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ABSTRACT

Traditional frontend systems were initially conceived as thin presentation layers within
larger monolithic applications. However, as user interaction requirements became more sophisti-
cated, modern frontends started to integrate complex logic and domain-specific business rules.
This shift is particularly evident in highly interactive and dynamic applications, such as robotic
systems, where frontends must manage more than just user input and output. The resulting
large codebases have become increasingly challenging to maintain, driving the need for more
robust architectural solutions. This work presents a novel software architectural approach for
developing frontends (including graphical user interfaces) in multi-robot systems using micro
frontends. The proposed solution was designed through a systematic approach that combines
Object-Oriented Modeling and Domain-Driven Design to address key challenges in this domain,
leading to a discussion of major decisions such as splitting, composition, communication, routing,
performance, and consistency. The architecture was evaluated based on the ISO/IEC 25010
quality model, achieving significant improvements over monolithic systems in performance tests,
with higher frame rates and lower latency, as well as enhanced maintainability, reliability, and

portability.

Keywords: Micro frontends. Web development. Software architecture. Graphical user

interfaces. Multi-robot systems.



RESUMO

Os sistemas de frontend tradicionais foram inicialmente concebidos como camadas de
apresentacdo enxutas dentro de aplicacdes monoliticas maiores. No entanto, a medida que
os requisitos de interacdo do usudrio se tornaram mais sofisticados, os frontends modernos
comecaram a integrar légica complexa e regras de negdcio especificas do dominio. Essa mu-
danca € particularmente evidente em aplicacdes altamente interativas e dindmicas, como sistemas
robdticos, nos quais os frontends precisam gerenciar mais do que apenas entrada e saida de
dados. O aumento resultante no tamanho das bases de c6digo tornou a manutencao cada vez
mais desafiadora, exigindo solugdes arquiteturais mais robustas. Este trabalho apresenta uma
abordagem arquitetural de software moderna para o desenvolvimento de frontends (incluindo
interfaces graficas do usudrio) em sistemas multi-robds usando micro frontends. A solugdo
proposta foi projetada através de uma abordagem sistematica que combina Object-Oriented
Modeling e Domain-Driven Design para enfrentar os principais desafios nesse dominio, levando
a uma discussdo sobre decisdes importantes, como divisdo, composi¢do, comunicac¢do, rotea-
mento, desempenho e consisténcia. A arquitetura foi avaliada de acordo com o modelo de
qualidade ISO/IEC 25010, apresentando melhorias significativas em relagao a sistemas monoliti-
cos em testes de desempenho, com melhores taxas de quadros e menor laténcia, além de maior

manutenibilidade, confiabilidade e portabilidade.

Palavras-chave: Micro frontends. Desenvolvimento web. Arquitetura de software. Interfaces

gréficas do usudrio. Sistemas multi-robos.
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INTRODUCTION

In recent years, the complexity of modern applications has grown at an extraordinary pace,
especially in domains that demand sophisticated frontends (including graphical user interfaces,
GUIs) and integration with complex backend systems. Multi-Robot Systems (MRS) represent
one such domain where GUIs are expected to do far more than present static data; they must
support dynamic tasks such as 3D real-time visualization, physics simulations, and interactive
replays of robotic actions. As systems like MRS evolve, traditional monolithic approaches to
GUI development are increasingly showing their limitations [13], resulting in large codebases
that are difficult to maintain and slower development cycles.

Historically, frontend applications served as simple layers for data presentation, with
minimal business logic, and much of the system complexity was handled by the backend [24].
However, the rise of Single-Page Applications (SPAs), which provide rich user experiences and
real-time interactions, has placed a significant burden on frontend architectures. No longer merely
consumers of data, modern frontend systems now manage significant portions of domain logic
themselves. This change has had profound implications, particularly for systems as demanding
as MRS, which require flexibility, responsiveness, and modularity.

Micro frontends (MFEs) offer an alternative solution to these challenges by extending
the principles of microservices — widely used in backend development — to the frontend [22],
allowing a large application to be divided into smaller, independently developed, and deployable
modules. This approach promotes modularity by design and enables teams to work autonomously,
adopting different technologies and workflows for different parts of the frontend while ensuring
that the overall application remains cohesive.

This work proposes a systematic approach for developing a micro frontend architecture
focused on MRS GUISs, grounded in Domain-Driven Design (DDD) and Object-Oriented Mod-
eling (OOM) principles. At the core of this approach is the concept of bounded contexts [9],
which isolate different parts of the system to reduce dependencies and simplify development.
This concept is particularly applicable to MRS, where different GUIs are required for distinct
tasks such as telemetry, robot control, simulation, and data replay. By decoupling these areas,
each GUI component can evolve independently.

While this framework is primarily designed for robotics, its versatility extends to any
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complex system with evolving requirements and sophisticated user interaction needs. Never-
theless, the focus of this research is on MRS, with an emphasis on GUIs used in robot soccer
competitions, where interactive simulations and real-time data processing are critical.

The evaluation of the framework uses the ISO/IEC 25010 product quality model [11],
focusing on key characteristics such as performance, maintainability, reliability, and portability.
These quality attributes provide a structured way to assess the effectiveness of the proposed
architecture in addressing the unique challenges of MRS GUIs. The evaluation also includes
an examination of communication between micro frontends, routing, Ul consistency, perfor-
mance optimization, and integration with continuous integration/continuous deployment (CI/CD)
pipelines.

The main contribution of this research is the introduction of a micro frontend architecture
designed to meet the particular demands of MRS GUIs, combining the strengths of micro
frontends, DDD, and OOM to create a scalable, maintainable, and modular solution. This
approach contrasts to traditional views of frontend development, positioning the frontend as a
core component in the architectural design rather than a simple presentation layer. By treating the
frontend as an independent entity capable of managing its own domain logic, this work proposes
a more robust and adaptable solution for complex GUI applications.

This document is structured as follows: Chapter 2 provides a detailed background on
the trends in web development, focusing on the rise of micro frontends and their application
in complex systems. It also explores Domain-Driven Design, Object-Oriented Modeling, and
software quality models, setting the stage for the proposed solution. Chapter 3 presents the
solution design, discussing the use case modeling, bounded contexts, and architectural decisions
that shape the proposed framework. Chapter 4 describes the implementation of the multi-robot
system GUI using the proposed micro frontend architecture, while Chapter 5 evaluates the
solution through experiments, results, and a comparison of architectural approaches. Chapter
6 reviews related work, offering an analysis of existing solutions and frameworks that address
similar challenges in frontend architecture and robotics systems. Finally, Chapter 7 concludes
the work with insights into future research directions and potential applications of the framework

beyond the domain of robotics.
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BACKGROUND

This chapter provides an overview of the key concepts and technologies relevant to
this work. It begins by introducing robotic systems, focusing on multi-robot systems and their
application in the RoboCup Small Size League. The chapter then explores important software
engineering practices and architectural patterns that support scalable and maintainable systems.
Modern web development techniques, particularly micro frontends, are discussed as essential
components for building modular and efficient applications. Lastly, the chapter addresses
software quality, with an emphasis on the ISO/IEC 25010 standard.

2.1 ROBOTIC SYSTEMS

A robot can be defined as a reprogrammable, multifunctional manipulator capable of
performing a variety of tasks by moving materials, parts, tools, or specialized devices through
programmable motions [6]. The concept of robotics, however, extends far beyond this basic
definition, encapsulating a field of study that has evolved significantly over the decades.

With the ongoing advancements in technology, robotic systems have become integral to
everyday life. Beyond their extensive use in manufacturing and industrial operations, robots are
now being implemented across critical sectors, including healthcare, education, and transporta-
tion [1].

Robotic systems can be categorized into two main types: single-robot systems (SRS)
and multi-robot systems [8]. Early research efforts primarily concentrated on SRS, which are
typically less complex, as they do not require coordination or task-sharing among multiple units.
However, with the rise of the Internet of Things (IoT) and evolution of robotics, the increasing
complexity of applications has driven the need for MRS. This work focuses explicitly on the

study and application of multi-robot systems.

2.1.1 Multi-Robot Systems

A multi-robot system consists of a group of robots organized into a multi-agent archi-

tecture to collaboratively perform a shared task [41]. Over the past decade, MRS has attracted
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growing interest within the robotics community due to its exceptional capabilities, such as coop-
erative behavior, robustness, parallel operation, and scalability. The ability of multiple robots to
work together in a coordinated manner offers substantial benefits over traditional single-robot
systems, particularly in complex environments where tasks may exceed the capabilities of a
single robot.

The literature highlights several advantages of MRS compared to SRS. One commonly
discussed benefit is cost efficiency. In many scenarios, the overall system cost can be reduced
by employing multiple simpler and less expensive robots, rather than relying on a single, more
complex and costly machine [14]. Additionally, in environments with high complexity or
dynamic conditions, the capabilities required may be too extensive for a single robot to handle
effectively. MRS also inherently increases system efficiency and robustness by enabling parallel
task execution and incorporating redundancy. The use of multiple robots allows for a more
flexible and adaptable system, capable of continuing operations even if one robot encounters a
failure, thus improving the overall reliability of the system.

An essential aspect of managing MRS is the design of a user interface that supports
effective operator control and decision-making. Given the increased cognitive load of overseeing
multiple robots simultaneously, a well-crafted Ul can reduce operator fatigue and enhance
performance. Previous research [28] has demonstrated the impact of UI design on operator
workload and task performance in MRS. While controlling multiple platforms can increase
productivity by providing additional resources, it can also lead to increased cognitive load,
potentially affecting accuracy and response time. Thus, optimizing UI design requires a careful
balance between the advantages of multi-platform control and the risks associated with increased
operator workload.

Robot soccer competitions, such as the RoboCup Small Size League (SSL), exemplify the
practical application of multi-robot systems. In these environments, teams of robots collaborate
in real time to achieve common objectives, demonstrating the capacity of MRS to perform tasks
that require high levels of coordination, communication, and adaptability. This competition
provides a concrete example of the power and potential of multi-robot systems, which will be

discussed in further detail later in this work.

2.1.2 RoboCup Small Size League

The Robot World Cup Initiative (RoboCup) was created in 1997 to promote advancements
in the field of collaborative mobile robots for addressing dynamic problem-solving scenarios [18].
The competition involves teams of autonomous robots playing soccer against one another, with
the long-term objective of defeating the FIFA World Cup champions by the year 2050 [4].

RoboCup features various leagues, each focusing on developing key technologies in
the field. These leagues focus on areas such as real-time sensor fusion, reactive behaviors,

strategy acquisition, machine learning, real-time planning, multi-agent cooperation, coordination
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strategies, context recognition, vision processing, strategic decision-making, motor control, and
intelligent robot control systems [18].

One of the most traditional and competitive leagues within RoboCup is the Small Size
League. In this league, robots are constrained to fit within a cylindrical shape, with a maximum
height of 15 cm and a diameter of 18 cm. These size constraints allow for precise and dynamic
movements within a fast-paced game environment, where rapid decision-making is essential.
Division A matches, consisting of advanced teams, involve two teams of eleven robots each,
playing on a field measuring 12 meters by 9 meters, while Division B matches, typically for new
or less competitive teams, use a smaller field measuring 9 meters by 6 meters and involve six
robots per team. In both cases, an orange golf ball is used as the game ball to facilitate tracking
and control. Figure 1 illustrates the dynamics involved in controlling robots during a typical
RoboCup SSL match.

Camera #1 Camera #2

D €

Vision system

Control syste;\

RF transmitter

Referee system

Figure 1: RoboCup Small Size League robot control

Over the past decade, RoboCup evolved into a well-recognized platform for testing and
benchmarking strategies in multi-robot coordination. Although the performance of RoboCup
teams has significantly improved over the years, several aspects of the competition are intention-
ally simplified to facilitate multi-robot coordination. For example, in the SSL, global overhead
cameras provide a centralized view of the field, simplifying visual processing. Additionally, a
central computer coordinates all robots on the field, issuing commands to each robot individually.
The relatively small size of the playing field also mitigates communication challenges that would

otherwise be more pronounced in larger and more complex environments.
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2.2 MODERN SOFTWARE ENGINEERING TECHNIQUES

As software systems permeate nearly every aspect of modern life, the necessity for robust,
scalable, and adaptable development processes has become more pronounced. Key approaches
in software engineering, such as Object-Oriented Modeling and Domain-Driven Design, provide
frameworks that enable the creation of systems that are not only functional but also maintainable,

reusable, and aligned with business objectives.

2.2.1 Object-Oriented Modeling

Real-world systems are often highly complex, making it difficult to fully comprehend
them. To understand such systems, models are created that abstract non-essential details, focusing
on key aspects relevant for comprehension.

Object-Oriented Modeling provides a structured way of thinking about these systems,
organizing them around real-world concepts. It represents software systems as collections of
discrete objects that encapsulate both data structures and behaviors [3].

The core concepts of OOM include classes, inheritance, polymorphism, and encapsula-
tion, which form the foundation of modern object-oriented design. To support these concepts,
the Unified Modeling Language (UML) was developed as a standardized notation for visualizing,
specifying, constructing, and documenting software systems [43]. Figure 2 illustrates an example
of a UML class diagram. This models a class Person with an association to another class Address,
along with two subclasses (Student and Professor) that inherit from Person. Additionally, it

includes a supervision association between Professor and Student.

