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ABSTRACT

The coherence state of light is important in several optical systems. This state is also subject
to variations due to propagation and imperfections present along the propagation path. Even
though changes in the coherence state are common, direct measurements are sometimes dif-
ficult and the interpretation complicated, particularly for beams containing few modes. Here,
partially coherent beams are analyzed using thermodynamic principles. As far as we know, our
approach is novel in the literature and the associated analysis allows to describe partially co-
herent light from the limit of a few to many modes. Particularly, the beam quality factor, 𝑀2,
can be associated with an effective temperature for light beams. This link between optics and
thermodynamics allows to describe the beam wavefront based on the mean number of available
modes and other macroscopic beam effective parameters, such as the beam width, curvature,
and divergence angle. Later, ensembles of beams defined by a fixed 𝑀2 are generated and sta-
tistically analyzed. Holography is used to generate the thermodynamically inspired structured
light beams, and the statistical analysis of the beam intensity profiles accounts for the retrieval
and characterization of the light coherence state. The present discussion can be useful to light
propagation in turbulent media, optical systems with imperfections, metasurfaces, and optical
communications systems.

Keywords: Structured Light. Optical Thermodynamics. Partially Coherent Light.



RESUMO

O estado de coerência da luz é importante para diversos sistemas ópticos. Tal estado está
sujeito a variações que podem ocorrer devido a propagação ou imperfeições presentes no
caminho óptico. Apesar de tais variações no estado de coerência serem comuns, medir di-
retamente tal estado é muitas vezes difícil e a interpretação dessas medidas, complicada,
particularmente para feixes com poucos modos. Nesse trabalho, feixes parcialmente coerentes
são estudados através de princípios termodinâmicos. Até onde sabemos nossa abordagem é
original na literatura e a análise associada permite a descrição de feixes no limite de poucos
e muito modos. Em particular, o fator de qualidade do feixe, 𝑀2, pode ser associado a uma
temperatura efetiva dos feixes. Essa conexão entre óptica e termodinâmica permite descrever
a frente de onda do feixe baseado no número médio de modos disponíveis e outros parâmetros
efetivos macroscópicos do feixe, como a largura do feixe, curvature e ângulo de divergência.
Posteriormente, ensembles de feixes definidos por um 𝑀2 fixo são produzidos e análises estatís-
ticas sob tais ensembles são realizadas. Holografia é utilizada para gerar feixes estruturados
termodinamicamente inspirados e análises estatísticas sob o perfil de intesidade desses feixes
possibilitam a recuperação e caracterização do estado de coerência da luz. Essa discussão pode
ser útil para estudar luz propagando em meios turbulentos, sistemas ópticos com imperfeições,
metasuperfícies e sistemas de comunicação óptico.

Palavras-chaves: Luz Estruturada. Óptica Termodinâmica. Luz Parcialmente Coerente.
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1 INTRODUCTION

When light propagates in a free-space optical system, the passage through components or
random media can modify some of the beam characteristics. For instance, one of the most
significant changes is the modification of the beam modes upon propagation in the optical
system. Modes can be added by designed optical elements, such as phase masks, but they are
also modified by effects such as aberrated optical elements, propagation through turbid media
(GONG et al., 2019), or within biological tissues (HUISKEN; STAINIER, 2009). Thus, studying and
understanding multimode beams provide important insights into a variety of optical systems.

Additionally, intrinsic imperfections in an optical system can arise from several effects,
such as those due to the fabrication process (PATOUX et al., 2021) or environmental conditions
(ANDREWS; PHILLIPS, 2005), (KOROTKOVA, 2014). These wavefront distortions can be critical
in some applications, and a significant effort is employed to minimize them. Metasurface
fabrication (PAN et al., 2022) and optical communication systems (MILLER, 2019) are examples
in which the minimization of these imperfections is crucial to high-performance applications.

Even though aberrations are common in many optical systems, properly accounting for
and understanding their influence is often difficult, especially in highly multimode systems.
Therefore, an experimental and practical method that allows to understand multimode systems
and the influence of optical imperfections can offer new insights into several optical systems
of current interest, such as in imaging, spectroscopy, telecommunications, and nonlinear light
sources (WRIGHT et al., 2022).

This work proposes a description of light propagating in free-space based on thermodynamic
principles. Here, the thermodynamic principles are used as an alternative way of accounting for
the presence of spatial modes on light beams. This description is independent of the number
of occupied modes and seems appropriate for the analysis of partially coherent light even in the
limit of few modes. Particularly, it can be observed that beam imperfections and aberrations
continuously increase as more modes are added to the beam wavefront or, alternatively, as the
coherence reduces for a given system. Even though such effects can be very small, they can
add up and modify the wavefront significantly.

Furthermore, a description that can retrieve direct information regarding the beam propa-
gation can be a useful tool for a variety of optical systems. Particularly, if it can account for
small effects that arise from passages through typical optical components as well as scattering
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and random media.
This dissertation is organized as follows. Chapter 2 motivates the need for a description to

understand changes in the beam wavefront due to random optical elements. Additionally, this
chapter defines a free-space thermodynamic description, by linking the beam quality factor,
𝑀2, to an effective temperature. Chapter 3 formalizes the statistical analysis needed to study
variations in the beam wavefront. Our proposal seems adequate to characterize partially coher-
ent beams from a few modes up to the many modes regime. Chapter 4 introduces holography
principles that will be used in the context of structured light to experimentally generate beams
with thermodynamic properties. Finally, Chapter 5, uses structured light to experimentally
generate thermodynamic beams and conducts a statistical analysis of the collected data. This
analysis not only confirms the theoretical concepts established in the previous chapters but also
shows how the proposed description can be experimentally used to study partially coherent
light.
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2 FREE-SPACE OPTICAL THERMODYNAMICS

The invention of the laser in 1960 had a huge impact on optics. For instance, lasers
increased the accessible coherence lengths. While the coherence length of a narrow linewidth
atomic vapor lamp, such as the sodium lamp, rarely goes above a few centimeters, it is not
uncommon to have lasers with coherence lengths of several meters. The coherence state of a
light beam is a central topic in several applications, such as interferometry and holography.
While lasers and lamps are often treated as coherent and incoherent sources of radiation,
respectively, these idealizations do not correspond to the real world. Both sources are partially
coherent, the laser being significantly more coherent than the lamp. This chapter introduces
a thermodynamic-inspired description for partially coherent light beams which should be valid
for all regimes of coherence. The macroscopic parameters defined, such as the beam width and
divergence angle, should be adequate from the perfectly coherent regime up to the completely
incoherent regime. This discussion contains novel aspects since the regime of nearly coherent
radiation is often neglected in the literature, but it is helpful to understand how real lasers
deviate from their ideal properties.

This chapter is organized as follows. First, Section 2.1 contains a brief introduction to
optical thermodynamics, going through some of its key characteristics. The following section,
Section 2.2, discusses light propagating in random media to motivate the free-space optical
thermodynamic description presented in this work. Finally, Section 2.3 shows how such a
description can be obtained through ladder operators and defines an effective temperature for
an optical system. Which will be further studied and statistically analyzed in Chapter 3, as
well as experimentally generated with structured light in Chapter 5.

2.1 BRIEF INTRODUCTION OF OPTICAL THERMODYNAMICS

Optical thermodynamics has emerged as a new way of studying optical systems. The value
of such a description relies on the possibility of understanding highly multimode systems with
average scalar quantities. Usually, to fully study a system containing 𝑁 optical modes, one
would need to keep track of 𝑁 dispersion curves and self-phase modulation terms, 𝑁2 cross-
phase constants, and 𝑁4 four-wave mixing products (POLETTI; HORAK, 2008). It is not difficult
to realize that such an analysis is extremely hard to perform even numerically, if not impossible
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in many cases. An optical thermodynamics description not only simplifies the analysis of highly
multimode nonlinear systems but also gives additional physical insights regarding the optical
system. Hence, this section is dedicated to a brief overview of optical thermodynamics, to
better contextualize the analysis further developed in this chapter.

The development of a thermodynamic description for optical systems started with an in-
terest in nonlinear multimode fiber systems, motivated by high-speed communication systems
(AMBICHL et al., 2017). Previous works have established non-equilibrium descriptions (PICOZZI

et al., 2014), (PICOZZI, 2007), however, an equilibrium description was only recently achieved
(WU; HASSAN; CHRISTODOULIDES, 2019). In particular, Wu, Hassan and Christodoulides (2019)
have shown that the wavefront properties in the thermal equilibrium regime can be described
by equations of state. More interestingly such equations are written in terms of an effective
wavefront internal energy, number of modes, and optical power. Explicitly linking the thermo-
dynamic with the optical variables, and being able to extract physical interpretations from such
an analysis. Wu, Hassan and Christodoulides (2019) have fully described a highly multimode
nonlinear optical system.

From an experimental standpoint, direct measurements of the fine wavefront details of
such thermalized systems are difficult to perform. Optical systems are usually subjected to a
variety of dissipative phenomena that do not allow the system to reach equilibrium (SURET,
2022). However, as the field of optics develops, so does the experimental possibilities. In the
last few years, direct measurements of thermodynamic properties and predictions for fiber
optics and guided wave systems have been reported. Namely, the thermalization of an optical
system in a Rayleigh-Jeans (RJ) distribution has been experimentally observed (SIDORENKO

et al., 2022) (Figure 1). This phenomenon has been theoretically predicted in the context of
wave turbulence (PICOZZI et al., 2014), however, the experimental observation has only been
possible due to the development of high-quality fibers and high-power laser sources.

Some other remarkable results were recently reported. Ferraro et al. (2024) have also
done the first experimental measurements of optical calorimetry in nonlinear multimode fibers.
They observed the flow of both temperature and chemical potential, as well as experimentally
validated the second law of thermodynamics in fiber-based optical systems showing that the
thermodynamical approach can be very useful to describe light propagation in highly multimode
optical systems. As another example, Zhang et al. (2024) have recently observed a Bose-
Einstein condensation in a fiber-based system. Particularly, they took into account nonlinear
dissipative process, and its changes in the entropy flow to provide new insights regarding



17

Figure 1 – When a highly multimode beam propagates on a multimode optical fiber, the energy exchange
between the modes leads to an RJ distribution.

Source: SIDORENKO et al. (2022)

systems described by thermodynamic principles.
Even though optical thermodynamics has been able to explain and explore optical systems

in a new way, all the reported results are waveguide-based only. This comes from a theoretical
characteristic of the description. As previously stated, upon thermalization the mode distri-
bution matches an RJ distribution (SIDORENKO et al., 2022), which leads to the ultraviolet
divergence, similarly as happens in the black-body radiation problem. This cutoff is necessary
to regularize the divergence and is indeed naturally obtained in a waveguide-based system. The
waveguide confines the system and introduces the cutoff required to avoid the divergence.

When a light beam is propagating in free-space however, there is no natural cutoff. The
thermodynamic description previously developed cannot be used. This chapter is dedicated
to developing a theoretical apparatus that supports the thermodynamic description of light
in free-space. It will be shown that the beam width also introduces a natural cutoff to the
system, overcoming the need to force a waveguide-based system.

2.2 PROPAGATION OF LIGHT IN RANDOM MEDIA TO MOTIVATE A FREE-SPACE
THERMODYNAMIC DESCRIPTION

When light propagates through free-space, the characteristics of the medium in which it
propagates are decisive in promoting changes on the wavefront of the beam. This section is
dedicated to studying how the beam parameters change when it propagates through random
media. This analysis introduces the basis that motivates the thermodynamic description that
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will be developed in Section 2.3.
The analysis starts with light that propagates in a non-absorptive linear medium, which

is assumed to exhibit refractive index fluctuations in its volume. To simplify the analysis, this
medium can be represented by appropriately placed thin random phase screens (ANDREWS;

PHILLIPS; WEEKS, 1997). This description replaces the extended medium with an equivalent
model, where light propagates through a homogeneous medium interrupted by a thin phase
screen positioned between the source and observation planes. This model has connections with
non-absorptive metasurfaces (YU et al., 2011), can represent common optical elements (lenses,
mirrors, or prisms), and light propagation through the atmosphere (SHIRAI; DOGARIU; WOLF,
2003). Particularly, the phase screen description can be linked to an operator-based represen-
tation of the wavefront (AMARAL et al., 2020) and light propagation in nonlinear materials
(PORRAS; ALDA; BERNABEU, 1993). Both representations are connected with the theoretical
analysis further developed in this chapter.

