Analise e Deteccao de Code Smells em
Aplicacoes React e React Native

Lucas Silva de Mendonca, Leopoldo Motta Teixeira

!Centro de Informética — Universidade Federal de Pernambuco (UFPE)
50740-560 — Recife — PE — Brazil

lsmb@cin.ufpe.br, Imt@cin.ufpe.br

Abstract. In this article, we present a catalog of 16 code smells extracted from a
gray literature review, combined with a quick review, with the focus exclusively
on React and React Native technologies. We enhanced an Open Source tool, Re-
actSniffer2, which, when applied to 16 Open Source projects, allowed us to ve-
rify the frequency of this catalog. The most frequent smells were: String Literals
(19.04%), Props Spreading (16.39%), and Component Nesting/JSX Outside the
Render (13.99%). In conclusion, this work contributes to the awareness about
code smells in React and React Native, as well as for the improvement of linting
tools.

Resumo. Neste artigo, apresentamos um catdlogo de 16 code smells extraidos
de uma revisdo de literatura cinza, combinado com uma revisdo rdpida, com o
foco exclusivamente nas tecnologias React e React Native. Aprimoramos uma
ferramenta Open Source, ReactSniffer2, que, ao aplicd-la em 16 projetos Open
Source, permitiu verificar a frequéncia desse catdlogo. Os smells mais frequen-
tes foram: String Literals (19,04%), Props Spreading (16,39%), e Component
Nesting/JSX Outside the Render (13,99%). Em conclusdo, este trabalho contri-
bui para o conhecimento sobre code smells em React e React Native, bem como
para o aprimoramento de ferramentas de lint.

1. Introducao

A evolucdo do software € inevitavel [Svahnberg 2003], seja para dar manuten¢do no
codigo, resolvendo algum bug encontrado, seja para atender novos requisitos ou no-
vas funcionalidades. Fazer isso ajuda a aumentar a vida util do software e melhora
aspectos como flexibilidade, integracdo, manutenibilidade e legibilidade. Contudo, a
manutencdo pode levar o programador, se ndo preparado, a implementar praticas ruins
de programacao. Essas praticas ruins, também conhecidas como code smells, nao ne-
cessariamente tornam o sistema incorreto, mas dificultam que o sistema seja mantido,
compreendido e refatorado. O termo code smell foi amplamente difundido por Kent Beck
no livro “Refatoracdo: Aperfeicoando o Design de Cddigos Existentes” [Fowler 2006],
escrito em parceria com Martin Fowler. Pode ser definido como um sintoma para um
problema mais profundo na aplicacdo, sendo indicadores de um problema, podendo nao
ser a causa do problema em si.

Com o passar dos anos, a hegemonia da linguagem JavaScript para desenvolver
sistemas front-end se torna cada vez mais evidente. Este ano, o JavaScript foi novamente
reconhecido como a linguagem de programagao mais popular entre os desenvolvedores,

de acordo com a pesquisa da Stack Overflow !, marcando seu décimo primeiro ano como
lider. Diante desta popularidade, ¢ comum encontrar softwares que utilizam essa lingua-
gem como base para seus sistemas. No entanto, para desenvolver sistemas que permitam
uma féacil implementagdao, manutencdo e reutilizacdo, os programadores costumam re-
correr a frameworks e/ou bibliotecas que auxiliam na implementacdo de interfaces de
usudrio complexas [Ramos et al. 2018]. Exemplos populares de frameworks e bibliote-
cas sdo Angular 2, React * e Vue 4, utilizados para o desenvolvimento de aplicacdes web,
e React Native 3 e Flutter °, utilizados para o desenvolvimento de aplicagdes mobile.

Dada a recéncia das tecnologias React e React Native, e suas semelhancas, exis-
tem poucos materiais que abordem os code smells comuns em aplicacdes que as utili-
zam [Ferreira and Valente 2022]. Visando isso, este artigo propde criar um catalogo que
agrupe os principais smells, a0 mesmo tempo em que analisa o nivel de frequéncia frente
a projetos Open Source, com o intuito de servir como material de estudo para aprimora-
mento de ferramentas de linting.

A motivacao inicial deste artigo € responder as seguintes perguntas:

P1) Quais sdo os principais code smells encontrados no React e React Native?
P2) Com que frequéncia sao encontrados em projetos reais?

Para lidar com a primeira pergunta, fizemos uma revisdo rapida e uma revisao
de literatura cinza, a fim de identificar quais seriam os principais code smells que sao
divulgados e encontrados pelos programadores. Nossas pesquisas encontraram 121 code
smells, dos quais foram extraidos 16 para um maior aprofundamento e analise.

E para responder a segunda pergunta, aprimoramos uma ferramenta Open Source,
ReactSniffer2, na qual a utilizando-a e aplicando-a em projetos encontrados no Github,
pudermos ver a frequéncia com que esses code smells sdo identificados em projetos reais.

Os smells mais encontrados foram: String Literals (19,04%), Props Spreading
(16,39%), Component Nesting/JSX Outside the Render (13,99%). Os smells com as me-
nores frequéncias foram: Too Many UseState (0,01%), Large UseEffect (0,03%), Proce-
dural Patterns (0,54%).

O artigo esté organizado da seguinte forma: na secao 2, encontram-se explicacoes
sobre as tecnologias escolhidas (React e React Native) e suas semelhancas. Na secdo
3, é aprofundada a metodologia utilizada no presente artigo. Na secdo 4, apresentamos
o catdlogo de code smells proposto. Na secdo 5, explicamos a ferramenta de detec¢ao
dos code smells, ReactSniffer2. Na secdo 6, apresentamos os resultados obtidos da ferra-
menta. Na secdo 7, apresentamos as ameacas a validade da metodologia. As conclusdes
sdo apresentadas na secdo 8 €, na se¢do 9, explicamos as perspectivas sobre os trabalhos
futuros.

Thttps://survey.stackoverflow.co/2023/#most-popular-technologies-language
2https://angular.io

3https://react.dev

“https://vuejs.org

Shttps://reactnative.dev

Ohttps:/flutter.dev

2. Aprofundamento React e React Native

Aberta ao publico em 2013 pelo time da empresa Meta, o React € uma biblioteca, cons-
truida baseada na linguagem JavaScript, que ajuda desenvolvedores a criar interfaces de
usudrio. O React incentiva a criacdo de componentes dindmicos € compostos, que po-
dem ao longo do tempo mudar os valores dos dados que possuem, proporcionando uma
experiéncia de usudrio mais rica e responsiva [Hunt 2013].

