponents (𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝑒𝑟 and 𝑄𝑢𝑒𝑢𝑒𝑃𝑟𝑜𝑥𝑦) are replaced. It is worth noting that the code size
of Queue Proxy (992 bytes) is 52.9% larger than Marshaller (649 bytes). Furthermore, in this
experiment, both the Marshaller and Queue Proxy components are replaced by alternative ver-
sions of themselves to assess the impact of component replacement, taking into consideration
whether the size of the component influences the impact.

Figure 5.4 – Impact of Adaptation on the Application (Two components)

Source: Author

Observing the results, the impact of replacing individual components on the publishing
time is very similar, regardless of their sizes and the configured adaptation interval. However,
the impact is greater when both components are adapted simultaneously, causing an increase
in publish time. This behavior was expected because adaptation involves uploading files from
the Managing System to the IoT device (see Figure 5.1). Meanwhile, similarly to the previous
experiments, this impact is reduced as the adaptation interval becomes longer, suggesting that
adaptations need to have a longer interval to occur.

The higher impact observed when replacing two components simultaneously compared to
one indicates that the process of updating multiple components simultaneously can introduce

93

additional overhead. The experiment also revealed a limitation in adaptation when updating
multiple components simultaneously. Specifically, adapting three components simultaneously
caused a memory overflow on the ESP8266 devices, which interrupted the application’s op-
eration and rendered the adaptation infeasible. This issue highlights the overhead introduced
by simultaneous updates and underscores the need for strategic adaptation scheduling to
minimize performance degradation. Despite attempts to address the problem through code
optimizations, garbage collection removal, and increased adaptation intervals, no solutions
were successful. Given that ESP8266 devices are low-cost and have extremely limited com-
putational resources, these adaptation strategies might perform better on devices with higher
capabilities, such as a Raspberry Pi6.

5.2.4 Comparative Evaluation

The final experiments in Scenario 1 compared the performance of the Std-MEx and
MQTT, i.e., they exploit the implementation of the same publish/subscribe application atop
different middleware flavors (see Section 5.2.1).

Figure 5.5 shows the average Publishing Time of the application. As expected, the adapta-
tion mechanism impacts the application’s performance, which cannot be overlooked. However,
the ability to dynamically adjust the middleware behavior according to changes in IoT envi-
ronments and the possibility of creating specific MEx configurations tuned to each device’s
characteristics can compensate for the performance overhead. MQTT has both a monolithic
code and the same configuration, whatever the device. Finally, it is worth noting that the cus-
tomized version of MEx (Thin-MEx) with an average Publishing Time of 1.28 ms performs
better than MQTT with 1.72 ms.

The comparison indicates that while Std-MEx introduces performance overhead due to
its adaptation mechanism, it offers significant benefits in customization for specific devices.
The improved performance of Thin-MEx demonstrates that a tailored approach can achieve
better efficiency compared to standard protocols like MQTT.

6 <https://www.raspberrypi.com/documentation/computers/getting-started.html>

https://www.raspberrypi.com/documentation/computers/getting-started.html

94

Figure 5.5 – MEx versus MQTT

Source: Author

5.3 SCENARIO 2

Scenario 2 includes AquaMOM (see Section 4.2) and uses an empirical approach that
combines the AquaMOM device (see Section 4.2.2) with simulated water consumption be-
havior in a controlled environment. It follows a traditional IoT application centralized archi-
tecture, incorporating a controller, sensors, and an application for data display (Singh; Ahmed,
2021; Muccini et al., 2018).

Figure 5.6 shows the elements of Scenario 2. The AquaMOM device hosts a publisher that
periodically monitors a home cistern water level. A distributed Web application (subscriber)
runs on the cloud and processes and displays the monitored data. The publisher and the
subscriber were implemented atop MEx middleware systems. It is important to mention that
as the subscriber is a Web application, it was implemented on MEx middleware built with
JavaScript components.

5.3.1 Metrics, Parameters and Factors

Two metrics were adopted in all experiments of Scenario 2: publishing time and power

consumption. The publishing time is similar to one used in Scenario 1 (see Section 5.2.1).
The power consumption is the amount of energy consumed by a thing during its execution,
specifically while realizing the duty cycle (Aslanpour; Gill; Toosi, 2020) (see Section 3.4.5).

Table 5.2 presents the factors adopted in the experiments of Scenario 2. In this table, the

95

Figure 5.6 – Scenario 2

{
 ID: d4:6a:6a:ae:24:cf,
 OP: Notify,
 MSG: {VOL:800L;BAT:21},
 TOPICS: HOUSE1
}

{
 OP: Start,
 ID: d4:6a:6a:fe:24:cf
}

MEx Broker

Managing
System

Web Application

MEx Middleware

{
 ID: d4:6a:6a:ae:24:cf,
 OP: Subscribe,
 TOPICS: {HOUSE1}
}

AquaMOM
Device

Cloud

{
 ID: d4:6a:6a:fe:23:df,
 OP: Publish,
 MSG: {VOL:800L;BAT:21},
 TOPICS: {HOUSE1}
}

IoT Application

MEx Middleware

{
 OP: Start,
 ID: d4:6a:6a:fe:24:cf,
 MSG: {Componet1,
 ..., Componentx}
}

{
 OP: Adapt,
 ID: d4:6a:6a:fe:23:df,
 MSG: {
 DEEP_SLEEP: 60s
 }
}

{
 OP: Adapt,
 ID: d4:6a:6a:fe:23:df,
 TYPES: {Parametric},
 MSG: {
 VOL: 800L,
 TS: 2024-06-14T14:18:57Z
 }
}

Source: Author

MEx Configuration and Adaptation Interval are similar to the ones adopted in Scenario 1 (see
Table 5.1). Two adaptation mechanisms are being considered, namely DCAM and TDCAM
(see Section 3.4.5). Three middleware flavors have been utilized: Std-MEx, MEx-MQTT, and
MQTT. Std-MEx is a basic middleware built using the MEx framework. MEx-MQTT is a
middleware incorporating an MQTT-proxy component from the MEx framework’s library, and
MQTT is similar to Scenario 1. Two different intervals between publications (Inter-publication

time) are being adopted: one for DCAM and another one for TDCAM. The difference in
intervals is due to the distinct adaptation strategies used by each mechanism. The interval for
DCAM is in seconds, as it monitors the continuous behavior of water usage in the cistern, where
consumption is constant and requires frequent updates to adjust the publication frequency. In
contrast, TDCAM uses discrete intervals based on the time of day, such as morning, afternoon,
or night, which reduces the monitoring frequency, e.g., by decreasing the frequency during the
night. Finally, the results consider the publication of 50 messages. This sample size was chosen

96

to balance data collection with battery consumption. In the case of TDCAM, the battery is
often allowed to deplete, limiting the number of messages published.

Table 5.2 – Factors of Scenario 2

Factor Levels
Adaptation Enabled, Disabled
Adaptation Mechanism DCAM, TDCAM
Adaptation Interval 1 min, 5 min, 10 min, 15 min, 20 min
Middleware Flavor Std-MEx, MEx-MQTT, MQTT
Inter-publication time (DCAM) 5 s, 15 s , 30 s, 45 s, 60 s
Inter-publication time (TDCAM) 1 min, 30 min, 60 min

Source: Author

5.3.2 Evaluating the MEx’s Performance

In the first set of experiments of Scenario 2, the performance of the middleware fla-
vors was compared, considering different deep-sleep times. Figure 5.7 shows the results7 to
compare the performance of Std-MEx, MEx-MQTT and MQTT against different intervals
between publications. Although the results visibly suggest that the mean Publishing Time of
MEx middleware systems appears to be better, statistical t-tests indicate no significant dif-
ference between Std-MEx, MEx-MQTT, and MQTT. However, MEx middleware systems
achieved a mean Publishing Time approximately 13% faster (70 milliseconds) than MQTT
when the interval between publications was set to 30 seconds.

As the interval between publications increases, the middleware flavors improve the publish-
ing time, with MEx middleware systems maintaining a consistent advantage in all cases. In
the end, MEx has similar performance while supporting different middleware implementations
and offering dynamic adaptation capabilities.

The similar performance observed in both implementations, i.e., the Std-MEx and MEx-
MQTT, indicates the effectiveness of the MEx framework. This results suggests that MEx ex-
hibits versatility in implementing different middleware systems while maintains good perfor-
mance, even when incorporating external libraries, such as MQTT.

From Figure 5.7, it is also possible to compare the performance between the MEx-MQTT
and MQTT implementation, both utilising Mosquitto Broker. Results show that the perfor-
7 Evaluation results available at http://tinyurl.com/ijcs-evaluation-results

97

Figure 5.7 – Comparison of Publishing Time Between Std-MEx, MEx-MQTT, and MQTT

Source: Author

mance of MEx-MQTT also slightly improves over the MQTT. The MEx-MQTT presented
a mean publishing time of 12.67% lower than that of MQTT.

As observed, when the interval between publications is set to 5 seconds, MEx-MQTT
achieves a mean publishing time of 523.8 ms, whereas MQTT recorded 641.8 ms. Similarly,
with a interval between publications of 60 seconds, the mean publishing time of MEx-MQTT
was 509.2 ms, compared to MQTT’s 529.7 ms. These results relate to how the components
are designed and implemented in MEx, i.e., they naturally have an awareness of the resource
constraints of IoT environments. For instance, the component managing socket connections
in the MEx Broker operates slightly differently from MQTT. It retains the MEx client’s
connection status, and a new connection is only initiated if one does not already exist.

Overall, the comparable performance of the two middleware implementations indicates the
effectiveness of the MEx framework. The results further suggest the potential of MEx as a
solution that delivers customizable adaptive middleware systems for IoT applications, offering
flexibility and efficient communication while adapting to changing environmental conditions.
This adaptability enables developers to optimize communication protocols based on specific
operational needs, enhancing overall system responsiveness and reliability.

5.3.3 Impact of Adaptation on Performance and Power Consumption

In this second set of experiments in Scenario 2, the impact of adaptation on the application
was measured. It is worth observing that a configurable interval adaptation time is crucial

98

to help define the optimal adaptation timing. Frequent adaptations may lead to increased
computational resource consumption and potential impacts on application reliability, while
excessively long intervals may hinder responsiveness. In this evaluation, DCAM was selected as
the adaptation mechanism due to its ability to dynamically adjust the duty cycle by modifying
the deep-sleep_time parameter based on the application context, specifically water levels.
This mechanism was chosen for its potential to balance performance and power consumption,
which are the metrics evaluated in this assessment. DCAM adjusts the monitoring frequency
to match environmental conditions, reducing energy consumption while ensuring reliable water
level monitoring, particularly in resource-constrained and remote environments.

Figure 5.8 shows how the adaptation affects the publishing time across various adaptation
intervals.

Figure 5.8 – Impact of Adaptation on Performance

Source: Author

As expected, the impact of adaptation on publishing time is elevated compared with the
situation in which the adaptation is disabled, especially at shorter adaptation intervals. How-
ever, as adaptation interval increases, this impact decreases. For example, with an adaptation

interval of 1 minute, the publishing time stands at 1740.4 ms. When the adaptation inter-

val becomes longer (20 minutes), there is a significant reduction of the publishing time to
616.6 ms. These results show that while frequent adaptations can degrade performance, longer
adaptation intervals have a lower impact on the application performance.

Similar behavior is observed when the focus is on the results of the MEx implementations
only (adaptation enabled). They suggest that varying middleware architectures (Std-MEx and
MEx-MQTT) have minimal impact on performance. When the adaptation interval is 20

99

minutes, the publishing time for Std-MEx is 616.6 ms, while for MEx-MQTT is slightly
higher at 629.2 ms. Finally, it is worth observing that there is an extrapolation in the frequency
of adaptations in these experiments to show its impact. In real-world scenarios, adaptation

intervals may extend to hours, days, or even months.
Concerning the power consumption, Figure 5.9 presents the impacts of adaptation on power

consumption across different middleware flavors, adaptation disabled or enabled and adapta-

tion intervals. As observed, incorporating adaptation introduces a slight increase in power

consumption due to the additional computational effort required by the adaptive mechanism.
Firstly, the average power consumption increases by approximately 16 mW when comparing

the standard MEx (Std-MEx) to the MEx integrated with MQTT (MEx-MQTT) in a
scenario where the adaptation is disabled. Enabling adaptation in the MEx-MQTT setup,
referred to as MEx-MQTT (with Adaptation Enabled), results in a further average increase
of about 34 mW. Secondly, when comparing Std-MEx to Std-MEx (Adaptation Enabled),
there is an average increase of approximately 26 mW in power consumption.

However, the difference in power consumption decreases as the adaptation interval extends
beyond 20 minutes. The overall consumption can decrease, especially as the application remains
in a sleep state for longer. This behavior suggests that longer sleep durations and extended
adaptation intervals can lead to more efficient power usage in adaptive systems.

Figure 5.9 – Impact of Adaptation on Power Consumption

Source: Author

In summary, the results show that the adaptation has a low impact on both publishing

time and power consumption while allowing for necessary adjustments in the application.

100

This balance enables responsiveness without compromising resource efficiency. The minimal
performance trade-offs observed with longer adaptation intervals suggest that MEx is well-
suited for applications operating in dynamic environments where efficient resource management
is crucial.

5.3.4 Evaluating the Impact of the Adaptation on Battery Lifetime

Section 3.4.5.2 mentions that power consumption is essential since IoT devices are battery-
powered, and applications operate in unpredictable environments. In this context, after eval-
uating the impact of adaptation on performance and power consumption, it is necessary to
understand how the adaptation mechanisms, DCAM and TDCAM, help extend the life bat-
teries of IoT devices.

Initially, some experiments were carried out with each middleware flavor to understand the
behavior of duty cycle when the deep sleep changes. It is worth noting that the deep-sleep

duration is equivalent to the inter-publication time (DCAM) shown in Table 5.2. In addition,
the duty cycle is calculated using Equation 3.1. Table 5.3 shows that the duty cycle decreases
by increasing the deep sleep time. For example, the highest (59.2%) and lowest (14.3%) duty
cycles occur with a deep sleep time of 5 seconds and 60 seconds, respectively. However, the
duty cycle was slightly different according to the middleware flavor. For example, when the deep
sleep time was set to 5 seconds, the duty cycle values were 59.2% (Std-MEx), 61.2% (MEx-
MQTT), and 58.3% (MQTT). This behavior is expected since the duty cycle represents the
percentage of a device’s working time that periodically switches between periods of inactivity
(e.g., sleeping) and activity (e.g., connection, sampling, and transmission) periods. Within
these active periods, some activities can present unpredictable behavior.

Table 5.3 – Duty Cycle Behavior of Middleware Flavors

Deep-sleep (s) Duty Cycle (%)
Std-MEx MQTT-MEx MQTT

5 59.2 61.2 58.3
15 29.9 38.1 38.5
30 21.1 32.6 27.9
45 15.1 15.5 25.0
60 14.3 11.8 16.1

Source: Author

101

The duty cycle’s alternated between decreasing and increasing the electrical current con-
sumed in the activity/inactivity periods during the execution. As expected, the electrical current
consumed during activity periods is high, averaging around 90 miliampères (mA). In contrast,
the electrical current consumption significantly decreased during deep sleep, averaging about
19 mA.

Figure 5.10 presents the power consumption of each middleware flavor. The power con-

sumption depends on the duty cycle’s current operating condition, which can be in active/i-
nactive periods. Figure 5.10(a), 5.10(b) and 5.10(c) shows the power consumption of the
Std-MEx, MQTT-MEx and MQTT, respectively.

Figure 5.10 – Power Consumption (varying duty cycle)

Source: Author

The power consumption of Std-MEx and MEx-MQTT is lower than MQTT. This result
is important because it shows that MEx reduced the power consumption while allows adapt-
ability, which is absent in MQTT. The results also indicate that the duty cycle significantly
impacts the device’s power consumption. A lower duty cycle corresponds to reduced power

consumption. The possibility of adjusting the duty cycle based on application requirements
can reduce or increase The power consumption, e.g., if the water cistern is complete, the

102

monitoring (duty cycle period) can be adjusted to more extended periods (e.g., 30 minutes),
thus reducing power consumption in non-critical scenarios.

