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RESUMO

No atual cenário de desenvolvimento de software, onde as aplicações estão se tornando cada
vez mais complexas e projetadas para lidar com múltiplas tarefas, simultaneamente, torna-se
imperativo validar a confiabilidade em condições concorrentes. Os sistemas podem apresentar
uma ampla variedade de interações e comportamentos difíceis de serem reproduzidos, tornando
muito desafiador a elaboração de estratégias de teste eficazes. Adicionalmente, a geração de
casos de teste para sistemas concorrentes é desafiadora devido à falta de descrições explíci-
tas de seu comportamento concorrente nos requisitos tipicamente capturados em linguagem
natural. Nossa principal contribuição é uma abordagem para a geração de testes consistentes
baseados em requisitos escritos em linguagem natural, focando, particularmente, em aplicati-
vos de dispositivos móveis. Essa abordagem é enriquecida com uma estratégia de análise de
dependência que garante uma ordem de execução consistente dos passos de teste, eliminando,
assim, casos de teste com configurações incompletas ou que não podem ser executados devido
a pré-condições não atendidas. Além disso, abordamos a consistência (soundness) da abor-
dagem proposta a partir da definição de uma nova relação de conformidade, cspioq. Essa
nova relação lida efetivamente com a ausência de saídas (quiescência), visando garantir que
o sistema possa lidar adequadamente com cenários em que não são esperadas mais saídas
ou eventos (característica comum em sistemas concorrentes). Quando os requisitos não estão
disponíveis, o que ocorre frequentemente num contexto industrial, um processo de engenharia
reversa é necessário para gerar requisitos a partir de casos de teste existentes a fim de garantir
a consistência da geração de casos de teste a partir de requisitos. Exploramos essa abordagem
para definir uma estratégia consistente (sound) de geração de casos de teste que considere
a quiescência. No entanto, do ponto de vista prático (de implementação), este processo é
bastante oneroso. Como alternativa, propomos uma estratégia de geração de testes otimizada
por meio da combinação de passos de teste, denominados de átomos. Esta estratégia visa
simplificar o processo, extraindo diretamente novos casos de teste a partir dos existentes sem
a necessidade de uma engenharia reversa que tende a ser complexa. Também abordamos a
consistência (soundness) da abordagem otimizada mostrando a conexão com a abordagem
original baseada em engenharia reversa. Implementamos suporte ferramental e conduzimos
uma avaliação empírica da eficácia dos testes gerados. Analisamos a cobertura dos testes e
o número de falhas durante a execução dos testes criados pelos engenheiros de nosso par-
ceiro industrial, Motorola Mobility (uma empresa da Lenovo). As métricas adotadas foram



então comparadas com aquelas obtidas dos testes gerados usando a abordagem proposta. Os
resultados revelam que o conjunto de testes produzido por nossa abordagem apresenta uma
cobertura significativamente maior e tem o potencial de identificar mais bugs em comparação
com o conjunto criado pelos engenheiros da Motorola.

Palavras-chaves: Teste concorrente. Teste baseado em modelo. Quiescência.



ABSTRACT

In the current landscape of software development, where applications are becoming increas-
ingly intricate and designed to handle multiple tasks simultaneously, it is essential to validate
reliability under concurrent conditions. Systems can exhibit a wide range of interactions and
behaviours that are difficult to replicate, making the creation of effective testing strategies
extremely challenging. Additionally, generating test cases for concurrent systems is demanding
due to the lack of explicit descriptions of their concurrent behaviour in the typically captured
natural language requirements. Our primary contribution involves an approach for generating
consistent tests based on requirements expressed in natural language, with a particular focus on
mobile device applications. This approach is enhanced with a dependency analysis strategy that
ensures a consistent order of test steps execution, thereby eliminating incomplete test cases
or those that cannot be executed due to unmet preconditions. Furthermore, we address the
soundness of the proposed approach through the introduction of a new conformance relation,
denoted as cspioq. This new relation effectively handles the absence of outputs (quiescence),
aiming to ensure that the system can adequately handle scenarios where no further outputs
or events are expected, which is a common characteristic in concurrent systems. When up-
dated requirements are not available, which is often the case in an industrial context, a reverse
engineering process is necessary to generate requirements from existing test cases, in order
to allow the proof of soundness of test case generation from requirements. We explore this
approach to define a sound test case generation strategy that considers quiescence. Neverthe-
less, from a practical (implementation) point of view, this process is rather burdensome. As an
alternative, we propose an optimised test generation strategy through the permutation of test
steps, referred to as atoms. This strategy aims to simplify the process by directly extracting
new test cases from existing ones without the need for a complex reverse engineering process.
We also address the soundness of the optimised approach by demonstrating its connection
with the original approach based on reverse engineering. We fully implemented tool support
and conducted an empirical evaluation of the generated test effectiveness. We analysed test
coverage and the number of bugs during the execution of tests created by engineers from our
industrial partner, Motorola Mobility (a Lenovo company). The adopted metrics were then
compared with those obtained from tests generated using the proposed approach. The results
reveal that the test set produced by our approach exhibits significantly greater coverage and
has the potential to identify more bugs compared to the set created by Motorola engineers.



Keywords: Concurrent Testing. Model-based testing. Quiescence.



LIST OF FIGURES

Figure 1 – The Process of Model-Based Testing. . . . . . . . . . . . . . . . . . . . . 24
Figure 2 – TaRGeT generation process. . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 3 – TaRGeT Test Case for My Phonebook Application. . . . . . . . . . . . . . 27
Figure 4 – Data definition for Feature F1. . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 5 – Use case 1 (Email). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 6 – Active use case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 7 – Two applications running in parallel. . . . . . . . . . . . . . . . . . . . . . 32
Figure 8 – Use case 1 (Video). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 9 – Test case from the sixth iteration of TC generation for Feature F1 . . . . . 48
Figure 10 – Test case from t1 F1 F2 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 11 – Generation process with dependency analysis and optimised approach. . . . 49
Figure 12 – 3G-SIM1 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 13 – Example interaction of TC1 with SUT. . . . . . . . . . . . . . . . . . . . 61
Figure 14 – Overview of Atom Granularity Levels . . . . . . . . . . . . . . . . . . . . 63
Figure 15 – Atom Granularity (Function Level) . . . . . . . . . . . . . . . . . . . . . . 63
Figure 16 – Original test cases sample, mca 01 and mca 02. . . . . . . . . . . . . . . 64
Figure 17 – Interleaving of mca 01 and mca 02. . . . . . . . . . . . . . . . . . . . . . 64
Figure 18 – Atom Granularity, highlighted in blue (Action Block Level) . . . . . . . . . 64
Figure 19 – Atom Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 20 – Force Controller for Moto Settings Feature . . . . . . . . . . . . . . . . . 67
Figure 21 – Sanity Automation Package (Uneti Structure) . . . . . . . . . . . . . . . 69
Figure 22 – Interleaving of atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 23 – Tool’s Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 24 – Tool’s usage workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 25 – Screen 1 - Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 26 – Screen 2 - Dependency Analysis . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 27 – Screen 3 - Generated Test Cases . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 28 – Screen 4 - Execution Results . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 29 – Dependency Analysis for Performing calls and Managing contact Test Cases. 86
Figure 30 – Fragments of the original Motorola test cases, MOT 001 and MOT 002. . . . 91



Figure 31 – iTC 001 generated from MOT 001 and MOT 002. . . . . . . . . . . . . . . 91
Figure 32 – BUG-018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 33 – Selected Test Cases Hierarchical Model . . . . . . . . . . . . . . . . . . . 97
Figure 34 – Generated Permutation from the interleaving of Product Test use cases

(UC_01: Streaming ||| UC_02: Airplane Mode) . . . . . . . . . . . . . . . 97



LIST OF TABLES

Table 1 – CSP model for data elements of Feature F1. . . . . . . . . . . . . . . . . . 38
Table 2 – CSP model for data elements of Feature F1. . . . . . . . . . . . . . . . . . 38
Table 3 – CSP model for Use Case UC01 of Feature F1. . . . . . . . . . . . . . . . . 39
Table 4 – Formalisation of Feature Composition . . . . . . . . . . . . . . . . . . . . 43
Table 5 – CSP model for Use Case UC02 from Feature F1 . . . . . . . . . . . . . . . 43
Table 6 – CSP model for Feature F1. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 7 – CSP process that ensures critical region. . . . . . . . . . . . . . . . . . . . 45
Table 8 – TC01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 9 – TC02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 10 – Managing contact [Automation Traceability] . . . . . . . . . . . . . . . . . 67
Table 11 – Performing Calls [Automation Traceability] . . . . . . . . . . . . . . . . . . 68
Table 12 – Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 14 – Sample of Motorola’s Test Teams and areas . . . . . . . . . . . . . . . . . 93
Table 16 – Selected test cases automation status . . . . . . . . . . . . . . . . . . . . 94
Table 17 – Selected test cases execution status . . . . . . . . . . . . . . . . . . . . . 95
Table 18 – Selected test cases execution and log capture Status . . . . . . . . . . . . . 95
Table 13 – Compilation of uncovered bugs. . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 15 – Overview of the assessment applied to Motorola’s Test Suites . . . . . . . . 102
Table 19 – TC-MCA-542: Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 20 – TC-MCA-703: Airplane Mode . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 21 – Use case UC_02:Airplane mode derived from TC-MCA-703. . . . . . . . . . 102
Table 22 – Scenario 1: Comparison results of two different variations resetting the smart-

phone only in the first run . . . . . . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 OBJECTIVES AND CONTRIBUTION . . . . . . . . . . . . . . . . . . . . 19
1.3 THESIS STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 MODEL BASED TESTING . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 MODELLING CONCURRENT FEATURES . . . . . . . . . . . . . . . . . 25
2.2.1 TaRGeT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Modelling Active Use Case . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Modelling Concurrent Features . . . . . . . . . . . . . . . . . . . . . . 31

2.3 TEST CASE GENERATION VIA CSP REFINEMENT . . . . . . . . . . . . 33
2.3.1 CSP operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 CSP Semantics for Concurrent Features . . . . . . . . . . . . . . . . 37

2.3.3 Test Case Generation Strategy . . . . . . . . . . . . . . . . . . . . . . 46

3 A SOUND STRATEGY TO GENERATE TEST CASES FOR CON-

CURRENT FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 CONFORMANCE RELATIONS AND CONCURRENCY . . . . . . . . . . . 50
3.1.1 The cspio Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 THE cspioq: EXTENDING cspio TO DEAL WITH QUIESCENCE . . . . 53
3.2.1 The cspioq relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Constructing Sound Test Cases . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Test Suite Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 OPTIMISED TEST GENERATION STRATEGY . . . . . . . . . . . 62

4.1 TEST GENERATION VIA INTERLEAVING OF ATOMS . . . . . . . . . . 65
4.2 SOUNDNESS OF THE OPTIMISED APPROACH . . . . . . . . . . . . . 70
4.3 OPTIMISED TEST GENERATION COST ANALYSIS . . . . . . . . . . . 75
5 TOOL SUPPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 TOOL’S OVERVIEW AND DEVELOPMENT STACK . . . . . . . . . . . . 79
5.2 TOOL’S ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . 80



5.3 TOOLS USAGE WORKFLOW . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 DEPENDENCY ANALYSIS: KAKI . . . . . . . . . . . . . . . . . . . . . . 84
5.5 LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 CONTEXT AND MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 PLANNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.1 Context Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.6 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 RESULTS AND DISCUSSIONS . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.1 Number of Uncovered bugs . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.2 Coverage Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.2.1 Keyword Coverage Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.2.2 Keyword Coverage Execution and Results . . . . . . . . . . . . . . . . . . 96

6.3.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 TEST OF CONCURRENT SYSTEMS . . . . . . . . . . . . . . . . . . . . 104
7.2 TEST GENERATION FROM NATURAL LANGUAGE MODELS . . . . . . 108
7.3 TEST GENERATION FROM DIAGRAMMATIC AND FORMAL NOTATIONS109
7.4 TEST GENERATION FROM GENERATIVE AI AND LARGE LANGUAGE

MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1 STUDY LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

*



16

1 INTRODUCTION

Software testing is a crucial phase within the software development process that entails
the methodical validation and verification of a software application or system to assess its
functionality, precision, and general quality Burnstein [2006]. Ideally, the objective is to identify
and rectify issues prior to the software release to end users or its deployment in a production
environment.

The testing procedure includes different levels of granularity and abstraction, such as unit
testing, integration testing, system testing, and acceptance testing, to thoroughly assess the
software at different stages of its development. Particularly, system testing focuses on the
system already integrated.

As software becomes increasingly more complex, system testing requires complex interac-
tions between different components, Application Programming Interface (API)s, databases,
and external services. The concurrent execution of multiple threads or processes may result in
unforeseeable interactions, posing challenges in guaranteeing the accuracy and dependability
of the software. It is, therefore, extremely hard, if not impossible, to anticipate all possible
situations of failure. For instance, consider the interaction between two instances—such as a
calling function and a display configuration—within split-screen mode, where two applications
or windows are used concurrently, displayed side by side on a single screen. While on a call, the
user adjusts the screen size, which may lead to minimal effects, such as a partial obstruction
of the call button, or potentially result in more significant issues, like rendering the call button
unclickable.

When testing reactive systems such as smartphones, the focus is on evaluating how the
system responds to stimuli or alterations in their environment, processing events as they arise
and modifying their behaviour in real-time. This capacity for dynamic responsiveness is cru-
cial for applications where prompt and precise responses to user interactions, notifications, or
other inputs are vital for enhancing user experience and ensuring functionality. Smartphones
are highly interactive devices that constantly receive input from various sources like user inter-
actions, network events, sensor data, and system notifications. Concurrent testing of reactive
systems can be challenging due to the non-deterministic nature of concurrent execution and
the complex interactions between components Andrews and Schneider [1983].

Moreover, in real-life systems, one can encounter various types of interactions and be-
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haviours that may require different approaches when designing test cases. While some systems
exhibit a straightforward input-output relationship, others may have more complex behaviours
that involve multiple sequential inputs or outputs. It’s important to note that designing test
cases for systems with complex behaviours may require additional testing techniques, such as
model-based testing, state machine-based testing, or scenario-based testing.

Performing manual testing is a critical aspect that requires a significant amount of human
effort and time to execute test cases and validate the functionality of software Rafi et al. [2012].
As the complexity of the application increases, the number of test cases also increases, resulting
in more time and resources being consumed. Additionally, manual testing is susceptible to
human errors, such as overlooking defects or inconsistencies, which can impact the overall
effectiveness of the testing process. In terms of coverage, due to time limitations and the
large number of test cases, it may not be possible to achieve complete test coverage through
manual testing alone. Manual tests may also be difficult to repeat, especially if the test cases
are poorly documented or if testers fail to consistently follow specific steps. This can make
it challenging to accurately reproduce and investigate reported issues. Finally, as the project
grows in size and complexity, scaling up manual testing becomes burdensome and may not be
feasible in terms of time and resources. Thus, automation has been progressively adopted to
balance speed and quality in software releases.

Model-based testing (MBT) is a software testing technique that uses models to represent
the behaviour of the system being tested. These models can be used to automate the generation
and execution of test cases Broy et al. [2005]. The process typically involves model creation,
test generation, test execution, verdict, and analysis. MBT is most effective when the system’s
behaviour can be accurately represented in models and when the benefits of testing outweigh
the cost of creating and managing these models. However, relying on MBT can be a barrier
because formal models are the main input for test generation.

In conventional software engineering practices, informal or semi-formal notations, such as
Unified Modeling Language (UML) use case diagrams, activity diagrams, or natural language
descriptions, are commonly used to document requirements and design Sommerville [2011].
These notations are favoured because they are more easily understood by stakeholders, includ-
ing non-technical team members. Formal notations contrast with the ones adopted by tradi-
tional software engineering approaches, such as use case models. To facilitate the adoption of
MBT and make it more accessible, researchers have proposed various approaches de Carvalho
[2011], Ferreira et al. [2010b], Nogueira et al. [2014] that use controlled natural language no-
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tations to specify input models. These methodologies employ an automated and transparent
process to generate test cases from formal models derived from natural language input models.
For example, the work in Nogueira et al. [2016] presents an approach implemented by a tool
called TaRGeT, which automatically generates black-box tests for mobile applications. In this
research, a use case template written in a controlled natural language is used as input model.
These templates are then automatically translated into Communicating Sequential Processes
(CSP) models Roscoe [2011, 1998], from which test cases are generated and subsequently
translated back into natural language. These generated test cases can be executed manually
or used as a basis for further automation. This is an attempt to bridge the gap between
the formal notations typically used in MBT and the more familiar natural language used in
traditional software engineering approaches.

1.1 PROBLEM STATEMENT

For concurrent systems, capturing behaviour using natural language models is considerably
challenging. Concurrency involves the simultaneous interaction of multiple entities that is
difficult to describe in natural language. For instance, in Carvalho et al. [2015], a strategy is
proposed to automatically extract Data-Flow Reactive Systems (DFRS) formal models from
requirements written in a controlled natural language, aiming at generating sound test cases
for reactive systems. Although various approaches deal with the automatic generation of test
cases, a common limitation of these existing works is that it is not possible to explicitly describe
the concurrent behaviour of the system under test using natural language models.

An extra challenge for testing concurrent systems is the treatment of inputs and outputs.
In some formal relations for testing sequential systems, like the input-output conformance
(ioco) relation Tretmans [1999], the notion of quiescence is used to capture system states
that do not generate any output response unless a new input stimulus is provided. In this
context, a system is considered to be in a quiescent state when it is idle or stable, having
completed all ongoing processes and not actively producing outputs. Concurrent systems often
involve multiple processes or threads that interact, culminating in traces involving multiple
sequential inputs or outputs. While, for instance, the system requirements can state that an
input sequence does not result in any output, in other situations, the lack of expected outputs
may indicate a potential problem. Therefore, a theory for testing concurrent systems should
be able to differentiate between these two scenarios.
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A frequent challenge encountered in the use of MBT is that test cases can often be more up-
to-date than the corresponding requirement artefacts in many practical scenarios. Additionally,
access to requirement artifacts might be limited or unavailable. In such situations, test cases
become a valuable and sometimes the only available source for crafting test models, which are
crucial inputs for MBT approaches.

In summary, we emphasise some challenges related to testing concurrent systems.

• Concurrent execution may involve arbitrary and complex interleavings of control flow
sequences that are difficult to cover and reproduce by a test strategy.

• Due to the simultaneous flows of execution, these systems may involve elaborate relations
between input and output sequences.

• Absence of output (quiescence) can be interpreted in different ways; it might be a
relevant undesired output lock in a context, but can also be a valid behaviour in another
context.

• When adopting natural language for describing system requirements, there is no clear
proper mechanism to address concurrency.

1.2 OBJECTIVES AND CONTRIBUTION

In this thesis, we propose an approach for the automatic generation of test cases specifically
designed for concurrent features. Our main objective related to testing concurrent systems is
the automatic generation of (sequential) test cases that exercise the interaction of parallel
components. Our application domain is black box testing of functional requirements of mobile
device applications, particularly involving concurrent features. It is not within our scope to
verify classical concurrent properties like deadlock, livelock, or (non)determinism. Although
our focus is exclusively on mobile applications, we assert that the approach may be applicable
to other contexts, provided it adheres to the theoretical constraints outlined. We delineate the
main contributions of this research as follows.

• The main contribution of this thesis is a sound test generation strategy from requirements
written in natural language, in the context of mobile device applications. This is inspired
by the approach developed in Almeida [2019], Nogueira [2012], but extended to consider
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concurrent behaviour and a dependency analysis strategy that ensures a meaningful
(consistent) execution order of test steps. This rules out, for instance, test cases with
incomplete setups or whose steps cannot be executed because some preconditions are
not satisfied. A simple example of inconsistency is a step that involves sending a message
in a state without having previously setup an internet connection.

• As requirements are not always available, in order to use the above mentioned test
generation strategy, a reverse engineering process might be required to generate re-
quirements from existing test cases. As an alternative, we propose an optimised test
generation strategy via combination of test cases. This approach aims to simplify the
process by directly extracting relevant information without the need for complex reverse
engineering.

• We develop a formal proof demonstrating that the optimised approach generates iden-
tical test suites for any possible input, mirroring the behaviour of the original approach.
In this way we establish a link between the extended and the optimised approaches and
discuss the preservation of soundness by the optimised approach.

• We propose a strategy to effectively handle the absence of outputs, commonly referred
to as quiescence, in concurrent systems. Our strategy aims to ensure that the system
can appropriately deal with scenarios where no further outputs or events are expected
to occur.

• To assess the effectiveness of the approach, an empirical evaluation is carried out to
analyse its coverage and the number of uncovered bugs. The test cases generated us-
ing our approach are executed and compared to the test cases developed by Motorola
engineers for the same features. The results reveal that the test suite produced by our
approach exhibits significantly higher coverage and has the potential to uncover more
bugs compared to the suite created by Motorola engineers.

• To support the previous task we considered multiple test suites and automatic test cases.
This allows the reproducibility and dependability of the case study. Also, the metric for
the coverage assessment is based on the use of a filter mechanism based on keywords,
enabling the retention of a precise log data for coverage evaluation.
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• Our focus on testing multiple mobile features resulted in the uncovering of a significant
number of bugs. We present a compilation of all bugs along with their corresponding
descriptions and a detailed example of how the interleavings led to a reported defect.

• We fully implemented tool support and comprehensively describe each stage of the
proposed strategy. This includes the tool architecture, interface, and the integration
with a dependency analysis tool.

1.3 THESIS STRUCTURE

Chapter 2 overviews a previous strategy we developed that takes as input existing test cases
and outputs a test model with concurrent flows (reverse engineering approach) Almeida [2019],
supported by the TaRGeT tool Ferreira et al. [2010a]. Moreover, we present the extension of the
use case templates that allows the specification of intra-feature and inter-feature concurrency,
along with the CSP semantics that is obtained automatically from the use case templates.
Finally, the automatic generation of the test cases from the CSP models using the FDR ?

model checker is presented.
Chapter 3 presents the primary contribution of this thesis, which is a sound test generation

strategy for mobile device applications. The strategy is based on requirements written in natural
language and is inspired by Almeida [2019], Nogueira [2012], and expanded to incorporate
concurrent behaviour and a dependent analysis strategy. This analysis strategy ensures that test
steps are executed in a meaningful and consistent order, eliminating test cases with incomplete
setups or steps that cannot be executed due to unsatisfied preconditions. Furthermore, we
provide the theoretical background necessary to substantiate the soundness of the proposed
approach.