First, the paraxial equation is considered to govern the evolution of the electric field ℰ

along the 𝑧-axis in a homogeneous medium,

𝑖
𝜕ℰ
𝜕𝑧

= 𝐻0ℰ , 𝐻0 = − 1
2𝑘

𝜕2

𝜕𝑥2 , (2.1)

where 𝑘 is the real wavenumber and only the 𝑥-axis is considered. A key conserved quantity is

𝒫 =
∫︁

|ℰ|2 𝑑𝑥, (2.2)

which is proportional to the optical power. Conservation of 𝒫 requires that 𝜕𝒫
𝜕𝑧

= 0, which is
true when

lim
𝑥→±∞

ℰ 𝜕

𝜕𝑥
ℰ* = 0. (2.3)

The conservation of 𝒫 implies that the field must be sufficiently localized in the position and
angular spectrum, which is satisfied for physical fields over sufficiently large integration regions
(PORRAS; ALDA; BERNABEU, 1992).

Since Equation (2.1) is similar to Schrödinger’s equation for a free particle, 𝐻0 should
be associated with an energy-like conserved quantity. By following a reasoning similar to that
used for 𝒫 , it can be shown that,

𝑈 = 1
𝒫

∫︁
ℰ*𝐻0ℰ 𝑑𝑥, (2.4)

is also a conserved quantity under free-space propagation.
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𝑈 is directly meaningful for a particle, however for a beam propagating in free-space, the
effective beam width (𝑊𝑥), curvature radius (𝑅𝑥), and divergence angle, (Θ𝑥) (PORRAS; ALDA;

BERNABEU, 1992), are better suited to be used,

𝑊 2
𝑥 = 2

𝒫

∫︁
(𝑥− 𝑥̄)2|ℰ|2 𝑑𝑥, (2.5)

𝑊 2
𝑥

𝑅𝑥

= − 2𝑖
𝑘𝒫

∫︁
(𝑥− 𝑥̄)

(︃
ℰ* 𝜕

𝜕𝑥
ℰ − ℰ 𝜕

𝜕𝑥
ℰ*
)︃
𝑑𝑥, (2.6)

Θ2
𝑥 = 2

𝑘2𝒫

∫︁ ⃒⃒⃒⃒
⃒𝜕ℰ
𝜕𝑥

⃒⃒⃒⃒
⃒
2

𝑑𝑥− 2𝑝2
𝑥

𝑘2 , (2.7)

where 𝑥̄ is the beam centroid and 𝑝𝑥/𝑘, the angle between the beam propagation direction and
the optical axis. The effective parameters defined in Equations (2.5)-(2.7) can be evaluated
at any 𝑧-plane and are directly related to the second-order intensity moments (BEKSHAEV,
2006).

There are two conserved quantities up to the second-order intensity moments for free-space
propagation:

1. The divergence angle (Θ𝑥) remains constant upon free-space propagation. An integration
by parts along 𝑥 in Equation (2.7) can be used to show that

Θ2
𝑥 = 4𝑈

𝑘
− 2𝑝2

𝑥

𝑘2 . (2.8)

2. The square of the beam quality factor 𝑀2
𝑥 is invariant upon translation (BEKSHAEV,

2006), (PORRAS; ALDA; BERNABEU, 1992). Since it is related to the product between the
minimum beam width and the divergence angle,

𝑀4
𝑥 = 𝑘2

4

⎡⎣Θ2
𝑥𝑊

2
𝑥 −

(︃
𝑊 2

𝑥

𝑅𝑥

)︃2
⎤⎦ . (2.9)

𝑀2
𝑥 is known as the beam propagation, or beam quality factor, and satisfies 𝑀2

𝑥 ≥ 1. The
equality is verified for Gaussian beams, while values of 𝑀2

𝑥 > 1 indicate the presence of
higher-order modes on the beam.

With these notions established, the next step is to analyze how a thin optical element
changes these beam parameters. A non-absorptive thin optical element can be represented by
a phase screen with the transmission coefficient 𝑆 = 𝑒𝑖𝜑, and its effects on an initial field
ℰ0 = |ℰ0|𝑒𝑖Φ is

ℰ1 = 𝑆ℰ0 = |ℰ0|𝑒𝑖(𝜑+Φ), (2.10)

where ℰ1 is the electric field after the phase screen, |ℰ0| and Φ are the initial field amplitude
and phase, respectively. For simplicity, here is considered that 𝑥̄ = 𝑝𝑥 = 0, which means that
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the beam propagates along the optical axis. Additionally, since 𝑆 is a pure phase mask, it is
true that |ℰ1|2 = |ℰ0|2, meaning that the beam transmission through 𝑆 does not change 𝒫

and 𝑊 2
𝑥 .

Now, the pairs of quantities (𝑅𝑥,0,Θ𝑥,0) and (𝑅𝑥,1,Θ𝑥,1) are defined as the effective cur-
vature and divergence angle before and after 𝑆, respectively. Then, it can be shown that

𝑊 2
𝑥

𝑅𝑥,1
= 4
𝑘𝒫

∫︁
𝑥
𝜕𝜑

𝜕𝑥
|ℰ0|2 𝑑𝑥+ 𝑊 2

𝑥

𝑅𝑥,0
, (2.11)

Θ2
𝑥,1 = 2

𝑘2𝒫

∫︁ ⎡⎣(︃𝜕𝜑
𝜕𝑥

)︃2

+ 2𝜕𝜑
𝜕𝑥

𝜕Φ
𝜕𝑥

⎤⎦ |ℰ0|2 𝑑𝑥+ Θ2
𝑥,0 (2.12)

= 2
𝑘2𝒫

∫︁ ⎧⎨⎩
[︃
𝜕

𝜕𝑥
(𝜑+ Φ)

]︃2

|ℰ0|2 +
⃒⃒⃒⃒
⃒𝜕|ℰ0|
𝜕𝑥

⃒⃒⃒⃒
⃒
2
⎫⎬⎭ 𝑑𝑥, (2.13)

which implies that the curvature and divergence angle will be modified for a spatially varying
𝜑.

With these concepts, it is possible to evaluate a series of changes in a light beam associated
with different field and phase mask characteristics.

2.2.1 Light propagating in random media

When a beam propagates through a medium with strong phase fluctuations, such that 𝜑
is uniformly distributed, depends only on the material, and is completely uncorrelated with
the beam phase Φ. This situation represents ordinary light transmission through scattering
materials such as biological tissues, colloids, or turbulent fluids. The ensemble average is⟨

𝜕𝜑
𝜕𝑥

⟩
= 0, and

⟨
𝑊 2

𝑥

𝑅𝑥,1

⟩
=
⟨
𝑊 2

𝑥

𝑅𝑥,0

⟩
, (2.14)

⟨
Θ2

𝑥,1

⟩
= 2
𝑘2𝒫

∫︁ ⟨(︃
𝜕𝜑

𝜕𝑥

)︃2⟩
|ℰ0|2 𝑑𝑥+

⟨
Θ2

𝑥,0

⟩
. (2.15)

Since Θ2
𝑥 ∝ 𝑈 , this can also be written as 𝑈1 = 𝑈0 + |Δ𝑈 |. And, 𝑊𝑥 remains constant

across 𝑆, from 2.9 one can infer that,

𝑀4
𝑥,1 = 𝑀4

𝑥,0 + 𝑊 2
𝑥

2𝒫

∫︁ ⟨(︃
𝜕𝜑

𝜕𝑥

)︃2⟩
|ℰ0|2 𝑑𝑥. (2.16)

Which means that 𝑀4
𝑥,1 necessarily increases after being transmitted by 𝑆. This can be un-

derstood as higher-order modes being introduced to the wavefront due to the random phase
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mask associated with 𝑆. This transformation can be used to describe weakly and strongly
turbulent media by using the appropriate phase function, such as for light propagation in the
atmosphere (ANDREWS; PHILLIPS; WEEKS, 1997).

2.2.2 Light correlated with phase introduced by random media

The control of light propagation in random media is an important challenge for many
applications. To cite one, wavefront shaping has been recently used to compensate for the
scattering-induced phase distortions introduced by a random medium (HUA et al., 2024).

The ensemble average must be performed more carefully when 𝜑 and Φ are strongly
correlated. In the extreme case of phase-conjugation, where Φ = −𝜑, it is true that

𝑊 2
𝑥/𝑅𝑥,1 = 0, (2.17)

and the divergence angle assumes a minimal value independent of any randomness in 𝜑.
Equation 2.13 shows that a phase conjugated field has a minimum divergence which depends
only on the beam amplitude profile,

Θ2
𝑥,𝑚𝑖𝑛 = 2

𝑘2𝒫

∫︁ ⃒⃒⃒⃒
⃒𝜕|ℰ0|
𝜕𝑥

⃒⃒⃒⃒
⃒
2

𝑑𝑥. (2.18)

Now consider a simple correlation between the field and the phase introduced by the
random media, such that Φ = 𝑢𝜑, where 𝑢 is a real constant. From Equations (2.11) and
(2.13), it possible to obtain

𝑊 2
𝑥

𝑅𝑥,1
= (1 + 𝑢) 𝑊

2
𝑥

𝑅𝑥,0
, (2.19)

Θ2
𝑥,1 = (1 + 𝑢)2

(︁
Θ2

𝑥,0 − Θ2
𝑥,𝑚𝑖𝑛

)︁
+ Θ2

𝑥,𝑚𝑖𝑛, (2.20)

whose substitution in Equation (2.9) allows the comparison between the initial and final prop-
agation factors as

𝑀4
𝑥,1 = (1 + 𝑢)2𝑀4

𝑥,0 −
𝑘2𝑊 2

𝑥 Θ2
𝑥,𝑚𝑖𝑛

4 (𝑢2 + 2𝑢). (2.21)

Equations (2.19)-(2.21) are simpler to understand in the limit of several initial and final
modes, where

Θ2
𝑥,0,Θ2

𝑥,1 ≫ Θ2
𝑥,𝑚𝑖𝑛. (2.22)

In this situation, both Θ2
𝑥,1 and 𝑀4

𝑥,1 become proportional to (1 + 𝑢)2, and their magnitudes
decrease after the phase mask only when −2 < 𝑢 < 0. Complementary, Θ2

𝑥,1 and 𝑀4
𝑥,1 increase
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either when 𝑢 > 0 or 𝑢 < −2. This means that, for a field correlated with the random medium,
the energy transformation becomes

𝑈1 = 𝑈0 + Δ𝑈 ≥ 𝑘

4Θ2
𝑥,𝑚𝑖𝑛. (2.23)

Therefore, notice that a wavefront correlated with the random media allows to have Δ𝑈 > 0

or Δ𝑈 < 0, such the energy may increase or decrease (respecting the lower bound introduced
by 𝜃𝑚𝑖𝑛).

2.2.3 Multiple passages through thin random media

Now it will be considered the case where the beam passes through the phase screen multiple
times, as in a laser cavity. Phase variations, 𝜑, can arise from effects such as imperfections in
optical components, mechanical vibrations, temperature gradients, or current self-distribution
in laser diodes. In the stationary cavity regime, Section 2.2.1 suggests that when the wavefront
Φ is uncorrelated with the phase 𝜑 introduced by the random medium, then 𝑈 increases for
each cavity roundtrip.

This behavior is not consistent with a stationary field profile and implies that Φ and 𝜑

must exhibit some degree of correlation. The stationary field behavior within a cavity requires
that some optical elements contribute with Δ𝑈 > 0, while others must impose Δ𝑈 < 0.
Stability after a single roundtrip requires ∑︀𝑗 Δ𝑈𝑗 = 0, where Δ𝑈𝑗 corresponds to the 𝑗-th
optical element encountered in a roundtrip. This process can be considered as one in which
the wavefront effective energy is not conserved at each small process, but has a well defined
stationary value after circulation several times within the cavity.

2.3 DEFINITION OF TEMPERATURE-LIKE PARAMETER TO A LIGHT BEAM

By utilizing statistical mechanics principles, it is possible to define a temperature-like pa-
rameter that characterizes the distribution of spatial modes in an arbitrary beam. That is
useful for retrieving additional information about an arbitrary optical system, as well as to
characterize imperfections added to a given experimental setup as discussed in Section 2.2,
using only a snapshot of the beam wavefront. The following section describes how an effective
temperature of a beam can be defined and the physical meaning behind such a parameter in
an optical system.
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To start this analysis, a complete basis of modes can describe the wavefront of a beam.
Since the Hermite-Gauss (HG) modes are directly connected with the laser modes (KOGELNIK;

LI, 1966), they are useful for describing the beam properties when propagating in free-space.
An HG beam, has a finite width 𝑤0 and can be related with the quantum harmonic oscillator
(NIENHUIS; ALLEN, 1993). For a beam propagating in free-space, 𝑤0 is a free parameter.
To specify it, the relation between 𝑤0 and the intensity beam moments up to second order
(BEKSHAEV, 2006) is used here. The following analysis considers only the propagation in the
𝑧-direction, the analogous results for more dimensions can be found at (NIENHUIS, 2017).