In the following experiments, the AquaMOM device was equipped with a 3000 mAh
(milliampere-hour) battery. Figure 5.11 shows the estimated lifetime of the AquaMOM de-
vice with DCAM, considering deep-sleep_times ranging from 5 to 60 seconds and adaptation

intervals from 1 minute to 20 minutes. The results indicate that adjusting the deep-sleep
duration can extend the device’s lifetime from 1.4 to 6.6 days.

Figure 5.11 – Estimation of Battery Lifetime (DCAM)

Source: Author

It is worth noting that these deep sleep values, utilized in seconds, were chosen to ex-
trapolate the experimental scenario, as applications usually consider deep-sleep in minutes.
Moreover, there is also extrapolation in the frequency of adaptations as mentioned before.
The battery lifetime may increase as this deep sleep becomes longer. However, long deep sleep
times imply that the application may not run during some critical events, potentially affecting
application reliability. At the same time, as the adaptation interval becomes longer, the impact
of adaptations on power consumption is also reduced, improving and increasing the thing’s
lifetime.

To evaluate TDCAM, the AquaMOM device was again equipped with a 3000 mAh
battery and run until the battery was depleted. Without adaptation, it monitored the water
level every minute. With adaptation, TDCAM adjusted the monitoring frequency according to

103

the customized rules outlined in Table 4.2. Figure 5.12 shows the results8 of this experiment.

Figure 5.12 – Estimated lifetime with variable deep-sleep using TDCAM

Source: Author

With adaptation, the AquaMOM device consumed 45.36% of its battery over 38 hours,
while without adaptation, it consumed 35.79% over 33 hours. Despite the higher battery con-
sumption, the adapting device operated for 5 hours longer than the non-adapted one, demon-
strating its advantage in scenarios where battery life is crucial. Furthermore, the adaptation
capacity provides customization and flexibility, improving aspects beyond battery consump-
tion, such as overall device performance and application reliability. These facts are possible
by allowing adjustments to the middleware and application either before (development) or
after (runtime) deployment based on specific user needs or environmental conditions, making
adaptation beneficial for various usage contexts.

In summary, introducing adaptive capabilities is very interesting once an application can
adjust its duty cycle to align with the application’s requirements without heavily impacting
the application’s power consumption. Spending some energy adjusting a duty cycle that offers
the shortest or longer deep sleep regarding the application’s context is better than randomly
selecting one static deep-sleep configuration that can influence the application´s availability
and reliability.
8 Evaluation results available at https://tinyurl.com/isc22024-results

104

5.3.5 Evaluating the impact of using AquaMOM

For the final set of experiments, AquaMOM is combined with a domestic water con-
sumption simulation. In this simulation, the human consumption behaviors of residents from
the semi-arid region are being considered as presented in Marzall and Nascimento (2023). They
show the hourly evolution of water consumption inside homes, with peak water usage times
around noon and between 6 PM and 8 PM, with significantly lower consumption between
midnight and 5 AM.

The metric analyzed in this experiment is daily water consumption (measured in liters
per day). The factors being used are the feedback mechanism and time of day, with their
corresponding levels summarized in Table 5.4. This metric aims to quantify the water consumed
in each simulation scenario, serving as the key performance indicator to evaluate the efficiency
of the different feedback mechanisms.

Table 5.4 – Factors Impacting Water Consumption with AquaMOM

Factor Levels
Feedback Mechanism Without Feedback, With Feedback,

Autonomous Regulation
Time of Day Peak Hours (noon, 6 PM–8 PM),

Normal Hours, Dawn Hours (mid-
night–5 AM)

Source: Author

To compare the water consumption with and without the digital feedback provided by
AquaMOM, three simulation scenarios were considered: consumption without feedback,
i.e., he/she consumes water throughout the day without restrictions; consumption with digital
feedback, i.e., he/she consumes water considering the feedback provided by AquaMOM; and
autonomous consumption, i.e., a smart valve automatically regulates the water flow without
the participation of the consumer.

In all experiments, the daily water consumption was set to 100 liters (L), as specified
in (França et al., 2010). In addition, it was assumed that the consumption of 6 and 10 liters at
peak and normal hours, respectively. Meanwhile, the consumption of 0 liters/hour was assumed
for 6 hours at dawn. In the experiments without feedback, it is assumed 3 liters over water
consumption in peaks, non-peaks, and dawn hours. In the experiments with feedback, the
customer receives feedback at three levels: Green, Yellow, and Red, as shown in Equation 5.1.

105

𝑅𝑒𝑑𝐹 𝑏(𝑐) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Green, 𝑐 ≤ 25𝐿

Yellow, 25𝐿 < 𝑐 ≤ 50𝐿

Red, 𝑐 > 50𝐿

(5.1)

where, 𝑐 is the customer’s water consumption per hour, and 𝑅𝑒𝑑𝐹 𝑏(𝑐) (Reduction by Feedback)
represents the percentage reduction in customer water consumption each hour based on the
feedback received. If the digital feedback is Green, the cumulative water consumption is below
25 L, and the customer has no concerns yet, resulting in a 0% reduction. For Yellow feedback,
where cumulative water consumption is between 25 L and 50 L, a reduction is randomly
calculated between 0 and 1. This value is normalized to a range of 4.2% to 8.5%, as found in
(Liu; Mukheibir, 2018). For Red feedback, with consumption above 50 L, the same calculation is
used but with a higher weight, multiplying by 2, and capped at a maximum of 8.5%, reflecting
more conservative behavior.

A policy of flow rate regulation is defined to simulate the water consumption reduction in
the scenario with a smart valve, which adjusts water flow for more efficient usage. This policy
must vary according to cumulative consumption and the time of day, as shown in Equation 5.2.

𝐹𝑙𝑜𝑤𝑙𝑖𝑚𝑖𝑡(ℎ) =
100 −

ℎ∑︀
𝑖=0

Consumption(𝑖)

24 − ℎ
, (5.2)

where, ℎ represents the current hour of the day (ranging from 0 to 24), and 𝐹𝑙𝑜𝑤𝑙𝑖𝑚𝑖𝑡 is the
new flow rate limit of the smart valve. The numerator represents the volume of water available
for consumption at that time, which equals the anticipated 100 L per day minus the volume
already consumed up to ℎ. The denominator is the number of hours remaining in the day,
calculated as 24 minus the current time of day.

Figure 5.13 presents the results9 of the daily consumption behavior for each simulation ex-
periment. For customers without feedback, the simulation showed an overuse of 102.8 L/day,
ceasing around 21:00 hrs. With consumption feedback, customers adjusted their behavior,
reducing their consumption from 102.8 L/day to 96.9 L/day by 23:00 hrs. Finally, the au-
tonomous regulation that uses the smart valve enhances water efficiency, reducing consumption
to 80.6 L/day, nearly 20 L less than without feedback.

Based on these results, an estimate for 16.000 L indicates that without feedback, this
volume lasts about 5 months; with feedback, the duration increases by 10 days, extending to
9 Evaluation results available at https://tinyurl.com/isc22024-results

106

Figure 5.13 – Comparison of simulation results for different behaviors

Source: Author

about 5 months and 10 days, representing a 6.67% increase. With the smart valve, there is an
increase of 1 month and 13 days, representing a 28.67% increase.

During the simulations, some sensor readings differ significantly from the expected values.
These outliers may stem from sensor inaccuracies or uncontrolled variables such as Internet
connections or power supply. Hence, these values were removed from the results and analysis
to ensure the relevance of the simulation results.

5.4 CONCLUDING REMARKS

This chapter presented the experimental evaluations conducted with MEx and AquaMOM.
First, the evaluation objectives were presented. Then, Scenario 1 was introduced, including its
metric, parameters and factors, followed by the experiments and their results. Next, Scenario 2
and its metrics, parameters and factors were presented. The results of the experiments, focusing
on the performance of MEx and its impact on AquaMOM’s operation, were then discussed.
Finally, the social impact of reduced water consumption through the use of AquaMOM was
presented.

107

6 RELATED WORK

”If I have seen further it is by standing on the shoulders of

Giants.”
—Isaac Newton

This chapter presents and analyses existing works related to what is being proposed in this
thesis. It discusses how the works were categorized. Next, each category is explained in detail.
Finally, a comparative analysis highlights how the existing solutions differ from MEx.

6.1 OVERVIEW

Existing approaches related to what is proposed in this thesis can be organized into four
groups: IoT middleware frameworks, IoT adaptive middleware systems, IoT non-adaptive mid-
dleware systems and other works.

The first group surveys existing solutions for implementing IoT middleware systems in-
stead of a specific middleware instance, i.e., typically middleware frameworks. These solutions
provide services and models that enable communication and interaction between devices and
applications, offering a foundation for IoT system integration. The second group focuses on
IoT middleware systems having adaptive capabilities, while the third group discusses IoT mid-
dleware systems without adaptation. The last group includes solutions not directly related
to the middleware domain but central mechanisms adopted in the design of MEx, such as
energy-saving and smart water applications.

Finally, before analyzing the related works, it is worth noting that middleware systems built
using MEx are referred to as MEx middleware

6.2 MIDDLEWARE FRAMEWORKS

Among the frameworks, Park and Park(Soojin; Sungyong, 2019) proposed an adaptive cloud-
based middleware framework for developing IoT applications through collaboration services.
This framework enables developers to collaboratively utilize IoT services among multiple ap-

108

plications and devices collaboratively, facilitating the implementation and adaptation of IoT
applications when necessary. This solution adopts MAPE-K control loop as a cloud service.

Park et al.(Park; Song, 2015) presented a self-adaptive IoT middleware framework for mobile
applications. This framework identifies user interface usability issues and dynamically reconfig-
ures the application’s graphical interface accordingly. It monitors and analyses user behavior
to identify usability issues, such as frequent screen scrolling, and determines the underlying
causes. Based on these findings, the solution selects an appropriate adaptation strategy and
creates an adaptation plan to change the user interface. However, the adaptation only takes
effect upon restarting the application.

Hassan et al. (Hassan et al., 2023) proposed PlanIoT, a middleware framework for enabling
adaptive data flow management in IoT-enhanced environments such as smart buildings. Plan-
IoT uses automated planning methodologies and a generic QoS model to evaluate data flow
performance in edge infrastructures (exchanged between applications and devices) and QoS
configurations (network resource allocation, priority policies). PlanIoT evaluates this data flow
performance under various configurations and generates a performance metrics dataset. This
dataset serves as input to automated planning representations to satisfy the QoS requirements
of deployed applications, including response times and resource allocation. Additionally, Plan-
IoT organizes IoT applications into categories based on their requirements, allowing tailored
management of data flows and resource prioritization.

6.3 ADAPTIVE MIDDLEWARE

Several IoT adaptive middleware systems share similarities with MEx middleware systems,
but they generally concentrate on adaptations at application or network levels rather than the
middleware itself.

Achilleos et al. (Achilleos et al., 2017) proposed ARM (Adaptive Runtime Middleware) as a
service-oriented middleware platform to address IoT device heterogeneity and interoperability.
ARM enables distributed IoT application development using Open Services Gateway Initiative
(OSGi)1 (OSGi Working Group, 2024) framework and RESTful architectural pattern to manage
application heterogeneity, scalability, and adaptability. It dynamically generates code at run-
time from annotations, facilitating the injection of new service interfaces into IoT devices. It
provides two core services implemented as OSGi components: one for detecting devices and
1 <https://www.osgi.org/resources/where-to-start/>

https://www.osgi.org/resources/where-to-start/

109

their resources through OSGi annotations, while the other for generating RESTful service in-
terfaces exposed by a REST service for device usage. The dynamic nature of ARM is primarily
enabled by OSGi, which permits the installation, starting, and changing of services used by
devices at runtime.

Rausch, Nastic, and Dustdar (Rausch; Nastic; Dustdar, 2018) proposed EMMA, an edge-
enabled publish/subscribe middleware designed for client mobility and QoS optimization (e.g.,
message delivery guarantees) in edge computing applications. EMMA implements a protocol
to monitor the network conditions and dynamically reconfigures network parameters based
on monitored real-time metrics, such as network latency and broker load balancing. EMMA
is based on MQTT, provides low-latency communication, and facilitates the distribution of
messages to geographically dispersed locations.

Portocarrero et al. (Portocarrero et al., 2016) proposed SAMSON (Self-Adaptive Middle-
ware for Wireless Sensor Networks), a middleware for managing wireless sensor networks and
adapting sensor behavior based on application context and requirements. SAMSON is de-
veloped utilizing an ADL-specified software architecture, where each architectural element
becomes a software component deployed and executed on the Contiki sensor network plat-
form(Dunkels; Gronvall; Voigt, 2004). SAMSON’s adaptation mechanism follows the MAPE-K
loop, distinguishing between three types of sensor nodes: base nodes, manager nodes, and
managed nodes. SAMSON offers two adaptation strategies: 1) adjusting sensor node parame-
ters, such as reconfiguring sensor tasks, topologies, and clusters by selecting active nodes, and
2) reprogramming sensor nodes using dynamic loading to extend node lifetime, e.g., changing
sensor node configuration due to low battery charge or converting a managed sensor node into
a manager node.

Uribarren et al. (Uribarren et al., 2008) presented CAHIM (Configurability, Adaptability,
Heterogeneity, and Interoperability Middleware), a middleware that facilitates interoperability
between heterogeneous pervasive applications and IoT devices. This interoperability occurs
using a standard syntax for describing service interfaces and adopting a standard communica-
tion protocol. CAHIM coordinates application cooperation and adaptation to environmental
changes, such as adding new devices and available services, failures, and new user preferences.
Adaptations are automatically triggered by applications or based on user-defined preferences.

Rahman et al. (Rahman et al., 2018) proposed a multi-sensor adaptive IoT platform for
environmental pollution measurement in smart cities. This platform comprises a Raspberry
Pi for control and detection tasks, an Arduino Nano for sensor control and detection, and

110

a set of sensors collecting temperature, air quality, and multimedia data, e.g., local images
and sounds. Given potential Wi-Fi unavailability, the platform utilizes 3G data connections,
which are limited and expensive for uploading data to the cloud. To address this limitation, this
platform includes two adaptation strategies. Firstly, an infrastructure-level adaptation approach
dynamically adjusts sensor reading intervals based on the bandwidth of the contracted 3G plan
to keep data volume within budget. Secondly, an information-level adaptive strategy utilizes a
middleware that enables containers with specific sensors to process data locally or in the cloud.
These containers determine whether to process raw data to reduce the volume of processed
data or to send it to the cloud based on user-specified criteria, such as avoiding overuse of the
contracted 3G data plan.

Mohalik et al. (Mohalik et al., 2016) proposed InteropAdapt, an adaptive middleware that
facilitates control interoperability between applications and IoT devices. InteropAdapt dynam-
ically orchestrates application workflows based on detected dynamic events, ensuring align-
ment between application functionalities and device operations. These dynamic events refer to
changes in application or device resource sets or contexts, such as alterations in application re-
quirements, device capabilities, or device mobility. Inspired by the MAPE-K, InteropAdapt con-
tinuously monitors applications and devices for dynamic events. Upon detecting such dynamic
events, it analyzes whether there have been any changes to the application’s command set or
device capabilities. It plans new workflows or modifies existing ones if necessary, orchestrating
their execution corresponding to the application’s functionality. To ensure that application
functionality and device capabilities match, InteropAdapt adopts an ontology. Furthermore,
InteropAdapt stores static knowledge about the context and knowledge gained during the
execution of dynamic events for forecasting and initial workflow generation and optimization.