To optimise the test generation process presented in the previous chapter, in Chapter 4,
we propose a strategy that involves the interleaving of atoms (test case actions of varying
granularity, as detailed later). By leveraging this approach, we aim to provide a more efficient
alternative that aligns closely with the automation and execution environment of our industrial
partner. The key idea behind our proposed strategy is to generate test cases by interleaving
atoms, which are the fundamental units of the system being tested. By interleaving these
atoms, we can explore different combinations and configurations, leading to a more com-
prehensive coverage of the system’s behaviour. We also address soundness of the optimised
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approach by showing its connection with the formal strategy presented in Chapter 3.
We present the specifics of implementing a tool to support test case generation in Chap-

ter 5.
In Chapter 6, we delve into the thorough examination conducted in an industrial setting,

encompassing the preparation, operation, and outcomes of an empirical evaluation. This eval-
uation was specifically designed to assess the effectiveness of the proposed approach in terms
of coverage and uncovering bugs. The chapter provides detailed insights into the methodol-
ogy, execution, and findings of the evaluation, shedding light on the practical applicability and
impact of the approach in an industrial context.

Following that, Chapter 7 explores the body of related work that pertains to the three
major areas addressed in this thesis: test generation from natural language descriptions, testing
concurrent applications, and the application of formal methods in test generation. This section
provides an overview of existing research, methodologies, and techniques relevant to each of
these areas. By examining related work, we gain a comprehensive understanding of the existing
knowledge landscape and identify the contributions and distinguishing features of our approach
within the broader research context.

In Chapter 8, we summarise our contributions and implications of the study. We reflect on
the accomplishments and limitations of the proposed approach and highlight the significance
of the research in addressing the identified challenges. We also identify potential research areas
for further exploration to advance the field.
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2 BACKGROUND

In this chapter we provide the foundations of our research including an overview of the pre-
vious strategy we have developed extending the work in Nogueira [2012]. The referred approach
takes existing test cases as input and produces a test model with concurrent flows through a
reverse engineering process Almeida [2019]. In this approach, the automatic generation of test
for concurrency scenarios is supported by the TaRGeT tool Ferreira et al. [2010a].

Additionally, we present the extension of the use case templates to accommodate the spec-
ification of two concurrent levels: intra-feature (models the concurrent execution of use cases
that belong to the same feature) and inter-feature concurrency (concurrent behaviour that
arises from the interaction of applications in different features). The extension is conservative
in nature, as it incorporates new elements while retaining all the elements from the previous
template. This ensures that the extension enables the modelling and generation of test cases
for both non-concurrent and concurrent features.

In the next sections we provide a concise introduction to MBT, the TaRGeT tool and detail
each of the previously mentioned forms of concurrency using as running example features that
run on mobile devices. The subsequent sections describe the CSP semantics for features with
concurrent behaviour, how to generate tests automatically from the CSP model, and the
update performed in TaRGeT to input the extended template.

2.1 MODEL BASED TESTING

In the realm of software testing, it is a common practice to create and execute test cases
manually. The manual testing process is frequently regarded as costly and time-intensive, as
it necessitates testers to generate test cases, carry out the tests, and assess the outcomes.
In addition, manual testing may prove to be ineffective or impractical, particularly in cases
involving the monitoring of non-visible information, such as the interactions occurring between
internal components of a system. In order to make the process more effective, automation is
used to improve testing. Automating tests offers multiple advantages and contribute to the
overall quality of software. Automation can reduce costs, minimise human error, and improve
the efficiency of regression testing Sommerville [2004].

By effectively using test automation, organisations can improve the testing process and
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enhance the quality of delivered software. The use of formal models, accompanied by mathe-
matical notations, is of utmost importance in facilitating the test automation process. These
models offer a methodical and rigorous framework for specifying the input domain and the
intended functionality of the system.

Models are used in different domains to comprehend, define, and create systems. They
can be used in various stages of the product life-cycle, such as enhancing specification quality,
generating code, analysing reliability, and generating tests Apfelbaum and Doyle [1997]. MBT
is a method employed to generate test cases automatically Dalal et al. [1999] from behavioural
models, such as requirements, that depict certain aspects of the System Under Test (SUT).
Some MBT approaches focus on automating software testing by taking an input model (rep-
resented as number 1 in Figure 1) and producing a test suite automatically (represented as
number 2 in Figure 1).

Figure 1 – The Process of Model-Based Testing.

Source: The author (2018)

The process of MBT involves using a machine-readable input model, such as LTS, to
generate test cases. Due to the potentially large or infinite number of test cases, a test
selection criteria is applied to choose a feasible subset of tests. The selected tests cover specific
parts of the input model or are limited to a maximum number of tests. If the input model is
too abstract, the test cases are translated into a more concrete representation for execution
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against the IUT. During test execution, the test inputs are provided to the IUT (number 3 in
Figure 1), and the responses are compared with the expected outcomes described in the test
cases (number 4 in Figure 1). To improve the efficiency MBT, it is important to consider the
following factors.

• The model to be manipulated by the user should be clear and easily understandable by
all stakeholders, even those not familiar with the application domain. Additionally, the
model’s scope, defining its capabilities, should be well-defined.

• A systematic approach is crucial for constructing the model. Starting with an abstract
description from an informal requirements document, well-defined procedures should
guide the construction of a suitable formal model.

• The use of algorithms and tool support is necessary to process the input model. This
includes test selection and automation of tests, optimising the testing process.

• The model must include an oracle, which defines the criteria for determining whether
a test has passed or failed, providing a mechanism for validating the correctness of the
system’s behaviour.

• The generated test cases should be sound. Ensuring the reliability of test cases is essential
to avoid false negatives and false positives in the testing process.

In summary, MBT has the potential to assist in automating various testing methods across
different testing stages. This study specifically concentrates on using MBT to facilitate func-
tional system tests that rely on documents written in natural languages.

2.2 MODELLING CONCURRENT FEATURES

2.2.1 TaRGeT

As already mentioned, in a previous work Almeida et al. [2018] we extended the test
case generation approach that is implemented by the TaRGeT tool Ferreira et al. [2010a].
In summary, the tool takes input in the form of standardised use case templates written in
controlled natural language to describe the features of the system to be tested. The use cases
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within the templates contain natural language descriptions of actions and the corresponding
system responses, which guide the testing process.

TaRGeT’s use case templates allow the inclusion of input and output values, as well as
guards to control the specification flow. These enriched use cases are automatically translated
into a formal specification in the notation of CSP process algebra. Figure 2 illustrates TaRGeT’s
generation process.

Figure 2 – TaRGeT generation process.

Source: The author (2018)

In TaRGeT, the generation of test cases is achieved through the refinement verification
between CSP processes using the FDR model checker T.Gibson-Robinson et al. [2014]. Tests
are obtained by counterexample traces of refinement using CSP test purposes, which repre-
sent a partial specification of the selected test scenarios derived from the input specification.
The generated test cases are presented in natural language, and the traces events of the CSP
specification are mapped to these elements, producing a test suite suitable for manual execu-
tion. The output of the tool is an HTML file containing all the generated test cases (see in
Figure 3).

This approach aligns with the recommendations to use a clear and understandable model,
to have a tool support to process the input model, and to generate sound test cases to provide
reliability on testing. These features enhance the support for test generation in TaRGeT and
contribute to an efficient and robust testing process.

The process of generating test scenarios for non-concurrent features is automated by TaR-
GeT through the execution of FDR refinements in the background until certain stop criteria
are met Nogueira et al. [2016]. One common stop criterion is to generate test scenarios until
a predetermined threshold of scenarios is reached. Additionally, TaRGeT has the capability
to incorporate natural language test purposes, which can describe scenarios that align with
specific steps and states outlined in the use case specification. Furthermore, recent advance-
ments have been made to enhance TaRGeT’s functionality by considering structural coverage
Nogueira et al. [2019].
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Using FDR, TaRGeT has access to the underlying LTS models (operational semantics)
for the CSP specification, which allows for measuring the coverage of events or transitions
for a set of test scenarios. The mapping between the underlying LTS models and the CSP
specification enables TaRGeT to consider three structural criteria to control the generation of
test scenarios:

• Coverage of Use Case Steps (At Least Once): Test scenarios are generated to ensure
that all the steps or actions specified in the use cases are covered at least once. This
criterion guarantees that the essential functionalities of the system are tested.

• Coverage of Use Case Steps and the Combinations of Input Values: In addition to
covering the use case steps, TaRGeT generates test scenarios that encompass all possible
combinations of input values for a given range of values. This criterion aims to explore
various input combinations that the system may encounter during real-world usage.

• Coverage of Use Case Steps and the Combinations of Input Values that Match a Given
Test Purpose: Test scenarios are generated to fulfill a specific test purpose or objective.
This criterion allows for tailored testing to verify specific aspects or requirements of the
system.

Figure 3 – TaRGeT Test Case for My Phonebook Application.

Source: Ferreira (2010)

The next sections give a brief explanation about TaRGeT’s main features.
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2.2.2 Modelling Active Use Case

The template proposed by Nogueira et al. [2012, 2016] for automatic test case generation
consists of features, with each feature containing multiple use cases. Each use case is comprised
of one or more execution flows that can be interconnected. In the original template, a feature
executes a single flow at a time, with one flow being completed before the next one begins, thus
use cases are performed sequentially. We proposed an extension to the template by introducing
"active" use cases, which can be executed concurrently with the flow of other use cases within
a feature. Figure 4 illustrates the data associated to the email feature. It encompasses the
definition of types, constants, and variables. The type Natural is employed to specify the
range of integer values, which in this case is {0, 1, 2, 3, 4, 5}. This range is denoted as [0,5]

for brevity. The limitation of the value range is necessary to prevent an excessive number of
test cases during the generation of tests. The constant MAX EMAILS represents the maximum
number of emails that the inbox folder can accommodate. The variable read denotes the
number of read emails and is initialised with a value of two. On the other hand, the variable
unread indicates the number of unread emails and has an initial value of one.

Figure 4 – Data definition for Feature F1.

Source: The author (2018)

The initial use case of Feature F1, referred to as UC01, outlines the process of checking
unread emails. This use case consists of both main and alternative flows, each of which
comprises a series of steps. These steps are characterised by three components: the user input
action, the system state (precondition for the step), and the corresponding system response.
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The first step in the main flow of UC01 (1M) involves verifying the presence of new emails (see
Figure 5). In this context, an unread email is considered equivalent to a new email. Therefore,
the condition for this step is the existence of at least one unread email. The use case template
employs a Controlled Natural Language (CNL) notation to specify user input values (in the
user action), conditional expressions (in the system state), and system outputs/updates (in the
system response). These elements are enclosed between two instances of the % symbol. For
example, the expression %unread > 0% in Step 1M serves as a guard that evaluates to true if
the value assigned to unread is greater than zero. Subsequently, the second step (2M) involves
opening unread emails. The user action expression %Input x: Natural from {1..unread}%

specifies an input value x that is set by the user. This value must fall within the range of one to
the current number of unread messages. In the use case template, the scope of an input value
is limited to the step in which it is declared. Therefore, the scope of the value x is restricted
to Step 2M. The system response entails marking messages as read and updating the number
of unread and read messages accordingly. This adjustment is achieved by decrementing the
number of unread messages by the value of x and incrementing the number of read messages
by the same value. The output is represented as %unread := unread – x, read := read

+ x%. For further information on the CNL notation, please refer to Nogueira et al. [2016].

Figure 5 – Use case 1 (Email).

Source: The author (2018)

The use case flows are preceded by the fields From Step and To Step, which serve to
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denote the initiation and progression of the sequence, respectively. In the context of UC01 the
primary sequence originates from the step identified as START, signifying that this particular
sequence can be executed from the initial state of the corresponding feature. Furthermore, the
continuation of this use case is denoted by the step labelled as END, indicating that the sequence
concludes upon accomplishing its final step. In instances where the origin or continuation is
specified as a step identifier, the sequence starts from or continues to a particular step within
another sequence.

The lower portion of Figure 5 depicts an alternative sequence for UC1 (1M), which follows
a state subsequent to the initial stage of the main sequence. Step 1A includes a condition that
depends on the absence of unread emails (%unread = 0%). This condition is only satisfied
when the condition of Step 1M is not met. In such a scenario, the alternative sequence is
executed instead of the main sequence. The primary action of Step 1A involves verifying the
presence of new emails, and the system responds by indicating that no emails are found.

Figure 6 – Active use case.

Source: The author (2018)

Figure 6 illustrates an active use case, specifically Use Case UC02, which outlines the process
of handling new emails concurrently with email reading. Active use cases are distinguished by
the label «active» appended to the use case name. The structure of an active use case
is identical to that of non-active use cases, but it possesses an independent execution flow.
Consequently, an active use case can interleave with the execution of other use cases. In our
example, the active use case receives a set number of messages from the network as input.
This is specified in Step 1M through the input x, which must not exceed the maximum message
capacity, taking into account the existing messages in the application (%Input x: Natural

from {1..MAX EMAILS - (read+unread)} %). The enabling condition for this step is that
the number of existing messages must be less than the maximum allowed (%read + unread <
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MAX EMAILS%). If the condition is met, the number of unread messages is updated (%unread

:= unread + x%). This use case emulates a component of the email application responsible
for receiving new emails and operates concurrently with Use Case UC01.

Given that use cases have the ability to share variables and execute concurrently, it is
plausible for race conditions to occur during the simultaneous access to these shared variables.
In such scenarios, the access to critical regions can be represented by using variables and
guards to regulate the concurrent access to these variables.

2.2.3 Modelling Concurrent Features

This section introduces an expanded version of the current template in order to incorporate
concurrent functionalities, defined in Almeida [2019]. In order to address this, supplementary
components are added to the template to effectively capture the concurrent characteristics of
these features.

As an illustrative instance, we exhibit the use of an Android feature known as Android
split screen, which was introduced in Android N www.android.com [a]. This feature allows the
screen to be divided into two separate views, with each view independently executing a distinct
application (as shown in Figure 7).

In the uppermost section of the screen, there is a primary application that remains fixed,
while in the lower section of the screen, a secondary application is executed simultaneously with
the primary one. In this study, we demonstrate the modelling of the Email Application, referred
to as Feature F1 in the preceding section, as it operates in the uppermost view, alongside the
execution of a Video Player application in the lower view.

Figure 8 illustrates Feature F2, which defines the specifications for the Video Player Appli-
cation. This feature encompasses a single use case with a main flow, comprising the following
steps:

• Selecting a video (Step 1M).

• Verifying if the chosen video starts playing upon clicking the play button (Step 2M).

The proposed extension aims to represent the concurrent behavior of features by specifying
their composition within a document. The internal structure of the features remains unchanged.
The features can be configured to function as a choice, concurrently, or a combination of both.
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Figure 7 – Two applications running in parallel.

Source: Android (2018)

Figure 8 – Use case 1 (Video).

Source: The author (2018)

In the use case template, the composition of the features is defined after the model of the
features. In the subsequent sections, we introduce a notation for specifying this composition.

Composition := fid

| (Composition OR Composition)

| (Composition AND Composition)

As per the aforementioned notation, a composition comprises one or more feature identifiers
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that can be combined using the constructors OR and AND. The OR constructor indicates that
the composition’s arguments are executed as a choice, allowing only one of the features to be
executed at a time. In the case of iterated executions, they occur sequentially. On the other
hand, the AND constructor signifies that the composed features are performed simultaneously,
enabling their behaviours to be interleaved.

For example, the composition (F1 AND F2) signifies that the features F1 and F2 are exe-
cuted concurrently, effectively modelling the behaviour of the Android split screen functionality,
where the Email and Video Player applications run simultaneously on the same screen.

In contrast, the composition (F1 OR F2) indicates that either F1 or F2 is executed, but
not both simultaneously.

2.3 TEST CASE GENERATION VIA CSP REFINEMENT

In this subsection, we present the notation and semantic model of CSP used in this thesis,
following CSP syntax for the operators.

2.3.1 CSP operators

The fundamental component of the CSP notation is a process, which represents an entity
capable of specifying both sequential and concurrent behaviours. A process communicates
with other processes through events, and the set of events that a process can communicate
forms its alphabet.

The most basic CSP process is represented by Stop. This process signifies a deadlock
behaviour, where it does not communicate any events and remains in a state of inactivity or
lack of progress.

The basic CSP operators are employed to model the sequential behaviour of use cases. The
prefix operator → is used to specify sequential events. The notation allows defining processes
that execute a series of events in a particular order. For instance, if we have two events a and
b, the expression a → P denotes a process that first communicates event a and then, after its
completion, behaves as the process P. This operator captures the idea of sequential behaviour
in CSP, allowing the representation of sequential actions in a process.

Another primitive process in CSP is represented by Skip, which denotes successful termina-
tion or completion. When Skip communicates the special event ✓, it means that the process
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has successfully completed its execution. After communicating this ✓ event, the Skip process
enters a deadlock state, where it no longer communicates any events and remains inactive.
This behaviour aligns with the notion that a successful process has reached its end and cannot
proceed further.

In CSP, recursive processes can be constructed, enabling the specification of processes that
repeat their behaviour indefinitely. For example, consider the process P1 that communicates
the events on and off in an infinite loop. The notation for this recursive process can be
expressed as follows:

P1 = on → off → P1

This definition indicates that the process P1 starts by communicating the event on, then
proceeds to communicate the event off , and finally, it recursively refers back to P1, causing
it to repeat the entire sequence of on and off events indefinitely.

The recursive nature of CSP processes allows the specification of behaviours that can be
iteratively executed without ever terminating, which is a valuable feature for modelling systems
with continuous or repetitive interactions.

In CSP, a channel specifies an abstraction for a set of events with a common prefix.
The notation channel c : T represents a channel c that communicates events from the set
{c.t | t ∈ T}. For instance, consider the channel channel c : {0, 1, 2}. This channel can
communicate the events {c.0, c.1, and c.2}.

Using this channel, the process c!0→ STOP communicates the event c.0 and then enters
a deadlock state Stop. It specifies a behaviour where the process communicates c.0 and then
stops, not allowing any further communication.

Furthermore, the syntax c?t signifies that the environment binds a value v from the set
T to the variable t, and then communicates the event c.v. This notation is useful when the
process expects to receive a value from the environment and subsequently communicates an
event incorporating that value through the specified channel.

Sequential composition is a relevant operator in CSP for modelling sequential behaviour.
The expression P; Q specifies that the process P is executed first, and once it terminates
successfully (behaves as Skip, the control is then passed to the process Q. In other words,
P; Q behaves like P until P completes successfully, and then Q takes over.

For example, let’s consider the process a → Skip; b → Stop. The behaviour of this process
can be understood as follows:
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• It starts by communicating the event a.

• After successfully communicating a, it behaves like Skip (successful termination) and
doesn’t communicate any further events.

• As a result, the control is then passed to the process b → Stop.

• The process b → Stop communicates b and terminates successfully as Stop.

Hence, the overall behaviour is equivalent to a → b → Stop. The sequential compo-
sition operator effectively allows us to simplify the process representation by removing the
intermediate Skip behaviour.

The parallel composition operator P |[X ]|Q specifies the concurrent behaviour between
processes P and Q. In this composition, the events in the set X are synchronised, meaning
they must occur simultaneously on both sides of the parallel composition. All other events
communicate independently.

The expression P ||| Q denotes the interleave of the processes P and Q, which is a special
case of parallel composition where there is no synchronisation (i.e., an empty synchronisation
set X).

For example, consider the process a → b → Stop |[ a ]| a → c → Stop. This behaviour
is equivalent to the process a → (b → Stop ||| c → Stop), which first communicates the
event a and then behaves as the interleave of b → Stop and c → Stop. The interleave
b → Stop ||| c → Stop allows the events b and c to be communicated independently, and
their order is non-deterministic.

A crucial aspect of parallel composition is that it only terminates when both processes in
the composition have terminated (distributed termination). This property ensures that both
processes are synchronised and that the parallel composition is finished only when all the
parallel processes have completed their execution.

In CSP notation, indexed operators provide a concise and powerful way to express com-
positions of processes. Consider the set Cardinal direction that contains the CSP events
{north, south, east,west}. The process 2 x : Cardinal direction @ x → Stop uses the in-
dexed external choice operator to express that it behaves as the choice of processes with the
form x → Stop, where x is replaced by each element in the set Cardinal direction.

So, the process 2 x : Cardinal direction @ x → Stop can be understood as for each
element x in the set Cardinal direction, the process communicates the event x and then
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terminates (Stop). As a result, the process behaves as the explicit choice between the individual
processes north → Stop, south → Stop, east → Stop, and west → Stop.

Indexed operators can also be applied to other CSP operators, such as interleaving. They
offer a concise and flexible way to express behaviours that depend on a set of elements or
events, reducing the need for repetitive specifications and improving the clarity of process
definitions.

The CSP operator ∖ is used for hiding process communications. When we have a process
P ∖ X , it means that P communicates all events except the events in the set X . In other
words, the process P ∖ X hides the events in X , preventing them from being communicated,
while allowing all other events of P to proceed as usual.

Additionally, the notation P △ Q, where △ stands for the interruption operator, indicates
that the process Q can interrupt the behaviour of P if an event of Q is communicated. This
composition behaves as P until an event in Q is communicated.

These operators provide a way to control the flow of events in the composition of processes,
enabling the specification of more complex and flexible system behaviours. They are particularly
useful when modelling systems with interrupt-driven or event-driven interactions.

The traces model is one of the simplest semantic models in CSP. In this model, a process
is represented by the set of all the traces it can perform. A trace is a sequence of visible actions
performed by a process. Visible actions are events that are observable or externally visible from
the environment. In the given example, the traces model of the process P = x → y → Stop

is the set {⟨⟩, ⟨x⟩, ⟨x , y⟩}. The empty trace ⟨⟩ represents the initial state where no action is
performed, indicating the process is at the start before any events are communicated. Likewise,
the traces semantics of the process Skip is the set {⟨⟩, ⟨✓⟩}. Let the interleaving for the traces
s and t be defined by the rules

⟨⟩ ||| s = {s}

s ||| ⟨⟩ = {s}

⟨a⟩⌢ s ||| ⟨b⟩⌢ t = {⟨a⟩⌢ u | u ∈ s ||| ⟨b⟩⌢ t}

∪{⟨b⟩⌢ u | u ∈ ⟨a⟩⌢ s ||| t}

Each trace in the set captures a possible sequence of events that the process P can perform
from its initial state to its termination. Traces provide a concise and formal way to analyse the
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behaviour of processes and understand their possible execution paths. Our approach performs
traces refinement verifications using the FDR tool T.Gibson-Robinson et al. [2014] to generate
test scenarios.

In CSP, a process Q refines a process P, denoted as P ⊑t Q, if the set of traces of Q is a
subset of the set of traces of P. For instance, the process P1 is defined as a → Skip; accept →

Stop, and the traces of P1 is {⟨⟩, ⟨a⟩, ⟨a, accept⟩}. The process Q1 is defined as a → Skip,
and the traces of Q1 is {⟨⟩, ⟨a⟩, ⟨a,✓}⟩.

To check if P1 refines Q1, we need to verify whether the traces of Q1 are a subset of the
traces of P1. However, ⟨⟨⟩,✓, accept⟩ is a trace that belongs to P1 but does not belong to
Q1. Therefore, Q1 ⊑t P1 does not hold, and ⟨a, accept⟩ serves as a counter-example.