O React possui um mecanismo chamado de Single Page Application (SPA), este
mecanismo tem o poder de carregar apenas uma unica pagina HTML e, em seguida,
atualiza essa pagina dinamicamente a medida que o usudrio interage com a aplicagdo.
Isto ocorre porque o JavaScript consegue manipular a Document Object Model (DOM)
e renderiza os novos conteudos sem a necessidade de recarregar os antigos, assim toda a
pagina ndo precisa ficar sendo recarregada. O React faz o uso de uma extensao de sintaxe
para JavaScript, chamada de JavaScriptX (JSX) que combina Linguagem de Marcacgao de
Hipertexto (HTML) com JavaScript. Foi através dessa sintaxe que o React ganhou ainda
mais popularidade com a comunidade de desenvolvedores.

O uso do JSX permite que os desenvolvedores escrevam codigo que sao semelhan-
tes a HTML, mas que na verdade sdao JavaScript. Isso facilita a criacdo de componentes
de interface de usudrio e a manipulagdo da DOM, o que torna o desenvolvimento mais efi-
ciente e intuitivo. O JSX também permite o uso do JavaScript, o que € ttil para gerenciar
e manipular estados da aplicacdo e seus dados.

O React foi projetado tendo em mente dar suporte a multiplas plataformas, para
que ndo fosse apenas uma biblioteca focada na web, mas que pudesse expandir para outras
areas, 1sso permitiu o langamento do framework mével React Native, no ano de 2015.

O React Native foi criado, com a mesma filosofia do React, utilizando dos mesmos
mecanismos e ferramentas. Com o React Native € possivel escrever cédigo de aplicativo
para executd-lo em varias plataformas (através de componentes nativos), como Android
e 10S, ndo havendo a necessidade de ter um codigo para cada uma. O React Native se
assemelha muito com o React, pois ambos usam componentes como a unidade bdsica
de construcdo de interfaces de usudrio, possuem o conceito de estados e propriedades
para gerenciar os dados dentro dos componentes e ambos possuem ciclo de vida dos
componentes, que oferece um melhor dinamismo para seus componentes. Além disso,
visualmente, ambos sdo parecidos, como pode ser observado nas figuras 1 e 2, onde temos
um simples componente que possui o estado “message” que guarda a mensagem “Ol4,
mundo!” e é exibida na tela, quando apertado o botdao “Alterar mensagem”, o valor do
texto muda para “Mensagem alterada!” e este € exibido na tela.

Devido as suas semelhangas, ambas as tecnologias foram escolhidas para detectar
code smells.

3. Metodologia

Este artigo tem como objetivo investigar os principais code smells encontrados nas tec-
nologias React e React Native, a fim de propor um catdlogo e observar a frequéncia com
que ocorrem em projetos Open Source. Para isso, o artigo foi orientado a responder as
duas perguntas abaixo:

P1) Quais sdo os principais code smells encontrados no React e React Native?

import React, { useState } from 'react';

const ReactComponent = () = {
const [message, setMessage] = useState('Ola, mundo!');

return (
<div>
<p>{message}</p>
<button onClick={() = setMessage('Mensagem alterada!')}>
Alterar mensagem
</button>
</div>
)i
b

export default ReactComponent;

Figura 1. Exemplo de cédigo React

(X J
import React, { useState } from 'react';

import { View, Text, Button } from 'react-native';

const ReactNativeComponent = () = {
const [message, setMessage] = useState('Ola, mundo!');

return (
<V

>{message}</ Text>
title="Alterar mensagem" onPress={() = setMessage('Mensagem alterada!')} />

export default ReactNativeComponent;

Figura 2. Exemplo de codigo React Native

P2) Com que frequéncia sido encontrados em projetos reais?

Para responder a primeira pergunta realizamos uma Revisdao Ripida (RR) com-
binando com uma Revisdo de Literatura Cinza (RLC). As revisoes de literatura sao uma
Otima maneira de identificar, avaliar a qualidade e a relevancia dos estudos existentes
para propor uma visdo geral sobre o estado atual do campo de estudo [Paré et al. 2015].
A andlise e classificacdo de ambas as técnicas ajudaram a propor o catdlogo de code smell
em React e React Native.

3.1. Revisao Rapida

Para realizar a Revisdao Rapida, seguimos o modelo proposto por [Cartaxo et al. 2018]. A
RR tem como objetivo fornecer auxilio a tomada de decisdes em problemas encontrados
na pratica de Engenharia de Software, ajudando os profissionais principalmente quando
h4 uma limitacdo de tempo e/ou recursos.

A figura 3 retrata o procedimento para realizar a Revisao Rapida. O procedimento
possui 3 etapas: A busca no Scopus, a selecdo de artigos através de filtros e a extracao
dos code smells.

Na Revisdo Rdpida, utilizamos o mecanismo de busca Scopus ’, conforme reco-
mendado pelo modelo. A Scopus é uma base de dados de artigos cientificos, com outras

"https://www.scopus.com/search/form.uri?display=basic#basic

Pesquisa no Resultado: 50 Resultado: 33

Revisao rapida — —_— . —_— Filtro: Ano 2013 =——p
Scopus artigos artigos
Filtro: Titulo
61 code smells — Extracdo de code Result.ado: 8 Filtro: Abstract Resultado: 13
detectados smells artigos artigos

Figura 3. Processo abordado na Revisao Rapida

bases de dados indexadas a sua, ele conta com mais de 36.000 titulos em sua base, por
1sso, € uma das bases mais bem qualificadas para realizar pesquisas.

Foram realizados vérios testes com diferentes strings a fim de encontrar quais os
termos que melhor se adequar na busca por code smell. Os termos resultantes para realizar
a busca foram:

("react” OR "reactjs” OR "react native”) AND ("code
smell” OR "bad smell” OR "anti-pattern” OR "bad
practice” OR "code quality” OR "maintainability”)

29 ¢

Os termos “react”, “reactjs” e “react native” foram usados para definir a tecnolo-
gia que seria investigada. Os termos “code smell”, “anti-pattern”, “bad practice” foram
inseridos para descobrir o problema pesquisado e os termos “code quality” e “maintaina-
bility” foram usados a fim de encontrar o problema pesquisado por uma abordagem com
foco na solu¢ao do problema.

