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RESUMO 

 

Neste trabalho emprega-se a técnica experimental espectroscopia de 

ressonância ferromagnética para investigar mecanismos de anisotropia magnética em 

filmes finos de junção ferromagneto/antiferromagneto, bem como a influência de 

intercamadas de antimônio nestes sistemas. O antimônio é um semimetal 

diamagnético conhecido por possuir estados topológicos de superfície e propriedades 

quânticas curiosas. Espectroscopia de amostra vibratória também foi utilizada para 

confirmar, através das curvas de magnetização, a existência ou não de exchange bias. 

Na primeira seção experimental foram avaliados os efeitos do tratamento térmico 

conhecido como recozimento com campo magnético na estrutura cristalina e nas 

anisotropias magnéticas de bicamadas YIG/IrMn, a fim de estabelecer procedimentos 

que resultem em propriedades desejadas, com ênfase na indução de anisotropia 

unidirecional. Verificou-se que as anisotropias cúbica e uniaxial tornaram-se mais 

nítidas após o recozimento, indicando melhoria da estrutura cristalina. Além disso, um 

aumento expressivo de sete vezes no campo efetivo de exchange bias foi alcançado 

em uma das amostras. Já na segunda seção, foram encontradas evidências de 

exchange bias em tricamadas FM/Sb/AFM para dois FM distintos (YIG e Py) e várias 

espessuras de antimônio na ordem de algumas dezenas de nanômetros. Aqui 

apresento a hipótese de um acoplamento entre os spins travados por spin-momentum 

locking no antimônio e os spins do FM. Spin-momentum locking corresponde ao 

travamento das orientações dos spins perpendicularmente ao momento linear dos 

elétrons por meio do espalhamento Rashba, assim gerando polarização de spin na 

interface. Assumindo que o antimônio esteja mantendo seus estados de superfície, a 

corrente bombeada por spin pumping no antimônio estaria topologicamente travada, 

o que poderia resultar em um acoplamento com os spins do FM por meio da interação 

de exchange. Se confirmada, a indução de exchange bias mediada por spin-

momentum locking possibilitaria aplicações interessantes como o controle de 

exchange bias através da corrente de superfície no antimônio. 

 

Palavras-chave: spintrônica; exchange bias; ressonância ferromagnética; antimônio; 

recozimento com campo magnético; spin-momentum locking. 

 



 
 

 
 

ABSTRACT 

 

In this work the ferromagnetic resonance spectroscopy experimental 

technique is employed to investigate the mechanisms of magnetic anisotropy in 

ferromagnet/antiferromagnet thin films, as well as the influence of antimony interlayers 

in such systems. Antimony is a diamagnetic semimetal known to possess topological 

surface states and unique quantum properties. Vibrating sample spectroscopy was 

also used to confirm the existence of exchange bias by looking at their magnetization 

curves. Regarding the first experimental section, the effect of magnetic annealing on 

the crystal lattice and magnetic anisotropy of YIG/IrMn bilayers was evaluated in order 

to establish procedures that give certain desired properties, with special attention to 

the induction of unidirectional anisotropy. It was found that cubic and uniaxial 

anisotropies became neater after annealing, indicating improvement of the 

crystallographic structure. Furthermore, an expressive sevenfold increase of the 

exchange bias effective field could be accomplished for one of the samples. In the 

second part, evidence of exchange bias in FM/Sb/AFM trilayers was gathered in two 

different FM (YIG and Py), for several antimony thicknesses in the order of a few 

dozens of nanometers. I hereby present the hypothesis that a coupling between the 

spins from antimony’s spin-momentum locked electrons and the FM electrons might 

be occurring. Spin-momentum locking stands for spins’ orientations being locked 

perpendicular to the electrons’ linear momentum due to Rashba spin-orbit splitting, 

thereby generating spin polarization at the interface. Assuming antimony to be hosting 

surface states, the spin pumped current from Sb would be topologically locked, which 

could result in coupling with the FM spins by means of the exchange interaction. If 

confirmed, the induction of exchange bias mediated by spin-momentum locking could 

open new avenues in spintronics, such as the control of exchange bias through the 

surface currents in antimony. 

 

 

Keywords: spintronics; exchange bias; ferromagnetic resonance; antimony; magnetic 

annealing; spin-momentum locking. 
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1 INTRODUCTION 

 

Magnetism is one of the most active research fields in contemporary 

condensed matter physics. Beyond its fundamental role in the electromagnetic theory 

that has rendered a variety of technologies and insights -- such as electromagnetic 

wave communications, electric generators/motors, the theory of relativity, etc. -- 

magnetism is ingrained all the way down to the atomic configurations and the structure 

of matter, motivating basic research on its quantum mechanical origins, dynamic 

excitations, and thermodynamic properties; as well as drawing attention for its 

promising applications in material technology and electronics.  

The most widespread application of magnetism in modern electronics arguably 

is the hard disk drive (HDD), that exploits the accumulative nature of some magnetic 

materials’ hysteresis loops to store non-volatile information. With the discovery of the 

giant magnetoresistance (GMR) effect, efficient control of electric currents through the 

relative orientation of magnetization of multilayers was realized, causing the magnetic 

storage capacity of HDD to reach the gigabyte range. This breakthrough propelled 

research aiming next-generation electronics that could employ, in addition to the 

electron’s charge, the magnetism of the electronic spin, culminating in the field called 

spintronics. Contemporary spintronics is largely about the manipulation of spin currents 

(i.e.: flow of spin polarization) to transport signals, exert torque on magnetic materials 

or to interact with charge and spin waves, having unveiled many microscopic 

phenomena (e.g.: the spin Hall, Rashba-Edelstein, and spin Seebeck effects, etc.) and 

materials (e.g.: topological insulators); as well as bringing promising technological 

prospects such as magnetic random-access memory (MRAM), terahertz oscillators, 

quantum computing and a myriad of spintronic sensors.  

 

2 THEORETICAL BACKGROUND 

 

2.1 Overview  

 

In general, all substances display at least one of five basic kinds of magnetism, 

namely: diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism and 

antiferromagnetism. Diamagnetism is due entirely to the orbital motion of electrons 
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associated with Larmor precession. For instance, in the case of metals, the atomic 

cores have completely filled subshells resulting in a small, negative susceptibility that 

expells magnetic fields. Paramagnetism refers to a system in which each atom carries 

a magnetic moment, but those point in all directions, resulting in no net magnetization. 

The complete disorder of atomic moments comes about because there is no magnetic 

interaction between neighboring atoms on one hand, and because the thermal 

agitation causes the moments to be aligned randomly on the other.  

The remaining three kinds (ferro, ferri and antiferromagnetism) differ from the 

previous two on that they exhibit long-range order due to the exchange interaction 

(Section 2.6), a quantum electrostatic effect that bounds neighboring spins very much 

as if they were connected by springs. In general, a solid will be ferromagnetic if its 

atoms carry a magnetic moment, and if the exchange interaction causes these 

moments to align parallel in the long range; on the other hand the material will be 

antiferromagnetic if the moments align antiparallel. At last, ferrimagnetism originates 

from the competition between the magnetic moment of different groups of ions, 

resulting in non-zero net magnetization -- and this is why they are only found in 

compounds or alloys. Many ferrimagnets offer atractive properties for magnetic 

applications at high frequencies, such as the yittrium iron garnet (YIG) that has been 

for many years the prototype material for the study of the dynamics of spin excitations. 

This classification is summarized in terms of the magnetic susceptibilities in Table 1, 

and illustrated in Figure 1. 

 

Table 1 - Summary of susceptibilities for different kinds of magnetism. 

 

 Diamagnetism Paramagnetism 
Ferromagnetism and 

ferrimagnetism 

Susceptibility < 0 ≳ 0 ≫ 0 
Source: Chih-Wen (1977). 
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Atoms derive their magnetic moments essentially from electrons, which are 

about three orders of magnitude larger than those from the nuclei. There are two 

sources from which an electron can obtain its magnetic moment: its orbital motion 

around the nucleus (Section 2.4.4), and its spin. The latter is an intrinsic form of angular 

momentum similar to (but emphatically not equal to) a rotation around its own axis. 

The orbital magnetic moment and can be rewritten to account the quantum 

mechanical expression for angular momentum (𝒑𝑙) as in, 

 

𝝁𝑙 = −(
𝑒

2𝑚0
)𝒑𝒍 = −𝜇𝐵𝑳 

 

𝒑𝑙 = ℏ𝑳  𝑳 = [𝑙(𝑙 + 1)]
1
2⁄ 𝒍̂ 

(1) 

Where 𝑙 is the orbital momentum quantum number, 𝒍̂ is the versor normal to the orbit, 

and 𝜇𝐵 = 𝑒ℏ/2𝑚0 = 9.2732 × 10
−24 A ∙ m2 is the Bohr magneton, the conventional unit 

of magnetic moment. 

Extrapolating from their orbital moment counterparts, the spin magnetic 

moment and angular momentum may be defined as, 

 

𝝁𝑠 = −𝑔𝜇𝐵𝑺 
 

𝒑𝒔 = ℏ𝑺  𝑺 = [𝑠(𝑠 + 1)]
1
2⁄ 𝝈̂ 

(2) 

Where 𝑠 is the spin momentum quantum number, 𝝈̂ is the versor in the direction of spin 

angular momentum, and 𝑔  is the Landé factor (≈ 2  for the electron’s spin). The 

negative sign comes from that the electron has negative charge. Despite their 

similarities, unlike the orbital mortion, the electron’s spin is strictly a quantum-

mechanical effect. 

(a)            (b)    (c)          (d) 

Figure 1 – Spin arrangement in a crystal or domain illustrating (a) paramagnetism, (b) 
ferromagnetism, (c) antiferromagnetism and (d) ferrimagnetism. 

Source: Chih-Wen (1977).  
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Due to the so-called spin-orbit interaction (Section 2.4.5) the orbital and spin 

magnetic moments combine into a resultant magnetic moment, also known as ls 

coupling. The result is that both the spin and orbital axes will precess as one with the 

same angular velocity, and in the same direction about a common axis (Figure 2). The 

resultant angular momentum 𝒑𝑗 is, thereby, 

 

𝝁𝑗 = −𝑔𝜇𝐵𝑱 

 

𝒑𝑗 = ℏ𝑱  𝑱 = [𝑗(𝑗 + 1)]
1
2⁄ 𝒋̂ 

(3) 

Where 𝑗 = 𝑙 + 𝑠 is the total angular momentum quantum number. 

 

 

 

2.2 Atomic configuration and magnetism 

 

In the periodic table, groups of elements can be asigned to certain kinds of 

magnetism depending on their atomic configurations. For instance, inert gases and 

noble metals (Cu, Ag and Au) are diamagnetic; alkali metals (Li, Na, K and Rb) and all 

transition metals except Fe, Co and Ni are paramagnetic. Besides the conventional trio 

Fe, Co and Ni, six elements in the lanthanide series (Gd, Tb, Dy, Ho, Er and Tm) 

Figure 2 - Vector model showing the spin-orbital coupling for a bound electron. 

Source: Brailsford (1966). 
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become ferromagnetic at ~20 °C  and subzero temperatures. The list of magnetic 

materials, nevertheless, is infinitely long because an inlimited number of magnetic solid 

solutions and compounds can be formed of magnetic and certain nonmagnetic 

elements. 

The magnetic properties of a material can be inferred from some atomic 

principles. For one, only electrons in the incompletely filled atomic subshell have a 

significant role in magnetism. Furthermore, quantum mechanics establishes that each 

𝑛-th atomic shell comprises up to 2𝑛2 electrons and each 𝑙 subshell comprises at most 

2(2𝑙 + 1) electrons. Those principles, along with the renowned Hund’s rules provide 

the basis to obtain the configuration of states; as well as the 𝑠, 𝑙 and 𝑗 values of an ion 

or atom, thereby giving the corresponding magnetic moment. Namely, Hund’s rules 

are: 

(1) Electrons occupy states so as to maximize the total spin, without violating 

Pauli’s exclusion principle; 

(2) Electrons occupy orbitals so as to mazimize the total orbital momentum, 

consistent with the first rule and the Pauli’s exclusion principle; 

(3) When the shell is less than half full, the total angular momentum is given by 𝑗 =

|𝑙 − 𝑠|; and, when more than half full, 𝑗 = |𝑙 + 𝑠|. When exactly half filled 𝑙 = 0 

and 𝑠 is maximum. 

For instance, consider the ion Fe3+, which is the key agent behind the 

magnetism of the yttrium iron garnet (YIG). The atom of iron comprises 26 bound 

electrons, but only 8 are in the subshells outside the filled 3𝑝 subshell. Furthermore, 2 

of the 8 electrons fill the 4𝑠 subshell. Hence, only the remaining 6 electrons of the 3𝑑 

subshell contribute to magnetism. Now, subtracting 3 electrons from Fe (the two 4𝑠 

electrons and one of the six 3𝑑 electrons), there remain 5 electrons in the 3𝑑 subshell, 

so that 𝑙 = 0 , 𝑠 = 5/2,  and the total angular momentum is 𝑗 = 5/2. The absence of 

orbital momentum results in an weak spin-orbit coupling, thereby “lightening” the inertia 

of the magnetic response of Fe3+.  

 

2.2.1 The yttrium iron garnet 

 

Because YIG’s magnetism is solely due to its Fe3+ ions, it exhibits remarkably 

low magnetic damping, resulting in low magnetic/acoustic losses and long spin 
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relaxation time, making of it arguably the best known material to the study of the 

dynamics of spin excitations such as spin waves (Section 2.6.1). YIG is a ferrimagnetic 

insulator with Currie temperature 𝑇𝐶 = 559 K ; lattice parameter 𝑎 ≈ 1.24 nm ; and 

magnetization 𝑀 = 195 Oe at 𝑇 = 0, and 𝑀 = 140 Oe at 𝑇 = 300 K [22,23,41]. 

As previously mentioned, ferrimagnetism originates from the competion of at 

least two magnetic moments carried by ions of different species. In the case of YIG, its 

conventional body centered cubic (bcc) unit cell contains eight formula units 

Y3Fe3+
2Fe3+

3O2-
12, with the magnetic Fe3+ ions occupying two asymmetric positions 

with respect to their O2- ligands (Figure 3). This results in two competing tetrahedral 

(𝑑) and octahedral (𝑎) magnetic sublattices that couple antiferromagnetically between 

each other, and ferromagnetically within themselves. Quantitatively, this means that, 

provided that each of the two primitive cells have 12 ions in 𝑑-sites and 8 ions in 𝑎-

sites, the 12 𝑑-ions will align antiparallelly to the 8 𝑎-ions, resulting in a total magnetic 

moment 𝜇 = 2 × 4 × (5/2)𝑔𝜇𝐵 = 20𝑔𝜇𝐵.  

 

 

 

(a) 

(b) 

(c) 

Figure 3 – Crystal structure of YIG. (a) bcc lattice. (b) first octant of the unit cell of YIG, indicating the 
two different Fe3+ sites, with the tetrahedral sites in green and the octahedral sites in blue. (c) 
conventional unit cell of YIG, with the majority tetrahedral sites in green and the minority octahedral 
sites in blue. 

Source: (a) Rezende (2022); (b) and (c) Princep et al (2017). 
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Moreover, the combination of YIG’s insulating and magnonic properties enable 

spin transmission by magnon diffusion with no motion of charges by the so-called 

magnonic spin currents, thereby preventing energy dissipation from ohmic losses. YIG 

thin films can be grown by liquid beam epitaxy, pulsed laser, and sputtering deposition.  

 

2.3 Magnetization 

 

Magnetic polarization is measured by the vector quantity called magnetization. 

The magnetization is an extensive state variable -- in contrast to magnetic field, which 

is intensive -- defined as the average per unit volume of the microscopic magnetic 

moments:  

 𝐌 =
1

V
∑𝝁𝒊
𝑖

 (4) 

The sum runs over all points at which there are dipole moments. The volume is chosen 

large enough so as to have a good macroscopic average, but small relative to the 

sample size so that the magnetization represents a local property. In turn, the magnetic 

induction 𝑩 is given by the combination of 𝑴 and 𝑯, 

 𝑩 = 𝜇0(𝑯 +𝑴) (5) 

And the magnetic field 𝑯 relates to magnetization through the magnetic susceptibility 

tensor, which is characteristic of the medium, and not necessarily isotropic, 

 
𝑴 = 𝒳̃𝑯 (6) 

In paramagnetic and diamagnetic materials, the susceptibility is constant, so 

that the magnetization increases linearly with the applied magnetic field and vanishes 

when the field is removed. The situation with ferromagnetis is entirely different. In an 

iron crystal, for instance, not only the atoms carry a magnetic moment, but also the 

metal is broken up into small competing regions in which all the atomic moments are 

coupled together in a preferential crystallographic direction, known as magnetic 

domains, so that the magnetization settles in a constant value even when no field is 

applied.  

The dependence of magnetization with the magnetic field in ferromagnetic 

materials is therefore non-linear, and the curve that portrays this dependence is called 

the hysteresis loop. The shape of the histeresis loop is determined by the gradual 
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rotation of the domains towards the external magnetic field. For small fields, those 

displacements are reversible, so that when the field is removed the domains return to 

their initial configuration due to the demagnetizing effect (Section 2.7.3); however, 

stronger fields cause the material to attain its net magnetization even when the field is 

off, as depicted in Figure 4. The domais are thus said to be spontaneously magnetized. 

 

 

To account for the spontaneous magnetization, Weiss postulated in 1907 an 

intense internal field, known as the Weiss molecular field, that acts on the atomic 

moments of a ferromagnet together with the external field (𝐻𝑡𝑜𝑡𝑎𝑙 = 𝐻𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐻𝑊𝑒𝑖𝑠𝑠). 

Later it was discovered that the molecular field originates from the exchange 

interaction, a quantum mechanical facet of the Coulomb interaction between 

neighboring electrons (Section 2.6). 

Because magnetization is the macroscopic average of microscopic magnetic 

moments, the thermodynamic properties of a given system can be approximated by a 

combinatorial problem of the statistical distribution of states. According to ensemble 

theory, the probability that a spin chosen at random is in a given state is, 

 

𝑝𝑎 =
𝑒
−𝐸𝑎

𝑘𝑇⁄

∑ 𝑒
−𝐸𝑖

𝑘𝑇⁄𝑖

= 𝑍−1𝑒
−𝐸𝑎

𝑘𝑇⁄  

 

Where 𝐸𝑎 corresponds to the energy of the interaction between the local spin state and 

the molecular field.  

(a)                       (b)                      (c)                       (d) 

Source: Rezende (2022). 

Figure 4 – Illustration of gradual rotation of magnetic domains due to magnetic field. 
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Assuming the exchange energy (Equation 42) to be dominated by the nearest 

neighbors of each electron, and the spin moments to be quantized in a given axis 

(thereby having only two degrees of freedom), the magnetization is given by the 

relative population of positive and negative spin magnetic moments in a fixed axis. In 

this scenario, if a spin at the 𝑖-th site was to revert its orientation (spin flip), this event 

would cause a change in the energy given by: 

∆𝐸𝑖→𝑓 = 𝐸𝑓 − 𝐸0 ≈ 4𝐽𝑺𝑖 ∙ ( ∑ 𝑺𝑗
𝑗 ∈ 𝑛𝑒𝑎𝑟𝑒𝑠𝑡
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

) 

And the probability of this transition occurring is, 

 𝑝𝑖→𝑓 =
𝑍−1𝑒

−𝐸𝑓
𝑘𝑇
⁄

𝑍−1𝑒
−𝐸𝑖

𝑘𝑇⁄
= 𝑒

−∆𝐸𝑖→𝑓
𝑘𝑇
⁄

 (7) 

Equation 7 tells that, as temperature increases, the probability of a spin fliping 

event increases, so that the thermal fluctuations gradually become large enough to 

overcome the magnetic order created by the exchange interaction; causing the 

magnetization to decay until it vanishes in a paramagnetic phase. This is known as the 

Curie’s law and the threshold temperature at which the ferromagnetic-paramagnetic 

phase transition occurs is called the Curie temperature. 

 

 

 

Despite its importance in explaining the overall temperature dependence of 

the magnetization in ferromagnets, an important drawback of this model is that it 

      (a)                         (b)                        (c)                             (d) 

Figure 5 – (a), (b), (c) Illustration of the relative orientations of spins at representative temperature 
ranges. (d) Temperature dependence of spontaneous magnetization in ferromagnets. 

Source: Rezende (2022). 
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neglects the 𝑆𝑥 and 𝑆𝑦 components of the spins, thus not accounting with the so-called 

spin waves, which are fundamental excitations that govern the behavior of the 

magnetization at low temperatures. 

 

2.4 Electromagnetic interactions 

2.4.1 The Maxwell’s equations 

 

Having successfully synthesized electricity, magnetism and optics into one 

unified theory called electromagnetism, the Maxwell’s equations lay the framework of 

electromagnetic interactions: 

 𝛁 ∙ 𝑫 = 𝜌 (8) 

 𝛁 ∙ 𝑩 = 0 (9) 

 𝛁 × 𝑬 = −
𝜕𝑩

𝜕𝑡
 (10) 

  𝛁 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
 (11) 

 

The remarkable consistency and completeness of those equations motivated 

Einstein to formulate his theory of special relativity, upon the requirement that 

Maxwell’s laws should hold true in all inertial reference frames, ultimately unveiling 

revolutionary concepts such as time dilation, length contraction and the fact that the 

speed of light is a universal constant. As a consequence of special relativity, electricity 

and magnetism are fundamentally interlinked, so that even if a phenomenon appears 

purely electric or magnetic to one observer, it should be a mix of both in another 

reference frame. 

 

2.4.2 Magnetic energy 

 

We may define the magnetic energy as the work done by the a spatially 

distributed electric currents against the counteracting electromotive forces in order to 

build up a certain magnetic induction (𝑩) field spatial configuration. This energy is 

quantifiable and recoverable, so that it can be regarded as stored in the magnetic fields. 
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The energy density in a generalized distribution of electric fields and currents is given 

by, 

 

𝑈𝑀 = ∫𝓔 ∙ 𝑱𝑑𝑡 

 

Where 𝓔  stands for the electric field, and 𝑱  is the current density. Application of 

Ampère’s law (11) gives for the integrand, 

 

𝓔 ∙ 𝑱 = 𝓔 ∙ (𝛁 × 𝑯) − 𝓔 ∙
∂𝐃

∂t
 

 

Now, let’s apply the following vectorial identity, 

 

𝒖 ∙ (𝛁 × 𝒗) =  𝒗 ∙ (𝛁 × 𝒖) − 𝛁 ∙ (𝒖 × 𝒗) 

 

Resulting in, 

𝓔 ∙ 𝑱 = [𝑯 ∙ (𝛁 × 𝓔) − 𝛁 ∙ (𝓔 × 𝑯)] − 𝓔 ∙
∂𝐃

∂t
 

 

Then, accounting Faraday’s law (10), 

 

𝓔 ∙ 𝑱 = −𝑯 ∙
𝜕𝑩

𝜕𝑡
− 𝓔 ∙

∂𝐃

∂t
+ 𝛁 ∙ (𝓔 × 𝑯) 

 

Now, integrating over volume and applying the theorem of the divergence 

(∮(𝛁 ∙ 𝒖)𝑑𝑉 = ∮𝒖 ∙ 𝒅𝑺) to the last term, 

 

𝑑𝑈

𝑑𝑡
= ∮(𝓔 ∙ 𝑱)𝑑𝑉 = ∮−(𝑯 ∙

𝜕𝑩

𝜕𝑡
) 𝑑𝑉 + ∮−(𝓔 ∙

𝜕𝑫

𝜕𝑡
) 𝑑𝑉 + ∮(𝓔 × 𝑯) ∙ 𝒅𝑨 

 

This expression shows that, for a closed surface, the magnetic energy carries one 

contribution from the volume and from the boundary. The latter is associated with 

electromagnetic radiation and goes to zero if we take the integration over a sufficiently 

large volume since lim
𝑟→∞

|𝓔||𝑯||𝑨| = 0  (posed that ℰ ∝ 𝑟−2 , 𝐻 ∝ 𝑟−1  e 𝐴 ∝ 𝑟2 ). 
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Moreover, the first two term correspond to the energies stored in the magnetic field 

(left) and in the electric field (right). The magnetic portion then is given by, 

 

𝑢𝑀 = −∫𝑯 ∙
𝜕𝑩

𝜕𝑡
𝑑𝑡 = −∫𝑯 ∙ 𝑑𝑩 = −𝜇0∫𝑯 ∙ 𝑑𝑴− 𝜇0∫𝑯 ∙ 𝑑𝑯 

 

Where we have substituted the expression for the magnetic induction (5), 

 

 𝑢𝑀 = −𝜇0∫𝑯 ∙ 𝑑𝑴 − 𝜇0
|𝑯|2

2
 (12) 

 

The first term represents the work necessary to magnetize the material, and the second 

term is the energy stored in the magnetic field. The former can be rewritten so to 

consider the magnetic moments: 

𝑢𝑀 = −𝜇0∫𝑯 ∙ 𝑑𝑴 = −
𝜇0
𝑉
∑∫𝑯 ∙ 𝑑𝝁𝒊
𝑖

 

So that the contribution of each individual magnetic moment to the total energy is, 

 𝑢𝐻,𝑖 = −𝜇0∫𝑯 ∙ 𝑑𝝁𝒊 (13) 

It might strike as strange that magnetic fields store energy in spite of the fact 

that they do no work. This complication may be settled by realizing that the magnetic 

induction field is a state variable, that, as such, is gradually built up by electric currents, 

which in turn, do work. Moreover, magnetized objects also exhibit this correspondence, 

so that the magnetization field corresponds to a distribution of bound currents at the 

surface. The whole system then, is equivalent to a single ribbon of current flowing 

around the boundary. This bound surface current is the net macroscopic current 

flowing over the surface of the magnetized object from the combination of many tiny 

current loops of electrons moving around their orbits. 

