
Análise e Detecção de Code Smells em
Aplicações React e React Native

Lucas Silva de Mendonça, Leopoldo Motta Teixeira

1Centro de Informática – Universidade Federal de Pernambuco (UFPE)
50740-560 – Recife – PE – Brazil

lsm5@cin.ufpe.br, lmt@cin.ufpe.br

Abstract. In this article, we present a catalog of 16 code smells extracted from a
gray literature review, combined with a quick review, with the focus exclusively
on React and React Native technologies. We enhanced an Open Source tool, Re-
actSniffer2, which, when applied to 16 Open Source projects, allowed us to ve-
rify the frequency of this catalog. The most frequent smells were: String Literals
(19.04%), Props Spreading (16.39%), and Component Nesting/JSX Outside the
Render (13.99%). In conclusion, this work contributes to the awareness about
code smells in React and React Native, as well as for the improvement of linting
tools.

Resumo. Neste artigo, apresentamos um catálogo de 16 code smells extraı́dos
de uma revisão de literatura cinza, combinado com uma revisão rápida, com o
foco exclusivamente nas tecnologias React e React Native. Aprimoramos uma
ferramenta Open Source, ReactSniffer2, que, ao aplicá-la em 16 projetos Open
Source, permitiu verificar a frequência desse catálogo. Os smells mais frequen-
tes foram: String Literals (19,04%), Props Spreading (16,39%), e Component
Nesting/JSX Outside the Render (13,99%). Em conclusão, este trabalho contri-
bui para o conhecimento sobre code smells em React e React Native, bem como
para o aprimoramento de ferramentas de lint.

1. Introdução
A evolução do software é inevitável [Svahnberg 2003], seja para dar manutenção no
código, resolvendo algum bug encontrado, seja para atender novos requisitos ou no-
vas funcionalidades. Fazer isso ajuda a aumentar a vida útil do software e melhora
aspectos como flexibilidade, integração, manutenibilidade e legibilidade. Contudo, a
manutenção pode levar o programador, se não preparado, a implementar práticas ruins
de programação. Essas práticas ruins, também conhecidas como code smells, não ne-
cessariamente tornam o sistema incorreto, mas dificultam que o sistema seja mantido,
compreendido e refatorado. O termo code smell foi amplamente difundido por Kent Beck
no livro “Refatoração: Aperfeiçoando o Design de Códigos Existentes” [Fowler 2006],
escrito em parceria com Martin Fowler. Pode ser definido como um sintoma para um
problema mais profundo na aplicação, sendo indicadores de um problema, podendo não
ser a causa do problema em si.

Com o passar dos anos, a hegemonia da linguagem JavaScript para desenvolver
sistemas front-end se torna cada vez mais evidente. Este ano, o JavaScript foi novamente
reconhecido como a linguagem de programação mais popular entre os desenvolvedores,



de acordo com a pesquisa da Stack Overflow 1, marcando seu décimo primeiro ano como
lı́der. Diante desta popularidade, é comum encontrar softwares que utilizam essa lingua-
gem como base para seus sistemas. No entanto, para desenvolver sistemas que permitam
uma fácil implementação, manutenção e reutilização, os programadores costumam re-
correr a frameworks e/ou bibliotecas que auxiliam na implementação de interfaces de
usuário complexas [Ramos et al. 2018]. Exemplos populares de frameworks e bibliote-
cas são Angular 2, React 3 e Vue 4, utilizados para o desenvolvimento de aplicações web,
e React Native 5 e Flutter 6, utilizados para o desenvolvimento de aplicações mobile.

Dada a recência das tecnologias React e React Native, e suas semelhanças, exis-
tem poucos materiais que abordem os code smells comuns em aplicações que as utili-
zam [Ferreira and Valente 2022]. Visando isso, este artigo propõe criar um catálogo que
agrupe os principais smells, ao mesmo tempo em que analisa o nı́vel de frequência frente
a projetos Open Source, com o intuito de servir como material de estudo para aprimora-
mento de ferramentas de linting.

A motivação inicial deste artigo é responder às seguintes perguntas:

P1) Quais são os principais code smells encontrados no React e React Native?
P2) Com que frequência são encontrados em projetos reais?

Para lidar com a primeira pergunta, fizemos uma revisão rápida e uma revisão
de literatura cinza, a fim de identificar quais seriam os principais code smells que são
divulgados e encontrados pelos programadores. Nossas pesquisas encontraram 121 code
smells, dos quais foram extraı́dos 16 para um maior aprofundamento e análise.

E para responder à segunda pergunta, aprimoramos uma ferramenta Open Source,
ReactSniffer2, na qual a utilizando-a e aplicando-a em projetos encontrados no Github,
pudermos ver a frequência com que esses code smells são identificados em projetos reais.

Os smells mais encontrados foram: String Literals (19,04%), Props Spreading
(16,39%), Component Nesting/JSX Outside the Render (13,99%). Os smells com as me-
nores frequências foram: Too Many UseState (0,01%), Large UseEffect (0,03%), Proce-
dural Patterns (0,54%).

