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ABSTRACT

Global pointwise estimates are obtained for quasilinear Lane-Emden-type systems involv-

ing measures in the “sublinear growth” rate. Necessary and sufficient conditions are presented

for the existence of positive solutions to a class of systems of quasilinear elliptic equations

involving measures in the “sublinear growth” rate expressed in terms of Wolff’s potential. Our

approach is based on recent advances due to T. Kilpeläinen and J. Malý in the potential theory.

Also, we are interested in a class of 𝑘-Hessian Lane-Emden type systems with measure data in

the “sublinear growth” rate. We give global pointwise estimates of the so-called Brezis–Kamin

type in terms of Wolff potentials, which allows us to obtain necessary and sufficient condi-

tions for the existence of positive solutions. This method enables us to treat several kinds of

problems, such as equations involving general quasilinear operators and fractional Laplacian,

or fully nonlinear 𝑘-Hessian operators.

Further, we present a sufficient condition in terms of Wolff potentials for the existence of

a finite energy solution to measure data (𝑝, 𝑞)-Laplacian equation in the “sublinear growth”

rate. We prove that such a solution is minimal. Besides, we show a necessary condition in

terms of a suitably generalized potential of the Wolff-type for the eventual solutions, not

necessarily of finite energy. Our main tools are integral inequalities closely associated with

(𝑝, 𝑞)-Laplacian equations with measure data, and pointwise potential estimates which allow

us to obtain bounds of solutions. This method enables us to treat other nonlinear elliptic

problems involving general quasilinear operators.

Keywords: Nonlinear elliptic equations; Wolff potentials; 𝑝-Laplacian; Fractional Laplacian;

𝑘-Hessian equations; Lane-Emden system; Integral equations; Orlicz-Sobolev spaces; Measure

data problems.



RESUMO

Estimativas pontuais globais são obtidas para sistemas quasi-lineares do tipo Lane-Emden

envolvendo medidas na taxa de “crescimento sublinear”. Condições necessárias e suficientes são

apresentadas para a existência de soluções positivas para uma classe de sistemas de equações

elípticas quase-linear envolvendo medidas numa taxa de “crescimento sublinear” expressadas

em termos do potencial de Wolff. Nossa abordagem é baseada em avanços recentes devido

a T. Kilpeläinen e J. Malý na teoria do potencial. Além disso, estamos interessados em um

classe de sistemas do tipo Lane-Emden regidos pelo operador 𝑘-Hessiano também com medi-

das num “crescimento sublinear”. Fornecemos estimativas pontuais globais do chamado tipo

Brezis-Kamin em termos de potenciais Wolff, o que nos permite obter condições necessárias

e suficientes para a existência de soluções positivas a esse sistema. Este método nos permite

tratar vários tipos de problemas, como equações envolvendo operadores quase-lineares mais

gerais e o Laplaciano fracionário, ou operadores totalmente não-lineares do tipo 𝑘-Hessiano.

Em um viés parecido, apresentamos uma condição suficiente em termos de potenciais de

Wolff para a existência de uma solução de energia finita para uma equação do tipo (𝑝, 𝑞)-

Laplaciano com medidas no “crescimento sublinear”. Provamos que tal solução é mínima.

Além disso, exibimos uma condição necessária em termos de um potencial adequadamente

generalizado do tipo Wolff para eventuais soluções desse problema, não necessariamente de

energia finita. Nossas principais ferramentas são as desigualdades de integrais intimamente

associadas a equações do regidas pelo operador (𝑝, 𝑞)-Laplaciano, com medidas, e estimativas

pontuais de potenciais que permitem obter limitações para estas soluções. Este método nos

permite tratar outras formas de problemas elípticas não-lineares envolvendo operadores quase-

lineares mais gerais.

Palavras-chaves: Equações elípitcas não-lineares; Potenciais de Wolff; 𝑝-Laplaciano; Lapla-

ciano Fracionário; Equações integrais; Espaços de Orlicz-Sobolev; Problemas com medidas

dadas.



LIST OF SYMBOLS

Ω ⊆ R𝑛 stands a domain.

As usual, we use the letters 𝑐, 𝑐, 𝐶, and 𝐶, with or without subscripts, to

denote different constants.

𝐴 ≈ 𝐵 means that there exists a constant 𝑐 > 0 such that 𝑐−1 𝐵 ≤ 𝐴 ≤

𝑐 𝐵.

𝜒𝐸 := the characteristic function of a set 𝐸.

𝑀+(Ω) := the set of all nonnegative Radon measures 𝜎 defined on Ω.

Often, we use the Greek letters 𝜇 and 𝜔 to denote Radon measures.

We denote by d𝜎-a.e in R𝑛, when a property holds almost everywhere in

R𝑛 in the sense of the measure 𝜎.

𝐶(Ω) := the set of all continuous functions in Ω.

𝐶∞
𝑐 (Ω) := the set of all infinitely differentiable functions with compact

support in Ω.

𝐿𝑠
loc(Ω, d𝜇) := the local 𝐿𝑠 space with respect to 𝜇 ∈ 𝑀+(Ω), 𝑠 > 0. If 𝜇

is the Lebesgue measure, we write 𝐿𝑠
loc(Ω).

𝑊 1,𝑝
loc (R𝑛) := the space of all functions 𝑢 ∈ 𝐿𝑝

loc(R𝑛) which admit weak

derivatives 𝜕𝑖𝑢 ∈ 𝐿𝑝
loc(R𝑛) for 𝑖 = 1, . . . , 𝑛.

𝑊 −1,𝑝′

loc (Ω) := the dual of the Sobolev space 𝑊 1,𝑝
loc (R𝑛), where 𝑝′ = 𝑝/(𝑝 −

1).

We denote by 𝜎(𝐸) =
´

𝐸
d𝜎 the measure of any 𝜎-measurable subset 𝐸

of Ω. When 𝜎 is the Lebesgue measure, we write |𝐸| = 𝜎(𝐸).

𝐵(𝑥, 𝑡):= the open ball of radius 𝑡 > 0 centered at 𝑥 ∈ R𝑛.
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1 INTRODUCTION

This thesis aims to use tools of nonlinear potential theory to prove the existence of solutions

to systems of quasilinear elliptic equations, systems of fully nonlinear elliptic equations, and

quasilinear elliptic equations with Orlicz growth. All these problems will be of the Lane-Emden

type and considered in the “sublinear growth” rate.

Fix 𝑛 ≥ 3 and let 𝜎 ∈ 𝑀+(R𝑛). To make the explanation more precise, we first give

necessary and sufficient conditions for the existence of solutions for:

(I) systems of the Lane-Emden type, including the following model problem for quasilinear

elliptic equations ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− Δ𝑝𝑢 = 𝜎 𝑣𝑞1 , 𝑢 > 0, in R𝑛,

− Δ𝑝𝑣 = 𝜎 𝑢𝑞2 , 𝑣 > 0, in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0, lim
|𝑥|→∞

𝑣(𝑥) = 0,

(𝑆1)

where Δ𝑝𝑓 = div(|∇𝑓 |𝑝−2∇𝑓) is the 𝑝-Laplacian, 1 < 𝑝 < ∞;

(II) systems of fully nonlinear elliptic equations of the Lane-Emden type⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐹𝑘[−𝑢] = 𝜎 𝑣𝑞1 , 𝑢 > 0, in R𝑛,

𝐹𝑘[−𝑣] = 𝜎 𝑢𝑞2 , 𝑣 > 0, in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0, lim
|𝑥|→∞

𝑣(𝑥) = 0,

(𝑆2)

where 𝐹𝑘[𝑢] is the 𝑘-Hessian operator for the range 1 ≤ 𝑘 < 𝑛/2 defined as the sum of 𝑘 × 𝑘

minors of the Hessian matrix 𝐷2𝑢. We analyze Systs. (𝑆1) and (𝑆2) in the sub-natural growth,

that is, the cases 0 < 𝑞𝑖 < 𝑝 − 1 for 𝑖 = 1, 2 in (𝑆1), and 0 < 𝑞𝑖 < 𝑘 for 𝑖 = 1, 2 in (𝑆2).

We can see that when 𝑢 = 𝑣 and 𝑞1 = 𝑞2 = 𝑞, Syst. (𝑆2) can be reduced to the following

equation: ⎧⎪⎪⎨⎪⎪⎩
𝐹𝑘[−𝑢] = 𝜎 𝑢𝑞 in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0.
(𝑃1)

A solution to Systs. (𝑆1) or (𝑆2) is understood in the potential-theoretic sense. Namely, a

solution to Syst. (𝑆1) will be a pair of nonnegative 𝑝-superhamonic functions (𝑢, 𝑣) satisfying

(𝑆1) in the measure sense; in fact, under Wolff’s inequality (see (2.1.2) below), we will show

that (𝑢, 𝑣) ∈ 𝑊 1,𝑝
loc (R𝑛)×𝑊 1,𝑝

loc (R𝑛) and it satisfies Syst. (𝑆1) in the distributional sense. While

a solution to Syst. (𝑆2) will be a pair of 𝑘-subharmonic (𝑘-convex) (𝑢, 𝑣), that is a pair (𝑢, 𝑣)
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of 𝑘-subharmonic functions, satisfying (𝑆2) in the measure sense. For the precise definitions,

see Sections 2.1 and 2.2, respectively.

Next, we provide a sufficient condition for the existence of a finite energy solution for:

(III) the quasilinear elliptic equations of the following type (𝑝, 𝑞)-Laplace operator:

−
(︁
Δ𝑝𝑢 + Δ𝑞𝑢

)︁
= 𝜎

(︁
𝑢𝛾(𝑝−1) + 𝑢𝛾(𝑞−1)

)︁
in R𝑛,

where 2 ≤ 𝑝 < 𝑞 < ∞, and 𝛾 is a constant satisfying:

0 < 𝛾 < min
{︃

𝑝 − 1
𝑞 − 1 ,

1
𝑞 − 𝑝

}︃
. (𝐴1)

In particular, 𝛾 < 1, which describes exactly the situation of “sublinear growth”. Here, it is

suitable to treat the previous equation in the Orlicz setting, seeing this equation as

−div
(︃

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢

)︃
= 𝜎 𝑔(𝑢𝛾) in R𝑛, (𝑃2)

where 𝑔 : [0, ∞) → [0, ∞) is the function given by

𝑔(𝑡) = 𝑡𝑝−1 + 𝑡𝑞−1. (𝐴2)

If 𝑝 = 𝑞, we have 𝑔(𝑡) = 𝑡𝑝−1 and Eq. (𝑃2) becomes in

−Δ𝑝𝑢 = 𝜎 𝑢𝛾(𝑝−1) in R𝑛, (1.0.1)

here we set 0 < 𝛾 < 1. We highlight that for additional examples of quasilinear operators,

we recommend referring to, for instance, [Ó 1997, Montenegro 1999]. Because of Eq. (𝑃2),

our approach employs tools of the theory of Orlicz Spaces. For the precise definitions of

the Orlicz spaces considered below, see Section 2.3. By a finite energy solution to (𝑃2),

we mean a nonnegative function 𝑢 ∈ 𝒟1,𝐺(R𝑛) satisfying weakly (𝑃2), where 𝒟1,𝐺(R𝑛) is

the homogeneous Sobolev-Orlicz space defined as the space of all functions 𝑢 ∈ 𝐿𝐺
loc(R𝑛),

which admit weak derivatives 𝜕𝑘𝑢 ∈ 𝐿𝐺(R𝑛) for 𝑘 = 1, . . . , 𝑛. To be more precise, setting

𝑓(𝑡) = 𝑔(𝑡𝛾) and 𝐹 (𝑡) =
´ 𝑡

0 𝑓(𝑠) d𝑠 for 𝑡 ≥ 0, a nonnegative function 𝑢 is called a finite

energy solution to (𝑃2) if 𝑢 ∈ 𝒟1,𝐺(R𝑛), and it satisfies (𝑃2) weakly, that is
ˆ
R𝑛

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢 · ∇𝜙 d𝑥 =
ˆ
R𝑛

𝑓(𝑢)𝜙 d𝜎 ∀𝜙 ∈ 𝐶∞
𝑐 (R𝑛).

Note that finite energy solutions to (𝑃2) are critical points of the functional

𝐽(𝑣) =
ˆ
R𝑛

𝐺(|∇𝑣|) d𝑥 −
ˆ
R𝑛

𝐹 (|𝑣|) d𝜎, 𝑣 ∈ 𝒟1,𝐺(R𝑛). (1.0.2)
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We are interested in nontrivial solutions of finite energy.

Our results are new even for systems of nonlinear elliptic equations involving the classical

Laplace operator (like (𝑆1)), corresponding to the case 𝑝 = 2; or for nonnegative 𝜎 ∈ 𝐿1
loc(R𝑛),

here d𝜎 = 𝜎 d𝑥.

The main idea is to apply potential estimates in the problems above since they will be

seen in the sense of measures. Potential estimates are well-established and precise tools in

the analysis of measure data elliptic partial differential equations. Roughly speaking, poten-

tial estimates allow us to deal with integral equations instead of elliptic partial differential

equations.

To study Systs. (𝑆1) and (𝑆2), we employ some elements of nonlinear potential theory,

accurately on the systematic use of the Wolff potential W𝛼,𝑝𝜎 defined by

W𝛼,𝑝𝜎(𝑥) =
ˆ ∞

0

(︃
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
, 𝑥 ∈ R𝑛, (1.0.3)

where 1 < 𝑝 < ∞, 0 < 𝛼 < 𝑛/𝑝. Observe that W𝛼,𝑝𝜎 is always positive for 𝜎 ̸≡ 0 which

may be ∞. In fact, by [Cao and Verbitsky 2017, Corollary 3.2], W𝛼,𝑝𝜎(𝑥) ̸≡ ∞ for all 𝑥 ∈ R𝑛

if and only if ˆ ∞

1

(︃
𝜎(𝐵(0, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
< ∞. (1.0.4)

This means that W𝛼,𝑝𝜎(𝑥) < ∞ for all 𝑥 ∈ R𝑛 if and only if W𝛼,𝑝𝜎(𝑥0) < ∞ for some

𝑥0 ∈ R𝑛 (we may take 𝑥0 = 0).

The same reasoning applies to solving Eq. (𝑃2). To be precise, we consider the potential

of Wolff-type W𝐺𝜎 defined by

W𝐺𝜎(𝑥) =
ˆ ∞

0
𝑔−1

(︃
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−1

)︃
d𝑡. (1.0.5)

Observe that W𝐺𝜎 may be infinity. In Section 4.1 below, we characterize the finiteness of

W𝐺𝜎 similarly to (1.0.4).

The next sections will play a motivational role in our work. If the reader is interested in

seeing the main results of this thesis soon, they can be found in Section 1.3.

1.1 BRIEFLY HISTORY ON POTENTIAL ESTIMATES

Potential estimates arise naturally as an extension of representation formulas via funda-

mental solutions. It is known that representation formulas via fundamental solutions are an
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assertive tool for establishing the qualitative properties of solutions to linear elliptic equations.

Eventually, these lead to consider linear Riesz potentials and singular integrals. Let us deal

with the classical Poisson equation, which is the simplest example, given by

−Δ𝑢 = 𝜇 in R𝑛.

Here 𝜇, which is eventually taken to be a measure, is for simplicity assumed to be a smooth

and compactly supported function, while 𝑢 is the unique solution which decays to zero at

infinity. The point we are interested in now is that 𝑢 can be recovered via convolution with the

so-called fundamental solution. This means that the following representation formula holds:

𝑢(𝑥) = 1
𝑐(𝑛)

ˆ
R𝑛

𝐺(𝑥, 𝑦) d𝜇(𝑦), (1.1.1)

where 𝐺(𝑥, 𝑦) = |𝑥−𝑦|−(𝑛−2), 𝑐(𝑛) = 𝑛(𝑛−2)|𝐵(0, 1)| is a normalization constant. From now

on, this normalization constant will be dropped for the sake of convenience. The uniqueness of

𝑢 follows, for instance, from [Evans 1998, Theorem 9, Chapter 2, Section 3], since 𝐺(𝑥, 𝑦) → 0

as |𝑥| → ∞ uniformly in 𝑦 ∈ R𝑛 ∖ {𝑥}.

Remark 1.1.1. If 𝑛 = 2, 𝑐(𝑛) = 2𝜋 and 𝐺(𝑥, 𝑦) = ln |𝑥−𝑦|, which is unbounded as |𝑥| → ∞,

and so may be
´
R2 𝐺(𝑥, 𝑦) d𝜇(𝑦). For this reason, unless otherwise stated we assume that

𝑛 ≥ 3.

The formula (1.1.1) allows to redirect the study of solutions to the analysis of a related

integral equation. Clearly, the laplacian operator Δ is a particular case of 𝑝-laplacian operator

Δ𝑝 with 𝑝 = 2. However, no corresponding integral representation (1.1.1) is available for Δ𝑝

when 𝑝 ̸= 2, despite the existence of fundamental solutions given by

𝐺𝑝(𝑥, 𝑦) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|𝑥 − 𝑦|
𝑛−𝑝
𝑝−1

if 1 < 𝑝 < 𝑛,

log |𝑥 − 𝑦| if 𝑝 = 𝑛.

When 𝜇 ∈ 𝑀+(R𝑛), formula (1.1.1) still holds as a consequence of Riesz representation

theorem (see [Armitage and Gardiner 2001, Corollary 4.3.3] for the details). Note that formula

(1.1.1) can be seen in terms of the Newtonian potential of 𝜇, that is (1.1.1) says 𝑢(𝑥) = I2𝜇(𝑥)

for all 𝑥 ∈ R𝑛, where the Newtonian potential I2 potential is defined by

I2𝜇(𝑥) =
ˆ
R𝑛

d𝜇(𝑦)
|𝑥 − 𝑦|𝑛−2 .

To recover formula (1.1.1) for other types of elliptic operators, it was necessary to “expand"

the space of solutions (i.e. weaken the notion of solution), and deal with the measure data
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problem. For that, Wolff potentials (1.0.3) plays the role of extending the formula (1.1.1),

through which we will relate elliptic problems with suitable integral equations.

In the context of quasilinear problems, Wolff potentials with 𝛼 = 1 appeared in the

notable works of T. Kilpeläinen and J. Malý [Kilpeläinen and Malý 1992, Kilpeläinen and

Malý 1994]. Indeed, from [Kilpeläinen and Malý 1994, Corollary 4.13], there exists a constant

𝐾 = 𝐾(𝑛, 𝑝) ≥ 1 such that it holds

𝐾−1W1,𝑝𝜇(𝑥) ≤ 𝑢(𝑥) ≤ 𝐾 W1,𝑝𝜇(𝑥) ∀𝑥 ∈ R𝑛, (1.1.2)

provided 𝑢 is a nonnegative solution in the potential-theoretic sense of⎧⎪⎪⎨⎪⎪⎩
− Δ𝑝𝑢 = 𝜇, in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0.
(1.1.3)

See Section 2.1 for more details. Moreover, 𝑢 exists if and only if W1,𝑝𝜇 < ∞, or equivalently,

ˆ ∞

1

(︃
𝜇(𝐵(0, 𝑡))

𝑡𝑛−𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
< ∞. (1.1.4)

Wolff potentials with 𝛼 = 2𝑘/(𝑘 + 1) and 𝑝 = 𝑘 + 1, for 𝑘 < 𝑛/2, in the context of

fully nonlinear problems, was considered in [Labutin 2002], where D. A. Labutin proved that

if 𝜇 ∈ 𝑀+(R𝑛) and 𝑤 is a nonnegative 𝑘-subharmonic solution of the equation⎧⎪⎪⎨⎪⎪⎩
𝐹𝑘[−𝑤] = 𝜇 in R𝑛,

lim
|𝑥|→∞

𝑤(𝑥) = 0,

then there exists a constant 𝐾 = 𝐾(𝑛, 𝑘) ≥ 1 such that

𝐾−1W 2𝑘
𝑘+1 ,𝑘+1𝜇(𝑥) ≤ 𝑤(𝑥) ≤ 𝐾 W 2𝑘

𝑘+1 ,𝑘+1𝜇(𝑥) ∀𝑥 ∈ R𝑛. (1.1.5)

In particular, such 𝑤 exists if and only if W2𝑘/(𝑘−1),𝑘+1𝜇 < ∞, or equivalently

ˆ ∞

1

(︃
𝜇(𝐵(0, 𝑡))

𝑡𝑛−2𝑘

)︃ 1
𝑘 d𝑡

𝑡
< ∞. (1.1.6)

In the Orlicz setting, a type of Orlicz counterpart of this result was established with the

potential (1.0.5) in [Malý 2003,Chlebicka, Giannetti and Zatorska-Goldstein 2023] to problems

like: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div

(︃
𝑔(|∇𝑢|)

|∇𝑢|
∇𝑢

)︃
= 𝜇 in R𝑛,

inf
R𝑛

𝑢 = 0.
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For our purposes, using ideas of [Chlebicka, Giannetti and Zatorska-Goldstein 2023], we es-

tablish a suitable Wolff potential estimate in terms of (1.0.5) similar to (1.1.3) (see Theo-

rem 2.3.19 below).

For an overview of Wolff potentials and their applications in Analysis and PDE, see [Adams

and Hedberg 1996,Hedberg and Wolff 1983,Kuusi and Mingione 2014,Maz’ya 2011,Heinonen,

Kilpeläinen and Martio 2006] and references therein.

1.2 STATE OF THE ART

Sublinear elliptic equations with measurable coefficients have been investigated by many

authors. In [Brezis and Kamin 1992], H. Brezis and S. Kamin established a necessary and

sufficient condition for the existence of a bounded solution to the sublinear problem

−Δ𝑢 = 𝜎(𝑥)𝑢𝑞 in R𝑛 (1.2.1)

with 0 < 𝑞 < 1, 0 ̸≡ 𝜎 ≥ 0 and 𝜎 ∈ 𝐿∞
loc(R𝑛). For bounded solutions of (1.2.1), by using the

Green function of the Laplacian (the Newtonian potential) in balls of R𝑛, they proved global

pointwise estimates of the form

𝑐−1 (I2𝜎)
1

1−𝑞 ≤ 𝑢 ≤ 𝑐 I2𝜎, (1.2.2)

where 𝑐 > 0 is a constant independent of 𝑢.

Notice that when 𝑞1 = 𝑞2 and 𝑢 = 𝑣, Syst. (𝑆1) reduces to the following problem dealing

with the single equation ⎧⎪⎪⎨⎪⎪⎩
− Δ𝑝𝑢 = 𝜎 𝑢𝑞 in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0.
(1.2.3)

Using estimates (1.1.3), D. Cao and I. Verbistky in [Cao and Verbitsky 2016] obtained pointwise

estimates of Brezis-Kamin type for solutions of quasilinear elliptic equations to eq. (1.2.3).

Indeed, by a capacity condition, they gave a sufficient condition in terms of W1,𝑝𝜎 to the

existence of a nonnegative solution to eq. (1.2.3) satisfying bilateral estimates in terms of

Wolff potential W1,𝑝𝜎, where 𝜎 ∈ 𝑀+(R𝑛). Also, a necessary and sufficient condition for the

existence of such a solution was presented in terms only of Wolff’s potential. Estimates of

Brezis-Kamin type are potential estimates similar to (1.2.2), see potential estimates (1.3.4)

below. See also [Cao and Verbitsky 2017] for some related results.
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Furthermore, note that the previous equation can be seen as eq. (1.0.1) with 𝑞 = 𝛾(𝑝−1).

In [Dat and Verbitsky 2015], C. Dat and I. Verbistky were able to exhibit a necessary and

sufficient condition in terms of W1,𝑝𝜎 to construct a solution to (1.0.1), which is finite energy

in view of functional 𝐽 given in (1.0.2), that is

𝐽(𝑣) = 1
𝑝

ˆ
R𝑛

|∇𝑣|𝑝 d𝑥 − 1
1 + 𝑞

ˆ
R𝑛

𝑣1+𝑞 d𝜎.

1.3 MAIN RESULTS

The assertions below are the compilation of our results, which are motivated by some

earlier ideas developed in [Dat and Verbitsky 2015,Cao and Verbitsky 2017,Cao and Verbitsky

2016,Heinonen, Kilpeläinen and Martio 2006,Kilpeläinen and Malý 1994,Kilpeläinen and Malý

1992,Trudinger and Wang 1997,Trudinger and Wang 1999,Trudinger and Wang 2002,Labutin

2002,Phuc and Verbitsky 2009,Phuc and Verbitsky 2008].

1.3.1 Systems of Wolff potentials

To examine systems of quasilinear elliptic equations like Syst. (𝑆1), and fully nonlinear

elliptic systems of the form (𝑆2), first we study in a general framework the existence of a

pair of nonnegative functions (𝑢, 𝑣) ∈ 𝐿𝑞2
loc(R𝑛, d𝜎) × 𝐿𝑞1

loc(R𝑛, d𝜎) satisfying pointwise the

following system of integral equations involving the Wolff potentials:⎧⎪⎨⎪⎩
𝑢 = W𝛼,𝑝 (𝑣𝑞1d𝜎) in R𝑛,

𝑣 = W𝛼,𝑝 (𝑢𝑞2d𝜎) in R𝑛,
(𝑆𝐼)

where 0 < 𝑞𝑖 < 𝑝 − 1 for 𝑖 = 1, 2, that is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑢(𝑥) =

ˆ ∞

0

(︃´
𝐵(𝑥,𝑡) 𝑣𝑞1(𝑦) d𝜎(𝑦)

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
,

𝑣(𝑥) =
ˆ ∞

0

(︃´
𝐵(𝑥,𝑡) 𝑢𝑞2(𝑦) d𝜎(𝑦)

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
, ∀ 𝑥 ∈ R𝑛.

We prove the existence of solutions to Syst. (𝑆𝐼) using the sub and super solutions method.

Because of this result, by using the method of successive approximations, we show the existence

of solutions to Systs. (𝑆1) and (𝑆2), jointly with sharp global pointwise bounds of solutions.

Indeed, in view of potential estimates known, solutions of (𝑆𝐼) work like an upper barrier,

which will allow us to control the successive approximations.
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For the next two theorems, we assume that (1.0.4) holds. To state our first result in a

precise way, let us recall the notion of Riesz capacity of a compact set 𝐸 ⊂ R𝑛,

capI𝛼,𝑝(𝐸) = inf{‖𝑓‖𝑝
𝐿𝑝 : 𝑓 ∈ 𝐿𝑝(R𝑛), 𝑓 ≥ 0, I𝛼𝑓 ≥ 1 on 𝐸}, (1.3.1)

where I𝛼𝜎 is the Riesz potential of order 𝛼 defined for 0 < 𝛼 < 𝑛 by

I𝛼𝜎(𝑥) =
ˆ
R𝑛

d𝜎(𝑦)
|𝑥 − 𝑦|𝑛−𝛼

, 𝑥 ∈ R𝑛. (1.3.2)

See [Adams and Hedberg 1996, Chapter 2] for an overview of several types of capacity. We

will show in Lemma 3.1.2 below that if there exists a nontrivial solution to Syst. (𝑆𝐼), then

𝜎 must be absolutely continuous with respect to capI𝛼,𝑝. Indeed, for our main results, we will

impose that 𝜎 satisfies the following strongest condition

𝜎(𝐸) ≤ 𝐶𝜎 cap𝛼,𝑝(𝐸) for all compact sets 𝐸 ⊂ R𝑛. (1.3.3)

Theorem 1.3.1. Let 1 < 𝑝 < ∞, 0 < 𝑞𝑖 < 𝑝 − 1, 𝑖 = 1, 2, 0 < 𝛼 < 𝑛/𝑝 and 𝜎 ∈ 𝑀+(R𝑛)

satisfying (1.0.4) and (1.3.3). Then there exists a solution (𝑢, 𝑣) to Syst. (𝑆𝐼) such that

𝑐−1 (W𝛼,𝑝𝜎)
(𝑝−1)(𝑝−1+𝑞1)

(𝑝−1)2−𝑞1𝑞2 ≤ 𝑢 ≤ 𝑐
(︂

W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)
(𝑝−1)(𝑝−1+𝑞1)

(𝑝−1)2−𝑞1𝑞2

)︂
,

𝑐−1 (W𝛼,𝑝𝜎)
(𝑝−1)(𝑝−1+𝑞2)

(𝑝−1)2−𝑞1𝑞2 ≤ 𝑣 ≤ 𝑐
(︂

W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)
(𝑝−1)(𝑝−1+𝑞2)

(𝑝−1)2−𝑞1𝑞2

)︂
,

(1.3.4)

where 𝑐 = 𝑐(𝑛, 𝑝, 𝑞1, 𝑞2, 𝛼, 𝐶𝜎) > 0. Furthermore, 𝑢, 𝑣 ∈ 𝐿𝑠
loc(R𝑛, d𝜎), for every 𝑠 > 0.

Remark 1.3.2. Based on the assumption (1.0.4), we show that all nontrivial solutions to

Syst. (𝑆𝐼) satisfy the lower bounds in (1.3.4). For the upper bounds in (1.3.4), we also use

hypothesis (1.3.3), which will be decisive in building our argument.

The next theorem brings a necessary and sufficient on 𝜎 to the existence of solutions (𝑢, 𝑣)

to (𝑆𝐼) which enjoy the bilateral estimates (1.3.4). Suppose 𝜎 ∈ 𝑀+(R𝑛) satisfies

W𝛼,𝑝

(︂
(W𝛼,𝑝𝜎)

(𝑝−1)(𝑝−1+𝑞1)𝑞2
(𝑝−1)2−𝑞1𝑞2 d𝜎

)︂
≤ 𝜆

(︂
W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)

(𝑝−1)(𝑝−1+𝑞1)
(𝑝−1)2−𝑞1𝑞2

)︂
,

W𝛼,𝑝

(︂
(W𝛼,𝑝𝜎)

(𝑝−1)(𝑝−1+𝑞2)𝑞1
(𝑝−1)2−𝑞1𝑞2 d𝜎

)︂
≤ 𝜆

(︂
W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)

(𝑝−1)(𝑝−1+𝑞2)
(𝑝−1)2−𝑞1𝑞2

)︂
,

(1.3.5)

here the right-hand sides are finite almost everywhere in R𝑛, and 𝜆 is a positive constant. In

general, condition (1.3.5) is weaker than (1.3.3) (see Remark 1.3.5 below). However, we can

still construct solutions for Syst. (𝑆𝐼) satisfying (1.3.4) and show that (1.3.5) is necessary for

the existence of such solutions.
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Theorem 1.3.3. Let 1 < 𝑝 < ∞, 0 < 𝑞𝑖 < 𝑝−1, 𝑖 = 1, 2, and 0 < 𝛼 < 𝑛/𝑝. If 𝜎 ∈ 𝑀+(R𝑛)

satisfies (1.0.4) and (1.3.5), then there exists a solution (𝑢, 𝑣) to Syst. (𝑆𝐼) such that (1.3.4)

holds with a positive constant 𝑐 = 𝑐(𝑛, 𝑝, 𝛼, 𝑞1, 𝑞2, 𝜆). Conversely, suppose that there exists a

nontrivial solution (𝑢, 𝑣) to Syst. (𝑆𝐼) satisfying (1.3.4). Then (1.3.5) holds with 𝜆 depending

only on 𝑝, 𝑞1, 𝑞2 and 𝑐.

Remark 1.3.4. For the case 𝑞1 = 𝑞2, one can see that the solution (𝑢, 𝑣) obtained in Theo-

rem 1.3.1 is such that 𝑢 = 𝑣, and satisfies

𝑐−1
(︁
W𝛼,𝑝𝜎

)︁ 𝑝−1
𝑝−1−𝑞 ≤ 𝑢 ≤ 𝑐

(︂
W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)

𝑝−1
𝑝−1−𝑞

)︂
, (1.3.6)

where 𝑞 := 𝑞1. Thus, [Cao and Verbitsky 2016, Theorem 3.2] is a corollary of Theorem 1.3.1

for 𝑞1 = 𝑞2. Also, [Cao and Verbitsky 2016, Theorem 3.3] is a corollary of Theorem 1.3.3,

since in the case 𝑞1 = 𝑞2 condition (1.3.5) is written as follows

W𝛼,𝑝

(︂
(W𝛼,𝑝𝜎)

𝑞(𝑝−1)
𝑝−1−𝑞 d𝜎

)︂
≤ 𝜆

(︂
W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)

𝑝−1
𝑝−1−𝑞

)︂
< ∞. (1.3.7)

Remark 1.3.5. As commented above, condition (1.3.5) is weaker than (1.3.3). Indeed, let

𝑝 = 2, 0 < 𝑞 < 1 and 0 < 2𝛼 < 𝑛. Setting 𝑞1 = 𝑞2 = 𝑞, condition (1.3.5) becomes (1.3.7).

Let d𝜎 = 𝜎 d𝑥 for 𝜎(𝑥) = |𝑥|−𝑠𝜒𝐵∖{0}(𝑥), with 2𝛼 < 𝑠 < 𝑛 − (𝑛 − 2𝛼)𝑞; here 𝐵 = 𝐵(0, 1).

For 𝑝, 𝑞 and 𝛼 given above, being 𝜎 radial, condition (1.3.7) is characterized by

lim
|𝑥|→0

|𝑥|−(𝑛−2𝛼)(1−𝑞) ´
|𝑦|<|𝑥| |𝑦|−(𝑛−2𝛼)𝑞 d𝜎(𝑦)´

|𝑦|≥|𝑥| |𝑦|−(𝑛−2𝛼) d𝜎(𝑦) < ∞. (1.3.8)

For details on (1.3.8), see [Cao and Verbitsky 2016, Proposition 5.2]. For |𝑥| < 1, one has
ˆ

|𝑦|<|𝑥|
|𝑦|−(𝑛−2𝛼)𝑞 d𝜎(𝑦) =

ˆ
|𝑦|<|𝑥|

|𝑦|−[(𝑛−2𝛼)𝑞+𝑠] d𝑦

= 𝑐1(𝑛, 𝛼, 𝑠, 𝑞) |𝑥|−(𝑛−2𝛼)𝑞−𝑠+𝑛,

where in the last equality was used polar coordinates, since 𝑠 + (𝑛 − 2𝛼)𝑞 < 𝑛 (see [Folland

1999, Corollary 2.52]). Thereby,

|𝑥|−(𝑛−2𝛼)(1−𝑞)
ˆ

|𝑦|<|𝑥|
|𝑦|−(𝑛−2𝛼)𝑞 d𝜎(𝑦) = 𝑐1 |𝑥|−(𝑛−2𝛼)𝑞−𝑠+𝑛|𝑥|−(𝑛−2𝛼)(1−𝑞)

= 𝑐1 |𝑥|−(𝑛−2𝛼)+(𝑛−2𝛼)𝑞−(𝑛−2𝛼)𝑞−𝑠+𝑛

= 𝑐1 |𝑥|2𝛼−𝑠. (1.3.9)
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Moreover, by polar coordinates,
ˆ

|𝑦|≥|𝑥|
|𝑦|−(𝑛−2𝛼) d𝜎(𝑦) =

ˆ
|𝑥|≤|𝑦|<1

|𝑦|−(𝑛−2𝛼)−𝑠 d𝑦

= 𝑐2

ˆ 1

|𝑥|
𝑟−𝑛+2𝛼−𝑠+𝑛−1 d𝑟 = 𝑐2(1 − |𝑥|2𝛼−𝑠). (1.3.10)

Combining (1.3.9) with (1.3.10), we arrive at

lim
|𝑥|→0

|𝑥|−(𝑛−2𝛼)(1−𝑞) ´
|𝑦|<|𝑥| |𝑦|−(𝑛−2𝛼)𝑞 d𝜎(𝑦)´

|𝑦|≥|𝑥| |𝑦|−(𝑛−2𝛼) d𝜎(𝑦) = 𝑐3(𝑛, 𝛼, 𝑞, 𝑠) lim
|𝑥|→0

|𝑥|2𝛼−𝑠

1 − |𝑥|2𝛼−𝑠
< ∞.

Thus, 𝜎 satisfies (1.3.8), whence it satisfies (1.3.7).

On the other hand, fix 0 < 𝑅 < 1, by polar coordinates

𝜎(𝐵(0, 𝑅)) =
ˆ

𝐵(0,𝑅)
|𝑦|−𝑠 d𝑦 = 𝑐4

ˆ 𝑅

0
𝑟−𝑠+𝑛−1 d𝑟 = 𝑐5 𝑅𝑛−𝑠.

From [Adams and Hedberg 1996, equation 2.6.1], capI𝛼,2(𝐵(0, 𝑅)) ≈ 𝑅𝑛−2𝛼. Consequently,

𝜎 can not satisfies (1.3.3), since 𝑠 > 2𝛼 implies 𝑅𝑛−𝑠 > 𝑅𝑛−2𝛼, whenever 𝑅 < 1.

1.3.2 Applications in systems of quasilinear elliptic equations

We first recall the 𝑝-capacity for compact subsets 𝐸 of R𝑛,

cap𝑝(𝐸) = inf {‖∇𝜙‖𝑝
𝐿𝑝 : 𝜙 ∈ 𝐶∞

𝑐 (R𝑛), 𝜙 ≥ 1 on 𝐸} .

From [Adams and Hedberg 1996, Proposition 2.3.13], one has capI1,𝑝(𝐸) ≈ cap𝑝(𝐸) for all

compact sets 𝐸.

Let 𝜎 ∈ 𝑀+(R𝑛) satisfying the capacity condition

𝜎(𝐸) ≤ 𝐶𝜎 cap𝑝(𝐸) for all compact sets 𝐸 ⊂ R𝑛. (1.3.11)

Under assumption (1.3.11), we prove the existence of a minimal positive 𝑝-superharmonic

solution to Syst. (𝑆1), more precisely, a pair (𝑢, 𝑣) ∈ 𝑊 1,𝑝
loc (R𝑛) × 𝑊 1,𝑝

loc (R𝑛) such that 𝑢, 𝑣

are positive and 𝑝-superharmonic functions in R𝑛, and satisfies Syst. (𝑆1) in the distributional

sense. Here a minimal solution (𝑢, 𝑣) to Syst. (𝑆1) means that for any solution (𝑤1, 𝑤2) to

(𝑆1), we have 𝑤1 ≥ 𝑢 and 𝑤2 ≥ 𝑣 almost everywhere in R𝑛. See Section 2.1 for the definition

of solutions to Syst. (𝑆1) and 𝑝-superharmonic functions. Here, and subsequently, W𝑝 will

denote W1,𝑝
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Theorem 1.3.6. Let 1 < 𝑝 < 𝑛 and 0 < 𝑞𝑖 < 𝑝 − 1 for 𝑖 = 1, 2. Suppose 𝜎 ∈ 𝑀+(R𝑛)

satisfies (1.1.4) and (1.3.11). Then there exists a minimal 𝑝-superharmonic positive solution

(𝑢, 𝑣) ∈ 𝑊 1,𝑝
loc (R𝑛) × 𝑊 1,𝑝

loc (R𝑛) to Syst. (𝑆1) such that almost everywhere we have

𝑐−1 (W𝑝𝜎)
(𝑝−1)(𝑝−1+𝑞1)

(𝑝−1)2−𝑞1𝑞2 ≤ 𝑢 ≤ 𝑐
(︂

W𝑝𝜎 + (W𝑝𝜎)
(𝑝−1)(𝑝−1+𝑞1)

(𝑝−1)2−𝑞1𝑞2

)︂
,

𝑐−1 (W𝑝𝜎)
(𝑝−1)(𝑝−1+𝑞2)

(𝑝−1)2−𝑞1𝑞2 ≤ 𝑣 ≤ 𝑐
(︂

W𝑝𝜎 + (W𝑝𝜎)
(𝑝−1)(𝑝−1+𝑞2)

(𝑝−1)2−𝑞1𝑞2

)︂
,

(1.3.12)

where 𝑐 = 𝑐(𝑛, 𝑝, 𝑞1, 𝑞2, 𝐶𝜎) > 0. If 𝑝 ≥ 𝑛, there are no nontrivial solutions to Syst. (𝑆1) in

R𝑛.

Remark 1.3.7. In view of Theorem D and Lemma 3.1.3, the lower estimates in (1.3.12) hold

for any distributional solution (𝑢, 𝑣) to (𝑆1). Nevertheless, the upper estimates in (1.3.12) are

obtained only for the minimal solution.

As in Theorem 1.3.3, we may assume a weaker condition on 𝜎 than (1.3.11) and still assure

the existence of solutions to Syst. (𝑆1) satisfying (1.3.12). The following theorem deals with

this.

Theorem 1.3.8. Let 𝜎 ∈ 𝑀+(R𝑛), 1 < 𝑝 < 𝑛 and 0 < 𝑞𝑖 < 𝑝 − 1 for 𝑖 = 1, 2. Then there

exists a 𝑝-superharmonic positive solution (𝑢, 𝑣) to Syst. (𝑆1) satisfying (1.3.12) if and only

if there exists 𝜆 > 0 such that almost everywhere we have

W𝑝

(︂
(W𝑝𝜎)

𝑞2(𝑝−1)(𝑝−1+𝑞1)
(𝑝−1)2−𝑞1𝑞2

)︂
≤ 𝜆

(︂
W𝑝𝜎 + (W𝑝𝜎)

(𝑝−1)(𝑝−1+𝑞1)
(𝑝−1)2−𝑞1𝑞2

)︂
< ∞,

W𝑝

(︂
(W𝑝𝜎)

𝑞1(𝑝−1)(𝑝−1+𝑞2)
(𝑝−1)2−𝑞1𝑞2

)︂
≤ 𝜆

(︂
W𝑝𝜎 + (W𝑝𝜎)

(𝑝−1)(𝑝−1+𝑞2)
(𝑝−1)2−𝑞1𝑞2

)︂
< ∞.

(1.3.13)

Our approach considers also solutions to systems of equations involving the fractional

Laplacian of the form ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−Δ)𝛼𝑢 = 𝜎 𝑣𝑞1 , 𝑣 > 0 in R𝑛,

(−Δ)𝛼𝑣 = 𝜎 𝑢𝑞2 , 𝑢 > 0 in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0, lim
|𝑥|→∞

𝑣(𝑥) = 0.

(1.3.14)

with 0 < 𝛼 < 𝑛/2 and 𝑞1, 𝑞2 ∈ (0, 1). A solution (𝑢, 𝑣) to (1.3.14) is understood in the sense⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢(𝑥) = 1

𝑐(𝑛, 𝛼)I2𝛼(𝑣𝑞1d𝜎)(𝑥), 𝑥 ∈ R𝑛,

𝑣(𝑥) = 1
𝑐(𝑛, 𝛼)I2𝛼(𝑢𝑞2d𝜎)(𝑥), 𝑥 ∈ R𝑛,

where I2𝛼 is the Riesz Potential defined in (1.3.2) and 𝑐(𝑛, 𝛼) is a normalization constant

given by

𝑐(𝑛, 𝛼) = 2𝛼𝜋
𝑛
2 Γ(𝛼)

Γ(𝑛−2𝛼
2 )
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(see for instance [Lischke et al. 2020]). As usual, the normalization constant will be dropped

for the sake of convenience. Thus, Syst. (1.3.14) is equivalent (up to a constant) to Syst. (𝑆𝐼),

since

I2𝛼𝜎(𝑥) =
ˆ
R𝑛

d𝜎(𝑦)
|𝑥 − 𝑦|𝑛−2𝛼

= (𝑛 − 2𝛼)
ˆ ∞

0

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−2𝛼

d𝑡

𝑡
= (𝑛 − 2𝛼)W𝛼,2𝜎(𝑥).

The second previous equality follows from [Malý and Ziemer 1997, Lemma 1.27]. Therefore,

the following theorem is a special case of Theorem 1.3.1 with 𝑝 = 2.

Theorem 1.3.9. Let 0 < 2𝛼 < 𝑛, 0 < 𝑞𝑖 < 1, 𝑖 = 1, 2. Suppose 𝜎 ∈ 𝑀+(R𝑛) satisfies both

(1.0.4) and (1.3.3) with 𝑝 = 2. Then Syst. (1.3.14) admits a solution such that

𝑐−1 (I2𝛼𝜎)
1+𝑞1

1−𝑞1𝑞2 ≤ 𝑢 ≤ 𝑐
(︂

I2𝛼𝜎 + (I2𝛼𝜎)
1+𝑞1

1−𝑞1𝑞2

)︂
,

𝑐−1 (I2𝛼𝜎)
1+𝑞2

1−𝑞1𝑞2 ≤ 𝑣 ≤ 𝑐
(︂

I2𝛼𝜎 + (I2𝛼𝜎)
1+𝑞2

1−𝑞1𝑞2

)︂
,

(1.3.15)

where 𝑐 = 𝑐(𝑛, 𝑞1, 𝑞2, 𝛼, 𝐶𝜎) > 0. Furthermore, 𝑢, 𝑣 ∈ 𝐿𝑠
loc(R𝑛, d𝜎), for every 𝑠 > 0.

Remark 1.3.10. Suppose I2𝛼𝜎 ∈ 𝐿∞(R𝑛) as in [Brezis and Kamin 1992], then assumption

(1.3.3) holds for 𝑝 = 2. Indeed, in view of [Verbitsky 1999, Theorem 1.11], there exists a

constant 𝐶0 > 0 which depends only on 𝑛 and 𝛼, such that, for all compact sets 𝐸 ⊂ R𝑛,

𝜎(𝐸) =
ˆ

𝐸

d𝜎 =
ˆ

𝐸

W𝛼,2𝜎
d𝜎

W𝛼,2𝜎
=
ˆ

𝐸

I2𝛼𝜎
d𝜎

I2𝛼𝜎

≤ ‖I2𝛼𝜎‖𝐿∞

ˆ
𝐸

d𝜎

I2𝛼𝜎

≤ ‖I2𝛼𝜎‖𝐿∞ 𝐶0 cap𝛼,2(𝐸),

and this shows condition (1.3.3) for 𝑝 = 2. Thus, under assumption I2𝛼𝜎 ∈ 𝐿∞(R𝑛), from

Theorem 1.3.9, it follows that Syst. (1.3.14) possess a bounded nontrivial solution (𝑢, 𝑣)

satisfying the so-called Brezis–Kamin estimate (1.3.15). In particular, Theorem 1.3.9, with

𝛼 = 1 and 𝑞1 = 𝑞2, recover [Brezis and Kamin 1992, Theorem 1] together with the estimate

(1.2.2), provided I2𝜎 ∈ 𝐿∞(R𝑛).

1.3.3 Applications in systems of fully nonlinear elliptic equations

Here, W𝑘 will denote W2𝑘/(𝑘+1),𝑘+1. As in Theorem 1.3.6, the next theorem assures the

existence of a minimal solution to Syst. (𝑆2). By a minimal solution to Syst. (𝑆2) we mean

a pair of nonnegative functions (𝑢, 𝑣) which solves Syst. (𝑆2), and if (𝑤1, 𝑤2) is any other

solution to Syst. (𝑆2), then 𝑤1 ≥ 𝑢 and 𝑤2 ≥ 𝑣 pointwise in R𝑛.
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Theorem 1.3.11. Let 𝜎 ∈ 𝑀+(R𝑛) satisfying (1.0.4) and (1.3.3) with 𝛼 = 2𝑘/(𝑘 + 1) and

𝑝 = 𝑘 + 1. Then there exists a minimal solution (𝑢, 𝑣) to Syst. (𝑆2) satisfying

𝑐−1 (W𝑘𝜎)
𝑘(𝑘+𝑞1)
𝑘2−𝑞1𝑞2 ≤ 𝑢 ≤ 𝑐

(︂
W𝑘𝜎 + (W𝑘𝜎)

𝑘(𝑘+𝑞1)
𝑘2−𝑞1𝑞2

)︂
,

𝑐−1 (W𝑘𝜎)
𝑘(𝑘+𝑞2)
𝑘2−𝑞1𝑞2 ≤ 𝑣 ≤ 𝑐

(︂
W𝑘𝜎 + (W𝑘𝜎)

𝑘(𝑘+𝑞2)
𝑘2−𝑞1𝑞2

)︂
,

(1.3.16)

where 𝑐 = 𝑐(𝑛, 𝑘, 𝑞1, 𝑞2, 𝛼, 𝐶𝜎) > 0. In addition, 𝑢, 𝑣 ∈ 𝐿𝑟
loc(R𝑛, d𝜎), for all 𝑟 > 0.

Theorem 1.3.12. Let 1 ≤ 𝑘 < 𝑛/2, 0 < 𝑞𝑖 < 𝑘, 𝑖 = 1, 2 and 𝜎 ∈ 𝑀+(R𝑛).

(i) If there exists a solution (𝑢, 𝑣) to Syst. (𝑆2) satisfying (1.3.16) for some 𝑐 > 0, then

there exists a constant 𝜆 = 𝜆(𝑛, 𝑘, 𝑞1, 𝑞2, 𝑐) > 0 such that, for almost everywhere, it holds

W𝑘

(︂
(W𝑘𝜎)

𝑘(𝑘+𝑞1)𝑞2
𝑘2−𝑞1𝑞2 d𝜎

)︂
≤ 𝜆

(︂
W𝑘𝜎 + (W𝑘𝜎)

𝑘(𝑘+𝑞1)
𝑘2−𝑞1𝑞2

)︂
< ∞,

W𝑘

(︂
(W𝑘𝜎)

𝑘(𝑘+𝑞2)𝑞1
𝑘2−𝑞1𝑞2 d𝜎

)︂
≤ 𝜆

(︂
W𝑘𝜎 + (W𝑘𝜎)

𝑘(𝑘+𝑞2)
𝑘2−𝑞1𝑞2

)︂
< ∞.

(1.3.17)

(ii) Suppose that 𝜎 satisfies (1.3.17) for some 𝜆 > 0. Then there exists a solution (𝑢, 𝑣) to

Syst. (𝑆2) satisfying (1.3.16), where 𝑐 = 𝑐(𝑛, 𝑘, 𝑞1, 𝑞2, 𝜆).

From the result above, we conclude that condition (1.3.17) is necessary and sufficient for

the existence of a solution to Syst. (𝑆2) satisfying (1.3.16). The following result is a simple

consequence of the preceding theorems by taking 𝑞1 = 𝑞2. We highlight that it was already

announced in [Cao and Verbitsky 2017,Cao and Verbitsky 2016].

Corollary 1.3.13. Let 1 ≤ 𝑘 < 𝑛/2, 0 < 𝑞 < 𝑘 and 𝜎 ∈ 𝑀+(R𝑛).

(i) If W𝑘𝜎 < ∞ and (1.3.3) hold with 𝛼 = 2𝑘/(𝑘 + 1) and 𝑝 = 𝑘 + 1, then there exists a

𝑘-subharmonic nonnegative solution to (𝑃1) satisfying

𝑐−1 (W𝑘𝜎)
𝑘

𝑘−𝑞 ≤ 𝑢 ≤ 𝑐
(︂

W𝑘𝜎 + (W𝑘𝜎)
𝑘

𝑘−𝑞

)︂
, (1.3.18)

where 𝑐 = 𝑐(𝑛, 𝑘, 𝑞, 𝜎) > 0.

