ne-
ne~-
e~

|

‘g

VIRTUS IMPAVIDA
L A |

Universidade Federal de Pernambuco
Centro de Informatica

FAST-GRADLE-PLUGIN: UM PLUGIN
PARA PRIORIZACAO DE CASOS DE
TESTE UTILIZANDO O FAST

Luiz André de Jesus Silva

Recife
Marco, 2024

Universidade Federal de Pernambuco
Centro de Informatica

Luiz André de Jesus Silva

FAST-GRADLE-PLUGIN: UM PLUGIN PARA
PRIORIZACAO DE CASOS DE TESTE UTILIZANDO O
FAST

Trabalho de graduagdo apresentado para o programa de
Bacharelado em Ciéncia da Computagdo do Centro de
Informdtica da Universidade Federal de Pernambuco em
cumprimento parcial dos requisitos para obtencdo do grau
de Bacharel em Ciéncia da Computacdo.

Orientador: Prof. Dr. Breno Alexandro Ferreira de Miranda

Recife
Marco, 2024

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragéo automatica do SIB/UFPE

Silva, Luiz André de Jesus.

FAST-gradle-plugin: Um plugin para priorizac&o de casos de teste utilizando
0 FAST / Luiz André de Jesus Silva. - Recife, 2024.

33p.:il., tab.

Orientador(a): Breno Alexandro Ferreirade Miranda

Trabalho de Conclusdo de Curso (Graduag&o) - Universidade Federal de
Pernambuco, Centro de Informatica, Ciéncias da Computagéo - Bacharel ado,
2024.

1. Testes de Software. 2. Priorizago de Casos de Teste. 3. FAST. |. Miranda,
Breno Alexandro Ferreira de. (Orientag&0). I1. Titulo.

000 CDD (22.ed.)

Agradecimentos

Dedico este trabalho a minha esposa, que sempre esteve ao meu lado, me apoiando e incenti-
vando em todos os momentos da minha vida. Agradeco por todo o amor, carinho e compreensao
que ela me proporciona, e por ser a minha maior fonte de inspiragdo e motivagao.

Dedico também a minha mae e ao meu pai, que sempre me apoiaram e incentivaram a buscar
os meus sonhos e objetivos. Agradeco por todo o suporte e amor incondicional que recebi ao
longo da minha vida.

Agradeco ao meu orientador, que me orientou e guiou durante todo o processo de elabo-
racdo deste trabalho. Agradeco por compartilhar seus conhecimentos e experi€ncias, € por me
incentivar a buscar sempre o melhor.

Por fim, dedico este trabalho a todos os profissionais da area de software, que trabalham
incansavelmente para garantir a qualidade dos sistemas de software e contribuem para o avango
da tecnologia.

il

Abstract

The software testing process is essential for developing high-quality software. However, testing
activities can be quite costly, consuming a significant portion of the entire development cycle.
One strategy to optimize the time spent on test execution is test case prioritization, aiming to
identify failures as quickly as possible. The FAST Approaches to Scalable Similarity-based Test
Case Prioritization is an application that prioritizes test cases based on similarity. This project
aims to implement a plugin for Gradle that enables the application of test case prioritization in
the software development lifecycle.

Keywords: software testing; test case priorization; similarity; gradle

v

Resumo

O processo de testes de software € essencial para o desenvolvimento de software com qualidade.
Entretanto as atividades de teste sdo bastante custosas, tomando boa parte do ciclo completo
de desenvolvimento. Uma das estratégias para otimizar o tempo gasto com a execucdo dos
testes € a de priorizacdo de casos de testes, para que as falhas sejam identificadas o mais breve
possivel. O FAST Approaches to Scalable Similarity- based Test Case Prioritization é uma
aplicagdo que faz a priorizagc@o dos casos de teste com base em similaridade. Este trabalho visa
a implementacdo de um plugin para o Gradle que possibilite a aplicacdo da priorizagdo dos
casos de teste no ciclo de vida do software.

