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ABSTRACT

We introduce a dynamic model tailored for positively valued time series. It accommodates
both autoregressive and moving average dynamics and allows for explanatory variables. The
underlying assumption is that each random variable follows, conditional on the set of previous
information, the beta prime distribution. A novel feature of the proposed model is that both
the conditional mean and conditional precision evolve over time. The model thus comprises two
dynamic submodels, one for each parameter. The proposed model for the conditional precision
is parsimonious, incorporating first-order time dependence. Changes over time in the form of
the distribution are determined by the time evolution of two parameters, and not just of the
conditional mean. We present simple closed-form expressions for the model’s conditional log-
likelihood function, score vector and Fisher's information matrix. We also present Monte Carlo
simulation results on the finite-sample performance of the conditional maximum likelihood
estimators of the parameters that index the model. Finally, we use the proposed approach
to model and forecast two seasonal water flow time series. Specifically, we model the inflow
and outflow rates of the reservoirs of two hydroelectric power plants. Overall, the forecasts

obtained using the proposed model are more accurate than those yielded by alternative models.

Keywords: Beta prime distribution; Generalized BPARMA model; Forecasting; Time series;

Variable precision.



RESUMO

Apresentamos um modelo dinamico para séries temporais que assumem apenas valores
positivos. O modelo proposto acomoda dindmicas autorregressivas e de médias moéveis e per-
mite a inclusdo de variaveis explicativas. A suposicdo central é que cada variavel aleatéria segue,
condicional ao conjunto de informacdes anteriores, distribuicdo beta prime. Uma caracteristica
inovadora do modelo proposto é que tanto a média condicional quanto a precisao condicional
evoluem ao longo do tempo. O modelo compreende, portanto, dois submodelos dinamicos,
um para cada parametro. O modelo proposto para a precisao condicional é parcimonioso, in-
corporando dependéncia temporal de primeira ordem. Mudancas ao longo do tempo na forma
da distribuicdo sao determinadas pela evolucdo temporal dos dois parametros, e ndo apenas
da média condicional. Apresentamos expressoes simples em forma fechada para a funcdo de
log-verossimilhanca condicional do modelo, vetor escore condicional e matriz de informacao
de Fisher condicional. Também apresentamos resultados de simulacdo de Monte Carlo sobre o
desempenho em amostras finitas dos estimadores de maxima verossimilhanca condicional dos
parametros que indexam o modelo. Finalmente, usamos a abordagem proposta para modelar e
prever duas séries temporais sazonias de fluxo de dgua. Especificamente, modelamos as vazdes
de entrada e saida dos reservatérios de duas usinas hidrelétricas. No geral, as previsoes obtidas

usando o modelo proposto sdo mais precisas do que aquelas geradas por modelos alternativos.

Palavras-chave: Distribuicdo beta prime; Modelo BPARMA generalizado; Previsdo; Séries

temporais; Precisdo variavel.
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1 INTRODUCTION

A time series is a sequence of random variables that evolve sequentially over time. Time
series analysis generally aims at describing the existing time dependence structure and to
produce forecasts of future values. The Gaussian autoregressive moving average (ARMA)
model, proposed by Box and Jenkins (1976), and its seasonal counterpart are commonly used
to represent time series dynamics in a wide range of fields. It has, nonetheless, some limitations.
For instance, it is tailored for random variables that assume values in (—o0, 00) and is based
on a distribution that displays no skewness and no excess kurtosis. Additionally, the model
may yield improper (i.e., negative) forecasts when fitted to a time series that assumes values
in (0,00). Notably, positively-valued random variables typically display positive skewness and
varying levels of kurtosis. It is thus important to develop time series models that are tailored
for such processes.

In this research we introduce a class of time series models suitable for random variables
that assume values in R and display positive skewness. It is based on the assumption that,
conditional on the set of previous information, each variable in the stochastic process follows
the beta prime distribution. The conditional mean and conditional precision are constantly
evolving. The generalized model incorporates two submodels, one for the mean and another
for the precision. The model allows autoregressive and moving average dynamics and also non-
stochastic covariates, such as time trends and harmonic regressors used to describe seasonal
movements. Notably, the beta prime distribution is related to the well known beta law, which
is the most commonly used law for random variables with support in the standard unit interval.
Indeed, if Z is beta distributed, then Z/(1 — Z) is beta prime distributed. Conversely, if W' is
a beta prime random variable, then W/(1 4+ W) is beta distributed.

More specifically, we introduce the class of generalized beta prime autoregressive moving
average (generalized BPARMA) models, develop conditional likelihood inference for its param-
eters and show how to produce out-of-sample forecasts from a fitted model. The generalized
BPARMA model is observation-driven and yields predictions that are guaranteed to be proper,
that is, that to be in (0,00). Its dynamic formulation for the mean submodel is similar to
those of Generalized Autoregressive Moving Average (GARMA), Beta Autoregressive Moving
Average (BARMA), Kumaraswamy Autoregressive Moving Average (KARMA), 4 Autore-
gressive Moving Average (¢4 ARMA) and Chen Autoregressive Moving Average (CHARMA)
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models. For details on these models, see, respectively, Benjamin, Rigby and Stasinopoulos
(2003), Rocha and Cribari-Neto (2009), Rocha and Cribari-Neto (2017), Bayer, Bayer and
Pumi (2017), Almeida-Junior and Nascimento (2021) and Stone et al. (2023). The general-
ized BPARMA model includes, however, a second submodel which represents the evolution of
the precision parameter over time. Thus, both parameters of the beta prime law evolve over
time. This adds a layer of flexibility to the model, since changes in the conditional density
function over time are controlled by two parameters, and not by a single parameter. The dy-
namic formulation for the precision submodel is similar to that used in the generalized SARMA
proposed by Scher, Cribari-Neto and Bayer (2024).

We use the proposed model to represent the monthly inflow of the Caconde water reservoir
and the monthly outflow of the Guilman Amorim reservoir, both in Brazil. Harmonic regres-
sors and an indicator variable are used to represent the existing seasonality in the time series.
Out-of-sample forecasts are compared to those obtained from dynamic models based on the
chi-squared, gamma and log-normal laws and also to predictions obtained from fixed preci-
sion BPARMA model, and the Gaussian SARIMA model. The results favor the generalized
BPARMA model.

The main contributions of this research are as follows: (i) we introduce a dynamic model for
positive time series based on the beta prime distribution; (ii) the proposed model contains two
submodels, one for the conditional mean of the stochastic process and one for the conditional
precision; (iii) we provide simple expressions in matrix form for the score function and for
Fisher's information matrix; (iv) we present Monte Carlo simulation results on the behavior
of the conditional maximum likelihood estimators in finite samples; (v) we forecast the future
behavior of both the monthly inflow of the Caconde water reservoir and the monthly outflow
of the Guilman Amorim water reservoir, each connected to a Brazilian hydroelectric power
plant.

It is worth mentioning that we present expressions in matrix form that are easy to compute
for the conditional score vector and the conditional expected information matrix (i.e., the
conditional Fisher information matrix). These expressions can be used, for example, to carry
out score tests (conditional score vector and conditional expected information) and Wald
tests (conditional expected information), as detailed in Subsection 3.3. Similar results are not
available for some of the alternative models. It should be noted that the use of observed
information may result in a negative value for the score statistic; see Morgan, Palmer and

Ridout (2007). In some cases, there is not even an expression provided for the conditional
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observed information (negative of the Hessian matrix), which forces practitioners to resort to
numerical approximations in order to obtain standard errors for the parameter estimates.
The remainder of the text is structured as follows. In Chapter 2, we introduce the class of
generalized BPARMA models. Closed-form expressions for the model conditional log-likelihood
function, conditional score function, and conditional Fisher's information matrix are presented
in Chapter 3. We also briefly explain how to perform interval estimation and hypothesis tests
on the model's parameters. In Chapter 4, we comment on model selection and diagnostic
analysis. We also explain how to generate BPARMA sample paths and how to produce forecasts
from a fitted BPARMA model. Monte Carlo simulation evidence is presented in Chapter 5.
In Chapter 6 we present and discuss two hydro-environmental empirical applications. Finally,

some concluding remarks are offered in Chapter 7.
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2 THE GENERALIZED BPARMA MODEL

In this chapter, we will introduce a dynamic time series model in which the random compo-
nent follows the beta prime marginal distribution and the systematic component that captures
time dependence has an ARMA structure. This is a generalized class of dynamic models be-
cause it comprises two dynamic submodels, one for conditional mean and another for the
conditional precision, both parameters evolving over time.