To perform a coherent-mode representation (OSTROVSKY, 2006) of a beam propagating
along the 𝑧-axis such that 𝑧 = 0, the wavefront envelope is defined as

ℰ(𝑥) =
∞∑︁

𝑛=0
𝑎𝑛𝜓𝑛(𝑥), (2.24)

where 𝑎𝑛 is the complex amplitude of the normalized mode 𝜓𝑛(𝑥), and the normalization is
∞∑︁

𝑛=0
|𝑎𝑛|2 = 1. (2.25)

For the HG basis, the mode can be written as

𝜓𝑛(𝑥) =
(︃

2
𝜋𝑤2

0

)︃1/4 1√
2𝑛𝑛!

𝐻𝑛

(︃√
2𝑥
𝑤0

)︃
𝑒

− 𝑥2
𝑤2

0 . (2.26)

Furthermore, it is possible to define 𝑥 and 𝑝𝑥/𝑘 as the first-order moments that represent
the beam centroid and mean angle relative to the propagation axis, respectively. In terms of
ℰ(𝑥), the average of the first-order moments are

𝑥 =
∫︁
𝑑𝑥 ℰ*(𝑥)𝑥ℰ(𝑥), (2.27)

and
𝑝𝑥 =

∫︁
𝑑𝑝𝑥 ℰ̃*(𝑝𝑥)𝑝𝑥ℰ̃(𝑝𝑥), (2.28)

where ℰ̃(𝑝𝑥) corresponds to the Fourier transform of ℰ(𝑥). The following section is dedicated
to obtaining the first and second-order moments for an HG basis.

2.3.1 Calculation of first and second-order moments

The following calculation is strongly inspired in the formalism introduced in (NIENHUIS;

ALLEN, 1993), 𝑥̂, 𝑝 as operators and their commutator satisfying [𝑥̂, 𝑝] = 𝑖 are defined. For an
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arbitrary wavefront state at a plane 𝑧, |ℰ(𝑧)⟩, the paraxial equation in free-space is

−𝑖 𝑑
𝑑𝑧

|ℰ(𝑧)⟩ = 𝐻0|ℰ(𝑧)⟩, 𝐻0 = 𝑝2

2𝑘 , (2.29)

where 𝑘 is the wavenumber, 𝑝 ≡ −𝑖 𝜕
𝜕𝑥

, 𝑝2

2𝑘
≡ − 1

2𝑘
𝑑2

𝑑𝑥2 , and the operator 𝐻0 corresponds to
the linear diffraction term.

The general solution for the free-space propagation problem in a Heisenberg operator
representation is

|ℰ(𝑧)⟩ = 𝑈̂(𝑧)|ℰ(0)⟩, 𝑈̂(𝑧) = 𝑒
𝑖

2𝑘
𝑝2𝑧. (2.30)

By direct analogy with the classical harmonic oscillator, a characteristic transverse scale 𝑏 is
defined to generate a set of localized modes

𝐻̂ = 𝑝2

2𝑘 + 𝑘

2
𝑥̂2

𝑏2 , (2.31)

where at this step 𝑏 is a free-parameter.
Now, the ladder operators are introduced at the 𝑧 = 0 plane and defined as

𝑎̂(0) =
√︃
𝑘

2𝑏

(︃
𝑥̂+ 𝑖

𝑝

𝑘
𝑏

)︃
, 𝑎̂†(0) =

√︃
𝑘

2𝑏

(︃
𝑥̂− 𝑖

𝑝

𝑘
𝑏

)︃
, (2.32)

and the following identities hold

[𝑎̂(0), 𝑎̂†(0)] = 1, 𝑎̂†(0)𝑎̂(0) + 1
2 = 𝑏𝐻̂. (2.33)

The operators in Equation (2.32), defined at 𝑧 = 0, can produce a complete basis of prop-
agating HG modes. The relations in Equation (2.33) are still valid when using the Heisenberg
operator picture, which allows the verification of Equation (2.33) upon propagation at an ar-
bitrary 𝑧-plane. To alter from the Schrödinger picture to the Heisenberg picture, the following
transformation is used

𝑂̂𝐻(𝑧) = 𝑈̂ †(𝑧)𝑂̂𝑆𝑈̂(𝑧), (2.34)

where 𝑂̂𝑆 is the Schrödinger picture operator and 𝑂̂𝐻(𝑧) is the Heisenberg picture operator.
Particularly, this transformation for 𝑥̂ and 𝑝 can be written as

𝑥̂(𝑧) = 𝑈̂ †(𝑧)𝑥̂𝑈̂(𝑧) = 𝑥̂− 𝑝

𝑘
𝑧, (2.35)

𝑝(𝑧) = 𝑈̂ †(𝑧)𝑝𝑈̂(𝑧) = 𝑝 (2.36)
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Which when applied to Equation (2.32), can describe the propagation of the beam in the
𝑧-direction,

𝑎̂(𝑧) =
√︃
𝑘

2𝑏

[︃
𝑥̂− 𝑝

𝑘
(𝑧 − 𝑖𝑏)

]︃
, (2.37)

𝑎̂†(𝑧) =
√︃
𝑘

2𝑏

[︃
𝑥̂− 𝑝

𝑘
(𝑧 + 𝑖𝑏)

]︃
. (2.38)

Retrieving the identities in Equation (2.33), that are now valid at all z-planes,

[𝑎̂(𝑧), 𝑎̂†(𝑧)] = 1, 𝑎̂†(𝑧)𝑎̂(𝑧) + 1
2 = 𝑏𝐻̂(𝑧). (2.39)

In an optical system, 𝑥̂(𝑧) and 𝑝(𝑧)/𝑘 correspond to the beam coordinate and angle
relative to the propagation axis, respectively. Such a connection between wave operators and
geometrical opticals were previously established, and can be found for example at (NAZARATHY;

SHAMIR, 1982) and (NAZARATHY; SHAMIR, 1982).
The commutator in Equation (2.39) determines that the spectrum of the number operator

𝑛̂(𝑧) = 𝑎̂†(𝑧)𝑎̂(𝑧) is composed of natural numbers and that it is preserved upon propagation,
𝑛̂(𝑧)|𝑛⟩ = 𝑛|𝑛⟩. The raising and lowering operators acts on |𝑛⟩ as

𝑎̂(𝑧)|𝑛⟩ =
√
𝑛|𝑛− 1⟩, 𝑎̂†(𝑧)|𝑛⟩ =

√
𝑛+ 1|𝑛+ 1⟩. (2.40)

The lowest eigenvalue is 𝑛̂|0⟩ = 0|0⟩ = 0, which defines the fundamental Gaussian mode on
this basis. The condition 𝑎̂(𝑧)|0⟩ = 0 establishes the value of 𝑏 as

𝑏 = 𝑧0 = 𝑘𝑤2
0

2 , (2.41)

for a mode with a waist 𝑤0 and where 𝑧0 is the Rayleigh length of the fundamental mode.
𝑎̂(𝑧)|0⟩ = 0 also establishes a complex beam parameter,

𝑞(𝑧) = 𝑧 − 𝑖𝑏 = 𝑧 − 𝑖𝑧0. (2.42)

With the ladder operators, an arbitrary wavefront state |ℰ(𝑧)⟩ is defined anywhere as

|ℰ(𝑧)⟩ =
∞∑︁

𝑛=0
𝑎𝑛|𝑛(𝑧)⟩, |𝑛(𝑧)⟩ =

[︁
𝑎̂†(𝑧)

]︁𝑛
√
𝑛!

|0(𝑧)⟩. (2.43)

For the beam’s transverse operators, it can be shown from Equations (2.37) and (2.38) that

𝑎̂(𝑧) = 1
𝑤0

[︃
𝑥̂− 𝑝

𝑘
𝑞(𝑧)

]︃
, (2.44)

𝑎̂†(𝑧) = 1
𝑤0

[︃
𝑥̂− 𝑝

𝑘
𝑞*(𝑧)

]︃
, (2.45)

𝑥̂(𝑧) = 𝑤0

2
[︁
𝑎̂(𝑧) + 𝑎̂†(𝑧)

]︁
+ 𝑝(𝑧)

𝑘
𝑧, (2.46)

𝑝(𝑧) = 1
𝑖𝑤0

[︁
𝑎̂(𝑧) − 𝑎̂†(𝑧)

]︁
. (2.47)
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Since the analysis does not change significantly upon propagation, 𝑧 = 0 is considered
from this point. The integrals in Equation (2.27) and (2.28), can be calculated directly and
to write them in terms of operators, some algebra is needed, as it follows,

𝑥 = ⟨ℰ|𝑥̂|ℰ⟩ = 𝑤0ℜ(𝐾𝑥), 𝑝 = ⟨ℰ|𝑝|ℰ⟩ = 2
𝑤0

ℑ(𝐾𝑥), (2.48)

where
𝐾𝑥 = ⟨ℰ|𝑎̂|ℰ⟩ = 𝐾𝑥 =

∞∑︁
𝑛=0

√
𝑛+ 1𝑎*

𝑛𝑎𝑛+1 (2.49)

The first-order moments, 𝑥 and 𝑝, are related to the ray-like properties of the beam. The
second-order moments are associated with effective wavefront parameters and their propaga-
tion. 𝑥2 is related to the effective beam width at the reference plane, while 𝑥2(𝑧) generalizes
it to arbitrary 𝑧 planes. Separating 𝑥2(𝑧) in powers of 𝑧, two other operator combinations can
be considered, (𝑥̂𝑝+ 𝑝𝑥̂)/𝑘, which is related to an effective curvature radius, and 𝑝2/𝑘2 which
is related to an effective divergence angle. Using Equations (2.46) and (2.47) it can be shown
that

𝑥̂2 = ⟨ℰ|𝑥̂2|ℰ⟩ = 𝑤2
0

4
[︁
𝑀2

𝑥 + 2ℜ (𝐿𝑥)
]︁
, (2.50)

𝑝2 = ⟨ℰ|𝑝2|ℰ⟩ = 1
𝑤2

0

[︁
𝑀2

𝑥 − 2ℜ (𝐿𝑥)
]︁
, (2.51)

𝑥̂𝑝+ 𝑝𝑥̂ = ⟨ℰ|𝑥̂𝑝+ 𝑝𝑥̂|ℰ⟩ = 2ℑ (𝐿𝑥) , (2.52)

𝐿𝑥 = ⟨ℰ|𝑎̂2|ℰ⟩ =
∞∑︁

𝑛=0

√︁
(𝑛+ 2)(𝑛+ 1)𝑎*

𝑛𝑎𝑛+2, (2.53)

𝑀2
𝑥 = ⟨ℰ|2𝑎̂†𝑎̂+ 1|ℰ⟩ = 2

∞∑︁
𝑛=0

(︂
𝑛+ 1

2

)︂
|𝑎𝑛|2. (2.54)

from the equations above, one can observe that the first and second-order moments depend on
three parameters 𝐾𝑥, 𝐿𝑥, and 𝑀𝑥. However, only 𝑀𝑥 is non-zero on average when the phases
between 𝑎𝑛 and 𝑎𝑚 vary randomly, since < 𝑎*

𝑛𝑎𝑛+1 >= 0 and < 𝑎*
𝑛𝑎𝑛+2 >= 0. Therefore, up

to second-order in the beam moments, there are only two parameters to describe the beam,
𝑤0 and 𝑀𝑥.

2.3.2 Definition of a temperature-like parameter for a beam

Defining the experimental beam width (ISO Standard 11146-1:2021, 2021) as

𝑊𝑥 = 𝑤0

√︁
𝑀2

𝑥 , (2.55)
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which specify𝑊𝑥 the geometrical parameter of the beam, while𝑀2
𝑥 accounts for the incoherent

properties of the beam wavefront. 𝑀2
𝑥 (SIEGMAN, 1993) is the beam quality factor or beam

propagation parameter, its properties account for the presence of higher spatial modes other
than the pure Gaussian on a beam wavefront. 𝑀2

𝑥 vary from 1 to ∞, with 1 being a purely
Gaussian beam, and as the value of 𝑀2

𝑥 grows, so does the presence of higher spatial modes,
which increases the presence of speckle-like patterns on the beam wavefront (Figure 2).

Figure 2 – Different values of 𝑀2
𝑥 . (a) An almost purely Gaussian beam. (b) The presence of higher spatial

modes gives the wavefront a speckle-like appearance.

Source: Author (2024)

Since 𝑀2
𝑥 is defined by a sum of infinite amplitudes 𝑎𝑛, there are infinite possibilities for

setting this sum. Among such sums, there is one in which the 𝑎𝑛 requires a minimal amount
of information to be completely specified. To account for the minimal information wanted to
specify such a set of 𝑎𝑛, an entropy-like quantity is defined and subjected to the constraints
of a fixed 𝑀2

𝑥 and normalization, which gives

𝑄 = −
∑︁

𝑛

|𝑎𝑛|2 log |𝑎𝑛|2 + 𝛾

(︃
1 −

∑︁
𝑛

|𝑎𝑛|2
)︃

+ 𝛽

[︃
𝑀2

𝑥 − 2
∑︁

𝑛

(︂
𝑛+ 1

2

)︂
|𝑎𝑛|2

]︃
, (2.56)

where 𝛾 and 𝛽 are Lagrange multipliers (Wu et al. (2020)). Equation 2.56 is the Gibbs’
entropy subjected to the constraints of a normalized 𝑎𝑛 and a fixed 𝑀2

𝑥 , which multiplies
the Lagrange multiplier 𝛾 and 𝛽, respectively. Gibbs’ entropy is used instead of Boltzmann’s
entropy because the process which leads to thermalization, such as the beam within a laser
cavity, does not maintain the wavefront energy constant, but is more similar to a process in
which the temperature is kept constant.