The expression for the torque comes straightforwardly from the energy. 

Consider the interaction between a magnetic dipole moment and a constant magnetic 

field applied along the 𝑧-axis, 

 

𝑢𝐻 = −𝜇0(𝝁 ∙ 𝑯) = −𝜇0|𝝁||𝑯| cos 𝜃 
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Then the torque is, 

 

𝝉 = −𝛁𝜑,𝜃𝑢𝐻 = −(
𝜕𝐸𝑚𝑎𝑔

𝜕𝜃
𝜽̂ +

𝜕𝐸𝑚𝑎𝑔

𝜕𝜑
𝝋̂) = 𝜇0|𝝁||𝑯| sin 𝜃 𝜽̂ 

 

Or, more generally,  

 𝝉 = 𝜇0(𝝁 × 𝑯) (14) 

The force, on the other hand is, 

 𝑭 = −𝛁𝑢𝐻 = 𝜇0𝐻𝑧 (
𝜕𝜇𝑧
𝜕𝑥
𝒊̂ +
𝜕𝜇𝑧
𝜕𝑦
𝒋̂ +

𝜕𝜇𝑧
𝜕𝑧
𝒌̂) (15) 

 

2.4.3 The Landau-Lifshitz equation 

 

Consider now the magnetic torque felt by the spin magnetic moment subject 

to a magnetic field. The magnetic moment produced by the spin angular momentum is 

given by, 

𝝁 = −𝑔𝜇𝐵𝑺 

 

Substitution in the equation of torque gives, 

 

𝝉 = −𝜇0𝑔𝜇𝐵(𝑺 × 𝑯) 

 

From Newton’s laws the torque is the time derivative of the angular momentum,  

 

𝝉 =
𝑑(ℏ𝑺)

𝑑𝑡
 

 

Combination of both gives, 

𝑑𝑺

𝑑𝑡
= −

𝜇0𝑔𝜇𝐵
ℏ

(𝑺 × 𝑯) 

 

Finally, by applying the average over volume as in equation (4), we can express this 

equation in terms of the magnetization: 
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𝑑𝑴

𝑑𝑡
= −𝛾(𝑴 × 𝑯) (16) 

which is the Landau-Lifshitz equation, and 𝛾 = 𝑔𝜇𝐵/ℏ is known as the gyromagnetic 

ratio.  

In applying a magnetic field along the 𝑧 axis (𝑯𝟎 = 𝐻0𝒛̂), equation (16) gives, 

𝑑𝑀𝑥
𝑑𝑡

= −𝛾𝐻0𝑀𝑦 
𝑑𝑀 𝑦

𝑑𝑡
= 𝛾𝐻0𝑀 𝑥 

Taking the time derivative it becomes, 

 

𝑑2𝑀 𝑥
𝑑𝑡2

= −𝛾𝐻0
𝑑𝑀 𝑦

𝑑𝑡
= −(𝛾𝐻0)

2𝑀 𝑥 

 

𝑑2𝑀 𝑦

𝑑𝑡2
= 𝛾𝐻0

𝑑𝑀 𝑥
𝑑𝑡

= −(𝛾𝐻0)
2𝑀 𝑦 

 

This is a wave equation with solution, 

 
𝑀𝑥(𝑡) = 𝑚𝑥𝑒

−𝑖𝜔0𝑡 (17) 

 
𝑀𝑦(𝑡) = 𝑚𝑦𝑒

−𝑖𝜔0𝑡 (18) 

Moreover, by noticing that  

𝑑𝑀 𝑦

𝑑𝑡
= 𝛾𝐻0𝑀 𝑥 → (−𝑖𝑚𝑦)𝜔0𝑒

−𝑖𝜔0𝑡 = (𝑚𝑥)𝜔0𝑒
−𝑖𝜔0𝑡 

 

It is clear that 𝑚𝑦  is delayed 90°  from 𝑚𝑥  (i.e.: 𝑚𝑦 = −𝑖𝑚𝑥 ). As in the phasor 

representation well-known to circuit analysis, 𝑚𝑥 and 𝑚𝑦 are complex numbers that 

carry information about the amplitude and phase of the corresponding quantity, in 

contrast to the sinusoidal multiplier (𝑒−𝑖𝜔0𝑡) that brings about the oscillatory part. In 

practice, the tangible part of a phasor corresponds to its real portion (𝑅𝑒[𝑀𝑖(𝑡0)]), which 

is the instantaneous value at a given time 𝑡0.  Equations (17) and (18) can be 

assembled in one by the definition of circularly polarized magnetization, 
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𝑀−(𝑡) = 𝑚−𝑒−𝑖𝜔0𝑡 
 

𝑚− ≡ 𝑚𝑥 − 𝑖𝑚𝑦 
(19) 

Equation (19) then describes the natural response of a magnetized sample to a 

magnetic field: a precession regime of frequency 𝜔0 = 𝛾𝐻0. It further tells us that for 

magnetic fields in the order of a few kOe , the frequencies lie in the microwave 

frequency range, since  𝛾 = 2𝜋 × 2.8 = 17.5929 GHz/kOe. 

 

 

 

2.4.4 Vector potential and magnetic dipole moment 

 

The expression for the orbital magnetic moment can be obtained by a multipolar 

expansion of the magnetic vector potential as demonstrated in [11]. The formulation of 

the latter follows from the fact that magnetic field lines form a closed loop (∇ ∙ 𝑩 = 0). 

Since the divergence of the curl of a given vector is null, one may write the relation, 

 

𝑩 ≡ 𝛁 × 𝑨 

 

Now, we shall demonstrate that the vector potential, as defined, can exist. Ampère’s 

law (11) gives, 

𝛁 × 𝑩 = 𝛁 × (𝛁 × 𝑨) = 𝜇0𝑱 

 
𝛁2𝑨 − 𝛁(𝛁 ∙ 𝑨) = −𝜇0𝑱 (20) 

Where we have used the following vectorial identity,  

Figure 6 - Precession of spin about magnetic field. 

Source: the author. 
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𝛁 × (𝛁 × 𝒖) = 𝛁(𝛁 ∙ 𝒖) − 𝛁2𝒖 

which can be straightforwardly obtained by applying the corresponding derivatives to 

the vector components and rearranging them. 

This equation can be simplified by forcing the second lefthand term to zero by 

means of the Coulomb gauge transform. This gauge exploits the property that the curl 

is invariant upon addition of the gradient of a scalar function in order to construct a null 

divergence version of 𝑨. Assume we have an arbitrary unaltered vector potential 𝑨𝟎 

whose divergence is not zero. We then construct the following: 

 

𝑨𝑪𝑮 = 𝑨𝟎 + 𝛁𝜆 

 

and force the divergence of 𝑨𝑪𝑮 to zero, 

𝛁 ∙ 𝑨𝑪𝑮 = 𝛁 ∙ 𝑨𝟎 + 𝛁
2𝜆 = 0 

𝛁∙𝑨𝑪𝑮=0
→      𝛁2𝜆 = −𝛁 ∙ 𝑨𝟎 

This is a Poisson equation, whose solution is well known to electrostatics, 

 

𝜆 =
1

4𝜋
∫
𝑑𝑉′𝑎

𝑟
=
1

4𝜋
∫
𝑑𝑉′𝛁 ∙ 𝑨𝟎

𝑟
 

 

This proves that the Coulomb gauge transform is realizable, so that equation (20) 

reduces to: 

 
𝛁2𝑨 = −𝜇0𝑱 (21) 

Which is a set of independent Poisson’s equation for each orthogonal component of 

the current density, so that, 

 𝑨 =
𝜇0
4𝜋
∑𝒙̂𝒊∫

𝑑𝑉′𝐽𝑖
𝑟𝑖

𝑖

 (22) 

Therefore, each component of the vector potential behaves in relation to its 

corresponding component of electric current like the electrostatic potential does in 

relation to the electric charge. The formulation of the vector potential further allows us 

to redefine the electric potential by substituting it into Faraday’s law (10), 
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𝛁 × 𝑬 = −
𝜕𝑩

𝜕𝑡
= −

𝜕(𝛁 × 𝑨)

𝜕𝑡
 → 𝛁 × (𝑬 +

𝜕𝑨

𝜕𝑡
) = 0 

So that, 

 

𝑬 +
𝜕𝑨

𝜕𝑡
= −𝛁𝑉 (23) 

Now we have the tools to define the magnetic dipole moment. A multipole 

expansion of 𝑨 is obtained by expanding in a series of powers of 1/𝑟. The first order 

term is the monopole term, the second order term is the dipole term, the third order is 

the quadrupole term and so on: 

 

𝑨(𝒓) =
𝜇0𝐼

4𝜋
{
1

𝑟
∮𝑑𝒍′ +

1

𝑟2
∮𝑟′ cos 𝜃′ 𝑑𝒍′ + 𝑂[(1/𝑟)3]} 

 

According to Maxwell’s equation (9), there are not such things as magnetic monopoles, 

so that the dipole term is the dominant one. Thus, it can be written in the form, 

 𝑨𝑑𝑖𝑝(𝒓) =
𝜇0
4𝜋

𝝁 × 𝒓̂

𝑟2
 (24) 

Where 𝝁 is the magnetic dipole moment, 

 𝝁 ≡ 𝐼∮ 𝑑𝑺 (25) 

Now, consider a collective motion of electrons revolving circularly around the atomic 

nucleus, the contribution of one electron to the total current 𝐼 is given by, 

 

𝐼𝑒 =
𝐼

𝑁𝑒
=
𝜆

𝑁𝑒

𝑑𝑙

𝑑𝑡
= −(

𝑒

2𝜋𝑅
) 𝑣 

 

Where 𝑅 is the orbit radius, 𝑁𝑒 is the total number of electrons, and 𝜆 = −𝑁𝑒/2𝜋𝑅 is 

the linear charge density of the system. Then, the magnetic moment due to one 

electron reads, 

𝝁𝑙 = −(
𝑒𝑣

2𝜋𝑅
) (𝜋𝑅2)𝒍̂ = −(

𝑒𝑣𝑅

2
) 𝒍̂ 

 

On the other hand, the orbital angular momentum is given by, 
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𝒑𝑙 = 𝑚0(𝒓 × 𝒗) = 𝑚0𝑣𝑅𝒍̂ 

So that, 

 𝝁𝑙 = −(
𝑒

2𝑚0
)𝒑𝑙 (26) 

 

Is the orbital magnetic moment. 

 

2.4.5 The spin-orbit interaction 

 

Consider again the semiclassical case of an electron revolving circularly in its 

orbit about the atom’s nucleus with tangential velocity 𝒗 (Figure 7.a). If we take the 

electron’s reference frame, this problem can be regarded as the nucleus revolving 

around the electron with tangential velocity −𝒗 (Figure 7.b).  

 

 

Because the nucleus has positive charge, its motion represents an electric 

current that, according to Biot-Savart’s law, corresponds to a magnetic field at the 

electron’s site given by:  

 

𝑯𝐿 = −
𝑞

4𝜋

(𝒓 × 𝒗)

|𝒓|3
= −

𝑞

4𝜋𝑚𝑒

𝒑𝒍
|𝒓|3

= (
𝜇𝐵𝜀0
𝑚𝑒

)
1

|𝒓|
( 

−𝑞

4𝜋𝜀0|𝒓|2
)𝑳 

Or,  

Figure 7 – Circular orbital motion of an electron. (a) in the frame of reference from the nucleus. (b) 
from the frame of reference of the electron. 

Source: the author. 

(a)                                       (b) 
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 𝑯𝐿 = (
𝜇𝐵𝜀0
𝑚𝑒

)
1

𝑅
(
𝜕𝑉

𝜕𝑟
)
𝑅
𝑳 (27) 

Where 𝒑𝒍 is the orbital angular momentum of the electron. In turn, this effective field 

interacts with the electron’s spin magnetic moment, thus producing a torque that tends 

to align the spin and the field. The energy and torque are given by, 

 𝐸𝑆𝐿 = −𝜇0𝝁𝒔 ∙ 𝑯𝒔𝒐 = [
𝑔𝑒2ℏ2

4𝑚2𝑐2𝑚𝑒
]
1

𝑅
(
𝜕𝑉

𝜕𝑟
)
𝑅
𝑺 ∙ 𝑳 (28) 

 𝝉𝑆𝐿 = 𝜇0𝝁𝒔 ×𝑯𝒔𝒐 = −[
𝑔𝑒2ℏ2

4𝑚2𝑐2𝑚𝑒
]
1

𝑅
(
𝜕𝑉

𝜕𝑟
)
𝑅

(𝑺 × 𝑳) (29) 

The spin-orbit torque (SOT) thereby woks as a relaxation mechanism, that 

brings about the inertia of the crystal lattice into a material’s magnetic response.  

 

2.5 The Stern-Gerlach experiment and the quantum nature of the spin 

 

Before proceeding, I would like to provide an account of the quantum nature 

of the spin. Although originally designed to test the space quantization of atomic 

orbitals predicted by Bohr’s atomic model, the Stern-Gerlach’s experiment (1921) was 

the first to provide convincing evidence of the electron’s spin. The principle was fairly 

simple: if atoms have magnetic moments that can point in any direction as classical 

physics would suggest, then the magnetic force produced by an inhomogeneous field 

would cause the beam of atoms to broaden in a continuous bundle of beams.  On 

the other hand, if the magnetic moments of the atom are quantized – that is, pointing 

in opposite directions (say, up and down) along the field – then the beam of atoms 

would be split in two.  

In the original version of the experiment, Stern and Gerlach vaporized silver in 

an oven and allowed some atoms to escape through a hole. They then sent the atoms 

through a pair of collimators, which created a beam that travelled between the two pole 

pieces of an electromagnet – assuming that Ag atoms are considered heavy enough 

to apply the classical concept of trajectory. In order to provide a magnetic field with the 

required level of inhomogeneity, one of the pieces had a groove cut into it, while the 

other had a sharp, knife-like edge, being held above the groove. After passing through 
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the magnet, the beam struck a detector plate where the presence of silver could be 

revealed by a chemical development process similar to that used in photography. The 

setup is depicted in Figure 8 taken from [13]. 

 

 

The experiment was fairly difficult to undertake. First, the apparatus had to be 

small (about 20 𝑐𝑚 long), and high-vacuum conditions were needed so that atoms 

could travel without scattering from air molecules. In fact, the apparatus often broke, 

making it difficult to achieve the long run time needed to accumulate enough silver on 

the detector plate to create a visible image. The following interpretation of the Stern-

Gerlach experiment, and definition of spin ½ systems are based on the derivations 

from [27].  

Silver atom comprises 47 electrons, from which 46 form a magnetically neutral 

electron cloud so that the angular momentum is solely due to the spin of the 47th 

unpaired electron in the 5𝑠 subshell. If the field gradient is much stronger in a certain 

direction 𝑥𝑖 , each atom will be subject to a force proportional to its spin magnetic 

moment, 

𝑭 = −∇ℋ = 𝜇𝑖
𝜕𝐵𝑖
𝜕𝑥𝑖

𝒙𝒊̂ 

 

This shall be called a 𝑥𝑖 -oriented Stern-Gerlach apparatus, or 𝑆𝐺(𝒙𝒊̂) . 

Assuming the magnetic field gradient to be in the positive 𝒙𝒊̂ direction, for 𝜇𝑖 > 0 the 

atoms experience an upwards force, whereas for 𝜇𝑖 < 0 there is a downwards force. 

From the perspective of classical mechanics, all values between |𝜇𝑖| and −|𝜇𝑖| should 

Figure 8 – The Stern-Gerlach experimental setup. 

Source: Hamish (2024). 
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be realized. As a matter of fact, the beams were split onto two quite well-defined loci, 

suggesting that the spin is quantized in the direction of the magnetic field with two 

possible values.  

Further insights are obtained from the combination of three subsequent Stern-

Gerlach apparatuses. The experiment goes as follows:  

(1) The beam passes through 𝑆𝐺1(𝒛̂), thereby being split in two loci: upwards and 

downwards along the 𝑧 axis, meaning the existence of positive and negative 𝑧 

components of the magnetic moment. Namely: 

 

Table 2 – Output beams from step (1). 

 

Up-𝑧 Down-𝑧 

𝜇𝑧 > 0 𝜇𝑧 < 0 

Source: the author. 

 

Moreover, it is important to note that feedbacking 𝑆𝐺1(𝒛̂) with one of the split 

beams from step (1), the outcome would be a beam split in the same direction, 

so that there would be no change in the result. 

 

(2) The down-𝑧 beam from (1) is blocked, whilst the remaining up-𝑧 beam (𝜇𝑧 > 0) 

is allowed to reach the next apparatus, 𝑆𝐺2(𝒙̂). In turn, the beam is split in two 

loci: right and left along the 𝑥 axis. Assuming the result in (1) to be preserved, 

we would have the outputs summarized in Table 3. 

 

Table 3 – Expected output beams from step (2) assuming the outcome of (1) to be preserved. 

 

Right-𝑥 Left-𝑥 

𝜇𝑥 > 0 𝜇𝑥 < 0 

𝜇𝑧 > 0 𝜇𝑧 > 0 

Source: the author. 

 

(3) The (right-𝑥, up-𝑧) beam from (2) is allowed to reach 𝑆𝐺3(𝒛̂) at the end of the 

circuit. At this point, one might expect that, since the down-𝑧 beam (𝜇𝑧 < 0) was 

blocked in step (2), the output would be up-𝑧 polarized resulting in an upwards 

deflection. This expectation is, however, frustrated, as the result gives again two 
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loci, upwards and downwards along the 𝑧 axis; as if there never was a selective 

blocking of the down-𝑧 beam at the first step.  

Alternatively, if in step (2), after blocking the down-𝑧 beam, we had replaced 

𝑆𝐺2(𝒙̂) for an 𝑧 oriented apparatus, the outcome would be an upwards deflected beam, 

consistent with 𝜇𝑧 > 0  from step (1). Those results suggest that the intermediate 

𝑆𝐺2(𝒙̂) apparatus somehow erases the polarization from the up-𝑧 beam coming from 

the 𝑆𝐺1(𝒛), thus resetting the system. 

The nuance in the SG experiment is somewhat similar to the interaction of 

polarized light with polarizers. Consider a beam of light polarized in the 𝑥𝑦  plane 

propagating in the 𝑧 direction toward a detector. If a 𝑥-polarizer 𝑃1(𝑥) is placed in the 

path, the 𝑦 component of light will be blocked and only the 𝑥 component will reach the 

detector, 

𝑨𝐼 = 𝐴𝐼,𝑥𝒙̂ + 𝐴𝐼,𝑦𝒚̂ 
𝑃1(𝒙̂)
→    

𝑨𝐼𝐼 = 𝐴𝐼,𝑥𝒙̂ 

  

It follows that a subsequent 𝑦 polarizor 𝑃3(𝑦) would result in no light reaching 

the detector because both components have been blocked. This picture changes if a 

new polarizer, say 𝑃2(𝑥′), polarized in the direction 𝑥′, obtained by tilting the 𝑥 axis by 

an 45° degree angle counterclockwise about the 𝑧 axis, is placed in between 𝑃1(𝑥) and 

𝑃3(𝑦). The projections of the 𝑥 and 𝑦 components on 𝑥′and 𝑦′ are given by, 

 

𝐴𝑥′ = 𝐴𝑥 cos(𝜃) + 𝐴𝑦 sin(𝜃)  𝐴𝑦′ = −𝐴𝑥 sin(𝜃) + 𝐴𝑦 cos(𝜃) 

 

And the inverse operations are, 

 

𝐴𝑥 = 𝐴𝑥′ cos(𝜃) − 𝐴𝑦′ sin(𝜃), 𝐴𝑦 = 𝐴𝑥′ sin(𝜃) + 𝐴𝑦′ cos(𝜃) 

 

So that we get, 

𝑨𝐼𝐼 = 𝐴𝐼,𝑥𝒙 =
𝐴𝐼,𝑥

√2
𝒙′̂ −

𝐴𝐼,𝑥

√2
𝒚′̂  

𝑃2(𝒙̂′)
→    

𝑨𝐼𝐼𝐼 =
𝐴𝐼,𝑥

√2
𝒙′̂ =

𝐴𝐼,𝑥
2
𝒙̂ +

𝐴𝐼,𝑥
2
𝒚̂ 

The remark here is that the 𝑦 component has been recovered after passing 

through 𝑃2(𝒙′), such that the light reaching the detector after the three polarizers is: 
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𝑨𝐼𝐼𝐼 =
𝐴𝐼,𝑥
2
𝑦̂ ≠ 0 

 

The mathematical similarity of this setting with the Stern-Gerlach experiment 

invites an useful insight: the 𝑥 components of the spin (𝑆𝑥) can be represented in a 

basis of up (𝜇𝑧 > 0) and down (𝜇𝑧 < 0) 𝑧-components, in the same way that the 𝑥′ 

polarized light can be represented in a basis of 𝑥 and 𝑦 polarized light. Moreover, the 

addition of a 𝑆𝐺 apparatus in another coordinate axis mixes the state of the system, 

thus recovering blocked components from the former axis. 

