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ABSTRACT

Dynamic Ensemble Selection systems (DES) have been proposed as an useful alternative for
modeling and forecasting time series. The basic idea is to assess the performance of single
models and select the best ones for predicting a new test instance. One of the most common
selection strategies involves constructing regions of competence (RoC). In this case, based on
a new test instance to be predicted, one evaluates which instances from the training and/or
validation set are most similar using a similarity metric. However, the absence of similar pat-
terns between the test and training/validation sets compromises the quality of the RoC and
adversely affects the predictive capabilities of these systems. Besides, the choice of which
similarity measure to adopt is a complex and ongoing research problem. Consequently, the fol-
lowing question arose: “How to conduct the selection phase considering structural changes in
terms of trend in the time series, without relying on similarity measures?”. This thesis proposes
a new DES approach, Dynamic Ensemble Selection based on Trend Classification (DESTC),
which uses trend analysis to select the models to be combined. Trend is the prevailing direc-
tion or pattern in data observed over time. DESTC consists of two main phases: the training
phase (a), in which a pool of models is evaluated to determine the best ones for each trend
class, and the testing phase (b), in which each new instance has its trend assessed, and the
top-performing models are selected for prediction. To evaluate the predictive performance of
DESTC, two experiments were conducted. In Experiment A, the proposed approach was ap-
plied to COVID-19 incidence time series data from eight countries and compared with single
and ensemble-based algorithms from the literature. The proposed approach achieved superior
forecasting performance and lower computational cost. In Experiment B, DESTC was further
evaluated on time series exhibiting distinct characteristics from various phenomena. The results
demonstrated that DESTC is a competitive alternative to other Multiple Predictor Systems
(MPS). The main limitation of the proposed method is that DESTC tends to have lower
predictive performance when the time series lacks a clear trend cycle pattern, making model
selection based on trend classification impractical. Moreover, the results presented and dis-
cussed in both experiments demonstrate that the proposed method, DESTC, is a competitive
alternative to other MPSs found in the literature.

Keywords: Dynamic Ensemble Selection, Trend Classification, Model Selection, Time Series,
Forecasting.



RESUMO

Sistemas de Seleção Dinâmica têm sido propostos como uma alternativa útil para modelagem
e previsão de séries temporais. Seu funcionamento avalia modelos em um conjunto (pool)
para selecionar os mais competentes e os utilizar na previsão de novas instâncias de teste.
Uma estratégia comum de seleção é a construção de regiões de competência (RoC), a partir
da qual se avalia, com base na nova instância de teste, quais instâncias do conjunto de
treinamento e/ou validação são mais semelhantes usando uma métrica de similaridade. No
entanto, a ausência de padrões similares entre os conjuntos de teste e de treinamento/validação
compromete a qualidade da RoC e afeta negativamente a capacidade preditiva desses sistemas.
Além disso, a escolha de qual métrica de similaridade utilizar é um problema de pesquisa
complexo e ainda em estudo. Neste sentido, surge a seguinte questão de pesquisa: “Como
conduzir a fase de seleção considerando mudanças estruturais em termos de tendência na série
temporal, sem depender de medidas de similaridade?”. Esta tese propõe uma nova abordagem
de seleção dinâmica, denominada Dynamic Ensemble Selection based on Trend Classification
(DESTC), que utiliza análise de tendências para selecionar os modelos a serem combinados. O
DESTC possui duas fases principais: a fase de treinamento (a), na qual um conjunto de
modelos é avaliado para determinar os melhores para cada classe de tendência; e a fase
de teste (b), na qual cada nova instância tem sua tendência avaliada, e os modelos com
melhor desempenho são selecionados para a previsão. Para avaliar o desempenho preditivo do
DESTC, foram conduzidos dois experimentos. No Experimento A, a abordagem proposta foi
aplicada aos dados de séries temporais de incidência de COVID-19 de oito países e comparada
com modelos únicos e ensembles já bem conhecidos na literatura. A abordagem proposta
alcançou desempenho de previsão superior e menor custo computacional. No Experimento B, o
DESTC foi avaliado em séries temporais que apresentam características diversas. Os resultados
demonstraram que o DESTC é uma alternativa competitiva em relação a outros algoritmos.
A principal limitação do método proposto é que o DESTC tem desempenho preditivo inferior
quando a série temporal não possui um padrão bem definido de ciclos de tendência. Por fim,
os resultados apresentados demonstram que o método proposto é uma alternativa competitiva
em relação a outros sistemas de selação dinâmica encontrados na literatura.

Palavras-chaves: Sistemas de Seleção Dinâmica, Classificação de Tendência, Seleção de Mod-
elos, Séries Temporais, Previsão.
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𝑇𝐷𝑡 Deterministic trend component

𝑇 𝑔𝑡 General trend component

𝑇 𝑆𝑡 Stochastic trend component

𝑡𝑗 Number of data points in the 𝑗-th tied group

Ω𝐽𝜓 Combination of the 𝐽 best models for the 𝜓 trend class

𝑈𝑎, 𝑉𝑎 Weight matrices

𝑤𝑙𝑡 sliding window with 𝑙 lags

𝑤 Weight

𝑥𝑖 𝑛-dimensional input vector

𝑦𝑖 Scalar to be predicted

𝑦𝑖 Predicted value of 𝑦𝑖

𝜁𝑛 Linear coefficient

𝑍 Time series

𝑧𝑡 Observation of a time series at time 𝑡

𝑍𝑀𝐾 Mann-Kendall standardized statistic

𝑧𝑡+ℎ Forecast at time ℎ

𝑍𝑤 New test instance

𝑍𝑡𝑟, 𝑍𝑣 Training and validation sets
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1 INTRODUCTION

Time series modeling and forecasting techniques are widely used across diverse research
fields for their potential to enhance decision-making processes (BARRERA-ANIMAS et al., 2022;
FENG; NIU, 2021; KIM, 2003; SEZER; GUDELEK; OZBAYOGLU, 2020; KAUSHIK et al., 2020; ZHAO

et al., 2023; DARAGHMEH et al., 2021; KOUZIOKAS, 2019; DEB et al., 2017; RAHMAN et al., 2023).
Recently, Multiple Predictor Systems (MPSs) have emerged as an alternative to improve the
predictive performance of time series forecasting problems. Both empirical and theoretical
studies provide evidence that these systems surpass the performance of single models (BROWN

et al., 2005; CERQUEIRA et al., 2017a; HANANYA; KATZ, 2024).
A MPS generally is composed of three phases: (a) Generation, (b) Selection, and (c)

Integration (Combination) (Figure 1). Initially, in (a), multiple forecasting models are trained
to form a diverse and accurate pool. Here, diversity is crucial as different models capture
various data patterns, compensating for individual errors. Subsequently, in (b), one or more
models are selected for later combination (YAO; DAI; SONG, 2019; SILVA; DE MATTOS NETO;

CAVALCANTI, 2021).

Time series

Generation (a) Selection (b) Integration (c)

Forecasting

Figure 1 – Multiple Predictor System.

In the second phase, (b), the selection process can be static or dynamic. Static selection
involves choosing a fixed set of models based on a training and/or validation set. These chosen
models are then always combined for future predictions. In contrast, dynamic selection uses
a different set of models for each new prediction (test pattern) (SILVA; DE MATTOS NETO;

CAVALCANTI, 2021).
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Lastly, in the final phase (c), selected models are combined. There are many combination
strategies, with averaging and median being among the most common due to their low com-
putational cost and good predictive performance (KOURENTZES; BARROW; CRONE, 2014). It is
also common to use meta-models for combination; in these cases, a Machine Learning (ML)
approach is trained to combine the estimates of the single models (GASTINGER et al., 2021;
FERNÁNDEZ; SALINAS; TORRES, 2019).

1.1 PROBLEM STATEMENT

The fundamental principle behind dynamic selection systems is the recognition that differ-
ent models exhibit expertise in distinct local regions of the feature space. This implies that no
single model can proficiently estimate all test patterns. Therefore, the objective is to identify
and select the most capable models for each new test pattern (YAO; DAI; SONG, 2019; SILVA;

DE MATTOS NETO; CAVALCANTI, 2021).
In MPSs, establishing a Region of Competence (RoC) is a common strategy used for

identifying the patterns most similar to a new test instance. In this context, a similarity metric
can be employed to identify the patterns most similar to those in the training/validation set.
However, choosing the appropriate similarity metric is a challenging task. Additionally, there
are no guarantees that the new test instances to be predicted will be similar to those in the
training and/or validation sets (SILVA et al., 2020; SILVA; DE MATTOS NETO; CAVALCANTI, 2021;
SANTOS JUNIOR et al., 2022). The lack of similarity could be attributed to concept drift. This
challenge became particularly evident during the COVID-19 pandemic.

As the pandemic progressed, the incidence time series of COVID-19 underwent significant
structural changes globally, particularly in terms of trend (FIRMINO et al., 2020). Due to epi-
demiological factors such as transmission rates, mutations, and human behavior, these series
began to display distinct cycles of alternating between positive and negative trends. This pat-
tern indicates declines in incidence rates followed by increases due to rising case numbers,
often referred to as "new waves" (AWADASSEID et al., 2020; CHUNG et al., 2021).

Regarding forecasting tasks, this scenario suggested that using similarity measures to con-
struct RoC might not be the most effective approach, as the new instances to be predicted
were very different from the instances in training and/or validation sets. Hence, the following
question arose: "How to conduct the selection phase considering structural changes in terms
of trend in the time series, without relying on similarity measures?". To address this question,
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this thesis introduces a new selection strategy based on trend classification. Thus, the results
presented here provide a foundation for developing new dynamic selection systems tailored to
time series forecasting problems, with a focus on time dependency aspects.

1.2 OBJECTIVES

The main objectives of this thesis are:

• (i) to develop a new selection approach based on trend classification to enhance the
forecasting of COVID-19 incidence time series;

• (ii) to assess the applicability of this new approach in time series from other domains.

The initial objective stemmed from the observation that pandemic time series exhibit
distinct trend phases (increasing, decreasing, and no trend). This motivated the investigation
of methods to identify the most suitable models for each phase. Subsequently, for each new
prediction instance, the models most appropriate for the current trend class could be combined.
As the trend of the series changes, the system dynamically selects the appropriate models
to combine. The proposed approach introduces a new way of dynamically selecting models
based on statistical information from the time series, specifically the trend. Additionally, by
not depending on similarity metrics for model selection, DESTC avoids the problems directly
linked to them, including the lack of similarity that may result from concept drift.

However, it is not clear how this method works for time series that do not behave like
those from the COVID-19 pandemic. Some series do not have alternating cycles of trends,
while others do not have any trend at all. Therefore, the second objective is to conduct an in-
depth analysis of DESTC’s functionality, thoroughly examining its mechanisms and identifying
its limitations.

In addition to assessing the accuracy of the proposed approach, computational cost will also
be evaluated. The expectation is that by eliminating the need to construct a RoC, there will be
a reduction in computational costs. This aspect is crucial as it directly impacts the efficiency
and scalability of the method, particularly in handling large datasets and real-time applications.
The assessment of computational costs alongside accuracy provides a comprehensive evaluation
of the proposed strategy’s practical feasibility and potential benefits in various operational
contexts.
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1.3 CONTRIBUTIONS

The major contribution of this thesis is the introduction of a novel dynamic selection
method for time series forecasting that leverages a time dependency aspect: trend. In this
context, trend is defined as the general direction in which the data progresses over time. The
selection strategy used in the proposed method, DESTC, involves identifying the best models
for each trend class. Consequently, when a new test sample is introduced, its trend is evaluated,
and the most appropriate models are selected based on this assessment. Initial experiments
were conducted using COVID-19 incidence time series, with the results detailed in Chapter 4
and published in the following paper:

• DE SALES, J.P.; DE MATTOS NETO, P.S.G; FIRMINO, P.R.A. A dynamic ensemble
approach based on trend analysis to COVID-19 incidence forecast. Biomedical Signal

Processing and Control, 95, 106435, 2024. DOI: 10.1016/j.bspc.2024.106435.

Another contribution of this thesis is the assessment of the DESTC method when applied
to time series with diverse characteristics, aiming to provide a deeper understanding of its
advantages and limitations. In this context, time series from various domains, such as envi-
ronmental, health, and financial, were evaluated. The computational cost was also evaluated
in comparison to other dynamic selection methods. These results are presented in Chapter 5
and are also detailed in the following paper:

• DE SALES, J.P.; DE MATTOS NETO, P.S.G; FIRMINO, P.R.A. Enhancing forecasting
accuracy with a dynamic ensemble selection approach based on trend classification.
Under submission.

1.4 ORGANIZATION OF THE THESIS

Chapter 2 provides a theoretical background of time series analysis, trend classification,
modeling and forecasting, multiple predictor systems, and performance measures. Chapter 3
presents the proposed approach in detail, discussing its motivation, mathematical formulation,
and pseudo-code. In Chapter 4, Experiment A is outlined. This experiment was designed to
evaluate the proposed approach using COVID-19 pandemic time series data in order to achieve
the first main objective. Chapter 5 introduces Experiment B, which evaluates the proposed



27

approach using time series from different phenomena to achieve the second main objective.
Chapter 6 concludes the thesis with a summary of the main findings. This chapter discusses
the implications of the proposed approach and outlines potential directions for future research.
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2 LITERATURE REVIEW

This chapter provides a literature review related to the topics covered in this thesis. Ini-
tially, it discusses time series, addressing their definition and presenting the concepts of trend,
seasonality, cyclicality, and stationarity (Section 2.1). In Section 2.1.1,the concepts of deter-
ministic, stochastic, and overall trends will be presented. Following that, two methods for trend
analysis will be introduced: the Mann-Kendall statistical test (MANN, 1945) and Sen’s Slope
Estimator (SEN, 1968). Additionally, a set of time series forecasting models will be presented
(Section 2.2), including both single (Section 2.2.1) and MPS alternatives (Section 2.2.2).
Lastly, performance measures for evaluating forecasting models will be discussed (Section
2.3).

2.1 TIME SERIES

A time series, 𝑍, is a set of ordered observations indexed over time (Equation 2.1) (MORET-

TIN; TOLOI, 2006),

𝑍 = {𝑧𝑡 ∈ R | 𝑡 = 1, 2, 3, ..., 𝑛}, 𝑛 ∈ N, (2.1)

in which 𝑧𝑡 denotes the value of the time series at time 𝑡 and 𝑛 is the number of observations
available in the sample.

A time series is univariate (unidimensional) if the observations are of only one variable;
otherwise, it is considered multivariate (multidimensional) (AMARAL, 2020). Hourly solar
radiation, daily concentration of atmospheric particulate matter, and monthly cases of influenza
are examples of time series data (BERRY et al., 2022). For simplicity, the term “time series”
will be used in this text to denote univariate time series, as these will be the focus of study in
this thesis.

From a graphical perspective, a time series can be visualized in a two-dimensional represen-
tation, where the 𝑦-axis determines the observed values at time 𝑡 (𝑥-axis) (SILVA, 2021). This
enables the identification of patterns such as trend, seasonality, and cycles, which facilitate
understanding and inference about the studied phenomena (HYNDMAN; ATHANASOPOULOS,
2018).

A time series exhibits trend when it demonstrates non-periodic growth or decline in its
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observations (HYNDMAN; ATHANASOPOULOS, 2018; COWPERTWAIT; METCALFE, 2009). The
monthly concentration of CO2 in Mauna Loa between 1959 and 1997 (Figure 2(a)) shows a
long-term positive trend. In this example, a gradual growth can be observed throughout the
recorded period.

(a) Monthly concentration of CO2 at Mauna Loa
between 1959 and 1997.

(b) Monthly totals of international airline passen-
gers between 1949 and 1960.

(c) Annual number of lynxes trapped in Canada
between 1821 and 1934.

(d) Residuals of an autoregressive model for the
time series AirPassengers.

Figure 2 – Four time series of distinct phenomena with different patterns.

Following, a seasonality pattern indicates that the studied phenomenon is influenced by
seasonal factors, such as the end-of-year period effect on retail or the consequence of climatic
seasons on the vegetation cover of a region. It is important to note that the seasonality of a
time series has a known seasonal period (HYNDMAN; ATHANASOPOULOS, 2018). Figure 2(b)
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presents the Air Passengers time series (BOX; JENKINS, 1976), which documents the monthly
total of international airline passengers from 1949 to 1960. This time series exhibits an annual
seasonal trend, with recurring patterns observed each year.

Cyclical behavior, similar to seasonal patterns, involves successive phases of growth and
decline, yet the duration of its occurrence is not known. Moreover, while the duration of
the causal effect in seasonal behavior is known, in cyclical behavior, it varies alongside its
magnitude (HYNDMAN; ATHANASOPOULOS, 2018). Figure 2(c) presents the time series of the
annual number of lynxes trapped in Canada between 1821 and 1934 (BROCKWELL; DAVIS,
1991). In this series, successive fluctuations in observed values can be analyzed; however,
there is no clear temporal pattern, nor is there a well-established magnitude.

However, it is not always possible to identify the aforementioned patterns in time series.
In some cases, observations exhibit random behavior, often difficult to predict using linear
approaches (HYNDMAN; ATHANASOPOULOS, 2018). Figure 2(d) displays the residuals of an
autoregressive model for the time series presented in Figure 2(a). In this series, discerning any
clear behavior solely by visualizing its plot proves challenging.

Therefore, a practical way to analyze time series is to decompose them into the four
Components, as shown in Equation 2.2 (FONSECA; MARTINS; TOLEDO, 2000).

𝑍 = 𝑇 + 𝐶 + 𝑆 +𝑅, (2.2)

in which 𝑇 , 𝑆, 𝐶, and 𝑅 represent the trend, seasonality, cyclic, and random components,
respectively. In this case, the additive decomposition is presented. However, the components
can also be modeled in a multiplicative way (Section 2.3) or by varying their relationships
(Equations 2.4-2.6).

𝑍 = 𝑇 · 𝐶 · 𝑆 ·𝑅 (2.3)

𝑍 = 𝑇 · 𝐶 · 𝑆 +𝑅; (2.4)

𝑍 = 𝑇 · 𝐶 + 𝑆 ·𝑅; (2.5)

𝑍 = 𝑇 · 𝑆 +𝑅. (2.6)

Another important behavior in studies involving time series is stationarity. Essentially, it
refers to a scenario where the statistical properties of the analyzed process remain constant over
time, indicating a stable statistical equilibrium (CRAYER; CHAN, 2008). Hence, non-stationary
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behaviors in time series can include trends, cycles, and random walks (HYNDMAN; ATHANA-

SOPOULOS, 2018).

2.1.1 Trend analysis

According to Lamounier (2007), the trend of a time series can be classified as deterministic
or stochastic. It is said to be deterministic when the variation in observations occurs as a
function of time and in a certainly predictable manner, as Equation 2.7 shows (MATTOS,
2018).