O artigo está organizado da seguinte forma: na seção 2, encontram-se explicações
sobre as tecnologias escolhidas (React e React Native) e suas semelhanças. Na seção
3, é aprofundada a metodologia utilizada no presente artigo. Na seção 4, apresentamos
o catálogo de code smells proposto. Na seção 5, explicamos a ferramenta de detecção
dos code smells, ReactSniffer2. Na seção 6, apresentamos os resultados obtidos da ferra-
menta. Na seção 7, apresentamos as ameaças à validade da metodologia. As conclusões
são apresentadas na seção 8 e, na seção 9, explicamos as perspectivas sobre os trabalhos
futuros.

1https://survey.stackoverflow.co/2023/#most-popular-technologies-language
2https://angular.io
3https://react.dev
4https://vuejs.org
5https://reactnative.dev
6https://flutter.dev



2. Aprofundamento React e React Native
Aberta ao público em 2013 pelo time da empresa Meta, o React é uma biblioteca, cons-
truı́da baseada na linguagem JavaScript, que ajuda desenvolvedores a criar interfaces de
usuário. O React incentiva a criação de componentes dinâmicos e compostos, que po-
dem ao longo do tempo mudar os valores dos dados que possuem, proporcionando uma
experiência de usuário mais rica e responsiva [Hunt 2013].

O React possui um mecanismo chamado de Single Page Application (SPA), este
mecanismo tem o poder de carregar apenas uma única página HTML e, em seguida,
atualiza essa página dinamicamente à medida que o usuário interage com a aplicação.
Isto ocorre porque o JavaScript consegue manipular a Document Object Model (DOM)
e renderiza os novos conteúdos sem a necessidade de recarregar os antigos, assim toda a
página não precisa ficar sendo recarregada. O React faz o uso de uma extensão de sintaxe
para JavaScript, chamada de JavaScriptX (JSX) que combina Linguagem de Marcação de
Hipertexto (HTML) com JavaScript. Foi através dessa sintaxe que o React ganhou ainda
mais popularidade com a comunidade de desenvolvedores.

O uso do JSX permite que os desenvolvedores escrevam código que são semelhan-
tes a HTML, mas que na verdade são JavaScript. Isso facilita a criação de componentes
de interface de usuário e a manipulação da DOM, o que torna o desenvolvimento mais efi-
ciente e intuitivo. O JSX também permite o uso do JavaScript, o que é útil para gerenciar
e manipular estados da aplicação e seus dados.

O React foi projetado tendo em mente dar suporte a múltiplas plataformas, para
que não fosse apenas uma biblioteca focada na web, mas que pudesse expandir para outras
áreas, isso permitiu o lançamento do framework móvel React Native, no ano de 2015.

O React Native foi criado, com a mesma filosofia do React, utilizando dos mesmos
mecanismos e ferramentas. Com o React Native é possı́vel escrever código de aplicativo
para executá-lo em várias plataformas (através de componentes nativos), como Android
e iOS, não havendo a necessidade de ter um código para cada uma. O React Native se
assemelha muito com o React, pois ambos usam componentes como a unidade básica
de construção de interfaces de usuário, possuem o conceito de estados e propriedades
para gerenciar os dados dentro dos componentes e ambos possuem ciclo de vida dos
componentes, que oferece um melhor dinamismo para seus componentes. Além disso,
visualmente, ambos são parecidos, como pode ser observado nas figuras 1 e 2, onde temos
um simples componente que possui o estado “message” que guarda a mensagem “Olá,
mundo!” e é exibida na tela, quando apertado o botão “Alterar mensagem”, o valor do
texto muda para “Mensagem alterada!” e este é exibido na tela.

Devido às suas semelhanças, ambas as tecnologias foram escolhidas para detectar
code smells.

3. Metodologia
Este artigo tem como objetivo investigar os principais code smells encontrados nas tec-
nologias React e React Native, a fim de propor um catálogo e observar a frequência com
que ocorrem em projetos Open Source. Para isso, o artigo foi orientado a responder as
duas perguntas abaixo:

P1) Quais são os principais code smells encontrados no React e React Native?



Figura 1. Exemplo de código React

Figura 2. Exemplo de código React Native

P2) Com que frequência são encontrados em projetos reais?

Para responder a primeira pergunta realizamos uma Revisão Rápida (RR) com-
binando com uma Revisão de Literatura Cinza (RLC). As revisões de literatura são uma
ótima maneira de identificar, avaliar a qualidade e a relevância dos estudos existentes
para propor uma visão geral sobre o estado atual do campo de estudo [Paré et al. 2015].
A análise e classificação de ambas as técnicas ajudaram a propor o catálogo de code smell
em React e React Native.

3.1. Revisão Rápida

Para realizar a Revisão Rápida, seguimos o modelo proposto por [Cartaxo et al. 2018]. A
RR tem como objetivo fornecer auxı́lio à tomada de decisões em problemas encontrados
na prática de Engenharia de Software, ajudando os profissionais principalmente quando
há uma limitação de tempo e/ou recursos.

A figura 3 retrata o procedimento para realizar a Revisão Rápida. O procedimento
possui 3 etapas: A busca no Scopus, a seleção de artigos através de filtros e a extração
dos code smells.