This entropy is then maximized, leading to

|𝑎𝑛| = 𝑁𝑐𝑛, (2.57)

where 𝑁 = exp [−(𝛼 + 𝛽 + 1)/2] and 𝑐 = exp(−𝛽). The normalization constraint in Equation
(2.56), allows to write the relation 𝑁2 = 1−𝑐2, while the 𝑀2

𝑥 constraint can be used to obtain
𝑐2 and 𝑁2 in terms of 𝑀2

𝑥 ,
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𝑁2 = 2
𝑀2

𝑥 + 1 = 1 − 𝑒−2𝛽, (2.58)

𝑐2 = 𝑀2
𝑥 − 1

𝑀2
𝑥 + 1 = 𝑒−2𝛽. (2.59)

Since the Lagrange multiplier 𝛽 is related to the inverse of a temperature-like quantity, it
is possible to write

𝛽 = 1
𝑇𝑥

= 1
2 ln

(︃
𝑀2

𝑥 + 1
𝑀2

𝑥 − 1

)︃
. (2.60)

Equation 2.60 states that there is a direct relation between 𝑇𝑥 and 𝑀2
𝑥 (Figure 3). This implies

that a beam with a specific 𝑀2
𝑥 also has an effective temperature 𝑇𝑥. And not only that, from

Equation (2.55), 𝑀2
𝑥 is directly linked to the beam geometrical parameter, or beam waist 𝑊𝑥.

The relation between 𝑀2
𝑥 and 𝑇𝑥 also implies that as long as the beam has a finite width,

which is true for all real beams, an effective temperature 𝑇𝑥 can also be defined.

Figure 3 – Relation between the beam quality factor, 𝑀2
𝑥 and an effective temperature 𝑇𝑥 of the beam.

Source: Author (2024)

𝑇𝑥 can also be understood as a measurement of the occupancy of spatial modes of a
beam. A "cold" beam (𝑇𝑥 ≈ 0 or 𝑀2

𝑥 ≈ 1) means an almost purely Gaussian beam. While a
"hot" beam (0 ≪ 𝑇𝑥 ≈ 𝑀2

𝑥), has more modes occupied. As the 𝑀2
𝑥 goes higher, so does the

occupancy of higher spatial modes.
The occupancy of the spatial modes can also be observed through the amplitudes 𝑎𝑛,

|𝑎𝑛|2 = 2 (𝑀2
𝑥 − 1)𝑛

(𝑀2
𝑥 + 1)𝑛+1 . (2.61)

When 𝑀2
𝑥 ≤ 2, a "cold" beam is characterized, and the lower spatial modes dominate the

mode occupancy. As 𝑀2
𝑥 increases so does the presence of higher spatial modes (Figure 4).
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Figure 4 – The mode occupancy in terms of |𝑎𝑛|2. (a) Represents the mode occupancy of the four lowest
modes, showing that for 𝑀2

𝑥 ≤ 2 the beam is almost a pure Gaussian beam. (b) Shows the mode
occupancy in terms of 𝑀2

𝑥 .

Source: Author (2024)
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3 STATISTICAL ANALYSIS OF AN BEAM ENSEMBLE WITH A FIXED M2
x

In the Section 2.3, the use of ladder operators and an entropy-like quantity allows to
define an effective temperature for a light beam. This implies that a given occupation of
spatial modes defines an effective temperature 𝑇𝑥, precisely. This means that for a given 𝑇𝑥,
the series which represents the spatial modes can be truncated. For a specific 𝑇𝑥, only a finite
number of n modes are relevant, higher modes than n can be disregarded. However, while
|𝑎𝑛|2 is determined for a given temperature, different combinations of 𝑎𝑛 = |𝑎𝑛|𝑒𝑖𝜑𝑛 can be
used to represent a given 𝑇𝑥 since 𝜑𝑛 remains as free parameters.

The following section will focus on studying how statistical analysis of the beam wave-
front allows the gain of information regarding the beam propagation. Since a variety of 𝑎𝑛

can characterize a specific 𝑇𝑥. An ensemble of beams defined by its 𝑇𝑥 can be statistically
analyzed and information regarding the beam propagation is uncovered. Moreover, through
the analysis of the beam intensity profile one can also infer the effective beam temperature 𝑇𝑥

and beam quality factor 𝑀2
𝑥 , through connections with the Gaussian Schell-model. Finally, the

analysis of the ensembles can be theoretically predicted through connections with the Fisher
transformation. This shows that a system with a random variable presents different statistical
signatures that account for different ensembles, here fixed by its 𝑇𝑥 or 𝑀2

𝑥 .

3.1 RETRIEVAL OF BEAM QUALITY FACTOR 𝑀2
𝑥 THROUGH THE GAUSSIAN SCHELL-

MODEL

While the experimental retrieval of the complete beam wavefront is a difficult task in an
arbitrary optical system, the beam effective width and divergence angle are relatively easy to
retrieve, requiring only a snapshot of the beam profile (JORGE et al., 2014). Typically the snap-
shot provides information on the intensity profile of the light beam, allowing the measurement
of the effective beam width 𝑊𝑥, which supplies information regarding the beam quality fac-
tor 𝑀2

𝑥 as well (ISO Standard 11146-1:2021, 2021), Equation (2.55). However, a single snapshot
cannot provide complete information about the beam propagation (CRISPIM et al., 2023). In
these conditions, statistical analysis of the wavefront can be a useful tool to access informa-
tion regarding the beam propagation. The following section shows how the well-established
Gaussian Schell-model can be linked with the analysis in Section 2.3, and utilized to extract
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the effective temperature 𝑇𝑥 of a thermodynamic beam light source.
The statistical properties of partially coherent light can be described by the Cross-Spectral

Density (CSD), which for a stationary monochromatic light at z=0, can be written as

𝑊 (𝑥1, 𝑥2) = ⟨ℰ*(𝑥1)ℰ(𝑥2)⟩ (3.1)

=
√︁
𝐼(𝑥1)𝐼(𝑥2)𝜇(|𝑥1 − 𝑥2|), (3.2)

where 𝐼(𝑥𝑖) is the spectral intensity at 𝑥𝑖 and 𝜇(|𝑥1 − 𝑥2|) is the normalized complex degree
of spatial coherence (MANDEL; WOLF, 1976), and indicates the coherence or the correlation
between the fields evaluated at two points 𝑥1 and 𝑥2, which should be 1 at 𝑥1 = 𝑥2. Particularly,
it is possible to obtain the spectral density 𝐼𝑥 of light from the CSD,

𝑊 (𝑥, 𝑥) = 𝐼(𝑥). (3.3)

It is possible to determine Equation (3.1) for an arbitrary light source, and then obtain its
spectral density 𝐼(𝑥) and degree of spatial coherence 𝜇(|𝑥1 − 𝑥2|) through Equation (3.2),
(STARIKOV; WOLF, 1982).

Utilizing the description of a light beam shown in Section 2.3, one can use Equations 2.24
and 3.1 to write,

𝑊 (𝑥1, 𝑥2) =
∞∑︁

𝑚,𝑛=0
⟨𝑎*

𝑚𝑎𝑛⟩𝜓*
𝑚(𝑥1)𝜓𝑛(𝑥2). (3.4)

The random relative phases are uniformly distributed, which implies that ⟨𝑎*
𝑚𝑎𝑛⟩ = |𝑎𝑛|2𝛿𝑚,𝑛.

By taking Equation (3.4), the bilinear generating equation (STARIKOV; WOLF, 1982), used to
generate polynomials, here HG polynomials, can be written as

∞∑︁
𝑛=0

𝐻𝑛(𝑥)𝐻𝑛(𝑦) 𝑡
𝑛

𝑛! =
exp

[︁
𝑦2 − (𝑦−2𝑥𝑡)2

1−4𝑡2

]︁
√

1 − 4𝑡2
, (3.5)

where 𝑥 =
√

2𝑥1/𝑤0, 𝑦 =
√

2𝑥2/𝑤0 and 𝑡 = 𝑐2/2. Putting together Equations (2.26) with
(3.5), the sum in Equation (3.4) can be performed. Finally, it can be verified that

1 − 4𝑡2 = 1 − 𝑐4 = 𝑀2
𝑥𝑁

4, (3.6)

such the CSD for the thermodynamic beam can be written as

𝑊 (𝑥1, 𝑥2) =
[︃

2
𝜋𝑊 2

𝑥

]︃1/2

exp
[︃

(𝑥2
2 − 𝑥2

1)𝑀2
𝑥

𝑊 2
𝑥

− 2
𝑊 2

𝑥

1
𝑁4

(︁
𝑥2 − 𝑥1𝑐

2
)︁2
]︃
. (3.7)

where 𝑁 was is given by Equation (2.58).
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To show explicitly how the CSD can describe the properties of the thermodynamic beam,
the relation in Equation (2.60), can be used to express the beam quality factor 𝑀2

𝑥 as a
function of the effective temperature 𝑇𝑥,

𝑀2
𝑥 = coth (1/𝑇𝑥). (3.8)

Which allows to write Equation (3.7), as

𝑊 (𝑥1, 𝑥2) =
[︃

2
𝜋𝑊 2

𝑥

]︃1/2

exp
[︃

(𝑥2
2 − 𝑥2

1)
𝑊 2

𝑥

coth (1/𝑇𝑥) − 2
𝑊 2

𝑥

(︃
𝑥2 − 𝑥1𝑒

−2/𝑇𝑥

1 − 𝑒−2/𝑇𝑥

)︃2⎤⎦ . (3.9)

Two extreme thermodynamic limits (𝑇𝑥 → 0 and 𝑇𝑥 → ∞) can be directly obtained from
Equation (3.9):

1. In The "cold" beam regime, the expected Gaussian behavior is retrieved as 𝑇𝑥 → 0,

𝑊 (𝑥1, 𝑥2) =
[︃

2
𝜋𝑊 2

𝑥

]︃1/2

exp
[︃
−(𝑥2

1 + 𝑥2
2)

𝑊 2
𝑥

]︃
. (3.10)

2. In the limit that 𝑇𝑥 → ∞,

𝑊 (𝑥1, 𝑥2) =
[︃

2
𝜋𝑊 2

𝑥

]︃1/2

exp
[︃
−(𝑥2 − 𝑥1)2

2𝑊 2
𝑥

𝑇 2
𝑥

]︃
→ 0. (3.11)

For the spectral density 𝐼(𝑥) = 𝑊 (𝑥, 𝑥), it is possible to write

𝐼(𝑥) =
∞∑︁

𝑛=0
|𝑎𝑛|2|𝜓𝑛(𝑥)|2 (3.12)

=
(︃

2
𝜋𝑊 2

𝑥

)︃1/2

exp
[︃
−2𝑥2

𝑊 2
𝑥

]︃
, (3.13)

so that 𝐼(𝑥) is a 𝑇𝑥-independent Gaussian-shaped beam. Also, from Equations (3.2) and (3.13)
it is possible to write

𝜇(|𝑥1 − 𝑥2|) = exp
[︃
−𝑀4

𝑥 − 1
2𝑊 2

𝑥

(𝑥1 − 𝑥2)2
]︃
, (3.14)

which, together with Equation (3.13), defines a 1D Gaussian Schell-model field.
Some important physical analysis can be inferred from the previously displayed discussion.