Han, Mehrotra, and Venkatasubramanian (Han; Mehrotra; Venkatasubramanian, 2019) pre-
sented AquaEIS (Aqua Event Identification System), a middleware for monitoring and identi-
fying events in distributed environments, particularly water infrastructure networks. AquaEIS
integrates data from various sources, including IoT devices, geophysical and user-collected
data, and simulation and modeling tools. Its operation comprises two phases. In the offline
phase, AquaEIS generates profiles of anomalous events and optimizes the placement of IoT
devices to enable the detection of failures, such as breaks and leaks in pipes. In the on-
line phase, AquaEIS combines models of water distribution networks with data from different
sources and employs an adaptation mechanism, such as valve control, to maintain continuous
system operation and predict or mitigate impacts in real time. AquaEIS is implemented with

111

a logic loop that monitors, analyzes, and adapts, transforming incoming data streams from
various sources into actionable information to adapt water infrastructure at the application
level. This adaptation serves multiple purposes, including identifying vulnerable points in the
water infrastructure, swiftly identifying and locating problems, preventing further failures, and
predicting future events.

Peros, Joosen, and Hughes (Peros; Joosen; Hughes, 2021) proposed Ermis, a middleware
solution that automatically adapts sensor sampling periods at runtime to match application
requirements in IoT environments. Ermis addresses the challenge of ensuring that IoT sen-
sors’ data generation rate aligns with applications’ data processing rate despite the inherent
dynamism of IoT infrastructures, such as sensor mobility, failure, changing application data
requirements, and varying message transmission delays. Ermis configures sensor sampling pe-
riods by continuously monitoring both the state of the IoT infrastructure and the application’s
data requirements to match the data generation rate with the data processing rate of applica-
tions. It automatically adjusts sensor sampling to ensure data processing efficiency and energy
conservation without relying on prior knowledge of the underlying infrastructure.

Pradeep, Krishnamoorthy, and Vasilakos (Pradeep; Krishnamoorthy; Vasilakos, 2021) proposed
AUM-IoT, an Adaptive Ubiquitous Middleware, which considers the situational context of
the applications, devices, or people and the contexts of the network formed and accordingly
adapts the behavior of the IoT ecosystem. AUM-IoT is a multi-agent, multi-communication
middleware that acts as an integration point for applications to access context, share it with
other applications and have services made available via a multi-communication protocol bridge.
AUM-IoT includes an agent manager, which coordinates communication and manages enti-
ties, and an agent registry that stores agent profiles. Additionally, AUM-IoT incorporates a
service allocation model to optimize resource utilization and minimize average response time,
enhancing users’ Quality of Experience (QoE). The authors present AUM-IoT’s capabilities
through a use case involving a smart classroom and smart healthcare scenario. This use case
highlights the middleware’s ability to adapt dynamically to context changes and provide ap-
propriate services in different domains. AUM-IoT emphasizes context-aware adaptation IoT
by enabling interaction between devices and services through multi-agent and multi-protocol
communication mechanisms in response to changing contexts.

Ahmed (Ahmed, 2022) proposed MPaS (Micro-services based Publish and Subscribe), a
scalable microservices-based publish/subscribe middleware for IoT that dynamically adapts
to varying workloads. MPaS combines concepts from software-defined networking and fractal

112

theory to decompose the middleware into control and data planes. Controllers manage client
subscriptions and their filtering criteria (predicates). Brokers handle the routing of messages
to subscribers based on these predicates. Using fractal theory, brokers also scale dynamically
by self-replicating on demand. When the number of predicates registered for a given broker
exceeds its capacity (a preconfigured number), a new broker is created to distribute the dynamic
load balancing and scaling. Similarly, new controllers are activated to manage the increased
demand when the number of connected clients exceeds a given maximum. This self-replication
mechanism ensures scalability without relying on resource-intensive tools, making it lightweight
and efficient. Inspired by fractal principles, MPaS scales vertically in the same layer (new
brokers) and horizontally across devices (new controllers).

Jung et al. (Jung et al., 2024) proposed ImmunoPlane. This middleware enables adaptivity
in IoT applications, allowing them to handle failures and network congestion in different run-
time infrastructures while meeting their requirements with minimal user effort. It provides a
Domain-Specific Language (DSL) that allows users to declaratively state application-specific
requirements, such as high availability or minimum throughput. Then, it produces an adap-
tive deployment plan based on the given infrastructure and those user-provided application
requirements. This deployment plan determines where components should run (e.g., on edge
or in the cloud) on the available resources and the location of faults that can occur in that
infrastructure.

Hassan et al. (Hassan et al., 2024) proposed PlanEMQX, a publish/subscribe message bro-
ker architecture for adaptive data exchange in IoT environments. This architecture improves
traditional brokers by incorporating an Automated Configuration Planner that generates con-
figuration and adaptation plans and an Adaptive Data Flow Broker responsible for managing
IoT data flows based on these plans. These components work together to automate configura-
tion and adaptation. PlanEMQX enables dynamic data flow adjustment, modifying drop rates
or priorities in response to changes in IoT environments or evolving application requirements,
ensuring efficient data exchange under varying conditions. PlanEMQX focuses on automat-
ing configuration and managing data flows based on application QoS requirements through
configuration plans at the broker level.

113

6.4 NON-ADAPTIVE MIDDLEWARE

IoT Middleware systems without adaptation capabilities have been divided into ones exe-
cuting outside the things and ones running on the devices.

6.4.1 Off-device Middleware

Off-device IoT middleware solutions neither run directly on the IoT device nor the edge.
Instead, they typically operate on cloud platforms. Consequently, these solutions require com-
munication gateways for integration with IoT devices.

SmartComm (Agostinho et al., 2018) is an IoT middleware that adopts a microservices
architecture to facilitate messaging and the exchange of services running on devices between
gateways and various heterogeneous devices in smart homes. The middleware has a module for
facilitating communication between gateways and IoT devices and a module for exchanging
information between devices and services. Each device has an associated microservice for
interaction with the gateway and other devices. This architecture enables IoT devices to send
messages to others or collect sensor data through microservices using an intermediary gateway.

Joseph et al. (2017) proposed an IoT middleware for smart cities, enabling communication
among several heterogeneous public utility systems within the city, such as smart transport,
smart water management, and security systems. This middleware allows authorities to effec-
tively manage the data infrastructure of these public utility services operating within the urban
environment. The middleware implements an IoT gateway that supports MQTT, Hypertext
Transfer Protocol (HTTP), HTTPS, and Constrained Application Protocol (CoAP) proto-
cols, ensuring concurrent connections, managing data traffic, and featuring a software layer
as the entry point for all systems’ data. Moreover, it facilitates the communication between
these utility systems and their data sources, including data collection services, sensors, and
controllers. Additionally, it implements messaging and routing systems for forwarding data
to designated systems and offers security services, such as authentication and encryption of
queued information.

Elkhodr, Shahrestani and Cheung (2016) proposed IoT-MP (IoT Management Platform),
focusing on device privacy and location management. Its distributed architecture includes
managed devices (MTs), manager systems, and a manager of managers. These elements work
together to ensure devices are lightweight, mobile across heterogeneous environments and

114

communicate transparently with other devices or applications. MTs are IoT devices equipped
with agent systems for communicating with the manager while the manager orchestrates op-
erational roles, such as requests, responses, and actions on the managed devices. The manager
of managers facilitates access to MT data for IoT applications. Finally, IoT-MP contains se-
curity and privacy modules that provide authentication, authorization, network confidentiality
(integrity), and user privacy protection functionalities.

6.4.2 Device-based IoT Middleware

Mosquitto (Light, 2017) is an open-source lightweight messaging solution designed for IoT
devices with limited resources. It allows clients (publishers and subscribers) to operate directly
on the IoT device. Additionally, it provides a messaging broker that executes outside the
thing. When a publisher sends a message, the Mosquitto broker receives it and then delivers
it to all subscribers who have subscribed to a particular topic. This middleware follows the
publish/subscribe pattern, where devices interested in specific information subscribe to topics,
and those publishing data to those topics are known as publishers. The Mosquitto broker
acts as an intermediary, ensuring the seamless exchange of messages between publishers and
subscribers, enhancing the efficiency and scalability of the communication process.

HiveMQ2 simplifies the development of IoT applications through an MQTT broker that
provides efficient messaging and communication. HiveMQ enables the integration of IoT de-
vices and systems running MQTT clients through the publish/subscribe pattern.

6.5 OTHER WORKS

As mentioned in Section 6.1, some related works have not focused on the middleware
design but on mechanisms that have been implemented in MEx.

6.5.1 Energy-saving Approaches

Minimizing power consumption has led to the emergence of conscious energy-efficiency
approaches. These approaches have used different energy-saving strategies, such as energy-
aware data routing and acquisition, duty cycling, and energy harvesting (Abdul-Qawy; Almurisi;
2 Available in: https://www.hivemq.com/

115

Tadisetty, 2020). In addition, similar to the proposed mechanisms, some approaches consider
adaptive energy-saving aspects, such as dynamically reconfiguring energy-aware parameters at
runtime.

Ramachandran et al.(Ramachandran et al., 2016b) propose Dawn, a middleware that dynam-
ically adjusts the bandwidth of IoT networks based on applications’ demand executing on the
IoT nodes. Dawn monitors and detects changes in the application’s bandwidth requirements
and runs an algorithm to estimate the new needed bandwidth for adjustments. The adjust-
ments are made by altering the time slots available for node communication. Reducing the
number of time slots means the node stays longer sleeping (inactive) and reduces power con-
sumption. In contrast, the adaptation mechanisms proposed in MEx saves power consumption
by dynamically adjusting the duty cycle of the IoT device based on their application context,
offering a more context-aware energy-saving approach.

Ramachandran et al.(Ramachandran et al., 2016a) also proposed a middleware able to dynam-
ically modify how IoT data are aggregated dynamically at the nodes. This proposed middleware
allows application developers to classify their network traffic into high-priority and low-priority
categories and uses application knowledge to perform data aggregation. The aggregation strat-
egy is combined with the priority scheme so that unused payloads of high-priority communica-
tions transport aggregated data of low-priority ones. This approach reduces power consumption
by minimizing the data transmitted by each node. However, the adaptive energy-saving mech-
anisms implemented in MExreduce power consumption through runtime adjustments to the
duty cycle of IoT devices, specifically tailored to the application context.

Venanzi et al.(Venanzi et al., 2019) propose PEND (Power Efficient Node Discovery), a
solution designed explicitly for IoT-Fog environments to improve Bluetooth Low Energy (BLE)
node discovery. It leverages the location awareness of the nodes given by the fog paradigm
and effectively triggers the discovery process based on the advertisers’ arrival frequency and
only when it is strictly needed. In this way, it saves power by introducing an adaptive strategy
to dynamically adjust the BLE interface, deciding when to switch BLE interfaces on/off based
on the expected frequency of the node approximation. Unlike this related work, our power
consumption reduction strategy adjusts the duty cycle dynamically and does not switch the
node interfaces on/off.

Kim et al.(Kim; Kang; Rim, 2019) propose the DDC-MAC (Dynamic Duty-Cycle-Medium
Access Control) protocol to reduce transmission delays and power consumption in IoT envi-
ronments. It implements an algorithm that adjusts the duty cycle ratio to increase the number

116

of wakeups of the receiving nodes. This algorithm uses Early Acknowledgment at peak and
off-peak times to transmit data to reduce the delay time and minimize power consumption. In
addition, DDC-MAC changes the window size of transmitting nodes according to the traffic
congestion for various IoT devices. Instead of proposing a communication protocol and an
algorithm to adjust the duty cycle ratio, MEx works at the middleware level. It uses a rules
engine and application context for those adjustments.

Finally, Munir et al.(Munir et al., 2018) propose a method to optimize the duty cycle period
in IoT devices equipped with energy harvesting systems. Considering that a duty cycle has an
active and non-active period, this method changes the thing’s non-active time to adjust the
power consumption during the period of activity. The objective is to achieve an Energy-Neutral
Operation (ENO). ENO is the mode of operation where the thing’s power consumption is
always less or equal to the energy harvested. It uses an exponentially weighted moving-average
filter to predict how much energy is harvested during the active period. Next, it estimates
the minimum duration of the non-active period to harvest enough energy to adjust the next
duty cycle. While Munir changes the duty cycle based on the harvested energy, MEx uses a
rule-based approach and application context to adjust the duty cycle.

6.5.2 Smart Water Management

The use of IoT applications for smart water management has gained significant attention
due to their potential to improve water resource management and sustainability. Researchers
have applied these applications for various purposes, such as monitoring water consumption,
quality detection and prevention issues, and alerts to accidents and disasters (Singh; Ahmed,
2021). These applications are implemented in different areas, such as smart cities, smart
agriculture, and disaster prediction.

Regarding water quality, IoT applications monitor aspects such as pH, conductivity, oxygen
levels, and total dissolved solids in real-time. These solutions have gained prominence in smart
cities, where they help determine whether water is safe for consumption and identify potential
sources of contamination (Mukta et al., 2019; Pujar et al., 2020; Lakshmikantha et al., 2021; Tubio

et al., 2023; Kumar et al., 2024). Unlike these approaches, AquaMOM focuses on monitoring
water consumption, prioritizing its conservation instead of water quality.

Researchers have also proposed solutions for monitoring water levels. Generally, current
water level monitoring solutions are designed to analyze water consumption, detect leaks, and

117

monitor real-time water levels in remote locations (Malche; Maheshwary, 2017; Singh; Ahmed,
2021; Saritha et al., 2023; Kumar et al., 2024; Essamlali; Nhaila; El Khaili, 2024). Although these
solutions share the same idea of water level monitoring with AquaMOM, they do not ac-
count for the challenges of harsh environments, such as aging and inadequate infrastructure,
limited resources and remote or difficult-to-access locations. These solutions assume ideal en-
vironmental conditions and do not seek solutions to address uncertainty issues, which can
compromise their proper functioning.

Other solutions have been developed with a similar focus on monitoring water levels in
challenging environments (Kumar et al., 2019; Sulistyowati; Sujono; Musthofa, 2017; Hassan et al.,
2020; Thirumarai et al., 2024; Ranieri et al., 2024; Lee et al., 2024; Han; Mehrotra; Venkatasubrama-

nian, 2019). Respectively, these solutions include continuous water level monitoring to control
motors automatically, remote monitoring to protect personnel in dangerous situations, moni-
toring river water levels to detection systems to provide early flood warnings, and combining
artificial intelligence to determine damaged infrastructure, contamination, and water consump-
tion. However, unlike AquaMOM, none of these solutions incorporate adaptive concepts to
address the operational uncertainties in such challenging environments.

6.6 COMPARATIVE ANALYSIS

Table 6.1 provides a comparative summary of MEx and related works. The table is orga-
nized into dimensions that reflect the core characteristics of MEx, aligning with the design
decisions discussed in Section3.2. It is important to note that this table focuses specifically on
adaptive IoT middleware solutions, which are the central focus of this thesis.

The comparison is organized into three main dimensions: Execution Environment, Frame-

work, and Adaptability. The Execution Environment dimension refers to the operational envi-
ronment where the solution operates: on IoT devices, cloud environment (the Cloud), or both.
The Framework dimension evaluates whether the solution works as a framework or as an IoT
middleware system. The Adaptability dimension distinguishes between static solutions (not
allowing runtime adaptation) and dynamic solutions (adaptable at runtime).

Adaptive works were further analyzed using five sub-dimensions derived from the taxonomy
of adaptive systems proposed by Krupitzer et al.(Krupitzer et al., 2015) (see Section 3.2.5).
These sub-dimensions allow a more granular basis for comparing MEx with related works.
Columns without responses are marked as NA (Not Applicable), indicating either the absence

118

of adaptation or that the dimension is irrelevant to the related work or was not identified
during the analysis.