Palavras-chave: teste de software; priorizagdo de casos de teste; similaridade; gradle

Sumario

(1 Introducaol
(1.1 Motivacgao|
(1.2 Objetivos|

2.1 Engenharia de Software|
2.2 Testes de Softwarel
2.2.1 Tecnicas e Critérios de Testel
[2.3 Testes de Regressao|
[2.4 Priorizacao do Casos de Testes|
[2.4.1 FAST Approaches to Scalable Similarity-based Test Case Prioritization|
[2.5 Ferramentas de Automacao de Build]

2.5.1 Gradlel

3 Metodologial
(3.1 Contextualizacao|
B.2.1 Desenvolvimentol
3.2.2 Estrutural
[3.2.3 Instalacao|
[3.2.4 Utlizacao|
[3.2.5 Arquivos Gerados|

4 Experimentos e Analise de Resultados|

[Referencias Bibliograficas|

Vi

— O 0NN kW W DN DO

e i e e e) p—
W NN NN

—_
B W

—_ = = = e e
O 00 0 N I

NN
(NS

Lista de Figuras

[2.1 Combinacao das técnicas de teste] 5
[2.2 Aplicando as técnicas de RTS, TCP e TSM nos testes de regressao| 7
2.3 Formula de Average Percentage of Faults Detected (APED)| 8
2.4 Algoritmo do FAST| 9
(3.1 Arquivo settings.gradle| 14
[3.2 Instanciando o plugin no arquivo build.gradle| 14
(3.3 Utilizando a task Prioritize do plugin no arquivo build.gradle] 14
[3.4 Registranto task testPrioritizedBuild no arquivo build. gradle| 15
(3.5 Definindo instrumentacao para executar os testes priorizados ou nao de acordo |

com a taskl 15
(3.6 Conteudo do arquivo FASTPrioritizedSuite.java do Commons CLI| 16

vii

Lista de Tabelas

4.1 Resultados da execu¢ao do plugin no Commons CSV]|

4.2 Resultados da execucao do plugin no Commons Collections|
4.3 Resultados da execucao do plugin no Commons Codec|

4.4 Resultados da execucao do plugin no Commons CLI|

viii

17
18
18
18

Lista de Siglas

AFPD Average Percentage of Faults Detected.
BB Caixa preta.

CD Continous Delivery.
CI Continous Integration.

CT Caso de teste.

FAST FAST Approaches to Scalable Similarity-based Test Case Prioritization.
IDE Integrated Development Environment.

RTS Regression Test Selection.

TCP Test Case Priorization.

TSM Test Suit Minimization.

WB Caixa branca.

X

CAPITULO 1

Introducao

Construir software com qualidade, eficiéncia, manutenibilidade, seguranga e portabilidade, re-
speitando custos e prazos € um dos grandes desafios da Engenharia de Software. O Standish
Group (2018) faz periodicamente, desde 1994, um relatorio que apresenta a taxa de sucesso de
projetos de software. O relatério, denominado CHAOS Report, do ano de 2015 avaliou 50.000
projetos em todo o mundo, e apenas 29% destes projetos foram concluidos com sucesso. Dos
projetos que foram concluidos com sucesso, somente 8% eram considerados grandes ou muito
grandes, enquanto 62% eram considerados pequenos. Esses dados sugerem que quanto maior e
mais complexo um projeto, menor € a sua taxa de sucesso [|1].

Segundo Pressman [2], "a atividade de teste de software é um elemento critico na garantia
de qualidade de software e representa a ultima revisdo de especificacdo, projeto e codificacao".
Desta forma, o processo de testes de software ¢ um grande aliado para superar esse desafio,
seja alinhando as expectativas, descobrindo erros antes do cliente, detectando problemas de
design, mantendo o sistema estdvel, melhorando a manutenibilidade do sistema, e até mesmo
garantindo a entrega.

Entretanto, as atividades de teste sdo bastante custosas, tomando boa parte do ciclo completo
de desenvolvimento [3]]. A atividade de teste € um elemento critico da garantia de qualidade
de software e pode assumir até 40% do esfor¢o despendido no processo de desenvolvimento,
como afirma Pressman [2]]. Somente o Google, em seus mais de 13 mil projetos, executa 150
milhoes de casos de testes diariamente [4]].

Diante das razdes supracitadas, o teste de software tornou-se, pouco a pouco, um tema
de grande importincia com a necessidade de adaptacdo de métodos préiticos que assegurem a
qualidade dos produtos finais, a fim de tornéd-los confidveis e de facil manutencdo. Mesmo com
o custo elevado, esse processo ¢ fundamental para avaliar a preservacdo do comportamento
esperado para o sistema [5]].

De acordo com Myers & Sandler [6]], quanto mais tardiamente um defeito é encontrado
em um sistema sendo desenvolvido ou testado, maior € o custo de sua correcdo. Esse grande
nimero de testes € tipico dos testes de regressdo, pois eles visam garantir a integralidade do
software como um todo apds modificacdes. Entretanto, quanto mais testes sao adicionados ao
ciclo de regressdo, mais demorado e, consequentemente, custoso ele vem a se tornar [3]. O
processo mais comum existente para garantir que nenhuma funcionalidade foi impactada com
as mudancas realizadas € o refazer todos os testes a cada versdo do software.

