e
e
1 [~

!

]
»

<
)

US IMPAVID
L]

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

RODRIGO VITOR CASTRO ALVES DE MELLO

ELODIN: Naming Concepts in Embedding Spaces

Recife
2023

RODRIGO VITOR CASTRO ALVES DE MELLO

ELODIN: Naming Concepts in Embedding Spaces

Dissertacado apresentada ao Programa de
P6s-Graduagéo em Cléncia da
Computacédo da Universidade Federal de
Pernambuco, como requisito parcial para
obtencédo do titulo de mestre em Cléncia
da Computacdo. Area de concentracio:
Inteligéncia Computacional

Orientador: Geber Lisboa Ramalho
Coorientador: Filipe Carlos de Albuquerque Calegario

Recife
2023

Catalogacgao na fonte
Bibliotecaria Monick Raquel Silvestre da S. Portes, CRB4-1217

M527e Mello, Rodrigo Vitor Castro Alves de
ELODIN: naming concepts in embedding spaces / Rodrigo Vitor Castro Alves
de Mello. — 2023.
46 f.: il., fig., tab.

Orientador: Geber Lisboa Ramalho.

Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Cin,
Ciéncia da Computacgéo, Recife, 2023.

Inclui referéncias.

1. Inteligéncia computacional. 2. Processamento de linguagem natural .
3. Deep learning. I. Ramalho, Geber Lisboa (orientador) Il. Titulo.

006.31 CDD (23. ed.) UFPE - CCEN 2024-102

Rodrigo Vitor Castro Alves de Mello

“ELODIN: Naming Concepts in Embedding Spaces”

Dissertacao de Mestrado apresentada ao Programa de
P6s-Graduacdao em Ciéncia da Computacdo da
Universidade Federal de Pernambuco, como
requisito parcial para a obtencdo do titulo de Mestre
em Ciéncia da Computacdo. Area de Concentracio:
Inteligéncia Computacional.

Aprovado em: 27 de setembro de 2023.

BANCA EXAMINADORA

Prof. Dr. Giordano Ribeiro Eulalio Cabral
Centro de Informatica/UFPE

Prof. Dr. Andre Menezes Marques das Neves
Departamento de Design / UFPE

Prof. Dr. Geber Lisboa Ramalho
Centro de Informética / UFPE
(Orientador)

Ao Criador de tudo e de todos.

AGRADECIMENTOS

Obrigado a meus pais, Laerte e Ceca, que sempre confiaram em mim e
depositaram, num bebé, sua esperanca. Obrigado a minha esposa, Raquel, que
aguentou pacientemente e ad vertiu de forma doce diante dos exageros naturais da
invencdo. Obrigado a Christoph, Nat e Mahmoud da ModelMe UG, que foram mais
do que companheiros de trabalho, cada um deles. Obrigado a Geber Ramalho e
Filipe Calegério, meus orientadores, os quais contribuiram para esta dissertacao e
para o artigo original (pre-print) no qual ela é largamente baseada. Obrigado a vocé
gue ndo coube nesta margem estreita. Rebeca, Ricardo, Rodrigo Lopes, Rafael
Cintra, André, Rafaela e muitos, muitos, muitos outros cujos nomes se perderam no
tempo. Vocé, leitor, faz parte dessa historia. Obrigado, também. Estamos juntos
nessa.

Ah! Patrick Rothfuss, se vocé esta lendo isto: Obrigado, em especial, por me
ensinar a esperar. Digo isso pela histéria de "Wise Man 's Fear" e pela pessoa que
vocé se tornou. And here’s one more thing for you to wait for, okay? I’'m going to
teach with the name of the Wind. I'd like you two to meet one day. It's rude to give

away someone else’s true name like that. Let’s go!

“Entdo Pilatos Ihe perguntou: “Vocé ndo ouve a acusacao que eles estédo fazendo
contra vocé?” Mas Jesus néo lhe respondeu nenhuma palavra, de modo que o
governador ficou muito impressionado.”

Mateus 27:13-14

ABSTRACT

Despite recent advancements, the field of text-to-image synthesis still suffers
from the lack of fine-grained control. Using only text, it remains challenging to deal
with issues such as concept coherence and concept cohesion. A method to enhance
control by generating new words that can be reused throughout multiple images is
proposed. Each new word, which | call “named concept”, can be mixed and matched
freely with natural language, effectively expanding human vocabulary. Just as a
painter combines pre-existing shades into personalized colors according to their
needs, the proposed method enables combining e.g. “yellow” and “hawk” into a
single word, that is, a single named concept. The new word, when present in
subsequent text prompts, results in images that consistently contain the same yellow
hawk. Unlike previous contributions, our method does not replicate visuals from input
data. In some cases, it can generate visual concepts in a zero-shot manner, that is,
without any visual input. A set of comparisons show our method to be a significant
improvement over text prompts containing only natural language. Theoretical
considerations on the foundations of Deep Learning are made throughout the text
and Name Learning is proposed.

Keywords: artificial intelligence; embedding space; image generation; natural

language processing; deep learning.

RESUMO

Apesar dos avancgos recentes, o campo da sintese de imagens a partir de
texto ainda sofre com a falta de controle no. Usando apenas texto, continua sendo
desafiador lidar com questées como coeréncia de conceitos e coesdo de conceitos.
Eu proponho um método para melhorar o controle gerando novas palavras que
podem ser reutilizadas em varias geracdes. Cada nova palavra, que chamamos de
“conceito nomeado”, pode ser misturada e combinada livremente com linguagem
natural, expandindo o vocabulario humano. Assim como um pintor combina tons
pré-existentes em cores personalizadas de acordo com suas necessidades, o
método proposto permite combinar, por exemplo, “amarelo” e “falcdo” em uma Unica
palavra, isto €, um Unico conceito nomeado. A nova palavra, quando presente em
prompts de texto subsequentes, resulta em imagens que contém, consistentemente,
o0 mesmo falcdo amarelo. Diferentemente de propostas anteriores, esse método nao
replica visuais presentes em dados de entrada. Em alguns casos, pode gerar
conceitos visuais de forma zero-shot, sem qualquer entrada de imagem. Um
conjunto de comparagbes mostram a melhoria significativa da proposta sobre
prompts de texto contendo apenas linguagem natural. Consideracdes tedricas sobre
os fundamentos de Deep Learning sdo realizadas ao longo do texto e Name

Learning é proposto.

Palavras-chave: inteligéncia artificial;, embedding space; sintese de imagem;

processamento de linguagem natural; deep learning.