First, the coherence width 𝜎𝜇 is proportional to the beam width and satisfies

𝜎2
𝜇 = 𝑊 2

𝑥

𝑀4
𝑥 − 1 . (3.15)

For a "cold" beam (𝑇𝑥 ≈ 0 and 𝑀2
𝑥 ≈ 1), such that

𝑀4
𝑥 − 1 ≈ 2(𝑀2

𝑥 − 1), (3.16)
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and the coherence width is much larger than the physical beam. While for a "hot" beam
(𝑇𝑥 ≈ 𝑀2

𝑥 ≫ 1), the coherence width 𝜎𝜇 goes with 𝑊𝑥/𝑇𝑥, which accounts for the speckle-
like structures in this regime. This implies that a measure of the transverse beam coherence
width can be used to determine the temperature for "hot" beams. The transition from fully
to partially coherent fields occurs around 𝜎𝜇 = 𝑊𝑥, or 𝑀2

𝑥 =
√

2.
Finally, the mode structure indicated by Equation (2.61) is exactly the same as the one

obtained from Starikov and Wolf (1982), given a proper parameter adjustment. Therefore, the
thermodynamic description of free-space light beams is directly linked with the well-established
theory of partially coherent beams. Particularly, the present description uses 𝑀2

𝑥 to define the
degree of coherence, which allows retrieval of information for coherent and incoherent sources
and introduces the transition between both regimes at 𝑀2

𝑥 =
√

2.
A snapshot of the beam wavefront allows the measurement of the beam intensity profile,

while with the CSD the information is obtained through correlations in the beam. Therefore,
additional information about the optical system can be encoded in the beam intensity profile.
Such information can be retrieved through statistical analysis of the properties of the beam
intensity profile. Figure 5 shows how the beam intensity profile can vary for a fixed 𝑀2

𝑥 ,
indicating that a statistical analysis could be useful when the beam snapshot is available.

Figure 5 – Intensity profiles 𝐼𝛼(𝑥) (blue lines) compared to the ensemble mean 𝐼(𝑥) (yellow filled-region).
While the columns represent a fixed 𝑀2

𝑥 , characterized by its mode occupancy (Equation (2.61)).
The lines represent different ways in which such a mode occupancy appears in the intensity profile
𝐼𝛼(𝑥).

Source: Author (2024)
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To start the analysis the following product is considered

ℰ*(𝑥)ℰ(𝑥) =
∞∑︁

𝑚,𝑛=0
𝑎*

𝑚𝑎𝑛𝜓
*
𝑚(𝑥)𝜓𝑛(𝑥) (3.17)

=
∞∑︁

𝑛=0
|𝑎𝑛|2|𝜓𝑛(𝑥)|2 +

∞∑︁
𝑚,𝑛=0
𝑚 ̸=𝑛

𝑎*
𝑚𝑎𝑛𝜓

*
𝑚(𝑥)𝜓𝑛(𝑥). (3.18)

Here, it is worth mentioning that

𝑎*
𝑚𝑎𝑛 = |𝑎𝑚||𝑎𝑛| exp(𝑖𝜑𝑛 − 𝑖𝜑𝑚), (3.19)

which shows that the mode phases appear only as phase differences. Then the averages must
be performed over phase differences, and not over the phases themselves. Also, the double
sum in Equation (3.18) has both the terms 𝑖, 𝑗, and 𝑗, 𝑖 summed. So, for a set of real basis
functions 𝜓𝑛(𝑥), the imaginary parts of the complex exponentials cancel out, and

exp(𝑖𝜑𝑛 − 𝑖𝜑𝑚) ≡ cos(𝜑𝑛 − 𝜑𝑚), (3.20)

under the sum.
Also, the ensemble mean cancels the second summation because ⟨exp(𝑖𝜑𝑛 − 𝑖𝜑𝑚)⟩ = 𝛿𝑛,𝑚,

and the term 𝑛 = 𝑚 is not in the sum. Because of that,

⟨ℰ*(𝑥)ℰ(𝑥)⟩ =
∞∑︁

𝑛=0
|𝑎𝑛|2|𝜓𝑛(𝑥)|2 = 𝐼(𝑥). (3.21)

For the product

|ℰ(𝑥)|2|ℰ(𝑦)|2 = 𝐼(𝑥)𝐼(𝑦) +
∞∑︁

𝑚,𝑛,𝑝=0
𝑚 ̸=𝑛

𝑎*
𝑚𝑎𝑛|𝑎𝑝|2𝜓*

𝑚(𝑥)𝜓𝑛(𝑥)|𝜓𝑝(𝑦)|2+

∞∑︁
𝑚,𝑛,𝑝=0

𝑚 ̸=𝑛

𝑎*
𝑚𝑎𝑛|𝑎𝑝|2𝜓*

𝑚(𝑦)𝜓𝑛(𝑦)|𝜓𝑝(𝑥)|2 +
∞∑︁

𝑚,𝑛,𝑝,𝑞=0
𝑚 ̸=𝑛,𝑝 ̸=𝑞

𝑎*
𝑚𝑎𝑛𝑎

*
𝑝𝑎𝑞𝜓

*
𝑚(𝑥)𝜓𝑛(𝑥)𝜓*

𝑝(𝑦)𝜓𝑞(𝑦), (3.22)

the terms involving 𝑎*
𝑚𝑎𝑛 are not relevant here, because their ensemble average will return 0.

For the term with 𝑎*
𝑚𝑎𝑛𝑎

*
𝑝𝑎𝑞, the average goes as

⟨
𝑎*

𝑚𝑎𝑛𝑎
*
𝑝𝑎𝑞

⟩
∝ ⟨exp 𝑖(𝜑𝑛 − 𝜑𝑚 + 𝜑𝑞 − 𝜑𝑝)⟩ = 𝛿𝑛,𝑚𝛿𝑞,𝑝 + 𝛿𝑛,𝑝𝛿𝑚,𝑞. (3.23)

The first of these Kronecker deltas is not contained in the sum and can be ignored. This allows
the last summation in Equation (3.22) to be written as

∞∑︁
𝑚,𝑛=0
𝑚̸=𝑛

|𝑎𝑚|2|𝑎𝑛|2𝜓*
𝑚(𝑥)𝜓𝑚(𝑦)𝜓*

𝑛(𝑦)𝜓𝑛(𝑥). (3.24)
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The sum can then be reordered as,

∞∑︁
𝑛=0

|𝑎𝑛|2𝜓*
𝑛(𝑦)𝜓𝑛(𝑥)

⎡⎢⎢⎣ ∞∑︁
𝑚=0
𝑚̸=𝑛

|𝑎𝑚|2𝜓*
𝑚(𝑥)𝜓𝑚(𝑦)

⎤⎥⎥⎦ , (3.25)

where the sum over 𝑚 should be performed first. The constraint 𝑚 ̸= 𝑛 can now be removed
by subtracting |𝑎𝑛|2𝜓*

𝑛(𝑥)𝜓𝑛(𝑦) from the square brackets.
Since 𝑊 (𝑥, 𝑦) = ∑︀∞

𝑚=0 |𝑎𝑚|2𝜓*
𝑚(𝑥)𝜓𝑚(𝑦), the term in Equation (3.25) becomes

∞∑︁
𝑛=0

|𝑎𝑛|2𝜓*
𝑛(𝑦)𝜓𝑛(𝑥)

[︁
𝑊 (𝑥, 𝑦) − |𝑎𝑛|2𝜓*

𝑛(𝑥)𝜓𝑛(𝑦)
]︁
. (3.26)

Finally, it is possible to write ⟨|ℰ(𝑥)|2|ℰ(𝑦)|2⟩ = 𝑅(𝑥, 𝑦) as,

𝑅(𝑥1, 𝑥2) = ⟨ℰ*(𝑥1)ℰ(𝑥1) ℰ*(𝑥2)ℰ(𝑥2)⟩ (3.27)

= 𝐼(𝑥1)𝐼(𝑥2) + |𝑊 (𝑥1, 𝑥2)|2 − 𝐶(𝑥1, 𝑥2), (3.28)

and
𝐶(𝑥1, 𝑥2) =

∞∑︁
𝑛=0

|𝑎𝑛|4|𝜓𝑛(𝑥1)|2|𝜓𝑛(𝑥2)|2. (3.29)

In the limit 𝑀2
𝑥 ≫ 1,

𝐶(𝑥1, 𝑥2) = 4
𝑇 2

𝑥

∞∑︁
𝑛=0

|𝜓𝑛(𝑥1)|2|𝜓𝑛(𝑥2)|2 → 0. (3.30)

Since 𝐶(𝑥1, 𝑥2) ≈ 0, the intensity statistics are well defined in terms of the CSD in the large
temperature limit.

𝐶(𝑥1, 𝑥2) arises in Equation (3.28) from the ensemble averages over phase differences.
Therefore 𝐶(𝑥1, 𝑥2) can be easily overlooked because it only becomes significant in the limit
of 2 to 3 modes. Also, since 𝐶(𝑥1, 𝑥2) contains mode amplitudes raised to the fourth power
if there is a mode 𝑗 which |𝑎𝑗|2 ≈ 1 then |𝑎𝑗|4 ≈ 1 and 𝐶(𝑥1, 𝑥2) ≫ 0.

Now, if |𝑎𝑛|2 ≪ 1 for all modes, then |𝑎𝑛|4 will be even smaller and 𝑅(𝑥1, 𝑥2) from Equation
(3.29) becomes negligible. Particularly, for a beam with a poor quality factor such as 𝑀2

𝑥 > 19,
𝐶(𝑥1, 𝑥2) is negligible because the largest mode amplitude |𝑎0|2 = 2/(𝑀2

𝑥 + 1) < 0.1.
However, the description presented in this section does not describe well the coherence

state of a beam with only a few relevant modes. Because, for a single occupied mode 𝑗,
Equation (3.25) is approximately zero. As |𝑎𝑗|2 always appears multiplied by |𝑎𝑚 ̸=𝑗|2 ≈ 0,
such that

𝑅(𝑥, 𝑦) ≈ 𝐼(𝑥)𝐼(𝑦). (3.31)
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Since Equation (3.31) describes a thermodynamic beam in the few modes limit, the statisti-
cal information available does not identify any signatures of the beam coherence state. The
statistical content of the beam is encoded in 𝑀2

𝑥 , which is not present in Equation (3.13).
This can be observed in Figure 6. The contributions of each parameter in the expression

describing 𝑅(𝑥1, 𝑥2) (Equation (3.28)) can be analyzed. The contributions due to 𝐶 (solid
lines) have longer tails than those due to |𝑊 |2 (dashed lines). This distinction is particularly
clear when 𝑀2

𝑥 ≥ 1.41. And even more expressively, 𝑀2
𝑥 ≈ 1, both curves are essentially

identical. The information about 𝑀2
𝑥 is located where the field amplitude is very small. Also,

|𝑊 |2 and −𝐶 cancel each other in this limit, making it very difficult to distinguish 𝑀2
𝑥 and

retrieve the associated temperature.

Figure 6 – Each term of Equation (3.28) is plotted.
∫︀

|𝑊 (𝑥, 𝑥 + Δ𝑥)|2 𝑑𝑥 (dashed red lines) and
∫︀

𝐶(𝑥, 𝑥 +
Δ𝑥) 𝑑𝑥 (solid blue lines) are shown as functions of Δ𝑥 (horizontal axis). The ensemble means
𝐼(𝑥) is also plotted for reference (yellow-filled region). Each term in Equation (3.28) has a spatial
correlation that depends on 𝑀2

𝑥 . For small 𝑀2
𝑥 , the distance between the dashed and solid lines

implies that the intensity autocorrelation is inappropriate to measure 𝑀2
𝑥 .

Source: Author (2024)

3.2 STATISTICAL ANALYSIS OF ENSEMBLES WITH A FIXED 𝑀2
𝑥

To properly analyze statistically the wavefront of a beam, even in the limit of few modes
(𝑀2

𝑥 ≈ 1), the deviations from the ensemble average behavior are used to enhance the response
associated with 𝑀2

𝑥 , utilizing concepts from photonic glassy systems (PIERANGELI et al., 2017).
The thermodynamic beam described in Section 2.3.2 has a fixed 𝑀2

𝑥 and 𝑊 2
𝑥 . Suppose

that such a beam can be fabricated 𝛼-times, with 𝛼(= 1, 2, . . . ). From Equation (2.24), the
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field state 𝛼 can be written as,

ℰ𝛼(𝑥) =
∞∑︁

𝑛=0
𝑎𝛼

𝑛𝜓𝑛(𝑥). (3.32)

For each state 𝛼 the coefficients 𝑎𝛼
𝑛 = |𝑎𝑛|𝑒𝑖𝜑𝛼

𝑛 are distinguished from each other by their
particular set of phases 𝜑𝛼

𝑛, which remain fixed during the state measurement. Also, the
phases of distinct states 𝛼 and 𝛽 are statistically independent, while for a given 𝑀2

𝑥 the mode
amplitude |𝑎𝑛| remains constant over different states, as can be seen in Equation (2.61).