Na Revisão Rápida, utilizamos o mecanismo de busca Scopus 7, conforme reco-
mendado pelo modelo. A Scopus é uma base de dados de artigos cientı́ficos, com outras

7https://www.scopus.com/search/form.uri?display=basic#basic



Figura 3. Processo abordado na Revisão Rápida

bases de dados indexadas a sua, ele conta com mais de 36.000 tı́tulos em sua base, por
isso, é uma das bases mais bem qualificadas para realizar pesquisas.

Foram realizados vários testes com diferentes strings a fim de encontrar quais os
termos que melhor se adequar na busca por code smell. Os termos resultantes para realizar
a busca foram:

Os termos “react”, “reactjs” e “react native” foram usados para definir a tecnolo-
gia que seria investigada. Os termos “code smell”, “anti-pattern”, “bad practice” foram
inseridos para descobrir o problema pesquisado e os termos “code quality” e “maintaina-
bility” foram usados a fim de encontrar o problema pesquisado por uma abordagem com
foco na solução do problema.

O resultado da busca totalizou 50 artigos, nos quais precisaram ser filtrados a fim
de atender o objetivo das perguntas. Foram aplicados 3 filtros, o primeiro filtro aplicado
foi o filtro de artigos de até 2013, já que a tecnologia mais antiga é a React e ela data do
ano de 2013, por isso limitamos a busca para esse ano. A quantidade total de artigos foi
reduzida para 33.

O segundo filtro foi a leitura dos tı́tulos dos artigos, com o intuito de remover
os artigos que nada tinham a ver com o tema, como por exemplo o artigo com o tı́tulo
“Communicating the UX Vision: 13 Anti-Patterns That Block Good Ideas” que não pos-
sui relação com as tecnologias citadas. Após aplicar o filtro, o número total de artigos foi
reduzido para 13.

O terceiro e último filtro foi o filtro da leitura do resumo, onde através dos resu-
mos, definimos se o artigo havia informações relevantes sobre code smells. O número
total foi reduzido para 8.

Para a extração dos code smells, realizamos a leitura completa dos 8 artigos sele-
cionados. No entanto, todos os code smells identificados foram extraı́dos de apenas um



artigo. Após essa etapa de extração, identificamos um total de 61 code smells únicos.
Mais detalhes podem ser encontrados em https://abrir.link/revisao-rapida.

3.2. Literatura Cinza

Para complementar os code smells encontrados, realizamos a revisão de literatura cinza.
Essa metodologia permite incluir a literatura cinza (relatórios de empresas, documentos
de trabalho, postagens de blogs e discussões em fóruns) em revisões de literatura, como
recomenda [Garousi et al. 2019]. A literatura cinza deve ser incluı́da com o objetivo de
fornecer uma visão mais completa do campo de estudo.

O processo de revisão de literatura cinza pode ser retratado na figura 4. O processo
inclui 3 etapas: Busca no Google, seleção de fontes e extração dos code smells.

Figura 4. Processo de Revisão de Literatura Cinza

Para realizar a busca de fontes para a Revisão de Literatura Cinza utilizamos o
Google. Foram utilizados várias strings diferentes para compor os termos de busca mais
eficiente. Os termos utilizados foram:

Utilizamos menos termos com o objetivo de ser mais eficaz nas buscas por fontes
que retratem o nosso problema. O resultado totalizou cerca de 161.000 fontes. Devido à
limitação de recursos humanos e tempo, decidimos aplicar filtros sobre essas fontes.

O primeiro filtro aplicado foi o filtro dos 120 links mais relevantes do Google. Em
seguida, aplicamos o segundo filtro, que consistiu na leitura parcial das fontes, a fim de
eliminar as que fugiam do nosso problema. Após a aplicação desse filtro, removemos 25
links, totalizando 95 restantes.

https://abrir.link/revisao-rapida


Foi aplicado também um terceiro filtro, que teve o objetivo de qualificar minima-
mente as fontes encontradas, então foi feito a leitura completa das fontes e a aplicação de
um pequeno questionário de qualidade, como proposto pelo [Garousi et al. 2019].

O questionário era composto pelas seguintes perguntas:

P1) A organização editorial é respeitável?
P2) É um autor individual associado a um respeitável organização?
P3) O autor publicou outro trabalho na área?
P4) O autor possui expertise na área?
P5) A fonte tem um objetivo claramente declarado?
P6) A declaração nas fontes é a mais objetiva possı́vel? Ou, a declaração é uma

opinião subjetiva?

Após responder essas perguntas, o artigo era classificado como apto ou
não para seguir para próxima etapa. Mais detalhes podem ser encontrada em
https://abrir.link/literatura-cinza.

Após este filtro, a quantidade total de links foi 45. Em seguida, foi realizada a
extração dos code smells desses links, onde encontramos 105 code smells citados. Desses,
realizamos uma breve sı́ntese para eliminar os duplicados, resultando em 60 code smells
únicos.

3.3. Classificação e Sı́ntese
Após finalizar a revisão de literatura, iniciamos o processo de sı́ntese, a figura 5 mostra
todo o processo de classificação e sı́ntese dos code smells encontrados.

Esta etapa dividimos em 2 fases, a fase inicial e a fase completa. Na fase inicial
apenas combinamos os code smells a fim de deixar únicos entre a revisão de literatura
cinza e a revisão rápida, o resultado foram 97 code smells.