Address

Person
+ street: string

+ name: string 0.1 1 + city: string
+ phone: string _ Lives at ——yp| * state: string
+ email: string + zipCode: string

+ country: string

+ purchaseParkingPass(): void
A

- validate(): bool

Student Professor

+ studentNumber: int

0-* 1. |+ salary: i
- y:int
+ averageMark: int [€— Supervises

+ yearsOfService: int
+ numberOfClasses: int

+ isEligibleToEnroll(string): bool

Figure 2: Example of an UML class diagram

OOM has become widely adopted due to its ability to break down complex problems
into more manageable parts, promoting better understanding of requirements, cleaner designs,
and more maintainable systems [3]. Since objects encapsulate both data and behavior, changes

can be made locally without disrupting the entire system, enhancing scalability and flexibility.
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OOM is foundational to modern software development and has influenced many design patterns
and methodologies.

In the following chapter, the proposed software architecture will be systematically de-
signed using various UML diagrams. Specifically, use case diagrams will capture functional
requirements from the user’s perspective, class diagrams will model entities and relationships,
sequence diagrams will represent interactions among services, and component diagrams will
provide a high-level view of the system’s modular structure. Together, these diagrams pro-
vide a multi-faceted view of the architecture, ensuring clarity and alignment across design,

implementation, and release phases.

2.2.2 Domain-Driven Design

Domain-Driven Design is a software development approach that prioritizes the core
domain of a problem and its inherent complexities [9], fostering a close alignment between
software architecture and business requirements. Unlike Object-Oriented Modeling, which
primarily focuses on structuring software around objects and their interactions, DDD prioritizes
a deep understanding of the domain itself. This methodology promotes collaboration between
developers and domain experts [40], enabling a shared comprehension of the problem space
and ensuring that software solutions are grounded in domain knowledge rather than technical
concerns.

At the heart of DDD lies the domain model, which captures key concepts and relationships
within the domain. This model forms the basis of the Ubiquitous Language — a shared vocabulary
consistently used across the project by both technical and non-technical stakeholders [9]. The
use of a Ubiquitous Language is essential for bridging the gap between business and technical
teams, ensuring alignment throughout the development lifecycle.

Communication in DDD is not confined to formal tools like UML diagrams. The model
and Ubiquitous Language should permeate all forms of communication, whether in written
documents, casual conversations, or informal diagrams [9]. Figure 3 provides an illustrative
example of such a diagram.

During the implementation phase, DDD employs specific design patterns such as entities,
value objects, aggregates, repositories, and services. These patterns help encapsulate domain
logic within appropriate structures, ensuring that the software remains aligned with the domain
model while supporting scalability and flexibility.

DDD is particularly useful in complex systems with rich and interconnected domains.
By identifying bounded contexts, DDD encourages the separation of different subdomains, each
with its own model. This modularity reduces complexity and allows each bounded context to
evolve independently, making it easier to adapt the system to changing business needs while
maintaining a clear separation of concerns.

This work will extensively apply key concepts from DDD, including domain models,
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Figure 3: Example of an DDD informal diagram

bounded contexts, and Ubiquitous Language, throughout the analysis and design phases, along
with tactical design patterns such as domain events. Rather than replacing OOM and UML, DDD
complements these approaches by infusing domain expert knowledge into the models, bridging

the gap between software structure and business logic.

2.3 SOFTWARE ARCHITECTURE PATTERNS

Software architecture patterns define the high-level structure of software systems, defin-
ing the software components, the externally visible properties of those components, and the
relationships among them [32]. Choosing the appropriate architectural style is critical for de-
veloping robust, maintainable, and scalable applications. Among the most widely adopted
architectural styles are Monolithic Architecture, Service-Oriented Architecture, and Microser-
vices Architecture. Each of these patterns has its distinct advantages and trade-offs, making their

suitability dependent on the application’s size, complexity, and long-term objectives.

2.3.1 Monolithic Architecture

Monolithic architecture is a traditional and widely adopted architectural style in the
software industry [2]. In this approach, softwares are developed as self-contained units where the
different functionalities of the application —such as the user interface, business logic, and database
access — are tightly interconnected and interdependent, all running as a single executable or
deployable entity. The simplicity of this structure facilitates easier development and deployment
during the early stages of a project, as all components reside within a unified codebase that can

be managed cohesively. Figure 4 illustrates a monolithic architecture.
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User Interface

Business Logic

Data Layer

Figure 4: Example of a monolithic architecture

However, as applications grow, monolithic architectures often face significant challenges
related to scalability, maintainability, and flexibility. The tight coupling of components means
that even minor changes in one aspect can trigger widespread effects, resulting in longer and
more error-prone development cycles. Scalability becomes problematic as the entire application
must be adjusted, even if only a single component requires additional resources. Furthermore,
increased team sizes complicate coordination, with multiple developers attempting to modify the
same code segments and teams struggling to align deployment schedules. This environment can
lead to confusion over ownership and decision-making responsibilities within the project [25].

Despite these challenges, monolithic architecture remains a viable option for smaller
applications or early-stage products, where the overhead of managing distributed systems is not
yet justified. Its single deployment unit and straightforward communication between components
make monolithic systems suitable for less complex applications with predictable scaling needs.
Additionally, the simplified deployment topology facilitates smoother developer workflows
and enhances monitoring, troubleshooting, and end-to-end testing. Code reuse is also more
straightforward, as developers can easily access existing code without the complications of
distributed systems — such as deciding between code duplication, library creation, or service
integration [25].

Furthermore, the maintenance of monolithic architectures can be improved by using
patterns like Model-View-Controller (MVC) and by further structuring the model with layers
that separate concerns, such as business logic and persistence. Nevertheless, the overall system

remains a (sequential) monolith, and scalability continues to be a concern.

2.3.2 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an architectural pattern that breaks down appli-
cations into multiple services that collaborate to provide a set of capabilities [24]. Each service

is designed to perform a specific business function [2] and operates as a completely separate
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operating system process. Communication between these services occurs over a network through
an Enterprise Service Bus (ESB), typically using standardized protocols such as SOAP or REST,

rather than through method calls within the process.

[ User Interface ]

Y

[ Enterprise Service Bus ]

2 v ¥

Service ] [ Service ] [ Service ]

Figure 5: Example of a Service-Oriented Architecture

SOA emerged as a solution to the challenges of large monolithic applications. It promotes
software reusability, allowing multiple applications to share common services. SOA also aims to
simplify maintenance and rewriting by enabling the replacement of individual services without
affecting others, as long as the service interface remains unchanged [24].

However, SOA also has its own set of limitations. The reliance on standardized communi-
cation protocols (e.g., SOAP, WSL-*) and middleware can introduce performance overhead and
complicate infrastructure management. Furthermore, the centralization of persistence (database,
as seen in Figure 5) can create bottlenecks, impacting overall system efficiency. Additionally,
there is often a lack of guidance regarding service granularity, which can lead to suboptimal
decisions about system decomposition. SOA is generally better suited for large enterprise
applications with diverse business requirements, where the benefits of service reusability and

flexibility justify the added complexity.

2.3.3 Microservices Architecture

Microservices architecture has evolved as a modern approach of SOA, incorporating
lessons learned from real-world implementations [24]. This pattern proposes even more gran-
ular services, each dedicated to a specific functionality. Unlike SOA, which often relies on
centralized communication and persistence systems, microservices typically use lightweight
communication mechanisms (e.g., REST, gRPC), allowing services to communicate directly with
one another while each service implements its associated persistent data locally. An example of

a microservices architecture is shown in Figure 6.
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Figure 6: Example of a microservices architecture

The benefits of microservices are numerous. Their independent deployment model
improves scalability and system robustness, enabling teams to scale individual services as
needed without impacting the entire application. Microservices also allow for greater flexibility
in technology choices, as teams can use different programming languages, frameworks, and
databases across services. The parallel development of these services offers greater team
productivity by reducing bottlenecks, as developers can focus on isolated components without
interfering with each other’s work. This autonomy also simplifies understanding and maintaining
specific parts of the system, as each microservice represents a self-contained unit of functionality.

On the other hand, the distributed nature of microservices introduces new challenges.
Managing communication between services, ensuring data consistency across distributed systems,
and handling potential failures become more complex. Furthermore, microservices require a
more sophisticated infrastructure for deployment, monitoring, and logging, often involving

containerization tools and orchestration platforms.

2.4 WEB DEVELOPMENT

Originating from the development of the internet, web development utilizes standardized
programming languages like HTML, CSS, and JavaScript to create applications that run within
web browsers. The ubiquity and cross-platform nature of the web have made it a preferred
platform for deploying modern software, ensuring accessibility across a wide range of devices.

Over the past few decades, web development has advanced from basic static pages to
sophisticated, dynamic, and scalable applications. This evolution has given rise to a variety
of architectural models and technologies, each suited to specific needs and challenges. Four
principal approaches define the landscape: Static-Page Websites, Multi-Page Applications
(MPAs), Single-Page Applications, and the emerging micro frontends architecture. Each model,
detailed in the remaining of this section, presents distinct advantages and limitations, shaping

the methods used to build flexible and maintainable web systems at scale.
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2.4.1 Static-Page Websites

Early websites of the 1990s were published directly as static files of standard web
technologies like HTML, CSS, and JavaScript. Each page existed as an individual file on a server,
and every time a user clicked a link, a new static page was loaded [22]. This static-page model
remains in use today, although it is often considered outdated for more complex applications.

Static-Page Websites represent the simplest form of web development, where each page
is a separate HTML file, and content is fixed unless manually updated by developers. These sites
are typically used for small-scale projects such as blogs, portfolio websites, or informational
sites, where content remains relatively stable and user interaction is minimal. Figure 7 details

this approach.
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Figure 7: Static-Page Website approach

The primary advantage of static websites lies in their simplicity and performance. Since
pages are pre-rendered and do not require server-side processing, they can be delivered quickly
to users, resulting in fast load times. Additionally, static sites are inherently more secure, as there
is no backend system vulnerable to attacks. However, this simplicity has its limitations. Static
websites are incapable of delivering dynamic content or providing personalized user experiences,
making them unsuitable for applications that require frequent updates or user interactions.

In recent years, the static-page approach has seen a resurgence through techniques such
as Static Site Generation (SSG) or pre-rendering, which modernize the concept by integrating it

with more contemporary web development workflows.

2.4.2 Multi-Page Applications

Multi-Page Application is a traditional architecture for building large-scale websites.
In this model, the application state resides on the server, and each user interaction — such as
navigating to a new page — triggers a full page reload through a process called Server-Side

Rendering (SSR). When the browser sends a request, the server processes it, generates the
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appropriate HTML, and returns it to the client. MPAs are commonly used in enterprise systems,
e-commerce platforms, and content-heavy websites requiring multiple distinct pages to organize

content and functionality. This approach is illustrated in Figure 8.
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Figure 8: Multi-page applications approach

One of the advantages of MPAs is their straightforward development model. Each
page can be developed and managed independently, with unique URLs for each section of
the application. This approach also integrates well with search engines, as the structure of
individual pages is naturally indexed by crawlers, improving Search Engine Optimization (SEO)
performance.

MPAs also have some drawbacks, particularly in terms of performance. Each navigation
requires a full page reload, leading to slower response times and increased server load due to
frequent requests. Complex pages that involve extensive data and numerous JavaScript elements
can also strain both the browser and the client’s computer. To address these limitations, AJAX
was introduced in the early 2000s, allowing parts of a page to be refreshed without reloading the
entire content. While this improved user experience by reducing loading times, it also increased
the complexity of the source code, particularly as web applications became more feature-rich

and dynamic [15].

2.4.3 Single-Page Applications

Single-Page Application is a modern web architecture where the entire frontend is
typically bundled into a single JavaScript file that is downloaded by the client [22]. Unlike
MPAs, SPAs load a single HTML page initially and then dynamically update the content (see
Figure 9) without requiring full page reloads as users navigate or interact with the application.
This approach allows for a more fluid, app-like user experience, closely resembling that of native
desktop or mobile applications.
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Figure 9: Single-Page Applications approach

SPAs heavily rely on client-side JavaScript to manage aspects such as routing, state
management, and rendering. For the routing mechanism, the application rewrites the URL as the
user navigates between views, allowing the users to share the page link or bookmark, even though
the content is being dynamically generated [22]. This functionality allows SPAs to maintain
state on the client side, enabling the application to respond more quickly to user interactions by
updating only the relevant parts of the page. Since only the data needed for specific interactions
is transferred between the server and client, SPAs can be more bandwidth-efficient than MPAs,
particularly in long-running or complex web applications [39].

However, SPAs have some disadvantages for certain types of applications. The first load
time can be significantly longer than in other web architectures since the entire application is
loaded upfront, rather than loading only the content required for the current view. This can be
particularly problematic for users with unstable or low-bandwidth connections, such as those
using mobile devices [39]. SPAs also face challenges related to SEO, as the dynamic nature of
the content can prevent search engines from effectively crawling and indexing the pages.

To address these challenges, modern SPAs have evolved to adopt hybrid approaches that
combine the benefits of SPAs with performance optimizations typically seen in other architectures.
Techniques such as partial hydration, island architecture, and resumability have emerged to

reduce the initial load time and improve performance on mobile devices [39].