The beta prime (also known as inverse beta or type two beta) law was obtained by Keeping
(1962) and McDonald (1984). It is indexed by two parameters, both positive. Notably, the beta
law odds ratio follows the beta prime distribution, that is, if Z follows the beta distribution
with parameters o and 3, then Y = Z/(1 — Z) is beta prime distributed. Additionally, the
ratio of independent random variables that follow standardized gamma distributions with unit
scale parameter is also beta prime distributed. That is, if U ~ GA(«,1), V ~ GA(f,1), and
U and V are independent, then Y = U/V follows the beta prime law.

The beta prime distribution is an attractive alternative to the more well-known Weibull,
gamma and inverse Gaussian distributions. First, its hazard rate function may assume upside-
down bathtub or increasing shapes depending on the parameter values whereas those of most
classical two-parameter distributions, such as Weibull and gamma, are monotone. Second, the
beta prime skewness and kurtosis may considerably exceed those of the gamma and inverse
Gaussian laws. In particular, the ratio between the beta prime and gamma kurtosis coefficients
exceeds one. This feature may be useful in some settings. For further details, see Bourguignon,
Santos-Neto and Castro (2021).

Let Y be a random variable that follows the beta prime distribution, denoted Y ~
BP(«, 5). The cumulative distribution and probability density functions of Y are, respec-
tively,

F(yvav/j) = y/(l—i-y)(avﬁ)

and

fly; o, B) = my

y > 0. Here, @« > 0 and 3 > 0 are shape parameters, [.(«, 5) = B.(a, )/ B(a, 5) is the

a—l(l + y)—(a+ﬁ),

regularized beta function, %.(a, 3) = [y t* 1(1 — t)?~ldt is the incomplete beta function,
Bla,B) =T(a)l(B)/T(a + B) is the (complete) beta function and I'(«ar) = [5°¢t* te  dt is
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the gamma function. The mean and variance of Y are, respectively,

o _ala+p-1)
R g>1, and Var(Y)—(ﬁ_Q)(B_l)Qv

The distribution skewness is positive for all parameter values.

E(Y) =

£ > 2.

Bourguignon, Santos-Neto and Castro (2021) considered a new beta prime parameteriza-
tion in terms of the distribution mean 1 and a precision parameter ¢. To that end, they set
pw=a/(f—1)and ¢ = — 2. We write Y ~ BP(pu, ¢) to denote that Y follows the beta

prime law under this parameterization. The distribution function becomes

F(y; pt, ) = Lyjay)(0(1 + @), ¢ + 2),

f1, ¢ > 0. Here, T4y ((1+ 6), 0 + 2) = Byjary) (1 + ¢), ¢ + 2)/B(u(1 + ¢), ¢ + 2).
The probability density function is

_ I O ) e s e

In Figure 1 we present beta prime density functions for different parameter values. The distri-

bution is clearly quite flexible. Under this parameterization,

E(Y)=p and Var(yY)= M

¢

Using this setup, the authors introduced a regression model for beta prime distributed inde-
pendent responses. Our interest, as noted earlier, resides on time series random variables with
serial dependence. In what follows, we will use the beta prime law to construct a model for
serially correlated random variables.

It is noteworthy that the beta prime skewness and kurtosis are impacted by the the distri-

bution mean and precision. They are, respectively,

21+ ¢)(1+2p) .
=TT Wumuww’ o=

- 56— 1 6
”2‘6l<¢—2><¢—1>Uuw)w—z)w—l) 92

By contrast, the skewness and kurtosis of the gamma law are only impacted by the value of
the precision parameter, being given by 2¢~ /2 and 66!, respectively.

Our aim is to introduce a dynamic model based on the beta prime law. In this model,
the two parameters that index the distribution (mean and precision) evolve over time. The

simultaneous temporal evolution of the two parameters controls the changes in the shape of
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Figure 1 — Beta prime density functions for different parameter values.
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the beta prime density over time, including changes to the asymmetry and kurtosis coefficients.
Our model extends the formulation commonly used in dynamic models for positive random
variables by including a separate dynamic submodel for the precision, i.e., by allowing the two
parameters that index the distribution of reference to evolve over time.

Let Yi,...,Y, be time series random variables and let .%;_; be the smallest o-algebra such
that the variables Y, ..., Y;_; are measurable. Also, conditional on .%;_;, Y; is beta prime-
distributed with mean p; and precision ¢y, i.e., Y| F_1 ~ BP(u, ¢¢). Also, let y1,..., 9,
denote the observed values of Y, ...,Y,. The conditional density function of Y;|.%;_; is

pt(14+¢¢)—1 1+ — e (14t ) +de+2]
f(ylgt—l; /’Lt) (bt) = Y ( y) 9
B(pu(1+ ),y + 2)

i, ¢¢ > 0. It then follows that E(Y;|.%;_1) = u; and Var(Y;|.Z;_1) = pe(1 + ps)/ ¢y are,

y >0, (2.1)

respectively, the conditional mean and the conditional variance of Y;. Note that not only the
conditional mean, but also the conditional precision evolves over time.

The dynamic structure for p; is

p q
me=g1(m) = v+ a8+ [91(%—1) - m;r_iﬁ} + 205 (2.2)
i=1 j=1
where a; € R, x; is an v-vector of non-stochastic regressors at time ¢, 8 = (81,...,3,)" is an
v-vector of regression coefficients, o = (¢1,...,¢,)" and @ = (6,...,0,)" are autoregressive

and moving average parameter vectors, respectively, and r; is an error term which can be
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defined in the original scale (r; = Y; — ;) or in the predictor scale (r; = g1(Y;) — g1 (1¢))- Also,
p,q € IN are the autoregressive and moving average orders. Finally, g; : R, — R is a strictly
monotone and twice differentiable link function. Its inverse must also be twice-differentiable.
The dynamic formulation in (2.2) is similar to those used in GARMA (Benjamin, Rigby and
Stasinopoulos (2003)), SARMA (Rocha and Cribari-Neto (2009) and (ROCHA; CRIBARI-NETO,
2017)) KARMA (Bayer, Bayer and Pumi (2017)), ¢ ARMA (Almeida-Junior and Nascimento
(2021)) and CHARMA (Stone et al. (2023)) models.

We propose a parsimonious dynamic structure for the temporal evolution of the precision
parameter that adequately approximates past fluctuations in the level of uncertainty. To that
end, we exploit an idea similar to that used by Scher, Cribari-Neto and Bayer (2024) in a
dynamic model for doubly bounded random variables. We use, however, a different covariate
for modeling the precision. In our case, Var(Y;|.%;_1) = pu:(1 + pt)/¢¢. Thus, for fixed ¢y, the
conditional variance of the process grows with the conditional mean. The proposed formulation

for the conditional precision submodel is

M = G2(¢r) = a2 + 0211, (2.3)

where as € R, § € Rand 2,1 = ¥:1/Yt—2, g2 : R+ — R being a strictly increasing and twice
differentiable link function, g, ' also being twice differentiable. It is expected that ap > 0 and
d < 0. We use y;_1/y;_2 as a proxy for the ratio between the levels of uncertainty (variability)
at times ¢ — 1 and ¢ — 2. Notice that y;_; is known at time ¢ and is in .%;_;. Note that the
precision at  is given by g5 ' (ag + 6ys—1 /yi—2). With § < 0, the higher v,_1/y,_, the lower
¢;. In other words, the greater the uncertainty in ¢ — 1 relative to ¢t — 2, the lower the precision
in ¢t. Notice that y;_1/y;_» > 1 signals an increase in uncertainty between times ¢t — 2 and
t — 1 leading to a decreased precision at time t. Conversely, a reduction in y;_1/y;_o signals
a reduction in the conditional variance in the previous period and this leads to an increase in
precision in the current period.

It is worth noticing that the standard, fixed precision BPARMA model is a particular case
of our more general formulation, since it is obtained setting g» to be the identity function and
0=0.

The submodel for ¢, incorporates a dynamic structure with first-order time dependence
since the conditional precision at time ¢ is impacted by a variable that reflects the variance of
the process at ¢t — 1. It should also be noted that the introduction of a second submodel adds

a layer of flexibility to the dynamic model, since changes over time in the shape of the density
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of Y3|.%;_1 are now controlled by the evolution of two parameters (x; and ¢;), rather than by
the evolution of just one parameter (y). In particular, the distribution skewness and kurtosis
are impacted by the time evolution of the conditional mean and conditional precision.