O resultado da busca totalizou 50 artigos, nos quais precisaram ser filtrados a fim
de atender o objetivo das perguntas. Foram aplicados 3 filtros, o primeiro filtro aplicado
foi o filtro de artigos de até 2013, ja que a tecnologia mais antiga € a React e ela data do
ano de 2013, por isso limitamos a busca para esse ano. A quantidade total de artigos foi
reduzida para 33.

O segundo filtro foi a leitura dos titulos dos artigos, com o intuito de remover
os artigos que nada tinham a ver com o tema, como por exemplo o artigo com o titulo
“Communicating the UX Vision: 13 Anti-Patterns That Block Good Ideas” que ndo pos-
sui relacdo com as tecnologias citadas. Ap6s aplicar o filtro, o niimero total de artigos foi
reduzido para 13.

O terceiro e ultimo filtro foi o filtro da leitura do resumo, onde através dos resu-
mos, definimos se o artigo havia informagdes relevantes sobre code smells. O nimero
total foi reduzido para 8.

Para a extrag@o dos code smells, realizamos a leitura completa dos 8 artigos sele-
cionados. No entanto, todos os code smells identificados foram extraidos de apenas um

artigo. Apoés essa etapa de extracdo, identificamos um total de 61 code smells tinicos.
Mais detalhes podem ser encontrados em https://abrir.link/revisao-rapida.

3.2. Literatura Cinza

Para complementar os code smells encontrados, realizamos a revisdo de literatura cinza.
Essa metodologia permite incluir a literatura cinza (relatorios de empresas, documentos
de trabalho, postagens de blogs e discussdes em féruns) em revisdes de literatura, como
recomenda [Garousi et al. 2019]. A literatura cinza deve ser incluida com o objetivo de
fornecer uma visao mais completa do campo de estudo.

O processo de revisao de literatura cinza pode ser retratado na figura 4. O processo
inclui 3 etapas: Busca no Google, selecdo de fontes e extragdo dos code smells.

Revisao de Pesquisa no Resullan.io: 161.000 FIHTU..TDD 120 Resultado: 120
Literatura Cinzenta Google links links links

l

Filtro: Leitura
Parcial

105 cod l t d d C let
code smetts Extragao de code #—— Resultado: 45 links 4= ompreta 4—— Resultado: 95 links
detectados smells Requisito de

l

60 code smells

Filtro: Leitura

qualidade

Figura 4. Processo de Revisao de Literatura Cinza

Para realizar a busca de fontes para a Revisdo de Literatura Cinza utilizamos o
Google. Foram utilizados varias strings diferentes para compor os termos de busca mais
eficiente. Os termos utilizados foram:

("react” OR "reactjs” OR "react native”) AND ("code
smell” OR "bad smell” OR "anti-pattern” OR "bad
practice” OR "code quality” OR "maintainability”)

Utilizamos menos termos com o objetivo de ser mais eficaz nas buscas por fontes
que retratem o nosso problema. O resultado totalizou cerca de 161.000 fontes. Devido a
limitacao de recursos humanos e tempo, decidimos aplicar filtros sobre essas fontes.

O primeiro filtro aplicado foi o filtro dos 120 links mais relevantes do Google. Em
seguida, aplicamos o segundo filtro, que consistiu na leitura parcial das fontes, a fim de
eliminar as que fugiam do nosso problema. Apoés a aplicacao desse filtro, removemos 25
links, totalizando 95 restantes.

https://abrir.link/revisao-rapida

Foi aplicado também um terceiro filtro, que teve o objetivo de qualificar minima-
mente as fontes encontradas, entdo foi feito a leitura completa das fontes e a aplicagdo de
um pequeno questionario de qualidade, como proposto pelo [Garousi et al. 2019].

O questiondrio era composto pelas seguintes perguntas:

P1) A organizagdo editorial € respeitdvel?

P2) E um autor individual associado a um respeitavel organizacio?

P3) O autor publicou outro trabalho na 4rea?

P4) O autor possui expertise na area?

P5) A fonte tem um objetivo claramente declarado?

P6) A declaracdo nas fontes € a mais objetiva possivel? Ou, a declaragdo é uma
opinido subjetiva?

ApOs responder essas perguntas, o artigo era classificado como apto ou
ndo para seguir para proxima etapa. Mais detalhes podem ser encontrada em
https://abrir.link/literatura-cinza.

ApOs este filtro, a quantidade total de links foi 45. Em seguida, foi realizada a
extragdo dos code smells desses links, onde encontramos 105 code smells citados. Desses,
realizamos uma breve sintese para eliminar os duplicados, resultando em 60 code smells
Unicos.

3.3. Classificacao e Sintese

Ap6s finalizar a revisao de literatura, iniciamos o processo de sintese, a figura 5 mostra
todo o processo de classificacio e sintese dos code smells encontrados.

Esta etapa dividimos em 2 fases, a fase inicial e a fase completa. Na fase inicial
apenas combinamos os code smells a fim de deixar dnicos entre a revisdo de literatura
cinza e a revisao rapida, o resultado foram 97 code smells.

Na fase seguinte, agrupamos code smells que tinham nomes diferentes mas trata-
vam do mesmo cendrio ou de um cendrio muito semelhante, como por exemplo o code
smell prop drilling e o prop plowing, que se transformou apenas no prop drilling, pois
no contexto geral seria passar propriedades entre componentes apenas para eles repassa-
rem para outros componentes. Foi nessa fase também que comecamos a levantar se ja
existiam ferramentas que detectavam esses code smells e qual seria o grau de dificuldade
para identifica-los dentro dessas ferramentas, esse levantamento foi muito importante por-
que deixou claro os code smells que tinham um grau muito complexo de implementagao
da sua deteccdo, ou que tinham um grau muito abstrato, como € o caso do code smell
“incompatible props”.

Ap6s esse levantamento, chegamos em um catdlogo de 16 code smells, levando
em consideracdo seu grau de dificuldade, sua complexidade e sua relevancia, pois muitos
eram abordados apenas quando o React usava classe em sua implementacdo. Também
levamos em consideracdo a quantidade de mencdes na revisao de literatura, estabelecendo
um minimo de 2 meng¢des para classificar como relevante. A tabela 1 mostra a quantidade
de mengdes encontrada em cada um dos code smells selecionados.

