

República Federativa do Brasil

Ministério da Indústria, Comércio Exterior e Serviços

Instituto Nacional da Propriedade Industrial

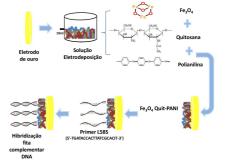
(21) BR 102017004291-0 A2

(22) Data do Depósito: 03/03/2017

(43) Data da Publicação: 30/10/2018

(54) Título: PROCESSO PARA DETECÇÃO ELETROQUÍMICA DA LEISHMANIOSE UTILIZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/ QUITOSANA/ POLIANILINA

(51) Int. Cl.: C12Q 1/68; B82Y 5/00


(73) Titular(es): UNIVERSIDADE FEDERAL DE

PERNAMBUCO

(72) Inventor(es): MARIA FLÁVIA KAROLINE DOS SANTOS GARCIA; MARIA DANIELLY LIMA DE OLIVEIRA; CÉSAR AUGUSTO DE SOUZA ANDRADE; VALDIR DE QUEIROZ **BALBINO**

(85) Data do Início da Fase Nacional: 03/03/2017

(57) Resumo: A presente invenção é aplicável à área do diagnóstico através do uso de biossensores eletroquímicos nanoestruturados. e refere-se a métodos e composições para identificação de patógenos. A invenção baseiase na aplicação de uma sequência curta de oligonucleotídeos (sonda de DNA) ligados eletrostaticamente a superfície de nanopartículas de magnetita (NpsFe3O4). quitosana e polianilina para detecção de patógenos em amostras com baixas concentrações. Em particular, na presente invenção, foi desenvolvido um genossensor para a identificação de sequências específicas do DNA da Leishmania chagasi em amostras de pacientes cães infectados

PROCESSO PARA DETECÇÃO ELETROQUÍMICA DA LEISHMANIOSE UTILI-ZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/ QUITOSANA/ POLIANILINA

Campo da Invenção

- 01. A presente invenção é aplicável à área do diagnóstico através do uso de biossensores eletroquímicos nanoestruturados, e refere-se a métodos e composições para identificação de patógenos. A invenção baseia-se na aplicação de uma sequência curta de oligonucleotídeos (sonda de DNA) ligados eletrostaticamente a superfície de nanopartículas de magnetita (NpsFe₃O₄), quitosana e polianilina para detecção de patógenos em amostras com baixas concentrações. Em particular, na presente invenção, foi desenvolvido um genossensor para a identificação de sequências específicas do DNA da *Leishmania chagasi* em amostras de pacientes cães infectados.
- 02. As nanopartículas apresentam diversas aplicações como carreadores para entrega controlada de fármacos, separação de proteínas e de células, detecção de patógenos e desenvolvimento de sensores eletroquímicos para o diagnóstico de diversas patologias. Outra aplicação para as partículas magnéticas é o seu uso para a marcação de moléculas biológicas, como por exemplo, anticorpos ou DNA, proporcionando também aplicações nas áreas médicas e veterinárias e no diagnóstico de doenças causadas por diferentes patógenos. As nanopartículas de ouro também têm demonstrado vasto potencial em diferentes aplicações biológicas, incluindo a sua utilização no desenvolvimento de métodos diagnósticos altamente sensíveis. A polianilina (PANI) é um polímero condutor muito atrativo por causa de sua síntese fácil, estabilidade química e propriedades ambientais, já a quitosana é um biopolímero natural, abundante que apresenta excelente capacidade de formação de filme, baixa toxicidade, boa permeabilidade em água e

elevada resistência mecânica. Diante de suas propriedades, a polianilina e a quitosana vem sendo utilizadas para montagens de plataformas sensoras.

Sumário

03. O invento aqui descrito é oriundo da aplicação de uma técnica simples para a obtenção de um filme polimérico eletrodepositado de PANI, nanopartículas magnéticas e quitosana e sua aplicação no desenvolvimento de biossensores com elevada sensibilidade e especificidade para o diagnóstico da leishmaniose. Desta forma, descrevemos um método de preparação por meio da técnica de eletrodeposição através da associação de magnetita/quitosana/polianilina sobre a superfície do eletrodo de ouro.