In order to obtain analytical expressions for the results observed, it is 

convenient to invoke the formalism of quantum mechanics. As previously discussed, 

from the first 𝑆𝐺1(𝒛̂) apparatus we get two output beams, one deflected upwards and 

another deflected downwards, or, in the famous terms, the spin states up and down, 

let’s call them |𝑆𝑧, −⟩ and |𝑆𝑧, +⟩. Furthermore, upon passing one of the beams through 

𝑆𝐺2(𝒙̂), 

 

|⟨𝑆𝑥, ±|𝑆𝑧 , ±⟩|
2 = 𝑝(±) =

1

2
 

 

Where 𝑝 is the probability of a spin going from the state indicated in the ket to the state 

in the bra. This enables us to construct, 

 

|𝑆𝑥, ±⟩ =
1

√2
(|𝑆𝑧, +⟩ ± 𝑒

𝑖𝛿𝑥|𝑆𝑧, −⟩) 

 

For generality’s sake, an arbitrary phase factor was introduced since it does 

not interfere in the probability. Note also, that ⟨𝑆𝑥, +|𝑆𝑥, −⟩ = 0, so that orthonormality 

is preserved. For symmetry reasons, and the invariance of physical phenomena to the 

coordinate axis, the same should happen to the 𝑦 axis, 

 

|𝑆𝑦, ±⟩ =
1

√2
[|𝑆𝑧, +⟩ ± 𝑒

𝑖𝛿𝑦|𝑆𝑧, −⟩] 

 

And an upstream 𝑆𝐺(𝒚̂) apparatus followed by an 𝑆𝐺(𝒙̂) gives, 
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|⟨𝑆𝑥, ±|𝑆𝑦, ±⟩|
2
= 𝑝 =

1

2
 

|
[⟨𝑆𝑧, +|𝑆𝑧 , +⟩ + 𝑒

𝑖𝛿𝑦⟨𝑆𝑧 , +|𝑆𝑧, −⟩ + 𝑒
−𝑖𝛿𝑥⟨𝑆𝑧 , −|𝑆𝑧, +⟩ + 𝑒

𝑖(𝛿𝑦−𝛿𝑥)⟨𝑆𝑧 , −|𝑆𝑧, −⟩]

2
|

2

=
1

2
 

 

Resulting in, 

|1 + 𝑒𝑖(𝛿𝑦−𝛿𝑥)| = √2 ⟶ 𝛿𝑦 − 𝛿𝑥 =
𝜋

2
 

   

By conveniently choosing 𝛿𝑥 = 0, we get, 

 

 |𝑆𝑥, ±⟩ =
1

√2
|+⟩ ±

1

√2
|−⟩ (30) 

 |𝑆𝑦, ±⟩ =
1

√2
|+⟩ ±

𝑖

√2
|−⟩ (31) 

   

Where I have conveniently changed the notation to: |𝑆𝑧, ±⟩ →  |±⟩.  

Furthermore, in spin ½ systems it is useful to have operators that return the 

spin angular momentum of a given state, namely, 

 

𝑆̃𝑧|±⟩ = ±
ℏ

2
|±⟩ 𝑆̃𝑥|𝑆𝑥, ±⟩ = ±

ℏ

2
|𝑆𝑥, ±⟩ 𝑆̃𝑦|𝑆𝑦, ±⟩ = ±

ℏ

2
|𝑆𝑦, ±⟩ 

 

These properties are fulfilled by the following constructions:  

 𝑆̃𝑧 =
ℏ

2
(|+⟩⟨+| − |−⟩⟨−|) (32) 

 

Likewise,  

 

𝑆̃𝑦 =
ℏ

2
(|𝑆𝑦; +⟩⟨𝑆𝑦; +| − |𝑆𝑦; −⟩⟨𝑆𝑦; −|) 

 

=
ℏ

4
((1 − 1)|+⟩⟨+| + (𝑖2 − 𝑖2)|−⟩⟨−| + (−𝑖 − 𝑖)|+⟩⟨−| + (𝑖 + 𝑖)|−⟩⟨+|) 
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 𝑆̃𝑦 =
𝑖ℏ

2
(−|+⟩⟨−| + |−⟩⟨+|) (33) 

 

And, for 𝑆𝑥, 

 𝑆̃𝑥 =
ℏ

2
(|+⟩⟨−| + |−⟩⟨+|) (34) 

 

These operators, in turn, exhibit the following commutation relations,  

 

[𝑆̃𝑥, 𝑆̃𝑦] = 𝑆̃𝑥𝑆̃𝑦 − 𝑆̃𝑦𝑆̃𝑥 =
𝑖ℏ2

4
[|+⟩⟨+| − |−⟩⟨−| − (−|+⟩⟨+| + |−⟩⟨−|)] = 𝑖ℏ𝑆̃𝑧 

 

[𝑆̃𝑧, 𝑆̃𝑥] =
−ℏ2

4
[−|+⟩⟨−| + |−⟩⟨+| − (−|+⟩⟨−| + |−⟩⟨+|)] = 𝑖ℏ𝑆̃𝑦 

 

Or, in general, 

 [𝑆̃𝑖, 𝑆̃𝑗] = 𝑖ℏ𝜀𝑖𝑗𝑘𝑆̃𝑘 (35) 

Which is the simplest realization of the angular momentum commutation relations, 

whose importance can hardly be overstated. Other two important operators are, 

 

𝑺̃2 = 𝑺̃ ∙ 𝑺̃ = 𝑆̃𝑥
2 + 𝑆̃𝑦

2 + 𝑆̃𝑧
2 =

3ℏ2

4
 

And,  

𝑆̃± = ℏ|±⟩⟨∓| = 𝑆̃𝑥 ± 𝑖𝑆̃𝑦 

 

Which is the spin flip operator. 

 

2.6 The exchange interaction 

 

As discussed, ferromagnetism, ferrimagnetism and antiferromagnetism differ 

from other magnetic phases in that their spins exhibit long-range order, which led 

Weiss to postulate its molecular field theory. Later on, it was discovered that this effect 
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is actually due to the exchange interaction: a fundamental interaction that arises 

naturally from a quantum mechanical treatment of the electron-nucleus Coulomb 

interaction between different atoms.  

Consider the simplest case of a system with two hydrogen atoms, which 

means that each atom consists of one nucleus and one electron. The Hamiltonian can 

be split in two terms, the self-energy term (e.g.: the kinetic energy of the electrons and 

each electron’s interaction with its own nucleus), and the term corresponding to the 

cross interaction between the two atoms.  

 

ℋ = ℋ𝑠𝑒𝑙𝑓 +ℋ𝑖𝑛𝑡𝑒𝑟 

 

ℋ𝑠𝑒𝑙𝑓 = − [
ℏ2

2𝑚0
(∇1
2 + ∇2

2) +
𝑒2

𝑟𝑎1
+
𝑒2

𝑟𝑏2
] 

 

ℋ𝑖𝑛𝑡𝑒𝑟 = [
𝑒2

𝑟𝑎𝑏
+
𝑒2

𝑟12
−
𝑒2

𝑟𝑎2
−
𝑒2

𝑟𝑏1
] 

 

Where the numbers refer to the nuclei, and the letters to the electrons. Provided that 

𝜑𝑎(1) , 𝜑𝑎(2) , 𝜑𝑏(1) , 𝜑𝑏(2)  are the solutions to each of the electron-nucleus 

Schrödinger equations, as in, 

 

[−
ℏ2

2𝑚0
∇21 −

𝑒2

𝑟𝑎1
] 𝜑𝑎(1) = 𝐸𝑎𝜑𝑎(1) 

 

In order to account for indistinguishability of electrons, the total wave function 

must be a linear combination of all possible permutations of the individual solutions. 

Then, the spatial wave function of the system can be written as,  

 

𝜑 𝑠𝑦𝑚
𝑎𝑛𝑡𝑖𝑠𝑦𝑚

(1,2) =
1

√2
[𝜑𝑎(1)𝜑𝑏(2) ± 𝜑𝑎(2)𝜑𝑏(1)] (36) 

And the spin wavefunction, 

 

𝜒 𝑠𝑦𝑚
𝑎𝑛𝑡𝑖𝑠𝑦𝑚

(1,2) =
1

√2
[𝛼(1)𝛽(2) ± 𝛼(2)𝛽(1)] (37) 
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𝛼 and 𝛽 are the single electron up and down spin wavefunctions respectively, such 

that when a magnetic field 𝐻𝑖 is applied, it gives: 𝛼 =
ℏ

2
𝒊̂  𝛽 = −

ℏ

2
𝒊̂ . 

Moreover, the Pauli exclusion principle states that two fermions cannot occupy 

the same spin-orbital state. The asymmetric wavefunction is the only to fulfill this 

constraint because it vanishes for the case of two or more particles occupying the same 

quantum state; whereas the symmetric wavefunction is non-zero, violating the principle. 

For instance, consider the effect of taking |𝜑𝑎(1)⟩ = |𝜑𝑏(1)⟩ and |𝜑𝑎(2)⟩ = |𝜑𝑏(2)⟩ in 

the spatial wavefunction (36).  

 

 

 

It follows that the total wave function with orbital and spin components has to 

be asymmetric. Thus, if the two spins are parallel, the orbital wave function is 

antisymmetric in space, whereas if the two spins are antiparallel, the orbital wave 

function is symmetric. So that, 

 

𝜓𝐼 = 𝐴𝐼𝜑𝑎𝑠𝑦𝑚𝜒𝑠𝑦𝑚  𝜓𝐼𝐼 = 𝐴𝐼𝐼𝜑𝑠𝑦𝑚𝜒𝑎𝑠𝑦𝑚 

 

Then, the crossed interaction energy is given by, 

 

𝑈𝐼
𝐼𝐼⁄
= ∫𝑑𝜏 [𝜓𝐼

𝐼𝐼⁄
∗ ℋ𝑖𝑛𝑡𝑒𝑟𝜓𝐼

𝐼𝐼⁄
] 

 

 𝑈𝐼
𝐼𝐼⁄
= 𝐴𝐼

𝐼𝐼⁄
2 2(𝐾12 ∓ 𝐽12) (38) 

 

Where, 

Figure 9 – Overlap of spin and spatial wavefunctions for neighboring ions. The directions of spins 
depend on the spatial charge distribution of the electrons of neighboring ions. 

Source: Rezende (2022). 
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 𝐽12 = ∫𝑑𝜏[𝜑𝑎
∗(1)𝜑𝑏

∗(2)ℋ𝑖𝑛𝑡𝑒𝑟𝜑𝑎(2)𝜑𝑏(1)] (39) 

 𝐾12 = ∫𝑑𝜏[𝜑𝑎
∗(1)𝜑𝑏

∗(2)ℋ𝑖𝑛𝑡𝑒𝑟𝜑𝑎(1)𝜑𝑏(2)]  (40) 

 

𝐾12 is the Coulomb integral and 𝐽12 is called the exchange integral because it only 

differs from 𝐾12 in the exchanged arrangement of the terms in the end of the integrand. 

Categorically, this term appears due to the cross electron-nucleus interaction from 

different atoms. Since the orbital wave function represents the charge distribution, the 

two states have different electrostatic Coulomb energies.  

Moreover, since the demonstration of Equation (38) assumes the spins to be 

quantized in a given direction. Consider, for instance, that the 𝑖-th spin is quantized in 

the 𝑧-axis, while its neighbor, say the 𝑗-th spin, is partially tilted so to have a component 

on the 𝑥 -axis. Because state |𝑆𝑥, +⟩  is a superposition of |𝑆𝑧, +⟩  and |𝑆𝑧, −⟩ , its 

contribution to energy consists of an asymmetric term and a symmetric term, cancelling 

each other out. Therefore, only the component of 𝑺𝑗  parallel to 𝑺𝑖  account for the 

exchange energy, resulting in, 

 𝐸𝑒𝑥𝑐ℎ,𝑖,𝑗 = −2𝐽𝑖𝑗𝑺𝑖 ∙ 𝑺𝑗 (41) 

Where the inner product accounts only the parallel or antiparallel components of the 

spins. Furthermore, each spin 𝑆𝑖 adds up to the exchange energy, 

 𝐸𝑒𝑥𝑐ℎ,𝑖 = −𝐽𝑺𝑖 ∙∑𝑺𝑗
𝑗

 (42) 

Where each spin site is counted twice in the summation. If 𝐽 > 0 , the energy is 

minimum when the two spins are parallel to each other, thus leading to ferromagnetic 

ordering. On the other hand, if 𝐽 < 0, the antiparallel alignment is favored, thus leading 

to antiferromagnetic ordering. 

 

2.6.1 Spin waves 
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The exchange interaction leads to the formulation of non-localized, collective 

spin deviations from the magnetically ordered states called spin waves. Those are 

quantized by the name of magnons, which are bosons corresponding to low lying 

excitations of spin system that can be generated, for instance, by microwaves or 

thermal fluctuations. Rewriting equation (42) in terms of an effective field: 

 

𝐸𝑒𝑥𝑐ℎ,𝑖 = −2𝐽𝑺𝒊 ∙∑𝑺𝒋
𝑗≠𝑖

= 𝝁𝒊 ∙ [
2𝐽

𝑔𝜇𝐵
∑𝑺𝒋
𝑗≠𝑖

] = −𝝁𝒊 ∙ 𝑩𝒆𝒙𝒄𝒉,𝒊 

 

so that, 

 𝑯𝒆𝒙𝒄𝒉,𝒊 = −
2𝐽

𝑔𝜇𝐵𝜇0
∑𝑺𝒋
𝑗≠𝑖

 (43) 

Considering next neighbor contributions only, for a thin film with an elementary 

excitation propagating in the 𝑥 axis it writes,  

 

𝑯𝒆𝒙𝒄𝒉,𝒊 = −
2𝐽

𝑔𝜇𝐵𝜇0
(𝑺𝒊−𝟏 + 𝑺𝒊+𝟏) 

 

Assuming an external field in the −𝑧 direction, the total field is, 

 

𝑯𝒕𝒐𝒕𝒂𝒍,𝒊 = 𝑯𝟎 +𝑯𝒆𝒙𝒄𝒉,𝒊 

 

Substituting this into the Landau-Lifshitz equation for the spins, 

 

𝑑𝑺𝒊
𝑑𝑡
= −𝛾𝜇0𝑺𝒊 × (𝑯𝟎 +𝑯𝒆𝒙𝒄𝒉,𝒊 ) 

 

For the 𝑥 component we get 

 

𝑑𝑆𝑖
𝑥

𝑑𝑡
= −𝛾𝜇0[𝑆𝑖

𝑦(𝐻0
𝑧 +𝐻𝑒𝑥𝑐ℎ

𝑧 ) − 𝑆𝑖
𝑧(𝐻𝑒𝑥𝑐ℎ

𝑦
)] 
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= −𝛾𝜇0 {𝑆𝑖
𝑦
[−𝐻0 −

2𝐽

𝑔𝜇𝐵𝜇0
(𝑆𝑖−1
𝑧 + 𝑆𝑖+1

𝑧 )] − 𝑆𝑖
𝑧 [−

2𝐽

𝑔𝜇𝐵𝜇0
(𝑆𝑖−1
𝑦
+ 𝑆𝑖+1

𝑦
)]}  

 

Since the sample is polarized in the 𝑧 direction, we can assume 𝑆𝑖
𝑥, 𝑆𝑖

𝑦
≪ 𝑆𝑖

𝑧 ≈ 𝑆,  

 
𝑑𝑆𝑖

𝑥

𝑑𝑡
= 𝛾𝜇0𝐻0𝑆𝑖

𝑦
+
2𝐽𝑆

ℏ
(2𝑆𝑖

𝑦
− 𝑆𝑖−1

𝑦
− 𝑆𝑖+1

𝑦
) (44) 

 

Likewise, for the 𝑦 component,   

 
𝑑𝑆𝑖

𝑦

𝑑𝑡
= −𝛾𝜇0𝐻0𝑆𝑖

𝑥 −
2𝐽𝑆

ℏ
(2𝑆𝑖

𝑥 − 𝑆𝑖−1
𝑥 − 𝑆𝑖+1

𝑥 ) (45) 

 

This equation tells us that the motion of the spin in any site is coupled to the motion of 

the neighboring spins, so that their solutions must be collective excitations. Assuming 

a travelling wave solution of the form, 

 𝑆𝑖
𝑥 = 𝐴𝑥𝑒

𝑖(𝑘𝑥𝑖−𝜔𝑡) 𝑆𝑖
𝑦
= 𝐴𝑦𝑒

𝑖(𝑘𝑥𝑖−𝜔𝑡) (46) 

Substitution of (46) in equations (44) and (45) gives for the 𝑥 component, 

 

−𝑖𝜔𝐴𝑥𝑒
𝑖(𝑘𝑥𝑖−𝜔𝑡) = 𝐴𝑦 [𝛾𝜇0𝐻0 +

2𝐽𝑆

ℏ
(2 − 𝑒−𝑖𝑘𝑎 − 𝑒𝑖𝑘𝑎)] 𝑒𝑖(𝑘𝑥𝑖−𝜔𝑡) 

 

Or, rearranging the terms, 

(𝑖𝜔)𝐴𝑥 + [𝛾𝜇0𝐻0 +
4𝐽𝑆

ℏ
(1 − cos 𝑘𝑎)] 𝐴𝑦 = 0 

 

And from the 𝑦 component, 

 

−[𝛾𝜇0𝐻0 +
4𝐽𝑆

ℏ
(1 − cos 𝑘𝑎)] 𝐴𝑥 + (𝑖𝜔)𝐴𝑦 = 0 

 

The dispersion relation for this equation system is, 

 𝜔𝑘 = 𝛾𝜇0𝐻0 +
4𝐽𝑆

ℏ
(1 − cos 𝑘𝑎) (47) 
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Substitution of 𝜔𝑘 in the above gives the relation between the amplitudes and phase 

of the spin components 𝐴𝑥 = 𝑖𝐴𝑦 = 𝐴0. Figure 10 depicts a spin wave in a linear chain 

of classical spins. 

 

 

 

Moreover, for the more general case of a bulk sample, if the wavelength is 

much higher than the spacing between spins (2𝜋 𝑘⁄ ≫ 𝑎), we can regard the spin 

distribution as continuous and expand it in a power series. In a particular direction it 

gives, 

 
𝑺(𝒓𝒊 + 𝑎𝒙) = 𝑺(𝒓𝒊) +

𝜕𝑺

𝜕𝑥
|
𝒓𝒊

𝑎 +
1

2

𝜕2𝑺

𝜕𝑥2
|
𝒓𝒊

𝑎2 + 𝒪(𝑎3) (48) 

 

The same goes for the 𝑦 and 𝑧 axes. In equation (48), due to spatial symmetry, 

the odd powers cancel out at the ±𝑎 displacements from the equilibrium position; 

whereas the even powers add up ((−𝑎)2 + 𝑎2 = 2𝑎2). Moreover, the 4th order or higher 

terms can be neglected, so that in three dimensions it reads, 

 

𝑯𝒆𝒙𝒄𝒉 = −
2𝐽

𝑔𝜇𝐵𝜇0
∑𝑺(𝒓𝒊 + 𝜹)

𝜹

 

= −
2𝐽

𝑔𝜇𝐵𝜇0
∑ 𝒋̂ [6𝑆𝑗(𝒓𝒊) + 𝑎

2 (
𝜕2𝑆𝑗

𝜕𝑥2
+
𝜕2𝑆𝑗

𝜕𝑦2
+
𝜕2𝑆𝑗

𝜕𝑧2
)|
𝒓𝒊

]

𝑗=𝑥,𝑦,𝑧

 

(a) 

(b) 

Figure 10 - Spin wave in a linear chain of classical spins propagating in the + 𝑥 direction. (a) Top 
view. (b) Side view. 

Source: Rezende (2020). 
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= −
2𝐽

𝑔𝜇𝐵𝜇0
[6𝑺(𝒓𝒊) + 𝑎

2∇2𝑺(𝒓𝒊)] 

 

Which can be rewritten in the form, 

 𝑯𝒆𝒙𝒄𝒉 = 𝑤𝑴+
𝐷

𝑀
∇2𝑴(𝒓𝒊) (49) 

Applying this to the Landau-Lifshitz equation, and omitting the first term since it will be 

in a cross product with itself, we get, 

𝜕𝑴

𝜕𝑡
= −𝛾𝜇0𝑴× (𝑯𝟎 +𝑯𝒆𝒙𝒄𝒉) = −𝛾𝜇0𝑴× (𝑯𝟎 +

𝐷

𝑀
∇2𝑴(𝒓𝒊)) 

 

𝜕𝑀𝑥
𝜕𝑡

= −𝛾𝜇0 (𝑀𝑦𝐻0 −𝑀𝑧
𝐷

𝑀
∇2𝑀𝑦) 

𝜕𝑀𝑦

𝜕𝑡
= −𝛾𝜇0 (𝑀𝑧

𝐷

𝑀
∇2𝑀𝑥 −𝑀𝑥𝐻0) 

 

Where 𝑀𝑧 ≈ 𝑀. The circularly polarized magnetization (19) then reads, 

𝑖
𝜕𝑀−

𝜕𝑡
= −𝛾𝜇0(𝐷∇

2𝑀− + 𝐻0𝑀
−) 

This is a wave equation in the form of harmonic travelling waves with solution, 

 𝑀−(𝒓, 𝑡) = 𝑚−𝑒𝑖(𝒌∙𝒓−𝜔𝑘𝑡) (50) 

And dispersion relation, 

 𝜔𝑘 = 𝛾𝜇0(𝐻0 + 𝐷𝑘
2) (51) 

So that, in addition to the natural precession regime, the exchange interaction adds up 

a space dependency. It is worth noting, however, that in the ferromagnetic resonance 

all spins precess in phase, corresponding to 𝑘 = 0, so that the magnetization response 

reduces to equation (19). 

 

2.7 Structural mechanisms in thin films 

 

This section addresses the mechanisms that govern magnetization inside a 

material. In this sense, magnetic anisotropy plays pivotal role, accounting for the 
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preferential orientation of magnetic moments in certain directions that produces the so-

called easy axes and hard axes – that is, the symmetry axes that respectivelly attract 

and repel the magnetization. The magnetic anisotropy energy is thereby defined as the 

change in energy necessary to shift the magnetization from an easy axis to a hard axis. 

In ferromagnets, magnetic anisotropy originates either from their crystallographic 

structure, shape, or, in the case of ferromagnet/antiferromagnet systems, from the 

exchange interaction with the neighboring antiferromagnet. 

Regarding spintronic applications, magnetic anisotropy is required for long-

range magnetic order in thin films and nanostructures. Additionally, a variety of 

microscopic phenomena enable generation and control of spin currents to transport 

signals, exert torque or to interact with charge and spin waves. 

 

2.7.1 Interaction with an external field 

 

The interaction of the magnetized body with an applied field results in a 

potential energy in the same fashion of equation (12), also called the Zeeman energy, 

𝐸𝑍 = −𝜇0𝑯0 ∙ 𝑴 

Since characterization of magnetic samples usually involves the response at different 

angles, it is convenient to write the energy in spherical coordinates, 

 

𝐸𝑍 = −𝜇0𝑀𝐻0(cos 𝜃𝑀 cos 𝜃𝐻 + sin 𝜃𝑀 sin 𝜃𝐻 cos 𝜑𝑀 cos𝜑𝐻 + sin 𝜃𝑀 sin 𝜃𝐻 sin 𝜑𝑀 sin 𝜑𝐻) 

 

𝐸𝑍 = −𝜇0𝑀𝐻0[cos 𝜃𝑀 cos 𝜃𝐻 + sin 𝜃𝑀 sin 𝜃𝐻 cos(𝛿𝜑𝐻)] 

 

Moreover, in this work we are mostly interested in thin films (2D) and their 

characteristics in the film plane, so that the polar angle is 𝜃𝐻 = 𝜋/2, simplifying the 

energy expression, 

 𝐸𝑍 = −𝜇0𝑀𝐻0[sin 𝜃𝑀 cos(𝛿𝜑𝐻)] (52) 

Since the axis of the various sources of energy may not necessarily be in the origin of 

the coordinate axis, I hereby opt to write the displacements of the magnetization angle 

in relation to the angle of the 𝑖-th anisotropy term, 
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𝛿𝜑𝑖 = 𝜑𝑀 − 𝜑𝑖  𝛿𝜃𝑖 = 𝜃𝑀 − 𝜃𝑖 

 

This shall be implied in the rest of the session. 