Com isto respondemos a primeira pergunta sobre quais sao os principais code
smells encontrados no React e React Native?. Mais detalhes sobre o processo de
classificacdo e sintese podem ser encontrados em https://abrir.link/sintese-classificacao.

https://abrir.link/literatura-cinza
https://abrir.link/sintese-classificacao

Revisdo Rapida Revisao de Literatura
(61 smells) Cinzenta (60 smells)

Sintese Inicial
(96 smells)

l

Sintese Completa
(88 smells)

l

Analise e
Classificagdo

l

Catalogo de 16 code
smells

Figura 5. Processo de Classificacao e Sintese

A pergunta seguinte com que frequéncia sao encontrados em projetos reais?
foi respondida através do aperfeicoamento de uma ferramenta de andlise e detec¢do de
smell, chamada ReactSniffer2, essa ferramenta sera abordada na secao 5.

4. Catalogo de Code Smell

Nessa secdo, apresentaremos um catdlogo de 16 code smells, detectado através da nossa
revisdo. Fornecemos uma breve explicacio e uma ilustragdo.

4.1. Props in Initial State

O code smell de “Props in Initial State” refere-se a pratica de copiar valores de props
ou propriedade para o estado inicial de um componente no React ou React Native. Por
exemplo, ao passar a propriedade text diretamente para o useState (veja figura 6), o com-
ponente passaria a ignorar novas atualizacdes da propriedade text, o que tornaria mais
propenso a bugs.

4.2. Use of index as key in rendering with loops

Este code smell trata-se de utilizar o indice como chave ao mapear elementos de uma lista
para componentes React. Como por exemplo na figura 7, ao utilizar o indice do array “na-
mes” como chave de identificagdo do componente React, quando este precisar reordenar,
adicionar ou remover um elemento, o React pode apresentar problemas de desempenho
pela confusao dos indices atualizados, ou até bugs de nao atualizar elementos.

Tabela 1. Tabela da quantidade de menc¢ées do code smells selecionados

Code Smell MencdesnaRR Men¢desnaRLC Total de Mencoes
Props in Initial State 2 9 "
Use of index as key in rendering with loops 1 9 10
Component Nesting/JSX Outside the Render 1 8 9
Large Components 1 [7
Prop Drilling 1 4 5
Too many useState 2 3 5
Direct DOM Manipulation 1 3 4
Props Spreading 2 2 4
Deep Indentation 1 2 3
Too many props 1 2 3
Large useEffect 1 1 2
Mutable Variables 1 1 2
Procedural Patterns 1 1 2
String Literals 1 1 2
Never Using Class Components 2 0 2
Use PrevState 1 1 2

function Button({ text }) {
const [buttonText] = useState(text);

return <button>{buttonText}</button>;

}

Figura 6. Exemplo de Props in Initial State

4.3. Component Nesting/JSX Outside the Render

E confiado o modelo de JSX para elementos de interface do usudrio ao método render de
um componente React em formato de classe ou ao return em um componente React em
formato de funcao. Contudo, quando o JSX € extrapolado para outras regides além dessas,
€ considerado um code smell, pois € um indicio de que o componente esta assumindo
muitas responsabilidades, como no exemplo da figura 8, onde JSX referente ao avatar
de um usudrio estd em uma constante fora do escopo do return. Portanto, torna-se mais
dificil reutilizar esse componente em outros locais e dificulta sua legibilidade.

4.4. Large Components

O code smell “Large Components” ocorre quando um componente se torna muito grande
e/ou complexo, devido a presenca de varias responsabilidades ou funcionalidades no
mesmo componente. Uma forma de medir isso é pela quantidade de funcionalidades,
quantidade de funcdes ou até mesmo quantidade de linhas desse componente. Como na
figura 9, onde o componente “LargeComponent” possui 2 regras complexas, tornando-o
um componente complexo.

const names = ['Alberto', 'Bruno', 'Carlos', 'Davi'l;

const Namelist
return (

{names.map((name, index) = (
<li key={index}>{name}</1i>
N}

Figura 7. Exemplo de Use of index as key in rendering with loops

const ProfileUser = () = {
const avatar = ()

return (

<div>
<h1>{nameUser}</h1>
{avatar}
</div>
)i
}

Figura 8. Exemplo de Component Nesting/JSX Outside the Render

4.5. Prop Drilling

Esse code smell é comumente encontrado em projetos de programadores iniciantes no
uso da tecnologia React ou React Native. O “Prop Drilling” € um termo usado quando
se tem um componente A que precisa fornecer informag¢des para um componente C e faz
isso passando essas informacdes para o componente B, que por sua vez repassa para o
componente C sem fazer uso algum dessas informacdes. Como no exemplo da figura
10, onde o “ComponentPropDrilling” recebe uma propriedade “props” e repassa essa
propriedade para o componente filho “Component”.

4.6. Too Many Usestate

O “Too Many Usestate” € um code smell que de forma similar ao “Large Component”
ocorre quando o componente se torna complexo, precisando fazer o uso de muitos estados
por meio do useState (hook fornecido pelo React). Ao utilizar muitos useState pode
desencadear muitos efeitos colaterais caso estes também sejam usados como array de
dependéncias de hooks useEffects (veja a figura 11).

4.7. Direct DOM Manipulation

O code smell “Direct DOM Manipulation” surge quando o desenvolvedor recorre a
manipulagdo direta do Document Object Model (DOM) para modificar elementos HTML,
em vez de utilizar as capacidades do React para gerenciar e renderizar os estados e atri-
butos dos componentes, aproveitando o VirtualDOM do React (veja a figura 12).

4.8. Props Spreading

O “Props Spreading” € uma técnica usada no React para passar um conjunto de propri-
edades (props) para um componente. Isso € util quando se quer realmente fazer uso de

const LargeComponent = () = {

const complexBusinessLogic = () = {

}

const anothercomplexBusinessLogic = () = {

}

return (

Figura 9. Exemplo de Large Components

import {Component} from './path/to/component’;

const ComponentPropDrilling = (props) = {
return <Coi ent title={props.title} />;

}

Figura 10. Exemplo de Prop Drilling

todas as propriedades no componente filho, mas o seu uso excessivo indica problemas de
design e inefici€ncia, por isso € considerado um code smell (veja a figura 13).

4.9. Deep Indentation

O code smell “Deep Indentation” refere-se a componentes que possuem muitos niveis de
indentacdo devido a muitas condicionais aninhadas. Isso torna o cédigo ilegivel e mais
dificil de dar manutenc¢do, exemplo disso € a figura 14, onde o componente “Component-
Depplndentation” possui varias condicionais para renderizar diferentes estados.

4.10. Too Many Props

Esse code smell ocorre quando o componente React ou React Native apresenta de-
pendéncia com muitos dados externos, ou seja, o componente precisa de muitas pro-
priedades para o seu uso. Isso pode ocasionar problemas de legibilidade (veja a figura
15).