Na fase seguinte, agrupamos code smells que tinham nomes diferentes mas trata-
vam do mesmo cenário ou de um cenário muito semelhante, como por exemplo o code
smell prop drilling e o prop plowing, que se transformou apenas no prop drilling, pois
no contexto geral seria passar propriedades entre componentes apenas para eles repassa-
rem para outros componentes. Foi nessa fase também que começamos a levantar se já
existiam ferramentas que detectavam esses code smells e qual seria o grau de dificuldade
para identificá-los dentro dessas ferramentas, esse levantamento foi muito importante por-
que deixou claro os code smells que tinham um grau muito complexo de implementação
da sua detecção, ou que tinham um grau muito abstrato, como é o caso do code smell
“incompatible props”.

Após esse levantamento, chegamos em um catálogo de 16 code smells, levando
em consideração seu grau de dificuldade, sua complexidade e sua relevância, pois muitos
eram abordados apenas quando o React usava classe em sua implementação. Também
levamos em consideração a quantidade de menções na revisão de literatura, estabelecendo
um mı́nimo de 2 menções para classificar como relevante. A tabela 1 mostra a quantidade
de menções encontrada em cada um dos code smells selecionados.

Com isto respondemos à primeira pergunta sobre quais são os principais code
smells encontrados no React e React Native?. Mais detalhes sobre o processo de
classificação e sı́ntese podem ser encontrados em https://abrir.link/sintese-classificacao.

https://abrir.link/literatura-cinza
https://abrir.link/sintese-classificacao


Figura 5. Processo de Classificação e Sı́ntese

A pergunta seguinte com que frequência são encontrados em projetos reais?
foi respondida através do aperfeiçoamento de uma ferramenta de análise e detecção de
smell, chamada ReactSniffer2, essa ferramenta será abordada na seção 5.

4. Catálogo de Code Smell

Nessa seção, apresentaremos um catálogo de 16 code smells, detectado através da nossa
revisão. Fornecemos uma breve explicação e uma ilustração.

4.1. Props in Initial State

O code smell de “Props in Initial State” refere-se à prática de copiar valores de props
ou propriedade para o estado inicial de um componente no React ou React Native. Por
exemplo, ao passar a propriedade text diretamente para o useState (veja figura 6), o com-
ponente passaria a ignorar novas atualizações da propriedade text, o que tornaria mais
propenso a bugs.

4.2. Use of index as key in rendering with loops

Este code smell trata-se de utilizar o ı́ndice como chave ao mapear elementos de uma lista
para componentes React. Como por exemplo na figura 7, ao utilizar o ı́ndice do array “na-
mes” como chave de identificação do componente React, quando este precisar reordenar,
adicionar ou remover um elemento, o React pode apresentar problemas de desempenho
pela confusão dos ı́ndices atualizados, ou até bugs de não atualizar elementos.



Tabela 1. Tabela da quantidade de menções do code smells selecionados

Figura 6. Exemplo de Props in Initial State

4.3. Component Nesting/JSX Outside the Render

É confiado o modelo de JSX para elementos de interface do usuário ao método render de
um componente React em formato de classe ou ao return em um componente React em
formato de função. Contudo, quando o JSX é extrapolado para outras regiões além dessas,
é considerado um code smell, pois é um indı́cio de que o componente está assumindo
muitas responsabilidades, como no exemplo da figura 8, onde JSX referente ao avatar
de um usuário está em uma constante fora do escopo do return. Portanto, torna-se mais
difı́cil reutilizar esse componente em outros locais e dificulta sua legibilidade.

4.4. Large Components

O code smell “Large Components” ocorre quando um componente se torna muito grande
e/ou complexo, devido à presença de várias responsabilidades ou funcionalidades no
mesmo componente. Uma forma de medir isso é pela quantidade de funcionalidades,
quantidade de funções ou até mesmo quantidade de linhas desse componente. Como na
figura 9, onde o componente “LargeComponent” possui 2 regras complexas, tornando-o
um componente complexo.



Figura 7. Exemplo de Use of index as key in rendering with loops

Figura 8. Exemplo de Component Nesting/JSX Outside the Render

4.5. Prop Drilling
Esse code smell é comumente encontrado em projetos de programadores iniciantes no
uso da tecnologia React ou React Native. O “Prop Drilling” é um termo usado quando
se tem um componente A que precisa fornecer informações para um componente C e faz
isso passando essas informações para o componente B, que por sua vez repassa para o
componente C sem fazer uso algum dessas informações. Como no exemplo da figura
10, onde o “ComponentPropDrilling” recebe uma propriedade “props” e repassa essa
propriedade para o componente filho “Component”.

4.6. Too Many Usestate
O “Too Many Usestate” é um code smell que de forma similar ao “Large Component”
ocorre quando o componente se torna complexo, precisando fazer o uso de muitos estados
por meio do useState (hook fornecido pelo React). Ao utilizar muitos useState pode
desencadear muitos efeitos colaterais caso estes também sejam usados como array de
dependências de hooks useEffects (veja a figura 11).