The intensity profile for the state 𝛼 is

𝐼𝛼(𝑥) = ℰ*
𝛼(𝑥)ℰ𝛼(𝑥) = 𝐼(𝑥) +

∞∑︁
𝑚,𝑛=0
𝑚 ̸=𝑛

𝑎𝛼*
𝑚 𝑎𝛼

𝑛𝜓
*
𝑚(𝑥)𝜓𝑛(𝑥), (3.33)

where 𝐼(𝑥) corresponds to the ensemble average of the intensity profile. However, the double
sum in Equation (3.33) depends on the mode state phases, and so the fluctuations regarding
the ensemble average,

Δ𝛼(𝑥) = 𝐼𝛼(𝑥) − 𝐼(𝑥), (3.34)

carry information about the interference among modes in the state 𝛼.
Additionally, since ⟨Δ𝛼(𝑥)⟩ = 0, the comparison of the sum in Equation (3.33) with

Equation (3.22) leads to the average correlation between fluctuations regarding points 𝑥1 and
𝑥2 in the same state 𝛼, which is given by

⟨Δ𝛼(𝑥1)Δ𝛼(𝑥2)⟩ = |𝑊 (𝑥1, 𝑥2)|2 − 𝐶(𝑥1, 𝑥2). (3.35)

The analysis of the wavefront states allows the retrieval of different information than that
on Equation (3.35), which is particularly useful for small 𝑀2

𝑥 values since the description
requires only a few coherent modes. Specifically, the Pearson correlation coefficient between
distinct states, 𝛼 and 𝛽,

𝑟𝛼𝛽 =
∫︀

Δ𝛼(𝑥)Δ𝛽(𝑥)𝑑𝑥√︁∫︀
[Δ𝛼(𝑥)]2 𝑑𝑥

√︁∫︀
[Δ𝛽(𝑥)]2 𝑑𝑥

, (3.36)

measures the correlation between fluctuations associated with the wavefronts 𝛼 and 𝛽 across 𝑥.
The parameter 𝑟𝛼𝛽 is normalized such that −1 ≤ 𝑟𝛼𝛽 ≤ 1, and the consideration of all distinct
pairs of states creates a distribution 𝑃 (𝑟) of 𝑟𝛼𝛽-values. The Pearson correlation coefficient
is introduced here as a complementary way of retrieving the coherence state of an ensemble,
particularly in the case of nearly coherent beams.
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Some particular cases are explicitly analyzed to better understand the information obtained
from the distribution 𝑃 (𝑟).

1. If the beam has just a single mode, 𝐼𝛼(𝑥) = 𝐼(𝑥) for all states, then Δ(𝛼)(𝑥) = 0 and
only 𝑟𝛼𝛽 = 0 will be observed. This means that 𝑃 (𝑟) is a Dirac delta distribution.

2. If Δ𝛼(𝑥) varies completely randomly fashion, there is a large number of occupied modes,
then the central limit theorem indicates that the sum associated with Δ𝛼(𝑥)Δ𝛽(𝑥) is statis-
tically described by a Gaussian distribution centered at zero.

3. If Δ𝛼(𝑥) and Δ𝛽(𝑥) are strongly (anti-) correlated, so that the extreme value (𝑟𝛼𝛽 =

−1) 𝑟𝛼𝛽 = 1 is reached. This represents a system approximated by two modes because for the
state ℰ𝛼(𝑥) = 𝑎0𝜓0(𝑥) + 𝑎1𝜓1(𝑥), the phase variation Δ𝜑𝛼 = 𝜑𝛼

1 − 𝜑𝛼
0 and mode 𝜓𝑛(𝑥) real,

allows Equation (3.36) to be written as

𝑟
(2 modes)
𝛼𝛽 = cos Δ𝜑𝛼

| cos Δ𝜑𝛼|
cos Δ𝜑𝛽

| cos Δ𝜑𝛽|
= ±1. (3.37)

To explicitly show the nuances of such a distribution, eight 𝛼 states are analyzed through
the ratio 𝐼𝛼(𝑥)/𝐼(𝑥) (PIERANGELI et al., 2017), Figure 7.

Figure 7 – The intensity profile 𝐼𝛼(𝑥) (solid colored lines), normalized by the average intensity 𝐼(𝑥) (black
dashed lines) is plotted as a function of the normalized distance 𝑥

𝑊𝑥
for various 𝑀2

𝑥 values. Each
colored solid line represents one of the possible state alpha for a fixed 𝑀2

𝑥 . In the few modes
regime (𝑀2

𝑥 = 1.05), two groups of lines can be observed, which leads in Equation (3.36) to a fully
correlated (𝑟𝛼𝛽 = +1) or anticorrelated (𝑟𝛼𝛽 = −1) states. As the number of modes increases,
so does the 𝑀2

𝑥 value. This also increases the randomness, leading to a reduction of the absolute
values of 𝑟𝛼𝛽 .

Source: Author (2024)

The dashed horizontal lines in Figure 7 show the average intensity 𝐼(𝑥), from which the
fluctuations Δ𝛼(𝑥) can be inferred as a function of 𝑥 (Equation (3.34)). In the few modes
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or low-temperature regime (𝑀2
𝑥 = 1.05) two separate groups of lines remain well defined

for the whole range of 𝑥. In this situation, if states 𝛼 and 𝛽 belong to the same group,
then Δ𝛼(𝑥)Δ𝛽(𝑥) > 0 for all 𝑥, from Equation (3.36) the maximum value 𝑟𝛼𝛽 = +1 (full
correlation). However if 𝛼 and 𝛽 belong to different groups, then Δ𝛼(𝑥)Δ𝛽(𝑥) < 0 for all
𝑥 and 𝑟𝛼𝛽 = −1 (full anticorrelation). Physically this means that the beam wanders around
𝑥 = 0.

When more modes are added, implying higher 𝑀2
𝑥 (and 𝑇𝑥) values, the randomness of

Δ𝛼(𝑥)Δ𝛽(𝑥) around 𝐼(𝑥) also increases. Which leads to fluctuations in Δ𝛼(𝑥)Δ𝛽(𝑥) and 𝑟𝛼𝛽

to decrease in absolute value.
This section focused on utilizing the Pearson correlation parameter Equation (3.36) to

obtain a distribution 𝑃 (𝑟). This distribution encodes statistical information regarding the
state of coherence of a beam, from regimes of few to a large number of available spatial
modes. All of this information can be retrieved only with snapshots of the beam wavefront.
The different 𝑃 (𝑟) distributions obtained can be theoretically predicted through the central
limit theorem. The following section shows how the distribution profiles can be predicted,
utilizing only statistical arguments.

3.3 PREDICTION OF ENSEMBLES DISTRIBUTIONS THROUGH FISHER TRANSFORM

The distribution 𝑃 (𝑟) can be approximately predicted by noticing from the central limit
theorem that it should converge to a Gaussian as the number of terms increases in the sum
in 𝑥 in Equation (3.36). The convergence rate depends on the details of the distributions for
Δ𝛼(𝑥) and Δ𝛽(𝑥), but it has been previously shown that the Fisher transform (HOTELLING,
2018),

𝑧𝛼𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ (𝑟𝛼𝛽) (3.38)

accelerates this convergence. Since 𝑧𝛼𝛽 is Gaussian distributed, with mean 𝜇 and variance 𝜎2,
the inverse Fisher transform can be taken to obtain the distribution (RAPOSO et al., 2019),

𝑃 (𝑟) = 1√
2𝜋𝜎2

1
1 − 𝑟2 exp

{︃
− [𝑎𝑟𝑐𝑡𝑎𝑛ℎ (𝑟) − 𝜇]2

2𝜎2

}︃
. (3.39)

The characteristics of interest of the distribution Equation (3.39) are shown in Figure
8. When the variance of the correlations is large, 𝑃 (𝑟) is strongly peaked around 𝑟 = ±1,
as expected for the thermodynamic beam in the few modes regime (low 𝑀2

𝑥 and 𝑇𝑥). A
decrease in 𝜎 leads to a zero-centered Gaussian distribution, consistent with the many modes
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regime (high 𝑀2
𝑥 and 𝑇𝑥). In this way, Equation (3.39) approximates the behavior of the 𝑟𝛼𝛽

distribution for all 𝑀2
𝑥 values.

Figure 8 – The normalized 𝑃 (𝑟) distribution in Equation (3.39) is plotted as a function of 𝑟, (−1 ≤ 𝑟 ≤ 1).
Here 𝜇 = 0 for all samples.

Source: Author (2024)

Finally, some numerical simulations of Equation (3.36) have been made with the ther-
modynamic beam for different values of 𝑀2

𝑥 . The obtained 𝑃 (𝑟) were then fitted with the
distribution from Equation (3.39). Some observations can be made from it:

1. The mean 𝜇 ≈ 0 was obtained for the whole range 𝑀2
𝑥 ∈ [1.01, 5.00], while the best-fit

values for 𝜎 are shown in the blue line in Figure 9.
2. There is an approximate dependence 𝜎 ≈ 1

𝑀2
𝑥

for 𝑀2
𝑥 > 1.4, in this situation the mode

temperature can be readily estimated for beams effectively containing more than two modes.
A finer analysis of the large-𝑀2

𝑥 asymptotic behavior data indicates that 𝜎 ≈ (1/𝑀2
𝑥)1.06

describes more closely the relation between 𝜎 and 𝑀2
𝑥 in this regime. While in the limit of

only two modes, the distribution 𝑃 (𝑟) becomes strongly peaked at the side extremes 𝑟 = ±1 (
Equation (3.37)). This case is far from the large-𝑀2

𝑥 asymptotic behavior in Figure 9. However,
the product 𝑀2

𝑥𝜎 increases fast when 𝑀2
𝑥 → 1, so that the empirical function with a low-𝑀2

𝑥

correction to the behavior (1/𝑀2
𝑥)1.06,

𝑓(𝑀2
𝑥) = 1

(𝑀2
𝑥)1.06

(︁
0.06𝑇−2.3

𝑥 + 1
)︁
, (3.40)

matches the data of 𝜎 in both 𝑀2
𝑥 → 1, and large 𝑀2

𝑥 limits, as can be seen in Figure 9. In
Equation (3.40), the dependence of the temperature 𝑇𝑥 on 𝑀2

𝑥 is given by Equation (2.60).
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Figure 9 – The parameter 𝜎 (solid blue line) from fitting Equation (3.39) to numerical data of 𝑃 (𝑟) as a
function of 𝑀2

𝑥 . The dashed green line shows the approximate asymptotic behavior for 𝑀2
𝑥 1.4.

The orange dots represent the empirical expression for 𝜎 in Equation (3.40), with a good match in
both 𝑀2

𝑥 → 1 (inset) and large-𝑀2
𝑥 limits.

Source: Author (2024)
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4 HOLOGRAPHY

To generate the thermodynamic beam experimentally holography will be used. The follow-
ing chapter introduces the key concepts that allow for the experimental realization of such a
beam. that Holography allows to reproduce the electromagnetic field across the entire space
due to an illuminated object without needing the original object (Figure 10). The desired effect
is produced by a hologram which modulates the incident light beam with adequate amplitude
and phase patterns. There are different approaches to produce holograms, such as holographic
films or phase masks. The hologram is responsible for storing the amplitude and phase in-
formation of the electromagnetic field associated with the interference pattern between the
reference wave and the wave from the objects.

Figure 10 – Holography consists of two steps. Hologram recording (a), which records the wavefront of an
arbitrary object interfering with a reference wave. The object reconstruction (b) retrieves the
wavefront associated with the original objects without the need for the original object. This two-
step process is a characteristic of off-axis holography.

Source: SALEH; TEICH (2019)

Instead of using holographic films, this work generates holograms through digitally designed
phase masks applied on a Spatial Light Modulator (SLM). The fundamentals of SLM will be
discussed shortly, but in essence, they allow to spatially control the phase of the optical fields.
More specifically, off-axis holography is employed to ensure that the wave used to illuminate the
hologram, or reference wave, and the generated wave propagate along different directions and
can be more easily separated using a spatial filter. This chapter shows the principal concepts
of holography that will be used in this work to generate structured light. Later, these ideas
will be used to generate beams with thermodynamical properties, here called thermodynamic
beams.
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4.1 SPATIAL LIGHT MODULATORS

A SLM is a digital device that shapes either the amplitude or phase of light with computer-
generated holograms (Figure 11). The hologram containing the desired amplitude or phase
information is uploaded to the SLM screen, which in turn gives the desired properties to the
light beam through the arranging of the pixels. In this work, we have used phase-only SLMs,
which operate through the birefringence of liquid crystal molecules. A schematic of a single
pixel is shown in Figure 11.

Figure 11 – Schematic representation of a SLM.

Source: ROSALES-GUZMÁN; FORBES (2017)

The liquid crystal has an anisotropic refractive index that allows the modulation of light
beams with molecular reorientation. Its molecules still have an organized crystal lattice, however
since it is liquid, it allows some flexibility in the alignment of the molecules. For instance,
without an applied external field 𝐸, all molecules are arranged horizontally in Figure 11.

Since the binding forces of the molecule are stronger in specific crystalline directions, the
liquid crystal is a birefringent material. For neumatic liquid crystals, as shown in Figure 11,
there is a molecular dipole along the axis of the molecule and a different dipole momentum in
the other two transversal directions. Suppose that the incident wave is horizontally polarized
in Figure 11, for 𝐸 = 0 the refractive index is higher than when 𝐸 is maximum and all the
molecules are vertically oriented. The susceptibility and polarization are proportional to the
dipole momentum associated with the coupling between the light and the media. Along the
long axis, the refractive index is 𝑛𝑒, while for the transverse axes, the associated refractive
index is 𝑛𝑜. This allows the phase introduction to the reference wave.