𝑧𝑡 = 𝑇𝐷𝑡 + 𝜖𝑡, (2.7)

in which 𝑇𝐷𝑡 is the deterministic trend component and 𝜖𝑡 is the random error (white noise). If
𝑇𝐷𝑡 is linear, Equation 2.7 can be transformed into Equation 2.8:

𝑧𝑡 = 𝜙0 + 𝜙1𝑡+ 𝜖𝑡, (2.8)

where 𝜙0 and 𝜙1 are the linear coefficients, which can be estimated using the Method of Least
Squares (MLS). In this function, the sign of the parameter 𝜙1 indicates whether the modeled
series trend will be increasing (𝜙1 > 0) or decreasing (𝜙1 < 0) (FONSECA; MARTINS; TOLEDO,
2000).

However, depending on the phenomenon under study, 𝑇𝐷𝑡 may exhibit other behaviors
besides those described by a linear function. In these cases, more complex functions can be
used, such as quadratic (Equation 2.9).

𝑧𝑡 = 𝜙0 + 𝜙1𝑡+ 𝜙2𝑡
2 + 𝜖𝑡, (2.9)

However, for many time series, it is not easy to find a function, linear or otherwise, capable
of correctly estimating their trend (MATTOS, 2018). In these cases, growth and/or decay occur
randomly, differing from the deterministic case in which there is a constant, 𝜙1, indicating the
variation in the series level. When noise terms are independent, the stochastic trend component,
𝑇 𝑆𝑡 , can be written using Equations 2.10 and 2.11.

Δ𝑇 𝑆𝑡 = 𝜖𝑡, (2.10)

𝑇 𝑆𝑡 = 𝑇 𝑆𝑡−1 + 𝜖𝑡. (2.11)
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Moreover, many time series exhibit a mixed trend pattern, meaning there is a deterministic
component responsible for a fixed alteration in the series level, as well as a stochastic pattern.
This behavior can be classified as a general trend, 𝑇𝐺𝑡 (Equation 2.12).

𝑇𝐺𝑡 = 𝑇𝐷𝑡 + 𝑇 𝑆𝑡 . (2.12)

According to Feo et al. (2022), studying the trend of time series is a very important topic
in the field of data analysis, often being one of the first steps to be taken. In environmental
sciences, for instance, assessing the trend can help identify changes in important variables such
as ocean surface temperature (WATANABE et al., 2021; SHALTOUT, 2019), deforestation rates
(SILVA et al., 2022; JAYATHILAKE et al., 2021), and solar irradiance (PUAH et al., 2021; SCAFETTA;

WILLSON, 2019). The identification and modeling of trends also assist in performance analysis
in financial systems (YIN; LI, 2021; DAS et al., 2022), as well as in understanding the epidemio-
logical characteristics of diseases (TRINDADE et al., 2019; QIU; CAO; XU, 2021), thus supporting
decision-making processes by both private companies and governmental entities.

The Mann-Kendall test (MK) (MANN, 1945; HAAN, 1977) and the Sen’s Slope method
(SEN, 1968) are classical and widely used approaches for trend detection (SAPLIOĞLU; GÜÇLÜ,
2022). These methods will be described below.

2.1.1.1 Mann-Kendall statistical test

The MK test is a widely-used non-parametric statistical method employed to assess trends
within a dataset (MANN, 1945; WANG et al., 2020; AGBO; NKAJOE; EDET, 2023). It is particularly
useful in analyzing time series data, where it aids in identifying monotonic trends, i.e., whether
the data consistently increases or decreases over time. The MK test not only identifies the
presence of a monotonic trend but also enables the evaluation of whether the trend is positive
or negative. Additionally, MK offers a method to evaluate the intensity of trends (HAAN, 1977;
LIBISELLER; GRIMVALL, 2002). Based on the studies of Mann (1945) and Kendall (1975), the
MK test statistic, 𝑆𝑀𝐾 , is calculated based on the Equation 2.13.

𝑆𝑀𝐾 =
∑︁
𝑗<𝑖

sgn(𝑧𝑖 − 𝑧𝑗), (2.13)
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in which sgn(·) is the sign function (Equation 2.14). The statistic 𝑆𝑀𝐾 has zero mean, and
𝑉 𝑎𝑟(𝑆𝑀𝐾) is calculated using Equation 2.15 (Equation with a correction term for ties):

sgn(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if 𝑥 > 0;

0 if 𝑥 = 0;

−1 if 𝑥 < 0.

(2.14)

𝑉 𝑎𝑟(𝑆𝑀𝐾) =

⎧⎨⎩𝑛(𝑛− 1)(2𝑛+ 5)−
𝑔∑︁
𝑗=1

𝑡𝑗(𝑡𝑗 − 1)(2𝑡𝑗 + 5)}

⎫⎬⎭ /18, (2.15)

in which 𝑔 is the number of tied groups in the data and 𝑡𝑗 is the number of data points in the
𝑗-th tied group.

The 𝑆𝑀𝐾 statistic indicates the direction of the trend (positive or negative) and its mag-
nitude (based on the number of concordant and discordant pairs). However, 𝑆𝑀𝐾 alone does
not provide a measure of the statistical significance of the trend. In this order, it is necessary
to calculate 𝑍𝑀𝐾 (Equation 2.16) (HELSEL; FRANS, 2006; HIRSCH; SLACK; SMITH, 1982):

𝑍𝑀𝐾 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑆𝑀𝐾−1√
Var(𝑆𝑀𝐾)

, if 𝑆𝑀𝐾 > 0

0, if 𝑆𝑀𝐾 = 0

𝑆𝑀𝐾+1√
Var(𝑆𝑀𝐾)

, if 𝑆𝑀𝐾 < 0

(2.16)

The standardized 𝑍𝑀𝐾 statistic is derived from 𝑆𝑀𝐾 and is used to determine the sta-
tistical significance of the trend. The null hypothesis of the MK test suggests that there is
no monotonic trend in the data. Otherwise, the alternative hypothesis implies that there is a
monotonic trend in the data. (POHLERT, 2020).

Null Hypothesis (H0): There is no monotonic trend in the data.

Alternative Hypothesis (H1): There is a monotonic trend in the data.

Positive (negative) values of 𝑆𝑀𝐾 indicate that most differences between previous, 𝑧𝑗, and
successive, 𝑧𝑖, observations are positive (negative), demonstrating an increasing (decreasing)
trend over time (BARI et al., 2016; HIRSCH; SLACK; SMITH, 1982). Therefore, the possible
classifications for the instances are: positive trend (p-value < 𝛼 and 𝑆𝑀𝐾 > 0), negative
trend (p-value < 𝛼 and 𝑆𝑀𝐾 < 0), and no trend (𝑝-value > 𝛼).
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Figure 3 shows two examples of applying the MK test for trend detection. Initially, Figure
3(a) displays a time series with a positive trend, for which the p-value of the MK test less than
0.001 and 𝑆𝑀𝐾 = 172.0. Next, Figure 3(b) presents a time series with a decreasing trend,
whose p-value was less than 0.001 and 𝑆𝑀𝐾 = −180.

(a) Time series with increasing trend. (b) Time series with decreasing trend.

Figure 3 – Time series with increasing and decreasing trends, respectively

Figure 4(a) presents a case where H0 is not rejected even with an apparent trend. In
this time series, the data points exhibit an apparent positive trend over time. However, when
applying the Mann-Kendall test, the result indicates that the trend is not statistically significant
(𝑝 > 0.05). This means that, although there is an apparent trend in the data, it cannot be
considered statistically significant based on the available dataset and the properties of the
Mann-Kendall test. This discrepancy between visual trend and statistical detection underscores
the importance of interpreting the results of statistical tests with caution and considering the
specific context of each dataset. However, statistical tests have limitations and may not fully
capture the complexity of data patterns. Figure 4(b) presents a case where there is no trend.
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(a) H0 is not rejected even with an apparent
trend.

(b) Time series with decreasing trend.

Figure 4 – Time series shows no trend according to the Mann-Kendall test.

2.1.1.2 Sen’s Slope estimator

Sen’s slope estimator, or Theil–Sen estimator, was proposed as an alternative to the para-
metric least-squares regression slope (SEN, 1968; THEIL, 1950). To mitigate the restrictive
assumptions of regression analysis, Sen (1968) proposed a non-parametric approach that cal-
culates the slope as the median of all possible slopes between each pair of successive time
series values (ALMAZROUI; ŞEN, 2020; SILVA et al., 2015). It is robust against outliers and can
be used even when residuals are not normally distributed. Sen’s slope can be formulated as
Equation 2.17.

𝑄𝑗,𝑘 = 𝑧𝑗 − 𝑧𝑘
𝑗 − 𝑘

, (2.17)

in which 𝑧𝑗 and 𝑧𝑘 are successive values of a time series at time 𝑗 and 𝑘 (𝑗 > 𝑘), respectively.
Sen’s slope is the median of all 𝑄𝑗,𝑘 values.

Figure 5 presents an innovative application of the Sen’s slope estimator for time series
analysis. In this method, Sen’s slope estimator is calculated using a sliding window across
the time series. This approach allows for the evaluation of how the estimator evolves over
time, providing a detailed view of changes in trend dynamics within the series. It enables the
identification of trend variations and a deeper understanding of fluctuations throughout the
analyzed period. Gray columns (Figure 5) represent the values of Sen’s slope for the sliding
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windows of the time series (black line). Sen’s slope quantifies the strength of the trend; thus,
a higher value indicates a stronger trend at that particular point in the series. This analysis
will serve as a basis for discussing the results of Experiments A (Chapter 4) and B (Chapter
5).

Figure 5 – Sen’s Slope for a synthetic time series.

2.2 TIME SERIES MODELING AND FORECASTING

The development of time series forecasting models aids decision-making processes in vari-
ous fields, including but not limited to industry (ALRASSAS et al., 2022), tourism (PRILISTYA;

PERMANASARI; FAUZIATI, 2020), environmental sciences (ZAINI et al., 2022), finance (KUMAR;

SINGH; JAIN, 2022), and health (RAHIMI; CHEN; GANDOMI, 2021). In summary, based on a time
series 𝑍, the aim is to predict 𝑧𝑡+ℎ, in which ℎ is the time horizon (Equation 2.18),

𝑧𝑡+ℎ = 𝑓(𝑤𝑙𝑡), (2.18)

in which 𝑧𝑡+ℎ is the ℎ forecast, 𝑓(·) is a forecasting model and 𝑤𝑙𝑡 is a sliding window with
𝑙 lags. The forecasting horizon (ℎ) can be established as one step ahead (ℎ = 1) or multiple
steps ahead (ℎ > 1). One-step ahead predictions are commonly used to evaluate and compare
new predictive methods. In turn, a sliding window is a set of past observations preceding the
value to be predicted, which can be represented by 𝑤𝑙𝑡 = (𝑧𝑡, 𝑧𝑡−1, · · · , 𝑧𝑡−𝑙−1).
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The number of lags 𝑙 to to be used for constructing the temporal windows can be selected
through the Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF) (HYN-

DMAN; ATHANASOPOULOS, 2018), optimization methods (RIBEIRO et al., 2011; SURAKHI et al.,
2020), sensitivity analysis (ZAIDAN et al., 2020), and experimentation (DOMINGOS; OLIVEIRA;

DE MATTOS NETO, 2019). The selected lags do not have to be consecutive. One can imagine a
scenario where, for a given series, the temporal windows are built from the observations 𝑧𝑡−1,
𝑧𝑡−5, e 𝑧𝑡−7, for example. In this case, the lag values were determined through the application
of a selection algorithm.

In addition to defining 𝑤𝑙𝑡, the choice of forecasting models is of paramount importance
for obtaining accurate results. In this regard, a wide range of alternatives can be found in the
literature.

2.2.1 Single models

Single forecasting models are those methods that receive only past information from a
time series as input and generate a forecast based on that information. In summary, they
differ from MPS since the latter require a pool of models for generating forecasts (as will be
seen in Section 2.2.2). Classical time series forecasting models are statistical methods that
utilize historical patterns to make future predictions (HYNDMAN; ATHANASOPOULOS, 2018).
They encompass techniques such as exponential smoothing and autoregressive models (Sec-
tion 2.2.1.2 - 2.2.1.7). Moreover, it is common to utilize ML models for regression tasks
in time series forecasting (LIM; ZOHREN, 2021; MASINI; MEDEIROS; MENDES, 2023; BARRERA-

ANIMAS et al., 2022). These approaches aim to establish a relationship between past and future
data, identifying the patterns and underlying structures within time series (Section 2.2.1.9 -
2.2.1.13).

2.2.1.1 Naïve model

The Naïve model, also known as Random Walk model (Equation 2.19), is commonly used
as a benchmark. In this model, the prediction 𝑧𝑡+1 is assumed to be equal to the value of
observation 𝑧𝑡 plus a normal fluctuation with zero mean and constant variance, making it
mathematically simple. This model assumes that there are no patterns or underlying structure
in the data, and that changes between periods are purely random. Despite its simplicity, the
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Random Walk is useful as a benchmark for comparing more complex time series forecasting
models. If a more sophisticated model does not significantly outperform the Random Walk
forecast, it suggests that the model may not be effectively capturing patterns in the data.

𝑧𝑡+1 = 𝑧𝑡 +𝑁(0, 𝜎𝑧). (2.19)

2.2.1.2 Exponential smoothing models

Exponential Smoothing model (ES) were proposed in the 1950s, making it one of the
earliest explicitly created approaches for time series modeling and forecasting (BROWN, 1959;
WINTERS, 1960). The basic idea is that the more recent an observation is, the higher its
weight for the forecast. Additionally, the weights decay exponentially as observations get older
(HYNDMAN; ATHANASOPOULOS, 2018).

The simplest ES model, known as Simple Exponential Smoothing (SES), is useful for
modeling time series that do not exhibit trend and/or seasonality. Equation 2.20 presents the
SES.

𝑧𝑡+1 = 𝜂𝑧𝑡 + 𝜂(1− 𝜂)𝑧𝑡−1 + 𝜂(1− 𝜂)2𝑧𝑡−2 + · · ·+ 𝜂(1− 𝜂)𝑛𝑧𝑡−𝑛 + 𝜖𝑡, (2.20)

where 0 < 𝜂 < 1 is the parameter of exponential decay and 𝑛 is the size of the time series.
The larger 𝜂 is, the faster the decay will occur. As 𝜂 approaches 1, the SES model approaches
the Random Walk model.

Alternatively, ES models can be represented through components (HYNDMAN; ATHANA-

SOPOULOS, 2018). In the case of SES, the only component present will be the level component
𝑙𝑡 (Equation 2.21).

Forecasting equation : 𝑧𝑡+1 = 𝑙𝑡, (2.21a)

Level equation : 𝑙𝑡 = 𝜂𝑧𝑡 + (1− 𝜂)𝑙𝑡−1. (2.21b)

This alternative way of describing ES models is not very useful for the case of SES. However,
it helps in understanding more complex methods, such as the Holt linear model (HOLT, 2004)
(Equation 2.22), which incorporates the modeling of the trend of the time series.
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Forecasting equation : 𝑧𝑡+1 = 𝑙𝑡 + ℎ𝑏𝑡, (2.22a)

Level equation : 𝑙𝑡 = 𝜂𝑧𝑡 + (1− 𝜂)(𝑙𝑡−1 + 𝑏𝑡−1), (2.22b)

Trend equation : 𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1− 𝛽)𝑏𝑡−1, (2.22c)

in which 𝑏𝑡 is the trend estimate of the series at time 𝑡, and 𝛽 is the trend parameter (0 <
𝛽 < 1).

Currently, based on the works of Hyndman and Athanasopoulos (2018), ES models can
be grouped considering a state space approach notation, called Exponential Smoothing State
Space Approach (ETS), which considers Error, Trend, and Seasonality components. In this no-
tation, trend components can be none, additive, dampened additive, multiplicative, or damp-
ened multiplicative. Seasonality components can be either additive or multiplicative. By com-
bining the different options for trend and seasonality components, it is possible to construct
15 distinct types of models (Table 1). Furthermore, errors can be modeled as either addi-
tive or multiplicative, effectively doubling the number of possible configurations. For example,
the notation ETS(A, N, M) represents a model with additive error (A), no trend (N), and
multiplicative seasonality (M).

Table 1 – ES models according to ETS notation proposed by Hyndman and Athanasopoulos (2018).

Trend Seasonality
N (None) A (Additive) M (Multiplicative)

N (None) NN NA NM
A (Additive) AN AA AM

Ad (Damped Additive) AdN AdA AdM
M (Multiplicative) MN MA MM

Md (Damped Multiplicative) MdN MdA MdM

2.2.1.3 Autorregressive models

Autoregressive models (AR) models make forecasts based on a linear combination of past
values of the time series of interest. The term “autoregressive” indicates that these models aim
to describe the autocorrelation present in time series (HYNDMAN; ATHANASOPOULOS, 2018).
Equation 2.23 presents AR models of order 𝑝, denoted by AR(𝑝).
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𝑧𝑡 = 𝑐+ 𝜑1𝑧𝑡−1 + 𝜑2𝑧𝑡−2 + · · ·+ 𝜑𝑝𝑧𝑡−𝑝 + 𝜖𝑡, (2.23)

in which 𝑐 is an intercept (also known as a drift term), 𝑝 is the order of the model, 𝜑𝑝 is the
weight of the 𝑝-th previous observation, and 𝜖𝑡 is the error at time 𝑡.

2.2.1.4 Moving Average models

Moving Average Moving Average models (MA) models work similarly to AR; however,
they do not explicitly use past values of the series but rather the residuals from previous
forecasts (HYNDMAN; ATHANASOPOULOS, 2018). Equation 2.23 can be adapted to:

𝑧𝑡 = 𝑐+ 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + · · ·+ 𝜃𝑞𝜖𝑡−𝑞, (2.24)

where 𝜃𝑞 is the weight of the 𝑞-th previous error. In this case, the model is said to be an MA
of order 𝑞 and can be denoted by MA(𝑞).

2.2.1.5 Autorregressive Moving Average models

Autoregressive Moving Average (ARMA) models combine the AR(𝑝) and MA(𝑞) compo-
nents, which can be expressed by Equation 2.25 and denoted by ARMA(𝑝,𝑞).

𝑧𝑡 = 𝑐+ 𝜑1𝑧𝑡−1 + 𝜑2𝑧𝑡−2 + · · ·+ 𝜑𝑝𝑧𝑡−𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + · · ·+ 𝜃𝑞𝜖𝑡−𝑞. (2.25)

However, similarly to their predecessors (AR and MA), ARMA models have their limita-
tions, ARMA models have two important limitations. The first one is that they only model
linear processes, and the second one is that they do not handle non-stationary time series
well (KARTHIKEYAN; KUMAR, 2013).

2.2.1.6 Autorregressive Integrated Moving Average models

Autoregressive Integrated Moving Average (ARIMA) models were developed to address the
issue of non-stationarity. In these models, the term 𝐼 refers to the adoption of the differencing
method to stationarize time series. Equation 2.26 presents the ARIMA(𝑝,𝑑,𝑞) model, where 𝑑
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represents how many differencing steps were used to ensure the stationarity of the series, and
𝑧

(𝑑)
𝑡 is the differenced series itself.