 

2.7.2 Magnetocrystalline anisotropy 

 

In the bulk of a sample, the torque generated by the spin-orbit interaction 

(Equation 29) depends on the crystalline electric potential which, in turn, is directly 

related to the lattice structure. As a result, a kind of magnetic anisotropy that reflects 

the lattice symmetry emerges, called magnetocrystalline anisotropy. With effect, 

magnetocrystalline anisotropy exhibit the lattice’s periodicity, so that its contributions 

can be phenomenologically estimated by separating the different energy frequencies 

with respect to the angle of application of the magnetic field. In this work two forms of 

symmetry are most relevant: the uniaxial and cubic symmetries, which exhibit two and 

four cycles per revolution respectively.  

Consider the energy as a power series of the director cosines in the spherical 

coordinate system [18] as in Figure 11,  

 

𝐸𝑀𝐶 = 𝐸0 +∑𝑐𝑖𝑎𝑖
𝑖

+∑𝑐𝑖𝑗𝑎𝑖𝑎𝑗
𝑖,𝑗

+∑𝑐𝑖𝑗𝑘𝑎𝑖𝑎𝑗𝑎𝑘
𝑖,𝑗,𝑘

+ ∑ 𝑐𝑖𝑗𝑘𝑙𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙
𝑖,𝑗,𝑘,𝑙

+ 𝒪(𝑎5) 
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A few general considerations simplify this expression, namely: seventh and 

higher order terms are usually negligible; constant terms don’t have physical 

significance; and the lattice looks the same with the reversal of magnetization so that 

the odd powers cancel out.  

Uniaxial anisotropy is characterized by one single easy axis, thus having a 

twofold periodicity. The first order energy term is given by, 

 
 

𝐸𝑢 = 𝐾𝑢 sin
2(𝛿𝜃𝑢) sin

2(𝛿𝜑𝑢) 
 

(53) 

It naturally emerges along the 𝑐-axis of materials that have hexagonal lattices, like 

cobalt. Moreover, uniaxial anisotropy may be induced relatively easily during the film 

growth by means of permanent magnets that produce a magnetic field nearby, or from 

mechanical strains (e.g.: due to the mismatching between the lattice parameters of 

subsequent materials, superficial rugosity, and oblique deposition); and after the film 

growth by thermal annealing.  

On the other hand, materials with cubic lattice like YIG, Fe and Ni, exhibit 

cubic anisotropy. The number of cycles per revolution is fourfold and the energy is 

generally given by, 

 

𝐸𝑐 = 𝐸0 + 𝐾𝑐0(𝑎1
2 + 𝑎2

2 + 𝑎3
2) + 𝐾𝑐1(𝑎1

2𝑎2
2 + 𝑎1

2𝑎3
2 + 𝑎2

2𝑎3
2) + 𝐾𝑐2(𝑎1

2𝑎2
2𝑎3

2)

+ 𝐾𝑐3(𝑎1
4 + 𝑎2

4 + 𝑎3
4) 

Figure 11 - Spherical coordinate system and the directing cosines. 

Source: Bonfim (2009). 

𝑎1 =
𝑴 ∙ 𝒙̂

𝑀
= sin 𝛿𝜃 cos 𝛿𝜑 

 

𝑎2 =
𝑴 ∙ 𝒚̂

𝑀
= sin 𝛿𝜃 sin 𝛿𝜑 

     

𝑎3 =
𝑴 ∙ 𝒛̂

𝑀
= cos 𝛿𝜃 
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The terms 𝐸0 and 𝐾𝑐0(𝑎1
2 + 𝑎2

2 + 𝑎3
2) = 𝐾𝑐0 have no physical significance since they 

are constants; and, usually, 𝐾𝑐1, 𝐾𝑐2 ≫ 𝐾𝑐3. Therefore, first and second order terms, 

𝐾𝑐1 and 𝐾𝑐2, dominate the anisotropic behavior. 

It has been shown that the relative values of the constants 𝐾𝑐1  and 𝐾𝑐2 

determine the easy and hard axes orientations to be along one of the main the 

crystallographic axes < 100 >, < 110 >, or < 111 >, which are depicted in Figure 12. 

Namely, for 𝐾𝑐1 > 0  and 𝐾𝑐2 ≥ −9𝐾𝑐1  the easy axis will be parallel to the < 100 > 

direction; on the other hand, for 𝐾𝑐1 < 0 and 𝐾𝑐2 < −9𝐾𝑐1 the easy axis will be along 

< 111 >. For instance, at room temperature YIG has 𝐾𝑐1 = −5 × 10
3 erg/cm3, while 

𝐾𝑐2 is negligible, resulting in easy axes along the < 111 > direction, and hard axes 

long < 100 >. Moreover, the easy axes of Fe and Ni, the components of permalloy, 

are < 100 > and < 111 >, respectively [23]. 

 

 

 

The first order cubic anisotropy energy 𝐸𝑐1 is then, 

 

𝐸𝑐1 = 𝐾𝑐1{[sin(𝛿𝜃𝑐) cos(𝛿𝜑𝑐)]
2[sin(𝛿𝜃𝑐) sin(𝛿𝜑𝑐)]

2 + [sin(𝛿𝜃𝑐) cos(𝛿𝜑𝑐)]
2[cos(𝛿𝜃𝑐)]

2

+ [sin(𝛿𝜃𝑐) sin(𝛿𝜑𝑐)]
2[cos(𝛿𝜃𝑐)]

2} 

= 𝐾𝑐1{sin
4(𝛿𝜃𝑐) sin

2(𝛿𝜑𝑐) cos
2(𝛿𝜑𝑐) + sin

2(𝛿𝜃𝑐) cos
2(𝛿𝜃𝑐) [cos

2(𝛿𝜑𝑐) + sin
2(𝛿𝜑𝑐)]} 

 

That gives, 

 𝐸𝑐1 =
1

4
𝐾𝑐1[sin

4(𝛿𝜃𝑐) sin
2(2𝛿𝜑𝑐) + sin

2(2𝛿𝜃𝑐)] (54) 

And the second order cubic is, 

Figure 12 - Illustration of crystallographic symmetry planes. 

Source: Rezende (2022). 
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𝐸𝑐2 = 𝐾𝑐2(sin 𝜃 cos𝜑)
2(sin 𝜃 sin 𝜑)2(cos𝜃)2 =

𝐾𝑐2
4
sin4 𝜃 cos2 𝜃 sin2 2𝜑 

 𝐸𝑐2 =
𝐾𝑐2
64
(1 − cos 2𝜃 − cos2 2𝜃 + cos3 2𝜃)(1 − cos 4𝜑) (55) 

Although often much smaller than the first order counterpart, the second order cubic 

anisotropy may be significant in some situations, such as the case of films grown in 

the {111} planes [25]. 

 

2.7.3 Shape anisotropy 

 

The discontinuity of magnetization at the boundaries of a material generates a 

magnetic field in order to counteract the uncompensated magnetic dipoles. This field 

is called demagnetization field and follows from the inexistence of magnetic monopoles 

(Equation 9),  

∇ ∙ 𝑩 = 𝜇0∇ ∙ (𝑯 +𝑴) = 0 

∇ ∙ 𝑯𝐷 = −∇ ∙ 𝑴 

 

 

 

In order to the magnetic induction flux to remain constant, the demagnetization 

field is generated at the interface with the external medium (illustrated in Figure 13), 

thereby connecting the external magnetic influences with the internal energy. The 

demagnetization field inside the sample is given by, 

𝑯𝐷 = −𝑫 ∙ 𝑴 

Source: Mendes (2009). 

Figure 13 - Demagnetization field appearance to balance uncompensated magnetic dipoles. 
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Where 𝑫 is the demagnetization tensor that depends on the sample’s geometry and 

angle of the magnetic field. For this reason, the demagnetization is considered a shape 

effect. This effect is behind the formation of magnetic domains, since it tends to conceal 

the magnetic induction inside the magnetic material (Figure 14). 

 

 

 

Consider a magnetic sample under the influence of an external magnetic field. 

The total field is 

𝑯 = (−𝐷𝑥𝑀𝑥)𝒙̂ + (−𝐷𝑦𝑀𝑦)𝒚̂ + (𝐻0 − 𝐷𝑧𝑀𝑧)𝒛̂ 

So that, 

𝑑𝑀𝑥
𝑑𝑡

= −𝛾𝑀𝑦[𝐻0 + (𝐷𝑥 − 𝐷𝑧)𝑀] 
𝑑𝑀𝑦

𝑑𝑡
= 𝛾𝑀𝑥[𝐻0 + (𝐷𝑦 −𝐷𝑧)𝑀] 

Resulting in a more realistic dispersion relation that accounts the external influences 

in the dipolar field, 

𝜔0 = 𝜇0𝛾[𝐻0 + (𝐷𝑥 − 𝐷𝑧)𝑀]
1
2⁄ [𝐻0 + (𝐷𝑦 − 𝐷𝑧)𝑀]

1
2⁄  

 

In a 2D film, the out-of-plane component of the demagnetization tensor is 

overwhelmingly larger than the in-plane component, so that, 

 

𝐸𝐷 = −𝜇0∫𝑯𝑑 ∙ 𝑑𝑴 = 𝜇0∫(𝐷𝑛̂𝑴𝑛̂) ∙ 𝑑𝑴 =
1

2
𝜇0𝐷𝑛̂𝑀𝑛̂

2 

𝐸𝐷 =
1

2
𝜇0(𝒏̂ ∙ 𝑴)

2 

 

Figure 14 - Illustration of the gradual formation of domains due to demagnetization fields from left to 
right. 

Source: Rezende (2022). 
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Where 𝐷𝒏̂ = 1. In spherical coordinates, 

 𝐸𝐷 =
1

2
𝜇0𝑀

2 cos2 𝜃 (56) 

This expression describes the tendency of magnetization to lie in the plane of 

a thin film. This is a convenient property for ferromagnetic resonance experiments 

performed in the plane of the sample because it compensates potential out-of-plane 

deviations of the magnetic field. In fact, it was shown that small out-of-plane deviations 

lower than 5° have little effect on the magnetization because the demagnetizing field 

in a 2D film effectively keeps the magnetization in the film plane [25]. 

Another mechanism that depends on the shape is caused by the break of 

translation symmetry of the crystalline electric fields at the surface of a material. This 

effect is more evident in thin films since the proportion of atoms in the interface per 

total of atoms is large. This originates another form of anisotropy known as surface 

anisotropy. The corresponding energy is described as an out-of-plane uniaxial 

anisotropy, 

𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = −
𝐾𝑆
𝑀2𝑡

(𝒏̂ ∙ 𝑴)2 

 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = −
𝐾𝑆
𝑡
cos2 𝜃 (57) 

The relation between the atoms in the surface and the bulk may either favor an in-

plane magnetization (𝐾𝑆 < 0), or an out-of-plane magnetization (𝐾𝑆 > 0).  

Due to their equivalent dependence on the magnetization angle, the surface 

anisotropy energy (57) and the demagnetizing energy (56) may be combined in one 

resultant Hamiltonian, 

 

𝐸𝑆 = 𝐸𝐷 + 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
1

2
𝜇0𝑀

2 cos2 𝜃 −
𝐾𝑆
𝑡
cos2 𝜃 =

1

2
𝜇0𝑀(𝑀 −

2𝐾𝑆
𝜇0𝑀𝑡

) cos2 𝜃 

 𝐸𝑆 =
1

2
𝜇0𝑀(𝑀𝑒𝑓𝑓) cos

2 𝜃 (58) 

 

𝑀𝑒𝑓𝑓 = 𝑀 −𝐻𝑆  𝐻𝑆 =
2𝐾𝑆

𝜇0𝑀𝑡
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2.7.4 Exchange bias 

 

In favorable conditions, electrons from the interface of different media may 

become coupled by means of the exchange interaction. This effect, known as 

exchange bias (EB), can pin a FM’s response, standing as a handy tool to control the 

magnetization of ferromagnets without the need for externally applied fields. Moreover, 

it has the advantages of being localized and partially tunable. The most characteristic 

signature of exchange bias is possibly the horizontal shift in the hysteresis loop and 

increased coercivity. 

For our purposes, EB can be regarded as a unidirectional anisotropy (one 

cycle per revolution) occurring at the interface, with energy given by the Zeeman 

interaction with an effective field, 

𝐸𝐸𝐵 = −𝜇0𝑴 ∙ 𝑯𝐸𝐵 

 𝐸𝐸𝐵 = −𝜇0𝑀𝐻𝐸𝐵[cos 𝜃𝑀 cos 𝜃𝐸𝐵 + sin 𝜃𝑀 sin 𝜃𝐸𝐵 cos(𝛿𝜑𝐸𝐵)] (59) 

FM/AFM bilayers are perhaps the most accessible prototypes for applications 

of exchange bias. The AFM spins – which are rather steady due to AFM internal 

compensation -- effectively pin the FM spins. Moreover, antiferromagnets have very 

low magnetic susceptibility, being magnetically neutral against stray fields, a feature 

that could prove to be vital in integrated devices with low dimensions that require 

shielding against crosstalk or external fields [14]. Such junctions have found 

commercial applications in HDD in tuning readback heads to their point of maximum 

sensitivity. 

Furthermore, it has been shown that EB can persist through non-magnetic 

(NM) spacers with thicknesses up to a few angstroms in FM/NM/FM trilayers, by means 

of the RKKY interaction [21,33,34]. This interaction accounts for the indirect coupling 

of magnetic moments between nuclei and/or localized 𝑑 - and 𝑓 - shell electrons 

mediated by conduction electrons. The RKKY theory predicts an oscillatory behavior 

of the coupling between the two outermost FM layers as a function of the thickness of 

the spacer, together with an exponential decay in magnitude. This prediction had great 

importance in explaining the oscillation between FM and AFM coupling of FM layers 

found in the first experiments of GMR in FM/NM/FM films. 
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Another lively subject in spintronic addresses the generation and control of 

chiral spin textures such as skyrmions and chiral Néel domain walls [3,17,26,29]. 

Those structures are generated by the Dzyaloshinskii-Moriya interaction (DMI), which 

stands for the antisymmetric term of the exchange interaction that appears when 

considering SOC in the super-exchange interaction [7,19]. This term favors canted 

orientation of adjacent spins – in contrast to the symmetric term that favors collinear 

orientation – and requires spin-orbit interaction in an asymmetric crystal field, such as 

heterostructures lacking spatial inversion symmetry.  

 

2.7.5 Spin Hall and Rashba-Edelstein Effects 

 

In some materials, the coupling between spin and its orbit in a crystal lattice 

with structural asymmetry or with a scattering center (i.e.: impurities, or crystal defects) 

can result in the splitting of charge carriers according to their spin states, generating a 

transverse flow of spin polarization. In conventional terminology, this means that a 

charge current has converted into a spin current; and this effect is called the spin Hall 

effect (SHE). Remarkably, the inverse is also true. A spin current can be converted 

into a charge current by the same mechanism operating in reverse, effect known as 

the inverse spin Hall effect (ISHE), which is a valuable tool for probing internal physical 

properties of materials. The induced charge current density due to ISHE is, 

𝑱𝑐 =
2𝑒𝜃𝑆𝐻
ℏ

(𝑱𝑠 × 𝝈̂) 

where 𝜃𝑆𝐻 is the spin Hall angle that gives the efficiency of the conversion, 𝑱𝑠 stands 

for spin current density, and 𝝈̂ is the spin polarization. 

While SHE and ISHE are bulk effects, surfaces and interfaces are usually 

governed by the direct and inverse Rashba-Edelstein effects (REE and IREE) [5,8]. 

The broken inversion symmetry and different work functions at interfaces generate an 

outward electric field, which can be regarded as a magnetic field in the reference frame 

of the moving electron. For materials with strong interfacial spin-orbit coupling, this 

effective field may be strong enough to split electrons with opposite spins, causing the 

electrons to develop different energies and momenta, moving in opposite directions 

with spins locked perpendicular to the electrons’ linear momenta. This coupling is 

called spin-momentum locking [12,15,37]. 
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The surface charge current density produced by IREE is given by [30,31]: 

𝑱𝑐 =
𝑒𝛼𝑅
ℏ
(𝒏̂ × 𝑺) 

Where 𝛼𝑅 is the Rashba parameter, 𝒏̂ is the unit vector normal to the interface, and 𝑺 

represents the non-equilibrium spin density caused by spin injection. 

In the field of quantum materials, antimony has drawn increasing attention for 

its unique properties while being an elemental material. Antimony is a diamagnetic 

semimetal that has been shown to host topological surface states, being a core 

component in many topological insulators. Moreover, Sb (111) has been confirmed to 

be protected against 180°  backscattering, resulting in remarkable transmission 

through atomic steps such as defects and impurities [39,42]. This occurs because spin-

momentum locking makes backscattering energetically unfavorable since a reversal of 

momentum must bring along a reversal of spin. 

Generally, semimetals originate from the overlap of the valence and 

conduction bands, that become partially filled, thereby hosting electric currents under 

application of electric fields. They usually have small effective masses for holes and 

electrons due to the broadness of the energy bands, which, in turn, favors the 

aforementioned overlap. In addition, semimetals typically show high diamagnetic 

susceptibilities and high lattice dielectric constants. Although bulk Sb is a semimetal 

due to its negative indirect bandgap, its band order is inverted at the 𝐿 point of the 

Brillouin zone. Antimony (electronic configuration 4𝑑10 5𝑠2 5𝑝3) easily forms anions 

and covalent bonds; and have oxidation states +3  and +5 . Moreover, its crystal 

structure is rhombohedral, and can be considered as a stacking of (111) bilayers. 

 

3 EXPERIMENTAL TECHNIQUES AND FABRICATION PROCESSES 

 

3.1 Ferromagnetic resonance spectroscopy 

 

The ferromagnetic resonance (FMR) spectrometer is one of the most widely 

employed techniques for research in magnetism, for it enables comprehensive 

characterization of materials’ magnetostatic and dynamic parameters, such as 

relaxation rate, Landé factor, magnetocrystalline anisotropies, exchange coupling, spin 

hall angle, etc.  
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Consider a magnetic sample that, in addition to the collective precession 

regime due to an applied magnetic field described in Section 2.4.3, is being stimulated 

by microwave fields in the precession plane (𝑥𝑦). Assuming a stationary regime, the 

total magnetic field and magnetization, including the microwave’s fields contributions 

are then given by,  

𝑯 = [ℎ 𝑥(𝒓)𝑒
−𝑖𝜔𝑡]𝒙̂ + [−𝑖ℎ𝑦(𝒓)𝑒

−𝑖𝜔𝑡]𝒚̂ + (𝐻0)𝒛̂ 

 

𝑴 = [𝑚𝑥(𝒓)𝑒
−𝑖𝜔𝑡]𝒙̂ + [−𝑖𝑚𝑦(𝒓)𝑒

−𝑖𝜔𝑡]𝒚̂ + (𝑀0)𝒛̂ 

 

Those, substituted in the Landau-Lifshitz equation gives, 

𝑑[𝑚𝑥𝑒
−𝑖𝜔𝑡]

𝑑𝑡
= 𝑖𝛾(𝑚𝑦𝐻0 − ℎ𝑦 𝑀0) 𝑒

−𝑖𝜔𝑡 → 𝑚𝑥(𝒓) =
𝛾(ℎ𝑦 𝑀0 −𝑚𝑦𝐻0)

 𝜔
 (60) 

𝑑[−𝑖𝑚𝑦 𝑒
−𝑖𝜔𝑡]

𝑑𝑡
= −𝛾(ℎ𝑥𝑀0 −𝑚𝑥 𝐻0)𝑒

−𝑖𝜔𝑡 → 𝑚𝑦(𝒓) =
𝛾(ℎ𝑥𝑀0−𝑚𝑥 𝐻0)

𝜔
 (61) 

 

3.1.1 Building the susceptibility tensor 

 

The magnetic susceptibility tensor (Equation 6) connects the magnetization 

and magnetic field at different axes. In the ferromagnetic resonance the components 

are related by Equations (60) and (61), 

 

[
𝑚𝑥
𝑚𝑦
] = [

𝒳𝑥𝑥 𝒳𝑥𝑦
𝒳𝑦𝑥 𝒳𝑦𝑦

] [
ℎ𝑥
ℎ𝑦
] 

 

𝒳𝑥𝑥 = 𝒳𝑦𝑦 =
𝜔0𝜔𝑀
𝜔02 − 𝜔2

 𝒳𝑥𝑦 = −𝒳𝑦𝑥 =
𝜔𝜔𝑀

𝜔02 − 𝜔2
 

 

𝜔0 ≡ 𝛾𝐻0  𝜔𝑀 ≡ 𝛾𝑀0 

 

Where 𝜔0 is the frequency of system’s natural response to the external magnetic field, 

𝜔𝑀  is the response to the subsequent magnetization, and 𝜔  is the rf radiation’s 

frequency.  
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A brief look at the susceptibilities reveals a clear unphysical situation: the 

susceptibilities go to infinity as 𝜔 ⟶ 𝜔0, meaning that the precession amplitude would 

reach a singularity in the resonance. This comes from the fact that I have not accounted 

for dissipation mechanisms, such as the energy dissipated by the crystal lattice through 

the spin-orbit interaction. This can be fixed by the phenomenological introduction of 

the relaxation rate (Γ), a damping factor with the form of exponential decay, 

[𝑚𝑥(𝑟) − 𝑖𝑚𝑦(𝑟)]𝑒
−𝑖𝜔0𝑡 ×(𝑒−𝑖Γ𝑡)

→      
[𝑚𝑥(𝑟) − 𝑖𝑚𝑦(𝑟)]𝑒

−𝑖(𝜔0−𝑖Γ)𝑡 

So that the resonance frequency becomes 𝜔0 → 𝜔0 − 𝑖Γ , and the susceptibilities 

become, for Γ ≪ 𝜔0, 

 𝒳𝑥𝑥 = 𝒳𝑦𝑦 =
𝜔0𝜔𝑀

(𝜔02 − 𝜔2) − 𝑖2𝜔0Γ 
 (62) 

 

 𝒳𝑥𝑦 = −𝒳𝑦𝑥 =
𝜔𝜔𝑀

(𝜔02 − 𝜔2) − 𝑖2𝜔0Γ
 (63) 

   

It is worth noting that according to equations (62) and (63), 𝒳𝑥𝑥 = 𝒳𝑦𝑦 = 𝒳𝑥𝑦 = −𝒳𝑦𝑥 

in the resonance. 

 

3.1.2 Power absorbed in resonance 

 

The probed quantity from a sample’s response to the FMR experiment is the 

average power absorption. The measurement is done by a Schottky barrier diode that 

rectifies the reflected microwave, and a subsequent capacitor that stores DC voltage 

proportional to the wave amplitude, thereby quantifying the reflected/absorbed power. 