4.11. Large UseEffect

O code smell “Large UseEffect” refere-se ao uso de um utnico useEffect com multiplas
operacdes ou tarefas, resultando-o em um useEffect com muitas funcionalidades agrupa-
das. Esse padriao pode levar o c6digo a ser confuso, dificultando sua legibilidade, e mais
propenso a erros, pois seu array de dependéncias terd muitos atributos, complicando ainda
mais os efeitos colaterais que desencadeiam a execugdo deste useEffect (veja a figura 11).

const ComponentTooManyState = () = {
const [estadol, setEstadol] = useState('');
const [estado2, setEstado2] = useState(0);

const [estado21, setEstado21] = useState('')

useEffect(() = {

},[estadol, estado2, , estado21])
return (

}</ Text>

Figura 11. Exemplo de Too Many UseState

import React, { useEffect } from 'react';

function ComponentDirectDomManipulation() {
useEffect(() = {
const element = document.getElementById('div-DOM');
if (element) {
element.style.color = 'blue';
}
b0

return <div id="div-DOM">Direct DOM Manipulation</div>;

}

Figura 12. Exemplo de Direct DOM Manipulation

4.12. Mutable Variables

O React oferece 0 hook useState para gerenciamento de estado nos componentes funci-
onais, que se atualiza e dispara re-renderizacdes com base nas mudancas desses estados.
Utilizar varidveis mutdveis, como let ou var, para valores que podem ser alterados apos a
inicializacdo € considerado um code smell. Isto pode ocasionar a ndo re-renderiza¢ao do
componente quando este estado novo muda, o que pode levar a estados inconsistentes e
dificuldades na manutenibilidade e compreensao do c6digo.

4.13. Procedural Patterns

O code smell “Procedural Patterns” ocorre quando os desenvolvedores utilizam padroes
de programacao procedural, que sdo desencorajados pelo paradigma orientado a compo-
nentes, que € usado pelo React. Um exemplo disso € o uso de loops com o operador for
para iterar um array, em vez de usar as func¢des do proprio array como map ou forEach.

4.14. String Literals

Este code smell refere-se ao uso excessivo de strings literais no cédigo, principalmente
quando estas mesmas strings sao usadas em diversos lugares ou que pode mudar com
o tempo. Este code smell pode tornar o cédigo mais dificil de manter, pois pode ser
necessdria a mudangas em varias regides do cédigo. Por ndo gerar problemas de perfor-
mance, esse code smell pode ser encontrado com mais facilidade.

const ComponentPropSpreading = (props) = {

return <div { ... props}>{props.children}</div>;

}

Figura 13. Exemplo de Props Spreading

const ComponentDeepIndentation = () = {
return (
<div>
{condicaol ? (
<h1>Estado 1</h1>
) : condicao2 ? (

<hi1>Estado 2</hi1>
) : condicao3 ? (
<hi1>Estado 3</hi1>
) : null}
</div>
)
}

Figura 14. Exemplo de Props Spreading

4.15. Never Using Class Components

O code smell “Never Using Class Components” sugere que o uso de componentes de
classe em React nao € recomendado, embora tenha sido o método tradicional para rende-
rizar componentes e gerenciar estados até a versdo 16.8 do React. Desde entdo, o React
introduziu hooks, permitindo que os componentes funcionais gerenciem o estado e todos
os outros recursos do React sem a necessidade de classes. Isso resultou em codigo mais
legivel e com maior flexibilidade para adicionar novas funcionalidades através dos Hooks.
Como por exemplo nao é recomendado o uso de classe como na figura 16.

4.16. Use Prevstate

Quando se € necessario gerenciar um estado no React ou React Native, o hook de useState
pode ser a solugdo, porém quando é preciso atualizar tendo a informagao do estado atual,
muitos desenvolvedores podem acabar caindo nesse code smell. O “Use Prevstate” € o
code smell de quando ndo se utilizam o segundo argumento do hook useState, que € uma
fun¢do que permite acessar o estado anterior durante a atualizacao.

Sem utilizar o segundo argumento, os desenvolvedores costumam pegar o es-
tado diretamente do primeiro argumento do useState, o que pode levar a bugs quando
ha maltiplas atualizacdes rapidas, podendo em cada atualizagdo ndo estar contido dentro
do estado o seu valor mais recente (veja a figura 17).

5. Ferramenta de deteccao

Para responder a pergunta com que frequéncia sdo encontrados em projetos reais?,
aprimoramos uma ferramenta de detecgio de code smells, chamada ReactSniffer2?.

8https://github.com/lsm-5/reactsniffer2

[N
const ComponentTooManyProps = ({
propl,
prop2,

propsi18,
=1

return (
<div>
{
</div>
)i

Figura 15. Exemplo de Too Many Props

Figura 16. Exemplo de Componente React usando classe

Na figura 18 podemos conferir a arquitetura dessa ferramenta. Ela foi construida
em Node e recebe como entrada o caminho do arquivo ou da pasta do projeto React ou
projeto React Native através de uma Interface de Linha de Comando (CLI). Quando a
ferramenta detecta e checa que o caminho € vélido, ela comega a percorrer todas as pastas
e subpastas filtrando se ha arquivos com as extensoes .js, .jsX, .ts, .tsX, que S0 0s arquivos
encontrados em projeto React ou React Native. Apds essa filtragem, um compilador
JavaScript, chamado Babel, entra em acfio convertendo os arquivos em Arvore Sintética
Abstrata (AST) resultando em formato JSON, esse € um compilador muito poderoso, pois
consegue entender novos elementos de versoes recentes do JavaScript e transformé-lo em
uma versdo compativel com versdes anteriores do JavaScript. Apos a geracao da AST
¢ feito um novo filtro, para selecionar apenas as AST que possuem importagdo para o
React ou React Native. Por fim, é feito uma varredura nas AST’s restantes percorrendo
de forma recursiva usando um algoritmo de pré-ordem para detectar se existe code smells
nos arquivos. Como output, a ferramenta gera um arquivo json contendo um resumo com
todos os smells detectados, uma lista dos arquivos e componentes contendo os smells que
cada um possuem e outra lista de todos os arquivos e todos os componentes informando
se possuem smells ou ndo.

A ferramenta estd disponivel publicamente para uso através
do gerenciador de pacotes NPM. Para mais detalhes acesse o link:
https://www.npmjs.com/package/reactsniffer2.