The generalized BPARMA(p, ¢) is given by (2.1), (2.2) and (2.3). Whenever necessary,
we will write g1 (p¢) = m1; and ga(¢;) = 12r, where 1y, and 1, are the linear predictors of the

conditional mean and precision submodels, respectively.
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3 CONDITIONAL LIKELIHOOD INFERENCE

Let Yi,...,Y, be beta prime distributed time series random variables, each having gen-
eralized BPARMA (p, ¢) dynamics with parameter vector v = (a1, 87, ",07,0a3,0)" €
Q, where Q C RPTITUF3 is the parameter space. Let m = max(p,q). The generalized

BPARMA (p, q) conditional log-likelihood function for Y7, ..., Y, with observed values 41, . . ., ¥y,

is
(= g(’)/) = Z gt(ﬂtv ¢t)7 (31)
t=m+1
where

Ci(pes @) = [1e(1 + @) — 1 1og(ye) — [11:(1 + &¢) + ¢ + 2] log(1 + yi)
— log (T (p(1 4 ¢¢))) — log(T'(¢ + 2)) + log(T'(p¢(1 + ¢4)

+ ¢y +2)).
The conditional maximum likelihood estimator (CMLE) of ~ is

§ = o).
Y = argmax £(7)

It cannot be expressed in closed-form. Conditional maximum likelihood estimates may be
obtained by numerically maximizing the conditional log-likelihood function using a Newton or
quasi-Newton algorithm; e.g., see Press et al. (1992) and Nocedal and Wright (2006). It is
necessary to choose initial values for 74, 12 and their recursive derivatives. We use n;; = g1 (Y;)
and set the derivatives of 7y, and 75; with respect to the parameters in the mean and precision
submodels, respectively, equal to zero for t € {1,...,m}. For more details, see Benjamin,
Rigby and Stasinopoulos (2003). In the following, we will present the generalized BPARMA
model conditional score function and conditional Fisher's information matrix. To that end,
we partition the parameter vector v as v = (¥",4")", where % = (a1,87,4¢",0")" and
4 = (a,6) 7. Here, 4 and 4 are vectors of dimensions (p+¢-+v+1) x 1 and 2x 1, respectively.

We consider errors in the prediction scale, i.e., 7, = g1(Y:) — n1s-

3.1 CONDITIONAL SCORE VECTOR

The conditional score vector is obtained as the first-order derivative of the conditional log-

likelihood function given in Equation (3.1) with respect to the elements of . We can use the
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chain rule to obtain the conditional log-likelihood derivative with respect to the j-th element

of 4, forje{l,....,(p+qg+v+1)} as

ol " Ol (s D) dpy Onyy
8’)/J i1 (9/145 d771t 87J .

Recall that 71y = g1(p), which implies dpy/dn, = 1/¢, (1), where prime denotes derivative.

The derivative of ¢;(u, ¢;) with respect to p; can be expressed as

Oy (put, P1)

S = (14 00 log(Y) = (1+6) (1 +Y0) ~ (1+ )

X (1 + o)) + (14 &) (pe(1 + @) + ¢y +2)

— 1+ oo ox (77 - WGu1 + )
— Y (pe(1+ &) + b + 2)]}
= (1 + &) (V" — p), (3.2)

where 9(-) is the digamma function, i.e., ¥(z) = dlog(I'(z))/dz, Y;" = log(Y;/(1+Y;)) and
wr = V(e (14 o)) — (el + o) + dr + 2). Let G = (1 + o) (Y, — ). It follows that

o & Cit  Onuy

>

Oy A g (m) 045

The derivative of 7;; with respect to o is

877115_ I o a77115 ]
aTél_HZej 8a 1—20] Ao,

The derivative of 7y, with respect to a f3, for k € {1,...,v}, is

0 0
The _ = Tk — Z Pil(t—i)k — Z ‘9] Tht J
By

where x, is the k-th element of a;. The derivative of 1, with respect to o, forl € {1,...,p},

can be expressed as
a771t —J
dor

3771t
8 2

= (Vi) —x 8~ 2‘93

Jj=1

Finally, the derivative of 7);; with respect to 0, for s € {1,...,q}, is given by

8771t o 87]11& -7
00, Ze] a0,

Note the recursion in the derivatives when there are moving average components in the model.
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As for the parameters in the conditional precision submodel, we have that

ol _ i (%t(,ut,ﬁbt) doy Onoy
M L O dmy 0%

i € {1,2}. The first derivative of £(y, ¢;) with respect to ¢; is

%ﬂ) — e log(¥5) — (e + 1) log(1+ ) — et (pa(1 + 1))
— (P +2) 4+ (e + D) (1 4 1) + ¢ + 2)
o ()~ L 60) = (1 + 60

+ ¢+ 2)] + P (pe(1 + o) + o +2) — V(P + 2)
=Y, — (u%‘—%) =Y, — (3:3)

where V| = 1, log(V;) — (14 pue) log(1+Y;) and p1f = puy (1 — Ao/ ), with Ay = by (1+
¢1) + ¢ +2) — (¢ +2).
Since 19: = ga(¢1), it follows that de;/dne: = 1/g4(¢:), and hence

% _ u Cor  Onay
8% t=m-+1 g§(¢t) a%

Y

where Gy = Y, — p.
The derivatives of 7y; with respect to the elements of 4; are

0 0
a%.f;:l and %—zt_l.

The conditional score vector is U (%) = (Ua, (7), Us(¥) ", Up(¥) ", Up(v) ", Uny (),
Us(v))", where

Un(7) =v" Py, Us(y) =G ' Pi¢y, Uy(v)=H'"Pi(,
Up(v) =F"Pi¢1, Un(v) =1,Ps¢> and Us(y) = z' Py(o.

Here,

Cl = (Clm—i—lu"'?Cln)Ta C2 = <C2m+17--'7<2n)—r7 z = (Zm,...,Zn_l)T,
8n1m+1 a77177, > ! . { 1 1 }
v = e , Py = diag ey ;
( Oay 0oy ! 94 (fhms1) 91 (tn)

1 1
P, =di .
2 lag{ggwmm’ ’ggwn)}

Additionally, G is an (n—m) x v matrix whose (a, j)-th element is 9114+.,/05;, H is a matrix

of order (n —m) x p with (a, j)-th element equal to 09144:m/Jd¢; and F'is an (n —m) x ¢

matrix with (a, j)-th element given by 07144.,/00; and 1, is an (n —m) x 1 vector of ones.
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3.2 CONDITIONAL INFORMATION MATRIX

The conditional Fisher information matrix is obtained from the second-order log-likelihood

derivatives. For the generalized BPARMA model, we have

52&(%7@) _ ¢ i (8&:(%,@) dpit 8771t> dpe Oy
0%;0; _t ——l Oy Oy dme 07 ) dmy 0%
_ zn: 5257: (116, &) dpu O n 85t(ﬂt:¢t>i (%%)
tema1 op dm 0; Oy Oy \dme 0;
dﬂt Ot
d771t oY’

82&(%7@) _ & i <8£t(ﬂt>¢t) do 3772t> dds Onay
(9’%3% _t 1 [olon Oy dnay 3%’ dny 0¥
_ zn: azgt Mtﬂbt) degy Oy n 8€t(ﬂta¢t)i (%%)
Pt 007 dn 0%; 0Py 0oy \ dnae 0%
% %677215
dnoe 0%;

and

0%;0%; _t=m+1 ol Ope — dnyy 0% ) dnay 0%
_ i 82&(%7@) djt (9771t n Gft(/tt,@)i (%%)
1 060y dniy 0% Oy Doy \ dnye 09
% %67721‘,

dnae 0%i '

82&:(%7@) . - i (f%t(ﬂt;@) d,ut 87711:) doy 877215

Notice that 00 (pu, ¢¢)/Oue and Oy (e, 1)/ 0@ are given in the Equations (3.2) and (3.3),
respectively. Since E(Y;") = uf and E(Y,") = uf, then E (8 (11, ¢) /|- Foo1) = 0 and
E (90:(p1e, ¢¢)/0¢e| Fi—1) = 0. Thus,

0 (s, ¢1) - 0Ly (f11, P1)
El—2 "0z | = Bl —X="Z
( 07%:0%; S tz;-l opui Tt

% ( dpug )2 O Oy
dmy 8%‘ %’

(3.4)

E (82&(%» ¢t)
8’%3%’

n 82£ "
3‘}-1) = > [IE (—tg;% %)

t=m+1

v ( doy )2 6772t 877%
dng ) 0% 0%

")

(3.5)
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and

E (32515(/%, ¢t)

“ 8251‘,(/%,@)
F1 | = E|———2%
07,04 “) 2 l ( OOy

)

t=m+1
dpy d<i5t> On1e Oy
X . 3.6
<d771t> (ant DYy 0 (3.6)

From (3.2) we obtain

0?¢ ¢ / /

TUBL) (@ 6P 1+ 00) — Wl +0) 00+ 2)]), (3)

where ¢/(+) is the trigamma function, i.e., ¥'(x) = dy(z)/dz.
Finally, plugging (3.7) into (3.4) we obtain

E (02&: (Ht; (bt)
0%:07;

= Cy 8771t 0771t
Fra) =~ e e
t 1) t:%—l (91(1e))? O O

where ¢; = (1 + ¢,)2[¢' (p(1 + 1)) — ' (e (1 + &) + ¢y + 2)].