3.1

3.2

5.1

5.2

6.1

6.1.1

6.1.2

6.1.3

6.1.4

6.2

CONTENTS

INTRODUCTION.......iuiiiiaiiinin i s ssn s sannssannsnssanass

PROBLEM CHARACTERIZATION.....ciiiiiiiiiiiiie v v v nnnnas
RELATED WORKS . ..ot iiiiiiiieser s sannnnnnsnsssnnnnnnnsnsnnns
(@ YAV =) P

PerVL, Tl and Dreambooth..........ceee ot e e

[{0] o L

FUNDAMENTALS......cciiiiiiimiiii s i s s s ss s s s s

Text-to-image pipelines..........cooviiiii e,

Embedding space: latent vocabulary and latent lexicon...........

METHOD.......ci i s s s e s s e

Creating NAMECONS..........cieeeie it eeteeeeee et eee e eeeee e

Which embeddings are updated.....................cccoiiiiiiiinini,

SOOA. ...

Images as target concepts and other loss functions...............

Why namecons are different from regular embeddings............

USING NAMEBCONS. .. et ettt e e e e e e e i ea e

10

12

15

15

16

19

22

22

25

28

28

29

29

30

30

31

7.1

7.2

7.2.1

7.2.2

EXPERIMENTS.......co i s s s s s e e s e

Experimental Apparatus..........ccoeieviiiiiiiiiiiee e e

Results and DiSCUSSION e e e e

QUAIITALIVE. e e e e e ettt e e

Quantitative.....

REFERENCES

34

34

35

35

39

41

42

11

1 INTRODUCTION

The field of generative Al has grown significantly in the past years,
experiencing one revolution after the other and achieving remarkable feats. In order
to proceed even further beyond, there are still key challenges to be overcome,
including limitations related to fine-grained control such as the ones tackled by recent
editing works[4, 21, 39] and inversion works[12, 22, 32], which look into existing

iImages (generated or otherwise) as a way of creating with precision.

In this context, | aim to provide a way of persisting precise visual concepts in a
zero-shot fashion, that is, without relying on pre-existing images. The solution
involves searching for certain vectors in the embedding space of encoders,
generating special “named concepts” that expand natural language vocabulary much
like new words. | call this process concept naming and the method, Elodin*
Experiments have found Elodin to be successful in that goal. To support my claims, |
provide a clear set of side-by-side qualitative comparisons, as well as quantitative

measures based on face similarity.

! Elodin is a fictional professor from a popular fantasy book (The Name of The Wind) who knows the
hidden names of things

12

Table 1: images generated with namecons. <Lucy >, <yellow bird >, etc. represent “new words” that
are generated with Al. Top row was made with the fist Stable Diffusion release (SD 1.4). Bottom row
was made with a Dreamshaper model available at (civitai.com). Code and all parameters are the same

in each column, only the checkpoint le was changed

<Lucy >wearing <Lucy >in a <Lucy >wearing <Lucy >wearing

a <galaxy tunic <fire armor >at a dress made of red petting a

>at the beach a business <cloth >for a <yellow bird >
meeting party

Source: the author (2023)

13

2 PROBLEM CHARACTERIZATION

Prompting an image synthesis model with natural language descriptions has a
number of advantages over the traditional method of manually defining each pixel's
colors (by e.g. brush strokes), as the popularity of recent initiatives such as Stable
Diffusion[31] can attest. However, it is not without some disadvantages; notably, the

lack of fine-grained control.

| focus on two issues that exemplify this lack of control. The first one, which | refer to
as the concept coherence issue, speaks to the difficulty of expressing the same
visual concept over multiple runs. For instance, an image for a person's face can be
easily crafted by an SD user by providing a prompt such as “a face of a person”. In
some cases, however, there is a need to produce more images of that “same person”
in different settings (such as at the beach, in a business meeting, or, simply, in
another pose). Unfortunately, in these cases, it is challenging to guarantee that the
faces in the newly generated images will look alike, even using a long and precise
input prompt, as illustrated in Table 2. In this example, although every generated face
meets the description, they do not appear as the same person, even using the same

seed for each column.

More generally, one may wish to maintain the coherence of any particular visual
concept, be it the appearance of a person, object, scene, texture, palette or artistic
style, between multiple runs from the same natural language prompt. It is not obvious
how to accomplish that, since there is no precise natural language description for
most visual concepts (e.g. how to precisely describe a specific face, unless it is the
face of a famous person who is well represented in the dataset?).

14

Table 2 Generations from an extended and descriptive prompt (first row: “the face of a middle-aged
brunette woman with blue eyes and a thin nose at the beach” and second row “the face of a

middle-aged brunette woman with blue eyes and a thin nose at a business meeting”), with commonly

used negative prompt “bad artist, bad perspective” and the same random seed in each column. SD 1.4

7105
&

se
fdl 1A

Source: the author (2023)

This issue affects visual storytelling applications[18], such as video clips, games,
graphic novels, etc. Such a need is not restricted to storytelling, however; it may

impact applications such as product design and publicity.

The other issue, which | call “concept cohesion”, arises when a certain visual concept
interacts with others in an unintended way. The most obvious example is color: a
prompt such as “a yellow hawk amidst white flowers" often results in some yellow
being applied to the flowers, or in a hawk that is not particularly yellow (Tables 3).

Table 3 prompt “a yellow hawk amidst white owers”. SD 1.4 model.

Source: the author

15

Table 4 prompt “a warrior wears armor made of fire and lava on a frozen mountain peak”. SD 1.4

model.

Source: the author
Even though the focus of this report revolves around visual concepts, those issues
may in principle be generalized to other kinds of concepts. For example, it is also
hard to keep concept coherence in writing style throughout text-to-text generation
[14].

16

3 RELATED WORKS

3.1 Overview

Many solutions have been proposed to generally enhance control in
text-to-image models. ControlNet[42], for instance, achieves shape control via edge
maps, line drawings, segmentation maps, etc., while Latent Guidance[38] uses
sketches to guide the process. Other works extract style, palette, etc. from one image
and apply them to another[16, 1]. There are also popular tools (OpenAl DALL-E 22,
DreamStudio®}, AUTOMATIC1111 webui[2]) with features such as image-to-image
and inpainting, which help provide the model with more information than would be

possible with just a simple text prompt.

Focusing on the problem of concept coherence, there is a class of notable methods
stemming from PerVL[5] such as Textual inversion[12] and Dreambooth[32]. Through
the process of inversion, these methods enable the reproduction of the same visual
concept across many runs, as long as this concept can be represented by input
images. Those methods often achieve high coherence between multiple
representations of the same object. A key limitation among these methods is the
need to have the concept already expressed in visual form, often in multiple images.
For instance, to generate the same face across multiple runs with Dreambooth, it is
necessary to have multiple pictures of that same face from different angles as input

data.

For some of these methods, there are also other limitations beyond the need for
image input, such as difficulty in combining multiple inverted visual concepts in the
same run and long training times. Some of these other limitations are explored in
more recent works[22, 13]. A concurrent work to this one that focuses on face

coherence and strongly overcomes these limitations is[41].