In terms of the susceptibility and microwave fields, the instantaneous power is, 

 

𝑃(𝑡) =
𝑑(−𝜇0𝑴 ∙ 𝑯)

𝑑𝑡
= −

𝑑[𝑒−𝑖2𝜔𝑡(𝒳𝑥𝑥ℎ𝑥
2 + 𝑖ℎ𝑥𝒳𝑥𝑦ℎ𝑦 − 𝑖ℎ𝑦𝒳𝑦𝑥ℎ𝑥 +𝒳𝑦𝑦ℎ𝑦

2)]

𝑑𝑡
 

 

Noting that 𝒳𝑥𝑥 = 𝒳𝑦𝑦, and that 𝒳𝑥𝑦 = −𝒳𝑦𝑥, 

 

𝑃(𝑡) = 𝑖𝜇02𝜔[𝒳𝑥𝑥(ℎ𝑥
2 + ℎ𝑦

2) + 𝑖2𝒳𝑥𝑦ℎ𝑥ℎ𝑦]𝑒
−𝑖2𝜔𝑡 
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The active power is given by the real part of 𝑃(𝑡), 

 

𝑝(𝑡) = 𝑅𝑒[𝑖𝜇02𝜔𝒳𝑥𝑥(ℎ𝑥
2 + ℎ𝑦

2) − 𝜇04𝜔𝒳𝑥𝑦ℎ𝑥ℎ𝑦] cos(2𝜔𝑟𝑓𝑡) 

 

Or, in terms of the average power only, 

 𝑃̅ = 𝜇0𝜔𝑟𝑓(ℎ𝑥
2 + ℎ𝑦

2)𝐼𝑚[𝒳𝑥𝑥] − 𝜇02𝜔𝑟𝑓ℎ𝑥ℎ𝑦𝑅𝑒[𝒳𝑥𝑦] (64) 

 

𝐼𝑚[𝒳𝑥𝑥] =
𝜔𝑀𝜔0(2𝜔0Γ)

(𝜔0
2 − 𝜔𝑟𝑓

2 )2 + (2𝜔0Γ)2
 

 

𝑅𝑒[𝒳𝑥𝑦] =
𝜔𝑟𝑓
2 𝜔𝑀(𝜔0

2 − 𝜔𝑟𝑓
2 )

(𝜔0
2 − 𝜔𝑟𝑓

2 )2 + (2𝜔0Γ)2
 

 
 

In general, the external field is modulated resulting in a modulated absorbed 

frequency that is ultimately sent to the lock-in amplifier, an active filter able to recover 

signals buried in noise. As shall be demonstrated in Section 3.1.4, the output of the 

lock-in amplifier is the derivative of the input with respect to the magnetic field, 

 

𝑣𝑙𝑜𝑐𝑘−𝑖𝑛 = 𝑐1
𝜕𝑃

𝜕𝐻0
= 𝑐1𝛾

−1
𝜕𝑃

𝜕𝜔0
 

 

Taking the derivatives and assuming ℎ𝑥 = ℎ𝑦, this gives, 

 

𝜕𝑃

𝜕𝜔0
= (4𝜇0ℎ𝑥

2𝜔𝑟𝑓𝜔0𝜔𝑀)
[𝜔𝑟𝑓
2 (𝜔0

2 − 𝜔𝑟𝑓
2 ) − (𝜔0

4 − 𝜔𝑟𝑓
4 )(2Γ) − 𝜔𝑟𝑓

4 (2Γ)2]

[(𝜔0
2 − 𝜔𝑟𝑓

2 )2 + (2𝜔0Γ)2]
2  

 

This equation can be further simplified assuming 𝜔0, 𝜔𝑟𝑓 ≫ 2Γ so that the second order 

term on 2Γ can be disregarded, and having in mind that the susceptibility is large only 

in the vicinity of resonance, we consider 𝜔0 ≈ 𝜔𝑟𝑓  so that (𝜔0
2 − 𝜔𝑟𝑓

2 ) ≈ 2𝜔0(𝜔0 −

𝜔𝑟𝑓). 

𝜕𝑃

𝜕𝜔0
= (4𝜇0ℎ𝑥

2𝜔𝑟𝑓
3 𝜔𝑀)

(𝜔0 − 𝜔𝑟𝑓) (Γ −
1
4)

[(𝜔0 − 𝜔𝑟𝑓)2 + Γ2]
2 
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Moreover, Γ ≫ 1 so that the (Γ −
1

4
) ≈ Γ, and the output signal from the lock-in can be 

written in terms of the effective fields as: 

 𝑣𝑙𝑜𝑐𝑘−𝑖𝑛 = 𝑐1
(𝐻0 − 𝐻𝑅)Δ𝐻

[Δ𝐻0
2 + (𝐻0 − 𝐻𝑅)2]2

 (65) 

 

Where all constants have been absorbed by 𝑐1. Equation (65) is the derivative of a 

Lorentz curve with linewidth ∆𝐻 = Γ/𝛾 . This expression shall be used to numerically 

fit experimental curves in order to obtain the parameters Δ𝐻 and 𝐻𝑅. Lorentzian curves 

have the property that the arithmetic average of several Lorentzian curves results in a 

Lorentzian curve as well.  

 

3.1.3 Instrumentation of FMR 

 

Generally speaking, the FMR set up (Figure 15) consists of microwave bridge, 

resonant cavity, gaussmeter, electromagnet, lock-in amplifier, and Helmholtz 

modulating coil; furthermore, for feasibility’s sake, automation and data acquisition are 

nearly indispensable. In this work the microwave frequency is kept fixed, and the 

magnetic field is swept through quasi-static values, although the reverse approach is 

also possible (keep the magnetic field fixed and vary the frequency).  

 

 

Figure 15 - Ferromagnetic resonance experiment setup. 

Source: Chi-Kuen (2013). 
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The microwave bridge is the assembly of a microwave generator, a detector 

and a transmission line. The transmission consists of waveguide; a circulator that 

redirects the reflected wave towards the detector at the end of the circuit; and a 

resonant cavity. The latter is responsible for optimizing the microwave transmission to 

the sample, this is a critical matter because it involves passage through different 

mediums. 

Moreover, it is key that the sample is strongly affected by the magnetic field 

component of the rf radiation, and unaffected by the electric field. In this sense, the 

cavity’s geometry and metallic walls are designed to sustain a constant spatial 

distribution of the electric and magnetic fields, thereby creating regions where the 

magnetic field is maximum, and the electric field is minimum (Figure 16.a). Naturally, 

such a setting depends greatly on the sample’s shape, position, and angle so that 

resonant cavities are equipped with an iris, that permits a fine adjustment of the 

system’s spatial configuration (Figure 16.b). 

In fact, this whole system can be modelled as a RLC circuit as in Figure 16.c, 

in which the iris works as a LC reactive impedance compensation, and the empty space 

between the cavity and the rf bridge works as an ideal transformer [16]. According to 

transmission line theory, the energy transfer is optimized when the line and load 

impedances are matched (≈ 50 Ω), so that the iris has a pivotal role in optimizing the 

energy transfer.  

 

 

 

(a) (b) 

(c) 

Figure 16 - Resonant cavity for FMR measurements. (a) Distribution of electric and magnetic fields 
inside the cavity. (b) Schematic of the cavity. (c) Equivalent RLC circuit of the cavity scheme. 

Sources: (a) Mendes (2009); (b) and (c) Chi-Kuen (2013]. 
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3.1.4 Lock-in amplifier  

 

The extraction of small signals buried in noise is a common problem in many 

areas such as nanotechnology, material science, optics and photonics, quantum 

technologies, scanning probe microscopy, and sensing. In this sense, the lock-in 

amplifier, an active filter with high noise suppression, is an essential part of many 

research laboratories, expanding greatly the reach of experimental setups. In the case 

of the ferromagnetic resonance spectrometer utilized in this work a Schottky diode 

measures the reflected intensity of rf waves casted onto a magnetized thin film, and 

the amount of energy absorbed by the sample is thereby inferred by subtracting the 

reflected intensity from the incident intensity. Reflectometers of this kind have a low 

signal-to-noise ratio (SNR), requiring a high-quality filter in order to raise SNR to an 

acceptable value (typically greater than 5).  

The working principle of the lock-in amplifier, called demodulation or phase-

sensitive detection, lies on mixing the measured signal with a reference frequency 

followed by low-pass filtering. Choosing the modulation frequency of the measured 

signal makes it possible to sort it away from dominant noise sources, because the latter 

is often spread over a much wider range of frequencies than the signal. Mathematically, 

it relies on the orthogonality of sinusoidal functions, 

∫ sin(𝜔𝑖𝑡 + 𝜙𝑖) sin(Ω𝑡) 𝑑𝑡

𝑇0

0

=
1

2
∫ cos[(𝜔𝑖 − Ω)𝑡 + 𝜙𝑖] − cos[(𝜔𝑖 + Ω)𝑡 + 𝜙𝑖] 𝑑𝑡

𝑇0

0

 

 = (
𝑇0 sin 𝜙𝑖
2

)𝛿[𝜔𝑖 − Ω] (66) 

 

This is essentially the procedure to obtain the coefficient at the reference frequency Ω 

in a Fourier series, regarding the input signal as composed of several superposed 

sinusoidal functions at different frequencies (𝑓(𝑡) = ∑ 𝐹𝑖
∞
𝑖=0 sin(𝜔𝑖𝑡 + 𝜙𝑖)). 

With effect, we should be able to extract the desired signal as long as we (1) 

supply a reference signal at fixed frequency; (2) assure a modulation at the same 

frequency of the physical quantity one intends to measure and (3) suppress every other 

frequency besides the reference frequency. 

(1) can be easily accomplished by utilizing a conventional signal generator. 
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(2)  the tricky part is to assure a smooth modulation of the measured quantity, for it 

depends on the response of the physical system to a certain stimulus. 

(3) Modern equipment such as DSP and FPGA can easily deliver this multiplication 

and integration over a period. Note however, that, for a 𝜔𝑖 = Ω, we get a constant 

term (frequency zero) and a twofold frequency term. Therefore, a low pass filter 

should suffice to allow only frequencies near the vicinity of Ω to pass through. 

 

sin(𝜔𝑖𝑡 + 𝜙𝑖) sin(Ω𝑡) =
1

2
− cos[(𝜔𝑖 + Ω)𝑡 + 𝜙𝑖] 

 

In order to assure (2), one can disturb the input variable with a modulated stimulus 

near an equilibrium point (𝑝̅),  

 

𝑝(𝑡) = 𝑝̅ + 𝑀 sin(𝜔𝑡) 

 

Which, in turn, causes a variation in the output of the system. If the modulation 

amplitude (𝑀) is small enough, the output signal can be expanded in a Taylor Series 

around the equilibrium point: 

 

𝑣[𝑝(𝑡)] = 𝑣(𝑝̅) +

𝑑𝑣
𝑑𝑝
(𝑝̅)[𝑝̅ + 𝑀 sin(𝜔𝑡) − 𝑝̅]

1!
+ ⋯+

𝑑𝑛𝑣
𝑑𝑝𝑛

(𝑝̅)[𝑝̅ + 𝑀 sin(𝜔𝑡) − 𝑝̅]𝑛

𝑛!
 

 

= 𝑣(𝑝̅) +
𝑑𝑣

𝑑𝑝
(𝑝̅)[𝑀 sin(𝜔𝑡)] + 𝑂(𝑀2) ≈ 𝑣(𝑝̅) +

𝑑𝑣

𝑑𝑝
(𝑝̅)[𝑀 sin(𝜔𝑡)]    

 

Applying (66) into the expansion and dismissing higher frequency terms, the 

output will be, 

 
𝑣𝑜𝑢𝑡(𝑡) = (

𝑀𝑉𝑟𝑒𝑓𝑇0 sin 𝜙𝑖

2
)
𝑑𝑣(𝑝̅)

𝑑𝑝
𝛿[𝜔𝑖 − Ω] = 𝑘

𝑑𝑣(𝑝̅)

𝑑𝑝
𝛿[𝜔𝑖 − Ω] 

 

(67) 

It is then important to notice that the output of the lock-in amplifier is proportional to the 

derivative of the physical system’s output in relation to the modulated quantity (in our 

case, the magnetic field) at the equilibrium point 𝑝̅.  

 

3.1.5 Effective field and FMR frequency 
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Now let’s work out an equation to correlate the data from a FMR measurement 

and the sample’s characteristics. In a constant external field, the work done to 

magnetize a material (12) can be written in differential form as follows, 

 

𝑑𝐸 = −𝜇0𝑯𝒆𝒇𝒇 ∙ 𝑑𝑴 

 

So that the resultant field represents the gradient of the energy with respect to the 

magnetization, 

 𝑯𝒆𝒇𝒇 = −
1

𝜇0
∇𝑀𝐸 (68) 

Where small deviations in magnetization are given by, 

 

𝛿𝑴 = 𝛿𝑚𝜌𝝆̂ + 𝛿𝑚𝜃𝜽̂ + 𝛿𝑚𝜑𝝋̂ 

 

For most purposes, one can assume a quasi-static regime at which 𝑴 is aligned with 

the 𝑧 axis, constant in magnitude and all deviations occur around this such that,  

 

𝛿𝑚𝜌 = 0  𝛿𝑚𝜃 = 𝑀𝑧𝛿𝜃  𝛿𝑚𝜑 = 𝑀𝑧𝑠𝑖𝑛𝜃0𝛿𝜑 

 

Assuming that the system is initially balanced in an equilibrium position, we have, 

 

𝜕𝐸(𝑴𝟎)

𝜕𝑚𝜃
=
𝜕𝐸(𝑴𝟎)

𝜕𝑚𝜑
= 0 

 

So that the gradient in equation (68) is dominated by the second order terms, namely, 

 

 
𝜕𝐸(𝑴)

𝜕𝑚𝜃
=
𝜕𝐸(𝑴𝟎)

𝜕𝑚𝜃
+
𝜕2𝐸(𝑴𝟎)

𝜕𝑚𝜃
2 𝛿𝑚𝜃 +

𝜕2𝐸(𝑴𝟎)

𝜕𝑚𝜃𝜕𝑚𝜑
𝛿𝑚𝜑 (69) 

 
𝜕𝐸(𝑴)

𝜕𝑚𝜑
=
𝜕𝐸(𝑴𝟎)

𝜕𝑚𝜑
+
𝜕2𝐸(𝑴𝟎)

𝜕𝑚𝜑
2 𝛿𝑚𝜑 +

𝜕2𝐸(𝑴𝟎)

𝜕𝑚𝜑𝜕𝑚𝜃
𝛿𝑚𝜃 (70) 
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Generally, it is more useful to express the differentials in terms of the angles’ 

displacements, as in, 

𝜕2𝐸

𝜕𝑚𝜃
2 =

𝜕2𝐸

𝜕𝜃2
(
𝜕𝜃

𝜕𝑚𝜃
)
2

=
1

𝑀2
𝐸𝜃𝜃 

𝜕2𝐸

𝜕𝑚𝜑
2 =

𝜕2𝐸

𝜕𝜑2
(
𝜕𝜑

𝜕𝑚𝜑
)

2

=
1

(𝑀𝑠𝑖𝑛𝜃0)2
𝐸𝜑𝜑 

𝜕2𝐸

𝜕𝑚𝜃𝜕𝑚𝜑
=

𝜕2𝐸

𝜕𝑚𝜑𝜕𝑚𝜃
=
𝜕2𝐸

𝜕𝜃𝜕𝜑
(
𝜕𝜃

𝜕𝑚𝜃
) (

𝜕𝜑

𝜕𝑚𝜑
) =

1

𝑀2𝑠𝑖𝑛𝜃0
𝐸𝜃𝜑 

 

Those substituted into equations (69) and (70) give, 

 

 [𝑯𝑒𝑓𝑓]𝜃 = −
1

𝜇0

𝜕𝐸(𝑴)

𝜕𝑚𝜃
= −

1

𝜇0𝑀
(𝐸𝜃𝜃𝛿𝜃 + 𝐸𝜃𝜑𝛿𝜑) (71) 

  [𝑯𝑒𝑓𝑓]𝜑 = −
1

𝜇0

𝜕𝐸(𝑴)

𝜕𝑚𝜑
= −

1

𝜇0𝑀𝑠𝑖𝑛𝜃0
(𝐸𝜑𝜃𝛿𝜃 + 𝐸𝜑𝜑𝛿𝜑) (72) 

 

[𝑯𝑒𝑓𝑓]𝜌 ∝
𝜕𝐸(𝑴)

𝜕𝑚𝜌
= 0 

 

Substituting these terms in the Landau-Lifshitz equation gives,   

 
𝑑𝑚𝜃
𝑑𝑡

= −𝛾𝑀[𝑯𝑒𝑓𝑓]𝜑 (73) 

  
𝑑𝑚𝜑

𝑑𝑡
= 𝛾𝑀[𝑯𝑒𝑓𝑓]𝜃 (74) 

 

Posed that in the resonance the magnetization follows the microwave fields, 

𝑚𝜃(𝑡) = (𝑀𝛿𝜃)𝑒
−𝑖𝜔𝑟𝑓𝑡 𝑚𝜑(𝑡) = (𝑀𝑠𝑖𝑛𝜃0𝛿𝜑)𝑒

−𝑖𝜔𝑟𝑓𝑡 

   

Equations (73) and (74) give a system of two equations, 

 

(𝐸𝜃𝜃)𝛿𝜃 + (𝐸𝜃𝜑 −
𝑖𝜔0𝜇0𝑀𝑠𝑖𝑛𝜃0

𝛾
) 𝛿𝜑 = 0 
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(𝐸𝜑𝜃 +
𝑖𝜔0𝜇0𝑀𝑠𝑖𝑛𝜃0

𝛾
) 𝛿𝜃 + (𝐸𝜑𝜑)𝛿𝜑 = 0 

 

Or, in matrix form, 

[
 
 
 𝐸𝜃𝜃 𝐸𝜃𝜑 −

𝑖𝜔0𝜇0𝑀𝑠𝑖𝑛𝜃0
𝛾

𝐸𝜑𝜃 +
𝑖𝜔0𝜇0𝑀𝑠𝑖𝑛𝜃0

𝛾
𝐸𝜑𝜑 ]

 
 
 

[
𝛿𝜃
𝛿𝜑
] = 0 

 

The solution for the resonance frequency is obtained by equating the determinant to 

zero, 

 𝜔0 =
𝛾

𝜇0𝑀𝑠𝑖𝑛𝜃0
(𝐸𝜃𝜃𝐸𝜑𝜑 − 𝐸𝜃𝜑

2)
1
2⁄  (75) 

This is the central equation for interpreting the outcomes of FMR experiments 

since it directly connects the resonance frequency/field with the energies’ signatures 

from the internal magnetic mechanisms [10,18,25]. The usual course of action for 

characterizing a magnetic sample by FMR consists of scanning the resonance field at 

several angles, and then numerically fitting (75) into the experimental data. 

 

3.1.6 Evaluating the energy contributions to the spectrum 

 

In order to apply (75), we must evaluate the derivatives of the system’s 

Hamiltonian, which consists of several contributions such as the Zeeman interaction, 

exchange interaction and magnetic anisotropy, 

ℋ =∑ℋ𝑖
𝑖

 

After accounting with all of these concomitant phenomena, we may now write 

the resonance frequency equation. The following tables (Table 4, Table 5, Table 6, 

Table 7, Table 8, and Table 9) summarize the free energy terms and their derivatives. 

In this study, the scan of the field’s incidence angle shall be carried out solely in the 

plane of the sample, thus keeping the polar (out-of-plane) angle constant, and largely 

simplifying the calculations. 
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Table 4 - Summary of Zeeman energy and its derivatives. 

 

External field / Zeeman 

𝐸𝑍 = −𝜇0𝑀𝐻0 sin(𝛿𝜃𝐻) cos(𝛿𝜑𝐻) 

𝜕𝐸𝑍
𝜕𝜑

= 𝜇0𝑀𝐻0 sin(𝛿𝜃𝐻) sin(𝛿𝜑𝐻) 

𝜕𝐸𝑍
𝜕𝜃

= −𝜇0𝑀𝐻0 cos(𝛿𝜃𝐻) cos(𝛿𝜑𝐻) 

𝜕2𝐸𝑍
𝜕𝜑2

= 𝜇0𝑀𝐻0 sin(𝛿𝜃𝐻) cos(𝛿𝜑𝐻) 

𝜕2𝐸𝑍
𝜕𝜃2

= 𝜇0𝑀𝐻0 sin(𝛿𝜃𝐻) cos(𝛿𝜑𝐻) 

Source: the author. 

 

The boundary conditions give, 

 

 
 

𝜕2𝐸𝑍
𝜕𝜃2

|
𝜃=
𝜋
2

=
𝜕2𝐸𝑍
𝜕𝜑2

|
𝜃=
𝜋
2

= 𝜇0𝑀𝐻0 (76) 

 

𝜕2𝐸𝑍
𝜕𝜃𝜕𝜑

=
𝜕2𝐸𝑍
𝜕𝜑𝜕𝜃

= 𝜇0𝑀𝐻0[cos 𝜃𝑀 sin(𝛿𝜑𝐻)] 

 

𝜕2𝐸𝑍
𝜕𝜃𝜕𝜑

|
𝜃=
𝜋
2

=
𝜕2𝐸𝑍
𝜕𝜑𝜕𝜃

|
𝜃=
𝜋
2

= 0 

 

 

Table 5 - Summary of shape anisotropy energy and its derivatives. 
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Demagnetizing and surface anisotropy 

𝐸𝑠 =
1

2
𝜇0𝑀𝑀𝑒𝑓𝑓 cos

2 𝜃𝑀 

𝜕𝐸𝑠
𝜕𝜑

= 0 

𝜕𝐸𝑠
𝜕𝜃

= −
1

2
𝜇0𝑀𝑀𝑒𝑓𝑓 sin 2𝜃𝑀 

𝜕2𝐸𝑠
𝜕𝜑2

= 0 

𝜕2𝐸𝑠
𝜕𝜃2

= −𝜇0𝑀𝑀𝑒𝑓𝑓 cos 2𝜃𝑀 

Source: the author. 

 

So that, 

 

 
𝜕2𝐸𝑑𝑖𝑝

𝜕𝜃2
|
𝜃=
𝜋
2

= 𝜇0𝑀𝑀𝑒𝑓𝑓 (77) 

 

𝜕2𝐸𝑑𝑖𝑝

𝜕𝜑2
|
𝜃=
𝜋
2

=
𝜕2𝐸𝑑𝑖𝑝

𝜕𝜃𝜕𝜑
|
𝜃=
𝜋
2

=
𝜕2𝐸𝑑𝑖𝑝

𝜕𝜑𝜕𝜃
|
𝜃=
𝜋
2

= 0 

 

 

Table 6 - Summary of exchange bias energy and its derivatives. 

 

Exchange bias 

𝐸𝐸𝐵 = −𝜇0𝑀𝐻𝐸𝐵[cos 𝜃𝑀 cos 𝜃𝐸𝐵 + sin 𝜃𝑀 sin 𝜃𝐸𝐵 cos(𝛿𝜑𝐸𝐵)] 

𝜕𝐸𝐸𝐵
𝜕𝜑

= −𝜇0𝑀𝐻𝐸𝐵[− sin 𝜃𝑀 sin 𝜃𝐸𝐵 sin(𝛿𝜑𝐸𝐵)] 

𝜕𝐸𝐸𝐵
𝜕𝜃

= −𝜇0𝑀𝐻𝐸𝐵[− sin 𝜃𝑀 cos 𝜃𝐸𝐵 + cos 𝜃𝑀 sin 𝜃𝐸𝐵 cos(𝛿𝜑𝐸𝐵)] 
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𝜕2𝐸𝐸𝐵
𝜕𝜑2

= 𝜇0𝑀𝐻𝐸𝐵[sin 𝜃𝑀 sin 𝜃𝐸𝐵 cos(𝛿𝜑𝐸𝐵)] 

𝜕2𝐸𝐸𝐵
𝜕𝜃2

= 𝜇0𝑀𝐻𝐸𝐵[cos 𝜃𝑀 cos 𝜃𝐸𝐵 + sin 𝜃𝑀 sin 𝜃𝐸𝐵 cos(𝛿𝜑𝐸𝐵)] 

Source: the author. 

 

The boundary conditions give, 

 

 

 
𝜕2𝐸𝐸𝐵
𝜕𝜃2

|
𝜃=𝜋 2⁄

=
𝜕2𝐸𝐸𝐵
𝜕𝜑2

|
𝜃=𝜋 2⁄

= 𝜇0𝑀𝐻𝐸𝐵 cos𝜑 

 

(78) 

 

𝜕2𝐸𝐸𝐵
𝜕𝜃𝜕𝜑

=
𝜕2𝐸𝐸𝐵
𝜕𝜑𝜕𝜃

= 𝜇0𝑀𝐻𝐸𝐵[cos 𝜃 sin 𝜃𝐸𝐵 sin(𝜑 − 𝜑𝐸𝐵)] 

 

𝜕2𝐸𝐸𝐵
𝜕𝜃𝜕𝜑

|
𝜃=𝜋 2⁄

=
𝜕2𝐸𝐸𝐵
𝜕𝜑𝜕𝜃

|
𝜃=𝜋 2⁄

= 0 

 

 

Table 7 - Summary of uniaxial anisotropy energy and its derivatives. 