The SLM has millions of pixels filled with liquid crystal molecules. A computer can indi-
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vidually control these pixels, allowing a fine modulation of the desired light beam. How these
pixels are controlled is determined by two internal parameters of the SLM: the internal poten-
tiometers and the gamma curve, which determine how the liquid crystal molecules are rotated
and the desired phases added to the reference wave. More specifically, the potentiometer val-
ues are associated with the minimum and maximum electric fields used to orient the liquid
crystal molecules, while the gamma curve compensates for the nonlinearity of the molecule
orientation dynamics (LI; CAO, 2019).

The applied voltage controls how the liquid crystal molecules rotate, generating the phase
shifts in the light beam. As the applied voltage changes, so does the rotation angle of the
liquid crystal molecules with respect to the horizontal (or electrodes) plane. Effectively, the
SLM works as a phase retarder for the electric fields component along the plane of Figure 11,
generating a phase variation of Δ𝛿, given by

Δ𝛿 = 2𝜋
𝜆

(𝑛𝑒 − 𝑛𝑜)𝑑, (4.1)

where 𝑛𝑜 and 𝑛𝑒 are the ordinary and extraordinary index of refraction, respectively, 𝑑 is the
thickness of the liquid crystal, and 𝜆 is the wavelength of the light beam. The extraordinary
index 𝑛𝑒 depends on the voltages applied by the SLM driver circuit, more details are discussed
in (ROSALES-GUZMÁN; FORBES, 2017) and (LI; CAO, 2019).

The internal potentiometer and the gamma curve configure how the SLM gives the phase
shift to the light beam. The SLM modulation works in grayscale in an 8-bit scale ranging from
0 to 255. Ideally for our applications the phase shifts should go from 0 (black, or a gray level of
0) to 2𝜋 (white, or a gray level of 255) and vary linearly for all values in between. To give this
kind of modulation to the SLM it is necessary to find the correct values of potentiometers and
the correct gamma curve. Usually, the SLM’s manual provides the basic configurations to have
this kind of modulation. However, due to variations in wavelength, age, humidity, and many
other factors, this basic configuration often is ineffective in obtaining the desired modulation,
and it is important to calibrate the SLM properly.

4.1.1 Signals of trouble with Spatial Light Modulators

A good indication that the SLM is doing the phase modulation it should, can be inferred by
a simple analysis with a powermeter (Figure 12). The basic principle in the following analysis
is that the SLM only modulates one component of the incident beam polarization.
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Figure 12 – Experimental setup to measure possible errs on the SLM calibration. 𝜆/2 is a half waveplate, PBS
is a polarizer beam splitter and 𝜆/4 is a quarter waveplate.

Source: Author (2024)

The procedure goes as follows:
1. The quarter wave plate is set at 0º. The output is maximized with the half waveplate.
2. The output is adjusted at half the maximum with the half waveplate and the quarter

waveplate goes to 45º.
3. A constant phase is applied at the SLM, and a sweep is performed. In steps of 1º, the

constant phase goes from 0 to 2𝜋 and the power is collected at the powermeter.
When the sweep is completed, the power as a function of the applied phase is obtained

(Figure 13(b)). If the SLM is calibrated the expected curve should be sinusoidal (13(a)). For
the SLM used in this work (Figure 13(b)), not only there was a discontinuity, but the sinusoidal
curve was distorted, which points to the need for a calibration.

Figure 13 – (a) Expected phase modulation of a calibrated SLM. (b) Measured phase modulation for the SLM
used in this work.

Source: Author (2024)
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4.1.2 Calibration of Spatial Light Modulators

To get the correct calibration for the SLM, the internal potentiometers and gamma curve
need to be both checked and correctly set (Figure 14). The values of the internal potentiome-
ters and the shape of the gamma curve can be changed at the software that comes with the
SLM.

Figure 14 – Internal Potentiometers (a) and Gamma Curve (b) as presented on the SLM software.

Source: Author (2024)

The Interferometric Phase Calibration Method (IPCM) was used to measure and correctly
calibrate the SLM (LI; CAO, 2019). A double slit is generated at the SLM screen, and a
lens allows the observation of the interference pattern at a camera (Figure 15). As the relative
phase between each beam varies according to the gray level, the position of the bright and dark
fringes of the interference pattern also changes. To obtain the total phase shift implemented
by the SLM, one needs only to track the changes in the position of the fringes according to
the gray level and then convert these values back to phase.

The IPCM allows the reconstruction of both phase and amplitude by mathematical methods
since the phase shift and intensity profiles of the beams are directly related by

𝐼(𝑥, 𝑦) = 𝐼𝑟(𝑥, 𝑦) + 𝐼𝑣(𝑥, 𝑦) + 2
√︁
𝐼𝑟(𝑥, 𝑦)𝐼𝑣(𝑥, 𝑦)𝑐𝑜𝑠(𝛿), (4.2)

where 𝐼(𝑥, 𝑦) is the interference fringes, 𝐼𝑟(𝑥, 𝑦) and 𝐼𝑣(𝑥, 𝑦) are the intensity distributions
of the constant or reference beam and the varying beam, respectively, and 𝛿 is the phase
difference between the beams.

This means that this method requires only recording the intensity profile of the interference
pattern created by the beam with a fixed constant phase mask and the same beam with a
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Figure 15 – Experimental setup for SLM calibration. PS is the light source, L1 and L2 are lenses, MASK is a
double slit aperture, P is a polarizer and, CAM is a camera.

Source: LI; CAO (2019)

varying constant phase mask. The mask applied and a typical interference pattern obtained
can be seen in Figure 16.

Figure 16 – The applied mask consists of the superposition of a phase constant mask (a) and a diffraction
grating (b). The diffraction grating is applied to calibrate the SLM in the closest condition to
the experimental setup. Since all complex masks used in this work require a diffraction grating to
be generated, the calibration is conducted as such. (c) Corresponds to the generated interference
pattern by such a mask.

Source: Author (2024)

In this work, the gray level on the varying beam went from 0 to 255 in steps of 5. Once
these patterns were recorded as images with a camera, to obtain the total phase shift, firstly
the minima of intensity are found in each image. Then the position of the minima is tracked
in all images and analyzed as a function of the phase variation applied at the varying beam.
With this analysis, it is possible to retrieve the experimental total phase shift applied by the
SLM. If the phase shift is far from 2𝜋, then the internal potentiometers need to be adjusted. If
the phase does not vary linearly in the interval from 0 to 2𝜋, then the gamma curve needs to
be corrected. Since the phase shift is already tracked, and the goal is a linear variation, after
finding good values for the potentiometers, one needs only a new gamma curve to correct the
modulation nonlinearity.

With the IPCM, the basic configurations of the SLM used in this work, as the manual
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suggests, were applied. They are a linear gamma curve and internal potentiometers at 4.19V
(Dark) and 0.03V (Bright). Two principal characteristics were expected and wanted: as the
phase masks vary the total phase shift is 2𝜋, and the phase variation occurs linearly from
black (0) to white (2𝜋). However, the data from Figure 13 already indicates that not only the
phase shift was wrong, but the modulation response was not linear. This means that both the
gamma curve and internal potentiometers should be calibrated.

The parameters need to be separately corrected. The potentiometers require a trial-and-
error approach. Several values were tried at first, and randomly chosen. After passing the
collected images of the 0 to 2𝜋 swept through the IPCM and receiving the experimental total
phase shift, the potentiometer values for approximate 2𝜋 phase modulation were found. To
the SLM and wavelength used in this work, the potentiometer values that correspond to a
total phase modulation of 2𝜋 are 2.08 V (Dark) and 0.96 V (Bright). After determining the
correct total phase shift, the correct gamma curve can be obtained through the IPCM, once the
program tracks the fringes in the collected images, it notices the problems in the modulation
and creates a gamma curve that gives the desired linear modulation. For the SLM used in this
work, the desired gamma curve can be seen in Figure 17.

Figure 17 – (a) Gamma curve that gives a linear modulation to the SLM used in this work. (b) Linear mod-
ulation obtained calibrated gamma curve, the orange line corresponds to a linear function, while
the blue line is the new gamma curve.

Source: Author (2024)

4.2 OFF-AXIS HOLOGRAPHY

Holography can be analyzed through the angle between the propagation axes of the refer-
ence wave and the output beam, which contains the desired phase pattern. When the desired
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beam is parallel to the reference beam, it is called in-line holography. Off-axis holography
happens when the reference beam forms an angle, 𝜃𝑟𝑒𝑓 , with the output beam. Both cases are
shown in Figure 18.

Figure 18 – Difference between in-line and off-axis holography.

Source: BENTON; BOVE (2008)

The biggest characteristic of off-axis holography, which is particularly useful when using
SLMs, is having the output and reference beam well separated in space (Figure 19). Which
simplifies the retrieval of the beam with the desired modulation. The spatial filter needed to
separate the desired beam is more easily and efficiently implemented. In this work, only one
iris is needed to clear out all the other diffraction orders and retrieve the first diffraction order,
which contains the desired modulation.

The following discussion is heavily based on (BENTON; BOVE, 2008) and shows the general
behavior of off-axis holography, that will later on be used to generate structured light.

Here we are interested in analyzing how the characteristics of the reference and object
beam interfere with the output beam. The reference beam interferes with the object beam,
creating the mask. Once the mask is illuminated with the reference beam, the effect the object
has on the reference beam is reproduced. The object can be understood here as some arbitrary
component that gives a specific phase change to the reference beam that we are interested in
recording and reproducing. For the discussion proposed here, the beam that later illuminates
the hologram is the same as the reference beam, which is used to record the hologram.

To start the discussion, it is defined that the reference beam forms an angle, 𝜃𝑟𝑒𝑓 , and
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Figure 19 – Schematic description of the angle between the reference and object beams utilized in off-axis
holography.

Source: BENTON; BOVE (2008)

the object beam is on-axis (Figure 19). The phase of the reference beam, which is an off-axis
spherical wave is

Φ𝑟𝑒𝑓 (𝑥, 𝑦) = Φ𝑜𝑏𝑗,0 + 2𝜋
𝜆
𝑠𝑖𝑛(𝜃𝑟𝑒𝑓 )𝑥+ 𝜋

𝜆

[︃
𝑐𝑜𝑠2(𝜃𝑟𝑒𝑓 )
𝑅𝑟𝑒𝑓

𝑥2 + 1
𝑅𝑟𝑒𝑓

𝑦2
]︃
, (4.3)

where 𝜆 is the beam wavelength and 𝑅𝑟𝑒𝑓 is the curvature of the reference beam.
The phase of the object beam, which is an on-axis (𝜃𝑟𝑒𝑓 = 0) object is given by

Φ𝑜𝑏𝑗(𝑥, 𝑦) = Φ𝑜𝑏𝑗,0 + 𝜋

𝜆𝑅𝑜𝑏𝑗

(𝑥2 + 𝑦2). (4.4)

And finally, the output beam is

Φ𝑜𝑢𝑡,𝑚(𝑥, 𝑦) = 𝑚 [Φ𝑜𝑏𝑗(𝑥, 𝑦) − Φ𝑟𝑒𝑓 (𝑥, 𝑦)] + Φ𝑟𝑒𝑓 (𝑥, 𝑦), (4.5)

where m indicates the order of diffraction of the output beam. Equation (4.5) describes how
the output beam behaves as a function of the reference and object beam. When 𝑚 = 0, the
reference beam is retrieved, as expected to the zeroth order of diffraction. For 𝑚 = 1, the
object beam is fully retrieved, which is the desired result. The appearance of diffraction orders
comes from the interference pattern generated by the reference and object waves. (BENTON;

BOVE, 2008) offers a detailed description.
The output beam can be written as,

Φ𝑜𝑢𝑡,𝑚(𝑥, 𝑦) = Φ𝑜𝑢𝑡,0 + 2𝜋
𝜆
𝑠𝑖𝑛(𝜃𝑜𝑢𝑡)𝑥+ 𝜋

𝜆

[︃
𝑐𝑜𝑠2(𝜃𝑟𝑒𝑓 )
𝑅𝑟𝑒𝑓

𝑥2 + 1
𝑅𝑟𝑒𝑓

𝑦2
]︃
. (4.6)
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Then, the coefficients of the terms for 𝑥, 𝑥2, and 𝑦2 are matched for the three beams. The
following expressions are obtained,

𝑠𝑖𝑛(𝜃𝑜𝑢𝑡,𝑚) = −𝑚𝑠𝑖𝑛(𝜃𝑟𝑒𝑓 ), (4.7)

𝑐𝑜𝑠2(𝜃𝑜𝑢𝑡,𝑚)
𝑅𝑜𝑢𝑡,𝑚,𝑥

= 𝑚

[︃
1
𝑅𝑜𝑏𝑗

− 𝑐𝑜𝑠2(𝜃𝑟𝑒𝑓 )
𝑅𝑟𝑒𝑓

]︃
+ 𝑐𝑜𝑠2(𝜃𝑟𝑒𝑓 )

𝑅𝑟𝑒𝑓

, (4.8)

1
𝑅𝑜𝑢𝑡,𝑚,𝑦

= 𝑚

(︃
1
𝑅𝑜𝑏𝑗

− 1
𝑅𝑟𝑒𝑓

)︃
+ 1
𝑅𝑟𝑒𝑓

. (4.9)

Which describes how the output beam behaves in off-axis holography. The previously pre-
sented description is valid for transmission holograms, however, reflection holograms are also
employed. The physics principles behind both cases are the same, and Equations 4.7, 4.8, and
4.9 can be easily transformed by 𝜃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑠𝑖𝑛(𝜃𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛).
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5 EXPERIMENTAL GENERATION OF THERMODYNAMICAL BEAMS AND

COHERENCE ANALYSIS

With the thermodynamic description for light propagating in free-space light, based on
analysis of the beam wavefront developed in Chapters 2 and 3. This chapter now focuses on
the generation of the thermodynamic beams experimentally and further statistical analysis.