In general, when checking for refinement, if a counter-example exists, it shows that the
process Q does not refine process P as there is at least one trace that is allowed in Q but
not in P. For more in-depth information about the traces and other semantic models of CSP
refer to Roscoe [1998].

2.3.2 CSP Semantics for Concurrent Features

This section outlines the CSP semantics for the extended use case template discussed
earlier. The content is organised according to the elements presented in the use case template.
The full details can be found in Almeida [2019]. Types and constants from the use case are
directly translated into types and constants within the CSP model. For specific data elements
related to Feature F1 (illustrated in Figure 4), the CSP representation is given in Table 2.

In the CSP model, the type Natural is represented as a nametype (name type) on line 01.
Additionally, the constant MAX EMAILS is defined as a constant in the CSP model, and it
keeps the same name as in the use case specification (line 03).

Variables are considered elements of the set Vars, which is explicitly defined as a datatype

on line 05. This definition allows the model to incorporate and manipulate these variables.
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Table 1 – CSP model for data elements of Feature F1.

01 nametype F1 Natural = {0..5}
02
03 MAX EMAILS = 4

04
05 datatype Vars = F1 read | F1 unread
06
07 channel get, set : Vars.F1 Natural
08
09 channel startStep, endStep : IDS F .IDS UC .IDS S

Table 2 – CSP model for data elements of Feature F1.

01 nametype F1 Natural = {0..5}
02
03 MAX EMAILS = 4

04
05 datatype Vars = F1 read | F1 unread
06
07 channel get, set : Vars.F1 Natural
08
09 channel startStep, endStep : IDS F .IDS UC .IDS S

In CSP, processes are stateless, meaning they do not have variables. Instead, state is
typically modelled using a separate memory process that stores the necessary data.

In Table 2 (line 07), the channels get and set are declared. These channels serve a specific
purpose in the CSP model of a use case. The get channel is used to read the value of a variable
from the memory process, while the set channel is used to update the value of a variable in
the memory process.

Later, the memory process is combined in parallel with the processes that represent the
features. This parallel composition allows the use cases to communicate with the memory
process using the get and set channels. By employing these channels, the use cases can retrieve
information from the memory process or modify its content as needed, enabling effective
communication and data exchange within the CSP model.

The usage of channels get and set in the semantics of use case UC01, as shown in Table 3,
is exemplified below:
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• In line 08 of Table 3, the communication get!F1 unread?unread is used to read the
value of the variable F1 unread from the memory process. The obtained value is then
bound to the local variable unread for use within the Use Case UC01.

• As another example, in line 16 of the same table, the event set!F1 read!(read + x) is a
message to the memory process. This message requests the memory process to update
the variable F1 read to the value of the expression (read + x). This way, the memory
process will store the new value, and it will be accessible for future interactions with
other parts of the CSP model.

Table 3 – CSP model for Use Case UC01 of Feature F1.

01 channel in 1 UC01 2M x : F1 Natural
02
03 F1 UC01 = F1 UC01 START
04
05 F1 UC01 START = (F1 UC01 1M 2 F1 UC01 1A)

06
07 F1 UC01 1M = startStep.1.1.1→
08 get!F1 unread?unread → unread > 0

09 verify newly received → unread highlithed →
10 endStep.1.1.1→ Skip; (F1 UC01 2M )

11
12 F1 UC01 2M = startStep.1.1.2→
13 get!F1 unread?unread → get!F1 read?read →
14 in 1 UC01 2M x?x : {1..unread} →
15 open unread → unread marked read →
16 set!F1 unread!(unread − x)→ set!F1 read!(read + x)→
17 endStep.1.1.2→ Skip
18
19 F1 UC01 1A = startStep.1.1.3→
20 get!F1 unread?unread → unread == 0

21 verify newly receive A→ no unread A→
22 endStep.1.1.3→ Skip

Source: The author (2023)

The complete CSP model for this use case is provided in the following section. For more
comprehensive details regarding the memory process refer to Nogueira et al. [2010].
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The CSP model for Use Case UC01 of Feature F1, as presented in Table 3, defines
the behaviour of the process F1 UC01. This process represents the initial state of UC01

and is denoted as F1 UC01 START , which denotes the beginning state of the use case.
Consequently, START is represented as a process in the CSP model.

As both the main flow and alternative flows of UC01 start from F1 UC01 START , the
behaviour of F1 UC01 START is modelled as a choice between two processes: F1 UC01 1M ,
which represents the first step of the main flow, and F1 UC01 1A, which represents the first
step of the alternative flow. By using the choice construct, the CSP model is able to select
between the main flow and the alternative flow based on specific conditions specified in the
model.

The process F1 UC0 1M represents the step 1M of Use Case UC01. Initially, the pro-
cess F1 UC01 1M communicates the control event startStep.1.1.1. This event may trigger
other processes or actions related to the beginning of step 1M . The current value of the
variable unread is read by the process process F1 UC01 1M , communicating the event
get!F1 unread?unread (line 08). This event sends a request to the memory process to re-
trieve the value of the variable F1 unread, and the obtained value is assigned to the local
variable unread. The behaviour g & P, where g is a guard and P is a process, is equivalent to
if g then P else Stop. In the context of the model, this construct is used to check a condition
represented by the guard unread > 0 (line 08). If the guard holds true (i.e., unread > 0),
the process flow continues with process P. Otherwise, if the guard evaluates to false (i.e.,
unread > 0), the process execution will deadlock, meaning it will come to a halt. Overall, this
behaviour ensures that the process F1 UC01 1M checks the value of unread and proceeds
with the flow only if the condition unread > 0 holds, effectively handling the main flow of
the Use Case UC01. If the condition is not satisfied, the process will not progress further,
mimicking the behaviour of a deadlock.

If the flow continues, the event verify newly received that represents the step action is
performed, followed by (unread highlithed) that represents the system response, the control
event endStep.1.1.1 and successful termination happens. After terminating, the control is
taken by the process that represents Step 2M (F1 UC01 2M ).

If the condition unread > 0 holds, the process flow continues with the main flow of Use
Case UC01.The event verify newly received representing the step action is performed. This
event may trigger further processes or actions related to the verification of newly received data
or information. After performing the step action, the event unread highlighted represents the
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system response. This indicates that the system responds to the performed action with the
event unread highlighted. The control event endStep.1.1.1 is communicated, marking the
successful termination of Step 1M . After the successful termination of Step 1M , the control
is taken by the process that represents Step 2M (F1 UC01 2M ). This means that the
process F1 UC01 2M will start executing, continuing the flow of the Use Case UC01 with
Step 2M . This sequence of events represents the progression of the main flow of Use Case
UC01, demonstrating how the CSP model handles the steps and system responses during the
execution of the use case.

In the testing theory developed in Nogueira et al. [2012] and applied here, it is essential
to maintain the separation of events belonging to different steps in the CSP model’s traces.
Specifically, each user action (modeled as an input event) must be followed by the respec-
tive system response (an output event) within the same step. However, concurrent execution
of steps from different use cases does not violate this aspect of the theory. To ensure the
atomicity of a step, a standard mechanism of critical regions is employed. The control events
startStep.1.1.1 and endStep.1.1.1 are used to define the start and end of a critical region,
representing the beginning and end of a step, respectively.

Table 2 declares the channels startStep and endStep at line 09. The sets IDS F , IDS UC ,
and IDS S are indices for the features, use cases, and steps, respectively. In this specific
example, these sets are represented as {1..2}, {1..2}, and {1..3}, respectively. These sets help
in organising and referencing the features, use cases, and steps in the CSP model, allowing for
clear definition and control over the critical regions to maintain the atomicity of steps.

The process F1 UC01 2M (line 12) represents the CSP model for Step 2M of Use Case
UC01. The process F1 UC01 2M initially reads the variable values from the memory using
the get operation (not explicitly shown in the provided context). This allows the process to
retrieve the current values of relevant variables for further use. The process inputs a value x

(line 14), which represents the number of emails to be opened. This input value x is com-
municated through the channel in1 UC01 2M x (line 01). The channel serves as the means
of communication between different processes in the CSP model. Subsequently, the process
communicates the events open unread and unread marked read, representing the action of
opening emails and the system response, respectively. These events specify the actions and
reactions that occur in response to the user input in Step 2M of Use Case UC01. The events
set!F1 unread!(unread − x) and set!F1 read!(read + x) represent the updates specified in
Step 2M . These events indicate that the process is updating the values of variables F1 unread
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and F1 read in the memory process based on the provided conditions. Finally, the process
F1 UC01 2M terminates successfully, concluding Step 2M of Use Case UC01.

The process F1 UC01 1A (line 19) is the CSP model for Step 1A. It initially retrieves the
number of unread messages from the memory variable unread using a get event (not explicitly
shown in the provided context). This allows the process to access the current value of the
variable for further evaluation. The process then verifies the system condition unread == 0.
If this condition fails (i.e., unread is not equal to zero), the process will deadlock. This implies
that Step 1A cannot proceed if there are any unread messages, as the condition requires the
number of unread messages to be zero. If the system condition holds true (i.e., unread == 0),
the process continues its execution. In this case, the process communicates the necessary events
to verify the existence of newly received email and the corresponding system response, which
indicates that there are no unread emails. After completing the actions and system responses,
the process F1 UC01 1A terminates successfully, concluding Step 1A of Use Case UC01.

The processes F1 UC01 1M and F1 UC01 1A are in choice within the process in line
5 (F1 UC01 START ), and their guards are disjoint. This means that only one of the two
processes can progress at a time based on the value of the variable unread, which represents
the number of unread messages. If the guard of F1 UC01 1M (unread > 0) evaluates to
true, then the process F1 UC01 1M will be chosen, allowing the main flow to proceed. This
means that if there are any unread messages, the main flow will be taken. On the other hand,
if the guard of F1 UC01 1A (unread == 0) is true, then the process F1 UC01 1A will
be chosen, allowing the alternative flow to proceed. This means that if there are no unread
messages, the alternative flow will be taken.

The active use case does not have any specific structure. However, it differs from non-
active use cases in that it is intertwined with the feature’s non-active use cases, as stated
in the CSP model for the feature). The process F1 UC02 initially reads the values of the
variables using get events (Table 5, line 08). This allows the process to retrieve the current
values of relevant variables for further evaluation. The process evaluates the system condition
(line 09). Depending on whether the condition holds or not, the behaviour proceeds differently.
If the system condition holds true, the process inputs a value x defined by the environment
(line 10). This input value x is communicated through the channel appropriate for the use
case. Subsequently, the process communicates the necessary events that represent the action
to handle new emails and the corresponding system response (line 11). These events signify
the actions and reactions that occur as part of Use Case UC02. The process uses a set event
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to update the value for the unread variable (line 12). This event indicates that the process is
updating the value of the unread variable in the memory process based on the actions taken
in Use Case UC02. The process communicates the control event endStep.1.2.1 (line 12) to
mark the successful termination of Use Case UC02. Finally, the process F1 UC02 terminates,
concluding Use Case UC02.

Table 4 – Formalisation of Feature Composition

01 F UCs = CNA UCs ||| CA UCs
02
03 CNA UCs = if #NA UCs = 0 then Skip
04 else 2 UC : NA UCs @ UC
05
06 CA UCs = if #A UCs = 0 then Skip
07 else ||| UC : A UCs @ (UC 2 Skip)

Source: The author (2023)

Table 5 – CSP model for Use Case UC02 from Feature F1

01 channelin 1 UC02 1M x : Naturals
02
03 F1 UC02 = F1 UC02 START
04
05 F1 UC02 START = F1 UC02 1M
06
07 F1 UC02 1M = startStep.1.2.1→
08 get!F1 unread?unread → get!F1 read?read →
09 read + unread < MAX EMAILS
10 in 1 UC02 1M x?x : 1..(MAX EMAILS − (read + unread))→
11 handle emails → inbox updated →
12 set!F1 unread!(unread + x)→
13 endStep.1.2.1→ Skip

Source: The author (2023)

The CSP model for a feature called F , which does not have variables, is denoted as F UCs.
The process F UCs is specified in Table 4 and represents the interleaving of two compositions:
CNA UCs, which consists of non-active use cases, and CA UCs, which consists of active use
cases. NA UCs represents the set of use cases not tagged as active, while A UCs represents
the set of use cases tagged as active.
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If NA UCs is not empty, CNA UCs behaves as an indexed external choice of the use cases
in NA UCs. Otherwise, it behaves as Skip. Similarly, if A UCs is not empty, CA UCs behaves
as an indexed interleaving of (UC 2 SKIP), where UC belongs to A UCs. Otherwise, it also
behaves as Skip.

The choice (UC 2 SKIP) implies that CA UCs considers execution flows that interleave
with the active use case (UC ) and flows that do not (when it behaves as Skip)).

The CSP model for a feature F that includes variables is represented as the composition
(F UCs |[ a MEM ]|F MEMORY △ Skip), where FM EMORY is the memory process, and
aMEM is the memory alphabet. In this model, the F UCs process and the F MEMORY

process run in parallel, sharing the memory alphabet aMEM . The parallel composition allows
them to interact and exchange information through the shared variables in aMEM . However,
to ensure the successful termination of the feature process, the F MEMORY process is
interrupted by Skip on the right-hand side of the parallel composition. This setup ensures that
the feature process F UCs can proceed to completion without waiting for the F MEMORY

process, allowing for a more efficient and flexible system behaviour.
The process F1, as described in Table 6, represents the CSP model for Feature F1.

The process F1 includes two combinations of use cases: F1 UC01, which represents the
combination of all use cases, and (F1 UC02 2 Skip), which represents the combination
of active use cases. The first combination, F1 UC01, likely includes the interactions and
behaviour of all use cases within Feature F1, regardless of their activation status. The second
combination, (F1 UC02 2 Skip), represents the interactions and behaviour of the active use
cases within Feature F1. The use cases in F1 UC02 are the ones that are currently active,
and the Skip process allows the successful termination of the feature when there are no active
use cases.

Table 6 – CSP model for Feature F1.

01 F1 = (F1 UC01 ||| (F1 UC02 2 Skip))
02 |[ aF1 MEM ]|
03 (F1 MEMORY △ Skip)

Source: The author (2023)

To be concise, we exclude the CSP model for Feature F2.
The system testing model combines all the features and uses the process stepCR in its

definition (Table 7). By composing stepCR in parallel with the features, the model ensures
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that the use case steps are executed atomically. Table 7 presents the specification for the
process stepCR. The process stepCR is designed as a recursive process that waits for the
environment to signal two events from the channels startStep and endStep. The startStep

event indicates the beginning of a step, while the endStep event indicates the completion of
that step. Both events must be communicated for the process stepCR to proceed further. Let
CONTROL be the set that includes all the events from the channels startStep and endStep.
When the stepCR process is composed in parallel with the features using synchronisation
set CONTROL, it ensures that only one step is performed at a time. This synchronisation
mechanism guarantees that the system executes each use case step in an isolated and atomic
manner, preventing any concurrent interference and ensuring a reliable testing environment.

Table 7 – CSP process that ensures critical region.

01 stepCR = startStep?f ?uc?s → endStep!f !uc!s → stepCR
Source: The author (2023)

The system to be tested, referred to as SYS , is represented by the following CSP process
(Fs |[CONTROL ]| (stepCR △ Skip)) ∖ CONTROL. Here, Fs represents the combination of
features. In this model, SYS combines the features (Fs) in parallel with the recursive process
stepCR, synchronised using the CONTROL set, and also in parallel with the CONTROL

process.
The features are represented by Fs and are composed together using the |[CONTROL ]|

operator, which synchronises their behaviour with the events in the CONTROL set. This en-
sures that the execution of features happens in coordination with the startStep and endStep

events. The process stepCR is recursively defined to wait for the environment to communicate
events from the startStep and endStep channels. This recursive process enables the system to
handle the steps in an atomic and controlled manner. Moreover, the parallel composition of
SYS with the CONTROL process allows for the proper synchronisation of the overall system
behaviour with the CONTROL events. Consider the example:

SYS0 = ((F1 2 F2) |[CONTROL ]| (stepCR △ Skip)) ∖ CONTROL

SYS1 = ((F1 ||| F2) |[CONTROL ]| (stepCR △ Skip)) ∖ CONTROL
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The stepCR process is interrupted by SKIP in the SYS composition to ensure proper ter-
mination of the parallel composition. In the CSP model, features can be combined using the
OR and AND constructors. To obtain the CSP model for a composition of features Fs, the
feature IDs are replaced with their respective feature processes. The OR constructor is repre-
sented by the CSP external choice operator, while the AND constructor is represented by the
CSP interleaving operator. For instance, let’s consider the system models for the compositions
F1 OR F2 and F1 AND F2, which are denoted as SYS0 and SYS1 respectively.

2.3.3 Test Case Generation Strategy

This section demonstrates how FDR is used to automatically create test cases for concur-
rent features, based on the method introduced in Nogueira et al. [2016]. We use a special
event (accept) to mark the scenarios we want to produce from the specification process, say
S . Let S ′ be the specification process modified by including an accept event at the end of the
desired scenarios. Since the mark event is not in the alphabet of S , the refinement S ⊑t S ′

does not hold, and counter-examples yielded by FDR for this refinement verification are test
scenarios.

We exemplify test generation using the system specification model SYS0 introduced in the
previous section. As illustration, we consider the scenarios that lead to successful termination.
The modified process for SYS0 that includes the event accept after the traces that lead to
successful termination is the process SYS0; accept → Stop. The assert command of FDR
runs a refinement verification and yields the shortest counterexample trace if the refinement
does not hold. Thus, the FDR assertion

assert SYS0 ⊑t SYS0; accept → Stop

does not hold and yields the following counterexample trace.

t1 = ⟨get.F1 unread.1, verify newly received, unread highlithed,

get.F1 unread.1, get.F1 read.2, in 1 UC01 2M x .1, open unread,

unread marked read, set.F1 unread.0, set.F1 read.3, accept⟩

Excluding get and accept events, the trace above represents the behaviour of the alterna-
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tive flow of the Use Case UC01 of Feature F1. To generate other test scenarios from SYS0

we use the CSP function Proc Nogueira et al. [2014], formally defined as

Proc(⟨⟩) = Stop

Proc(s) = head(s)→ Proc(tail(s))

where head(s) and tail(s) yield the head and the tail of a non-empty sequence s. Such a
function receives as input a sequence of events and generates a process whose maximum trace
corresponds to the input sequence. For instance, to generate a second test scenario we use
the process SYS0 2 Proc(t1) as the specification process. Such a process contains the trace
t1, hence t1 is not a counterexample for the refinement assertion below,

assert SYS0 2 Proc(t1) ⊑t SYS0; accept → Stop

which yields the following test scenario as a counterexample for the above refinement.

t2 = ⟨get.F1 unread.1, get.F1 read.2, in 1 UC 02 1M x .1,

handle emails, inbox updated, set.F1 unread.2, get.F1 unread.2,

verify newly received, unread highlithed, get.F1 unread.2,

get.F1 read.2, in 1 UC01 2M x .1, open unread,

unread marked read, set.F1 unread.1, set.F1 read.3, accept⟩

In general, for obtaining the (n+1)th test scenario (counterexample) from a specification,
we need to augment the left-hand side of the refinement expression with the test scenarios
already generated, and verify the expression using FDR. Formally, the refinement expression
for obtaining the (n+1)th test scenario is

S 2 Proc(ts 1) 2 ... 2 Proc(ts n) ⊑t S ′

There is a total of six test scenarios that can be obtained from the process SYS0 using
the expression above. The iterations can be repeated until the desired set of test scenarios is
achieved, such as by generating a fixed number of tests.
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The trace t2 represents a test scenario for intra-feature concurrency in Feature F1. In this
scenario, the main flow of the Use Case UC01 is preceded by the active use case (Use Case
UC02), which is performed concurrently. In another example, Figure 9 depicts a test case that
can be obtained from the sixth iteration (test scenario), representing the interleaving of steps.

We also present a test case that can be obtained from the first iteration (test scenario)
of a inter-feature behaviour, resulting from the interaction of the features F1 and F2. The
corresponding trace (sequence of events) yielded by FDR is presented as follows.

t1 F1 F2 = ⟨select video, video highlighted, get.F1 unread.1,

verify newly received, unread highlithed, get.F1 unread.1,

get.F1 read.2, in 1 UC01 2M x .1, open unread,

unread marked read, set.F1 unread.0, set.F1 read.3,mem update,

click play video, video playing, accept⟩

Figure 9 – Test case from the sixth iteration of TC generation for Feature F1

Source: The author (2019)

Figure 10 – Test case from t1 F1 F2

Source: The author (2019)

The format of the generated test cases is suitable for manual execution (see Figures 9
and 10).
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3 A SOUND STRATEGY TO GENERATE TEST CASES FOR CONCURRENT

FEATURES

In the industrial context of this research, we conceived a strategy to generate use cases
that combine the behaviour of existing test cases by reverse engineering existing test cases
(more details in Almeida [2019]), and then generate additional test cases from the obtained
use cases. A preliminary and informal version of the strategy was presented in Section 2.2,
with the following limitations: (i) the consistency of test step sequences was informally and
manually addressed; (ii) the quiescent behaviour was not considered; and (iii) generating a
use case model from test cases and new test cases from the use case model was performed
via refinement verifications using FDR, which proved to be costly.

The sound test case generation approach we propose here addresses these three issues, see
Figure 11. The flow at the top part of the figure proposes solutions to issues (i) and (ii). This
is formalised in the remainder of this section. The flow at the bottom part of the Figure is
an optimisation that additionally addresses issue (iii), which is the subject of the next section.
The input to both flows is a set of existing test cases for individual mobile features, and the
output is a set of (automated) test cases for concurrent feature execution.

Figure 11 – Generation process with dependency analysis and optimised approach.

Formalising the flow at the top of the Figure 11 requires a use case model that is extracted
from the input test cases using a reverse engineering process. Once the use cases are extracted,
the generation of test cases for concurrent features is performed by the TaRGeT tool Ferreira
et al. [2010b], which first converts the use cases into CSP models. These models are then
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used to generate tests by running FDR refinements. The refinement verifications produce
test scenarios until a stop criterion is met. Finally, the CSP events in the test scenarios
are translated into natural language to create a test suite. This process is integrated with
a dependency analysis tool called Kaki de Arruda [2022], a solution to issue (i), as further
discussed in Chapter 5. Soundness is addressed via the formal definition of a conformance
relation denoted cspioq (Section 3.2). The construction of sound test cases is addressed in
Section 3.2.2 and the effective generation of a test suite is presented in Section 3.2.3.

3.1 CONFORMANCE RELATIONS AND CONCURRENCY

The formal notion of conformance is required to reason about the properties of the gener-
ated test cases. From the semantics of formal specification languages, it is possible to derive
test cases from systems specifications in a rigorous and automatic manner Bernot et al. [1991].
Moreover, testing theories are able to state the soundness of the test cases based on the for-
mal definition of conformance Gaudel [2005]. Existing theories Tretmans [1999], Nogueira
[2012], Carvalho et al. [2013c] rely on a well-defined mathematical relation between the sys-
tem specification and the implementations under testing (IUTs). Such a relation assumes a set
of hypotheses over the IUTs, such as the possibility to build a model for the implementation
using a formal notion Tretmans [1999].