 

Uniaxial anisotropy 

𝐸𝑢 = 𝐾𝑢 sin
2(𝛿𝜃𝑢) sin

2(𝛿𝜙𝑢) 

𝜕𝐸𝑢
𝜕𝜑

= 𝐾𝑢 sin
2(𝛿𝜃𝑢) sin(2𝛿𝜙𝑢) 

𝜕𝐸𝑢
𝜕𝜃

= 𝐾𝑢 sin(2𝛿𝜃𝑢) sin
2(𝛿𝜙𝑢) 
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𝜕2𝐸𝑢
𝜕𝜑2

= 2𝐾𝑢 sin
2(𝛿𝜃𝑢) cos(2𝛿𝜙𝑢) 

𝜕2𝐸𝑢
𝜕𝜃2

= 2𝐾𝑢 cos(2𝛿𝜃𝑢) sin
2(𝛿𝜙𝑢) 

Source: the author. 

 

That gives, 

 
𝜕2𝐸𝑢
𝜕𝜃2

|
𝜃=
𝜋
2

= −2𝐾𝑢 sin
2(𝜑𝑀 − 𝜙𝑢) (79) 

  
𝜕2𝐸𝑢
𝜕𝜙2

|
𝜃=
𝜋
2

= 2𝐾𝑢 cos  2(𝜑𝑀 − 𝜙𝑢) (80) 

 

 

Table 8 - Summary of first order cubic anisotropy energy and its derivatives. 

 

First order cubic anisotropy 

𝐸𝑐1 =
1

4
𝐾𝑐1[sin

4(𝛿𝜃𝑐) sin
2(2𝛿𝜑𝑐) + sin

2(2𝛿𝜃𝑐)] 

𝜕𝐸𝑐1
𝜕𝜑

=
1

2
𝐾𝑐1 sin

4(𝛿𝜃𝑐) sin(4𝛿𝜑𝑐) 

𝜕𝐸𝑐1
𝜕𝜃

= 𝐾𝑐1 [sin
2(2𝛿𝜑𝑐) sin

3(𝛿𝜃𝑐) cos(𝛿𝜃𝑐) +
1

2
sin(4𝛿𝜃𝑐)] 

𝜕2𝐸𝑐1
𝜕𝜑2

= 2𝐾𝑐1 sin
4(𝛿𝜃𝑐) cos(4𝛿𝜑𝑐) 

𝜕2𝐸𝑐1
𝜕𝜃2

= 𝐾𝑐1{sin
2(2𝛿𝜑𝑐) [3 sin

2(𝛿𝜃𝑐) cos
2(𝛿𝜃𝑐) − sin

4(𝛿𝜃𝑐)] + 2 cos(4𝛿𝜃𝑐)} 

Source: the author. 

 

Unlike the other energies, the cubic anisotropy energy depends largely on the 

growth plane of the sample. For samples grown in the {100} planes (𝜃𝑐1 = 0, 𝜃𝑀 = 𝜋/2), 

we get, 

 



65 
 

 
 

 
𝜕2𝐸𝑐1
𝜕𝜃2

|
<100>

= 𝐾𝑐1(2 − sin
2 2𝜑𝐻) =

𝐾𝑐1
2
[3 + cos 4(𝜑𝐻 − 𝜑𝑐)] (81) 

 
𝜕2𝐸𝑐1
𝜕𝜑2

|
<100>

= 2𝐾𝑐1 cos 4𝜑𝐻 (82) 

 

𝜕2𝐸𝑐1
𝜕𝜃𝜕𝜑

=
𝜕2𝐸𝑐1
𝜕𝜑𝜕𝜃

= 2𝐾𝑐1 sin 4𝜑 sin
3 𝜃 cos 𝜃 

 

𝜕2𝐸𝑐1
𝜕𝜃𝜕𝜑

|
<100>

= 0 

 

 

Table 9 - Summary of second order cubic anisotropy energy and its derivatives. 

 

Second order cubic anisotropy 

𝐸𝑐2 =
1

64
𝐾𝑐2[1 − cos(2𝛿𝜃𝑐) − cos

2(2𝛿𝜃𝑐) + cos
3(2𝛿𝜃𝑐)][1 − cos(4𝛿𝜑𝑐)] 

 

𝜕𝐸𝑐2
𝜕𝜑

=
1

16
𝐾𝑐2[1 − cos(2𝛿𝜃𝑐) − cos

2(2𝛿𝜃𝑐) + cos
3(2𝛿𝜃𝑐)][sin(4𝛿𝜑𝑐)] 

𝜕𝐸𝑐2
𝜕𝜃

=
1

64
𝐾𝑐2{sin(2𝛿𝜃𝑐) [2 − 12 cos

3(2𝛿𝜃𝑐)] + 2 sin(4𝛿𝜃𝑐)}[1 − cos(4𝛿𝜑𝑐)] 

𝜕2𝐸𝑐2
𝜕𝜑2

=
1

64
𝐾𝑐2[1 − cos(2𝛿𝜃𝑐) − cos

2(2𝛿𝜃𝑐) + cos
3(2𝛿𝜃𝑐)][cos(4𝛿𝜑𝑐)] 

𝜕2𝐸𝑐2
𝜕𝜃2

=
1

64
𝐾𝑐2[4 cos(2𝛿𝜃𝑐) − 24 cos

4(2𝛿𝜃𝑐) + 144 sin
2(2𝛿𝜃𝑐) cos

3(2𝛿𝜃𝑐)

+ 8 cos(4𝛿𝜃𝑐)][1 − cos(4𝛿𝜑𝑐)] 

Source: the author. 

 

Likewise, the boundary conditions give, 

 

𝜕2𝐸𝑐2
𝜕𝜃2

|
<100>

=
𝐾𝑐2
64
(1 − cos 4𝜑)(−4 − 24 + 0 + 8) 
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𝜕2𝐸𝑐2
𝜕𝜃2

|
<100>

=
10𝐾𝑐2
32

[1 − cos 4(𝜑𝑀 − 𝜙𝐶2)] (83) 

 

 

𝜕2𝐸𝐶2
𝜕𝜑2

|
<100>

=
𝐾𝑐2
64
(1 + 1 − 1 − 1) cos 4𝜑 = 0 

 

 

𝜕2𝐸𝑐2
𝜕𝜃𝜕𝜑

=
𝐾𝑐2
16
[sin 2𝜃 (2 − 12 cos3 2𝜃) + 2 sin 4𝜃](sin 4𝜑) 

 

𝜕2𝐸𝑐2
𝜕𝜃𝜕𝜑

|
<100>

= 0 

 

𝜕𝐸𝑐2
𝜕𝜑

=
𝐾𝑐2
16
(1 + 1 − 1 ± 1)(sin 4𝜑) = 0 

 

Assembling all of these we get for the (100) plane, 𝐸𝜃𝜑 = 0 and, 

 

𝐸𝜃𝜃 = [
𝜕2𝐸𝑍
𝜕𝜃2

+
𝜕2𝐸𝑑𝑖𝑝

𝜕𝜃2
+
𝜕2𝐸𝐸𝐵
𝜕𝜃2

+
𝜕2𝐸𝑢
𝜕𝜃2

+
𝜕2𝐸𝑐1
𝜕𝜃2

+
𝜕2𝐸𝑐2
𝜕𝜃2

]|
𝜃=𝜋 2⁄ ,𝜑=𝜑0

= [𝜇0𝑀𝐻𝑅 + 𝜇0𝑀𝑀𝑒𝑓𝑓 + 𝜇0𝑀𝐻𝐸𝐵 cos𝜑 − 2𝐾𝑢 sin
2(𝜑𝐻 − 𝜙𝑢)

+ 2𝐾𝑐1 (1 −
1

2
sin2 2𝜑) +

10𝐾𝑐2
32

[1 − cos 4(𝜑𝑀 − 𝜙𝐶2)]] 

 

 

𝐸𝜑𝜑 = [
𝜕2𝐸𝑍
𝜕𝜑2

+
𝜕2𝐸𝑑𝑖𝑝

𝜕𝜑2
+
𝜕2𝐸𝐸𝐵
𝜕𝜑2

+
𝜕2𝐸𝑢
𝜕𝜑2

+
𝜕2𝐸𝑀𝐶
𝜕𝜑2

+
𝜕2𝐸𝐶2
𝜕𝜑2

]|
𝜃=𝜋 2⁄ ,𝜑=𝜑0

= [𝜇0𝑀𝐻 + 𝜇0𝑀𝐻𝐸𝐵 cos𝜑 + 2𝐾𝑢 cos  2(𝜑𝐻 − 𝜙𝑢) + 2𝐾𝑐1 cos 4𝜑] 

 

 

That, substituted in equation (75) gives in the CGS system, 
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𝜔0 =
𝛾

𝜇0𝑀𝑠𝑖𝑛𝜃0
(𝐸𝜃𝜃𝐸𝜑𝜑 − 𝐸𝜃𝜑

2)
1
2⁄  

 

𝜔0 = 𝛾 [𝐻𝑅 cos(𝜑𝑀 − 𝜑𝐻) +
𝐾𝑐1
2𝑀

(3 + cos 4(𝜑𝑀 − 𝜙𝐶))  +
10𝐾𝑐2
32𝑀

[1 − cos 4(𝜑𝑀 − 𝜙𝐶2)]

+ 4𝜋𝑀𝑒𝑓𝑓 +𝐻𝐸𝐵 cos(𝜑𝑀 − 𝜑𝐸𝐵)

−
2𝐾𝑢
𝑀
sin2(𝜑𝑀 − 𝜙𝑈)]

1
2⁄

[𝐻𝑅 cos(𝜑𝑀 − 𝜑𝐻) +
2𝐾𝑐1
𝑀

cos 4(𝜑𝑀 − 𝜙𝐶)

+ 𝐻𝐸𝐵 cos(𝜑𝑀 − 𝜙𝐸𝐵) +
2𝐾𝑢
𝑀
cos  2(𝜑𝑀 − 𝜙𝑈)]

1
2⁄

 

 

Or, in terms of effective anisotropy fields, 
2𝐾𝑖

𝑀
= 𝐻𝑖, 

 

𝜔0 = 𝛾 [𝐻𝑅 cos(𝜑𝑀 − 𝜑𝐻) +
𝐻𝑐1
4
(3 + cos 4(𝜑𝑀 − 𝜙𝑐1))  

+
5𝐻𝑐2
32

[1 − cos 4(𝜑𝑀 − 𝜙𝑐2)] + 4𝜋𝑀𝑒𝑓𝑓 + 𝐻𝐸𝐵 cos(𝜑𝑀 − 𝜑𝐸𝐵)

− 𝐻𝑈 sin
2(𝜑𝑀 − 𝜙𝑈)]

1
2⁄

[𝐻𝑅 cos(𝜑𝑀 − 𝜑𝐻) + 𝐻𝐶 cos 4(𝜑𝑀 − 𝜙𝐶)

+ 𝐻𝐸𝐵 cos(𝜑𝑀 − 𝜙𝐸𝐵) + 𝐻𝑈 cos  2(𝜑𝑀 − 𝜙𝑈)]
1
2⁄  

 

(84) 

 

We now have the general dependence of the resonance frequency/field with 

the magnetization azimuthal angle. In order to numerically obtain the sample’s 

magnetic parameters, we must isolate the resonance field. This is done by noticing 

that equation (84) is a second order polynomial equation on 𝐻𝑅, 

 

𝐴100𝐻𝑅
2 + 𝐵100𝐻𝑅 + 𝐶100 = 0 

 

 

𝐻𝑅 =
−𝐵100 +√𝐵100

2 − 4𝐴100𝐶100
2𝐴100

 

 

(85) 

Where, 

 

𝐴100 = 𝐻𝑅
2[cos2(𝜑𝑀 − 𝜑𝐻)] 
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𝐵100 = 𝐻𝑅 cos(𝜑𝑀 − 𝜑𝐻) [𝐻𝐶1(1 + 2 cos 4(𝑝ℎ𝑖𝑀)) +
5𝐻𝑐2
32

[1 − cos 4(𝜑𝑀 − 𝜙𝑐2)]

+ 2𝐻𝐸𝐵 cos𝜑𝑀 + 4𝜋𝑀𝑒𝑓𝑓] 

 

𝐶100 = [
𝐻𝑐1
4
(3 + cos 4(𝜑𝑀 − 𝜙𝑐1))  +

5𝐻𝑐2
32

[1 − cos 4(𝜑𝑀 − 𝜙𝑐2)] + 4𝜋𝑀𝑒𝑓𝑓

+ 𝐻𝐸𝐵 cos(𝜑𝑀 − 𝜑𝐸𝐵) − 𝐻𝑈 sin
2(𝜑𝑀 − 𝜙𝑈)] [𝐻𝐶 cos 4(𝜑𝑀 − 𝜙𝐶)

+ 𝐻𝐸𝐵 cos(𝜑𝑀 − 𝜙𝐸𝐵) + 𝐻𝑈 cos  2(𝜑𝑀 − 𝜙𝑈)] − (
𝜔0
𝛾
)
2

 

 

And the magnetization’s equilibrium condition is given by nulling the first derivative, 

 

 
𝐻0 sin(𝜑𝑀 − 𝜑𝐻) −

1

4
𝐻𝑐1 sin 4(𝜑𝑀 − 𝜑𝐶) −

𝐻𝑢
2
sin 2(𝜑𝑀 − 𝜑𝑈) = 0 

 
(86) 

 

3.1.7 Samples grown on planes {𝟏𝟏𝟏} 

 

As discussed, the cubic anisotropy is especially sensitive to the plane of growth 

of the sample. While planes {100} put the cubic symmetry axis parallel to the plane of 

the sample (𝜃𝐶 = 0 → 𝜃𝑀 − 𝜃𝐶 = 𝜋 2⁄ ), the tilting in relation to the plane of the sample 

must be accounted for materials grown in the plane (111). Consider that the sample is 

in the 𝑥𝑦 plane, and that the cubic crystal is in a tilted coordinate plane, say 𝑥′𝑦′, so 

that, 

𝒙 = 𝑎𝒙̂     𝒚 = 𝑎𝒚̂ 

 

𝒙′ = 𝑎(𝒙̂ − 𝒛̂) → |𝒙′| = 𝑎√2   𝒚′ = 𝑎(𝒚̂ − 𝒛̂) 

 

To find the angle between the coordinate systems, let’s build an orthogonal basis for 

the plane (111)  by the Gram-Schmidt process. The component of 𝑦′  that is 

perpendicular to 𝑥′ is,  

 

𝒚′⊥ = 𝒚
′ −
(𝒚′ ∙ 𝒙′)𝒙′

|𝒙′|2
= 𝑎(𝒚̂ − 𝒛̂) −

𝑎(𝒙̂ − 𝒛̂)

2
= 𝑎 (𝒚̂ −

𝒙̂

2
−
𝒛̂

2
) 
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|𝒚′⊥| = 𝑎√
3
2⁄  

 

Now we find the normal of the planes 𝑥𝑦 and 𝑥′𝑦′, that is: 𝒛̂ and 𝒛′̂ 

 

𝒛̂′ =
(𝒙′ × 𝒚′⊥)

sin(𝜋 2⁄ )|𝒙
′||𝒚′⊥|

=
1

√3
[(𝒙̂ − 𝒛̂) × (𝒚̂ −

𝒙

2

̂
−
𝒛̂

2
)]

=
1

√3
[(𝒙 × 𝒚̂) −

(𝒙̂ × 𝒙̂)

2
−
(𝒙̂ × 𝒛̂)

2
− (𝒛̂ × 𝒚̂) +

(𝒛̂ × 𝒙̂)

2
+
(𝒛̂ × 𝒛̂)

2
]

=
1

√3
(𝒙 + 𝒚̂ + 𝒛̂) 

 

Finally, we find the angle between the coordinate systems to be, 

 

𝛿𝜃𝐶 = 𝑎𝑛𝑔(𝒛̂, 𝒛̂′) = cos
−1 (

𝒛̂ ∙ 𝒛̂′

|𝒛̂||𝒛̂′|
) = cos−1 (

1

√3
) ≈ −54.7356° 

 

Moreover, one may notice that the angle between 𝒙̂′ and 𝒚̂′ is 

 

cos−1 (
𝒛̂ ∙ 𝒛̂

2
) = 60° 

 

Since this represents the angle at which the unit base’s atoms are at, there should be 

a hindrance at these points, possibly leading to some deformation in the cubic 

anisotropy periodicity provided the easy axes change its angular configuration, as in 

Table 10. 

Table 10 - Angles of symmetry axes in (100) and (111) planes. 

 

Azimuthal angle of easy axes 
in (100) plane 

Azimuthal angle of easy axes 
in (111) plane 

0° 0° 

90° 60° 

180° 180° 
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270° 240° 

Source: the author. 

 

By considering 𝛿𝜃𝐶 ≈ −54.7356°, we can adapt the dispersion relation (84) to 

the (111) grown crystal, 

 

𝜔0 = 𝛾{𝐻𝑅 cos(𝜑𝑀 − 𝜑𝐻) + 𝐻𝑐1[−0.77775 + 0.1111 sin
2 2(𝜑𝑀 − 𝜙𝑐)]

+ 𝐻𝑐2(0.11690295)[−1 + cos 4(𝜑𝑀 − 𝜙𝐶)] + 4𝜋𝑀𝑒𝑓𝑓
+ 𝐻𝐸𝐵 cos(𝜑𝑀 − 𝜑𝐸𝐵)

− 𝐻𝑢(0.5)[1 − cos 2(𝜑𝑀 − 𝜙𝑢)]}
1
2⁄ {𝐻𝑅 cos(𝜑𝑀 −𝜑𝐻)

+ 𝐻𝑐1[0.44445 cos 4(𝜑𝑀 − 𝜙𝑐)]
+ 𝐻𝑐2[0.009259259257 cos 4(𝜑𝑀 − 𝜙𝑐)] + 𝐻𝐸𝐵 cos(𝜑𝑀 −𝜙𝐸𝐵)

+ 𝐻𝑢 cos  2(𝜑𝑀 − 𝜙𝑢)}
1
2⁄  

 

(87) 

 

Or, isolating the resonance field,  

 

𝐻𝑅 =
−𝐵111 +√𝐵111

2 − 4𝐴111𝐶111
2𝐴111

 (88) 

Where, 

𝐴111 = cos
2(𝜑𝑀 − 𝜑𝐻) 

 

𝐵111 = cos(𝜑𝑀 − 𝜑𝐻) {𝐻𝑐1[0.77775 + 0.4445 cos 4𝜑𝑀 − 0.1111 sin
2 2(𝜑𝑀 − 𝜙𝑐)]

+ 𝐻𝑐2[−0.11690295 + 0.1261622 cos 4(𝜑𝑀 − 𝜙𝑐)]

+ 𝐻𝑢[0.5 + 1.5 cos 2(𝜑𝑀 − 𝜙𝑢)] + 𝐻𝐸𝐵[2 cos(𝜑𝑀 − 𝜙𝐸𝐵)] + 4𝜋𝑀𝑒𝑓𝑓} 

 

𝐶111 = {𝐻𝑐1[−0.77775 + 0.1111 sin
2 2(𝜑𝑀 − 𝜙𝑐)]

+ 𝐻𝑐2(0.11690295)[−1 + cos 4(𝜑𝑀 − 𝜙𝑐)] + 4𝜋𝑀𝑒𝑓𝑓 + 𝐻𝐸𝐵 cos(𝜑𝑀

− 𝜑𝐸𝐵) − 𝐻𝑢(0.5)[1 − cos 2(𝜑𝑀 − 𝜙𝑢)]}{𝐻𝑐1[0.44445 cos 4(𝜑𝑀 − 𝜙𝑐)]

+ 𝐻𝑐2[0.009259259257 cos 4(𝜑𝑀 − 𝜙𝑐)] + 𝐻𝐸𝐵 cos(𝜑𝑀 − 𝜙𝐸𝐵)

+ 𝐻𝑢 cos  2(𝜑𝑀 − 𝜙𝑢)} − (
𝜔0
𝛾
)
2

 

 

And the positions of equilibrium of the magnetization are, 
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𝐻𝑅 sin(𝜑𝑀 −𝜑𝐻) − 𝐻𝑐1[0.11111 sin 4(𝜑𝑀 − 𝜙𝑐)]
− 𝐻𝑐2[0.037037 sin 4(𝜑𝑀 − 𝜙𝑐)] − 𝐻𝑢[0.5 sin 2(𝜑𝑀 − 𝜙𝑢)] = 0 

(89) 

Those expressions have all been fed to a code in python (APPENDIX) to 

numerically compute the desired magnetic parameters. The code starts reading the 

data from resonance field versus application angle. Then, it finds the equilibrium 

position of the magnetization at all angles by minimizing the free energy (equations 86 

and 89). Finally, it fits either equation (85) or (88) into the data whether the sample was 

grown in planes {100} or {111}, respectively. The fit employs the function curve_fit 

from scipy library, that solves a non-linear least-squares problem with bounds on the 

variables by minimizing the sum of the residuals’ squares. This process may be 

iteratively repeated several times feeding the new initial parameters with the output 

from the previous iteration. 

 

3.2 Techniques for attaining magnetization curves 

 

Magnetic materials may be placed into one of three groups: permanent 

magnets, high permeability materials and magnetic recording materials. Usually, each 

material’s application is determined by its hysteresis loop, which is a curve that depicts 

the magnetic field induction (𝑩) against the applied magnetic field. Several techniques 

are available to raise the hysteresis loop of magnetic samples, two of which are used 

in this work: the vibrating-sample magnetometer (VSM) and the magneto-optical Kerr 

effect spectroscopy (MOKE). 

In VSM, a sample is subjected to a constant magnetic field that orients the 

sample’s magnetic dipole moment towards the poles of pickup coils. Then, 

piezoelectric materials put the sample in an up and down vibration motion, causing a 

varying magnetic field which is detected by the Faraday’s law of induction thus enabling 

measurement of the total magnetization of the sample. On the other hand, the MOKE 

spectroscopy consists of throwing light over a sample and measuring the shift in the 

angle of polarization from the reflected beam. This shift is proportional to the local 

magnetization by the magneto-optical Kerr effect (MOKE), thus enabling the 

measurement of important parameters such as coercive field, saturation field and 

exchange bias fields relatively easily. Moreover, since the laser’s transverse section is 
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small, it is possible to raise the magnetization curves region-wise throughout the 

magnetic film, so that MOKE spectroscopy makes it relatively easy to characterize 

more complicated films. 

 

3.3 Sputtering deposition 

 

With the success of vacuum technology in sustaining very low pressures 

(about 10−11 − 10−9 Torr in volumes at the order of 1 m3), layer by layer deposition of 

thin films have spread out as one of the main manufacturing techniques in the 

investigation of thin films. In general, deposition techniques consist of gradual 

deposition of atoms/molecules over the surface of a neutral material, called the 

substrate; and can be carried out in a variety of methods, depending on composition, 

structure, thickness, and application. 

The processes consist of three steps: (1) the raw material (called target) is 

fragmented into neutral atoms, ions, or molecules by the action of some thermal source 

(e.g.: plasma, laser, electron bombardment, accelerated ions, etc.); then, (2) the fluid 

consisting of the fragments of the substance is accelerated towards the substrate; and, 

finally, (3) the fragments deposited in the substrate interact physically and chemically 

leading to nucleation processes that ultimately form larger portions of the material.  