Entdo, nesse contexto, faz-se essencial a utilizacdo de estratégias que possam tornar este
processo mais rdpido e menos custoso. Existem algumas formas de reduzir o custo dos testes
de regressao, como: redugdo de grupo de testes, selecdo de testes de regressao e priorizacao
de casos de teste. Neste trabalho, nosso foco serd a priorizacio de casos de teste, que €, das
metodologias citadas, a Ginica que garante a nio elimina¢do de nenhum caso de teste do conjunto
gerado.

A priorizacdo de casos de teste consiste na ideia de ordenar os casos de teste de acordo
com critérios estabelecidos, dando prioridade aos testes que t€m maior possibilidade de falha,

1.1 MOTIVACAO 2

fazendo com que estas sejam identificadas o mais brevemente possivel, facilitando assim a
correcdo dos problemas.

Existem diversas abordagens de priorizacdo. O FAST Approaches to Scalable Similarity-
based Test Case Prioritization é uma dessas. Atualmente, o FAST conta com os testes proces-
sados de dez projetos reais para que sejam executadas as operagdes de priorizacdo. Porém, o
projeto ndo se encontra disponivel como ferramenta, de forma que ela venha a suportar a re-
alizac@o da priorizagdo com os casos de testes de outros softwares. Esta implementacdo pode
facilitar e difundir o seu uso, além de dar margem para a criagdo de novas aplica¢des para o
projeto [3]].

Este trabalho busca um aprimoramento deste projeto, com a implementacdo de um plugin
na ferramenta de geracdo de build Gradle, para facilitar a utilizacdo do projeto para os desen-
volvedores das mais diversas linguagens de programacdo, de forma que seja possivel integrar a
execugdo do FAST no ciclo de vida do software de forma mais simples.

1.1 Motivacao

A aplicacdo da priorizacdo dos casos de teste € fundamental para diminuir o custo de aplicagdo
dos testes de regressao, fazendo com que os erros sejam descobertos o mais rapido possivel
e melhorando o desenvolvimento do software como um todo. Porém, o uso do FAST ainda
¢ restrito a ferramenta de geracdo de build Maven. Diante disto, surgiu a proposta de tornar
o FAST disponivel no Gradle, que é bastante utilizada nos mais diversos projetos ao redor do
mundo, sendo possivel realizar a execucdo dos casos de testes do software de forma priorizada
durante o processo de compilacdo ou geracdo de uma nova versdo de alguma aplicacdo. E
também dard a possibilidade de execugdo dos testes de maneira priorizada a qualquer momento
do processo de desenvolvimento do projeto [3].

1.2 Objetivos

O objetivo geral desse trabalho € construir uma ferramenta que possibilite a utilizagdo do FAST,
aplicando a priorizacdo dos casos de teste a execugdo dos testes do software para os projetos
que utilizam o Gradle como ferramenta de geragdo de build.

Como objetivos especificos, podemos citar a criacdo de um plugin no Gradle que possibilite
a integracdo com o FAST, além de um estudo comparativo dos resultados sem e com a aplicac@o
do FAST aos testes de um sistema nos diversos tipos de algoritmos suportados pelo FAST.

CAPITULO 2

Conceitos Basicos

Neste capitulo € apresentado o embasamento tedrico necessario para o entendimento da solugao
proposta neste trabalho. Este capitulo serd composto de seis secdes. Iniciaremos por uma intro-
ducdo aos conceitos da Engenharia de Software (Secao [2.1)), apds isso, abordaremos conceitos
e técnicas de teste (Secdo [2.2). Na Secdo exploraremos com mais profundidade os Testes
de Regressdo, que € o tipo de teste tema deste trabalho. Na Secao [2.4] entraremos nas técnicas
de priorizagdo de testes, passando pelas ferramentas de automagio de compilagdo na Se¢io[2.5]

2.1 Engenharia de Software

Segundo Tian, a expectativa das pessoas em relacdo a qualidade do software pode ser definida
em duas vertentes: o software deve fazer o que se propde a fazer e deve realizar tarefas especi-
ficas corretamente [[7]. Assim, temos que, para os usudrios de software, qualidade se refere ao
software executar o que foi definido e de forma correta e satisfatdria [8].

A Engenharia de Software atua nesse contexto, fornecendo técnicas, métodos, metodologias
e ferramentas de apoio, e visa contribuir para o desenvolvimento de produtos de software de alta
qualidade, maximizando o uso dos recursos € minimizando os custos de desenvolvimento [8]].