04. As nanopartículas da presente invenção combinam as propriedades do óxido de ferro, quitosana e polianilina, proporcionando diversas vantagens, dentre as quais podemos citar o aumento das propriedades elétricas e magnéticas. A fim de melhorar a sua biocompatibilidade e estabilidade há a conjugação desta com outros materiais, dentre os quais destacamos a quitosana e a polianilina. A quitosana é um biopolímero natural, abundante, que apresenta excelente capacidade de formação de filme, baixa toxicidade, boa permeabilidade em água e elevada resistência mecânica, o uso da quitosana na construção de sensores é uma alternativa para tornar o meio biocompatível permitindo a manutenção da atividade biológica da molécula. Este biopolímero, juntamente com a polianilina (PANI), tem condições apropriadas para imobilização covalente, inclusive com grupamentos amina e estabilização das biomoléculas.

Anterioridades: Estado da Técnica

05. A Leishmaniose é uma doença parasitária causada pelo Lutzomya longipalpis (mosquito palha), sendo uma doença importante no contexto da saúde pública brasileira. Além ser encontrada em muitas regiões tropicais do mundo. A confirmação do diagnóstico da leishmaniose é tomada principalmente pelo diagnóstico direto. Algumas metodologias de teste de diagnóstico, tais como ELISA, imunoensaio de fluorescência indireta e PCR, são comumente usados para diagnosticar a leishmaniose. No entanto, estes métodos são geralmente complicados e demorados. Por isso o desenvolvimento de métodos sensíveis, rápidos e seletivos para a detecção da leishmaniose é importante.

06. Recentemente, o uso de eletrodos nanoestruturados na área da química analítica vem se tornando uma tendência, a fim de melhorar a sensibilidade, seletividade e rendimento de sensores analíticos eletroquímicos e biossensores. Atribui-se o aumento do desempenho eletroanalítico de eletrodos nanoestruturados à sua alta condutividade, à grande área de superfície, à estabilidade e biocompatibilidade. Diferentes métodos de modificação de eletrodo são utilizados para aumentar a sua sensibilidade e especificidade atenuando assim os inconvenientes inerentes na detecção do analito.

07. As nanopartículas magnéticas vêm ganhando destaque nas aplicações biológicas, como a aplicação de diferentes formas de óxido de ferro, o óxido de ferro (II) FeO; óxido férrico (III) Fe₂O₃ e óxido de ferro (II, III) Fe₃O₄ para procedimentos diagnósticos como ressonância magnética nuclear (RMN), carreador magnético de drogas, catálise e liberação controlada de drogas e tratamento de câncer por hipertermia magnética. As aplicações terapêuticas exploram as duas maiores vantagens dos óxidos de ferro: sua baixa toxicidade em seres humanos e a possibilidade de se controlar sua magnétização. Nos biossensores as nanopartículas magnéticas são usadas com bastante sucesso, possuem

alta eficiência de imobilização, e devido a sua alta área superficial, as nanopartículas podem aumentar a quantidade de biomolécula imobilizada, consequentemente aumentando a sensibilidade.

- 08. Esforços vêm sendo empregados, com o objetivo de elaborar metodologias eficientes no diagnóstico e prevenção desta doença, como, por exemplo, a patente WO 2014160844 A2, que se refere ao processo para a preparação de nanopartículas magnéticas que resulta em nanopartículas muito sensíveis que podem ser usados em uma variedade de métodos de diagnóstico e analíticos, especialmente em biossensores. Em termos gerais, essa patente fornece nanopartículas magnéticas (MNPs) com uma pequena distribuição de tamanhos e alta susceptibilidade de corrente alternada que pode ser usado numa variedade de aplicações.
- 09. Também são conhecidas as patentes EP2631300 A1, que divulga a construção de sondas de oligonucleótidos altamente específicos que podem ser utilizados para a identificação de *Leishmania* e, ao mesmo tempo, para a conjugação com AuNPs. A patente WO 2015114506 A2, que descreve um biosensor para a determinação de uma infecção e possíveis neoplasias associados com ele. As patentes WO2016005517A1 e US 20120228155 A1 descrevem métodos de diagnóstico, seja baseado na detecção de DNA, seja pela utilização de moléculas alvo em fase líquida. A presente invenção difere das demais supracitadas porque nenhuma delas utiliza sistemas de biossensores com dispositivos nanoestruturados baseados em nanopartículas de magnetita e filme eletrodepositado de magnetita/quitosana/polianilina no seu desenvolvimento.
- 10. A presente invenção mostra um processo de síntese e obtenção de nanopartículas magnéticas e filme polimérico eletrodepositado de PANI e quitosana e sua aplicação no desenvolvimento de biossensores

eletroquímico visando sua utilização principalmente, mas não restrita, na área biomédica.