𝑧𝑑𝑡 = 𝑐+ 𝜑1𝑧
𝑑
𝑡−1 + 𝜑2𝑧

𝑑
𝑡−2 + · · ·+ 𝜑𝑝𝑧

𝑑
𝑡−𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + · · ·+ 𝜃𝑞𝜖𝑡−𝑞, (2.26)

An alternative way to mathematically present ARIMA models involves the use of lag op-
erators (backshift notation),

𝐵𝑧𝑡 = 𝑧𝑡− (2.27)

In this case, ARIMA models can be described by Equation 2.28:

(1− 𝜑1𝐵 − · · · − 𝜑𝑝𝐵𝑝)(1−𝐵)𝑑𝑧𝑡 = (1 + 𝜃1𝐵 + · · ·+ 𝜃𝑞𝐵
𝑞)𝜖𝑡, (2.28)

where (1−𝜑1𝐵− · · · −𝜑𝑝𝐵𝑝) represents the AR(𝑝) component, (1−𝐵)𝑑𝑧𝑡 represents differ-
encing, and (1 + 𝜃1𝐵 + · · ·+ 𝜃𝑞𝐵

𝑞) represents the MA(𝑞) component.

2.2.1.7 Seasonal Autorregressive Integrated Moving Average models

Seasonal ARIMA (SARIMA) model, in turn, was developed by adding seasonal components
to the classical method. Thus, for each component, there exists a seasonal equivalent. There-
fore, the SARIMA model can be represented by SARIMA(𝑝,𝑑,𝑞)(𝑃 ,𝐷,𝑄)[𝑚], where 𝑃 , 𝐷,
and 𝑄 represent, respectively, the seasonal autoregressive, seasonal differencing, and seasonal
moving average components. Finally, 𝑚 represents the seasonal period (HYNDMAN; ATHANA-

SOPOULOS, 2018). For example, the SARIMA(1,1,1)(1,1,1)[4] model can be represented by
Equation 2.29.

(1− 𝜑1𝐵)(1− Φ1𝐵
4)(1−𝐵)(1−𝐵4)𝑧𝑡 = (1− 𝜃1𝐵)(1−Θ1𝐵

4)𝜖𝑡 (2.29)

In addition to defining the parametric orders (e.g., defining 𝑝, 𝑞, 𝑃 , and 𝑄), it is necessary
to estimate the values of these parameters (e.g., 𝑐, 𝜑𝑖, 𝜃𝑗). Maximum Likelihood Estimation
(MLE) is a commonly used alternative at this stage. In summary, MLE estimates the parameters
that maximize the likelihood of obtaining the observed data (HYNDMAN; ATHANASOPOULOS,
2018).
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2.2.1.8 Linear Regression

A time series forecasting problem can be formulated as a regression task(URAS et al., 2020;
HOPE, 2020; MASINI; MEDEIROS; MENDES, 2023; KUMARI; SINGH, 2023). In this approach,
historical observations of the time series are used as predictor variables for estimating future
values. Consider a training set {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, in which 𝑥𝑖 represent an 𝑛-dimensional input
vector and 𝑦𝑖 a scalar (target to be predicted). A Simple Linear Regression (SLR) model
provides a linear relationship between 𝑥 and 𝑦, such as:

𝑦𝑖 = 𝜁0 + 𝜁1𝑥𝑖 + 𝜖𝑖, (2.30)

in which 𝑦𝑖 is the predicted value, 𝜁0 is the 𝑦-axis intercept, and 𝜁1 the slope. This is the
simplest mathematical way to determine the relationship between two variables. In this case, 𝑦
being the future value and 𝑥 the observation one step back. However, in real-world forecasting
problems, it is common to use multiple observations to make predictions. Therefore, Multiple
Linear Regression (MLR) becomes an essential tool. In this case, Equation 2.30 evolves to:

𝑦𝑖 = 𝜁0 + 𝜁1𝑥𝑖 + 𝜁2𝑥2 + · · ·+ 𝜁𝑛𝑥𝑛 + 𝜖𝑖, (2.31)

in which 𝜁𝑛 is the linear coefficient of the 𝑥𝑛 variable.

2.2.1.9 Support Vector Regressor

Once time series forecasting problems can be considered as regression tasks, ML techniques
can be effectively applied. Support Vector Machine (SVM) is a widely used supervised ML
algorithm developed based on the Theory of Empirical Risk Minimization, also known as the
Vapnik-Chervonenkis Theory (VAPNIK, 1999; LI et al., 2009; HU et al., 2016). This supervised
method can be utilized for both classification and regression problems. In the context of
regression problems, it is referred to as Support Vector Regressor (SVR).

The main idea of SVR is to find a function that fits the data accurately, while allowing for
a limited margin of error. Additionally, rather than the empirical risk minimization concept,
the formulation corresponds to the structural risk minimization principle, i.e., rather than
minimizing the prediction error on the training set, SVR aims to minimize an upper bound of
the generalization error (LI et al., 2009; KANG; LI, 2016).
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Consider a training set {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1. Equation 2.32 shows a nonlinear relationship between
𝑥𝑖 and 𝑦𝑖 described by a regression function,

𝑓(𝑥) = 𝜔𝑇𝜑(𝑥) + 𝑏, (2.32)

in which 𝑓(𝑥) is the forecasting value, 𝜑(𝑥) a nonlinear function, and 𝜔 and 𝑏 are coefficients
to be adjusted (KANG; LI, 2016; SILVA, 2020; SAPANKEVYCH; SANKAR, 2009).

Further, 𝜔 and 𝑏 can be approximated by reducing the regularizing risk function:

𝑅(𝐶) = 𝑅𝑒𝑚𝑝 + 1
2 ||𝜔||

2 = 𝐶
1
𝑙

𝑙∑︁
𝑖=1

𝐿𝜖[𝑦𝑖, 𝑓(𝑥𝑖)] + 1
2 ||𝜔||

2 (2.33)

𝐿𝜖(𝑦𝑖, 𝑓(𝑥𝑖)) =

⎧⎪⎪⎨⎪⎪⎩
|𝑦𝑖 − 𝑓(𝑥𝑖)| − 𝜖, |𝑦𝑖 − 𝑓(𝑥𝑖)| ≥ 𝜖

0, otherwise.
(2.34)

in which 𝑅(𝐶) and 𝑅𝑒𝑚𝑝 are the regression and empirical risks, respectively. First item of
Equation 2.33 is the empirical error, which is estimated by the 𝜖-insensitive loss function in
Equation 2.34. In turn, the second item is the regularization. The 𝐶 parameter represents the
trade-off between the first and second terms of the equation. For better understanding, the 𝜖
parameter can be visualized as a tube size that corresponds to the approximation accuracy in
the training set (Figure 6) (KANG; LI, 2016).

(a) 𝜖-tube, support vectors, and slack variables
(𝜉𝑖)

(b) 𝜖-insensitive loss function.

Figure 6 – SVR non-linear. Adapted from (KANG; LI, 2016).

Equation 2.33 presents the distance from actual values and corresponding boundary values
of 𝜖-tube, 𝜉 and 𝜉*, thus:
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min 1
2‖w‖

2 + 𝐶
𝑛∑︁
𝑖=1

[𝐿(𝜉𝑖) + 𝐿(𝜉*
𝑖 )],

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑖 − 𝜔𝜑(𝑥1) ≤ 𝜖𝑖 + 𝜉𝑖,

𝜔𝜑(𝑥1)− 𝑦𝑖 ≤ 𝜖𝑖 + 𝜉*
𝑖 ,

𝜉𝑖, 𝜉
*
𝑖 ≥ 0,

(2.35)

Moreover, the optimization problem of the Equation 2.35 can be transformed into a dual
problem, with its solution provided in Equation 2.36, in which 𝑎*

𝑖 and 𝑎𝑖 are the Lagrange
multipliers that can be obtained by resolving the dual problem, and 𝜅(𝑥𝑖, 𝑥) is the kernel
function. Most common kernel functions are linear, sigmoid, polynomial, and radial basis (LI

et al., 2009; KANG; LI, 2016).

𝑓(𝑥) =
𝑛∑︁
𝑖=1

(𝑎*
𝑖 − 𝑎𝑖)𝜅(𝑥𝑖, 𝑥) + 𝑏

s.t. 0 ≤ 𝑎*
𝑖 , 𝑎𝑖 ≤ 𝐶

(2.36)

2.2.1.10 Multilayer Perceptron

Artificial Neural Networks (ANNs) represent a class of ML algorithms commonly applied
to classification and regression problems. They were developed to mimic the biological neural
system, with the aim of replicating the learning and adaptation capabilities of the human
brain (HAYKIN, 2009). Formally, an ANN can be defined as a massively parallel distributed
processor composed of processing units (neurons), which have the inherent ability to store
experiential knowledge and make it available for use (HAYKIN, 2009).

The neurons are organized in layers and connected by synaptic weights. Each neuron
receives weighted inputs from other neurons, which are then combined through an activation
function. This function introduces non-linearity and allows the ANN to learn complex patterns.
The learning process iteratively adjusts these synaptic weights to minimize errors and enhance
performance (HAYKIN, 2009; OLIVEIRA et al., 2021).

In terms of Multilayer Perceptron (MLP) architecture, two common approaches are the
Single-Layer Feedforward Networks and the Multilayer Feedforward Networks. Single-Layer
Feedforward Networks are the simplest, with connections (weights) directly linking inputs to
outputs. On the other hand, Multilayer Feedforward Networks, also known as MLP, have one
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or more hidden layers, each with its hidden units, between the inputs and outputs. Single-layer
networks can only handle linear problems, while multilayer networks can capture more complex
relationships, they are capable of solving non-linear problems (HAYKIN, 2009).

Figure 7 presents a basic model of an artificial neuron, which is widely used in more complex
ANN (presented later). The synaptic weights (𝑤𝑘1, 𝑤𝑘2, · · · , 𝑤𝑘𝑚) indicate the relevance of
the inputs. Next, a summation function aggregates inputs linearly based on their weights.
Finally, an activation function will adjust the amplitude of the output signal (HAYKIN, 2009).
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Figure 7 – Nonlinear model of a neuron. Adapted from Haykin (2009).

Mathematically, the artificial neuron can be described by Equations 2.37 and 2.38:

𝑢𝑘 =
𝑚∑︁
𝑗=1

𝑤𝑘𝑗𝑥𝑗, (2.37)

𝑦𝑘 = 𝜌(𝑣𝑘 + 𝑏), (2.38)

where 𝑥1, 𝑥2, · · · , and 𝑥𝑚 are the input signals, 𝑤𝑘1, 𝑤𝑘2, · · · , 𝑤𝑘𝑚 are the respective synaptic
weights of neuron 𝑘 inputs, 𝑢𝑘 is the linear combiner output due to the input signals, 𝑏 is the
bias, 𝜌(·) is the activation function, and 𝑦𝑘 is the neuron output. The inclusion of the bias
term 𝑏 results in an affine transformation being applied to the output 𝑢𝑘 of the linear combiner
in the model of Figure 7 (Equation 2.39).

𝑣𝑘 = 𝑢𝑘 + 𝑏 (2.39)
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The training process of an MLP involves the iterative adjustment of weights to obtain a
model with good generalization capability. For forecasting problems, the classical approach is
to use a supervised algorithm, where synaptic weights are adjusted based on the difference
between actual and predicted values (OLIVEIRA et al., 2021). In general, this training process
is done using backpropagation algorithm (HAYKIN, 2009).

In the backpropagation algorithm, the first phase involves randomly initializing the weightS
(Initialization). Thus, for each example in the training set, the input data is sequentially pro-
cessed through the network’s layers, with neurons applying synaptic weights and activation
functions to generate output. This process continues until the final layer, where the network
produces its prediction, which are compared to actual values to compute errors (Forward com-
putation). The errors are then backpropagated through the network, enabling the calculation of
weight gradients used to iteratively adjust the weights and minimize errors (Backward Compu-
tation). The forward and backward phases continue to be executed until a stopping criterion is
met. This iterative adjustment process allows the network to learn and improve its predictions
over time (HAYKIN, 2009).

Moreover, the activation functions currently represent an intense research field, with nu-
merous works dedicated to the development of alternatives aimed at increasing performance
or even reducing the complexity of prediction models. Among the alternatives, the activation
functions commonly used are: Linear, Hyperbolic Tangent, Sigmoid, and ReLU (LESHNO et al.,
1993; APICELLA et al., 2021).

2.2.1.11 Long Short-Term Memory

Recurrent Neural Network (RNN) are another well-established class of architecture in the
time series forecasting literature (HOCHREITER; SCHMIDHUBER, 1997; OLIVEIRA et al., 2021;
ABDEL-NASSER; MAHMOUD, 2019). They differ from Feedforward Networks (Section 2.2.1.10)
by incorporating at least one feedback loop, a mechanism that allows the output of a neuron
or layer to be fed back as input to the same network. This feature enables RNN to handle
data sequences and capture temporal dependencies (HAYKIN, 2009).

LSTM networks, introduced by Hochreiter and Schmidhuber (1997), are a special kind of
Recurrent RNN. Due to their powerful real-world predictive capabilities, LSTM networks have
been widely applied in problems across different domains (YU et al., 2019; KRATZERT et al.,
2018; PARK; YANG, 2022; GUO et al., 2021; ZHA et al., 2022). In summary, the key idea is that,
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based on the input data, the LSTM is able of learning: (i) what to store in the long-term state;
(ii) what to forget; and (iii) what to read from it (GÉRON, 2019). This process will be detailed
below (GÉRON, 2019).

Figure 8 presents a LSTM cell. Vectors ℎ𝑡 and 𝐶𝑡 represent, respectively, short-term and
long-term states. One can see that the long-term state, 𝐶𝑡, flowing from left to right, initially
passed through the Forget gate, which aims to control which information from the long-term
state should be deleted. The Input gate, in turn, controls the information that should be added
to the long-term state. Lastly, the Output gate is responsible for controlling which information
from the long-term state will be read and used during this time interval (GÉRON, 2019).

Figure 8 – LSTM cell. Adapted from Géron (2019), Mittal (2019), Matsumoto (2019).

In the Forget gate (orange rectangle in Figure 8), the vectors ℎ and 𝑥 passes through a
sigmoid activation function (here denoted by 𝜎), which returns values between 0 and 1 (𝑓𝑡).
The result is subsequently multiplied by the long-term state, obtaining 𝐶 ′

𝑡 (Equations 2.40 and
2.41, Figure 9(a)).

𝑓𝑡 = 𝜎(𝑈𝑎𝑥𝑡 + 𝑉𝑎ℎ𝑡−1 + 𝑏), (2.40)

𝐶
′

𝑡 = 𝑓𝑡 · 𝐶𝑡−1, (2.41)

in which 𝑈𝑎 and 𝑉𝑎 are weight matrices that connect the layer to the input vector and 𝑏 is the
bias. Next, it is determined which information from the short-term state should be inserted
into the long-term state through the Input gate. For this, a state of activation containing the
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new information, denoted by 𝐶+
𝑡 , is defined, and a vector 𝑖, which will determine the relevance

of this information (Equations 2.42, 2.43, and 2.44, Figure 9(b)).

𝑖𝑡 = 𝜎(𝑈𝑏𝑥𝑡 + 𝑉𝑏ℎ𝑡−1 + 𝑏), (2.42)

𝐶+
𝑡 = tanh(𝑈𝑐𝑥𝑡 + 𝑉𝑐ℎ𝑡−1 + 𝑏), (2.43)

𝐶𝑡 = 𝐶
′

𝑡 + 𝑖𝑡 · 𝐶+
𝑡 . (2.44)

Lastly, the output of the network, ℎ𝑡, is calculated. In this case, the short-term state and the
input vector passed through a sigmoid function. The result, 𝑜𝑡, is multiplied by the hyperbolic
tangent of the long-term state (Equations 2.45 and 2.46, Figure 9(c)).

𝑜𝑡 = 𝜎(𝑈𝑑𝑥𝑡 + 𝑉𝑑ℎ𝑡−1 + 𝑏), (2.45)

ℎ𝑡 = 𝑜𝑡 · tanh(𝐶𝑡). (2.46)

In summary, LSTM networks are widely employed for modeling and forecasting time series
because they can learn to recognize important inputs (Input gate), preserve them for the
necessary duration (Forget gate), and extract them when appropriate (Output gate).

(a) Forget gate. (b) Input gate. (c) Output gate.

Figure 9 – Detailed LSTM cell. Adapted from Géron (2019), Mittal (2019), Matsumoto (2019).

2.2.1.12 Extreme Learning Machine

Extreme Learning Machine (ELM), developed by Huang, Zhu and Siew (2006), is an
architecture of ANN known for its fast training process. This algorithm is widely applied to
both classification and regression problems (HUANG et al., 2011; DING; XU; NIE, 2014; WANG et

al., 2022a). This modeling approach is advantageous for building a pool of models, as single
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models train faster compared to other ANNs (LIU; WANG, 2010; LI; GOEL; WANG, 2016; YAO;

DAI; SONG, 2019; LARREA et al., 2021).
ELM is structurally similar to a Single-Layer MLP. The main difference between them

lies in the training method. In the case of ELM, the weights between the input and hidden
layer are not iteratively adjusted. Meanwhile, the output weights are analytically calculated
using matrix inversion techniques. For this reason, their training is very fast (the reason for its
name) (HUANG; ZHU; SIEW, 2006; YAO; DAI; SONG, 2019):

Regarding ELM formulation, Equations 2.37 and 2.38 (Section 2.2.1.10) can be rewritten
as 2.47 (HUANG; ZHU; SIEW, 2006).

H𝜇 = T, (2.47)

in which,

H(w1, · · · ,w𝐻 , 𝑏1, · · · , 𝑏𝐻 , x1, · · · , x𝑛) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑔(w1 · x1 + 𝑏1) · · · 𝑔(w𝐻 · x𝐻 + 𝑏1)

... · · · ...

𝑔(w1 · x𝑛 + 𝑏1) · · · 𝑔(w𝐻 · x𝑛 + 𝑏1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (2.48)

𝜇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝜇𝑇1

...

𝛽𝑇𝐻

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , e T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
y𝑇1
...

y𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (2.49)

H is the output matrix of the hidden layer; the i-th column of 𝐻 represents the 𝑖-th output
node with respect to x1, x2, · · · , x𝑛. In the case of ELM networks, the algorithm used follows
four main steps (HUANG; ZHU; SIEW, 2006):

1. Random generation of weights w1 and 𝑏𝑖;

2. Calculation of the output of the hidden layer H;

3. Calculation of the weight matrix 𝜇̂ = H†T;

4. Use of 𝜇̂ to predict T = H𝜇̂,

in which H† is the Moore-Penrose pseudoinverse of the matrix H (BANERJEE, 1973).
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2.2.1.13 Transformers

Transformer models represent one of the most efficient methodologies for processing se-
quential data, particularly in domains such as natural language processing, computer vision,
and speech recognition (VASWANI et al., 2017; LIN et al., 2022; DONG; XU; XU, 2018; ZENG et

al., 2023). More recently, Transformer (TSF)-based approaches have been designed to address
time series forecasting problems, with a primary emphasis on long-term prediction (ZENG et

al., 2023; AHMED et al., 2023).
Despite the numerous variations that have been proposed, the underlying principles of

TSF remain unchanged. In summary, TSF is a sequence-to-sequence approach structured in
an encoder-decoder configuration, which receives (input) a sequence of words from a source
language and then generates the translation in other target language (output) (VASWANI et al.,
2017; AHMED et al., 2023).