O processo de engenharia de software pode ser dividido em uma série de passos ordena-
dos que envolvem atividades, restri¢des e recursos, que irdo produzir uma saida desejada. Esse
processo envolve um conjunto de técnicas e ferramentas que sio realizadas com o objetivo de
desenvolver, manter e gerenciar softwares [3]]. Segundo Sommerville, Engenharia de Software é
uma disciplina da engenharia que esté relacionada a todos os aspectos da producao de software,
desde os primeiros estagios da especificacido do sistema até a sua manutengdo [9)]. Ainda se-
gundo Sommerville [9], mesmo que existam diversos processos de software diferentes, existem
atividades comuns a todas elas. Estas sdo:

» Especificacdo do software: essa atividade visa definir as funcionalidades do software e
suas restricdes sobre operagao;

* Design e implementacdo do software: garante que o software deve ser produzido para
atender as especificacdes definidas anteriormente;

* Verificacdo e validacdo do software: visa garantir a qualidade do produto, certificando-se
de que atenda de forma efetiva aos requisitos e as expectativas dos clientes.

* Evolucdo do software: garante que o software deve evoluir para atender as necessidades
de mudanca dos clientes.

No contexto deste trabalho, concentraremos nossa atencdo na fase de verificagdao de soft-
ware, que busca examinar se o software em desenvolvimento cumpre suas especificagdes sem
apresentar erros ou falhas, proporcionando a funcionalidade esperada pelos usudrios ou stake-
holders. Esses procedimentos iniciam-se assim que 0s requisitos sao estabelecidos e continuam

2.2 TESTES DE SOFTWARE 4

ao longo de todas as etapas do desenvolvimento. Uma das préticas mais comuns de verificacdo
de software € a realizacdo de testes de software, que desempenham um papel crucial na garantia
da qualidade do produto final.

2.2 Testes de Software

Segundo Weiszflog [[10], a qualidade € definida como: "Atributo, condi¢ao natural, propriedade
pela qual algo ou alguém se individualiza, distinguindo-se dos demais; maneira de ser, esséncia,
natureza. Exceléncia, virtude, talento". Com isso, € perceptivel que a qualidade de software é
uma drea da Engenharia de Software que tem como objetivo principal garantir a qualidade do
produto de software [3]].

Nesse contexto, os testes de software sdo uma das atividades que visam garantir a quali-
dade de um software, tendo como finalidade validar se o produto em desenvolvimento estd em
conformidade com a especificacdo.

Segundo Sommerville, o processo de teste visa garantir que o software foi desenvolvido
de acordo com os requisitos definidos, além de descobrir situacdes em que o comportamento
do software ndo estd dentro do esperado [9]. Nesse contexto, Dijkstra et al. [11]] conseguiram
chegar a conclusdo de que os testes s podem mostrar a presenca de defeitos, mas ndo a sua
auséncia.

Teste € uma atividade muito importante dentro do ciclo de vida de desenvolvimento de um
software. Testar um software consiste em executd-lo usando dados variados. Dessa forma, é
possivel analisar os resultados dos testes em busca de erros ou anomalias [9].

Para que um processo de teste seja bem-sucedido, alguns pontos devem ser analisados:

O processo de teste deve ser tratado pelas organizagdes como um processo: Verifica-se
que a maioria das empresas desenvolvedoras de software ndo dd a devida importancia
a atividade de teste, sendo esta uma fase informal, conduzida sem metodologia e com
fun¢des ndo definidas, se confundindo com a propria gestao do processo de desenvolvi-
mento.

* Os testes devem abranger o sistema completamente: E evidente que, se os testes forem
incompletos durante o desenvolvimento, a probabilidade de ocorrerem problemas apds
sua implanta¢do € notoria.

* A abordagem de testes deve ser adequada a novas tecnologias: Investir na reciclagem
e/ou treinamento do pessoal técnico de testes, de forma a adequar os procedimentos de
testes as novas tecnologias.

* A estrutura organizacional para testes deve ser modificada: Em geral, quase todas as eta-
pas do processo de teste sdo realizadas pelos desenvolvedores. E interessante ressaltar
que essa caracteristica ndo deve ser necessariamente eliminada, porém, em alguns esta-
gios do processo de testes, ha a necessidade de que pessoas qualificadas e com o perfil
adequado a execucao dos testes passem a avaliar o produto.

* Ferramentas de automacao de testes devem ser usadas: A automacao agiliza o processo de
testes e diminui os custos na etapa de manutencdo. Além disso, hd alguns tipos de testes,
de desempenho por exemplo, que sdo inviaveis de serem executados manualmente.