Table 6.1 – Summary of Related Works

Work Execution Environment Framework
Adaptability

Static Dynamic
Why When Where What How

Agostinho et al.
(2018) Cloud No Yes NA NA NA NA NA

Elkhodr,
Shahrestani and
Cheung (2016)

Cloud No Yes NA NA NA NA NA

HiveMQ3 Cloud and IoT Thing No Yes NA NA NA NA NA
Joseph et al. (2017) Cloud No Yes NA NA NA NA NA

Light (2017) Cloud and IoT Device No Yes NA NA NA NA NA

Achilleos et al.
(2017) Cloud No No

Changes in
Context and
Changes in

User
Requirements

Reactive Application Structure
External,
Goals and
Centralized

Han, Mehrotra and
Venkatasubrama-

nian (2019)
Cloud No No Changes in

Context Reactive Application Parameters
External,

Models and
Centralized

Mohalik et al.
(2016) Cloud No No Changes in

Context Reactive Application Structure
External,
Goals and
Centralized

Soojin and
Sungyong (2019) Cloud Yes No Changes in

Context Reactive Application Structure
External,
Goals and

Decentralized

Park and Song
(2015) IoT Device Yes No Changes in

Context Reactive Application Parameters
External,
Goals and
Centralized

Portocarrero et al.
(2016) Cloud and IoT Device No No

Changes in
Context and
Changes in
Technical
Resources

Reactive and
Proactive Application

Parameters
and

Structure

External,
Rules/Poli-

cies and
Decentralized

Rahman et al.
(2018) Cloud and IoT Device No No

Changes in
Technical
Resources

Reactive Application
Parameters

and
Structure

External,
Utility and
Centralized

Rausch, Nastic and
Dustdar (2018) Cloud No No

Changes in
Technical
Resources

Reactive and
Proactive Network Parameters

External,
Rules/Poli-

cies and
Centralized

Uribarren et al.
(2008) Cloud No No

Changes in
Context and
Changes in

User
Requirements

Reactive Application
Parameters

and
Structure

External,
Rules/Poli-

cies and
Centralized

Peros, Joosen and
Hughes (2021) Cloud No No

Changes in
Technical
Resources

Reactive Application Parameters
Internal,

Utility and
Centralized

Pradeep,
Krishnamoorthy and

Vasilakos (2021)
Cloud No No Changes in

Context Reactive Application Structure
External,
Goals and
Centralized

Ahmed (2022) Cloud No No
Changes in
Technical
Resources

Reactive Middleware Structure
Internal,

Goals and
Centralized

Hassan et al. (2023) Cloud Yes No
Changes in
Technical
Resources

Reactive Application Parameters

External,
Models and
Goals, and
Centralized

Jung et al. (2024) Cloud No No

Changes in
Context and
Changes in
Technical
Resources

Reactive Application Structure

External,
Goals, Utility,

and
Centralized

Hassan et al. (2024) Cloud No No

Changes in
Context and
Changes in
Technical
Resources

Reactive Middleware Parameters

Internal,
Models and
Goals and
Centralized

MEx Cloud and IoT Device Yes No

Changes in
Context and
Changes in
Technical
Resources

Reactive
Application

and
Middleware

Parameters
and

Structure

External,
Goals,

Rules/Poli-
cies and
Hybrid

Source: Author

119

The Why refers to the reasons behind the adaptation, categorized into Changes in Context,
Changes in Technical Resources, and Changes in User Requirements. Changes in Context refer
to adaptations made due to environmental changes, such as intermittent network connectivity
affecting data throughput. Changes in Technical Resources refer to adaptations in response to
resource availability of resources, such as software component failure or hardware issues, such
as power depletion or low storage memory. Changes in user requirements refer to adaptations
motivated by changing goals or user preferences, such as adding new functionality or replacing
a component. Moving to the When, it offers two possible approaches: Reactive and Proac-

tive. Adaptation occurs after an undesired behavior occurs in the Reactive approach, while it
anticipates undesired system behavior in the Proactive approach.

The Where indicates where the adaptation is implemented in the solution, and the possible
answers are Application, Middleware, and Network Infrastructure. It is more common that
the adaptation occurs in the business logic (Application), e.g., adding new functionality or
correcting an error. However, it is possible to make changes to the Network Infrastructure that
refer to changes in communication, e.g., network reconfiguration or even Middleware changes
to improve itself or the surrounding environment. The What indicates what has changed
in the solution: Application Operating Parameters, which refers to changes in application
settings or configurations, e.g., frequency of collection of a physical quantity and size of the
communication buffer. Another answer is that Software Structure refers to changes in the
solution’s components, e.g., replacing a software component with a more current one, adding
a new element with new functionality, and so on.

The How examines how the adaptation logic is implemented. It is essential to mention that
each solution has its adaptation logic, and this involves mechanisms for monitoring, analyzing,
planning, and executing the adaptations. This sub-dimension has three subdivisions: where
the adaptation logic is placed, the adaptation criterion, and the degree of decentralization.
Adaptation logic can be integrated with the business logic (Internal) or separately (External).
The adaptation criterion defines the elements used in decision-making on whether or not
adaptation is necessary: Models, Rules/Policies, Goals, and Utility. Models make decisions
based on analyzing models that describe the system’s real and desired situations, which may
be related to objectives, architecture, and environment. Rules/Policies-based approaches follow
predefined rules or policies that dictate how the system should react in different situations. At
the same time, Goals define how the system should behave and what goals it should meet,
e.g., respond in a maximum of 100 milliseconds. Utility -based approaches use a function that

120

assigns a system value to the user based on attribute costs involved in executing the solution,
and the objective is to maximize the overall utility of the system. In this case, the adaptation
is based on evaluating these values, and the selected adaptation strategy is the one with the
most significant utility. Finally, regarding the degree of decentralization of the adaptation logic,
it can be implemented in a single component (Centralized) for the entire adaptive system, or
each subsystem of the adaptive system has its adaptation logic (Decentralized) to orchestrate
its adaptations, and these can communicate for global purposes. It is also possible that a single
adaptation logic has its functionalities implemented and distributed among several subsystems
(Hybrid).

Table 6.1 shows that most middleware solutions operate in the cloud rather than on the
IoT device and are not frameworks. Only three solutions are frameworks (Hassan et al., 2023;
Soojin; Sungyong, 2019; Park; Song, 2015), and among them, only one operates on the device.
In contrast, MEx is the only solution that operates both in the cloud and on the IoT device.
Compared to MEx, these frameworks include adaptation capabilities. However, they execute
in the cloud or require application restarts for the adaptation to be applied on the device. In
contrast, MEx runs directly on IoT devices, dynamically allowing seamless runtime adaptations
for middleware and applications. Additionally, while these frameworks focus on adaptive services
or data flow management to meet QoS requirements, MEx performs runtime self-adaptation,
adjusting middleware components and application parameters to handle uncertainties and
improve system efficiency.

Additionally, Table 6.1 highlights that static middleware solutions (Agostinho et al. (2018),
Elkhodr, Shahrestani and Cheung (2016), Joseph et al. (2017), Light (2017), HiveMQ4) re-
semble MEx middleware only by the fact they are IoT middleware systems operating directly
on IoT devices. However, they are static, meaning they are not adaptive, which limits their
ability to deal with the dynamism and frequent changes of IoT environments. Once deployed,
their configurations are limited to their operational capacity, and any update or reconfiguration
is only possible with the complete stop of the IoT device, leading to potential disruptions in
the system and making IoT applications less adaptable. In contrast, MEx is adaptive, allowing
middleware and applications to dynamically adapt and evolve in response to changing condi-
tions or uncertainties, making it more suited to handle IoT environments’ dynamic and rapidly
changing nature.

At the same time, those middleware solutions with adaptive capabilities share similarities
4 Available in: https://www.hivemq.com/

121

with MEx middleware in the following aspects: they run in the Cloud and on the device,
supporting adaptations motivated by changes in context or the availability of technical re-
sources. In addition, most solutions enable reactive adaptations of the application by adjusting
application parameters or system structures. Finally, some solutions implement external adap-
tation logic based on goals or rules approaches, which helps decide how and when to adapt.
However, these middleware systems often address specific adaptation challenges within ap-
plication domains, such as mobility management, resource optimization, or interoperability at
the application or network layers. In contrast, MEx provides a more generalized and customiz-
able solution. MEx middleware systems perform dynamic adaptations at the application and
middleware levels. MEx’s middleware supports diverse adaptation mechanisms to handle un-
certainties and implement runtime adjustments across various IoT layers, making it particularly
suitable for different uncertainties and resource-constrained environments.

Hence, MEx differs from all existing solutions by the fact that (1) it allows multi-layer
adaptation running directly on the IoT device and at the middleware level, not just at the
application level; (2) it is designed to be easily extensible, making it possible to incorporate
new middleware components and new adaptation mechanisms. This flexibility takes advantage
of the modular approach of MEx’s design, enabling integration of new functionalities and
adaptations, and (3) because it is easily customizable, it is possible to build different adaptive
middleware architectures and provide different adaptation mechanisms.

6.7 CONCLUDING REMARKS

This chapter presented related works. First, existing works relevant to the development of
MEx were discussed and organized into three main groups: middleware frameworks, adap-
tive middleware, and non-adaptive middleware. Next, other works, particularly energy-saving
strategies, were also discussed, contributing to the design of MEx’s DCAM mechanisms. Ad-
ditionally, works on smart water management, especially those related to AquaMOM , were
reviewed. Finally, a comparative analysis highlighted the differences between MEx and those
IoT middleware solutions.

122

7 CONCLUSION AND FUTURE WORK

”We ourselves feel that what we are doing is nothing more than

a drop in the ocean. But the ocean would be less because of

that missing drop.”
—Mother Teresa

This chapter presents the conclusions and main contributions of this thesis, along with its
significant aspects. Furthermore, it also highlights some existing limitations and outlines future
research directions. Finally, the scientific publications resulting from this research are listed.

7.1 CONCLUSION

IoT has attracted the attention of academia and industry due to its applications in smart
homes, smart cities, IIoT, smart water management and so on. Advances in IoT devices’
processing, storage, and communication capabilities have driven the development of distributed
IoT applications. Middleware has become essential in building these distributed applications,
leading to active research on IoT middleware.

IoT environments are highly dynamic and susceptible to frequent changes that introduce
uncertainties. These uncertainties often arise from dynamic user requirements, environmental
conditions, or resource availability fluctuations. Consequently, they can result in application
failures or, more seriously, compromise safety, communication stability, or resource availability.

IoT applications are increasingly deployed in challenging environments, including nuclear
plants, disaster response scenarios, and semi-arid regions. These environments also introduce
significant uncertainties related to sensor reliability, communication, power management, and
overall system durability. These environments pose unique challenges, including aging infras-
tructure, excessive demand, and intensified operating conditions due to climate change. Such
conditions amplify uncertainties and make it critical to assess and adjust systems before, dur-
ing, and after these uncertainties occur to minimize service degradation, maximize coverage,
and improve service quality.

In this context, this research hypothesized that a key strategy to face uncertainties in IoT

123

environments is to develop self-adaptive solutions that can adjust their behavior or structure
at runtime in response to performance changes, resource availability, or external dynamics.
Middleware systems must incorporate adaptive capabilities to evolve and respond dynamically
to these changes. This point refers to the research question of this thesis: How can middleware

systems for IoT be designed and implemented with adaptive capabilities as a first-class concept

while addressing their fundamental requirements?

In response, this research proposed, designed and implemented M iddleware Extendify
(MEx), a comprehensive self-adaptive solution for developing and executing self-adaptive
middleware systems for the IoT. MEx facilitates the implementation of middleware systems
through a library of pre-implemented, loosely coupled components and supports the creation
of distributed applications in IoT environments. By applying software architecture principles,
MEx minimizes developer involvement, only requiring he/she to define a middleware archi-
tecture using a simple architecture description language (pADL) and deploy it in the IoT
environment.

MEx is designed to run directly on IoT devices, which often have limited resources, such as
processing power, memory, connectivity failures and battery life. Additionally, MEx adopts a
conceptual model that divides a self-adaptive system into two elements: the managed system,
which undergoes adaptation, and the managing system, which executes the adaptations. This
model is essential for enabling IoT application adaptation, once it separates the adaptation
process, helping to manage the resource constraints of IoT devices.

MEx supports multi-layer adaptation, offering dynamic adaptation (at runtime) at middle-
ware and application levels. It enables the exchange of middleware components and reconfig-
uring execution parameters for applications and middleware systems. It is essential to highlight
that runtime uncertainties require different adaptation mechanisms. Hence, MEx may be
extended to deal with as many uncertainties as possible by allowing the inclusion of new
custom adaptation mechanisms. It also can switch mechanisms to meet specific adaptation
goals. These adaptations aim to enhance middleware and application performance, adjust to
environmental changes, fix bugs, and keep the middleware updated.

All adaptation mechanisms in MEx are implemented according to the MAPE-K control
loop, often used in self-adaptive systems in general but is applied in MEx in a distributed
and decentralized manner. Instances of the Executor (and sometimes the Monitor) run directly
on the IoT device, while the Analyzer, Planner and Knowledge Database) are hosted in the
managing system. This approach to deploying the MAPE-K helps to save computational and

124

energy resources, which are essential in IoT environments.
In addition, it is worth observing that the adaption logic in MEx differs slightly from

traditional MAPE-K implementations. The Executor on the device plays an active role in
MEx, requesting the managing system to determine whether an adaptation is needed, while
the decision-making process for adaptation takes place outside the device in the managing
system. MEx defines the adaptation logic this away because it is the IoT environment, where
adaptation needs to have greater control and be infrequent. For example, decision-making can
consume a lot of computational resources, and devices can go into deep sleep mode, which
leaves them inactive and causes unsubscribes.

Experimental results demonstrated that device-based adaptive IoT middleware is feasible.
As expected, adaptations introduce some overhead on application performance. However, they
bring benefits by enabling the tunning of IoT applications before (during development) or
after deployment (at runtime) on IoT devices. For example, adaptation at the middleware level
allowed changing middleware components to improve performance, such as reduced application
publishing time despite adaptation overhead. Furthermore, adaptation at the application level
enabled energy savings and prolonged battery life by adjusting the application based on context.

7.2 CONTRIBUTIONS

The main contribution of this thesis is Middleware Extendify (MEx), a customizable and
extensible solution comprising a framework and an underlying execution environment for de-
signing and implementing self-adaptive middleware systems tailored to IoT. MEx aims to
face complexities of self-adaptive systems for IoT. MEx pioneers a comprehensive approach,
supporting diverse MAPE-K-based adaptive mechanisms within its execution environment,
enabling runtime adaptations to handle uncertainty in IoT applications. These mechanisms
are interchangeable, and new ones can be added as needed, motivated by factors such as
adaptation goals, changes in developer preferences, and environmental conditions. Thus, an
appropriate adaptation mechanism can be selected depending on the developer’s needs. Adap-
tation involves uploading, removing, or configuring middleware components and application
parameters directly on IoT devices if necessary. To the best of our knowledge, MEx is the first
solution explicitly designed for the development of device-based self-adaptive IoT middleware.
Likewise, it is the first to combine customizability, extensibility, and multi-layer adaptivity at
both the middleware and application levels, making contributions to the field of IoT middle-

125

ware.
The contributions resulting from the development of MEx are highlighted as follows:

• Middleware Framework: At the core of MEx is its framework, designed to simplify the
development of self-adaptive middleware systems for IoT. This simplification is achieved
through pre-implemented and loosely coupled middleware components, allowing develop-
ers to define only a high-level artifact of the implemented middleware, i.e., the software
architecture. MEx also supports adding custom components, enabling developers to
implement various self-adaptive middleware configurations by reusing existing compo-
nents. This modular approach, grounded in software architecture principles, reduces the
effort required to build and maintain self-adaptive IoT systems while ensuring flexibility
and adaptability.

• Architecture Description Language: MEx includes an ADL called pADL, which
provides a Python-based approach for defining self-adaptive middleware architectures.
This language helps developers describe, deploy, and evolve middleware architectures
directly in the execution environment. It serves as a tool for outlining the structure of
middleware systems, aiding in the development process. Developers must only define
and deploy the self-adaptive middleware architecture in the execution environment.