(ii) Let 𝑢 be a 𝑘-subharmonic nonnegative solution to (𝑃1), satisfying (1.3.18). Then there

exists a constant 𝜆 = 𝜆(𝑛, 𝑘, 𝑞, 𝑐) > 0 such that, for almost everywhere, it holds

W𝑘

(︂
(W𝑘𝜎)

𝑘𝑞
𝑘−𝑞 d𝜎

)︂
≤ 𝜆

(︂
W𝑘𝜎 + (W𝑘𝜎)

𝑘
𝑘−𝑞

)︂
< ∞. (1.3.19)

(iii)Suppose that 𝜎 satisfies (1.3.19) for some 𝜆 > 0. Then there exists a 𝑘-subharmonic

nonnegative solution to (𝑃1) satisfying (1.3.18), where 𝑐 = 𝑐(𝑛, 𝑘, 𝑞, 𝜆) > 0.
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1.3.4 Application in quasilinear elliptic equations with Orlicz growth

The main idea is the same as the two previous subsections. Let us first observe that when

𝑝 = 𝑞, note that W𝐺𝜎, defined in (1.0.5), becomes the so-called Wolff potential

W𝐺𝜎(𝑥) =
ˆ ∞

0

(︃
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−1

)︃ 1
𝑝−1

d𝑡 =
ˆ ∞

0

(︃
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
= W𝑝𝜎(𝑥). (1.3.20)

To solve (𝑃2), we first examine in a general framework the following integral equation

involving the Wolff potential

𝑢 = W𝐺

(︁
𝑓(𝑢)d𝜎

)︁
in R𝑛 (𝑆)

where 𝑓(𝑡) = 𝑔(𝑡𝛾), and 𝑢 is a nonnegative 𝜎-measurable function, belonging to 𝐿𝑓
loc(R𝑛, d𝜎).

The existence of solutions to (𝑆) is proved by using the sub and super solutions method. Finally,

to prove the existence of solutions to (𝑃2) (finite energy), we use the method of successive

approximations, where solutions to (𝑆) perform like an upper barrier which will allow us to

control the successive approximations. As we will see, no one additional relation of 𝑝 and 𝑞

will be imposed, much less on the ratio 𝑞/𝑝, which is usual when studying problems involving

the (𝑝, 𝑞)-Laplace operator. Our results are new even for nonnegative functions 𝜎 ∈ 𝐿1
loc(R𝑛),

here d𝜎 = 𝜎 d𝑥.

We will require that 𝜎 ∈ 𝑀+(R𝑛) satisfies the following condition⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W𝑝𝜎
1

1−𝛾 , W𝑞𝜎
1

1−𝛾 ∈ 𝐿𝐹 (R𝑛, d𝜎),

W𝑝𝜎
𝑝−1

𝑝−1−𝛾(𝑞−1) , W𝑞𝜎
𝑝−1

𝑝−1−𝛾(𝑞−1) ∈ 𝐿𝐹 (R𝑛, d𝜎),

W𝑝𝜎
𝑞−1

𝑞−1−𝛾(𝑝−1) , W𝑞𝜎
𝑞−1

𝑞−1−𝛾(𝑝−1) ∈ 𝐿𝐹 (R𝑛, d𝜎).

(1.3.21)

This condition extends partially the condition stated in [Dat and Verbitsky 2015]; see Re-

mark 4.4.1 below. We can now formulate our main results.

Theorem 1.3.14. Let 𝑔 be given by (𝐴2). Let 𝜎 ∈ 𝑀+(R𝑛) with W𝐺𝜎 < ∞ in R𝑛. The

equation (𝑆) has a nontrivial solution 𝑢 ∈ 𝐿𝐹 (R𝑛, d𝜎) whenever (1.3.21) holds.

It is our interest to know whether condition (1.3.21) can be shortened in a more uncompli-

cated condition (see (4.1.31) below). We will apply the previous theorem to obtain solutions

to Eq. (𝑃2).

Theorem 1.3.15. Suppose 2 ≤ 𝑝 < 𝑞 < 𝑛. Let 𝑔 be given by (𝐴2). Let 𝜎 ∈ 𝑀+(R𝑛)

with W𝐺𝜎 < ∞ in R𝑛. Suppose that (1.3.21) holds. Then there exists a nontrivial solution
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𝑢 ∈ 𝒟1,𝐺(R𝑛) ∩ 𝐿𝐹 (R𝑛, d𝜎) to (𝑃2). Furthermore, 𝑢 is minimal. For 𝑞 ≥ 𝑛, (𝑃2) has only

the trivial solution 𝑢 = 0.

1.4 STRATEGIES AND DIFFICULTIES

Variational methods, in general, do not apply well when dealing with problems in sublinear

growth with the 𝑝-Laplace operator. For example, the classical Ambrosetti-Rabinowitz’s condi-

tion fails in the Brezis-Kamin problem (eq. (1.2.1)). Indeed, in the case 𝑝 = 2 and 0 < 𝑞 < 1,

any constant 𝜃 > 2 must satisfies

𝜃

1 + 𝑞
𝑡1+𝑞 = 𝜃

ˆ 𝑡

0
𝑠𝑞 d𝑠 > 𝑡1+𝑞 = 𝑡 · 𝑡𝑞 ∀𝑡 ≥ 0,

since 𝜃/(1+𝑞) > 1. This brings difficulties to make use of the classical Mountain Pass Theorem

to obtain solutions to eq. (1.2.1). Furthermore, one can check that there is no functional

𝐼 : (𝑢, 𝑣) ↦→ 𝐼(𝑢, 𝑣) associated with Syst. (𝑆1) whose critical points are solutions to Syst. (𝑆1).

Thereby, no one variational methods apply to looking for solutions to Syst. (𝑆1). There are

other techniques to overcome this difficulty. Usual tools are, for instance, topological methods

with fixed point arguments (see [Amann 1976]), sub-super solutions, a priori estimates, and

approximate methods. Once one has a solution between sub-super solutions a natural question

is localizing extremal solutions, i.e., maximal or minimal solutions.

There are some challenges in studying Hessian Lane-Emden-type systems with measures

of the form Syst (𝑆2) because our criteria for the solvability of Hessian equations on the

entire space depends on the existence result in subdomains with specific geometric conditions,

which goes back to the celebrated work [Caffarelli, Nirenberg and Spruck 1985]. Moreover,

one needs to develop accurate estimates that are more involved than the ones we can find in

the literature.

Some challenges arise naturally in studying quasilinear equations of the form (𝑃2). Indeed,

since it is not assumed to enjoy homogeneity: 𝑔(|𝜆 𝜉|) = |𝜆|𝑝−1𝑔(|𝜉|), the computations are

more complicated; in particular our class of solutions is not invariant to scalar multiplication.

When 𝜎 is the null measure, the existence of solutions and its regularity to (𝑃2), i.e. critical

points of 𝐽 , is known only for the ratio 𝑞/𝑝 sufficiently close to 1 in dependence on 𝑛 [Marcellini

1989, Marcellini 1991]; this together with the lack of homogeneity difficulties to show priori

estimates (local boundness of the function) in general case 2 ≤ 𝑝 < 𝑞 < ∞ for solutions to

(𝑃2).
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To overcome these difficulties, our approach makes use accurately of the systematic use

of Wolff potentials in light of potential estimates well-established. We do not only present

necessary and sufficient conditions on 𝜎 to prove the existence of solutions to Systs. (𝑆1),

(𝑆2) and Eq. (𝑃2), but we show that the solution obtained here is minimal, in the pointwise

sense. Further, the solution to Systs. (𝑆1) and (𝑆2) satisfies sharp global pointwise estimates

of Brezis–Kamin type in terms of the Wolff potential (1.0.3), whereas the solution to Eq. (𝑃2)

satisfies a lower global pointwise in terms of the Wolff-type potential (1.0.5).

1.5 RELATED WORKS

Recently, studies of systems involving the 𝑝-Laplace operator with measure-valued right-

hand side have been done. In this respect, in [Kuusi and Mingione 2018], T. Kuusi and G.

Mingione used the notion SOLA (Solution Obtained as Limits of Approximations) to propose

a vectorial version of [Boccardo and Gallouët 1989], where this notion was introduced. They

use a different approach from ours to establish local upper pointwise potential estimates for

𝑊 1,𝑝−1
loc -vectorial solutions in terms of Wolff’s potential if 𝑝 > 2−1/𝑛, and its gradient in terms

of Riesz’s potential if 𝑝 > 2, under the standard assumptions |𝜎|(R𝑛) < ∞ (see also [Kuusi

and Mingione 2016]). We emphasize that the present work brings a global and more accurate

estimate depending only on Wolff’s potential of 𝜎 of some distributional solutions to Syst. (𝑆1)

than the one in [Kuusi and Mingione 2018]. G. Dolzmann, N. Hungerbühler and S. Müller

in [Dolzmann, Hungerbühler and Müller 1997] proved the existence of distributional solutions

for 𝑝-harmonic functions and established the Lorentz space estimates for such solutions. I.

Chlebicka, Y. Youn, and A. Zatorska-Goldstein [Chlebicka, Youn and Zatorska-Goldstein 2023]

applied the approach introduced in [Kuusi and Mingione 2018] to study solutions to measure

data elliptic systems involving operators of the divergence form with Orlicz growth. They

provided pointwise estimates for the solutions expressed in terms of a nonlinear potential of

generalized Wolff-type (1.0.5).

Moreover, studies of systems involving the 𝑘-Hessian operator also have been done. See

for example [Zhang et al. 2023, Yang and Bai 2022, Bidaut-Véron, Nguyen and Véron 2020]

and references therein. In measure setting, M. Véron, Q. Nguyen and L. Véron, in [Bidaut-

Véron, Nguyen and Véron 2020], proposed to study nonlinear systems with super-natural

growth in R𝑛, as a counterpart of [Phuc and Verbitsky 2008]. They could give necessary and

sufficient conditions for existence expressed in terms of Riesz and Bessel capacities, together
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with bilateral estimates in terms of Wolff potentials.

Problems involving elliptic operators ruled by Orlicz-Sobolev spaces and general 𝑝, 𝑞-growth

have been systematically investigated in the literature, whose right-hand side is a Radon mea-

sure, starting with the papers [Boccardo and Gallouët 1992, Boccardo and Gallouët 1989],

where operators modelled upon the 𝑝-Laplacian are treated (𝑝 = 𝑞). We refer to some contri-

butions on this topic [Malý 2003,Mingione 2007,Cianchi and Maz’ya 2017,Baroni 2015,Byun

and Youn 2018,Chlebicka, Giannetti and Zatorska-Goldstein 2023] and references therein. In

this respect, potential estimates are well-established and precise tools in the analysis of these

kinds of problems. I. Chlebicka, F. Giannetti, and A. Zatorska-Goldstein in [Chlebicka, Gian-

netti and Zatorska-Goldstein 2023] were able to establish sharp pointwise bounds expressed

in terms of (1.0.5) for a broad class of solutions to problems with Orlicz growth. They also

provided powerful corollaries by giving regular consequences for the local behavior of solutions,

in particular when measuring data satisfies conditions expressed in the relevant scales of gener-

alized Lorentz, Marcinkiewicz, or Morrey type. Our method relies on these potential estimates

in a particular form like the right-side in (𝑃2). This work was intended as an attempt to mo-

tivate the study equations like (𝑃2), via linking of integral equations (𝑆), with the technique

of potentials of Wolff-type W𝐺𝜎 performing ideas of [Dat and Verbitsky 2015]. We mention

that a different approach from ours is the notion of SOLA in [Boccardo and Gallouët 1989],

which works well when the Radon measure on the right-side is bounded and is known local

upper bounds for the eventual solutions.

1.6 OUTLINE

The main body of this thesis is organized as follows.

Chapter 2 presents some preliminary definitions and results on the Nonlinear Potential

Theory used in this work. For convenience, we divide it into three sections, first, we develop a

framework for standard quasilinear elliptic equations (modeled to the 𝑝-Laplace operator). The

second one is devoted to the fully nonlinear elliptic equations ruled by the 𝑘-Hessian operator.

The last one deals with Orlicz’s growth, and for this reason, it gives a brief exposition of the

Theory of Orlicz spaces and finally introduces the nonlinear potential theory in the Orlicz-

Sobolev spaces.

In Chapter 3, we produce a framework to solve Syst. (𝑆𝐼) by proving Theorem 1.3.1 and

Theorem 1.3.3. Then by making use of suitable potential estimates, we provide the proofs of
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Theorem 1.3.6, Theorem 1.3.8, Theorem 1.3.9 Theorem 1.3.11, Theorem 1.3.12, and Corol-

lary 1.3.13. We also suggest some questions related to Syst. (𝑆1), with further problems.

In Chapter 4, we will look more closely at Eq. (𝑆), and indicate how the solution obtained

from this equation in a suitable Orlicz space may be used to build a finite energy solution to

Eq. (𝑃2). For that, first, we prove Theorem 1.3.14, and we provide detailed auxiliary results

to prove Theorem 1.3.15. Our techniques do not appeal to any relation on 𝑝 and 𝑞, much less

on ratio 𝑞/𝑝. Besides, we present some remarks concerning Theorem 1.3.15.

In Appendix A, we bring precise proof of the potential estimate used to prove Theo-

rem 1.3.15.
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2 PRELIMINARIES

This chapter aims to summarize without proof the relevant material on Wolff potentials,

and nonlinear potential theory that will be later used in this manuscript. Also, some necessary

background definitions are introduced. All results cited here will contain references to make

our exposition more precise.

Remind the definition of Wolff potential (1.0.3), we highlight that our approach does not

include the Lebesgue measure as an admissible Radon measure. Indeed, if 𝜎 is the Lebesgue

measure, then
ˆ ∞

1

(︃
𝜎(𝐵(0, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
=
ˆ ∞

1

(︃
|𝐵(0, 𝑡)|

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡

= 𝑐

ˆ ∞

1

(︂
𝑡𝑛

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡

= 𝑐

ˆ ∞

1
𝑡

𝛼𝑝
𝑝−1 −1 d𝑡 = 𝑐

𝑝 − 1
𝛼𝑝

𝑡
𝛼𝑝

𝑝−1
⃒⃒⃒∞
1

= ∞,

whenever 𝛼𝑝 > 0. Thus, from (1.0.4), W𝛼,𝑝𝜎 ≡ ∞ if d𝜎 = d𝑥.

Let us start with the following result [Cao and Verbitsky 2016, Lemma 2.1].

Lemma A. Let 𝜎 ∈ 𝑀+(R𝑛) satisfying (1.3.3). Then, for every 𝑟 > 0,
ˆ

𝐸

(W𝛼,𝑝𝜎𝐸)𝑟 d𝜎 ≤ 𝑐 𝜎(𝐸) for all compact sets 𝐸 ⊂ R𝑛, (2.0.1)

where 𝑐 is a positive constant which depends on 𝑛, 𝑝, 𝛼, 𝑟 and 𝐶𝜎. Moreover, if (2.0.1)

holds for a given 𝑟 > 0, then (1.3.3) holds with 𝐶 = 𝐶(𝑛, 𝑝, 𝛼, 𝑟, 𝑐); hence (2.0.1) holds for

every 𝑟 > 0.

It is through this equivalence that we will be able to exhibit a nontrivial solution to (𝑆𝐼).

In particular, Lemma A implies that for all open balls 𝐵,
ˆ

𝐵

(W𝛼,𝑝𝜎𝐵)𝑟 d𝜎 ≤ 𝑐 𝜎(𝐵). (2.0.2)

This follows by Fatou’s lemma. Indeed, let 𝐵 be an open ball and consider an increasing

sequence of balls {𝐵𝑖} satisfying

𝐵 =
∞⋃︁

𝑖=1
𝐵𝑖, 𝐵𝑖 ⊂ 𝐵𝑖+1 ⊂ 𝐵 ∀ 𝑖.

By condition (2.0.1),
ˆ

𝐵𝑖

(W𝛼,𝑝𝜎𝐵𝑖
)𝑟 d𝜎 ≤ 𝑐 𝜎(𝐵𝑖) ≤ 𝑐 𝜎(𝐵) ∀ 𝑖.
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Using Fatou’s lemma, we conclude that
ˆ

𝐵

(W𝛼,𝑝𝜎𝐵)𝑟 d𝜎 =
ˆ

𝐵

lim
𝑖→∞

𝜒𝐵𝑖
(W𝛼,𝑝𝜎𝐵𝑖

)𝑟 d𝜎

≤ lim
𝑖→∞

ˆ
𝐵

𝜒𝐵𝑖
(W𝛼,𝑝𝜎𝐵𝑖

)𝑟 d𝜎 = lim
𝑖→∞

ˆ
𝐵𝑖

(W𝛼,𝑝𝜎𝐵𝑖
)𝑟 d𝜎 ≤ 𝑐 𝜎(𝐵),

since
{︁
𝜒𝐵𝑖

(W𝛼,𝑝𝜎𝐵𝑖
)𝑟
}︁

is an increasing sequence of nonnegative functions which converges

pointwise to (W𝛼,𝑝𝜎𝐵)𝑟 in 𝐵.

2.1 NONLINEAR POTENTIAL THEORY OF QUASILINEAR ELLIPTIC EQUATIONS

We begin this section by recalling some basic definitions and results for easy reference. For

details see [Kilpeläinen and Malý 1992,Kilpeläinen and Malý 1994,Heinonen, Kilpeläinen and

Martio 2006].

Definition 2.1.1. Let Ω be a domain in R𝑛 and 1 < 𝑝 < ∞.

(i) We define the 𝑝-Laplace operator for 𝑤 ∈ 𝑊 1,𝑝
loc (Ω) in a distributional sense as follows

⟨Δ𝑝𝑤, 𝜙⟩ = ⟨div
(︁
|∇𝑤|𝑝−2∇𝑤

)︁
, 𝜙⟩ = −

ˆ
Ω

|∇𝑤|𝑝−2∇𝑤 · ∇𝜙 d𝑥, ∀𝜙 ∈ 𝐶∞
𝑐 (Ω).

(ii) We say that 𝑤 ∈ 𝑊 1,𝑝
loc (Ω) is a distributional solution of the homogeneous 𝑝-laplacian

equation (𝑝-harmonic) if ⟨−Δ𝑝𝑤, 𝜙⟩ = 0, ∀𝜙 ∈ 𝐶∞
𝑐 (Ω).

(iii) We define a supersolution 𝑤 ∈ 𝑊 1,𝑝
loc (Ω) in Ω if ⟨−Δ𝑝𝑤, 𝜙⟩ ≥ 0 for all nonnegative

𝜙 ∈ 𝐶∞
𝑐 (Ω).

Next, we extend the notion of the distributional solutions for the equation −Δ𝑝𝑤 = 𝜇

where 𝑤 does not necessarily belong to 𝑊 1,𝑝
loc (Ω) and 𝜇 is in the dual space 𝑊 −1,𝑝′

loc (Ω). Indeed,

we will understand solutions in the following potential-theoretic sense using 𝑝-superharmonic

functions.

Definition 2.1.2. A function 𝑤 : Ω → (−∞, ∞) ∪ {∞} is 𝑝-superharmonic in Ω if

(i) 𝑤 is lower semicontinuous,

(ii) 𝑤 is not identically infinite in any component of Ω,

(iii) for each open subset 𝐷 compactly contained in Ω and each 𝑝-harmonic function ℎ in 𝐷

such that ℎ ∈ 𝐶(𝐷) and ℎ ≤ 𝑤 in 𝜕𝐷 implies ℎ ≤ 𝑤 in 𝐷.

We denote by 𝒮𝑝(Ω) for the class of all 𝑝-superharmonic functions in Ω.
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For 𝑤 ∈ 𝒮𝑝(Ω) we define its truncation as follows

𝑇𝑘(𝑤) = min(𝑘, max(𝑤, −𝑘)), ∀𝑘 > 0.

We mention that 𝑇𝑘(𝑤) ∈ 𝑊 1,𝑝
loc (Ω) although 𝑤 does not necessarily belong to 𝑊 1,𝑝

loc (Ω). It is

well known that 𝑇𝑘(𝑤) is a supersolution in Ω, for all 𝑘 > 0, in the sense of Definition 2.1.1

item (3).

Following [Heinonen, Kilpeläinen and Martio 2006], we consider the generalized gradient

for 𝑤 ∈ 𝒮𝑝(Ω) (see Definition 2.1.2), as the following pointwise limit

𝐷𝑤(𝑥) = lim
𝑘→∞

∇(𝑇𝑘(𝑤))(𝑥) almost everywhere in Ω.

If 𝑝 > 2 − 1/𝑛, one checks that 𝐷𝑤 is the distributional gradient of 𝑤 (see [Heinonen,

Kilpeläinen and Martio 2006, page 154]). Using [Kilpeläinen and Malý 1992, Theorem 1.15],

we see that for 𝑤 ∈ 𝒮𝑝(Ω) and 1 ≤ 𝑟 < 𝑛/(𝑛 − 1), we have |𝐷𝑤|𝑝−1 ∈ 𝐿𝑟
loc(Ω). In particular,

|𝐷𝑤|𝑝−2𝐷𝑤 ∈ 𝐿𝑟
loc(Ω). Because of this fact, we can define the 𝑝-Laplace operator in a

distributional sense for 𝑤 ∈ 𝒮𝑝(Ω) as follows

⟨−Δ𝑝𝑤, 𝜙⟩ =
ˆ

Ω
|𝐷𝑤|𝑝−2𝐷𝑤 · ∇𝜙 d𝑥, ∀𝜙 ∈ 𝐶∞

𝑐 (Ω).

Therefore, by the Riesz Representation Theorem [Lieb and Loss 2001, Theorem 6.22], there

exists a unique measure 𝜇 = 𝜇[𝑤] ∈ 𝑀+(Ω) such that −Δ𝑝𝑤 = 𝜇[𝑤]. In the literature, 𝜇[𝑤]

is called the Riesz measure of 𝑤.

Definition 2.1.3. For 𝜎 ∈ 𝑀+(Ω), we say that 𝑤 is a solution in the potential-theoretic

sense to the equation

−Δ𝑝𝑤 = 𝜎 in Ω

if 𝑤 ∈ 𝒮𝑝(Ω) and 𝜇[𝑤] = 𝜎.

In light of Definition 2.1.3, if 𝜎 ∈ 𝑀+(Ω), then a pair (𝑢, 𝑣) is a solution (in the potential-

theoretic sense) to the system ⎧⎪⎨⎪⎩
− Δ𝑝𝑢 = 𝜎 𝑣𝑞1 in Ω,

− Δ𝑝𝑣 = 𝜎 𝑢𝑞2 in Ω
(2.1.1)

whenever 𝑢 and 𝑣 are nonnegative functions and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢 ∈ 𝒮𝑝(Ω) ∩ 𝐿𝑞2
loc(Ω, d𝜎),

𝑣 ∈ 𝒮𝑝(Ω) ∩ 𝐿𝑞1
loc(Ω, d𝜎),

d𝜇[𝑢] = 𝑣𝑞1d𝜎,

d𝜇[𝑣] = 𝑢𝑞2d𝜎.
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Definition 2.1.4. Let 𝜎 ∈ 𝑀+(R𝑛). A pair (𝑢, 𝑣) is called a supersolution to Syst. (𝑆1) if 𝑢

and 𝑣 are nonnegative functions and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢 ∈ 𝒮𝑝(R𝑛) ∩ 𝐿𝑞2
loc(R𝑛, d𝜎),

𝑣 ∈ 𝒮𝑝(R𝑛) ∩ 𝐿𝑞1
loc(R𝑛, d𝜎),ˆ

R𝑛

|𝐷𝑢|𝑝−2𝐷𝑢 · ∇𝜙 d𝑥 ≥
ˆ
R𝑛

𝑣𝑞1𝜙 d𝜎,
ˆ
R𝑛

|𝐷𝑣|𝑝−2𝐷𝑣 · ∇𝜙 d𝑥 ≥
ˆ
R𝑛

𝑢𝑞2𝜙 d𝜎, ∀𝜙 ∈ 𝐶∞
𝑐 (R𝑛), 𝜙 ≥ 0.

The notion of subsolution to Syst. (𝑆1) is defined similarly by replacing “≥” by “≤” in Defi-

nition 2.1.4.

Remark 2.1.5. In view of Definitions 2.1.2 and 2.1.4, supersolutions (or solution) to Syst. (𝑆1)

are supersolutions in R𝑛. Indeed, if (𝑢, 𝑣) is a supersolution to (𝑆1) in the sense of Defi-

nition 2.1.4 with 𝑢, 𝑣 ∈ 𝑊 1,𝑝
loc (R𝑛), then 𝑢 and 𝑣 are supersolutions in R𝑛 in the sense of

Definition 2.1.2.

Next, we will employ some fundamental results of the potential theory of quasilinear elliptic

equations. The following lemma will be used to prove that a pointwise limit of a sequence

of 𝑝-superharmonic functions is, indeed, a 𝑝-superharmonic (see [Heinonen, Kilpeläinen and

Martio 2006, Lemma 7.3]).

Lemma B. Suppose that {𝑤𝑗} is a sequence of 𝑝-superharmonic functions in Ω. If the se-

quence {𝑤𝑗} either inscreasing or converges uniformly on compact subsets in Ω, then in each

component of Ω the pointwise limit function 𝑤 = lim𝑗→∞ 𝑤𝑗 is a 𝑝-superharmonic function

unless 𝑤 ≡ ∞.

The following weak continuity of the 𝑝-Laplacian result is due to N. S. Trudinger and X.-J.

Wang [Trudinger and Wang 2002] and will be used to prove the existence of 𝑝-superharmonic

solutions to quasilinear equations.

Theorem C. Let {𝑤𝑗} be a sequence of nonnegative 𝑝-superharmonic functions in Ω. Suppose

that {𝑤𝑗} converge pointwise to 𝑤 where is finite almost everywhere and 𝑝-superharmonic

function in Ω. Then 𝜇[𝑤𝑗] converges weakly to 𝜇[𝑤], that is,

lim
𝑗→∞

ˆ
Ω

𝜙 d𝜇[𝑤𝑗] =
ˆ

Ω
𝜙 d𝜇[𝑤], ∀𝜙 ∈ 𝐶∞

𝑐 (Ω).
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Next, we estate a crucial result on pointwise estimates of nonnegative 𝑝-superharmonic

functions in terms of Wolff’s potential due to T. Kilpeläinen and J. Malý in [Kilpeläinen and

Malý 1994, Corollary 4.13].

Theorem D. Let 𝑤 be a 𝑝-superharmonic function in R𝑛 with lim|𝑥|→∞ 𝑤(𝑥) = 0. If 1 <

𝑝 < 𝑛 and 𝜔 = 𝜇[𝑤], that is, −Δ𝑝𝑤 = 𝜔, then there exists a constant 𝐾 ≥ 1 depending only

on 𝑛 and 𝑝 such that

𝐾−1W𝑝𝜔(𝑥) ≤ 𝑤(𝑥) ≤ 𝐾 W𝑝𝜔(𝑥), ∀𝑥 ∈ R𝑛.

Observe that we can assume, without loss of generality, that any 𝑝-superharmonic function

𝑤 in R𝑛 can be chosen to be quasicontinuous in R𝑛, that is, 𝑤 is a continuous function in

R𝑛 except in a set of 𝑝-capacity zero. See more details in [Heinonen, Kilpeläinen and Martio

2006, Chapter 7].

Next, let us express the local version of Wolff’s inequality in the case Ω = R𝑛:

𝜇 ∈ 𝑀+(R𝑛) ∩ 𝑊 −1,𝑝′

loc (R𝑛) ⇐⇒
ˆ

𝐵

W𝑝𝜇𝐵 d𝜇 < ∞ for all balls 𝐵, (2.1.2)

where 𝐵 = 𝐵(𝑥, 𝑅), 𝜇𝐵 = 𝜒𝐵𝜇 and 𝑊 −1,𝑝′

loc (R𝑛) = 𝑊 1,𝑝
loc (R𝑛)* is the dual Sobolev space;

see [Adams and Hedberg 1996, Theorem 4.55].

The following result is established in [Cao and Verbitsky 2017, Lemma 3.3], and in com-

bination with (2.1.2), will be crucial to prove that the solutions to Syst. (𝑆1) belong to

𝑊 1,𝑝
loc (R𝑛) × 𝑊 1,𝑝

loc (R𝑛).

Lemma E. Let 1 < 𝑝 < 𝑛 and 𝜔 ∈ 𝑀+(R𝑛) ∩ 𝑊 −1,𝑝′

loc (R𝑛). Suppose that 𝑤 is a nonnegative

𝑝-superharmonic solution to ⎧⎪⎪⎨⎪⎪⎩
− Δ𝑝𝑤 = 𝜔 in R𝑛,

lim
|𝑥|→∞

𝑤(𝑥) = 0.

Then 𝑤 ∈ 𝑊 1,𝑝
loc (R𝑛) ∩ 𝐿1

loc(R𝑛, d𝜔).

In view of Theorem D and (2.1.2), one can check a converse type result of Lemma E, that

is if 𝑤 ∈ 𝑊 1,𝑝
loc (R𝑛) solves −Δ𝑝𝑤 = 𝜔 in the distributional sense with 𝜔 ∈ 𝑀+(R𝑛), then

𝜔 ∈ 𝑊 −1,𝑝′

loc (R𝑛). Indeed, being 𝑤 ∈ 𝑊 1,𝑝
loc (R𝑛) a weak solution to −Δ𝑝𝑤 = 𝜔, with 𝜔 ∈

𝑀+(R𝑛), we have that 𝑤 is a 𝑝-supersolution. From [Heinonen, Kilpeläinen and Martio 2006,

Theorem 7.25 (iv)], we may consider 𝑤 as a 𝑝-superhamonic function, whence by Theorem D
ˆ

𝐵

W𝑝𝜔𝐵 d𝜔 ≤
ˆ

𝐵

W𝑝𝜔 d𝜔 ≤ 𝐾−1
ˆ

𝐵

𝑤 d𝜔 < ∞ for all balls 𝐵.
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Employing (2.1.2), our assertion follows.

To finish this section, we recall a basic fact on Wolff’s potential (see [Cao and Verbitsky

2017, Corollary 3.2 (iii)]): If 1 < 𝑝 < ∞ and 0 < 𝛼 < 𝑛/𝑝, for any 𝜔 ∈ 𝑀+(R𝑛), it holds

lim
|𝑥|→∞

W𝛼,𝑝𝜔(𝑥) = 0. (2.1.3)

Therefore, in view of (2.1.3), any nontrivial solution (𝑢, 𝑣) to (𝑆𝐼) satisfies

lim
|𝑥|→∞

𝑢(𝑥) = lim
|𝑥|→∞

𝑣(𝑥) = 0, (2.1.4)

provided that (𝑢, 𝑣) enjoy the property in (1.3.4).

2.2 NONLINEAR POTENTIAL THEORY OF FULLY NONLINEAR ELLIPTIC EQUATIONS:

𝑘-HESSIAN MEASURES

We begin this section by recalling some basic definitions and results due to N. S. Trudinger

and X.-J. Wang [Trudinger and Wang 1997, Trudinger and Wang 1999, Trudinger and Wang

2002] and D. A. Labutin [Labutin 2002]. These results were summarized in [Phuc and Verbitsky

2009, Section 4] (see also [Phuc and Verbitsky 2008, Section 7]), in which we state some of

them for the convenience of the reader. Let Ω be an open set in R𝑛. For 𝑘 = 1, . . . , 𝑛 and

𝑤 ∈ 𝐶2(Ω), 𝑘−Hessian operator, 𝐹𝑘[𝑤] is defined as follows

𝐹𝑘[𝑤] =
∑︁

1≤𝑖1<···<𝑖𝑘≤𝑛

𝜆𝑖1 · · · 𝜆𝑖𝑘
,

where 𝜆1, . . . , 𝜆𝑛 are the eigenvalues of the Hessian matrix 𝐷2𝑤 on R𝑛, with 𝑘 = 1, 2, . . . , 𝑛.

Alternatively, we may write 𝐹𝑘[𝑤] = [𝐷2𝑤]𝑘, where [𝐴]𝑘 denotes the sum of the 𝑘×𝑘 principal

minors of an 𝑛 × 𝑛 matrix 𝐴. For example, 𝐹1[𝑤] = Δ𝑤 is the Laplacian operator of 𝑢, and

𝐹𝑛[𝑤] = det 𝐷2𝑤 is the Monge–Ampère operator of 𝑤.

Definition 2.2.1. A function 𝑤 : Ω → (−∞, ∞) ∪ {−∞} is 𝑘-subharmonic in Ω if

(i) 𝑤 is upper semicontinuous,

(ii) 𝑤 ̸≡ −∞ in any component of Ω,

(iii) for each open subset 𝐷 compactly contained in Ω and each 𝜙 ∈ 𝐶2(𝐷) ∩ 𝐶(𝐷)

satisfying 𝐹𝑘[𝜙] ≥ 0 in 𝐷, the following implication holds

𝑤 ≤ 𝜙 on 𝜕𝐷 =⇒ 𝑤 ≤ 𝜙 in 𝐷.
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We denote by Φ𝑘(Ω) the class of all 𝑘-subharmonic functions in Ω.

The following weak convergence result is essential to potential theory related to 𝑘-Hessian

operators, and it was proved by N. S. Trudinger and X.-J. Wang [Trudinger and Wang 1999,

Theorem 1.1].

Theorem F. For each 𝑤 ∈ Φ𝑘(Ω), there exists a Radon measure 𝜇𝑘[𝑤] such that

(i) 𝜇𝑘[𝑤] = 𝐹𝑘[𝑤] for 𝑤 ∈ 𝐶2(Ω), i.e. 𝜇𝑘[𝑤] = 𝐹𝑘[𝑤] d𝑥, and

(ii) if {𝑤𝑗} is a sequence of 𝑘-subharmonic functions which converges almost everywhere to

𝑤, then the sequence of the corresponding measures {𝜇𝑘[𝑤𝑗]} converges to 𝜇𝑘[𝑤] weakly,

that is,

lim
𝑗→∞

ˆ
Ω

𝜙 d𝜇𝑘[𝑤𝑗] =
ˆ

Ω
𝜙 d𝜇𝑘[𝑤] ∀𝜙 ∈ 𝐶∞

𝑐 (Ω).

We mention that the measure 𝜇𝑘[𝑤] in Theorem F is said to be the 𝑘-Hessian measure

associated with 𝑤 ∈ Φ𝑘(Ω), whence we may write 𝐹𝑘[𝑤] in place of 𝜇𝑘[𝑤] even in the case

where 𝑤 does not belong to 𝐶2(Ω).

Remark 2.2.2. A Harnack-type convergence theorem follows from (ii) in Theorem F: If {𝑤𝑗} ⊂

Φ𝑘(Ω) is a nonincreasing sequence, then in each component of Ω the pointwise limit function

𝑤 = lim𝑗→∞ 𝑤𝑗 is a 𝑘-subharmonic function and 𝜇𝑘[𝑤𝑗] converges to 𝜇𝑘[𝑤] weakly. Indeed,

in each component of Ω, we have 𝑤 ∈ Φ𝑘(Ω) by definition of 𝑘-subharmonic functions.

Definition 2.2.3. For 𝜎 ∈ 𝑀+(Ω), we say that 𝑤 is a solution to the equation

𝐹𝑘[𝑤] = 𝜎 in Ω,

in the potential-theoretic sense, whenever

𝑤 ∈ Φ𝑘(Ω) and 𝜇𝑘[𝑤] = 𝜎.

The 𝑘-Hessian measure is an important tool in potential theory for Φ𝑘(Ω). The next result

is a direct consequence of [Labutin 2002, Theorem 2.1] due to D. A. Labutin, which brings

a global pointwise estimate for functions in Φ𝑘(Ω) in terms of Wolff potentials W𝑘. See

also [Phuc and Verbitsky 2009, Theorem 4.3].

Theorem G. Let 𝑤 ≥ 0 be such that −𝑤 ∈ Φ𝑘(R𝑛), where 1 ≤ 𝑘 < 𝑛/2. Assume that

𝜇 = 𝐹𝑘[−𝑤] and lim
|𝑥|→∞

𝑤(𝑥) = 0.
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Then, there exists 𝐾 = 𝐾(𝑛, 𝑘) > 0 such that

𝐾−1 W𝑘𝜇(𝑥) ≤ 𝑤(𝑥) ≤ 𝐾 W𝑘𝜇(𝑥) ∀𝑥 ∈ R𝑛.

In view of Definition 2.1.2, we present the precise definition of a solution to Syst. (𝑆2) in

the potential-theoretic sense.

Definition 2.2.4. Let 1 ≤ 𝑘 ≤ 𝑛 and 𝑞1, 𝑞2 > 0. For 𝜎 ∈ 𝑀+(R𝑛), we say that a pair of

nonnegative functions (𝑢, 𝑣) is a solution to Syst. (𝑆2) whenever 𝑢 and 𝑣 satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 𝑢 ∈ Φ𝑘(R𝑛), 𝑢 ∈ 𝐿𝑞2
loc(R𝑛, d𝜎),

− 𝑣 ∈ Φ𝑘(R𝑛), 𝑣 ∈ 𝐿𝑞1
loc(R𝑛, d𝜎),

d𝜇𝑘[𝑢] = 𝑣𝑞1d𝜎, d𝜇𝑘[𝑣] = 𝑢𝑞2d𝜎,

lim
|𝑥|→∞

𝑢(𝑥) = 0, lim
|𝑥|→∞

𝑣(𝑥) = 0.

The remainder of this section will be devoted to establishing relevant existence results

for Hessian equations with measure data. Following [Trudinger 1995, Trudinger and Wang

1997,Trudinger and Wang 1999,Trudinger 1994], we say that Ω ⊂ R𝑛 is a bounded uniformly

(𝑘 − 1)-convex domain in R𝑛 whenever Ω is bounded, 𝜕Ω ∈ 𝐶2, and 𝐻𝑗[𝜕Ω] > 0 for 𝑗 =

0, . . . , 𝑘 − 1, where 𝐻𝑗[𝜕Ω] denotes the 𝑗-mean curvature of the boundary 𝜕Ω, more precisely

𝐻𝑗[𝜕Ω] =
∑︁

𝜅1 · · · 𝜅𝑖𝑗
,

here 𝜅1, . . . , 𝜅𝑛−1 are the principal curvatures of 𝜕Ω and the preceding sum is taken over

increasing 𝑗-tuples (𝑖1, . . . , 𝑖𝑗) ⊂ {1, . . . , 𝑛 − 1}. The curvature 𝜅1, . . . , 𝜅𝑛−1 are normalized

so that they are positive on spheres, and for 𝑗 = 0 we set 𝐻0[𝜕Ω] = 1. In particular, a ball

𝐵(𝑥, 𝑅) is an example of bounded uniformly (𝑘 − 1)-convex domains in R𝑛.

Let 𝜇 ∈ 𝑀+(Ω) and consider the following fully nonlinear problem:⎧⎪⎨⎪⎩
𝐹𝑘[−𝑤] = 𝜇 in Ω,

𝑤 = 0 on 𝜕Ω,
(2.2.1)

where 𝑤 is a nonnegative function such that −𝑤 ∈ Φ𝑘(Ω) and it is continuous near 𝜕Ω. Under

a suitable assumption on 𝜇, the existence of solutions to (2.2.1) is the content of the following

lemma [Phuc and Verbitsky 2009, Lemma 4.4].

Lemma H. Let Ω be a bounded uniformly (𝑘−1)-convex domain in R𝑛. Suppose 𝜇 ∈ 𝑀+(Ω)

can be decomposed as a sum 𝜇 = 𝑓d𝑥 + 𝜇0, where 𝜇0 is a nonnegative measure compactly

supported in Ω, and 𝑓 ≥ 0 belongs to 𝐿𝑠(Ω), for
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(i) 𝑠 > 𝑛/2 if 1 ≤ 𝑘 ≤ 𝑛/2, or

(ii) 𝑠 = 1 if 𝑛/2 < 𝑘 ≤ 𝑛.

Then there exists 𝑤 ≥ 0 such that −𝑤 ∈ Φ𝑘(Ω) ∩ 𝐶(Ω), and 𝑤 solves (2.2.1).

In our argument to prove Theorem 1.3.11, we use a comparison principle due to N. S.

Trudinger and X.-J. Wang in [Trudinger and Wang 2002, Theorem 4.1]. For its statement, let

us to introduce the so-called 𝑘-Hessian capacity cap𝑘(·, Ω) defined for a compact set 𝐸 ⊂ Ω

by

cap𝑘(𝐸, Ω) = sup
{︃ˆ

𝐸

d𝜇𝑘[𝑢] : 𝑢 ∈ Φ𝑘(Ω), −1 < 𝑢 < 0 in Ω
}︃

.

We say that measure 𝜔 ∈ 𝑀+(Ω) is continuous with respect to capacity cap𝑘(·, Ω) if 𝜔(𝐸) = 0

whenever cap𝑘(𝐸, Ω) = 0 for all compact sets 𝐸 ⊂ Ω.

Theorem I. Let 𝑤1, 𝑤2 ∈ Φ𝑘(Ω) such that 𝜇𝑘[𝑤1] and 𝜇𝑘[𝑤2] are continuous with respect to

capacity cap𝑘(·, Ω). Suppose 𝑤1 ≤ 𝑤2 continuously on 𝜕Ω. If 𝜇𝑘[𝑤1] ≥ 𝜇𝑘[𝑤2], then 𝑤1 ≤ 𝑤2

in Ω.

Note that one can combine Lemma H with Theorem I to prove an existence and uniqueness

result of solutions to (2.2.1), provided Ω is a bounded uniformly (𝑘 −1)-convex domain in R𝑛.

Remark 2.2.5. If 𝜎 ∈ 𝑀+(R𝑛) satisfies the Riesz capacity condition (1.3.3) with 𝛼 = 2𝑘/(𝑘+

1) and 𝑝 = 𝑘+1, then 𝜎 is continuous with respect to capacity cap𝑘(·) := cap𝑘(·,R𝑛). Indeed,

for 𝛼 > 0, we denote by G𝛼𝜎 the Bessel potential of order 𝛼, see [Adams and Hedberg

1996, Section 1.2.4] for its definition. Similarly to Riesz capacity (1.3.1), we define the Bessel

capacity of a compact set 𝐸 ⊂ R𝑛,

capG𝛼,𝑝(𝐸) = inf{‖𝑓‖𝑝
𝐿𝑝 : 𝑓 ∈ 𝐿𝑝(R𝑛), 𝑓 ≥ 0, G𝛼𝑓 ≥ 1 on 𝐸}.

By [Phuc and Verbitsky 2008, Theorem 2.20], capG𝛼,𝑝 is equivalent to the 𝑘-Hessian capacity

cap𝑘 for 𝛼 = 2𝑘/(𝑘 + 1) and 𝑝 = 𝑘 + 1, with 𝑘 < 𝑛/2, i.e., there exits a constant 𝐶 =

𝐶(𝑛, 𝑘) ≥ 1 such that, for all compact sets 𝐸 ⊂ R𝑛, it holds

𝐶−1 cap𝑘(𝐸) ≤ capG 2𝑘
𝑘+1

,𝑘+1(𝐸) ≤ 𝐶 cap𝑘(𝐸).

On the other hand, since G𝛼𝜎 ≤ I𝛼𝜎 for all 𝛼 > 0 and 𝜎 ∈ 𝑀+(R𝑛), one has capI𝛼,𝑝 ≤

capG𝛼,𝑝. The assertion follows by combining the two previous inequalities with 𝛼 = 2𝑘/(𝑘 +1)

and 𝑝 = 𝑘 + 1.
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The next result [Phuc and Verbitsky 2009, Lemma 4.7] shows a monotonicity-type result

to Hessian equations required in the argument in the proof of Theorem 1.3.11. In what follows,

we set 𝐵𝑅 = 𝐵(0, 𝑅) for 𝑅 > 0.

Lemma J. Let 𝜇1, 𝜇2 ∈ 𝑀+(R𝑛) satisfying 𝜇1 ≤ 𝜇2, and W𝑘𝜇2 < ∞. Let 𝑤1 ≥ 0 be a

function satisfying −𝑤1 ∈ Φ𝑘(R𝑛) and⎧⎪⎪⎨⎪⎪⎩
𝐹𝑘[−𝑤1] = 𝜇1 in R𝑛,

lim
|𝑥|→∞

𝑤1 = 0.

Suppose 𝑤1 is a limit of a subsequence of {𝑤𝑖
1} pointwise almost everywhere in R𝑛, where 𝑤𝑖

1

is continuous near 𝜕𝐵𝑖+1 and it satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 𝑤𝑖
1 ∈ Φ𝑘(𝐵𝑖+1),

𝐹𝑘[−𝑤𝑖
1] = 𝜇1,𝑖 in 𝐵𝑖+1,

𝑤𝑖
1 = 0 on 𝜕𝐵𝑖+1,

here 𝜇1,𝑖 := 𝜒𝐵𝑖
𝜇1. Then there exists a function 𝑤2 satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑤2 ≥ 𝑤1, −𝑤2 ∈ Φ𝑘(R𝑛),

𝐹𝑘[−𝑤2] = 𝜇2 in R𝑛,

lim
|𝑥|→∞

𝑤2 = 0.

Moreover, 𝑤2 is also a pointwise almost everywhere limit of a subsequence of {𝑤𝑖
2}, where 𝑤2

is continuous near 𝜕𝐵𝑖+1 and it satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 𝑤𝑖
2 ∈ Φ𝑘(𝐵𝑖+1),

𝐹𝑘[−𝑤𝑖
2] = 𝜇2,𝑖 in 𝐵𝑖+1,

𝑤𝑖
2 = 0 on 𝜕𝐵𝑖+1.

2.3 NONLINEAR POTENTIAL THEORY FOR ORLICZ SETTING

For an overview of Orlicz space theory, we refer to the books [Adams and Fournier 2003,

Krasnosel’skii and Rutickii 1961,Rao and Ren 1991,Harjulehto and Hästö 2019] and references

therein. Let us remark that some of their references deal with generalized Orlicz growth.
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2.3.1 Young Functions

Definition 2.3.1 (Young function). A function 𝐺 : [0, ∞) → [0, ∞) is said to be a Young

function if 𝐺 is convex, strictly increasing and satisfies 𝐺(0) = 0.

Definition 2.3.2 (𝑁 -functions and its Conjugate). A Young function 𝐺 : [0, ∞) → [0, ∞) is

an 𝑁 -function if

lim
𝑡→0+

𝐺(𝑡)
𝑡

= 0 and lim
𝑡→∞

𝐺(𝑡)
𝑡

= ∞.

The function 𝐺*(𝑠) := sup𝑡>0{𝑠𝑡−𝐺(𝑡)}, for 𝑠 ∈ [0, ∞), is called the complementary function

of 𝐺.

Equivalently, we may define 𝐺* by

𝐺*(𝑠) =
ˆ 𝑠

0
𝑔−1(𝑟) d𝑟, 𝑠 ≥ 0,

where 𝑔 = 𝐺′. Clearly, by definition, it holds a Young’s inequality

𝑡𝑠 ≤ 𝐺(𝑡) + 𝐺*(𝑠) ∀𝑡, 𝑠 ≥ 0. (2.3.1)

Equality occurs in (2.3.1) if and only if either 𝑡 = 𝑔−1(𝑠) or 𝑠 = 𝑔(𝑡). In addition, it holds

(𝐺*)*(𝑡) = 𝐺(𝑡) for all 𝑡 ≥ 0.

Unless otherwise stated, we assume that all 𝑁 -functions 𝐺 in this work belong to 𝐶2(0, ∞)

where 𝑔 = 𝐺′ satisfies

𝑝 − 1 ≤ 𝑡𝑔′(𝑡)
𝑔(𝑡) ≤ 𝑞 − 1 ∀𝑡 > 0. (2.3.2)

for some 1 < 𝑝 ≤ 𝑞 < ∞. In particular, the following bound holds

𝑝 ≤ 𝑡𝑔(𝑡)
𝐺(𝑡) ≤ 𝑞 ∀𝑡 > 0, (2.3.3)

Indeed, by (2.3.2), 𝑡 ↦→ 𝑔(𝑡)/𝑡𝑝−1 is a nondecreasing function and 𝑡 ↦→ 𝑔(𝑡)/𝑡𝑞−1 is a nonin-

creasing function. Consequently, for all 𝑡 > 0

𝐺(𝑡) =
ˆ 𝑡

0
𝑔(𝑠) d𝑠 =

ˆ 𝑡

0
𝑠𝑝−1 𝑔(𝑠)

𝑠𝑝−1 d𝑠 ≤ 𝑡𝑔′(𝑡)
𝑝

,

𝐺(𝑡) =
ˆ 𝑡

0
𝑔(𝑠) d𝑠 =

ˆ 𝑡

0
𝑠𝑞−1 𝑔(𝑠)

𝑠𝑞−1 d𝑠 ≥ 𝑡𝑔′(𝑡)
𝑞

.

In customary terminology, condition (2.3.3) is known as Δ2 and ∇2 condition. A typical

example of a function that satisfies (2.3.3) is our model 𝐺(𝑡) = 𝑡𝑝/𝑝 + 𝑡𝑞/𝑞, with 𝑔(𝑡) =

𝑡𝑝−1 + 𝑡𝑞−1, whenever 𝑝 ≥ 2. The inequalities (2.3.3) have some basic applications. In the next

lemma, we emphasize some of that, where we omit the easy proof which can be found e.g.

in [Malý 2003, Section 2], or [Lee and Lee 2021, Lemma 2.10].
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Lemma K. Suppose 𝑔 satisfies (2.3.2). Then (2.3.3) holds. In particular, 𝑡 ↦→ 𝐺(𝑡)/𝑡𝑝 is a

nondecreasing function, and 𝑡 ↦→ 𝐺(𝑡)/𝑡𝑞 is a nonincreasing function, for 𝑡 > 0. Moreover,

(i) for all 𝛼 ≥ 0 and 𝑡 > 0,

min{𝛼𝑝−1, 𝛼𝑞−1}𝑔(𝑡) ≤ 𝑔(𝛼𝑡) ≤ max{𝛼𝑝−1, 𝛼𝑞−1}𝑔(𝑡), (2.3.4)

min{𝛼𝑝, 𝛼𝑞}𝐺(𝑡) ≤ 𝐺(𝛼𝑡) ≤ max{𝛼𝑝, 𝛼𝑞}𝐺(𝑡), (2.3.5)(︃
𝑝

𝑞

)︃ 1
𝑝−1

min{𝛼
1

𝑝−1 , 𝛼
1

𝑞−1 }𝑔−1(𝑡) ≤ 𝑔−1(𝛼𝑡) ≤
(︃

𝑞

𝑝

)︃ 1
𝑝−1

max{𝛼
1

𝑝−1 , 𝛼
1

𝑞−1 }𝑔−1(𝑡), (2.3.6)

min{𝛼
𝑝

𝑝−1 , 𝛼
𝑞

𝑞−1 }𝐺*(𝑡) ≤ 𝐺*(𝛼𝑡) ≤ max{𝛼
𝑝

𝑝−1 , 𝛼
𝑞

𝑞−1 }𝐺*(𝑡); (2.3.7)

(ii) for all 𝑡 > 0, setting 𝑐 = 𝑔−1(1), it holds

𝑔−1(𝑡) ≤ 𝑐

(︃
𝑞

𝑝

)︃ 1
𝑝−1(︁

𝑡
1

𝑝−1 + 𝑡
1

𝑞−1
)︁
, (2.3.8)

(iii) for all 𝑡 > 0, it holds

(𝑝 − 1)𝐺(𝑡) ≤ 𝐺*(𝑔(𝑡))) ≤ 𝑞
𝑝

𝑝−1 𝐺(𝑡). (2.3.9)

2.3.2 Orlicz Space

Definition 2.3.3. The Orlicz space 𝐿𝐺(Ω) is understood as the set

𝐿𝐺(Ω) :=
{︃

𝑢 ∈ 𝐿0(Ω) :
ˆ

Ω
𝐺(𝜆|𝑢|) d𝑥 < ∞ for some 𝜆 > 0

}︃
.