A seminal theory is introduced by Tretmans in Tretmans [1999]. This work proposes a
conformance testing approach, where the models for the specification and the implementation
are expressed as Labeled Transition Systems (LTS) and ioco (input/output conformance) is
the conformance relation. The relation splits the observable events in inputs (I) and outputs
(U), where an input is provided by the environment and the output is produced by the system.
Inputs are always accepted by the system and system output can never be blocked.
Quiescence / Suspension Traces Testing in the context of ioco is based on the observation
of visible behaviours and it is characterised by the comparison of the observed suspension traces
of the implementation, say STraces(IUT ), with the suspension traces of the specification, say
STraces(S). Therefore, information about both traces of a system and quiescence must be
recorded.

A quiescent state is characterised by the absence of an output. In the suspension traces,
the observation of quiescence is expressed by a special event(𝛿). The work in Jard and Jéron
[2005] highlights the kinds of quiescence behaviour:
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• A deadlock state is a state where the system is prevented from continuing its execution,
where it cannot evolve anymore. Since we assume input enabledness, the system accepts
inputs and doesn’t produce outputs.

• An output quiescent state is a state where the system is waiting only for an input
from the environment.

What distinguishes a normal trace from a suspension trace is the fact that in the suspension
trace it is possible to observe quiescence. For instance, the suspension traces STraces(S) of
a specification S corresponds to all the observable behaviours including sequences of inputs,
outputs and quiescence.

In the ioco formal definition, the set of states reachable from q after a trace 𝜎 is yielded
by the function q after 𝜎 = {q ′ | q 𝜎⇒ q ′}. Additionally, initials(q) = {a ∈ L | q a⇒ }

provides the collection of observable events that may be triggered from q and, considering LO

as output actions, out(q) = initials(q) ∩ (LO ∪ {𝛿}) yields the set of outputs that may be
performed in q (including quiescence).

In suspended/quiescent systems, where no outputs are enabled, it is necessary to wait for
the environment to provide an output. The suspension traces of S, ∆(S), are denoted by
STraces(S) and represent all behaviours of S which can be observable by the environment
(inputs, outputs and quiescence).

Definition 1. (Input-output conformance). Let s be an input-output labeled transition
system (IOLTS) and i an input-enabled IOLTS, both with the same alphabets. Then,

i ioco s ≡ ∀𝜎 ∈ STraces(s) ∙out(∆(i) after 𝜎) ⊆ out(∆(s) after 𝜎)

Informally, an implementation i is considered to be correct if, and only if, it never produces
an output that would not be produced by s in the same conditions. The theory supported by
ioco is largely used to testing conformance but it cannot be directly used to reason about
CSP models, once it is based on LTS models.

The conformance relation that is the basis for this work is named cspio (CSP Input-
Output Conformance) Nogueira [2012]. For cspio, as test hypothesis, it is assumed that
implementations to be tested can be formalised as CSP processes. Moreover, like in ioco, its
alphabet can be split into input and output events and both implementation and specification
are livelock free.
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3.1.1 The cspio Relation

The conformance relation cspio Nogueira [2012], inspired by ioco, is formalised in terms
of the CSP process algebra where specifications and implementations are expressed via CSP
processes. Such a relation is supported by the test hypothesis that there is an I/O process that
specifies an implementation under test (IUT ). In such a relation, the alphabet (assumed to be
known) is split into input and output disjoint sets. Complementary, both IUT and specification
alphabets are also assumed to be compatible. Both specifications and implementations are
represented as triples of the form (P,AI ,AO) where P is a CSP process, AI the input alphabet
and AO the output alphabet.

Definition 2. (Compatible alphabets). Let S = (PS ,AIS ,AOS ) be the specification and
IUT = (PIUT ,AIIUT ,AOIUT ) the implementation models. The alphabets of S and IUT are
compatible iff AIS ⊆ AIIUT and AOS ⊆ AOIUT .

Moreover, the implementation is able to accept any input from the alphabet (input-enabled)
and always produce some output (output-enabled). The formal definition of an I/O input-
enabled process is presented below. Consider that the function initials(P) = {a | ⟨a⟩ ∈ 𝒯 (P)}

yields the set of events offered by the process P. An I/O process is input enabled when the
inputs offered after each of its traces is the same as its input alphabet.

Definition 3. (Input enabled I/O process). Let M = (PM ,AI ,AO) be an I/O process.
Then, M is input enabled iff ∀ t : 𝒯 (PM ) ∙ AI ⊆ initials(PM/t)

Complementary, the formal definition below comprises an output-enabled implementation,
where an output event can always be observed.

Definition 4. (Output enabled I/O process). Let M = (PM ,AI ,AO) be an I/O process.
It is output enabled iff ∀ t : 𝒯 (PM ); ∃ i : AI , o : AO ∙ o ∈ initials(PM/t ⌢ ⟨i⟩)

A way to automatically check whether an I/O process obeys the two last definitions is
available in Nogueira [2012].

In what follows, cspio is formalised. Consider out(M , s) as an auxiliary function that
provides the set of output events of the process component of the I/O process M , PM , after
the trace s. Formally, out(M , s) = if s ∈ 𝒯 (PM ) then initials(PM/s) ∩ AOM else ∅. For
an implementation model to conform with its specification, cspio establishes that any output
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event observed in an implementation model is also observed in the specification S , after any
trace of S . Hence, IUT cspio S .

Definition 5. (CSP input–output conformance). Consider IUT = (PIUT ,AIIUT ,AOIUT )

an implementation model and S = (PS ,AIS ,AOS ) a specification, such that AIS ⊆ AIIUT and
AOS ⊆ AOIUT (compatible alphabets). Then

IUT cspio S ≡ ∀ s : 𝒯 (PS) ∙ out(IUT , s) ⊆ out(S , s)

3.2 THE cspioq: EXTENDING cspio TO DEAL WITH QUIESCENCE

Despite the fact that there is a close connection between cspio and ioco conformance
verification, the first relation is based on traces while the second is based on suspension
traces.

Another important characteristic of the cspio theory is that it considers quiescence-free
implementations. This limitation has practical consequences in general and, particularly, in the
context of testing concurrent systems. Additionally, to ensure that the generated tests are
consistent (sound) according to cspio, the step of a use case should be atomic, that is, during
the execution of the test it must be guaranteed that an output is found after an input. This
restricts the generation of tests for concurrent scenarios where there is an interleaving between
inputs and outputs, for instance, and there might be a sequence of outputs for a single input or
scenarios where an input is followed by other inputs before an output event occurs. Moreover,
due to the nature of the concurrent behaviour and the consequent interaction of different
execution flows between applications, a test case can possibly engage in multiple scenarios,
such as:

• multiple inputs: several inputs in sequence without the occurrence of an output between
them (⟨...i, i, i, ...⟩)

• multiple outputs: several outputs in sequence, without the occurrence of an input be-
tween them (⟨...o, o, o...⟩).

For some scenarios one may not observe an output between I/O actions, different from
the cases (normally sequential systems) where a response corresponding to a given stimulus is
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expected (⟨i, o, i, o...⟩). It is important to point out that quiescence is not necessarily linked to
a concurrent behaviour, it can be observed in any type of system. In the context of sequential
systems, there may be a specific interest in monitoring a limited set of outputs, even when a
clear response is observable through the interface. Thus, quiescence is a common behaviour
while testing sequential and concurrent systems. Our approach addresses quiescence in the
context of cspio to allow testing of systems with the observation of quiescence.

In order to generate consistent and sound tests for a range of concurrent applications and
overcome the aforementioned limitations, our approach extends the concepts of cspio and
incorporates quiescence as described in the cspioco relation Cavalcanti et al. [2016], which
provides a semantic treatment of ioco within the context of CSP, using suspension traces.
For our purposes of reusing and extending the testing theory introduced in Nogueira [2012],
however, it is convenient to incorporate quiescence behaviour in the context of cspio, rather
than using cspioco. The principal factor is the intention to mechanise the generation process.
This mechanization is already offered by cspio, in terms of the CSP process algebra. Thus, it
becomes more feasible to reuse what has already been done.

3.2.1 The cspioq relation

The cspioq relation is based on cspio Nogueira et al. [2014] but relaxes a significant
restriction imposed by cspio that requires that the interaction with the IUT strictly alternates
inputs and outputs, a property that we have previously defined as output-enabledness. This
restricts the generation of tests for concurrent scenarios where the interaction of different
execution flows between applications can possibly guide a test case to engage in multiple
sequence of inputs without an output between them. The observation of quiescent behaviour
allows this desired flexibility. In what follows, we formalise the relevant concepts to define the
cspioq relation.

The quiescent behaviour of a process can be inferred and annotated using the prioritise

feature in the FDR refinement checking tool. The notation prioritise(P, ⟨X1, ...,Xn⟩) repre-
sents the process that defines priority between events. This process has a similar behaviour to
P, but it prevents any event in Xi (where i > 1) from happening when there is a possibility
of an internal event (𝜏), (✓) termination, or an event in Xj (where j < i). We then define a
process Pqui that captures the quiescence states of a process P as follows.
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Definition 6. (Quiescence Annotation) Consider P is a CSP process whose output alphabet
is AO, and a special event qui that represents a quiescent behaviour. The process Pqui denotes
the process P annotated with a qui-loop in the states where no event in AO is offered. Formally,

Pqui ̂︀= prioritise(P ||| RUN ({qui}), ⟨AO, {qui}⟩)

where RUN (s) = 2 ev : s ∙ ev → RUN (s) is a process that continuously offers the events
from the set s. The basic intuition is that quiescence happens only when there is no output
event. If there is an output event, it takes priority over quiescence, and therefore quiescence
is prevented from happening.

The relation cspioq establishes a conformance notion in the context of quiescent be-
haviour. Consider AI and AO the input and output alphabets of an I/O process, and AOqui =

AO ∪ {qui} with qui /∈ (AO ∪ AI ).

Definition 7. (cspioq: CSP input–output conformance with quiescence) Consider IUTqui =

(PIUTqui ,AIIUT ,AOIUTqui) an implementation model and Squi = (PSqui ,AIS ,AOSqui) a specifi-
cation, such that AIS ⊆ AIIUT and AOSqui ⊆ AOIUTqui (compatible alphabets). Then

IUT cspioq S ̂︀= ∀ s : 𝒯 (PSqui) ∙ out(IUTqui , s) ⊆ out(Squi , s)

In this relation, after every trace of the specification model, the output events observed in
an implementation model (including quiescence) are a subset of the output events allowed by
the specification.

3.2.2 Constructing Sound Test Cases

We now present the steps to generate sound test cases for cspioq. Let TC , S and IUT

be I/O processes that are models for the test case, the specification and the implementation,
respectively. Additionally, the alphabet of the IUT is assumed to be compatible with the
alphabet of the specification. A test case TC = (PTC ,AITC ,AOTC ∪ VER) generated from
S to test IUT is an I/O process whose input events are in the set AITC ⊆ AOIUTqui and
whose output events are in AOTC ⊆ AIS ∪ VER, with VER = {pass, fail, inc}, such that
VER ∩ (AIIUT ∪ AOIUT ) = ∅.
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The parallel composition EXECqui = PIUTqui |[AIIUT ∪ AOIUTqui ]|PTC captures the execu-
tion of a test against an implementation with the observation of quiescence. Such a composition
can result in the communication of a verdict event that defines the execution result: when a
system behaves as expected, it behaves as PASS = pass → Stop, meaning the test passes
in the execution. Otherwise, if the system behaves as FAIL = fail → Stop, the execution
fails. Finally, if the system behaves as INC = inc → Stop, the execution has an inconclusive
verdict.

The refinement below verifies the presence of a verdict event v ∈ VER in the traces of
the CSP model for a test execution EXECqui . On the right-hand side of the refinement, input
and output events are hidden from EXECqui , so only verdict events are communicated. If
the refinement holds, the trace that represents the verdict (v) is present in the traces of the
execution; otherwise, if the refinement does not hold, the verdict event will not be commu-
nicated and thus is not part of the traces of the test execution.

EXECqui ∖ (AIIUT ∪ AOIUTqui) ⊑t v → Stop

A generated test is said to be sound if, and only if, whenever the test fails in its execution, it
is guaranteed that the IUT does not conform to the specification. In other words, the generated
tests do not reject correct implementations. Definition 8 formalises soundness according to the
cspioq theory.

Definition 8. (Sound test case). Let IUT be an implementation I/O process, S the speci-
fication, TC a test case I/O process and EXECqui the execution of TC against IUT with the
observation of quiescence. Then TC is a sound test case if the following holds.

⟨fail⟩ ∈ 𝒯 (EXECqui ∖ (AIIUT ∪ AOIUTqui))⇒ ¬ (IUT cspioq S)

The steps to build a process component of a test case TC (PTC ) in order to test the IUT

are as follows. First, the output events offered by the specification after each event of the
test case must be known. These outputs are recorded in an annotated trace (atrace) that is
obtained by recording the outputs expected at the point each event of the test scenario (ts)
is offered. Moreover, events and outputs are associated as ⟨(ev1, outs1), ..., (ev#ts, outs#ts)⟩,
with evi an event that belongs to ts and outsi being the outputs after the trace ⟨ev1, ..., evi−1⟩.
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If evi ∈ AO, then outsi = out(S , ⟨ev1, ..., evi−1⟩) − {evi}, else outsi = ∅, for 1 ≤ i ≤ #ts

and ⟨ev1, ..., evi−1⟩ is a prefix of ts.
Next, the function TC BUILDER uses the annotated trace (atrace) as a parameter,

which recursively behaves like the process SUBTC for each pair (ev, outs). If the last element
of a trace is reached, TC BUILDER yields the process PASS . The process SUBTC is
responsible for creating the body of a test and initially offers the event ev to the implementation
and then behaves like Skip to mark the successful termination of the process. The primitive
ANY (evset : P𝛼s, next) = 2 ev : evset ∙ ev → next, selects events from the specification’s
offered set, evset. If any of these chosen events is communicated, it proceeds according to the
next action. If not, it results in deadlock.

TC BUILDER(⟨⟩) = PASS

TC BUILDER(⟨(ev, outs)⟩⌢ tail) = SUBTC ((ev, outs)); TC BUILDER(tail)

where

SUBTC ((ev, outs)) = ev → Skip

2 (ev ∈ AOS & ANY (outs, INC )

2 ANY (AOIUTqui
− outs, FAIL))

When ev is a test output (implementation input), it is communicated to the implementa-
tion, and the test fragment terminates successfully. Due to the input-enabled behaviour, the
implementation is always ready to accept inputs. On the other hand, if ev is a test input (im-
plementation output) and because the test cannot block implementation outputs, the process
must be ready to synchronise with any output response of PIUT . The test reaches an incon-
clusive verdict for the cases where an output event is communicated by the implementation
(PIUTqui ) that is not expected by the test scenario (ev) but is an output of the specification.
Otherwise, the test reaches the verdict fail when PIUT communicates an output event not in
the specification or presents a quiescent behaviour.

A test cannot choose between input and output to avoid controllability conflicts Jard and
Jéron [2005]. The process TC BUILDER does not allow such kind of choice thus, it is
free of controllability conflicts. A test case yielded by TC BUILDER is sound according to
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Theorem 1.

Theorem 1. (TC BUILDER is sound). Let S = (PSqui ,AIS ,AOSqui) be a specification, ts a
test scenario from S and IUT = (PIUTqui ,AIIUT ,AOIUTqui) an implementation model, such
that AIS ⊆ AIIUT and AOS ⊆ AOIUT . If atrace is an annotated trace obtained from ts, then
TC = (TC BUILDER(atrace),AITC ,AOTC ), with AITC = AOIUTqui and AOTC = AIS , is a
sound test case.

Proof sketch. Consider ⟨fail⟩ ∈ 𝒯 (EXECqui ∖ (AIIUT ∪ AOIUTqui), thus, by the definition of
EXECqui , there is a trace t ⌢ ⟨fail⟩ that belongs to the traces of the following specification
PIUTqui |[AIIUT ∪ AOIUTqui ]|TC BUILDER(atrace,AITC ,AOTC ).
Moreover, from the definition of the parallel composition operator and the definition of the
process TC BUILDER, we have that t equals s⌢⟨o⟩, such that s belongs to the traces of the
processes PIUTqui and to the traces of PSqui . Furthermore, the output o belongs to AOIUTqui

−

outs(Squi , s). It implies the implementation process PIUTqui produces a trace s ⌢ ⟨o⟩ where s

belongs to the traces of PSqui , o ∈ AOIUTqui
, and o /∈ outs(Squi , s). Consequently, o represents

an output (or a quiescence) that belongs to out(IUTqui , s) and does not belong to out(Squi , s),
which falsifies IUT cspioq S .

3.2.3 Test Suite Generation

In what follows, we present an example of the generation process in a real context. The
Feature Networking is responsible for testing different mobile network settings, including car-
riers (Tim, Claro, Vivo, AT&T, Verizon, TMobile) and SIM configurations (SIM1/SIM2).
Consider the scenario where the interaction of mobile components under 3G−SIM1 network
setting is being assessed. The possible interactions between those components are related to
receiving/sending mobile voice calls and receiving/sending text messages (MMS/SMS).

Figure 12 shows the use case specification for 3G − SIM1 network setting. This example
models the concurrent scenario where multiple inputs (in sequence) are possible. The document
follows a well defined template composed essentially by data elements (Types, Constants and
State Variables) and the use case descriptions (Step ID, User Action, System State,

System Response). The type OnOff determines whether a component is active (On) or not
active (Off). The variable onMOVoiceCall stands for the status of a mobile originator (MO)
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voice call, while onMTVoiceCall refers to the status of a mobile terminator (MT) voice call.
Their initial value is off. The use cases depicted in Figure 12 exclusively present main flows.
Each flow consists of a series of defined steps, comprising three elements: the user’s input
action, a system condition (the prerequisite for executing the step), and the corresponding
system response. For instance, in the first step (1M) of UC01 a MO voice call is initiated. The
use case template introduces a Controlled Natural Language (CNL) notation to delineate user
input values (user action), conditional expressions (system state), and system outputs/updates
(system response). These components are encapsulated between the % symbol. For instance,
the representation of a successfully connected MO voice call is given in the System Response
by the expression %onMOVoiceCall:=On%.

Figure 12 – 3G-SIM1 Use Case

In order to build a sound test case (TC BUILDER(atrace)) we adapted the algorithm
in Nogueira et al. [2014] to consider quiescence. We first extract a test scenario performing
refinement verification using the CSP process that is the formal specification for the use case
model, which is the input to construct an annotated trace (atrace). For this example, consider
the CSP process F1 UC1 that represents the formal semantics of the use case model.

We demonstrate the test generation strategy using the process F1 UC1 following the ap-
proach presented in Subsection 2.3.3. The modified version of F1 UC1, which incorporates the
accept event following the traces culminating in successful termination, is F1 UC1; accept →

STOP. FDR runs a refinement verification and provides the shortest counter-example trace if
the refinement is not satisfied. Hence, the FDR assertion
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F1 UC1 ⊑t F1 UC1; accept → STOP

does not hold and yields the following counterexample trace:

ce1 = ⟨receiveMTVoiceCall, sendMOSMS ,moSMSSuc, endMTVoiceCall,

initiateMOVoiceCall, sendMTSMS ,mtSMSSuc, endMOVoiceCall, accept⟩

We illustrate the strategy using the shortest counterexample extracted from the process
F1 UC1. Following the test generation process of TaRGeT, the test scenario F1 UC1 ts1 is
obtained from ce1 by removing the control event (accept). Such an event is used only for test
generation and is not in the alphabet of the use case model (F1 UC1).

F1 UC1 ts1 = ⟨receiveMTVoiceCall, sendMOSMS ,moSMSSuc, endMTVoiceCall,

initiateMOVoiceCall, sendMTSMS ,mtSMSSuc, endMOVoiceCall⟩

When the specification requires an output and none is produced, the output is represented
as an empty set (∅) to indicate quiescence. Otherwise, outs is populated with the expected
outputs. The process to obtain an annotated trace is detailed in Nogueira et al. [2014]. The
following annotated trace is obtained from F1 UC1 ts 1

atrace ts1 = ⟨(receiveMTVoiceCall, ∅), (sendMOSMS , ∅),

(moSMSSuc, {moSMSSuc}), (endMTVoiceCall, ∅), (initiateMOVoiceCall, ∅),

(sendMTSMS , ∅), (mtSMSSuc, {mtSMSSuc}), (endMOVoiceCall, ∅)⟩

Next, once an annotated trace is obtained from ts, one can build a sound test case TC1 =

TC BUILDER(atrace ts1,AITC ,AOTC ).
In the context of this work, a quiescence occurs due to the absence of outputs. It means

that, whenever the specification is expecting an output and a quiescence occurs, this leads to
a fail verdict.

Quiescence never leads to pass or inconclusive verdicts. In the TC BUILDER process,
the set outs may include qui, and the event ev can also behave as a quiescence.

We present an example of a test case (TC1) designed to verify the interaction between
two components: Calling and Message. We illustrate this interaction in the form of a se-
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quence diagram. As illustrated in Figure 13, the interaction sequence begins with the input
action makeCallTo() directed to the Calling component. The absence of an output event in
response to this input is properly captured by a quiescent state. Next, an additional input
action, sendSMSTo, is directed at the Message component, while the call is still active. Only
then the first output, success, is observed, indicating a successful interaction between the
components and confirming that a message was received while a call was active. Finally, the
input action endCallTo() is triggered, followed by an output event, success, meaning that
the call successfully terminated. The subsequent actions consist of a symmetric variation of
the previous scenario where the Calling component initiates a call with another device, rather
then receiving one, and the Message component sends a message to this same device.

Figure 13 – Example interaction of TC1 with SUT.

As already mentioned, the original theory in Nogueira et al. [2014] is not able to handle
more than one input or more than one output in sequence; it assumes an alternation of inputs
and outputs that is too restrictive in some contexts, including that of testing mobile features.
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4 OPTIMISED TEST GENERATION STRATEGY

This chapter presents an optimisation of the proposed approach, taking into account the
practical context in which this research is conducted.

In accordance with the Reverse Engineering approach outlined in Chapter 3, use cases were
derived from pre-existing test cases. These use cases become subsequently input for generating
test cases for concurrent features. Reverse engineering was applied due to the unavailability
of use cases. Although this procedure has proved effective, the reverse engineering process is
complex due to the need to generate an input at a higher level of abstraction (use cases) from
more concrete artifacts (test cases). Also, the correspondence is not one-to-one: a use case is
normally generated from the combination of several test cases.

Aiming at a more efficient alternative that is closer to our industrial partner’s real automa-
tion and execution environment, a direct extraction approach is presented in this chapter. This
involves the generation of test cases for concurrent features by combining existing test cases
for individual features.