• Adaptive Middleware Execution Environment: MEx provides a runtime environ-
ment responsible for executing IoT applications and their self-adaptive middleware sys-
tems. This environment manages applications and orchestrates the adaptation process,
ensuring smooth operation in dynamic IoT environments. MEx currently includes three
adaptation mechanisms: Evolutive, Duty Cycle Adaptation, and the Time-based Duty

Cycle Adaptation. The Evolutive mechanism allows composite adaptation by enabling
continuous updates to the middleware, incorporating new features, fixing bugs, or im-
proving performance. This mechanism is enhanced through component replacement.
The other two mechanisms are parametric adaptation and allow the adjustment of ap-
plication parameters to save energy, which is a critical uncertainty for IoT applications.
Adaptation occurs directly on IoT devices. Moreover, MEx provides developers with
the flexibility to integrate custom adaptation mechanisms, thus enhancing the ability to
meet various adaptation goals and address diverse uncertainties.

126

By adopting a distributed deployment model, MEx ensures that computationally inten-
sive adaptation decisions occur in a managing system. This Managing System works in a
distributed manner, with decision-making happening on a cloud server to offload process-
ing from the device and execute adaptation inside the IoT device. This approach reduces
the burden on resource-constrained IoT devices. This approach not only preserves de-
vice functionality and ensures the maintenance of IoT applications but also empowers
developers to craft their own adaptation mechanisms to address specific uncertainties in
their IoT environments.

Considering the contributions of MEx, particularly in dealing with the dynamic nature and
uncertainties faced by IoT applications, this thesis presents additional contributions demon-
strating the capabilities of MEx.

• AquaMOM: AquaMOM represents a practical application of MEx. It is a self-
adaptive smart water consumption monitoring system designed to assist humans (e.g.,
customers) improve water conservation in challenging environments, such as semi-arid
regions. Leveraging MEx’s capabilities, AquaMOM integrates a low-cost device built
with off-the-shelf components, along a web application for user interaction. AquaMOM’s
adaptive mechanisms ensure reliable water monitoring even in environments character-
ized by limited connectivity, energy constraints, and variable user needs.

Beyond its technical achievements, AquaMOM emphasizes social impact by empower-
ing communities to manage water resources more effectively. The AquaMOM’s digital
feedback promotes behavioral change, encouraging households to conserve water and
adopt sustainable practices. Simulation results validate AquaMOM’s potential to sig-
nificantly reduce water consumption in resource-scarce regions, demonstrating its broader
applicability to other sustainability-focused IoT applications.

• IoT Device: A key innovation of this research is the adaptability of MEx directly on IoT
devices with limited resources. Unlike other adaptive solutions that often rely on powerful
servers, MEx is optimized for constrained environments, balancing local execution and
cloud-based decision-making. A specialized low-cost IoT device was designed and built
to showcase this capability. This device, equipped with sensors to measure water levels
and energy consumption, can execute MEx, run IoT applications, collect data, connect

127

to the Internet, and automatically adapt to manage water and energy consumption
efficiently, ensuring effective monitoring.

These contributions demonstrate how MEx can foster innovative and practical solutions
for sustainable resource management, addressing the dynamic challenges of IoT environments,
such as those semi-arid regions.

7.3 LIMITATIONS

Although MEx meets the proposed design decisions and fulfills defined functionalities,
some limitations need to be addressed:

• Deal with Limited IoT Resources: Providing self-adaptation capabilities in IoT is
challenging due to inherent resource constraints in IoT environments, such as process-
ing power, memory, storage and energy. Although MEx takes these limitations into
account and optimizes its architecture to reduce the performance overhead, it still faces
challenges, mainly when uploading components over the network. Addressing these chal-
lenges further remains essential to fully meeting the demands of resource-constrained
IoT environments.

• Limited Adaptation Strategies: Currently, MEx implements three adaptation mech-
anisms using reactive strategies. These are effective for responding to uncertainties as
they occur, but the lack of proactive mechanisms limits the system’s ability to anticipate
and address uncertainties in advance. Corrective strategies are also missing, which could
improve the system’s ability to fix issues after they arise.

• Limited Adaptation Scope: MEx provides multi-layer adaptation, focusing on ap-
plication and middleware levels but not extending to the device and communication
levels of IoT architecture. This limitation restricts its ability to address uncertainties
comprehensively across the IoT stack.

• High Power Consumption due to Wi-Fi: One limitation of the IoT device built
is its high power consumption caused mainly by Wi-Fi communication. Although the
adaptation mechanisms have extended battery life, the device cannot operate using only
a battery for extended periods. Alternatives like more energy-efficient communication

128

technologies (e.g., Bluetooth Low Energy or LoRa) or devices optimized for low power
consumption should be explored. Additionally, adopting energy harvesting systems could
improve battery life and device autonomy.

• Need for Testing in Highly Dynamic Scenarios: Although this thesis mentions highly
dynamic applications, they are not fully explored. While MEx performs well in dynamic
but relatively stable scenarios like AquaMOM, its capabilities in more dynamic envi-
ronments—such as vehicle traffic monitoring or real-time smart city applications—have
yet to be tested. These scenarios involve rapidly changing conditions, which require the
system to adapt more quickly and efficiently. The current adaptation mechanisms of
MExmight need further refinement to handle such environments’ increased complexity
and dynamics. Testing MEx in these more dynamic settings is essential to evaluate its
performance and identify any areas that need improvement to handle these environments
better.

• Controlled Experimental Evaluations: The evaluations and simulations of MEx and
AquaMOM were performed in controlled laboratory environments, which, while effec-
tive for demonstrating the system’s capabilities, do not fully replicate real-world con-
ditions. Testing in real-world environments, such as semi-arid regions with cisterns and
other constraints, would confirm the system’s robustness and effectiveness. It is essen-
tial to mention that some empirical limitations were identified during experiments. For
example, inaccuracies in the sensor readings were observed, especially when measuring
more considerable distances or when the battery was near depletion. These issues suggest
that improving the sensing accuracy may require device modifications or the addition of
supplementary sensors to enhance reliability and performance.

7.4 FUTURE WORK

Some future directions are proposed to address these limitations and expand the contribu-
tions of MEx:

• Integration of Advanced Adaptation Mechanisms: One of the main future works is
to focus on implementing proactive and corrective adaptation mechanisms in MEx to
complement the existing reactive ones. For example, proactive mechanisms powered by

129

artificial intelligence techniques, such as prediction algorithms (e.g., ARIMA, LSTM,
Random Forest), could anticipate uncertainties and optimize performance. Additionally,
by using Control Theory, corrective mechanisms could ensure precise and reliable adapta-
tions by providing mathematical guarantees. For instance, controllers could be designed
to provide more guarantees that a device’s battery never depletes completely, even under
high usage, by applying mathematical control methods.

• Code and Resource Optimization in MEx: Another future direction should focus
on optimizing MEx for resource-constrained IoT environments by reducing adaptation
overhead and improving code efficiency. Techniques like static analysis, function inlining,
and adaptation mechanisms optimizations can reduce execution time and memory usage.
Minimizing dependencies and using profiling tools to identify bottlenecks can further
enhance performance in resource-limited devices.

• Extending Adaptation Scope: Integrating new adaptation mechanisms will also help
expand the adaptation capabilities to include the device and communication layers. By
addressing adaptation goals at these levels, MEx can offer more comprehensive solutions
to handle uncertainties throughout the IoT stack.

• Improving Energy Efficiency in AquaMOM: Efforts are being made to explore al-
ternative communication technologies, such as LoRa and BLE, which could significantly
reduce power consumption in AquaMOM. In addition, research is being conducted to
integrate energy harvesting techniques, which could further extend device autonomy.

• Implementing IoT Applications for Highly Dynamic Environments: As part of
future work, it is essential to explore the implementation of MEx in IoT applications
that deal with more dynamic environments, such as vehicle traffic monitoring or urban
mobility management. These applications present challenges, including high-frequency
data processing, frequent changes in message devices, and dynamic location changes.
By applying MEx to these use cases, we can assess how well it handles complex, fast-
changing conditions and determine if its adaptation mechanisms need further refinement
to support these highly dynamic scenarios.

• Real-World Evaluations: Finally, as future work, it is essential to include experiments
in real-world conditions, such as semi-arid regions with actual cisterns and customer
participation, to validate MEx and AquaMOM under practical conditions. These

130

evaluations will refine the system to address challenges in diverse IoT applications and
assess the effectiveness of AquaMOM in its functionality, usability, and user percep-
tion. Additionally, addressing sensor limitations by improving device design or integrating
supplementary sensors will enhance measurement accuracy and ensure reliable operation.

These future works will make MEx a more robust and versatile solution for developing
adaptive IoT middleware systems, advancing the IoT middleware field and enabling more
impactful applications.

7.5 PUBLICATIONS

During the development of this research, several papers were published presenting the
results obtained in different journals and conferences. Some publications are directly related to
the thesis, while others contributed to the overall knowledge construction that supported this
research. The articles are listed below, ordered from the most recent to the earliest publications.

• Cavalcanti, D. J. M.; JR., E. B.; Rosa, N.; Oliveira, A.; Hughes, D. AquaMOM: Adap-

tive IoT System for Water Monitoring in Challenging Environments. In: Pro-
ceedings of the 10th IEEE International Smart Cities Conference, 2024. (Accepted for
publication)

• Cavalcanti, D. J. M.; JR., E. L. B.; Santos, S. C.; Rosa, N. S. A Hybrid Intervention

Applied to IoT Course Using Problem-Based Learning and Maker Culture in

the Global South. Proceedings of the 27th International Conference on Interactive
Collaborative Learning, 2024. (Accepted for publication)

• Rosa, N. S.; Cavalcanti, D. J. M. Exploiting Controllers to Adapt Message-Oriented

Middleware. IEEE International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS), p. 91-100. DOI: 10.1109/ACSOS61780.2024.000272024, 2024.

• Cavalcanti, D. J. M.; Rosa, N. S. Customizable and Adaptable Middleware of

Things. International Journal of Communication Systems, v. 37, n. 15, Wiley, DOI:
10.1002/dac.5887, 2024.

• Rosa, N. S.; Cavalcanti, D. J. M. A Control-Theoretical Approach to Adapt Mes-

sage Brokers. International Conference on Advanced Information Networking and Appli-

131

cations (AINA-2023). Cham, Switzerland: Springer, v. 1. p. 261-273, DOI: 10.1007/978-
3-031-29056-5_24, 2023.

• Cavalcanti, D. J. M., Hughes, D., and Rosa, N. An Adaptive Energy Saving Mech-

anism for Middleware of Things. In: 31st International Conference on Software,
Telecommunications and Computer Networks (SoftCOM2023), Split, Croatia, 2023, p.
1-6, DOI: 10.23919/SoftCOM58365.2023.10271577.

• Rosa, N. S.; Cavalcanti, D. J. M. Using Controllers to Adapt Messaging Systems:

An Initial Experience. In: Workshop de Visualização, Evolução e Manutenção de Soft-
ware, Brasil. (VEM 2022). v. 1, p. 46-50. DOI: https://doi.org/10.5753/vem.2022.226809,
2022.

• Cavalcanti, D. J. M., Carvalho, R., and Rosa, N. Adaptive Middleware of Things.
In: Proceedings of the 26th IEEE Symposium on Computers and Communications (ISCC
‘21). Athens, Greece, 2021, pp. 1-6, DOI: 10.1109/ISCC53001.2021.9631408.

• Rosa, N., Cavalcanti, D. J. M., Campos, G. et al. Adaptive Middleware in Go - A

Software Architecture-Based Approach. J Internet Serv Appl 11, 3, 2020, DOI:
https://doi.org/10.1186/s13174-020-00124-5.

• Rosa, N. S., CG. M. M. N., Cavalcanti, D. J. M. Lightweight Formalisation of Adap-

tive Middleware. Journal of Systems Architecture, v. 97, p. 54-64, 2029,
DOI: 10.1016/j.sysarc.2018.12.002.

• Rosa, N., Campos, G., and Cavalcanti, D. J. M. An Adaptive Middleware in Go. In:
Proceedings of the 19th Workshop on Adaptive and Reflexive Middleware (ARM ‘18),
2018, p. 1–6, DOI: https://doi.org/10.1145/3289175.3289176.

These publications demonstrate the impact and dissemination of the research, contributing
to the scientific community and fostering further advancements in the field.

132

REFERENCES

ABDUL-QAWY, A. S. H.; ALMURISI, N. M. S.; TADISETTY, S. Classification of energy
saving techniques for IoT-based heterogeneous wireless nodes. Procedia Computer Science,
p. 2590–2599, 2020. ISSN 1877-0509. Third International Conference on Computing and
Network Communications.

ACHILLEOS, A. P.; GEORGIOU, K.; MARKIDES, C.; KONSTANTINIDIS, A.;
PAPADOPOULOS, G. A. Adaptive runtime middleware: Everything as a service.
Computational Collective Intelligence (ICCCI)., Springer International Publishing, Cham, v.
10448, p. 484–494, 2017.

AGOSTINHO, B. M.; ROTTA, G.; PLENTZ, P. D. M.; DANTAS, M. A. R. Smart comm:
A smart home middleware supporting information exchange. 44th Annual Conference of the
IEEE Industrial Electronics Society, IEEE, Washington, DC, USA, p. 4678–4684, 2018. ISSN
1553-572X. Available at: <https://ieeexplore.ieee.org/document/8591251>.

AHMED, N. MPaS: A micro-services based publish/subscribe middleware system model for
IoT. In: 2022 5th Conference on Cloud and Internet of Things (CIoT). [S.l.: s.n.], 2022. p.
220–225.

AL-FUQAHA, A.; GUIZANI, M.; MOHAMMADI, M.; ALEDHARI, M.; AYYASH, M.
Internet of things: A survey on enabling technologies, protocols, and applications. IEEE
Communications Surveys & Tutorials, v. 17, n. 4, p. 2347–2376, Fourthquarter 2015. ISSN
1553-877X.

ALAGAR, V.; WAN, K. Understanding and measuring risk due to uncertainties in iot. In:
2019 IEEE International Conference on Smart Internet of Things (SmartIoT). [S.l.: s.n.],
2019. p. 484–488.

ALBANY, M.; ALSAHAFI, E.; ALRUWILI, I.; ELKHEDIRI, S. A review: Secure internet
of thing system for smart houses. Procedia Computer Science, v. 201, p. 437–444, 2022.
ISSN 1877-0509. The 13th International Conference on Ambient Systems, Networks
and Technologies (ANT) / The 5th International Conference on Emerging Data and
Industry 4.0 (EDI40). Available at: <https://www.sciencedirect.com/science/article/pii/
S1877050922004707>.

ALFONSO, I.; GARCéS, K.; CASTRO, H.; CABOT, J. Self-adaptive architectures
in IoT systems: a systematic literature review. Journal of Internet Services and
Applications, Springer, USA, v. 14, p. 2471–2488, 12 2021. ISSN 1869-0238. Available at:
<https://doi.org/10.1186/s13174-021-00145-8>.

ASLANPOUR, M. S.; GILL, S. S.; TOOSI, A. Performance evaluation metrics for
cloud, fog and edge computing: A review, taxonomy, benchmarks and standards
for future research. Internet of Things, v. 12, p. 100273, 08 2020. Available at:
<https://www.sciencedirect.com/science/article/pii/S2542660520301062>.

ATZORI, L.; BELLIDO, J.; BOLLA, R.; GENOVESE, G.; IERA, A.; JARA, A.;
LOMBARDO, C.; MORABITO, G. Sdn&nfv contribution to iot objects virtualization.
Computer Networks, v. 149, p. 200–212, 2019. ISSN 1389-1286. Available at:
<https://www.sciencedirect.com/science/article/pii/S1389128618312933>.

https://ieeexplore.ieee.org/document/8591251
https://www.sciencedirect.com/science/article/pii/S1877050922004707
https://www.sciencedirect.com/science/article/pii/S1877050922004707
https://doi.org/10.1186/s13174-021-00145-8
https://www.sciencedirect.com/science/article/pii/S2542660520301062
https://www.sciencedirect.com/science/article/pii/S1389128618312933

133

ATZORI, L.; IERA, A.; MORABITO, G. The internet of things: A survey. Computer
Networks: The International Journal of Computer and Telecommunications Networking,
Elsevier North-Holland, Inc., v. 54, n. 15, p. 2787–2805, 08 2010. ISSN 1389-1286. Available
at: <https://doi.org/10.1016/j.comnet.2010.05.010>.