2.2 TESTES DE SOFTWARE 5

Teste
Funcional

Figura 2.1: Combinacdo das técnicas de teste

* Os artefatos produzidos durante o processo de testes devem ser documentados: Cada
fase do processo de teste deve ser devidamente documentada, pois, além de facilitar a
futura automacdo das atividades de teste, estreita a relagdo entre os processos de teste
e de desenvolvimento e ainda, fornece estrutura para organizar, conduzir e gerenciar o
processo de teste. Além disso, as informacdes dos testes sdo de grande ajuda para a
realizac@o de outras atividades, tais como a atividade de depuracao.

Existem diversos tipos de testes, desde os manuais, que envolvem uma abordagem presen-
cial, exigindo a interacdo fisica com o aplicativo ou software, até os automatizados, conduzidos
por méquinas que executam scripts de teste previamente elaborados. Os testes manuais de-
mandam a presenca de um testador para configurar ambientes e realizar os testes pessoalmente.
Contudo, essa abordagem pode resultar em custos elevados e estd sujeita a erros humanos, como
erros ortograficos ou omissao de etapas nos scripts de teste.

Por outro lado, os testes automatizados sdo executados por maquinas seguindo scripts pro-
gramados com previamente. Esses testes abrangem uma ampla gama de complexidades, desde
a verificacdo de métodos individuais em uma classe até a garantia de que uma sequéncia com-
plexa de a¢des na interface do usudrio produza resultados consistentes. Em compara¢do com
os testes manuais, os automatizados sdo mais robustos e confidveis. No entanto, a qualidade
desses testes automatizados depende da precisdo com que os scripts foram desenvolvidos.

2.2.1 Técnicas e Critérios de Teste

Para que o processo de teste seja vidvel e ainda garanta alta qualidade no software, € preciso
utilizar técnicas de teste. Sdo elas: técnica estrutural, técnica funcional ou comportamental e
técnica baseada em defeitos [12]]. Segundo Myers, Sandler e Badgett [[13], para elaborar um
rigoroso processo de teste, é recomendado que se use uma combinacdo das técnicas, ou, se
possivel, todas elas, uma vez que cada uma tem suas vantagens e desvantagens.

A figura[2.T) mostra uma representagdo da combinacao das técnicas de teste.

A técnica de teste funcional utiliza informacdes da especificagdo do programa para a geragao
de casos de teste; por esse motivo, o teste funcional € um tipo de teste normalmente conhecido
como Teste Caixa-Preta. Em decorréncia de ndo se conhecer o cddigo do programa, os casos
de teste sdo projetados a partir da especificacdo do produto de software. Nesse sentido, a partir
da especificacdo, € definido o conjunto de valores que podem ser utilizados para executar o
programa em teste, bem como o conjunto de casos de teste. Em seguida, o programa € testado,

2.3 TESTES DE REGRESSAO 6

e o conjunto de resultados produzidos pelo programa é comparado com a especificagdo do
programa [14].

Ja a técnica de teste estrutural baseia-se na estrutura interna do programa ou software. Nesse
sentido, a pessoa que conduz a atividade de teste deve levar em considera¢ao os dados de en-
trada, a semantica e sintaxe do programa, o programa em execucao e os dados de saida para
elaborar os casos de teste. Assim, enquanto se faz a analogia do teste funcional a uma “Caixa-
Preta”, pode-se analogamente relacionar o teste estrutural com uma “Caixa-Branca”, em con-
tradicao ao funcional [14].

A técnica baseada em defeito € constituida por critérios que buscam definir requisitos de
testes levando em considerag@o os defeitos tipicos do processo de implementacdo do software
[15]. Essa técnica coloca em énfase os defeitos que normalmente sdo cometidos pelo pro-
gramador durante o processo de implementacdo do cddigo. Nela, modelos de defeitos sdo
utilizados para criar hipéteses sobre defeitos que podem estar presentes no programa ou soft-
ware e elaborar ou avaliar o conjunto de casos de teste com base na capacidade que os mesmos
possuem em revelar os defeitos que foram modelados por meio das hipéteses [[16].

2.3 Testes de Regressao

As modificagdes, em especial a adi¢do e modificacdo de funcionalidades, tém um grande custo
e esforco para serem realizadas. Durante o processo de evolugdo de software, defeitos podem
ser introduzidos [5]]. Nesse contexto, o teste de regressao € uma estratégia de teste de software
que tem como objetivo garantir que alteracdes ou correcOes feitas em partes do software ndo
alterem o funcionamento ou propaguem efeitos indesejados para outras partes [[17], [18].