The upcoming sections showcase work that took place in the actual Motorola develop-
ment environment. This setting allowed for the proposed approach’s scope to be optimised,
encompassing the various code patterns found in the test case scripts and addressing different
development requirements. For instance, the original code was written using various structures,
prompting us to classify them into different levels of granularity that may vary according to the
development team and/or degree of automation of the scripts. We categorised three different
levels that range from a coarse granularity level to a fine granularity. The correlation between
these levels is highlighted in Figure 14 using three different colours. The coarse level is denoted
validation (yellow colour), the intermediate level comprises functions inside the validation (grey
colour), and the fine level contains blocks of actions (blue colour).

In the coarse level of granularity, the script is designed such that the validation is defined
in terms of a single function. A validation is defined as a thorough Python script document
that encapsulates a specific action, such as enabling Wi-Fi. In this way, the validation itself is
used to perform interleavings, without considering their possible internal compositions.

In some scenarios, permuting a validation as a whole is enough to generate paths that
lead to new bugs. In other cases, exploring interleaves of finer grain units is necessary to make
the interleaving process more flexible and generate new possibilities for interactions. In that
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Figure 14 – Overview of Atom Granularity Levels

Source: The author (2024)

sense, we allow the possibility of permuting functions within a validation. Highlighted in grey
in Figure 15, the functions within the validation u_multiwindow_change_dsiplay_size may
be permuted with functions from other validations. In what follows, this behaviour is portrayed,
where the fictitious test cases mca_01 and mca_02 (Figure 16), derived a combination of the
functions presented in each test case (Figure 17).

Figure 15 – Atom Granularity (Function Level)

Source: The author (2024)

The finer granularity occurs at the action block level. An action block is represented by
a piece of code which contains a valid behaviour to be interpreted as an atom. Figure 18
correspond to the test script mca_371293, which is composed of small snippets of code. In
this example, a valid action block (atom) is composed by a pre-setup, which is not mandatory,
followed by:
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Figure 16 – Original test cases sample, mca 01 and mca 02.

Source: The author (2024)

Figure 17 – Interleaving of mca 01 and mca 02.

Source: The author (2024)

• A log describing the action,

• The actual executable code, and,

• An assertion to verify the correctness of the execution according to the expected result.

Due to privacy concerns related to Motorola’s proprietary code, the code snippet corre-
sponding to those action blocks has been omitted from this representation.

Figure 18 – Atom Granularity, highlighted in blue (Action Block Level)

Source: The author (2024)
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Each composition represents an action block (atom) and therefore those blocks are the
testable units used to perform the interleavings. There is no programmatic/syntactic built-in
delimiter that encapsulates an action block, so this level of interleaving becomes more chal-
lenging to apply automatically.

4.1 TEST GENERATION VIA INTERLEAVING OF ATOMS

We illustrate how atoms are extracted and interleaved to generate tests.
The atom extraction process is given by the syntactical identification of one (or more)

actions within a step of a test case. An action, commonly expressed using a verb, denotes
an act or occurrence of a fact. Later in the generation process (Figure 11), the extracted
atoms are interleaved to generate tests with multiple execution possibilities. In what follows,
we highlight an example that demonstrates the atom extraction process.

Consider the test cases Managing contact (TC01) and Performing calls (TC02) in
Tables 8 and 9. Each step in both tables gives rise to a single atom. Nevertheless, some steps
may be formed of more than one imperative sentence connected by conjunction (and), giving
rise to more than one atom.

Table 8 – TC01.

Test Step ID Test Step Description (input) Expected Results (output)
1M Add a contact. The contact is successfully added.
2M Edit a contact. The contact is successfully edited.
3M Remove a contact. The contact is successfully removed.

Source: The author (2023)

Table 9 – TC02.

Test Step ID Test Step Description (input) Expected Results (output)
1M Make a call. Call connected.
2M Receive a call. Call received.

Source: The author (2023)

From Tables 8 and 9, we obtain five atoms (as shown in Figure 19). Each atom is repre-
sented by an identifier that abbreviates the corresponding text. For instance, add contact is
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the identifier for Add a contact.

Figure 19 – Atom Extraction

Source: The author (2024)

Considering an automated procedure, the identification of the step actions is performed
using syntactic analysis as part of a natural language processing technique where each word
is classified according to its grammatical function. The words that denote a behaviour (verbs)
guide the construction of atoms.

After identifying the atoms, Motorola’s script database is checked to verify the presence
of automation scripts that match the highlighted behaviours for each atom. In cases where
the atom and the test case script do not align, the developer is alerted, indicating the lack
of codependency. To address this, it is necessary to provide a corresponding script using a
tool called The Force, a Python framework designed by Motorola to provide an abstraction
over Android devices, applications, and screens, aiming to support the development of test
automation through the Page Object design pattern.

The Force consists of controllers, which are the entities representing the “objects” in the
Page Object pattern. Typically, there are two categories of controllers: Screen-bound controllers
and Non-screen-bound controllers. Screen-bound controllers possess a window attribute and
represent tangible screens within an Android application, such as the Settings Main screen or
the Settings Display screen. On the other hand, Non-screen-bound controllers lack a window
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attribute and symbolise conceptual elements within a device, like the entire Settings Applica-
tion.

One of the improvements offered by The Force is automated navigation, which involves
the establishment of pathways between controllers and the creation of an internal navigation
graph (refer to Figure 20).

Figure 20 – Force Controller for Moto Settings Feature

Source: The Force (2018)

Using the control behaviour defined as in this graph, when a test invokes any actions within
the moto settings.display controller, one of the following scenarios occurs:

• If the device is already on the Display screen, the action is executed promptly.

• If the device is on a different screen, the Force initiates automated navigation to the
Display screen and subsequently executes the intended action.

Tables 10 and 11 present the traceability between the test, its automation script (The
Force code), and the respective atoms. For the Managing contact test case the follow-
ing automated actions can be observed: contacts.add_contact,contacts.edit_contact,
contacts.remove_contact.

Table 10 – Managing contact [Automation Traceability]

Test Step ID Validation [Automation Script] Atoms Atom ID
TC01 1M contacts.add_contact add contact TC01 1M 01
TC01 2M contacts.edit_contact edit contact TC01 2M 02
TC01 3M contacts.remove_contact remove contact TC01 3M 03

Source: The author (2024)
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Table 11 – Performing Calls [Automation Traceability]

Test Step ID Validation [Automation Script] Atoms Atom ID
TC02 1M calls.make_call make calls TC02 1M 01
TC02 2M calls.receive_call receive calls TC02 2M 02

Source: The author (2024)

Moreover, the traceability tables introduce the concept of “validation” for each atom. This
concept is related to the development environment of Motorola’s automation scripts. Since the
approach aims at the total (or partial automation) of the test case generation and execution,
the integration with Motorola’s environment and existing tools is crucial.

Motorola’s automation scripts are developed using Python and are supported by a variety of
proprietary solutions/tools for test automation/execution. The development process is guided
by a standard model and a pattern. One of the standards designed by Motorola follows a
tree structure (Uneti) in which each action of a test case corresponds to a validation. The
validations are extracted from the respective TCs and amalgamated into a single validation
hierarchy, arranged in an optimal sequence. In order to reach every validation, one must conduct
a depth-first search in the test case until it reaches the smallest units, as shown in Figure 21.
For instance, to access the validation related to dismiss the alarm function in the Sanity’s
Suite Automation Package, a depth traversing is applied to the packages alarm, snooze

alarm and dismiss alarm.
This standard model was originally used to facilitate the reuse of context along the various

packages and circumvent the need for any preliminary setup procedures in the future. As a
result, the validation of the home.go_to_home function, for instance, can be applied to multiple
tests that are related to this particular action.

Concerning the pattern previously mentioned, another development pattern defines that
for each automated test, there is a respective Python file containing all the code (or the main
code) necessary to run the test case. Although this structure does not offer the benefit of
eliminating the redundancy of identical code in multiple tests that share the same functions,
it does provide the advantage of flexibility in making any necessary modifications to a specific
test, as it consolidates all the test code into a single file. This alternative code structure enables
more direct manipulation of the code, facilitating the extraction of atoms in a more accurate
and efficient manner. It takes into account the fact that the document itself can already serve
as a potential validation. Additionally, it allows for the exploration of other levels within the
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Figure 21 – Sanity Automation Package (Uneti Structure)

Source: The author (2024)

document, as mentioned earlier in this chapter.
Once the atoms have been extracted and the existence of compatible automatic scripts

have been carried out, the dependency check between the atoms takes place.
The interleaving works by shuffling the atoms, creating all possible execution flows, as long

as they make sense according to the dependency restrictions established in the Dependency
Analysis step. Figure 22 illustrates some possible interleavings that can be generated from
the test cases Managing Contacts (gray) and Performing Calls (green). Each rectangle
represents an atom and for each new generated interleaving the order of the atoms is different,
symbolising various possible paths. For instance, iTC_001, involves an interaction between
atoms from both test cases, where their paths intersect.
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Figure 22 – Interleaving of atoms

Source: The author (2023)

4.2 SOUNDNESS OF THE OPTIMISED APPROACH

In Chapter 3 we have addressed the soundness of the proposed approach to test case gen-
eration. Recall that soundness establishes that if the execution of a generated test case results
in a fail verdict, then one can assure that the implementation under test does not conform to
the specification. In other words, the uncovered failure is an implementation problem, not a
problem with with the generated test itself.

The purpose of this section is to show that test cases generated by the optimised approach
presented in this chapter preserve soundness. Let us start by recalling the test generation flow
presented in Chapter 3 and repeated here (for convenience) as the top level flow in Figure 11
(see Chapter 3). The other flow captured by this figure involves two steps (at the bottom
of the figure, highlighted in grey) and represents the optimised approach. Note that it differs
from the original approach just by the steps Atom_Extraction and Interleaving replacing
the steps UC_generation and TC_Gen_TaRGeT.
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In what follows, we formalise the atom extraction process and the interleaving of atoms.
Let TCs = {ts1, ts2, ..., tsM} be a set of test scenarios tsx for 1 ≤ x ≤ M . Considering the use
case format presented in Chapter 2, M is an even number because a test interchanges input
and output events, and each tsx has the form ⟨i1, o1, . . . , iK , oK⟩. Each subsequence ⟨ix , ox⟩

represents a test step. In addition, let extract be a function that takes as input a test scenario
ts and yields a sequence of atoms extracted from the test. Each sequence of atoms has the
form ⟨i1, o1, . . . , iN , oN ⟩, where N is the number of atoms. If there is exactly one atom for
each test step, N = K and the sequence of atoms coincides with the test scenario; otherwise,
N is greater than K . In addition, consider the function extraction that takes as input a set
of test scenarios and yields a set of sequences of atoms; formally:

extraction(TCs) =
⋃︀
{extract(ts) | ts ∈ TCs}

Using the proposed semantics, the test scenarios illustrated in Tables 8 and 9 can be
represented by the set TCs1 = {ts1, ts2}, such that

ts1 = ⟨add contacti , add contacto, edit contacti , edit contacto,

remove contacti , remove contacto⟩

ts2 = ⟨make calli ,make callo, receive calli , receive callo⟩

Moreover, the expression extraction(TCs1) yields a set of sequence of atoms.
We now present the algorithm for the optimised strategy, as depicted in Algorithm 1. Both

the algorithm’s input and output are a sequence of sequences of atoms. Each sequence in
the input represents a sequence of atoms, and each sequence in the output results from the
interleaving of the input sequences. The output is initially the empty sequence (Line 1). Then,
the procedure INTER (Line 4) is called with two arguments: the algorithm input and an empty
sequence. The algorithm returns the value for result produced by INTER. The argument
prefix (initially empty) is a sequence of atoms used to construct the interleaved sequences
recursively. The base case happens when all the sequences that belong to sequences are empty
(Line 5). If they are, the interleaving stored in prefix contains a complete interleaving with
atoms for all the sequences. The procedure appends the current prefix to the overall result list
(Line 6). Otherwise, if there is some element to include in the interleaving, it loops through
each sequence (Line 8), and if the sequence has at least two elements (Line 9), it stores the
input and output of the atom in the head of the sequence in in and out (Lines 10 and 11),
removes such elements from the sequence, and performs a recursive call with the updated
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sequences and prefix (Lines 12 and 13). This recursive approach ensures all interleavings are
generated and stored in the result.

Algorithm 1 Interleaving atoms
Input: sequences: seq(seq(AIIUT ∪ AOIUT ))
Output: result: seq(seq(AIIUT ∪ AOIUT ))

1: result ← ⟨⟩
2: INTER(sequences, ⟨⟩)
3: return result
4: procedure inter(seqs: seq(seq(AIIUT ∪ AOIUT )), prefix: seq(AIIUT ∪ AOIUT ))
5: if all empty(seqs) then
6: result ← append(result, prefix)
7: else
8: for i ← 0 to length(seqs) -1 do
9: if length(seqs[i]) > 1 then

10: in ← seqs[i].[0]
11: out ← seqs[i].[1]
12: seqs[i] = sublist(seqs[i], 2)
13: INTER(seqs, prefix⌢⟨in, out⟩)
14: end if
15: end for
16: end if
17: end procedure

The procedure in Algorithm 1 contrasts with the test scenario generation using the original
(non-optimised) strategy. The latter is based on refinement verifications, each one performed to
yield an interleaving of the test scenarios. As reported in Nogueira et al. [2019], the refinement
expression used for such a scenario generation is PTIME-hard on the sum of the number of
states of the operational model (LTS) for the specification and the implementation. Using the
optimised algorithm avoids constructing the complete state space of the use case model and
the use of refinement checking using FDR.

The soundness of the optimised strategy is characterised using the function intl that takes
as input and outputs a set of sequences of atoms. The definition of this function uses some
additional notation. We use seqs(A) to represent the set of sequences formed of elements from
the set A, such that each sequence does not repeat elements. The notation set(s) represents
the set with the elements of the sequence s. Let Satoms be a set of sequences of atoms. Then,
intl(Satoms) is defined as set(interleave(seq atoms)), where seq atoms ∈ seqs(Satoms) and
interleave is the function that computes Algorithm 1.

The call to intl(TCs1) yields a set with all the interleavings of sequences of atoms illus-
trated in Figure 19. Such a set has ten sequences of interleavings of the input atoms, including
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the three sequences depicted in Figure 22. We partially present the content of this set.

{⟨add contacti , add contacto,make calli ,make callo,

edit contacti , edit contacto, remove contacti , remove contacto,

receive calli , receive callo⟩

⟨make calli ,make callo, add contacti , add contacto,

edit contacti , edit contacto, receive calli , receive callo,

remove contacti , remove contacto⟩

⟨add contacti , add contacto,make calli ,make callo,

edit contacti , edit contacto, receive calli , receive callo,

remove contacti , remove contacto⟩

⟨add contacti , add contacto, edit contacti , edit contacto,

remove contacti , remove contacto,make calli ,make callo,

receive calli , receive callo⟩

⟨add contacti , add contacto, edit contacti , edit contacto,

make calli ,make callo, remove contacti , remove contacto,

receive calli , receive callo⟩, . . .}

Theorem 2 establishes that the tests produced by the optimised approach are equivalent
to those produced by the original approach that creates an explicit use case model. A corollary
of this theorem is that the optimised approach yields sound test cases.

Consider the function uc gen that takes as input a set of test scenarios and outputs a
CSP process that combines the behaviour of the input test scenarios. Such a process captures
the semantics of concurrent use cases in the format of the TaRGeT tool. The function tc gen

inputs the use case model specified in CSP and outputs the set of test scenarios that combine
the input test cases using the TaRGeT test generation approach.

Theorem 2. (The optimised approach is sound)

Let TCs be a set of test scenarios whose steps contain a unique atom each, then ∀TCs ∙

tc gen(uc gen(TCs)) = intl(extraction(TCs)).

The justification is as follows. The use cases obtained by uc gen combine the behaviour
of the original test steps. These are input to the TaRGeT tool (function tc gen) that extracts
test scenarios to generate new test scenarios. The sequences generated by TaRGeT are inter-
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leavings of the sequences of atoms extracted from these test scenarios using the optimised
approach.

Proof sketch. The proof shows that the proposition’s left-hand side (LHS) equals the right-
hand side (RHS).

We start with the LHS expression tc gen(uc gen(TCs)).
As presented in Section 2.3, the semantics of uc gen(TCs) is equivalent to the CSP

process
((s → i11 → o11 → e → ...→ s → i(#(ts1)/2)1 → o(#(ts1)/2)1 → e → Skip

||| s → i12 → o22 → e → ...→ s → i(#(ts2)/2)2 → o(#(ts2)/2)2 → e → Skip

. . .

||| s → i1M → o2M → e → ...→ s → i(#(tsM )/2)M → o(#(tsM )/2)M → e → Skip)

|[ {s, e} ]| ((𝜆 S .s → e → S) △ Skip) ) ∖ {s, e}

Such a process formalises the combination of concurrent use cases in the format of TaRGeT
tool. For the sake of simplicity, we abstract the existence of the memory process introduced in
Section 2.3, without loosing precision. Each process in the interleaving captures the semantics
of a use case whose flow originates from a test scenario in TCs, following a reverse engineering
process. The special events e and s control the atomicity of a pair of inputs and respective
outputs. Such events are an abbreviation to the events startStep and endStep, introduced
in Section 2.3. The recursive process S (an abbreviation to the process stepCR presented in
Section 2.3) is composed in parallel with the interleaved processes synchronising in the control
events to ensure each new step only initiates after a previous step has concluded. The inter-
ruption ensures the parallel composition terminates with success. Finally, the control events
are hidden and not visible on the traces. Due to such semantics, the properties of distributed
termination and the interleaving semantics of the CSP parallel composition operators (see
Chapter 2), uc gen(TCs) behaves as Skip only after all the use case flows have terminated;
this guarantees when termination is observed, the steps of the scenarios have been interleaved.
Moreover, every trace in 𝒯 (uc gen(TCs)) that ends with ✓ is a maximum trace.

The function tc gen abstracts the TaRGeT test scenario generation presented in Sec-
tion 3.2.3. Considering the behaviour of uc gen(TCs) and the refinement checking expres-
sion verified using FDR, the TaRGeT test generation strategy yields all traces t such that
(t ⌢✓) ∈ 𝒯 (uc gen(TCs)). Consequently, the test generation combines the input test sce-
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narios using interleaving semantics to yield traces that combine the input test scenarios, keeping
the order of the input and the output of each step.

The RHS has the expression intl(extraction(TCs)). Because there is a unique atom for
each step of the test scenarios in TCs, the extraction function behaves as an identity func-
tion and the expression extraction(TCs) yields TCs. Thus, RHS is equivalent to intl(TCs).
As explained, the function intl interleaves the sequences of atoms extracted from the test
scenarios. Moreover, the order of the input and output of the atoms does not change during
the combination. In this way, the sequences of atoms combined by the Algorithm 1 equals the
traces yield by the FDR tool for the same input set of test scenarios.

Consequently, LHS equals RHS.

With this result, we emphasise that it is possible to build sound test cases directly from test
scenarios. Since the optimised strategy yields the same test scenarios as the original approach,
it yields sound test cases.

4.3 OPTIMISED TEST GENERATION COST ANALYSIS

In this section, we provide a brief discussion on the time cost (PTIME) of automatically
generating sound test cases. We offer a preliminary comparison of the computational resources
required to generate a test suite using both the original and optimized approaches. A more
in-depth mathematical analysis will be conducted in future work.

The original test case generation approach, based on Nogueira et al. [2014], uses the FDR
tool to verify trace refinement by comparing the traces. If the implementation enables an event
not allowed by the specification, the refinement fails, producing a counter-example trace. The
approach’s complexity arises from the normalisation of transition systems, which ensures every
trace reaches a final state and minimises false counter-examples. However, both normalisation
and refinement checking are computationally expensive—PSPACE-hard for trace refinement
and EXPTIME-hard for normalisation—making test case generation resource-intensive, with
costs depending on the size of the specification and test scenarios. The total effort grows with
the number of iterations and the average size of each test case.

The overall complexity of the original approach is determined by the size of the specification
and implementation state spaces, the average length of generated test cases, and the number
of iterations. The cost of a single iteration is approximately:
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norm(System)+ | System |2 +(#ts × (norm(System) + (| System | ×#ts)))

where #ts is the size of the test scenario.
The optimised approach instead uses an interleaving-based algorithm to generate test

cases, where the input is a sequence of atomic actions rather than states and the output is
a sequence of interleavings, which represents different orderings of the atomic actions. The
Algorithm 1 is relatively efficient as it recursively generates interleavings by selecting actions
from the input sequences and appending them to a prefix. The complexity depends mainly on
the length of sequences and the branching factor of possible interleavings at each step (i.e.,
how many different orderings can be formed).In this case, the time complexity is exponential,
reflecting the exponential growth in the number of valid input-output combinations as the
sequence length (T ) increases.

While both the original and optimised approaches share an exponential complexity, the
original approach suffers significantly more in terms of computational cost due to several addi-
tional factors. Specifically, the original approach not only computes interleavings once but does
so repeatedly, processing each sequence length (N ) individually. Additionally, it incurs further
computational cost due to the normalization process applied to each interleaving computation,
amplifying its overall complexity.

To assess the time complexity (EXPTIME) for generating test cases under the original and
optimised approaches, we’ll analyse the cost functions and principal computational factors for
each bellow.

Original Approach: EXPTIME Complexity with Normalization

In the original approach, calculating the traces refinement entails several costly operations:

• Normalization (norm(System)): This step, essential for avoiding false refinement coun-
terexamples, involves an EXPTIME-hard process. It requires behavioral equivalence
checks (bi-simulation) to ensure that the normalised LTS mirrors the behavior of the
original system.

• Refinement Verification (comp(N (System),Q)): The traces refinement is verified by
comparing states between the implementation and specification using a breadth-first
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search across the cartesian product of their LTSs, leading to an approximate complexity
of |P| × |Q|, where |P| and |Q| denote the number of states in each LTS.

Since this verification must be repeated N times (once for each test case in the suite), the
overall complexity is approximately:

N × (norm(System) + |System|2 + mean(T )× (norm(System) + |System|

×mean(T )))

The |System|2 term reflects the complexity of exploring the cartesian product during re-
finement verification. Repeating this for every N requires system normalisation and refinement
recalculation, escalating the complexity.

Optimized Approach: Interleaving Algorithm Complexity

As discussed in Clarke et al. [1999], verifying interleavings can lead to exponential com-
plexity due to the large number of state combinations, especially in concurrent and parallel
processes. Additionally, according to Cormen et al. [2009], many combinatorial problems, such
as those solved by backtracking and dynamic programming, require examining all subsets or
possibilities, resulting in exponential time complexity. These algorithms often involve explor-
ing all possible interleavings of tasks, leading to a time complexity of O(2n), where n is the
number of tasks to be interleaved.