Commonly, neural sequence transduction models are structured with an encoder-decoder
architecture, in which the encoder maps a sequence of symbols (input) (𝑠1, · · · , 𝑠𝑛) to a
sequence of continuous representation 𝑟 = 𝑟1, · · · , 𝑟𝑛. Further, given 𝑟, encoder generates an
output sequence (𝑙1, · · · , 𝑙𝑛) of symbols one by one. During each step, the model operates in
an autoregressive manner, incorporating the previously generated symbols as additional input
when generating the subsequent symbol. In the case of TSF, the same architecture is used,
employing stacked self-attention and point-wise, fully connected layers for both the encoder
and decoder (GRAVES, 2013; SUTSKEVER; VINYALS; LE, 2014; VASWANI et al., 2017).

Figure 10 present the TSF architecture (VASWANI et al., 2017). The left side of the Figure
illustrates the encoder, which consists of a stack of identical layers, each comprising two sub-
layers: a multi-head self-attention mechanism, and a fully connected feed-forward network.
Right side of the Figure 10 shows the decoder, also composed of stacked layers. However, in
addition to the two layers present in the encoder, there is a third layer, which performs multi-
head attention over the output of the encoder stack. In both encoder and decoder, residual
connections are employed around sub-layers, followed by normalization.

According to the authors (VASWANI et al., 2017), the attention function can be described
as mapping a query and a set of key-value pairs to an output, in which output, query, and keys
are vectors. Besides, the output is calculated as a weighted sum of the values, in which the
weight assigned to each value is computed by a function of the query with the corresponding
key.
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Figure 10 – Transformer architecture (VASWANI et al., 2017).

Vaswani et al. (2017) used an attention function, called “Scaled Dot-Product Attention”,
in which the attention on set of queries are computed simultaneously, organized together into
a matrix 𝑄. Likewise, keys and values are also organized together into matrices 𝐾 and 𝑉 . In
this way, the matrix of outputs is computed based on Equation 2.50,

Attention(𝑄,𝐾, 𝑉 ) = softmax(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉, (2.50)

in which 𝑑𝑘 is the dimension of the key vectors.
However, instead of performing a single attention function (with key, values, and queries),

the authors proposed to project (linearly) the queries, keys and values ℎ times with different,
learned linear projections. On each of these projected versions of queries, keys and values, the
attention function is performed in parallel (VASWANI et al., 2017).
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(a) Scaled Dot-Product Attention. (b) Multi-Head Attention consists of several
attention layers running in parallel.

Figure 11 – Scaled Dot-Product Attention and Multi-Head Attention (VASWANI et al., 2017).

Following, each layer has a fully connected feed-forward network. This network is applied
to each position separately and identically (Equation 2.51).

FFN(𝑋) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (2.51)

2.2.2 Multiple Predictor System

The development of Multiple Predictor Systems (MPS) has been gaining prominence in the
scientific literature as a robust approach capable of reducing bias and variance in predictions
(GHEYAS; SMITH, 2011; KOURENTZES; BARROW; CRONE, 2014; GÉRON, 2022; LV et al., 2022).
These systems are normally constructed through three phases: (i) Generation, (ii) Selection,
and (iii) Integration (CRUZ; SABOURIN; CAVALCANTI, 2018; YAO; DAI; SONG, 2019; SILVA; DE

MATTOS NETO; CAVALCANTI, 2021). Initially, in (i), a pool (𝑃 ) of 𝑀 forecasting models is
created (Section 2.2.2.1). Next, in (ii), a subset (𝑃 ′ ⊂ 𝑃 ) of 𝑚 models is selected (Section
2.2.2.2). Finally, in (iii), the selected models are combined.
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2.2.2.1 Generation

The objective of this phase is to generate a pool, 𝑃 , of 𝑀 models (𝑀 > 1), 𝑃 =

{𝑚1,𝑚2, · · · ,𝑚𝑀}. It is important to emphasize that 𝑃 should be generated with accurate
and diverse models (VALENTINI; DIETTERICH, 2004; SILVA; DE MATTOS NETO; CAVALCANTI,
2021). The main idea of MPS is that each model in 𝑃 is capable of capturing specific patterns
in a time series; therefore, their combination will assist in the final prediction outcome, which
justifies the required diversity.

Clemen (1989) conducted a literature review on the methodologies for combining forecasts.
According to the author, the basic idea is that different forecasting models were capable of
capturing distinct aspects of the available information. Further, Perrone (1993) and Hashem
(1997) explored the combination of regression models. These authors discuss the degree of
redundancy in the information obtained from single models: if all models carry the same in-
formation, no benefits may be expected from combining them. However, despite the authors
acknowledging the importance of redundancy in the information arising from single models,
they did not deeply discuss the relationship between pool generation, diversity, and perfor-
mance.

Krogh and Vedelsby (1994), in a seminal study, argued that combining the outputs of
several networks (or other predictors) is only beneficial when they exhibit disagreement on
certain inputs. The authors proved that, at any given instance, the quadratic error of an
ensemble is guaranteed to be less than or equal to the average quadratic error of the component
estimator (Equation 2.52) (KROGH; VEDELSBY, 1994; BROWN et al., 2005):

(𝑓𝑒𝑛𝑠 − 𝑑)2 =
∑︁
𝑖

𝑤𝑖(𝑓𝑖 − 𝑑)2 −
∑︁
𝑖

𝑤𝑖(𝑓𝑖 − 𝑓𝑒𝑛𝑠)2, (2.52)

in which 𝑓𝑒𝑛𝑠 is a convex combination (∑︀
𝑖𝑤𝑖 = 1) of the single estimators (𝑓𝑒𝑛𝑠 = ∑︀

𝑖𝑤𝑖𝑓𝑖), 𝑓
is a single model, and 𝑑 is the target. The first term of the Equation 2.52, (𝑓𝑒𝑛𝑠−𝑑)2, indicates
the MPS error, while the second indicates the weighted average error of the single models,∑︀
𝑖𝑤𝑖(𝑓𝑖 − 𝑑)2. Finally, ∑︀

𝑖𝑤𝑖(𝑓𝑖 − 𝑓𝑒𝑛𝑠)2 represents the Ambiguity term and measures the
variability among the single models. Since this value is always positive, subtracting it from the
first term ensures that the MPS will have a error lower than the average single error (BROWN

et al., 2005). Equation 2.52 shows the Ambiguity decomposition.
According to Equation 2.52, the larger the Ambiguity term, the greater the reduction in
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MPS error. Nevertheless, as the variability among the individuals increases, the value of the
first term also rises. This demonstrates that diversity alone is insufficient; achieving the lowest
overall MPS error requires striking the right balance between diversity (the Ambiguity term)
and single accuracy (the average error term) (KROGH; VEDELSBY, 1994; BROWN et al., 2005).

One can also discuss MPS diversity through the bias-variance decomposition (BROWN et al.,
2005). The generalization error of an estimator can be divided into two components: bias and
variance. These components operate in opposition: efforts to reduce the bias often lead to an
increase in variance, and conversely (GEMAN; BIENENSTOCK; DOURSAT, 1992; UEDA; NAKANO,
1996). According to Brown et al. (2005), the mean squared error of an MPS depends critically
on the amount of error correlation between individual models. Ideally, one would aim to reduce
the covariance without inducing any increments in the bias or variance terms.

The generation of a pool can be classified as homogeneous or heterogeneous (YAO; DAI;

SONG, 2019; SILVA; DE MATTOS NETO; CAVALCANTI, 2021). If the 𝑀 models are trained based
on the same algorithm, 𝑃 is said to be homogeneous (YAO; DAI; SONG, 2019). Otherwise, if
they are constructed using different algorithms, 𝑃 is said to be heterogeneous (SANTOS JUNIOR

et al., 2022). In the homogeneous case, two methods are commonly used. The first method
involves training multiple single models with the same algorithm but varying its parameters -
for example: generating 𝑀 MLP models with different architectures (YAO; DAI; SONG, 2019).
The second approach is based on the adoption of resampling techniques (HASHEM, 1997;
SILVA et al., 2020; SILVA; DE MATTOS NETO; CAVALCANTI, 2021). In this cases, algorithm such
as bagging can be used to generate multiple distinct models from a single training set. The
main idea is to train different models using various samples of the data, meaning variables
and instances are selected in different ways, and each of these combinations leads to a distinct
model.

2.2.2.2 Selection

The objective of this phase is to select a subset (𝑃 ′ ⊂ 𝑃 ) of the best-performing models
based on a predefined strategy. A MPS can select only one model (predictor selection), or
multiple models (ensemble selection) (SILVA; DE MATTOS NETO; CAVALCANTI, 2021).

Moreover, a MPS can also be classified as static or dynamic. They are considered static
when the selected models are always the same for all new instances that arrive at the system.
A common strategy adopted in static MPS is the selection of the best models based on
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some performance measure for a validation set (FONSECA; GOMEZ, 2016; ADHIKARI; VERMA;

KHANDELWAL, 2015) (pruning by ranking). The application of Meta-Learning (LEMKE; GABRYS,
2010) and optimization techniques has also been documented in the literature (ABBASIMEHR;

SHABANI; YOUSEFI, 2020; SIN; WANG, 2017).
In the case of dynamic MPSs, models are selected whenever a new instance arrives at the

system, meaning there is no fixed set of models (YAO; DAI; SONG, 2019; SILVA et al., 2020; SILVA;

DE MATTOS NETO; CAVALCANTI, 2021). Since selection occurs for each new instance, dynamic
MPSs are typically more complex and have higher computational costs. Dynamic MPSs are
detailed in Section 2.2.3.

2.2.2.3 Integration

The third and final phase of an MPS aims to generate predictions by combining models
selected from the Generation and Selection stages. Combination techniques can be classified as
trainable and non-trainable (SILVA; DE MATTOS NETO; CAVALCANTI, 2021). For non-trainable
techniques, average, weighted average, and median are the most commonly used techniques,
although estimating the mode is also feasible using kernel density estimation (KOURENTZES;

BARROW; CRONE, 2014; WANG et al., 2022b; FATICHI; IVANOV; CAPORALI, 2013; SANTOS JUNIOR

et al., 2022). Kourentzes, Barrow and Crone (2014) present a comprehensive discussion of these
techniques. The authors argued that the mode operator represents a viable alternative to the
average and median operators in forecasting applications.

On the other hand, trainable techniques use ML algorithms to map the relationship between
the single models predictions and the observed values of the time series (GÉRON, 2022).
Saadallah, Tavakol and Morik (2021) propose a meta-learning approach for aggregating linearly
weighted ensembles. In this systems, the combination strategy of the ensemble is depicted as
a sequential decision-making process capable of capturing temporal dynamics in time-series
data. In turn, Adhikari and Agrawal (2012) present a weighted nonlinear ensemble technique
that considers both the forecasts of single models and the correlations among them during the
combination process.
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2.2.3 Dynamic Ensemble Selection

Dynamic Ensemble Selection (DES) are ensemble approaches in which single models (pre-
viously trained) are selected on the fly, based on each new instance to be predicted (CERQUEIRA

et al., 2017a; CRUZ; SABOURIN; CAVALCANTI, 2018). DS term is frequently used when only one
model is selected, whereas DES indicates that more than one model are selected (SILVA; DE

MATTOS NETO; CAVALCANTI, 2021). These approaches have been widely discussed in clas-
sification tasks, as their results often outperform standard combination approaches (CRUZ;

SABOURIN; CAVALCANTI, 2018; BRITTO JUNIOR; SABOURIN; OLIVEIRA, 2014; ZYBLEWSKI; SABOURIN;

WOŹNIAK, 2021; ELMI et al., 2023; CABRAL; OLIVEIRA, 2021; MOURA; CAVALCANTI; OLIVEIRA,
2021). However, its application to time series forecasting remains less explored.

One of the earliest publications addressing DS for forecasting tasks dates back to 2006,
when Yankov, DeCoste and Keogh (2006) proposed a method to classify time series into two
classes, which are better predicted using one of two possible neural network predictors. The
authors demonstrated that the proposed approach reduced prediction errors on the test set
in the developed experiment. Further, Widodo and Budi (2011), Widodo and Budi (2012)
and Budi, Aji and Widodo (2014) proposed a selection approach in which single models are
selected through a similarity analysis between the new instance being predicted and those from
the training and/or validation sets. The authors use two similarity measures, Euclidean and
Dynamic Time Warping (DTW).

Moreover, some authors proposed selection strategies guided by the performance of models
within a RoC. The RoC is composed by the patterns in the in-sample (validation and/or training
set), which are more similar to a new test pattern to be predicted. Initially proposed by Woods,
Kegelmeyer and Bowyer (1997) for classification tasks and adapted by Rooney et al. (2004) for
regression problems, the approach of dynamically selecting models based on RoC has proven
to be a robust alternative (SILVA; DE MATTOS NETO; CAVALCANTI, 2021; CRUZ; SABOURIN;

CAVALCANTI, 2018).
A dynamic MPS based on defining RoC, entitled Dynamic Selection based on the Nearest

Windows (DSNAW), was proposed by Silva, de Mattos Neto and Cavalcante (SILVA; DE MAT-

TOS NETO; CAVALCANTI, 2021). The authors presented a DES approach that selects one or
more competent models according to their performance in the RoC composed of the nearest
antecedent windows to the new target time window. The experiment used ten well-known
time series. In this case, bagging algorithm (MORETTI et al., 2015) was used to generate the
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pool. In their study, the authors included two variations for the DES constructed from RoC,
varying the combination method: average (DESLA𝑎) and median (DESLA𝑚). LA stands for
local accuracy.

Santos Junior et el., (2022) also proposed a DES based on RoC to solar irradiance forecast-
ing, however, using a heterogeneous pool composed of seven well-discussed algorithms in the
literature (SANTOS JUNIOR et al., 2022). The proposed approach achieved an overall accuracy
that surpasses that of individual models. In this case, it is worth noting that constructing a
heterogeneous pool can assist in increasing diversity, an important factor for a MPS.

Regarding the use of RoC to construct DESs, some limitations can be identified. First,
it is known that the quality of RoC is a key factor in the accuracy of the MPS; however,
choosing the appropriate similarity measure and RoC size is a challenging task. Further, the
dependence on the chosen similarity metric, once different metrics capture different aspects of
time series, thus, it is assumed that one may be more (or less) appropriate for a given series (YU

et al., 2006; SILVA, 2020; YULIANTI et al., 2023). It is known that some metrics are sensitive to
outliers, which can hinder their use in series that present anomalous values Kumar, Chhabra
and Kumar (2014). The construction of RoCs is a computationally expensive activity, since
each new instance to be predicted must be compared with all others in the validation and/or
test set. Lastly, there are no guarantees that the new data to be predicted will be similar to
the time series on which the MPS is based.

Besides, Yao, Dai and Song (2019) presented DES methods based on Consensus of Pre-
dictors (CP). Methods based on CP start from generating multiple Pool of Ensembles (PoE)
instead of pools of individual models. Next, the PoE with the highest consensus is selected.
Consensus evaluation can be performed by estimating variance or applying clustering methods.
The authors assume that the higher the extent of CP, the better the predictive performance
of the PoE. According to the authors, a key advantage of their proposed approaches is their
independence from information specific to the RoC, overcoming limitations imposed by its
definition. However, as limitation, the effectiveness of CP-based methods can significantly de-
pend on specific parameters, such as the number of ensembles in the PoE and the criteria
used to evaluate consensus. Furthermore, due to the limited number of studies on the method,
it is non clear how variability in the input data can affect the stability of consensus and the
selection of the most suitable PoE.

Yao, Dai and Song (2019) also proposed the Dynamic Validation Set determination algo-
rithm based on the similarity between the Output Profile of the test sample and the Output
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Profile of each training sample (DVS-OpOp). According to authors, the method follows the
logic of select instances (in validation set) similar to the unseen instance (new observation to
be predicted). Nevertheless, the similarity is measured by combining the output profile of the
unseen instance with the output profiles of the training set. In this case, the output profile is
a vector that consists of the predicted values obtained by the single models for that instance.
This algorithm’s main advantage is that it is not constrained by how the local region is de-
fined in feature space. As limitation, DVS-OpOp ignores the local information of the new test
instance and only takes into account its global knowledge.

Another approach was proposed by Neto et al. (2020). The authors propose a Temporal-
Window Framework (TWF), in which the time series is split into subsets (each subset may
intercept its neighbours). Each new instance will be evaluated, and the model will be selected
based on the similarity between the partitions and the new instance to be predicted. The results
of the experiment demonstrated that the proposed method outperformed the other models
used for comparison. The limitations include the significant dependence of performance on
parameter values, which vary based on the characteristics of the time series. Adjusting these
parameters can improve results, but it is a costly and problem-specific task.

Another DS approach is the Arbitrated Dynamic Ensemble (ADE) (CERQUEIRA et al., 2017b;
CERQUEIRA et al., 2019). The authors propose a strategy that adaptively combines forecasters
using metalearning techniques. In this case, the method effectively modeled the expertise of
base learners across different parts of the time series, allowing the ensemble model to adapt
consistently. Regarding limitations, one of the main issues is the inability to directly model
interdependencies between forecasters, which might be important for accounting for diversity
among the models. Moreover, metalearning methodologies introduce an additional layer of
complexity that can hinder interpretability.

Table 2 presents the main advantages and limitations of the approaches employed for DS
in time series forecasting problems.

In the context of applying DES methods to time series forecasting problems, one of the
most common limitations is the computational cost, especially due to the inherent nature of
the problem: the search for the optimal models to be combined in order to forecast a new
test instance. Generally, computational costs escalate with the increasing number of single
models and the size of the time series. This occurs because the space for selection becomes
larger. Additionally, the challenge of parameter selection can be a significant limitation, as
improper choices can undermine forecasting performance. Increasing the number of parameters
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Table 2 – DS methods, advantages, limitations, and references.

Method Advantages Limitations References

RoC Mathematically simple.
Easy to implement.
Most commonly used cri-
terion for DS.

Quality of RoC influenced
by similarity metric and
size.
High computational cost.
Loss of temporal informa-
tion.

SILVA (2020),
Silva, DE MAT-
TOS NETO
and Cavalcanti
(2021), SANTOS
JUNIOR et al.
(2022)

CP Does not need to extract
information from local re-
gions.

Influenced by criteria used
to evaluate consensus and
number of ensemble.
High computational cost.
Low interpretability.
Limited number of studies.

Yao, Dai and
Song (2019)

DVS-
OpOp

It is not restricted by the
definition of the local re-
gion in feature space.