In thermodynamics, nucleation is the first step in the formation of either a new 

thermodynamic phase or structure via self-assembly within a substance or mixture. It 

happens when an unusually large fluctuation occurs, in contrast with the common low 

amplitude fluctuations, thus triggering the transition: the new phase nucleus begins to 

expand instead of decay. The rate of nucleation is very sensitive to impurities in the 

system, occurring differently depending on the region of the sample. Whereas near 

surfaces there is the formation of heterogeneous nucleation sites, apart from the 

surface there will be more homogeneous nucleation sites. 

Cathodic vaporization, or sputtering deposition, is a deposition technique 

widely employed in industry for production of thin films and multilayers [24]. First, the 

chamber is evacuated to very low pressures (10−11 − 10−8 Torr) for several hours in 

order to eliminate residual gases and impurities. Next, a noble gas (e.g.: Ar, Ne) is 

injected into the chamber, forming an atmosphere with pressure in the order of 

10−3 Torr. Then a voltage is applied between the substrate (cathode) and the target 
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(anode), simultaneously ionizing the gas into a plasma state (𝑒− + 𝐴𝑟 ↔ 2𝑒− + 𝐴𝑟+); 

and accelerating the 𝐴𝑟+  ions towards the target with enough kinetic energy to 

fragment the raw material. This forms a vapor that, in turn, settles down over the 

substrate’s surface. 

 

 

 

Moreover, by using different targets, it is possible to pile up layers of several 

materials forming a multilayer. Current cathodic vaporization systems employ magnetic 

fields to confine the plasma in the target’s vicinity, thus enhancing the efficiency of the 

deposition process, this configuration is called magnetron sputtering. Naturally, it is 

important to adjust the voltage in order to minimize elastic collisions or penetrations 

into the target, which are detrimental to the quality of the film. For metals and other 

conductors, a DC voltage is applied; whereas in the case of insulators, a 

radiofrequency AC voltage is used to bypass the high resistance of the material, 

exploiting the reactive terms of the impedance.  

 

3.4 Liquid phase epitaxy 

 

The lattice-matched crystalline growth of one material over another is called 

epitaxy. In this work a few samples of yttrium iron garnet were produced by a 

homemade liquid phase epitaxy (LPE) system. This growth process exploits the fact 

Figure 17 - Illustration of sputtering deposition. 

Source: Rezende (2022). 
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that is possible to grow monocrystals of certain materials at temperatures much lower 

than their fusion point due to the properties of mixtures of two substances.  

In LPE a supersaturated solution of the material to be grown is brought into 

contact with the substrate for a certain period of time. If the substrate is single 

crystalline and the material to be grown has nearly the same lattice constant as the 

substrate, some of the material precipitates on the substrate while maintaining the 

crystalline quality. Thus, the precipitated material forms a lattice-matched epitaxial 

layer on the surface of the substrate. LPE is most frequently employed to produce 

semiconductor devices, and garnets of yttrium iron and rare earth materials. Its main 

advantages include high purity of outcomes, with wide variety of dopants available, 

lower cost than other epitaxy techniques, and high growth rate.  

 

3.5 Magnetic annealing 

 

In this work we study the effect of annealing with magnetic field in the magnetic 

anisotropies of YIG/IrMn thin films. By increasing the temperature and pressure the 

crystal lattice rearranges itself in a process of allotropy. In the case of alloys, allotropy 

stands for an element becoming soluble in the base element, followed by diffusion 

spreading of the solute towards a homogeneous distribution throughout the base metal. 

Then, when the solute is cooled back to their insoluble state, the dissolved constituents 

surge out of the solution, regrouping at the grain-boundaries. This precipitation ignites 

nucleation, which is the process of formation of the smallest stable aggregates of a 

crystalline phase.  

Annealing is a heat treatment that consists of heating up a material above its 

recrystallization temperature for a set amount of time before cooling. It works in three 

stages: (1) recovery: increase temperature until the internal stresses are relieved; (2) 

recrystallization: formation of new grains; and (3) granulation: growth of grains. In this 

stage, the grain size and phase composition have strong dependence on the cooling 

rate. Magnetic annealing stands for annealing performed with magnetic field. The 

induced magnetization aligns the atomic magnetic moments, introducing magnetic 

symmetry in the lattice’s formation. It causes irreversible changes in structure-sensitive 

magnetic properties, affecting properties such as magnetostriction and 

magnetoresistance [6]. 
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4 EXPERIMENTAL RESULTS 

 

I hereby present the results of this investigation on the origins of exchange 

bias in FM/AFM bilayers, as well as the effects of introducing antimony interlayers 

between these FM/AFM junctions. The FM layers (here standing for ferrimagnet and 

ferromagnet) employed are permalloy and yttrium iron garnet, or Ni81Fe19 (Py) and 

Y3Fe5O12 (YIG); and the antiferromagnet of choice is iridium manganese, or Ir20Mn80 

(IrMn). Samples were grown in the (111) plane in order to favor exchange coupling 

with IrMn [2]. 

Antiferromagnetic spintronics is a thriving field. AFMs possess excellent 

magnetotransport properties which would allow the generation of large spin currents 

through which magnetization in an adjacent FM layer could be efficiently switched 

[9,38]. AFMs also offer dynamics in the terahertz range suitable for ultrafast information 

processing [28]. In this picture, iridium manganese is a central material due to 

convenient features such as metallic nature, high Néel temperature and exceptionally 

high magnetocrystalline anisotropy. It has been observed in many crystallographic 

phases depending on the arrangement of iridium and manganese atoms in the unit cell, 

resulting in a variety of crystallographic and magnetic structures, although the majority 

of the structures found in spintronics can be considered to have an underlying fcc 

lattice (Figure 18) due to the large Ir atoms spacing out the Mn atoms. 

 

 

 

Regarding the fabrication processes used in this work, sputtering deposition 

was the most used since all samples were partially or completely fabricated this way. 

The sputtering system used here is the Balzers-Pfeiffer PLS 500, which comprises 

Figure 18 - Face-centered cubic (fcc) conventional cell. 

Source: Rezende (2022). 
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gas injection system, pumping system, DC power supply, rf generator, rotary substrate 

holder that enables multilayer deposition, quartz crystal microbalance, and space for 

complementary accessories (Figure 19). It is general procedure to heat the chamber 

at temperatures near 120 °C for a couple hours in order to remove moisture before 

initiating the process. Then, high vacuum is established (at the order of 10−7 Torr) at 

room temperature until it is time for deposition, when the argon flow kicks in, thus 

increasing the pressure to the order of 10−3 Torr. 

 

 

 

The FMR setup is homemade (Figure 20), consisting of a sweep oscillator with 

frequency stabilized at the resonance of a microwave cavity. The cavity is rectangular, 

with a quality factor 𝑄 = 2500 in the TE102 mode and is kept fixed relative to the poles 

of a Varian 9” magnet. Helmholtz coils on the cavity walls modulate the field at 1 kHz. 

The samples were cut in rectangular shape, glued to the end face of a phenolic rod, 

and located at the center of the cavity. The rod, in turn, is mounted on a goniometer 

that enables control of the sample’s angle in relation to the magnetic field axis. The 

gaussmeter is F.W. Bell model 9640, and the lock-in amplifier is a Signal Recovery 

7265 DSP Lock-in amplifier. 

 

(a)                                                  (b) 

Figure 19 - Photograph of the sputtering deposition equipment. (a) Balzers-Pfeiffer PLS 500 system. 
(b) rotary substrate holder. 

Source: the author. 
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4.1 Effect of magnetic annealing in YIG/IrMn thin films 

 

YIG, as many ferrites, respond to magnetic anneal [41]. In this section, the 

effects of magnetic annealing on YIG/IrMn thin films are studied. At first, YIG(30nm) 

samples were sputtering deposited (parameters given in Table 11), followed by a post-

deposition two-step heat treatment in O2 pressure near 0.4 kgf/cm3. Then, the samples 

were heated at a rate of 10 °C/min until 700 °C, kept at this temperature for 60 minutes; 

then cooled down to room temperature at a rate of 0.1 °C/min. Finally, the samples 

were heated at the same 10 °C/min rate until 550 °C, kept in this level for 30 minutes, 

and cooled down again at the 0.1 °C/min rate. After confirming the quality of the film, 

the Ir20Mn80 (74nm) layer was deposited by sputtering. 

 

(d)    

(b)    

(c)    

(a)    

Figure 20 - Photograph of FMR setup. (a) electromagnet field control. (b) electromagnet’s coil, 
resonant cavity, microwave bridge and Helmholtz coil. (c) rf generator and modulation control. (d) 
goniometer. 

Source: the author. 
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Table 11 - Deposition parameters of sample 1. 

Target 
Deposition 

time 

Dep. rate 

(nm min⁄ ) 
Pressure 
(Torr) 

Ag 
flux 
(sccm) 

Plasma 

𝐼(mA) 𝑃(W) 𝑉(V) 

YIG 11min 54 s 2.52 9.4 × 10−4 550 -- 80 235(𝑟𝑚𝑠)∗ 

IrMn 10 min 7.4 4 × 10−3 840 50 16 297 

*In the case of YIG the voltage is in alternate current. 

Source: the author. 

 

With the bilayer ready, annealing with magnetic field (𝐻 = 4 kOe) was carried 

out. The heating element, a resistive wire (𝑅 = 3.5 Ω), wraps around the metallic 

sample holder (Figure 21) while being manually energized by a Hewlett-Packard 

6274B DC power supply. At the highest temperature achieved (600 °C), the DC 

current was set to about 9 A . The temperature near the sample is probed by a 

thermocouple sharing the same metallic plate as the sample.  

 

 

 

Moreover, a flowing water-cooling system is employed to prevent overheating, 

and the hot site is thermally isolated from the external environment by vacuum 

produced by a pump that draws the air out of the space between the resistive wire and 

the equipment housing. Figure 22 shows the complete system. 

 

    (a)                                     (b) 

Source: the author. 

Figure 21 - Heating element. (a) Inner part. (b) Housing. 
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4.1.1 Sample 1 – YIG(30nm)/IrMn(74nm) 

 

Sample 1 was heated up to 570 °C (843.15 K), which is well above the Curie 

temperature of YIG ( 286 °C / 559 K ), and slightly lower than the estimated Néel 

temperature of Ir20Mn80 of about 600 °C (873.15 K); and then let cool down naturally to 

room temperature. After the first annealing, FMR measurements were carried out. 

Figure 23 shows the derivative of power absorbed for one of the measurements. 

 

 

(a)                                               (b) 

Figure 22 - Setup employed to perform annealing with magnetic field. (a) Side view. (b) Front view. 

Source: the author. 

Figure 23 – Derivative of power absorption. Output obtained from the FMR measurement in sample 1 
after first annealing. The experiments ran with rf power at 20 dbm, 𝜔𝑟𝑓 = 9.418 GHz, and Gaussmeter 

scale at 1 kOe.    

Source: the author. 
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The resonance field versus angle of the applied field is plotted in Figure 24, 

along with the curve from Equation 88 numerically fitted to the data with standard 

deviation 𝜎 = 3 Oe.  

 

 

 

Uniaxial anisotropy (𝐻𝑢 = 4 Oe ) was induced as a consequence of the 

directional order from the magnetic field during annealing. The obtained cubic 

anisotropy field (𝐻𝑐1 = 7.3 Oe) confirms the cubic crystal structure of YIG. Remarkably, 

the fitted exchange bias field (𝐻𝐸𝐵 = 9.2 Oe) is about seven times larger than previous 

measurements in the same sample prior to magnetic annealing [36].  

Next, the same sample was subjected to a second annealing with applied field 

4 kOe and maximum temperature 400 °C (673 K), higher than the Curie temperature of 

YIG. FMR spectrum is shown in Figure 25. 

 

Figure 24 - Plot of resonance field versus applied field angle for sample 1 after first annealing. Red 
dots stand for data. Blue solid line for fitted curve. Black dashed line for the exchange bias 
contribution. 

Source: the author. 
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Figure 26 shows the curve that fits the data with standard deviation of 𝜎 =

1.6 Oe. The twofold increase in cubic anisotropy (𝐻𝑐1 = 15 Oe) indicates susbtantial 

improvement of the crystal structure. Likewise, uniaxial anisotropy was slightly 

strengthened ( 𝐻𝑢 = 5.4 Oe ), indicating unidirectional order. On the other hand, 

exchange bias field has decreased drastically (𝐻𝐸𝐵 = 2 Oe). It is possible that the 

release of stresses in the lattice have wiped out the magnetic defects at the FM/AFM 

interface, which otherwise could be sources of exchange bias. 

 

 

Figure 25 - Derivative of power absorption. Output obtained from the FMR measurement in sample 1 
after second annealing. The experiments ran with rf power at 10 dbm, 𝜔𝑟𝑓 = 9.4171 GHz, and 

Gaussmeter scale at 1 kOe.    

Source: the author. 

Source: the author. 

Figure 26 - Plot of resonance field versus applied field angle for sample 1 after second annealing. 
Red dots stand for data. Blue solid line for fitted curve. Black dashed line for the exchange bias 
contribution. 
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4.1.2 Sample 2 – YIG(100nm)/IrMn(250nm) 

 

The rate of cooling also is an important parameter in annealing processes. For 

instance, it is a established practice for induction of uniaxial anisotropy to keep a slow 

cooling rate at temperatures just above the critical point for ordering; followed by a 

faster rate to avoid long-range ordering which is detrimental to uniaxial anisotropy in 

an alloy. We have prepared a sample of YIG(100nm)/Ir20Mn80(250nm) and carried 

annealing similar with before, except that now roughly controlling the cooling rate. The 

sample was heated up to 600 °C (873,15 K) and kept at this level for 25 minutes. Then, 

it was cooled at a rate of −10°𝐶/𝑚𝑖𝑛  until about 195 °C , well below the Currie 

temperature of YIG. From this point, the sample was let cool down naturally to room 

temperature.  

Comparison of the power absorption spectra at 0° and 180° (Figure 27) shows 

that from the two resonance modes, one of them shifts while the other remains almost 

the same, suggesting that the mode of higher magnitude has exchange bias. 

 

 

 

Figure 28 shows the curve fit with standard deviation of 𝜎 = 0.8 Oe. There was 

𝐻𝑐1 = 8.4 Oe, 𝐻𝑢 = 1.7 Oe, and 𝐻𝐸𝐵 = 2 Oe indicating an increase in crystallographic 

order, but a weak exchange coupling with the antiferromagnet. 

(b) 

(a) 

Figure 27 - Derivative of power absorption. Output obtained from the FMR measurement in sample 2 

after first annealing. The experiments ran with rf power at 1 dbm, 𝜔𝑟𝑓 = 9.4177 GHz, and Gaussmeter 

scale at 300 Oe. (a) 180°. (b) 0°.    

Source: the author. 
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4.2 Exchange bias in trilayers FM/Sb/AFM 

 

Still on our investigation for exchange bias in YIG/AFM bilayers, YIG (66nm) 

samples were prepared by LPE following the traditional PbO/B2O3 method [32]. The 

synthesis parameters are found in Table 12. 

 

Table 12 - LPE parameters for samples 3 and 4. 

Material 
Growth 

time 

Growth 
temperature 

(°𝐶) 

Warm 
up time 

Growth 
rate 

(𝑟𝑝𝑚) 

Spin-off 
rate 

(𝑟𝑝𝑚) 

Spin-off 
time 

YIG 1min 30 𝑠 943 5 𝑚𝑖𝑛 120 700 10 𝑠 
Source: the author. 

 

Then, two samples were separated (samples 3 and 4) and layers of 

IrMn(150nm) and Sb(25nm)/IrMn(150nm), respectively, were sputtering deposited 

over two of the YIG samples (deposition parameters in Table 13). The FMR spectra 

for each sample are shown in Figure 29 and Figure 31. 

 

Table 13 - Deposition parameters for samples 3 and 4. 

Target 
Deposition 

time 

Deposition 
rate 

(nm min⁄ ) 

Pressure 
(Torr) 

Ag flux 
(sccm) 

Plasma 

𝐼(mA) 𝑃(W) 𝑉(V) 

Figure 28 - Plot of resonance field versus applied field angle for sample 2 after first annealing. Red 
dots stand for data. Blue solid line for fitted curve. Black dashed line for the exchange bias 
contribution. 

Source: the author. 
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Sb 6 min 4.3 7.5 × 10−4 550 50 20 376 

IrMn 20min 16 s 7.4 2.9 × 10−3 840 50 16 303 
Source: the author. 

 

4.2.1 Sample 3 – YIG(66nm)/IrMn(150nm) 

 

Sample 3 is YIG made by LPE, which typically has very low relaxation rate (<

10 Oe). The power absorption spectrum is in Figure 29.  

 

 

 

Figure 30 shows a clear signature of cubic anisotropy for sample 3, with 𝐻𝑐1 =

6 Oe which is typical of YIG grown by LPE. Influences from uniaxial anisotropy and 

exchange bias were barely found, 𝐻𝑢 = 1 Oe and 𝐻𝐸𝐵 = 0.4 Oe, and the fit’s standard 

deviation is 𝜎 = 0.93 Oe. 

 

Figure 29 - Derivative of power absorption. Output obtained from the FMR measurement in sample 

3. The experiments ran with rf power at 1 dbm, 𝜔𝑟𝑓 = 9.417 GHz, and Gaussmeter scale at 300 Oe.    

Source: the author. 
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4.2.2 Sample 4 - YIG(66nm)/Sb(25nm)/IrMn(150nm)   

  

In sample 4 we have tried to evaluate the influence of an antimony interlayer 

on exchange bias. There are reports of antimony holding on to its topological surface 

states in Sb(15nm)/YIG bilayers, demonstrated by observing the invariance of spin-

pumping signal to the direction of the spin current [1]. If this is the case, the interfacial 

spin polarization produced by spin-momentum locking may have an effect on the FM 

magnetization. 

Figure 31 shows the FMR power absorption spectrum obtained for sample 4. 

Due to the good quality of our YIG films made by LPE, magnetostatic modes are 

excited both below (surface modes) and above (volume modes) the FMR field. This 

indicates that the current flowing through the Sb layers does not introduce extra 

damping or change the FMR field. 

 

Source: the author. 

Figure 30 - Plot of resonance field versus applied field angle for sample 3. Red dots stand for data. 

Blue solid line for fitted curve. Black dashed line for the exchange bias contribution. 
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The curve for the YIG/Sb/IrMn (Figure 32) is similar to its no-antimony 

counterpart, with the difference that the peak near 120° is slightly shifted upwards, 

suggesting the existence of unidirectional anisotropy. Indeed, the fitting (standard 

deviation 𝜎 = 1.7 Oe) gave exchange bias field of 𝐻𝐸𝐵 = 3 Oe, and, as expected, a 

dominant cubic anisotropy field of 𝐻𝑐1 = 7 Oe. Uniaxial anisotropy was also found with 

𝐻𝑢 = 3.5 Oe. 

 

 

Figure 31 - Derivative of power absorption. Output obtained from the FMR measurement in sample 
4. The experiments ran with rf power at −5 dbm, 𝜔𝑟𝑓 = 9.4164 GHz, and Gaussmeter scale at 

100 Oe.    

Source: the author. 

Source: the author. 

Figure 32 - Plot of resonance field versus applied field angle for sample 4. Red dots stand for data. 
Blue solid line for fitted curve. Black dashed line for the exchange bias contribution. 
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In order to confirm the FMR result, we have raised the hysteresis loops by the 

VSM technique (Figure 33). The displacement between the 0° and 90° curves give an 

estimation of the exchange bias field. In this case, 𝐻𝐸𝐵 = 3.2 Oe, which is in good 

agreement with the FMR measurement. 

 

 

 

4.2.3 Sample 5 – Py(12nm)/IrMn(15nm) 

 

Assuming that the previous results were due to antimony’s properties, we have 

decided to verify if a similar effect would happen to another material used as the FM 

layer, thus giving room to comparison with the results in YIG. For that role permalloy 

(Ni81Fe19) stands out as a natural choice to due to its smooth resonance curves and 

strong exchanges bias fields. Moreover, it has been shown [35] that antimony in Sb/Py 

bilayers maintains its surface states at Sb thicknesses up 30 nm. 

 Invented in 1914, permalloy is a polycrystalline nickel-iron ferromagnetic alloy 

that features high relative permeability (≈ 105 ), very small coercivity, near zero 

magnetostriction, and significant anisotropic magnetoresistance. Moreover, it has 

face-centered cubic (fcc) crystal structure with lattice constant of approximately 𝑎 =

0.355 nm  in most cases [4,20,40]. For reference, Figure 34 shows the angular 

dependence of the resonance field in a regular Py(12nm)/IrMn(15nm) bilayer that gives 

a clear exchange bias field of 𝐻𝐸𝐵 = 63 Oe ; while the sputtering parameters are 

displayed in Table 14. 

(a) (b) 

Figure 33 – VSM measurements at (a) 0° and (b) 90°. Each point corresponds to the average over 
thirty magnetization values for every applied field. 

Source: the author. 
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Table 14 - Deposition parameters for sample 5. 

Target 
Deposition 

time  

Deposition 
rate 

(nm min⁄ ) 

Pressure 
(Torr) 

Ag 
flux 
(sccm) 

Plasma 

𝐼(mA) 𝑃(W) 𝑉(V) 

Py 2min 17 𝑠 5.23 9.5 × 10−4 550 50 21 390 
Ir20Mn80 2min 2 𝑠 7.4 2.9 × 10−3 840 50 16 298 

Source: the author. 

 

  

 

Next, Py(10nm)/Sb(t)/IrMn(30nm) trilayers ( 𝑡 = 30, 20, 10, 5 nm ) were 

deposited over a SiO2 substrate by DC sputtering, corresponding to samples 6, 7, 8 

and 9, respectively. The power absorption spectra of the samples are summarized in 

Figure 35. 

 

Figure 34 - Plot of resonance field versus applied field angle for sample 5. Red dots stand for data. 
Blue solid line for fitted curve. Black dashed line for the exchange bias contribution. 

Source: the author. 
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4.2.4 Sample 6 – Py(10nm)/Sb(30nm)/IrMn(30nm)   

 

For sample 6, the pre-deposition pressure was at 1.6 × 10−7 Torr  and 

temperature at 24 °C, and the deposition parameters are given in Table 15.  

 

Table 15 - Deposition parameters for sample 6. 

Target 
Deposition 

time 

Deposition 
rate 

(nm min⁄ ) 

Pressure 
(Torr) 

Ag flux 
(sccm) 

Plasma 

𝐼(mA) 𝑃(W) 𝑉(V) 

Py 1min 55 s 5.23 9.5 × 10−4 550 50 21 390 

Sb 6min 59 s 4.29 8 × 10−4 550 50 18 336 

Ir20Mn80 4min 3 s 7.4 2.9 × 10−3 840 50 16 298 
Source: the author. 

 

(a) (b) 

(c) (d) 

Figure 35 – Summary of the derivatives of power absorption for several Sb thicknesses. Output 
obtained from the FMR measurement in samples 6 (d), 7 (c), 8 (b) and 9 (a). The experiments ran 

with rf power at 20 dbm, and (a) 𝜔𝑟𝑓 = 9.412 GHz, and Gaussmeter scale at 1 kOe; (b) 𝜔𝑟𝑓 =
9.414 GHz, and Gaussmeter scale at 300 Oe; (c) 𝜔𝑟𝑓 = 9.411 GHz, and Gaussmeter scale at 1 kOe; (d) 

𝜔𝑟𝑓 = 9.416 GHz, and Gaussmeter scale at 1 kOe. 