The optimised approach reduces test generation complexity by using an interleaving algo-
rithm that works with sequences rather than states. The algorithm interleaves input sequences,
with complexity primarily based on the sequence count and their average length T . Thus, it
has a complexity of approximately O(2T ), where T represents the average sequence length.
Although still exponential, it avoids system normalisation and Cartesian product computation,
significantly reducing computational cost compared to the original approach.

We can relate the state count in the original approach to the sequence length in the
optimised approach. The number of states |System| approximately equates to T N , indicating
that the original approach’s state-based method implicitly deals with an exponential function of
the sequence length. Therefore, the original approach holds a global exponential complexity of
approximately O(T 2N ) accounting for normalization and refinement verification for each N .
On the other hand, the optimised approach holds a complexity of O(2T ), which is more efficient
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as it avoids normalization and works directly with sequences. In that sense, although both
approaches are exponential in nature, the optimized approach is substantially more efficient
for high values of N and T as it avoids the accumulated cost of normalization and the state
Cartesian product calculation.
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5 TOOL SUPPORT

This Chapter addresses tool support, discussing the tool architecture (Section 5.2), the
tool workflow (Section 5.3), and the integration process with a dependency analysis tool,
Kaki (Section 5.4).

5.1 TOOL’S OVERVIEW AND DEVELOPMENT STACK

This proprietary tool is designed to support Motorola’s testing engineers by providing an
integrated solution for creating test cases tailored to Motorola’s development environment.
Aimed at enhancing testing efficiency and accuracy, the tool is optimised for professionals
managing complex test scenarios that involve multiple feature interactions.

The tool employs contemporary web and software development frameworks and languages,
selected strategically to ensure scalability, reliability, and optimal performance. The front end
is developed using Vue.js https://vuejs.org/, a progressive JavaScript framework that excels
in creating complex, dynamic web applications. Vue’s reactive data binding and component-
based architecture facilitate efficient handling of real-time updates and interactive elements,
which are critical for maintaining user engagement in a test management tool.

To enhance the user interface, Vuetify https://vuetifyjs.com/ is integrated as a UI com-
ponent library, providing Material Design-inspired https://m3.material.io/, ready-to-use com-
ponents. This library streamlines the design process with its pre-styled elements, ensuring that
the interface remains visually cohesive and responsive across various devices.

The back-end (API Layer) is designed as a REST API (more details in the following section),
adhering to RESTful principles to ensure flexibility, scalability, and ease of integration.

The API bridges the front end and business layer, facilitating data flow and user requests
through various endpoints. Key endpoints include:

1. Upload Test Cases: Allows users to upload test case scripts.

2. Parameter Configuration: Enables the setting and management of parameters for test
execution.

3. Result Retrieval: Facilitates access to results generated by test executions.
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As for the manipulated files, uploaded files are processed through the API, parsed, and
then managed by the business layer components for dependency analysis, execution, and result
display. Our data consists in

1. Python Test Scripts: The system processes test cases written in Python, enabling seam-
less integration and execution within the Atom Engine.

2. Domain Model Files (.dot): A .dot file (Graphviz) defines the domain model, which is
essential for structuring dependencies and visualising test case relationships within the
business logic.

More details about the tool’s architecture is presented as follows.

5.2 TOOL’S ARCHITECTURE

The tool architecture (Figure 23) follows a design pattern structure that divides the system
into distinct layers, each responsible for a specific set of functionalities. These layers are
structured hierarchically, where upper layers rely on services and data of lower layers. This
design encourages modularity, separation of responsibilities, and scalability, making it a key
option for developing durable and easily manageable software systems. The front-end layer
connects with the REST API layer, which then communicates with the business layer. The
business layer consists of different services that handle specific tasks in the process. Next, we
outline the roles of each layer in our architectural design.

The front-end layer acts as the system’s interface, tasked with creating a user-friendly
platform for engaging with users. It incorporates visual elements and interactive functions to
improve user experience. The REST API facilitates communication between the front-end and
the business layer by offering endpoints for handling user requests and executing operations
such as uploading test cases, setting parameters, and fetching results. It follows RESTful
design principles to ensure scalability, flexibility, and interoperability.

The core layer of the system, housing the business rules, algorithms, and processing logic,
is the Business Layer. This layer is responsible for generating the interleaving of test cases,
analysing dependencies, and executing the generated test cases (Atom Engine). It comprises
modular components, each handling specific tasks within the overall process.
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Figure 23 – Tool’s Architecture

Source: The author (2024)

Within the Services, there are modular components responsible for specific functionalities,
such as the dependency analysis module (KAKI Service) and the Skywalker service, where all
the outcomes of the executions are displayed. These components consolidate related function-
alities to enhance code reusability, maintainability, and scalability.

5.3 TOOLS USAGE WORKFLOW

Figure 24 summarises the workflow of our test case generation tool. It starts with the tool
retrieving test cases and identifying the atoms related to them (Input Test Case tab on Fig-
ure25). Next, the dependency between step atoms is resolved (Dependency Analysis Checker

tab). Then, the tool proceeds to generate the interleaving of test cases based on specified
criteria. The user is prompted with the generated test cases (Generated Test Cases tab). Fi-
nally, users execute the test cases and view the results through the Execution Results tab,
gaining insights into the outcomes for test case analysis and validation. In each interface, the
user can preserve their progress by selecting the Save button or discard it by choosing Delete.
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The Cancel button redirects the user to the previous screen. A more in-depth explanation and
corresponding screens for each component are provided in what follows.

Figure 24 – Tool’s usage workflow

Source: The author (2024)

The workflow begins with the Input Test Case tab (Figure 25), where users interact with
the graphical interface to visualise available test cases in the first frame (Available Motorola

Test Cases) and then select the ones they wish to generate new paths in the Select Test Cas-

es/Atoms frame. Those test cases are retrieved from Motorola’s automation scripts databases,
and for each one of them, the user can visualise all the corresponding atoms.

Next, in the Dependency Analysis Checker tab (Figure 26), the users must upload domain
models containing predefined dependencies between test case steps (Upload Domain Model

frame). In this step, the dependencies are analysed in real-time to avoid conflicts or inconsis-
tencies that may impact the test case generation. This enhances the accuracy and reliability
of the test cases. Moreover, in the second frame (Generate Test Cases), users can specify
the desired number of tests within a specified range. With original test cases inputted and
dependencies analysed, the tool is ready to generate new test cases from the interleaving of
atoms (Generate Test Cases button).

The user can visualise the generated test cases in the following screen (Figure 27). They
can then choose which test case to run by selecting them and clicking on the Execute button.

Finally, in the Execution Results tab (Figure 28), users can visualise the outcomes of the ex-
ecuted interleavings, including pass, fail, or inconclusive verdicts. This screen provides detailed
insights into the execution status of each interleaved test case, aiding in test case analysis and
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Figure 25 – Screen 1 - Test Cases

Source: The author (2024)

Figure 26 – Screen 2 - Dependency Analysis

Source: The author (2024)

validation. Through interactive visualisations and intuitive interfaces, users can gain valuable
insights into the effectiveness of their testing efforts and identify potential improvements.
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Figure 27 – Screen 3 - Generated Test Cases

Source: The author (2024)

Figure 28 – Screen 4 - Execution Results

Source: The author (2024)

5.4 DEPENDENCY ANALYSIS: KAKI

Kaki de Arruda [2022] is a tool that verifies the consistency of a sequence of test steps by
identifying the dependencies between them to generate valid execution sequences. Such a tool
runs in background as part of the dependency analysis step of our tool workflow (see Figure



85

24). We explain how Kaki is used to support our tool.
In general terms, in Kaki, one must build a Domain Model, which characterises the applica-

tion domain of a given test case by defining Frames and its associations. A valid and consistent
Frame must contain an operation, patient, and extra information (slots), along with possible
associations, which may be dependencies (for an action to perform correctly, some previous
ones must occur) or cancellations and matching rules. A relevant facet of the tool comprises
the consistency analysis of the test cases. The tool provides a GUI and an API for integration
with other tools. For more details, refer to de Arruda [2022].

The integration process of the Kaki tool with the proposed approach happens via the Kaki
API. We illustrate with a simple example how the dependency analysis is able to verify (and
possibly update) a sequence of steps to ensure the dependency of every step is resolved.

Consider the interaction between the Managing contact and Performing calls Test Cases
(described in Tables 8 and 9, Chapter 4). We first provide the information needed to define
a Domain Model. We focus on the associations between actions. Such associations may be
expressed by dependencies or other relations we do not explore in this work; we focus on
dependency analysis. In the illustrated example (Figure 29), we defined some dependencies
according to the domain observation. For instance, to execute the action ‘Edit a contact’, the
contact must be added first (‘Add a contact’). In what follows, we present the Domain Model

relevant to the example provided, formatted as it would appear in the tool, as a dot file.

digraph DomainModel {

edit_contact -> add_contact [class="depends"];

remove_contact -> remove_contact [class="depends"];

}

Next, in the consistency analysis step, those actions are checked individually for possible
direct dependencies or dependencies involving transitivity. Finally, the consistency mechanism
suggests a valid execution sequence. Those final combinations are then used to build consistent
test suites along with their automation and automatic execution.
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Figure 29 – Dependency Analysis for Performing calls and Managing contact Test Cases.

Source: The author (2024)

5.5 LIMITATIONS

Potential limitations that could be relevant for the tool:

1. Scalability Challenges with Large Test Suites: As the complexity and volume of
test cases grow, the tool might encounter performance bottlenecks, especially during
dependency analysis and execution sequencing. Handling extensive interdependencies
across thousands of test cases can require significant computational resources, which
may slow down processing times or lead to delays in result generation.

2. Accurate Dependency Mapping: The effectiveness of the tool’s dependency analysis
relies on accurate and up-to-date dependency mappings within the domain model. If
dependencies are incorrectly defined or omitted, the tool may fail to generate the correct
sequence of test cases, potentially leading to inaccurate results or missed test coverage.

3. Dependency on Python Test Scripts: Since the tool processes test cases written
in Python, it may not support other programming languages or frameworks directly.
This limitation could restrict its applicability to projects or teams that rely on alterna-
tive languages for test scripting, potentially limiting its versatility in a multi-language
environment.
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6 EVALUATION

In this chapter, we discuss the outcomes of a hands-on case study that was carried out to
assess the efficiency of the suggested approach in comparison to the conventional test case
generation methods used by Motorola’s Mobility Test Team. We focus on two assessment
criteria, namely bug detection and coverage, to substantiate our conclusions. The subsequent
sections elaborate on the planning, execution, and results of this evaluation.

6.1 CONTEXT AND MOTIVATION

The purpose of this research is to propose an approach for automatically generating sound
tests using natural language models that can assess concurrent applications. One of the spe-
cific goals is to validate the proposed approach. To achieve this, a practical assessment is
conducted to determine the effectiveness of the tests generated by the proposed approach in
the context of mobile applications with concurrent behaviour. The effectiveness of the ap-
proach is evaluated by comparing the set of tests generated using the approach with the tests
created by the Motorola’s testing team. Both sets of tests were executed on the same software
version of a mobile phone. To measure the effectiveness we collect the number of detected
bugs and coverage of the application for each approach used in the evaluation.

6.2 PLANNING

6.2.1 Context Selection

This study is conducted within Motorola’s development environment, specifically targeting
the testing of mobile phone software that contains concurrent behaviour.

6.2.2 Participants

The participants involved in this case study are:

1. The test cases generated by the proposed approach.
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2. The test cases generated by Motorola’s engineers.

6.2.3 Variables

1. Independent Variable: The method used to generate the test cases (proposed approach
versus generated by Motorola engineers).

2. Dependent Variables:

a) Number of uncovered bugs: The number of bugs identified by each approach.

b) Test coverage: The percentage of software components covered by each ap-
proach.

6.2.4 Research Questions

This research aims at answering the questions presented in Table 12.

Table 12 – Research Questions

Metric Technique/Tool ID Description

#Uncovered
Bugs

Automation Scripts RQ1
Tests generated by the proposed approach effectively identify
bugs that Motorola’s original tests miss considering Motorola’s
proprietary automation scripts?

Coverage Keyword RQ2
Tests generated by the proposed approach cover different
components compared to the original Motorola tests considering
a key-word filtering technique?

6.2.5 Metrics

1. Number of uncovered bugs: Evaluates the effectiveness of the generated test suites using
real-life scenarios within Motorola’s development environment.

2. Coverage: The coverage is assessed using a filter mechanism based on keywords, enabling
the retention of a more precise log data for coverage evaluation.
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6.2.6 Design

The study follows a comparative case study design, where both testing approaches are
executed under the same conditions. The test suites are applied to the same version of the
mobile software (build) and hardware (model), and data regarding bugs and coverage will be
collected.

1. Instrumentation

a) Test Automation Tools: Motorola’s proprietary automation tools were used to run
both test suites and capture data on bug detection and coverage.

b) Keyword Filtering Mechanism: A mechanism were used to filter logs based on
keywords to ensure precise data collection related to test coverage.

1. Operation

a) Preparation

i. Selection of Software (build): The mobile phone software used for testing are
the same for both test suites, ensuring a consistent baseline.

ii. Setup of Test Suites: Both test suites (the one generated by the proposed ap-
proach and the manually created) were prepared and executed under controlled
conditions.

b) Execution

i. The test cases generated by both approaches will be executed on the same
version of the mobile software.

ii. Data on uncovered bugs and coverage will be collected and logged for analysis.

c) Data Collection Procedure

i. Bugs Identified: The number of bugs discovered by each test suite were recorded.

ii. Test Coverage: The extent to which each test suite covers different software
components were logged using LogCat tool, with data filtered using a keyword-
based technique to ensure precision.

The subsequent sections offer a comprehensive examination of one approach of each cate-
gory, highlighting the particular situations in which they were employed, how they were carried
out, and the results achieved.
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6.3 RESULTS AND DISCUSSIONS

6.3.1 Number of Uncovered bugs

For the bugs evaluation we take into account Motorola’s actual development process and
applying the optimised approach (Chapter 4) to several features. As a result of the pairwise
combination of these features, more than 18 bugs were detected. The interaction between
the following components led to the occurrence of the identified bugs: Camera, Home Screen,
Themes, Contacts, Wallpaper, Messages, and Google Duo. The unexpected behaviors varied
from changes in visual components, such as buttons and truncated text, to more critical errors,
such as Application Not Responding. We present in Table 13 a compilation of all bugs along
with their corresponding descriptions.

For this experiment, the Sanity and CoreRegression suites were taken into consideration.
The subset of test cases considered for the evaluation underwent a thorough analysis to
determine their suitability for execution. The criteria included identifying automatic test cases,
those with concurrency characteristics, and those compatible with the hardware and software
versions of the devices used in the experiments.

This investigation yielded 6 distinct inputs: 3 scripted test cases (enabling straightforward
execution) and 3 exploratory test charters. The latter involves more complex investigations
and relies on testers’ expertise. The selection of charters aimed to infuse greater dynamism
into the experiments, facilitating exploration across diverse scenarios and functionalities. Unlike
scripted tests, exploratory testing allows testers to uncover defects and unforeseen behaviours
through real-time interaction with the system.

For illustrative purposes, we provide an example of such an experiment by systematically
delineating the steps that resulted in the issue documented in BUG-018(refer to Table 13).
However, it is worth noting that due to confidentiality agreements with our industrial partner,
we cannot provide specific details about the hardware/software of the devices used in the
experiment, neither the test case identifiers. Consequently, certain images may be blurry, and
we have labelled the original Motorola test cases as MOT 00X and the generated interleaving
as iTC 00X.

Figure 31 illustrates one of the interleaving (iTC 001) generated from the original test
cases MOT 001 and MOT 002 (Figure 30), following the workflow described in Chapter 4. To
keep it concise, some atoms derived from the test cases have been excluded, focusing solely
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on the interactions that resulted in the BUG-018. We would like to emphasize that only this
particular bug was validated by the industrial partner, while the others were classified as a true
bug by the author.

Figure 30 – Fragments of the original Motorola test cases, MOT 001 and MOT 002.

Source: The author (2024)

Figure 31 – iTC 001 generated from MOT 001 and MOT 002.

Source: The author (2024)

Originally, the test case MOT 001 tests interactions on the home screen, including tasks
like adding, deleting, rearranging apps and widgets, and changing the wallpaper. On the other
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hand, the test case MOT 002 focuses on testing interactions in multi-window mode, such as
altering screen orientation and modifying display size.

When the test cases were run, in isolation, following their original step sequences, no is-
sues were found. However, the generated interleaving, displayed in Figure 31, shows a sequence
where the actions choose wallpaper (MOT 001) and change display size (MOT 002) were
interleaved. This change caused an issue on the wallpaper screen (highlighted in red in Fig-
ure 32). To change the wallpaper, the user must select and confirm his choice by pressing the
tick button. However, increasing the font size caused the tick button to be covered by a reload
button, making it impossible for the user to click on the button. This problem was also tested
on a Google Pixel (pure Android-based) phone to confirm its accuracy.

Figure 32 – BUG-018.

Source: The author (2024)

6.3.2 Coverage Rate

Another factor to consider when evaluating the effectiveness of the test suites is the
percentage of internal components covered or executed during the testing process.

Coverage is a widely used technique in software testing that checks how much of an
application has been tested during the execution of a test case. A coverage criterion is a set
of rules that measures the percentage of the internal structure of the implementation that has
been covered by the test cases. In code coverage, common criteria include function coverage,
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statement coverage, and branch coverage. The more coverage achieved, the more source code
is executed.

We have initiated a study that focuses on selecting keywords for filtering the log. The use
of keywords helps to refine the results of the analysis and provides an opportunity to investigate
various scenarios. This is made possible by the significant reduction in the number of lines of
code, and the fact that most of the resulting lines are directly linked to the steps executed in
each test case.

Through this evaluation, we are also aiming to study some phenomena observed during
the evaluation, such as subtle variations in the final results of the analysis depending on which
settings the test case was executed. For instance, when performing a complete permutation
with the steps in a given sequence, the coverage percentage of the same steps being performed
individually may differ. Another factor that can cause a difference in the results is whether or
not the phone is reset between executions. When the phone is not reset before starting an
execution, it loads the log of previous executions, which can contaminate the execution log
with irrelevant information.

6.3.2.1 Keyword Coverage Scope

To ensure an appropriate selection of test cases, we conducted an assessment of Motorola’s
testing areas (refer to Table 14 for a small sample). Motorola operates in several teams and
testing areas aimed at different stages of the development process.

Table 14 – Sample of Motorola’s Test Teams and areas
PLATFORM MODEM PRODUCT TEST GLOBALIZATION EXPERIENCES

Automation

Auto Compliance
Auto CoreApps/FWK
Auto CTS Verifier
Auto KPI
Auto Regression [GMS Regression]
Auto Regression [LATAM Regression]
Auto Sanity
Sanity Board
Smoke Board Tool
Smoke Tests
Stability

Modem Smoke (Manual and Automated) Automation Automation: Frevo Automation

Sanity Modem Sanity Google Acceptance Localization Sanity
Regression Modem Regression MODs/Alexa Internationalization
Compliance Modem Hot Swap Sanity

3rd Party Apps Modem Exploratory
KPI

WiSL
SWAT

Source: The author (2023)
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In collaboration with the testing teams, we conducted an investigation to select the most
appropriate test suites for implementing the proposed approach. Our focus was on selecting
test suites that exhibited some degree of concurrency and were either already automated or
had the potential to be automated. Nevertheless, it should be noted that several tests still
require human intervention for their execution.

Table 15 displays a summary of the assessment, encompassing details regarding the number
of tests in each designated test suite (of a particular testing campaign), the number of tests
that present a potential concurrent behaviour, the number of chosen evaluation candidates
and the number of test cases generated in accordance with TaRGeT’s approach described in
Chapter 2. The numbers in the #TCs column represent only a small fraction of the tests in
Motorola’s portfolio. It is important to mention that the TaRGeT tool generated 707 test
cases by rearranging the steps of the 13 original Motorola test cases.

The automation status, as well as the execution and coverage status are more detailed in
Tables 16, 17 and 18. In the respective tables, the colour green is used to represent automated
test cases, a pass verdict, and the capture of logs. On the other hand, the colour orange
indicates that the test case is not automated, resulting in a fail verdict, and no log capture.
The cells with white background in the tables indicate that the test cases were not executed.

Table 16 – Selected test cases automation status

MOTOROLA
PLATFORM MODEM PRODUCT TEST GLOBALIZATION EXPERIENCES
MCA-1052 MTG-40199 MCA-542 I18N-210 PACE-737486
MCA-135 MTG-40198 MCA-703 I18N-223 PACE-271289

MTG-40201 PACE-737490
TaRGeT

PLATFORM MODEM PRODUCT TEST GLOBALIZATION EXPERIENCES
TAR-PLA-001 TAR-MOD-001 TAR-PROD-001 TAR-GLOB-001 TAR-EXP-001
TAR-PLA-002 TAR-MOD-002 TAR-PROD-002 TAR-GLOB-002 TAR-EXP-002
TAR-PLA-003 TAR-MOD-003 TAR-PROD-003 TAR-GLOB-003 TAR-EXP-003
TAR-PLA-004 TAR-MOD-004 TAR-PROD-004 TAR-GLOB-004 TAR-EXP-004
TAR-PLA-005 TAR-MOD-005 TAR-PROD-005 TAR-GLOB-005 TAR-EXP-005
TAR-PLA-006 TAR-MOD-006 TAR-GLOB-006 TAR-EXP-006
TAR-PLA-007 TAR-GLOB-007 TAR-EXP-007
TAR-PLA-008 TAR-GLOB-008 TAR-EXP-008
TAR-PLA-009 TAR-GLOB-009 TAR-EXP-009
TAR-PLA-010 TAR-GLOB-010 TAR-EXP-010

Source: The author (2023)
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Table 17 – Selected test cases execution status

MOTOROLA
PLATFORM MODEM PRODUCT TEST GLOBALIZATION EXPERIENCES
MCA-1052 MTG-40199 MCA-542 I18N-210 PACE-737486
MCA-135 MTG-40198 MCA-703 I18N-223 PACE-271289

MTG-40201 PACE-737490
TaRGeT

PLATFORM MODEM PRODUCT TEST GLOBALIZATION EXPERIENCES
TAR-PLA-001 TAR-MOD-001 TAR-PROD-001 TAR-GLOB-001 TAR-EXP-001
TAR-PLA-002 TAR-MOD-002 TAR-PROD-002 TAR-GLOB-002 TAR-EXP-002
TAR-PLA-003 TAR-MOD-003 TAR-PROD-003 TAR-GLOB-003 TAR-EXP-003
TAR-PLA-004 TAR-MOD-004 TAR-PROD-004 TAR-GLOB-004 TAR-EXP-004
TAR-PLA-005 TAR-MOD-005 TAR-PROD-005 TAR-GLOB-005 TAR-EXP-005
TAR-PLA-006 TAR-MOD-006 TAR-GLOB-006 TAR-EXP-006
TAR-PLA-007 TAR-GLOB-007 TAR-EXP-007
TAR-PLA-008 TAR-GLOB-008 TAR-EXP-008
TAR-PLA-009 TAR-GLOB-009 TAR-EXP-009
TAR-PLA-010 TAR-GLOB-010 TAR-EXP-010

Source: The author (2023)

Table 18 – Selected test cases execution and log capture Status

MOTOROLA
PLATFORM MODEM PRODUCT TEST GLOBALIZATION EXPERIENCES
MCA-1052 MTG-40199 MCA-542 I18N-210 PACE-737486
MCA-135 MTG-40198 MCA-703 I18N-223 PACE-271289

MTG-40201 PACE-737490
TaRGeT

PLATFORM MODEM PRODUCT TEST GLOBALIZATION EXPERIENCES
TAR-PLA-001 TAR-MOD-001 TAR-PROD-001 TAR-GLOB-001 TAR-EXP-001
TAR-PLA-002 TAR-MOD-002 TAR-PROD-002 TAR-GLOB-002 TAR-EXP-002
TAR-PLA-003 TAR-MOD-003 TAR-PROD-003 TAR-GLOB-003 TAR-EXP-003
TAR-PLA-004 TAR-MOD-004 TAR-PROD-004 TAR-GLOB-004 TAR-EXP-004
TAR-PLA-005 TAR-MOD-005 TAR-PROD-005 TAR-GLOB-005 TAR-EXP-005
TAR-PLA-006 TAR-MOD-006 TAR-GLOB-006 TAR-EXP-006
TAR-PLA-007 TAR-GLOB-007 TAR-EXP-007
TAR-PLA-008 TAR-GLOB-008 TAR-EXP-008
TAR-PLA-009 TAR-GLOB-009 TAR-EXP-009
TAR-PLA-010 TAR-GLOB-010 TAR-EXP-010

Source: The author (2023)
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In the following discussion, we outline the execution process of the selected test cases,
describe the type of analysis performed, and present the results obtained from these tests. This
provides a detailed account of the test case execution, the methodologies used for analysis,
and the outcomes observed during the evaluation.