The second derivative of (3.3) with respect to ¢, can expressed as

0*ly(pe, ¢1)
007

Plugging (3.8) into (3.5), we obtain

E (62£t<,uta ¢t)
3’%3%’

= — 3 (e (L + &0)) + (1 + p1)*0 (pe(1 4 &) + ¢ +2) — ' (¢ +2). (3.8)

- dy Ongt Onay
Fia] =- L
' 1) t:%:ﬂ (95(4))* 0%; O%i

where dy = 170 (11 (1 + 1)) — (14 pe)*0" (1 (1 + 6¢) + ¢p + 2) + (b4 + 2).
The cross-derivative can be easily obtained by differentiating Equation (3.3) with respect
to Ly

3251‘,(,&“@) ~ 1o ( Y,
0¢Opy 1+Y,

+ (14 @)Y (e(1 + &) + & +2) + (1 + )
X [0 (e (1 + ) + o +2) — ' (pu(1 4 61))]
=Y — i + (1 + @) {0 (e (1 + @) + & + 2)

+ e[V (e (1 + @p) + o +2) — " (pe(1 4+ ¢4))]}-

) (el ) + b+ 2) — (1 + b))

Notice that Y;*|.%;_; is beta-distributed, and hence E(Y;*|.%;_1) = p;. It follows that

E (32@(/«%, ¢t)
07,07,

" i 877175 87]275
ng_ = / . . )
' ) ; 91 () gh(n) D35 0%,

where t; = (14 @) {0 (e (1 4 ¢¢) 4 dp + 2) + e[ (p1e(1 + D) + b¢ +2) — ¢ (e (1 + b¢))] -
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Let C = diag{cint1,... ¢}, D = diag{dpy1,...,d,} and T = diag{t,s1,...,tn}.

Fisher's information matrix for - is

Kal,al KOq,/J' KCVMP Koq,@ KO!LOQ KO&1,5
Kso, Kpgp Kpo Kgo Kgo, Kgs

K‘P»al ch,ﬁ Ksa,so KLP,B ch,az K«pﬁ

K=K(v)= ,
Ko, Kopg Ko, Koo Ko, Kop;
Kosor Korp Kosy Karw Kosar Kass
i Kso, K5 Kso Ksg Kson, Kss ]
where Ky, o, = —v'CPv, K, 3 = K;, = —VCP}G K,,,= K, =—v' CP!H,
Koo = KJ, = —V'CP2F, K., 0, = Koper = —V P,TP1,, K, 5 = Kso, =

—v' ' P, TPz, Kgpg = —GTCPEG, Ks, = K;—,ﬁ = _GTCP12H' Kgo = Kg:ﬁ -
~G'CP!F, Ky, = K, 3 = ~G'P,TP11,, Kg; = K3 = ~G'P,TP,z, K, , =

[0}

~H'CP?!H, K,y=K,,=-H CP!F, K,,,=K) ,=-H P,TP1, K,; =
K], = ~H PTP,z, Kyy = ~F' CP?F, Ky,, = K., = —~F P,TPi1,, Ky; =
K), = ~F'PTP.z, Ko, ., = —~1)DP1,, Ko, 5 = Kso, = —1]DP2z and K;5 =

—2" DP2z, tr being the trace operator.
Under some regularity conditions, the CMLE is consistent and asymptotically normally
distributed; for details, see Andersen (1970). That is, in large samples 4 is approximately

normally distributed with mean « and covariance matrix K ~!:

aq aq
B B
‘f TR Mprarors ’ K |
0 0
o 6%
0 5

where &7, B @, é, Gy and 5 are the CMLEs of a1, B, ¢, 0, as and 4, respectively.
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3.3 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

Let v, be the k-th element of the parameter vector v, 4, be the k-th component of 4,
computed using a sample path of size n from the generalized BPARMA(p, ¢) model, and
K(%)* be the k-th diagonal element of the inverse of the conditional Fisher information
matrix evaluated at 4, K(%)~!. We have that

A

Ve — Vk approx JV(O 1)
K(3)™ |
Using this result, it is possible to construct a 100(1 — )% asymptotic confidence interval for

Y, 0 <e<1/2, as

[% — Z1-¢/2\/ KAk, A + 21-2/21/ K(’?)kk] )

where 2;_. ) is the 1 — £/2 standard normal quantile. The probability that this interval will
contain 7 approaches 1 — e as n — o0.
The asymptotic normality of 4 can also be used to perform test inferences on the model's

)

parameters. Suppose we wish to test 7, : 1, = %(60) vs JA Vi # Yo, Where 7,(:) is a given

scalar. We may use the z test statistic:

N 0
_ %—%g)

K@)

Under the null hypothesis, the asymptotic distribution of z is standard normal. The null hy-
pothesis is thus rejected at significance level € if |z| > z;_./o. The test's type | error probability
will converge to € as n — oo.

It is also possible to test more than one restriction using the likelihood ratio, score
and Wald tests. The closed-form expressions we provide for the model’s score function and
Fisher's information matrix can be used for computing score and Wald test statistics. Let
v = (v/,% )", where dim(vy;) = s and dim(y;) = p+ q + v + 3 — 5, and suppose we
wish to test ) : v1 = %0) vs 1Y F %0)7 where 7;0) € R? is a given vector. Also, let

)7

Tand 4 = () ,45 )" be, respectively, the unrestricted and restricted con-

¥=®%)
ditional maximum likelihood estimators of ~. The likelihood ratio test statistic can be easily
computed as w; = 2(¢(4) — £(7)). Rao's score and Wald's test statistics are, respectively,
wo = U)K (3URF) and w; = (51 —n")T(K"7(5)) 7 (51 = "), where K77 is
the s x s matrix formed out of the rows and columns of K ! that correspond to ~;. Under

5, the three test statistics are asymptotically x? distributed. Test inferences are reached

using approximate critical values from this distribution.
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4 MODEL SELECTION, DIAGNOSTIC TESTS, SAMPLE PATHS AND FORE-
CASTING

In what follows, we will outline generalized BPARMA model selection, diagnostic analysis
and forecasting. In particular, the focus of diagnostic analysis is to determine whether the esti-
mated model is capable of fully capturing the dynamics present in the data. Serial correlation

in the residuals is taken as evidence of model misspecification.

4.1 MODEL SELECTION

Generalized BPARMA model selection can be carried out using information criteria. Such
criteria are widely used to compare model fits and select a model from a set of candidate
models. The goal is to find a parsimonious model, that is, a model that fits the data well and
has a small number of parameters. Several information criteria are available in the literature,
the most frequently used being Akaike's Information Criterion (AIC) (Akaike (1974)) and the
Bayesian Information Criterion (BIC) (Schwarz (1978)). They are based on the maximized
conditional log-likelihood function and incorporate a penalty term for model augmentation:
AIC = —20(4) + 2(p + g+ v + 3) and BIC = —2/(%) + log(n)(p + q + v + 3). The model

with the lowest AIC or BIC is selected.

4.2 DEVIANCE

Goodness-of-fit assessment is an important step in diagnostic analysis. It can be based
on the deviance statistic, which is defined as twice the difference between the conditional

log-likelihood of the saturated model, where ji; = Y}, and the fitted model:
D=2(-1),

where 0 = S0 0V, ¢;) and ( = > L f 1), fir and ¢, being obtained by evaluating
Equations (2.2) and (2.3), respectively, at the conditional maximum likelihood estimates.