The other issue, cohesion, is also tackled by inversion techniques, albeit in a

cumbersome way. In the “a yellow hawk amidst white flowers" example, one could,

*https://labs.openai.com/
% https://dreamstudio.ai/

17

first, generate some pictures of a yellow hawk, which would then be used as input to
the inversion method[18]. The result of the inversion would, at a later time, be
combined with the white flowers. For some situations, the initial generated objects
might be different from one another (such as different yellow flowers), thus hindering

the inversion process.

There is a concurrent work which is similar to this one[40]. It presents the ConES
(Concept Embedding Search) technique, which was developed independently from
Elodin[24], upon which this dissertation rests.

Outside of computer science, acknowledgements are in order to Kevin Scharp and
his work in the foundations of logic. In hindsight, some of the inspirations present
here resemble the field of Conceptual Engineering. | did not, however, apply any
conceptual engineering technique in a direct manner, nor did | apply any book other
than Scharp's Replacing Truth[35]. These works in philosophy are deeply related to
the present discussion. That said, | vehemently disagree with replacing concepts
such as truth and justice; rather, | try to use truth in the usual sense often and try to

employ engineered concepts when a need arises.

3.2 PerVL, Tl and Dreambooth

Perhaps the closest related works to this are “Personalized Vision and Language”
(PerVL), Textual Inversion and Dreambooth. PerVL pioneered a new setup for
learning, in which a model's vocabulary V is expanded to V' =V U C where Cis a
new set of concepts C = {c1, c2, ..., ck}. Being a general training setup, PerVL cannot
be evaluated directly (in a similar manner to Name Learning). Therefore, PerVL was
evaluated through PALAVRA, which is a particular algorithm that follows the PerVL
setup. In that sense, PerVL is equivalent to Name Learning and PALAVRA is
equivalent to Elodin. Advantages of the PerVL setup include fine-grained
personalization and lightweight processing requirements, while its limitations make it

ill-suited for dealing with large datasets.

PALAVRA works by learning an inversion mapping from a set of points in the image
space of CLIP back to the embedding space. This inversion mapping is used to

18

iteratively adjust an embedding through backpropagation until it matches a given set
of images. One of the main innovations of Textual Inversion is to replace this
inversion mapping with the usual training cycle of an LDM model [30]. The new
method, then, produces personalized embeddings that can be readily applied to
well-known neural network architectures and that express fine visual detail. At
inference time, it is enough to replace one of the embeddings that would be
generated from the prompt with the new embedding made with textual inversion, as
detailed in section 7.2, “Using namecons" (the usage of namecons at inference time

Is similar to the usage of textual inversion embeddings)

To the basis established by PerVL and Textual Inversion, Dreambooth adds
numerous enhancements. Of those, two are most related to this work: rare-token
identifiers and class-specific preservation loss. Rare-token identifiers are words
which carry little meaning in daily usage, such as the 3-character apparently random
string “"sks" (which is not directly mentioned in the dreambooth paper). These tokens
are used as placeholders for the embedding, as in (“sks amidst white flowers"). This
IS so the program can replace whatever embedding would naturally result from “sks"
with the embedding created by dreambooth. Class-specific preservation loss relates
to model updates alongside with embedding creation. In PALAVRA and Textual
Inversion, the base neural network is kept frozen (only the embedding receives
updates from backpropagation). With the introduction of class-specific preservation
loss, the base neural network is also updated, thus resulting in even more precise,

clear and flexible final results

In the Elodin algorithm (which relates to Name Learning in the same way PALAVRA
relates to PerVL), no class-specific preservation loss is employed. There is also no
use of rare-token identifiers. The resulting embeddings, which are specifically called
"named concepts"” or "namecons" are compatible with any CLIP-based system (such
as any Stable Diffusion model derived from SD 1.5) without any further adaptation.
Namecons carry specific, precise and flexible visual concepts in a file that's just a few
kilobytes long. They can also be combined with one another freely, as well as with
word from natural language. In all that, name learning differs from previous methods.
Notably, the concepts which are stored in hamecons are not pre-existing, but are
created with A.l. For example, with Textual Inversion, one might create an embedding

19

containing the appearance of a real-world coffee mug. With name learning, one might
create a namecon containing the appearance of an Al-imagined coffee mug. The fact
that we name concepts which were previously unknown is the reason for the name

“named concept".

20

4 PROPOSAL

Considering the previous challenges, as well as both the limitations and
accomplishments of current techniques, | propose a process that is centered on the
idea of assigning a custom keyword to a particular concept, even if that concept
cannot be easily expressed in natural language. An analogy would be a person's
proper noun: even though someone's facial features cannot be easily put into words,
their name can be used instead (indeed, when prompted with famous people's
names, some models can produce their face as resulting image). Therefore, for

example, one may name a generated person <Lucy>

As another example, to produce a yellow hawk amidst white flowers, one might
generate a visual concept about a specific yellow hawk (calling it <my_hawk>, for
instance) and, then, use that word as part of a prompt (“<my_hawk> amidst white
flowers"). All the resulting images would feature that particular yellow hawk and,
since there is no direct mention to its color in the prompt, the flowers would be indeed
white. In other words, the prompt does not contain the word “yellow", so it is
impossible for the model to be confused. The yellow color, in this case, would be

inherent to the bird, much as it is inherent to a banana.

Figure 1 Summarized proposal

initial
concept p textto
ELODIN — » fame exttoimage ol image
concept synthesis model
target
concept

Source: the author (2023)

The whole process is roughly illustrated in Figure 1 showing only the inputs and
outputs. More details will be added in the next chapters. The role of the initial
concept} (e.g. bird", “woman", “armor", or "cloth") is to provide a starting point for
the concept naming process, represented in the figure by the Elodin algorithm (this
particular concept naming algorithm will be discussed in section 6, "Method"). The

target concept is the specialization of the initial concept one wishes to aim for. That

21

is, the target concept adds qualities to the initial concept. The initial concept can be
understood as a course descriptor to which more qualities are added. Considering
previous examples, the respective target concepts could be, for instance: “a yellow
hawk", “beautiful blonde woman", “armor made of fire and lava", or “a very smooth

celadon dress".

When the concept naming process converges, it generates a new concept that
cannot be expressed by natural language. For example, a specific virtual bird which
is yellow and looks like a hawk, or a specific virtual female face which is blonde and
beautiful, a specific virtual armor with fiery motifs, or a specific virtual texture that
resembles smooth cloths such as silk or linen and is always grayish-blue. Please
note that, while these examples describe approximations of each concept, they do
not describe the concept itself. Each reader to this paragraph will imagine different

virtual birds. All generated images, however, will present the exact same one.