6.3.2.2 Keyword Coverage Execution and Results

Once selected, the test cases were executed, taking into consideration various scenarios.
Although some of the suites demonstrated better applicability for the execution of the ap-
proach in terms of exercising concurrent features and presenting the possibility of automation
(when not already automated), all suites underwent extensive analysis. Among the analyses
conducted, the following stand out:

• Analysis 1: Application of Filters. It verifies whether the proposed approach provides
better coverage than the original Motorola test cases after applying a filter mechanism,
which provides a more meaningful log, eliminating unnecessary information.

• Analysis 2: Tests the effects of applying a filter mechanism plus resetting the smart-
phone before each run. The study investigates the impact of clearing the log before
execution, and analyses how it influences the outcomes.

• Analysis 3: Filtering and resetting the smartphone before the initial execution only. The
subsequent executions are carried out without resetting the smartphone. The objective
is to determine if there is any effect on the results when the smartphone is reset only
for the first run.

• Analysis 4: Using a filter mechanism and multiple variations of execution order (per-
forming the same permutation in different sequences). The impact of interchanging the
order of steps on the execution results is analysed.

To keep it concise, we provide only the details of the planning, execution, and outcomes
of some of the Product Test suite analyses. Two test cases from the Product Test suite were
chosen as the basis for this evaluation. TC-MCA-542 (Table 19) focuses on verifying if the user
is able to stream online music, while TC-MCA-703 (Table 20) tests the Airplane Mode feature
in different settings.
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The next step was to construct a hierarchical model (Figure 33) that allows the identifi-
cation of potential interactions between the various steps.

Figure 33 – Selected Test Cases Hierarchical Model

Source: The author (2023)

Following the reverse engineering approach presented in Chapter 2, we proceed to derive
use cases from the initial test cases. This involves analysing the test cases and extracting
relevant information to create use cases that reflect the system’s behaviour and functionality.
Table 21 displays the use case UC 02 that was generated from the TC-MCA-703 test.

Figure 34 – Generated Permutation from the interleaving of Product Test use cases (UC_01: Streaming |||
UC_02: Airplane Mode)

Source: The author (2023)

After interleaving the test cases, they were automatically run using Motorola’s automatic
execution tool, and the execution log was recorded through LogCatwww.android.com [b]. To
assess coverage, we employed a relative coverage metric. This metric is evaluated considering
two sets, OTSe and MTSe, which stand for the lines covered by the optimised approach and
the manual execution carried out by a Motorola team, respectively. Hence, the coverage of
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OTSe is calculated by the formula

#OTSe
#(OTSe∪MTSe)

× 100.

The coverage of MTSe is calculated similarly. This calculation represents the relative cov-
erage of a set of elements to the union of all elements observed. We adopted this coverage
metric since we could not access the source code. The execution outcomes for all suites are
presented later in this Chapter.

Key-word filtering to improve coverage quality

Filters based on keywords were employed to achieve a more meaningful. The systemati-
sation of keywords was based on the study of the test cases, where the choice of keywords
is guided by the significance of each particular word within the test context. The following
example demonstrates how to identify keywords that can be used to filter logs for a test case.
Given the steps in Table 20, choosing words that are relevant to the main goal of the test
is crucial. On that test case, the objective is to assess whether the phone can establish a
connection when the airplane mode is turned on or off. Thus, individual log lines containing
the words call, dialer, ringing, incoming call, airplanemode, wifi and website are
related to the scope and objective of this test and, therefore, good candidates to be used in
the filtering process.

In what follows, the findings for analyses 3 and 4 applied to the Product Test Suite are
presented. We demonstrate the analyses that include resetting the smartphone at the start of
the initial execution in order to show the impact of this on the outcomes.

[RQ2] Tests generated by the proposed approach cover different components com-

pared to the original Motorola tests considering a key-word filtering technique?

Considering the applied analyses we compared the execution results of two different varia-
tions of the same generated permutation, TAR-PROD-001 and TAR-PROD-002, with the execu-
tion results of the Motorola original test cases from which the permutations were generated,
MCA-542 and MCA-703, resetting the smartphone only in the first run.
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Filter: "call", "dialer", "ringing", "incoming call", "airplanemode", "wifi",

"website"

Table 22 indicates there is a slight difference in the filtered values for each permutation
variation. This occurs because it is not possible to control what is triggered during execution,
even if the same set of keywords is used for both permutations. This slight variation exists
in all runs since the smartphone never remains in exactly the same condition at all times. In
addition, in this scenario, both permutations covered more lines than Motorola’s original tests.

Based on this, we can infer that the use of filters enhanced the identification of the
components covered during the execution. Moreover, variables like resetting the smartphone
prior to execution or using different execution paths combined (more than one permutation)
may cause disparities in the coverage outcomes.

Overall, considering all the scenarios in which this study was conducted, the tests generated
using the proposed approach present a better coverage than the ones created by Motorola.
In contrast, however, the suggested approach does not consistently offer superior coverage
compared to Motorola in all analyses or test suites. In specific situations, there may be a
marginal reduction in coverage when employing the proposed approach, especially when using
only one permutation. This reinforces the idea that the greater the number of paths to explore
(permutations), even if they originate from the same set of tests, the higher the potential of
coverage to be achieved by the application. Despite the findings, a comprehensive examination
of the log is necessary to fully grasp the observed phenomena.

Finally, the implementation of a filter mechanism has enabled us to navigate into a more
sophisticated approach that precisely establishes a correlation between the executed lines of
code and the actual testing steps. Moreover, it is possible to use filters combined with other
techniques such as code instrumentation. Code instrumentation entails the insertion of a
developer-designated tag into the automated testing code. When executed, this method allows
for the filtering of log lines containing the inserted tag, resulting in a more precise and refined
coverage. The scope of this project includes the execution of a case study involving code
instrumentation. This is still under exploration.

6.3.3 Threats to Validity

We address the potential threats to the validity of our evaluation in what follows.
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1. Internal Validity: The possibility of bias due to the test environment or tools. Consistent
use of automation tools across both approaches helps mitigate this. However, a notable
threat arises from the need to select only a subset of test cases for execution. The
proposed approach generates a large volume of test cases, making it impractical to
execute all. To address this, only the first 10 test cases generated were selected for
evaluation. This selection criterion does not guarantee that the chosen subset is optimal,
nor can it ensure that the subset is free from selection bias, potentially affecting the
validity of results.

2. External Validity: The study is specific to Motorola’s mobile phone software, so gen-
eralising the results to other types of software may be limited.

3. Construct Validity: The study depends on accurate measurement of bugs and coverage,
with the risk that some bugs may go unnoticed by either approach.

4. Conclusion Validity: A statistical power to detect differences between the two ap-
proaches was not performed.
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Table 13 – Compilation of uncovered bugs.

ID Description
BUG-001 [Messages] The orientation of the image appears inverted.
BUG-002 [Home] The Home screen is displayed blank.
BUG-003 [Messages] Camera shut button cut.

BUG-004 [Contacts] When altering the theme settings twice (activating and
deactivating) on the editing page, the contact name fails to display.

BUG-005 [Messages] App Crash.

BUG-006 [Split-screen] The phone’s components will be displayed as
truncated when the screen is partially opened in split-screen mode.

BUG-007
[Split-screen] When a call is in a split-screen view, rotating the phone
to landscape orientation (180°) will result in the call buttons being
partially obscured.

BUG-008 [Theme] During a split-screen view mode call, an error is displayed
on the change theme screen when receiving a call.

BUG-009

[Theme] When altering the theme settings twice, toggling between
enabling and disabling, on the editing interface, the navigation
reverts back to the original screen and any modifications made to
the photo are not saved.

BUG-010
[Message] When activating the Dark Theme feature following the
capture of a photo within the Message App, the image fails to be
included or attached.

BUG-011 [Message] Message Edit View goes back to previous page when
changing the theme.

BUG-012 [Message] The video cannot be included in the Google message as a
result of a screen malfunction that occurred following a theme change.

BUG-013 [Google-duo] In a multi-window setting, the captured image appears
to be horizontally flipped when a photograph is taken.

BUG-014 [Google-duo] When transitioning between applications,
the image displayed in Google Duo may appear reversed.

BUG-015
[Contact] When attempting to choose specific contacts for SIM 2,
the “Manually assign contacts” interface experiences a crash
following a modification in the phone’s theme.

BUG-016
[Camera] ANR (application not responding) occurs following the
adjustment of font size while configuring the rear camera photo
resolution.

BUG-017 [Wallpaper] ANR occurrence following two instances of screen
manipulation, involving alterations in font size and theme.

BUG-018 [Wallpaper] It is not feasible to verify the alteration of the wallpaper
following a modification in the display dimensions.

Source: The author (2024)
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Table 15 – Overview of the assessment applied to Motorola’s Test Suites

TEST SUITE #TCs #Concurrent TCs #Selected TCs #Generated TCs
Platfrom 216 52 3 126
Modem 64 64 3 6
Produt Test 53 5 2 5
Globalization [Internationalization] 160 2 2 70
Experiences 58 9 3 500
Total 551 132 13 707

Source: The author (2023)

Table 19 – TC-MCA-542: Streaming

ID Test Step Description Expected Results
Play online music via Mobile Data
e.g. Play Music, Spotify, Deezer, Youtube Music, youdao

Verify user is able to stream online music
MCA-542

Repeat step 1 with WiFi connection

Source: The author (2023)

Table 20 – TC-MCA-703: Airplane Mode

ID Test Step Description Expected Results

Turn airplane mode ON - Airplane mode is turned ON
- Data service icons are NOT present in the status bar

- Make a call
- Receive a call
- Browse to a website

The device can’t establish a call or browse on the web

MCA-703
Turn airplane mode OFF - Airplane mode is disabled and the device is registered again to the network

- Data service icons are present

Source: The author (2023)

Step ID User Action System State System Response

1M Turn airplane mode ON - Airplane mode is turned ON
- Data service icons are NOT present in the status bar %APM:= On%

2M Make a call %APM == On% The device can’t establish a call or browse on the web
3M Receive a call %APM == On% The device can’t establish a call or browse on the web
4M Browse to a website %APM == On% The device can’t establish a call or browse on the web

5M Turn airplane mode OFF %APM == On%
- Airplane mode is disabled and the device is registered again
to the network
- Data service icons are present

Table 21 – Use case UC_02:Airplane mode derived from TC-MCA-703.
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Table 22 – Scenario 1: Comparison results of two different variations resetting the smartphone only in the first
run

Parameters TAR-PROD-001 (#) TAR-PROD-002 (#)
Total universe lines 745 794
Motorola Total Execution lines 421, P: 56.51% 421, P: 53.02%
Proposed Approach Total Execution lines 580, P: 77.85% 608, P: 76.57%
Intersection Motorola—Proposed Approach 256, P: 34.36% 235, P: 29.60%
Difference Motorola—Proposed Approach 165, P: 22.15% 186, P: 23.43%
Difference Proposed Approach—Motorola 324, P: 43.49% 373, P: 46.98%

Source: The author (2023)
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7 RELATED WORK

This chapter highlights studies that use models as input for test generation. It is divided
into three sections, each focusing on a specific type of model.

The first section examines works that concentrate on generating test cases for concur-
rent systems. Such studies explore methods to effectively generate tests that account for the
complexities and interactions of concurrent systems.

The second section showcases works that use models authored in natural language as
input. These studies investigate techniques for automatically generating test cases based on
requirements or specifications written in natural language.

The third section discusses works that employ diagrammatic and formal models as input
for test generation. Such studies explore approaches to automatically generate test cases
using models represented in diagrams or formal languages, which provide a more precise and
structured representation of the system under test.

The final section explores the application of generative AI and large language models
(LLMs) in the generation of test cases.

By categorising the works based on the type of input model, this chapter provides a com-
prehensive overview of research efforts in test generation from various modelling perspectives.

7.1 TEST OF CONCURRENT SYSTEMS

The research in Peres [2009] presents a black-box testing methodology aimed at iden-
tifying crashes in mobile applications through the execution of automated user scenarios.
The proposed technique emulates authentic user interactions—such as tapping, swiping, and
data entry—without necessitating an understanding of the application’s underlying code. By
automating these interactions, the method effectively detects conditions under which the ap-
plication may fail or crash, particularly in response to unexpected inputs or edge cases. This
approach is specifically tailored for testing graphical user interface (GUI) components, where
unpredictable user behaviors or environmental factors (such as low battery levels or poor con-
nectivity) may induce instability. This work was inspired by the concept of atoms as testable
units. In this regard, both studies effectively tailor test cases to detect specific types of soft-
ware bugs: ours, targeting bugs arising from concurrent interactions, and the other, focusing
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on crashes due to user interactions.
The test generation strategy presented in Andrade and Machado [2012] shares some sim-

ilarities with our approach while also highlighting a few key differences. This strategy takes
as inputs models expressed in natural language, specifically use case templates, which are
designed to capture interruptions in mobile device applications. Interruptions refer to urgent
events, such as an incoming call, that temporarily pause the execution of the current state of
the application until the interruption event is resolved. Although interruptions can be seen as a
specific type of concurrent behaviour, they differ from the general interleaving of flows in that
the original execution flow is halted, the interruption is handled until completion, and then the
original flow resumes. In contrast, our proposed approach does not explicitly model interrup-
tions since modern mobile device applications are not typically interrupted by external events
like calls. Furthermore, our work extends beyond interruption modelling. We consider two lev-
els of concurrency: intra-feature concurrency, which focuses on concurrent behaviour within a
single feature, and inter-feature concurrency, which addresses interactions and dependencies
between multiple features.

Various methods have been employed to evaluate concurrent applications. The approach
proposed in this thesis builds upon our previous work Almeida et al. [2018] for the test case
generation of concurrent systems, where we presented initial ideas for extending the natural
language model introduced in Nogueira et al. [2014] to incorporate the modelling of inter-
feature and intrafeature concurrency. The extension proposed in Almeida et al. [2018] follows
a conservative approach, ensuring that the original template elements, such as use case data,
inclusion relations, and extension relations, are preserved. An improvement was later provided
in Almeida [2019], which main contributions can be summarised as: CSP semantics to capture
intra-feature concurrency; tool support has been developed to input use cases with concurrent
features and to translate use cases into a CSP model with concurrency; a systematic process
is proposed to reverse engineering existing test cases into use cases for further test case
generation. This process is used in the empirical evaluation to obtain the use case models
input by the test generation tool. More details of the cited contribution are presented in the
Chapter 2 of this thesis.

The paper in Yu et al. [2020] introduces ConTesa, which is a novel tool for augmenting
test suites in the context of concurrent software. Its primary objective is to generate new test
cases that explore both code modifications and the resulting thread interleavings affected by
those changes. ConTesa employs a dual-pronged approach that reuses existing test inputs while
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expanding its coverage of possible interleavings through the use of random thread schedules.
Additionally, it leverages an incremental symbolic execution technique to generate additional
test inputs and interleavings, specifically targeting new concurrency-related behaviours in the
program. This paper introduces a distinction in the interpretation of concurrency compared to
our own approach. While we primarily concentrate on concurrency at the screen or GUI level,
the paper in Yu et al. [2020] operates at a lower level, specifically focusing on concurrency.
These divergent perspectives highlight the differing scopes and levels of concurrency that are
addressed.

The paper in Murthy and Ulrich [2017] presents the design of a distributed test system
tailored for testing distributed GUI applications. It introduces additional services such as coor-
dination and synchronisation among the deployed GUI test frameworks, test verdict arbitration,
and debugging support. Furthermore, the paper proposes a test specification method for test
cases, which is based on a event flow graph model. This method enables the automatic ex-
ecution of test cases using the suggested distributed test system. This approach allows the
expansion of testing from single GUI application systems to distributed GUI application sys-
tems. It is important to note that the paper does not provide specific implementation results
for the proposed system. Different from our approach, in that paper, graphical elements and
test events (stimulus, response, stimulus/response, test system) need to be implemented as
test scripts for execution on a test execution framework. A mapping of the local events con-
tained in concurrent events from the test case specification to concrete test actions at the
GUI of a SUT component or actions of the test system must be defined. In contrast to the
approach described in Murthy and Ulrich [2017], ours focuses on handling concurrency by
identifying actions within the textual scope of test cases that suggest concurrent behaviour
and interaction between components.

In Offutt and Thummala [2019] it is introduced a novel approach based on Petri nets
models that captures the behaviour of web applications. This model serves as the foundation
for a technique proposed in the paper to design tests that specifically target concurrency in
web applications. Additionally, the paper introduces new coverage criteria that are defined
within the context of Petri nets. The approach takes into account the concurrency that arises
from web-specific features such as HTTP sessions, behaviour of a browser, multiple instances
of a browser, or shared data between web application requests. In contrast to the paper’s focus
on concurrency in web applications, our focuses on concurrency that arises from the parallel
execution of features within the context of smartphones. While our work primarily operates
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at the text level, focusing on natural language, the cited paper takes a different approach.
Instead, such a paper uses a tool to extract the navigational structure of web applications.

In Sun [2008], test scenarios are generated based on a UML activity diagram and specified
concurrency coverage criteria (weak, moderate, or strong concurrency coverage). This process
produces a collection of test cases by transforming the activity diagram specifications into
an intermediate representation using a set of predefined transformation rules. Subsequently,
algorithms are employed to derive a set of test scenarios, which serve as the basis for generating
test cases. Each test case represents a combination of choices with corresponding values that
can lead to the execution of a specific test scenario. The extent of testing for concurrent
elements is set by the chosen coverage criteria. To meet the criteria, tests are generated
dynamically, allowing for control over the number of generated test cases. The primary focus
of this approach is on generating functional test scenarios.

A software testing method is proposed in Cao and Wang [2018]. This method uses a
Communicating Sequential Processes (CSP) model of the Implementation Under Test (IUT)
to capture the concurrent behaviour of the system, as well as the expected properties of the
System Under Test (SUT). The method begins by validating the model using model-checking
techniques, ensuring its correctness and reliability. Subsequently, contracts are integrated into
the IUT, and during the execution of the IUT, these contracts are continuously evaluated to
verify if any violations occur. The presence of contract violations indicates that the IUT fails
to adhere to the specified requirements. The primary objective of this method is to identify
specific event sequences that represent incorrect behaviour within a real-world multi-thread
testing environment. It is important to note that this approach differs from ours, as our focus
lies in testing the graphical user interface (GUI) of mobile applications. In contrast, the work
described in Cao and Wang [2018] involves code instrumentation and is primarily applied in
the domain of safety-critical systems.

The work in Thummala and Offutt [2016] propose an alternative strategy for testing con-
current systems. This approach involves using a Petri net-based model specifically designed for
web applications. The test generation process is guided by various coverage criteria, including
Structural and Behavioural Analysis Coverage, Concurrent Behaviour Coverage Criteria, and
RACC. These criteria leverage the structural and behavioural properties of the Petri net model
to define the tests. They consider aspects such as model transitions, input data, HTTP ses-
sions, and Petri net guard conditions to generate effective tests. It is worth noting that this
approach differs from our own, as our focus is on the domain of mobile applications and the



108

testing of GUI components. In contrast, the work described in Thummala and Offutt [2016] is
centered around web applications and employs a Petri net-based model. However, similar to our
approach, that work also emphasises testing the Presentation Layer components, specifically
targeting the Interaction Under Test (IUT) through the GUI. In terms of concurrency, their
approach deals with the synchronous request-response cycle triggered by user interactions.

The approaches presented in these works primarily focus on specific types of concurrency
(e.g., interruptions, thread-level interleavings, or Petri net models) or are applied to different
domains (e.g., web applications or safety-critical systems). In contrast, our proposed approach
provides a more comprehensive solution for testing concurrency in mobile applications, par-
ticularly those involving complex user interactions and feature dependencies. By using natural
language descriptions to generate test cases, our approach simplifies the testing process while
ensuring more comprehensive coverage of concurrent behaviours within the context of mobile
GUIs.

7.2 TEST GENERATION FROM NATURAL LANGUAGE MODELS

Several approaches to generate test cases from natural language specifications have been
proposed.

The authors in Carvalho et al. [2015], proposed a strategy to automatically generate test
cases from Natural Language requirements (NAT2TEST - NATural language requirements
to TEST cases), applied to data-flow reactive systems. Similar to our work, they use CNL
(SysReqCNL) for authoring unambiguous requirements. Their generation approach comprises
at least three fixed phases: (1) syntactic analysis, (2) semantic analysis, and (3) DFRS gen-
eration. DFRS is an internal formalism that can be translated into other formalisms that
are the input for automatic test generation: Software Cost Reduction (SCR) Carvalho et al.
[2013b], Internal Model Representation (IMR) Carvalho et al. [2013a] or CSP. Due to the
focus on embedded systems, SysReqCNL is not suitable for specifying the flow of interac-
tions of a user with the application GUI. On the other hand, the CNLs in our work focus on
mobile applications described as interactions via a user interface. Similarly to our approach,
this work represents data information as inputs/output values and can model interleaving be-
tween different system flows. Nevertheless, in their work concurrent behaviour arises only when
the precondition guards of different system functionalities become enabled at the same time.
Hence, concurrency is not expressed explicitly, as it is in our approach. They consider discrete
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or continuous temporal properties, not yet explored in our work. Concerning the conformance
notion adopted, they proposed a time-based input-output relationship (CSPTIO) that adapts
the CSPIO conformance relation concept to consider time requirements to test reactive data
flow systems.