Under correct model specification, D is asymptotically distributed as 2 see

(p+g+v+m+3)"
Benjamin, Rigby and Stasinopoulos (2003) and Fokianos and Kedem (2004). A rule-of-thumb
is to conclude that model specification is in error if D/[n — (p+ ¢+ v+ m+3)] > 1; see

Myers et al. (2012).
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4.3 RESIDUAL ANALYSIS

Residual analysis is an important step in the validation of a statistical model. The main goal
is to verify whether the estimated model yields a good data fit. There are several residuals that
can be used to that end. We will use the Pearson residual; see Leiva et al. (2014) and Santos-
Neto et al. (2016). The Pearson residual is based on the difference between the observed value
and the fitted value. The ¢-th generalized BPARMA (p, ¢) Pearson residual is

T (. S
Vin(+ )/9

4.4 PORTMANTEAU TESTS

The goodness-of-fit of the estimated model can also be assessed using portmanteau-type
tests. Here, one tests the joint nullity of the first k residual autocorrelations. The fitted model
is considered to provide a good representation of the data if such autocorrelations are jointly
negligible. Rejection of the null hypothesis implies rejection of the fitted model. The null and

alternative hypotheses are

Ho pr=-=pp=0
% : Ina’X(lp1|7 ) |pk|) > 07
where p; is the [-th residual autocorrelation.

The most commonly used test statistic was proposed by Ljung and Box (1978). It is given
by

k ﬁZ
QLB:TL(TL+2)Z L s
= n—1
where
b= St i 71 le{l,... k}.

X
An alternative test statistic, denoted ), was proposed by Monti (1994). It is as the above
test statistic but uses partial residual autocorrelations instead of residual autocorrelations.
Under the null hypothesis, both test statistics are asymptotically distributed as x%_p_q. The

tests are carried out using critical values from this asymptotic null distribution.
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45 SAMPLE PATHS

Generalized BPARMA (p, q) sample paths can be easily obtained using the algorithm that
follows.

Algorithm 1.
1. Specify the values of the parameters oy, 3, ¢, 6, as, § and the sample size n;
2. Setrp,=0and Y, =0fort e {l,...,m};

3. Fort € {m+1,...,n}, recursively compute
1 T - T :
Mt =9y (al +xy B+ Z Vi [gl(yt—i) — mt_iﬁ} + Z 9ﬂ’t—j>
i=1 =1
and

b1 =93 (a2 +021);
4, Randomly draw Y; from BP(u;, ¢;), fort € {m+1,...,n}.

Figure 2 contains monthly sample paths of length 200 from three generalized BPARMA
models. For each time series, we also present the corresponding correlogram (sample au-
tocorrelation function — ACF) and partial correlogram (sample partial autocorrelation func-
tion — PACF). The sample paths were obtained from the following models: (i) generalized
BPARMA(1,1) with ay = 0.8, ¢ = 0.5, 8 = 0.5, ay = 2.0 and 6 = —0.1, (ii) generalized
BPARMA(1,0) with a; = 0.8, p = 0.5, ap = 2.0 and § = —0.1, and (iii) generalized
BPARMA(0,1) with a; = 0.8, § = 0.5, ap = 2.0 and § = —0.1. The dashed horizontal lines
correspond to +1.96/y/n — m.

4.6 FORECASTING

Fitted values and out-of-sample forecasts can be easily obtained from a fitted generalized
BPARMA(p, q) model. The fitted values are fi;, t € {m + 1,...,n}. They are obtained by
replacing the elements of the parameter vector, -+, with its CMLE, 4, and using the fitted
model’s residuals, which are taken to be zero for t € {1,...,m} and 7, = g1(Y;) — g1 () for
te{m+1,...,n}. The t-th fitted value is

P q
fir = g7 (@1 +x B+ ilgi (i) —®_iB)+ > ejft—g)a (4.1)
j=1

i=1
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Figure 2 — Simulated BPARMA time series with correlograms and partial correlograms.

(a) Generalized BPARMA(1,1)
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te{m+1,...,n}.
For h € {1,2,...}, the h-steps-ahead out-of-sample forecast, i.e., the forecast of Y,
made at time n, is given by
p

finsh = 97" (@1 + @, B+ Z 0i([91 (Yn4n—i)] — :B;lz_-i-h—i/é)

=1

q A
+ Z ejfn—i-h—j)v (42)

where

gl(ﬂt)a if t> n,
[ (YD)] =
a(Yy), if t<n.
When the model includes covariates, it is necessary to use their next h values when computing

the out-of-sample forecast in Equation (4.2).



32

5 SIMULATION EVIDENCE

In this chapter, we will present Monte Carlo simulation evidence on the finite sample
performance of the conditional maximum likelihood estimators of the parameters that index
the generalized BPARMA(p, ¢) model. The sample sizes are n € {50, 100,200, 500}. In each
Monte Carlo replication, we generate a sample path of size n+ 1000 and then discard the first
1000 observations in order to minimize dependence on initial values, i.e., we perform a burn-in
of size 1000. This is done to reduce dependence on initial values. Generalized BPARMA sample
paths are obtained according to Algorithm 1. Beta prime random draws are obtained from beta
random draws, i.e., we generate B, from the beta distribution with parameters 1;(1 + ¢) and
¢»+2, and then compute Y; = B;/(1—B;). Parameter estimation is carried out using the limited
memory Broyden-Fletcher-Goldfarb-Shanno algorithm with box constraints and analytical first
derivatives (L-BFGS-B algorithm). The following restrictions are imposed on the estimation
process: a; > 0 and § < 0. The starting values are as follows: n=' 37 ; g1(Y;) is used as
starting value for «, all autoregressive and moving average parameters are set to zero, the
initial value for ay is 3 and —1 is used as the initial value for §. The number of Monte
Carlo replications is 5,000. All simulations were performed using the statistical computing
environment R; see R Core Team (2023). There was no convergence failure.

At the outset, data generation is carried out from the generalized BPARMA(1, 1) model
with log link function for the mean and conditional precision submodels and a; = 0.1, ¢ =
0.7, 6 = 0.2, ay = 6.0 and 6 = —0.7. Table 1 contains the mean estimates (‘mean’),
the standard derivation of all estimates (‘SD’), and the estimated bias (‘bias’) and the mean
squared error (‘MSE’) of each estimator. It is noteworthy that the biases and mean squared
errors of all estimators diminish as the sample size increases, as expected. Overall, the estimates
are quite accurate. For instance, when n = 500 the average estimate of ¢; (6;) [d] is 0.6930
(0.2036) [—0.7098], the true parameter value being 0.7 (0.2) [—0.7]. We note, however, that in
all sample sizes there is slight underestimation of ¢ and slight overestimation of #. Overall, we
conclude that the generalized BPARMA parameters are reliably estimated by the conditional
maximum likelihood method, especially when the sample size is not small.

Tables 2 and 3 contain, respectively, simulation results obtained using as the data generat-
ing process (i) the generalized BPARMA(1,0) model with a; = 0.1, ¢; = 0.7, as = 6.0 and
d = —0.7 and (ii) the generalized BPARMA(0, 1) model with a; = 0.1, 6; = 0.2, ap = 6.0
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and 6 = —0.7. As in previous simulations, we use the log link in the mean and precision
submodels. Again, conditional maximum likelihood point estimation works as expected: the
estimators’ biases and mean squared errors approach zero as the sample size increases. The
biases of ¢ and 0y in the autoregressive and moving average models, respectively, are slightly

negative.
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Table 1 — Mean value, standard deviation (SD), bias and mean squared error (MSE) of the conditional maxi-
mum likelihood estimators, generalized BPARMA(1, 1) model.

Parameter

n o Y1 0, Qo 0

0.1 0.7 0.2 6.0 —-0.7
50 0.1252 0.6204 0.2459 6.5262 —1.1101
100 0.1130 0.6592 0.2241 6.2798 —0.9248
Mean 200 0.1064  0.6798 0.2110 6.1101 —0.7861
500 0.1022 0.6930 0.2036 6.0193 —0.7098
50 0.0558 0.1577 0.1966 1.5205 1.4674
100 0.0349 0.0996 0.1310 1.0993 1.0704
SD 200 0.0240 0.0684 0.0909 0.7893 0.7766
500 0.0141 0.0406 0.0556 0.5595 0.5513
50 0.0252 —0.0796 0.0459 0.5262 —0.4101
100 0.0130 —0.0408 0.0241 0.2798 —0.2248
Bias 200 0.0064 —0.0202 0.0110 0.1101 —-0.0861
500 0.0022 —0.0070 0.0036 0.0193 —0.0098
50 0.0038 0.0312 0.0408 2.5887 2.3214
100 0.0014  0.0116 0.0177 1.2866 1.1962
MSE 200 0.0006 0.0051 0.0084 0.6351 0.6105
500 0.0002 0.0017 0.0031 0.3134  0.3040
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Table 2 — Mean value, standard deviation (SD), bias and mean squared error (MSE) of the conditional maxi-

mum likelihood estimators, generalized BPARMA(1, 0) model.