Bandyopadhyay, S.; Sengupta, M.; Maiti, S.; Dutta, S. A survey of middleware for internet of
things. Recent Trends in Wireless and Mobile Networks., Springer Berlin Heidelberg, Berlin,
Heidelberg, v. 16, p. 288–296, 2011.

BARBOSA, H. Understanding the rapid increase in drought stress and its connections with
climate desertification since the early 1990s over the brazilian semi-arid region. Journal of
Arid Environments, p. 1–19, 2024. ISSN 0140-1963.

BARESI, L.; GHEZZI, C. The disappearing boundary between development-time and
run-time. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research. New York, NY, USA: Association for Computing Machinery, 2010. (FoSER ’10), p.
17–22. ISBN 9781450304276. Available at: <https://doi.org/10.1145/1882362.1882367>.

BERNSTEIN, P. A. Middleware: a model for distributed system services. Commun. ACM,
Association for Computing Machinery, New York, NY, USA, v. 39, n. 2, p. 86–98, Feb. 1996.
ISSN 0001-0782. Available at: <https://doi.org/10.1145/230798.230809>.

BISHOP, T. A.; KARNE, R. K. A survey of middleware. In: DEBNATH, N. C. (Ed.).
Proceedings of the ISCA 18th International Conference Computers and Their Applications.
[S.l.]: ISCA, 2003. p. 254–258.

BLAIR, G.; SCHMIDT, D.; TACONET, C. Middleware for Internet distribution in the
context of cloud computing and the Internet of Things. Annals of Telecommunications -
annales des télécommunications, Springer, v. 71, n. 3, p. 87 – 92, Apr. 2016. Available at:
<https://hal.science/hal-01298015>.

BORGES, P. V.; TACONET, C.; CHABRIDON, S.; CONAN, D.; CAVALCANTE, E.;
BATISTA, T. Taming internet of things application development with the iotvar middleware.
ACM Trans. Internet Technol., Association for Computing Machinery, New York, NY, USA,
v. 23, n. 2, May 2023. ISSN 1533-5399. Available at: <https://doi.org/10.1145/3586010>.

BRITO, A. D.; LOPES, J. C.; NETA, M. M. S. dos A. Tripé da governança: Poder público,
setor privado e a sociedade civil em busca de uma gestão integrada dos recursos hídricos.
Revista Gestão & Sustentabilidade Ambiental, v. 8, n. 4, p. 506–522, 2019.

BURHAN, M.; REHMAN, R. A.; KHAN, B.; KIM, B.-S. Iot elements, layered architectures
and security issues: A comprehensive survey. Sensors, v. 18, n. 9, p. 1–37, 2018. ISSN
1424-8220. Available at: <https://www.mdpi.com/1424-8220/18/9/2796>.

CALINESCU, R.; GHEZZI, C.; KWIATKOWSKA, M.; MIRANDOLA, R. Self-adaptive
software needs quantitative verification at runtime. Commun. ACM, v. 55, p. 69–77, 09 2012.

CAVALCANTI, D.; CARVALHO, R.; ROSA, N. Adaptive middleware of things. IEEE, p. 1–6,
09 2021. ISSN 2642-7389. IEEE Symposium on Computers and Communications (ISCC).

CAVALCANTI, D.; HUGHES, D.; ROSA, N. An adaptive energy saving mechanism
for middleware of things. IEEE, p. 1–6, 2023. International Conference on Software,
Telecommunications and Computer Networks (SoftCOM).

https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1145/1882362.1882367
https://doi.org/10.1145/230798.230809
https://hal.science/hal-01298015
https://doi.org/10.1145/3586010
https://www.mdpi.com/1424-8220/18/9/2796

134

CAVALCANTI, D.; JR., E. B.; ROSA, N.; OLIVEIRA, A.; HUGHES, D. Aquamom: Adaptive
iot system for water monitoring in challenging environments. In: Proceedings of the 10th
IEEE International Smart Cities Conference (ISC2). Pattaya City, Thailand: IEEE, 2024. p.
To appear. Accepted for publication. Smart Cities: Revolution for Mankind.

CAVALCANTI, D.; ROSA, N. Customizable and adaptable middleware of things.
International Journal of Communication Systems, v. 37, n. 15, p. 1–34, 2024. Available at:
<https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.5887>.

CAVALCANTI, D. J. M.; JR., E. L. B.; SANTOS, S. C.; ROSA, N. S. A hybrid intervention
applied to iot course using problem-based learning and maker culture in the global south. In:
ICL. Proceedings of the 27th International Conference on Interactive Collaborative Learning
(ICL2024). Tallinn, Estonia, 2024. p. To appear. Accepted for publication.

Costa, D. G.; Peixoto, J. P. J.; Jesus, T. C.; Portugal, P.; Vasques, F.; Rangel, E.; Peixoto,
M. A survey of emergencies management systems in smart cities. IEEE Access, v. 10, p.
61843–61872, 2022. ISSN 2169-3536.

COULOURIS, G.; DOLLIMORE, J.; KINDBERG, T.; BLAIR, G. Distributed Systems:
Concepts and Design. 5th. ed. USA: Addison-Wesley Publishing Company, 2011. ISBN
0132143011.

CRUZ, M. A. A. da; RODRIGUES, J. J. P. C.; AL-MUHTADI, J.; KOROTAEV, V. V.;
ALBUQUERQUE, V. H. C. de. A reference model for internet of things middleware. IEEE
Internet of Things Journal, IEEE, v. 5, n. 2, p. 871–883, 2018.

DUNKELS, A.; GRONVALL, B.; VOIGT, T. Contiki - a lightweight and flexible operating
system for tiny networked sensors. 29th Annual IEEE International Conference on Local
Computer Networks., IEEE, Tampa, FL, USA, p. 455–462, 11 2004. ISSN 0742-1303.

ELKHODR, M.; SHAHRESTANI, S. A.; CHEUNG, H. A middleware for the internet of
things. International Journal of Computer Networks & Communications (IJCNC), v. 8, n. 2,
p. 159–178, 03 2016.

ESSAMLALI, I.; NHAILA, H.; El Khaili, M. Advances in machine learning and iot for
water quality monitoring: A comprehensive review. Heliyon, v. 10, n. 6, p. e27920,
2024. ISSN 2405-8440. Available at: <https://www.sciencedirect.com/science/article/pii/
S2405844024039513>.

FAHMIDEH, M.; AHMAD, A.; BEHNAZ, A.; GRUNDY, J.; SUSILO, W. Software
engineering for internet of things: The practitioners’ perspective. IEEE Transactions on
Software Engineering, v. 48, n. 8, p. 2857–2878, Aug 2022. ISSN 1939-3520.

FORUM, W. E. The Global Risks Report 2018, 13th Edition. [S.l.], 2018. REF: 09012018.
Available at: <https://www3.weforum.org/docs/WEF_GRR18_Report.pdf>.

FORUM, W. E. The Global Risks Report 2023. 91-93 route de la Capite, CH-
1223 Cologny/Geneva, Switzerland, 2023. Published in January 2023. Available at:
<https://www.weforum.org/publications/global-risks-report-2023/>.

FRANçA, F. M. C.; OLIVEIRA, J. B. de; ALVES, J. J.; FONTENELE, F. C. B.; FIGUEIREDO,
A. Z. Q. Slab Cistern: Construction, Use, and Maintenance. [S.l.], 2010. (in Portuguese).

https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.5887
https://www.sciencedirect.com/science/article/pii/S2405844024039513
https://www.sciencedirect.com/science/article/pii/S2405844024039513
https://www3.weforum.org/docs/WEF_GRR18_Report.pdf
https://www.weforum.org/publications/global-risks-report-2023/

135

FUXMAN, A. D. A Survey of Architecture Description Languages. Toronto, 1999. Technical
Report CSRG-407.

GARLAN, D.; SCHMERL, B.; CHENG, S.-W. Software architecture-based self-adaptation.
Autonomic Computing and Networking., Springer US, Boston, MA, p. 31–55, 2009. Available
at: <https://doi.org/10.1007/978-0-387-89828-5_2>.

GARLAN, D.; SCHMERL, B.; CHENG, S.-W. Software architecture-based self-adaptation.
In: . [S.l.]: Springer, 2009. p. 31–55. ISBN 978-0-387-89827-8.

GARLAN, D.; SHAW, M. An introduction to software architecture. Advances in Software
Engineering & Knowledge Engineering, New Jersey, NY, v. 2, p. 1–39, 1993.

GETIRANA, A.; LIBONATI, R.; CATALDI, M. Brazil is in water crisis — it needs a drought
plan. Nature, v. 600, p. 218–220, 12 2021.

GOEL, S.; SHARDA, H.; TANIAR, D. Message-oriented-middleware in a distributed
environment. Innovative Internet Community Systems. IICS 2003, Springer Berlin Heidelberg,
Berlin, Heidelberg, vol 2877, p. 93–103, 2003.

GONDIM, J.; FIOREZE, A. P.; ALVES, R. F. F.; SOUZA, W. G. d. A seca atual no semiárido
nordestino–impactos sobre os recursos hídricos. Parcerias Estratégicas, v. 22, n. 44, p.
277–300, 2017.

GUBBI, J.; BUYYA, R.; MARUSIC, S.; PALANISWAMI, M. Internet of things
(iot): A vision, architectural elements, and future directions. Future Generation
Computer Systems, v. 29, n. 7, p. 1645–1660, 2013. ISSN 0167-739X. Available at:
<https://www.sciencedirect.com/science/article/pii/S0167739X13000241>.

HAN, Q.; MEHROTRA, S.; VENKATASUBRAMANIAN, N. Aquaeis: Middleware support for
event identification in community water infrastructures. Proceedings of the 20th International
Middleware Conference, Association for Computing Machinery, New York, NY, USA, p.
293–305, 2019. Available at: <https://doi.org/10.1145/3361525.3361554>.

HASSAN, H.; MAZLAN, M.; IBRAHIM, T.; KAMBAS, M. Iot system: Water level monitoring
for flood management. IOP Conference Series: Materials Science and Engineering, v. 917, p.
012037, 09 2020.

HASSAN, H. H.; BOULOUKAKIS, G.; KATTEPUR, A.; CONAN, D.; BELAïD, D. Planiot: A
framework for adaptive data flow management in iot-enhanced spaces. In: 2023 IEEE/ACM
18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
[S.l.: s.n.], 2023. p. 157–168. ISSN 2157-2321.

HASSAN, H. H.; BOULOUKAKIS, G.; SCALZOTTO, L.; KHALED, N.; CONAN, D.;
KATTEPUR, A.; BELAïD, D. A message broker architecture for adaptive data exchange in
the iot. In: 2024 IEEE 21st International Conference on Software Architecture Companion
(ICSA-C). [S.l.: s.n.], 2024. p. 151–158. ISSN 2768-4288.

HEZAVEHI, S. M.; WEYNS, D.; AVGERIOU, P.; CALINESCU, R.; MIRANDOLA, R.;
PEREZ-PALACIN, D. Uncertainty in self-adaptive systems: A research community perspective.
ACM Trans. Auton. Adapt. Syst., Association for Computing Machinery, New York, NY, USA,
v. 15, n. 4, dec 2021. ISSN 1556-4665. Available at: <https://doi.org/10.1145/3487921>.

https://doi.org/10.1007/978-0-387-89828-5_2
https://www.sciencedirect.com/science/article/pii/S0167739X13000241
https://doi.org/10.1145/3361525.3361554
https://doi.org/10.1145/3487921

136

ITU-T Study Group 20. Overview of the Internet of things. [S.l.], 2012.

JAIN, R. The Art of Computer Systems Performance Analysis: Techniques For Experimental
Design, Measurement, Simulation, and Modeling. New York, United State of America: John
Wiley & Sons, 1991. 720 pages p. ISBN 0471503361.

JOSEPH, T.; JENU, R.; ASSIS, A.; KUMAR, V.; SASI, P.; ALEXANDER, G. Iot middleware
for smart city: (an integrated and centrally managed iot middleware for smart city). 2017
IEEE Region 10 Symposium (TENSYMP)., IEEE, Cochin, India, p. 1–5, 07 2017.

JUNG, K.; MITRA, G.; GOPALAKRISHNAN, S.; PATTABIRAMAN, K. Immunoplane:
Middleware for providing adaptivity to distributed internet-of-things applications. In: 2024
IEEE/ACM Ninth International Conference on Internet-of-Things Design and Implementation
(IoTDI). [S.l.: s.n.], 2024. p. 13–24.

KANT, K.; JOLFAEI, A.; MOESSNER, K. IoT systems for extreme environments. IEEE
Internet of Things Journal, v. 11, n. 3, p. 3671–3675, Feb 2024. ISSN 2327-4662.

KARIE, N. M.; SAHRI, N. M.; HASKELL-DOWLAND, P. IoT threat detection advances,
challenges and future directions. In: 2020 Workshop on Emerging Technologies for Security
in IoT (ETSecIoT). [S.l.: s.n.], 2020. p. 22–29.

KASSAB, W.; DARABKH, K. A–z survey of Internet of Things: Architectures, protocols,
applications, recent advances, future directions and recommendations. Journal of Network
and Computer Applications, v. 163, p. 102663, 04 2020.

KAVRE, M.; GADEKAR, A.; GADHADE, Y. Internet of things (iot): A survey. In: 2019 IEEE
Pune Section International Conference (PuneCon). [S.l.: s.n.], 2019. p. 1–6.

KEPHART, J.; CHESS, D. The vision of autonomic computing. Computer, v. 36, n. 1, p.
41–50, Jan 2003. ISSN 1558-0814.

KHAN, R.; KHAN, S. U.; ZAHEER, R.; KHAN, S. Future internet: The internet of things
architecture, possible applications and key challenges. In: 2012 10th International Conference
on Frontiers of Information Technology. [S.l.: s.n.], 2012. p. 257–260.

KIM, G.; KANG, J.-G.; RIM, M. Dynamic duty-cycle mac protocol for iot environments and
wireless sensor networks. Energies, v. 12, n. 21, p. 1–13, 10 2019. ISSN 1996-1073.

KRAMER, J.; MAGEE, J. Self-managed systems: an architectural challenge. In: Future of
Software Engineering (FOSE ’07). [S.l.: s.n.], 2007. p. 259–268.

KRUPITZER, C.; ROTH, F. M.; VANSYCKEL, S.; SCHIELE, G.; BECKER, C. A survey
on engineering approaches for self-adaptive systems. Pervasive and Mobile Computing,
v. 17, p. 184–206, 2015. ISSN 1574-1192. 10 years of Pervasive Computing’ In Honor of
Chatschik Bisdikian. Available at: <https://www.sciencedirect.com/science/article/pii/
S157411921400162X>.

KUMAR, J.; GUPTA, R.; SHARMA, S.; CHAKRABARTI, T.; CHAKRABARTI, P.;
MARGALA, M. Iot-enabled advanced water quality monitoring system for pond management
and environmental conservation. IEEE Access, v. 12, p. 58156–58167, 2024. ISSN 2169-3536.

https://www.sciencedirect.com/science/article/pii/S157411921400162X
https://www.sciencedirect.com/science/article/pii/S157411921400162X

137

KUMAR, S.; YADAV, S.; M, Y. H.; SALVI, S. An iot-based smart water microgrid and
smart water tank management system. In: . [S.l.: s.n.], 2019. p. 417–431. ISBN
978-981-13-6000-8.

LACERDA, D.; DRESCH, A.; PROENçA, A.; JúNIOR, J. A. V. A. Design science research: A
research method to production engineering. Gestão Produção, v. 20, p. 741–761, 12 2012.

LAKSHMIKANTHA, V.; HIRIYANNAGOWDA, A.; MANJUNATH, A.; PATTED, A.;
BASAVAIAH, J.; A, A. A. Iot based smart water quality monitoring system. Global Transitions
Proceedings, v. 2, 08 2021.