2.4.4 Micro frontends

Micro frontends are a novel architectural approach inspired by microservices [22]. By
extending microservices principles to the frontend, micro frontends allow web applications
to be divided into independently developed and deployed components. Each micro frontend
acts as a self-contained segment of the user interface, with dedicated teams responsible for

developing and releasing their components independently of the rest of the application. This
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modularity can provide numerous benefits for the development process, especially in large-scale
applications where multiple teams are working on different features or services. Figure 10 details

this architecture.
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Figure 10: Micro frontends approach

In addition to the gains in maintainability and performance through smaller codebases
and optimizations for use cases, the micro frontend architecture encourages more gradual updates
and deployments, reducing the risk of introducing failures that could impact the entire application
and improving system reliability. Furthermore, the architecture’s technology-agnostic and future-
proof nature ensures flexibility, enabling teams to adopt new technologies and methodologies
without disrupting the integrity of the overall system.

While working with micro frontends simplifies business logic, they introduce inher-
ent complexities related to networking, persistence, communication protocols, security, and
more [22]. The distributed nature of micro frontends brings additional challenges, including
managing shared dependencies, ensuring a consistent user experience across components, and

handling communication across micro frontends.

2.5 MICRO FRONTEND STRATEGIES

Architecting a successful micro frontend application requires careful consideration of
several strategies to ensure an efficient operation [22]. The choice of each strategy depends
heavily on the project’s specific context, and certain architectural decisions must be made early
to provide direction for all subsequent development. These decisions range from how micro
frontends will be composed and splitted, to how routing is managed, how inter-component
communication is handled, and how the frontend integrates with backend services. This section

explores the main strategies that support the development of a robust micro frontend architecture.
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2.5.1 Splitting

A key consideration when developing micro frontends is how to split and organize them
within the application. This can be done by either incorporating multiple micro frontends into

the same page or by assigning one micro frontend to each page.

2.5.1.1 Horizontal Split

The horizontal split strategy involves placing multiple micro frontends within a single
page [22]. In this approach, different teams are responsible for individual sections of the same
interface, leading to a collaborative effort to build and maintain the page. This strategy offers
significant flexibility, as it allows individual micro frontends to be reused across different views.
For instance, a navigation bar or a search component developed as a micro frontend can appear
in various parts of the application, improving modularity and reducing redundancy. Figure 11

illustrates this strategy.
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Figure 11: Horizontal split

However, the horizontal split also introduces several challenges. Since multiple teams
are working on different parts of the same view, coordination becomes critical. This requires
greater discipline and governance to avoid an excessive number of micro frontends within a
single project, which could lead to increased complexity in both development and maintenance.

Additionally, this strategy demands more integrated testing efforts, as multiple com-
ponents must work together seamlessly in the same view. Dependency management can also
become more complicated, as different micro frontends may rely on shared libraries or services,

leading to potential conflicts or versioning issues.

2.5.1.2  Vertical Split

In a vertical split, each micro frontend occupies one or more entire pages and is respon-
sible for a specific business domain or feature [22], such as authentication, product catalog, or
user profile. This approach has a stronger alignment with DDD, where each micro frontend fully

encapsulates the frontend logic for its domain, providing a clearer separation of concerns and



29

greater autonomy for development teams. With this strategy, each team can operate indepen-
dently, focusing on its specific domain without needing to coordinate with other teams working

on the same page. This strategy is illustrated in Figure 12.
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Figure 12: Vertical split

Vertical splitting typically results in a simpler structure, as each micro frontend owns an
entire page of the application. However, this approach can reduce flexibility and reusability, as
micro frontends are confined to specific views and are not easily shared or capable of real-time
communication with other micro frontends. Additionally, maintaining visual consistency across
the application requires extra effort, particularly if teams are using different tools or design

patterns.

2.5.2 Composition

Composing a micro frontend application can be accomplished through various ap-
proaches, each with its own advantages and trade-offs. The main strategies for composition
include client-side composition, edge-side composition, server-side composition, and build-time

composition.

2.5.2.1 Client-Side Composition

Client-side composition involves dynamically fetching micro frontends and mounting
them into the page on the client side, enabling greater flexibility and responsiveness. This method
is often implemented using JavaScript frameworks that facilitate the injection and management
of micro frontends directly within the framework environment. Figure 13 illustrates this strategy.

In this approach, a client-side orchestrator, known as the Application Shell, dynamically
assembles the page within the browser, loading the necessary micro frontends as required. This
method is similar to code-splitting techniques used in SPAs, allowing for parallel downloads
of bundles and runtime updates that enhance the user experience. In this context, each micro
frontend should expose a JavaScript or HTML file as an entry point, enabling the Application
Shell to dynamically append DOM nodes from the HTML file or initialize the JavaScript
application [22]. Client-side composition can be achieved through several techniques, including:
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» Iframes: The Iframe element can encapsulate and isolate micro frontends, embedding
another document within the current HTML document while ensuring that they

function independently within the main application.

= Web Components: This technique utilizes a set of native browser APIs to create

reusable custom HTML elements that encapsulate micro frontend logic and styles.

= JavaScript and DOM Manipulation: By using JavaScript to manipulate the Docu-
ment Object Model (DOM) directly, micro frontends can be exported in a custom

format that the Application Shell parses to append or modify elements dynamically.
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Figure 13: Client-side composition

2.5.2.2 Edge-Side Composition

Edge-side composition is a more recent approach where the composition process occurs
at the CDN, a distributed network of servers that deliver web content and resources to users
based on their geographic location, improving load times and reducing latency. By integrating
the strengths of both client-side and server-side, this method optimizes overall performance
while preserving some level of flexibility. Figure 14 shows this strategy.

With edge-side composition, the page is assembled at the Content Delivery Networks
(CDN) level using techniques such as Edge Side Includes (ESI) [22]. ESI allows for scalable web
infrastructure by leveraging the extensive network of CDN points of presence globally. While
this approach is advantageous for static content, such as blogs or e-commerce pages, it may
not perform well in multi-CDN scenarios due to inconsistent implementations across providers.
Adopting a multi-CDN strategy can result in substantial refactoring efforts and the need for new

logic when transitioning from one provider to another.
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Figure 14: Edge-side composition

2.5.2.3 Server-Side Composition

Server-side composition composes micro frontends at the server level before sending
the assembled HTML to the client. This method is efficient, as it reduces the client’s load
by offloading rendering tasks to the server. However, it limits runtime flexibility since the

composition occurs before the page is delivered. Figure 15 illustrates this strategy.
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Figure 15: Server-side composition

In this approach, a backend service builds the page using a rendering engine that retrieves
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the required micro frontends and composes the final output. If the page content is highly
cacheable, leveraging CDNs can significantly enhance performance by serving pre-assembled
pages [22]. However, when dealing with dynamic, personalized content, scalability becomes a

concern, especially under high traffic conditions.

2.5.2.4  Build-Time Composition

Build-time composition is a micro frontend approach in which individual applications
are published as packages and included as dependencies of the container application during
the build process. While this method can offer performance gains and simplify dependency
management, it introduces tighter coupling between applications, as any minor change requires

the recompilation of all micro frontends. This strategy is illustrated in Figure 16.
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Figure 16: Build-time composition

Some experts argue that build-time composition should not be classified as a true micro
frontend approach due to its lack of deployment independence [13]. In this model, the flexibility
associated with micro frontends is diminished, as the deployment and integration processes
resemble those of traditional monolithic applications, potentially hindering the overall agility of

development.



33

2.5.3 Routing

In a micro frontend architecture, two levels of routing must be addressed: team-level
routing, which handles navigation within each individual micro frontend, and top-level routing,
which manages navigation across different micro frontends. The primary challenge is ensuring
that both internal (team-level) and external (top-level) routing work together seamlessly to deliver
a consistent user experience across independently deployed applications.

Internal routing decisions are typically left to the discretion of each team, allowing
them the flexibility to implement routing patterns suited to their specific micro frontend, much
like in any standalone application. However, external routing decisions are closely tied to
the composition mechanism selected for the project. Depending on the composition strategy,

top-level routing can be managed on the client-side, server-side, or edge-side [22].

2.5.3.1 Client-Side Routing

Client-side routing dynamically manages routes within the browser, enabling an app-like
user experience by loading micro frontends without requiring full page reloads from the server.
As users navigate between different pages or application states, the browser updates the URL,
and the application shell determines which micro frontend to load based on the route and business
rules.

This approach is particularly advantageous for complex routing scenarios, such as
handling user authentication, geolocation-based content, or conditional logic [22]. For instance,
the application shell might load an authenticated user area if the user is logged in, or a landing
page if the user is visiting for the first time. In this setup, the application shell owns the routing

logic and decides which micro frontend to load based on predefined configurations.

2.5.3.2 Server-Side Routing

In server-side routing, page requests are handled on the server, which assembles the
required micro frontends before sending a fully composed page to the client. This method places
the routing logic on the server, allowing the server to determine which micro frontends are
needed based on the requested URL.

While this approach simplifies the client-side experience by delivering a pre-assembled
page, it can introduce scalability challenges. Handling high volumes of traffic or burst traffic
requires a robust server infrastructure capable of managing rapid horizontal scaling. Each server
must retrieve the necessary micro frontends and compose the page for the client, which can
become resource-intensive in high-demand environments [22].

Server-side routing is well-suited for applications that require centralized control over
routing and need to offload much of the complexity to the server. However, it may limit the

flexibility and responsiveness that client-side routing provides.
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2.5.3.3 Edge-Side Routing

Edge-side routing handles the routing logic at the CDN level, distributing routing respon-
sibilities closer to the user to enhance performance. This approach offers performance benefits
by reducing the distance between the user and the server, leading to faster load times. However,
it typically allows for less complex routing logic [22]. Since the CDN operates based on simple
URL matching, there is limited flexibility for handling sophisticated business rules or conditional
routing.

Edge-side routing is a good fit for simple applications that prioritize performance and
scalability over routing complexity, especially when the focus is on delivering static or pre-

rendered micro frontend compositions.

2.5.4 Communication

Communication between MFEs within a micro frontend architecture is often necessary
for complex systems. This becomes especially important when multiple micro frontends are
displayed on the same page, as user interactions in one application may need to trigger updates
or actions in others. Communication methods in micro frontends can be broadly categorized into
event-based, state-based, and integration-based patterns.

It is important to ensure that each micro frontend remains unaware of the internal
workings of others to preserve the principle of independent deployment [22]. Overly tight
coupling between micro frontends would undermine their autonomy, making coordination

between teams and deployment more difficult.

2.54.1 Event-Based Communication

Event-based communication relies on broadcasting messages or events between micro
frontends to notify changes, share data, and trigger actions across different components. This

approach decouples the micro frontends, allowing for more flexibility and modularity.

= Event Bus: The event bus is a global event-based communication mechanism
typically implemented in the Application Shell. It allows independent micro frontends
to communicate by broadcasting events, with other micro frontends that are interested

in a particular event listening for it and reacting accordingly.

» Custom Events API: This native browser API enables the creation and dispatching
of custom events within a web page. These events are typically dispatched through
a globally accessible object like window, which makes them available across all
micro frontends. However, using custom events in architectures with iframes can
be challenging, as each iframe has its own window object, complicating event

propagation.
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= Broadcast Channel API: This browser feature allows the creation of a bidirectional
communication channel between different browsing contexts — such as windows,
tabs, workers, and iframes — within the same origin. It supports real-time message
exchange between micro frontends, making it particularly useful when managing

communication between isolated contexts like multiple tabs or iframes.

» window.postMessage: This global method provides a simple way to send messages
between different windows, tabs, or iframes in a web browser. It is especially valuable
in iframe-based compositions, where micro frontends can communicate by passing
messages through this API, ensuring relevant information is shared securely and

efficiently across frames.

2.5.4.2 State-Based Communication

State-based communication uses shared state mechanisms to pass data between micro
frontends, providing indirect yet persistent means of coordination. This method results in tighter
coupling compared to event-based communication, as it requires micro frontends to access and
manipulate a common state. However, for vertical split architectures, it is a viable method of

communication.

= Storage: Browser storage options like session storage, local storage, and cookies
can be used to store data on the client side. Micro frontends can access this data to
share information indirectly, which is particularly useful for persisting state across

different sessions or micro frontends.

= Query Strings: Query parameters in the page URL can be used to pass information
between micro frontends. By appending parameters to the URL and having each
micro frontend extract and interpret these parameters, micro frontends can share

context without requiring a direct interaction mechanism.

2.5.4.3 Integration-Based Communication

Integration-based communication involves direct interaction between micro frontends,

allowing them to exchange data or trigger actions through more tightly coupled mechanisms.

» Attributes: In this approach, micro frontends share contextual information by passing
data through HTML attributes. This method usually follows a unidirectional data
flow model, where parent components pass data down to child components, ensuring

a clear hierarchy and data flow between fragments.

= Direct Function Calls: One micro frontend can expose global functions (e.g., in

the global scope) that other micro frontends can invoke. This approach is highly
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discouraged, as it relies on one micro frontend having knowledge of the internal

structure of another.

2.5.5 Backend Integration

There are several approaches for integrating micro frontends with backend layers, each
designed to serve distinct purposes. These include service registries, API gateways, and the
Backend for Frontend pattern.

2.5.5.1 Service Registry

A service registry is a centralized directory that contains information about all the
available services that can be consumed by the client. The use of a service registry eliminates the
need for shared libraries, environment variables, or configurations that require injection during
the continuous integration process, as well as the necessity of hardcoding all endpoints in the

frontend codebase [22]. Figure 17 shows this strategy.
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Figure 17: Service registry pattern

When the system loads for the first time, the Application Shell fetches the service registry
and provides it to the micro frontends, which then retrieve the necessary service URLs directly.
This approach improves flexibility, as changes to service endpoints no longer require modifi-
cations to individual micro frontend codebases. Typically, the service registry is implemented
using a static JSON file or through a request to an API.