A checagem do code smell “Props in Initial State” € feita através da verificagao da
propriedade que um componente recebe € usada como estado inicial.

https://www.npmjs.com/package/reactsniffer2

const ComponentUsePrevState = () = {
const [count, setCount] = useState(0);

useEffect(() = {
setCount(count + 1)
SetCount(prevstate = prevState + 1)

LD

return (

exto</ Text>

Figura 17. Exemplo de Use PrevState da forma correta e incorreta

Output com os smells

Projeto React ou Filtro de extensées parser (Babel) Filtro de arquivos
’ ’ ’ detectados

React Native (jsx, s, Asx, ts) React — Detecgéo de Smells —————>

JSON

Figura 18. Arquitetura da ferramenta ReactSniffer2

, .

Para o code smell “Use of index as key in rendering with loops™ € verificado o uso
do index como key para uma estrutura de repeti¢ao.

No “Component Nesting/JSX Outside the Render” a ferramenta identifica o
nimero de componentes fazendo parte de outros componentes.

Para o code smell “Large Components” foi necessdrio criar um limite para a quan-
tidade maxima de linhas encontrado em um componente e para a quantidade maxima de
método desse componente, pois esses seriam os limites para considerar um smell.

Para “Prop Drilling” € analisado se a propriedade recebida por um componente é
repassada pra outro componente.

Para o code smell “Too many useState” foi definido um limite para o niimero de
uso do useState em cada componente para ser considerado um smell.

No “Direct DOM Manipulation” é verificado se hd o uso de algum método de
manipulagdo direta da arvore DOM.

No “Props Spreading” € analisado o uso do operador spread.
No “Deep Indentation” € feito a verificagdo de alguma indentacdo profunda.

Para o “Too many props” foi definido a quantidade maxima de propriedades que
um componente poderia receber.

Para o code smell “Large useEffect” foi definido ndo o ndmero de linhas como
limite para virar um smell mas o nimero de operagdes dentro do uso do useEffect.

Para “Mutable Variables” € identificado se existem varidveis que podem ser alte-
rada sem o uso de estado do React.

Para “Procedural Patterns” € analisado se faz o uso de fun¢des préprias para interar
arrays e colecoes ao invés de usar estrutura de repeti¢oes.

Para “String Literals” € verificado se existem compara¢des com string literais no
codigo fonte.

Para “Never Using Class Components” € identificado se o componente React foi
construido como classe.

Para “Use PrevState” € verificado se as atualizagdes de estados dos componentes
fazem o uso do parametros da prépria funcdo de atualizagdo e ndo do uso do parametro
de visualizacdo do estado.

Para a deteccdo de alguns code smells foram necessario colocar limites para serem
considerados smells. Os limites podem ser conferidos na tabela 2.

Tabela 2. Tabela da quantidade de mencoes do code smells selecionados

Code Smells Métrica Limite

Large Components Linhas de Cédigo do Componente 128

Large Components Numero de métodos 4
Too many useState Numero de useState 20
Too many props Namero de Props 13
Large useEffect Namero de operacdes 8

Os limites para os code smell “Large Components” e “Too many props”
foram coletados da prépria pesquisa da criagdo da ferramenta ReactSniffer
[Ferreira and Valente 2022]. Os limites restantes dos code smells Too many “useState”
e “Large useEffect” foram definidos de forma empirica, pois ndo ha fontes que sugiram
limites para tais, entretanto foi questionado a um pequeno grupo de desenvolvedores que
aprovaram esses limites.

6. Resultados

A tabela 3 mostra os resultados obtidos pela ferramenta ReactSniffer2 em projetos Open
Source. Selecionamos os projetos baseados nos maiores numeros de estrelas resultantes
da pesquisa de projetos React e React Native no Github. Como mostra a tabela 4, os pro-
jetos selecionados possuem um minimo de 11.000 estrelas. E todos foram selecionados
verificando se no arquivo packages possuiam a dependéncia react, como:

Selecionamos um total de 16 projetos React e React Native. A quantidade de
arquivos analisados e dos componentes analisados pode ser encontrada na tabela 5. Dis-
cutiremos brevemente os resultados.

Props in Initial State (PIS): Aparece em 14 dos 16 projetos selecionados, ocor-
rendo em um total de 914 vezes (13,69%). O projeto com mais ocorréncias foi o apa-
che/superset com 47,81% (437) de todas as ocorréncias.

dependencies”:

Tabela 3. Tabela de resultado a analise da ferramenta ReactSniffer2 em projetos
Open Source

Repositério PIS KRL CN Lc PD ™S DDM PS DI T™P LE MY PP sL NucC UPS
ant-design/ant-design-mobile 16 8 3 13 9 0 9 19 4 4 1 [6 107 4 7
ant-design/ant-design-pro 0 0 0 3 0 0 2 2 0 0 0 0 0 12 0 1
chakra-ui/chakra-ui 17 10 3 4 3 0 3 90 0 0 0 1 0 39 2 13
facebook/docusaurus 103 20 2 6 2 0 17 151 1 0 0 3 0 55 12 1
atlassian/react-beautiful-dnd 4 0 7 15 22 0 0 3 0 0 0 0 0 43 66 0
pmndrs/react-spring 9 16 0 2 3 0 7 n 6 0 0 3 0 32 2 2
bvaughn/react-virtualized m 0 80 25 8 0 3 n 4 0 0 47 n 59 40 0
apache/superset 437 22 450 173 265 1 39 257 22 21 1 245 13 462 99 28
pmndrs/zustand 9 2 3 0 0 0 2 3 0 0 0 0 0 0 3 0
react-native-elements/react-native-elements 46 19 32 25 32 0 0 94 6 13 0 22 0 90 9 6
GeekyAnts/NativeBase 63 5 2 16 37 0 1 264 20 2 0 68 2 120 0 28
react-native-maps/react-native-maps 0 1 120 15 0 0 0 2 2 0 0 25 3 26 b4 1
danilowoz/react-content-loader 1 0 4 1 0 0 0 16 0 1 0 0 0 1 1 0
FaridSafi/react-native-gifted-chat 15 0 51 8 1 0 0 32 0 3 0 5 1 20 9 0
wix/react-native-navigation 1" 2 100 42 3 0 2 7 0 0 0 3 0 56 107 0
callstack/react-native-paper 72 3 13 39 252 0 2 132 48 18 0 31 0 149 8 18
Total 914 108 934 387 637 1 87 1094 13 62 2 497 36 127 426 105
Totalem % 13,69% 1,62% 13,99% 580% 954% 001% 130% 1639% 169% 093% 003% 7,45% 054% 1904% 638% 157%

Use of index as key in rendering with loops (KLR): Com uma ocorréncia baixa,
apenas 108 vezes, aparece em 11 dentre todos os projetos selecionados. O projeto apa-
che/superset concentra 22 de todas as ocorréncias no total.