𝐿𝐺(Ω) is a Banach space with the Luxemburg norm

‖𝑢‖𝐿𝐺 := inf
𝜆>0

{︃
𝜆 > 0 :

ˆ
Ω

𝐺
(︂ |𝑢|

𝜆

)︂
d𝑥 ≤ 1

}︃
.

Remark 2.3.4. When 𝑝 = 𝑞 in (2.3.3), i.e. 𝐺(𝑡) = 𝑡𝑝/𝑝, the Lebesgue space 𝐿𝑝(Ω) coincides

with the Orlicz space 𝐿𝐺(Ω) as Banach spaces, where

‖𝑢‖𝐿𝑝 = 𝑝
1
𝑝 ‖𝑢‖𝐿𝐺 .

See details, for instance, in [Adams and Fournier 2003, Chapter 8].

In view of (2.3.3), by [Harjulehto and Hästö 2019, Lemma 3.1.3], we have

𝐿𝐺(Ω) =
{︃

𝑢 ∈ 𝐿0(Ω) :
ˆ

Ω
𝐺(|𝑢|) d𝑥 < ∞

}︃
.
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From [Harjulehto and Hästö 2019, Corollary 3.2.8], it holds

‖𝑢‖𝐿𝐺 ≤
ˆ

Ω
𝐺(|𝑢|) d𝜎 + 1 ∀𝑢 ∈ 𝐿𝐺(Ω). (2.3.10)

Furthermore, putting 𝜌𝐺(𝑢) =
´

Ω 𝐺(|𝑢|) d𝑥, the following lemma establishes the relation

between 𝜌𝐺(·) and norm ‖ · ‖𝐿𝐺 [Harjulehto and Hästö 2019, Lemma 3.2.9]. The function

𝜌𝐺(·) is called modular.

Lemma L. For all 𝑢 ∈ 𝐿𝐺(Ω), it holds

min{𝜌𝐺(𝑢)
1
𝑝 , 𝜌𝐺(𝑢)

1
𝑞 } ≤ ‖𝑢‖𝐿𝐺 ≤ max{𝜌𝐺(𝑢)

1
𝑝 , 𝜌𝐺(𝑢)

1
𝑞 },

min{‖𝑢‖𝑝
𝐿𝐺 , ‖𝑢‖𝑞

𝐿𝐺} ≤ 𝜌𝐺(𝑢) ≤ max{‖𝑢‖𝑝
𝐿𝐺 , ‖𝑢‖𝑞

𝐿𝐺}.

The following result [Harjulehto and Hästö 2019, Lemma 3.2.11] is the generalization of

the classical Hölder’s inequality in Lebesgue spaces to Orlicz spaces.

Lemma M. For all 𝑢 ∈ 𝐿𝐺(Ω) and 𝑣 ∈ 𝐿𝐺*(Ω), it holds⃒⃒⃒⃒
⃒
ˆ

Ω
𝑢𝑣 d𝑥

⃒⃒⃒⃒
⃒ ≤ 2‖𝑢‖𝐿𝐺‖𝑣‖𝐿𝐺* .

Remark 2.3.5. Under condition (2.3.3), 𝐿𝐺(Ω) is reflexive, separable, and uniformly convex. In

light of Hölder’s inequality, the dual space
(︁
𝐿𝐺(Ω)

)︁*
coincides with 𝐿𝐺*(Ω) (see [Harjulehto

and Hästö 2019, Chapter 2, Section 3] for more details).

Definition 2.3.6. Let {𝑢𝑗} ∈ 𝐿𝐺(Ω) be a sequence and let 𝑢 ∈ 𝐿𝐺(Ω). We say that 𝑢𝑗

converges weakly to 𝑢 in 𝐿𝐺(Ω) if

lim
𝑗→∞

ˆ
Ω

𝑢𝑗𝑣 d𝑥 =
ˆ

Ω
𝑢𝑣 d𝑥 ∀𝑣 ∈ 𝐿𝐺*(Ω).

As usual, we write 𝑢𝑗 ⇀ 𝑢 in 𝐿𝐺(Ω). The weak convergence of vector-valued functions in

𝐿𝐺(Ω;R𝑛) has an obvious interpretation regarding the coordinate functions.

The following result will be useful in some of our arguments [Benyaiche and Khlifi 2021,

Theorem 2.1]

Theorem N. Let {𝑢𝑗} be a bounded sequence in 𝐿𝐺(Ω). If 𝑢 = lim𝑗 𝑢𝑗 pointwise in Ω

(almost everywhere), then 𝑢𝑗 ⇀ 𝑢 in 𝐿𝐺(Ω).

Definition 2.3.7. The Orlicz-Sobolev space 𝑊 1,𝐺(Ω) is understood as the set of all functions

𝑢 ∈ 𝐿𝐺(Ω) which admit weak derivatives 𝜕𝑖𝑢 ∈ 𝐿𝐺(Ω) for 𝑖 = 1, . . . , 𝑛; that is

𝑊 1,𝐺(Ω) = {𝑢 ∈ 𝐿𝐺(Ω) : |∇𝑢| ∈ 𝐿𝐺(Ω)},
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equipped with the norm

‖𝑢‖𝑊 1,𝐺 = ‖𝑢‖𝐿𝐺 + ‖∇𝑢‖𝐿𝐺 .

By 𝑊 1,𝐺
0 (Ω) we denote the closure of 𝐶∞

𝑐 (Ω) in 𝑊 1,𝐺(Ω). As usual, 𝑊 1,𝐺
loc (Ω) is the set of

all functions 𝑢 such that 𝑢 ∈ 𝑊 1,𝐺(𝑈) for all open subset 𝑈 compactly contained in Ω.

Remark 2.3.8. Similar to the preceding remark, assuming (2.3.3), 𝑊 1,𝐺(Ω) is a Banach space,

separable, uniformly convex, and reflexive (see [Harjulehto and Hästö 2019, Theorem 6.1.4]).

This also holds for 𝑊 1,𝐺
0 (Ω).

Next, we state a modular Poincaré inequality [Lieberman 1991, Lemma 2.2], which will be

useful in our results.

Lemma O. Let 𝐵𝑅 be a ball with a radius 𝑅. There exists a constant 𝑐 = 𝑐(𝑛, 𝑝, 𝑞) > 0 such

that ˆ
𝐵𝑅

𝐺

(︃
|𝑢|
𝑅

)︃
d𝑥 ≤ 𝑐

ˆ
𝐵𝑅

𝐺(|∇𝑢|) d𝑥 ∀𝑢 ∈ 𝑊 1,𝐺
0 (𝐵𝑅).

Definition 2.3.9. The homogeneous Sobolev-Orlicz space 𝒟1,𝐺(Ω) is understood as the set

𝒟1,𝐺(Ω) = {𝑢 ∈ 𝑊 1,𝐺
loc (Ω) : |∇𝑢| ∈ 𝐿𝐺(Ω)}.

In this space, we have the following seminorm

‖𝑢‖𝒟1,𝐺 = ‖∇𝑢‖𝐿𝐺 . (2.3.11)

Remark 2.3.10. Consider Ω = R𝑛.

(i) If 𝑞 ≥ 𝑛 in (2.3.3), all constants functions belong to 𝒟1,𝐺(R𝑛). Indeed, appealing

to [Harjulehto and Hästö 2019, Lemma 3.7.7], from (2.3.3) we have the following inclusions

𝒟1,𝑝(R𝑛) ∩ 𝒟1,𝑞(R𝑛) ⊂ 𝒟1,𝐺(R𝑛) ⊂ 𝒟1,𝑝(R𝑛) + 𝒟1,𝑞(R𝑛), (2.3.12)

where 𝒟1,𝑝(R𝑛), 𝒟1,𝑞(R𝑛) are the classical homogenous Sobolev spaces, and

𝒟1,𝑝(R𝑛) + 𝒟1,𝑞(R𝑛) := {𝑢 + 𝑣 : 𝑢 ∈ 𝒟1,𝑝(R𝑛), 𝑣 ∈ 𝒟1,𝑞(R𝑛)}. The space 𝒟1,𝑞(R𝑛) retains

all constants functions if 𝑞 ≥ 𝑛. This is elucidated in [Malý and Ziemer 1997, page 48] for

𝑞 = 𝑛, while the case 𝑞 > 𝑛 follows from the classical Morrey inequality. Consequently, the

inclusions in (2.3.12) imply the desired fact.

(ii) When 1 < 𝑝 ≤ 𝑞 < 𝑛, in light of the classical Sobolev Inequality (see, for instance, [Malý

and Ziemer 1997, Corollary 1.77]), the only constant function in 𝒟1,𝑝(R𝑛) and 𝒟1,𝑞(R𝑛) is
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the zero function, which also occurs in 𝒟1,𝐺(R𝑛) by (2.3.12). Hence the assignment (2.3.11)

defines a norm on 𝒟1,𝐺(R𝑛). Moreover, by using the standard mollifier functions, analysis

similar to that in the proof of [Harjulehto and Hästö 2019, Theorem 6.4.4] allows us to infer

that 𝐶∞
𝑐 (R𝑛) is dense in 𝒟1,𝐺(R𝑛), whenever (2.3.11) is a norm.

Definition 2.3.11. (i) A continuous function 𝑢 ∈ 𝑊 1,𝐺
loc (Ω) is called an 𝐺-harmonic

function in Ω if it satisfies div
(︁
𝑔(|∇𝑢|)/|∇𝑢|∇𝑢

)︁
= 0 weakly in Ω, that is

ˆ
Ω

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢 · ∇𝜙 d𝑥 = 0 ∀𝜙 ∈ 𝐶∞
𝑐 (Ω). (2.3.13)

(ii) We say that 𝑢 ∈ 𝑊 1,𝐺
loc (Ω) is a 𝐺-supersolution in Ω if −div

(︁
𝑔(|∇𝑢|)/|∇𝑢|∇𝑢

)︁
≥ 0

weakly, that is 𝑢 satisfies
ˆ

Ω

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢 · ∇𝜙 d𝑥 ≥ 0 ∀𝜙 ∈ 𝐶∞
𝑐 (Ω), 𝜙 ≥ 0.

Finally, we say that 𝑢 ∈ 𝑊 1,𝐺
loc (Ω) is a 𝐺-subsolution in Ω if −𝑢 is a 𝐺-supersolution in Ω.

Existence and uniqueness of harmonic functions are proven in [Benyaiche and Khlifi 2021,

Chlebicka and Karppinen 2021, Fan 2012]. The following lemma gives a version of the com-

parison principle for 𝐺-supersolutions and 𝐺-subsolutions [Chlebicka and Zatorska-Goldstein

2022, Lem. 3.5].

Lemma P. Let 𝑢 ∈ 𝑊 1,𝐺
loc (Ω) be a 𝐺-supersolution and 𝑣 ∈ 𝑊 1,𝐺

loc (Ω) be a 𝐺-subsolution in

Ω. If min{𝑢 − 𝑣, 0} ∈ 𝑊 1,𝐺
0 (Ω), then 𝑢 ≥ 𝑣 almost everywhere in Ω.

Let 𝜇 be a Radon measure (not necessarily nonnegative), and consider the following quasi-

linear elliptic equation with data measure

−div
(︃

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢

)︃
= 𝜇 in Ω. (2.3.14)

Definition 2.3.12. A function 𝑢 ∈ 𝑊 1,𝐺
loc (Ω) is a solution to (2.3.14) if

ˆ
Ω

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢 · ∇𝜙 d𝑥 =
ˆ

Ω
𝜙 d𝜇 ∀𝜙 ∈ 𝐶∞

𝑐 (Ω).

Note that if 𝜇 is nonnegative, then a solution to (2.3.14) is a 𝐺-supersolution, in sense

of Definition 2.3.12. The following result will be needed in Section 4.2, and it deals with

the existence of solutions to (2.3.14). It is a consequence of [Benyaiche and Khlifi 2023,

Theorem 4.3].
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Theorem Q. Let 𝜇 be a Radon measure in
(︁
𝑊 1,𝐺

0 (Ω)
)︁*

. Then there exists a unique 𝑢 ∈

𝑊 1,𝐺
0 (Ω) satisfying (2.3.14).

Now, we introduce the notion of the 𝐺-capacity of a compact subset of Ω ⊆ R𝑛 following

[Lee and Lee 2021]. The 𝐺-capacity will be used to ensure that if 𝑢 ∈ 𝒟1,𝐺(R𝑛) is a solution

to eq. (2.3.14), then 𝑢 = 0 whether 𝑞 ≥ 𝑛 in (2.3.3).

Definition 2.3.13. Let 𝐸 ⊂ Ω be a compact subset, we define cap𝐺(𝐸, Ω), 𝐺-capacity of 𝐸

with respect to Ω by

cap𝐺(𝐸, Ω) = inf
{︃ˆ

Ω
𝐺(|∇𝜙|) d𝑥 : 𝜙 ∈ 𝐶∞

𝑐 (Ω), 𝜙 ≥ 1 on 𝐸

}︃
.

We set cap𝐺(𝐸) = cap𝐺(𝐸,R𝑛) when Ω = R𝑛.

Obseve that for 𝐺𝑝(𝑡) = 𝑡𝑝/𝑝, cap𝐺𝑝
(·, Ω) coincides with the usual 𝑝-capicty with respect

to Ω, see for instance [Heinonen, Kilpeläinen and Martio 2006,Adams and Hedberg 1996,Malý

and Ziemer 1997]. In general, we may define equivalently

cap𝐺(𝐸, Ω) = inf
{︃ˆ

Ω
𝐺(|∇𝜙|) d𝑥 : 𝜙 ∈ 𝒟1,𝐺(Ω), 𝜙 ≥ 1 in a neighborhood of 𝐸

}︃
.

This follows by the same method as in the proof of [Malý and Ziemer 1997, Theorem 2.3 (iii)].

Note that by Remark 2.3.10, cap𝐺(𝐸) = 0 for all compact set 𝐸 ⊂ R𝑛, since the function 1

belongs to 𝒟1,𝐺(R𝑛) if 𝑞 ≥ 𝑛 in (2.3.3).

Remark 2.3.14. Suppose 𝑞 ≥ 𝑛 and let 𝜇 ∈ 𝑀+(R𝑛) ∩
(︁
𝒟1,𝐺(R𝑛)

)︁*
, then a solution 𝑢 to

(2.3.14) in 𝒟1,𝐺(R𝑛) must be constant. To see this, we show first that 𝜇 must be absolutely

continuous with respect to the 𝐺-capacity, that is 𝜇(𝐸) = 0 whenever cap𝐺(𝐸) = 0 for all

compact sets 𝐸 ⊂ R𝑛. Fix 𝐸 ⊂ R𝑛 a compact set and let 𝜙 ∈ 𝐶∞
𝑐 (R𝑛) such that 𝜙 = 1

on 𝐸. Then, by testing (2.3.14) with such 𝜙 and combining Cauchy-Schwarz Inequality with

Hölder’s inequality (Lemma M), it follows

𝜇(𝐸) =
ˆ

𝐸

𝜙 d𝜇 ≤
ˆ
R𝑛

𝜙 d𝜇

=
ˆ
R𝑛

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢 · ∇𝜙 d𝑥 ≤ 2‖𝑔(|∇𝑢|)‖𝐿𝐺* ‖∇𝜙‖𝐿𝐺 .

From (2.3.9) and Lemma L, we have

𝜇(𝐸) ≤ 2 𝑞
𝑝

𝑝−1
(︁
𝜌𝐺(|∇𝑢|) + 1

)︁
max

{︂(︁
𝜌𝐺(|∇𝜙|)

)︁ 1
𝑝 ,
(︁
𝜌𝐺(|∇𝜙|)

)︁ 1
𝑞

}︂
,
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where 𝜌𝐺(·) is the modular function. Consequently,

𝜇(𝐸) ≤ 𝐶 max
{︂(︁

cap𝐺(𝐸)
)︁ 1

𝑝 ,
(︁
cap𝐺(𝐸)

)︁ 1
𝑞

}︂
,

with 𝐶 = 𝐶
(︁
𝑝, 𝑞, 𝜌𝐺(|∇𝑢|)

)︁
> 0, which shows that 𝜇 is absolutely continuous with respect

to the 𝐺-capacity. Next, since 𝑞 ≥ 𝑛, cap𝐺(𝐸) vanishes for all compact set 𝐸 ⊂ R𝑛, whence

𝜇 = 0 by the inner regularity of 𝜇. From a Liouville-type theorem [Araya and Mohammed

2019, Theorem 4.1], 𝑢 must be constant.

2.3.3 Superharmonic functions

Let 𝜇 ∈
(︁
𝑊 1,𝐺

loc (Ω)
)︁*

. Here we extend the notion of the distributional solutions to (2.3.14),

where 𝑢 does not necessarily belong to 𝑊 1,𝐺
loc (Ω). To be more precise, we will understand

solutions in the following potential-theoretic sense using 𝐺-superharmonic functions.

Definition 2.3.15. A function 𝑢 : Ω → (−∞, ∞) ∪ {∞} is 𝐺-superharmonic in Ω if

(i) 𝑢 is lower semicontinuous,

(ii) 𝑢 is not identically infinite in any component of Ω,

(iii) for each open subset 𝑉 compactly contained in Ω and each 𝐺-harmonic function ℎ in 𝑉

such that ℎ ∈ 𝐶(𝑉 ), and ℎ ≤ 𝑢 in 𝜕𝑉 , implies that ℎ ≤ 𝑢 in 𝑉 .

We denote 𝒮𝐺(Ω) the class of all 𝐺-superharmonic functions in Ω. Notice that for 𝐺𝑝(𝑡) =

𝑡𝑝/𝑝, one has 𝒮𝐺𝑝(Ω) = 𝒮𝑝(Ω) for all 1 < 𝑝 < ∞.

For 𝑢 ∈ 𝒮𝐺(Ω) we define its truncation as follows

𝑇𝑘(𝑢) = min(𝑘, max(𝑢, −𝑘)), ∀𝑘 > 0.

From [Chlebicka and Zatorska-Goldstein 2022, Lemma 4.6], {𝑇𝑘(𝑢)} is a sequence of 𝐺-

supersolutions in Ω. Then there exists a unique measurable function 𝑍𝑢 : Ω → R𝑛 satisfying

𝑍𝑢(𝑥) = lim
𝑘→∞

∇
(︁
𝑇𝑘(𝑢)

)︁
(𝑥) almost everywhere in Ω.

We denote 𝑍𝑢 by 𝐷𝑢 and call it a generalized gradient of 𝑢. See details in [Chlebicka and

Zatorska-Goldstein 2022, Remark 4.13]. If 𝑢 ∈ 𝑊 1,𝐺
loc (Ω), then clearly 𝐷𝑢 = ∇𝑢 since in this

case ∇
(︁
𝑇𝑘(𝑢)

)︁
= 𝜒{−𝑘<𝑢<𝑘}∇𝑢.
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Note that by the Riesz Representation Theorem [Lieb and Loss 2001, Theorem 6.22], there

exists a unique measure 𝜇[𝑇𝑘(𝑢)] ∈ 𝑀+(Ω) satisfyingˆ
Ω

𝑔(|∇𝑇𝑘(𝑢)|)
|∇𝑇𝑘(𝑢)| ∇𝑇𝑘(𝑢) · ∇𝜙 d𝑥 =

ˆ
Ω

𝜙 d𝜇[𝑇𝑘(𝑢)], ∀𝜙 ∈ 𝐶∞
𝑐 (Ω), 𝜙 ≥ 0.

On the other hand, by [Chlebicka and Zatorska-Goldstein 2022, Lemma 4.12], the sequence

{𝑔(∇𝑇𝑘(𝑢))} is bounded in 𝐿1(𝐵), for all open ball 𝐵 ⊂ Ω. Consequently, by Fatou’s lemma,

𝑔(|𝐷𝑢|) ∈ 𝐿1
loc(Ω), and since 𝐷𝑢 = lim𝑘 ∇

(︁
𝑇𝑘(𝑢)

)︁
(pointwise), it holds

ˆ
Ω

𝑔(|𝐷𝑢|)
|𝐷𝑢|

𝐷𝑢 · ∇𝜙 d𝑥 = lim
𝑘→∞

ˆ
Ω

𝑔(|∇𝑇𝑘(𝑢)|)
|∇𝑇𝑘(𝑢)| ∇𝑇𝑘(𝑢) · ∇𝜙 d𝑥, ∀𝜙 ∈ 𝐶∞

𝑐 (Ω).

Therefore, by the Riesz Representation Theorem, there exists a unique measure 𝜇 = 𝜇[𝑢] ∈

𝑀+(Ω) such thatˆ
Ω

𝑔(|𝐷𝑢|)
|𝐷𝑢|

𝐷𝑢 · ∇𝜙 d𝑥 =
ˆ

Ω
𝜙 d𝜇, ∀𝜙 ∈ 𝐶∞

𝑐 (Ω), 𝜙 ≥ 0.

This means

−div
(︃

𝑔(|𝐷𝑢|)
|𝐷𝑢|

𝐷𝑢

)︃
= 𝜇 in Ω.

In the literature, 𝜇[𝑢] is called the Riesz measure of 𝑢.

Definition 2.3.16. For 𝜎 ∈ 𝑀+(Ω), we say that 𝑢 is a solution in the potential-theoretic

sense to the equation

−div
(︃

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢

)︃
= 𝜎 in Ω

if 𝑢 ∈ 𝒮𝐺(Ω) and 𝜇[𝑢] = 𝜎.

Let 𝑓(𝑡) = 𝑔(𝑡𝛾), 𝑡 ≥ 0. In light of Definition 2.3.16, if 𝜎 ∈ 𝑀+(Ω), then a function 𝑢 is

a solution (in the potential-theoretic sense) to the equation

−div
(︃

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢

)︃
= 𝜎 𝑓(𝑢) in Ω (2.3.15)

whenever 𝑢 is nonnegative and it satisfies⎧⎪⎨⎪⎩
𝑢 ∈ 𝒮𝐺(Ω) ∩ 𝐿𝑓

loc(Ω, d𝜎),

d𝜇[𝑢] = 𝑓(𝑢)d𝜎.
(2.3.16)

Definition 2.3.17. Let 𝜎 ∈ 𝑀+(R𝑛). A function 𝑢 is a supersolution to (𝑃2) if 𝑢 is nonneg-

ative and satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢 ∈ 𝒮𝐺(R𝑛) ∩ 𝐿𝑓

loc(R𝑛, d𝜎),ˆ
R𝑛

𝑔(|𝐷𝑢|)
|𝐷𝑢|

𝐷𝑢 · ∇𝜙 d𝑥 ≥
ˆ
R𝑛

𝜙𝑓(𝑢) d𝜎 ∀𝜙 ∈ 𝐶∞
𝑐 (R𝑛), 𝜙 ≥ 0.

(2.3.17)

Finally, the notion of solution to (𝑃2) is defined similarly by replacing “≥” with “=” in (2.3.17).
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Definition 2.3.18. Let 𝜎 ∈ 𝑀+(R𝑛). A function 𝑢 is a solution of finite energy to (𝑃2)

whenever 𝑢 is a nonnegative solution to (𝑃2) and 𝑢 ∈ 𝒟1,𝐺(R𝑛) ∩ 𝐿𝐹 (R𝑛, d𝜎).

Next, we will state some fundamental results of the potential theory of quasilinear elliptic

equations with Orlicz growth, like (2.3.14). We start with the following theorem that will

be used to prove that a pointwise limit of a sequence of 𝐺-superharmonic functions is a

𝐺-superharmonic function [Chlebicka and Zatorska-Goldstein 2022, Theorem 2].

Theorem R (Harnack’s Principle). Let {𝑢𝑗} be a sequence of 𝐺-superharmonic functions,

with each 𝑢𝑗 finite almost everywhere in Ω. If {𝑢𝑗} is nondecreasing, then the pointwise

limit function 𝑢 = lim𝑗 𝑢𝑗 is 𝐺-superharmonic function, unless 𝑢 ≡ ∞. Moreover, if 𝑢𝑗 is

nonnegative for all 𝑗 ≥ 1, then up to a subsequence one has 𝐷𝑢 = lim𝑗 𝐷𝑢𝑗 in the set

{𝑢 < ∞}.

The following theorem describes the main technical result which will be decisive in linking

supersolution to (𝑃2) with solutions to (𝑆), provided 𝑔 is the function given by (𝐴2). Its proof

is postponed to Appendix A.

Theorem 2.3.19. Let 𝑔 be the function given by (𝐴2). Suppose that 𝑢 is a 𝐺-superharmonic

function in 𝐵(𝑥0, 2𝑅), and let 𝜇 = 𝜇[𝑢] ∈ 𝑀+(𝐵(𝑥0, 2𝑅)). Then there exist constants 𝐶1 > 0

and 𝐶2 > 0 depending only on 𝑛, 𝑝 and 𝑞 such that

𝐶1W𝑅
𝐺𝜇(𝑥0) ≤ 𝑢(𝑥0) ≤ 𝐶2

(︁
inf

𝐵(𝑥0,𝑅)
𝑢 + W𝑅

𝐺𝜇(𝑥0)
)︁
. (2.3.18)

Here W𝑅
𝐺𝜎 is the 𝑅-truncated Wolff potential of 𝜎 ∈ 𝑀+(R𝑛) defined by

W𝑅
𝐺𝜎(𝑥) =

ˆ 𝑅

0
𝑔−1

(︃
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−1

)︃
d𝑡, 𝑥 ∈ R𝑛.

For our purpose, it will need the following consequence of Theorem 2.3.19.

Corollary 2.3.20. Let 𝑔 be the function given by (𝐴2). Suppose that 𝑢 is a 𝐺-superharmonic

function in R𝑛 with infR𝑛 𝑢 = 0, and let 𝜇 = 𝜇[𝑢] ∈ 𝑀+(R𝑛). Then there exists constant

𝐾 ≥ 1 depending only on 𝑛, 𝑝 and 𝑞 such that

𝐾−1 W𝐺𝜇(𝑥) ≤ 𝑢(𝑥) ≤ 𝐾 W𝐺𝜇(𝑥) ∀𝑥 ∈ R𝑛.

Proof. Fix 𝑥 ∈ R𝑛. Then clearly 𝑢 is 𝐺-superharmonic in 𝐵(𝑥, 2𝑅) for all 𝑅 > 0. By The-

orem 2.3.19, there exist constants 𝐶1 = 𝐶1(𝑛, 𝑝, 𝑞) > 0 and 𝐶2 = 𝐶2(𝑛, 𝑝, 𝑞) > 0 such

that

𝐶1W𝑅
𝐺𝜇(𝑥) ≤ 𝑢(𝑥) ≤ 𝐶2

(︁
inf

𝐵(𝑥,𝑅)
𝑢 + W𝑅

𝐺𝜇(𝑥)
)︁

∀𝑅 > 0.
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Since infR𝑛 𝑢 = 0, lim𝑅→∞ inf𝐵(𝑥,𝑅) 𝑢 = 0. Consequently, being 𝐶1 and 𝐶2 independent of

𝑅, letting 𝑅 → ∞ in the previous bounds, we arrive at

𝐶1W𝐺𝜇(𝑥) ≤ 𝑢(𝑥) ≤ 𝐶2W𝐺𝜇(𝑥).

Setting 𝐾 = max{𝐶2, (𝐶1)−1, 1}, Corollary 2.3.20 is proved since 𝑥 was arbitrary.

The following lemma brings the relationship between 𝐺-superhamonic functions in Ω and

𝐺-supersolutions to eq. (2.3.13). To be more precise, we have that a 𝐺-supersolution to

eq. (2.3.14) is always a 𝐺-superhamonic function (almost everywhere).

Lemma 2.3.21. Suppose that 𝑢 is a 𝐺-supersolution to eq. (2.3.14) in Ω satisfying

𝑢(𝑥) = ess lim
𝑦→𝑥

𝑢(𝑦) for all 𝑥 ∈ Ω. (2.3.19)

Then 𝑢 is a 𝐺-superhamonic function in Ω

Proof. The proof is similar in spirit to [Heinonen, Kilpeläinen and Martio 2006, Theorem 7.16].

Let 𝑢 ∈ 𝑊 1,𝐺
loc (Ω) be a 𝐺-supersolution to eq. (2.3.14). By [Harjulehto and Hästö 2019,

Lemma 6.1.6], 𝑢 ∈ 𝑊 1,𝑝
loc (Ω), which implies that 𝑢 is locally essentially bounded from below

and from above, i.e. −∞ < 𝑢 < ∞ locally almost everywhere. In particular, 𝑢 cannot be

identically ∞ in any component of Ω. The lower semicontinuity of 𝑢 follows from(2.3.19).

Now, let 𝑉 be an open subset compactly contained in Ω and ℎ ∈ 𝐶(𝑉 ) be such that

ℎ ≤ 𝑢 on 𝜕𝑉 . Fix 𝜀 > 0 and choose an open set 𝑈 compactly contained in 𝑉 such that

𝑢 > ℎ − 𝜀 in 𝑉 ∖ 𝑈 . Since the function 𝑤 := min{𝑢 + 𝜀 − ℎ, 0} has compact support in

𝑉 ∖ 𝑈 , it holds 𝑤 ∈ 𝑊 1,𝐺
0 (𝑉 ) (see Lemma Z below). Consequently, the comparison principle

(Lemma P) ensures that 𝑢 ≥ ℎ − 𝜀 almost everywhere in 𝑉 . Using (2.3.19) again,

𝑢(𝑥) = ess lim
𝑦→𝑥

𝑢(𝑦) ≥ ess lim
𝑦→𝑥

ℎ(𝑦) − 𝜀 = ℎ(𝑥) − 𝜀 ∀𝑥 ∈ 𝑉.

Therefore, the lemma is proved since 𝜀 was arbitrary.

Remark 2.3.22. We show in the previous lemma that each 𝐺-supersolution 𝑢 in Ω can be

redefined in a set of Lebesgue-measure zero such that the property (2.3.19) holds. Accordingly,

the function

𝑢̃(𝑥) := ess lim
𝑦→𝑥

𝑢(𝑥), 𝑥 ∈ Ω,

is a 𝐺-superharmonic function in Ω satisfying 𝑢̃ = 𝑢 almost everywhere in Ω. From this,

it follows that each 𝐺-supersolution can be redefined in a set of measure zero such that the
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previous limit holds. Thereby, a 𝐺-supersolution will be treated as a 𝐺-superharmonic function.

In particular, when Ω = R𝑛, Corollary 2.3.20 holds for 𝐺-supersolutions in R𝑛.

The following result is the Orlicz growth version of [Hedberg and Wolff 1983, Theorem 1]

(Wolff’s inequality). This result is [Chlebicka, Giannetti and Zatorska-Goldstein 2023, Theo-

rem 3], and it gives a condition to nonnegative Radon measure 𝜇 belonging to
(︁
𝑊 1,𝐺

0 (Ω)
)︁*

in

terms of the Wolff potential W𝐺𝜇, provided Ω is bounded and supp 𝜇 ⊂ Ω. Here
(︁
𝑊 1,𝐺

0 (Ω)
)︁*

means the dual space of 𝑊 1,𝐺
0 (Ω).

Theorem S. Suppose that Ω is bounded. Let 𝜇 ∈ 𝑀+(Ω) with supp 𝜇 ⊂ Ω. Then

𝜇 ∈
(︁
𝑊 1,𝐺

0 (Ω)
)︁*

⇐⇒
ˆ

Ω
W𝑅

𝐺𝜇 d𝜇 < ∞ for some 𝑅 > 0.
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3 SYSTEM WITH WOLFF POTENTIALS AND APPLICATIONS

This chapter is devoted to providing the proof of Theorems 1.3.1, 1.3.3, 1.3.6, 1.3.8,

1.3.9 1.3.11, 1.3.12, and Corollary 1.3.13. Our strategy is based on linking Syst. (𝑆𝐼) with

Systs. (𝑆1) and (𝑆2) in view of the potential estimate Theorems D and G, respectively. We

divide our arguments into three sections in the sequel, where we prove the existence of solutions

Syst. (𝑆𝐼), Syst. (𝑆1) and Syst. (𝑆2), respectively. We also indicate some questions related to

Syst. (𝑆1).

3.1 SYSTEM WITH WOLFF POTENTIALS

Definition 3.1.1. We say that a pair of nonnegative functions (𝑣, 𝑢) ∈ 𝐿𝑞1
loc(R𝑛, d𝜎) ×

𝐿𝑞2
loc(R𝑛, d𝜎) is a supersolution to (𝑆𝐼) if satisfies (pointwise)⎧⎪⎨⎪⎩

𝑢(𝑥) ≥ W𝛼,𝑝 (𝑣𝑞1d𝜎) (𝑥), d𝜎-a.e in R𝑛,

𝑣(𝑥) ≥ W𝛼,𝑝 (𝑢𝑞2d𝜎) (𝑥), d𝜎-a.e in R𝑛.
(3.1.1)

The notion of solution or subsolution to (𝑆𝐼) is defined similarly by replacing “≥” by “=” or

“≤” in (3.1.1), respectively.

We start showing that if there exists a nontrivial supersolution (𝑢, 𝑣) to (𝑆𝐼), then 𝜎

must be absolutely continuous with respect to the (𝛼, 𝑝)-capacity cap𝛼,𝑝, see (1.3.1). In view

of Theorem D and next lemma we see that if Syst. (𝑆1) has a nontrivial 𝑝-superharmonic

supersolution, then 𝜎 is absolutely continuous with respect to the 𝑝-capacity cap𝑝, since

cap𝑝(𝐸) ≈ cap1,𝑝(𝐸) for all compact sets 𝐸 [Adams and Hedberg 1996, Proposition 2.3.13].

Lemma 3.1.2. Let 1 < 𝑝 < ∞, 0 < 𝑞𝑖 < 𝑝 − 1, 𝑖 = 1, 2, 0 < 𝛼 < 𝑛/𝑝, and 𝜎 ∈ 𝑀+(R𝑛).

Suppose there is a nontrivial supersolution (𝑢, 𝑣) to (𝑆𝐼). Then there exists a positive constant

𝐶 depending only on 𝑛, 𝑝, 𝑞1, 𝑞2 and 𝛼 such that for every compact set 𝐸 ⊂ R𝑛,

𝜎(𝐸) ≤ 𝐶
[︂
cap𝛼,𝑝(𝐸)

𝑞1
𝑝−1

(︂ˆ
𝐸

𝑣𝑞1 d𝜎
)︂ 𝑝−1

𝑝−1−𝑞1 + cap𝛼,𝑝(𝐸)
𝑞2

𝑝−1

(︂ˆ
𝐸

𝑢𝑞2 d𝜎
)︂ 𝑝−1

𝑝−1−𝑞2
]︂
. (3.1.2)

Proof. We first recall the following result [Verbitsky 1999, Theorem 1.11]: for any 𝜇 ∈

𝑀+(R𝑛) it holds ˆ
𝐸

d𝜇

(W𝛼,𝑝𝜇)𝑝−1 ≤ 𝐶0 cap𝛼,𝑝(𝐸),



51

where 𝐶0 = 𝐶0(𝑛, 𝑝, 𝛼) is a positive constant. Taking d𝜇 = 𝑣𝑞1d𝜎, we obtain
ˆ

𝐸

𝑣𝑞1𝑢−(𝑝−1) d𝜎 ≤
ˆ

𝐸

d𝜇

(W𝛼,𝑝𝜇)𝑝−1 ≤ 𝐶0 cap𝛼,𝑝(𝐸),

since 𝑢 ≥ W𝛼,𝑝𝜇. Thus,
ˆ

𝐸∩{𝑣≥𝑢}
𝑣𝑞1−𝑝+1 d𝜎 ≤

ˆ
𝐸∩{𝑣≥𝑢}

𝑣𝑞1𝑢−(𝑝−1) d𝜎

≤
ˆ

𝐸

𝑣𝑞1𝑢−(𝑝−1) d𝜎 ≤ 𝐶0 cap𝛼,𝑝(𝐸). (3.1.3)

Setting 𝛽 = 𝑞1(𝑝 − 1 − 𝑞1)/(𝑝 − 1) and using the Hölder’s inequality with exponents 𝑟 =

(𝑝 − 1)/𝑞1 and 𝑟′ = (𝑝 − 1)/(𝑝 − 1 − 𝑞1), we deduce

𝜎(𝐸 ∩ {𝑣 ≥ 𝑢}) =
ˆ

𝐸∩{𝑣≥𝑢}
𝑣−𝛽𝑣𝛽 d𝜎

≤
(︃ˆ

𝐸∩{𝑣≥𝑢}
𝑣−𝛽𝑟 d𝜎

)︃ 1
𝑟
(︃ˆ

𝐸∩{𝑣≥𝑢}
𝑣𝛽𝑟′ d𝜎

)︃ 1
𝑟′

=
(︃ˆ

𝐸∩{𝑣≥𝑢}
𝑣𝑞1−𝑝+1 d𝜎

)︃ 𝑞1
𝑝−1

(︃ˆ
𝐸∩{𝑣≥𝑢}

𝑣𝑞1 d𝜎

)︃ 𝑝−1−𝑞1
𝑝−1

,

since −𝛽𝑟 = 𝑞1 − 𝑝 + 1 and 𝛽𝑟′ = 𝑞1. By (3.1.3),

𝜎(𝐸 ∩ {𝑣 ≥ 𝑢}) ≤ 𝐶
𝑞1

𝑝−1
0

(︁
cap𝛼,𝑝(𝐸)

)︁ 𝑞1
𝑝−1

(︃ˆ
𝐸

𝑣𝑞1 d𝜎

)︃ 𝑝−1−𝑞1
𝑝−1

.

Similarly, we also obtain
ˆ

𝐸∩{𝑢≥𝑣}
𝑢𝑞2−𝑝+1 d𝜎 ≤ 𝐶0 cap𝛼,𝑝(𝐸),

and consequently

𝜎(𝐸 ∩ {𝑢 ≥ 𝑣}) ≤ 𝐶
𝑞2

𝑝−1
0

(︁
cap𝛼,𝑝(𝐸)

)︁ 𝑞2
𝑝−1

(︃ˆ
𝐸

𝑢𝑞2 d𝜎

)︃ 𝑝−1−𝑞2
𝑝−1

.

Since 𝜎(𝐸) ≤ 𝜎(𝐸∩{𝑣 ≥ 𝑢})+𝜎(𝐸∩{𝑢 ≥ 𝑣}), picking 𝐶 = max{𝐶0, 1}, (3.1.2) follows.

Notice that in Syst. (3.1.1), placing the second inequality 𝑣 ≥ W𝛼,𝑝(𝑢𝑞d𝜎) in the first

one, we obtain

𝑢 ≥ W𝛼,𝑝 ((W𝛼,𝑝(𝑢𝑞2d𝜎))𝑞1 d𝜎) d𝜎-a.e in R𝑛. (3.1.4)

Thus, if (𝑢, 𝑣) solves (3.1.1), then 𝑢 solves (3.1.4). In the next Lemma, we will use this

perception to obtain a lower bound for supersolutions of (𝑆𝐼) in terms of Wolff potentials.
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Lemma 3.1.3. If (𝑢, 𝑣) is a nontrivial supersolution to (𝑆𝐼), then there exist a positive

constant 𝑐, which depends only on 𝑛, 𝑝, 𝛼, 𝑞1 and 𝑞2, such that the inequalities below holds

𝑢(𝑥) ≥ 𝐶 (W𝛼,𝑝𝜎(𝑥))
(𝑝−1)(𝑝−1+𝑞1)

(𝑝−1)2−𝑞1𝑞2 , d𝜎-a.e in R𝑛,

𝑣(𝑥) ≥ 𝐶 (W𝛼,𝑝𝜎(𝑥))
(𝑝−1)(𝑝−1+𝑞2)

(𝑝−1)2−𝑞1𝑞2 , d𝜎-a.e in R𝑛.

Before proving Lemma 3.1.3, let us recall the following result [Cao and Verbitsky 2017,

Lemma 3.5].

Lemma T. Let 𝜔 ∈ 𝑀+(R𝑛). For every 𝑟 > 0 and for all 𝑥 ∈ R𝑛, it holds

W𝛼,𝑝 ((W𝛼,𝑝𝜔)𝑟d𝜔) (𝑥) ≥ 𝜅
𝑟

𝑝−1 (W𝛼,𝑝𝜔(𝑥))
𝑟

𝑝−1 +1 , (3.1.5)

where 𝜅 depends only on 𝑛, 𝑝 and 𝛼.

Proof of Lemma 3.1.3. We will prove the lower estimate for 𝑢, the first coordinate of (𝑢, 𝑣).

The lower estimate for 𝑣 is entirely analogous. First, we prove the following claim.

Claim 1. Let 𝜎 ∈ 𝑀+(R𝑛) and let 𝑤 be a nontrivial solution to (3.1.4). If there exist 𝑐 > 0

and 𝛿 > 0 such that

𝑤(𝑥) ≥ 𝑐 (W𝛼,𝑝𝜎(𝑥))𝛿 , ∀𝑥 ∈ R𝑛,

then

𝑤(𝑥) ≥ 𝑐
𝑞1𝑞2

(𝑝−1)2 𝜅
𝑞1(𝑝−1+2𝑞2𝛿)

(𝑝−1)2 (W𝛼,𝑝𝜎(𝑥))
𝑞1

𝑝−1( 𝑞2
𝑝−1 𝛿+1)+1 , ∀𝑥 ∈ R𝑛, (3.1.6)

where 𝜅 = 𝜅(𝑛, 𝑝, 𝛼) > 0 is the constant in Lemma T.

Indeed, if 𝑤 ≥ 𝑐 (W𝛼,𝑝𝜎)𝛿, we can estimate for all 𝑥 ∈ R𝑛,

𝑤(𝑥) = W𝛼,𝑝 ((W𝛼,𝑝(𝑢𝑞2d𝜎))𝑞1 d𝜎) (𝑥)

≥ 𝑐
𝑞1𝑞2

(𝑝−1)2 W𝛼,𝑝

[︁(︁
W𝛼,𝑝(W𝛼,𝑝𝜎)𝑞2𝛿d𝜎)

)︁𝑞1 d𝜎
]︁

(𝑥).

Using Lemma T twice with 𝜔 = 𝜎, 𝑟 = 𝑞2𝛿 and 𝑟 = (𝛿𝑞2/(𝑝 − 1) + 1)𝑞1 respectively in the

previous estimate, we deduce that

𝑤(𝑥) ≥ 𝑐
𝑞1𝑞2

(𝑝−1)2 W𝛼,𝑝

[︂(︁
𝜅

𝑞2
𝑝−1 𝛿 (W𝛼,𝑝𝜎)

𝑞2
𝑝−1 𝛿+1

)︁𝑞1
d𝜎
]︂

(𝑥)

= 𝑐
𝑞1𝑞2

(𝑝−1)2 𝜅
𝑞1𝑞2

(𝑝−1)2 𝛿W𝛼,𝑝

[︂
(W𝛼,𝑝𝜎)(

𝑞2
𝑝−1 𝛿+1)𝑞1 d𝜎

]︂
(𝑥)

≥ 𝑐
𝑞1𝑞2

(𝑝−1)2 𝜅
𝑞1𝑞2

(𝑝−1)2 𝛿
𝜅

𝑞1
𝑝−1( 𝑞2

𝑝−1 𝛿+1) (W𝛼,𝑝𝜎(𝑥))
𝑞1

𝑝−1( 𝑞2
𝑝−1 𝛿+1)+1 ,

which completes the proof of Claim 1.
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Now, fix 𝑥 ∈ R𝑛 and 𝑅 > |𝑥|. Let 𝐵 = 𝐵(0, 𝑅), 𝜎𝐵 = 𝜒𝐵𝜎 and 𝜇 ∈ 𝑀+(R𝑛) defined by

𝜇 = 𝑢𝑞2𝜎𝐵. From (3.1.4),

𝑢(𝑥) ≥ W𝛼,𝑝 ((W𝛼,𝑝(𝑢𝑞2d𝜎))𝑞1 d𝜎) (𝑥)

≥ W𝛼,𝑝 ((W𝛼,𝑝𝜇)𝑞1 d𝜎) (𝑥)

≥ W𝛼,𝑝 ((W𝛼,𝑝𝜇)𝑞1 d𝜎𝐵) (𝑥). (3.1.7)

We first obtain a lower bound for W𝛼,𝑝𝜇(𝑧),

W𝛼,𝑝𝜇(𝑧) =
ˆ ∞

0

(︃
𝜇(𝐵(𝑧, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
≥
ˆ ∞

𝑅

(︃
𝜇(𝐵(𝑧, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡

= 𝑐0

ˆ ∞

𝑅

(︃
𝜇(𝐵(𝑧, 2𝑠))

𝑠𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑠

𝑠
,

where 𝑐0 = 2−(𝑛−𝛼𝑝)/(𝑝−1). Note that if 𝑧 ∈ 𝐵 and 𝑠 ≥ 𝑅, 𝐵(0, 𝑠) ⊂ 𝐵(𝑧, 2𝑠). Thus for 𝑧 ∈ 𝐵

W𝛼,𝑝𝜇(𝑧) ≥ 2− 𝑛−𝛼𝑝
𝑝−1

ˆ ∞

𝑅

(︃
𝜇(𝐵(0, 𝑠))

𝑠𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑠

𝑠
= 2− 𝑛−𝛼𝑝

𝑝−1

ˆ ∞

𝑅

⎛⎝´𝐵(0,𝑠) 𝑢𝑞2d𝜎𝐵

𝑠𝑛−𝛼𝑝

⎞⎠ 1
𝑝−1 d𝑠

𝑠

= 2− 𝑛−𝛼𝑝
𝑝−1

ˆ ∞

𝑅

⎛⎝´𝐵(0,𝑠)∩𝐵
𝑢𝑞2d𝜎

𝑠𝑛−𝛼𝑝

⎞⎠ 1
𝑝−1 d𝑠

𝑠
= 2− 𝑛−𝛼𝑝

𝑝−1

ˆ ∞

𝑅

(︃´
𝐵

𝑢𝑞2d𝜎

𝑠𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑠

𝑠

= 2− 𝑛−𝛼𝑝
𝑝−1

(︃ˆ
𝐵

𝑢𝑞2d𝜎

)︃ 1
𝑝−1
ˆ ∞

𝑅

(︂ 1
𝑠𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑠

𝑠
=: 𝐴(𝑅) (3.1.8)

Let 𝑐1 = 𝐴(𝑅)𝑞1/(𝑝−1). By (3.1.7), it follows from (3.1.8) that

𝑢(𝑥) ≥ 𝑐1W𝛼,𝑝𝜎𝐵(𝑥). (3.1.9)

With the aid of Claim 1, where we consider 𝜎𝐵 in place of 𝜎 and 𝛿 = 1, we obtain from (3.1.9)

that

𝑢(𝑥) ≥ 𝑐2 (W𝛼,𝑝𝜎𝐵(𝑥))𝛿2 ,

where

𝑐2 = 𝑐
𝑞1𝑞2

(𝑝−1)2
1 𝜅

𝑞1(𝑝−1+2𝑞2)
(𝑝−1)2 , 𝛿2 = 𝑞1

𝑝 − 1

(︃
𝑞2

𝑝 − 1 + 1
)︃

+ 1.

In fact, setting 𝛿1 = 1 and 𝑐1 as above, iterating (3.1.7) and (3.1.9) with Claim 1, we concluded

that

𝑢(𝑥) ≥ 𝑐𝑗 (W𝛼,𝑝𝜎𝐵(𝑥))𝛿𝑗 , (3.1.10)

where 𝛿𝑗 and 𝑐𝑗, for 𝑗 = 2, 3, . . ., are given by

𝛿𝑗 = 𝑞1

𝑝 − 1

(︃
𝑞2

𝑝 − 1𝛿𝑗−1 + 1
)︃

+ 1, (3.1.11)

𝑐𝑗 = 𝑐
𝑞1𝑞2

(𝑝−1)2
𝑗−1 𝜅

𝑞1(𝑝−1+2𝑞2𝛿𝑗−1)
(𝑝−1)2 . (3.1.12)
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If 𝛾1 = lim𝑗→∞ 𝛿𝑗 and 𝐶1 = lim𝑗→∞ 𝑐𝑗, letting 𝑗 → ∞ in (3.1.11) and (3.1.12) is a straight-

forward computation to conclude that

𝛾1 = (𝑝 − 1)(𝑝 − 1 + 𝑞1)
(𝑝 − 1)2 − 𝑞1𝑞2

and 𝐶1 = 𝜅
𝑞1(𝑝−1)[(𝑝−1)2+2(𝑝−1)𝑞2+𝑞1𝑞2]

[(𝑝−1)2−𝑞1𝑞2]2 . (3.1.13)

Hence letting 𝑗 → ∞ in (3.1.10), we obtain

𝑢(𝑥) ≥ 𝐶1 (W𝛼,𝑝𝜎𝐵(𝑥))𝛾1 , (3.1.14)

where we recall that 𝐵 = 𝐵(0, 𝑅) and 𝑅 > |𝑥|. Finally, letting 𝑅 → ∞ in (3.1.14) yields

𝑢(𝑥) ≥ 𝐶1 (W𝛼,𝑝𝜎(𝑥))
(𝑝−1)(𝑝−1+𝑞1)

(𝑝−1)2−𝑞1𝑞2 , ∀𝑥 ∈ R𝑛.

The same arguments, replacing 𝑞1 by 𝑞2 in (3.1.4) and 𝑢 by 𝑣, yield the lower estimate for 𝑣,

that is,

𝑣(𝑥) ≥ 𝑐𝑗 (W𝛼,𝑝𝜎𝐵(𝑥))𝛿𝑗 , (3.1.15)

where

𝛿1 = 1,

𝑐1 = 2− 𝑛−𝛼𝑝
𝑝−1

(︃ˆ
𝐵

𝑣𝑞1d𝜎

)︃ 1
𝑝−1
ˆ ∞

𝑅

(︂ 1
𝑠𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑠

𝑠
,

𝛿𝑗 = 𝑞2

𝑝 − 1

(︃
𝑞1

𝑝 − 1𝛿𝑗−1 + 1
)︃

+ 1, (3.1.16)

𝑐𝑗 = 𝑐
𝑞1𝑞2

(𝑝−1)2
𝑗−1 𝜅

𝑞2(𝑝−1+2𝑞1𝛿𝑗−1)
(𝑝−1)2 , 𝑗 = 2, 3, . . . (3.1.17)

If 𝛾2 = lim𝑗→∞ 𝛿𝑗 and 𝐶1 = lim𝑗→∞ 𝑐𝑗, letting 𝑗 → ∞ in (3.1.16) and (3.1.17), a straight-

forward computation yields

𝛾2 = (𝑝 − 1)(𝑝 − 1 + 𝑞2)
(𝑝 − 1)2 − 𝑞1𝑞2

and 𝐶1 = 𝜅
𝑞2(𝑝−1)[(𝑝−1)2+2(𝑝−1)𝑞1+𝑞1𝑞2]

[(𝑝−1)2−𝑞1𝑞2]2 . (3.1.18)

Thus, taking the limits 𝑗 → ∞ and 𝑅 → ∞ respectively in (3.1.15),

𝑣(𝑥) ≥ 𝐶1 (W𝛼,𝑝𝜎(𝑥))
(𝑝−1)(𝑝−1+𝑞2)

(𝑝−1)2−𝑞1𝑞2 , ∀𝑥 ∈ R𝑛.