2.5.5.2 API Gateway

The API gateway is an intermediary layer that mediates communication between micro
frontends and backend microservices, as seen in Figure 18. It centralizes information about
service endpoints, improves decoupling between frontend and backend, and provides additional

security and traffic management capabilities.
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As the primary entry point in a microservices architecture [22], the API gateway separates
the public external APIs from the private internal APIs, allowing clients to interact with the
public APIs. It also centralizes common shared functionalities such as authorization, monitoring,
logging, and rate limiting. Furthermore, the API gateway can proxy requests between legacy
monolithic systems and newly implemented microservices, ensuring smooth transitions during

system migrations.

2.5.5.3 Backend for Frontend

The Backend for Frontend (BFF) pattern extends the API gateway pattern [22] by
providing a single entry point for each client type. In the context of micro frontend architectures,
each micro frontend has its own dedicated BFF that aggregates data from multiple services
and optimizes it for the frontend. This design abstraction prevents the frontend from being
overloaded with complex API orchestration, thereby improving performance and simplifying

data retrieval. The BFF pattern is shown in Figure 19.
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Figure 19: Backend for Frontend pattern

This pattern focuses on creating backend APIs that solves the specific needs of each
frontend application. Rather than relying on a single backend to serve all functionalities for
various client types of different business domains, the BFF approach promotes the use of

specialized backends that address the unique requirements of each frontend.
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2.6 SOFTWARE QUALITY

Quality refers to how well a product or service aligns with customers’ expectations and
requirements. Achieving continuous improvement requires that quality be clearly defined and
measured. Quality models offer valuable frameworks for predicting reliability, managing quality
during development, and assessing software complexity [16].

In modern software development, ensuring high quality is more important than ever,
particularly when working with complex architectures like micro frontends. Among the various
software quality models available, this work adopts the ISO/IEC 25010 standard, which provides

a comprehensive set of quality attributes well-suited for evaluating micro frontends.

2.6.1 ISO/IEC 25010

The ISO/IEC 25010 standard defines system quality as the degree to which a system
meets the stated and implied needs of its various stakeholders [11]. It includes two models: the
quality in use model, which is beyond the scope of this work, and the product quality model,
which addresses both static and dynamic properties of a software.

The product quality model supports the specification and evaluation of software from
multiple perspectives, including those involved in acquisition, requirements, development, use,
evaluation, support, maintenance, quality assurance, control, and auditing. It organizes the

product quality into eight key characteristics, each composed of related subcharacteristics:

» Functionality suitability: capacity to provide features and capabilities that enable

users to complete the specified tasks.

» Performance efficiency: capacity to deliver appropriate performance in terms of

resource utilization and response time.

= Compatibility: capacity to operate effectively while sharing the same common

environment and resources with other systems.
= Usability: capacity to be used effectively, efficiently, and satisfactorily by users.

= Reliability: capacity to prevent failures and maintain adequate performance under

specified conditions, even when disruptions occur.

= Security: capacity to protect itself and its data from threats, such as unauthorized

access, use, disclosure, disruption, modification, or destruction.

= Maintainability: capacity to be modified, improved, corrected, or adapted to meet

new requirements.

» Portability: capacity to be transferred to or deployed in different environments,

including hardware platforms and software systems.
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SOLUTION DESIGN

This chapter presents a systematic framework for designing a micro frontend-based
architecture for complex graphical user interfaces. The approach applies use case modeling and
domain analysis, grounded in the principles of Object-Oriented Modeling and Domain-Driven
Design, to translate abstract system requirements into a maintainable and scalable architecture
aligned with core domain logic. A diagram illustrating the proposed software lifecycle model is

shown in Figure 20.
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System
Design

Release

System
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Requirement
Analysis

Monitoring

Figure 20: Proposed software lifecycle model

3.1 REQUIREMENT ANALYSIS

The scope of this work is particularly significant to developers, engineers, and the broader
community involved in the RoboCup SSL environment. A discovery session was conducted
with the RobdClIn team — identified as a key stakeholder group representing the community’s
interests — to gather requirements, constraints, and pain points. The outcomes of this session
were carefully filtered and refined into a requirements document, which serves as the input for

all subsequent project work.
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Various terminologies exist for classifying requirements. For the purposes of this work,
requirements are categorized into functional requirements, non-functional requirements, and

design and implementation constraints.

3.1.1 Functional Requirements

Functional requirements define the key services a system must provide and how it should
behave in response to certain inputs or situations [36]. Although functional requirements are
often presented in abstract terms and elaborated further throughout the development process, this

work details them directly as use cases. Table 1 summarizes the functional requirements.

Feature ID Functional Requirement
Match UCO001 | The user shall be able to watch a live match.
Playback UCO002 | The user shall be able to play the match.
UCO003 | The user shall be able to pause the match, with the system display-
ing the elapsed time since the pause.
UCO004 | The user shall be able to control the current playback time of the
match.
UCO005 | The user shall be able to adjust the playback speed.
UCO006 | The user shall be able to jump to a specific time in the match.
UCO007 | The user shall be able to advance or rewind frame by frame.
UCO008 | The user shall be able to advance or rewind by specific time incre-
ments (e.g., 5s, 10s).
UCO009 | The user shall be able to jump to the live broadcast using a "LIVE"
button.
3D UCO10 | The user shall be able to lock the view on a specific robot or ball.
N UcCo11 The user shall be able to view the field coordinates with the mouse
Visualization
Cursor.
UCO012 | The user shall be able to zoom in on any position on the field.
Match UCO013 | The user shall be able to view details of a robot or ball by clicking
Information on them.
UCO14 | The user shall be able to see overall match information.
UCO015 | The user shall be able to view the complete history of match events.
UCO016 | The user shall be able to click on a specific event to jump to that
point in the match.
UCO017 | The user shall be able to filter events in the match history.
UCo018 The user shall be able to search for parameters.
Parameter -
Management UCO19 | The user shall be able to import a parameter file.
UC020 | The user shall be able to export a parameter file.
UCo021 The user shall be able to change parameter types and values.
UCO022 | The user shall be able to send parameters to the services.

Table 1: System’s functional requirements

The system’s functional requirements are aligned with the features identified by stake-

holders. For the match playback feature, the use cases focus on viewing and controlling the
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playback of a live match. The 3D visualization feature involves rendering match objects within
a 3D environment and providing camera controls. In the match information feature, the use
cases address real-time tracking of the scoreboard and match events. Lastly, the parameters
management feature includes configuring and sending parameters to control backend services.
In UML, use case diagrams visually represent interactions between the system and
external entities, such as users or other systems, highlighting the relationships relevant to each
use case. While experienced domain experts may sometimes skip this step by identifying system
subdomain boundaries directly, use case diagrams remain essential for subsequent phases of this

work. Figure 21 presents the system’s use case model, capturing these interactions.
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3.1.2 Non-Functional Requirements

Non-functional requirements (NFRs), or quality attributes [5], place constraints on what
the system can do, covering aspects like performance efficiency, reliability, maintainability and
portability [36].

This study adopts the ISO/IEC 25010 model [11] to assess non-functional requirements.
This model provides a set of quality characteristics and sub-characteristics, enabling a systematic

evaluation of relevant quality attributes.
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Considering the study’s focus on the impact of adopting a distributed micro frontends
architecture over a traditional monolithic approach, the analysis prioritizes a specific subset of

quality attributes that are particularly influenced by this architectural shift, as detailed in Table 2.

Quality Attribute Non-Functional Requirement

Respond promptly and within defined time parameters.

Performance — - : - -
. Manage and utilize resources according to specified constraints during
Efficiency | .
functional operations.

Ensure optimal capacity by managing and meeting the specified max-

imum limits of parameters.

Meet reliability needs under normal operation.

Be operational and accessible when required for use.

Reliabilit
Y Operate as intended despite the presence of hardware or software

faults.

Recover data and re-establish system state in case of interruption or

failure.

Components should have minimal impact on others when changed.

Components should be reusable in multiple systems.

Maintainability Facilitate effective assessment of intended changes’ impact, diagnosis

of deficiencies or failures, and identification of parts for modification.

Support modification without introducing defects or degrading prod-

uct quality.

Support effective establishment of test criteria and efficient execution

of tests for compliance.

Be adapted for different or evolving hardware, software, or opera-

Portability tional environments.

Successfully install and uninstall in specified environments.

Replace another specified software product for the same purpose in

the same environment.

Table 2: System’s quality attributes and non-functional requirements

3.1.3 Design Constraints

Design constraints limit the developer’s choices for valid and necessary reasons [42].
Also, when designing of large modular systems, low coupling and high cohesion are foundational
design principles that remain critical [9]. By keeping each module focused and reducing
dependencies, these principles ensure scalability, maintainability, and architectural integrity, even
within imposed constraints.

For this project, the design constraints are as follows:



43

» Distributed: The system must be composed of fully independent applications, en-

abling them to evolve separately and reducing dependencies across the system.

» Future-ready: The architecture of the system must support future changes and new

technologies with minimal rework.

» Backend independent: The backend of the system must be decoupled from the
frontend, allowing independent updates or replacements without affecting the user

interface.

3.1.4 Implementation Constraints

Implementation constraints address practical considerations in system construction,
influenced by the team’s expertise and the chosen technology stack. These constraints guide
coding and deployment practices to ensure the system remains consistent, maintainable, and
adaptable.

For this project, the implementation constraints are:

» Minimal dependency on external libraries: The system must favor native technologies

to minimize risks and ensure long-term stability.

s Technology agnosticism: The system must support various frameworks, languages,

and technologies.

= Web browser compatibility: The system must be capable of running in a web browser,

ensuring broad accessibility and ease of deployment.

3.2 SYSTEM ANALYSIS

In software engineering, models are essential tools for simplifying and understanding
complex problems. These models are particularly powerful in the context of Object-Oriented
Modeling and Domain-Driven Design, where the model closely reflects the real-world domain.

During the system analysis phase, models are created to guide the subsequent design
phase. These artifacts capture both functional and non-functional requirements, including domain

models and bounded contexts that define how each part of the system will be implemented.

3.2.1 Domain Analysis

Domain analysis is the process by which a software engineer acquires the necessary
background knowledge to understand a problem and make informed decisions throughout system
analysis and subsequent software engineering phases. The term "domain" refers to the specific

business or technology area where the software will be applied [19].
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The process of domain analysis involves gathering information from various sources,
including domain experts, relevant literature, existing software, and documentation. A common
technique in this phase is filtering nouns from use case descriptions to identify potential entities,
excluding irrelevant elements — which are handled later in the design phase.

Using the identified entities, abstract class diagrams are constructed as part of an ex-
ploratory domain model. These diagrams capture the entities and relationships within the domain,
but are not intended to model implementation details. Operations, polymorphism, and certain
modeling principles are typically not the focus at this stage [19]. The system’s exploratory

domain model is depicted in Figure 22.
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Figure 22: System’s exploratory domain model

At the core of the system is the Match, which encapsulates all aspects of a soccer robot
game. A Match consists of multiple Frames, each capturing a snapshot of the game state at a
particular moment. These Frames are critical for rendering the match’s progression over time
and contain the state of both the Robots and the Ball at each particular instant.

Within the context of a Match, Teams are also an essential entity, with each team
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composed of several Robots. These Teams participate in the Match, and their actions and
strategies are central to the game’s outcome. The Match takes place on a defined Field, which
establishes the spatial boundaries and conditions under which the Robots operate. Moreover, the
Match is composed of various Events that represent significant occurrences during the game,
such as goals, fouls, or other game-changing actions. These Events are associated with both the
Robots and the Teams, providing a detailed account of the Match’s progression.

In addition to the core gameplay elements, the model also includes Service entities,
representing various aspects of robot control mapped to backend services. These Services are
configured by Parameters, which define the operational settings for the Robots during the match.

Finally, another important entity is the Camera, which defines the viewpoint in 3D space,
allowing users to navigate the match from different perspectives and lock the view onto specific
entities, such as Robots, the Field, or the Ball.

As the domain model evolves, it begins to identify subdomains and their interrelationships.
This evolving model maps core business functions and dependencies, acting as a bridge between
business understanding and technical implementation. A key aspect of this is the development
of a Ubiquitous Language — a common vocabulary derived from domain experts’ jargon. This
language is refined for clarity and precision to ensure all stakeholders, from developers to domain

experts, have aligned discussions that translate into code [9].

3.2.2 Bounded Contexts

A bounded context in Domain-Driven Design defines where a particular model is appli-
cable, ensuring clarity and consistency within its scope. Within this context, the model remains
coherent and focused on its domain, without concern for relevance outside these boundaries.
Different contexts may adopt distinct models, terminology, and rules, each reflecting their own
version of the Ubiquitous Language [9].

Explicitly defining these boundaries keeps models effective and clear, minimizing con-
fusion when shifting between contexts. Integration across contexts requires careful translation,
which helps reduce dependencies between subsystems. This separation allows models to accu-
rately capture domain entities and relationships while reflecting different levels of abstraction.

The process of identifying bounded contexts begins by grouping use cases that share
similar goals and domain concepts. This approach reveals natural boundaries within the system,
organizing related functionalities into distinct contexts where a consistent domain model can
apply, supporting robust and adaptable design. The system’s bounded contexts are given in
Figure 23.