A novel approach for automated detection and extraction of semi-structured requirements
from requirement documents is introduced in Fischbach et al. [2019]. The input for the ap-
proach is requirements documents that contain semi-structured descriptions of business rules.
Such descriptions are identified using machine learning algorithms that detect pseudo-code-like
constructs within the natural language text. Once identified, the semi-structured descriptions
are translated into Cause-Effect-Graphs (CEGs) using a rule-based approach. The CEGs are
then used to generate test cases. The authors discovered that approximately 14% of the lines
in requirement documents consist of "pseudo-code"-like descriptions of business rules, which
offer a promising starting point for automating the creation of test models due to their struc-
tured nature. By employing their proposed solution, the authors achieved an 86% reduction in
time required for test model creation, without compromising the quality of the models. Fur-
thermore, the paper explores the challenges associated with manual creation and maintenance
of test models, as well as the limitations of natural language when it comes to specifying
requirements. Similar to our work, the authors of the paper input text requirements. The au-
thors recognise the need to structure and organise the content of the document to make it
amenable to automation. The limitations of the cited paper suggest it may not be suitable
for all types of requirements documents and may require some manual intervention to achieve
accurate results.

7.3 TEST GENERATION FROM DIAGRAMMATIC AND FORMAL NOTATIONS

The formal notion of conformance allows testers and developers to reason about the cor-
rectness of the generated test cases and the behaviours of the SUT. Existing theories in the
field Tretmans [1999], Carvalho et al. [2013c], Nogueira et al. [2014], Cavalcanti et al. [2016]
rely on a well-defined mathematical relation between the system specification and the IUT .

The paper in Tretmans [1999] proposes a formal approach for testing concurrent systems
using labelled transition systems and ioco (input/output conformance) as the conformance
relation. The research presented in Nogueira et al. [2014] draws inspiration from the concept
of ioco and is the foundation for the formal definition of our proposed approach. It introduces
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a testing theory (cspio) based on the CSP process algebra, which distinguishes input and
output events. The authors also establish the equivalence between cspio and Tretmans’ ioco

relation. While the theory of cspio addresses systems that alternate inputs and outputs, it
does not deal with systems that are able to input a sequence of input or that produce multiple
outputs: these are possibilities in concurrent systems. Such a limitation is one of the main
issues addressed in this thesis.

The article in Cavalcanti et al. [2016] presents a denotational semantics for CSP using
suspension traces. This semantics specifically addresses the distinctions between inputs and
outputs. The paper establishes healthy conditions for the suspension-traces model and proposes
a characterisation of the conformance relation ioco. Additionally, the author in Cavalcanti et al.
[2016] propose a strategy for automating the verification of conformance based on ioco and
suspension-trace refinement using CSP tools. Furthermore, it opens up avenues for exploring
algebraic laws and compositional reasoning techniques based on ioco. Although we share
a common foundation in ioco’s conformance relation, there are distinctions in the specific
semantics we adopt. While the paper relies on suspension traces, our approach adopts traces
model annotated with special events to represent quiescence.

The paper in Carvalho et al. [2013c] proposes a timed input-output conformance relation
(CSPTIO) that is formalised in CSP. This relation is designed to verify data-flow reactive
systems. The authors provide a proof of the soundness of the proposed relation and validate
its effectiveness by testing it on critical systems in the aeronautics and automotive domains.
Both Carvalho et al. [2013c] and the approach proposed in the current thesis share a common
adoption of the CSP formalism. The primary distinction lies in the domain of application.
While Carvalho et al. [2013c] concentrates on critical automotive systems, our study is applied
to mobile applications. Additionally, Carvalho et al. [2013c] introduces a timed input-output
conformance relation (CSPTIO) that considers the temporal aspect of the systems under
investigation. In contrast, our approach does not model any time-related constraints.

The paper Yimman et al. [2017] introduces a technique based on dynamic programming
to produce concurrent test cases extracted from UML activity diagrams. Initially, the ap-
proach constructs a concurrent activity diagram based on a standard UML activity diagram.
It subsequently converts the UML activity diagram into an activity graph and applies dynamic
programming methods to find the total number of paths and total conditional paths in the
concurrent test cases. Different from our approach, the input in Yimman et al. [2017] is an
UML activity diagram.
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In the study by Malekzadeh and Ainon [2010], the authors describe the development of
an automatic specification-based test case generator (ATCG) specifically designed for test-
ing safety-critical software systems. The tool takes as input a document written in natural
language, which contains the specification of the critical system, including the causes and as-
sociated effects. The ATCG tool constructs a cause-effect table based on the input document,
capturing the relationships between causes and effects. From this table, a Boolean expression
is formed by assigning a variable to each cause and combining them with appropriate boolean
operators. A visual representation in the form of a Cause-Effect Graph (CEG) is automatically
generated based on the boolean expression. Finally, test cases are automatically generated
based on the constructed boolean expression. However, a limitation of this approach is that it
generates test cases associated with a unique effect at each execution of the tool, meaning that
it may not capture all possible variations or combinations of effects. While the input document
in Malekzadeh and Ainon [2010] is also based on natural language like our approach, there is
a difference in structure and focus. In our work, the input follows a structured specification
of a use case, emphasising the interactions within the system. On the other hand, the input
document in Malekzadeh and Ainon [2010] follows a cause-effect pattern, highlighting the
relationship between causes and effects in the system behaviour.

A Controlled Natural Language (CNL) is introduced in Schnelte [2009], specifically for the
automotive domain. Requirements written in this CNL are translated into a formal model that
captures rich temporal behaviour. The generated test cases from this formal model are designed
to handle non-deterministic timing behaviour, which is particularly relevant in the context of
automotive systems. In contrast, our approach primarily focuses on mobile applications rather
than the automotive domain. While time constraints and timing behaviour are important
factors in the automotive domain, our current work does not explicitly incorporate them.
However, we acknowledge the significance of time constraints and plan to incorporate them
in future iterations of our approach.

In the study by Sarmiento et al. [2014], a tool called C&L is introduced, which implements
a test case generation approach based on natural language (NL) requirements specifications.
The C&L tool automatically translates the NL requirements descriptions into UML activity
diagrams, which are internally represented as directed graphs. Test cases are then generated
using graph search strategies applied to these activity diagrams. The C&L tool provides a
graphical display that facilitates the visualisation and management of test scenarios, test ele-
ments, and test cases. This graphical interface enhances the understanding and representation
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of the generated test artifacts. Overall, the C&L tool bridges the gap between NL requirements
and the generation of UML activity diagrams and subsequent test cases. It provides a visual
representation to aid in understand and working with the test artifacts derived from the NL
requirements.

In the study Santiago Junior and Vijaykumar [2012], a model-based test case generation
methodology is presented, which involves automatically translating natural language (NL)
requirements into Statechart models. The methodology requires the definition of a dictionary
by the test designer to specify the application domain, allowing for a flexible vocabulary that
aligns with the specific domain terminology.While this approach shares a similarity with ours
in terms of using natural language descriptions as input, there are some notable differences. In
the work described in Santiago Junior and Vijaykumar [2012], there are no imposed constraints
on how requirements should be written; the primary focus is on defining a domain dictionary
to facilitate the translation process. On the other hand, our approach provides a controlled
natural language (CNL) specifically designed for writing use cases, promoting a more structured
and controlled manner of expressing requirements. Furthermore, the work in Santiago Junior
and Vijaykumar [2012] emphasises the methodology for bridging the gap between informal
and formal requirements, aiming to enhance the precision and formality of the requirements.
In contrast, while our approach also involves capturing and formalising requirements through
CNL, our main focus is on generating test cases that accurately reflect the behaviour and
interactions of the system. Overall, while both approaches involve translating NL descriptions
into formal models, our approach provides a controlled natural language for writing use cases
and places emphasis on generating test cases, while the work in Santiago Junior and Vijaykumar
[2012] focuses on the definition of a domain dictionary and bridging the gap between informal
and formal requirements.

In Jiang and Ding [2011], the author focuses on automating the translation of textual use
case descriptions into Extended Finite State Machine (EFSM) models, which serve as the input
for generating test cases. The test case generation process uses a statement coverage criterion
to ensure that each statement in the model is tested. Similar to our approach, test cases
are generated from use case textual descriptions. However, there are slight differences in the
structure of the use cases between their work and ours. In the format described in Jiang and
Ding [2011], the use case structure consists of several fields, including Use Case, System under
Discussion (which represents the system itself and other subsystems), Primary actor, Scope,
Precondition, Main scenario (presented in a step-by-step structure), Variation, and Extension.
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While the overall objective of generating test cases from use case descriptions aligns with
our approach, the specific structure and formatting of the use cases differ between the two
approaches. Our focus is on a more structured and controlled natural language representation
of use cases, which allows for a more concise and consistent specification of requirements.

7.4 TEST GENERATION FROM GENERATIVE AI AND LARGE LANGUAGE MODELS

Recent research ( Dakhel et al. [2024], Siddiq et al. [2024]) has emphasized the potential
of Large Language Models (LLMs) to generate software test cases with greater efficiency
and broader coverage, indicating promising applications for integrating LLMs into the test
generation workflow.

The use of Generative AI and LLMs in test generation relies on their advanced natural
language processing capabilities to transform software requirements or plain language descrip-
tions into test cases. By interpreting input prompts, LLMs can autonomously produce test
cases that reflect the expected functionality of the software, covering a wide range of sce-
narios, including edge cases and interactions. This methodology proves especially useful for
complex, concurrent, or GUI-based systems, where traditional manual testing methods may
fall short in accounting for all possible interactions.

The study by Dakhel et al. [2024] explores the use of LLMs in automated test genera-
tion, incorporating mutation testing to identify potential failures missed by the initial set of
test cases. Their approach tailors LLMs to better understand and process natural language
descriptions, enabling the generation of flexible and adaptable test cases, particularly for com-
plex systems, including those with concurrent states. While both this work and the proposed
approach emphasize comprehensive test generation and improved fault detection, the proposed
approach extends the concept by incorporating dependency analysis. This ensures the correct
ordering of test steps, which is crucial for systems with intricate dependencies. Furthermore, it
introduces quiescence handling, an essential feature for managing scenarios where no further
output is expected, such as in concurrent systems. In contrast, mutation testing, as outlined
in Dakhel et al. [2024], primarily focuses on addressing coverage gaps identified in the ini-
tial test cases and does not specifically account for these nuances in test execution order or
quiescence.

The paper in Siddiq et al. [2024] investigates the use of LLMs, such as GPT, for the
automatic generation of JUnit tests in software projects. The empirical study evaluates the
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effectiveness, quality, and utility of tests generated by LLMs in comparison to manually written
tests by developers. The findings indicate that while LLMs can produce valid tests with good
code coverage and some error detection capabilities, the quality of these tests can be incon-
sistent, with certain tests proving less effective. The study suggests that LLMs hold promise
as a tool for automating test generation, enhancing productivity, and increasing test coverage.
However, human oversight is still necessary to ensure the completeness and effectiveness of
the tests, particularly in complex scenarios. In conclusion, while LLMs show potential as a
supplement to manual testing, they cannot yet fully replace the expertise of human testers.
In contrast, the proposed approach focuses on generating tests for concurrent systems from
natural language requirements, specifically targeting mobile applications. Unlike the JUnit-
based method, which primarily addresses unit tests and does not account for concurrency,
the proposed method excels in generating tests for complex, concurrent applications. In sum-
mary, the JUnit-focused study is suitable for code-level testing of individual functions, while
the proposed approach is tailored for higher-level system testing in concurrent environments,
particularly with GUI applications, where dependencies, order, and quiescence play crucial roles.

In conclusion, generative AI, particularly LLMs, holds significant promise for automating
test case generation, but it also faces several notable challenges. One key limitation is the
occurrence of model inaccuracies or "hallucinations," where LLMs generate incorrect or irrel-
evant test cases. Additionally, LLMs depend heavily on clear and precise input requirements,
making them sensitive to ambiguities in the provided specifications. The computational cost of
running advanced models also poses a barrier, especially when dealing with large-scale systems
or complex test scenarios.

LLMs further struggle with capturing complex behaviours, particularly in concurrent sys-
tems, due to their limited capabilities in managing multi-threaded interactions and handling
"quiescence" — scenarios where no output is expected. This can make them less effective in
testing systems with intricate, non-deterministic behaviours. Furthermore, the use of third-
party LLMs raises concerns about security and privacy, as sensitive data processed through
these models could potentially be exposed.

7.5 CONCLUDING REMARKS

This chapter provides an overview of various approaches related to the three main con-
tributions of this thesis: testing of concurrent systems, test generation from natural language
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models, and test generation from formal models. Several dimensions, including objectives, ap-
plication domain, input/output format, conformance relation, and tool support, are considered
in the analysis of these approaches.

By considering these dimensions, the chapter aims to provide a comprehensive understand-
ing of the different methodologies and techniques employed in each area of contribution.

The literature review reveals that the proposed approach in this work possesses unique char-
acteristics concerning the use of natural language. While existing test generation approaches
primarily rely on natural language for specifying the input model, the proposed approach sur-
passes this limitation. It extends the usage of natural language to encompass standardisation
and defining model constraints. This broader application of natural language enables a more
comprehensive and expressive representation of the testing process.

Considering the specific circumstances surrounding the approach, particularly its focus
on concurrency and its reactive characteristics, we incorporate the concept of quiescence.
Quiescence entails a state in which a system is unable to generate an output or alter its state
unless it receives an input beforehand.

Furthermore, the proposed approach stands out as the only known natural language-based
approach for test generation that explicitly allows the specification of concurrent behaviour.
This capability to explicitly represent and handle concurrency in the natural language specifi-
cations sets the proposed approach apart from other existing methods.

Our approach does not currently provide specific constructs or mechanisms to represent
and handle time-related properties or behaviours. This limitation means that our approach
may not fully capture and address temporal dependencies, constraints, or sequences that are
relevant in certain testing scenarios. The inclusion of time aspects is therefore identified as an
aspect that will be pursued in future work to further enhance the capabilities and effectiveness
of our approach.
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8 CONCLUSION

We have introduced an approach for generating sound test cases for concurrent features.
The theoretical foundation to establish the soundness of this approach has been presented,
along with the incorporation of a dependent analysis tool to tackle any inconsistencies related
to the order of executing steps. This integration ensures the generation of coherent test cases
with enhanced consistency.

To account for quiescent behaviour, we introduced a new relation called cspioq, building
upon the approach described in Nogueira [2012], for generating sound test cases that may
involve quiescence.

Furthermore, we have optimised our test generation strategy to offer a more efficient
alternative that closely aligns with the automation and execution environment of our industrial
partner. The optimisation performs interleaving of atoms, simplifying the process by directly
extracting pertinent information without the necessity for intricate reverse engineering test
cases into use cases. We have also connected the optimised approach to the formal test
generation theory, providing a formal proof and demonstrating that the optimised approach
generates identical test suites for any possible input, mirroring the behaviour of the original
approach. By establishing this close alignment, we assure that the optimised approach remains
a dependable and effective means of generating sound test cases, providing an essential bridge
between theory and a real-world application.

Tool support has been introduced for every phase of the proposed strategy, and the ar-
chitecture and interface details have been presented. As for industrial practices, the proposed
approach offers significant contributions by streamlining the test case generation process for
concurrent systems. By automating the generation of test cases, the tool drastically reduces
the time and effort required compared to traditional manual methods. It not only speeds up
the process but also increases efficiency by systematically suggesting combinations of test
scenarios that would be difficult or impossible for humans to conceive, given the complexity
of concurrent interactions. This capability enhances the overall coverage and effectiveness of
testing, allowing engineers to identify potential defects in scenarios that may have otherwise
been overlooked, ultimately improving the reliability and robustness of software systems in
production environments.

We conducted an empirical evaluation to gauge the effectiveness of the tests generated
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using the proposed approach. This evaluation involved measuring the number of uncovered
bugs and the coverage of the tests produced by Motorola. We also collected the same measures
for the tests generated by the proposed approach, allowing us to compare the efficiency of the
two testing approaches.

A significant number of bugs (more than 18) have been uncovered by applying the given
strategy. This demonstrates the effectiveness of our approach in enhancing the bug detection
capability of the testing process, thus contributing to the overall quality and reliability of the
system.

Moreover, the test coverage measurement using filtering of the execution log could show
the tests generated with the proposed strategy provide superior coverage compared to the tests
generated by our industrial partner. For instance, in the evaluation of the specified scenario, the
coverage attained by the proposed approach amounted to 580 lines, corresponding to 77.85%
of the total, whereas the test suite developed by Motorola covered 421 lines, representing
56.51% of the overall lines. This comparison highlights a notable difference in the extent of
coverage achieved by each approach, with the proposed method demonstrating a significantly
higher level of test case coverage.This suggests that our approach not only uncovers new bugs
but also provides more extensive testing, encompassing a wider range of functionalities within
the system.

Finally, as part of advancements in test case generation for concurrent systems, this work
led to the publication of the paper Sound Test Case Generation for Concurrent Mobile Fea-
tures, presented at 26th Brazilian Symposium on Formal Methods. This research contributed
significantly to the field of formal methods by proposing a reliable framework for generating
test cases for concurrent mobile features. By applying formal techniques, the approach guar-
antees the accuracy and consistency of the generated test cases, effectively tackling challenges
like non-deterministic behaviour and the complex interactions between multiple processes. Ad-
ditionally, another paper titled Combining Sequential Feature Test Cases to Generate Sound
Tests for Concurrent Features was submitted to the Science of Computer Programming journal
and is currently under review.

8.1 STUDY LIMITATIONS

Dependence on Natural Language Requirements Quality
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One of the key limitations of the proposed approach is its reliance on the quality and com-
pleteness of the natural language requirements. The method assumes that these requirements
provide a clear and accurate description of the system’s behaviour, which is often not the case
in real-world scenarios. In many instances, requirements are vague, ambiguous, or incomplete,
which can lead to test cases that miss critical scenarios or fail to fully capture the behaviour
of the system. Furthermore, if the requirements do not explicitly define all possible concurrent
interactions, the generated tests might overlook important edge cases, impacting the thor-
oughness of the testing process. In practice, addressing these gaps requires additional steps,
such as refining the requirements or incorporating domain knowledge to supplement missing
details, which can be time-consuming and resource-intensive.

Selection of optimal test cases

A significant limitation of approach lies in the challenge of optimal test case selection. Due
to the sheer volume of test cases generated to encompass all possible feature interactions, it
is often infeasible to execute every single test within reasonable time and resource constraints.

The selection process inherently carries a risk of overlooking certain interactions or po-
tential bugs. By focusing on a smaller set of test cases, there is a chance that some scenar-
ios—particularly those involving complex or less frequent interactions—may be omitted from
the testing suite. These untested paths could contain critical issues that only become apparent
under specific conditions, potentially leading to undetected faults that impact product quality
and user experience.

In essence, while selective testing improves feasibility, it introduces a trade-off between ex-
ecution efficiency and thoroughness. Without a sophisticated mechanism for prioritising cases
based on impact and likelihood of failure, the tool may inadvertently exclude cases that pro-
vide valuable insights into the system’s robustness. This limitation underscores the need for
further refinement in test selection algorithms, perhaps incorporating predictive analytics or
risk-based prioritisation, to better align selection with coverage requirements and enhance the
tool’s ability to detect latent defects. A more detailed discussion is presented in the 8.2 Section.

Computational Overhead

Another limitation of the approach is the computational overhead introduced by generating
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large volumes of test cases. As the complexity of the system under test grows, the number of
potential test cases increases exponentially, which can be both time-consuming and resource-
intensive. While the approach includes an optimization strategy for generating new tests by
permuting test steps (atoms), the sheer volume of cases that may be produced still requires
significant computational resources. This challenge becomes particularly evident when testing
large-scale applications or systems with many components, where the execution of all generated
tests might be impractical. Addressing this issue may involve further optimization techniques,
such as smarter test case selection algorithms or techniques for prioritizing tests based on risk
or likelihood of revealing defects.

8.2 FUTURE WORK

Evaluation

Although we have addressed the evaluation of the proposed approach to a significant ex-
tent, we plan to employ a code instrumentation technique. This involves modifying the source
code of the applications under test by adding tags to enable tracking and filtering the execu-
tion of code segments specifically triggered by the executing tests. Additionally, performance
metrics such as execution time and resource usage will be analyzed to assess the efficiency of
the generated tests in real-world scenarios. This will allow us to gauge the overhead introduced
by our approach and ensure it remains feasible for industrial-scale applications. Further, we
aim to validate the usability of the proposed tool through a series of case studies and user
feedback from industry practitioners. This validation will provide insights into the tool’s prac-
ticality, ease of integration, and potential areas for improvement, reinforcing the robustness
and effectiveness of our approach in supporting concurrent system testing.

Proposed approach generation cost

Further investigation is needed to provide a better assessment of the cost of generating
test cases using the proposed approach as well as a detailed mathematical analysis, aiming to
reduce execution time and increase efficiency in the interleaving process of sequences. Possi-
ble solutions for optimising test case generation include implementing pruning techniques to
discard interleavings that do not contribute to the desired coverage, thereby saving compu-
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tational time. Another promising strategy could involve memoization of previously processed
intermediate interleavings, avoiding redundant computation of repeated combinations.

Generative AI to support test case generation

Another subject for further investigation is exploring the integration of generative AI so-
lutions to support test case generation for concurrent systems. As AI advances in natural
language understanding and content generation, it presents promising avenues to enhance our
proposed approach. Generative AI could assist by interpreting requirements written in natural
language and identifying complex interactions that might otherwise go unnoticed. Additionally,
AI could enable the development of adaptive testing strategies that automatically adjust to
cover new configurations and states in evolving concurrent systems. By leveraging these capa-
bilities, generative AI has the potential to reduce engineering time and effort needed to create
effective tests while also improving coverage and the detection of bugs, thereby strengthening
system reliability under concurrent conditions.

Test Case Selection

The exhaustive interleaving generation is computationally infeasible for large test suites.
Using optimisations can reduce the effort of producing tests for concurrent features. However,
the inherent number of combinations still leads to the problem of better selecting a subset
of tests for running. Exploring selection mechanisms is a matter for future investigations. In
that sense, investigating AI solutions could also play a crucial role in intelligently selecting the
most relevant subset of cases, optimizing test coverage while reducing execution time.

Mechanisation of proof

Our proof of soundness was manually developed. An important future direction is to mech-
anise the proof using a tool like CSP-Prover Roggenbach [2008]. Finally, we plan to apply our
apporach to further industrial scenarios.
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