4.7. Direct DOM Manipulation
O code smell “Direct DOM Manipulation” surge quando o desenvolvedor recorre à
manipulação direta do Document Object Model (DOM) para modificar elementos HTML,
em vez de utilizar as capacidades do React para gerenciar e renderizar os estados e atri-
butos dos componentes, aproveitando o VirtualDOM do React (veja a figura 12).

4.8. Props Spreading
O “Props Spreading” é uma técnica usada no React para passar um conjunto de propri-
edades (props) para um componente. Isso é útil quando se quer realmente fazer uso de



Figura 9. Exemplo de Large Components

Figura 10. Exemplo de Prop Drilling

todas as propriedades no componente filho, mas o seu uso excessivo indica problemas de
design e ineficiência, por isso é considerado um code smell (veja a figura 13).

4.9. Deep Indentation
O code smell “Deep Indentation” refere-se à componentes que possuem muitos nı́veis de
indentação devido a muitas condicionais aninhadas. Isso torna o código ilegı́vel e mais
difı́cil de dar manutenção, exemplo disso é a figura 14, onde o componente “Component-
DeppIndentation” possui várias condicionais para renderizar diferentes estados.

4.10. Too Many Props
Esse code smell ocorre quando o componente React ou React Native apresenta de-
pendência com muitos dados externos, ou seja, o componente precisa de muitas pro-
priedades para o seu uso. Isso pode ocasionar problemas de legibilidade (veja a figura
15).

4.11. Large UseEffect
O code smell “Large UseEffect” refere-se ao uso de um único useEffect com multiplas
operações ou tarefas, resultando-o em um useEffect com muitas funcionalidades agrupa-
das. Esse padrão pode levar o código a ser confuso, dificultando sua legibilidade, e mais
propenso a erros, pois seu array de dependências terá muitos atributos, complicando ainda
mais os efeitos colaterais que desencadeiam a execução deste useEffect (veja a figura 11).



Figura 11. Exemplo de Too Many UseState

Figura 12. Exemplo de Direct DOM Manipulation

4.12. Mutable Variables
O React oferece o hook useState para gerenciamento de estado nos componentes funci-
onais, que se atualiza e dispara re-renderizações com base nas mudanças desses estados.
Utilizar variáveis mutáveis, como let ou var, para valores que podem ser alterados após a
inicialização é considerado um code smell. Isto pode ocasionar a não re-renderização do
componente quando este estado novo muda, o que pode levar a estados inconsistentes e
dificuldades na manutenibilidade e compreensão do código.

4.13. Procedural Patterns
O code smell “Procedural Patterns” ocorre quando os desenvolvedores utilizam padrões
de programação procedural, que são desencorajados pelo paradigma orientado a compo-
nentes, que é usado pelo React. Um exemplo disso é o uso de loops com o operador for
para iterar um array, em vez de usar as funções do próprio array como map ou forEach.

4.14. String Literals
Este code smell refere-se ao uso excessivo de strings literais no código, principalmente
quando estas mesmas strings são usadas em diversos lugares ou que pode mudar com
o tempo. Este code smell pode tornar o código mais difı́cil de manter, pois pode ser
necessária a mudanças em várias regiões do código. Por não gerar problemas de perfor-
mance, esse code smell pode ser encontrado com mais facilidade.



Figura 13. Exemplo de Props Spreading

Figura 14. Exemplo de Props Spreading

4.15. Never Using Class Components
O code smell “Never Using Class Components” sugere que o uso de componentes de
classe em React não é recomendado, embora tenha sido o método tradicional para rende-
rizar componentes e gerenciar estados até a versão 16.8 do React. Desde então, o React
introduziu hooks, permitindo que os componentes funcionais gerenciem o estado e todos
os outros recursos do React sem a necessidade de classes. Isso resultou em código mais
legı́vel e com maior flexibilidade para adicionar novas funcionalidades através dos Hooks.
Como por exemplo não é recomendado o uso de classe como na figura 16.

4.16. Use Prevstate
Quando se é necessário gerenciar um estado no React ou React Native, o hook de useState
pode ser a solução, porém quando é preciso atualizar tendo a informação do estado atual,
muitos desenvolvedores podem acabar caindo nesse code smell. O “Use Prevstate” é o
code smell de quando não se utilizam o segundo argumento do hook useState, que é uma
função que permite acessar o estado anterior durante a atualização.

Sem utilizar o segundo argumento, os desenvolvedores costumam pegar o es-
tado diretamente do primeiro argumento do useState, o que pode levar a bugs quando
há múltiplas atualizações rápidas, podendo em cada atualização não estar contido dentro
do estado o seu valor mais recente (veja a figura 17).

5. Ferramenta de detecção
Para responder à pergunta com que frequência são encontrados em projetos reais?,
aprimoramos uma ferramenta de detecção de code smells, chamada ReactSniffer28.