LEE, K.-F.; NG, Z.-N.; TAN, K.-B.; BALACHANDRAN, R.; CHONG, A. S.-I.; CHAN,
K.-Y. Artificial intelligence-integrated water level monitoring system for flood detection
enhancement. International Journal of Intelligent Systems and Applications in Engineering,
v. 12, n. 19s, p. 336–340, Mar. 2024. Available at: <https://ijisae.org/index.php/IJISAE/
article/view/5071>.

LEMOS, R. de; GIESE, H.; MÜLLER, H. A.; SHAW, M.; ANDERSSON, J.; LITOIU, M.;
SCHMERL, B.; TAMURA, G.; VILLEGAS, N. M.; VOGEL, T.; WEYNS, D.; BARESI,
L.; BECKER, B.; BENCOMO, N.; BRUN, Y.; CUKIC, B.; DESMARAIS, R.; DUSTDAR,
S.; ENGELS, G.; GEIHS, K.; GÖSCHKA, K. M.; GORLA, A.; GRASSI, V.; INVERARDI,
P.; KARSAI, G.; KRAMER, J.; LOPES, A.; MAGEE, J.; MALEK, S.; MANKOVSKII, S.;
MIRANDOLA, R.; MYLOPOULOS, J.; NIERSTRASZ, O.; PEZZÈ, M.; PREHOFER, C.;
SCHÄFER, W.; SCHLICHTING, R.; SMITH, D. B.; SOUSA, J. P.; TAHVILDARI, L.; WONG,
K.; WUTTKE, J. Software engineering for self-adaptive systems: A second research roadmap.
In: . Software Engineering for Self-Adaptive Systems II: International Seminar,
Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013. p. 1–32. ISBN 978-3-642-35813-5. Available
at: <https://doi.org/10.1007/978-3-642-35813-5_1>.

LIGHT, R. Mosquitto: server and client implementation of the mqtt protocol. The Journal of
Open Source Software, v. 2, p. 1–2, 05 2017.

LIU, A.; MUKHEIBIR, P. Digital metering feedback and changes in water consumption – a
review. Resources, Conservation and Recycling, v. 134, p. 136–148, 07 2018.

MAGRUK, A. The most important aspects of uncertainty in the internet of things field –
context of smart buildings. Procedia Engineering, v. 122, p. 220–227, 2015. ISSN 1877-7058.
Innovative solutions in Construction Engineering and Management. Flexible Approach.
Available at: <https://www.sciencedirect.com/science/article/pii/S1877705815031173>.

MAHAMUNI, C. V. Exploring iot-applications: A survey of recent progress, challenges, and
impact of ai, blockchain, and disruptive technologies. In: 2023 7th International Conference
on Electronics, Communication and Aerospace Technology (ICECA). [S.l.: s.n.], 2023. p.
1324–1331.

MALCHE, T.; MAHESHWARY, P. Internet of things (iot) based water level monitoring
system for smart village. In: . [S.l.: s.n.], 2017. ISBN 9789811027499.

MARZALL, V.; NASCIMENTO, N. Determination of residential potable water consumption
profile supported by smart metering technology. Revista de Gestão de Água da América
Latina, p. 3, 2023. (in Portuguese).

https://ijisae.org/index.php/IJISAE/article/view/5071
https://ijisae.org/index.php/IJISAE/article/view/5071
https://doi.org/10.1007/978-3-642-35813-5_1
https://www.sciencedirect.com/science/article/pii/S1877705815031173

138

MATHUR, S.; KALLA, A.; GüR, G.; BOHRA, M. K.; LIYANAGE, M. A survey on role of
blockchain for iot: Applications and technical aspects. Computer Networks, v. 227, p. 109726,
2023. ISSN 1389-1286. Available at: <https://www.sciencedirect.com/science/article/pii/
S1389128623001718>.

MCKENZIE, F.; PETTY, M.; XU, Q. Usefulness of software architecture description
languages for modeling and analysis of federates and federation architectures. Simulation,
v. 80, p. 559–576, 11 2004.

MCKINLEY, P.; SADJADI, S.; KASTEN, E.; CHENG, B. Composing adaptive software.
Computer, v. 37, n. 7, p. 56–64, 2004. ISSN 0018-9162.

MEDEIROS, R.; FERNANDES, S.; QUEIROZ, P. Middleware for the internet of things: a
systematic literature review. JUCS - Journal of Universal Computer Science, v. 28, p. 54–79,
01 2022.

MEDVIDOVIC, N.; TAYLOR, R. N. A classification and comparison framework
for software architecture description languages. IEEE Transactions on Software
Engineering, IEEE, v. 26, n. 01, p. 70–93, 2000. ISSN 1939-3520. Available at:
<https://ieeexplore.ieee.org/document/825767>.

MEDVIDOVIC, N.; TAYLOR, R. N. Software architecture: foundations, theory, and practice.
In: 2010 32nd International Conference on Software Engineering (ICSE). Los Alamitos,
CA, USA: IEEE Computer Society, 2010. v. 2, p. 471–472. ISSN 0270-5257. Available at:
<https://doi.ieeecomputersociety.org/10.1145/1810295.1810435>.

MENASCE, D. Mom vs. rpc: communication models for distributed applications. IEEE
Internet Computing, v. 9, n. 2, p. 90–93, March 2005. ISSN 1941-0131.

MOGHADDAM, M. T.; RUTTEN, E.; GIRAUD, G. Protocol for a systematic literature
review on adaptative middleware support for IoT and cps. Working paper or preprint. 2020.
Available at: <https://inria.hal.science/hal-02948347>.

MOHALIK, S. K.; NARENDRA, N. C.; BADRINATH, R.; JAYARAMAN, M. B.; PADALA,
C. Dynamic semantic interoperability of control in iot-based systems: Need for adaptive
middleware. IEEE 3rd World Forum on Internet of Things (WF-IoT)., IEEE, p. 199–203,
2016.

MORENO, G. A.; CáMARA JAVIER ANDGARLAN, D.; SCHMERL, B. Proactive
self-adaptation under uncertainty: A probabilistic model checking approach. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, Association
for Computing Machinery, New York, NY, USA, p. 1–12, 08 2015. Available at:
<https://doi.org/10.1145/2786805.2786853>.

MUCCINI, H.; MOGHADDAM, M. T. A cyber-physical space operational approach for
crowd evacuation handling. In: International Workshop on Software Engineering for Resilient
Systems. [S.l.: s.n.], 2017. p. 81–95. ISBN 978-3-319-65947-3.

MUCCINI, H.; SHARAF, M.; WEYNS, D. Self-adaptation for cyber-physical systems: A
systematic literature review. In: 2016 IEEE/ACM 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). [S.l.: s.n.], 2016. p. 75–81.

https://www.sciencedirect.com/science/article/pii/S1389128623001718
https://www.sciencedirect.com/science/article/pii/S1389128623001718
https://ieeexplore.ieee.org/document/825767
https://doi.ieeecomputersociety.org/10.1145/1810295.1810435
https://inria.hal.science/hal-02948347
https://doi.org/10.1145/2786805.2786853

139

MUCCINI, H.; SPALAZZESE, R.; MOGHADDAM, M. T.; SHARAF, M. Self-adaptive IoT
architectures: an emergency handling case study. In: Proceedings of the 12th European
Conference on Software Architecture: Companion Proceedings. New York, NY, USA:
Association for Computing Machinery, 2018. (ECSA ’18). ISBN 9781450364836. Available
at: <https://doi.org/10.1145/3241403.3241424>.

MUKHOPADHYAY, A.; SREENADH, M.; ANOOP, A. ehealth applications: A comprehensive
approach. In: 2020 International Conference on Emerging Trends in Information Technology
and Engineering (ic-ETITE). [S.l.: s.n.], 2020. p. 1–6.

MUKTA, M.; ISLAM, S.; BARMAN, S. D.; REZA, A. W.; KHAN, M. S. H. Iot based smart
water quality monitoring system. In: 2019 IEEE 4th International Conference on Computer
and Communication Systems (ICCCS). [S.l.: s.n.], 2019. p. 669–673.

MUNIR, D.; SHAH, S. T.; MUGHAL, D. M.; PARK, K. H.; CHUNG, M. Y. Duty cycle
optimizing for wifi-based IoT networks with energy harvesting. IMCOM ’18: The 12th
International Conference on Ubiquitous Information Management and Communication.,
p. 1–6, 2018.

NIžETIć, S.; ŠOLIć, P.; López-de-Ipiña González-de-Artaza, D.; PATRONO, L. Internet of
things (iot): Opportunities, issues and challenges towards a smart and sustainable future.
Journal of Cleaner Production, v. 274, p. 122877, 2020. ISSN 0959-6526. Available at:
<https://www.sciencedirect.com/science/article/pii/S095965262032922X>.

NIžETIć, S.; ŠOLIć, P.; López-de-Ipiña González-de-Artaza, D.; PATRONO, L. Internet of
things (iot): Opportunities, issues and challenges towards a smart and sustainable future.
Journal of Cleaner Production, v. 274, p. 122877, 2020. ISSN 0959-6526. Available at:
<https://www.sciencedirect.com/science/article/pii/S095965262032922X>.

NUNDLOLL, V.; PORTER, B.; BLAIR, G. S.; EMMETT, B.; COSBY, J.; JONES, D. L.;
CHADWICK, D.; WINTERBOURN, B.; BEATTIE, P.; DEAN, G.; SHAW, R.; SHELLEY, W.;
BROWN, M.; ULLAH, I. The design and deployment of an end-to-end IoT infrastructure for
the natural environment. Future Internet, v. 11, n. 6, 2019. ISSN 1999-5903. Available at:
<https://www.mdpi.com/1999-5903/11/6/129>.

OSGi Working Group. OSGi Core Specification, Release 8, Version 2.0. [S.l.], 2024. Last
accessed in November 2024. Available at: <https://osgi.github.io/osgi/core/index.html>.

PARK, S.; SONG, J. Self-adaptive middleware framework for internet of things. IEEE 4th
Global Conference on Consumer Electronics (GCCE)., IEEE, Osaka, Japan, p. 81–82, 2015.

PATEL, P.; ALI, M. I.; SHETH, A. On using the intelligent edge for iot analytics. IEEE
Intelligent Systems, v. 32, p. 64–69, 09 2017.

PEKARIC, I.; GRONER, R.; WITTE, T.; ADIGUN, J.; RASCHKE, A.; FELDERER,
M.; TICHY, M. A systematic review on security and safety of self-adaptive systems.
Journal of Systems and Software, v. 203, p. 111716, 2023. ISSN 0164-1212. Available at:
<https://www.sciencedirect.com/science/article/pii/S0164121223001115>.

PEROS, S.; JOOSEN, W.; HUGHES, D. Ermis: a middleware for bridging data collection
and data processing in iot streaming applications. In: 2021 17th International Conference
on Distributed Computing in Sensor Systems (DCOSS). [S.l.: s.n.], 2021. p. 259–266. ISSN
2325-2944.

https://doi.org/10.1145/3241403.3241424
https://www.sciencedirect.com/science/article/pii/S095965262032922X
https://www.sciencedirect.com/science/article/pii/S095965262032922X
https://www.mdpi.com/1999-5903/11/6/129
https://osgi.github.io/osgi/core/index.html
https://www.sciencedirect.com/science/article/pii/S0164121223001115

140

PETER, O.; PRADHAN, A.; MBOHWA, C. Industrial internet of things (iiot):
opportunities, challenges, and requirements in manufacturing businesses in emerging
economies. Procedia Computer Science, v. 217, p. 856–865, 2023. ISSN 1877-0509.
4th International Conference on Industry 4.0 and Smart Manufacturing. Available at:
<https://www.sciencedirect.com/science/article/pii/S1877050922023602>.

PORTOCARRERO, J. M. T.; DELICATO, F. C.; PIRES, P. F.; RODRIGUES, T. C.;
BATISTA, T. V. Samson: Self-adaptive middleware for wireless sensor networks.
Proceedings of the 31st Annual ACM Symposium on Applied Computing, Association
for Computing Machinery, New York, NY, USA, p. 1315–1322, 2016. Available at:
<https://doi.org/10.1145/2851613.2851766>.

PRADEEP, P.; KRISHNAMOORTHY, S.; VASILAKOS, A. A holistic approach to a
context-aware iot ecosystem with adaptive ubiquitous middleware. Pervasive and Mobile
Computing, v. 72, p. 101342, 02 2021.

PUJAR, P.; KENCHANNAVAR, H.; KULKARNI, R.; KULKARNI, U. Real-time water quality
monitoring through internet of things and anova-based analysis: a case study on river krishna.
Applied Water Science, v. 10, 01 2020.

QADRI, Y. A.; NAUMAN, A.; ZIKRIA, Y. B.; VASILAKOS, A. V.; KIM, S. W. The future
of healthcare internet of things: A survey of emerging technologies. IEEE Communications
Surveys & Tutorials, v. 22, n. 2, p. 1121–1167, Secondquarter 2020. ISSN 1553-877X.

RAHMAN, M.; RAHMAN, A.; HONG, H.-J.; PAN, L.; UDDIN, M. Y. S.; VENKATASUB-
RAMANIAN, N.; HSU, C.-H. An adaptive iot platform on budgeted 3g data plans. Journal of
Systems Architecture, v. 97, p. 65–76, 2018.

RAMACHANDRAN, G.; PROENçA, J.; DANIELS, W.; PICKAVET, M.; STAESSENS, D.;
HUYGENS, C.; JOOSEN, W.; HUGHES, D. Hitch hiker 2.0: a binding model with flexible
data aggregation for the Internet-of-Things. Journal of Internet Services and Applications,
v. 7, p. 15 pages, 04 2016.

RAMACHANDRAN, G. S.; MATTHYS, N.; DANIELS, W.; JOOSEN, W.; HUGHES, D.
Building dynamic and dependable component-based Internet-of-Things applications with
dawn. 19th International ACM SIGSOFT Symposium on Component-Based Software
Engineering (CBSE)., IEEE, Venice, Italy, p. 97–106, 2016.

RANIERI, C. M.; FOLETTO, A. V.; GARCIA, R. D.; MATOS, S. N.; MEDINA, M. M.;
MARCOLINO, L. S.; UEYAMA, J. Water level identification with laser sensors, inertial units,
and machine learning. Engineering Applications of Artificial Intelligence, v. 127, p. 107235,
2024. ISSN 0952-1976. Available at: <https://www.sciencedirect.com/science/article/pii/
S0952197623014197>.

RAUSCH, T.; DUSTDAR, S.; RANJAN, R. Osmotic message-oriented middleware for the
Internet of Things. IEEE Cloud Computing, v. 5, p. 17–25, 03 2018.

RAUSCH, T.; NASTIC, S.; DUSTDAR, S. Emma: Distributed qos-aware mqtt middleware
for edge computing applications. 2018 IEEE International Conference on Cloud Engineering
(IC2E)., IEEE, Orlando, FL, USA, p. 191–197, 4 2018.

https://www.sciencedirect.com/science/article/pii/S1877050922023602
https://doi.org/10.1145/2851613.2851766
https://www.sciencedirect.com/science/article/pii/S0952197623014197
https://www.sciencedirect.com/science/article/pii/S0952197623014197

141

RAZZAQUE, M. A.; MILOJEVIC-JEVRIC, M.; PALADE, A.; CLARKE, S. Middleware for
Internet of Things: A survey. IEEE Internet of Things Journal, v. 3, n. 1, p. 70–95, 2016.
ISSN 2327-4662.

RODRIGUEZ, R. del G.; PRUSKI, F.; SINGH, V. Cistern project for domestic water use in
semi-arid regions. International Journal of Engineering Research and Technology, v. 5, p.
695–702, 03 2016.

ROSA, N.; CAMPOS, G.; CAVALCANTI, D. Using software architecture principles and
lightweight formalisation to build adaptive middleware. Proceedings of the 16th Workshop on
Adaptive and Reflective Middleware., Association for Computing Machinery, New York, NY,
USA, p. 1–7, 2017. Available at: <https://doi.org/10.1145/3152881.3152882>.