The identified bounded contexts reflect the same correspondence between features and
use cases observed during the requirements analysis phase, resulting in four distinct contexts:
Match Playback, 3D Visualization, Match Information, and Parameters Management, each

encapsulating a specific aspect of the system’s functionality.
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Figure 23: System’s bounded contexts

After identifying the bounded contexts, the next step is to distribute the entities from the
exploratory domain model among them. Each context should encapsulate the entities that most
accurately represent the core concepts of its subdomain. It is important that these entities align
with the specific requirements of the context, preserving well-defined boundaries and minimizing
overlap between contexts.

As the domain model is refined, new entities may emerge, and existing ones might
be renamed. In some cases, entities may only represent a partial view of the whole. The
outcome, represented in Figure 24, is not a single domain model, but a collection of models, each
characterized by its own Ubiquitous Language, with translation maps allowing communication
between them.

It is important to remain flexible during the design and implementation process. As the
system evolves, certain contexts may reveal significant overlaps and should be merged, while
others may emerge as the domain becomes more defined. Additionally, if a context becomes too
complex, it may need to be divided into smaller, more manageable contexts. These adjustments

are an inherent and necessary part of refining the system’s architecture.
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Figure 24: System’s refined domain models inside each bounded context

3.3 SYSTEM DESIGN

During the system design phase, models are developed to guide the system architecture,
building on the insights gained during the analysis phase. In contrast to analysis models, which

capture domain concepts, design models translate these concepts into concrete architectural

solutions. Design models include detailed representations such as component diagrams, inter-
action diagrams, and design patterns that define how each component of the system will be
implemented. Additionally, bounded contexts identified during analysis are further refined in the

design phase, ensuring a clear understanding of how different parts of the system will interact

and function together.

3.3.1 Micro Frontends

The definition and implementation of micro frontends are influenced by several factors,

including the size of the development team and their familiarity with this architectural paradigm.

Achieving the right balance between the benefits of decoupling and the additional complexity it
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introduces is critical. Even small teams can obtain significant advantages from adopting a dis-
tributed architecture on the frontend, such as improved scalability, resilience, and maintainability.
This is particularly true in complex domains like robotics graphical user interfaces, where micro
frontends offer a way to build maintainable applications, even with high turnover among team
members.

A good starting point for defining MFEs is to align each one with a bounded context. By
mapping MFEs to these contexts, the architecture stays cohesive, with each frontend segment
reflecting the natural division of the domain. This approach ensures that each MFE encapsulates
the functionality and behavior specific to its subdomain, following the principles of domain-
driven design.

The system architecture is composed of the following defined micro frontends:

» Player MFE: corresponds to the Match Playback context
= Viewer MFE: corresponds to the 3D Visualization context
= Scoreboard MFE: corresponds to the Match Information context

» Params MFE: corresponds to the Parameters Management context

As the system evolves, this initial alignment of MFEs to bounded contexts should
be iteratively refined. As the team gains a deeper understanding of the domain and system
requirements, some MFEs may need to be split into smaller, more granular components, while
others might be consolidated to reduce complexity or improve performance. This iterative
refinement process allows the architecture to adapt to changing business needs and technical

constraints, ensuring that it remains scalable and maintainable over time.

3.3.2 Architectural Design Patterns

The Gang of Four describes design patterns as reusable solutions to common design
challenges, structured as descriptions of communicating objects and classes [12]. These patterns
facilitate the reuse of proven designs and architectures, enabling designers to arrive at effective
solutions more quickly. While many of these patterns are highly valuable within individual micro
frontend applications — such as the Observer pattern, which drives much of the reactivity in user
interactions — this section focuses on patterns that are architecturally significant: domain events,
Backends-for-Frontends (BFFs), and the Application Shell.

3.3.2.1 Domain Events

Domain Events are a DDD pattern described by Vaughn Vernon [40] that enables the
design of autonomous services and systems, where each application operates independently

by using asynchronous messaging instead of direct calls. These events originate from domain
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entities and align with the Ubiquitous Language of their bounded context, being mapped to other
structures when crossing bounded contexts to ensure they accurately reflect their meaning within
the new context.

This approach is particularly well-suited for web frontend architectures, which are inher-
ently event-driven and reactive through browser APIs and frameworks. Domain Events bridge
user interactions with domain logic, guaranteeing that user actions are accurately represented in
the domain model. As a result, significant communications within a single micro frontend or
across different micro frontends are effectively modeled as Domain Events.

In the local context, inside a bounded contexts, domain events like PlaybackUpdateEvent
is emitted by the Playback entity in Player MFE when a new sample is processed, to update the
state of the UI elements of the micro frontend. A FrameRenderEvent is another local domain
event, that does not cross the boundary and is emitted by the RenderingEngine in the Viewer
MEE and received by the RenderingObjects, that update theirs position and physical dimensions.
For global domain events, that cross different bounded contexts, SampleReceiveEvent is emitted
by the Playback entity in the Player MFE, being listened by Viewer and Scoreboard MFE to
maintain they synchronized. The LockToEntityEvent is a global event emitted by the Scoreboard
MEE that is listened by the Viewer MFE, that changes the camera position.

Within a local bounded context, domain events such as the PlaybackUpdateEvent are
triggered by the Playback entity in the Player MFE whenever a new sample is processed. This
event updates the Ul elements of the micro frontend. Another example of a local domain event
is the FrameRenderEvent, which is emitted by the RenderingEngine in the Viewer MFE and
received by RenderingObjects to update their position and physical dimensions. These events
remain confined to their respective bounded contexts.

Global domain events, which cross multiple bounded contexts, include the SampleRe-
ceiveEvent, emitted by the Playback entity in the Player MFE. This event is consumed by both
the Viewer and Scoreboard MFEs to ensure synchronization across contexts. Similarly, the
LockToEntityEvent is emitted by the Scoreboard MFE and is listened to by the Viewer MFE,

where it triggers changes to the camera position.

3.3.2.2 Backends for Frontends

The Backend for Frontend pattern is a consumer-focused approach to API design, where
each BFF serves as an intermediary layer that provides data in the format required by its specific
client. This allows core backend services to stay generic and reusable, avoiding the need for
over-customization for different frontends. By reshaping and combining data, BFFs improve the
interaction between frontends and backends, maintaining the scalability and flexibility of the
backend while enhancing the user experience on the frontend.

BFFs are usually designed as unique entry points for a given device group, like smart-

phones or desktops. However, an interesting use case is when BFFs are used to map backend
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domains to frontend domains, keeping them separated and independent. This supports cleaner
architectural boundaries and promotes a more flexible system [22].

In essence, BFFs work as specialized backends created to each user experience. They
act as the anti-corruption layer in Domain-Driven Design [9], protecting frontends from the
complexities of backend logic and data, and only exposing the information and services necessary

for the user interaction. Figure 25 shows the system’s architecture, including the BFFs.
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Figure 25: System’s architecture

3.3.2.3 Application Shell

The Application Shell is an orchestrator for micro frontends, acting as the first layer
loaded when the application is accessed and remaining active throughout the user’s session [22].
It manages the dynamic loading and unloading of micro frontends based on navigation patterns,
ensuring that only the relevant components are retrieved. This approach minimizes unnecessary
resource consumption, optimizing performance and user experience.

At its core, the Application Shell itself functions as a mediator [12] within the micro fron-
tend architecture. It coordinates communication between individual micro frontends, ensuring
they remain decoupled and focused on their respective tasks. By acting as a central authority for
these interactions, the Application Shell maintains the principles of reactivity and loose coupling
— both fundamental in distributed systems like micro frontends.

As an indispensable component in the architecture, the Application Shell can be observed

in Figure 25 and is discussed with more details in the following chapter.

3.3.3 Service Interaction Model

Interaction diagrams are essential tools for modeling the dynamic behavior of software
systems, providing a clear representation of the steps involved in executing a use case or any

specific functionality. Collectively, these steps form what is known as an interaction [19]. One



51

notable type of interaction diagram, the Service Interaction Model, is particularly useful for
illustrating the communication between the micro frontends and the other services. These
diagrams guide the refinement of the system’s architecture by making the flow of interactions
explicit and identifying potential inefficiencies.

As the design process unfolds, new entities often emerge. When such entities are
identified, the system’s models — whether classes, attributes, or relationships — should be updated
to ensure they remain aligned with the evolving domain requirements. This iterative approach
is fundamental to maintaining both the scalability and adaptability of the architecture while
preserving its structural integrity.

Figure 26 demonstrates the Service Interaction Model for the live match watch use case.
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Figure 26: Service interaction model for UC001

3.3.4 Service Component Model

As the system architecture is refined, it becomes essential to translate high-level design
decisions into a detailed component diagram. This process involves making architectural choices
that will shape the system’s structure and behavior. The component diagram provides a visual
representation of the system’s major building blocks and their interactions, serving as a blueprint
for both developers and stakeholders. By clearly delineating components and their dependencies,
this diagram helps ensure that the system’s architecture is robust, scalable, and aligned with the
project’s requirements.

Figure 27 presents the system’s component diagram, which includes the Application
Shell, micro frontends, and their respective BFFs. The backend services are represented as
a generic layer, illustrating that they can be architected in a variety of forms, whether as a

monolithic structure or a distributed system.
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SOLUTION IMPLEMENTATION

This chapter describes the system’s implementation, providing detailed justifications for
the chosen technologies and architectural decisions. It examines the micro frontend strategies
and their impact on system structure. The chapter also covers the user interface design, test-
ing methodologies, and deployment strategies, with attention to how they support continuous

integration and delivery.

4.1 OVERVIEW

The system was developed using a micro frontend architecture, composed of fully
independent applications, each with its own dependencies, teams, and pipelines for testing and
deployment. Key challenges in micro frontend design include determining how the components
will communicate, how the different views will be orchestrated and how to compose the final
user interface into cohesive system [22]. Each of these aspects are explained in detail, as they
represent distinct strategies for designing micro frontend architectures.

Given the highly dynamic and customizable nature of the application, a horizontal split
architecture was adopted, allowing multiple micro frontends to coexist within the same view.
This approach introduces several complexities, such as maintaining design consistency and
cohesion across micro frontends on a single page, ensuring real-time communication between
them, and managing potential dependency conflicts. Additionally, integration testing becomes
more challenging due to the intricate interactions between components.

The horizontal split supports various composition strategies, including client-side, edge-
side, server-side, and hybrid approaches. Since the application is designed to run primarily
on local machines and is heavily JavaScript-dependent, client-side composition was identified
as the most effective solution. This allows the system to leverage the advantages of a single-
page application model, where an initially empty shell dynamically loads and composes micro
frontends at runtime, enabling personalization, rule enforcement, and flexible adjustments.

Despite the challenges posed by this strategy, the combination of horizontal split and
client-side composition was chosen for its flexibility. This approach allows for the easy addition,

removal, modification, and reuse of micro frontends while relying on native browser features and
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APIs to provide a robust foundation. The system is designed to be extensible, accommodating
future requirements and features as needed. Each micro frontend functions as a self-contained
unit that integrates seamlessly into the overall system, much like a plugin.

With client-side composition in place, a client-side orchestrator, or Application Shell, is
required to manage routing. This app shell controls external routing between different micro
frontend-composed pages and communicates internal routing changes to each micro frontend. It
ensures that micro frontends respond appropriately to changes in query or deep URL parameters.
To facilitate this, the Application Shell enforces a standardized communication pattern across all
micro frontends. Event-driven communication, aligned with the principles of decoupling and
reactivity, is adopted to maintain consistency.

For backend communication, a layer of Backend for Frontend services intermediates be-
tween the frontends and backend services. The BFF layer translates, coordinates, and aggregates
requests, ensuring smooth interaction between the frontend (using protocols such as HTTP and
WebSockets) and the backend (using gRPC for more efficient communication). This architecture
ensures a scalable, adaptable system capable of handling both current and future demands.

The decision to adopt a client-side composition architecture with Backend for Frontends
was made based on the requirements and the advantages it offers. While a server-side composition
without BFFs was considered (see Figure 28), it was discarded due to its limitations in dynamic
interactions and flexibility. In server-side composition, full pages are rendered on the server
and sent to the client. This method simplifies client-side logic but restricts dynamic interactions
and real-time updates, as pages are static upon delivery. The lack of a BFF layer means direct
communication between frontend and backend, leading to tighter coupling and more difficulty
managing changes. Performance can be slower due to the need for full-page rendering on the

server, and scalability is limited by server resources.
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Figure 28: Discarded server-side micro frontends approach
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4.2 USER INTERFACE CONSISTENCY

Consistency in user interface design is an important aspect for improving user perception,
learning, and memory. It applies to spatial properties like menu organization and widget
placement, as well as visual elements such as fonts, colors, and layouts. Consistency also ensures
uniformity in actions and interaction patterns across an application, promoting skill transfer
and making systems easier to learn and operate effectively [20]. However, maintaining design
consistency across fully decoupled applications presents challenges.

Building base components, such as buttons, inputs, and dropdowns, can lead to coupling
with specific technologies or frameworks. An alternative is to create native components that
are framework-agnostic, though this approach still limits flexibility. Thus, there is a trade-off
between coupling for consistency and reusability versus reimplementation for flexibility and
freedom.