8https://github.com/lsm-5/reactsniffer2



Figura 15. Exemplo de Too Many Props

Figura 16. Exemplo de Componente React usando classe

Na figura 18 podemos conferir a arquitetura dessa ferramenta. Ela foi construı́da
em Node e recebe como entrada o caminho do arquivo ou da pasta do projeto React ou
projeto React Native através de uma Interface de Linha de Comando (CLI). Quando a
ferramenta detecta e checa que o caminho é válido, ela começa a percorrer todas as pastas
e subpastas filtrando se há arquivos com as extensões .js, .jsx, .ts, .tsx, que são os arquivos
encontrados em projeto React ou React Native. Após essa filtragem, um compilador
JavaScript, chamado Babel, entra em ação convertendo os arquivos em Árvore Sintática
Abstrata (AST) resultando em formato JSON, esse é um compilador muito poderoso, pois
consegue entender novos elementos de versões recentes do JavaScript e transformá-lo em
uma versão compatı́vel com versões anteriores do JavaScript. Após a geração da AST
é feito um novo filtro, para selecionar apenas as AST que possuem importação para o
React ou React Native. Por fim, é feito uma varredura nas AST’s restantes percorrendo
de forma recursiva usando um algoritmo de pré-ordem para detectar se existe code smells
nos arquivos. Como output, a ferramenta gera um arquivo json contendo um resumo com
todos os smells detectados, uma lista dos arquivos e componentes contendo os smells que
cada um possuem e outra lista de todos os arquivos e todos os componentes informando
se possuem smells ou não.

A ferramenta está disponı́vel publicamente para uso através
do gerenciador de pacotes NPM. Para mais detalhes acesse o link:
https://www.npmjs.com/package/reactsniffer2.

A checagem do code smell “Props in Initial State” é feita através da verificação da
propriedade que um componente recebe é usada como estado inicial.

https://www.npmjs.com/package/reactsniffer2


Figura 17. Exemplo de Use PrevState da forma correta e incorreta

Figura 18. Arquitetura da ferramenta ReactSniffer2

Para o code smell “Use of index as key in rendering with loops” é verificado o uso
do index como key para uma estrutura de repetição.

No “Component Nesting/JSX Outside the Render” a ferramenta identifica o
número de componentes fazendo parte de outros componentes.

Para o code smell “Large Components” foi necessário criar um limite para a quan-
tidade máxima de linhas encontrado em um componente e para a quantidade máxima de
método desse componente, pois esses seriam os limites para considerar um smell.

Para “Prop Drilling” é analisado se a propriedade recebida por um componente é
repassada pra outro componente.

Para o code smell “Too many useState” foi definido um limite para o número de
uso do useState em cada componente para ser considerado um smell.

No “Direct DOM Manipulation” é verificado se há o uso de algum método de
manipulação direta da árvore DOM.

No “Props Spreading” é analisado o uso do operador spread.

No “Deep Indentation” é feito a verificação de alguma indentação profunda.

Para o “Too many props” foi definido a quantidade máxima de propriedades que
um componente poderia receber.

Para o code smell “Large useEffect” foi definido não o número de linhas como
limite para virar um smell mas o número de operações dentro do uso do useEffect.

Para “Mutable Variables” é identificado se existem variáveis que podem ser alte-
rada sem o uso de estado do React.



Para “Procedural Patterns” é analisado se faz o uso de funções próprias para interar
arrays e coleções ao invés de usar estrutura de repetições.

Para “String Literals” é verificado se existem comparações com string literais no
código fonte.

Para “Never Using Class Components” é identificado se o componente React foi
construı́do como classe.

Para “Use PrevState” é verificado se as atualizações de estados dos componentes
fazem o uso do parâmetros da própria função de atualização e não do uso do parâmetro
de visualização do estado.

Para a detecção de alguns code smells foram necessário colocar limites para serem
considerados smells. Os limites podem ser conferidos na tabela 2.

Tabela 2. Tabela da quantidade de menções do code smells selecionados

Os limites para os code smell “Large Components” e “Too many props”
foram coletados da própria pesquisa da criação da ferramenta ReactSniffer
[Ferreira and Valente 2022]. Os limites restantes dos code smells Too many “useState”
e “Large useEffect” foram definidos de forma empirı́ca, pois não há fontes que sugiram
limites para tais, entretanto foi questionado à um pequeno grupo de desenvolvedores que
aprovaram esses limites.

6. Resultados

A tabela 3 mostra os resultados obtidos pela ferramenta ReactSniffer2 em projetos Open
Source. Selecionamos os projetos baseados nos maiores números de estrelas resultantes
da pesquisa de projetos React e React Native no Github. Como mostra a tabela 4, os pro-
jetos selecionados possuem um mı́nimo de 11.000 estrelas. E todos foram selecionados
verificando se no arquivo packages possuı́am a dependência react, como:

Selecionamos um total de 16 projetos React e React Native. A quantidade de
arquivos analisados e dos componentes analisados pode ser encontrada na tabela 5. Dis-
cutiremos brevemente os resultados.

Props in Initial State (PIS): Aparece em 14 dos 16 projetos selecionados, ocor-
rendo em um total de 914 vezes (13,69%). O projeto com mais ocorrências foi o apa-
che/superset com 47,81% (437) de todas as ocorrências.



Tabela 3. Tabela de resultado a análise da ferramenta ReactSniffer2 em projetos
Open Source

Use of index as key in rendering with loops (KLR): Com uma ocorrência baixa,
apenas 108 vezes, aparece em 11 dentre todos os projetos selecionados. O projeto apa-
che/superset concentra 22 de todas as ocorrências no total.