Setting 𝐶 = min{𝐶1, 𝐶1}, we complete the proof of Lemma 3.1.3.

The following Lemma is a consequence of (2.0.2).

Lemma 3.1.4. Let 𝜎 ∈ 𝑀+(R𝑛) satisfying (1.0.4) and (2.0.1). Then, for all 𝑟 > 0, it holds

W𝛼,𝑝𝜎 ∈ 𝐿𝑟
loc(R𝑛, d𝜎).
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Proof. It is enough to prove that W𝛼,𝑝𝜎 ∈ 𝐿𝑟(𝐵, d𝜎), for all balls 𝐵 ⊂ R𝑛. Fixed 𝐵 =

𝐵(𝑥0, 𝑅), setting 2𝐵 = 𝐵(𝑥0, 2𝑅) and denoting by (2𝐵)𝑐 the complement of 2𝐵 in R𝑛, we

can write
ˆ

𝐵

(W𝛼,𝑝𝜎)𝑟 d𝜎 =
ˆ

𝐵

⎛⎝ ˆ ∞

0

(︃(︁
𝜎2𝐵 + 𝜎(2𝐵)𝑐

)︁
(𝐵(𝑥, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1

d𝑡

⎞⎠𝑟

d𝜎

=
ˆ

𝐵

⎛⎝ ˆ ∞

0

(︃
𝜎2𝐵(𝐵(𝑥, 𝑡)) + 𝜎(2𝐵)𝑐(𝐵(𝑥, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1

d𝑡

⎞⎠𝑟

d𝜎.

Using the elementary inequality: given 𝑟 > 0, it holds

|𝑎1 + 𝑎2|𝑟 ≤ 2𝑟 (|𝑎1|𝑟 + |𝑎2|𝑟), ∀𝑎1, 𝑎2 ∈ R, (3.1.19)

we have
ˆ

𝐵

(W𝛼,𝑝𝜎)𝑟 d𝜎 ≤2
𝑟

𝑝−1

ˆ
𝐵

⎛⎝ˆ ∞

0

(︃
𝜎2𝐵(𝐵(𝑥, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1

d𝑡 +
ˆ ∞

0

(︃
𝜎(2𝐵)𝑐(𝐵(𝑥, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1

d𝑡

⎞⎠𝑟

d𝜎

≤𝑐1(𝐼1 + 𝐼2),

where

𝐼1 :=
ˆ

𝐵

(W𝛼,𝑝𝜎2𝐵)𝑟 d𝜎 and 𝐼2 :=
ˆ

𝐵

(︁
W𝛼,𝑝𝜎(2𝐵)𝑐

)︁𝑟
d𝜎

and 𝑐1 = 𝑐1(𝑝, 𝑟) > 0. The estimate of 𝐼1 is a consequence of (2.0.2). Indeed,

𝐼1 ≤ 𝑐1

ˆ
2𝐵

(W𝛼,𝑝𝜎2𝐵)𝑟 d𝜎 ≤ 𝑐2 𝜎(2𝐵) < ∞,

where 𝑐2 = 𝑐2(𝑛, 𝑝, 𝑟, 𝛼, 𝑐𝜎).

To estimate 𝐼2, we first observe that (2𝐵)𝑐 ∩ 𝐵(𝑦, 𝑡) = ∅ for 𝑦 ∈ 𝐵 and 0 < 𝑡 < 𝑅,

whence for 𝑦 ∈ 𝐵

W𝛼,𝑝𝜎(2𝐵)𝑐(𝑦) =
ˆ ∞

0

(︃
𝜎((2𝐵)𝑐 ∩ 𝐵(𝑦, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡

=
ˆ ∞

𝑅

(︃
𝜎((2𝐵)𝑐 ∩ 𝐵(𝑦, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
≤
ˆ ∞

𝑅

(︃
𝜎(𝐵(𝑦, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
.

Since 𝐵(𝑦, 𝑡) ⊂ 𝐵(0, 2𝑡) for 𝑦 ∈ 𝐵 and 𝑡 ≥ 𝑅, it follows

W𝛼,𝑝𝜎(2𝐵)𝑐(𝑦) ≤
ˆ ∞

𝑅

(︃
𝜎(𝐵(0, 2𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
≤ 2

𝑛−𝛼𝑝
𝑝−1

ˆ ∞

𝑅

(︃
𝜎(𝐵(0, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡
.

Applying the previous inequality,

𝐼2 = 𝑐1

ˆ
𝐵

(︁
W𝛼,𝑝𝜎(2𝐵)𝑐

)︁𝑟
d𝜎 ≤ 𝑐3

⎛⎝ˆ ∞

𝑅

(︃
𝜎(𝐵(0, 𝑡))

𝑡𝑛−𝛼𝑝

)︃ 1
𝑝−1 d𝑡

𝑡

⎞⎠𝑟

𝜎(𝐵) < ∞.

This completes the proof of Lemma 3.1.4.
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3.1.1 Proof of Theorem 1.3.1

We will proceed by the method of sub- and super-solutions. We begin recalling 𝛾1, 𝛾2

given in (3.1.13) and (3.1.18), that is

𝛾1 = (𝑝 − 1)(𝑝 − 1 + 𝑞1)
(𝑝 − 1)2 − 𝑞1𝑞2

and 𝛾2 = (𝑝 − 1)(𝑝 − 1 + 𝑞2)
(𝑝 − 1)2 − 𝑞1𝑞2

,

which can be rewritten as follows

𝛾1 = 𝑞1

𝑝 − 1𝛾2 + 1 and 𝛾2 = 𝑞2

𝑝 − 1𝛾1 + 1.

Claim 2. There exists 𝜆1 > 0 sufficiently small such that

(𝑢, 𝑣) =
(︁
𝜆1(W𝛼,𝑝𝜎)𝛾1 , 𝜆1(W𝛼,𝑝𝜎)𝛾2

)︁
is a subsolution to (𝑆𝐼).

Indeed, using Lemma T,

W𝛼,𝑝(𝑣𝑞1d𝜎) = 𝜆1
𝑞1

𝑝−1 W𝛼,𝑝((W𝛼,𝑝𝜎)𝑞1𝛾2d𝜎)

≥ 𝜆1
𝑞1

𝑝−1 𝜅
𝑞1

𝑝−1 𝛾2(W𝛼,𝑝𝜎)
𝑞1

𝑝−1 𝛾2+1

= 𝜆1
𝑞1

𝑝−1 𝜅
𝑞1

𝑝−1 𝛾2(W𝛼,𝑝𝜎)𝛾1 ,

W𝛼,𝑝(𝑢𝑞2d𝜎) = 𝜆1
𝑞2

𝑝−1 W𝛼,𝑝((W𝛼,𝑝𝜎)𝑞2𝛾1d𝜎)

≥ 𝜆1
𝑞2

𝑝−1 𝜅
𝑞2

𝑝−1 𝛾1(W𝛼,𝑝𝜎)
𝑞2

𝑝−1 𝛾1+1

= 𝜆1
𝑞2

𝑝−1 𝜅
𝑞2

𝑝−1 𝛾1(W𝛼,𝑝𝜎)𝛾2 .

Now, choosing 𝜆1 = min{𝜅(𝑞1𝛾2)/(𝑝−1−𝑞1), 𝜅(𝑞2𝛾2)/(𝑝−1−𝑞2)}, we deduce

𝑢 ≤ W𝛼,𝑝(𝑣𝑞1d𝜎),

𝑣 ≤ W𝛼,𝑝(𝑢𝑞2d𝜎),

which completes the proof of Claim 2.

Claim 3. There exists 𝜆2 > 0 sufficiently large such that

(𝑢, 𝑣) =
(︁
𝜆2 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾1) , 𝜆2 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾2)

)︁
is a supersolution to (𝑆𝐼), such that 𝑢 ≥ 𝑢 and 𝑣 ≥ 𝑣.
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Indeed, we begin by construction upper bounds to W𝛼,𝑝(𝑣𝑞1d𝜎) and W𝛼,𝑝(𝑢𝑞2d𝜎). For the

first one, we need to obtain two estimates, which will be done in two steps. First, arguing as

in the proof of Lemma 3.1.4, one can check that there exists 𝑐1 = 𝑐1(𝑝, 𝑞1, 𝜎) > 0 such that,

for every 𝑥 ∈ R𝑛,
ˆ ∞

0

(︂´
𝐵(𝑥,𝑡)(W𝛼,𝑝𝜎)𝑞1 d𝜎

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡
≤
ˆ ∞

0

(︂
𝑐1𝜎(𝐵(𝑥, 2𝑡)) + 𝑐1𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡

≤ 𝑐2

ˆ ∞

0

(︂
𝜎(𝐵(𝑥, 2𝑡))

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡
+ 𝑐2 W𝛼,𝑝𝜎(𝑥)

≤ 𝑐2 2
𝑛−𝛼𝑝
𝑝−1

ˆ ∞

0

(︂
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡
+ 𝑐2 W𝛼,𝑝𝜎(𝑥)

≤ 𝑐3W𝛼,𝑝𝜎(𝑥), (3.1.20)

where 𝑐3 = 𝑐3(𝑛, 𝑝, 𝑞1, 𝜎) > 0. The second step consists of the following estimate
ˆ

𝐵(𝑥,𝑡)
(W𝛼,𝑝𝜎)𝛾2𝑞1 d𝜎 =

ˆ
𝐵(𝑥,𝑡)

[︂ ˆ ∞

0

(︂
𝜎(𝐵(𝑦, 𝑟))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾2𝑞1

d𝜎(𝑦)

≤ 𝑐4

ˆ
𝐵(𝑥,𝑡)

[︂ˆ 𝑡

0

(︂
𝜎(𝐵(𝑦, 𝑟))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾2𝑞1

d𝜎(𝑦)

+ 𝑐4

ˆ
𝐵(𝑥,𝑡)

[︂ˆ ∞

𝑡

(︂
𝜎(𝐵(𝑦, 𝑟))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾2𝑞1

d𝜎(𝑦) =: 𝑐4 (𝐼1 + 𝐼2) ,

where 𝑐4 = 𝑐4(𝑝, 𝑞1, 𝑞2) > 0. For 𝑦 ∈ 𝐵(𝑥, 𝑡) and 𝑟 ≤ 𝑡, we have 𝐵(𝑦, 𝑟) ⊂ 𝐵(𝑥, 2𝑡), whence

𝐼1 =
ˆ

𝐵(𝑥,𝑡)

[︂ ˆ 𝑡

0

(︂
𝜎(𝐵(𝑦, 𝑟))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾2𝑞1

d𝜎(𝑦)

≤
ˆ

𝐵(𝑥,2𝑡)

[︂ˆ 𝑡

0

(︂
𝜎(𝐵(𝑦, 𝑟) ∩ 𝐵(𝑥, 2𝑡))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾2𝑞1

d𝜎(𝑦)

≤
ˆ

𝐵(𝑥,2𝑡)

[︂
W𝛼,𝑝𝜎𝐵(𝑥,2𝑡)

]︂𝛾2𝑞1

d𝜎(𝑦).

By (2.0.2), we deduce

𝐼1 ≤
ˆ

𝐵(𝑥,2𝑡)

[︁
W𝛼,𝑝𝜎𝐵(𝑥,2𝑡)

]︁𝛾2𝑞1 d𝜎(𝑦) ≤ 𝑐5 𝜎(𝐵(𝑥, 2𝑡)),

where 𝑐5 = 𝑐5(𝑛, 𝑝, 𝑞1, 𝑞2, 𝐶𝜎). Now, for 𝑟 ≥ 𝑡, we have 𝐵(𝑦, 𝑟) ⊂ 𝐵(𝑥, 2𝑟), and consequently

𝐼2 ≤
ˆ

𝐵(𝑥,𝑡)

[︂ˆ ∞

𝑡

(︂
𝜎(𝐵(𝑥, 2𝑟))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾2𝑞1

d𝜎(𝑦)

= 𝜎(𝐵(𝑥, 𝑡))
[︂ˆ ∞

𝑡

(︂
𝜎(𝐵(𝑥, 2𝑟))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾2𝑞1

≤ 𝜎(𝐵(𝑥, 𝑡))
[︂ ˆ ∞

0

(︂
𝜎(𝐵(𝑥, 2𝑟))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾2𝑞1

≤ 𝑐6 𝜎(𝐵(𝑥, 𝑡)) [W𝛼,𝑝𝜎(𝑥)]𝛾2𝑞1 ,
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where 𝑐6 = 𝑐6(𝑛, 𝑝, 𝛼, 𝑞1, 𝑞2) = 2((𝑛−𝛼𝑝)𝛾2𝑞1)/(𝑝−1). From this, we obtain
ˆ

𝐵(𝑥,𝑡)
(W𝛼,𝑝𝜎)𝛾2𝑞1 d𝜎 ≤ 𝑐7 [𝜎(𝐵(𝑥, 2𝑡)) + (W𝛼,𝑝𝜎(𝑥))𝛾2𝑞1 𝜎(𝐵(𝑥, 𝑡))] ,

where 𝑐7 = 𝑐7(𝑛, 𝑝, 𝑞1, 𝑞2, 𝛼, 𝐶𝜎). Thus, a combination of (3.1.19), (2.0.2), (3.1.20) with the

previous inequality yields

W𝛼,𝑝(𝑣𝑞1d𝜎)(𝑥) ≤ 𝜆2
𝑞1

𝑝−1 𝑐8

ˆ ∞

0

(︂´
𝐵(𝑥,𝑡)(W𝛼,𝑝𝜎)𝑞1 + (W𝛼,𝑝𝜎)𝛾2𝑞1d𝜎

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡

≤ 𝜆2
𝑞1

𝑝−1 𝑐9

[︂
W𝛼,𝑝𝜎(𝑥) +

ˆ ∞

0

(︂
𝜎(𝐵(𝑥, 2𝑡))

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡

+ (W𝛼,𝑝𝜎(𝑥))
𝑞1

𝑝−1 𝛾2

ˆ ∞

0

(︂
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡

]︂
≤ 𝜆2

𝑞1
𝑝−1 𝑐10

[︂
W𝛼,𝑝𝜎(𝑥) + (W𝛼,𝑝𝜎(𝑥))

𝑞1
𝑝−1 𝛾2+1

]︂
, (3.1.21)

where 𝑐10 = 𝑐10(𝑛, 𝑝, 𝑞1, 𝑞2, 𝛼, 𝜎) > 0.

To estimate W𝛼,𝑝(𝑢𝑞2d𝜎), we use a similar argument. By replacing 𝑞1 by 𝑞2 and 𝛾2 by 𝛾1,

we deduce ˆ ∞

0

(︂´
𝐵(𝑥,𝑡)(W𝛼,𝑝𝜎)𝑞2 d𝜎

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡
≤ 𝑐1W𝛼,𝑝𝜎(𝑥),

ˆ
𝐵(𝑥,𝑡)

(W𝛼,𝑝𝜎)𝛾1𝑞2 d𝜎 ≤ 𝑐2 (𝐼1 + 𝐼2),
(3.1.22)

where

𝐼1 =
ˆ

𝐵(𝑥,𝑡)

[︂ˆ 𝑡

0

(︂
𝜎(𝐵(𝑦, 𝑟))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾1𝑞2

d𝜎(𝑦)

=
ˆ

𝐵(𝑥,𝑡)

[︂ ˆ 𝑡

0

(︂
𝜎(𝐵(𝑦, 𝑟) ∩ 𝐵(𝑥, 2𝑡))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾1𝑞2

d𝜎(𝑦)

≤
ˆ

𝐵(𝑥,2𝑡)

[︂
W𝛼,𝑝𝜎𝐵(𝑥,2𝑡)

]︂𝛾1𝑞2

d𝜎(𝑦) ≤ 𝑐3 𝜎(𝐵(𝑥, 2𝑡))

and

𝐼2 =
ˆ

𝐵(𝑥,𝑡)

[︂ ˆ ∞

𝑡

(︂
𝜎(𝐵(𝑦, 𝑟))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾1𝑞2

d𝜎(𝑦)

≤
ˆ

𝐵(𝑥,𝑡)

[︂ˆ ∞

𝑡

(︂
𝜎(𝐵(𝑥, 2𝑟))

𝑟𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑟

𝑟

]︂𝛾1𝑞2

d𝜎(𝑦)

≤ 𝑐4 𝜎(𝐵(𝑥, 𝑡)) [W𝛼,𝑝𝜎(𝑥)]𝛾1𝑞2 ,

which 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are constants depending only on 𝑛, 𝑝, 𝑞1, 𝑞2 and 𝜎. The previous

estimates in combination with (3.1.22) yield
ˆ

𝐵(𝑥,𝑡)
(W𝛼,𝑝𝜎)𝛾1𝑞2 d𝜎 ≤ 𝑐5 [𝜎(𝐵(𝑥, 2𝑡)) + (W𝛼,𝑝𝜎(𝑥))𝛾1𝑞2 𝜎(𝐵(𝑥, 𝑡))] ,
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where 𝑐5 = 𝑐5(𝑛, 𝑝, 𝑞1, 𝑞2, 𝛼, 𝜎). Hence, using again (3.1.19), (2.0.2) and the previous inequal-

ity, we deduce

W𝛼,𝑝(𝑢𝑞2d𝜎)(𝑥) ≤ 𝜆2
𝑞2

𝑝−1 𝑐6

[︂
W𝛼,𝑝𝜎(𝑥) + (W𝛼,𝑝𝜎(𝑥))

𝑞1
𝑝−1 𝛾2+1

]︂
, (3.1.23)

where 𝑐6 = 𝑐6(𝑛, 𝑝, 𝑞1, 𝑞2, 𝛼, 𝜎). We recall that (𝑞1𝛾2)/(𝑝−1)+1 = 𝛾1 and (𝑞2𝛾1)/(𝑝−1)+1 =

𝛾2. Therefore, picking 𝜆2 such that

𝜆2 = max{𝑐10
𝑝−1

𝑝−1−𝑞1 , (𝑐6)
𝑝−1

𝑝−1−𝑞2 , 𝜆1},

we conclude from (3.1.21) and (3.1.23) that

𝑢 ≥ W𝛼,𝑝(𝑣𝑞1d𝜎), 𝑢 ≥ 𝑢,

𝑣 ≥ W𝛼,𝑝(𝑢𝑞2d𝜎), 𝑣 ≥ 𝑣,

which completes the proof of Claim 3.

Now, in order to obtain solutions to (𝑆𝐼), we use a standard iteration argument and

Monotone Convergence Theorem. For convenience, we repeat the main idea. Let 𝑢0 = 𝑢 =

𝜆1(W𝛼,𝑝𝜎)𝛾1 and 𝑣0 = 𝑣 = 𝜆1(W𝛼,𝑝𝜎)𝛾2 , where 𝜆1 is the constant obtained in Claim 2.

Clearly, 𝑢0 ≤ 𝑢 and 𝑣0 ≤ 𝑣. We set 𝑢1 = W𝛼,𝑝(𝑣𝑞1
0 d𝜎) and 𝑣1 = W𝛼,𝑝(𝑢𝑞2

0 d𝜎). By Claim 2,

we have 𝑢1 ≥ 𝑢0 and 𝑣1 ≥ 𝑣0. Let us construct the sequence of pair of functions (𝑢𝑗, 𝑣𝑗) in

R𝑛, with (𝑢𝑗, 𝑣𝑗) ∈ 𝐿𝑞2
loc(R𝑛, d𝜎) × 𝐿𝑞1

loc(R𝑛, d𝜎) such that⎧⎪⎨⎪⎩
𝑢𝑗 = W𝛼,𝑝(𝑣𝑞1

𝑗−1d𝜎) in R𝑛,

𝑣𝑗 = W𝛼,𝑝(𝑢𝑞1
𝑗−1d𝜎) in R𝑛.

(3.1.24)

Indeed, by induction, we can show that the sequences {𝑢𝑗} and {𝑣𝑗} are nondecreasing, with

𝑢 ≤ 𝑢𝑗 ≤ 𝑢 and 𝑣 ≤ 𝑣𝑗 ≤ 𝑣 (for 𝑗 = 0, 1, . . .). Due to Lemma 3.1.4, both (𝑢, 𝑣) and (𝑢, 𝑣)

belong to 𝐿𝑞2
loc(R𝑛, d𝜎) × 𝐿𝑞1

loc(R𝑛, d𝜎), whence (𝑢𝑗, 𝑣𝑗) ∈ 𝐿𝑞2
loc(R𝑛, d𝜎) × 𝐿𝑞1

loc(R𝑛, d𝜎) for all

𝑗 = 1, 2, 3, . . ..

Using the Monotone Convergence Theorem and passing to the limit as 𝑗 → ∞ in (3.1.24),

we see that there exist nonnegative functions 𝑢 = lim 𝑢𝑗 and 𝑣 = lim 𝑣𝑗 such that (𝑢, 𝑣) ∈

𝐿𝑞2
loc(R𝑛, d𝜎)×𝐿𝑞1

loc(R𝑛, d𝜎), which the pair (𝑢, 𝑣) satisfies (𝑆𝐼) with 𝑢 ≤ 𝑢 ≤ 𝑢 and 𝑣 ≤ 𝑣 ≤

𝑣. Thus for an appropriate constant 𝑐 = 𝑐(𝑛, 𝑝, 𝛼, 𝑞1, 𝑞2, 𝐶𝜎) we obtain that 𝑢 and 𝑣 satisfy

(1.3.4). This completes the proof of Theorem 1.3.1.
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3.1.2 Proof of Theorem 1.3.3

As in the proof of the previous theorem, we will proceed by the method of sub- and super-

solutions. Let 𝑢 = 𝜆1(W𝛼,𝑝𝜎)𝛾1 and 𝑣 = 𝜆1(W𝛼,𝑝𝜎)𝛾2 , where 𝛾1 and 𝛾2 are given in (3.1.13)

and (3.1.18), respectively. By Claim 2, we already know that (𝑢, 𝑣) is a subsolution to (𝑆𝐼)

if 𝜆1 > 0 is picked to be sufficiently small. It remains now exhibits a supersolution under

assumption (1.3.5).

Claim 4. There exists 𝜆2 > 0 sufficiently large such that

(𝑢, 𝑣) =
(︁
𝜆2 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾1) , 𝜆2 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾2)

)︁
is a supersolution to (𝑆𝐼), which 𝑢 ≥ 𝑢 and 𝑣 ≥ 𝑣.

Indeed, using (3.1.19) and assumption (1.3.5), we have the following estimate for W𝛼,𝑝(𝑣𝑞1d𝜎):

W𝛼,𝑝(𝑣𝑞1d𝜎) ≤ 𝑐1𝜆2
𝑞1

𝑝−1 W𝛼,𝑝 ((W𝛼,𝑝𝜎)𝑞1 d𝜎) + 𝑐1𝜆2
𝑞1

𝑝−1 W𝛼,𝑝 ((W𝛼,𝑝𝜎)𝛾2𝑞1 d𝜎)

≤ 𝑐1𝜆2
𝑞1

𝑝−1 W𝛼,𝑝 ((W𝛼,𝑝𝜎)𝑞1 d𝜎) + 𝑐1𝜆2
𝑞1

𝑝−1 𝜆 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾1) , (3.1.25)

where 𝑐1 = 𝑐1(𝑝, 𝑞1) > 0. To establish a convenient upper bound to W𝛼,𝑝(𝑣𝑞1d𝜎), we need to

estimate the first term in the previous inequality. By Hölder’s inequality and Young’s inequality

with the exponent 𝛾2 and its conjugate

𝛾′
2 = (𝑝 − 1)(𝑝 − 1 + 𝑞2)

𝑞2(𝑝 − 1 + 𝑞1)
,

we obtain
ˆ

𝐵(𝑥,𝑡)
(W𝛼,𝑝𝜎)𝑞1 d𝜎 ≤

(︂ˆ
𝐵(𝑥,𝑡)

(W𝛼,𝑝𝜎)𝛾2𝑞1 d𝜎
)︂ 1

𝛾2 [𝜎(𝐵(𝑥, 𝑡))]
1

𝛾′
2

≤ 𝑐2

(︂ˆ
𝐵(𝑥,𝑡)

(W𝛼,𝑝𝜎)𝛾2𝑞1 d𝜎 + 𝜎(𝐵(𝑥, 𝑡))
)︂

, (3.1.26)

where 𝑐2 = 𝑐2(𝑝, 𝑞1, 𝑞2) > 0.

From (1.0.3) we can write for 𝑥 ∈ R𝑛

W𝛼,𝑝

(︁(︁
W𝛼,𝑝𝜎

)︁𝑞1d𝜎
)︁
(𝑥) =

ˆ ∞

0

(︂´
𝐵(𝑥,𝑡)(W𝛼,𝑝𝜎)𝑞1 d𝜎

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡
,

which together with (3.1.19) and (3.1.26) implies

W𝛼,𝑝

(︁(︁
W𝛼,𝑝𝜎

)︁𝑞1d𝜎
)︁
(𝑥) ≤

𝑐3

[︂ ˆ ∞

0

(︂´
𝐵(𝑥,𝑡)(W𝛼,𝑝𝜎)𝛾2𝑞1 d𝜎

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡
+
ˆ ∞

0

(︂
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−𝛼𝑝

)︂ 1
𝑝−1 d𝑡

𝑡

]︂
.
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Using condition (1.3.5) in the previous inequality, where 𝑐3 = 𝑐3(𝑝, 𝑞1, 𝑞2) > 0, we deduce

W𝛼,𝑝

(︁(︁
W𝛼,𝑝𝜎

)︁𝑞1d𝜎
)︁
(𝑥) ≤ 𝑐3 (W𝛼,𝑝 ((W𝛼,𝑝𝜎)𝛾2𝑞1 d𝜎) (𝑥) + W𝛼,𝑝𝜎(𝑥))

≤ 𝑐3W𝛼,𝑝𝜎(𝑥) + 𝑐3𝜆 (W𝛼,𝑝𝜎(𝑥) + (W𝛼,𝑝𝜎(𝑥))𝛾1) .

The last estimate in combination with (3.1.25) yield

W𝛼,𝑝(𝑣𝑞1d𝜎) ≤

𝜆2
𝑞1

𝑝−1 𝑐1 [𝑐3W𝛼,𝑝𝜎 + 𝑐3𝜆 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾1)] + 𝑐1𝜆2
𝑞1

𝑝−1 𝜆 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾1) .

Thus, choosing 𝑐4 = 𝑐1(𝑐3 + 𝑐3𝜆 + 𝜆), we concluded that

W𝛼,𝑝(𝑣𝑞1d𝜎) ≤ 𝜆2
𝑞1

𝑝−1 𝑐4 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾1) . (3.1.27)

Now, by a similar argument, we establish an upper bound to W𝛼,𝑝(𝑢𝑞2d𝜎). Again, we can

replace 𝑞1 by 𝑞2 and 𝛾2 by 𝛾1, to obtain from (3.1.19) and (1.3.5) that

W𝛼,𝑝(𝑢𝑞2d𝜎) ≤ 𝑐1𝜆2
𝑞2

𝑝−1 W𝛼,𝑝 ((W𝛼,𝑝𝜎)𝑞2 d𝜎) + 𝑐1𝜆2
𝑞2

𝑝−1 W𝛼,𝑝 ((W𝛼,𝑝𝜎)𝛾1𝑞2 d𝜎)

≤ 𝑐1𝜆2
𝑞2

𝑝−1 W𝛼,𝑝 ((W𝛼,𝑝𝜎)𝑞2 d𝜎) + 𝑐1𝜆2
𝑞2

𝑝−1 𝜆 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾2) , (3.1.28)

where 𝑐1 = 𝑐1(𝑝, 𝑞2) > 0. We also have

W𝛼,𝑝

(︂(︂
W𝛼,𝑝𝜎

)︂𝑞2

d𝜎
)︂

≤ 𝑐2W𝛼,𝑝𝜎 + 𝑐2𝜆 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾2) , (3.1.29)

for some constant 𝑐2 = 𝑐2(𝑝, 𝑞1, 𝑞2) > 0. From (1.3.5), (3.1.28) and (3.1.29), it follows

W𝛼,𝑝(𝑢𝑞2d𝜎) ≤

𝜆2
𝑞2

𝑝−1 𝑐1 [𝑐2W𝛼,𝑝𝜎 + 𝑐2𝜆 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾2)] + 𝑐1𝜆2
𝑞2

𝑝−1 𝜆 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾2) .

Thus, choosing 𝑐3 = 𝑐1(𝑐2 + 𝑐2𝜆 + 𝜆), we concluded that

W𝛼,𝑝(𝑢𝑞2d𝜎) ≤ 𝜆2
𝑞2

𝑝−1 𝑐3 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾2) . (3.1.30)

Therefore, picking 𝜆2 such that

𝜆2 = max{𝑐4
𝑝−1

𝑝−1−𝑞1 , (𝑐3)
𝑝−1

𝑝−1−𝑞2 , 𝜆1},

we finally see from (3.1.27) and (3.1.30) that

𝑢 ≥ W𝛼,𝑝(𝑣𝑞1d𝜎), 𝑢 ≥ 𝑢,

𝑣 ≥ W𝛼,𝑝(𝑢𝑞2d𝜎), 𝑣 ≥ 𝑣,
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which completes the proof of Claim 4.

Using iterations as in (3.1.24), and the Monotone Convergence Theorem, we ensure that

there exists a solution (𝑢, 𝑣) to (𝑆𝐼) which satisfies (1.3.4), with 𝑐 = 𝑐(𝑛, 𝑝, 𝑞1, 𝑞2, 𝛼, 𝜆).

Conversely, suppose that there exists a nontrivial solution (𝑢, 𝑣) to (𝑆𝐼) such that (1.3.4)

holds. By the lower bounds in (1.3.4), we have

𝑢 = W𝛼,𝑝(𝑣𝑞1d𝜎) ≥ (𝑐−1)
𝑞1

𝑝−1 W𝛼,𝑝

(︂
(W𝛼,𝑝𝜎)𝛾2𝑞1d𝜎

)︂
,

𝑣 = W𝛼,𝑝(𝑢𝑞2d𝜎) ≥ (𝑐−1)
𝑞2

𝑝−1 W𝛼,𝑝

(︂
(W𝛼,𝑝𝜎)𝛾1𝑞2d𝜎

)︂
,

where 𝑐 > 0 is a constant. The previous estimates, in combination with the upper bounds in

(1.3.4), yield

W𝛼,𝑝 ((W𝛼,𝑝𝜎)𝛾2𝑞1d𝜎) ≤ 𝜆 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾1) < ∞ - a.e.,

W𝛼,𝑝 ((W𝛼,𝑝𝜎)𝛾1𝑞2d𝜎) ≤ 𝜆 (W𝛼,𝑝𝜎 + (W𝛼,𝑝𝜎)𝛾2) < ∞ - a.e.,

where 𝜆 can be defined as 𝜆 = max{𝑐(𝑝−1+𝑞1)/(𝑝−1), 𝑐(𝑝−1+𝑞2)/(𝑝−1)}. This completes the proof

of Theorem 1.3.3.

3.2 QUASILINEAR LANE-EMDEN TYPE SYSTEMS WITH SUB-NATURAL GROWTH

TERMS

3.2.1 Proof of Theorem 1.3.6

First, we assume that 1 < 𝑝 < 𝑛. The argument is based on the method of successive

approximations. Suppose (1.1.4) and (1.3.11). Let 𝐾 be the constant given in Theorem D. By

Theorem 1.3.1, with 𝛼 = 1 and 𝐾𝑝−1𝜎 in place of 𝜎, there exists a nontrivial solution (𝑢̃, 𝑣)

to the system ⎧⎪⎨⎪⎩
𝑢̃ = 𝐾 W𝑝(𝑣𝑞1d𝜎) in R𝑛,

𝑣 = 𝐾 W𝑝(𝑢̃𝑞2d𝜎) in R𝑛.
(3.2.1)

Since (𝑢̃, 𝑣) satisfies

𝑐−1
(︂

𝐾 W𝑝𝜎
)︂𝛾1

≤ 𝑢̃ ≤ 𝑐
(︂

𝐾 W𝑝𝜎 +
(︂

𝐾 W𝑝𝜎
)︂𝛾1)︂

,

𝑐−1
(︂

𝐾 W𝑝𝜎
)︂𝛾2

≤ 𝑣 ≤ 𝑐
(︂

𝐾 W𝑝𝜎 +
(︂

𝐾 W𝑝𝜎
)︂𝛾2)︂

,
(3.2.2)
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using (2.1.4), it follows lim|𝑥|→∞ 𝑢̃(𝑥) = lim|𝑥|→∞ 𝑣(𝑥) = 0; here 𝛾1 and 𝛾2 are as in (3.1.13)

and (3.1.18), respectively. From Lemma 3.1.4, 𝑢̃ and 𝑣 belong to 𝐿𝑠
loc(R𝑛, d𝜎) for all 𝑠 > 0,

hence by Hölder’s inequality
ˆ

𝐵

W𝑝(𝑣𝑞1d𝜎)𝑣𝑞1 d𝜎 = 𝐾−1
ˆ

𝐵

𝑢̃ 𝑣𝑞1 d𝜎

≤ 𝐾−1‖𝑢̃‖𝐿𝑠(𝐵, d𝜎)‖𝑣𝑞1‖𝐿𝑠′ (𝐵, d𝜎) < ∞,

for all ball 𝐵 ⊂ R𝑛 and, similarly,
ˆ

𝐵

W𝑝(𝑢̃𝑞2d𝜎)𝑢̃𝑞2 d𝜎 = 𝐾−1‖𝑢̃𝑞2‖𝐿𝑠(𝐵, d𝜎)‖𝑣‖𝐿𝑠′ (𝐵, d𝜎) < ∞.

Using (2.1.2), 𝑢̃𝑞2d𝜎, 𝑣𝑞1d𝜎 ∈ 𝑊 −1,𝑝′

loc (R𝑛). By Lemma 3.1.3, with 𝐾𝑝−1𝜎 in place of 𝜎 again,

there exist a constant 𝑐0 = 𝑐0(𝑛, 𝑝, 𝛼, 𝑞1, 𝑞2) > 0 such that

𝑢̃ ≥ 𝑐0 𝐾𝛾1(W𝑝𝜎)𝛾1 ,

𝑣 ≥ 𝑐0 𝐾𝛾2(W𝑝𝜎)𝛾2 .

Set 𝑢0 = 𝜀 (W𝑝𝜎)𝛾1 and 𝑣0 = 𝜀 (W𝑝𝜎)𝛾2 , where 𝜀 > 0 is a small constant. Using that

𝛾2
𝑞1

𝑝 − 1 + 1 = 𝛾1 and 𝛾1
𝑞2

𝑝 − 1 + 1 = 𝛾2.

and taking 𝜀 sufficiently small, we obtain 𝑢0 ≤ W𝑝(𝑣𝑞1
0 d𝜎) and 𝑣0 ≤ W𝑝(𝑢𝑞2

0 d𝜎). Moreover,

choosing 𝜀 < min{𝑐 𝐾−𝛾1 , 𝑐 𝐾−𝛾2}, we also have 𝑢0 ≤ 𝑢̃ and 𝑣0 ≤ 𝑣, respectively. Setting

𝐵𝑖 = 𝐵(0, 2𝑖), where 𝑖 = 1, 2, . . ., we deduce that 𝑣𝑞1
0 d𝜎, 𝑢𝑞2

0 d𝜎 ∈ 𝑊 −1,𝑝′(𝐵𝑖), since 𝑣0 ≤ 𝑣,

𝑢0 ≤ 𝑢̃ and 𝑢̃𝑞2d𝜎, 𝑣𝑞1d𝜎 ∈ 𝑊 −1,𝑝′

loc (R𝑛). Thus, applying [Heinonen, Kilpeläinen and Martio

2006, Theorem 21.6], there exist unique 𝑝-superharmonic solutions 𝑢𝑖
1, 𝑣𝑖

1 ∈ 𝑊 1,𝑝
0 (𝐵𝑖) to

equations

−Δ𝑝𝑢𝑖
1 = 𝜎 𝑣𝑞1

0 , −Δ𝑝𝑣𝑖
1 = 𝜎 𝑢𝑞2

0 in 𝐵𝑖.

Using a comparison principle, [Cao and Verbitsky 2017, Lemma 5.1], the sequences {𝑢𝑖
1}𝑖 and

{𝑣𝑖
1}𝑖 are increasing. We set 𝑢1 = lim𝑖→∞ 𝑢𝑖

1 and 𝑣1 = lim𝑖→∞ 𝑣𝑖
1. A combination of Lemma B,

of weak continuity of the 𝑝-Laplace operator (Theorem C) and of Monotone Convergence

Theorem, ensure that 𝑢1 and 𝑣1 are 𝑝-superharmonic solutions to the equations

−Δ𝑝𝑢1 = 𝜎 𝑣𝑞1
0 , −Δ𝑝𝑣1 = 𝜎 𝑢𝑞2

0 in R𝑛.

Applying Theorem D,

𝑢𝑖
1 ≤ 𝐾 W𝑝(𝑣𝑞1

0 d𝜎) ≤ 𝐾 W𝑝(𝑣𝑞1d𝜎) = 𝑢̃,

𝑣𝑖
1 ≤ 𝐾 W𝑝(𝑢𝑞2

0 d𝜎) ≤ 𝐾 W𝑝(𝑢̃𝑞2d𝜎) = 𝑣,
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which implies 𝑢1 ≤ 𝑢̃, 𝑣1 ≤ 𝑣, and hence by (2.1.4),

lim
|𝑥|→∞

𝑢1(𝑥) = lim
|𝑥|→∞

𝑣1(𝑥) = 0.

Using the lower bound in Theorem D, and Lemma T, we obtain

𝑢1 ≥ 𝐾−1W𝑝(𝑣𝑞1
0 d𝜎) = 𝐾−1𝜀

𝑞1
𝑝−1 W𝑝 ((W𝑝𝜎)𝛾2𝑞1d𝜎)

≥ 𝐾−1𝜀
𝑞1

𝑝−1 𝜅
𝑞1

𝑝−1 𝛾2(W𝑝𝜎)
𝑞1

𝑝−1 𝛾2+1 = 𝐾−1𝜀
𝑞1

𝑝−1 𝜅
𝑞1

𝑝−1 𝛾2(W𝑝𝜎)𝛾1 ,

𝑣1 ≥ 𝐾−1W𝑝(𝑢𝑞2
0 d𝜎) = 𝐾−1𝜀

𝑞2
𝑝−1 W𝑝 ((W𝑝𝜎)𝛾1𝑞2d𝜎)

≥ 𝐾−1𝜀
𝑞2

𝑝−1 𝜅
𝑞2

𝑝−1 𝛾1(W𝑝𝜎)
𝑞2

𝑝−1 𝛾1+1 = 𝐾−1𝜀
𝑞2

𝑝−1 𝜅
𝑞2

𝑝−1 𝛾1(W𝑝𝜎)𝛾2 ,

where 𝐾 is the constant given in Theorem D and 𝜅 is the constant given in Lemma T. Hence,

𝑐1(W𝑝𝜎)𝛾1 ≤ 𝑢1 ≤ 𝑢̃ and 𝑐1(W𝑝𝜎)𝛾2 ≤ 𝑣1 ≤ 𝑣, where

𝑐1 = 𝐾−1𝜀
𝑞1

𝑝−1 𝜅
𝑞1

𝑝−1 𝛾2 , 𝑐1 = 𝐾−1𝜀
𝑞2

𝑝−1 𝜅
𝑞2

𝑝−1 𝛾1 .

We notice that 𝑣𝑞1
0 d𝜎, 𝑢𝑞2

0 d𝜎 ∈ 𝑊 −1,𝑝′

loc (R𝑛), since 𝑣0 ≤ 𝑣, 𝑢0 ≤ 𝑢̃ and 𝑣𝑞1d𝜎, 𝑢̃𝑞2d𝜎 ∈

𝑊 −1,𝑝′

loc (R𝑛). Thus, from Lemma E, 𝑢1, 𝑣1 ∈ 𝑊 1,𝑝
loc (R𝑛).

By induction argument, as above, we construct a sequence {(𝑢𝑗, 𝑣𝑗)} of 𝑝-superharmonic

functions in R𝑛 with 𝑢𝑗 ∈ 𝐿𝑞2
loc(R𝑛, d𝜎) and 𝑣𝑗 ∈ 𝐿𝑞1

loc(R𝑛, d𝜎) for 𝑗 = 2, 3, . . . , satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Δ𝑝𝑢𝑗 = 𝜎 𝑣𝑞1
𝑗−1 in R𝑛,

− Δ𝑝𝑣𝑗 = 𝜎 𝑢𝑞2
𝑗−1 in R𝑛,

𝑐𝑗(W𝑝𝜎)𝛾1 ≤ 𝑢𝑗 ≤ 𝑢̃, 𝑐𝑗(W𝑝𝜎)𝛾2 ≤ 𝑣𝑗 ≤ 𝑣 in R𝑛,

0 ≤ 𝑢𝑗−1 ≤ 𝑢𝑗, 0 ≤ 𝑣𝑗−1 ≤ 𝑣𝑗, 𝑢𝑗, 𝑣𝑗 ∈ 𝑊 1,𝑝
loc (R𝑛),

lim
|𝑥|→∞

𝑢𝑗(𝑥) = lim
|𝑥|→∞

𝑣𝑗(𝑥) = 0,

(3.2.3)

where

𝑐1 = 𝐾−1𝜀
𝑞1

𝑝−1 𝜅
𝑞1

𝑝−1 𝛾2 , 𝑐1 = 𝐾−1𝜀
𝑞2

𝑝−1 𝜅
𝑞2

𝑝−1 𝛾1 ,

𝑐𝑗 = 𝐾−1(𝑐𝑗−1𝜅
𝛾2)

𝑞1
𝑝−1 , 𝑐𝑗 = 𝐾−1(𝑐𝑗−1𝜅

𝛾1)
𝑞2

𝑝−1 , for 𝑗 = 2, 3, . . . .
(3.2.4)

Indeed, suppose that (𝑢1, 𝑣1), . . . , (𝑢𝑗−1, 𝑣𝑗−1) have been constructed. Since 𝑢𝑗−1 ≤ 𝑢̃, 𝑣𝑗−1 ≤

𝑣 and 𝑣𝑞1d𝜎, 𝑢̃𝑞2d𝜎 ∈ 𝑀+(R𝑛) ∩ 𝑊 −1,𝑝′

loc (R𝑛), it follows 𝑣𝑞1
𝑗−1d𝜎, 𝑢𝑞2

𝑗−1d𝜎 ∈ 𝑀+(R𝑛) ∩

𝑊 −1,𝑝′

loc (R𝑛). Clearly, 𝑣𝑞1
𝑗−1d𝜎, 𝑢𝑞2

𝑗−1d𝜎 ∈ 𝑊 −1,𝑝′(𝐵𝑖), and there exists unique 𝑝-superharmonic

solutions 𝑢𝑙
𝑗 and 𝑣𝑙

𝑗 to the equations⎧⎪⎨⎪⎩
− Δ𝑝𝑢𝑖

𝑗 = 𝜎 𝑣𝑞1
𝑗−1 in 𝐵𝑖, 𝑢𝑖

𝑗 ∈ 𝑊 1,𝑝
0 (𝐵𝑖),

− Δ𝑝𝑣𝑖
𝑗 = 𝜎 𝑢𝑞2

𝑗−1 in 𝐵𝑖, 𝑣𝑖
𝑗 ∈ 𝑊 1,𝑝

0 (𝐵𝑖).
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Arguing by induction, let 𝑢𝑖
𝑗−1 and 𝑣𝑖

𝑗−1 be the unique solutions of the equations⎧⎪⎨⎪⎩
− Δ𝑝𝑢𝑖

𝑗−1 = 𝜎 𝑣𝑞1
𝑗−2 in 𝐵𝑖, 𝑢𝑖

𝑗−1 ∈ 𝑊 1,𝑝
0 (𝐵𝑖),

− Δ𝑝𝑣𝑖
𝑗−1 = 𝜎 𝑢𝑞2

𝑗−2 in 𝐵𝑖, 𝑣𝑖
𝑗−1 ∈ 𝑊 1,𝑝

0 (𝐵𝑖).

Since 𝑣𝑗−2 ≤ 𝑣𝑗−1 and 𝑢𝑗−2 ≤ 𝑢𝑗−1, it follows from the comparison principle, [Cao and

Verbitsky 2017, Lemma 5.1], that 𝑢𝑖
𝑗−1 ≤ 𝑢𝑖

𝑗 and 𝑣𝑖
𝑗−1 ≤ 𝑣𝑖

𝑗 for all 𝑖 ≥ 1. By Theorem D, we

have

0 ≤ 𝑢𝑖
𝑗 ≤ 𝐾 W𝑝(𝑣𝑞1

𝑗−1d𝜎) ≤ 𝐾 W𝑝(𝑣𝑞1d𝜎) = 𝑢̃ and

0 ≤ 𝑣𝑖
𝑗 ≤ 𝐾 W𝑝(𝑢𝑞1

𝑗−1d𝜎) ≤ 𝐾 W𝑝(𝑢̃𝑞1d𝜎) = 𝑣,

since 𝑣𝑗−1 ≤ 𝑣 and 𝑢𝑗−1 ≤ 𝑢̃. Using again the comparison principle, we deduce that the

sequences {𝑢𝑖
𝑗}𝑖 and {𝑣𝑖

𝑗}𝑖 are increasing. Thus, letting 𝑢𝑗 = lim𝑖→∞ 𝑢𝑖
𝑗 and 𝑣𝑗 = lim𝑖→∞ 𝑣𝑖

𝑗,

we obtain that 𝑢𝑗 and 𝑣𝑗 are 𝑝-superharmonic solutions to the equations⎧⎪⎨⎪⎩
− Δ𝑝𝑢𝑗 = 𝜎 𝑣𝑞1

𝑗−1 in R𝑛,

− Δ𝑝𝑣𝑗 = 𝜎 𝑢𝑞2
𝑗−1 in R𝑛,

since, as before, we apply Theorem C and the Monotone Convergence Theorem. We also have

𝑢𝑗−1 ≤ 𝑢𝑗 and 𝑣𝑗−1 ≤ 𝑣𝑗, since 𝑢𝑖
𝑗−1 ≤ 𝑢𝑖

𝑗 and 𝑣𝑖
𝑗−1 ≤ 𝑣𝑖

𝑗 for all 𝑖 ≥ 1. Furthermore, 𝑢𝑗 ≤ 𝑢̃

and 𝑣𝑗 ≤ 𝑣, since 𝑢𝑖
𝑗 ≤ 𝑢̃ and 𝑣𝑖

𝑗 ≤ 𝑣 for all 𝑖 ≥ 1. By (2.1.4), we obtain

lim
|𝑥|→∞

𝑢𝑗(𝑥) = lim
|𝑥|→∞

𝑣𝑗(𝑥) = 0. (3.2.5)

Since 𝑣𝑞1
𝑗−1d𝜎 and 𝑢𝑞2

𝑗−1d𝜎 ∈ 𝑊 −1,𝑝′

loc (R𝑛), it follows from Lemma E and (3.2.5) that 𝑢𝑗,

𝑣𝑗 ∈ 𝑊 1,𝑝
loc (R𝑛). Also, applying Theorem D and Lemma T, and arguing by induction, we

concluded that

𝑢𝑗 ≥ 𝐾−1W𝑝(𝑣𝑞1
𝑗−1d𝜎) = 𝐾−1W𝑝

(︁
𝑐𝑞1

𝑗−1(W𝑝𝜎)𝛾2𝑞1d𝜎
)︁

≥ 𝐾−1𝑐
𝑞1

𝑝−1
𝑗−1 𝜅

𝑞1
𝑝−1 𝛾2(W𝑝𝜎)

𝑞1
𝑝−1 𝛾2+1 = 𝑐𝑗(W𝑝𝜎)𝛾1

and, similarly,

𝑣𝑗 ≥ 𝐾−1W𝑝(𝑢𝑞2
𝑗−1d𝜎) = 𝐾−1W𝑝

(︁
𝑐𝑞2

𝑗−1(W𝑝𝜎)𝛾1𝑞2d𝜎
)︁

≥ 𝐾−1𝑐
𝑞2

𝑝−1
𝑗−1 𝜅

𝑞2
𝑝−1 𝛾1(W𝑝𝜎)

𝑞2
𝑝−1 𝛾1+1 = 𝑐𝑗(W𝑝𝜎)𝛾2 .

Now, we set 𝑢 = lim𝑗→∞ 𝑢𝑗 and 𝑣 = lim𝑗→∞ 𝑣𝑗. By Lemma B, 𝑢 and 𝑣 are 𝑝-superharmonic

functions in R𝑛. From Theorem C and Monotone Convergence Theorem, we deduce that (𝑢, 𝑣)
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is a solution to the system ⎧⎪⎨⎪⎩
− Δ𝑝𝑢 = 𝜎 𝑣𝑞1 in R𝑛,

− Δ𝑝𝑣 = 𝜎 𝑢𝑞2 in R𝑛,

in the sense of (2.1.1). Moreover, 𝑢 ≤ 𝑢̃ and 𝑣 ≤ 𝑣, and hence

lim
|𝑥|→∞

𝑢(𝑥) = lim
|𝑥|→∞

𝑣(𝑥) = 0.

Using Lemma E again, we deduce that 𝑢, 𝑣 ∈ 𝑊 1,𝑝
loc (R𝑛) since 𝑣𝑞1d𝜎, 𝑢𝑞2d𝜎 ∈ 𝑊 −1,𝑝′

loc (R𝑛).

By (3.2.2), there exists a constant 𝑐 = 𝑐(𝑛, 𝑝, 𝑞1, 𝑞2, 𝛼, 𝐶𝜎) > 0 such that

𝑢 ≤ 𝑐 (W𝑝𝜎 + (W𝑝𝜎)𝛾1) , 𝑣 ≤ 𝑐 (W𝑝𝜎 + (W𝑝𝜎)𝛾2) ,

and this shows an upper bound in (1.3.12). From (3.2.3), (𝑢, 𝑣) satisfies for all 𝑗 = 1, 2, . . .

the lower bound
𝑢 ≥ 𝑐𝑗 (W𝑝𝜎)𝛾1 ,

𝑣 ≥ 𝑐𝑗 (W𝑝𝜎)𝛾2 ,
(3.2.6)

Passing to limit 𝑗 → ∞ in (3.2.6), with 𝑐𝑗 and 𝑐𝑗 given in (3.2.4), we obtain

𝑢 ≥ 𝐶 (W𝑝𝜎)𝛾1 ,

𝑣 ≥ 𝐶 (W𝑝𝜎)𝛾2 ,

where, by direct computation,

𝐶 = lim
𝑗→∞

𝑐𝑗 = 𝐾−𝛾1𝜅
𝛾1𝑞1(𝛾1𝑞2+𝛾2(𝑝−1))

(𝑝−1)2 ,

𝐶 = lim
𝑗→∞

𝑐𝑗 = 𝐾−𝛾2𝜅
𝛾2𝑞2(𝛾2𝑞1+𝛾1(𝑝−1))

(𝑝−1)2 .

This shows a lower bound in (1.3.4).