A central design system offers a solution by providing guidelines—defining colors,
shapes, spacing, and typography — that ensure consistency across teams without stifling creativity.
These design systems can be implemented as reusable components, CSS classes, or separately
from the codebase using tools like Figma or Sketch, where design tokens are exported. Although
modifying a design system can be costly, incremental updates across teams make it a continuous,
iterative process [13]. For this work, only design tokens were defined, as seen in Figure 29,
allowing each micro frontend to reimplement its own elements using their specific technologies

while adhering to a consistent visual identity.
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Figure 29: Defined design tokens

Additionally, each micro frontend in the system is designed within a modular grid layout.
A modular grid is a tool in design that brings order and structure to layouts. It consists of uniform
geometric shapes — modules — arranged in a defined sequence. In practice, a modular grid
breaks a two-dimensional plane into smaller fields, separated by intermediate spaces. These
fields, when arranged logically and systematically, help organize text and visual elements in line
with objective, functional criteria. This approach, rooted in rational design principles, allows

designers to merge modules to create a variety of sizes and shapes, offering flexibility while
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maintaining a cohesive structure. In the system context, these modules, referred to as fragments,
are directly related to specific micro frontends on a page, enabling modular design at both the

visual and technical levels [23].

4.3 TECHNOLOGIES

The micro frontend architecture is divided into two key components: client-side MFEs
and server-side BFFs. Client-side components are designed to run directly in the web browser,
adhering to World Wide Web Consortium (W3C) standard web technologies such as HTML,
CSS, and JavaScript. On the server side, a broader range of technology options was available.

To bootstrap the client-side applications, Vite was selected as the build tool, handling
tasks such as bundling, development server setup, minification, and asset management. Type-
Script, a strongly typed superset of JavaScript that compiles to JavaScript at build time, was
used as primary programming language to provide a layer of type safety. In alignment with the
principles of micro frontends [13], the applications rely on native browser features rather than on
a specific framework, allowing flexibility and the ability to integrate any frontend framework as
needed.

On the server side, the BFFs are written in Go, a highly performant and statically typed
language designed by Google, known for its strong concurrency model. Go was chosen to ensure
efficient handling of multiple requests, making it well-suited for the intermediary role that BFFs
play in managing communication between frontends and backends.

All components are containerized using Docker, with Docker Compose orchestrating the
containers, ensuring consistent environments for development, testing, and deployment across
different stages of the system’s lifecycle. This approach simplifies scaling and managing the

distributed architecture inherent to micro frontends.

44 COMPONENTS

This section explores the implementation details of each component within the micro

frontend architecture.

4.4.1 Application Shell

The Application Shell serves as the entry point to the system, orchestrating dynamic
loading, rendering, and communication between micro frontends. It is the first component
downloaded when a user accesses the application and remains active throughout the user’s
journey, coordinating the assembly of the user interface based on the requested routes [22]. Its
primary responsibilities include managing client-side routing, handling global configurations,
maintaining the user’s initial state, and handling errors when a micro frontend fails to load.

Figure 30 shows a screenshot of the implemented Application Shell.
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Figure 30: Application shell with micro frontends

At its core, the App Shell functions similarly to a Single-Page Application, allowing
navigation between views without full page reloads. This is accomplished through a configuration
file — which could potentially be replaced by a dynamic approach — that defines the available
routes and specifies the corresponding micro frontends for each path. Each route corresponds to
a combination of micro frontends (referred to as fragments) and defines their position, size, and
properties within the modular grid layout system.

When a user navigates to a route, the Application Shell fetches the relevant fragments
and initially displays a skeleton loading screen in the designated positions. Once the fragments
are loaded, the shell manages communication and interactions between them, ensuring consistent
behavior and user experience throughout the application. The ability to orchestrate multiple micro
frontends on a single page, each operating independently, is a key feature of this architecture.

To provide communication between the micro frontends, the App Shell implements an
event-driven model using the native Broadcast Channel API. This creates a shared communication
layer, or Event Bus, that allows micro frontends to publish and subscribe to events. This
bidirectional communication can span across different contexts, such as browser windows, tabs,
frames, or web workers, ensuring real-time synchronization of data and actions. For example,
a route change or a keyboard shortcut triggered in one micro frontend can be broadcasted to
other micro frontends that subscribe to these events, facilitating coordinated behaviors across the
application.

The App Shell supports two methods for integrating micro frontends: WebComponents

and IFrames. WebComponents are the default approach due to their native integration with the



58

browser’s DOM and their ability to encapsulate HTML, CSS, and JavaScript within a reusable
component. This method aligns with the principles of micro frontends by allowing each fragment
to operate independently while maintaining coherence within the broader system. However,
IFrames are available as a fallback option for legacy components.

The overall internal architecture of the Application Shell is designed with extensibility in
mind. While the current implementation uses WebComponents and IFrames, the system can be
extended to support other frontend frameworks or technologies as they emerge. This flexibility,
combined with the independence of each micro frontend, ensures that the architecture can evolve

over time without significant refactoring.

4.4.2 Player Micro Frontend

The Player micro frontend is a critical component within the system’s architecture,
responsible for managing the real-time playback of live match data. Its primary function is to
synchronize all other micro frontends with the current frame of the match, making it a task-
intensive application. To meet the high demands of live playback without overloading the user
interface’s main thread, the Player MFE utilizes Web Workers. These workers run in a separate
thread, ensuring that the real-time match data processing does not cause the Ul to freeze or lag.
They handle intensive tasks such as receiving, processing, and sending match data to the event
bus, all while maintaining smooth playback. Figure 31 shows a screenshot of the implemented
Player MFE.

Figure 31: Player micro frontend

A persistent connection is maintained between the Player MFE and its dedicated BFF
through WebSockets. This connection allows the Player MFE to receive chunks of samples con-
taining match data, including player positions, ball trajectories, and frame-specific information.
The data transmitted via WebSockets is processed by the Player MFE and then broadcast to other
micro frontends through the Application Shell’s event bus, keeping all the components of the
application synchronized with the current match frame.

From a technical perspective, the Player MFE operates with two primary threads: the
Main Thread and the Socket Worker. The Main Thread is responsible for instantiating the
Web Component, handling user inputs (such as play, pause, and seek), and coordinating match
playback on the client side. Meanwhile, the Socket Worker manages the WebSocket connection
to the Player BFF, offloading the Main Thread from dealing with the constant stream of data sent
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by the backend.

4.4.3 Viewer Micro Frontend

The Viewer micro frontend is designed as the 3D rendering engine for the match. Its
core responsibility is to render a dynamic 3D match environment, including the robots, ball, and
field, by employing the Three.js library — a popular wrapper for WebGL that leverages hardware
acceleration through the browser’s GPU. The Viewer MFE listens for updates via the event
bus on the App Shell and renders the scene at a fixed rate of 60 frames per second. Due to its
computationally intensive nature, the Viewer MFE also utilizes Web Workers to handle heavy
tasks in parallel, preventing any freezing or lagging of the user interface. Figure 32 shows a

screenshot of the implemented Viewer MFE.

Figure 32: Viewer micro frontend

Integrated into the system as a Web Component, the Viewer MFE operates across three
threads: the Main Thread, a Communication Worker, and a Rendering Worker. The Main Thread
manages user interactions, such as rotating, zooming, or navigating within the 3D environment,
and coordinates the overall rendering process. The Communication Worker listens to the event
bus, processes incoming messages, and passes relevant data to the Rendering Worker, which
handles the actual 3D rendering using Three.js. This multi-threaded approach ensures efficient

real-time rendering while maintaining the system’s performance.
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4.4.4 Scoreboard Micro Frontend

The Scoreboard micro frontend plays a important role in the system by providing real-
time updates on match information, such as the score and match events. It is designed to display
data in a clear and concise format, ensuring that users can easily track the progress of the match.
Like other micro frontends in the system, the Scoreboard MFE is developed, tested, and deployed
independently, but it is composed dynamically in the browser through the App Shell. Figure 33

shows a screenshot of the implemented Scoreboard MFE.
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Figure 33: Scoreboard micro frontend

Receiving its data through the event bus, the Scoreboard MFE also offers interactivity by
allowing users to click on specific events, which triggers commands to adjust the match timeline
to the selected moment. This functionality enhances the user’s ability to review and navigate

through key moments in the match.

4.4.5 Parameters Micro Frontend

The Parameters micro frontend serves a specialized function in the system, designed

primarily to handle configuration inputs related to the backend connection and system parameters.
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Unlike other micro frontends, the Params MFE is implemented as a modal window that does
not occupy any space within the grid layout. Its purpose is activated at the start of the system,
prompting the user to input the required backend IP address and port, which it uses to establish

the necessary connection. Figure 34 shows a screenshot of the implemented Params MFE.

Parameters

Figure 34: Parameters micro frontend

Once the connection details are provided, the Params MFE communicates with its
dedicated BFF, which manages and stores these parameters. The BFF acts as an intermediary
between the Params MFE and the various services within the system, ensuring that the input
configurations are correctly distributed. Additionally, as the backend services evolve to support
new external parameters, the Params MFE will be adapted to send calibration data and other

necessary parameters to control specific aspects of the robotic systems.

4.5 TESTING STRATEGIES

Testing is essential for ensuring software quality, as it evaluates both fundamental units
— such as classes, functions, and components — and their integrations. The micro frontend
architecture enhances this testing process by enabling a more granular and manageable approach
due to its decoupled nature and adherence to object-oriented principles.

Vitest is utilized as the testing framework, facilitating the evaluation of both unit and
integration aspects. Vitest allows for efficient test execution and integrates seamlessly with Vite,
making it a suitable choice for the development environment.

In addition to unit and integration testing, end-to-end testing is emphasized to validate
the entire user journey across micro frontends. This holistic approach ensures that the application
functions cohesively from the user’s perspective, thereby enhancing software quality. This topic

will be addressed in the next chapter as a means of evaluating functional requirements.
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4.6 PERFORMANCE OPTIMIZATION

Performance is a critical aspect of user experience and has a significant impact on
business metrics. Even when functional requirements are met and good development principles
are followed, this does not guarantee optimal performance. To achieve performance goals, it is
essential to define them clearly from the outset, starting the journey by establishing a performance
budget.

A performance budget acts as a guiding framework that sets clear limits on various
performance-related metrics, ensuring that each micro frontend contributes positively to the
overall user experience. Specific budgets were established to prevent individual components from
adversely affecting page performance. Key metrics included maximum bundle sizes, restrictions
on external resources, and compliance with Lighthouse performance metrics.

For this project, the system must satisfy the following performance criteria, formulated

with input from the RoboClIn team:

= Each JavaScript bundle must be less than 300 KB when minified and gzipped.

s Micro frontends must load and become interactive in under 5 seconds, even on slow

3G connections.

= Micro frontends must achieve a performance score greater than 80 on Lighthouse

audits.

= Each container image for a system component must not exceed 100 MB in size.

4.7 CONTINUOUS INTEGRATION AND DELIVERY

Continuous Integration (CI) and Continuous Delivery (CD) are essential practices in
modern software development that facilitate rapid and reliable code deployment while main-
taining high system quality. Integrating performance budgeting into the CI/CD pipeline is
crucial for managing application performance proactively. Open-source tools like bundlesize and
Lighthouse CI are used to monitor bundle sizes and evaluate key performance metrics, enforcing
performance budgets automatically. If predefined thresholds are not met, code integration into
the main branches is blocked, preventing potential performance degradation.

In addition to performance monitoring, a suite of tests is integrated into the CI/CD
pipeline. This includes unit tests, integration tests, and end-to-end (E2E) tests, all of which
validate code changes at different levels. These automated tests are executed during the CI
process, ensuring that faulty code is not merged into the main branch if any test fails.

The combination of these practices leads to Continuous Delivery. Once code is pushed
to the main branch and successfully passes all tests and performance checks, the CI/CD pipeline

triggers the creation of a Docker image, which is then pushed to Docker Hub. This streamlined
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process facilitates frequent and reliable deployments, reducing the time between code develop-
ment and production availability. Automating both the build and deployment processes allows
development teams to focus on feature development rather than infrastructure management,

enhancing overall productivity and responsiveness to user and community needs.

4.8 SYSTEM MONITORING

Maintaining high-quality software requires post-launch performance monitoring to ensure
that the application continues to meet technical and business objectives. This process involves
continuous tracking of key metrics and collecting real user data to assess how performance
fluctuations impact user experience.

In the system, performance data is collected through OpenTelemetry Collectors, which
aggregate metrics from multiple sources within the application. These metrics are then visualized
using Grafana, a robust monitoring and visualization tool. Grafana’s real-time dashboards
allow teams to continuously monitor application performance and quickly detect performance

regressions or bottlenecks that may arise post-deployment.
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EVALUATION

This chapter presents the evaluation of functional and non-functional requirements
outlined in Section 3.1, along with a comparison against the monolithic baseline to highlight key
differences. Limitations encountered during the assessment are also discussed, providing a clear

view of the trade-offs and challenges identified throughout the evaluation process.

5.1 ASSESSMENT METHODOLOGY

The assessment methodology is divided into two categories: functional and non-functional
evaluation. The functional evaluation focuses on ensuring the system behaves as expected from
the end-user’s perspective. This is achieved through automated end-to-end tests [38], which
simulate real-world interactions to verify that the system meets its functional requirements.

Automated end-to-end tests provide a reliable and repeatable means of ensuring func-
tional integrity, reducing the likelihood of human error and increasing the consistency of results.
Additionally, they offer scalability by allowing the functional aspects of the system to be tested
across a variety of scenarios with minimal manual intervention.