Component Nesting/JSX Outside the Render (CN): Está entre os smells mais fre-
quentes encontrados, alcançando o 3° lugar em code smell mais frequentes. O projeto
com mais ocorrências foi o apache/superset com 450 das 934 vezes. Também é neste
projeto que encontramos o componente com mais componentes aninhados, o componente
“CRUDCollection” possui 21 componentes aninhados.

Large Components (LC): Encontrado em 387 componentes, esse smell possui uma
frequência de 5,80% dentre todos os smells. O projeto com o componente com a maior
quantidade de linhas foi o projeto apache/superset, com um componente que possui 1495
linhas de código. E o projeto com o componente com o maior número de métodos é o
bvaughn/react-virtualized com um componente com 36 métodos.

Prop Drilling (PD): Com um total de 637 vezes (9,54% entre todos os smells). O
projeto com mais ocorrências é o apache/superset (265 ocorrências) seguido do projeto
callstack/react-native-paper (252 ocorrências).

Too many useState (TMS): O smell com a menor frequência encontrada, ocor-
rendo apenas 1 vez de acordo com o nosso limite estabelecido, no projeto apache/superset.
O componente em questão possui 21 estados internos.



Tabela 4. Tabela de quantidade de estrelas dos projetos selecionados

Direct DOM Manipulation (DOM): Com uma ocorrência de 87 vezes (1,30%),
este smell foi encontrado principalmente no projeto apache/superset (39 vezes) seguido
do projeto facebook/docusaurus (17 vezes). Os smells eram encontrados principalmente
com a manipulação direta da DOM através do uso dos métodos como: getElementsBy-
TagName, getElementById, createElement, getElementsByClassName.

Props Spreading (PS): Com a ocorrência em todos os projetos, foi verificado
1094 vezes o uso do operador Spread. O projeto com o maior uso foi o projeto Ge-
ekyAnts/NativeBase com 264 usos. Este smell está em 2° colocado em smell mais
frequêntes nos projetos.

Deep Indentation (DI): Com apenas 113 ocorrências, é classificado como um dos
smells com baixa frequência. O projeto com mais ocorrências é o projeto callstack/react-
native-paper com 48 ocorrências.

Too many props (TMP): Ocorrendo em 7 dos 16 projetos selecionados, esse smell
teve uma frequência de 0,93% dentre todos os smells encontrados. O projeto com mais
ocorrências foi o apache/superset (21 ocorrências), porém foi o projeto callstack/react-
native-paper que tem o componente com o maior número de props (33 props).

Large useEffect (LE): Ocorrendo apenas 2 vezes, uma no projeto ant-design/ant-
design-mobile e outra no projeto apache/superset. O projeto com o maior número de
operações no useEffect foi o projeto ant-design/ant-design-mobile com 10 operações.

Mutable Variables (MV): Com uma ocorrência de 497 vezes, foi encontrada em
12 dos 16 projetos selecionados. O projeto com mais ocorrências foi o apache/superset,
com 49,29% de todas as ocorrências.

Procedural Patterns (PP): Com apenas 33 ocorrências (0,54%), foi mais um dos
smells com baixa frequência, com a ocorrência acontecendo principalmente no projeto



Tabela 5. Tabela da arquivos analisados e componentes analisados dos projetos
selecionados

apache/superset (13 ocorrências).

String Literals (SL): Foi o smell com mais ocorrências (19,04%), mesmo não
sendo encontrado em todos os projetos. Seu principal foco foi no projeto apache/superset
com 462 ocorrências.

Never Using Class Components (NUCC): Foi encontrado em 426 componentes
dos 3590 componentes analisados. Seu smell teve uma frequência de 6,38% dentre todos
os smells encontrados.

Use PrevState (UPS): Encontrado 105 vezes, seu smell teve uma frequência de
1,57% dentre os smells. O projeto com mais ocorrência foram os projetos apache/superset
e GeekyAnts/NativeBase. Ambos com o mesmo número de ocorrência (28 vezes).

Figura 19. Gráfico da frequência dos smells selecionados

Para mais detalhes acesse: https://abrir.link/resultados

https://abrir.link/resultados


7. Ameaças à validade

Nesta seção apresentaremos as ameaças à validade da nossa metodologia. A revisão
rápida pode ser considerada uma técnica leve em relação a uma revisão sistemática da
literatura completa. Já a revisão de literatura cinza tem suas ameaças devido às fontes não
serem cientı́ficas. Além disso, pela revisão ser conduzida por apenas um pesquisador, há
a possibilidade de existir viés de seleção.

No entanto, em relação à revisão rápida, utilizamos uma base de dados que agrega
outras bases de dados para tornar a seleção mais abrangente. Já em relação à revisão
de literatura cinza, a seleção das primeiras 120 fontes pode levar ao descartes de fontes
significativas para nossa pesquisa, entretanto, é comum ao pesquisar no Google que as
páginas iniciais correspondam melhor ao que se procura. Outro ponto que pode elevar
minimamente a qualidade da revisão é o uso do questionário seguindo as sugestões da
própria metodologia.

Para a seleção dos code smells, selecionamos apenas aqueles que foram mencio-
nados mais de uma vez. Finalmente, o resultado também mostra que os code smells são
encontrados em projetos Open Source.