11. Muito embora tais documentos apresentem semelhança em relação à presente patente, as diferenças existentes podem ser observadas através da comparação entre esses documentos que pode ser visualizada na Figura 6.

Problemas e Limitações do Estado da Técnica

12. O principal problema encontrado no estado presente da técnica é a limitação da quantidade da sonda de DNA imobilizada no genossensor, assim como da sensibilidade da sonda para a detecção desta hibridação. A fim de reverter esta situação e aumentar a quantidade de hibridação bem como a sensibilidade de sua detecção usamos os nanomaterias, nanopartículas de magnetita e filme eletrodepositado de magnetita/quitosana/polianilina para fazer modificações na superfície do eletrodo, pois são indicadas para este fim devido a sua elevada área superficial e excelentes propriedades eletroquímicas. Podemos assim desenvolver um dispositivo específico, de alta sensibilidade e economicamente viável.

Objetivos da Invenção

13. O objetivo da presente invenção é apresentar um biossensor voltamétrico nanoestruturado com nanopartículas de magnetita e filme eletrodepositado de magnetita/quitosana/polianilina e sua obtenção através de eletrodeposição. A presente invenção evita e dispensa a necessidade de marcadores, uma vez que esta técnica revela alterações nas propriedades elétricas da superfície, tal como a corrente elétrica que têm uma resposta representativa a partir da presença da molécula alvo, sem marcadores.

14. A presente invenção também tem como objetivo o desenvolvimento de novos sistemas eletroquímicos em escala nanométrica para produção em larga escala e de baixo custo operacional.

Solução

15. O ato inventivo relacionado com a presente invenção é a obtenção de um biossensor eletroquímico modificado com filme eletrodepositado de magnetita/quitosana/polianilina que fornecerá um diagnóstico rápido e preciso. Isso faz com que este dispositivo forneça a vantagem em comparação aos métodos atuais de diagnóstico da leishmaniose de apresentar-se como uma técnica com economia de tempo e custo.

Vantagens

- 16. Uma das vantagens é a junção das propriedades elétricas e magnéticas, proporcionando o desenvolvimento de dispositivos eletroquímicos mais eficientes, pois as combinações de distintas propriedades possibilitam potenciais aplicações.
- 17. Por causa da sua simplicidade, a técnica da hibridação é a mais comumente usada nos diagnósticos laboratoriais do que o método de sequenciamento direto, na análise de sequência gênica específica. Na hibridação do DNA, a sequência gênica alvo é identificada por meio de uma sonda de DNA que forma um híbrido de dupla hélice com o seu ácido nucléico complementar, sendo esse reconhecimento altamente eficiente e específico. O transdutor eletroquímico (eletrodo) de DNA apresenta a vantagem de apresentar uma grande diversidade de suportes utilizados e pela facilidade de modificação dos mesmos. Após modificação com a sonda de DNA, o eletrodo então produzido, é capaz de detectar eletroquímicamente a molécula complementar de DNA,

apresentando-se como uma promissora ferramenta para aplicação na área biomédica.

18. O biodispositivo da invenção mostra respostas satisfatórias frente a diferentes concentrações de DNA alvo na amostra analisada, além de ser de fácil manuseio, o que é uma vantagem, pois permite sua aplicação em laboratórios de análises clínicas, além de laboratórios de ensino e pesquisa.

A novidade e o efeito técnico alcançado

19. Resumindo, a novidade da presente invenção é a metodologia diagnóstica utilizando biossensores modificados com filme eletrodepositado de magnetita/quitosana/polianilina, onde até o presente momento, não havia sido identificada por nenhuma outra instituição de pesquisa ou ensino ou mesmo descrito na literatura para o uso como sensor de leishmaniose, já que os atuais métodos de detecção tem limitações, dentre elas: baixa sensibilidade, especificidade, alto custo, tempo elevado de diagnóstico. O atual método combina todas essas vantagens para detecção da doença, baseando-se na hibridição da fita complementar de DNA.

<u>Descrição Detalhada</u>

- 20. Os exemplos a seguir não têm o intuito de limitar o escopo da invenção, mas sim de somente ilustrar uma das inúmeras maneiras de se realizar a invenção.
- 21. Resumidamente consegue-se chegar à invenção primeiramente pela montagem do nanocompósito. Para montar o nanocompósito juntou-se 0,001ng de nanopartículas de magnetita (Fe₃O₄) e 1mL de quitosana colocadas sob sonicação por 30min, em seguida adicionado 10mL de HCL (0,5M) e 180μ L de anilina.