After the concept is generated, it is stored in an embedding file (much like in Textual
Inversion). To complete the creation, it is necessary to associate the embedding file
to a string, so it can be referred to in the text prompt and combined with words from
natural language. This allows the user to type “<my_hawk> amidst white flowers" and
have the system recognize that <my_hawk> refers to that embedding file. | call the
final product a named concept or simply namecon. Revisiting our previous examples,
one could have created, respectively, the following namecons: <my_hawk>, <Lucy>,

<fiery_armor>, or <my_cloth>

Namecons can also be freely used together in the same prompt. (“<Lucy> wearing a
dress made of <cloth> while petting <my_hawk>").

Differently from previous techniques, the goal of concept haming is not to invert some
images into their corresponding inner representations (embeddings), but, rather, to
compute representations for new concepts. Therefore, namecons can be created
without images, relying only on natural language prompts. In other words, it is

possible to generate visual concepts from textual descriptions alone.

22

It is also possible to input a visual description to the Elodin method. For example, one
may input a picture of a real person as the target concept instead of the text
“beautiful blonde woman". In that case, the concept that is created when the
algorithm converges resembles some broad characteristics of the person portrayed
in the picture (such as the same ethnicity), while clearly generating a different face.
The reader may be questioning if there is any difference between inputting a picture
or the name of the same famous person (e.g. inputting the text "Abraham Lincoln" or
a picture of him). The answer is that the final generated faces look more natural if the
target concept is a picture of a face, instead of a name. All faces reported in this
document as being created with the new method are generated from prompts

containing namecons that were created using pictures as visual target concepts.

In sum, the proposal is Elodin, an algorithm to generate concepts with A.l. and store
them in embedding files. Elodin was implemented in the context of text-to-image
generation. This implementation can take text or pictures as input and output
embeddings, which, then, can be used to generate images through the usual process

introduced by PerVL[5] and popularized by Textual Inversion[12].

23

5 FUNDAMENTALS

To understand the details of the Elodin method for naming, it is helpful to first

consider the following:

5.1 Text-to-image pipelines

Recent large-scale text-to-image models, such as DALL-E 2 [28], Imagen [33], Latent
Diffusion [30] and StyleGAN-T [34] are not comprised of a single network that
translates natural text to image. Instead, in all of those different architectures, the
natural language prompt is first input to a language model, such as CLIP[25], BERT
[7], T5[27], etc. Those language models then generate an embedding that is used as
conditioning for the actual image generation process. Therefore, it is not precise to
refer to these mechanisms as “a text-to-image model”, but rather as “a text-to-image
pipeline"”, since they are not comprised of a single neural network (the terms ~"model"
and “neural network” are used equivalently in Deep Learning, so a pipeline is
comprised of more than one neural network). This distinction becomes very relevant
as namecons are an input to the second network, that is, the image generation part
of the pipeline, instead of being an input to the first network (the language model) at

the start of the pipeline.

Flgure 2 Generic text-to-image pipeline

seed

—»
decoder ———»| image
text text H H Bl
— — —_—
prompt encoder [[| H
L
list of text
embeddings

Source: the author (2023)
In general terms, as illustrated in Figure 2, such pipelines can be understood as

starting with a text encoder component, which translates raw text into a kind of inner
representation called embeddings. In usual implementations, each prompt generates

a fixed number of embeddings, no matter the prompt's length. Longer prompts are

24

truncated to this length and shorter prompts are automatically filled with “end of
sentence” symbols until they generate that fixed amount of embeddings. Therefore, it
is possible to simplify a text encoder as a black-box that takes in text and always

outputs a known amount of embeddings. The text encoder is a neural network.

Each embedding is usually implemented as a tensor. For this discussion, please
consider them as unidimensional sequences of floating point numbers. Therefore,
since a text encoder outputs a known number of embeddings and each embedding is
a sequence of numbers of known length, it is possible to view a text encoder as a
black-box that takes in text and outputs a 2-dimensional matrix of floating point
numbers. Each row, for this discussion, corresponds to an embedding. For those of a
technical background, the amount of rows is the context length and the amount of

columns is the embedding dimension.

If a user inputs a short text, such as just “bird", the first row of the matrix generated
by the text encoder will roughly correspond to that word. The other rows (since it is
always a fixed size) will roughly correspond to the emptiness between "bird" and the
maximum amount of words that the encoder accepts. In technical terms, row O is
heavily influenced by the [SOS] token, while the row 1 is heavily influenced by the
“bird" token; all other embeddings correspond to the [EOS] token

Please take note that, while some embeddings correspond to some input words, it is
not a clear correspondence. Other rows will also be influenced by the fact that there
is a “bird" in the sentence, even if they relate to a different part of the text. Text
encoders are built this way in order to deal with textual context (knowing whether to
use “king" or "ueen" in a sentence, for example). It is, thus, more productive for the
present discussion to consider the entire output matrix as relating to the entire input

text.

After the matrix is calculated by the text encoder, it is used as input to the image
decoder. The image decoder is also a neural network. It is important to point out that
no other information is communicated between those modules; in fact, many
successful implementations such as Imagen[33]Jand DeepFloyd IF [paper to be
released] start from a pre-made ("frozen") text encoder which was not trained on

25

images and, then, train an image decoder using only embeddings (generated from
the text encoder), instead of actual strings of text. Therefore, the image decoder is
quite independent from the text itself; rather, it depends on the text encoder and its
embeddings. Similarly, the text encoder is often fully independent of the image
decoder (the image decoder is often created at least a year later). Finetunings of the
same base image decoder can be swapped one for another in the pipeline without
any adaptation, as exemplified in the first picture of this document and practiced by
model sharing communities. Different finetunings of the same base image decoder
can create images in different styles, such as photorealistc or cartoonish, from the

same set of embeddings (that is, the same matrix of floating point numbers).

In summary, “text-to-image models" refers, in practice, not to one model, but rather to
multiple models in a pipeline. These neural networks are often not trained together;
rather, they are often trained by different teams of researchers years apart from each
other (although each team needs to have access to the work of the previous ones).
This endows model pipelines with much independence among their components, as
in the example of swapping many image decoders without having to change the text
encoder. For this dissertation, | focus on the data that is transmitted between these
components, which is usually represented on code as a 2-dimensional matrix of
floating point numbers. Each row of this matrix corresponds to an embedding. | will,

therefore, refer to the whole matrix as simply “embeddings”, in the plural.

In text-to-image pipelines, a raw string of text is transformed into embeddings by the
text encoder. The proposal presented in the previous chapter is about changing the
embeddings before they are sent to the image decoder. Suppose a user inputs “a
yellow hawk amidst white flowers" to the text encoder. Also, suppose the user has
access to a file containing an ai-generated embedding for <my_hawk>. Then, it is
possible to replace the embeddings corresponding to “a yellow hawk" with the
previously generated <my_hawk>. After that, the new embeddings can be sent into
the image decoder. The final result is an image of the user's hawk amidst white
flowers. Previous works[5, 12]} have employed similar mechanisms to apply
embeddings to the image generation process (more details in chapter 6, "Method");

the Elodin algorithm is a novel way of creating the embeddings themselves.