5.1 EXPERIMENTAL SETUP AND ITS CHARACTERIZATION

To generate a thermodynamic beam an SLM, (pixel size 8.0 𝜇m; 1920×1080 resolution),
(ARRIZÓN et al., 2007), (BOLDUC et al., 2013), is employed. The experimental setup can be
seen in Figure 20. The light source used was a homemade mode-locked Ytterbium single-
mode fiber laser (1030 nm, 140 fs @ 130 MHz, 70 mW), further described in Reference (MÉLO

et al., 2018). The pair, half waveplate (𝜆
2 ) and Polarizing Beam Splitter (PBS), are used for

power control. The output beam has an approximate diameter of 1 mm, and a telescope is
used to expand the beam and illuminate the SLM. Then, the beam is contracted to its original
size. Since off-axis holography (Section 4.2) is used to generate the phase masks applied to
the SLM, a mirror and an iris to filter the first diffracted order is all that is needed to pick
up the beam with the desired phase modulation. A lens is used to focalize the beam into a
Charged Coupled Device (CCD) (pixel size 4.65 𝜇m; 1024x768 resolution). It is important to
point out that better measurement resolution is achieved when the beam illuminates as much
of the CCD sensor as possible.

Figure 20 – Experimental setup. 𝜆/2 is a half waveplate, PBS is a Polarizing Beam Splitter, and CCD is a
Coupled Charged Device.

Source: Author (2024)
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Before any measurements, it is important to guarantee that the setup works as intended.
First, the modulation generated by the SLM is tested. In Figure 21 (a) a Gaussian beam is
generated by the SLM and in (b) a beam with orbital angular momentum m=1 is generated
and used to check the modulation, as well as to make sure that the masks are being applied
to the center of the beam. Which can be inferred from the vortex being in the center of the
beam.

Figure 21 – Modulation test for the SLM. A Gaussian beam (a) and a beam with angular momentum m=1
(b) is generated by the SLM.

Source: Author (2024)

Another important characterization is the measurement of the Pearson correlation coef-
ficient (Equation 3.36) for the beam generated by the laser and also by SLM with only the
diffraction grating being applied to it. The resulting distributions can be seen in Figure 22.
This ensures that no statistical bias is added by the setup, and the distributions that will
be obtained are due exclusively to the masks applied to the SLM, and not to some intrinsic
characteristic of the experimental setup.

Figure 22 – Characterization of the statistic distribution coming from the Pearson correlation coefficient (Equa-
tion 3.36) of the experimental setup. Two measurements were made, at the PBS (a) and after
the SLM (b) (see Figure 20). For each case, 500 frames were collected.

Source: Author (2024)
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Figure 22 shows that the beam generated by the laser (a) and that it passes through the
SLM (b) after being analyzed by the Pearson correlation coefficient (Equation 3.36) gives
approximately a delta distribution. This means that the beam always reproduces itself, in this
case, a Gaussian beam.

5.2 EXPERIMENTAL MEASUREMENTS

With the experimental setup fully characterized and calibrated, the thermodynamic beams
can be generated and statistically analyzed. The beams are generated with a pseudo-random
generator and are symmetric 2D thermodynamic beams as a product of two orthogonal 1D
thermodynamic beams with the same width along 𝑥 and 𝑦, 𝑊𝑥 = 𝑊𝑦 = 𝑊 , and the same
energy across the modes, 𝑀2

𝑥 = 𝑀2
𝑦 = 𝑀2. This means that the 𝑀2 or available modes

are fixed. However, each realization gives an almost random distribution of energy across the
modes. It is worth mentioning that different from the usual thermodynamic system, here all mi-
crostates (𝐼𝛼(−→𝑟 )) can be retrieved at any time. The pseudo-random generator is characterized
also by a seed number, that fixes a given ensemble.

For a fixed 𝑀2, there is a specific mode distribution (Equation 2.61). This means that
once the 𝑀2 or effective temperature 𝑇 (Equation 2.60) is fixed, there is a fixed number of
modes that the beam can access. Figure 23 shows different beams experimentally generated
by the SLM representing the same 𝑀2. In each image, for a given 𝑀2

𝑥 , the number of modes
is fixed, however, for each realization (𝐼𝛼(−→𝑟 )) the energy is distributed differently across the
available modes.

Once the beam ensemble is generated, the Pearson correlation coefficient (Equation 3.36)
can be used to analyze it, and the statistical distributions in Figure 24 are obtained. Each
member of the ensemble, 𝐼𝛼(𝑥), is compared with the ensemble average ,𝐼(𝑥), which gives an
Δ𝛼(𝑥) (3.34). A given Δ𝛼(𝑥) is compared with all the others Δ𝛼(𝑥)s, each comparison results
in a 𝑟𝛼𝛽 and after the all 𝑟𝛼𝛽 pairs are analyzed (Equation 3.36), the distribution is obtained.

In Figure 24, firstly one can observe that there is a characteristic distribution associated
with different 𝑀2. For an 𝑀2 = 1.05, two peaks can be observed, which shows that the
beams in the ensemble are correlated (𝑟 = 1) or anticorrelated (𝑟 = −1) with each other. As
previously mentioned in Section 3.2, physically this means that the beam wanders, as can be
seen in Figure 23 as well.

As the beam temperature or the 𝑀2 increases, the beam loses its spatial coherence and the
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Figure 23 – Different beams corresponding to a fixed 𝑀2. The columns have a value of 𝑀2 and six snapshots
(rows) of the beam wavefront with this specific 𝑀2. The white dashed line marks the center of
measurement. This image corresponds to an experimental realization of Figure 5.

Source: Author (2024)

two peaks collapse into a single peak centered at 𝑟 = 0, and the distribution is Gaussian-like
at 𝑀2 = 5. As discussed in Section 3.1, the threshold from coherence to partial coherence is
a 𝑀2 =

√
2, this can be observed as well in Figure 24, when the distribution start to increase

at 𝑟 = 0 and the two peaks at 1 and −1 starts to collapse.
Additionally from the experimental distributions in Figure 24, one can measure the full

width at half height for each distribution and compare it with the numerical simulation for the
distribution 𝑃 (𝑟) as a function of both 𝑟 and 𝑀2, Figure 25.

To further analyze the developed method, the numerical analysis used for Figure 9 was
applied to the experimental distribution 𝑃 (𝑟). The distributions were fitted to obtain the
parameter 𝜎. This parameter, experimentally obtained now, was used in Equation 3.40, for
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Figure 24 – The masks applied to the SLM (first column) experimentally generate the beams (second column).
A beam ensemble (Figure 23) is generated and the Pearson correlation coefficient (Equation
3.36) is analyzed for each ensemble. The third column corresponds to the simulated distribution,
obtained from the ideal beams that the mask should generate, and the fourth column shows the
experimental distribution. 𝑃 (𝑟) is normalized and for each distribution, 500 beams were collected
to create each ensemble.

Source: Author (2024)

𝑓(𝑀2) = 𝜎. With this, the experimental 𝑀2 was obtained as can be seen in Table 1. The
experimental and numerical𝑀2 coincide well, with less than 10% of difference. The discrepancy
can come from imperfections in the experimental setup or a mismatch between Equation 3.39
and the experimental distribution 𝑃 (𝑟).

Table 1 – Experimental (𝑀2
experimental) and numerical (𝑀2

ensemble) values of 𝑀2. 𝜎 is obtained from fitting the
experimental distributions 𝑃 (𝑟) with Equation 3.40.

𝑀2
ensemble 1.05 1.40 2.00 2.50 3.00 4.00 5.00

𝜎 1.22 0.82 0.53 0.42 0.35 0.25 0.20
𝑀2

experimental 1.04 1.28 1.85 2.28 2.74 3.67 4.58
Source: Author (2024)

Lastly, one more experimental observation is worth mentioning. The statistical analysis
obtained from the Pearson correlation coefficient (Equation 3.36) can give insights into how
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Figure 25 – Numerical simulation for the distribution 𝑃 (𝑟) for different 𝑀2. For 𝑀2 = 1 or a Gaussian
beam, there are two peaks at 𝑟 = ±1. As the 𝑀2 increases the two peaks collapse to a single
peak centered at 𝑟 = 0. The white dots correspond to the values of 𝑟 at half-maximum in the
experimental distributions.

Source: Author (2024)

propagation may affect the beam wavefront.
The same experimental setup as in Figure 20 was used with a free-space Titanium-sapphire

laser (800 nm, 40 fs@1 KHz, 1W) for measurements at the PBS and an SLM (pixel size 20
𝜇m; 792x600 resolution) with only a diffraction grating mask the distributions obtained can
be seen in Figure 26.

Figure 26 – Characterization of the statistic distribution coming from the Pearson correlation coefficient (Equa-
tion 3.36) for a Titanium-sapphire laser. Two measurements were made, at the PBS (a) and the
after the SLM (b) (see Figure 20)

Source: Author (2024)

Figure 26 should be compared with Figure 22. For the mono-mode fiber laser, the propaga-
tion does not add significant change to the beam wavefront. However, for the free-space laser,
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the propagation affects the beam wavefront. As can be inferred from the broader distribution
in (b).
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6 CONCLUSION AND PERSPECTIVES

Optical thermodynamics is a promising area of study, and in the last few years has provided
powerful new insights into optical systems (Section 2.1). However, it has been used to describe
mostly waveguide-based systems. As far as we know, optical thermodynamics concepts were
applied only to a few free-space problems, all in the strongly nonlinear regime (PICOZZI et al.,
2014). This work extends the current scope application of optical thermodynamics and shows
that it can be used to analyze free-space partially coherent light in the linear regime.

Particularly, the use of ladder operators (Section 2.3) is very helpful for the description of
free-space system with thermodynamic principles. This, combined with the observation that the
thermodynamic beams correspond to the Gaussian Schell-model beams (Section 3.1) allows
the use of the thermodynamic description developed here to study partially coherent beams
propagating in free-space. Moreover, the proposed thermodynamic description should also be
adequate to describe partial coherence in the limit of few modes. This must be particularly
useful to study systems with random and/or small imperfections that collectively contribute to
changes in the coherence state of light (Section 2.2). An experimental verification of systems
that behave as a thermodynamic beam in the few modes regime remains to be found, but
laser cavities containing random imperfections seem as candidates to observe such behavior.
Another remarkable aspect of the present work is that ordinary tools from statistical optics
are inadequate in the few modes regime since the statistics is not Gaussian (C(x,y) is not
negligible). However, the statistical analysis of beam ensemble with the Pearson correlation
coefficient (Section 3.2) is suited to the few modes regimes. Which analyzes correlations in
the beam wavefront and can define the light coherent state in the limit of few available
modes. Subsequently, the obtained distributions from the Pearson correlation coefficient can
be predicted using statistical arguments (Section 3.3).

Finally, structured light is used to experimentally generate the thermodynamic beams and
the proposed statistical analysis is performed over real beam ensembles (Section 5.2). These
analyses confirmed the theoretical predictions and matched nicely with the conducted simula-
tions.

Furthermore, the proposed free-space thermodynamic description and subsequently statis-
tical analysis of beams wavefront establishes a new way of studying and measuring coherence
in optical systems. Which could be particularly useful for studying light propagating across tur-
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bulent and random media. Particularly, the thermodynamic beam could be used to implement
channels of communication with different degrees of coherence. Additionally, the statistical
analysis here proposed could be used to retrieve information for light propagating in ran-
dom media, such as biological tissue. Since the random media will produce distortions on the
beam wavefront, the statistical analysis could be used to study these distortions and retrieve
information regarding the media that the lights propagate in.
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