Formalmente, testes de regressdao podem ser definidos da seguinte maneira: dado um pro-
grama Pi e um conjunto de casos de teste Ti; quando Pi sofre alteracdo de versao para Pi+1,
deve ser gerado um novo conjunto de casos de teste Ti+1 que contém um subconjunto de Ti e
novos casos de teste, capazes de testar as alteracoes em Pi+1 [19]. Para Elbaum [20], o teste de
regressao € um processo de teste caro usado para validar modificacdes de software e na detec¢ao
de novos defeitos introduzidos em um cédigo testado anteriormente. Esta técnica € utilizada a
cada adicdo ou modificacdo de funcionalidades e defende que todos os casos de teste devem ser
executados a fim de garantir que nenhuma funcionalidade tenha sido comprometida. Mesmo
com o custo elevado, pois consome bastante tempo e recurso, esse processo garante qualidade
e resultados [3]].

Casos de teste de regressao devem ser reutilizados na nova situagdo do sistema para garantir
que qualquer alteracdo realizada ndo afete a ja alcancada estabilidade de funcionamento [21].
De nada adianta promover inovacdes e atender as exigéncias de clientes para novas funcionali-
dades se a introducdo desses fatores no sistema também afetar negativamente as funcionalidades
que ja vinham sendo executadas de maneira satisfatoria [22].

Devido aos testes de regressdo serem extremamente custosos, foram desenvolvidas diversas
técnicas para otimizd-los. Existem trés técnicas que sdo comumente usadas para otimizar os
testes de regressdo: selecdo de testes de regressao (RTS, do inglés Regression Test Selection),
minimizagdo do conjunto de teste (TSM, do inglés Test Suite Minimization) [23]] e priorizacao
de casos de teste (TCP, do inglés Test Case Prioritization) [|1].

A Figura [2.2] mostra um esquema que exemplifica a aplicagdo das técnicas de selegdo de
testes de regressao, priorizacdo de casos de teste e minimizagdo do conjunto de teste. Do lado
esquerdo estd o programa Pi e o conjunto de casos de teste Ti. Do lado direito estd o programa
que sofreu alteracdes Pi+1 e o conjunto de casos de teste de regressao Ti+1 que devera ser

2.4 PRIORIZACAO DO CASOS DE TESTES 7

\ 7 ~
1 ;, P v
1 1 .
: : i+1 Selecdo
I I

Ti - Thso exercita]

Priorizagao

T, reordenado]

s[
\

ﬂ

Minimizagao

——

Ti = Tredundante] '

s
~

Figura 2.2: Aplicando as técnicas de RTS, TCP e TSM nos testes de regressao

executado. Esse novo conjunto pode ser obtido por selecdo, o qual seria equivalente ao conjunto
Ti menos o conjunto de casos de teste que ndo exercitam as partes alteradas do cédigo (Ti - Tnao
exercita); por prioriza¢do, o qual seria equivalente ao conjunto Ti reordenado por algum critério
(Ti reordenado); ou por minimizag¢do, o qual seria equivalente ao conjunto Ti menos o conjunto
de casos de teste redundantes (Ti - Tredundante) [1]].

Neste trabalho, o foco serd a priorizacao dos casos de teste ou TCP, pois das estratégias
acima citadas, € a unica que ndo descarta nenhum caso de teste. Nos aprofundaremos na TCP
na secao posterior.

2.4 Priorizacao do Casos de Testes

A priorizacao dos casos de teste € uma das técnicas mais utilizadas para otimizar os testes de
regressdo. As técnicas de TCP ajudam a revelar defeitos logo no inicio dos testes, € um grande
diferencial é que todo o conjunto de casos de teste pode ser executado. Com isso, € possivel
evitar problemas relacionados a omissdo de casos de teste[24]].

Esta metodologia engloba técnicas que ordenam os CT de acordo com determinados critérios,
de modo que os mais prioritarios sejam executados primeiro durante a execu¢do dos TR [20].
Por exemplo, os CT podem estar ordenados para atingir uma completa cobertura de cédigo o
mais rapido possivel; ou de acordo com o histérico de execucdes anteriores [25]]; ou fazer uso
das funcionalidades de acordo com a expectativa de frequéncia de uso das mesmas [26]; ou
aumentar a possibilidade de deteccdo de defeitos no inicio dos testes [27].

A priorizagdo dos casos de teste é feita de acordo com algum critério. Por exemplo, um
determinado critério pode definir uma ordem de casos de teste que seja eficaz para atingir um
objetivo, mas que seja ineficaz para atingir outro objetivo [28]].

Além disso, Rothermel et al. [29] fazem distingdo de dois tipos de priorizagdo de casos de
teste: geral e especifica de versdo. Na priorizacdo geral, a suite de testes priorizada pode ser
utilizada para n versdes de codigo, ja que ela serd semelhante para todas. Em contrapartida,
na priorizacdo especifica de versao, a suite de testes priorizada € vélida apenas para a versao
gerada.