Os valores usados como limites podem ameaçar a validade desse artigo, porém
3 deles foram coletados de outro artigo cientı́fico e os coletados empiricamente foram
questionados à desenvolvedores experientes que também aprovaram o valor definido.

Um último ponto é que alguns code smells selecionados, como por exemplo o
“Props Spreading”, não necessariamente implicam em uma má performance do sistema
ou em uma dificuldade de legibilidade ou manutenção. No entanto, a proposta do catálogo
é alertar aos desenvolvedores que o uso deles pode ser a raiz de um problema maior no
futuro do código, que vale a reflexão durante o seu uso.

8. Conclusão

Neste artigo, buscamos explorar a análise e detecção de code smell em aplicações React e
React Native, com o propósito de compor um catálogo dos principais smells encontrados
na nossa revisão de literatura. Através da nossa análise, identificamos que o catálogo de
smells se mostrou consistente pois foram encontrados todos os smells em projetos Open
Source. Os projetos com os maiores números de smells foram: apache/superset (2535
smells), callstack/react-native-paper (785 smells) e GeekyAnts/NativeBase (628 smells),
porém vale ressaltar que o seu grande número de smells também reflete no grande número
de arquivos e componentes que esses projetos possuem.

Outro ponto importante é que a identificação de alguns smells não necessaria-
mente implica na prática ruim de programação, mas que o seu uso excessivo pode im-
plicar em problemas de performance e legibilidade, como por exemplo o smell: “string
literals” e “props spreading”. Vale ressaltar também que os limites estabelecidos podem
e devem ser ajustados para compor cada vez mais a realidade dos projetos de mercado.

As conclusões apresentadas neste estudo não apenas contribuem para a compre-
ensão atual sobre os code smells em aplicações React e React Native, mas também abrem
caminho para futuras pesquisas e desenvolvimentos na área, além de aprimoramento em
ferramentas de lint. O importante desse estudo é o alerta que fica aos desenvolvedores e



programadores, para que tenham uma maior reflexão antes de uso dessas práticas em suas
aplicações.

9. Trabalhos Futuros
Como continuação desse estudo, esperamos que a ferramenta ReactSniffer2 possa ser
ainda mais aprimorada, englobando mais code smells, como os que ficaram de fora da
nossa análise, e também possa incluir novos frameworks e bibliotecas, como: Angular,
Vue e etc. Para garantir que os aprimoramentos não prejudiquem os smells detectados
atualmente, ReactSniffer2 possui um sistema de testes com exemplos de code smells que
são válidos e inválidos. O que torna ReactSniffer2 mais atrativo para novas contribuições
assim como esse estudo o fez.

Também esperamos que, à medida que novas ferramentas de lint surjam ou que
existentes se aprimorem, elas possam se basear nos smells analisados e detectados neste
estudo para melhorar sua eficácia. Sugerimos a realização de integrações entre IDEs
e ferramentas de lint, a fim de proporcionar uma experiência de desenvolvimento mais
eficiente. Além disso, propomos a realização de estudos de caso em aplicações de grande
escala, bem como a análise e detecção de smells de código em mais projetos, para avaliar
a eficácia em ambientes práticos e realistas.

Referências
Cartaxo, B., Pinto, G., and Soares, S. (2018). O papel das revisões rápidas no apoio à

tomada de decisão na prática de engenharia de software. In EmEASE’18.

Ferreira, F. and Valente, M. T. (2022). Detecting code smells in react-based web apps.
Information and Software Technology.

Fowler, M. (2006). Codesmell. https://martinfowler.com/bliki/
CodeSmell.html. Acesso em 2023-06-14.

Garousi, V., Felderer, M., and Mäntylä, M. V. (2019). Diretrizes para incluir literatura
cinza e conduzir revisões de literatura multivocal em engenharia de software. Tecno-
logia da Informação e Software.

Hunt, P. (2013). Why did we build react? Acessado em: 16 de fevereiro de 2024.

Paré, G., Trudel, M.-C., Jaana, M., and Kitsiou, S. (2015). Synthesizing information
systems knowledge: A typology of literature reviews. Information & Management,
52(2):1–15.

Ramos, M., Valente, M. T., and Terra, R. (2018). Angularjs performance: A survey study.
IEEE Software, 35(2):72–79.

Svahnberg, M. (2003). Supporting software architecture evolution. PhD thesis, Blekinge
Institute of Technology, Sweden.

https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html

	Introdução
	Aprofundamento React e React Native
	Metodologia
	Revisão Rápida
	Literatura Cinza
	Classificação e Síntese

	Catálogo de Code Smell
	Props in Initial State
	Use of index as key in rendering with loops
	Component Nesting/JSX Outside the Render
	Large Components
	Prop Drilling
	Too Many Usestate
	Direct DOM Manipulation
	Props Spreading
	Deep Indentation
	Too Many Props
	Large UseEffect
	Mutable Variables
	Procedural Patterns
	String Literals
	Never Using Class Components
	Use Prevstate

	Ferramenta de detecção
	Resultados
	Ameaças à validade
	Conclusão
	Trabalhos Futuros