Now we prove that (𝑢, 𝑣) is a minimal solution; that is, if (𝑤1, 𝑤2) is any nontrivial solution

to Syst. (𝑆1), then 𝑤1 ≥ 𝑢 and 𝑤2 ≥ 𝑣 almost everywhere in R𝑛. Let (𝑤1, 𝑤2) be a solution

to Syst. (𝑆1). From Theorem D, it follows⎧⎪⎨⎪⎩
𝑤1 ≥ 𝐾−1W𝑝(𝑤𝑞1

2 d𝜎)

𝑤2 ≥ 𝐾−1W𝑝(𝑤𝑞2
1 d𝜎)

Using Lemma 3.1.3 with 𝐾−(𝑝−1)𝜎 in place of 𝜎, we obtain

𝑤1 ≥ 𝑐 𝐾−𝛾1(W𝑝𝜎)𝛾1 ,

𝑤2 ≥ 𝑐 𝐾−𝛾2(W𝑝𝜎)𝛾2 .
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Let d𝜔1 = 𝑤2
𝑞1d𝜎 and d𝜔2 = 𝑤1

𝑞2d𝜎. With the previous constant 𝑐, choosing 𝜀 such that

𝜀 ≤ min{𝑐 𝐾−𝛾1 , 𝑐 𝐾−𝛾2},

we have d𝜔1 ≥ 𝑣𝑞1
0 d𝜎 and d𝜔2 ≥ 𝑢𝑞2

0 d𝜎. Applying [Cao and Verbitsky 2017, Lemma 5.2], we

deduce that the functions 𝑢𝑖
1 and 𝑣𝑖

1 defined as before satisfy in 𝐵𝑖 the inequality 𝑢𝑖
1 ≤ 𝑤1 and

𝑣𝑖
1 ≤ 𝑤2 for all 𝑖 ≥ 1, and consequently 𝑢1 = lim𝑖→∞ 𝑢𝑖

1 ≤ 𝑤1 and 𝑣1 = lim𝑖→∞ 𝑣𝑖
1 ≤ 𝑤2.

Repeating this argument by induction, we conclude 𝑢𝑗 ≤ 𝑤1 and 𝑣𝑗 ≤ 𝑤2 for every 𝑗 ≥ 1.

Therefore,

𝑢 = lim
𝑗→∞

𝑢𝑗 ≤ 𝑤1, 𝑣 = lim
𝑗→∞

𝑣𝑗 ≤ 𝑤2 a.e. in R𝑛.

It remains to prove that if 𝑝 ≥ 𝑛, there are no nontrivial solutions to Syst. (𝑆1) in R𝑛. Let

𝑤 ∈ 𝒮𝑝(R𝑛) be a 𝑝-superharmonic function in R𝑛 with lim|𝑥|→∞ 𝑤(𝑥) = 0. By [Heinonen,

Kilpeläinen and Martio 2006, Theorem 7.48], there exists 𝑐 = 𝑐(𝑛, 𝑝) > 0 such thatˆ
𝐵𝑟

|∇𝑤|𝑝

𝑤𝑝
d𝑥 ≤ 𝑐 cap𝑝(𝐵𝑟), (3.2.7)

for all balls 𝐵𝑟 := 𝐵(0, 𝑟). With aid of [Heinonen, Kilpeläinen and Martio 2006, Theorem 2.2

(ii)], we infer from [Heinonen, Kilpeläinen and Martio 2006, Theorem 2.19] that cap𝑝(𝐵𝑟) = 0

for all balls 𝐵𝑟, provided 𝑝 ≥ 𝑛. Thus, letting 𝑟 → ∞ in (3.2.7), we obtain for 𝑝 ≥ 𝑛 that

∇𝑤 ≡ 0 almost everywhere in R𝑛. Since lim|𝑥|→∞ 𝑤(𝑥) = 0, it follows 𝑤 ≡ 0. Thus, for

𝑝 ≥ 𝑛, all 𝑝-superharmonic functions with vanishes at infinity must be the trivial function.

This completes the proof of Theorem 1.3.6.

3.2.2 Proof of Theorem 1.3.8

Suppose that there exist 𝑝-superharmonic functions 𝑢 and 𝑣 satisfying Syst. (𝑆1) and

(1.3.12). By Theorem D, ⎧⎪⎨⎪⎩
𝑢 ≥ 𝐾−1W𝑝(𝑣𝑞1d𝜎),

𝑣 ≥ 𝐾−1W𝑝(𝑢𝑞2d𝜎),
which together with Lemma 3.1.3 implies

𝑢 ≥ 𝑐0 (W𝑝𝜎)𝛾1 ,

𝑣 ≥ 𝑐0 (W𝑝𝜎)𝛾2 ,
(3.2.8)

where 𝛾1 and 𝛾2 are given by (3.1.13) and (3.1.18) respectively. Consequently,

𝑢 ≥ 𝑐1 W𝑝 ((W𝑝𝜎)𝛾2𝑞1d𝜎) ,

𝑣 ≥ 𝑐2 W𝑝 ((W𝑝𝜎)𝛾1𝑞2d𝜎) ,
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where 𝑐1 = 𝐾−1𝑐0
𝑞1 and 𝑐2 = 𝐾−1𝑐0

𝑞2 . Thus, because of (1.3.12), it holds

𝑢 ≤ 𝑐3 (W𝑝𝜎 + (W𝑝𝜎)𝛾1) ,

𝑣 ≤ 𝑐3 (W𝑝𝜎 + (W𝑝𝜎)𝛾2) ,

for some constant 𝑐3 > 0. The previous estimates in combination with (3.2.8) and choosing

𝜆 = 𝑐3 max{𝑐1
−1, 𝑐2

−1} yield

W𝑝 ((W𝑝𝜎)𝛾2𝑞1d𝜎) ≤ 𝜆 (W𝑝𝜎 + (W𝑝𝜎)𝛾1) < ∞ - a.e.,

W𝑝 ((W𝑝𝜎)𝛾1𝑞2d𝜎) ≤ 𝜆 (W𝑝𝜎 + (W𝑝𝜎)𝛾2) < ∞ - a.e.,

which proves (1.3.13).

Conversely, suppose that (1.3.13) holds. Let 𝐾 be the constant given in Theorem D. By

Theorem 1.3.3 with 𝛼 = 1 and 𝐾𝑝−1𝜎 in place of 𝜎, there exists a nontrivial solution (𝑢̃, 𝑣)

to Syst. (3.2.1), satisfying (3.2.2). Using the same argument in the proof of Theorem 1.3.6,

one can complete that reciprocal of Theorem 1.3.8 holds.

3.2.3 Proof of Theorem 1.3.9

The proof is direct. Indeed, since I2𝛼𝜇 = (𝑛 − 2𝛼)W𝛼,2𝜇 for any 𝜇 ∈ 𝑀+(R𝑛), it follows

that Theorem 1.3.9 is a special case of Theorem 1.3.1 with 𝑝 = 2.

3.2.4 Some examples

1. Fix 2 < 𝛿 < 𝑛 and let 𝜎 be the function given by

𝜎(𝑥) = 1
1 + |𝑥|𝛿

, 𝑥 ∈ R𝑛.

We claim that I2𝜎 ∈ 𝐿∞(R𝑛). Indeed, setting d𝜎 = 𝜎 d𝑥, for 𝑥 ∈ R𝑛,

𝜎(𝐵(𝑥, 𝑡)) =
ˆ

𝐵(𝑥,𝑡)
d𝜎(𝑦) =

ˆ
𝐵(𝑥,𝑡)

1
1 + |𝑦|𝛿

d𝑦

= 𝑐0

ˆ 𝑡

0

𝑟𝑛−1

1 + 𝑟𝛿
d𝑟 = 𝑐0

ˆ 𝑡

0

𝑟𝑛−𝛿𝑟𝛿−1

1 + 𝑟𝛿
d𝑟

≤ 𝑐0 𝑡𝑛−𝛿

ˆ 𝑡

0

𝑟𝛿−1

1 + 𝑟𝛿
d𝑟 = 𝑐1 𝑡𝑛−𝛿 ln(1 + 𝑡𝛿), ∀𝑡 > 0,
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where 𝑐0 = 𝑐0(𝑛) > 0 and 𝑐1 = 𝑐0/𝛿. Using definition (1.3.2) and integration by parts, one

has
I2𝜎(𝑥) = (𝑛 − 2)

ˆ ∞

0

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−2

d𝑡

𝑡

≤ 𝑐2

ˆ ∞

0

𝑡𝑛−𝛿 ln(1 + 𝑡𝛿)
𝑡𝑛−1 d𝑡

= 𝑐2

ˆ ∞

0

ln(1 + 𝑡𝛿)
𝑡𝛿−1 d𝑡

= −𝑐2
ln(1 + 𝑡𝛿)

𝑡𝛿−2

⃒⃒⃒⃒
⃒
∞

0
+ 𝑐2

ˆ ∞

0

𝑡𝛿−1

(1 + 𝑡𝛿)𝑡𝛿−2 d𝑡

=: 𝑐2
(︁
𝐼1 + 𝐼2

)︁
,

where 𝑐2 = 𝑐2(𝑛, 𝛿) > 0. Applying L’Hôpital’s rule, 𝐼1 vanishes since 𝛿 > 2.

Notice that 𝐼2 can be split into two integrals:

𝐼2 =
ˆ ∞

0

𝑡

1 + 𝑡𝛿
d𝑡 =

ˆ 1

0

𝑡

1 + 𝑡𝛿
d𝑡 +

ˆ ∞

1

𝑡

1 + 𝑡𝛿
d𝑡.

In the first one, since 1 + 𝑡𝛿 > 1, it follows
ˆ 1

0

𝑡

1 + 𝑡𝛿
d𝑡 ≤

ˆ 1

0
𝑡 d𝑡 = 1

2 .

For the second one, since 1 + 𝑡𝛿 > 𝑡𝛿, we have
ˆ ∞

1

𝑡

1 + 𝑡𝛿
d𝑡 ≤

ˆ ∞

1
𝑡1−𝛿 d𝑡 = (2 − 𝛿)𝑡2−𝛿

⃒⃒⃒∞
1

= 𝛿 − 2.

This shows that 𝐼2 < ∞. Consequently, I2𝜎(𝑥) < ∞ for all 𝑥 ∈ R𝑛, and our claim is

established.

By Remark 1.3.10, 𝜎 satisfies condition (1.3.11). By Theorem 1.3.6, there exists a nontrivial

bounded solution to Syst. (𝑆1) with 𝑝 = 2, that is there exists (𝑢, 𝑣) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Δ𝑢(𝑥) = 𝑣𝑞1(𝑥)
1 + |𝑥|𝛿

, 𝑢(𝑥) > 0, ∀ 𝑥 ∈ R𝑛,

− Δ𝑣(𝑥) = 𝑢𝑞2(𝑥)
1 + |𝑥|𝛿

, 𝑣(𝑥) > 0, ∀ 𝑥 ∈ R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = lim
|𝑥|→∞

𝑣(𝑥) = 0,

jointly with the bilateral estimates

𝑐−1 (I2𝜎)
1+𝑞1

1−𝑞1𝑞2 ≤ 𝑢 ≤ 𝑐
(︂

I2𝜎 + (I2𝜎)
1+𝑞1

1−𝑞1𝑞2

)︂
,

𝑐−1 (I2𝜎)
1+𝑞2

1−𝑞1𝑞2 ≤ 𝑣 ≤ 𝑐
(︂

I2𝜎 + (I2𝜎)
1+𝑞2

1−𝑞1𝑞2

)︂
,

where 0 < 𝑞1, 𝑞2 < 1.
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2. Fix 0 < 𝑞 < 1 and 0 < 2𝛼 < 𝑛. Let d𝜎 = 𝜎 d𝑥 for 𝜎(𝑥) = |𝑥|−𝑠𝜒𝐵∖{0}(𝑥), with

2𝛼 < 𝑠 < 𝑛 − (𝑛 − 2𝛼)𝑞; here 𝐵 = 𝐵(0, 1). As commented in Remark 1.3.5, 𝜎 does not

satisfy condition (1.3.3), but condition (1.3.7) still holds. Setting 𝑞1 = 𝑞2 = 𝑞, combining

Remark 1.3.4 with Theorem 1.3.14, it follows that there exists a nonnegative function 𝑢

satisfying the following fractional Laplacian equation⎧⎪⎪⎨⎪⎪⎩
(−Δ)𝛼𝑢(𝑥) = 𝜎(𝑥) 𝑢(𝑥)𝑞, 𝑢(𝑥) > 0 ∀ 𝑥 ∈ R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0.

Moreover, by (1.3.15), 𝑢 satisfies

𝑐−1 (I2𝛼𝜎(𝑥))
1

1−𝑞 ≤ 𝑢 ≤ 𝑐
(︁
I2𝛼𝜎(𝑥) + (I2𝛼𝜎(𝑥))

1
1−𝑞

)︁
∀𝑥 ∈ R𝑛;

here I2𝛼𝜎(𝑥) is given by

I2𝛼𝜎(𝑥) =
ˆ
R𝑛

𝜎(𝑦)
|𝑥 − 𝑦|𝑛−2𝛼

d𝑦 =
ˆ

𝐵

|𝑦|−𝑠

|𝑥 − 𝑦|𝑛−2𝛼
d𝑦.

3.2.5 Final comments

Remark 3.2.1. For the case 𝑞1 = 𝑞2, setting 𝑞 = 𝑞1, we obtain

𝛾1 = 𝛾2 = (𝑝 − 1)(𝑝 − 1 + 𝑞)
(𝑝 − 1)2 − 𝑞2 = 𝑝 − 1

𝑝 − 1 − 𝑞
. (3.2.9)

The argument of the proof of Theorem 1.3.6 in combination with (3.2.9) implies 𝑢0 = 𝑣0.

Thus, by induction,

𝑢𝑗 = 𝑣𝑗 ∀𝑗 = 1, 2, . . . ,

where (𝑢𝑗, 𝑣𝑗) were given in (3.2.3) for 𝑗 = 1, 2, . . .. It follows that 𝑢 = 𝑣 and Syst. (𝑆1)

becomes the equation ⎧⎪⎪⎨⎪⎪⎩
− Δ𝑝𝑢 = 𝜎 𝑢𝑞 in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0.

Therefore, [Cao and Verbitsky 2016, Theorem 1.2] is a corollary of Theorem 1.3.6 for the case

𝑞 = 𝑞1 = 𝑞2.

Remark 3.2.2. We highlight that our main results are entirely based on the Wolff potential

estimates. Thus, direct analogous theorems hold for the more general quasilinear 𝒜-operator

div𝒜(𝑥, ∇·) in place of Δ𝑝· in (1.1.3). Precisely, let 𝒜 : R𝑛×R𝑛 → R𝑛 be a mapping satisfying
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the standard structural assumptions, which ensures the growth condition 𝒜(𝑥, 𝜉) · 𝜉 ≈ |𝜉|𝑝.

This assumption guarantee that the Wolff potential estimates like (1.1.2) hold for the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− div𝒜(𝑥, ∇𝑢) = 𝜎 𝑣𝑞1 , 𝑣 > 0 in R𝑛,

− div𝒜(𝑥, ∇𝑣) = 𝜎 𝑢𝑞2 , 𝑢 > 0 in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = lim
|𝑥|→∞

𝑣(𝑥) = 0.

In such wise, we can conclude similar theorems (see [Kilpeläinen and Malý 1994, Dat and

Verbitsky 2015,Trudinger and Wang 2002] for more details).

Here we indicate some questions related to this class of quasilinear problems:

1. Let 𝜇1, 𝜇2 ∈ 𝑀+(R𝑛). Consider the counterpart inhomogeneous to (𝑆1) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− Δ𝑝𝑢 = 𝜎 𝑣𝑞1 + 𝜇1, 𝑢 > 0 in R𝑛,

− Δ𝑝𝑣 = 𝜎 𝑢𝑞2 + 𝜇2, 𝑣 > 0 in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0, lim
|𝑥|→∞

𝑣(𝑥) = 0.

(3.2.10)

Does (3.2.10) have a minimal positive solution for any nontrivial measures 𝜇1, 𝜇2? Perhaps,

new phenomena involving possible interactions between 𝜇1, 𝜇2, and 𝜎 will occur.

2. Suppose 𝜎 ∈ 𝑀+(R𝑛) radially symmetric. Thus, the solution to (1.3.14) obtained in

Theorem 1.3.9 must be radially symmetric. In addition, since I2𝛼𝜎 = (𝑛 − 2𝛼)W𝛼,2𝜎,

condition (1.3.5) can be rewritten in terms of the Riesz potential. Is it possible to

characterize condition (1.3.5), in terms of Riesz potential, for 𝜎 radially symmetric, as was

done to the single equation in [Cao and Verbitsky 2016, Proposition 5.2]?

3. Let us consider the quasilinear elliptic system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− Δ𝑝1𝑢 = 𝜎 𝑣𝑞1 , 𝑢 > 0 in R𝑛,

− Δ𝑝2𝑣 = 𝜎 𝑢𝑞2 , 𝑣 > 0 in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0, lim
|𝑥|→∞

𝑣(𝑥) = 0,

(3.2.11)

where 𝑝1, 𝑝2 ∈ (1, 𝑛] and 𝑞1, 𝑞2 < max{𝑝1 − 1, 𝑝2 − 1}. Does (3.2.11) have a minimal

positive solution? In fact, the question is related to the existence of a nontrivial solution to

the following system integral⎧⎪⎨⎪⎩
𝑢 = W𝛼1,𝑝1(𝑣𝑞1d𝜎), d𝜎-a.e in R𝑛,

𝑣 = W𝛼2,𝑝2(𝑢𝑞2d𝜎), d𝜎-a.e in R𝑛,
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It is to be expected that the answers should be more complicated because it will be

necessary to assume a possible interaction between W𝛼1,𝑝1𝜎 and W𝛼2,𝑝2𝜎.

3.3 𝑘-HESSIAN LANE-EMDEN TYPE SYSTEMS WITH SUB-NATURAL GROWTH TERMS

3.3.1 Proof of Theorem 1.3.11

Fix 1 ≤ 𝑘 < 𝑛/2, and let 𝐾 be the constant given in Theorem G. Let 𝜎 ∈ 𝑀+(R𝑛)

satisfying (1.3.3) with 𝛼 = 2𝑘/(𝑘 + 1) and 𝑝 = 𝑘 + 1. Applying Theorem 1.3.1 with 𝛼 =

2𝑘/(𝑘 + 1), 𝑝 = 𝑘 + 1 and 𝐾𝑘𝜎 in place of 𝜎, there exists a nontrivial solution (𝑢̃, 𝑣) to the

system ⎧⎪⎨⎪⎩
𝑢̃ = 𝐾 W𝑘(𝑣𝑞1d𝜎) in R𝑛,

𝑣 = 𝐾 W𝑘(𝑢̃𝑞2d𝜎) in R𝑛.
(3.3.1)

Moreover, (𝑢̃, 𝑣) satisfies

𝑐−1
(︂

𝐾 W𝑘𝜎
)︂𝛾1

≤ 𝑢̃ ≤ 𝑐
(︂

𝐾 W𝑘𝜎 +
(︂

𝐾 W𝑘𝜎
)︂𝛾1)︂

,

𝑐−1
(︂

𝐾 W𝑘𝜎
)︂𝛾2

≤ 𝑣 ≤ 𝑐
(︂

𝐾 W𝑘𝜎 +
(︂

𝐾 W𝑘𝜎
)︂𝛾2)︂

,
(3.3.2)

where 𝛾1 and 𝛾2 are given by (3.1.13) and (3.1.18), respectively, with 𝑝 − 1 = 𝑘, i.e.,

𝛾1 = 𝑘(𝑘 + 𝑞1)
𝑘2 − 𝑞1𝑞2

and 𝛾2 = 𝑘(𝑘 + 𝑞2)
𝑘2 − 𝑞1𝑞2

,

which can be rewritten as

𝛾1 = 𝑞1

𝑘
𝛾2 + 1 and 𝛾2 = 𝑞2

𝑘
𝛾1 + 1.

Recall from Lemma 3.1.4 that W𝑘𝜎 ∈ 𝐿𝑟
loc(R𝑛, d𝜎) for all 𝑟 > 0, whence 𝑢̃ ∈ 𝐿𝑞2

loc(R𝑛, d𝜎)

and 𝑣 ∈ 𝐿𝑞1
loc(R𝑛, d𝜎).

We set 𝑢0 = 𝜀 (W𝑘𝜎)𝛾1 and 𝑣0 = 𝜀 (W𝑘𝜎)𝛾2 , where 𝜀 > 0 is given by

𝜀 ≤ min{(𝐾−1𝜅
𝑞1𝛾2

𝑘 )
𝑘

𝑘−𝑞1 , (𝐾−1𝜅
𝑞2𝛾1

𝑘 )
𝑘

𝑘−𝑞2 , 𝑐−1𝐾𝛾1 , 𝑐−1𝐾𝛾2 , 𝐶 𝐾−𝛾1 , 𝐶 𝐾−𝛾2}, (3.3.3)

where 𝜅 is the constant given in Lemma T, 𝑐 is the constant in (3.3.2), and 𝐶 is the constant

given in Lemma 3.1.3. Similarly to Claim 1, one can show 𝑢0 ≤ 𝐾−1W𝑘(𝑣𝑞1
0 d𝜎) and 𝑣0 ≤

𝐾−1W𝑘(𝑢𝑞2
0 d𝜎). In addition, 𝑢0 ≤ 𝑢̃ and 𝑣0 ≤ 𝑣 by choice of 𝜀 in (3.3.3).
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Claim 5. There exists a pair of nonnegative functions (𝑢1, 𝑣1) ∈ 𝐿𝑞2
loc(R𝑛, d𝜎) × 𝐿𝑞1

loc(R𝑛, d𝜎)

satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 𝑢1, −𝑣1 ∈ Φ𝑘(R𝑛),

𝑢1 ≥ 𝑢0, 𝑣1 ≥ 𝑣0,

𝐹𝑘[−𝑢1] = 𝜎 𝑣𝑞1
0 in R𝑛, lim

|𝑥|→∞
𝑢1(𝑥) = 0,

𝐹𝑘[−𝑣1] = 𝜎 𝑢𝑞2
0 in R𝑛, lim

|𝑥|→∞
𝑣1(𝑥) = 0,

𝑐1(W𝑘𝜎)𝛾1 ≤ 𝑢1 ≤ 𝑢̃, 𝑐1(W𝑘𝜎)𝛾2 ≤ 𝑣1 ≤ 𝑣 in R𝑛,

where

𝑐1 = 𝐾−1(𝜀 𝜅𝛾2)
𝑞1
𝑘 , 𝑐1 = 𝐾−1(𝜀 𝜅𝛾1)

𝑞2
𝑘 .

Indeed, letting 𝜎𝐵𝑖
= 𝜒𝐵𝑖

𝜎, by Lemma H, there exist 𝑢𝑖
1 ≥ 0 and 𝑣𝑖

1 ≥ 0 satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−𝑢𝑖
1 ∈ Φ𝑘(𝐵𝑖+1) ∩ 𝐶(𝐵𝑖+1), −𝑣𝑖

1 ∈ Φ𝑘(𝐵𝑖+1) ∩ 𝐶(𝐵𝑖+1),

𝐹𝑘[−𝑢𝑖
1] = 𝜎𝐵𝑖

𝑣𝑞1
0 in 𝐵𝑖+1, 𝐹𝑘[−𝑣𝑖

1] = 𝜎𝐵𝑖
𝑢𝑞1

0 in 𝐵𝑖+1,

𝑢𝑖
1 = 0 on 𝜕𝐵𝑖+1, 𝑣𝑖

1 = 0 on 𝜕𝐵𝑖+1.

Using [Phuc and Verbitsky 2009, Theorem 4.2], we obtain

𝑢𝑖
1 ≤ 𝐾 W𝑘(𝑣𝑞1

0 d𝜎) ≤ 𝐾 W𝑘(𝑣𝑞1d𝜎) = 𝑢̃,

𝑣𝑖
1 ≤ 𝐾 W𝑘(𝑢𝑞2

0 d𝜎) ≤ 𝐾 W𝑘(𝑢̃𝑞2d𝜎) = 𝑣 ∀𝑖 = 1, 2, . . . .
(3.3.4)

Extending by zero away from 𝐵𝑖+1, we may assume that 𝑢𝑖
1 and 𝑣𝑖

1 are functions in whole R𝑛.

It follows from Theorem I and Remark 2.2.5 that the sequences {𝑢𝑖
1} and {𝑣𝑖

1} are increasing

pointwise in R𝑛. Consequently, by Remark 2.2.2, the pointwise limits 𝑢1 := lim𝑖→∞ 𝑢𝑖
1 and

𝑣1 := lim𝑖→∞ 𝑣𝑖
1 belong to Φ𝑘(R𝑛), with {𝐹𝑘[−𝑢𝑖

1]}𝑖 and {𝐹𝑘[−𝑣𝑖
1]}𝑖 converging weakly to

𝐹𝑘[−𝑢1] and 𝐹𝑘[−𝑣1], respectively. On the other hand, by Monotone Convergence Theorem,

{𝜎𝐵𝑖
𝑣𝑞1

0 }𝑖 and {𝜎𝐵𝑖
𝑢𝑞2

0 }𝑖 converge weakly to 𝜎 𝑣𝑞1
0 and 𝜎 𝑢𝑞2

0 , respectively. Hence, as Radon

measures in R𝑛,

𝐹𝑘[−𝑢1] = 𝜎 𝑣𝑞1
0 and 𝐹𝑘[−𝑣1] = 𝜎 𝑢𝑞2

0 .

Next, from (3.3.4), one has 𝑢1 ≤ 𝑢̃ and 𝑣1 ≤ 𝑣, whence 𝑢1 ∈ 𝐿𝑞2
loc(R𝑛, d𝜎), 𝑣1 ∈ 𝐿𝑞1

loc(R𝑛, d𝜎),

and by (2.1.4) it holds

lim
|𝑥|→∞

𝑢1(𝑥) = lim
|𝑥|→∞

𝑣1(𝑥) = 0.
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Combining Theorem G with Lemma T, we deduce

𝑢1 ≥ 𝐾−1W𝑘(𝑣𝑞1
0 d𝜎) = 𝐾−1𝜀

𝑞1
𝑘 W𝑘 ((W𝑘𝜎)𝛾2𝑞1d𝜎)

≥ 𝐾−1𝜀
𝑞1
𝑘 𝜅

𝑞1
𝑘

𝛾2(W𝑘𝜎)
𝑞1
𝑘

𝛾2+1 = 𝐾−1𝜀
𝑞1
𝑘 𝜅

𝑞1
𝑘

𝛾2(W𝑘𝜎)𝛾1 ,

𝑣1 ≥ 𝐾−1W𝑘(𝑢𝑞2
0 d𝜎) = 𝐾−1𝜀

𝑞2
𝑘 W𝑘 ((W𝑘𝜎)𝛾1𝑞2d𝜎)

≥ 𝐾−1𝜀
𝑞2
𝑘 𝜅

𝑞2
𝑘

𝛾1(W𝑘𝜎)
𝑞2
𝑘

𝛾1+1 = 𝐾−1𝜀
𝑞2
𝑘 𝜅

𝑞2
𝑘

𝛾1(W𝑘𝜎)𝛾2 ,

By choice of 𝜀 > 0, the previous inequalities give 𝑢1 ≥ 𝑢0 and 𝑣1 ≥ 𝑣0. This completes the

proof Claim 5.

With the aid of Lemma J, analysis similar to that in the proof of Claim 5 allows us to

construct, inductively, a sequence of pairs of nonnegative functions {(𝑢𝑗, 𝑣𝑗)} ⊂ 𝐿𝑞2
loc(R𝑛, d𝜎)×

𝐿𝑞1
loc(R𝑛, d𝜎) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 𝑢𝑗, −𝑣𝑗 ∈ Φ𝑘(R𝑛),

𝐹𝑘[−𝑢𝑗] = 𝜎 𝑣𝑞1
𝑗−1 in R𝑛, lim

|𝑥|→∞
𝑢𝑗(𝑥) = 0,

𝐹𝑘[−𝑣𝑗] = 𝜎 𝑢𝑞2
𝑗−1 in R𝑛, lim

|𝑥|→∞
𝑣𝑗(𝑥) = 0,

0 ≤ 𝑢𝑗 ≤ 𝑢𝑗+1, 0 ≤ 𝑣𝑗 ≤ 𝑣𝑗+1 in R𝑛

𝑐𝑗(W𝑘𝜎)𝛾1 ≤ 𝑢𝑗 ≤ 𝑢̃, 𝑐𝑗(W𝑘𝜎)𝛾2 ≤ 𝑣𝑗 ≤ 𝑣 in R𝑛.

(3.3.5)

where 𝑐1 and 𝑐1 are as above, and for 𝑗 = 2, 3, . . .

𝑐𝑗 = 𝐾−1(𝑐𝑗−1𝜅
𝛾2)

𝑞1
𝑘 , 𝑐𝑗 = 𝐾−1(𝑐𝑗−1𝜅

𝛾1)
𝑞2
𝑘 .

Indeed, let 𝑢1 and 𝑣1 as in Claim 5. Since 𝜎 𝑣𝑞1
1 ≥ 𝜎 𝑣𝑞1

0 and 𝜎 𝑢𝑞2
1 ≥ 𝜎 𝑢𝑞2

0 , it follows from

Lemma J that there exists a pair of nonnegative functions (𝑢2, 𝑣2) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 𝑢2, −𝑣2 ∈ Φ𝑘(R𝑛)

𝑢2 ≥ 𝑢1, 𝑣2 ≥ 𝑣1,

𝐹𝑘[−𝑢2] = 𝜎 𝑣𝑞1
1 in R𝑛, lim

|𝑥|→∞
𝑢2(𝑥) = 0,

𝐹𝑘[−𝑣2] = 𝜎 𝑢𝑞2
1 in R𝑛, lim

|𝑥|→∞
𝑣2(𝑥) = 0.

Applying Theorem G, one has

𝑢2 ≤ 𝐾 W𝑘(𝑣𝑞1
1 d𝜎) ≤ 𝐾 W𝑘(𝑣𝑞1d𝜎) = 𝑢̃,

𝑣2 ≤ 𝐾 W𝑘(𝑢𝑞2
1 d𝜎) ≤ 𝐾 W𝑘(𝑢̃𝑞2d𝜎) = 𝑣,
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and, by Lemma T,

𝑢2 ≥ 𝐾−1W𝑘(𝑣𝑞1
1 d𝜎) = 𝐾−1𝑐

𝑞1
𝑘

1 W𝑘 ((W𝑘𝜎)𝛾2𝑞1d𝜎)

≥ 𝐾−1𝑐
𝑞1
𝑘

1 𝜅
𝑞1
𝑘

𝛾2(W𝑘𝜎)
𝑞1
𝑘

𝛾2+1 = 𝑐2 (W𝑘𝜎)𝛾1 ,

𝑣2 ≥ 𝐾−1W𝑘(𝑢𝑞2
1 d𝜎) = 𝐾−1𝑐

𝑞2
𝑘

1 W𝑘 ((W𝑘𝜎)𝛾1𝑞2d𝜎)

≥ 𝐾−1𝑐
𝑞2
𝑘

1 𝜅
𝑞2
𝑘

𝛾1(W𝑘𝜎)
𝑞2
𝑘

𝛾1+1 = 𝑐2 (W𝑘𝜎)𝛾2 .

Now, suppose (𝑢𝑗, 𝑣𝑗) has been obtained for some 𝑗 > 1. In the same manner, one shows that

there exist a pair of nonnegative functions (𝑢𝑗+1, 𝑣𝑗+1) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 𝑢𝑗+1, −𝑣𝑗+1 ∈ Φ𝑘(R𝑛)

𝑢𝑗+1 ≥ 𝑢𝑗, 𝑣𝑗+1 ≥ 𝑣𝑗,

𝐹𝑘[−𝑢𝑗+1] = 𝜎 𝑣𝑞1
𝑗 in R𝑛, lim

|𝑥|→∞
𝑢2(𝑥) = 0,

𝐹𝑘[−𝑣𝑗+1] = 𝜎 𝑢𝑞2
𝑗 in R𝑛, lim

|𝑥|→∞
𝑣2(𝑥) = 0.

𝑐𝑗+1(W𝑘𝜎)𝛾1 ≤ 𝑢𝑗+1 ≤ 𝑢̃, 𝑐𝑗+1(W𝑘𝜎)𝛾2 ≤ 𝑣𝑗+1 ≤ 𝑣.

From the last line in (3.3.5), we deduce that (𝑢𝑗, 𝑣𝑗) ∈ 𝐿𝑞2
loc(Ω, d𝜎)×𝐿𝑞1

loc(Ω, d𝜎) for all 𝑗 ≥ 1.

We set the pointwise limits 𝑢 = lim𝑗→∞ 𝑢𝑗 and 𝑣 = lim𝑗→∞ 𝑣𝑗. Using Remark 2.2.2 again,

both −𝑢 and −𝑣 belong to Φ𝑘(R𝑛). By Monotone Convergence Theorem, 𝑢 ∈ 𝐿𝑞2
loc(R𝑛, d𝜎)

and 𝑣 ∈ 𝐿𝑞1
loc(R𝑛, d𝜎). Thus (𝑢, 𝑣) satisfies⎧⎪⎨⎪⎩

𝐹𝑘[−𝑢] = 𝜎 𝑣𝑞1 in R𝑛,

𝐹𝑘[−𝑣] = 𝜎 𝑢𝑞2 in R𝑛.

In view of the last line in (3.3.5), letting 𝑗 → ∞, one can see that 𝑢 ≤ 𝑢̃ and 𝑣 ≤ 𝑣, whence

lim|𝑥|→∞ 𝑢(𝑥) = lim|𝑥|→∞ 𝑣(𝑥) = 0, which shows that (𝑢, 𝑣) solves Syst. (𝑆2) in sense of

Definition 2.2.4. Furthermore, there exists a constant 𝐶1 = 𝐶1(𝑛, 𝑘, 𝑞1, 𝑞2, 𝐶𝜎) > 0 such that

𝑢 ≤ 𝐶1 (W𝑘𝜎 + (W𝑘𝜎)𝛾1) and 𝑣 ≤ 𝐶1 (W𝑘𝜎 + (W𝑘𝜎)𝛾2) ,

which assures the upper bound in (1.3.16). Since 𝑢 ≥ 𝑐𝑗(W𝑘𝜎)𝛾1 and 𝑣 ≥ 𝑐𝑗(W𝑘𝜎)𝛾2 for all

𝑗 ≥ 1, a passage to the limit 𝑗 → ∞ implies that

𝑢 ≥ 𝐶2 (W𝑘𝜎)𝛾1 and 𝑣 ≥ 𝐶2 (W𝑘𝜎)𝛾2 ,

where is straightforward to compute

𝐶2 = lim
𝑗→∞

𝑐𝑗 = 𝐾−𝛾1𝜅
𝛾1𝑞1(𝛾1𝑞2+𝛾2𝑘)

𝑘2 ,

𝐶2 = lim
𝑗→∞

𝑐𝑗 = 𝐾−𝛾2𝜅
𝛾2𝑞2(𝛾2𝑞1+𝛾1𝑘)

𝑘2 ,
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which shows a lower bound in (1.3.16).

It remains to prove that (𝑢, 𝑣) is a minimal solution; that is, if (𝑤1, 𝑤2) is any nontrivial

solution to Syst. (𝑆2), then 𝑤1 ≥ 𝑢 and 𝑤2 ≥ 𝑣 almost everywhere in R𝑛. Let (𝑤1, 𝑤2) be a

solution to Syst. (𝑆2). From Theorem G, it follows⎧⎪⎨⎪⎩
𝑤1 ≥ 𝐾−1W𝑘(𝑤𝑞1

2 d𝜎) = W𝑘(𝐾−𝑘𝑤𝑞1
2 d𝜎)

𝑤2 ≥ 𝐾−1W𝑘(𝑤𝑞2
1 d𝜎) = W𝑘(𝐾−𝑘𝑤𝑞2

1 d𝜎)

Using Lemma 3.1.3 with 𝐾−𝑘𝜎 in place of 𝜎, we obtain

𝑤1 ≥ 𝐶
(︁
W𝑘(𝐾−𝑘𝜎)

)︁𝛾1 = 𝐶
(︁
𝐾−1W𝑘𝜎

)︁𝛾1 = 𝐶 𝐾−𝛾1(W𝑘𝜎)𝛾1 ,

𝑤2 ≥ 𝐶
(︁
W𝑘(𝐾−𝑘𝜎)

)︁𝛾2 = 𝐶
(︁
𝐾−1W𝑘𝜎

)︁𝛾2 = 𝐶 𝐾−𝛾2(W𝑘𝜎)𝛾2 .

Let d𝜔1 = 𝑤𝑞1
2 d𝜎 and d𝜔2 = 𝑤𝑞2

1 d𝜎. Notice that by choice of 𝜀 in (3.3.3), we have d𝜔1 ≥

𝑣𝑞1
0 d𝜎 and d𝜔2 ≥ 𝑢𝑞2

0 d𝜎. By construction of (𝑢1, 𝑣1), using Lemma J, we deduce that the

functions 𝑢1 and 𝑣1 satisfy 𝑢1 ≤ 𝑤1 and 𝑣1 ≤ 𝑤2 in R𝑛. Repeating this argument by induction,

we conclude 𝑢𝑗 ≤ 𝑤1 and 𝑣𝑗 ≤ 𝑤2 for every 𝑗 ≥ 1. Therefore,

𝑢 = lim
𝑗→∞

𝑢𝑗 ≤ 𝑤1, 𝑣 = lim
𝑗→∞

𝑣𝑗 ≤ 𝑤2 in R𝑛.

This completes the proof of Theorem 1.3.11.

3.3.2 Proof of Theorem 1.3.12

Fix 1 ≤ 𝑘 < 𝑛/2. Let 𝛾1 and 𝛾2 given by (3.1.13) and (3.1.18), respectively, with 𝑝−1 = 𝑘.

We begin by proving the statement (i). Let (𝑢, 𝑣) be a nontrivial solution to (𝑆2), in the sense

of Definition 2.2.4, satisfying (1.3.16). By Theorem G, (𝑢, 𝑣) satisfies the system⎧⎪⎨⎪⎩
𝑢 ≥ 𝐾−1W𝑘(𝑣𝑞1d𝜎),

𝑣 ≥ 𝐾−1W𝑘(𝑢𝑞2d𝜎).

Applying (1.3.16) in the previous inequalities,

𝐾−1𝑐− 𝑞1
𝑘 W𝑘 ((W𝑘𝜎)𝛾2𝑞1d𝜎) ≤ 𝐾−1W𝑘(𝑣𝑞1d𝜎) ≤ 𝑢 ≤ 𝑐 (W𝑘𝜎 + (W𝑘𝜎)𝛾1) ,

𝐾−1𝑐− 𝑞2
𝑘 W𝑘 ((W𝑘𝜎)𝛾1𝑞2d𝜎) ≤ 𝐾−1W𝑘(𝑢𝑞2d𝜎) ≤ 𝑣 ≤ 𝑐 (W𝑘𝜎 + (W𝑘𝜎)𝛾2) .

Letting 𝜆 = 𝐾 max{𝑐
𝑘+𝑞1

𝑘 , 𝑐
𝑘+𝑞2

𝑘 }, the statement (i) follows.

To establish the statement (ii), let 𝜆 > 0 such that (1.3.17) holds. By Theorem 1.3.3 with

𝛼 = 2𝑘/(𝑘 + 1), 𝑝 = 𝑘 + 1 and 𝐾𝑘𝜎 in place of 𝜎, there exists a nontrivial solution (𝑢̃, 𝑣) to
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syst. (3.3.1), satisfying (3.3.2) with 𝑐 = 𝑐0(𝑛, 𝑘, 𝑞1, 𝑞2, 𝜆). As in the proof of Theorem 1.3.11,

the existence of such (𝑢̃, 𝑣) yields that there exists a solution (𝑢, 𝑣) to (𝑆2) for which (1.3.16)

holds with 𝑐 = 𝑐1(𝑛, 𝑘, 𝑞1, 𝑞2, 𝜆) > 0. This proves the statement (ii) and completes the proof

of Theorem 1.3.12.

3.3.3 Proof of Corollary 1.3.13

Fix 1 ≤ 𝑘 < /2, and let 𝜎 ∈ 𝑀+(R𝑛). Suppose 𝑞1 = 𝑞2 < 𝑘. Setting 𝑞 = 𝑞1, from (3.1.13)

and (3.1.18), 𝛾1 and 𝛾2 should satisfy

𝛾1 = 𝛾2 = 𝑘(𝑘 + 𝑞)
𝑘2 − 𝑞2 = 𝑘

𝑘 − 𝑞
.

The statements (i), (ii) and (iii) follow by the same methods as in the proofs of Theo-

rem 1.3.11 and Theorem 1.3.12, respectively.

Indeed, suppose (1.3.3). Following the notation used in the proof of Theorem 1.3.11,

(3.2.9) yields 𝑢0 = 𝑣0, whence 𝑢1 = 𝑣1 by Claim 5. Consequently, by induction

𝑢𝑗 = 𝑣𝑗 ∀𝑗 = 1, 2, . . . ,

where (𝑢𝑗, 𝑣𝑗) are given in (3.3.5) for 𝑗 = 1, 2, . . .. A passage to the limit as before implies

that 𝑢 = 𝑣 ∈ 𝐿𝑞
loc(R𝑛, d𝜎) and −𝑢 ∈ Φ𝑘(R𝑛). Hence Syst. (𝑆2) reduces to Eq. (𝑃1), i.e.⎧⎪⎪⎨⎪⎪⎩

𝐹𝑘[−𝑢] = 𝜎 𝑢𝑞 in R𝑛,

lim
|𝑥|→∞

𝑢(𝑥) = 0.

Furthermore, 𝑢 satisfies bilateral estimates (1.3.18), with 𝑐 = 𝑐(𝑛, 𝑘, 𝑞, 𝜎) > 0. This shows

part (i). The statement (ii) follows from combining the lower bound given in Theorem G with

(1.3.18),

𝐾−1𝑐− 𝑞
𝑘 W𝑘

(︂
(W𝑘𝜎)

𝑘𝑞
𝑘−𝑞 d𝜎

)︂
≤ 𝐾−1W𝑘(𝑢𝑞d𝜎) ≤ 𝑢 ≤ 𝑐

(︂
W𝑘𝜎 + (W𝑘𝜎)

𝑘
𝑘−𝑞

)︂
,

whence we may take 𝜆 = 𝐾 𝑐
𝑘+𝑞

𝑘 . This establishes the assertion. To prove the statement (iii),

we first notice that a combination of Remark 1.3.4 with condition (1.3.19) implies that there

exists a solution 𝑢̃ ∈ 𝐿𝑞
loc(R𝑛, d𝜎) to equation

𝑢̃ = 𝐾 W𝑘(𝑢̃𝑞d𝜎) in R𝑛.

Thus, as in the proof of Theorem 1.3.12, there exists a solution 𝑢 to (𝑃1) satisfying (1.3.18),

with 𝑐 = 𝑐(𝑛, 𝑘, 𝑞, 𝜆) > 0. This verify (iii), and finally completes the proof of Corollary 1.3.13.
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4 QUASILINEAR ELLIPTIC EQUATIONS WITH ORLICZ GROWTH

In this chapter, we provide the proof of Theorem 1.3.14 and Theorem 1.3.15. We divide

our arguments into four sections in the sequel, where we first produce a framework for the

proof of Theorem 1.3.14. Next, we establish some preliminary results to deal with Eq. (𝑃2), and

finally, we provide the proof of Theorem 1.3.15. Finally, we present some comments concerning

Theorem 1.3.15.

Here and subsequently, 𝑔 is the function given by (𝐴2), with 2 ≤ 𝑝 < 𝑞 < ∞, and 𝐺 its

primitive, that is

𝑔(𝑡) = 𝑡𝑝−1 + 𝑡𝑞−1, 𝐺(𝑡) = 𝑡𝑝

𝑝
+ 𝑡𝑞

𝑞
, ∀𝑡 ≥ 0.

Being 𝑝 ≥ 2, 𝑔 is a convex function, and 𝑔−1 is concave. Notice that 𝑔 satisfies the “sub-

multiplicity” condition

𝑔(𝑎𝑏) ≤ 𝑔(𝑎)𝑔(𝑏) ∀𝑎, 𝑏 ≥ 0, (4.0.1)

which implies a “sup-multiplicity” condition to 𝑔−1:

𝑔−1(𝑎𝑏) ≥ 𝑔−1(𝑎)𝑔−1(𝑏) ∀𝑎, 𝑏 ≥ 0. (4.0.2)

In the general context of 𝑁 -functions, these conditions are known as Δ′-contidion (see for

instance [Rao and Ren 1991, page 28]).

4.1 POTENTIAL OF WOLFF-TYPE

We start with some useful estimates for Wolff potentials.

Lemma 4.1.1. Let 𝜎 ∈ 𝑀+(R𝑛). Fix 𝑥 ∈ R𝑛 and 𝑅 > 0. Then there exists a constant

𝑐 = 𝑐(𝑛, 𝑝, 𝑞) > 0 such that

𝑐−1
ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡 ≤ inf

𝐵(𝑥,𝑅)
W𝐺𝜎 ≤ 𝑐

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡. (4.1.1)

Proof. We first show the lower bound. Setting 𝐵 = 𝐵(𝑥, 𝑅), note that for 𝑦 ∈ 𝐵 we have

W𝐺𝜎(𝑦) =
ˆ ∞

0
𝑔−1

(︃
𝜎(𝐵(𝑦, 𝑡))

𝑡𝑛−1

)︃
d𝑡 ≥

ˆ ∞

2𝑅

𝑔−1
(︃

𝜎(𝐵(𝑦, 𝑡))
𝑡𝑛−1

)︃
d𝑡

=
ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑦, 2𝑡))
2𝑛−1𝑡𝑛−1

)︃
d𝑡

2 .
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Using (2.3.4) in the previous estimate, we obtain

W𝐺𝜎(𝑦) ≥ 𝑐1

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑦, 2𝑡))
𝑡𝑛−1

)︃
d𝑡, (4.1.2)

where 𝑐1 = 𝑐1(𝑛, 𝑝, 𝑞). For 𝑦 ∈ 𝐵, we have 𝐵(𝑦, 2𝑡) ⊃ 𝐵(𝑥, 𝑡) for all 𝑡 ≥ 𝑅, consequently the

lower estimate in (4.1.1) follows from (4.1.2), that is

W𝐺𝜎(𝑦) ≥ 𝑐1

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡 ∀𝑦 ∈ 𝐵.

Now, to show the upper bound in (4.1.1), it is sufficient to check that

1
|𝐵|

ˆ
𝐵

W𝐺𝜎(𝑦) d𝑦 ≤ 𝑐

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡. (4.1.3)

We write

1
|𝐵|

ˆ
𝐵

W𝐺𝜎(𝑦) d𝑦 = 1
|𝐵|

ˆ
𝐵

(︃ˆ 𝑅

0
𝑔−1

(︃
𝜎(𝐵(𝑦, 𝑡))

𝑡𝑛−1

)︃
d𝑡

)︃
d𝑦

+ 1
|𝐵|

ˆ
𝐵

(︃ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑦, 𝑡))
𝑡𝑛−1

)︃
d𝑡

)︃
d𝑦

=: 𝐼1 + 𝐼2. (4.1.4)

To estimate 𝐼2, notice that since 𝐵(𝑦, 𝑡) ⊂ 𝐵(𝑥, 2𝑡) for 𝑦 ∈ 𝐵 and 𝑡 ≥ 𝑅, it follows

𝐼2 ≤ 1
|𝐵|

ˆ
𝐵

(︃ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 2𝑡))
𝑡𝑛−1

)︃
d𝑡

)︃
d𝑦

= 1
|𝐵|

ˆ
𝐵

d𝑦

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 2𝑡))
𝑡𝑛−1

)︃
d𝑡

=
ˆ ∞

2𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
2𝑛−1𝑡𝑛−1

)︃
d𝑡 ≤

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
2𝑛−1𝑡𝑛−1

)︃
d𝑡.

Using (2.3.6) in the previous estimate, yields

𝐼2 ≤ 𝑐2

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡, (4.1.5)

where 𝑐2 = 𝑐2(𝑛, 𝑝, 𝑞) > 0. Next, to estimate 𝐼1, using Fubuni’s Theorem and Jensen’s

inequality, since 𝑔−1 is concave, we obtain

𝐼1 =
ˆ 𝑅

0

(︃
1

|𝐵|

ˆ
𝐵

𝑔−1
(︃

𝜎(𝐵(𝑦, 𝑡))
𝑡𝑛−1

)︃
d𝑦

)︃
d𝑡

≤
ˆ 𝑅

0
𝑔−1

(︃
1

|𝐵|𝑡𝑛−1

ˆ
𝐵

𝜎(𝐵(𝑦, 𝑡)) d𝑦

)︃
d𝑡. (4.1.6)
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Notice that 𝐵(𝑦, 𝑡) ⊂ 𝐵(𝑥, 2𝑅) if 𝑦 ∈ 𝐵 and 𝑡 ≤ 𝑅, whence we have from Fubini’s Theorem
ˆ

𝐵

𝜎(𝐵(𝑦, 𝑡)) d𝑦 =
ˆ

𝐵(𝑥,𝑅)

(︃ˆ
𝐵(𝑦,𝑡)

d𝜎

)︃
d𝑦 =

ˆ
𝐵(𝑥,𝑅)

(︃ˆ
𝐵(𝑥,2𝑅)

𝜒𝐵(𝑦,𝑡) d𝑦

)︃
d𝜎

≤
ˆ

𝐵(𝑥,2𝑅)

(︃ˆ
𝐵(𝑥,2𝑅)

𝜒𝐵(𝑦,𝑡) d𝑦

)︃
d𝜎 =

ˆ
𝐵(𝑥,2𝑅)

|𝐵(𝑦, 𝑡)| d𝜎

= |𝐵(0, 1)|𝑡𝑛 𝜎(𝐵(𝑥, 2𝑅)).

By the preceding estimate and since 𝑔−1 is an increasing function, it follows from (4.1.6)

𝐼1 ≤
ˆ 𝑅

0
𝑔−1

(︃
𝜎(𝐵(𝑥, 2𝑅))

𝑅𝑛
𝑡

)︃
𝑑𝑡

≤
ˆ 𝑅

0
𝑔−1

(︃
𝜎(𝐵(𝑥, 2𝑅))

𝑅𝑛−1

)︃
d𝑡 = 𝑔−1

(︃
𝜎(𝐵(𝑥, 2𝑅))

𝑅𝑛−1

)︃
𝑅. (4.1.7)

Note that if 𝑅 ≤ 𝑡 ≤ 2𝑅, we have 𝜎(𝐵(𝑥, 2𝑡)) ⊃ 𝜎(𝐵(𝑥, 2𝑅)), and

𝑔−1
(︃

𝜎(𝐵(𝑥, 2𝑅))
𝑅𝑛−1

)︃
≤ 𝑔−1

(︃
𝜎(𝐵(𝑥, 2𝑡))
(2−1𝑡)𝑛−1

)︃
.