Parameter

n %1 Y1 Qo )

0.1 0.7 6.0 —-0.7
50 0.1204 0.6339 6.4669 —1.0763
100 0.1102 0.6678 6.2573 —0.9111
Mean 200 0.1048 0.6845 6.0981 —0.7787
500 0.1018 0.6942 6.0199 —0.7122
50 0.0410 0.1178 1.4562 1.4029
100 0.0272 0.0780 1.0599 1.0313
SD 200 0.0184 0.0529 0.7758 0.7638
500 0.0110 0.0321 0.5571 0.5481
50 0.0204 —-0.0661 0.4669 —0.3763
100 0.0102 —0.0322 0.2573 —0.2111
Bias 200 0.0048 —0.0155 0.0981 —0.0787
500 0.0018 —0.0058 0.0199 —0.0122
50 0.0021 0.0182 2.3386 2.1098
100 0.0008 0.0071 1.1896 1.1081
MSE 200 0.0004 0.0030 0.6115 0.5896
500 0.0001 0.0011 0.3107 0.3005
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Table 3 — Mean value, standard deviation (SD), bias and mean squared error (MSE) of the conditional maxi-
mum likelihood estimators, generalized BPARMA(0, 1) model.

Parameter

n a 0, Qs )

0.1 0.2 6.0 —-0.7
50 0.0996 0.1890 6.5275 —1.1431
100 0.0997 0.1956 6.2507 —0.9081
Mean 200 0.1000 0.1969 6.0928 —0.7732
500 0.1001 0.1986 6.0253 —0.7178
50 0.0168 0.1676 1.4537 1.3962
100 0.0122 0.1071 0.9694  0.9392
sp 200 0.0083 0.0711 0.6913 0.6750
500 0.0052 0.0448 0.4775 0.4698
50 —0.0004 —0.0110 0.5275 —0.4431
100 —0.0003 —0.0044 0.2507 —0.2081
Bias 200 0.0000 —0.0031 0.0928 —0.0732
500 0.0001 —0.0014 0.0253 —0.0178
50 0.0003 0.0282 2.3914  2.1459
100 0.0001 0.0115 1.0025 0.9254
MSE 200 0.0001 0.0051 0.4865 0.4610
500 0.0000 0.0020 0.2286 0.2210
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6 HYDROELECTRIC RESERVOIR WATER FLOW MODELING

Next, we will model water flows in reservoirs of two Brazilian hydroelectric power plants.
We consider both inflow and outflow. The interest lies in forecasting future values of the two

time series. Such forecasts assist the process of optimizing water use.

6.1 CACONDE WATER RESERVOIR INFLOW

In the following we will model and forecast a hydro-environmental time series. The interest
lies in modeling the time evolution of the affluent flow of the Caconde reservoir. The affluent
flow of a reservoir is the quantity of water that enters it over a specific period of time. This
water input can originate from various sources, such as rivers, streams, precipitation (rain),
among others. Affluent flow is an important indicator as it allows one to know the volume of
water in the reservoir and thus properly manage the available water resources.

Formerly known as the Graminha Dam, the Caconde reservoir is owned by the Caconde
Hydroelectric Power Plant and is currently operated by AES Brasil, a subsidiary of AES Corpo-
ration, one of the largest energy companies in the United States. Built to be a storage reservoir
for the regulation of flow and the generation of electricity, it began operating in 1966. Located
on the Pardo River in the municipality of Caconde, S3o Paulo, Brazil, the plant has an installed
capacity of 80.4 megawatts. The reservoir of the hydroelectric plant, which operates at the
river level, has an area of 31 square kilometers and a capacity of 555 billion liters of water.
The useful volume of the reservoir is 504 billion liters.

We use data on the Caconde reservoir affluent flow from January 2000 to July 2023. The
data are expressed in cubic meters per second (m?/s). The sample size is n = 283 and the data
were obtained through the Brazilian National Electric System Operator (Operador Nacional
do Sistema Elétrico — ONS, <http://www.ons.org.br>). The final six observations (February
2023 through July 2023) were removed from the data prior to modeling. They were reserved

for forecasting evaluation. The effective sample is thus n = 277.

Table 4 — Descriptive statistics, Caconde reservoir affluent flow.

min  max median mean std. deviation asymmetry kurtosis
6.70 207.00 35.00 46.14 32.59 1.56 5.76

Table 4 contains some descriptive statistics on the time series. The average monthly affluent
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flow of the Caconde reservoir during the observed period is 46.14 m3/s. September 2021 had
the lowest inflow at 6.70m?3/s. The month with the highest monthly inflow was January
2007, at 207.00 m*/s. Figure 3 contains the observed time series (top left panel), the seasonal
component over time (top right panel) and the correlogram and partial correlograms (bottom
panels). In the top right panel, data for each season are plotted as a separate time series
and the horizontal black line represents the mean of the observations within the season. The
affluent flow increases from July to January, corresponding to the rainiest period, and decreases
from February to June, which is the driest period. There is thus seasonality. We account for
it using the approach recommended by Bloomfield (2004), i.e., we include in the model the
following vector of harmonic covariates: x; = (sin(27t/12), cos(27t/12))", t € {1,...,n}.
Since seasonal fluctuations may not be fully captured by the harmonic regressors, we also
considered dummy variables for the different months of the year and for groups of months.
The indicator variable for January led to an improvement in the models’ fit. We therefore
included the following indicator variable in the fitted models: dy;, which is equal to one for
the months of January and equal to zero otherwise. Notably, January is the month of the year
with the highest average affluent flow.

Notice from the upper right panel of Figure 3 that the variability of the series increases with
the mean, with greater variability in the months when the mean affluent flow levels are higher.
The beta prime law naturally accommodates this behavior. Recall that if Y ~ BP(u, ¢), then
Var(Y) = u(1+ p)/¢. For a given precision, the variance of the distribution grows with the
mean at a quadratic rate.

Parameter estimation is carried out as in the previous chapter, that is, using the L-BFGS-B
nonlinear optimization algorithm with analytical first derivatives. We restrict a5 and 0 to be
positive and negative, respectively, and the following starting values are used: n=' 37, ¢1(Y})
is used as starting value for o, all autoregressive and moving average parameters are set to
zero, and the initial values for vy and 0 are 3 and the —1, respectively.

At the outset, we select a generalized BPARMA model by considering all models such that
p=20,....,4and ¢ = 0,...,4. In all fitted models, g; and ¢o are the log link function. We
also considered models with identity and square root precision link functions. However, slightly
more accurate predictions were obtained using the log link. Model selection was carried out
using information criteria (AIC and BIC), z tests, correlograms and partial correlograms of
residuals, and portmanteau tests (Ljung-Box and Monti). When a given model had more than

one autoregressive or moving average term without statistical significance at 5%, these terms
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Figure 3 — Observed time series (top left), seasonal component (top right), correlogram (bottom left) and
partial correlogram (bottom right), Caconde reservoir affluent flow, n = 283.
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were individually excluded in descending order of p-values. The three models with the lowest
information criteria values had dynamic terms that were not statistically significant. In all
three cases, removing these terms led to the generalized BPARMA(1,0) model. We will then
use the generalized BPARMA(1,0) model with harmonic regressors and an indicator variable
for the month of January in our empirical analysis. The parameter estimates, standard errors,
z test statistics, z tests, p-values, deviance value, and Ljung-Box and Monti test statistics
and p-values for the selected model are presented in Table 5. The number of lags (k) in
the two portmanteau test statistics is approximately equal to the square root of the sample
size. These tests show no evidence of model misspecification at the usual significance levels.
The coefficients 81, B2 and (33 correspond, respectively, to sin(27t/12), cos(2nt/12) and the
dummy variable.