The non-functional evaluation, on the other hand, focuses on assessing the system’s
quality attributes such as performance, reliability, and maintainability. This is done using a
multidimensional approach that combines quantitative and mathematical methods with subjective
assessments, providing a broad understanding of the system’s operational characteristics.

Some methods utilize static code analysis, defined by the ISO/IEC/IEEE 24765 standard
as the process of evaluating a system or component based on its form, structure, content, or
documentation [10]. This type of analysis focuses on the code itself rather than its execution,
resulting in the derivation of code metrics that can be employed for quantitative assessment of
software quality attributes.

To extract these code metrics for the evaluation, various open-source and commercial
software tools were used, processing only source code files. Configuration and style files were
excluded from the analysis.
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5.2 FUNCTIONAL EVALUATION

The functional requirements are evaluated through a set of end-to-end tests, each rep-
resenting a specific use case within the system. Each specification is defined to verify that
the system processes inputs correctly, produces expected outputs, and follows the prescribed
workflows in accordance with the defined functional specifications.

The tests are implemented using Playwright, an open-source, cross-platform automation
tool designed to support all modern web browsers. Playwright enables testing across multiple
browsers, including Chromium, Firefox, and WebKit, ensuring that the system is evaluated in
diverse environments. Its cross-platform compatibility also allows for tests to be executed on
different operating systems.

Table 3 shows the relation between the test name, corresponding use case identifier, and

the status of each test.

Test Name Use Case Identifier | Status
User should watch a live match UCo01 Passed
User should play a match ucCo002 Passed
User should pause a match UC003 Passed
User should control the playback time uCcoo4 Passed
User should adjust playback speed UCO005 Passed
User should jump to a specific time in the match UCo006 Passed
User should advance/rewind the match frame by frame | UC007 Passed
User should advance/rewind by 5 seconds UCo008 Passed
User should jump to the live broadcast uCco009 Passed
User should lock the view on a robot/ball ucCo10 Passed
User should see field coordinates with the cursor UCoO11 Passed
User should zoom in on a position of the field ucCo12 Passed
User should see details of a robot/ball by clicking UCo013 Passed
User should see overall match information ucCo14 Passed
User should see the history of match events UcCo15 Passed
User should jump to a specific event in the match ucCo16 Passed
User should filter events in the match history ucCo17 Passed
User should search for parameters UCo018 Skipped
User should import a parameter file ucCo19 Skipped
User should export a parameter file UcCo020 Skipped
User should change parameter types and values UcCo021 Skipped
User should send parameters to the services UucCo022 Passed

Table 3: End-to-end tests

The tests for UC018 to UC021 were skipped due to the current limitations of the backend
services, which only support receiving fixed connection parameters and do not yet allow for
dynamic parameter changes. Consequently, the implementation of dynamic parameter handling
is recommended for future development to enable these tests.

Due to the focus of the requirements gathering process with RobdoClIn on identifying
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missing features and enhancing existing ones, a direct comparison of use cases with the existing
software was not possible. Therefore, the primary goal of this evaluation is to verify that the
system functionally aligns with the requirements defined during the analysis, rather than provide

a direct comparison.

5.3 NON-FUNCTIONAL EVALUATION

5.3.1 Performance Efficiency

Performance efficiency quantifies the ability of a system to effectively execute its func-
tions within predetermined time and throughput constraints relative to use of resources, such as
CPU, memory, storage, energy, and materials [11].

The evaluation of this quality attribute is conducted through various means, includ-
ing multiple static analysis tools, web performance assessments, latency measurements, and

comparisons against predefined metrics.

5.3.1.1 Resource Utilization

Table 4 summarizes the resource utilization for each component within the system,
including lines of code (LOC), bundle sizes, and Docker image sizes. These metrics align with

the performance budgets defined in Section 4.5.2.

Component LOC | Bundle Size (gzip) | Docker Image Size
app-shell 618 7.9 kB 2.81 MB
params-mfe 313 2.6 kB 2.62 MB
player-mfe 1,925 12.7 kB 2.65 MB
scoreboard-mfe | 750 6.3 kB 2.66 MB
viewer-mfe 2,419 276 kB 3.4 MB
player-bff 688 - 15.71 MB
TOTAL 6,713 306 kB 29.85 MB

Table 4: Resource utilization for each component

5.3.1.2 Rendering Performance Comparison

To evaluate the rendering performance of the proposed micro frontend approach, a
comparative analysis was conducted with a monolithic software developed by RoboCln, built
in C++ using the Qt framework. The monolithic architecture tightly couples robotic control
processing with the user interface, leading to high resource consumption, particularly in terms
of memory and CPU usage. Although the feature sets between the two systems differ — most

notably the use of a 2D environment in the monolithic system compared to a 3D environment
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in the micro frontend — this comparison remains valuable for highlighting the performance
improvements offered by the new approach.

The tests were performed on an older machine running Ubuntu 22.04, equipped with an
Intel® Core™ i5-5200U processor, 8GB DDR3 RAM, a ITB HDD, and a NVIDIA® GeForce™
920M GPU with 2GB of VRAM. In terms of evaluation methodology, a 30-second sample was
collected for the live match use case, with camera frame rate transmissions ranging from 1 to
120 FPS, generated by Python-based software. The monolithic system received the packets via
UDP multicast, while the micro frontend’s BFFs received them through gRPC, both within a
local network. Frame rate measurements were taken as the time difference between rendering
consecutive frames, using Three.js for the micro frontend and Qt for the monolith. Outliers
beyond three standard deviations were discarded, and the average frame rate for each camera
configuration was then calculated. The results are presented in Figure 35.
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Figure 35: Comparison between monolithic and micro frontend approach

The proposed micro frontend approach consistently delivers rendering performance
between 24 FPS and 30 FPS, which aligns with industry standards for web videos, television,
and films. This is achieved even on a outdated machine with relatively modest specifications. In
contrast, the monolithic application struggles to maintain performance, rendering at only 7 FPS
and requiring a significantly more powerful hardware to perform adequately.

Despite being written in a low-level language without communication overhead, the
monolith exhibits high RAM and CPU usage, particularly due to the integration of robotic control
modules within the Qt-based interface. In contrast, the micro frontends benefits from modern
web technologies and WebGL optimizations, which are designed to perform well even on slower
devices. Additionally, the communication overhead in the micro frontend architecture differs

from traditional microservices, as the components are composed within a single view by the
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browser, resulting in minimal communication latency.

An important observation is that the frame rate for the micro frontend approach initially
aligns with the camera’s frame rate, reflecting the unique rendered frames. However, the system
ensures smooth performance by extrapolating frames when necessary, repeating the last received

frame to maintain a stable frame rate and prevent lag or freezing.

5.3.1.3 Rendering Performance in Competition Environment

Another similar experiment was conducted using a machine from the RoboCup SSL
competition environment. The machine was equipped with an Intel® Core™ i7-8565U CPU,
16 GB of RAM, and a 256 GB SSD, running Ubuntu 20.04. Docker containers were used
to orchestrate the environment. The evaluation of the micro frontend architecture focused on
validating whether the system could consistently achieve a target frame rate of at least 16 frames
per second (FPS) — the perceptual lower bound for smooth motion for the human eye [29] —
during 3D real-time rendering for live match. Notably, the performance values for the monolithic
system were not captured during this assessment.

The micro frontend architecture evaluation yielded an average latency of 17 milliseconds
between frame renderings during live streaming, which significantly exceeds the required

minimum for smooth motion. The detailed performance results are shown in Table 5.

Metric Result
Average Latency (ms) 17.39 £ 3.47
Approximate Frame Rate (FPS) 57
Minimum Required Frame Rate (FPS) 16

Table 5: Micro frontend Performance Results

These results satisfy the minimum requirements for real-time rendering, demonstrating
that the proposed micro frontend architecture is capable of delivering an innovative approach to

robotic GUI applications without compromising the critical robot strategy pipeline.

5.3.1.4 Lighthouse Audit

Web performance tests were conducted using Google Lighthouse, an open-source tool
widely used for auditing web applications. Lighthouse runs a set of performance tests on web
pages and generates reports based on various key metrics. These metrics include First Contentful
Paint (FCP), Speed Index, Largest Contentful Paint (LCP), Time to Interactive (TTI), Total
Blocking Time (TBT), and Cumulative Layout Shift (CLS), all of which are critical indicators
of web application responsiveness and user experience. However, it is important to note that
these metrics cannot be calculated for applications that do not operate within web browsers, and

therefore could not be measured for the monolithic system.
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The audits were conducted individually on each micro frontend as well as on the fully

composed application. The results of these evaluations are presented in Table 6.

Component Performance | FCP (s) | LCP (s) | TBT (s) | CLS | Speed
Score Index (s)
App Shell 100 0.3 0.3 0 0 |03
Player MFE 100 0.2 0.2 0 0 |02
Viewer MFE 100 0.5 N/A N/A 0 |05
Scoreboard MFE | 100 0.2 0.2 0 0 0.2
Params MFE 100 0.2 0.3 0 |02
Full Application | 100 0.4 0.8 0 0 |04

Table 6: Lighthouse performance metrics

These results align with the performance budget defined in Section 4.5.2, where the
target was set to a minimum performance score of 80. All components achieved a perfect
performance score of 100. This exceptional performance is attributed to the adoption of native
web technologies, such as Web Components and the Broadcast Channel API, which minimize
reliance on external libraries. By reducing the bundle size and using efficient browser APIs, the

application ensures fast rendering times and smooth user interaction across all micro frontends.

5.3.2 Maintainability

Maintainability refers to how easily a system can be modified to adapt to changes or
improve its functionalityin response to evolving requirements and environmental conditions [11].

Unlike performance efficiency, maintainability is hard to quantify precisely and auto-
matically. It often depends on the team’s judgment about the code’s structure, readability, and
modularity. To provide a more objective framework for evaluating maintainability, standardized
metrics, such as the Maintainability Index (MI), have been developed, alongside various tools
that implement their own maintainability scores.

The micro frontend architecture inherently promotes maintainability by having smaller,
distributed codebases. Each micro frontend operates independently, allowing developers to
refactor and improve code without affecting other components. This separation enables teams
to reduce the time and effort required for developing compared to monolithic codebases. Con-
sequently, micro frontends offer long-term advantages in maintainability [22]. The following

subsections provide further evidence to support this assertion.

5.3.2.1 Maintainability Index

The Maintainability Index (MI) is a widely used metric designed to evaluate the maintain-

ability of software systems. This index combines three traditional code measures — Halstead’s
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Volume (HV), McCabe’s cyclomatic complexity (CC), and lines of code (LOC) — into a single-
value indicator using a polynomial formula [35]. The original formulation of the MI is expressed

as follows:

MI =171—-52In(HV)—0.23 x CC —16.21n(LOC)

The MI was assessed using different software tools tailored to the specific programming
languages of each application. For TypeScript files, the Code Health Meter was utilized; for Go
files, Go Cyclo; and for C++ files, CppDepend. The results of these assessments are presented in
Table 7.

Component Maintainability Index (MI)
app-shell 131
params-mfe 143
player-mfe 132
scoreboard-mfe 140
viewer-mfe 128
player-bff 130
Full Application 134
Monolith (Baseline) 126

Table 7: Comparison of Maintainability Index between the components

Overall, the results indicate that the micro frontend architecture enhances maintainability
compared to traditional monolithic systems. Each micro frontend component achieved a higher
Maintainability Index than the monolith, benefiting from optimizations and smaller codebases
with reduced technical debt. This improvement contributes to greater adaptability and long-term
sustainability of the software. However, the Maintainability Index alone does not capture the
full range of benefits and complexities inherent in a distributed system. Thus, the evaluation
focuses on demonstrating how the average MI has improved while acknowledging the broader

challenges of distributed architectures.

5.3.2.2 Embold Analysis

The code was further analyzed using Embold, a commercial software analytics platform
designed to assist teams in assessing and enhancing software quality. The results of this analysis

are presented in Table 8.
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Component Maintainability | Issues
Full Application 91 3
Monolith (Baseline) 1 146

Table 8: Embold’s maintainability metrics

The significant difference in maintainability scores between the full application and
the monolith can be attributed to Embold’s scoring methodology, which evaluates both the
number and severity of issues in the code. The monolith’s 146 issues, some of which are critical,
result in a poor score of 1. In contrast, the full application, with only three less severe issues,
achieves a score of 91. This contrast underscores the micro frontend architecture’s effectiveness

in enhancing code quality and maintainability.

5.3.2.3 SonarQube Analysis

The maintainability was also evaluated using SonarQube, a widely used open-source

static analysis tool in the industry. The results of this analysis are presented in Table 9.

System Rating | Issues | Debt Ratio
Full Application A 31 0.1%
Monolith (Baseline) A 6405 3.8%

Table 9: SonarQube’s maintainability metrics

Despite both systems receiving the same rating of A — calculated based on the estimated
time required to fix issues relative to the time already invested in the application — the total
number of issues and estimated debt ratio for the new approach is significantly improved. The
full application exhibits only 31 issues and a debt ratio of 0.1%, contrasting sharply with the
monolith’s 6405 issues and a debt ratio of 3.8%.

5.3.3 Reliability

System reliability is a key metric for evaluating software solutions, typically defined
by how prone the system is to errors and how it performs its specified functions under defined
conditions over a specified period of time [11].

In a broader context, metrics such as Mean Time to Failure (MTTF), Mean Time to
Repair (MTTR), and Mean Time Between Failures (MTBF) are often used to assess reliability.
However, these require prolonged user monitoring post-release to gather accurate data. In this
work, reliability was evaluated through metrics provided by tools like Embold and SonarQube.