ROSA, N.; CAVALCANTI, D.; CAMPOS, G.; SILVA, A. Adaptive middleware in go - a
software architecture-based approach. Journal of Internet Services and Applications, v. 11,
p. 1–23, 12 2020. Available at: <https://jisajournal.springeropen.com/articles/10.1186/
s13174-020-00124-5>.

SALEHIE, M.; TAHVILDARI, L. Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems, Association for Computing
Machinery, New York, NY, USA, v. 4, n. 2, p. 1–42, 5 2009. ISSN 1556-4665.

SARITHA, G.; ISHWARYA, R.; SARAVANAN, T.; SUDARSHANA, P. A. S.; SOWMIYA,
S. Water quality monitoring system using iot. In: 2023 Eighth International Conference on
Science Technology Engineering and Mathematics (ICONSTEM). [S.l.: s.n.], 2023. p. 1–5.

SCHMIDT, D.; BUSCHMANN, F. Patterns, frameworks, and middleware: Their synergistic
relationships. 25th International Conference on Software Engineering., IEEE, p. 694–704, 05
2003. ISSN 0270-5257.

SETHI, P.; SARANGI, S. Internet of things: Architectures, protocols, and applications.
Journal of Electrical and Computer Engineering, v. 2017, p. 1–25, 01 2017.

SHELTAMI, T.; AL-ROUBAIEY, A.; MAHMOUD, A. A survey on developing publish/subscribe
middleware over wireless sensor/actuator networks. Wireless Networks, v. 22, p. 2049–2070,
08 2016.

SINGH, M.; AHMED, S. IoT based smart water management systems: A systematic review.
Materials Today: Proceedings, v. 46, p. 5211–5218, 2021. ISSN 2214-7853. International
Conference on Innovations in Clean Energy Technologies (ICET2020). Available at:
<https://www.sciencedirect.com/science/article/pii/S2214785320364701>.

SINREICH, D. An Architectural Blueprint for Autonomic Computing. Hawthorne,
NY 10532, United States of America, 2005. Technical Report. Available at: <https:
//api.semanticscholar.org/CorpusID:16909837>.

SISINNI, E.; SAIFULLAH, A.; HAN, S.; JENNEHAG, U.; GIDLUND, M. Industrial Internet of
Things: Challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics,
IEEE, v. 14, n. 11, p. 4724–4734, 2018. ISSN 1941-0050.

SOOJIN, P.; SUNGYONG, P. A cloud-based middleware for self-adaptive IoT-collaboration
services. Sensors (Basel, Switzerland), v. 19, p. 19 pages, 10 2019.

https://doi.org/10.1145/3152881.3152882
https://jisajournal.springeropen.com/articles/10.1186/s13174-020-00124-5
https://jisajournal.springeropen.com/articles/10.1186/s13174-020-00124-5
https://www.sciencedirect.com/science/article/pii/S2214785320364701
https://api.semanticscholar.org/CorpusID:16909837
https://api.semanticscholar.org/CorpusID:16909837

142

SULISTYOWATI, R.; SUJONO, H. A.; MUSTHOFA, A. K. Design and field test equipment
of river water level detection based on ultrasonic sensor and sms gateway as flood early
warning. AIP Conference Proceedings, v. 1855, p. 1–9, jun 2017.

SUNNY, A. I.; ZHAO, A.; LI, L.; SAKILIBA, S. K. Low-cost IoT-based sensor system: A case
study on harsh environmental monitoring. Sensors, v. 21, n. 1, 2021. ISSN 1424-8220.

TACONET, C.; BATISTA, T.; BORGES, P.; BOULOUKAKIS, G.; CAVALCANTE, E.;
CHABRIDON, S.; CONAN, D.; DESPRATS, T.; MUÑANTE, D. Middleware supporting pis:
Requirements, solutions, and challenges. In: . The Evolution of Pervasive Information
Systems. Cham: Springer International Publishing, 2023. p. 65–97. ISBN 978-3-031-18176-4.
Available at: <https://doi.org/10.1007/978-3-031-18176-4_4>.

TANENBAUM, A. S.; STEEN, M. v. Distributed Systems: Principles and Paradigms (2nd
Edition). USA: Prentice-Hall, Inc., 2006. ISBN 0132392275.

TARKOMA, S. Publish / Subscribe Systems: Design and Principles. 1st. ed. United Kingdom:
John Wiley & Sons, 2012. 352 pages p. (Wiley Series in Communications Networking &
Distributed Systems.). ISBN 9781119951544.

THIRUMARAI, C.; R.S, S.; M, M.; P, G. Iot-enabled flood monitoring system for enhanced
dam surveillance and risk mitigation. International Research Journal of Multidisciplinary
Technovation, p. 144–153, 05 2024.

TUBIO, I.; ALLOSO, N.; RABAGO, M.; LACSA, J.; SUDARIA, P. R. A.; GUMONAN, K.
M. V.; LACSA, M.; II, N. T.; RABAGO, J. M. Aquamag: Smart water quality monitoring
through internet of things. International Journal of Science, Technology, Engineering and
Mathematics, v. 3, p. 1–18, 03 2023.

URIBARREN, A.; PARRA, J.; IGLESIAS, R.; URIBE, J. P.; IPIñA, D. López-de. A middleware
platform for application configuration, adaptation and interoperability. IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), p. 162–167,
10 2008.

VENANZI, R.; FOSCHINI, L.; BELLAVISTA, P.; KANTARCI, B.; STEFANELLI, C. Fog-driven
context-aware architecture for node discovery and energy saving strategy for internet of
things environments. IEEE Access, IEEE, v. 7, p. 134173–134186, 2019.

VOELTER, M.; KIRCHER, M.; ZDUN, U. Remoting Patterns - Foundations of
Enterprise, Internet, and Realtime Distributed Object Middleware. Hoboken, NJ, USA:
John Wiley & Sons, 2004. (Wiley Series in Software Design Patterns). Available at:
<http://eprints.cs.univie.ac.at/2380/>.

VöGLER, M.; SCHLEICHER, J. M.; INZINGER, C.; DUSTDAR, S. A scalable framework
for provisioning large-scale iot deployments. ACM Trans. Internet Technol., Association
for Computing Machinery, New York, NY, USA, v. 16, n. 2, mar 2016. ISSN 1533-5399.
Available at: <https://doi.org/10.1145/2850416>.

WEYNS, D. Engineering self-adaptive software systems – an organized tour. 2018 IEEE 3rd
International Workshops on Foundations and Applications of Self* Systems (FAS*W)., IEEE,
p. 1–44, 09 2018.

https://doi.org/10.1007/978-3-031-18176-4_4
http://eprints.cs.univie.ac.at/2380/
https://doi.org/10.1145/2850416

143

WEYNS, D. Software engineering of self-adaptive systems. In: Handbook of Software
Engineering., Springer International Publishing, Cham, p. 399–443, 5 2020. Available at:
<https://doi.org/10.1007/978-3-030-00262-6_11>.

WEYNS, D. An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering
Perspective. United Kingdom: John Wiley & Sons, 2021. 288 pages p. ISBN 9781119574910.
Available at: <https://ieeexplore.ieee.org/servlet/opac?bknumber=9261286>.

WEYNS, D.; RAMACHANDRAN, G.; SINGH, R. Self-managing internet of things. SOFSEM
2018: Theory and Practice of Computer Science: 44th International Conference on Current
Trends in Theory and Practice of Computer Science., Springer, p. 67–84, 01 2018.

WEYNS, D.; SCHMERL, B. et al. On patterns for decentralized control in self-adaptive
systems. In: . Software Engineering for Self-Adaptive Systems II: International Seminar,
Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013. p. 76–107. ISBN 978-3-642-35813-5.

WONG, T.; WAGNER, M.; TREUDE, C. Self-adaptive systems: A systematic literature
review across categories and domains. Information and Software Technology, v. 148, p.
106934, 2022. ISSN 0950-5849. Available at: <https://www.sciencedirect.com/science/
article/pii/S0950584922000854>.

WU, M.; LU, T.-J.; LING, F.-Y.; SUN, J.; DU, H.-Y. Research on the architecture of
Internet of Things. In: 2010 3rd International Conference on Advanced Computer Theory and
Engineering(ICACTE). [S.l.: s.n.], 2010. v. 5, p. V5–484–V5–487.

XU, L.; CHEN, L.; GAO, Z.; FAN, X.; SUH, T.; SHI, W. Diota: Decentralized-ledger-based
framework for data authenticity protection in IoT systems. IEEE Network, v. 34, n. 1, p.
38–46, January 2020. ISSN 1558-156X.

YANG, Z.; YUE, Y.; YANG, Y.; PENG, Y.; WANG, X.; LIU, W. Study and application on the
architecture and key technologies for iot. In: 2011 International Conference on Multimedia
Technology. [S.l.: s.n.], 2011. p. 747–751.

ZDUN, U.; KIRCHER, M.; VöLTER, M. Remoting patterns: Design reuse of distributed
object middleware solutions. Internet Computing, IEEE, v. 8, p. 60 – 68, 12 2004.

ZHANG, J.; MA, M.; WANG, P.; SUN, X. dong. Middleware for the Internet of
Things: A survey on requirements, enabling technologies, and solutions. Journal
of Systems Architecture, v. 117, p. 102098, 2021. ISSN 1383-7621. Available at:
<https://www.sciencedirect.com/science/article/pii/S1383762121000795>.

https://doi.org/10.1007/978-3-030-00262-6_11
https://ieeexplore.ieee.org/servlet/opac?bknumber=9261286
https://www.sciencedirect.com/science/article/pii/S0950584922000854
https://www.sciencedirect.com/science/article/pii/S0950584922000854
https://www.sciencedirect.com/science/article/pii/S1383762121000795

<padl> ::= "padl" "=" "{" <components> <attachments> <adaptability> <configuration> "}"

<components> ::= "\"components\":" "{" <component> {"," <component>} "}"

<component> ::= <string> ":" <string>

<attachments> ::= "\"attachments\":" "{" <attachment> {"," <attachment>} "}"

<attachment> ::= <string> ":" <string>

<adaptability> ::= "\"adaptability\":" "{" <adaptability_type> "," <timeout> "}"

<adaptability_type> ::= "\"type\":" <string>

<timeout> ::= "\"timeout\":" <integer>

<configuration> ::= "\"configuration\":" "{" <start> "," <other_configs> "}"

<start> ::= "\"start\":" <string>

<other_configs> ::= "\"other_configs\":" "{" { <config> } "}"

<config> ::= <string> ":" <value>

<string> ::= "\""" {character} "\"""

<integer> ::= digit {digit}

<value> ::= <string> | <integer> | <object>

<object> ::= "{" <config> {"," <config>} "}"

144

APPENDIX A – BNF SPECIFICATION FOR PADL LANGUAGE

145

APPENDIX B – AQUAMOM DATABASE

The database schema consists of two main tables: Device and Device_History, as shown
in Figure B.1.

Figure B.1 – Entity-Relationship Diagram of AquaMOM

N
Device

Monitoring
History

Device

1
ID (PK)

MAC

name

address

battery

water_level

maximum_capacity

height

base_radius

Device_History

ID (Primary Key)

battery

water_level

date_time

device_ID (FK)

has many

The Device table is the primary entity, responsible for storing information about each
cistern and AquaMOM device. It includes attributes such as a unique identifier (ID), the
MAC address, device name, location, current battery level, current water level, maximum water
capacity, cistern height, and base radius.

The table Device_History stores historical data collected by each device, which can be
consulted for historical analysis or behavior tracking. It includes attributes such as a unique
identifier (ID), battery level at a specific time, water level at that time, data collection times-
tamp, and a foreign key (Device_ID) referencing the corresponding device in the table Device.

The relationship between the tables Device and Device_History is one-to-many, which
means that each device can have multiple associated historical records, allowing one entry in
the table Device to relate to many entries in the Device_History. Each historical record is
linked to a specific device through the Device_ID foreign key, facilitating easy tracking and
analysis of data over time. In general, this relational model efficiently organizes the data and
supports various queries and analyses related to the operation and performance of the water
monitoring system.

A
A

B
B

C
C

D
D

1 1

2 2

3 3

4 4

5 5

TI
TL

E:
A
qu

aM
O

M
R
EV

:
1.

0

D
at

e:
20

22
-1

2-
24

S
he

et
:

1/
1

D
ra

w
n

B
y:

D
av

id
 C

av
al

ca
nt

i

C
om

pa
ny

:
U

FP
E

|
C
In

N
o
d
e
M

cu
 V

3
 L

o
L
in

U
1

A
0

G
N

DV
US
3

S
2

S
CS
0

S
K

G
N

D
3.

3VENR
S
T

G
N

D S
1

V
in

D
0

D
1

D
2

D
3

D
4

G
N

D
D

5
D

6
D

7
D

8
R
X

TXG
N

D

3.
3V

3.
3V

U
L
T

R
A

S
O

N
IC

-H
C

-S
R

0
4
#
V

1

V
C
C

1
TR

IG
2

EC
H

O
3

G
N

D
4

1k

1
8
6
5
0
 B

A
T

T
E

R
Y

 H
O

L
D

E
R

U
2

+
ve

1
-v

e
2

TP4056

CARGADOR

IN+
1

IN-
2

B
-

4

B
+

5
O

U
T+

6

O
U

T-
7

T
P

M
C

P
1
7
0
0
T

-3
3
0
2
E

/T
T

U
3

G
N

D
1

V
O

U
T

2
V
IN

3

1
0
0
n
F

C
1

1
0
0
u
F

C
2

27
k

10
0k

146

APPENDIX C – SCHEMATIC OF THE AQUAMOM

147

APPENDIX D – PRINTED CIRCUIT BOARD (PCB) OF THE AQUAMOM

	Title page
	
	Agradecimentos
	Acknowledgements
	Abstract
	List of Figures
	Listing
	Lista de quadros
	List of Tables
	Contents
	Introduction
	Context and Motivation
	The Problem
	Partial Existing Solutions
	Middleware Extendify
	Summary of Contributions
	Thesis Organization

	Background
	Internet of Things
	IoT Architecture
	IoT Uncertainty

	Self-Adaptive Systems
	Model for Self-Adaptive Systems

	Middleware Systems
	Middleware for IoT

	Software Architecture
	Concluding Remarks

	Middleware Extendify
	Overview of MEx
	Design Decisions
	MEx Middleware is MOM
	MEx Transparencies
	IoT-Driven Development
	Manage Multiple Uncertainties
	Self-Adaptation Capability

	Development Time
	Library of Middleware Components
	pADL

	Execution Time
	MEx Client
	MEx Broker
	Execution Unit
	Managing System
	Adaptation Mechanisms
	Composite Adaptation
	Parametric Adaptation

	Implementation
	Concluding Remarks

	MEx based Solution for Water Monitoring
	Context and Motivation
	Semi-arid Regions of Brazil
	IoT Systems for Challenging Environments

	AquaMOM
	AquaMOM Service
	AquaMOM Device
	Software Stack on AquaMOM Device

	Implementation
	Concluding Remarks

	Evaluation
	Objectives
	Scenario 1
	Metrics, Parameters and Factors
	Adaptation in Action
	Impact of Adaptation
	Comparative Evaluation

	Scenario 2
	Metrics, Parameters and Factors
	Evaluating the MEx's Performance
	Impact of Adaptation on Performance and Power Consumption
	Evaluating the Impact of the Adaptation on Battery Lifetime
	Evaluating the impact of using AquaMOM

	Concluding Remarks

	Related Work
	Overview
	Middleware Frameworks
	Adaptive Middleware
	Non-Adaptive Middleware
	Off-device Middleware
	Device-based IoT Middleware

	Other Works
	Energy-saving Approaches
	Smart Water Management

	Comparative Analysis
	Concluding Remarks

	Conclusion and Future Work
	Conclusion
	Contributions
	Limitations
	Future Work
	Publications

	References
	BNF Specification for pADL Language
	AquaMOM Database
	Schematic of the AquaMOM
	Printed Circuit Board (PCB) of the AquaMOM