Existem diversas técnicas de priorizacdo de casos de teste, que podem ser divididas em
grandes grupos [30] [31]:

» Técnicas baseadas em cobertura: prioriza os casos de teste de acordo com a cobertura

2.4 PRIORIZACAO DO CASOS DE TESTES 8

APFD=1—-(TF1+TF2+ ..+ TFn)+ 1

nm 2n

Figura 2.3: Férmula de Average Percentage of Faults Detected (APFD)

de codigo (testes estruturais); casos de teste com maior cobertura podem aumentar a
deteccao de defeitos;

* Técnicas baseadas em distribuicdo: prioriza os casos de teste de acordo com seus perfis;
casos de teste com o mesmo perfil sdo agrupados para evitar redundancia;

* Técnicas baseadas em fatores humanos: prioriza os casos de teste de acordo com fatores
que os testadores julgam mais importantes;

» Técnicas baseadas em probabilidade: prioriza os casos de teste de acordo com teorias
probabilisticas; uma técnica bastante conhecida € a baseada em rede Bayesiana;

* Técnicas baseadas em historico: prioriza os casos de teste de acordo com informagdes de
histérico de execucdo dos casos de teste e mudangas no c6digo;

* Técnicas baseadas nos requisitos: prioriza os casos de teste de acordo com informacgdes
extraidas dos requisitos como a importancia do requisito para o cliente, a volatilidade do
requisito, a complexidade de implementacao do requisito;

* Técnicas baseadas em modelo: prioriza os casos de teste de acordo com informagdes
extraidas de modelos UML (diagramas de sequéncia ou de atividades);

» Técnicas baseadas no custo dos casos de teste: prioriza os casos de teste de acordo com
os custos definidos para cada caso de teste;

* Qutras técnicas: outras técnicas conhecidas, mas que nio se encaixam em nenhum dos
casos anteriores como prioriza¢ao usando algoritmos genéticos, prioriza¢do dos casos de
teste das partes de relevancia, entre outros.

Apesar dos vérios tipos de técnicas de priorizacdo e da grande quantidade de variagdes que
os autores apresentam dentro de cada tipo, grande parte das técnicas utiliza a mesma métrica
para avaliar os resultados e a sua eficicia. Essa métrica, chamada de Average Percentage of
Faults Detected (APFD), foi proposta por Elbaum, Malishevsky e Rothermel [20]. Seus valores
vao de 0 a 100 e quanto maior o APFD, melhor a taxa de deteccdo de defeitos do conjunto de
casos de teste. Consequentemente, mais rapido os defeitos sdo revelados por aquele conjunto.
A férmula para calcular o APFD estd demonstrada na figura[2.3]

Na equacdo da métrica APFD, n representa o nimero de casos de teste do conjunto; m
representa o nimero de defeitos revelados pelo conjunto; e TFi € o primeiro caso de teste da
sequéncia que revelou o defeito i.

2.4.1 FAST Approaches to Scalable Similarity-based Test Case Prioritization

Sdo muitos e com as mais distintas abordagens os algoritmos para a priorizacdo dos casos de
teste. Neste trabalho nos aprofundaremos no FAST Approaches to Scalable Similarity-based

2.4 PRIORIZACAO DO CASOS DE TESTES 9

Input : Coded test suite info T'; (optional) selection function f.

Output : Prioritized test suite P.
1 P <« EmptyList()
2 | + GetTestCaselIDs(T")
3 M <— MHSignatures(7) = No need of T from here on
4 B < LSHBuckets(M)

> M (v): Cumulative signature of so-far-ordered test cases

5 M (v) < MHSignature(())
6 while |P| # |I| do

7 Cs < LSHCandidates(B, M(v))

8 if C. = 0 then

o M (v) < MHSignature(()

10 Cs <« LSHCandidates(B, M(v))

11 Cqg«— (I — P —C,) > Complement of Cg
12 8 <— Select(M(v), M, Cq, f)

13 M (v) +— UpdateMHSignature(M(v), M, s)

14 M <+ Remove(M, s)

15 | P <« Append(P, s)

16 return P

17 function Select(M(v), M, C, f)

18 if no f then > FAST-pw
19 L return arg max { EstimateJD(A(v), M (e)) }

ce C
20 else = FAST-f
21 | return RandomSample(C, f)

Figura 2.4: Algoritmo do FAST

Test Case Prioritization, ou apenas FAST. Ele é uma familia de algoritmos para priorizacio de
casos de teste que utilizam técnicas de big data e de mineracdo de dados, como algoritmos de
hashing sensivel a localidade e minhashing, para encontrar casos de teste diversos dentro de um
grande conjunto e realizar o processo de TCP. A familia é composta pelos algoritmos FAST-pw,
FAST-one, FAST-log, FAST-sqrt e FAST-all [3].