The preceding inequality implies

𝑔−1
(︃

𝜎(𝐵(𝑥, 2𝑅))
𝑅𝑛−1

)︃
𝑅 ≤

ˆ 2𝑅

𝑅

𝑔−1
(︃

2𝑛−1𝜎(𝐵(𝑥, 2𝑡))
𝑡𝑛−1

)︃
d𝑡

≤
ˆ ∞

𝑅

𝑔−1
(︃

2𝑛−1𝜎(𝐵(𝑥, 2𝑡))
𝑡𝑛−1

)︃
d𝑡

=
ˆ ∞

2𝑅

𝑔−1
(︃

4𝑛−1𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡

≤ 𝑐3

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡, (4.1.8)

where in the last inequality was used (2.3.6), with 𝑐3 = 𝑐3(𝑛, 𝑝, 𝑞). Using (4.1.8) in (4.1.7),

we deduce

𝐼1 ≤ 𝑐3

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡. (4.1.9)

Thus, because of (4.1.4), (4.1.5) and (4.1.9) provide (4.1.3), which shows the upper bound

in (4.1.1). This completes the proof of Lemma 4.1.1.

As a consequence of Lemma 4.1.1, we will show that W𝐺𝜎 < ∞ if and only if
ˆ ∞

1
𝑔−1

(︃
𝜎(𝐵(0, 𝑡))

𝑡𝑛−1

)︃
d𝑡 < ∞. (4.1.10)

Corollary 4.1.2. Let 𝜎 ∈ 𝑀+(R𝑛) satisfying (4.1.10). Then, for all 𝑥 ∈ R𝑛, 𝑅 > 0, we have
ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡 < ∞. (4.1.11)
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In particular, W𝐺𝜎 < ∞ if and only if (4.1.10) holds. Furthermore, W𝐺𝜎 ∈ 𝐿1
loc(R𝑛) and

lim
|𝑥|→∞

W𝐺𝜎(𝑥) = 0. (4.1.12)

Proof. First, notice that (4.1.10) implies (4.1.11) for 𝑥 = 0. Indeed, for 𝑅 ≥ 1, (4.1.11) is

obvious. Suppose that 0 < 𝑅 < 1. Then, we have
ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(0, 𝑡))
𝑡𝑛−1

)︃
d𝑡 =

ˆ 1

𝑅

𝑔−1
(︃

𝜎(𝐵(0, 𝑡))
𝑡𝑛−1

)︃
d𝑡 +

ˆ ∞

1
𝑔−1

(︃
𝜎(𝐵(0, 𝑡))

𝑡𝑛−1

)︃
d𝑡

≤ (1 − 𝑅)𝑔−1
(︃

𝜎(𝐵(0, 1))
𝑅𝑛−1

)︃
+
ˆ ∞

1
𝑔−1

(︃
𝜎(𝐵(0, 𝑡))

𝑡𝑛−1

)︃
d𝑡,

where the right-hand side in the previous inequality is finite, which shows (4.1.11) for 0 <

𝑅 < 1 and 𝑥 = 0.

Next, fix 𝑥 ̸= 0 and let 𝑅 ≥ |𝑥|. If 𝑡 ≥ |𝑥|, 𝐵(𝑥, 𝑡) ⊂ 𝐵(0, 2𝑡), and consequently

𝐼|𝑥| :=
ˆ ∞

|𝑥|
𝑔−1

(︃
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−1

)︃
d𝑡 ≤

ˆ ∞

|𝑥|
𝑔−1

(︃
𝜎(𝐵(0, 2𝑡))

𝑡𝑛−1

)︃
d𝑡

≤ 𝑐1

ˆ ∞

|𝑥|
𝑔−1

(︃
𝜎(𝐵(0, 2𝑡))

𝑡𝑛−1

)︃
d𝑡 < ∞,

where 𝑐1 = 𝑐1(𝑛, 𝑝, 𝑞). From the preceding estimate, (4.1.11) holds for 𝑅 ≥ |𝑥|. The case

𝑅 < |𝑥| follows from the splitting
ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡 =

ˆ |𝑥|

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡 + 𝐼|𝑥|

≤ (|𝑥| − 𝑅)𝑔−1
(︃

𝜎(𝐵(𝑥, |𝑥|))
𝑅𝑛−1

)︃
+ 𝐼|𝑥| < ∞.

Thus, (4.1.11) holds for all 𝑥 ∈ R𝑛 and 𝑅 > 0.

Now, by (4.1.3), there exists a constant 𝑐2 = 𝑐2(𝑛, 𝑝, 𝑞) > 0 such that
ˆ

𝐵(𝑥,𝑅)
W𝐺𝜎 d𝑦 ≤ 𝑐2 |𝐵(𝑥, 𝑅)|

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡, ∀𝑥 ∈ R𝑛, 𝑅 > 0,

and this ensure W𝐺𝜎 ∈ 𝐿1
loc(R𝑛), since we already known that (4.1.10) implies (4.1.11) for

all 𝑥 ∈ R𝑛 and 𝑅 > 0. We also have by (4.1.1) that W𝐺𝜎 < ∞ if and only if (4.1.11) holds

for all 𝑥 ∈ R𝑛 and 𝑅 > 0.

It remains to show (4.1.12). Setting 𝐴𝑅 = {𝑥 ∈ R𝑛 : 𝑅/2 < |𝑥| < 𝑅} for 𝑅 > 0 and

arguing as in the proof of the upper estimate in (4.1.1) (with 𝑥 = 0), we deduce that there

exists 𝑐3 = 𝑐3(𝑛, 𝑝, 𝑞) > 0 such that

inf
|𝑥|>𝑅/2

W𝐺𝜎 ≤ inf
𝐴𝑅

W𝐺𝜎 ≤ 1
|𝐴𝑅|

ˆ
𝐴𝑅

W𝐺𝜎 d𝑦

≤ 𝑐3

ˆ ∞

𝑅

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑡))
𝑡𝑛−1

)︃
d𝑡.
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Letting 𝑅 → ∞ in the previous inequality, we concluded (4.1.12). This completes the proof

of Corollary 4.1.2.

The remainder of this section will be devoted to establishing preliminary results to the

proof of Theorem 1.3.14. In what follows, we fix⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓(𝑡) = 𝑔(𝑡𝛾), 𝐹 (𝑡) =

ˆ 𝑡

0
𝑓(𝑠) d𝑠 ∀𝑡 ≥ 0, that is

𝑓(𝑡) = 𝑡(𝑝−1)𝛾 + 𝑡(𝑞−1)𝛾, 𝐹 (𝑡) = 𝑡(𝑝−1)𝛾+1

(𝑝 − 1)𝛾 + 1 + 𝑡(𝑞−1)𝛾+1

(𝑞 − 1)𝛾 + 1 ∀𝑡 ≥ 0,

(4.1.13)

where 𝛾 satisfies (𝐴1). Using (2.3.2), one can verify that

(𝑝 − 1)𝛾 ≤ 𝑡𝑓 ′(𝑡)
𝑓(𝑡) ≤ (𝑞 − 1)𝛾, (𝑝 − 1)𝛾 + 1 ≤ 𝑡𝑓(𝑡)

𝐹 (𝑡) ≤ (𝑞 − 1)𝛾 + 1 ∀𝑡 > 0.

From this, 𝐿𝐹 (R𝑛, d𝜎) is a Banach space. Moreover, using [Harjulehto and Hästö 2019,

Lemma 3.7.7], we can identify 𝐿𝐹 (R𝑛, d𝜎) with 𝐿(𝑝−1)𝛾+1(R𝑛, d𝜎) ∩ 𝐿(𝑞−1)𝛾+1(R𝑛, d𝜎) as

Banach spaces, where the intersection is equipped with the norm

‖𝑢‖𝐿(𝑝−1)𝛾+1∩𝐿(𝑞−1)𝛾+1 = max {‖𝑢‖𝐿(𝑝−1)𝛾+1 , ‖𝑢‖𝐿(𝑞−1)𝛾+1} .

We will consider supersolutions to the integral equation (𝑆).

Definition 4.1.3. A supersolution to (𝑆) is a nonnegative function 𝑢 ∈ 𝐿𝑓
loc(R𝑛, d𝜎) which

satisfies (pointwise)

𝑢 ≥ W𝐺

(︁
𝑓(𝑢)d𝜎

)︁
in R𝑛. (4.1.14)

The notion of solution or subsolution to (𝑆) is defined similarly by replacing “≥” by “=” or

“≤” in (4.1.14), respectively.

In the following theorem, we obtain a lower bound for supersolutions to (𝑆) in terms of

Wolff potentials, whenever (4.0.1) holds.

Theorem 4.1.4. Let 𝜎 ∈ 𝑀+(R𝑛) satisfying (4.1.10) and let 𝑢 be a nontrivial supersolution

to (4.1.14). Then there exists a constant 0 < 𝐶 < 1 depending only 𝑛, 𝑝, 𝑞 and 𝛾 such that

𝑢(𝑥) ≥ 𝐶 (W𝐺𝜎(𝑥))
1

1−𝛾 ∀𝑥 ∈ R𝑛. (4.1.15)

Let us show the following result before proving Theorem 4.1.4.

Lemma 4.1.5. Fix 𝛼 > 0 and let 𝜙(𝑡) = 𝑔(𝑡𝛼), 𝑡 ≥ 0. Let 𝜎 ∈ 𝑀+(R𝑛) satisfying (4.1.10).

Then there exists a constant 0 < 𝜆 < 1, which depends only on 𝑛, 𝑝, 𝑞 and 𝛼, such that

W𝐺

(︁
𝜙(W𝐺𝜎)d𝜎

)︁
(𝑥) ≥ 𝜆 (W𝐺𝜎(𝑥))1+𝛼 , ∀𝑥 ∈ R𝑛.
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Proof of Lemma 4.1.5. By definition (1.0.5), for any 𝑡 > 0

W𝐺𝜎(𝑦) ≥
ˆ ∞

𝑡

𝑔−1
(︃

𝜎(𝐵(𝑦, 𝑠))
𝑠𝑛−1

)︃
d𝑠, ∀𝑦 ∈ R𝑛.

Notice that 𝐵(𝑦, 2𝑠) ⊃ 𝐵(𝑥, 𝑠) for 𝑦 ∈ 𝐵(𝑥, 𝑡) and 𝑠 ≥ 𝑡, whence by (2.3.6) and the previous

estimate it holds

W𝐺𝜎(𝑦) ≥
ˆ ∞

𝑡

𝑔−1
(︃

𝜎(𝐵(𝑦, 𝑠))
𝑠𝑛−1

)︃
d𝑠 =

ˆ ∞

𝑡/2
𝑔−1

(︃
𝜎(𝐵(𝑦, 2𝑠))

(2𝑠)𝑛−1

)︃
d𝑠

≥ 𝑐1

ˆ ∞

𝑡/2
𝑔−1

(︃
𝜎(𝐵(𝑦, 2𝑠))

𝑠𝑛−1

)︃
d𝑠 ≥ 𝑐1

ˆ ∞

𝑡

𝑔−1
(︃

𝜎(𝐵(𝑦, 2𝑠))
𝑠𝑛−1

)︃
d𝑠

≥ 𝑐1

ˆ ∞

𝑡

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑠))
𝑠𝑛−1

)︃
d𝑠 =: 𝑐1𝜌(𝑡), (4.1.16)

where 𝑐1 = 𝑐1(𝑛, 𝑝, 𝑞) > 0. Since 𝜙(𝑡) = 𝑔(𝑡𝛼) is an increasing function, it follows from

(4.1.16) that

W𝐺

(︁
𝜙(W𝐺𝜎)d𝜎

)︁
(𝑥) ≥

ˆ ∞

0
𝑔−1

[︃
1

𝑡𝑛−1

ˆ
𝐵(𝑥,𝑡)

𝜙
(︁
W𝐺𝜎(𝑦)

)︁
d𝜎(𝑦)

]︃
d𝑡

≥
ˆ ∞

0
𝑔−1

[︃
1

𝑡𝑛−1

ˆ
𝐵(𝑥,𝑡)

𝜙(𝑐1𝜌(𝑡))d𝜎(𝑦)
]︃

d𝑡

=
ˆ ∞

0
𝑔−1

[︃
𝜙(𝑐1𝜌(𝑡))𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−1

]︃
d𝑡 ∀𝑥 ∈ R𝑛. (4.1.17)

By (2.3.4) and (2.3.6), we have respectively 𝜙(𝑐1𝜌(𝑡)) ≥ 𝑐2𝜙(𝜌(𝑡)) and 𝑔−1(𝑐2𝜙(𝜌(𝑡))) ≥

𝑐3𝑔
−1(𝜙(𝜌(𝑡))), where 𝑐2 = 𝑐2(𝑛, 𝑝, 𝑞, 𝛼) > 0 and 𝑐3 = 𝑐3(𝑛, 𝑝, 𝑞, 𝛼) > 0. Using these

estimates in (4.1.17), with the aid of (4.0.2), we obtain

W𝐺

(︁
𝜙(W𝐺𝜎)d𝜎

)︁
(𝑥) ≥ 𝑐3

ˆ ∞

0
𝑔−1

[︃
𝜙(𝜌(𝑡))𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−1

]︃
d𝑡

≥ 𝑐3

ˆ ∞

0
𝑔−1(𝜙(𝜌(𝑡)))𝑔−1

(︃
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−1

)︃
d𝑡. (4.1.18)

Note that 𝑔−1(𝜙(𝜌(𝑡))) = 𝜌(𝑡)𝛼 and, by Fundamental Theorem of Calculus,

𝜌′(𝑡) = d
d𝑡

(︃ˆ ∞

𝑡

𝑔−1
(︃

𝜎(𝐵(𝑥, 𝑠))
𝑠𝑛−1

)︃
d𝑠

)︃
= −𝑔−1

(︃
𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−1

)︃
,

Hence, we may rewrite (4.1.18) as follows:

W𝐺

(︁
𝜙(W𝐺𝜎)d𝜎

)︁
(𝑥) ≥ 𝑐3

ˆ ∞

0
𝜌(𝑡)𝛼 (−𝜌′(𝑡)) d𝑡.

Integrating by parts, we concluded from the previous inequality that

W𝐺

(︁
𝜙(W𝐺𝜎)d𝜎

)︁
(𝑥) ≥ 𝑐3

1 + 𝛼
𝜌(0)1+𝛼 = 𝑐3

1 + 𝛼
(W𝐺𝜎(𝑥))1+𝛼 ,
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which completes the proof of Lemma 4.1.5 by taking

𝜆 = 𝑐3

1 + 𝛼
= 1

1 + 𝛼

(︂
𝑝

𝑞

)︂ 2
𝑝−1
(︂

𝑝

2𝑛−1𝑞

)︂𝛼(𝑞−1)
(𝑝−1)2

. (4.1.19)

Proof of Theorem 4.1.4. The main idea of the proof is to iterate the inequality (4.1.14) with

Lemma 4.1.5. First, we prove the following claim.

Claim 1. Let 𝜎 ∈ 𝑀+(R𝑛) satisfying (4.1.10). Suppose that 𝑢 is a nontrivial supersolution to

(𝑆) such that it holds

𝑢(𝑥) ≥ 𝑐 (W𝐺𝜎(𝑥))𝛿 , 𝑥 ∈ R𝑛,

where 0 < 𝑐 < 1 and 𝛿 > 0. Then

𝑢(𝑥) ≥
(︂

𝑝

𝑞

)︂ 2
𝑝−1

𝑐
𝛾(𝑞−1)

𝑝−1 𝜆 (W𝐺𝜎(𝑥))1+𝛿𝛾 𝑥 ∈ R𝑛,

where 𝜆 is the constant given in Lemma 4.1.5.

Indeed, a combination of (2.3.4) and (2.3.6) with Lemma 4.1.5 gives

𝑢(𝑥) ≥ W𝐺

(︁
𝑓(𝑢)d𝜎

)︁
≥ W𝐺

(︁
𝑓
(︁
𝑐
(︁
W𝐺𝜎(𝑥)

)︁𝛿)︁
d𝜎
)︁

≥ W𝐺

(︃
𝑝

𝑞
𝑐𝛾(𝑞−1)𝑔(

(︁
W𝐺𝜎(𝑥)

)︁𝛿𝛾
)d𝜎

)︃

≥
(︃

𝑝

𝑞

)︃ 2
𝑝−1

𝑐
𝛾(𝑞−1)

𝑝−1 W𝐺

(︂
𝑔
(︁
(W𝐺𝜎(𝑥))𝛿𝛾

)︁
d𝜎
)︂

≥
(︃

𝑝

𝑞

)︃ 2
𝑝−1

𝑐
𝛾(𝑞−1)

𝑝−1 𝜆 (W𝐺𝜎(𝑥))1+𝛿𝛾 ,

which is our Claim 1.

Now, fix 𝑥 ∈ R𝑛 and 𝑅 > |𝑥|, and let 𝜎𝐵 = 𝜒𝐵𝜎, where 𝐵 = 𝐵(0, 𝑅). Setting d𝜇 =

𝑓(𝑢)d𝜎, we estimate W𝐺𝜇(𝑧) as follows

W𝐺𝜇(𝑧) =
ˆ ∞

0
𝑔−1

(︃
𝜇(𝐵(𝑧, 𝑡))

𝑡𝑛−1

)︃
d𝑡 ≥

ˆ ∞

𝑅

𝑔−1
(︃

𝜇(𝐵(𝑧, 𝑡))
𝑡𝑛−1

)︃
d𝑡

=
ˆ ∞

𝑅/2
𝑔−1

(︃
𝜇(𝐵(𝑧, 2𝑡))

(2𝑡)𝑛−1

)︃
2 d𝑡

≥ 𝑐1

ˆ ∞

𝑅

𝑔−1
(︃

𝜇(𝐵(𝑧, 2𝑡))
(2𝑡)𝑛−1

)︃
d𝑡,

where 𝑐1 = 𝑐1(𝑛, 𝑝, 𝑞) > 0 was obtained in a light of (2.3.6). Since 𝐵(𝑧, 2𝑡) ⊃ 𝐵(0, 𝑡) for

𝑡 ≥ 𝑅 and 𝑧 ∈ 𝐵, it follows from the previous inequality that for all 𝑧 ∈ 𝐵

W𝐺𝜇(𝑧) ≥ 𝑐1

ˆ ∞

𝑅

𝑔−1
(︃

𝜇(𝐵(0, 𝑡))
(2𝑡)𝑛−1

)︃
d𝑡 =: 𝐴(𝑅). (4.1.20)
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We may assume 𝐴(𝑅) < 1 for 𝑅 > 0 large enough. Thus iterating (4.1.14) with (4.1.20), we

obtain for all 𝑥 ∈ R𝑛

𝑢(𝑥) ≥ W𝐺(𝑓(W𝐺𝜇)d𝜎𝐵)(𝑥) ≥ W𝐺(𝑓(𝐴(𝑅))d𝜎𝐵)(𝑥)

≥
ˆ ∞

0
𝑔−1

(︃
𝑓(𝐴(𝑅))𝜎𝐵(𝐵(𝑥, 𝑡))

𝑡𝑛−1

)︃
d𝑡

≥ 𝐴(𝑅)𝛾 W𝐺𝜎𝐵(𝑥), (4.1.21)

where in the last line was used (4.0.2). Setting 𝑐1 = 𝐴(𝑅)𝛾 and 𝛿1 = 1, by Claim 1, with 𝜎𝐵

in place of 𝜎, and (4.1.21), we construct a sequence of lower bounds for 𝑢 as follows:

𝑢(𝑥) ≥ 𝑐𝑗 (W𝐺𝜎𝐵(𝑥))𝛿𝑗 , 𝑥 ∈ R𝑛, (4.1.22)

where for 𝑗 = 2, 3, . . ., 𝛿𝑗 and 𝑐𝑗 are given by

𝛿𝑗 = 1 + 𝛾𝛿𝑗−1,

𝑐𝑗 = 𝜆
(︂

𝑝

𝑞

)︂ 2
𝑝−1

𝑐
𝛾(𝑞−1)

𝑝−1
𝑗−1 .

(4.1.23)

Since 0 < 𝛾 < (𝑝 − 1)/(𝑞 − 1) ≤ 1, letting the limit 𝑗 → ∞ in (4.1.23), it is straightforward

to conclude that

lim
𝑗→∞

𝛿𝑗 = 1
1 − 𝛾

, (4.1.24)

lim
𝑗→∞

𝑐𝑗 = 𝜆
𝑝−1

𝑝−1−𝛾(𝑞−1)

(︂
𝑝

𝑞

)︂ 2(𝑝−1)
(𝑝−1)(𝑞−1)−𝛾(𝑞−1)2

=: 𝐶.

Passing to the limit as 𝑗 → ∞ in (4.1.22), we deduce

𝑢(𝑥) ≥ 𝐶 (W𝐺𝜎𝐵(𝑥))
1

1−𝛾 ∀𝑥 ∈ R𝑛.

Since 𝐶 does not depend on 𝑅, the proof of Theorem 4.1.4 is established after letting 𝑅 → ∞

in the previous inequality.

Suppose that (4.1.10) holds. In the view of Theorem 4.1.4, if 𝑢 ∈ 𝐿𝐹 (R𝑛, d𝜎) is a solution

to (𝑆), then (W𝐺𝜎)1/(1−𝛾) ∈ 𝐿𝐹 (R𝑛, d𝜎), that is
ˆ
R𝑛

𝐹
(︁
W𝐺𝜎

1
1−𝛾

)︁
d𝜎 < ∞. (4.1.25)

Hence condition (4.1.25) is necessary to the existence of solutions to (𝑆) in 𝐿𝐹 (R𝑛, d𝜎).

However, this condition is far to be sufficient (at least) to ensure such existence in 𝐿𝐹 (R𝑛, d𝜎).

We will show that (1.3.21) is a sufficient condition to the existence of a solution to (𝑆) in

𝐿𝐹 (R𝑛, d𝜎). Before that, the following result will be needed.
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Lemma 4.1.6. Let 𝜎 ∈ 𝑀+(R𝑛) satisfying (4.1.10) and (1.3.21). Then there exists a con-

stant 𝑐 > 0 such that for all 𝑢 ∈ 𝐿𝐹 (R𝑛, d𝜎), 𝑢 ≥ 0, it holds
ˆ
R𝑛

𝐹
(︁
W𝐺(𝑓(𝑢)d𝜎)

)︁
d𝜎

≤ 𝑐

[︃(︃ˆ
R𝑛

𝐹 (𝑢) d𝜎

)︃ 𝑝−1
𝑞−1 𝛾

+
(︃ˆ

R𝑛

𝐹 (𝑢) d𝜎

)︃𝛾

+
(︃ˆ

R𝑛

𝐹 (𝑢) d𝜎

)︃ 𝑞−1
𝑝−1 𝛾]︃

.

The constant 𝑐 depends only on 𝑛, 𝑝, 𝑞, and the 𝐿𝐹 -norms of the Wolff potentials mentioned

in (1.3.21).

Proof. We begin the proof with the following claim.

Claim 2. Fix 1 < 𝑠 < ∞, 0 < 𝑟 < 𝑠 − 1 and 𝛼 > 𝑟 − 1. Let 𝜎 ∈ 𝑀+(R𝑛) satisfying(︁
W𝑠𝜎

)︁(𝑠−1)/(𝑠−1−𝑟)
∈ 𝐿1+𝛼(R𝑛, d𝜎). Then there exists a constant

𝑐0 = 𝑐0

(︂
𝑛, 𝑟, 𝑠, 𝛼, ‖

(︁
W𝑠𝜎

)︁ 𝑠−1
𝑠−1−𝑟 ‖𝐿1+𝛼

)︂
> 0

such that for all 𝑢 ∈ 𝐿1+𝛼(R𝑛, d𝜎), 𝑢 ≥ 0, it holds
ˆ
R𝑛

(︁
W𝑠(𝑢𝑟d𝜎)

)︁1+𝛼
d𝜎 ≤ 𝑐0

(︃ˆ
R𝑛

𝑢1+𝛼 d𝜎

)︃ 𝑟
𝑠−1

.

Indeed, fix 0 ≤ 𝑢 ∈ 𝐿1+𝛼(R𝑛, d𝜎). By definition (1.3.20), we have

W𝑠(𝑢𝑟d𝜎)(𝑥) =
ˆ ∞

0

(︃´
𝐵(𝑥,𝑡) 𝑢𝑟 d𝜎

𝑡𝑛−1

)︃ 1
𝑠−1

d𝑡

≤
ˆ ∞

0

(︃
𝑀𝜎𝑢𝑟(𝑥)𝜎(𝐵(𝑥, 𝑡))

𝑡𝑛−1

)︃ 1
𝑠−1

d𝑡

=
(︁
𝑀𝜎𝑢𝑟(𝑥)

)︁ 1
𝑠−1 W𝑠𝜎(𝑥) ∀𝑥 ∈ R𝑛,

where 𝑀𝜎· is the centered maximal operator defined by

𝑀𝜎𝑣(𝑥) = sup
𝑡>0

1
𝜎(𝐵(𝑥, 𝑡))

ˆ
𝐵(𝑥,𝑡)

𝑣 d𝜎, 𝑣 ∈ 𝐿1
loc(R𝑛, d𝜎).

Then using the classical Hölder’s inequality with expoents 𝛽 = (𝑠−1)/𝑟 and 𝛽′ = (𝑠−1)/(𝑠−

1 − 𝑟) in the preceding inequality, we obtain
ˆ
R𝑛

(︁
W𝑠(𝑢𝑟d𝜎)

)︁1+𝛼
d𝜎 ≤

ˆ
R𝑛

(︁
𝑀𝜎𝑢𝑟

)︁ 1+𝛼
𝑠−1
(︁
W𝑠𝜎

)︁1+𝛼
d𝜎

≤
(︃ˆ

R𝑛

(︁
W𝑠𝜎

)︁ (𝑠−1)(1+𝛼)
𝑠−1−𝑟 d𝜎

)︃ 𝑠−1−𝑟
𝑠−1

(︃ˆ
R𝑛

(︁
𝑀𝜎𝑢𝑟

)︁ 1+𝛼
𝑟 d𝜎

)︃ 𝑟
𝑠−1

.

(4.1.26)
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Being (1 + 𝛼)/𝑟 > 1, 𝑀𝜎 : 𝐿(1+𝛼)/𝑟(R𝑛, d𝜎) → 𝐿(1+𝛼)/𝑟(R𝑛, d𝜎) is a bounded operator

(see for instance [Malý and Ziemer 1997, Theorem 1.22]), that is there exists a constant

𝑐 = 𝑐(𝑛, 𝑟, 𝛼) > 0 such that
(︃ˆ

R𝑛

(︁
𝑀𝜎𝑢𝑟

)︁ 1+𝛼
𝑟 d𝜎

)︃ 𝑟
𝑠−1

≤ 𝑐
𝑟

𝑠−1

(︃ˆ
R𝑛

(︁
𝑢𝑟
)︁ 1+𝛼

𝑟 d𝜎

)︃ 𝑟
𝑠−1

.

Using this in (4.1.26), we arrive at
ˆ
R𝑛

(︁
W𝑠(𝑢𝑟d𝜎)

)︁1+𝛼
d𝜎 ≤ 𝑐0

(︃ˆ
R𝑛

𝑢1+𝛼 d𝜎

)︃ 𝑟
𝑠−1

,

with 𝑐0 = 𝑐0

(︂
𝑛, 𝑟, 𝑠, 𝛼, ‖

(︁
W𝑠𝜎

)︁(𝑠−1)/(𝑠−1−𝑟)
‖𝐿1+𝛼

)︂
> 0, which proves Claim 2.

Next, fix 0 ≤ 𝑢 ∈ 𝐿𝐹 (R𝑛, d𝜎). Note that from (2.3.8) and (4.1.13), there exists a constant

𝑐1 = 𝑐1(𝑝, 𝑞, 𝛾) > 0 such that

W𝐺𝜎(𝑥) ≤ 𝑐1
(︁
W𝑝𝜎(𝑥) + W𝑞𝜎(𝑥)

)︁
∀𝑥 ∈ R𝑛,

𝐹 (𝑡) ≤ 𝑐1(𝑡(𝑝−1)𝛾+1 + 𝑡(𝑞−1)𝛾+1) ∀𝑡 ≥ 0.

Then, combining the previous inequalities, we can show that
ˆ
R𝑛

𝐹
(︁
W𝐺(𝑓(𝑢)d𝜎)

)︁
d𝜎

≤
ˆ
R𝑛

(︁
W𝐺(𝑓(𝑢)d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 +

ˆ
R𝑛

(︁
W𝐺(𝑓(𝑢)d𝜎)

)︁(𝑞−1)𝛾+1
d𝜎

≤ 𝑐2

[︃ ˆ
R𝑛

(︁
W𝑝(𝑓(𝑢)d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 +

ˆ
R𝑛

(︁
W𝑞(𝑓(𝑢)d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎

+
ˆ
R𝑛

(︁
W𝑝(𝑓(𝑢)d𝜎)

)︁(𝑞−1)𝛾+1
d𝜎 +

ˆ
R𝑛

(︁
W𝑞(𝑓(𝑢)d𝜎)

)︁(𝑞−1)𝛾+1
]︃
, (4.1.27)

where 𝑐2 = 𝑐2(𝑝, 𝑞) > 0. We shall make use of the following elementary inequality [Malý and

Ziemer 1997, Lemma 1.1]: given 𝛿 > 0, for all 𝑎, 𝑏 ∈ R it holds

|𝑎 + 𝑏|𝛿 ≤ 2𝛿−1(|𝑎|𝛿 + |𝑏|𝛿).

Because of this inequality, reminding of the definition of 𝑓(𝑡) in (4.1.13), we will split each
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integral in (4.1.27) into another two ones:
ˆ
R𝑛

𝐹
(︁
W𝐺(𝑓(𝑢)d𝜎)

)︁
d𝜎

≤ 𝑐2

[︃ ˆ
R𝑛

(︁
W𝑝(𝑓(𝑢)d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 +

ˆ
R𝑛

(︁
W𝑞(𝑓(𝑢)d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎

+
ˆ
R𝑛

(︁
W𝑝(𝑓(𝑢)d𝜎)

)︁(𝑞−1)𝛾+1
d𝜎 +

ˆ
R𝑛

(︁
W𝑞(𝑓(𝑢)d𝜎)

)︁(𝑞−1)𝛾+1
]︃

≤ 𝑐3

[︃ ˆ
R𝑛

(︁
W𝑝(𝑢(𝑝−1)𝛾d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 +

ˆ
R𝑛

(︁
W𝑝(𝑢(𝑞−1)𝛾d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎

+
ˆ
R𝑛

(︁
W𝑞(𝑢(𝑝−1)𝛾d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 +

ˆ
R𝑛

(︁
W𝑞(𝑢(𝑞−1)𝛾d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎

+
ˆ
R𝑛

(︁
W𝑝(𝑢(𝑞−1)𝛾d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 +

ˆ
R𝑛

(︁
W𝑝(𝑢(𝑞−1)𝛾d𝜎)

)︁(𝑞−1)𝛾+1
d𝜎

+
ˆ
R𝑛

(︁
W𝑞(𝑢(𝑞−1)𝛾d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 +

ˆ
R𝑛

(︁
W𝑞(𝑢(𝑞−1)𝛾d𝜎)

)︁(𝑞−1)𝛾+1
d𝜎

]︃

=: 𝑐3

8∑︁
𝑗=1

𝐼𝑗, (4.1.28)

where 𝑐3 = 𝑐3(𝛾, 𝑝, 𝑞) > 0. By assumption on 𝛾, one has (𝑝−1)𝛾/(𝑞−1) < 𝛾 < (𝑞−1)𝛾/(𝑝−

1) < 1 and (𝑝−1)𝛾 +1 > (𝑞 −1)𝛾. Hence we estimate 𝐼1, 𝐼2, , 𝐼3 and 𝐼4 by applying Claim 2

with 𝛼 = (𝑝 − 1)𝛾, 𝑟1 = (𝑝 − 1)𝛾, 𝑠1 = 𝑝, 𝑟2 = (𝑞 − 1)𝛾, 𝑠2 = 𝑝, 𝑟3 = (𝑝 − 1)𝛾, 𝑠3 = 𝑞 and

𝑟4 = (𝑞 − 1)𝛾, 𝑠4 = 𝑞, respectively to deduce

𝐼1 =
ˆ
R𝑛

(︁
W𝑝(𝑢(𝑝−1)𝛾d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 ≤ 𝑐0,1

(︃ˆ
R𝑛

𝑢(𝑝−1)𝛾+1 d𝜎

)︃𝛾

,

𝐼2 =
ˆ
R𝑛

(︁
W𝑝(𝑢(𝑞−1)𝛾d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 ≤ 𝑐0,2

(︃ˆ
R𝑛

𝑢(𝑝−1)𝛾+1 d𝜎

)︃ 𝑞−1
𝑝−1 𝛾

,

𝐼3 =
ˆ
R𝑛

(︁
W𝑞(𝑢(𝑝−1)𝛾d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 ≤ 𝑐0,3

(︃ˆ
R𝑛

𝑢(𝑝−1)𝛾+1 d𝜎

)︃ 𝑝−1
𝑞−1 𝛾

,

𝐼4 =
ˆ
R𝑛

(︁
W𝑞(𝑢(𝑞−1)𝛾d𝜎)

)︁(𝑝−1)𝛾+1
d𝜎 ≤ 𝑐0,4

(︃ˆ
R𝑛

𝑢(𝑝−1)𝛾+1 d𝜎

)︃𝛾

.

(4.1.29)

Similarly, to estimate 𝐼5, 𝐼6, 𝐼7 and 𝐼8, we apply Claim 2 with 𝛼 = (𝑞 − 1)𝛾, 𝑟5 = (𝑝 − 1)𝛾,

𝑠5 = 𝑝, 𝑟6 = (𝑞 − 1)𝛾, 𝑠6 = 𝑝, 𝑟7 = (𝑝 − 1)𝛾, 𝑠7 = 𝑞 and 𝑟8 = (𝑞 − 1)𝛾, 𝑠8 = 𝑞, respectively
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to deduce

𝐼5 =
ˆ
R𝑛

(︁
W𝑝(𝑢(𝑝−1)𝛾d𝜎)

)︁(𝑞−1)𝛾+1
d𝜎 ≤ 𝑐0,5

(︃ˆ
R𝑛

𝑢(𝑞−1)𝛾+1 d𝜎

)︃𝛾

,

𝐼6 =
ˆ
R𝑛

(︁
W𝑝(𝑢(𝑞−1)𝛾d𝜎)

)︁(𝑞−1)𝛾+1
d𝜎 ≤ 𝑐0,6

(︃ˆ
R𝑛

𝑢(𝑞−1)𝛾+1 d𝜎

)︃ 𝑞−1
𝑝−1 𝛾

,

𝐼7 =
ˆ
R𝑛

(︁
W𝑞(𝑢(𝑝−1)𝛾d𝜎)

)︁(𝑞−1)𝛾+1
d𝜎 ≤ 𝑐0,7

(︃ˆ
R𝑛

𝑢(𝑞−1)𝛾+1 d𝜎

)︃ 𝑝−1
𝑞−1 𝛾

,

𝐼8 =
ˆ
R𝑛

(︁
W𝑞(𝑢(𝑞−1)𝛾d𝜎)

)︁(𝑞−1)𝛾+1
d𝜎 ≤ 𝑐0,8

(︃ˆ
R𝑛

𝑢(𝑞−1)𝛾+1 d𝜎

)︃𝛾

.

(4.1.30)

Here the constants 𝑐0,𝑗 > 0, 𝑗 = 1, . . . , 8, are given by Claim 2, whose depend only on

𝑛, 𝑝, 𝑞, , 𝛾 and the 𝐿𝐹 -norms of the Wolff potentials presented in (1.3.21). We have

max{𝑡(𝑝−1)𝛾+1, 𝑡(𝑞−1)𝛾+1} ≤ 𝑐4𝐹 (𝑡) ∀𝑡 > 0,

where 𝑐4 = 𝑐4(𝑝, 𝑞, 𝛾) > 0. A combination of (4.1.28) with (4.1.29) and (4.1.30), completes

the proof of Lemma 4.1.6.

Remark 4.1.7. Because of (2.3.8), W𝐺𝜎 is controlled from above by the sum of W𝑝𝜎 with

W𝑞𝜎. Consequently, (1.3.21) implies that

W𝐺𝜎
1

1−𝛾 , W𝐺𝜎
𝑝−1

𝑝−1−𝛾(𝑞−1) , W𝐺𝜎
𝑞−1

𝑞−1−𝛾(𝑝−1) ∈ 𝐿𝐹 (R𝑛, d𝜎). (4.1.31)

It would be desirable to show that (4.1.31) is a sufficient condition to ensure the existence of

solutions to (𝑆) in 𝐿𝐹 (R𝑛, d𝜎), but we have not been able to do this.

4.1.1 Proof of Theorem 1.3.14

Let 𝜎 ∈ 𝑀+(R𝑛) satisfying (4.1.10), that is W𝐺𝜎 < ∞ in R𝑛. Our proof starts with the

assertion that there exists a constant 𝜀 > 0 sufficiently small such that

𝑢0(𝑥) = 𝜀 (W𝐺𝜎(𝑥))
1

1−𝛾 , 𝑥 ∈ R𝑛, (4.1.32)

is a subsolution to (𝑆). Indeed, combining Lemma 4.1.5 with (2.3.6), we obtain

W𝐺(𝑓(𝑢0) d𝜎) ≥
(︂

𝑝

𝑞

)︂ 2
𝑝−1

𝜆 𝜀
(𝑞−1)𝛾

𝑝−1 (W𝐺𝜎)
1

1−𝛾 ,

where 𝜆 > 0 is the constant given in Lemma 4.1.5. Consequently, picking 𝜀 > 0 such that

𝜀 ≤
(︂(︂

𝑝

𝑞

)︂ 2
𝑝−1

𝜆
)︂ 𝑝−1

𝑝−1−𝛾(𝑞−1)
,
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we concluded that W𝐺(𝑓(𝑢0) d𝜎) ≥ 𝑢0, which is our assertion.

Now, let us construct a sequence of iterations of functions 𝑢𝑗 as follows:

𝑢𝑗 = W𝐺(𝑓(𝑢𝑗−1) d𝜎), 𝑗 = 1, 2, . . . (4.1.33)

From the previous assertion, 𝑢1 ≥ 𝑢0 in R𝑛. Arguing by induction, one has 𝑢𝑗−1 ≤ 𝑢𝑗 in

R𝑛 for all 𝑗 ≥ 1. By assumption (1.3.21), 𝑢0 ∈ 𝐿𝐹 (R𝑛, d𝜎). Consequently, we can verify by

induction that 𝑢𝑗 ∈ 𝐿𝐹 (R𝑛, d𝜎) for all 𝑗 = 1, 2, . . .. Indeed, suppose that 𝑢𝑗−1 ∈ 𝐿𝐹 (R𝑛, d𝜎)

for some 𝑗 ≥ 1. Using Lemma 4.1.6, we have
ˆ
R𝑛

𝐹 (𝑢𝑗) d𝜎 =
ˆ
R𝑛

𝐹
(︁
W𝐺(𝑓(𝑢𝑗−1)d𝜎)

)︁
d𝜎

≤ 𝑐

[︃(︃ ˆ
R𝑛

𝐹 (𝑢𝑗−1) d𝜎

)︃ 𝑝−1
𝑞−1 𝛾

+
(︃ˆ

R𝑛

𝐹 (𝑢𝑗−1) d𝜎

)︃𝛾

+
(︃ˆ

R𝑛

𝐹 (𝑢𝑗−1) d𝜎

)︃ 𝑞−1
𝑝−1 𝛾]︃

< ∞.

This shows 𝑢𝑗 ∈ 𝐿𝐹 (R𝑛, d𝜎). Furthermore, being {𝑢𝑗} an increasing sequence (pointwise), it

follows from the preceding inequality that
ˆ
R𝑛

𝐹 (𝑢𝑗) d𝜎

≤ 𝑐

[︃(︃ˆ
R𝑛

𝐹 (𝑢𝑗) d𝜎

)︃ 𝑝−1
𝑞−1 𝛾

+
(︃ˆ

R𝑛

𝐹 (𝑢𝑗) d𝜎

)︃𝛾

+
(︃ˆ

R𝑛

𝐹 (𝑢𝑗) d𝜎

)︃ 𝑞−1
𝑝−1 𝛾]︃

∀𝑗 ≥ 1.

(4.1.34)

We claim that {𝑢𝑗} is uniformly bounded in 𝐿𝐹 (R𝑛, d𝜎). Indeed, consider the continuous real

function on [0, ∞)

ℎ(𝑡) = 𝑡 − 𝑐
(︁
𝑡

𝑝−1
𝑞−1 𝛾 + 𝑡𝛾 + 𝑡

𝑞−1
𝑝−1 𝛾

)︁
.

Notice that (4.1.34) is equivalently to ℎ
(︁ ´

R𝑛 𝐹 (𝑢𝑗) d𝜎
)︁

≤ 0 for all 𝑗 ≥ 1. Since (𝑝−1)𝛾/(𝑞−

1) < 𝛾 < (𝑞 − 1)𝛾/(𝑝 − 1) < 1, one has

lim
𝑡→∞

ℎ(𝑡) = ∞.

Hence the subset {𝑡 ≥ 0 : ℎ(𝑡) ≤ 0} is bounded in [0, ∞), that is there exists a constant

𝐶 = 𝐶(𝑝, 𝑞, 𝛾, 𝑐) > 0 such that ℎ(𝑡) ≤ 0 if and only if 𝑡 ≤ 𝐶. Thus
ˆ
R𝑛

𝐹 (𝑢𝑗) d𝜎 ≤ 𝐶 ∀𝑗 ≥ 1.

Therefore, letting 𝑗 → ∞ in the previous inequality, by the Monotone Convergence Theo-

rem there exists 𝑢 = lim𝑗→∞ 𝑢𝑗 (pointwise) such that 𝑢 ∈ 𝐿𝐹 (R𝑛, d𝜎). Combining Hölder’s

inequality (Lemma M) with (2.3.9), we arrive 𝐿𝐹 (R𝑛, d𝜎) ⊂ 𝐿𝑓
loc(R𝑛, d𝜎), whence 𝑢 satisfies

(𝑆). This completes the proof of Theorem 1.3.14.
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4.2 SOME AUXILIARY RESULTS

In this section, we establish some preliminary results concerned Eq. (𝑃2). It is worth pointing

out that these results hold for any 𝑁 -functions 𝐺 which enjoy the property (2.3.3), with

1 < 𝑝 ≤ 𝑞 < 𝑛. First, we will use the following lemma to ensure the existence of solutions to

(𝑃2).

Lemma 4.2.1. Let 𝑣 ∈ 𝐿𝐹 (R𝑛, d𝜎) be a supersolution to (𝑆). Then 𝑓(𝑣) d𝜎 ∈
(︁
𝒟1,𝐺(R𝑛)

)︁*
.

Proof. First, recal that ‖∇ · ‖𝐿𝐺 defines a norm on 𝒟1,𝐺(R𝑛) provided 1 < 𝑝 ≤ 𝑞 < 𝑛 in

(2.3.3). Let 𝜔 = 𝜎 𝑓(𝑣) ∈ 𝑀+(R𝑛). Since 𝐶∞
𝑐 (R𝑛) is dense in 𝒟1,𝐺(R𝑛), it is sufficient to

show there exists a constant 𝑐 > 0 such that⃒⃒⃒⃒
⃒
ˆ
R𝑛

𝜙 d𝜔

⃒⃒⃒⃒
⃒ ≤ 𝑐 ‖∇𝜙‖𝐿𝐺 ∀𝜙 ∈ 𝐶∞

𝑐 (R𝑛). (4.2.1)

Since 𝑣 ≥ W𝐺(𝑓(𝑣)d𝜎) in R𝑛 with 𝑣 ∈ 𝐿𝐹 (R𝑛, d𝜎), it follows from (4.1.13) that
ˆ
R𝑛

W𝐺𝜔 d𝜔 =
ˆ
R𝑛

W𝐺(𝑓(𝑣)d𝜎) d𝜎 ≤
ˆ
R𝑛

𝑣𝑓(𝑣) d𝜎

≤ 𝑐1

ˆ
R𝑛

𝐹 (𝑣) d𝜎 < ∞, (4.2.2)

where 𝑐1 = 𝑐1(𝑝, 𝑞, 𝛾) > 0. Let 𝐵𝑗 = 𝐵(0, 𝑗) and let 𝜎𝑗 = 𝜒𝐵𝑗
𝜎, for 𝑗 > 1. Setting

𝜔𝑗 = 𝑓(𝑣)d𝜎𝑗, one has supp 𝜔𝑗 ⊂ 𝐵𝑗. By (4.2.2),
ˆ

𝐵𝑗+1

W𝐺𝜔𝑗 d𝜔𝑗 ≤
ˆ
R𝑛

W𝐺𝜔 d𝜔 < ∞ ∀𝑗 > 1.

Using Theorem S, we infer from previous inequality that 𝜔𝑗 ∈
(︁
𝑊 1,𝐺

0 (𝐵𝑗+1)
)︁*

for all 𝑗 > 1.

Next, let 𝜙 ∈ 𝐶∞
𝑐 (R𝑛) with supp 𝜙 ⊂ 𝐵𝑗+1, for some 𝑗 > 1. Then there exists a constant

𝑐𝑗 > 0 such that ⃒⃒⃒⃒
⃒
ˆ
R𝑛

𝜙 d𝜔𝑗

⃒⃒⃒⃒
⃒ ≤ 𝑐𝑗 ‖∇𝜙‖𝐿𝐺 . (4.2.3)

Applying Theorem Q, there exists 𝑢𝑗 ∈ 𝑊 1,𝐺
0 (𝐵𝑗+1) satisfying eq. (2.3.14) with 𝜇 = 𝜔𝑗, that

is

−div
(︃

𝑔(|∇𝑢𝑗|)
|∇𝑢𝑗|

∇𝑢𝑗

)︃
= 𝜔𝑗 in 𝐵𝑗+1. (4.2.4)

Claim 3. The constant 𝑐𝑗 given in (4.2.3) are uniformly bounded for all 𝑗 > 1.

Indeed, first note that we may assume

𝑐𝑗 ≤ 𝑐2

(︃ˆ
𝐵𝑗+1

𝐺(|∇𝑢𝑗|) d𝑥

)︃
+ 1 ∀𝑗 > 1, (4.2.5)
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where 𝑐2 = 𝑐2(𝑝, 𝑞) > 0. This is seen by testing eq. (4.2.4) with 𝜙 and by using a combination

of Cauchy–Schwarz inequality and Hölder’s inequality (Lemma M) with (2.3.10) and (2.3.9):⃒⃒⃒⃒
⃒
ˆ

𝐵𝑗+1

𝜙 d𝜔𝑗

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
ˆ

𝐵𝑗+1

𝑔(|∇𝑢𝑗|)
|∇𝑢𝑗|

∇𝑢𝑗 · ∇𝜙 d𝑥

⃒⃒⃒⃒
⃒

≤
ˆ

𝐵𝑗+1

⃒⃒⃒⃒
⃒𝑔(|∇𝑢𝑗|)

|∇𝑢𝑗|
∇𝑢𝑗

⃒⃒⃒⃒
⃒|∇𝜙| d𝑥 ≤

ˆ
𝐵𝑗+1

𝑔(|∇𝑢𝑗|)|∇𝜙| d𝑥

≤ 2‖𝑔(∇𝑢𝑗)‖𝐿𝐺* ‖∇𝜙‖𝐿𝐺 ≤
[︃
2
(︃ˆ

𝐵𝑗+1

𝐺*
(︁
𝑔(|∇𝑢𝑗|)

)︁
d𝑥

)︃
+ 1

]︃
‖∇𝜙‖𝐿𝐺

≤
[︃
𝑐2

(︃ˆ
𝐵𝑗+1

𝐺(|∇𝑢𝑗|) d𝑥

)︃
+ 1

]︃
‖∇𝜙‖𝐿𝐺 .

Notice that 𝑢𝑗 is harmonic in 𝐵𝑗+1 ∖ 𝐵𝑗 since supp 𝜔𝑗 ⊂ 𝐵𝑗, whence 𝑢𝑗 takes continuously

zero boundary values on 𝜕𝐵𝑗+1. Extending 𝑢𝑗 by zero away from 𝜕𝐵𝑗+1, with the aid of

Remark 2.3.22, we infer from Lemma P that 𝑢𝑗 is a nonnegative (almost everywhere) 𝐺-

superharmonic in whole R𝑛. By Corallary 2.3.20, for almost everywhere in R𝑛 it holds

0 ≤ 𝑢𝑗 ≤ 𝐾 W𝐺𝜔𝑗 ≤ 𝐾 W𝐺𝜔 ∀𝑗 > 1. (4.2.6)

Testing eq. (4.2.4) with 𝑢𝑗, a combination of (2.3.3) and (4.2.2) with (4.2.6) yields
ˆ
R𝑛

𝐺(|∇𝑢𝑗|) d𝑥 ≤ 1
𝑝

ˆ
R𝑛

𝑔(|∇𝑢𝑗|)|∇𝑢𝑗| d𝑥 = 1
𝑝

ˆ
R𝑛

𝑢𝑗 d𝜔𝑗

≤ 1
𝑝

ˆ
R𝑛

𝑢𝑗 d𝜔 ≤ 𝐾

𝑝

ˆ
R𝑛

W𝐺𝜔 d𝜔 < ∞ ∀𝑗 > 1.

Consequently, by (4.2.5), are uniformly bounded, with

sup
𝑗>1

𝑐𝑗 ≤ 𝑐3

(︃ˆ
R𝑛

W𝐺𝜔 d𝜔

)︃
+ 1,

where 𝑐3 = 𝑐3(𝑝, 𝑞, 𝐾) > 0. This shows Claim 3.

On the other hand, by the Monotone Theorem Convergence, we have
ˆ
R𝑛

𝜙 d𝜔 = lim
𝑗→∞

ˆ
R𝑛

𝜙 d𝜔𝑗.

Thus, letting 𝑗 → ∞ in (4.2.3), we obtain⃒⃒⃒⃒
⃒
ˆ
R𝑛

𝜙 d𝜔

⃒⃒⃒⃒
⃒ = lim

𝑗→∞

⃒⃒⃒⃒
⃒
ˆ
R𝑛

𝜙 d𝜔𝑗

⃒⃒⃒⃒
⃒ ≤ 𝑐 ‖∇𝜙‖𝐿𝐺 ,

where 𝑐 = sup𝑗 𝑐𝑗. This shows (4.2.1), and proves Lemma 4.2.1.

The following lemma gives a version of the comparison principle in 𝒟1,𝐺(R𝑛).
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Lemma 4.2.2. Let 𝜇, 𝜈 ∈ 𝑀+(R𝑛) ∩
(︁
𝒟1,𝐺(R𝑛)

)︁*
such that 𝜇 ≤ 𝜈. Suppose that 𝑢, 𝑣 ∈

𝒟1,𝐺(R𝑛) are solutions (respectively) to

−div
(︃

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢

)︃
= 𝜇, −div

(︃
𝑔(|∇𝑣|)

|∇𝑣|
∇𝑣

)︃
= 𝜈 in R𝑛.

Then 𝑢 ≤ 𝑣 almost everywhere in R𝑛.