26

5.2 Embedding space: latent vocabulary and latent lexicon

Unconditional image generators [15, 26, 19, 10, 8] are the fundamental kind of
neural-network-based image synthesis software. This type takes in noise samples
(usually Gaussian) as input and map them to output images, mimicking the
probability distribution of the images in the training dataset. The entire process
(whether a single neural network or a pipeline) can be seen a black box which map
each point in a random distribution to a specific generated image in a deterministic
way. The stochastic nature (pseudo-randomness) comes from choosing the initial
point in the random distribution through a pseudo-random number generator. In the
user interface, this number is often referred to as “generation seed" or simply “seed".
The same seed always results in the same image (keeping other parameters the
same). For this kind of generation, a text encoder is not necessary. Unconditional

image generators do not need to be implemented as pipelines.

Conditional image generators [3, 10, 8, 31, 29] are the most common type. Stable
Diffusion is a widely known example. Those start from the basis of an unconditional
generator and adapt it to take other inputs (in the case of Stable Diffusion, mainly
text) into consideration. In technical terms, the image generation network is
conditioned with embeddings originating from other modalities, such as as one-hot
class labels, text strings, or pre-existing images. For text, first the string is put through
a pre-trained text encoder to generate embeddings. Then, the embeddings are used
as conditional input to train the image decoder from scratch. This description is very
simplified, see the original work on Latent Diffusion[30] for details. For conditional
image generation from natural language, it is more practical to implement a model
pipeline (there have been no successful single-network implementations that | know
of). Conditional image generation from other modalities, such as class labels, have

been successfully implemented [3] as single generator networks.

Therefore, image decoders for conditional image generation do not interact with text,
but, rather, with the embeddings that are generated by the text encoder. Each single
embedding can be construed as a mathematical vector (implemented as an array of
floating point numbers) in a vector space. This vector space is often called
“embedding space”. For the purposes of this explanation, it is relevant to introduce a

27

distinction between two implicit meanings of the expression “embedding space”.

These are: “latent vocabulary" and “latent lexicon".

Latent vocabulary refers to the embeddings that the text encoder can generate. In
the most common implementation of CLIP, for instance, the text encoder always
outputs 77 embeddings; there is also a limit for the length of the input text. In that
example, the latent vocabulary would be all sets of 77 embeddings that can be output

from a given CLIP text encoder. This is the latent vocabulary of a text encoder.

Latent lexicon refers to the embeddings that can never be output by a given encoder
but that can be used as input to some decoder trained on the latent vocabulary. For
example, in most Stable Diffusion versions, the text encoder is a pre-trained encoder
from CLIP. Many different image decoders can be trained on the embeddings of that
pre-trained encoder (such as different Stable Diffusion checkpoints, finetunings,
versions, and other non-Stable DlIffusion decoders), either from the same image
dataset or from different image datasets. It has been shown in PerVL[5] that it is
possible to use an embedding that was not created by the text encoder as input to
one of those image decoders in a well-behaved way. The collection of embeddings
that can be used as input to decoders which were trained on the vocabulary of a
given encoder (and not on additional embeddings of any other neural network) is the

latent lexicon of that specific encoder.

Given that embeddings can be construed as mathematical vectors in a vector space,
it is also natural to think of the latent lexicon as the interpretable portion of that
space, which contains many more points than the points that the encoder is able to

compute.

In summary, the latent lexicon of an encoder is the collection of all “words" in the
language to which the encoder translates its input. In the context of text-to-image
generation, the text encoder translates from natural language (usually English) into
the “language” of embeddings. This text is, then, passed on to the image decoder,
which translates the embeddings into the “language" of images. In each step
(English, embeddings, image), the meaning is kept the same: “a yellow hawk amidst
white flowers", although some details may be lost in translation.

28

The latent vocabulary, then, is the “words” in the encoder's language that the
encoder can effectively generate. Similarly, | cannot speak every word of the English

language; the ones | know form my English vocabulary.

The Elodin[24] algorithm can be thought of as a search within the latent lexicon.
Namecons are embeddings found through that search process and labeled
<my_hawk>) for future use. “Naming" is the process of searching and saving a
namecon. Given that naming does not involve training nor inference, it can be
understood as a third action from a nascent field which does not create nor update
neural networks. That field would be a different kind of Representation Learning (the
only successful kind of representation learning, currently, is Deep Learning). |

propose this new field be called Name Learning.

29

6 METHOD

In this chapter, | dive into the technical details of the proposal briefly discussed

in chapter 4, "Proposal”.

Figure 3. The Elodin method

named concept

<my_hawk>
after seed
n steps
o text embedding decoder ——»| image
inicial concept text -
text prompt: “bird encoder
updates cycles for
n steps
optimization zg‘)i::r:: similarity - target concept
(backprop) loss function function ¢ text prompt:

“a yellow hawk”

Source: the author (2023)

6.1 Creating namecons

To generate a namecon, begin by inputting to an encoder a prompt corresponding to
the initial concept (as defined in chapter 4, "Proposal”), such as "bird", "armor"”, or
"woman". Figure 3 details the process, taking “bird' as the initial concept. The
encoder generates embeddings, which are, then, fed to the decoder to produce an
image. After image generation, compute the similarity between the output image and
the “target concept” (as defined in chapter 4, "Proposal), such as “a yellow hawk".
Then, use the similarity score as a loss function to optimize the embeddings through
backpropagation. Repeat the process from embeddings to image, then to similarity
score, then to backpropagation (which updates the embeddings) until the image
reflects the target concept instead of the initial concept. Since, at each iteration, the
text encoder is not used (it is only used once for the first iteration), the resulting
image will have been produced by the updated embeddings. Therefore, the updated
embeddings will carry the information necessary to make an image resembling the

30

target concept and, thus, will be ready to be used to generate other images reflecting
that concept. In other words, the final embeddings will no longer refer to "bird";
instead, they will refer to "a yellow hawk". Save these embeddings in a file in the
usual manner and associate with them a custom name, such as "my_hawk". The pair
made of the embeddings file and the custom name is the namecon, referred to as

<my_hawk>. This is the description of the Elodin algorithm.

The explanation above is approximated. The main details that need to be added are,
first, that not all embeddings are updated. Rather, from the initial collection of
embeddings produced by the text encoder, only some are selected to be updated.
The second main detail is that the output image is produced from a different random
seed each time to avoid overfitting. These seeds can all be produced by a regular
pseudo-random generator, so mentions to "the seed" relate to the initial seed to that
generator. Third, it was mentioned in chapter 4, "Proposal” that the target concept
could be an image instead of a textual description. This requires only the adaptation
of the similarity function. Finally, one may ask why is the namecon different from the
embeddings that would result from simply inputting the target concept to the encoder.
These topics will be explored in the following subsections.