Ignores the local informa-
tion of the new test in-
stance and only takes into
account its global knowl-
edge.
High computational cost.
Low interpretability.
Limited number of studies.

Yao, Dai and
Song (2019)

TWF To train predictors special-
ized in different parts of
the time series.

Significant dependence of
performance on parameter
values.
High computational cost.
Low interpretability.
Limited number of studies.

Neto et al. (2020)

ADE To model their expertise in
the different parts of the
time series and adapt the
ensemble weights.

Inability to directly model
interdependencies be-
tween forecasters.
High computational cost.
Low interpretability.

Cerqueira et
al. (2017b),
Cerqueira et al.
(2019)

complicates the task further, and complex parameters that are difficult to understand present
an additional challenge. Another significant concern is the interpretability of the methods, as
understanding how the selection process occurs can be challenging in some cases. Besides,
RoC-based methods are among the most well-described in the literature (SILVA, 2020; SILVA;

DE MATTOS NETO; CAVALCANTI, 2021; SANTOS JUNIOR et al., 2022). However, the choice of
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similarity measures for constructing the RoC and the variability in input data can affect the
effectiveness and stability of the selected models. The limited number of publications is also
considered a limitation as it hinders a thorough understanding of the proposed methods.

The MPS presented in this thesis, DESTC, addresses some of the limitations of other
algorithms. The first difference is that, by not requiring the creation of a RoC, it avoids issues
related to the choice of similarity metrics. Additionally, it is mathematically simple and has a
low computational cost.

2.3 PERFORMANCE MEASURES

Some classical performance measures are Mean Squared Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and Theil’s U. MSE (Equation 2.53) is calculated
from the average of the squares of the differences between the observed values and the values
predicted by the model. Therefore, the lower the value, the better the performance of the
evaluated model. MSE is a performance measure sensitive to outliers.

MSE = 1
𝑛

𝑛∑︁
𝑖=1

(𝑧𝑡 − 𝑧𝑡)2, (2.53)

in which 𝑧𝑡 is the observed value of the series at time 𝑡, 𝑧𝑡 is the MPS forecast, and 𝑛 is the
time series size.

RMSE (Equation 2.54) is the square root of MSE. It is a performance measure that presents
the magnitude of the error in the same unit of measurement as the time series, aiding in their
interpretations. Like MSE, lower values indicate better performance.

RMSE =
√︁

MSE(𝑧𝑡, 𝑧𝑡) (2.54)

MAE (Equation 2.55) measures the average of the absolute differences between the ob-
served values and those predicted by the model. Just like RMSE, the result of this performance
measure is given in the same dimension as the modeled time series. The lower its value, the
better the model will be.

MAE = 1
𝑛

𝑛∑︁
𝑖=1
|𝑧𝑡 − 𝑧𝑡|, (2.55)

Theil’s U (Equation 2.56), meanwhile, compares models with a Random Walk model. if
Theil’s U < 1, the model is better than the naive predictor; otherwise if Theil’s U > 1, the
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compared model is worse. The Random Walk model is commonly used as a benchmark. In
this model, the prediction 𝑧𝑡+1 is assumed to be equal to the value of observation 𝑧𝑡, making
it mathematically simple. Therefore, Theil’s U is a relative metric that facilitates comparison
with a naive predictor, unlike MSE, which is an absolute metric that provides a direct measure
of mean squared error.

Theil’s U =
∑︀𝑁
𝑡=1(𝑧𝑡 − 𝑧𝑡)2∑︀𝑛
𝑡=1(𝑧𝑡 − 𝑧𝑡−1)2 , (2.56)

Aggregating Ranking Measure (ARM) (Equation 2.57) quantifies the average rank of mod-
els for a given set of time series. The closer the ARM is to 1, the better the performance. An
ARM = 1 indicates that the model outperforms all others for all performance measures used.

ARM =
∑︀PM
𝑖=1 rank(𝑚𝑖)

𝑛
, (2.57)

in which PM is the number of performance measures used and 𝑟𝑎𝑛𝑘(𝑚𝑖) is the raking of the
𝑚-th model regarding 𝑖-th performance measures.

Moreover, when developing new forecasting methodologies, it is valuable to compare them
with alternatives from the literature. In this scenario, one can utilize the Percentage Difference
(PD) (Equation 2.58) between the new method and those already proposed. A comparison in
percentage terms can be made based on an individual performance measure, such as RMSE.

PD = 𝑃lit − 𝑃𝐷𝐸𝑆𝑇𝐶
𝑃lit

· 100, (2.58)

in which 𝑃𝑙𝑖𝑡 and 𝑃𝐷𝐸𝑆𝑇𝐶 are, respectively, a model in the literature and the proposed one.
These are the RMSEs obtained by the models from the literature and a new model, respectively.
Positive values indicate an improvement of the proposed approach compared to a certain model
from the literature; otherwise, the model from the literature is superior.
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3 PROPOSED APPROACH

DS systems have emerged as a powerful tool for time series forecasting, offering superior
predictive performance compared to traditional individual modeling and static MPS. Their
ability to adapt to changing data patterns and select the most suitable forecasting models
from a pool of candidates makes them well-suited for a wide range of applications. One of the
most common strategies for model selection is the use of similarity metrics to identify, within
the training or validation set, which instances are most similar to a new test instance. However,
this approach faces two main challenges. The first challenge is choosing the optimal similarity
metric. With numerous options available in the literature, each with its own strengths and
weaknesses, selecting the right one becomes a complex task. Secondly, there is no guarantee
that similar instances are stored in the pool compared to those that need to be predicted. This
absence of similar data can significantly complicate the selection process, potentially leading
to suboptimal model choices and unreliable forecasts.

These difficulties became evident during the COVID-19 pandemic (AWADASSEID et al., 2020;
CHUNG et al., 2021). As COVID-19 drastically affected healthcare systems globally, many coun-
tries implemented strategies to reduce the spread of outbreaks, such as developing decision
support systems for monitoring, predicting, and controlling the situation (MUHAREB; GIACA-

MAN, 2020; RAHIMI; CHEN; GANDOMI, 2021). However, developing accurate models for pre-
dicting COVID-19 time series poses a significant challenge due to the complex behavior of the
data (FIRMINO et al., 2020). While numerous researchers have implemented models to forecast
incidence and mortality, the results often suffer from low accuracy; primarily attributable to
the unknown behavior of the disease and incorrect modeling assumptions (PETROPOULOS;

MAKRIDAKIS, 2020; IOANNIDIS; CRIPPS; TANNER, 2020; LUO, 2021). Additionally, as a conse-
quence of the evolution in the number of cases during the pandemic and the changes in data
patterns, the new values to be predicted became significantly different from the past values of
the time series. Consequently, attempting to use DS for COVID-19 incidence series encounters
difficulties.

More specifically, it was observed that the COVID-19 incidence time series was charac-
terized by cycles of three consecutive phases: exponential increase, plateau, and then de-
crease (FIRMINO et al., 2020). Initially, exponential growth represents the early stage of an
outbreak, which has a high spread due to a vulnerable population. The second phase initiates
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when the number of new cases begins to stabilize due to adopting mitigation strategies. Finally,
in the third phase, the incidence time series exhibit a decreasing pattern. However, before the
pandemic is fully controlled, factors such as virus mutation and inefficient reopening strategies
can lead to a further increase in the number of cases, which can indicate the beginning of a
new cycle (a new wave) (SAHA et al., 2021).

Based on this pattern, the Dynamic Ensemble Selection based on Trend Classification
(DESTC) is proposed. The general idea is to evaluate the best models for each class of the
trend using a validation set. Then, for each new instance to be predicted, the best models for
the current trend class are combined. As the trend of the series changes, the system dynamically
selects the appropriate models to combine. The approach proposed introduces a new way of
dynamically selecting models based on statistical information from the time series, specifically
the trend. Additionally, by not depending on similarity metrics for model selection, DESTC
avoids the problems directly linked to them. Furthermore, the proposal offers a computational
cost advantage, as estimating trends is to be more computationally economical compared to
the construction of RoC or the utilization of meta-learning alternatives.

Figure 12 illustrates an example of DESTC focusing on the positive trend (dashed red
circles). DESTC selects the most appropriate forecasting models for this trend (validation
set) and combines them in order to forecast new patterns (test set). DESTC addresses three
different trend classes (positive, negative, or none). The evaluation ensures that the most
suitable models are selected for each trend type, leading to highly accurate and reliable forecasts
across all trend patterns.
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Figure 12 – Illustrated example of DESTC. Dashed red circles represent positive trend patterns in the time
series. DESTC selects the most appropriate forecasting models for this trend pattern (in validation
set) combines them (test set).

For trend classification, various methods may be employed. However, in the experiments
presented in this study, the Mann-Kendall statistical test (Section 2.1.1.1) will be utilized,
given its well-established use in the literature. The Sen Slope estimator (Section 2.1.1.2) can
also be employed for this purpose; however, here it will be used solely to discuss the results.
Another similarly simple alternative would be trend classification based on the coefficients of
a linear regression.

3.1 FORMAL DEFINITION

Let Ψ be the set of trend classes identified in the time series (e.i., positive, negative,
neutral). For each trend 𝜓 ∈ Ψ, there exists a set of models, 𝐽𝜓, that have been evaluated
and classified as optimal for that trend. Given a new test instance 𝑍𝑤, its trend firstly is
classified based on an estimation method 𝒞(·) (Equation 3.1), and the prediction 𝑍𝑤+𝑡 is
computed as the combination of the models selected for the current trend (Equation 3.2).
DESTC is presented below,

𝜓 = 𝒞(𝑍𝑤), (3.1)
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𝑍𝑤+𝑡 = Ω𝐽𝜓(𝑍𝑤) (3.2)

in which Ω𝐽𝜓 is the combination method of 𝐽 best models for the 𝜓 trend class, 𝐽𝜓. The
combination method can be mean, median, mode, or any other alternative that combines
estimates from single models.

3.2 PSEUDO-CODE

A pseudo-code for DESTC is presented in Algorithm 1. The inputs of algorithm are training
(𝑍𝑡𝑟) and validation (𝑍𝑣) sets, pool of models 𝑃 , and window size (𝑤) for trend classification.
The output is the prediction 𝑍𝑤+𝑡 for a new test instance (𝑍𝑡). The Algorithm is divided into
two phases: (a) training and (b) test.

The first step of the training phase is training the 𝑃 models. DESTC is a model-agnostic
approach. However, 𝑃 training must be performed to generate accurate models capable of
modeling different local patterns. Here, 𝑍𝑡𝑟 and 𝑍𝑣 are used for this task. Instances of the
validation set (𝑍𝑣) are classified according to their trend, based on the concepts (positive,
negative, neutral). There are several trend classifier methods, and any of them can be used
for this task in the DESTC.

Following, each model of 𝑃𝑡 is evaluated in the validation set (𝑍𝑣) using a performance
measure, such as Root Mean Square Error (Eq. 2.54), to create three lists indicating the order
of the best models for each trend class (ranking lists). The ranking for positive trend, for
example, will contain the best 𝑗 models considering only the instances that were classified as
positive trend.

Lastly, regarding (b), when the system receives a new instance (𝑍𝑤), the trend is first
evaluated and, based on the ranking list with the same trend classification, the 𝐽 best models
are selected (selection step). After selection, the 𝐽 single forecasts are obtained and combined
(integration step). For a better understanding of the DESTC, Figure 13 illustrates the proposed
approach.
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Algorithm 1 Dynamic Ensemble Selection based on Trend Classification - DESTC
Require: 1

Training (𝑍𝑡𝑟) and validation (𝑍𝑣) sets
Pool of algorithms (𝑃 )
Window size (𝑤) for trend classification

Ensure: 2
Prediction 𝑍𝑤+𝑡 for new test instance 𝑍𝑡

// Training phase (a)
1: 𝑃𝑡 ← TrainPoolModels(𝑍𝑡𝑟, 𝑍𝑉 , 𝑃 )
2: 𝑇𝑣 ← TrendClassification(𝑍𝑣, 𝑤)
3: for each trend 𝜓 ∈ Ψ do
4: RankList𝜓 ← CreateRankLists(𝑃𝑡, 𝜓)
5: end for
// Test phase (b)
6: 𝜓current ← IdentifyCurrentTrend(𝑍𝑡, 𝑤)
7: 𝐽 ← GetModelsForTrend(𝑃𝑡,RankList𝜓, 𝜓current)
8: 𝑍𝑤+𝑡 ← Combine(J)
9: return 𝑍𝑤+𝑡

Trend 
classification

Create ranking 
lists

Training models
Pool 

models
P

Pt

Trend 
classification

Get model for 
trend

Forecast and 
Combination

Tv

Trend class

Zw

Zw

J models

Zw+n

Zv

Training (a)

Test (b)

Pt

Ztr , Zv
DB

Ranking lists: 
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Figure 13 – Flowchart of DESTC. The training phase (a) involves creating the pool (𝑃 ) based on the training
set (𝑍𝑡𝑟), and selecting the best models, by trend class, using the validation set (𝑍𝑣). In the test
phase (b), a new instance (𝑍𝑊 ) is classified according to its trend, and the best models (based
on the ranking list) are combined.
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4 EXPERIMENT A - COVID-19 TIME SERIES FORECASTING

The primary objective of this thesis is (i) to develop a new selection approach based on trend
classification to enhance the forecasting of COVID-19 incidence time series. Consequently, this
chapter aims to evaluate the proposed approach, DESTC. To illustrate the overall performance
of DESTC, this chapter presents an experiment focused on forecasting COVID-19 incidence
time series.

4.1 EXPERIMENTAL PROTOCOL

The experimental evaluation used eight time series from different countries. These time
series (Table 3) exhibit distinct statistical patterns, including minimum, maximum, average,
median, standard deviation, and coefficient of variation. Additionally, the temporal ranges (start
and end dates) vary across the datasets, allowing the proposed approach to be evaluated under
diverse scenarios. A 7-days rolling mean was applied in the original time series in order to reduce
the weekly seasonal effect (ZIVOT et al., 2003). This preprocessing step aims to highlight local
trends that happen in the COVID-19 incidence time series, minimizing the “weekend effect”
(SOUKHOVOLSKY et al., 2021). This effect occurs because the patients with initial symptoms
tend to go to hospitals only after the weekend. After that, the time series were normalized to
the interval [0.2, 0.8] and split following the temporal order into training (60%), validation
(25%), and test (15%) sets. Figures 14 and 15 present the time series training, validation, and
test sets.

Table 3 – Start and end dates, sample sizes, number of peaks (NP), minimum, maximum, average, median,
standard deviation (SD), and coefficient of variation (CV) from each time series used in the exper-
iments.

Country Start End Sample size NP Min. Max. Average Median SD CV(%)
Brazil 02/01/2020 10/31/2022 1003 4 0 189526 34876.8 30134.9 30468.1 87.4

Canada 04/01/2020 06/30/2022 820 5 273 42191 4800.1 3009.9 6330.7 131.9
France 02/01/2020 07/31/2022 911 4 0 354886 36095.3 15544.6 61566.5 170.6

Germany 02/01/2020 08/31/2022 942 4 1 233161 34234.1 11380.9 52059.7 152.1
Italy 02/01/2020 08/31/2022 942 4 0 181822 23249.1 11705.6 34255.5 147.3
Spain 05/01/2020 07/31/2022 821 5 289 141967 15895.3 9603.7 24097.7 151.6
UK 02/01/2020 07/31/2022 911 4 0 214687 25731.2 15511.5 32740.5 127.2
US 02/01/2020 10/31/2022 1003 4 0 809735 96289.1 64247.8 118586.2 123.2

In the modeling stage, a heterogeneous pool of fifty forecasting models was created to
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(a) Brazil. (b) Canada

(c) France (d) Germany

Figure 14 – Training (before red line), validation (between red and blue lines), and test (after blue line) sets
for COVID-19 incidence time series in Brazil, Canada, France, and Germany.

generate the ensembles. This pool size was determined based on preliminary studies using
validation sets, which indicated that, for these cases, increasing the number of models did not
lead to a significant change in the diversity of the pool and in the oracle’s RMSE.

The heterogeneous pool consists of seven single individual models: two classical time se-
ries models (ARIMA and ETS) and five other machine learning models, ELM, LSTM, MLP,
SVR, and Extreme Gradient Boosting (XGB). XGB is an algorithm based on gradient boosting
trees (CHEN; GUESTRIN, 2016; QIU et al., 2022; CHEN, 2015). Further, for increasing the diver-
sity of the 𝑃 pool, ELM models were created using different parameter combinations. This
modeling approach was chosen because ELM models have a lower computational training cost
compared to other training algorithms such as MLP and SVR (YAO; DAI; SONG, 2019).

Regarding DESTC, the trend classification task was performed using the Mann-Kendall
statistical test (MANN, 1945) (Section 2.1.1.1). This is a classic alternative, commonly applied
in literature. Other parameters such as the numbers of models for each trend class (ie., 𝑛𝑛𝑒𝑢𝑡𝑟𝑎𝑙,
𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, and 𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) and the combination method are presented in Table 4. These parameters
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(a) Italy (b) Spain

(c) UK (d) US

Figure 15 – Training (before red line), validation (between red and blue lines), and test (after blue line) sets
for COVID-19 incidence time series in Italy, Spain, UK, and US.

were selected through a grid search strategy.
Classical models (ARIMA and ETS (HYNDMAN; ATHANASOPOULOS, 2018)) are trained

without a validation step. Training and validation sets were joined for parametric estimation
for these models. The parameters of ML models (SVR, ELM, MLP, LSTM, and XGB) were
chosen by grid search (Table 4). The parameters used to train SVR, MLP, and LSTM models
are based on (OLIVEIRA; SILVA; DE MATTOS NETO, 2021; ADHIKARI; VERMA; KHANDELWAL,
2015). ELM and XGB models are trained based on (SONG; DAI, 2017).

Further, in order to compare DESTC with more recent techniques from literature, Trans-
formers (TSF) (HEATON, 2022) models were also implemented. These models have received
attention in recent years in the field of time series modeling and forecasting (HEATON, 2022).
In these experiments, TSF models are trained according to Heaton (2022).

Eight ensemble-based approaches were developed using the same 𝑃 pool of the DESTC.
Inspired by the literature (SILVA; DE MATTOS NETO; CAVALCANTI, 2021; MAALIW et al., 2021),
these ensembles were created to perform a more comprehensive comparison. Two non-trainable
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ensembles with average (eSA) and median (eSM), three trainable ensembles using ELM
(eELM), MLP (eMLP) (FERNANDES; EBECKEN; ESQUERDO, 2017), and SVR (eSVR) (DE MAT-

TOS NETO et al., 2021), three dynamic selection approaches to choose one model (DSLA), and
more than one predictor using average (DESLA𝑎) and median (DESLA𝑚) combinations (SILVA;

DE MATTOS NETO; CAVALCANTI, 2021). All parametric selections were based on grid search
(Table 4). It is important to mention that for all trainable ensembles (eELM, eMLP, and
eSVR), the combination model receives the forecasts of all models of the 𝑃 pool as input).