Proof. The proof is standard and relies on the use of the test function 𝜙 = (𝑢 − 𝑣)+ =

max{𝑢 − 𝑣, 0} ∈ 𝒟1,𝐺(R𝑛). Indeed, testing both equations with such 𝜙, one has
ˆ
R𝑛

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢 · ∇𝜙 d𝑥 =
ˆ
R𝑛

𝜙 d𝜇,

ˆ
R𝑛

𝑔(|∇𝑣|)
|∇𝑣|

∇𝑣 · ∇𝜙 d𝑥 =
ˆ
R𝑛

𝜙 d𝜈.

Hence

0 ≤
ˆ
R𝑛

𝜙 d𝜈 −
ˆ
R𝑛

𝜙 d𝜇 =
ˆ
R𝑛

𝑔(|∇𝑣|)
|∇𝑣|

∇𝑣 · ∇𝜙 d𝑥 −
ˆ
R𝑛

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢 · ∇𝜙 d𝑥

=
ˆ
R𝑛

(︃
𝑔(|∇𝑣|)

|∇𝑣|
∇𝑣 − 𝑔(|∇𝑢|)

|∇𝑢|
∇𝑢

)︃
· ∇𝜙 d𝑥. (4.2.7)

By [Borowski and Chlebicka 2022, Theorem 1], the following monotonicity for 𝑔 holds(︃
𝑔(|𝜉|)

|𝜉|
𝜉 − 𝑔(|𝜂|)

|𝜂|
𝜂

)︃
· (𝜉 − 𝜂) > 0 ∀𝜉, 𝜂 ∈ R𝑛, 𝜉 ̸= 𝜂. (4.2.8)

Since ∇𝜙 = ∇(𝑢 − 𝑣) = ∇𝑢 − ∇𝑣 in supp 𝜙 ⊂ {𝑢 > 𝑣}, it follows from (4.2.7) and (4.2.8)

that

0 ≤
ˆ
R𝑛

(︃
𝑔(|∇𝑣|)

|∇𝑣|
∇𝑣 − 𝑔(|∇𝑢|)

|∇𝑢|
∇𝑢

)︃
· (∇𝑢 − ∇𝑣) d𝑥 ≤ 0,

which implies that ∇𝜙 = 0 almost everywhere in R𝑛. Thus 𝜙 = 0 almost everywhere in R𝑛,

and proves Lemma 4.2.2.

The following lemma concerning weak compactness in 𝒟1,𝐺(R𝑛), and it will be useful

in the proof of Theorem 1.3.15. Before the statement, we recall the Mazur lemma (see for

instance [Brezis 2011, Corollary 3.8])

Lemma U (The Mazur lemma). Let 𝒳 be a normed space and let {𝑥𝑗} be a sequence,

which converges weakly in 𝒳 to 𝑥. Then there exists a sequence {𝑥̃𝑗} made up of convex

combinations of the {𝑥𝑗},

𝑥̃𝑗 :=
𝑗∑︁

𝑘=1
𝜆𝑘,𝑗 𝑥𝑘, 𝜆𝑘,𝑗 ≥ 0,

𝑗∑︁
𝑘=1

𝜆𝑘,𝑗 = 1,

such that {𝑥̃𝑗} converges strongly in 𝒳 to 𝑥.



94

Lemma 4.2.3. Suppose that {𝑢𝑗} ⊂ 𝒟1,𝐺(R𝑛) is a sequence converging pointwise to 𝑢 almost

everywhere in R𝑛. If {∇𝑢𝑗} is bounded in 𝐿𝐺(R𝑛), then 𝑢 ∈ 𝒟1,𝐺(R𝑛) and ∇𝑢𝑗 ⇀ ∇𝑢 in

𝐿𝐺(R𝑛).

Proof. The proof is similar in spirit to the proof of [Heinonen, Kilpeläinen and Martio 2006,

Lemma 1.33]. Fix 𝐵 ⊂ R𝑛 a ball. First, we will need the following claim:

Claim 4. Let {𝑣𝑗} be a sequence in 𝑊 1,𝐺(𝐵), and let 𝑣 ∈ 𝐿𝐺(𝐵) and 𝑋 : 𝐵 → R𝑛 with

|𝑋| ∈ 𝐿𝐺(𝐵) satisfying
𝑣𝑗 ⇀ 𝑣 in 𝐿𝐺,

∇𝑣𝑗 ⇀ 𝑋 in 𝐿𝐺.

Then 𝑣 ∈ 𝑊 1,𝐺(𝐵) and 𝑋 = ∇𝑣.

Indeed, consider the product space 𝐿𝐺(𝐵) × 𝐿𝐺(𝐵;R𝑛) with the norm

‖(𝑣, 𝑋)‖ = ‖𝑣‖𝐿𝐺 + ‖|𝑋|‖𝐿𝐺 .

Observe that (𝑣𝑗, ∇𝑣𝑗) converges weakly in 𝐿𝐺(𝐵)×𝐿𝐺(𝐵;R𝑛) to (𝑣, 𝑋). The Mazur lemma

(Lemma U) gives that there is a sequence of convex combinations

𝑤𝑗 :=
𝑗∑︁

𝑘=1
𝜆𝑘,𝑗 (𝑣𝑘, ∇𝑣𝑘), 𝜆𝑘,𝑗 ≥ 0,

𝑗∑︁
𝑘=1

𝜆𝑘,𝑗 = 1,

which converges strongly in 𝐿𝐺(𝐵) × 𝐿𝐺(𝐵;R𝑛) to (𝑣, 𝑋). In particular, the sequence {𝑣𝑗},

given by

𝑣𝑗 =
𝑗∑︁

𝑘=1
𝜆𝑘,𝑗 𝑣𝑘, is a Cauchy sequence in 𝑊 1,𝐺(𝐵).

Accordingly, there exist 𝑣 ∈ 𝑊 1,𝐺(𝐵) such that 𝑣 = lim𝑗 𝑣𝑗 in 𝑊 1,𝐺(𝐵). Hence 𝑣 = 𝑣 in

𝐿𝐺(𝐵), and 𝑋 = ∇𝑣 = ∇𝑣, which shows Claim 4.

Next, by Lemma O, the sequence {𝑢𝑗} is bounded in 𝑊 1,𝐺(𝐵). Since 𝑢𝑗 converges point-

wise (almost everywhere) to 𝑢 in 𝐵, from Theorem N, 𝑢𝑗 ⇀ 𝑢 in 𝐿𝐺(𝐵). Moreover, a

subsequence ∇𝑢𝑗𝑘
converges weakly to ∇𝑢 in 𝐿𝐺(𝐵) by Claim 4. Since the weak limit is

independent of the choice of the subsequence, it follows that ∇𝑢𝑗 ⇀ ∇𝑢 ∈ 𝐿𝐺(𝐵).

On the other hand, being {∇𝑢𝑗} bounded in 𝐿𝐺(R𝑛), it has a wakly converging subse-

quence in 𝐿𝐺(R𝑛). This subsequence also converge weakly in 𝐿𝐺(𝐵), whence it converges

weakly to ∇𝑢, which gives ∇𝑢 ∈ 𝐿𝐺(R𝑛), that is 𝑢 ∈ 𝒟1,𝐺(R𝑛). Therefore, ∇𝑢𝑗 ⇀ ∇𝑢 in

𝐿𝐺(R𝑛) since the weak limit is independent of the subsequence. This proves Lemma 4.2.3.

The following lemma uses the Monotone Operator Theory to prove the existence of solu-

tions to eq. (2.3.14) in 𝒟1,𝐺(R𝑛).
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Lemma 4.2.4. For all 𝜇 ∈ 𝑀+(R𝑛) ∩
(︁
𝒟1,𝐺(R𝑛)

)︁*
, there exists a unique solution 𝑢 ∈

𝒟1,𝐺(R𝑛) to eq. (2.3.14) which is a 𝐺-superharmonic and nonnegative function (almost ev-

erywhere).

Proof. Let us consider the operator 𝑇 : 𝒟1,𝐺(R𝑛) →
(︁
𝒟1,𝐺(R𝑛)

)︁*
defined by

⟨𝑇𝑢, 𝜙⟩ =
ˆ
R𝑛

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢 · ∇𝜙 d𝑥 ∀𝜙 ∈ 𝒟1,𝐺(R𝑛),

where ⟨·, ·⟩ denote the usual pairing between
(︁
𝒟1,𝐺(R𝑛)

)︁*
and 𝒟1,𝐺(R𝑛). 𝑇 is well de-

fined. Indeed, by using a combination of Cauchy–Schwarz inequality and Hölder’s inequality

(Lemma M) with (2.3.10), we obtain

|⟨𝑇𝑢, 𝜙⟩| ≤ 2‖𝑔(|∇𝑢|)‖𝐿𝐺* ‖∇𝜙‖𝐿𝐺

≤ 𝑐

(︃ˆ
R𝑛

𝐺(|∇𝑢|) d𝑥 + 1
)︃

‖𝜙‖𝒟1,𝐺 ,

which shows 𝑇𝑢 is bounded. A classical result [Lions 1969, Théorème 2.1] assures that 𝑇 is

subjective provided 𝑇 is coercive, and weakly continuous on 𝒟1,𝐺(R𝑛), that is if 𝑢 = lim𝑗 𝑢𝑗

in 𝒟1,𝐺(R𝑛), then 𝑇𝑢𝑗 ⇀ 𝑇𝑢 in
(︁
𝒟1,𝐺(R𝑛)

)︁*
.

We first verify the weak continuity of 𝑇 . Fix {𝑢𝑗} ⊂ 𝒟1,𝐺(R𝑛) a sequence that converges

(in norm) to an element 𝑢 ∈ 𝒟1,𝐺(R𝑛). Using [Benyaiche and Khlifi 2021, Lemma 2.1], there

exists a subsequence of {𝑢𝑗}, also denoted {𝑢𝑗} (by abuse of notation), which converges

almost everywhere to 𝑢 in R𝑛. From this, by continuity of 𝑔, we have

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢 = lim
𝑗→∞

𝑔(|∇𝑢𝑗|)
|∇𝑢𝑗|

∇𝑢𝑗 in R𝑛 (almost everywhere).

Since {𝑢𝑗} converges to 𝑢 in 𝒟1,𝐺(R𝑛), it follows that {
´
R𝑛 𝐺(|∇𝑢𝑗|) d𝑥} is bounded, and{︃ˆ

R𝑛

𝐺*
(︃

𝑔(|∇𝑢𝑗|)
|∇𝑢𝑗|

∇𝑢𝑗

)︃
d𝑥

}︃
is bounded.

By Lemma L, {𝑔(|∇𝑢𝑗|)/|∇𝑢𝑗| ∇𝑢𝑗} is bounded in 𝐿𝐺* . Applying Theorem N,

𝑔(|∇𝑢𝑗|)
|∇𝑢𝑗|

∇𝑢𝑗 ⇀
𝑔(|∇𝑢|)

|∇𝑢|
∇𝑢 in 𝐿𝐺*(R𝑛),

whence our assertion follows since the weak limit is independent of the choice of a subsequence.

Next, we prove that 𝑇 is coercive. Let 𝑢 ∈ 𝒟1,𝐺(R𝑛) with ‖𝑢‖𝒟1,𝐺(R𝑛) ≥ 1. Combining

(2.3.3) with Lemma L, we obtain

⟨𝑇𝑢, 𝑢⟩ =
ˆ
R𝑛

𝑔(|∇𝑢|)|∇𝑢| d𝑥 ≥ 𝑝

ˆ
R𝑛

𝐺(|∇𝑢|) d𝑥

≥ 𝑝‖∇𝑢‖𝑝
𝐿𝐺 = 𝑝‖𝑢‖𝑝

𝒟1,𝐺 .
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Since 𝑝 > 1,

lim
‖𝑢‖𝒟1,𝐺 →∞

⟨𝑇𝑢, 𝑢⟩
‖𝑢‖𝒟1,𝐺

= ∞,

which shows that 𝑇 is coercive.

Hence, for 𝜇 ∈ 𝑀+(R𝑛) ∩
(︁
𝒟1,𝐺(R𝑛)

)︁*
, there exists a 𝑢 ∈ 𝒟1,𝐺(R𝑛), such that 𝑇𝑢 = 𝜇,

that is ˆ
R𝑛

𝑔(|∇𝑢|)
|∇𝑢|

∇𝑢 · ∇𝜙 d𝑥 =
ˆ
R𝑛

𝜙 d𝜇 ∀𝜙 ∈ 𝒟1,𝐺(R𝑛).

Thus 𝑢 is a solution to eq. (2.3.14), and by monotonicity (4.2.8), it should be unique. Moreover,

since 𝜇 ∈ 𝑀+(R𝑛), 𝑢 is a 𝐺-supersolution in R𝑛 in sense of Definition 2.3.12, whence 𝑢 ≥ 0

almost everywhere by Lemma P. Because of Remark 2.3.22, we may suppose that 𝑢 is 𝐺-

superharmonic in R𝑛. This completes the proof of Lemma 4.2.4.

4.3 PROOF OF THEOREM 1.3.15

We need only consider the case 2 ≤ 𝑝 < 𝑞 < 𝑛, otherwise by Remark 2.3.10 if 𝑞 ≥ 𝑛,

Eq. (𝑃2) has only the trivial solution 𝑢 = 𝑐 ≥ 0. Let 𝜎 ∈ 𝑀+(R𝑛) satisfying (1.3.21) and let

𝐾 ≥ 1 be the constant given in Corollary 2.3.20. Using Theorem 1.3.14 with

(︁
(𝑞/𝑝)1/(𝑝−1)𝐾

)︁𝑞−1
𝜎 in place of 𝜎,

we deduce that there exists a solution 0 ≤ 𝑣 ∈ 𝐿𝐹 (R𝑛, d𝜎) in R𝑛 to

𝑣 = W𝐺

(︃
𝑓(𝑣)

(︂
𝑞

𝑝

)︂ 𝑞−1
𝑝−1

𝐾𝑞−1d𝜎

)︃
(4.3.1)

By (2.3.6), we have

𝑣 = W𝐺

(︃
𝑓(𝑣)

(︂
𝑞

𝑝

)︂ 𝑞−1
𝑝−1

𝐾𝑞−1d𝜎

)︃

≥
(︂

𝑝

𝑞

)︂ 1
𝑝−1
[︃(︂

𝑞

𝑝

)︂ 𝑞−1
𝑝−1

𝐾𝑞−1
]︃ 1

𝑞−1

W𝐺(𝑓(𝑣)d𝜎)

= 𝐾 W𝐺(𝑓(𝑣)d𝜎) in R𝑛. (4.3.2)
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Consequently, 𝑣 is a supersolution to (𝑆), since 𝐾 ≥ 1. Employing Lemma 4.2.1, 𝑓(𝑣)d𝜎 ∈(︁
𝒟1,𝐺(R𝑛)

)︁*
. Moreover, from Theorem 4.1.4, one has

𝑣 ≥ 𝐶

[︃
W𝐺

(︃(︂
𝑞

𝑝

)︂ 𝑞−1
𝑝−1

𝐾𝑞−1𝜎

)︃]︃ 1
1−𝛾

≥ 𝐶
(︂

𝑝

𝑞

)︂ 1
𝑝−1
[︃(︂

𝑞

𝑝

)︂ 𝑞−1
𝑝−1

𝐾𝑞−1
]︃ 1

(𝑞−1)
1

1−𝛾 (︁
W𝐺𝜎

)︁ 1
1−𝛾

= 𝐶
(︂

𝑞

𝑝

)︂ 𝛾
(𝑝−1)(1−𝛾)

𝐾
1

1−𝛾

(︁
W𝐺𝜎

)︁ 1
1−𝛾 ,

where 𝐶 is the constant given in Theorem 4.1.4.

Let 𝜀 be a positive constant satisfying

𝜀 ≤ min
{︃(︂

𝑞

𝑝

)︂ 𝛾
(𝑝−1)(1−𝛾)

𝐾
1

1−𝛾 𝐶,
(︁
𝐾−1𝜆

)︁ 𝑝−1
𝑝−1−𝛾(𝑞−1) , 𝐾− 𝑝−1

(𝑞−1)(1−𝛾) 𝐶

}︃
, (4.3.3)

where 𝜆 is the constant given in Lemma 4.1.5. Setting, 𝑢0 = 𝜀
(︁
W𝐺𝜎

)︁ 1
1−𝛾 , it follows 𝑢0 ≤ 𝑣

in R𝑛, and

𝑢0 ∈ 𝐿𝐹 (R𝑛, d𝜎) and 𝑓(𝑢0)d𝜎 ∈ 𝑀+(R𝑛) ∩
(︁
𝒟1,𝐺(R𝑛)

)︁*
.

From Lemma 4.2.4, there exists a unique 𝐺-superharmonic function 𝑢1 ∈ 𝒟1,𝐺(R𝑛) satisfying

−div
(︃

𝑔(|∇𝑢1|)
|∇𝑢1|

∇𝑢1

)︃
= 𝜎 𝑓(𝑢0) in R𝑛.

Being 𝑢1 ≥ 0, a combination of Corollary 2.3.20 with (4.3.2), yields

𝑢1 ≤ 𝐾 W𝐺(𝑓(𝑢0)d𝜎) ≤ 𝐾 W𝐺(𝑓(𝑣)d𝜎) ≤ 𝑣.

From this, 𝑢1 ∈ 𝐿𝐹 (R𝑛, d𝜎) and 𝑓(𝑢1)d𝜎 ∈ 𝑀+(R𝑛) ∩
(︁
𝒟1,𝐺(R𝑛)

)︁*
. In addition, using

Lemma 4.1.5 and (2.3.6), we obtain that

𝑢1 ≥ 𝐾−1 W𝐺(𝑓(𝑢0)d𝜎) = 𝐾−1 W𝐺

(︁
𝑓
(︁
𝜀
(︁
W𝐺𝜎

)︁ 1
1−𝛾
)︁
d𝜎
)︁

≥ 𝐾−1𝜀
𝑞−1
𝑝−1 𝛾 W𝐺

(︁
𝑓
(︁
W𝐺𝜎

)︁ 1
1−𝛾 d𝜎

)︁
≥ 𝐾−1𝜀

𝑞−1
𝑝−1 𝛾𝜆

(︁
W𝐺𝜎

)︁ 1
1−𝛾 .

By choice of 𝜀, we deduce that 𝑢1 ≥ 𝑢0. Summarizing, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢1 ∈ 𝒟1,𝐺(R𝑛) ∩ 𝐿𝐹 (R𝑛, d𝜎),

𝑓(𝑢1)d𝜎 ∈ 𝑀+(R𝑛) ∩
(︁
𝒟1,𝐺(R𝑛)

)︁*
,

− div
(︃

𝑔(|∇𝑢1|)
|∇𝑢1|

∇𝑢1

)︃
= 𝜎 𝑓(𝑢0) in R𝑛,

𝑢0 ≤ 𝑢1 ≤ 𝑣 almost everywhere in R𝑛.
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Now, we construct by induction a sequence of nonnegative functions 𝑢𝑗, for 𝑗 = 1, 2, . . .,

satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑗 ∈ 𝒟1,𝐺(R𝑛) ∩ 𝐿𝐹 (R𝑛, d𝜎), ∀𝑗 > 1,

𝑓(𝑢𝑗)d𝜎 ∈ 𝑀+(R𝑛) ∩
(︁
𝒟1,𝐺(R𝑛)

)︁*
, ∀𝑗 > 1,

− div
(︃

𝑔(|∇𝑢𝑗|)
|∇𝑢𝑗|

∇𝑢𝑗

)︃
= 𝜎 𝑓(𝑢𝑗−1) in R𝑛, ∀𝑗 > 1,

𝑢𝑗−1 ≤ 𝑢𝑗 ≤ 𝑣 almost everywhere in R𝑛, ∀𝑗 > 1,

sup
𝑗>1

ˆ
R𝑛

𝐺(|∇𝑢𝑗|) d𝑥 ≤ 𝑐

ˆ
R𝑛

𝐹 (𝑣) d𝜎,

(4.3.4)

where 𝑐 = 𝑐(𝑝, 𝑞, 𝛾) > 0.

Indeed, suppose that 𝑢𝑗 has been obtained for some 𝑗 > 1. In the same manner as the case

𝑗 = 1, since 𝑢𝑗 ≤ 𝑣 in R𝑛, it follows from Lemma 4.2.1 that

𝑓(𝑢𝑗)d𝜎 ∈ 𝑀+(R𝑛) ∩
(︁
𝒟1,𝐺(R𝑛)

)︁*
.

Using Lemma 4.2.4, there exists a unique nonnegative 𝐺-superharmonic function 𝑢𝑗+1 ∈

𝒟1,𝐺(R𝑛) satisfying

−div
(︃

𝑔(|∇𝑢𝑗+1|)
|∇𝑢𝑗+1|

∇𝑢𝑗+1

)︃
= 𝜎 𝑓(𝑢𝑗) in R𝑛. (4.3.5)

Since 𝑓(𝑢𝑗−1)d𝜎 ≤ 𝑓(𝑢𝑗)d𝜎, by Lemma 4.2.2, 𝑢𝑗 ≤ 𝑢𝑗+1 in R𝑛. Applying Corollary 2.3.20,

𝑢𝑗+1 ≤ 𝐾 W𝐺(𝑓(𝑢𝑗)d𝜎) ≤ 𝐾 W𝐺(𝑓(𝑣)d𝜎) ≤ 𝑣.

Testing (4.3.5) with 𝑢𝑗+1, using (2.3.3) and (4.1.13), we have
ˆ
R𝑛

𝐺(|∇𝑢𝑗+1|) d𝑥 ≤ 1
𝑝

ˆ
R𝑛

𝑔(|∇𝑢𝑗+1|)|∇𝑢𝑗+1| d𝑥

= 1
𝑝

ˆ
R𝑛

𝑔(|∇𝑢𝑗+1|)
|∇𝑢𝑗+1|

∇𝑢𝑗+1 · ∇𝑢𝑗+1 d𝑥

= 1
𝑝

ˆ
R𝑛

𝑢𝑗+1𝑓(𝑢𝑗) d𝜎 ≤ 1
𝑝

ˆ
R𝑛

𝑣𝑓(𝑣) d𝜎

≤ (𝑞 − 1)𝛾 + 1
𝑝

ˆ
R𝑛

𝐹 (𝑣) d𝜎.

Thus, the sequence (4.3.4) has been constructed.

We set 𝑢 = lim𝑗 𝑢𝑗 inR𝑛 (pointwise). Hence 𝑢 ≤ 𝑣 almost everywhere and, by Lemma 4.2.3,

𝑢 ∈ 𝒟1,𝐺(R𝑛) with ∇𝑢𝑗 ⇀ ∇𝑢 in 𝐿𝐺(R𝑛). As in the proof of Lemma 4.2.4, the last line in

(4.3.4) gives
𝑔(|∇𝑢𝑗|)

|∇𝑢𝑗|
∇𝑢𝑗 is uniformly bounded in 𝐿𝐺*(R𝑛).
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From Harnack’s Principle (Theorem R), up to a subsequence, ∇𝑢 = lim𝑗 ∇𝑢𝑗 pointwise in

R𝑛, since 𝑢 < ∞. Consequently, the continuity of the function 𝑔 and Theorem N assure

𝑔(|∇𝑢𝑗|)
|∇𝑢𝑗|

∇𝑢𝑗 ⇀
𝑔(|∇𝑢|)

|∇𝑢|
∇𝑢 in 𝐿𝐺*(R𝑛). (4.3.6)

On the other hand, by the Monotone Convergence Theorem, one has

lim
𝑗→∞

ˆ
R𝑛

𝜙𝑓(𝑢𝑗) d𝜎 =
ˆ
R𝑛

𝜙𝑓(𝑢) d𝜎 ∀𝜙 ∈ 𝐶∞
𝑐 (R𝑛). (4.3.7)

Therefore, letting 𝑗 → ∞ in the first line of (4.3.4), from (4.3.6) and (4.3.7), 𝑢 ∈

𝒟1,𝐺(R𝑛) ∩ 𝐿𝐹 (R𝑛, d𝜎) is a solution to (𝑃2).

It remains to prove the minimality of such 𝑢. Suppose that 0 ≤ 𝑤 ∈ 𝒟1,𝐺(R𝑛) ∩

𝐿𝑓
loc(R𝑛, d𝜎) is any nontrivial solution to Eq. (𝑃2). First, we will show 𝑤 ∈ 𝐿𝐹 (R𝑛, d𝜎), that

is
´
R𝑛 𝐹 (𝑤) d𝜎 < ∞. Note that 𝑓(𝑤)d𝜎 ∈ 𝑀+(R𝑛)∩

(︁
𝒟1,𝐺(R𝑛)

)︁*
. By density of 𝐶∞

𝑐 (R𝑛) in

𝒟1,𝐺(R𝑛), there exists a sequence {𝜙𝑗} ⊂ 𝐶∞
𝑐 (R𝑛) with 𝑤 = lim𝑗 𝜙𝑗 in 𝒟1,𝐺(R𝑛). It follows

from (4.1.13) that
ˆ
R𝑛

𝐹 (𝑤) d𝜎 ≤ 1
(𝑝 − 1)𝛾 + 1

ˆ
R𝑛

𝑤𝑓(𝑤) d𝜎 = ⟨𝑓(𝑤)d𝜎, 𝑤⟩
(𝑝 − 1)𝛾 + 1

= lim
𝑗→∞

⟨𝑓(𝑤)d𝜎, 𝜙𝑗⟩
(𝑝 − 1)𝛾 + 1 = 1

(𝑝 − 1)𝛾 + 1 lim
𝑗→∞

ˆ
R𝑛

𝑔(|∇𝑤|)
|∇𝑤|

∇𝑤 · ∇𝜙𝑗 d𝑥,

where the last equality follows by testing the equation of 𝑤 with each 𝜙𝑗. Since ∇𝜙 ⇀ ∇𝑤

in 𝐿𝐺(R𝑛) and 𝑔(|∇𝑤|)/|∇𝑤| ∇𝑤 ∈ 𝐿𝐺*(R𝑛), we deduce
ˆ
R𝑛

𝐹 (𝑤) d𝜎 ≤ 1
(𝑝 − 1)𝛾 + 1

ˆ
R𝑛

𝑔(|∇𝑤|)
|∇𝑤|

∇𝑤 · ∇𝑤 d𝑥

= 1
(𝑝 − 1)𝛾 + 1

ˆ
R𝑛

𝑔(|∇𝑤|)|∇𝑤| d𝑥

≤ 𝑞

(𝑝 − 1)𝛾 + 1

ˆ
R𝑛

𝐺(|∇𝑤|) d𝑥 < ∞.

Next, by Corollary 2.3.20, we have

𝑤 ≥ 𝐾−1 W𝐺(𝑓(𝑤)d𝜎) ≥ W𝐺(𝑓(𝑤)𝐾−(𝑝−1)d𝜎),

where in the last inequality was used (2.3.6), since 𝐾 ≥ 1. Using Theorem 4.1.4 with 𝐾−(𝑝−1)𝜎

in place of 𝜎, we obtain that

𝑤 ≥ 𝐶
(︁
W𝐺(𝐾−(𝑝−1)𝜎)

)︁ 1
1−𝛾 ≥ 𝐶 𝐾− 𝑝−1

(𝑞−1)(1−𝛾)
(︁
W𝐺𝜎

)︁ 1
1−𝛾 .

By choice of 𝜀 in (4.3.3), one has 𝑢0 ≤ 𝑤 in R𝑛, whence 𝑓(𝑢0)d𝜎 ≤ 𝑓(𝑤)d𝜎 in 𝑀+(R𝑛) ∩(︁
𝒟1,𝐺(R𝑛)

)︁*
. From Lemma 4.2.2, 𝑢1 ≤ 𝑤 almost everywhere in R𝑛. Proceeding by induction,
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we deduce that 𝑢𝑗 ≤ 𝑤 almost everywhere in R𝑛 for all 𝑗 ≥ 1. Thus

𝑢 = lim
𝑗→∞

𝑢𝑗 ≤ 𝑤 almost everywhere in R𝑛.

This shows the minimality of 𝑢 and completes the proof of Theorem 1.3.15.

4.4 FINAL COMMENTS

Remark 4.4.1. For the case 𝑝 = 𝑞 in assumption (𝐴2), 𝛾 only satisfies 0 < 𝛾 < 1. Setting

𝑟 = 𝛾(𝑝 − 1), obliviously

1
1 − 𝛾

= 𝑝 − 1
𝑝 − 1 − 𝛾(𝑞 − 1) = 𝑞 − 1

𝑞 − 1 − 𝛾(𝑝 − 1) = 𝑝 − 1
𝑝 − 1 − 𝑟

. (4.4.1)

Hence condition (1.3.21) reduces to

(︁
W𝑝𝜎

)︁ 𝑝−1
𝑝−1−𝑟 ∈ 𝐿1+𝑟(R𝑛, d𝜎). (4.4.2)

Moreover, for 𝑝 = 𝑞, Eq. 𝑃2 becomes in (1.0.1), that is

−Δ𝑝𝑢 = 𝜎 𝑢𝑟 in R𝑛. (4.4.3)

Thus Theorem 1.3.15 is a partial extension of [Dat and Verbitsky 2015, Theorem 3.8], when

for the case 𝑝 = 𝑞. Notice the similarity between eq. (4.4.3) and equation in (1.2.3).

Observe that, by (4.4.1), condition (4.1.31) coincides with condition (4.4.2) if 𝑝 = 𝑞.

As it was mentioned in Remark 4.1.7, would be interesting to show that condition (4.1.31)

is sufficient to guarantee the existence of a nontrivial solution to Eq. (𝑃2) in 𝒟1,𝐺(R𝑛) ∩

𝐿𝐹 (R𝑛, d𝜎), whether 2 ≤ 𝑝 < 𝑞 < 𝑛. The motivation for this is that in [Dat and Verbitsky

2015] was proved that condition (4.4.2) is not only necessary but also sufficient to ensure

the existence of a nontrivial solution to (4.4.3) in 𝒟1,𝑝(R𝑛) ∩ 𝐿1+𝑟(R𝑛, d𝜎), when 𝑝 < 𝑛.

Certainly, an answer to this question relies on the refinement of Lemma 4.1.6.

Remark 4.4.2. The same conclusion of Theorem 1.3.15 can be drawn for the 𝒜-equation

−div
(︁
𝒜(𝑥, ∇𝑢)

)︁
= 𝜎 𝑔(𝑢𝛾) in R𝑛, (4.4.4)

where 𝒜 is a Carathéodory regular vector field satisfying the Orlicz growth 𝒜(𝑥, 𝜉)·𝜉 ≈ 𝐺(|𝜉|),

where 𝐺 is the primitive of 𝑔, given by (𝐴2).
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To proceed formally, suppose (2.3.2) and let 𝒜 : R𝑛 ×R𝑛 → R𝑛 be a mapping satisfying

the following conditions:

𝑥 ↦−→ 𝒜(𝑥, 𝜉) is measurable for all 𝜉 ∈ R𝑛,

𝜉 ↦−→ 𝒜(𝑥, 𝜉) is continuous for almost everywhere 𝑥 ∈ R𝑛,
(4.4.5)

and there exist structural constants 𝛼 > 0 and 𝛽 > 0 such that for almost everywhere 𝑥 ∈ R𝑛,

for all 𝜉, 𝜂 ∈ R𝑛, 𝜉 ̸= 𝜂, it holds

𝒜(𝑥, 𝜉) · 𝜉 ≥ 𝛼 𝐺(|𝜉|), |𝒜(𝑥, 𝜉)| ≤ 𝛽 𝑔(|𝜉|),(︁
𝒜(𝑥, 𝜉) − 𝒜(𝑥, 𝜂)

)︁
· (𝜉 − 𝜂) > 0.

(4.4.6)

In particular, 𝒜(𝑥, 0) = 0 for almost everywhere 𝑥 ∈ R𝑛. A typical example is what was

treated in this chapter:

𝒜0 : (𝑥, 𝜉) ↦−→ 𝒜0(𝑥, 𝜉) = 𝑔(|𝜉|)
|𝜉|

𝜉.

Let Ω ⊆ R𝑛 be a domain. Similarly to Definition 2.3.11, we say that a continuous function

𝑢 ∈ 𝑊 1,𝐺
loc (Ω) is 𝒜-harmonic in Ω if it satisfies −div

(︁
𝒜(𝑥, ∇𝑢)

)︁
= 0 weakly in Ω, that is

ˆ
Ω

𝒜(𝑥, ∇𝑢) · ∇𝜙 d𝑥 = 0 ∀𝜙 ∈ 𝐶∞
𝑐 (Ω).

A function 𝑢 ∈ 𝑊 1,𝐺
loc (Ω) is called 𝒜-supersolution in Ω if it satisfies −div

(︁
𝒜(𝑥, ∇𝑢)

)︁
≥ 0

weakly in Ω, and by 𝒜-subsolution in Ω we mean a function 𝑢 such that −𝑢 is 𝒜-supersolution

in Ω. The classes of 𝒜-superharmonic and 𝒜-subharmonic functions are defined likewise Def-

inition 2.3.15. We denote 𝒮𝒜(Ω) the set of all 𝒜-superharmonic functions in Ω.

According to the above definitions, we mention that all basic facts stated in Section 2.3,

and the lemmas of Section 4.2, remain true for quasilinear elliptic 𝒜-equations with measure

data, that is equations of the type

−div
(︁
𝒜(𝑥, ∇𝑢)

)︁
= 𝜇 in Ω. (4.4.7)

For more details, see [Benyaiche and Khlifi 2021, Chlebicka and Karppinen 2021, Fan 2012,

Chlebicka and Zatorska-Goldstein 2022,Benyaiche and Khlifi 2023]. In particular, for 𝑔 given

by (𝐴2), Corollary 2.3.20 is still true for 𝒜-equations with measure data. In Appendix A we

deal with this approach. Summarizing, we have the following theorem

Theorem 4.4.3. Let 𝒜 be a mapping satisfying (4.4.5) and (4.4.6) with 𝑔 given by (𝐴2).

Under the hypotheses of Theorem 1.3.15, there exists a nonnegative solution 𝑢 ∈ 𝒟1,𝐺(R𝑛) ∩

𝐿𝐹 (R𝑛, d𝜎) to (4.4.4), provided (1.3.21) holds. Moreover, 𝑢 is minimal.
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APPENDIX A – PROOF OF THEOREM 2.3.19

The argument follows from a series of versions of Harnack inequalities. Our proof is inspired

by the ideas in [Chlebicka, Giannetti and Zatorska-Goldstein 2023] and [Korte and Kuusi 2010],

where the case 𝐺𝑝(𝑡) = 𝑡𝑝/𝑝 is treated.

In fact, we will prove an extending version of Theorem 2.3.19. Namely, let 𝒜 be a map-

ping satisfying (4.4.5) and (4.4.6) with 𝑔 given by (𝐴2), suppose 𝑢 is a nonnegative 𝒜-

superharmonic in 𝐵(𝑥0, 2𝑅), then estimate (2.3.18) holds for

𝜇 = 𝜇[𝑢] = −div
(︁
𝒜(𝑥, ∇𝑢)

)︁
. (A.0.1)

To simplify notation, we set 𝐵𝑅 = 𝐵(𝑥0, 𝑅) for 𝑅 > 0, and 𝜅𝐵𝑅 = 𝐵(𝑥0, 𝜅𝑅) for any 𝜅 > 0.

Remark A.0.1. We emphasize that (2.3.18) is an estimate only at 𝑥0, the center of 𝐵2𝑅. Hence

we may reduce the proof of the theorem significantly to a more restricted case. Namely, we

only consider the class of continuous 𝒜-supersolutions functions.

Indeed, since 𝑢 is a nonnegative 𝒜-superharmonic in 𝐵2𝑅, from [Chlebicka and Zatorska-

Goldstein 2022, Proposition 4.5], there exists a nondecreasing sequence of nonnegative func-

tions {𝑢𝑗} ⊂ 𝐶(𝐵𝑅) ∩ 𝒮𝒜(𝐵𝑅) satisfying 𝑢𝑗 = 0 on 𝜕𝐵𝑅 (for 𝑗 = 1, 2, . . .) and

𝑢 = lim
𝑗→∞

𝑢𝑗 in 𝐵𝑅 (pointwise). (A.0.2)

By [Chlebicka and Zatorska-Goldstein 2022, Lemma 4.6], 𝑢𝑗 is an 𝒜-supersolution in 𝐵𝑅, for

all 𝑗 ≥ 1. This implies that 𝑢𝑗 ∈ 𝑊 1,𝐺
loc (𝐵𝑅), and 𝐷𝑢𝑗 = ∇𝑢𝑗 for all 𝑗 ≥ 1. By Theorem R, we

have 𝐷𝑢 = lim𝑗 ∇𝑢𝑗 pointwise in 𝐵𝑅, possibly passing to a subsequence. On the other hand,

notice that {𝑢𝑗} is bounded in 𝐵𝑅 (pointwise), since 𝑢𝑗 ≤ 𝑢 in 𝐵𝑅 and 𝑢𝑗 = 0 on 𝜕𝐵𝑅 for

all 𝑗 ≥ 1. Extending 𝑢𝑗 by zero away from 𝜕𝐵𝑅, we may consider 𝑢𝑗 as an 𝒜-supersolution in

𝐵3𝑅 for all 𝑗 ≥ 1. From this, an appeal to [Chlebicka and Karppinen 2021, Lemma 5.2] assure

that there exists 𝑐0 = 𝑐0(𝑝, 𝑞, 𝛼, 𝛽) > 0 such thatˆ
𝐵𝑅

𝐺(|∇𝑢𝑗|) d𝑥 ≤ 𝑐0

ˆ
𝐵2𝑅

𝐺

(︃
osc𝐵2𝑅

𝑢𝑗

𝑅

)︃
d𝑥 ≤ 𝑐0

ˆ
𝐵2𝑅

𝐺

(︃
sup𝐵2𝑅

𝑢𝑗

𝑅

)︃
d𝑥

≤ 𝑐1 𝑅𝑛𝐺

(︃
sup𝐵2𝑅

𝑢𝑗

𝑅

)︃
∀𝑗 ≥ 1,

where 𝑐1 = 𝑐1(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) > 0. Consequently, {∇𝑢𝑗} is bounded in 𝐿𝐺(𝐵𝑅), and by Theo-

rem N, ∇𝑢𝑗 ⇀ 𝐷𝑢 in 𝐿𝐺(𝐵𝑅). In particular, 𝐷𝑢 ∈ 𝐿𝐺(𝐵𝑅). From (4.4.5) and (4.4.6), we

deduce that

𝒜(𝑥, ∇𝑢𝑗) ⇀ 𝒜(𝑥, 𝐷𝑢) in 𝐿𝐺*(𝐵𝑅).
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This follows by the same method as in (4.3.6). Thus we also have the weak convergence of

corresponding measures 𝜇𝑗 := 𝜇[𝑢𝑗] to 𝜇 := 𝜇[𝑢] in 𝐵𝑅:
ˆ

𝐵𝑅

𝜙 d𝜇 =
ˆ

𝐵𝑅

𝒜(𝑥, 𝐷𝑢) · ∇𝜙 d𝑥 = lim
𝑗→∞

ˆ
𝐵𝑅

𝒜(𝑥, ∇𝑢𝑗) · ∇𝜙 d𝑥

= lim
𝑗→∞

ˆ
𝐵𝑅

𝜙 d𝜇𝑗 ∀𝜙 ∈ 𝐶∞
𝑐 (𝐵𝑅).

The previous equality implies that 𝜇𝑗 converges weakly* to 𝜇, in measure sense. From this,

using [Bogachev 2018, Theorem 2.2.5], it follows that

lim
𝑗→∞

𝜇𝑗(𝐵(𝑥0, 𝑠)) ≥ 𝜇(𝐵(𝑥0, 𝑠)) ∀𝑠 ≤ 𝑅, (A.0.3)

lim
𝑗→∞

𝜇𝑗(𝐵(𝑥0, 𝑠)) ≤ 𝜇(𝐵(𝑥0, 𝑠)) ∀𝑠 ≤ 𝑅. (A.0.4)

Now, suppose the bounds in (2.3.18) holds for 𝑢𝑗, 𝑗 = 1, 2, . . .. Using (A.0.3), we obtain

from the lower bound in (2.3.18) and from (A.0.2) that

𝑢(𝑥0) = lim
𝑗→∞

𝑢𝑗(𝑥0) ≥ 𝐶1 lim
𝑗→∞

W𝑅
𝐺𝜇𝑗(𝑥0) = 𝐶1 lim

𝑗→∞

ˆ 𝑅

0
𝑔−1

(︃
𝜇𝑗(𝐵(𝑥0, 𝑠))

𝑠𝑛−1

)︃
d𝑠

= 𝐶1

ˆ 𝑅

0
𝑔−1

(︃
lim𝑗→∞ 𝜇𝑗(𝐵(𝑥0, 𝑠))

𝑠𝑛−1

)︃
d𝑠 ≥ 𝐶1

ˆ 𝑅

0
𝑔−1

(︃
𝜇(𝐵(𝑥0, 𝑠))

𝑠𝑛−1

)︃
d𝑠,

which shows the lower bound in (2.3.18) for 𝑢(𝑥0). To verify the upper bound in (2.3.18) for

𝑢(𝑥0), first notice that inf𝐵𝑅
𝑢𝑗 ≤ inf𝐵𝑅

𝑢 for all 𝑗 ≥ 1. Combining this with (A.0.4) and

(A.0.2), one has

𝑢(𝑥0) = lim
𝑗→∞

𝑢𝑗(𝑥0) ≤ 𝐶2

(︃
inf
𝐵𝑅

𝑢 + lim
𝑗→∞

W𝑅
𝐺𝜇𝑗(𝑥0)

)︃

≤ 𝐶2

(︃
inf
𝐵𝑅

𝑢 + lim
𝑗→∞

ˆ 𝑅

0
𝑔−1

(︃
𝜇𝑗(𝐵(𝑥0, 𝑠))

𝑠𝑛−1

)︃
d𝑠

)︃

= 𝐶2

(︃
inf
𝐵𝑅

𝑢 +
ˆ 𝑅

0
𝑔−1

(︃
lim𝑗→∞ 𝜇𝑗(𝐵(𝑥0, 𝑠))

𝑠𝑛−1

)︃
d𝑠

)︃

≤ 𝐶2

(︃
inf
𝐵𝑅

𝑢 +
ˆ 𝑅

0
𝑔−1

(︃
𝜇(𝐵(𝑥0, 𝑠))

𝑠𝑛−1

)︃
d𝑠

)︃
.

The upper bound in (2.3.18) for 𝑢(𝑥0) follows from the fact
ˆ 𝑅

0
𝑔−1

(︃
𝜇(𝐵(𝑥0, 𝑠))

𝑠𝑛−1

)︃
d𝑠 =

ˆ 𝑅

0
𝑔−1

(︃
𝜇(𝐵(𝑥0, 𝑠))

𝑠𝑛−1

)︃
d𝑠. (A.0.5)

To prove (A.0.5), first note that the function 𝑡 ↦→ 𝜇(𝐵(𝑥0, 𝑡)) is monotone in 𝑡 ≥ 0, whence

the set

𝐴 = {𝑡0 > 0 : 𝑡 ↦→ 𝜇(𝐵(𝑥0, 𝑡)) is discontinuous in 𝑡0}
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is enumerable (see for instance [Royden 1988, Chapter 6, Theorem 1]). On the other hand,

we infer from [Royden 1988, Chapter 17, Proposition 2] that for all 𝑠 > 0

lim
𝑟→𝑠−

𝜇(𝐵(𝑥0, 𝑟)) = 𝜇(𝐵(𝑥0, 𝑠)) and

lim
𝑟→𝑠+

𝜇(𝐵(𝑥0, 𝑟)) = 𝜇(𝐵(𝑥0, 𝑠)).

Consequently, 𝐴 = {𝑡0 > 0 : 𝜇(𝜕𝐵(𝑥0, 𝑡0)) ̸= 0}, since 𝜇(𝐵(𝑥0, 𝑠)) = 𝜇(𝐵(𝑥0, 𝑠)) +

𝜇(𝜕𝐵(𝑥0, 𝑠)), and 𝑡 ↦→ 𝜇(𝐵(𝑥0, 𝑡)) is continuous on [0, 𝑅] ∖ 𝐴. Since 𝐴 is a set of mea-

sure zero, (A.0.5) follows. This completes the assertion of Remark A.0.1.

Let us list some preliminary results. Except for the Harnack inequalities given in (A.0.6)-

(A.0.9) below, these results hold for any 𝑁 -functions 𝐺 which satisfies (2.3.3). The follow-

ing type-Caccioppoli estimate [Chlebicka, Giannetti and Zatorska-Goldstein 2023, Proposi-

tion 3.24] will be useful to show the lower bound in (2.3.18). As usual, Ω ⊆ R𝑛 means a

domain.

Lemma V. If 𝑢 ∈ 𝑊 1,𝐺
loc (Ω) is a nonnegative 𝒜-subsolution, then there exists a constant

𝐶 = 𝐶(𝑝, 𝑞, 𝛼, 𝛽) > 0, such that
ˆ

Ω
𝐺(|∇𝑢|)𝜂𝑞 d𝑥 ≤ 𝐶

ˆ
Ω

𝐺(𝑢|∇𝜂|) d𝑥 ∀𝜂 ∈ 𝐶∞
𝑐 (Ω).

The following Minimum and Maximum Principles [Chlebicka and Zatorska-Goldstein 2022,

Corollaries 4.15 and 4.16] will be a helpful ingredient to work together with Harnack’s inequal-

ities, and consequently to prove the bounds in (2.3.18).

Lemma W. Suppose Ω ⊂ R𝑛 bounded and let 𝐷 ⊂ Ω be a connect open subset compactly

contained in Ω.

(a) Suppose 𝑢 is 𝒜-superharmonic function and finite (almost everywhere) in Ω. Then

inf
𝐷

𝑢 = inf
𝜕𝐷

𝑢.

(b) Suppose 𝑢 is 𝒜-subharmonic function and finite (almost everywhere) in Ω. Then

sup
𝐷

𝑢 = sup
𝜕𝐷

.

In what follows, we use the abbreviation

−
ˆ

Ω
𝑢 d𝑥 = 1

|Ω|

ˆ
Ω

𝑢 d𝑥, Ω ⊂ R𝑛 bounded.
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Next, we state versions of Harnack’s inequalities, which will play a crucial role in the

proof of bounds in (2.3.18). Recall 𝑊 1,𝐺(𝐵2𝑅) ⊂ 𝑊 1,𝑝(𝐵2𝑅) [Harjulehto and Hästö 2019,

Lemma 6.1.6]. Suppose 𝑔 is given by (𝐴2). With the aid of [Chlebicka and Zatorska-Goldstein

2022, Lemma 3.7 and Corollary 3.8], we infer from [Baroni, Colombo and Mingione 2015,

Theorem 2.5] the weak Harnack inequality for 𝒜-supersolutions in 𝐵2𝑅 and for 𝒜-harmonic

functions in 𝐵2𝑅, respectively. This is the content of the following theorem.

Theorem X. Let 𝑔 be given by (𝐴2). Let 𝑢 be a nonnegative 𝒜-supersolution in 𝐵2𝑅. Then

there exist constants 𝑐0 = 𝑐0(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) > 0 and 𝑠0 = 𝑠0(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) ∈ (0, 1) such that(︃
−
ˆ

𝐵2𝑅

𝑢𝑠0 d𝑥

)︃ 1
𝑠0

≤ 𝑐0 inf
𝐵𝑅

𝑢. (A.0.6)

Furthermore, if 𝑢 is 𝒜-harmonic in 𝐵2𝑅, there exists 𝑐 = 𝑐(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) > 0 such that

sup
𝐵𝑅

𝑢 ≤ 𝑐 inf
𝐵𝑅

𝑢. (A.0.7)

Combining Lemma W with (A.0.7), we establish the following result, which will be useful

in the proof of the upper bound (2.3.18).

Corollary A.0.2. Let 𝑔 be given by (𝐴2). Suppose 𝑢 is 𝒜-harmonic in 𝐵3𝑅/2 ∖ 𝐵𝑅. Then

there exists a constant 𝑐 = 𝑐(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) > 0 such that

sup
𝜕𝐵 4

3 𝑅

𝑢 ≤ 𝑐 inf
𝜕𝐵 4

3 𝑅

𝑢. (A.0.8)

Proof. Let 𝜀 > 0 be a constant sufficiently small for which

𝐵𝑅 ⊂ 𝐵 4
3 𝑅−𝜀 ⊂ 𝐵 4

3 𝑅+𝜀 ⊂ 𝐵 3
2 𝑅.

Then 𝑢 is 𝒜-harmonic in the annulus 𝐴𝜀 := 𝐵4𝑅/3+𝜀 ∖ 𝐵4𝑅/3−𝜀. Recall that 𝐵3𝑅/2 ∖ 𝐵𝑅 = {𝑧 :

𝑅 < |𝑧−𝑥0| < 3/2𝑅}. We claim that there exists a constant 𝛿 > 0 sufficiently small such that

for all 𝑥 ∈ 𝐴𝜀, and for all 𝑦 ∈ 𝐵(𝑥, 𝛿), it holds 𝑦 ∈ 𝐴𝜀. Indeed, on the contrary, we would find

sequences 𝑥𝑖 ∈ 𝐴𝜀 and 𝑦𝑖 ∈ 𝐵(𝑥𝑖, 1/𝑖), satisfying either |𝑦𝑖 − 𝑥0| ≤ 𝑅 or |𝑦𝑖 − 𝑥0| ≥ 3/2𝑅.

By choice of 𝜀, 𝐴𝜀 is compactly contained in 𝐵3𝑅/2 ∖ 𝐵𝑅, whence we may assume that 𝑥𝑖

converges to a 𝑥 in 𝐴𝜀. Thus, 𝑦𝑖 converges to 𝑥, which implies that either |𝑥 − 𝑥0| ≤ 𝑅 or

|𝑥 − 𝑥0| ≥ 3/2𝑅. This contradicts the fact that 𝑥 ∈ 𝐴𝜀, and verifies the claim.

We may cover 𝐴𝜀 with finite number of balls of the form {𝐵(𝑥𝑖, 𝛿)}, 𝑥𝑖 ∈ 𝐴𝜀, 𝑖 = 1, . . . , 𝑁 .

From (A.0.7), it follows

sup
𝐵(𝑥𝑖,𝛿)

𝑢 ≤ 𝑐 inf
𝐵(𝑥𝑖,𝛿)

𝑢 ∀𝑖 = 1, . . . , 𝑁.
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Using Lemma W, we deduce that

sup
𝜕𝐵 4

3 𝑅+𝜀

𝑢 ≤ sup
𝜕𝐴𝜀

𝑢 = sup
𝐴𝜀

𝑢 ≤ sup⋃︀𝑁

𝑖=1 𝐵(𝑥𝑖,𝛿)
𝑢

≤ 𝑐 inf⋃︀𝑁

𝑖=1 𝐵(𝑥𝑖,𝛿)
𝑢 ≤ 𝑐 inf

𝐴𝜀

𝑢 ≤ 𝑐 inf
𝜕𝐴𝜀

𝑢 ≤ 𝑐 inf
𝜕𝐵 4

3 𝑅+𝜀

𝑢.

Letting 𝜀 → 0, the corollary follows since 𝑢 is continuous in 𝐵3𝑅/2 ∖ 𝐵𝑅.