6.1.1 Which embeddings are updated

Taking as example the initial concept "bird", the actual sentence that was input to the
text encoder in the experiments was similar to "a photo of a bird". The added words
help provide context to generate the image at each iteration. Please recall (as
discussed in chapter 5, "Fundamentals") that the output of the text encoder always
contains the same amount of embeddings (at least, for current implementations). Of
all embeddings, only the ones that correspond to the initial concept are updated at

each iteration.
6.1.2 Seed
The image decoder takes as input a random seed (since it's based on an

unconditional image generator, as discussed in chapter 5, "Fundamentals"). For each
iteration of the Elodin loop, the random seed is different. This is to prevent overfitting

31

to a specific image layout (since the seed controls aspects such as layout, small
details, etc.). It is possible to provide only one seed at the start of the whole process
to a random number generator that will produce subsequent seeds, or simply to
increment the initial seed by 1 at each iteration. Another way to avoid overfitting is to
produce a batch of images per iteration (each from its own seed) and take the

average of each similarity score.

6.1.3 Images as target concepts and other loss functions

The similarity function employed in the experiments was the standard cosine
similarity based, again, on a CLIP model. To employ images as target concepts, one
simply inputs the image to the CLIP cosine similarity function. For clarity, by
"standard cosine similarity" | mean taking the generated image at each iteration and
using it as input to a CLIP network. Then, taking the target concept (either a text
string or another image) and also using it as input to the same CLIP network. This
will result in two standard CLIP embeddings, which are (as discussed in chapter 5,
"Fundamentals") vectors. By taking the cosine between these vectors, one arrives at
a single scalar that is the similarity score. This similarity score is used as loss

function to the backpropagation.

All images in this report that feature faces made with Elodin were created from the
same <Lucy> namecon. That namecon was created using an image of a person as
the target concept, not a text string. This results in a more natural-looking final result.
The image used as a target concept does not need to depict an actual human; a face

generated with another network such as Stylegan 2[20] suffices.

Other similarity functions could, in principle, be used. For example, if one can
implement a similarity function between shades of color, it would be straightforward
to generate namecons for specific color shades or specific color palettes.

6.1.4 Why namecons are different from regular embeddings

By "regular embeddings” | mean the embeddings that result from simply inputting the
target concept into the encoder. For example, just typing in "a yellow hawk amidst

32

white flowers" to the encoder generates a set of embeddings. Using these
embeddings results in images which are very different from the images resulting from
using <my_hawk> amidst white flowers" (the images resulting from a prompting
containing this namecon depict very yellow hawks and contain much fewer yellow
flowers, if any). This may come as a surprise to the reader, since <my_hawk> was
created to iteratively approximate the concept of a yellow hawk. Though | do not
have a final answer, this is my attempt at an explanation: due to the modality gap[23],
embeddings generated in this regular way cannot accurately represent visual
concepts even in a shared embedding space. | suspect that, though Elodin involves
optimization starting from the textual modality alone, each iteration guides the initial
concept to the visual region of the cross-modal space due to the fact that one of the

inputs to the similarity function (the generated image) is always a visual input.

6.2 Using namecons

Figure 4. Using the namecon

named concept
<my_hawk>
text embedding substitutes the
embedding of

the guiding
concept
seed
—
prompt with guiding concept

and named concept custom prompt with guiding decoder ———{ image
“a photo of <bird | my_hawk> parser concept text

amidst white flowers” * “a photo of bird amidst > encoder [L]
white flowers” L]

—

list of text
embeddings

Source: the author (2023)

To use the result of the naming process, i.e. the namecon, | suggest a slightly
different inference scheme than the usual one from inversion methods[12]. Instead of
mapping the embedding to a developer-defined rare word (or, technically, “rare

token"), allow the user to specify a guiding concept for each prompt.

With a guiding concept, each prompt follows a syntax as outlined below:

“<a bird | my_hawk> amidst white flowers”

33

In this example, 'a bird" would be the guiding concept and “my_hawk" would refer to
the namecon. The guiding concept in this initial example corresponds to the initial
concept that was used to create the namecon; later examples in this section will

develop on this basis.

To use a guiding concept, it is necessary to modify the inference script (recall that the
namecon itself can be used without modification through any feature that loads
embeddings). The modified script includes a parsing function that ignores the
namecon at first, outputting, for example, “a bird amidst white flowers" as a text
string. This is the text that is sent to the text encoder, which computes the sentence's
embeddings as normal. That parsing function, however, also returns the position of
the guiding concept in the prompt. In this example, it would return that, in the
sentence “a bird amidst white flowers"”, the guiding concept "a bird" occupies the
beginning of the sentence. The substring "a" would correspond to the first embedding
and "bird" would correspond to the second embedding, as discussed in chapter 5,
"Fundamentals”. In technical terms, the parsing function would output the text string
“a bird amidst white flowers" and the integers 1 and 2, which are the positions of "a"
and "bird" in the phrase (since token 0 is always beginning-of-phrase). The positions

are stored in a variable for later use.

After the text encoder outputs the usual embeddings, the inference script substitutes
the embedding(s) corresponding to the guiding concept (“a bird") for the
embedding(s) corresponding to the namecon. For that, it is necessary to know the
position of the guiding concept in the original prompt. This is because the
embeddings that come out of the text encoder are not easily interpretable, so it is
more direct to substitute based on the position. Consider “<a bird | my_hawk> amidst
white flowers" and another prompt such as “white flowers surrounding < a bird |
my_hawk”. In the first case, the stored embedding from the namecon would replace
rows 1 and 2 of the matrix that comes out of the text encoder. In the latter case, it

would replace positions 4 and 5.

We employ this new inference method because the rare word employed by current
inversion[12], even if apparently meaningless (such as a standard empty token), can

34

distort the inference process (since every word influences the embedding of all
others). To illustrate this point, consider the results presented in Table 5, which use
the namecon of a lava armor, but the guiding concept of a bird. All of them were

generated in the same batch.

Table 5 <a bird | lava armor >on a frozen mountain peak

Source: the author (2023)

For some random seeds, the lava armor takes a bird-like shape. Even though the
embeddings for the guiding concept (“a bird") have been replaced by the namecon,
the context of the phrase (i.e. the other embeddings) are influenced by the presence
of the guiding concept before the substitution takes place. In other words, even
though the embeddings that are input to the image decoder correspond to "lava
armor on a frozen mountain peak”, a bird still appears in the images. This is because
the embeddings for "on a frozen mountain peak” were originally created from the full
phrase "a bird on a frozen mountain peak" before the embedding for "a bird" was
replaced with the embedding for "lava armor”. Therefore, the embeddings for "on a
frozen mountain peak" still carry contextual information. To avoid problems in
previous systems (for example, due to the use of the apparently meaningless word
"sks", which resulted in images containing unintentional semi-automatic rifles), one

may employ guiding concepts.