Three well-know Performance Measure (PM) were used to evaluate each model, Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Theil’s U (Equations 2.54,
2.55, and 2.56. Diebold–Mariano (DM) statistical test (DIEBOLD; MARIANO, 1991) was applied
to the residuals of the models to verify if there are (or not) statistical differences between the
proposed and alternative approaches. This test is a classic alternative for assessing the quality of
forecasting models (DIEBOLD, 2015; MOHAMMED; MOUSA, 2020). A 0.05 significance level was
considered. The null hypothesis of the DM test is that both models exhibit similar prediction
performances. Otherwise, the alternative hypothesis is that there is a difference between the
models forecasting performance. Additionally, the Bayesian signed-rank test (BENAVOLI et al.,
2017) was employed to comparatively evaluate the performance of the MPS in this experiment,
utilizing the Python package Autorank (HERBOLD, 2020).
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Table 4 – Grid search parameters used by model.

Models Parameters Values
ARIMA, SARIMA p, d, q, P, D, Q, Z (HYNDMAN; ATHANASOPOULOS, 2018)

ETS E, T, S (HYNDMAN; ATHANASOPOULOS, 2018)

SVR, eSVR

Lag 5, 7, 10
Kernel linear, radial
Gamma 0.01, 0.1, 1, 10, 100, 1000

Cost 0.01, 0.1, 1, 10, 100, 1000
Epsilon 0.0001, 0.001, 0.01

Tolerance 0.001

ELM, eELM
Lag 5, 7, 10

Activation function relu, tansig, rbf
Units in hidden layer 25, 50, 100, 150, 200

MLP, eMLP

Lag 5, 7, 10
Activation function sigmoid

Units in hidden layer 10, 15, 20
Algorithm adam

LSTM

Lag 5, 7, 10
Activation function relu

Units in hidden layer 10, 100, 500
Algorithm adam

TSF

Lag 5, 7, 10
Head size 5, 10, 20

Number of attention heads 1, 2, 4
Units in hidden layers 10, 25, 50, 100

DSLA
k 10, 20
n 1

Distance euclidian

DESLA𝑎

k 5, 10, 20, 25
n 5, 10, 20, 25

Combination method average
Distance euclidian

DESLA𝑚

k 5, 10, 20, 25
n 5, 10, 20, 25

Combination method median
Distance euclidian

DESTC

𝑛𝑛𝑒𝑢𝑡𝑟𝑎𝑙 3, 5, 10, 25
𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 3, 5, 10, 25
𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 3, 5, 10, 25

Combination method median, average

4.2 RESULTS

The results will be presented in two subsections. Initially, the pool generated for the con-
struction of the DESTC and other ensembles will be presented (Section 4.2.1). Following that,
the results regarding the performance of the models will be discussed (Section 4.2.2).

4.2.1 Pool generation

The pools generated for the eight COVID-19 time series incidence used in this experiment
are presented in Figures 16 and 17 (validation sets). Black lines represent the observed values
of a time series, while the gray are the forecasts generated by the models contained within the
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respective pool.
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Figure 16 – Generated pools (validation sets) for Brazil, Canada, France, and Germany time series.

In general, it can be observed that the pools contain a diversity of models, although some
of them may lack predictive capability, as they underestimate the series (predicted values
lower than the actual ones). The observed behavior is likely attributed to the absence of
the temporal pattern from the validation set in the training set (Figures 14 and 15). This
phenomenon, prevalent during the COVID-19 pandemic, was a primary factor contributing to
the poor performance of forecasting models. However, in all cases, it is possible to observe the
presence of models that adequately followed the growth and decline of the curves in the time
series. Consequently, if the dynamic selectors are able to appropriately select these models, the
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accuracy of the forecasting results is expected to improve.
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Figure 17 – Generated pools (validation sets) for Italy, Spain, UK, and USA time series.

Moreover, Figures 18 and 19 show the ambiguity term and the RMSE across all cases. All
cases exhibit a similar behavior. Initially, the ambiguity term increases as the number of models
in the pool rises. This ascent levels off around the 30 models. This suggests that the diversity
of the pool increases up to approximately thirty models; beyond this point, the ambiguity term
either decreases (Brazil, France, Spain, UK, and USA) or stabilizes (Canada, Germany, and
Italy).

The Oracle’s RMSE exhibits an inverse relationship with the number of models. The Oracle
represents the highest accuracy achievable by the pool, as it chooses the forecast that is closest
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to each point in the test sample (OLIVEIRA; SILVA; DE MATTOS NETO, 2021). Initially, the RMSE
values exhibit a consistent decline until reaching approximately 30 models. Beyond this point,
the RMSE stabilizes, indicating that adding more models does not significantly enhance the
Oracle’s performance. Consequently, systems employing dynamic selection strategies are likely
to exhibit a stabilized performance.
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Figure 18 – Ambiguity term and RMSE of the Oracle for pools with 50 models in Brazil, Canada, France, and
Germany time series.
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(b) Spain
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Figure 19 – Ambiguity term and RMSE of the Oracle for pools with 50 models in Italy, Spain, UK, and USA
time series.

4.2.2 Results

Tables 5 and 6 present the comparison of DESTC with single models and ensemble-based
approaches. Table 5 shows RMSE, MAE, and Theil’s U values achieved by DESTC and single
models (ARIMA, ETS, SVR, ELM, MLP, LSTM, and TSF) and XGB for eight time series of
COVID-19 incidence. DESTC demonstrated superior performance compared to single models,
especially in the time series of Brazil, France, Germany, and US, in which the proposed approach
achieved better values in most performance measures.
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DESTC demonstrated good accuracy but did not excel across all performance metrics for
the time series data from Italy and the UK, ranking among the top-performing models. These
results show that the proposed approach was able to model better the different behaviors of
COVID-19 incidence than the single models. Indeed, the results show that no literature model
attained a consistent performance in all considered data sets.

Table 5 – Performance measures (RMSE, MAE, and Theil’s U) for proposed approach (DESTC) and literature
models (ARIMA, ETS, SVR, ELM, XGB, LSTM, MLP, and TSF) on test set. Bold values represent
the top performance across all models by time series, while underlined values denote the second
best performance.

Countries Metrics ARIMA ETS SVR ELM LSTM MLP TSF DESTC

Brazil
RMSE 2187.5 2104.4 1877.4 2070.5 2169.8 2056.3 1956.2 1806.4
MAE 1124.6 1122.8 1061.3 1056.5 1140.9 1080.0 1021.3 1024.0

Theil’s U 1.081 1.000 0.750 0.969 1.062 0.955 0.875 0.736

Canada
RMSE 398.90 372.31 428.21 606.91 432.41 485.50 356.20 377.28
MAE 220.83 201.98 247.18 356.82 258.45 355.02 208.17 204.35

Theil’s U 1.150 1.003 1.326 2.666 1.347 1.704 0.9517 1.020

France
RMSE 3898.1 3879.9 4122.8 4070.4 4987.9 14250.8 3702.4 3655.6
MAE 2395.3 2461.5 2518.4 2446.6 3242.5 10175.3 2308.1 2222.9

Theil’s U 0.743 0.736 0.8313 0.810 1.215 9.746 0.658 0.653

Germany
RMSE 2814.4 2736.7 2982.9 2851.9 6802.8 17328.5 3223.5 2426.6
MAE 1975.2 1515.0 1693.2 1721.0 5204.8 13405.2 1913.6 1554.7

Theil’s U 0.864 0.797 0.929 0.891 4.990 32.598 1.088 0.627

Italy
RMSE 1725.3 1687.0 1581.1 2202.9 3948.9 5546.9 1764.5 1621.5
MAE 1060.1 935.3 1018.8 1563.6 3213.5 3678.1 1205.8 1071.3

Theil’s U 0.528 0.511 0.446 0.863 2.739 5.444 0.477 0.459

Spain
RMSE 1984.0 1498.7 1371.6 1889.4 1264.1 1608.1 1287.4 1449.5
MAE 1154.4 775.4 718.4 1040.6 696.7 989.7 664.1 811.9

Theil’s U 2.426 1.384 1.1593 2.199 0.985 1.593 1.065 1.295

UK
RMSE 451.7 419.9 362.0 320.5 2629.5 3069.0 479.1 369.8
MAE 265.1 243.7 214.0 228.0 2504.6 2340.8 306.9 227.0

Theil’s U 0.107 0.093 0.070 0.055 3.557 4.871 0.123 0.073

US
RMSE 6456.6 5934.1 6254.2 6043.8 5547.8 5908.5 5448.9 5012.9
MAE 2781.0 2554.1 2724.9 2671.8 2422.9 4283.7 2444.9 2414.3

Theil’s U 1.451 1.225 1.361 1.271 1.071 1.214 1.069 0.873

Table 6 shows the performance measures of DESTC, static ensembles (eSA, eSM, eSVR,
eELM, eMLP), and dynamic ensembles (DSLA, DESLA𝑚, and DESLA𝑎). Compared with
ensemble-based approaches, DESTC achieved the best overall performance. For the Canada
series, eSA attained the best RMSE, and Theil’U values, while eSM obtained the best MAE
value. In general terms, the DESLA𝑚 and DESLA𝑎 were competitive alternatives. These find-
ings corroborate the hypothesis that the forecasting approaches based on dynamic selection
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Table 6 – Performance measures (RMSE, MAE, and Theil’s U) for proposed approach (DESTC), static en-
semble models (eSA, eSM, eSVR, eELM, eSVR, eMLP), and dynamic selection ensembles (DSLA,
DESLA𝑚, DESLA𝑎) on test set. Bold values represent the top performance across all models by
time series, while underlined values denote the second best performance.

Countries Metrics eSA eSM eSVR eELM eMLP DSLA DESLAm DESLAa DESTC

Brazil
RMSE 2138.0 2166.4 14047.7 5592.4 67805.2 2096.1 2065.3 1882.8 1806.4
MAE 1399.5 1206.9 12420.8 4167.7 40961.9 1077.9 1058.1 1047.2 1024.0
Theil 1.033 1.060 44.584 7.048 1038.255 0.993 0.964 0.801 0.736

Canada
RMSE 369.76 371.62 846.76 1263.96 13526.40 397.40 371.47 374.17 377.28
MAE 205.51 202.86 611.93 939.32 7944.37 227.40 210.41 211.30 204.35
Theil 0.989 0.998 5.188 11.504 1288.694 1.141 0.998 1.012 1.020

France
RMSE 13103.3 9947.6 27052.9 47515.3 90595.1 3887.1 3661.4 10710.2 3655.6
MAE 9582.8 7124.3 18039.6 31050.5 67933.8 2529.7 2364.9 7721.5 2222.9
Theil 8.263 4.770 34.801 110.424 380.543 0.739 0.656 5.545 0.653

Germany
RMSE 20860.5 20978.7 16403.0 20430.6 52859.9 54661.3 6620.3 16975.8 2426.6
MAE 16754.9 16095.1 13966.0 15708.0 45064.2 44597.7 4551.0 13604.1 1554.7
Theil 47.379 48.087 30.460 46.509 312.918 328.679 4.713 31.447 0.627

Italy
RMSE 8162.9 6358.0 29795.3 6899.9 77833.9 15182.6 10658.1 9479.3 1621.5
MAE 5063.2 3911.4 24307.2 5426.4 61505.2 9183.3 6779.7 5979.2 1071.3
Theil 11.842 7.141 155.900 8.540 1086.775 41.028 20.211 15.968 0.459

Spain
RMSE 1504.3 1480.5 3978.6 5663.6 64790.5 1629.2 1583.9 1581.3 1449.5
MAE 842.50 817.89 3018.53 3956.17 48282.18 879.67 870.79 888.97 811.87
Theil 1.395 1.351 9.753 19.768 2585.126 1.636 1.546 1.541 1.295

UK
RMSE 573.46 631.69 49133.57 9206.22 69567.07 2629.47 667.70 469.63 369.80
MAE 298.81 288.97 37852.36 6633.53 53323.33 2504.55 329.33 325.68 226.97
Theil 0.129 0.143 1290.801 42.867 2588.047 3.557 0.183 0.114 0.073

US
RMSE 5544.7 5894.2 21868.5 6814.7 295974.5 5547.8 5752.0 5672.5 5012.9
MAE 2548.7 2631.8 14275.5 4713.8 199947.4 2422.9 2578.8 2572.1 2414.3
Theil 1.070 1.209 16.555 1.608 3047.480 1.071 1.151 1.120 0.873

can be a fruitful alternative to deal with time series that present local regimes with distinct
behavior.

Table 7 presents the PD between proposed approach and single and ensemble models ac-
cording to Equation 2.58. Overall, DESTC stands out as one of the most consistent forecasting
methods considering the experiments conducted. Most of the gains achieved by the DESTC
had significant percentage difference values. This behavior can be seen in the average and
median of the percentage difference. The percentage difference in all analyzed data sets was
positive, with average values higher than 10% in 14 out of 15 comparisons.

Figure 20 apresent the boxplots of the ARM of the DESTC against single and ensemble
models. For this calculation, the models were ranked according to Equation 2.57 (ARM)
considering RMSE, MAE, and Theil’s U values. The lower the ARM, the better the model
performance is. For example, in the France series, DESTC attained rank 1 for four performance
measures, so its ARM is 1. The proposed approach presented better performance with lower
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Table 7 – Percentage difference (PD) according to Equation 2.58 between DESTC approach and literature
models. Bold values indicate models that were more competitive compared to DESTC. Negative
values indicate that the compared model outperformed DESTC.

Model Brazil Canada France Germany Italy Spain UK US Average Median SD
ARIMA 17.42 5.42 6.22 13.78 6.02 26.94 18.12 22.36 14.54 15.60 8.12

ETS 14.16 -1.33 5.78 11.33 3.88 3.28 11.94 15.52 8.07 8.56 6.00
SVR 3.78 11.89 11.33 18.65 -2.55 -5.68 -2.15 19.85 6.89 7.56 9.92
ELM 12.76 37.84 10.19 14.92 26.39 23.28 -15.37 17.06 15.88 15.99 15.44

LSTM 16.75 12.75 26.71 64.33 58.94 -14.67 85.94 9.64 32.55 21.73 33.78
MLP 12.15 22.29 74.35 86.00 70.77 9.86 87.95 15.16 47.32 46.53 35.31
TSF 7.66 -5.92 1.26 24.72 8.11 -12.60 22.81 8.00 6.76 7.83 12.82
eSA 15.51 -2.03 72.10 88.37 80.14 3.64 35.51 9.59 37.85 25.51 36.99
eSM 16.62 -1.52 63.25 88.43 74.50 2.09 41.46 14.95 37.47 29.04 34.56
eSVR 87.14 55.44 86.49 85.21 94.56 63.57 99.25 77.08 81.09 85.85 15.00
eELM 67.70 70.15 92.31 88.12 76.50 74.41 95.98 26.44 73.95 75.45 21.85
eMLP 97.34 97.21 95.96 95.41 97.92 97.76 99.47 98.31 97.42 97.55 1.28
DSLA 13.82 5.06 5.96 95.56 89.32 11.03 85.94 9.64 39.54 12.43 42.18

DESLAm 12.54 -1.57 0.16 63.35 84.79 8.48 44.62 12.85 28.15 12.69 32.18
DESLAa 4.06 -0.83 65.87 85.71 82.89 8.33 21.26 11.63 34.86 16.44 36.85

median and standard deviation. Among the single models from the literature, TSF reached the
best performance. The figure shows a consistent better performance of the proposed approach
compared to ensemble-based models. Also, it is possible to note that the dynamic selection
methods achieved good results among ensemble-based models. This result shows that the
DESTC achieved a more stable performance, being able to adapt to different regimes and
patterns present in the COVID-19 incidence time series.
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Figure 20 – Boxplot of ARM for single models and ensembles.

Table 8 shows the results of the Diebold-Mariano tests from the comparison of the residuals
of the models to verify the statistical difference between the proposed approach and other
MPSs. In this case, there is statistical evidence that DESTC achieved superior results compared
to other algorithms. Additionally, Table 9 presents paired comparisons using the Bayesian
signed rank test, where DESTC also demonstrated better predictive performance than other
forecasting alternatives. These findings underscore the superior forecasting performance of
DESTC for COVID-19 time series incidence.

Table 8 – Paired comparison between residuals of the MPSs using Diebold-Mariano test (𝛼 = 5%)(rows versus
columns). “+” in red (“−” in blue) indicates that the model listed in the row is better (worse) than
the one listed in the column. “=” indicates that there is no statistical difference.

Models DESTC DESLAa DESLAm eSA eSM DSLA eELM eMLP eSVR
DESTC = + + + + + + + +

DESLAm - + = + + + + + +
DESLAa - = - + + + + + +

eSA - - - = - + + + +
eSM - - - + = + + + +

DSLA - - - - - = = + +
eELM - - - - - = = + +
eSVR - - - - - - - + =
eMLP - - - - - - - = -
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Table 9 – Paired comparison between MPSs using the Bayesian signed rank test (rows versus columns). “+”
in red (“−” in blue) indicates that the model listed in the row is better (worse) than the one listed
in the column. “=” indicates that there is no difference.

ARM DESTC DESLAm DESLAa eSM eSA DSLA eELM eSVR eMLP
DESTC = + + + + + + + +

DESLAm - = = = = + + + +
DESLAa - = = = = = + + +

eSM - = = = = = + + +
eSA - = = = = = + + +

DSLA - - = = = = + + +
eELM - - - - - - = = +
eSVR - - - - - - = = +
eMLP - - - - - - - - =

Finally, Figure 21 shows the computational (processing) time during the test phase, in
seconds, for the four implemented dynamic models (DSLA, DESLA𝑎, DESLA𝑚, and DESTC).
In this context, processing time refers to the duration required for a previously trained model
to generate predictions on the test set. Figure 21(a) presents the processing time by time
series and Figure 21(b) shows the results by model. The proposed approach demonstrated the
shortest computational processing time across all evaluated cases. The difference is significantly
larger because the DSLA, DESLA𝑎, and DESLA𝑚 methods select models based on a RoC
constructed using similarity calculations between test instances and all those in the validation
set. Meanwhile, DESTC simply calculates the trend of the instance and selects the models
based on this information.

(a) Processing time by time series. (b) Boxplot of processing time by DS models.

Figure 21 – Processing time (in seconds) of test phase by time series.
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4.3 DISCUSSION

Forecasting COVID-19 incidence presents a significant challenge. One notable aspect of
these series is the presence of trend cycles, which highlight the distinct phases of the pandemic.
In this context, an innovative method, DESTC, was proposed to address this dynamic.

From the conducted experiments, it can be observed that DESTC emerges as a compet-
itive forecasting alternative when dealing with COVID-19 incidence time series. Performance
measures demonstrate that for the modeled series, DESTC ranked among the top approaches
in nearly all cases. Unlike single models, the proposal can adapt to the trend changes observed
in the COVID-19 incidence time series, choosing specific models for each trend class, which
justifies the superior performance for the presented cases.