The estimates of as and § are 3.5766 and —1.1403, respectively. All estimated precisions
are thus smaller than exp(3.5766) = 35.7529. The smaller (larger) y;—1/y:—2, the closer
(the farther) ¢; will be to (from) such a limiting value. Consider three situations, namely
(i) yt—1/yi—2 = 1.4 (sharp increase in the value of the process), (ii) y;—1/y—2 = 1.0 (no
change in the value of the process), and (iii) v—1/y—2 = 0.6 (sharp decrease in the value

of the process). Using the parameter estimates and the inverse precision link, we obtain the
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Table 5 — Generalized BPARMA model fit and diagnostic measures/tests, Caconde reservoir affluent flow.

parameter estimate std. error z test statistic z test p-value

o 0.8836 0.1416 6.2402 < 0.0001
1 0.7689 0.0399 19.2533 < 0.0001
B4 0.5811 0.0500 11.6106 < 0.0001
Ba 0.3636 0.0458 7.9440 < 0.0001
Bs 0.1927 0.0587 3.2818 0.0010
[a%) 3.5766 0.2494 14.3410 < 0.0001
) —1.1403 0.2262 5.0414 < 0.0001

deviance = 254.7287
Ljung-Box statistic (k = 17): Qrp = 16.5090 (p-value = 0.4180)
Monti statistic (k = 17): Qu = 15.8200 (p-value = 0.4656)

following corresponding estimated precisions at ¢ (i.e, ét)i 7.2440, 11.4307, and 18.0369. A
sharp increase (decrease) in the value of y;_; relative to y; o signals increased (decreased)
uncertainty and the fitted model responds by reducing (increasing) the current precision relative
to stability, i.e., relative to y;_1 = y;_».

To illustrate this more closely with the data, consider observations 230 and 231, whose
observed values are, respectively, 43.37 and 79.08. The ratio between these two observations
(y231/Y230) is 1.8234, and the fitted precision value for the next period is ¢g30 = 4.4706. For
reference, QA5231 = 13.9388. By contrast, between time periods 242 and 243 the level of the
series is reduced from 137.66 to 60.68. As a consequence, the estimated precision responds as
follows: 95244 = 21.6285 vs &243 = 3.2157. That is, the next estimated precision is increased
relative to the current precision level given the current reduction in uncertainty.

Figure 4 contains diagnostic plots for the fitted generalized BPARMA model. The two
panels are the residual correlogram (left) and the residual partial correlogram (right). In both
panels, all autocorrelations and partial autocorrelations are within the asymptotic 95% bands
(dashed blue lines). Hence, there is no clear evidence of serial correlation in the residuals which
is in agreement with the conclusion drawn from the two portmanteau tests. The plots and
tests validate the fitted model, indicating that it can be used for out-of-sample forecasting.
Figure 5 shows the observed time series (black line) together with the fitted values (blue line).
There is good agreement between observed and predicted values.

Based on the model selection procedure used previously, we arrived at the BPARMA(1, 1)
model with fixed precision, harmonic regressors and a dummy variable for the month of January

(d1¢)- In Table 6, we present the AIC and BIC values for the selected generalized BPARMA



41

Figure 4 — Residual correlogram (left) and residual partial correlogram (right), fitted generalized BPARMA

model, Caconde reservoir affluent flow.
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Figure 5 — Observed data and fitted values, Caconde reservoir affluent flow.
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and standard BPARMA models. The smallest values are highlighted in boldface. Both criteria

favor the generalized model over the standard model. We performed the likelihood ratio of
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fixed vs varying precision, i.e., 74 : § = 0 versus 74 : § # 0. The likelihood ratio test p-value

is smaller than 0.0001. There is thus evidence of varying precision.

Table 6 — Model selection criteria values for the generalized and standard models, Caconde reservoir affluent
flow.

criterion generalized BPARMA  BPARMA
AlC 2099.2260 2112.5320
BIC 2128.2180 2137.9000

Figure 6 contains the index plot of the estimated conditional precisions from the fitted
generalized BPARMA model, i.e., it contains the plot of cfit vstfort € {m+1,...,n}. The
dashed horizontal line corresponds to the estimated precision from the fixed precision BPARMA
model: ¢ = 10.0174. The average estimated precision from the generalized model is 11.7128.
The estimated precisions from the generalized model fluctuate around the estimated (constant)
precision of the standard model. The estimated precisions obtained from the generalized model
are larger than the constant precision obtained from the standard model whenever v; 1 /y; 5 <

1.1111 and smaller otherwise.

Figure 6 — Estimated conditional precisions (solid line) and fixed conditional precision estimate (dashed hori-
zontal line).
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As noted earlier, the introduction of a precision submodel adds an additional layer of

flexibility to the modeling, as the shape of the beta prime density at time ¢ is now determined
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not only by the conditional mean at that time, but also by the conditional mean and precision at
t. Given that the variance, skewness, and kurtosis of the beta prime distribution are functions
of both the conditional mean and precision, the shape of the density over time can evolve
more freely when both the conditional mean and precision vary with ¢. To illustrate, consider
t = 26,27,28. In Figure 7, we present the beta prime densities corresponding to these three
time instants (left column, middle column, right column, respectively) evaluated at estimates
of the conditional mean and precision obtained from the generalized (solid line) and standard
(dashed line) models. The top and bottom rows of panels correspond to the models of order
(1,0) and (1,1), respectively. Note that the estimated beta prime densities exhibit greater
variation over time when they are evaluated at the estimates of the conditional mean and
precision obtained from the generalized model. In particular, there is more variability in the
modes (peakedness) of the estimated beta prime densities obtained from the generalized model.
As noted above, the variable precision in the beta prime model introduces an additional layer

of flexibility by allowing the shape of the density to evolve more freely over time.
Figure 7 — Beta prime densities for ¢ = 26 (left panels), t = 27 (middle panels) and ¢t = 28 (right panels)

evaluated at conditional means and conditional precisions estimated using the generalized (solid line)
and standard (dashed line) models, (1,0) and (1, 1) models (top row and bottom row, respectively).
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We will now move to out-of-sample forecasting. In addition to the generalized and standard

BPARMA models, we will also use the CHIARMA, GARMA and LNARMA models, which are



44

based on the chi-squared, gamma and log-normal laws, respectively. The CHIARMA, GARMA
and LNARMA models are defined using errors in original scale and are fitted using the PTSR
package for R; see <https://cran.R-project.org/package=PTSR>. These models use the
same regressors that were included in the BPARMA models, namely two harmonic covariates
and an indicator variable for the month of January. Based on the AIC and BIC, we select the
CHIARMA(0, 3), GARMA(4,0) and LNARMA(0, 3) models. We also consider the Gaussian
SARIMA model, since it is widely used in empirical studies. The SARIMA model of order
(2,0,2)(2,1,0) was selected using the auto.arima function of the forecast package for R.
Figure 8 shows the six data points that had been reserved for forecasting evaluation to-
gether with the out-of-sample forecasts obtained from the five competing models. Notably, the
generalized BPARMA forecasts are generally closer to the observed values than those yielded

by the alternative dynamic models.

Figure 8 — Observed data and out-of-sample forecasts, Caconde reservoir affluent flow.
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For each set of forecasts, we compute the mean absolute error (MAE), the mean absolute

percentage error (MAPE) and the symmetric mean absolute percentage error (SMAPE). These

measures are defined as follows:

n+h n+h oA
MAE:%ZM—M MAPE:EZ%
t

x 100, and
t=n-+1 h t=n+1
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1 Y =
SMAPE= = Y =/l
h t=%—:i-1 (1Yel =+ [ul)/2

Y,| =Y, since Y; > 0.)

x 100,

where h is the forecasting horizon. (Here,
Table 7 contains measures of forecast accuracy from one to six steps ahead, that is, for
h € {1,...,6}. The generalized BPARMA model is the best performer according to all three
forecast accuracy measures in all six forecasting horizons. For example, the MAPE of the
three-steps-ahead forecast from the generalized BPARMA model is over 40% lower than that
of the BPARMA model. The gains in forecasting accuracy for h = 6 according to the MAE
of the generalized BPARMA model relative to the standard BPARMA, CHIARMA, GARMA,
LNARMA an SARIMA models exceed 38%, 54%, 93%, 57% and 70%, respectively.

6.2 GUILMAN AMORIM RESERVOIR OUTFLOW

In the second empirical application, we present modeling and predictions for the hydro-
environmental time series of outflow of the Guilman Amorim reservoir. The outflow of a
reservoir is the amount of water released through gates, valves, or other control devices. In
other words, it is the water that flows out of the reservoir towards the river. In reservoir
management, outflow plays a crucial role, as it directly impacts the conditions of the river,
water supply, hydroelectric power generation, flood control, and other aspects related to water
resources.