22. O procedimento seguido para preparar o biossensor foi o seguinte: o eletrodo foi polido com uma lixa com água deionizada, seguido por imersão em solução de hipoclorito de sódio durante aproximadamente 10 minutos e secou-se à temperatura ambiente. Após lavagem com água deionizada o eletrodo foi imediatamente imerso na solução de eletrodeposição magnetita/quitosana/polianilina (10mL) onde foram realizados 30 ciclos, a fim de obter o filme de magnetita/quitosana/polianilina. Seguida a lavagem, foi adicionado o Primer e incubado durante 30 minutos para se obter o sistema NpsFe₃O₄/Quit/PANI-Primer, posteriormente a incubação do genoma foi realizada por um período de tempo 30 minutos e, finalmente, a amostra com o DNA-alvo pelo mesmo período (Figura 1). A lavagem foi executada com água deionizada após cada incubação. O exemplo a seguir mostra um caso mais específico de realização.

Preparação de Nanopartículas

23. As nanopartículas foram obtidas através do método de coprecipitação. Cerca de 200mL da solução de FeCl₃ 0,1M • 6H₂O e 0,5M de solução aquosa de FeSO₄ • 7H₂O foram colocadas num balão de fundo redondo e mantidas sob agitação intensa, numa atmosfera isenta de oxigênio durante 30min, até atingir o pH de 1,7. Posteriormente 500μL de hidróxido de amônio foram adicionados gota a gota. A mistura então foi agitada a 60°C durante 6 horas sob atmosfera de N₂. As NPsFe₃O₄ não revestidas foram eliminadas por meio de lavagem com 0,1M HCl.

Caracterização de Nanopartículas

24. As análises voltamétricas foram realizadas com potenciostato/galvanostato PGSTAT 128N (Autolab, Holanda), em uma célula eletroquímica de três eletrodos, imersos numa solução de 10mM de ferro-ferricianeto de potássio $K_4[Fe(CN)_6]^{4-}/K_3[Fe(CN)_6]^{3-}]$ na proporção

(1:1) usada como uma sonda redox. A superfície do eletrodo de trabalho foi de ouro. Eletrodos de fio de platina e Ag/AgCl (solução saturada de KCl) foram usados como eletrodo auxiliar e de referência, respectivamente. Análises voltamétricas foram realizadas em um intervalo de potenciais entre 0,7 V e -0,2V a uma taxa de varredura de 50mVs⁻¹. A eletrodeposição foi realizada numa faixa de potencial de -0,1 a 1,0V vs Ag/AgCl ciclado 30 vezes a uma velocidade de varredura de 50mV.s⁻¹.

Características das nanopartículas

- 25. O artifício utilizado na construção do biodispositivo foi a imobilização de uma sequência específica do DNA da *Leishmania infantum*, na superfície do eletrodo que vai se ligar à sequência alvo através de processos de hibridação. Empregamos, ainda, diferentes concentrações deste DNA alvo que foram imobilizados para testar a sensibilidade do dispositivo aqui descrito.
- 26. A Figura 2 mostra os voltamogramas cíclicos do processo de montagem do biossensor, onde podemos observar no voltamograma em preto as correntes de picos anódicos (Ipa) e catódicos (Ipc) bem definidos, o que é característico de um processo limitado por difusão. Com a adição de NPsFe₃O₄/Quit/PANI, vemos a diminuição acentuada destes picos, caracterizando assim a aderência do nanocompósito à superfície do eletrodo (voltamograma vermelho). Após a adição do Primer de leishmaniose (Primer_{Leish}), observa-se uma nova redução dos Ipa e Ipc (azul), onde esta diminuição dos picos reflete a interação eletrostática entre o nanocompósito e o Primer, comprovando assim a ligação e formação da camada sensora NPsFe₃O₄/Quit/PANI-Primer_{Leish}.
- 27. A Figura 3 mostra os voltamogramas cíclicos do sistema sensor referentes às análises com o genoma 0,5ng e suas respectivas diluições (1:500/1:100/1:50), mostrando, assim, que houve hibridação e reconhecimento da sequência complementar. No voltamograma cíclico,

é possível observar que, após cada etapa de modificação do eletrodo de ouro, há uma queda da resposta amperométrica do sistema, como também, observa-se que, quanto maior a concentração do genoma, menores são as correntes de pico anódicas e catódicas.