Figures 22 and 23 present a detailed analysis of the trend in the time series of incidence
in France and Germany, considering the validation and test sets. In the figures, colored ver-
tical bars represent the Sen’s Slope estimator (right y-axis), calculated based on the last 10
observations of each instance. Additionally, the trend for each instance was estimated using
the Mann-Kendall test. The observations of the time series are also showed (left y-axis). Blue,
red, and green bars indicate increasing, decreasing, and no trend, respectively. In both cases,
for which the DESTC achieved good predictive performance (see Tables 5 and 6), it can be
observed that the trend detection method was able to track the changes in the time series.

Figure 22 – Trend analysis based on Sen’s Slope estimator and Mann-Kendall statistical test to France time
series.
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Figure 23 – Trend analysis based on Sen’s Slope estimator and Mann-Kendall statistical test to Germany time
series.

On the other hand, Figures 24 and 25 show the time series related to the cases in Spain
and the Canada, two of the most challenging cases for the DESTC (see Tables 5 and 6). In the
case of Spain (Figure 24), it is apparent that, despite the alternation between trend classes,
a pronounced discrepancy exists in the pattern observed between the validation set (prior to
the gray vertical line) and the test set (after gray vertical line). The case of Canada is also
important, as despite an apparent negative trend in the test set (from index observations 250
to 300), the Mann-Kendall test was not able to classify correctly (the bars should be red, but
they are green). This case is similar to the one presented in the Section 2.1.1.1, Figure 4(a),
where the Mann-Kendall test was unable to correctly classify the trend of a time series with
noise, once H0 is not rejected even with an apparent trend. In these cases, it appears that the
DESTC was not able to appropriately select the best models.
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Figure 24 – Trend analysis based on Sen’s Slope estimator and Mann-Kendall statistical test to Spain time
series.

Figure 25 – Trend analysis based on Sen’s Slope estimator and Mann-Kendall statistical test to Canada time
series.

Besides, in order to enhance comprehension and facilitate a detailed analysis of the DESTC
functioning, Table 10 shows the number of the validation (𝑍𝑣) and test (𝑍𝑡) samples classified
by DESTC into decreasing, increasing, and no trends for two specific cases (Italy and Canada).
These cases were chosen because they presented different behaviors in the data sets. For each
country, the average rank of the models selected by DESTC for each concept was calculated.
This rank corresponds to the RMSE value of all pool models in the 𝑍𝑡 set. So, the rank
varies in the range [1, 50], where the lower the rank, the better the performance of the
model regarding the pool. In Italy, the proposed approach was notably very effective once it
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successfully identified, during the training phase, the most promising models for combination in
the testing phase. The average rank, jointly with performance values (Tables 5 and 6), shows
that DESTC selected accurate models for the three concepts. On the other hand, DESTC
did not select the best models for the Canada series. Only for decreasing concept, DESTC
obtained a low average rank value. For increasing and no trend concepts, DESTC obtaining a
high average rank of 33.7 and 36.8, respectively.

Table 10 – Average rank of the selected models in test set (𝑍𝑡) by trend class to Italy and Canada time series.
Length column shows the number of instances classified by trend class in validation set (𝑍𝑣) and
𝑍𝑡.

Country Trend
Length

Average rank
𝑍𝑣 𝑍𝑡

Italy
Decreasing 99 72 13.7
Increasing 108 39 8.0

None 17 20 9.1

Canada
Decreasing 82 64 9.6
Increasing 89 22 33.7

None 23 26 36.8

Figures 26(a) and 26(b) show the DESCT (red lines) in the test sets of France and
Italy, respectively, in comparison to the observed values (black lines) and the generated pools
(gray lines). In both scenarios, the generated pool exhibited diversity and DESTC effectively
selecting the models for combination. Regarding Italian case (Figure 26(b)), the generated
pool seems to underestimate the observed values (most gray lines are below the black one).
This pattern suggests that the majority of individual models did not adequately capture the
peak of the pandemic. Furthermore, it is also associated with the low accuracy of the combined
models utilized in this study (Table 6), once they tend to underestimate the forecasts. Hence,
despite DESTC being able to make accurate predictions, enhancing the diversity of pools could
potentially amplify its accuracy.

Additionally, it is important to address the underperformance of the dynamic models em-
ployed in the experiment (DSLA, DESLAa, and DESLAm). These models depend on a similarity
measure to construct RoCs (SILVA; DE MATTOS NETO; CAVALCANTI, 2021). However, the sig-
nificant differences between the validation and test sets may explain why these alternatives
performed poorly. The chosen similarity measure might not have been able to accurately iden-
tify the most similar instances, thereby compromising the overall system performance. Thus,
the proposed method represents a valuable alternative to the problem under consideration



85

(a) DESCT in France. (b) DESCT in Italy.

Figure 26 – Comparison of DESTC model (red lines) performance in the test sets of France (a) and Italy (b),
alongside the observed values (black lines) and the generated pools (gray lines).

since it selects the best models not relying on a similarity measure but rather based on a trend
classification.

In this study, ETS was one of the most competitive models. The performance of this
approach in predicting time series related to COVID-19 has been discussed in literature
(PETROPOULOS; MAKRIDAKIS; STYLIANOU, 2022; LARABI-MARIE-SAINTE et al., 2022). With re-
spect to ensemble methods, eSA and eSM showed the best results, while those based on ML
(eSVR, eELM, and eMLP) had the worst.

In terms of processing time, DESTC exhibited the lowest result for all modeled time series
when compared to the other dynamic models. This occurs because constructing regions of
competence based on similarity measures (as done in DSLA, DESLA𝑎, and DESLA𝑚) is
computationally more costly than selecting models based on their trend classes (as done in
the case of DESTC).

Thus, the proposed forecasting approach, DESTC, was able to improve the forecast of
COVID-19 incidence when compared to alternatives from the literature. It should be noted
that this is one of the first studies that address the adoption of DS and DES techniques to
COVID-19 time series forecast.

Regarding limitations, two points warrant discussion. Firstly, as illustrated by the case of
Canada, DESTC did not consistently identify the most appropriate models for combination. In
this instance, the time series structure changed significantly enough that the optimal models
for each trend class also shifted. Thus, relying solely on trend classes for selection proved
ineffective in ensuring model accuracy. Secondly, the parameters used in DESTC (Table 4) are
selected through a validation step; however, the validation patterns can be different from those
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of testing. In this case, exploring alternatives to improve model selection phase is necessary.
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5 EXPERIMENT B - DIVERSE TIMES SERIES FORECASTING

This chapter aims to address the second main objective of this thesis: (ii) to assess the
applicability of this new approach in time series from other domains. DESTC dynamically
selects the best models for different trend classes and optimally combines them, ensuring
more accurate forecasts. In the context, DESTC will be evaluated using 10 time series from
diverse phenomena (social, economic, and environmental).

5.1 EXPERIMENTAL PROTOCOL

Ten time series representing diverse phenomena and with distinct statistical patterns were
utilized in this experiment (Table 11). The first three refer to monthly wildfire spots in the
Brazilian states of Alagoas (WDF-AL, Figure 27), Bahia (WDF-BA, Figure 28), and Ceará
(WDF-CE, Figure 29). These time series were obtained from the Wildfire Monitoring Program
of the Instituto Nacional de Pesquisas Espaciais (INPE) (INPE, 2024). Additionally, two other
environmental time series were used: the Canadian lynx series (LYNX, Figure 30), a well-known
historical dataset recording the annual number of lynx collected by the Hudson’s Bay Company
in Canada (CAMPBELL; WALKER, 1977), and the sunspot time series (SUNS, Figure 31), which
tracks the number of sunspots observed on the surface of the sun over time (SILSO, 2024).
Following, two economic time series were used, referring to the weekly opening prices of ITSA4
(Figure 32) and NASDAQ (Figure 33) stocks. Both economic series were obtained from Yahoo
Finance (Yahoo Finance, 2024). Lastly, time series of dengue incidence in Ceará (DEN-CE, 34)
and Iquitos (DEN-IQ, 35) (BENEDUM et al., 2020), and mumps in New York were used (MUC,
36) (DETHLEFSEN; LUNDBYE-CHRISTENSEN, 2006).

The WDF-AL, WDF-BA, and WDF-CE time series exhibit seasonal patterns, though the
first series is notably noisier and with lower maximum and minimum values. In turn, LYNX
and SUNS time series are characterized as cyclic time series due to the unclear presence of
seasonality. Both the ITSA4 and NASDAQ time series show no distinct trend or seasonality
behavior, resembling more of a random walk. DEN-CE and DEN-IQ present substantial vari-
ability in their values, lacking any discernible trend or seasonality. Lastly, the MUC time series
displays considerable variability, showing alternating cycles of trend.
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Table 11 – Description of the time series used for modeling and forecasting. Stationarity was evaluated using
the Dickey-Fuller hypothesis test assuming a significance level of 5%.

Time series Length Min Max Mean Median STD Time unit Stationarity
WDF-AL 288 1 153.0 21.5 12.5 24.9 Monthly Stationary
WDF-BA 288 4 10076.0 1036.6 303.5 1776.8 Monthly Stationary
WDF-CE 288 1 4816.0 437.6 56.5 806.9 Monthly Non-stationary

LYNX 114 39 6991.0 1538.0 771.0 1585.8 Yearly Stationary
SUNS 315 0 190.2 49.7 40.0 40.2 Yearly Stationary
ITSA4 229 0 11.6 8.6 8.5 1.1 Weekly Non-stationary

NASDAQ 264 6847.2 16601.0 12124.8 12266.4 2514.2 Weekly Non-stationary
DEN-CE 216 66 29665.0 4517.3 2525.0 5413.9 Monthly Non-stationary
DEN-IQ 598 0 116.0 8.5 5.0 11.9 Weekly Stationary

MUC 534 20 1956.0 487.7 355.0 384.3 Monthly Stationary
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Figure 27 – WDF-AL time series.



89

2000 2004 2008 2012 2016 2020 2024
Time

0

2000

4000

6000

8000

10000

Va
lu

es

Figure 28 – WDF-BA time series.
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Figure 29 – WDF-CE time series.
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Figure 30 – LYNX time series.
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Figure 31 – SUNS time series.
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Figure 32 – ITSA4 time series.
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Figure 33 – NASDAQ time series.
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Figure 34 – DEN-CE time series.
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Figure 35 – DEN-IQ time series.
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Figure 36 – MUC time series.

In the preprocessing stage, the time series were initially split in temporal order into training
(60%), validation (25%), and test (15%) sets. Subsequently, they were normalized to the
interval [0.2, 0.8] using the maximum and minimum values from the training and validation
sets. In the modeling stage, a mixed pool of 70 forecasting models was created to generate the
ensembles. The number of models selected was based on preliminary tests using the validation
sets. The heterogeneous pool consists of six distinct single models: two classical time series
models (ARIMA and ETS) and four other machine learning models, ELM, LSTM, MLP, and
SVR. Further, for increasing the diversity of the 𝑃 pool, ELM models were created using
different hyperparameter combinations (Table 12). ELM was chosen due to its computational
cost advantages.

Regarding DESTC, the trend classification task was performed using the Mann-Kendall
statistical test (MANN, 1945) (Section 2.1.1.1). Other parameters such as the number of mod-
els for each trend class (ie., 𝑛𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, and 𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒), combination method and lag
size are presented in Table 12. These parameters were selected through a grid search strategy.
Classical models (ARIMA and ETS (HYNDMAN; ATHANASOPOULOS, 2018)) are trained with-
out a validation step. In these cases, training and validation sets were joined for parametric
estimation. The parameters of ML models (SVR, ELM, MLP, and LSTM) were chosen by grid
search (Table 12). The parameters used to train SVR, MLP, and LSTM models are based on
(OLIVEIRA; SILVA; DE MATTOS NETO, 2021; ADHIKARI; VERMA; KHANDELWAL, 2015). Further,
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in order to compare DESTC with more recent techniques from literature, TSF models were
also trained (HEATON, 2022).

Seven ensemble-based approaches were developed using the same 𝑃 pool of the DESTC.
Inspired by the literature (SILVA; DE MATTOS NETO; CAVALCANTI, 2021; MAALIW et al., 2021;
SANTOS JUNIOR et al., 2022), these ensembles were created to perform a more comprehensive
comparison. Two non-trainable ensembles with average (eSA) and median (eSM), three train-
able ensembles using ELM (eELM), MLP (eMLP) (FERNANDES; EBECKEN; ESQUERDO, 2017),
and SVR (eSVR) (DE MATTOS NETO et al., 2021). Regarding DS approaches, two algorithms
were used: the first selects only one model for forecasting (DSLA), while the second, DESLA,
selects multiple models and combines them through average, median or mode. This mod-
eling approach differs from Experiment A (Section 4), in which two methods, DESLA𝑎 and
DESLA𝑚, combined results based on average and median, respectively. Here, the combination
method is a parameter to be optimized in the grid search, with the possibilities being: average,
median, and mode. The mode combination method was based by Kourentzes, Barrow and
Crone (2014) and this strategy was presented in Sales et al. (2023). Additionally, a baseline
model was constructed by combining the top 𝐽 models (regarding RMSE) without employing
trend class-based selection. This will help understand whether trend classification contributes
to the final performance or not. All parametric selections were based on grid search (Table
12).

RMSE (Equations 2.54), MAE (Equation 2.55), and Theil’s U (Equation 2.56) were used to
assess the quality of the model forecasts. Just like in Experiment A (Chapter 4), the Bayesian
signed rank test was chosen to comparatively evaluate the performance of the MPSs in this
experiment. The Python package Autorank was used (HERBOLD, 2020).
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Table 12 – Grid search parameters used by model.

Models Parameters Values
ARIMA, SARIMA p, d, q, P, D, Q, Z (HYNDMAN; ATHANASOPOULOS, 2018)

ETS E, T, S (HYNDMAN; ATHANASOPOULOS, 2018)

SVR, eSVR

Lag 5, 7, 10
Kernel linear, radial
Gamma 0.01, 0.1, 1, 10, 100, 1000

Cost 0.01, 0.1, 1, 10, 100, 1000
Epsilon 0.0001, 0.001, 0.01

Tolerance 0.001

ELM, eELM
Lag 5, 7, 10

Activation function relu, tansig, rbf
Units in hidden layer 10, 15, 20, 25, 50, 100, 150, 200

MLP, eMLP

Lag 5, 7, 10
Activation function sigmoid

Units in hidden layer 10, 15, 20
Algorithm adam

LSTM

Lag 5, 7, 10
Activation function relu

Units in hidden layer 10, 100, 500
Algorithm adam

TSF

Lag 5, 7, 10
Head size 5, 10, 20

Number of attention heads 1, 2, 4
Units in hidden layers 10, 25, 50, 100

DSLA
k 10
n 1

Distance euclidian

DESLA

k 10, 20
n 3, 5, 10

Combination method median, average, mode
Distance euclidian

DESTC

𝑛𝑛𝑒𝑢𝑡𝑟𝑎𝑙 3, 5, 10
𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 3, 5, 10
𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 3, 5, 10

Combination method median, average, mode

5.2 RESULTS

Below, the results regarding the generation of the pool for each of the analyzed time series
and the predictive performance of the proposed models will be presented.

5.2.1 Pool generation

Figures 37 to 45 present the pool generated for each time series as well as the ambiguity
term and the RMSE of the oracle. In contrast to the previous experiment (Experiment A -
Chaper 4), which focuses solely on COVID-19 incidence series, it is observed that the ambiguity
term and the oracle RMSE tend to reach a plateau after the inclusion of 30 models, particularly
noticeable for the final two time series analyzed: DEN-CE and DEN-IQ. This observation
suggests that, for these specific time series, a greater number of models than in Experiment A



96

(Chapter 4) may be necessary for the dynamic selection system to achieve improved predictive
performance.
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(a) WDF-AL pool.
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(b) Ambiguity term and RMSE of the oracle.

Figure 37 – Pool generated for WDF-AL time series as well as the ambiguity term and the RMSE of the oracle
(validation set).
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(a) WDF-BA pool.
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(b) Ambiguity term and RMSE of the oracle.

Figure 38 – Pool generated for WDF-BA time series as well as the ambiguity term and the RMSE of the oracle
(validation set).
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(a) WDF-CE pool.
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(b) Ambiguity term and RMSE of the oracle.

Figure 39 – Pool generated for WDF-CE time series as well as the ambiguity term and the RMSE of the oracle
(validation set).
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(a) LYNX pool.
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Figure 40 – Pool generated for LYNX time series as well as the ambiguity term and the RMSE of the oracle
(validation set).
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(a) SUNS pool.
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(b) Ambiguity term and RMSE of the oracle.

Figure 41 – Pool generated for SUNS time series as well as the ambiguity term and the RMSE of the oracle
(validation set).
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(a) ITSA4 pool.
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Figure 42 – Pool generated for ITSA4 time series as well as the ambiguity term and the RMSE of the oracle
(validation set).
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(a) NASDAQ pool.
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Figure 43 – Pool generated for NASDAQ time series as well as the ambiguity term and the RMSE of the oracle
(validation set).
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(a) DEN-IQ pool.
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(b) Ambiguity term and RMSE of the oracle.

Figure 44 – Pool generated for DEN-IQ time series as well as the ambiguity term and the RMSE of the oracle
(validation set).
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(a) DEN-CE pool.
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Figure 45 – Pool generated for DEN-CE time series as well as the ambiguity term and the RMSE of the oracle
(validation set).

5.2.2 Results

Tables 13 and 14 present the comparison of DESTC with single models and ensemble-based
approaches in terms of RMSE, MAE, and Theil’s U. Additionally, both Tables also present the
rank of DESTC for each of the evaluated cases. Regarding single models (Table 13), DESTC
achieved a TOP 3 rank in 6 out of 10 cases (WDF-AL, WDF-BA, WDF-CE, LYNX, SUNS
and MUC) but was the best (rank 1 to all PM) in only two cases: WDF-BA and WDF-CE.

Table 14 shows the performance measures of DESTC, static ensembles (eSA, eSM, eSVR,
eELM, eMLP, BL), and dynamic ensembles (DSLA and DESLA). In this case, DESTC was in
the TOP 3 best combination alternatives in 6 out of 10 cases. Further, whether compared with
single or ensemble models, DESTC demonstrated good average performance, showing strong
predictive capabilities. The series with the poorest metrics were the financial ones (ITSA4
and NASDAQ), for which no predictive model achieved a Theil’s U lower than 0.85. In these
particular cases, most ensemble models yielded poor results.
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Table 13 – Performance measures (RMSE, MAE, and Theil’s U) for proposed approach (DESTC) and litera-
ture models (ARIMA, ETS, SVR, ELM, LSTM, MLP) on test set. Bold values represent the top
performance across all models by time series, while underlined values denote the second best per-
formance. RDESTC represents the rankings of the proposed approaches compared to other models.