Component Nesting/JSX Outside the Render (CN): Esta entre os smells mais fre-
quentes encontrados, alcancando o 3° lugar em code smell mais frequentes. O projeto
com mais ocorréncias foi o apache/superset com 450 das 934 vezes. Também € neste
projeto que encontramos o componente com mais componentes aninhados, o componente
“CRUDCollection” possui 21 componentes aninhados.

Large Components (LC): Encontrado em 387 componentes, esse smell possui uma
frequéncia de 5,80% dentre todos os smells. O projeto com o componente com a maior
quantidade de linhas foi o projeto apache/superset, com um componente que possui 1495
linhas de cédigo. E o projeto com o componente com o maior nimero de métodos é o
bvaughn/react-virtualized com um componente com 36 métodos.

Prop Drilling (PD): Com um total de 637 vezes (9,54% entre todos os smells). O
projeto com mais ocorréncias € o apache/superset (265 ocorréncias) seguido do projeto
callstack/react-native-paper (252 ocorréncias).

Too many useState (TMS): O smell com a menor frequéncia encontrada, ocor-
rendo apenas 1 vez de acordo com o nosso limite estabelecido, no projeto apache/superset.
O componente em questao possui 21 estados internos.

Tabela 4. Tabela de quantidade de estrelas dos projetos selecionados

Repositério Estrelas
ant-design/ant-design-mobile 11.300
ant-design/ant-design-pro 35.500
chakra-ui/chakra-ui 36.000
facebook/docusaurus 51.300
atlassian/react-beautiful-dnd 31.900
pmndrs/react-spring 27.100
bvaughn/react-virtualized 35.700
apache/superset 56.600
pmndrs/zustand 40.100

react-native-elements/react-native-elements ~ 24.400

GeekyAnts/NativeBase 19.900
react-native-maps/react-native-maps 14.600
danilowoz/react-content-loader 13.300
FaridSafi/react-native-gifted-chat 13.000
wix/react-native-navigation 13.000
callstack/react-native-paper 11.900

Direct DOM Manipulation (DOM): Com uma ocorréncia de 87 vezes (1,30%),
este smell foi encontrado principalmente no projeto apache/superset (39 vezes) seguido
do projeto facebook/docusaurus (17 vezes). Os smells eram encontrados principalmente
com a manipulagdo direta da DOM através do uso dos métodos como: getElementsBy-
TagName, getElementByld, createElement, getElementsByClassName.

Props Spreading (PS): Com a ocorréncia em todos os projetos, foi verificado
1094 vezes o uso do operador Spread. O projeto com o maior uso foi o projeto Ge-
ekyAnts/NativeBase com 264 usos. Este smell estd em 2° colocado em smell mais
frequéntes nos projetos.

Deep Indentation (DI): Com apenas 113 ocorréncias, € classificado como um dos
smells com baixa frequéncia. O projeto com mais ocorréncias € o projeto callstack/react-
native-paper com 48 ocorréncias.

Too many props (TMP): Ocorrendo em 7 dos 16 projetos selecionados, esse smell
teve uma frequéncia de 0,93% dentre todos os smells encontrados. O projeto com mais
ocorréncias foi o apache/superset (21 ocorréncias), porém foi o projeto callstack/react-
native-paper que tem o componente com o maior nimero de props (33 props).

Large useEffect (LE): Ocorrendo apenas 2 vezes, uma no projeto ant-design/ant-
design-mobile e outra no projeto apache/superset. O projeto com o maior nimero de
operacgoes no useEffect foi o projeto ant-design/ant-design-mobile com 10 operagoes.

Mutable Variables (MV): Com uma ocorréncia de 497 vezes, foi encontrada em
12 dos 16 projetos selecionados. O projeto com mais ocorréncias foi o apache/superset,
com 49,29% de todas as ocorréncias.

Procedural Patterns (PP): Com apenas 33 ocorréncias (0,54%), foi mais um dos
smells com baixa frequéncia, com a ocorréncia acontecendo principalmente no projeto

Tabela 5. Tabela da arquivos analisados e componentes analisados dos projetos
selecionados

Repositério YT At

ant-design/ant-design-mobile 452 263
ant-design/ant-design-pro 12 16

chakra-ui/chakra-ui 258 439
facebook/docusaurus 357 435
atlassian/react-beautiful-dnd 205 131
pmndrs/react-spring 165 101
bvaughn/react-virtualized 65 54

apache/superset 197 810

pmndrs/zustand 12 59

GeekyAnts/NativeBase 757 555
react-native-maps/react-native-maps 74 67
danilowoz/react-content-loader 35 17
FaridSafi/react-native-gifted-chat 52 35
wix/react-native-navigation 190 mn
callstack/react-native-paper 280 236

Total 4373 3590

apache/superset (13 ocorréncias).

String Literals (SL): Foi o smell com mais ocorréncias (19,04%), mesmo nao
sendo encontrado em todos os projetos. Seu principal foco foi no projeto apache/superset
com 462 ocorréncias.

Never Using Class Components (NUCC): Foi encontrado em 426 componentes
dos 3590 componentes analisados. Seu smell teve uma frequéncia de 6,38% dentre todos
os smells encontrados.

Use PrevState (UPS): Encontrado 105 vezes, seu smell teve uma frequéncia de
1,57% dentre os smells. O projeto com mais ocorréncia foram os projetos apache/superset
e GeekyAnts/NativeBase. Ambos com o mesmo nimero de ocorréncia (28 vezes).

Figura 19. Grafico da frequéncia dos smells selecionados

Use PrevState: 1.57% |
Never Using Class Components: 6.38% ———— ‘

/ Props in Initial State: 13.69%

_~ Use of index as key in rendering
with loops: 1.62%
Component Nesting/JSX
Outside the Render: 13.99%

Large Components: 5.80%
" Prop Drilling: 9.54%

. n ”/ 7" Too many useState: 0.01%
Props Spreading: 16.39% “Direct DOM Manipulation: 1.30%

String Literals: 19.05%

Procedural Patterns: 0.54% ~—

Mutable Variables: 7.45%

Large useEffect: 0.03% ——
Too many props: 0.93% |
Deep Indentation: 1.69% '

Para mais detalhes acesse: https://abrir.link/resultados

https://abrir.link/resultados

7. Ameacas a validade

Nesta secao apresentaremos as ameacgas a validade da nossa metodologia. A revisio
rapida pode ser considerada uma técnica leve em relacdo a uma revisao sistematica da
literatura completa. J4 a revisdo de literatura cinza tem suas ameacas devido as fontes ndao
serem cientificas. Além disso, pela revisdo ser conduzida por apenas um pesquisador, ha
a possibilidade de existir viés de selecao.