28. A Figura 4 mostra os voltamogramas cíclicos do processo de biorreconhecimento do biossensor frente às amostras clínicas de cães infectados (DNA). No voltamograma cíclico, podemos observar que foram analisadas uma amostra concentrada (10ng) e a mesma diluída em várias concentrações (1ng/0,1ng/0,01ng/0,001ng/0,0001ng), mostrando, assim, a viabilidade e sensibilidade de utilização do sistema sensor, onde, avaliando cada resposta do voltamograma cíclico, pode-se observar que, quanto mais concentrada a amostra, menores são as correntes de pico anódicas e catódicas, mostrando que, quando aplicado o potencial sobre o eletrodo de trabalho, há um maior impedimento de passagem da corrente de elétrons. A Figura 5 mostra a relação da concentração do analito alvo com as magnitudes da corrente de pico anódica extraída.

Figuras

- 29. A Figura 1 apresenta a representação esquemática da construção do biossensor $NPsFe_3O_4/Quit/PANI-Primer_{Leish}$.
- 30. A Figura 2 apresenta a voltametria cíclica das etapas de montagem do biossensor.
- 31. A Figura 3 apresenta a voltametria cíclica após a montagem do sistema NPsFe₃O₄/ Quit/PANI-Primer_{Leish-}Genoma.
- 32. A Figura 4 apresenta a voltametria cíclica do sistema sensor frente as amostras clínicas de cães infectados.

REIVINDICAÇÕES

- 1. PROCESSO PARA DETECÇÃO ELETROQUIMICA DA LEISHMANIOSE UTILI-ZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANILINA, caracterizado por ser um biossensor e conter as seguintes partes: a) molécula de reconhecimento (sequência de ácido nucleico); b) suporte onde em sua superfície será feita a imobilização das moléculas; c) fonte de corrente elétrica; d) nanopartículas magnéticas (NpsFe₃O₄) e filme eletrodepositado de magnetita/quitosana/polianilina.
- 2. PROCESSO PARA DETECÇÃO ELETROQUIMICA DA LEISHMANIOSE UTILI-ZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANILINA, de acordo com Reivindicação 1, caracterizado pela detecção do analito através da análise das interações interfaciais do eletrodo.
- 3. PROCESSO PARA DETECÇÃO ELETROQUIMICA DA LEISHMANIOSE UTILIZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANILINA, conforme Reivindicações 1 e 2, caracterizado pelas nanopartículas magnéticas e filme eletrodepositado de magnetita/quitosana/polianina serem obtidas através de um processo de automontagem das nanopartículas.
- 4. PROCESSO PARA DETECÇÃO ELETROQUIMICA DA LEISHMANIOSE UTILIZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANILINA, de acordo com as Reivindicações 1, 2 e 3, caracterizado por basear-se na aplicação de uma sonda de DNA em nanopartículas magnéticas e filme eletrodepositado de magneti-

ta/quitosana/polianilina e permitir detecção de patógenos em amostras com baixas concentrações.

- 5. PROCESSO PARA DETECÇÃO ELETROQUIMICA DA LEISHMANIOSE UTILIZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANILINA E SUPERFÍCIE DE IMOBILIZAÇÃO DAS MOLÉCULAS, conforme Reivindicação 1, caracterizada pelo fato da referida superfície de suporte ser de ouro.
- 6. PROCESSO PARA DETECÇÃO ELETROQUIMICA DA LEISHMANIOSE UTILI-ZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANILINA, conforme Reivindicações 1-5, caracterizado pelo fato de que o referido compósito apresenta um núcleo formado por um óxido de ferro que se liga à superfície do eletrodo de ouro por interações eletrostáticas.
- 7. PROCESSO PARA A PREPARAÇÃO DO DISPOSITIVO PARA DETECÇÃO E-LETROQUIMICA DA LEISHMANIOSE UTILIZANDO NANOPARTÍCULAS MAGNÉ-TICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANI-LINA, caracterizado pela modificação camada a camada da superfície do biodispositivo seguida da análise voltamétrica ao término de cada etapa de modificação e a lavagem executada com água deionizada após cada período de incubação.
- 8. PROCESSO PARA DETECÇÃO ELETROQUIMICA DA LEISHMANIOSE UTILIZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANILINA, de acordo com as Reivindicações 1, 2, 3 e 7, caracterizado pelo método de detecção espectroscópica ser por meio de voltametria cíclica.