 

Source: the author. 
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Figure 36 plots the measured resonance fields versus angle in a fashion 

typical of uniaxial anisotropy and exchange bias combined. The parameters were 

numerically evaluated, giving exchange bias field 𝐻𝐸𝐵 = 2.5 Oe, cubic anisotropy field 

𝐻𝑐1 = 1.7 Oe, and uniaxial anisotropy field 𝐻𝑢 = 4.4 Oe with standard deviation 𝜎 =

1.5 Oe. 

 

 

 

4.2.5 Sample 7 – Py(10nm)/Sb(20nm)/IrMn(30nm)  

 

For sample 7 the pre-deposition pressure was stabilized at 1.3 × 10−7 Torr 

and the temperature at 23 °C. Table 16 shows the deposition parameters. The fitted 

curve in Figure 37 gives 𝐻𝐸𝐵 = 1.4 Oe, 𝐻𝑢 = 2.5 Oe, 𝐻𝑐1 = 1.7 Oe with 𝜎 = 0.75 Oe. 

 

Table 16 - Deposition parameters for sample 7. 

Target 
Deposition 

time 

Deposition 
rate 

(nm min⁄ ) 

Pressure 
(Torr) 

Ag flux 
(sccm) 

Plasma 

𝐼(mA) 𝑃(W) 𝑉(V) 

Py 1min 55 s 5.23 9.5 × 10−4 550 50 21 390 

Sb 4min 40 s 4.29 7 × 10−4 550 50 20 375 

Ir20Mn80 4min 3 s 7.4 2.9 × 10−3 840 50 15 292 
Source: the author. 

 

Figure 36 - Plot of resonance field versus applied field angle for sample 6. Red dots stand for data. 
Blue solid line for fitted curve. Black dashed line for the exchange bias contribution. 

Source: the author. 
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4.2.6 Sample 8 – Py(10nm)/Sb(10nm)/IrMn(30nm) 

 

Pre-deposition pressure was stabilized at 1.4 × 10−7 Torr, and temperature at 

23 °C. Deposition parameters are found in Table 17. The fitted curve (Figure 38) give 

𝐻𝐸𝐵 = 0.8 Oe, 𝐻𝑢 = 2 Oe, 𝐻𝑐1 = 1 Oe; with 𝜎 = 0.8 Oe. 

 

Table 17 - Deposition parameters for sample 8. 

Target 
Deposition 

time 

Deposition 
rate 

(nm min⁄ ) 

Pressure 
(Torr) 

Ag flux 
(sccm) 

Plasma 

𝐼(mA) 𝑃(W) 𝑉(V) 

Py 1min 55 s 5.23 9.5 × 10−4 550 50 21 390 

Sb 2min 20 s 4.29 8.5 × 10−4 560 50 19 359 

Ir20Mn80 4min 3 s 7.4 2.9 × 10−3 840 50 15 295 
Source: the author. 

 

Figure 37 - Plot of resonance field versus applied field angle for sample 7. Red dots stand for data. 
Blue solid line for fitted curve. Black dashed line for the exchange bias contribution. 

Source: the author. 
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4.2.7 Sample 9 – Py(10nm)/Sb(5nm)/IrMn(30nm)   

 

Pre-deposition pressure was stabilized at 1.6 × 10−7 Torr, and temperature at 

24 °C. Deposition parameters in Table 18. The fitted curve (Figure 39) gives 𝐻𝐸𝐵 =

0.6 Oe , 𝐻𝑢 = 3.4 Oe , 𝐻𝑐1 = 0 Oe , with 𝜎 = 0.23 Oe . In this case, uniaxial anisotropy 

dominates. 

 

Table 18 - Deposition parameters for sample 9. 

Target 
Deposition 

time  

Deposition 
rate 

(nm min⁄ ) 

Pressure 
(Torr) 

Ag flux 
(sccm) 

Plasma 

𝐼(mA) 𝑃(W) 𝑉(V) 

Py 1min 55 s 5.23 9.5 × 10−4 550 50 21 390 
Sb 1min 10 s 4.3 8 × 10−4 550 50 18 336 

Ir20Mn80 4min 3 s 7.4 2.9 × 10−3 840 50 16 298 
Source: the author. 

 

Figure 38 - Plot of resonance field versus applied field angle for sample 8. Red dots stand for data. 
Blue solid line for fitted curve. Black dashed line for the exchange bias contribution. 

Source: the author. 



93 
 

 
 

 

Figure 40 shows the dependence of exchange bias effective fields versus 

thickness of the Sb layer. The data was fitted by a 2nd order polynomial curve. It is 

important to have in mind, however, that in spite of this apparently exotic increase, the 

estimated exchange bias fields are much lower than those for Py/IrMn without 

antimony (Figure 34), so that further measurements at thicker interlayers are desirable 

to unambiguously confirm whether this increase is indeed a consistent effect, or 

random fluctuations. 

 

 

Figure 39 - Plot of resonance field versus applied field angle for sample 9. Red dots stand for data. 
Blue solid line for fitted curve. Black dashed line for the exchange bias contribution. 

Source: the author. 

Figure 40 – Plot of exchange bias effective field versus thickness of antimony layer. 

Source: the author. 
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5 FINAL CONSIDERATIONS 

 

In the first round of experiments, two sputtering deposited YIG/IrMn samples 

were subjected to magnetic annealing in order to evaluate the heat treatment influence 

in the crystallographic structure, as well as to tentatively establish the parameters that 

most effectively induce exchange bias in such films. Indeed, this was accomplished to 

Sample 1 – YIG(30nm)/IrMn(74nm), that developed exchange bias field of 𝐻𝐸𝐵 =

9.3 Oe after the first annealing (Figure 24), corresponding to a sevenfold increase from 

the field in the same sample prior to annealing, which was measured to be 𝐻𝐸𝐵 =

1.4 Oe [36]. 

This result was obtained for annealing at temperature 𝑇 = 570 °C followed by 

natural cooling. On the other hand, longer times at high temperatures and slower 

cooling rate seemed to be detrimental to exchange bias, while favoring uniaxial 

anisotropy, as seen in Figure 26 and Figure 28 for Sample 1 – YIG(30nm)/IrMn(74nm) 

after second annealing, and Sample 2 – YIG(100nm)/IrMn(250nm), respectively. 

Moreover, annealing seemed to strengthen the cubic anisotropy in both cases. A 

possible explanation to this result is that, as annealing releases stresses in the IrMn 

crystal lattice it generates lattice order, thereby reducing terraces and steps which, in 

turn, reduce the number of magnetic domains at the interface that would otherwise 

contribute to exchange bias. 

Alternatively, the discrepancy between the two samples could be caused by 

the difference in the thermal expansion coefficients of YIG and IrMn, so that the heating 

and cooling processes may induce strain at the interface of the two mismatched 

materials, modifying the magnetic properties with strong dependence on the cooling 

rate and maximum temperature. 

The second round of measurements addresses the effect of antimony 

interlayers in ferromagnet-antiferromagnet arrangements. Antimony is a diamagnetic 

semimetal known to host topological surface states, thereby drawing much attention 

for its unique quantum properties. First, measurements on YIG/Sb(25nm)/IrMn were 

carried out, suggesting the existence of unidirectional anisotropy, having this 

assumption been tested both by FMR (Figure 32) and VSM (Figure 33). Looking 

further onto that surprising result, Py/Sb(t)/IrMn samples with (𝑡 =  5, 10, 20, 30 nm) 
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were deposited by DC sputtering, hoping to gain further insights by comparison of the 

responses from YIG and Py.  

The results provide evidence of exchange bias acting (faintly) in the trilayers, 

which could be caused either by the distance action of the FM/AFM coupling persisting 

through the Sb layer; or by the direct coupling between antimony and the FM. The first 

explanation seems unlikely since Figure 40 shows an increase of exchange bias field 

with the thickness of antimony, which is not consistent with several reports of 

exponential decay limited to the distance of a few dozens of angstroms based on the 

RKKY interaction [21,33,34]. Instead, I am inclined to believe that the change in 

exchange bias is due to different conditions at the interface for the different samples, 

which brings me back to the second hypothesis: a coupling between antimony’s spin-

momentum locked electrons and the FM electrons. 

As discussed in Section 2.7.5, spin-momentum locking is a facet of Rashba 

spin-orbit splitting that causes spins’ orientations to be locked perpendicular to the 

electrons’ linear momentum. Assuming antimony to be hosting surface states, the spin-

pumped current in Sb would be topologically locked, which could result in coupling with 

the FM spins by the exchange interaction. In fact, there are reports of antimony 

maintaining its topological surface states in Sb/YIG and Sb/Py interface for Sb 

thicknesses up to a few dozens of nanometers [1,35], which is compatible with the 

present results. Moreover, magnetoresistance measurements in topological insulator-

based spin-valve devices of Bi2Se3 with Ni contact electrodes have found convincing 

evidence of spin polarization from spin-momentum locked topological surface states 

influencing the magnetization of adjacent FM layers [37]. 

If confirmed, the induction of exchange bias mediated by spin-momentum 

locking could open new avenues in spintronics. For instance, one could control 

exchange bias intensity by passing current at the Sb surface; or, by finding the 

polarization of exchange bias, one could estimate the angle of polarization of the 

topological currents in Sb, as well as their momentum vector. 
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APPENDIX A - NUMERICAL FITTING 

 

Python code for numeric fitting of FMR curve. Code ran in IDE Visual Studio Code.  

 

 

import numpy as np 

import matplotlib.pyplot as plt 

import sympy as smp 

from scipy import optimize 

from scipy.optimize import curve_fit, bisect, minimize,least_squares, fsolve 

import pandas as pd 

from scipy import interpolate 

#algumas dessas bibliotecas não serão usadas 

import scipy as sp 

 

#Só para vizualizar os dados do arquivo que deve ser ajustado 

Dados = pd.read_excel("") 

print(Dados) 

Degree = np.array(Dados['Deg'])   #Degree e Degree_rad se refere aos ângulos phi_H 

Degree_rad = np.pi*Degree/180 

H_resonance = np.array(Dados['Hr'])   

Linewidth = np.array(Dados['dH']) 

plt.plot(Degree, H_resonance, 'o') 

plt.plot(Degree, Linewidth, 'o') 

plt.show() 

ang_rad = np.linspace(0, 2*np.pi, 500) 

ang = 180*ang_rad/np.pi 

 

#definindo as equações que governam a dinâmica da magnetização num experimento 

de FMR 

 

#Resolver a equação para o modo uniforme de FMR, sob as condições apropriadas, 

nos permite escrever H_r como uma função de segundo grau 
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def A(phi_H,phi_M): 

   return (np.cos(phi_M - phi_H))**2 

 

def B(phi_H, phi_M, M_eff, Heb, phi_Heb, Hc1, phi_Hc1, Hc2, Hu, phi_Hu): 

   return ((Hc1)*(-0.77775+((0.1111)*(np.sin(2*(phi_M-

phi_Hc1)))**2)+(0.44445)*np.cos(4*(phi_M-phi_Hc1)))+Hc2*(-

0.11690295+0.1261622*np.cos(4*(phi_M-

phi_Hc1)))+(Hu*0.5)*(1+3*np.cos(2*(phi_M-phi_Hu)))+2*Heb*np.cos(phi_M-

phi_Heb)+4*np.pi*M_eff)*np.cos(phi_M-phi_H) 

 

def C(phi_H, phi_M, M_eff, Heb, phi_Heb, Hc1, phi_Hc1, Hc2, Hu, phi_Hu, gamma): 

   return ((Hc1)*(-0.77775+0.1111*(np.sin(2*(phi_M-

phi_Hc1)))**2)+(Hc2*0.11690295)*(-1+np.cos(4*(phi_M-

phi_Hc1)))+4*np.pi*M_eff+Heb*(np.cos(phi_M-phi_Heb))-(Hu*0.5)*(1-

np.cos(2*(phi_M-phi_Hu))))*(Hc1*0.44445*np.cos(4*(phi_M-

phi_Hc1))+Hc2*0.009259259257*np.cos(4*(phi_M-phi_Hc1))+Heb*np.cos(phi_M-

phi_Heb)+Hu*np.cos(2*(phi_M-phi_Hu))) - (9.416/gamma)**2  

 

 

 

Heb_min = 0.00 

Heb_0 = Heb_min + 0.001 

Heb_max = 0.01 

 

Hc1_min = 0.00 

Hc1_0 = Hc1_min + 0.0005 

Hc1_max = 0.03 

 

Hc2_min = 0 

Hc2_0 = Hc2_min + 0.05 

Hc2_max = 0.1 

 

Hu_min = 0.00 
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Hu_0 = Hu_min + 0.001 

Hu_max = 0.02 

 

phi_EB_min = (-180)*(np.pi/180) 

phi_EB_max = (180)*(np.pi/180) 

phi_EB_0 = (phi_EB_min + phi_EB_max)/2  

 

 

phi_C1_min = (-50)*(np.pi/180) 

phi_C1_max = (50)*(np.pi/180) 

phi_C1_0 =  (phi_C1_min + phi_C1_max)/2                                      

 

 

phi_Hu_min = (-90)*(np.pi/180) 

phi_Hu_max = (90)*(np.pi/180) 

phi_Hu_0 = (phi_Hu_min + phi_Hu_max)/2  

 

M_eff_min = 0 

M_eff_max = 3 

M_eff_0 = (M_eff_min + M_eff_max)/2 

 

 

#Usando f_solve para achar as raízes (É mais simples do que o método da secante) 

 

 

def Phi_M_equilibrio(phi_M, phi_H, Hr, Hc1, phi_Hc1, Hc2, Hu, phi_Hu): 

    return Hr*np.sin(phi_M-phi_H)-0.11111*Hc1*np.sin(4*(phi_M-phi_Hc1))-

0.037037*Hc2*np.sin(4*(phi_M-phi_Hc1))-0.5*Hu*np.sin(2*(phi_M-phi_Hu)) 

 

 

rootsz = [] 

for i in range(len(H_resonance)):                                                           # (Hc1, AngC1, 

Hc2, Hu, phi_Hu) 
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    roots = fsolve(Phi_M_equilibrio, x0 = Degree_rad[i], args = (Degree_rad[i], 

H_resonance[i], Hc1_0, phi_C1_0, Hc2_0, Hu_0, phi_Hu_0), xtol=1.49012e-08)       

#antes era args = (...0.4, phi_u=0) 

    rootsz.append(roots) 

#ROOTS = np.array(roots) 

phi_M_eq = np.squeeze(np.array(rootsz)) 

plt.plot(Degree_rad, phi_M_eq,'o') 

plt.show() 

 

#Phi_M_equilibrio(phi_H, phi_M, Hr, Hu, phi_U): 

 

#Fazendo o ajuste utlizando o método curve_fit 

    

def H_r(X, M_eff, Heb, phi_Heb, Hc1, phi_Hc1, Hc2, Hu, phi_Hu, gamma): 

   phi_H, phi_M = X 

   return -0.5*B(phi_H, phi_M, M_eff, Heb, phi_Heb, Hc1, phi_Hc1, Hc2, Hu, 

phi_Hu)/A(phi_H,phi_M) + 0.5*np.sqrt((B(phi_H, phi_M, M_eff, Heb, phi_Heb, Hc1, 

phi_Hc1, Hc2, Hu, phi_Hu))**2 - 4*A(phi_H,phi_M)*C(phi_H, phi_M, M_eff, Heb, 

phi_Heb, Hc1, phi_Hc1, Hc2, Hu, phi_Hu, gamma))/A(phi_H,phi_M)   

  

    

def H_r_plot(phi_H, phi_M, M_eff, Heb, phi_Heb, Hc1, phi_Hc1, Hc2, Hu, phi_Hu, 

gamma): 

   return -0.5*B(phi_H, phi_M, M_eff, Heb, phi_Heb, Hc1, phi_Hc1, Hc2, Hu, 

phi_Hu)/A(phi_H,phi_M) + 0.5*np.sqrt((B(phi_H, phi_M, M_eff, Heb, phi_Heb, Hc1, 

phi_Hc1, Hc2, Hu, phi_Hu))**2 - 4*A(phi_H,phi_M)*C(phi_H, phi_M, M_eff, Heb, 

phi_Heb, Hc1, phi_Hc1, Hc2, Hu, phi_Hu, gamma))/A(phi_H,phi_M) 

 

phi_M_interp = np.interp(ang_rad, Degree_rad, phi_M_eq) 

#                                                                      # (1-Meff, 2-Heb, 3-|_°, 4-Hc1, 5-|_º, 6-

Hc2,  7-Hu,  8-|_°, 9-gamma)                       (1-Meff, 2-Heb, 3-|_°, 4-Hc1, 5-|_º, 6-Hc2,  

7-Hu,  8-|_°, 9-gamm9a)                                                   
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Hr_opt, Hr_cov = curve_fit(H_r, (Degree_rad, phi_M_eq), H_resonance, p0 = [M_eff_0, 

Heb_0, phi_EB_0, Hc1_0, phi_C1_0, Hc2_0, Hu_0, phi_Hu_0, 2.96], bounds = 

((M_eff_min, Heb_min, phi_EB_min, Hc1_min, phi_C1_min, Hc2_min, Hu_min, 

phi_Hu_min, 2.9),(M_eff_max, Heb_max, phi_EB_max, Hc1_max, phi_C1_max, 

Hc2_max, Hu_max, phi_Hu_max, 2.98)),  maxfev = 2000000) 

 

M_eff, Heb, phi_eb, Hc1, phi_Hc1, Hc2, Hu, phi_Hu, gamma = Hr_opt 

#Erro = np.sqrt(np.diag(Hr_cov)) 

 

print("Valores:", "M_eff", Hr_opt[0], "Heb", Hr_opt[1], "phi_Heb", (180/np.pi)*Hr_opt[2], 

"Hc1", Hr_opt[3], "phi_Hc1", (180/np.pi)*Hr_opt[4], "Hc2", Hr_opt[5], "Hu" , 

Hr_opt[6],"phi_Hu", (180/np.pi)*Hr_opt[7], "gamma", Hr_opt[8],  sep = '\n') 

#print("Erros:", Erro) 

plt.plot(ang, H_r_plot(ang_rad, phi_M_interp, Hr_opt[0], Hr_opt[1], Hr_opt[2], 

Hr_opt[3], Hr_opt[4], Hr_opt[5], Hr_opt[6], Hr_opt[7], Hr_opt[8]), 'r', linewidth = 2) 

plt.plot(Degree, H_resonance, 'o') 

plt.show() 

 

 

r = H_resonance - H_r_plot(Degree_rad, phi_M_eq, Hr_opt[0], Hr_opt[1], Hr_opt[2], 

Hr_opt[3], Hr_opt[4], Hr_opt[5], Hr_opt[6], Hr_opt[7], Hr_opt[8]) 

Desvio_padrao = np.sqrt(np.average(r**2)) 

print("Desvio Padrão:", Desvio_padrao) 

 

 

#refazendo o ajuste realimentando os parâmetros obtidos anteriormente 

 

for i in range(1, 50): 

    rootsz = [] 

    for i in range(len(H_resonance)): 

        roots = fsolve(Phi_M_equilibrio, x0 = Degree_rad[i], args = (Degree_rad[i], 

H_resonance[i], Hr_opt[3], Hr_opt[4], Hr_opt[5], Hr_opt[6], Hr_opt[7]), xtol=1.49012e-

08) 
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        rootsz.append(roots) 

         

    phi_M_eq = np.squeeze(np.array(rootsz)) 

                                                                                                                                                                                                                           

# (1-Meff, 2-Heb, 3-|_°, 4-Hc1, 5-|_º, 6-Hc2,  7-Hu,  8-|_°, 9-gamma)                                                           

    Hr_opt, Hr_cov = curve_fit(H_r, (Degree_rad, phi_M_eq), H_resonance, p0 = 

[Hr_opt[0], Hr_opt[1], Hr_opt[2], Hr_opt[3], Hr_opt[4], Hr_opt[5], Hr_opt[6], Hr_opt[7], 

Hr_opt[8]], bounds = ((M_eff_min, Heb_min, phi_EB_min, Hc1_min, phi_C1_min, 

Hc2_min, Hu_min, phi_Hu_min, 2.9),(M_eff_max, Heb_max, phi_EB_max, Hc1_max, 

phi_C1_max, Hc2_max, Hu_max, phi_Hu_max, 2.98)),  maxfev = 2000000) 

 

    M_eff, Heb, phi_eb, Hc1, phi_Hc1, Hc2, Hu, phi_Hu, gamma = Hr_opt 

    r = H_resonance - H_r_plot(Degree_rad, phi_M_eq, Hr_opt[0], Hr_opt[1], Hr_opt[2], 

Hr_opt[3], Hr_opt[4], Hr_opt[5], Hr_opt[6], Hr_opt[7], Hr_opt[8]) 

    Desvio_padrao = np.sqrt(np.average(r**2)) 

 

#plotando 

print("Valores:", "M_eff", Hr_opt[0], "Heb", Hr_opt[1], "phi_Heb", (180/np.pi)*Hr_opt[2], 

"Hc1", Hr_opt[3], "phi_Hc1", (180/np.pi)*Hr_opt[4], "Hc2", Hr_opt[5], "Hu" , 

Hr_opt[6],"phi_Hu", (180/np.pi)*Hr_opt[7], "gamma", Hr_opt[8],  sep = '\n') 

plt.plot(ang, H_r_plot(ang_rad, phi_M_interp, Hr_opt[0], Hr_opt[1], Hr_opt[2], 

Hr_opt[3], Hr_opt[4], Hr_opt[5], Hr_opt[6], Hr_opt[7], Hr_opt[8]), 'r', linewidth = 2) 

plt.plot(ang, H_r_plot(ang_rad, phi_M_interp, Hr_opt[0], Hr_opt[1], Hr_opt[2], 0, 0, 0, 

0, 0, Hr_opt[8]), color = 'black', linewidth = 1, linestyle = "dashed") 

#plt.plot(ang, H_r_plot(ang_rad, phi_M_interp, Hr_opt[0], 0, 0, Hr_opt[3], Hr_opt[4], 0, 

0, 0, Hr_opt[8]), color = 'black', linewidth = 0.5, linestyle = "dashed") 

#plt.plot(ang, H_r_plot(ang_rad, phi_M_interp, Hr_opt[0], 0, 0, 0, 0, 0, Hr_opt[6], 

Hr_opt[7], Hr_opt[8]), color = 'black', linewidth = 0.5, linestyle = "dashed") 

 

#curva teste 

#plt.plot(ang, H_r_plot(ang_rad, phi_M_interp, Hr_opt[0], Hr_opt[1], Hr_opt[2], 0.005, 

Hr_opt[4], 0, Hr_opt[6], Hr_opt[7], Hr_opt[8]), color = 'black', linewidth = 1, linestyle = 

'dashed') 
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plt.errorbar(Degree, H_resonance, fmt = 'o',  yerr = 0.005, ecolor = 'blue', elinewidth = 

1) 

plt.show() 

 

print("Desvio Padrão:", Desvio_padrao) 

 

# Exportando o ajuste 

#GERAL 

#Hr = H_r_plot(ang_rad, phi_M_interp, Hr_opt[0], Hr_opt[1], Hr_opt[2], Hr_opt[3], 

Hr_opt[4], Hr_opt[5], Hr_opt[6], Hr_opt[7], Hr_opt[8]) 

 

#Exchange Bias apenas 

Hr = H_r_plot(ang_rad, phi_M_interp, Hr_opt[0], Hr_opt[1], Hr_opt[2], 0, 0, 0, 0, 0, 

Hr_opt[8]) 

 

 

resultadosFMR = open('ResultsFMR.txt','w') 

resultadosFMR.write("Ang (°)" + " "+ "Hr (kOe)") # Titulo do arquivo de saida 

resultadosFMR.write("\n")#Pula uma linha no arquivo de saida 

for i in range(0,500): 

    resultadosFMR.write(str(180*ang_rad[i]/np.pi)+'     '+str(Hr[i])+'\n') 

resultadosFMR.close() 