No entanto, em relagdo a revisao rapida, utilizamos uma base de dados que agrega
outras bases de dados para tornar a selecio mais abrangente. Ja em relacdo a revisao
de literatura cinza, a sele¢do das primeiras 120 fontes pode levar ao descartes de fontes
significativas para nossa pesquisa, entretanto, € comum ao pesquisar no Google que as
paginas iniciais correspondam melhor ao que se procura. Outro ponto que pode elevar
minimamente a qualidade da revisdo € o uso do questiondrio seguindo as sugestdes da
propria metodologia.

Para a selecdo dos code smells, selecionamos apenas aqueles que foram mencio-
nados mais de uma vez. Finalmente, o resultado também mostra que os code smells sdo
encontrados em projetos Open Source.

Os valores usados como limites podem ameacar a validade desse artigo, porém
3 deles foram coletados de outro artigo cientifico e os coletados empiricamente foram
questionados a desenvolvedores experientes que também aprovaram o valor definido.

Um ultimo ponto € que alguns code smells selecionados, como por exemplo o
“Props Spreading”, ndo necessariamente implicam em uma méa performance do sistema
ou em uma dificuldade de legibilidade ou manuten¢@o. No entanto, a proposta do catidlogo
¢ alertar aos desenvolvedores que o uso deles pode ser a raiz de um problema maior no
futuro do cédigo, que vale a reflexdo durante o seu uso.

8. Conclusao

Neste artigo, buscamos explorar a anélise e deteccao de code smell em aplicacdes React e
React Native, com o propdsito de compor um catdlogo dos principais smells encontrados
na nossa revisao de literatura. Através da nossa andlise, identificamos que o catdlogo de
smells se mostrou consistente pois foram encontrados todos os smells em projetos Open
Source. Os projetos com os maiores nimeros de smells foram: apache/superset (2535
smells), callstack/react-native-paper (785 smells) e GeekyAnts/NativeBase (628 smells),
porém vale ressaltar que o seu grande nimero de smells também reflete no grande nimero
de arquivos e componentes que esses projetos possuem.

Outro ponto importante é que a identificacdo de alguns smells ndo necessaria-
mente implica na pratica ruim de programagao, mas que o seu uso excessivo pode im-
plicar em problemas de performance e legibilidade, como por exemplo o smell: “string
literals” e “props spreading”. Vale ressaltar também que os limites estabelecidos podem
e devem ser ajustados para compor cada vez mais a realidade dos projetos de mercado.

As conclusdes apresentadas neste estudo ndao apenas contribuem para a compre-
ensdo atual sobre os code smells em aplicagdes React e React Native, mas também abrem
caminho para futuras pesquisas e desenvolvimentos na drea, além de aprimoramento em
ferramentas de lint. O importante desse estudo € o alerta que fica aos desenvolvedores e

programadores, para que tenham uma maior reflexdo antes de uso dessas praticas em suas
aplicagoes.

9. Trabalhos Futuros

Como continuacao desse estudo, esperamos que a ferramenta ReactSniffer2 possa ser
ainda mais aprimorada, englobando mais code smells, como os que ficaram de fora da
nossa andlise, e também possa incluir novos frameworks e bibliotecas, como: Angular,
Vue e etc. Para garantir que os aprimoramentos ndo prejudiquem os smells detectados
atualmente, ReactSniffer2 possui um sistema de testes com exemplos de code smells que
sdo validos e invalidos. O que torna ReactSniffer2 mais atrativo para novas contribui¢des
assim como esse estudo o fez.

Também esperamos que, a medida que novas ferramentas de lint surjam ou que
existentes se aprimorem, elas possam se basear nos smells analisados e detectados neste
estudo para melhorar sua eficacia. Sugerimos a realizagdo de integragdes entre IDEs
e ferramentas de lint, a fim de proporcionar uma experiéncia de desenvolvimento mais
eficiente. Além disso, propomos a realiza¢do de estudos de caso em aplicagdes de grande
escala, bem como a andlise e detec¢ao de smells de c6digo em mais projetos, para avaliar
a eficidcia em ambientes praticos e realistas.

Referéncias

Cartaxo, B., Pinto, G., and Soares, S. (2018). O papel das revisdes rapidas no apoio a
tomada de decisdo na pratica de engenharia de software. In EmEASE’18.

Ferreira, F. and Valente, M. T. (2022). Detecting code smells in react-based web apps.
Information and Software Technology.

Fowler, M. (2006). Codesmell. https://martinfowler.com/bliki/
CodeSmell.html. Acesso em 2023-06-14.

Garousi, V., Felderer, M., and Mintyld, M. V. (2019). Diretrizes para incluir literatura
cinza e conduzir revisdes de literatura multivocal em engenharia de software. Tecno-
logia da Informagdo e Software.

Hunt, P. (2013). Why did we build react? Acessado em: 16 de fevereiro de 2024.

Paré, G., Trudel, M.-C., Jaana, M., and Kitsiou, S. (2015). Synthesizing information
systems knowledge: A typology of literature reviews. Information & Management,
52(2):1-15.

Ramos, M., Valente, M. T., and Terra, R. (2018). Angularjs performance: A survey study.
IEEE Software, 35(2):72-79.

Svahnberg, M. (2003). Supporting software architecture evolution. PhD thesis, Blekinge
Institute of Technology, Sweden.

https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html

	Introdução
	Aprofundamento React e React Native
	Metodologia
	Revisão Rápida
	Literatura Cinza
	Classificação e Síntese

	Catálogo de Code Smell
	Props in Initial State
	Use of index as key in rendering with loops
	Component Nesting/JSX Outside the Render
	Large Components
	Prop Drilling
	Too Many Usestate
	Direct DOM Manipulation
	Props Spreading
	Deep Indentation
	Too Many Props
	Large UseEffect
	Mutable Variables
	Procedural Patterns
	String Literals
	Never Using Class Components
	Use Prevstate

	Ferramenta de detecção
	Resultados
	Ameaças à validade
	Conclusão
	Trabalhos Futuros