- 9. PROCESSO PARA DETECÇÃO ELETROQUIMICA DA LEISHMANIOSE UTILI-ZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANILINA, conforme Reivindicação 6, caracterizado pelo fato de que as referidas nanopartículas acumulam as propriedades magnéticas e elétricas do óxido de ferro, quitosana e polianilina, sendo ferramentas na construção de biossensores.
- 10. PROCESSO PARA DETECÇÃO ELETROQUIMICA DA LEISHMANIOSE UTILIZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANILINA, conforme Reivindicação 6, caracterizado pelo fato de que a sonda imobilizada na superfície da nanopartícula é uma sequência específica do material genético da *Leishmania chagasi*, proporcionando ao referido biossensor uma alta especificidade da resposta.
- 11. PROCESSO PARA DETECÇÃO ELETROQUIMICA DA LEISHMANIOSE UTILIZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/QUITOSANA/POLIANILINA, conforme Reivindicação 8, caracterizado pelo fato de que a referida análise é feita numa faixa de potencial de -0,2V e 0,7V.

FIGURAS

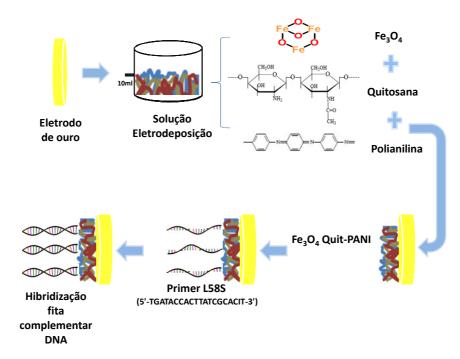


Figura 1

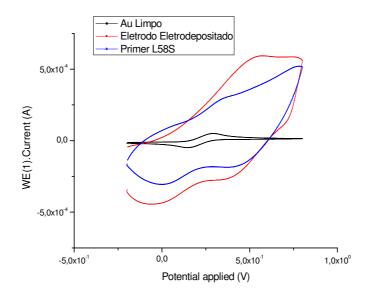


Figura 2

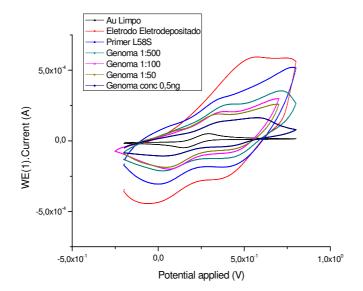


Figura 3

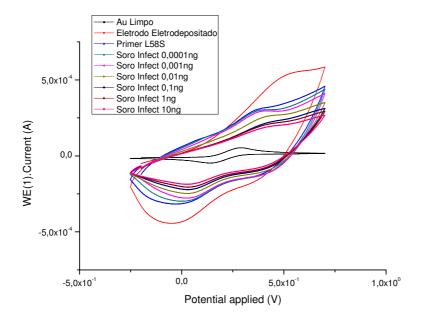


Figura 4

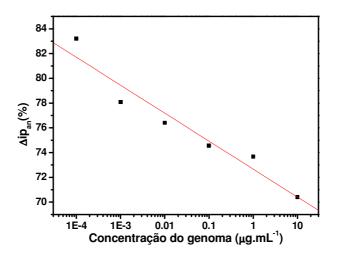


Figura 5

	Invento apresentado	WO 2014160844 A2	EP2631300 A1	WO 2015114506 A2
Partícula metálica	Não	Não	Sim	Sim
Polímero	Sim	Sim	Não	Não
Sequência de DNA	Sim	Não	Sim	Não
Anticorpos	Não	Não	Não	Sim
Nanopartícula magnética e filme eletrodepositado de magnetita/quitosana e polianilina	Sim	Não	Não	Não

Figura 6

RESUMO

PROCESSO PARA DETECÇÃO ELETROQUÍMICA DA LEISHMANIOSE UTILI-ZANDO NANOPARTÍCULAS MAGNÉTICAS E FILME ELETRODEPOSITADO DE MAGNETITA/ QUITOSANA/ POLIANILINA

A presente invenção é aplicável à área do diagnóstico através do uso de biossensores eletroquímicos nanoestruturados, e refere-se a métodos e composições para identificação de patógenos. A invenção baseia-se na aplicação de uma sequência curta de oligonucleotídeos (sonda de DNA) ligados eletrostaticamente a superfície de nanopartículas de magnetita (NpsFe₃O₄), quitosana e polianilina para detecção de patógenos em amostras com baixas concentrações. Em particular, na presente invenção, foi desenvolvido um genossensor para a identificação de sequências específicas do DNA da *Leishmania chagasi* em amostras de pacientes cães infectados.