The aforementioned rare word method is equivalent to specifying a fixed guiding
concept that one believes will not influence the results much. In contrast, our method
enhances the prompter's control, allowing for an explicit choice of the guiding
concept in each prompt. A mismatch between namecon and guiding concept can
also be introduced intentionally, for example, by artists who are interested in

producing images of birds wearing lava armor.

35

7 EXPERIMENTS

In the following text, "we" refers to the authors of the first Elodin pre-print[24].
The text in this chapter (outside this paragraph) has been reproduced exactly from
that publication, except for chapter numbers and small corrections.

7.1 Experimental Apparatus

To assess how well Elodin solves the aforementioned concept coherence and
concept cohesion issues, we perform qualitative side-by-side comparisons between
images from an unaltered text-to-image pipeline (!control”) and images from a
pipeline modified with our method (!proposal”). We keep all configurations the same
(the random seed, negative prompt, model weights, checkpoint, etc.), only changing
the prompt. In the !proposal” setting, we replace each occurrence of the keywords
associated with the target prompt by the corresponding namecon. For instance, we
compare an image generated using the prompt !a yellow hawk amidst white flowers"
with another generated using “<a bird | my_hawk> amidst white flowers". The
prompts were chosen to demonstrate a wide range of visual concepts, such as

textures, people, animals and objects.

For the qualitative evaluation (text setting), even though we do not enlist a large
number of crowd workers, we make the generated images fully available in the
supplementary material (no cherry-picking).

We provide a batch of 16 images with corresponding random number generator

seeds per experiment.

For the quantitative evaluation (face id setting), we also perform analysis based on a
face similarity score. We generate 100 images for both control and proposal. We then
use the ArcFace similarity function[6] as a proxy to measure coherence between all
pairs inside each group. The model used in this analysis is different from the one
used to create the namecon in order to keep a fair comparison. If our hypothesis (that
the use of namecons increases coherence in the generation of images of faces) is
correct, then the average similarity among the proposal group should be higher than
among the control group.

36

The control prompt we use for the gquantitative experiments is “close-up shot of the
face of a middle-aged blonde woman with green eyes and thin chin at the park. She
IS next to a big tree". The proposal prompt is “close-up shot of the face of <a woman |
Lucy> at the park. She is next to a big tree”. For both of those, we employ the

negative prompt “bad artist, low quality”.

For naming, we used SD 1.4 for the text setting (that is, texts as target concepts) and
a finetuned version of SD 1.4 for the face id setting (that is, images as target
concepts to generate more natural namecons). Learning rate was set to 4e-2 for text
setting and 2e-2 for face id setting, batch size was 1. For inference, we used the
Dreamshaper[9] model in the Stylized Lucy experiment, all others employed Stable
Diffusion 1.4. Inference was performed through a popular tool, AUTOMATIC1111's
WebUI[2]. The diffusion sampler used for naming was DDIM[37]. For inference, we
used Ancestral Euler[11]. The similarity score in the text setting is based on CLIP[25],

while the similarity score in the face id setting is based on facenet[36].

7.2 Results and Discussion

7.2.1 Qualitative

37

Table 6 ‘Bird’ experiment. Top row displays samples generated without the namecon.

Source: the author (2023)

Table 7 ‘Armor’ experiment. Top row displays samples generated without the namecon.

Source: the author (2023)

Some of the most clear examples from the supplementary are summarized in the
following image comparisons. For each experiment, the top row shows the control
configuration (no modification), while the bottom row shows the proposal
configuration (ours), as discussed in this chapter. For each column, all parameters

other than the prompt are the same, including the seed.

38

The Bird and Armor experiments highlight the increase of cohesion with Elodin. In
Table 6, notice how the bird keeps its yellow color in the bottom row, white the

flowers are much less yellow. In Table 7, notice how the mountain does not catch fire.

The Lucy and Cloth experiments highlight the increase in coherence. Notice how the
person's facial appearance is kept the same in the bottom row (even through different
hair colors). In Table 8, notice how the texture of the garment's fabric has a more

uniform look from one image to the next.

Table 8 ‘Lucy’ experiment. Top row displays samples generated without the namecon.

Source: the author (2023)

39

Table 9 ‘Cloth’ experiment. Top row displays samples generated without the namecon.

Source: the author (2023)

It is possible to use the same namecon with different decoders as long as they share
the same encoder. For example, one may generate images from the same namecon
in different finetunings of Stable Diffusion version 1.x (such as SD 1.4 and SD 1.5),
as demonstrated in 10. SD Version 2, however, uses OpenCLIP[17] instead of CLIP
as an encoder, so we do not expect namecons to communicate between those

versions.

Table 10 ‘Stylized Lucy’ experiment. Top row displays samples generated without the namecon.

Source: the author (2023)

40

Even though it is possible to generate faces in the text setting, the face id setting
produces more natural pictures. For instance, in the text setting, the target concept “a
blonde" may converge to a hamecon that consistently results in images of blonde
hair (that is, a hair close-up) instead of images of faces. We hypothesize this may
stem from CLIP's low ability to distinguish faces (when compared to a specialized
face recognition network such as Facenet). Recall that, as discussed previously, the
generated face does not contain the identity of the face depicted in the image used

as target concept.

7.2.1 Quantitative

As presented in Table 12, images created with namecons score higher on face
similarity than images generated from a detailed regular prompt. For comparison, a
value of cosine similarity above 0.45 (equivalent to an Euclidean distance below 1.1)

would indicate pictures of the same person[36].

Table 11 Parameters for each experiment. We apply the following commomn negative prompt: “bad
artist, low quality” in every experiment.

Experiment | Initial Target Guiding Control Proposal Similarity
Name Concept Concept Concept Prompt Prompt
Bird “bird” “a yellow “a bird” “a yellow “<a bird | text
hawk” hawk my_hawk > | (CLIP)
amidst amidst
white white
flowers” flowers”
Armor “fiery “armor “armor” “menacing | “menacing | text
armor” made warriors in | warriors in (CLIP)
of re, armor <armor |
lava, made of my_armor
and fire, lava, > atop
very and very a frozen
dark dark iron mountain
iron” atop a peak”
frozen
mountain
peak”
Cloth “cloth” “avery “cloth” “a photo of | “a photo of | text
smooth a a (CLIP)

41

celadon beautiful beautiful

dress” woman woman
wearing a wearing a
dress. dress.
The The
beautiful beautiful
woman is woman is
wearing wearing
garment garment
made of made of
celadon celadon
cloth” <cloth |

my_cloth >"

Lucy the name of | a face “awoman” | “face of a “face of <a | face
a notorious | picture blonde woman (Facenet)
actress woman at | lucy > at

the the beach”
beach”

Stylized same as same as same as “a blonde “<awoman | face

Lucy the “Lucy” the “Lucy” the “Lucy” woman | lucy (Facenet)
experiment | experiment | experiment | ata >at a

business business
meeting” meeting”

Source: the author (2023)

42

Table 12 Similarity mean and standard deviation (std) within groups. Higher is better

Mean Std
Control 0.43 0.14
Proposal 0.71 0.15

Source: the author (2023)

8 CONCLUSION

Motivated by the challenge of fine-grained control in current text-to-image
pipelines, the first contribution is to propose the generation of " \textit{named
concepts}" (\textitfhamecons}) in embedding space from minimal input data (such as
a text prompt or a single picture of a face). \textit{Name Learning}, as | propose to
call it, is another kind of Representation Learning (the first kind being Deep
Learning). The second contribution is, then, theoretical and relates to the discussions

in chapter 5, "Fundamentals".