Micro frontend architecture naturally reduces the risk of system-wide failures by isolating

each micro frontend as an indepedent application, ensuring that an error in one component does
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not impact the rest of the system. In contrast, monolithic architectures are more susceptible
to reliability issues, where a critical error can affect the entire system. The Application Shell,
responsible for loading and managing the micro frontends, remains a potential single point of

failure, but the risk is minimized as it handles only routing and system messages.

5.3.3.1 Embold Analysis

The results of the Embold analysis for reliability are presented in Table 10.

Application Reliability | Issues
Full Application 100 0
Monolith (Baseline) 91 1

Table 10: Embold’s reliability metrics

The Embold analysis shows the full micro frontend application achieved a perfect
reliability score of 100 with zero issues, highlighting its robustness. The monolith, although
still rated relatively high with a score of 91, had one issue that could potentially affect system

stability.

5.3.3.2 SonarQube Analysis

The results of the SonarQube analysis for reliability are presented in Table 11.

System Rating | Issues
Full Application A 0
Monolith (Baseline) C 1

Table 11: SonarQube’s reliability metrics

The SonarQube analysis shows the micro frontend application received an "A" rating
with zero issues, demonstrating strong reliability. In comparison, the monolith earned a "C"

rating with one several issue, reflecting a higher likelihood of system failures.

5.3.4 Portability

Portability assesses how well a product can adapt to changes in its requirements, usage
contexts, or system environments — such as hardware, software, or operational settings.

In this work, portability will be evaluated using Embold’s portability metric, comple-
mented by a subjective comparison of subcharacteristics. This multidimensional approach aims

to provide a deeper understanding of this quality attribute by incorporating different perspectives.
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5.3.4.1 Embold Analysis

The results of the Embold analysis for portability are presented in Table 12.

Application Portability | Issues
Full Application 100 0
Monolith (Baseline) 83 2

Table 12: Embold’s portability metrics

The Embold analysis indicates that the micro frontend application achieved a perfect
portability score of 100 with no issues, whereas the monolithic baseline scored 83 with two
reported issues. This further emphasizes the enhanced portability of the micro frontend approach

compared to the monolithic system.

5.3.4.2  Subcharacteristics Comparison

To evaluate the suitability of each measure, a Likert scale is employed, with the following
ratings: Very Good, Good, Neutral, Poor, and Very Poor.

Table 13 summarizes the quality attribute subcharacteristics along with their correspond-
ing ratings for both the micro frontend architecture and the monolithic baseline, following the

approach of Karnouskos [17].

Characteristic | Subcharacteristic Micro frontend | Monolithic
Rating Rating
Hardware Environmental Adaptability | Good Neutral
Adaptability | System Software Environmental Adapt- | Very Good Poor
ability
Operational Environment Adaptability | Very Good Neutral
. Installation Time Efficiency Very Good Poor
Installability -
Ease of Installation Very Good Very Poor
Usage Similarity Very Good Good
. Product Quality Equivalence Very Good Good
Replaceability - -
Functional Inclusiveness Good Good
Data Reusability/Import Capability Very Good Neutral

Table 13: Characteristics and subcharacteristics of micro frontend and monolithic architectures

The ratings reflect the adaptability and ease of use associated with each architecture.
The micro frontend architecture scores "Very Good" and "Good" across all categories due to
its browser-based nature, which enhances usability, modularity, and installation efficiency. In

contrast, the monolithic architecture, which is implemented in C++ and operates only in Linux
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environments, receives mostly neutral to poor ratings. Although it is somewhat modular, its
adaptability to different hardware and operational environments is limited, resulting in lower

ratings across the portability subcharacteristics.
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RELATED WORK

This chapter presents an in-depth review of the existing literature on robotic graphical
user interfaces and micro frontends, with a particular emphasis on the design of micro frontend
architectures in robotic systems. The main goal of this review is to identify the current state of
the art in micro frontend architecture design and to compare it with the contributions of this work.
The examination focuses on the methodologies employed to delineate boundaries for identifying
microservices, the evolution of robotic interfaces towards browser-based GUIs, and the practical

applications of micro frontends within robotic systems.

6.1 MICROSERVICES IDENTIFICATION AND BOUNDARIES

The architectural evolution of multi-robot systems has mirrored broader trends in software
design, moving from traditional monolithic approaches to more modular and scalable solutions
like microservices. Defining clear service boundaries is a critical aspect of microservices
architecture, and micro frontends — as a specialized case of microservices for the frontend —
face similar challenges. In this context, existing work on identifying and delineating service
boundaries in microservices provides a valuable foundation for designing micro frontends.

Zimmermann [44] offers a detailed review of microservices principles, positioning
them as an evolution of Service-Oriented Architecture. He emphasizes fine-grained interfaces
and business-driven development in his approach to decomposing monolithic systems into
microservices.

Steinegger et al. [37] explore boundary identification by using bounded contexts to guide
the decomposition of microservices. Through a case study on a thesis management application,
they demonstrate the practical application of DDD concepts and emphasize the importance of
defining domain boundaries. They also explore the reuse of functionalities, especially in identity
and access management, and systematic methods for deriving web APIs that prioritize quality
aspects like evolvability.

Similarly, Rademacher et al. [30] contribute to this field by proposing a UML profile
designed to improve the modeling of microservice systems through Domain-Driven Design,

emphasizing the role of bounded contexts in identifying microservice candidates. Initial strategies
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for mapping profile-based domain models to microservices are also discussed, guided by findings
from a literature survey of 92 domain models.

The discussed approaches incorporate DDD strategies to define microservice boundaries,
utilizing tools like UML, informal diagrams, and DDD design patterns. However, they diverge
from this work by viewing the frontend only as a layer within the architecture, without address-
ing the concept of micro frontends. They also neglect a variety of object-oriented modeling
techniques, such as use case diagrams, sequence diagrams, and component diagrams, and they do
not engage in conducting profound requirements analysis to support their architectural decisions.
Additionally, the absence of evaluation methodologies for the proposed architectures limits their

practical applicability and assessment.

6.2 EVOLUTION OF ROBOTIC INTERFACES TO BROWSER GUIS

Robotic systems have evolved significantly over the past few decades, transitioning
from hardware-dependent, specialized interfaces to more accessible, web-based graphical user
interfaces. This shift has been primarily driven by the need for improved user accessibility,
ease of control, and the integration of multi-modal interaction methods, particularly for non-
expert users. Early robotic interfaces were highly technical, requiring users to interact with
command-line systems or specialized hardware. Systems like the Lego Mindstorms and Nomad
200, as discussed by Paolini and Lee [27], represent initial attempts to create educational robotic
platforms that provided basic control capabilities through low-level interfaces like direct sensor
inputs and microcontroller commands.

As the field matured, the demand for more intuitive interfaces grew, leading to the
development of graphical user interfaces. These early GUIs allowed users to control robots
through visual feedback, utilizing maps, sensor data displays, and simple input methods like
buttons and sliders. Rajapaksha et al. [31] work on GUIs for Robot Operating System (ROS)
environments marked a significant advancement in making robotic control systems more user-
friendly. These interfaces bridged the gap between complex robotic control algorithms and user
interaction by offering visual, context-aware controls, reducing the cognitive load on users and
making robotic programming more accessible.

The advent of browser-based GUIs further revolutionized robotic interfaces, enabling
users to interact with robots from any device via standard web browsers, regardless of the
underlying operating system or hardware. Technologies like HTMLS5 and JavaScript facilitated
the creation of responsive, platform-independent interfaces. Di Nuovo et al. [7] work on
multi-modal, web-based interfaces for the Robot-Era project demonstrated the flexibility and
accessibility of such systems, particularly in applications like elder care, where user experience
is critical. Similarly, Rajapaksha et al. [31] ROS-based web interfaces allowed for remote robot
control and teleoperation through a browser, significantly lowering the barriers to entry for

robotics interaction.
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In more complex scenarios, such as urban search and rescue (USAR), browser-based
GUIs have proven effective in controlling multiple robots simultaneously. Niroui et al. [26]
introduced a multi-robot control interface designed for such applications, offering real-time
video, sensor data, and mapping tools to enhance situational awareness and reduce operator
workload. This scalability further underscores the role of browser-based GUIs in improving
human-robot interaction in both single and multi-robot contexts.

Despite the demonstrated benefits of browser-based GUIs in robotic interfaces, these
studies lack a rigorous architectural modeling approach for analyzing the coupling associated
with monolithic architectures compared to distributed systems. An in-depth evaluation of the
architectural implications and trade-offs of these design choices is necessary to fully understand

their impact on system flexibility, scalability, and maintainability.

6.3 MICRO FRONTENDS IN ROBOTIC SYSTEMS

While micro frontends have gained attention in software engineering, research focused on
their application in distributed frontend systems, particularly within multi-robot systems, remains
limited. The novelty of this architecture means there is little dedicated literature on the subject.
However, research from related fields, such as the Internet of Things (IoT), Human-Machine
Interfaces (HMI), and general robotics applications, provides relevant examples and potential
solutions for modularity and scalability issues.

Mena et al. [21] present a component-based Progressive Web Application (PWA) for
geospatial IoT data acquisition. Their work highlights the benefits of MFEs for dynamic user
interface construction and independent development of visual components.

Shakil et al. [34] propose a modular architecture for industrial HMI using MFEs. They
demonstrate how engineers can build HMIs from independent MFEs, where each component
encapsulates the entire development lifecycle, from user interface design to data acquisition.

Schiffer et al. [33] investigate the use of microservices and MFEs in a web-based
configurator for robotic automation tools using a combination of microservices and MFEs archi-
tectures. Their prototype showcases how these architectural approaches simplify development
and deployment through a divide-and-conquer approach.

The reviewed works showcase real-world applications of micro frontend architectures
in robotic contexts, demonstrating that, despite its novelty, this architectural approach can
be successfully implemented in complex environments. However, these studies lack a deep
exploration of software modeling techniques and do not address the challenges of coordinating

multiple robots with low-latency communication.
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CONCLUSION

This work presents a novel approach for developing graphical user interfaces in multi-
robot systems through the modeling, implementation and evaluation of a micro frontend architec-
ture based on Domain-Driven Design and Object-Oriented Modeling principles. The proposed
methodology covers the entire software development lifecycle, including requirements gathering,
architectural modeling, implementation, deployment, and the formulation of CI/CD strategies.
An extensive evaluation was conducted following the ISO/IEC 25010 standard to assess multiple
software quality attributes.

All proposed requirements were successfully validated, demonstrating the architecture’s
robustness through a multidimensional evaluation utilizing both quantitative metrics and qualita-
tive analysis. The system demonstrated exceptional performance, achieving perfect scores in
Lighthouse audits and maintaining bundle sizes consistently below the defined limits. In terms of
rendering performance, the micro frontend-based GUI maintained frame rates between 24 FPS
and 30 FPS on lower-spec hardware, significantly outperforming the monolithic architecture,
which struggled to achieve 7 FPS. Moreover, in live streaming tests conducted in the context of
the RoboCup Small Size League, the micro frontend architecture achieved an average latency of
17 milliseconds, corresponding to 57 FPS, highlighting its real-time responsiveness.

The system also demonstrated high maintainability, as shown through code analysis tools
such as Embold and SonarQube, outperforming the monolithic system. Improvements were also
observed in reliability and portability, underscoring the architecture’s focus on scalability and
ease of deployment across multiple platforms, thereby establishing it as an adaptable solution for
multi-robot environments.

Despite these successes, several challenges and limitations emerged. A notable challenge
identified during this research was the lack of detailed documentation addressing software
quality attributes specific to micro frontends. Existing literature predominantly focuses on
implementation aspects and high-level discussions of benefits and trade-offs, with little attention
given to quantitative analysis or performance metrics. The relative novelty of micro frontends
within the broader field of software architecture has limited the availability of scientific studies
that thoroughly investigate this topic, resulting in a scarcity of in-depth analyses.

The comparative analysis of the micro frontend and monolithic architectures also pre-
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sented challenges due to differing use cases, as the monolithic system tightly couples control
logic with the user interface. Although the static analysis tools provided useful metrics, they only
offer approximate representations of quality attributes and do not fully capture the real-world
benefits of modularity, reduced code complexity, and team ownership associated with micro
frontend approaches.

Moreover, the use of different programming languages for each architecture introduced
additional complexity in comparing metrics like code efficiency and verbosity. More meaningful
metrics could be obtained after deployment in production environments, considering interactions
with real users and developer contributions to the system.

Future work will address these limitations. Comparative studies on developer productivity
between monolithic and micro frontend architectures could provide deeper understanding of
development efficiency. Additionally, post-release evaluations of reliability and maintainability
using metrics such as Mean Time to Failure (MTTF) and Mean Time Between Failures (MTBF)
will offer a clearer understanding of long-term system performance. Further enhancement of the
system’s functional capabilities may be achieved through the introduction of dynamic parameters
within the Parameters MFE, integrated with the backend systems. Moreover, proposing the
system for official use in the RoboCup SSL competition and encouraging community-driven
development could expand the platform’s extensibility, enabling the integration of additional
micro frontends and plugins to support a broader range of applications.

Addressing these areas will contribute to the development of a more robust, scalable,
and adaptable solution for multi-robot systems, potentially driving further advancements in

human-robot interaction and modular software design.
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