Time series PM ARIMA ETS SVR ELM LSTM MLP TSF DESTC RDESTC

WDF-AL
RMSE 9.506 9.804 8.478 10.384 12.491 8.831 10.008 9.026 3
MAE 7.988 7.212 6.402 7.885 10.14 6.941 8.015 6.797 2

Theil’s U 0.916 1.000 0.759 1.122 1.646 0.824 0.89 0.851 3

WDF-BA
RMSE 1255.5 1680.9 1319.8 1230.7 1237.2 1348.6 1170.5 1081 1
MAE 828.2 925.3 678.2 759.7 754.1 1031.8 669.5 665.4 1

Theil’s U 0.65 1.172 0.722 0.622 0.633 0.742 0.619 0.485 1

WDF-CE
RMSE 302.4 380.6 206.6 202.6 418.6 634.5 228.3 163.6 1
MAE 272.1 208.7 114.1 111.4 240.6 585 138.2 107.3 1

Theil’s U 0.709 1.141 0.336 0.323 1.381 3.09 0.411 0.211 1

LYNX
RMSE 404.5 571.9 438 278.6 812.3 554.5 632.9 317.4 2
MAE 321.6 474.3 357.7 243.8 668.6 456.7 439.1 213.2 1

Theil’s U 0.381 0.324 0.473 0.149 1.624 0.592 0.433 0.250 2

SUNS
RMSE 20.5 30.6 19.1 17.00 19.00 22.7 16.7 15.9 1
MAE 16.2 23.6 15.5 13.5 14.4 16.7 12.9 12.0 1

Theil’s U 0.431 1 0.384 0.294 0.354 0.525 0.315 0.296 2

ITSA4
RMSE 2.022 2.025 1.988 1.98 1.963 1.976 0.408 2.011 6
MAE 0.582 0.572 0.789 0.817 0.582 0.629 0.345 0.658 6

Theil’s U 0.997 1.000 0.963 0.955 0.94 0.953 3.529 0.986 5

NASDAQ
RMSE 336.9 337.4 325.6 341.4 334.3 424.1 338.7 367.9 7
MAE 270.9 274 263.6 271.5 235.5 363.6 271.6 309.2 7

Theil’s U 1.000 1.001 0.924 1.023 0.862 1.39 0.978 1.156 7

DEN-CE
RMSE 3716.2 4800.5 4827.6 2548.1 4075.1 4841.6 2444.4 3375 3
MAE 2509.9 3747.3 3352.4 1972.2 3157.2 3445.5 1722 2637.1 4

Theil’s U 0.590 1.000 0.931 0.293 0.707 0.998 0.270 0.485 3

DEN-IQ
RMSE 5.287 5.193 5.169 5.588 6.254 5.937 5.245 6.398 8
MAE 3.927 3.269 3.475 3.804 3.826 3.676 3.735 4.052 8

Theil’s U 0.973 0.939 0.93 1.087 1.361 1.226 1.011 1.425 8

MUC
RMSE 99.7 81.3 78.0 84.9 89.8 88.1 61.4 72.0 2
MAE 87.1 64.5 58.0 70.2 74.8 74.8 45.9 56.3 2

Theil’s U 1.385 0.918 0.844 1.000 1.125 1.083 0.498 0.722 2
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Table 14 – Performance measures (RMSE, MAE and Theil’s U) for proposed approach (DESTC), static en-
semble models (eSA, eSM, eELM, eSVR, and eMLP), and dynamic selection ensembles (DSLA and
DESLA) on test set. Bold values represent the top performance across all models by time series,
while underlined values denote the second best performance. RDESTC represents the rankings of
the proposed approaches compared to other models.

Time series PM eSA eSM eSVR eELM eMLP DSLA BL DESLA DESTC RDESTC

WDF-AL
RMSE 10.132 10.122 11.47 16.332 15.724 9.347 11.633 10.022 9.026 1
MAE 7.762 7.549 9.195 12.93 13.779 6.659 8.415 6.947 6.797 2
Theil 1.073 1.077 1.385 2.812 2.398 0.905 0.957 1.061 0.851 1

WDF-BA
RMSE 1189.2 1179.5 1105.0 6155.4 1380.2 1745.7 1055.1 1151.4 1081.0 2
MAE 770.4 762.7 566.0 2544.6 870.0 1042.3 636.3 746.6 665.4 3
Theil 0.585 0.577 0.507 15.721 0.786 1.264 0.576 0.548 0.485 1

WDF-CE
RMSE 188.7 178.5 326.1 1557.4 422.9 408.6 183.9 238.4 163.6 1
MAE 143.5 117.6 224.2 824.5 217.6 229.5 107 171 107.3 2
Theil 0.279 0.251 0.835 19.096 1.405 1.287 0.246 0.442 0.211 1

LYNX
RMSE 321.3 222.5 539.6 4598 1783.1 580.8 457.6 267.1 317.4 3
MAE 274.9 191.1 472.6 3052.4 1482 459 364.2 230.8 213.2 2
Theil 0.215 0.085 0.728 50.121 7.219 0.362 0.353 0.111 0.25 4

SUNS
RMSE 18.9 18.0 15.8 24.7 85.5 21.3 22.5 17.4 15.9 2
MAE 14.4 13.9 12.1 18.1 74.4 16.9 14.6 12.7 12.0 1
Theil 0.36 0.322 0.265 0.723 8.69 0.457 0.373 0.299 0.296 2

ITSA4
RMSE 2.004 2.013 2.211 2.801 9.929 1.987 1.684 1.976 2.011 5
MAE 0.728 0.694 0.826 2.415 9.725 0.626 0.464 0.653 0.658 4
Theil 0.979 0.988 1.192 1.912 23.128 0.962 0.963 0.951 0.986 5

NASDAQ
RMSE 402.8 371.0 571.4 5235.1 10747.8 401.1 387.4 436.1 367.9 1
MAE 349.7 313.3 516.4 4697.4 8045.5 338.8 287.1 383.7 309.2 2
Theil 1.383 1.181 2.885 243.596 1027.365 1.368 0.995 1.593 1.156 2

DEN-CE
RMSE 3640.7 2624.6 3105.4 32269.5 10664.1 4075.1 4521.4 2929.4 3375 4
MAE 2349.4 1793.1 2148.7 21410.6 7838.5 3157.2 2220.9 2325.7 2637.1 6
Theil 0.599 0.301 0.435 46.067 4.899 0.707 0.188 0.388 0.485 5
RMSE 5.795 5.638 6.72 12.819 22.381 6.32 5.153 5.716 6.398 6

DEN-IQ MAE 3.713 3.601 4.774 8.575 13.724 3.806 3.385 3.572 4.052 6
Theil 1.169 1.107 1.568 5.709 17.439 1.391 0.978 1.137 1.425 6
RMSE 75.6 75.6 71.3 102.9 506.5 94.0 90.9 68.3 72.0 3

MUC MAE 60.00 59.00 58.9 81.2 368.9 77.0 71.6 53.9 56.3 2
Theil 0.786 0.789 0.701 1.477 34.841 1.133 0.730 0.646 0.722 3

Figure 46 presents the boxplots of the ARM of the DESTC against single and ensemble
models. For this calculation, the models were ranked according to Equation 2.57 (ARM)
considering RMSE, MAE, and Theil’s U values. The lower the ARM, the better the model
performance is. The proposed approach presented better performance with lower median.
Among the single models from the literature, TSF reached the best performance. Also, it is
possible to note that the dynamic selection methods achieved good results among ensemble-
based models.
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Figure 46 – Boxplot of ARM for single models and ensembles.

Table 15 presents the Bayesian signed rank test regarding the paired comparison of DESTC
and other MPSs. In this experiment, DESTC did not achieve an overall better performance
than DESLA, eSM, and BL, but it performed better than eSA, eSVR, DSLA, eELM, and
eMLP. This result can be explained because, unlike Experiment A (Chapter 4), there are cases
where DESTC exhibits low predictive performance (ITSA4, NASDAQ, and DEN-IQ), which
will be discussed in more detail in the Session 5.3.

Table 15 – Paired comparison between MPSs using the Bayesian signed rank test. (rows versus columns). “+”
in red (“−” in blue) indicates that the model listed in the row is better (worse) than the one listed
in the column. “=” indicates that there is no difference.

ARM DESTC DESLA eSM BL eSA eSVR DSLA eELM eMLP
DESTC = = = = + + + + +
DESLA = = = = + + + + +

eSM = = = = + = + + +
BL = = = = = = + + +
eSA - - - = = = + + +

eSVR - - = = = = = + +
DSLA - - - - - = = + +
eELM - - - - - - - = =
eMLP - - - - - - - - =

Following, Figure 47 presents the processing time (in seconds) in the test phase across
different time series regarding DS models (DESTC, DSLA, and DESLA). According to Figure
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47(a), in all cases, DESTC achieved a shorter processing time than other DS analyzed. This
difference is greater as the size of the series increases (Table 11). In both experiments, DESTC
has demonstrated superior computational cost efficiency. This advantage arises from DESTC’s
approach of abstaining from constructing RoC or training meta-models during the selection
phase, which are commonly practiced in the literature. This finding reinforces the potential of
the approach presented here. Compared to Experiment A (Chapter 4), the difference between
DESTC and other dynamic models arises because, in the first experiment, the series were
larger (approximately one thousand observations).

(a) Processing time by time series. (b) Boxplot of processing time by DS models.

Figure 47 – Processing time (in seconds) of test phase by time series.

Finally, the predictive performance of DESTC was evaluated in a scenario where noise was
added to a time series in a preliminary study. The objective was to assess the performance of
the DS methods in the presence of noise. Thus, pseudo-artificial time series were created from
the original series by adding a randomly normally distributed value with a zero mean and a
standard deviation of 0.1, 0.3, or 0.5 of the original series. Figure 48 presents the results of
the experiment. In addition to DESTC, the models DSLA and DESLA were evaluated. The
original series (without added noise) is represented by the first bar. The remaining bars indicate
the series with noise, with darker bars representing higher amounts of added noise. The y-axis
shows the RMSE values for each model across the four series.

As a result, it is observed that the addition of noise affects the models at different levels
of intensity, following the logic that more noise leads to higher RMSE values. The models
that were least and most affected were DESTC and DSLA, respectively. Additionally, it is
observed that the models constructed based on the RoC (DESLA and DSLA) appear to be
more negatively affected to the addition of noise. This may occur because the calculation
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of similarities for constructing the regions of competence might be adversely affected by the
noise. However, this is a preliminary analysis that requires further evaluation.

Walmsley et al. (2022) provide a thorough discussion on the impact of label noise in
DS systems, asserting that these systems are severely affected. Although their focus is on
classification problems, similar effects occur in regression problems. In this regard, it is pertinent
to further analyze the impacts of label noise in DS methods within the context of time series
forecasting.

Figure 48 – Impact of noise addition on DS models (DESTC, DSLA, DESLA).

5.3 DISCUSSION

This experiment was conducted using ten time series from diverse domains, including envi-
ronmental science (WDF-AL, WDF-BA, WDF-CE, LYNX, and SUNS), economics (ITSA4 and
NASDAQ), and healthcare (DEN-CE, DEN-IQ, and MUC). In general, these time series exhibit
characteristics that differ from those of COVID-19 incidence data, which showed alternating
trend classes that typically persisted for weeks. Additionally, the pandemic time series diverged
significantly in terms of trend intensity and observed value levels over time.

Regarding WDF time series, DESTC achieved good predictive performance (see Tables 13
and 14). Figures 49 and 50 show the trend analysis utilizing the Sen’s Slope estimator and
Mann-Kendall statistical test, along with their respective time series. Based on the Figures,
one can see that the proposed approach was able to identify different local trends in the time
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series. However, unlike the cases in Experiment A (Chapter 4), most of the instances here are
classified as having no trend (especially for WDF-BA case, Figure 50). Nevertheless, even in
this scenario, the DESTC was able to appropriately select models for combination, resulting
in forecasts that were comparatively good relative to other adopted algorithms.

Figure 49 – Trend analysis based on Sen’s Slope estimator and Mann-Kendall statistical test to WDF-AL time
series.

Figure 50 – Trend analysis based on Sen’s Slope estimator and Mann-Kendall statistical test to WDF-BA time
series.

Otherwise, for cases of dengue fever incidence (DEN-CE and DEN-IQ), the method achieved
less competitive results, especially for the DEN-IQ (see Tables 13 and 14). Figure 51 shows
the trend analysis for DEN-IQ series. Two key points emerge: Firstly, the series lacks a clear
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trend cycle pattern, making model selection based on this logic impractical. Although there are
instances classified with a positive trend in the test set, these are almost non-existent in the
validation set. Secondly, there is a noticeable difference in peak patterns between validation
and test sets, explaining the challenge in accurate predictions, not just for DESTC but for
other algorithms as well.

Figure 51 – Trend analysis based on Sen’s Slope estimator and Mann-Kendall statistical test to DEN-IQ time
series.

Another noteworthy case is that of the SUNS series. During the grid search, a lag size
of 5 was selected, meaning the trend was estimated based on the previous 5 values of each
observation. However, this led DESTC to classify all instances as no trend, as show in Figure
52 (all vertical bars are green). In this case, the performance of DESTC is close to BL, since
it selects the best 𝐽 models without considering trend classification.
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Figure 52 – Trend analysis based on Sen’s Slope estimator and Mann-Kendall statistical test to SUNS time
series.

The financial time series (ITSA4 and NASDAQ) also deserve attention. Although DESTC
did not perform well compared to single models, it achieved good performance when compared
to other MPSs, especially for the NASDAQ case. This may be explained by the possibility that,
since these series are similar to a random walk, the strategy for generating the pool may have
influenced the quality of the MPSs predictions. Figure 53 presents the trend analysis of the
NASDAQ series. It is noticeable that the method was able to track overall trend changes but
struggled to classify the apparent negative trend at the beginning of the test set.

Figure 53 – Trend analysis based on Sen’s Slope estimator and Mann-Kendall statistical test to NASDAQ time
series.
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Furthermore, regarding the preliminary analyses conducted with the addition of noise to
a time series, it was observed that among the dynamic selection methods, DESTC exhibited
the least negative impact as more noise was introduced. This reduced impact may stem from
its trend detection being mathematically simpler compared to RoC alternatives (DSLA and
DESLA). However, further studies are necessary to delve into, discuss, and comprehensively
validate this analysis. Noise evaluation is particularly relevant in problems involving real-world
time series data, as this type of data often exhibits such behavior, impacting the accuracy and
reliability of predictive models. Thus, understanding how different models handle noise can
lead to more robust and effective forecasting strategies.
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6 CONCLUSION

In this thesis, a DES system, DESTC, based on trend classification was proposed for
time series forecasting problems. The proposed approach consists of two main phases: the
training phase (a), in which a pool of models is evaluated to determine the best ones for each
trend class, and the testing phase (b), in which each new instance has its trend assessed,
and the top-performing models are selected for prediction. DESTC was initially proposed
to address the challenge of predicting COVID-19 incidence time series, as both single and
MPS alternatives have shown low predictive performance. Thus, to evaluate the predictive
performance of DESTC, two experiments were conducted.

The Experiment A (Chapter 4) was conducted in order to achieve the first main objective:
(i) to develop a new selection approach based on trend classification to enhance the

forecasting of COVID-19 incidence time series. In this case, the proposed approach was
applied to time series of COVID-19 incidence in different countries and compared with single
(ARIMA, ETS, SVR, ELM, MLP, LSTS, and TSF) and ensemble-based (eSA, eSM, eSVR,
eMLP, eELM, DSLA, DESLAa and DESLAm) algorithms. Generally, the proposed approach
obtained higher forecasting performance. However, some limitations were identified. As shown
in the example of Canada, DESTC did not consistently select the most suitable models for
combination, which could be due to sudden changes in the structure of the time series. In this
instance, the time series structure changed significantly enough that the optimal models for
each trend class also shifted. Thus, relying solely on trend classes for selection proved ineffective
in ensuring model accuracy. Additionally, the parameters in DESTC are chosen through a
validation process. However, the patterns observed during validation may not accurately reflect
those encountered during testing. Therefore, exploring alternative methods to improve the
model selection phase would be beneficial.

Furthermore, Experiment B (Chapter 5) was conducted in order to achieve the second
main objective: (ii) to assess the applicability of this new approach in time series from

other domains. In this case, DESTC was applied on ten time series with distinct characteristics
from different phenomena. From the results, DESTC proved to be a competitive alternative
when compared to other MPSs. Nevertheless, other limitations could be discussed. Firstly,
DESTC tends to have lower predictive performance when the time series lacks a clear trend
cycle pattern, making model selection based on this logic impractical, just as it happens in
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the case of DEN-IQ. Chapter 5 also presented a preliminary study regarding the creation of
semi-synthetic time series through the addition of noise to the time series. As result, DESTC
showed the least negative impact compared to other dynamic selection methods (DSLA and
DESLA). However, further studies are needed to thoroughly validate these findings.

Moreover, DESTC has shown superior performance in terms of computational cost effi-
ciency in both experiments. This advantage stems from DESTC’s approach of not creating a
RoC or training meta-models during the selection stage, practices that are commonly found
in the literature. As showed in Experiments A and B, as the time series length increases, the
difference in processing time between DESTC and other dynamic selection methods becomes
more pronounced. This finding reinforces the potential of the approach presented here.

Overall, DESTC is a novel, efficient, and simple dynamic ensemble selection system specifi-
cally designed for time series forecasting with trend cycles. The results presented makes DESTC
particularly attractive for real-world applications where processing speed and resource limita-
tions are crucial considerations.

6.1 FUTURE WORKS

Some research questions emerge as future work:

• While DESTC focuses solely on trend classification, a potentially fruitful avenue for
further investigation lies in incorporating additional statistical characteristics for model
selection. Seasonality, for instance, represents a crucial factor that could significantly
influence the underlying patterns in the data. To address this, exploring methodologies
capable of performing model selection based on multiple characteristics, including both
trend and seasonality, is highly recommended.

• In this thesis, only the Mann-Kendall statistical test was used for trend detection. While
this approach provides a useful starting point, expanding the analysis to include a variety
of trend classification techniques would enhance the robustness of the results and provide
a deeper insight into the underlying trends. This could mean considering established
alternatives and possibly even creating new methodologies tailored to the specific data
and research objectives.

• The current trend classification based on three discrete classes (increasing, decreasing,
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and no trend) could present limitations in capturing the nuances of real-world data.
Expanding upon this classification scheme by incorporating additional classes could offer
a more granular and informative representation of the underlying trends. A particularly
promising approach for achieving this involves the application of fuzzy logic.

• Regarding ensemble training, developing an algorithm to determine the optimal number
of models in the pool for each time series could improve the efficiency of forecasting
systems. This algorithm could utilize both the accuracy of individual models and diversity
of the pool.

• Dynamic selection methods that construct RoC are well disseminated in the literature.
Therefore, we aim to develop a hybrid methodology that combines this approach with
DESTC. The idea is to leverage the advantages of both proposals.

• Assess the occurrence of concept drift and adapt the DESTC based on this information.

• The codes related to the current project are being organized into an R package. The
package presents functions with a pool generation strategy, the DESCT method, and
performance measures.
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