The related experiments demonstrate the immediate consequences of the first
contribution. As for the theoretical discussion, it cannot be directly tested, yet | hope

that it will spark more development in the community.

Regarding future work, elodin can be generalized to other contexts, such as the
previously mentioned color embeddings, or machine-generated artistic styles, or

other modalities that do not involve text nor images.

Given that sections on ethics are common in papers nowadays, | ask two questions:
Would you like to be treated as a machine by someone who holds the control of your

rewards? How has everyone around you felt like in the past few years?

43

REFERENCES

[1] Pranav Aggarwal, Hareesh Ravi, Naveen Marri, Sachin Kelkar, F. Chen, Vinh Ngoc Khuc, Midhun
Harikumar, Ritiz Tambi, Sudharshan Reddy Kakumanu, Purvak Lapsiya, Alvin Ghouas, Sarah Saber,
Malavika Ramprasad, Baldo Faieta, and Ajinkya Kale. Controlled and conditional text to image
generation with diffusion prior. ArXiv, abs/2302.11710, 2023.

[2] AUTOMATIC1111. Stable diffusion web ui, 2022.
https://github.com/ AUTOMATIC1111/stable-diffusion-webui [Accessed: March 2023].

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high delity natural

image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[4] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
editing instructions. ArXiv, abs/2211.09800, 2022.

[5] Niv Cohen, Rinon Gal, Eli A. Meirom, Gal Chechik, and Yuval Atzmon. "this is my unicorn, uffy":
Personalizing frozen vision-language representations. In European Conference on Computer Vision,
2022.

[6] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 4690-4699, 2019.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances

in neural information processing systems, 34:8780-8794, 2021.

[9] DreamShaper. Dreamshaper, 2023. https://civitai.com/models/4384/ dreamshaper [Accessed:
March 2023].

[10] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for highresolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 12873-12883, 2021.

[11] Hugging Face. Euler ancestral scheduler, 2022. https://huggingface.co/

docs/diffusers/api/schedulers/euler_ancestral [Accessed: March 2023].

44

[12] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion.
arXiv preprint arXiv:2208.01618, 2022.

[13] Rinon Gal, Moab Arar, Yuval Atzmon, Amit H. Bermano, Gal Chechik, and Daniel
Cohen-Or. Designing an encoder for fast personalization of text-to-image models. ArXiv,
abs/2302.12228, 2023.

[14] Tao Ge, Jing Hu, Li Dong, Shaoguang Mao, Yangiu Xia, Xun Wang, Siyi Chen, Furu Wei, and
Si-Qing Chen. Extensible prompts for language models. ArXiv, abs/2212.00616, 2022.

[15] lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information

processing systems, 27, 2014.

[16] Lianghua Huang, Di Chen, Yu Liu, Yujun Shen, Deli Zhao, and Jingren Zhou. Composer: Creative
and controllable image synthesis with composable conditions. ArXiv, abs/2302.09778, 2023.

[17] Gabriel llharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi,

and Ludwig Schmidt. Openclip, July 2021.

[18] Hyeonho Jeong, Gihyun Kwon, and Jong-Chul Ye. Zero-shot generation of coherent storybook
from plain text story using diffusion models. ArXiv, abs/2302.03900, 2023.

[19] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4401-4410, 2019.

[20] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 8110-8119, 2020.

[21] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Hui-Tang Chang, Tali Dekel, Inbar Mosseri,
and Michal Irani. Imagic: Text-based real image editing with diffusion models. ArXiv, abs/2210.09276,
2022.

[22] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept

customization of text-to-image diffusion. arXiv, 2022.

45

[23] Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y. Zou. Mind the gap:
Understanding the modality gap in multi-modal contrastive representation learning. ArXiv,
abs/2203.02053, 2022.

[24] Rodrigo Mello, Filipe Calegario, and Geber Ramalho. Elodin: Naming concepts in embedding
spaces. arXiv preprint arXiv:2303.04001, 2023.

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models
from natural language supervision. In International conference on machine learning, pages
8748-8763. PMLR, 2021.

[26] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[27] Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, and Douglas Eck. Online and
linear-time attention by enforcing monotonic alignments. In International Conference on Machine
Learning, 2017.

[28] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. ArXiv, abs/2204.06125, 2022.

[29] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

[30] Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. Highresolution
image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10674-10685, 2021.

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjérn Ommer.

High-resolution image synthesis with latent diffusion models, 2021.

[32] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kr Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. ArXiv,
abs/2208.12242, 2022.

[33] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed

Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, Seyedeh Sara Mahdavi, Raphael Gontijo Lopes,

46

Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image

diffusion models with deep language understanding. ArXiv, abs/2205.11487, 2022.

[34] Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. Stylegant: Unlocking the
power of gans for fast large-scale text-to-image synthesis. ArXiv, abs/2301.09515, 2023.

[35] Kevin Scharp. Replacing truth. Inquiry, 50(6):606-621, 2007.

[36] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unied embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 815-823, 2015.

[37] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. ArXiv,
abs/2010.02502, 2020.

[38] Andrey Voynov, Kr Aberman, and Daniel Cohen-Or. Sketch-guided text-to-image diffusion models.
ArXiv, abs/2211.13752, 2022.

[39] Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and
Fang Wen. Paint by example: Exemplar-based image editing with diffusion models. ArXiv,
abs/2211.13227, 2022.

[40] Huahui Yi, Ziyuan Qin, Wei Xu, Miaotian Guo, Kun Wang, Shaoting Zhang, Kang Li, and Qicheng
Lao. Cones: Concept embedding search for parameter efcient tuning large vision language models.
arXiv preprint arXiv:2305.18993, 2023.

[41] Ge Yuan, Xiaodong Cun, Yong Zhang, Maomao Li, Chenyang Qi, Xintao Wang, Ying Shan, and
Huicheng Zheng. Inserting anybody in diffusion models via celeb basis. arXiv preprint
arXiv:2306.00926, 2023.

[42] Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. ArXiv, abs/2302.05543, 2023.