The same reasoning applies to the following case: if 𝑢 is an 𝒜-harmonic in 𝐵2𝑅 ∖ 𝐵5𝑅/4,

then there exists 𝑐 = 𝑐(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) > 0 such that

sup
𝜕𝐵 4

3 𝑅

𝑢 ≤ 𝑐 inf
𝜕𝐵 4

3 𝑅

𝑢 (A.0.9)

The following result involves the Poisson modification of superharmonic functions, which

together with (A.0.6) and (A.0.7) will be decisive in the proof of the upper bound (2.3.18).

For its definition, we begin by recalling the following existence and uniqueness of 𝒜-harmonic

functions [Chlebicka and Zatorska-Goldstein 2022, Proposition 3.1]:

Let Ω be a bounded domain in R𝑛. If 𝑤 ∈ 𝑊 1,𝐺(Ω) ∩ 𝐶(Ω), then there exists a unique

solution 𝑢 ∈ 𝑊 1,𝐺(Ω) ∩ 𝐶(Ω) to problem⎧⎪⎨⎪⎩
−div

(︁
𝒜(𝑥, ∇𝑢)

)︁
= 0 in Ω,

𝑢 = 𝑤 on 𝜕Ω.
(A.0.10)

In the second line of (A.0.10), we interpret 𝑢 = 𝑤 on 𝜕Ω in a weak sense, that is 𝑢 − 𝑤 ∈

𝑊 1,𝐺
0 (Ω). We state the notion of a bounded regular set Ω. A boundary point 𝑦0 ∈ 𝜕Ω

is called regular if it satisfies the following property: for any solution 𝑢 to (A.0.10), with

𝑤 ∈ 𝑊 1,𝐺(Ω) ∩ 𝐶(Ω), it holds

lim
𝑥→𝑦0
𝑥∈Ω

𝑢(𝑥) = 𝑤(𝑦0).

This means that a boundary point is regular if at this point the boundary value of any 𝒜-

harmonic function is attained not only in the distributional sense but also pointwise. A bounded

set is called regular if all of its boundary points are regular.

There is a known criterion, so-called the Wiener Criterion, elucidates that the boundary

regularity of a solution to (A.0.10) at 𝑦0 ∈ 𝜕Ω can be characterized by a geometric quantity

on 𝜕Ω at 𝑦0. We refer the reader to [Lee and Lee 2021] for more details. For instance, by [Lee

and Lee 2021, Remark 3.8], bounded Lipshitz domains are regular sets. In particular, balls and

annuli are regular sets.
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Now let Ω′ be a bounded domain and Ω ⊂ Ω′ an open subset compactly contained in

Ω′ with Ω regular. Let 𝑢 be an 𝒜-superharmonic and finite (almost everywhere) in Ω′, i.e.

𝑢 ∈ 𝒮𝒜(Ω′). For 𝑥 ∈ Ω, we define

𝑢Ω(𝑥) = inf

⎧⎪⎨⎪⎩𝑣(𝑥) : 𝑣 ∈ 𝒮𝒜(Ω), lim
𝑧→𝑦0
𝑧∈Ω

𝑣(𝑧) ≥ 𝑢(𝑦0) ∀𝑦0 ∈ 𝜕Ω

⎫⎪⎬⎪⎭ ,

and the Poisson modification of 𝑢 in Ω is given by

𝑃 (𝑢, Ω)(𝑥) :=

⎧⎪⎨⎪⎩
𝑢Ω(𝑥) if 𝑥 ∈ Ω

𝑢(𝑥) if 𝑥 ∈ Ω′ ∖ Ω.

The Poisson modification carries the idea of local smoothing of an 𝒜-superharmonic function

in a regular set. This is the content of the next theorem [Chlebicka and Zatorska-Goldstein

2022, Theorem 3]

Theorem Y. Let 𝑢 ∈ 𝒮𝒜(Ω′) and let Ω ⊂ Ω′ an open subset compactly contained in Ω′ with

Ω regular. Then

(i) 𝑃 (𝑢, Ω) ∈ 𝒮𝒜(Ω′),

(ii) 𝑃 (𝑢, Ω) is 𝒜-harmonic in Ω,

(iii) 𝑃 (𝑢, Ω) ≤ 𝑢 in Ω′.

To illustrate the property of Ω is regular, we bring the proof of Theorem Y.

Proof. The proof is adapted from [Heinonen, Kilpeläinen and Martio 2006, Lemma 7.14]. Let

Ω be an open set with Ω regular. Notice that 𝑢Ω ≤ 𝑢 in Ω, since 𝑢 is an 𝒜-superharmonic

function in Ω and, by the lower-semicontinuity, clearly

lim
𝑧→𝑦0
𝑧∈Ω

𝑢(𝑧) ≥ 𝑢(𝑦0) ∀𝑦0 ∈ 𝜕Ω.

Hence 𝑃 (𝑢, Ω) ≤ 𝑢 in Ω′.

Next, fix an increasing sequence {𝜙𝑖} ⊂ 𝐶∞(R𝑛) which converges pointwise to 𝑢 in Ω.

Let 𝑢𝑖 ∈ 𝑊 1,𝐺(Ω) ∩ 𝐶(Ω) the unique solution to (A.0.10) with 𝑤 = 𝜙𝑖, i.e. 𝑢𝑖 = 𝜙𝑖 on

𝜕Ω for all 𝑖 ≥ 1. Being Ω is regular, the sequence {𝑢𝑖} is increasing by comparison principle

(Definition 2.3.15 (iii)), since for all 𝑖 ≥ 1, it follows

𝑢𝑖+1 = 𝜙𝑖+1 ≥ 𝜙𝑖 = 𝑢𝑖 on 𝜕Ω (pointwise) =⇒ 𝑢𝑖+1 ≥ 𝑢𝑖 in Ω.
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Setting 𝑢(𝑥) = lim𝑖 𝑢𝑖(𝑥) for 𝑥 ∈ Ω, from Harnack’s conergence theorem [Chlebicka and

Zatorska-Goldstein 2022, Corollary 4.9], 𝑢 is an 𝒜-harmonic function in Ω. By Maximum

principle (Lemma W (b)), we have that 𝑢𝑖 ≤ 𝑢 in Ω for all 𝑖 ≥ 1, since by definition of 𝜙𝑖

sup
Ω

𝑢𝑖 = sup
𝜕Ω

𝑢𝑖 = max
𝜕Ω

𝜙𝑖 ≤ 𝑢 ∀𝑖.

This implies that 𝑢 ≤ 𝑢 in Ω. Fix 𝑦0 ∈ 𝜕Ω and let {𝑧𝑗} ⊂ Ω be a sequence converging to 𝑦0.

Then by continuity of 𝑢𝑖 (for all 𝑖)

lim
𝑗→∞

lim
𝑖→∞

𝑢𝑖(𝑧𝑗) = lim
𝑖→∞

𝑢𝑖(𝑦0),

whence

lim
𝑧→𝑦0
𝑧∈Ω

𝑢(𝑧) ≥ lim
𝑖→∞

𝑢𝑖(𝑦0) = lim
𝑖→∞

𝜙𝑖(𝑦0) = 𝑢(𝑦0) ∀𝑦0 ∈ Ω.

Consequently, 𝑢 ≥ 𝑃 (𝑢, Ω) in Ω.

On the other hand, being 𝑢𝑖 𝒜-harmonic in Ω, from comparson principle again, it follows

𝑢𝑖 ≤ 𝑃 (𝑢, Ω) in Ω ∀𝑖 ≥ 1.

Then 𝑢 ≤ 𝑃 (𝑢, Ω) in Ω, which gives 𝑢 = 𝑃 (𝑢, Ω) in Ω. This implies that 𝑃 (𝑢, Ω) 𝒜-harmonic

in Ω and is lower semicontinuous. Using [Chlebicka and Zatorska-Goldstein 2022, Lemma 4.3],

𝑃 (𝑢, Ω) is also an 𝒜-superharmonic in Ω′.

We need the following result regarding Sobolev functions [Harjulehto, Hästö and Toivanen

2017, Lem. 3.5].

Lemma Z. If 𝑢 ∈ 𝑊 1,𝐺(Ω) with supp 𝑢 ⊂ Ω, then 𝑢 ∈ 𝑊 1,𝐺
0 (Ω).

We are now in a position to prove the estimates in (2.3.18). We start by proving the upper

bound in (2.3.18). By Remark A.0.1, we suppose 𝑢 is a continuous bounded 𝒜-supersolution in

𝐵2𝑅 = 𝐵(𝑥0, 2𝑅). To the proof of the upper bound, we may also reduce to a simpler case. In

light of the Poisson modification, we will modify 𝑢 to be a 𝒜-harmonic function in a countable

union of disjoint annuli shrinking to the reference point 𝑥0. For this purpose, we use the Poisson

Modification of 𝑢 over a family of annuli. The crucial fact is that the corresponding measure

in each annulus concentrates on the boundary of the particular annulus, but in a controllable

way since the measure corresponding to the new solution belongs to
(︁
𝑊 1,𝐺(𝐵𝑅)

)︁*
.

To be more precise, let 𝑅𝑘 = 21−𝑘𝑅 and 𝐵𝑘 = 21−𝑘𝐵𝑅 = 𝐵(𝑥0, 𝑅𝑘), 𝑘 = 0, 1, 2, . . ..

Consider the union of annuli

Ω =
∞⋃︁

𝑘=1

3
2𝐵𝑘 ∖ 𝐵𝑘.
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By definition, Ω is regular, and we can consider 𝑣 := 𝑃 (𝑢, Ω). From Theorem Y, 𝑣 = 𝑢 in

𝐵2𝑅 ∖ Ω, 𝑣 ∈ 𝒮𝒜(𝐵2𝑅) and 𝑣 is 𝒜-harmonic in Ω, that is

−div
(︁
𝒜(𝑥, ∇𝑣)

)︁
= 0 in Ω.

Notice that 𝑣 is continuous by the assumed continuity of 𝑢, whence 𝑣 is also 𝒜-supersolution

in 𝐵2𝑅. Consequently, there exists 𝜇𝑣 ∈ 𝑀+(𝐵2𝑅) such that

−div
(︁
𝒜(𝑥, ∇𝑣)

)︁
= 𝜇𝑣 in 𝐵2𝑅. (A.0.11)

Proof of the upper bound in Theorem 2.3.19. The basic idea is to introduce comparison so-

lutions with zero boundary values and measures given by 𝜇𝑣. Recall 𝜇 = 𝜇𝑢. We begin by

establishing that

𝜇𝑣(𝐵𝑘) = 𝜇(𝐵𝑘) ∀𝑘 ≥ 0. (A.0.12)

This is a consequence of the inner regularity. Indeed, let 𝜙 ∈ 𝐶∞
𝑐 (𝐵𝑘) such that 0 ≤ 𝜙 ≤ 1

and 𝜙 = 1 on a compact set 𝐾 satisfying

3
2𝐵𝑘+1 ⊂ 𝐾 ⊂ 𝐵𝑘.

Note that 𝑢 = 𝑣 in supp∇𝜙 ⊂ 𝐵𝑘 ∖ (3/2𝐵𝑘+1) ⊈ Ω. From this, we deduce by testing 𝜙 in

(A.0.1) and in (A.0.11) that
ˆ

𝐵𝑘

𝜙 d𝜇𝑣 =
ˆ

𝐵𝑘

𝒜(𝑥, ∇𝑣) · ∇𝜙 d𝑥

=
ˆ

𝐵𝑘

𝒜(𝑥, ∇𝑢) · ∇𝜙 d𝑥 =
ˆ

𝐵𝑘

𝜙 d𝜇.

Consequently, 𝜇𝑣(𝐾) = 𝜇(𝐾) and, by exhausting 𝐵𝑘 with such 𝐾, the inner regularity of

these measures yields (A.0.12).

Next, notice that 𝜇𝑣 belongs to
(︁
𝑊 1,𝐺

0 (4/3𝐵𝑘+1)
)︁*

for all 𝑘 ≥ 0, since

𝜇𝑣 ∈
(︁
𝑊 1,𝐺

loc (𝐵2𝑅)
)︁*

→˓
(︃

𝑊 1,𝐺
0

(︂4
3𝐵𝑘+1

)︂)︃*

∀𝑘 ≥ 0.

From Theorem Q, there exists 𝑣𝑘 ∈ 𝑊 1,𝐺
0 (4/3𝐵𝑘+1) satisfying

−div
(︁
𝒜(𝑥, ∇𝑣𝑘)

)︁
= 𝜇𝑣 in 4

3𝐵𝑘+1. (A.0.13)

Setting 𝜇𝑘 = 𝜇𝑣𝑘
, one has

𝜇𝑘

(︂4
3𝐵𝑘+1

)︂
= 𝜇𝑣

(︂4
3𝐵𝑘+1

)︂
∀𝑘 ≥ 0. (A.0.14)
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In light of Lemma P, we may assume 𝑣𝑘 ≥ 0 (almost everywhere). Since 4/3𝐵𝑘+1 ∖ 𝐵𝑘+1 ⊂

3/2𝐵𝑘+1 ∖ 𝐵𝑘+1 and 𝑣 is 𝒜-harmonic in 3/2𝐵𝑘+1 ∖ 𝐵𝑘+1, it follows from (A.0.14) that 𝑣𝑘

is 𝒜-harmonic in 4/3𝐵𝑘+1 ∖ 𝐵𝑘+1, whence 𝑣𝑘 takes continuously zero boundary value on

𝜕(4/3𝐵𝑘+1). Moreover, 𝑣 − max𝜕(4/3𝐵𝑘+1) 𝑣 ≤ 0 on 𝜕(4/3𝐵𝑘+1). From this,(︂
𝑣 − max

𝜕 4
3 𝐵𝑘+1

𝑣 − 𝑣𝑘

)︂
+

= 0 on 𝜕
4
3𝐵𝑘+1.

This means that supp
(︁
𝑣 − max𝜕(4/3𝐵𝑘+1) 𝑣 − 𝑣𝑘

)︁
+

⊂ 4/3𝐵𝑘+1 and, by Lemma Z,(︂
𝑣 − max

𝜕 4
3 𝐵𝑘+1

𝑣 − 𝑣𝑘

)︂
+

∈ 𝑊 1,𝐺
0

(︂4
3𝐵𝑘+1

)︂
.

A subtraction of equations of 𝑣 and 𝑣𝑘, (A.0.11) and (A.0.13) respectively, with the previous

test function, gives

0 =
ˆ

4
3 𝐵𝑘+1

(︂
𝑣 − max

𝜕 4
3 𝐵𝑘+1

𝑣 − 𝑣𝑘

)︂
+

d𝜇𝑘 −
ˆ

4
3 𝐵𝑘+1

(︂
𝑣 − max

𝜕 4
3 𝐵𝑘+1

𝑣 − 𝑣𝑘

)︂
+

d𝜇𝑣

=
ˆ

4
3 𝐵𝑘+1

𝒜(𝑥, ∇𝑣𝑘)·∇
(︂

𝑣− max
𝜕 4

3 𝐵𝑘+1
𝑣−𝑣𝑘

)︂
+

d𝑥−
ˆ

4
3 𝐵𝑘+1

𝒜(𝑥, ∇𝑣)·∇
(︂

𝑣− max
𝜕 4

3 𝐵𝑘+1
𝑣−𝑣𝑘

)︂
+

d𝑥.

On account of supp∇
(︁
𝑣 − max𝜕(4/3𝐵𝑘+1) 𝑣 − 𝑣𝑘

)︁
+

⊂ 4/3𝐵𝑘+1 ∩ {𝑣 − max𝜕(4/3𝐵𝑘+1) 𝑣 ≥ 𝑣𝑘},

we have from the previous equality

0 =
ˆ

4
3 𝐵𝑘+1∩{𝑣−max𝜕(4/3𝐵𝑘+1) 𝑣≥𝑣𝑘}

𝒜(𝑥, ∇𝑣𝑘) · ∇(𝑣 − 𝑣𝑘) d𝑥

−
ˆ

4
3 𝐵𝑘+1∩{𝑣−max𝜕(4/3𝐵𝑘+1) 𝑣≥𝑣𝑘}

𝒜(𝑥, ∇𝑣𝑘) · ∇(𝑣 − 𝑣𝑘) d𝑥

=
ˆ

4
3 𝐵𝑘+1∩{𝑣−max𝜕(4/3𝐵𝑘+1) 𝑣≥𝑣𝑘}

(︁
𝒜(𝑥, ∇𝑣𝑘) − 𝒜(𝑥, ∇𝑣)

)︁
· ∇(𝑣 − 𝑣𝑘) d𝑥 ≤ 0,

where the last inequality is due the monotonicity of 𝒜 in (4.4.6). Accordingly,

∇
(︁
𝑣 − max

𝜕(4/3𝐵𝑘+1)
𝑣 − 𝑣𝑘

)︁
+

= 0 in 4
3𝐵𝑘+1,

whence

𝑣𝑘 ≥ 𝑣 − max
𝜕 4

3 𝐵𝑘+1
𝑣 in 4

3𝐵𝑘+1. (A.0.15)

Note that 3/2𝐵𝑘+2 ∖ 𝐵𝑘+2 ⊂ 4/3𝐵𝑘+1. By (A.0.14), we have 𝜇𝑘(3/2𝐵𝑘+2 ∖ 𝐵𝑘+2) =

𝜇𝑣(3/2𝐵𝑘+2 ∖ 𝐵𝑘+2) = 0, since 𝑣 is 𝒜-harmonic in 3/2𝐵𝑘+2 ∖ 𝐵𝑘+2. From this, 𝑣𝑘 is 𝒜-

harmonic in 3/2𝐵𝑘+2 ∖ 𝐵𝑘+2. Using Harnack’s inequality (A.0.8), there exists a constant

𝑐1 = 𝑐1(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) > 0 such that

max
𝜕 4

3 𝐵𝑘+2
𝑣𝑘 ≤ 𝑐1 min

𝜕 4
3 𝐵𝑘+2

𝑣𝑘. (A.0.16)
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We will consider two cases. First, assume that min𝜕(4/3)𝐵𝑘+2 𝑣𝑘 = 0. From (A.0.16),

max𝜕(4/3𝐵𝑘+2) 𝑣𝑘 = 0, and by (A.0.15)

max
𝜕 4

3 𝐵𝑘+2
𝑣 − max

𝜕 4
3 𝐵𝑘+1

𝑣 ≤ 0. (A.0.17)

Next, suppose that min𝜕(4/3)𝐵𝑘+2 𝑣𝑘 > 0. For 𝑘 = 0, 1, . . ., we set

𝑤𝑘(𝑥) = min
{︂

𝑣𝑘(𝑥), min
𝜕 4

3 𝐵𝑘+2
𝑣𝑘

}︂
∀𝑥 ∈ 4

3𝐵𝑘+1.

From [Chlebicka and Zatorska-Goldstein 2022, Corollary 4.2], 𝑤𝑘 ∈ 𝒮𝒜(4/3𝐵𝑘+1). We claim

that

𝜇𝑤𝑘

(︂4
3𝐵𝑘+1

)︂
= 𝜇𝑣

(︂4
3𝐵𝑘+1

)︂
∀𝑘 ≥ 0. (A.0.18)

Indeed, if we prove that 𝜇𝑤𝑘
(4/3𝐵𝑘+1) = 𝜇𝑘(4/3𝐵𝑘+1) for all 𝑘 ≥ 0, the assertion follows by

(A.0.14). By the inner regularity,

𝜇𝑤𝑘

(︂4
3𝐵𝑘+1

)︂
= sup 𝜇𝑤𝑘

(𝐾),

where the supremum is taken over all compact sets 𝐾 ⊂ 4/3𝐵𝑘+1. Let 𝜙𝐾 ∈ 𝐶∞
𝑐 (4/3𝐵𝑘+1)

such that 0 ≤ 𝜙𝐾 ≤ 1 and 𝜙𝐾 = 1 on 𝐾. We may suppose that 4/3𝐵𝑘+2 ⊂ 𝐾. By continuity

of 𝑣𝑘, 𝑣𝑘 ≤ min𝜕(4/3𝐵𝑘+2) 𝑣𝑘 in a neighborhood 𝑉 of 𝜕(4/3𝐵𝑘+1), since 𝑣𝑘 = 0 on 𝜕(4/3𝐵𝑘+1).

It follows that 𝑤𝑘 = 𝑣𝑘 in 𝑉 and supp∇𝜙𝐾 ⊂ 𝑉 . By taking the supremum in all compact

sets 𝐾 with 4/3𝐵𝑘+1 ∖ 𝐾 ⊂ 𝑉 , we arrive at

𝜇𝑤𝑘

(︂4
3𝐵𝑘+1

)︂
= sup 𝜇𝑤𝑘

(𝐾) = sup
ˆ

4
3 𝐵𝑘+1

𝜙𝐾 d𝜇𝑤𝑘

= sup
ˆ

4
3 𝐵𝑘+1

𝒜(𝑥, ∇𝑤𝑘) · ∇𝜙𝐾 d𝑥

= sup
ˆ

4
3 𝐵𝑘+1

𝒜(𝑥, ∇𝑣𝑘) · ∇𝜙𝐾 d𝑥 = sup
ˆ

4
3 𝐵𝑘+1

𝜙𝐾 d𝜇𝑘 = 𝜇𝑘

(︂4
3𝐵𝑘+1

)︂
.

Accordingly, it follows from (A.0.18) and (4.4.6) that
(︂

min
𝜕 4

3 𝐵𝑘+2
𝑣𝑘

)︂
𝜇𝑣

(︂4
3𝐵𝑘+1

)︂
=
ˆ

4
3 𝐵𝑘+1

(︂
min

𝜕 4
3 𝐵𝑘+2

𝑣𝑘

)︂
d𝜇𝑣 ≥

ˆ
4
3 𝐵𝑘+1

𝑤𝑘 d𝜇𝑣

=
ˆ

4
3 𝐵𝑘+1

𝑤𝑘 d𝜇𝑤𝑘
=
ˆ

4
3 𝐵𝑘+1

𝒜(𝑥, ∇𝑤𝑘) · ∇𝑤𝑘 d𝑥

≥ 𝛼

ˆ
4
3 𝐵𝑘+1

𝐺(|∇𝑤𝑘|) d𝑥.
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Combining the Modular Poincaré inequality (Lemma O) with (2.3.5) in the previous estimate,

we obtain(︂
min

𝜕 4
3 𝐵𝑘+2

𝑣𝑘

)︂
𝜇𝑣

(︂4
3𝐵𝑘+1

)︂
≥ 𝑐2

ˆ
4
3 𝐵𝑘+1

𝐺
(︂

𝑤𝑘

𝑅𝑘+1

)︂
d𝑥 ≥ 𝑐3

ˆ
4
3 𝐵𝑘+1

𝐺
(︂

𝑤𝑘

𝑅𝑘

)︂
d𝑥

≥
ˆ

4
3 𝐵𝑘+2

𝐺
(︂

𝑤𝑘

𝑅𝑘

)︂
d𝑥 ≥

ˆ
4
3 𝐵𝑘+2

𝐺
(︂min𝜕 4

3 𝐵𝑘+2
𝑣𝑘

𝑅𝑘

)︂
d𝑥

= 𝑐4𝑅
𝑛
𝑘 𝐺

(︂min𝜕 4
3 𝐵𝑘+2

𝑣𝑘

𝑅𝑘

)︂
,

where 𝑐2, 𝑐3 and 𝑐4 are positive constants depending only on 𝑛 and 𝑝, 𝑞, 𝛼, 𝛽. Consequently,

by (2.3.3)

𝜇𝑣

(︂
4
3𝐵𝑘+1

)︂
𝑅𝑛−1

𝑘

≥ 𝑐4

(︂min𝜕 4
3 𝐵𝑘+2

𝑣𝑘

𝑅𝑘

)︂−1
𝐺
(︂min𝜕 4

3 𝐵𝑘+2
𝑣𝑘

𝑅𝑘

)︂
≥ 𝑐4 𝑔

(︂min𝜕 4
3 𝐵𝑘+2

𝑣𝑘

𝑅𝑘

)︂
,

where 𝑐4 = 𝑐4(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) > 0. Since min𝜕(4/3𝐵𝑘+2) 𝑣𝑘 > 0, (A.0.16) leads to

max
𝜕 4

3 𝐵𝑘+2
𝑣𝑘 ≤ 𝑐5 𝑅𝑘 𝑔−1

(︂𝜇𝑣

(︁
4
3𝐵𝑘+1

)︁
𝑅𝑛−1

𝑘

)︂
,

where 𝑐5 = 𝑐5(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) > 0 is obtained from combining 𝑐4 with (2.3.6). By (A.0.15), the

preceding inequality gives

max
𝜕 4

3 𝐵𝑘+2
𝑣 − max

𝜕 4
3 𝐵𝑘+1

𝑣 ≤ 𝑐5 𝑅𝑘 𝑔−1
(︂𝜇𝑣

(︁
4
3𝐵𝑘+1

)︁
𝑅𝑛−1

𝑘

)︂
. (A.0.19)

Thus, in all cases, by summing up (A.0.17) and (A.0.19) in 𝑘 = 2, 3, . . ., we deduce from

(A.0.8) that

lim
𝑘→∞

max
𝜕 4

3 𝐵𝑘+2
𝑣 ≤ max

𝜕 4
3 𝐵3

𝑣 + 𝑐5

∞∑︁
𝑘=2

𝑅𝑘 𝑔−1
(︂𝜇𝑣

(︁
4
3𝐵𝑘+1

)︁
𝑅𝑛−1

𝑘

)︂

≤ 𝑐6 min
𝜕 4

3 𝐵3
𝑣 + 𝑐5

∞∑︁
𝑘=2

𝑅𝑘 𝑔−1
(︂𝜇𝑣

(︁
4
3𝐵𝑘+1

)︁
𝑅𝑛−1

𝑘

)︂
, (A.0.20)

since 𝑣 is 𝒜-harmonic in 3/2𝐵3 ∖ 𝐵3. Recall that 𝑣 ≤ 𝑢 in 𝐵2𝑅. From this, combining the

weak Harnack inequality (A.0.6) with Minimum Principle (Lemma W (a)), we obtain

min
𝜕 4

3 𝐵3
𝑣 ≤ inf

𝜕 4
3 𝐵3

𝑢 ≤
(︃

−
ˆ

4
3 𝐵3

𝑢𝑠0 d𝑥

)︃ 1
𝑠0

≤ 𝑐7

(︃
−
ˆ

𝐵2𝑅

𝑢𝑠0 d𝑥

)︃ 1
𝑠0

≤ 𝑐8 inf
𝐵𝑅

𝑢,

where 𝑐7 = 𝑐7(𝑛) > 0 and 𝑐8 = 𝑐8(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) > 0. Using this in (A.0.20), there exists

𝑐9 = 𝑐9(𝑛, 𝑝, 𝑞, 𝛼, 𝛽) > 0 such that

lim
𝑘→∞

max
𝜕 4

3 𝐵𝑘+2
𝑣 ≤ 𝑐9

(︃
inf
𝐵𝑅

𝑢 +
∞∑︁

𝑘=2
𝑅𝑘 𝑔−1

(︂𝜇𝑣

(︁
4
3𝐵𝑘+1

)︁
𝑅𝑛−1

𝑘

)︂)︃
. (A.0.21)
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On the other hand, by definition of Poisson modification, 𝑢 = 𝑣 in 𝐵𝑘 ∖ (3/2𝐵𝑘+1) ⊂

𝐵2𝑅 ∖ Ω for all 𝑘 ≥ 2. Due to continuity of 𝑢 and 𝑣, we have

𝑢(𝑥0) = lim
𝑘→∞

min
𝐵𝑘∖ 3

2 𝐵𝑘+1

𝑢 = lim
𝑘→∞

min
𝐵𝑘∖ 3

2 𝐵𝑘+1

𝑣 ≤ lim
𝑘→∞

max
𝜕 4

3 𝐵𝑘+2
𝑣.

A combination of (A.0.21) with the previous inequality, yields

𝑢(𝑥0) ≤ 𝑐9

(︃
inf
𝐵𝑅

𝑢 +
∞∑︁

𝑘=2
𝑅𝑘 𝑔−1

(︂𝜇𝑣

(︁
4
3𝐵𝑘+1

)︁
𝑅𝑛−1

𝑘

)︂)︃
.

According to (A.0.12) and reminding of 𝑅𝑘 = 21−𝑘𝑅 for 𝑘 ≥ 0, we estimate the preceding

series as follows:

∞∑︁
𝑘=2

𝑅𝑘 𝑔−1
(︂𝜇𝑣

(︁
4
3𝐵𝑘+1

)︁
𝑅𝑛−1

𝑘

)︂
=

∞∑︁
𝑘=2

𝑅𝑘 𝑔−1
(︂𝜇
(︁

4
3𝐵𝑘+1

)︁
𝑅𝑛−1

𝑘

)︂

≤
∞∑︁

𝑘=2
𝑅𝑘 𝑔−1

(︂𝜇
(︁

4
3𝐵𝑘+1

)︁
𝑅𝑛−1

𝑘

)︂

=
∞∑︁

𝑘=2
(𝑅𝑘−1 − 𝑅𝑘) 𝑔−1

(︂𝜇
(︁

2
3𝐵𝑘

)︁
𝑅𝑛−1

𝑘

)︂

≤ 𝑐10

∞∑︁
𝑘=2

(𝑅𝑘−1 − 𝑅𝑘) 𝑔−1
(︂

𝜇(𝐵𝑘)
𝑅𝑛−1

𝑘−1

)︂

= 𝑐10

∞∑︁
𝑘=2

ˆ 𝑅𝑘−1

𝑅𝑘

𝑔−1
(︂

𝜇(𝐵(𝑥0, 𝑅𝑘))
𝑅𝑛−1

𝑘−1

)︂
d𝑥

≤ 𝑐10

∞∑︁
𝑘=2

ˆ 𝑅𝑘−1

𝑅𝑘

𝑔−1
(︂

𝜇(𝐵(𝑥0, 𝑠))
𝑠𝑛−1

)︂
d𝑥 ≤ 𝑐10 W𝑅

𝐺𝜇(𝑥0),

where 𝑐10 = 𝑐10(𝑝, 𝑞, 𝛼, 𝛽) > 0. This completes the proof of the upper bound in (2.3.18) by

taking 𝐶2 = 𝑐9 max{1, 𝑐10}.

We next prove the lower bound. Observe that here we do not need to use the Poisson

modification of 𝑢.

Proof of the lower bound in Theorem 2.3.19. For 𝑘 = 0, 1, 2, . . ., let 𝜂𝑘 ∈ 𝐶∞
𝑐 (𝐵𝑘) satisfying

0 ≤ 𝜂𝑘 ≤ 1, supp 𝜂𝑘 ⊂ 5/4𝐵𝑘+1 and 𝜂𝑘 = 1 in 𝐵𝑘+1. We set 𝜇𝑘 = 𝜂𝑘𝜇. Notice that

𝜇𝑘 ∈
(︁
𝑊 1,𝐺

0 (𝐵𝑘)
)︁*

and 𝜇𝑘(𝐵𝑘+1) = 𝜇(𝐵𝑘+1). Using Theorem Q, there exists 𝑢𝑘 ∈ 𝑊 1,𝐺
0 (𝐵𝑘)

satisfying

−div
(︁
𝒜(𝑥, ∇𝑢𝑘)

)︁
= 𝜇𝑘 in 𝐵𝑘. (A.0.22)

On account of the supp 𝜂𝑘 ⊂ 5/4𝐵𝑘+1, one has

𝑢𝑘 is 𝒜-harmonic in 𝐵𝑘 ∖ 5
4𝐵𝑘+1,
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and 𝑢𝑘 = 0 continuously on 𝜕𝐵𝑘. Since (−𝑢 + min𝜕𝐵𝑘
𝑢)+ = 0 on 𝜕𝐵𝑘, it follows that

(𝑢𝑘 − 𝑢 + min𝜕𝐵𝑘
𝑢)+ = 0 on 𝜕𝐵𝑘, whence supp(𝑢𝑘 − 𝑢 + min𝜕𝐵𝑘

𝑢)+ ⊂ 𝐵𝑘 and, by

Lemma Z, (︁
𝑢𝑘 − 𝑢 + min

𝜕𝐵𝑘

𝑢
)︁

+
∈ 𝑊 1,𝐺

0 (𝐵𝑘).

A subtraction of equations of 𝑢 and 𝑢𝑘, (A.0.1) and (A.0.22), respectively, with the preceding

test function gives

0 ≤
ˆ

𝐵𝑘

(︁
𝑢𝑘 − 𝑢 + min

𝜕𝐵𝑘

𝑢
)︁

+
d𝜇 −

ˆ
𝐵𝑘

(︁
𝑢𝑘 − 𝑢 + min

𝜕𝐵𝑘

𝑢
)︁

+
d𝜇𝑘

=
ˆ

𝐵𝑘∩{𝑢−min𝜕𝐵𝑘
𝑢≤𝑢𝑘}

(︁
𝒜(𝑥, ∇𝑢) − 𝒜(𝑥, ∇𝑢𝑘)

)︁
· ∇(𝑢𝑘 − 𝑢) d𝑥 ≤ 0,

where in the last inequality was used the monotonicity of 𝒜 (4.4.6). From this, ∇(𝑢𝑘 − 𝑢 +

min𝜕𝐵𝑘
𝑢)+ = 0 in 𝐵𝑘, and consequently

𝑢𝑘 ≤ 𝑢 − min
𝜕𝐵𝑘

𝑢 in 𝐵𝑘. (A.0.23)

Let 𝜙 ∈ 𝐶∞
𝑐 (𝐵𝑘) be such that⎧⎪⎪⎨⎪⎪⎩

0 ≤ 𝜙 ≤ 1 in 𝐵𝑘,

𝜙 = 1 in 2
3𝐵𝑘, |∇𝜙| ≤ 𝑐

𝑅𝑘

.
(A.0.24)

Observe that supp∇𝜙 ⊂ 𝐵𝑘∖(2/3𝐵𝑘) ⊂ 𝐵𝑘∖(5/4𝐵𝑘+1). Hence 𝑢𝑘 is 𝒜-harmonic in supp∇𝜙.

By Maximum and Minimum Principles (Lemma W), we obtain respectively

𝑢𝑘(𝑥) = min
{︂

𝑢𝑘(𝑥), max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂
∀𝑥 ∈ supp∇𝜙, (A.0.25)

min
𝜕 2

3 𝐵𝑘

𝑢𝑘 ≤ min
{︂

𝑢𝑘(𝑥), max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂
in ∀𝑥 ∈ 2

3𝐵𝑘. (A.0.26)

We will consider two cases as in the proof of the upper bound. First assume min𝜕𝐵𝑘+1 𝑢𝑘 >

0. By the weak Harnack inequality (A.0.6), this positivity implies

min
𝜕 2

3 𝐵𝑘

𝑢𝑘 ≥ 1
𝑐1

(︃
−
ˆ

2
3 𝐵𝑘

𝑢𝑠0
𝑘 d𝑥

)︃ 1
𝑠0

≥
(︂4

3

)︂𝑛 1
𝑐1

(︃
−
ˆ

𝐵𝑘+1

𝑢𝑠0
𝑘 d𝑥

)︃ 1
𝑠0

≥ 1
𝑐2

min
𝜕𝐵𝑘+1

𝑢𝑘 > 0,

where 𝑐1 > 0 and 𝑐2 > 0 are constants depending only on 𝑛, 𝑝, 𝑞, 𝛼, 𝛽. Using the previous

inequality and taking into account 𝜙 given in (A.0.24), we compute by (A.0.26)(︂
min
𝜕 2

3 𝐵𝑘

𝑢𝑘

)︂
𝜇(𝐵𝑘+1) =

ˆ
𝐵𝑘+1

min
𝜕 2

3 𝐵𝑘

𝑢𝑘 d𝜇 =
ˆ

𝐵𝑘+1

min
𝜕 2

3 𝐵𝑘

𝑢𝑘 d𝜇𝑘

=
ˆ

𝐵𝑘+1

min
𝜕 2

3 𝐵𝑘

𝑢𝑘 𝜙𝑞 d𝜇𝑘 ≤
ˆ

2
3 𝐵𝑘

min
𝜕 2

3 𝐵𝑘

𝑢𝑘 𝜙𝑞 d𝜇𝑘

≤
ˆ

2
3 𝐵𝑘

min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂
𝜙𝑞 d𝜇𝑘 ≤

ˆ
𝐵𝑘

min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂
𝜙𝑞 d𝜇𝑘.

(A.0.27)
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From Lemma Z, 𝜑 := min
{︁
𝑢𝑘, max𝜕(2/3𝐵𝑘) 𝑢𝑘

}︁
𝜙𝑞 ∈ 𝑊 1,𝐺

0 (𝐵𝑘), whence testing 𝜑 in (A.0.22)

and using (A.0.27), it follows(︂
min
𝜕 2

3 𝐵𝑘

𝑢𝑘

)︂
𝜇(𝐵𝑘+1) ≤

ˆ
𝐵𝑘

𝒜(𝑥, ∇𝑢𝑘)∇ ·
(︂

min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂
𝜙𝑞
)︂

d𝑥

=
ˆ

𝐵𝑘

𝒜(𝑥, ∇𝑢𝑘) ·
(︂

𝜙𝑞 ∇ min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂)︂
d𝑥

+ 𝑞

ˆ
𝐵𝑘

𝒜(𝑥, ∇𝑢𝑘) ·
(︂

min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂
𝜙𝑞−1 ∇𝜙

)︂
d𝑥

=: 𝐼1 + 𝐼2 (A.0.28)

Since ∇ min
{︁
𝑢𝑘, max𝜕 2

3 𝐵𝑘
𝑢𝑘

}︁
= 0 in 𝐵𝑘 ∩ {𝑢𝑘 > max𝜕(2/3)𝐵𝑘

𝑢𝑘}, combining Cauchy-

Schawrz inequality with (2.3.3) and (4.4.6), we estimate 𝐼1 as follows

𝐼1 =
ˆ

𝐵𝑘∩{𝑢𝑘≤max
𝜕 2

3 𝐵𝑘
𝑢𝑘}

𝒜(𝑥, ∇𝑢𝑘) ·
(︂

𝜙𝑞 ∇ min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂)︂
d𝑥

=
ˆ

𝐵𝑘∩{𝑢𝑘≤max
𝜕 2

3 𝐵𝑘
𝑢𝑘}

𝒜(𝑥, ∇𝑢𝑘) · ∇𝑢𝑘 𝜙𝑞 d𝑥

≤ 𝑞𝛽

ˆ
𝐵𝑘∩{𝑢𝑘≤max

𝜕 2
3 𝐵𝑘

𝑢𝑘}
𝐺(|∇𝑢𝑘|) 𝜙𝑞 d𝑥

≤ 𝑞𝛽

ˆ
𝐵𝑘∩{𝑢𝑘≤max

𝜕 2
3 𝐵𝑘

𝑢𝑘}
𝐺
(︂⃒⃒⃒

∇ min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

⃒⃒⃒)︂
𝜙𝑞 d𝑥

≤ 𝑞𝛽

ˆ
𝐵𝑘

𝐺
(︂⃒⃒⃒

∇ min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

⃒⃒⃒)︂
𝜙𝑞 d𝑥. (A.0.29)

Being 𝑢𝑘 an 𝒜-supersolution in 𝐵𝑘, min
{︁
𝑢𝑘, max𝜕(2/3𝐵𝑘) 𝑢𝑘

}︁
is also an 𝒜-supersolution in

𝐵𝑘, thence

𝑤𝑘 := max
𝜕 2

3 𝐵𝑘

𝑢𝑘 − min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂
is an 𝒜-subsolution in 𝐵𝑘,

and it is nonnegative by definition. Applying Caccioppoli estimate (Lemma V) to 𝑤𝑘 in 𝐵𝑘

and taking into account (A.0.24),ˆ
𝐵𝑘

𝐺
(︂⃒⃒⃒

∇ min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

⃒⃒⃒)︂
𝜙𝑞 d𝑥 ≤

ˆ
𝐵𝑘

𝐺(|∇𝑤𝑘|) 𝜙𝑞 d𝑥

≤ 𝑐3

ˆ
𝐵𝑘

𝐺(𝑤𝑘 |∇𝜙|) d𝑥

≤ 𝑐3

ˆ
𝐵𝑘∩ supp∇𝜙

𝐺
(︂

𝑐 𝑤𝑘

𝑅𝑘

)︂
d𝑥

≤ 𝑐4

ˆ
𝐵𝑘∩ supp∇𝜙

𝐺
(︂max𝜕 2

3 𝐵𝑘
𝑢𝑘

𝑅𝑘

)︂
d𝑥

≤ 𝑐4

ˆ
𝐵𝑘∖(5/4𝐵𝑘+1)

𝐺
(︂max𝜕 2

3 𝐵𝑘
𝑢𝑘

𝑅𝑘

)︂
d𝑥,
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where 𝑐3, 𝑐4 depending only 𝑛 and 𝑝, 𝑞, 𝛼, 𝛽. Recall that 𝑢𝑘 is 𝒜-harmonic in 𝐵𝑘 ∖ (5/4𝐵𝑘+1).

By (A.0.9),

max
𝜕 2

3 𝐵𝑘

𝑢𝑘 ≤ 𝑐5 min
𝜕 2

3 𝐵𝑘

𝑢𝑘.

Combining this with (A.0.29), we obtain

𝐼1 ≤ 𝑐6

ˆ
𝐵𝑘∖(5/4𝐵𝑘+1)

𝐺
(︂𝑐5 min𝜕 2

3 𝐵𝑘
𝑢𝑘

𝑅𝑘

)︂
d𝑥

≤ 𝑐6

ˆ
𝐵𝑘

𝐺
(︂𝑐5 min𝜕 2

3 𝐵𝑘
𝑢𝑘

𝑅𝑘

)︂
d𝑥 ≤ 𝑐7 𝑅𝑛

𝑘 𝐺
(︂min𝜕 2

3 𝐵𝑘
𝑢𝑘

𝑅𝑘

)︂
. (A.0.30)

Next, using the Cauchy-Schwarz inequality, (4.4.6) and (A.0.25), one has

𝐼2 ≤ 𝑐8

ˆ
𝐵𝑘∩ supp∇𝜙

𝑔(|∇𝑢𝑘|)
⃒⃒⃒⃒
min

{︂
𝑢𝑘, max

𝜕 2
3 𝐵𝑘

𝑢𝑘

}︂⃒⃒⃒⃒
𝜙𝑞−1 |∇𝜙| d𝑥

= 𝑐8

ˆ
supp∇𝜙

𝑔
(︂⃒⃒⃒⃒

∇ min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂⃒⃒⃒⃒)︂⃒⃒⃒⃒
min

{︂
𝑢𝑘, max

𝜕 2
3 𝐵𝑘

𝑢𝑘

}︂⃒⃒⃒⃒
𝜙𝑞−1 |∇𝜙| d𝑥

≤ 𝑐8

ˆ
supp∇𝜙

𝑔
(︂⃒⃒⃒⃒

∇ min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂⃒⃒⃒⃒)︂
𝜙𝑞−1 max

𝜕 2
3 𝐵𝑘

𝑢𝑘 |∇𝜙| d𝑥

≤ 𝑐8

ˆ
supp∇𝜙

𝑔
(︂⃒⃒⃒⃒

∇
(︂

max
𝜕 2

3 𝐵𝑘

𝑢𝑘 − min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂)︂⃒⃒⃒⃒)︂
𝜙𝑞−1 max

𝜕 2
3 𝐵𝑘

𝑢𝑘 |∇𝜙| d𝑥.

Since 0 ≤ 𝜙 ≤ 1, 𝐺*(𝜙𝑞−1𝑡) ≤ 𝑐8 𝜙𝑞𝐺*(𝑡) for all 𝑡 ≥ 0 by (2.3.7). From this, with the aid

of Caccioppoli estimate (Lemma V), a combination of Young’s inequality (2.3.1) and (2.3.9)

gives

𝐼2 ≤ 𝑐8

ˆ
supp∇𝜙

𝐺

(︃
max
𝜕 2

3 𝐵𝑘

𝑢𝑘 |∇𝜙|
)︃

d𝑥

+ 𝑐8

ˆ
supp∇𝜙

𝐺*
(︃

𝑔
(︂⃒⃒⃒⃒

∇
(︂

max
𝜕 2

3 𝐵𝑘

𝑢𝑘 − min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂)︂⃒⃒⃒⃒)︂
𝜙𝑞−1

)︃
d𝑥

≤ 𝑐8

ˆ
supp∇𝜙

𝐺

(︃
max
𝜕 2

3 𝐵𝑘

𝑢𝑘 |∇𝜙|
)︃

d𝑥

+ 𝑐10

ˆ
supp∇𝜙

𝐺

(︃⃒⃒⃒⃒
∇
(︂

max
𝜕 2

3 𝐵𝑘

𝑢𝑘 − min
{︂

𝑢𝑘, max
𝜕 2

3 𝐵𝑘

𝑢𝑘

}︂)︂⃒⃒⃒⃒)︃
𝜙𝑞 d𝑥

≤ 𝑐8

ˆ
supp∇𝜙

𝐺

(︃
max
𝜕 2

3 𝐵𝑘

𝑢𝑘 |∇𝜙|
)︃

d𝑥

+ 𝑐11

ˆ
supp∇𝜙

𝐺

(︃(︂
max
𝜕 2

3 𝐵𝑘

𝑢𝑘 − min
{︁
𝑢𝑘, max

𝜕 2
3 𝐵𝑘

𝑢𝑘

}︁)︂
|∇𝜙|

)︃
d𝑥

≤ 𝑐12

ˆ
supp∇𝜙

𝐺

(︃
max
𝜕 2

3 𝐵𝑘

𝑢𝑘 |∇𝜙|
)︃

d𝑥 ≤ 𝑐13 𝑅𝑛
𝑘 𝐺

(︂min𝜕 2
3 𝐵𝑘

𝑢𝑘

𝑅𝑘

)︂
, (A.0.31)

where the last inequality follows by the same method as in (A.0.30). Here 𝑐𝑖 > 0, 𝑖 = 5, . . . , 13
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are constants depending only on 𝑛 and 𝑝, 𝑞, 𝛼, 𝛽. Applying (A.0.30) and (A.0.31) in (A.0.28),

𝜇(𝐵𝑘+1)
𝑅𝑛−1

𝑘

≤ 𝑐14
𝑅𝑘

min𝜕 2
3 𝐵𝑘

𝑢𝑘

𝐺
(︂min𝜕 2

3 𝐵𝑘
𝑢𝑘

𝑅𝑘

)︂

≤ 𝑐15 𝑔
(︂min𝜕 2

3 𝐵𝑘
𝑢𝑘

𝑅𝑘

)︂
.

Accordingly, for all 𝑘 ≥ 0 with min𝜕𝐵𝑘+1 𝑢𝑘 > 0, it holds

𝑅𝑘𝑔−1
(︂

𝜇(𝐵𝑘+1)
𝑅𝑛−1

𝑘

)︂
≤ 𝑐16 min

𝜕 2
3 𝐵𝑘

𝑢𝑘,

where 𝑐𝑖 > 0, 𝑖 = 14, 15, 16, depend only on 𝑛 and 𝑝, 𝑞, 𝛼, 𝛽. Since 𝑢 is 𝒜-superharmonic in

𝐵𝑘, we have

min
𝜕 2

3 𝐵𝑘

𝑢 = min
2
3 𝐵𝑘

𝑢 ≤ min
𝐵𝑘+1

𝑢 ≤ min
𝜕𝐵𝑘+1

𝑢.

Using this in (A.0.23), we deduce that

min
𝜕 2

3 𝐵𝑘

𝑢𝑘 ≤ min
𝜕𝐵𝑘+1

𝑢 − min
𝜕𝐵𝑘

𝑢.

Hence

𝑅𝑘𝑔−1
(︂

𝜇(𝐵𝑘+1)
𝑅𝑛−1

𝑘

)︂
≤ 𝑐16

(︁
min

𝜕𝐵𝑘+1
𝑢 − min

𝜕𝐵𝑘

𝑢
)︁
. (A.0.32)

Next, assume that min𝜕𝐵𝑘0
𝑢 = 0 for some 𝑘0 ≥ 0. The weak Harnack inequality (A.0.6)

implies that 𝑢𝑘0 = 0 in 𝐵𝑘0 . From this, we infer that 𝑢 is 𝒜-harmonic in 𝐵𝑘0+1 since 𝜇(𝐵𝑘0+1) =

𝜇𝑘0(𝐵𝑘0+1) = 0, whence

𝜇(𝐵𝑗) = 0 ∀𝑗 ≥ 𝑘0 + 1. (A.0.33)

By Minimum Principle (Lemma W (a)), min𝜕𝐵𝑘0+1 𝑢 = min𝐵𝑘0+1 𝑢 ≤ 𝑢(𝑥0).

Thus, by summing up all cases, we concluded from (A.0.32) and (A.0.33) that

𝑢(𝑥0) ≥ 𝑢(𝑥0) − min
𝜕𝐵0

𝑢 ≥ lim
𝑘→∞

(︁
min

𝜕𝐵𝑘+1
𝑢 − min

𝜕𝐵0
𝑢
)︁

=
∞∑︁

𝑘=0

(︁
min

𝜕𝐵𝑘+1
𝑢 − min

𝜕𝐵𝑘

𝑢
)︁

≥ 1
𝑐16

∞∑︁
𝑘=0

𝑅𝑘𝑔−1
(︂

𝜇(𝐵𝑘+1)
𝑅𝑛−1

𝑘

)︂

Reminding of 𝑅𝑘 = 21−𝑘𝑅 for 𝑘 ≥ 0, by (2.3.6), we deduce that

𝑢(𝑥0) ≥ 1
𝑐16

∞∑︁
𝑗=1

𝑅𝑗−1𝑔
−1
(︂

𝜇(𝐵𝑗)
𝑅𝑛−1

𝑗−1

)︂

= 4
𝑐16

∞∑︁
𝑗=1

𝑅𝑗+1𝑔
−1
(︂

𝜇(𝐵𝑗)
4𝑛−1𝑅𝑛−1

𝑗+1

)︂
≥ 𝑐17

∞∑︁
𝑗=1

𝑅𝑗+1𝑔
−1
(︂

𝜇(𝐵𝑗)
𝑅𝑛−1

𝑗+1

)︂
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The estimate

W𝑅
𝐺𝜇(𝑥0) =

ˆ 𝑅

0
𝑔−1

(︂
𝜇(𝐵(𝑥0, 𝑠)

𝑠𝑛−1

)︂
d𝑠

=
∞∑︁

𝑘=1

ˆ 𝑅𝑘

𝑅𝑘+1

𝑔−1
(︂

𝜇(𝐵(𝑥0, 𝑠)
𝑠𝑛−1

)︂
d𝑠 ≤

∞∑︁
𝑘=1

ˆ 𝑅𝑘

𝑅𝑘+1

𝑔−1
(︂

𝜇(𝐵(𝑥0, 𝑅𝑘)
𝑅𝑛−1

𝑘+1

)︂
d𝑠

=
∞∑︁

𝑘=1
(𝑅𝑘 − 𝑅𝑘+1)𝑔−1

(︂
𝜇(𝐵𝑘)
𝑅𝑛−1

𝑘+1

)︂
=

∞∑︁
𝑘=1

𝑅𝑘+1𝑔
−1
(︂

𝜇(𝐵𝑘)
𝑅𝑛−1

𝑘+1

)︂

completes the proof of the lower bound in (2.3.18) by taking 𝐶1 = 𝑐17, which depends only

on 𝑛 and 𝑝, 𝑞, 𝛼, 𝛽.
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