The Guilman Amorim reservoir is located on the Piracicaba River, between the munic-
ipalities of Nova Era and Anténio Dias, in the state of Minas Gerais, Brazil. The Guilman
Amorim hydroelectric power plant was inaugurated in 1997. Its operation is conducted by the
UHE Guilman-Amorim consortium, formed by the companies ArcelorMittal Brasil and Samarco
Mineracao.

The data on the outflow of the Guilman Amorim reservoir were acquired from the Brazilian
National Electric System Operator (Operador Nacional do Sistema Elétrico — ONS, <http:
//www.ons.org.br>), covering the period from January 2000 to September 2023. This variable
is recorded in cubic meters per second (m?®/s). The sample size is n = 285. The last six
observations (April to September 2023) were removed from the time series and will be used
for accuracy evaluation of forecasts.

Table 8 contains some descriptive statistics of the data. The average outflow from the

Guilman Amorim reservoir is 62.36 m®/s. The month with the lowest outflow was October
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Table 8 — Descriptive statistics; Guilman Amorim reservoir outflow.

min max  median mean std. deviation asymmetry kurtosis
10.00 301.00 46.00 62.36 48.94 2.10 8.37

2015, with 10.00 m?/s. January 2012 had the highest outflow, reaching 301.00 m?/s. Figure 9
shows the observed series (top-left), the seasonal component (top-right) and the correlogram
(bottom-left) and partial correlogram (bottom-right). There is clearly seasonality. To model
this seasonality, we will use harmonic regressors and a dummy variable, which equals one for

the months of December and January (months with the highest outflows) and zero otherwise.

Figure 9 — Observed time series (top-left), seasonal component (top-right), correlogram (bottom-left) and
partial correlogram (bottom-right); Guilman Amorim reservoir outflow.
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We selected the generalized BPARMA model exploring all combinations of p = 0,....,5
and ¢ =0,...,5, except p =g = 0. We used the logarithmic link function in both submodels.
As in the previous application, in the selection process, we used information criteria, z tests,
correlograms and partial correlograms of the residuals, as well as portmanteau tests. We ex-
cluded autoregressive and moving average terms that were not significant at 5%. The model
chosen was the generalized BPARMA(4,1) with harmonic regressors and a dummy variable

for the months of December and January. Table 9 presents the parameter estimates, standard
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errors, z test statistics and corresponding p-values, deviance value, and Ljung-Box and Monti
test statistics and p-values. The portmanteau tests provide no evidence of model misspecifi-
cation at the usual significance levels. As in the previous application, the coefficients 3, (-

and 33 correspond, respectively, to sin(27t/12), cos(27t/12) and the dummy variable.

Table 9 — Generalized BPARMA model fit and diagnostic measures/tests; Guilman Amorim reservoir outflow.

parameter estimate std. error 2 test statistic z test p-value

aq 2.4442 0.3521 6.9418 < 0.0001
01 —0.2769 0.0487 5.6900 < 0.0001
P2 0.5520 0.0603 9.1466 < 0.0001
P4 0.1296 0.0518 2.5038 0.0123
01 0.9990 0.0133 75.0996 < 0.0001
b1 0.4778 0.0499 9.5735 < 0.0001
Ba 0.3674 0.0505 7.2808 < 0.0001
Bs 0.3457 0.0792 4.3670 < 0.0001
Qo 2.9450 0.2372 12.4159 < 0.0001
) —0.9279 0.2126 4.3645 < 0.0001

deviance = 245.3111
Ljung-Box statistic (k = 17): Qrp = 17.3290 (p-value = 0.1847)
Monti statistic (k = 17): Qu = 17.6920 (p-value = 0.1696)

Figure 10 contains the correlogram (left panel) and partial correlogram (right panel) of the
residuals from the estimated model. Nearly all the autocorrelations and partial autocorrelations
are within the asymptotic confidence bands (level: 95%). There is therefore no evidence of
model misspecification. Figure 11 shows the observed time series (gray line) together with the
fitted values (black line). It can be seen that the model shows a satisfactory fit to the observed
values.

Using the same selection procedure as for the generalized BPARMA model, we choose
the standard BPARMA(1, 1) model with harmonic regressors and a dummy variable for the
months of December and January. The AIC and BIC of the generalized BPARMA model,
2350.1304 and 2386.4425, are lower than those of the standard BPARMA model, 2397.4337
and 2422.8522. The p-value of the likelihood ratio test of ) : 6 = 0 versus 77 : § # 0
is smaller than 0.0001. The information criteria and the likelihood ratio test thus favor the
generalized BPARMA model over the standard BPARMA model.

As in the previous empirical investigation, in addition to the generalized and standard

BPARMA models, we consider the CHIARMA, GARMA and LNARMA models, with the same
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Figure 10 — Residual correlogram (left) and residual partial correlogram (right), fitted generalized BPARMA
model; Guilman Amorim reservoir outflow.
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Figure 11 — Observed data and fitted values; Guilman Amorim reservoir outflow.
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covariates. Based on the AIC and BIC, we select the CHIARMA(4,0), GARMA(3,0) and
LNARMA(0, 2) models. We also include in the analysis the Gaussian SARIMA model of or-
der (1,0,0)(1,1,0), obtained using the auto.arima function of the forecast package for R.
Figure 12 shows the six data points reserved for evaluating the forecasts, along with the out-
of-sample forecasts from the generalized BPARMA model and the five competing models. It
can be seen that, overall, the forecasts from the generalized BPARMA model are closer to the

observed values than the forecasts obtained from the other models.

Figure 12 — Observed data and out-of-sample forecasts; Guilman Amorim reservoir outflow.
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To evaluate the forecasts one to six steps ahead, i.e., for h € {1,...,6}, we use the same
accuracy measures as in the previous empirical analysis. The results are shown in Table 10.
According to the three measures, the generalized BPARMA model performs best for forecast
horizons h € {1,3,4,5,6}, while the CHIARMA model performs best for h = 2. For all
forecast horizons, the forecast accuracy measures of the generalized BPARMA model are more

than 50% lower than those of the standard BPARMA model.
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7 CONCLUDING REMARKS

The beta prime distribution has received little attention in the literature, particularly for
modeling random variables with time dependence. It is closely related to the beta distribution,
which is the most widely used law with random phenomena that assume values in the standard
unit interval. In fact, if Z is a beta distributed random variable, then Z/(1 — Z), the beta
odds ratio, follows the beta prime law. In this research, we introduced a new class of dynamic
time series models based on it with the precision parameter varying over time. The proposed
generalized BPARMA model accommodates autoregressive and moving average dynamics and
allows for the inclusion of non-stochastic regressors. It comprises two separate submodels, one
for the conditional mean and another for the conditional precision. Hence, the two parameters
that index the beta prime law are allowed to evolve over time. The variance, skewness, and
kurtosis of the beta prime law are functions of the conditional mean and conditional precision.
As such, the temporal evolution of these two parameters controls the shape of the conditional
density, which evolves more freely than in models in which only the conditional mean changes
over time.

We developed maximum likelihood parameter estimation for the new model. In particular,
we obtained simple closed-form expressions for the model’s conditional log-likelihood function,
for the score vector, and for Fisher's information matrix that are presented in matrix form for
ease of calculation. We also discussed diagnostic analysis for the proposed model and presented
Monte Carlo simulation results on the finite-sample performance of the conditional maximum
likelihood estimators of the parameters that index the model.

Two hydro-environmental empirical applications were presented and discussed. We modeled
the monthly inflow of the Caconde water reservoir and the and the monthly outflow of the
Guilman Amorim reservoir. We accounted for the existing seasonality by including two harmonic
regressors and a dummy variable in the models. The generalized BPARMA model yielded a
good data fit and out-of-sample forecasts that were more accurate than those obtained from
competing models. Information criteria and the likelihood ratio test favored the generalized
BPARMA model over its fixed precision counterpart. The proposed model also outperformed
other alternative models when used for out of sample forecasting.

Two hydro-environmental empirical applications were presented and discussed. Specifically,

we modeled the monthly inflow of the Caconde water reservoir and the and the monthly out-
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flow of the Guilman Amorim reservoir. We accounted for the existing seasonality by including
two harmonic regressors and a dummy variable in the model. The generalized BPARMA model
yielded a god data fit and out-of-sample forecasts that were more accurate than those ob-
tained from competing models. Information criteria and the likelihood ratio test favored the
generalized BPARMA model over its fixed precision counterpart. The proposed model also

outperformed other alternative models when used for out of sample forecasting.
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