Segundo Miranda [[32]], um estudo de simulacao de escalabilidade uma das técnicas do FAST
conseguiu priorizar mais de um milhdo de casos de teste em menos de vinte minutos. Isso
demonstra a escalabilidade do FAST, algo ndo encontrado em outras técnicas existentes [32].
Ademais, o FAST possui priorizacdo escalondvel tanto para casos de teste de caixa preta quanto
para de caixa branca.

Na figura[2.4]é demonstrado em pseudocddigo o algoritmo do FAST.

As linhas 2 e 3 s@o linhas executam a preparacdo dos dados. A entrada do algoritmo, que
sdo0 os casos de teste sdo transformados em assinaturas minhash M. Nos testes de caixa branca,
as informacdes de cobertura de cddigo podem ser representadas diretamente como conjuntos
(independentemente do critério de cobertura), j4 nos testes de caixa preta representacdo em
string dos casos de teste precisa ser pré-processada em k-shingles. Observe que esta € a Unica
operacdo em que o FAST trata as entradas BB e WB de maneira diferente. Foi utilizado k =
5 para ter uma representacdo de conjunto adequada. Uma vez que as assinaturas minhash sao
computadas, T ndo € mais necessario e apenas M € usado durante o processo de priorizagdo.
Usamos um numero de fun¢des hash h = 10, o que garante um erro esperado ndo maior que 0,32
na estimativa da similaridade (e distancia) de Jaccard entre duas assinaturas. Mesmo que o erro
na estimativa seja alto, a escolha do préximo caso de teste € realizada sobre um subconjunto de
testes que sdo todos diferentes dos até entdo priorizados [32].

Na Linha 4, a cole¢do de buckets LSH € calculada. A varidvel B serd preenchida com b

2.5 FERRAMENTAS DE AUTOMACAO DE BUILD 10

buckets, e cada um tem controle de todos os casos de teste que estdo colidindo. Foi definido o
nimero de bandas b =10 e linhas r = 1 de modo que o nimero de linhas na matriz de assinatura
seja igual ao tamanho da assinatura, ou seja, h = r - b. Esses valores garantem um limiar de
similaridade s proxima a 0,1 para o conjunto candidato. Observe que, enquanto para encontrar
os itens mais semelhantes um limite de similaridade mais alto seria melhor, para o contexto
de STP queremos selecionar os casos de teste que sdo diferentes dos até agora priorizados.
Intuitivamente, com um limiar de similaridade s = 0,1 o conjunto candidato contera quase todos
os casos de teste, exceto aqueles que sao diferentes de M(v) (ou seja, com distancia de Jaccard
maior que 0,9). O conjunto candidato real Cd usado pelo FAST é calculado na Linha 11, como
o complemento de Cs, excluindo os casos de teste priorizados até agora.

Entre as linhas 6 e 15 € onde a priorizacdo de fato acontece. Os conjuntos candidatos sao
criados dentro do while. M(v) € dividido em b bandas e em cada banda € aplicado um hash.
Caso exista uma colisdo com o bucket correspondente em B, os casos de teste desse bucket sdao
adicionados ao conjunto candidato Cs. M(v) € inicializado na Linha 5 e atualizado na Linha
13, sempre que novos casos de teste sao selecionados para acompanhar a assinatura cumulativa
dos casos de teste até entdo ordenados. Entre as Linhas 8 e 10, sempre que Cs estiver vazio,
redefinimos M(v) e recalculamos Cs [32].

Na Linha 17, a fun¢do Select é onde as diferentes abordagens do FAST sdo diferenciadas.
A abordagem FAST-pw calcula a distancia Jaccard estimada entre M(v) e cada caso de teste no
conjunto de candidatos Cd usando assinaturas minhash e seleciona o candidato que esta mais
distante de M(v). As outras abordagens usam uma funcdo f que € fornecida como entrada para
o algoritmo para selecionar um subconjunto aleatério de Cd de tamanho f(ICdl). Na Linha 15,
os casos de teste selecionados sd@o anexados ao conjunto de testes priorizado P. Para os exper-
imentos deste trabalho, consideramos as seguintes fungdes que aumentam progressivamente a
eficiéncia da priorizacdo: one, log, sqrt, all. Em geral, f € uma funcdo genérica que pode ser
ajustada para alcancar o equilibrio certo entre a efici€ncia e a precisdo exigidas em um contexto
especifico [32].

2.5 Ferramentas de Automacao de Build

O processo de build de um software € responsdvel por verificar se todos os componentes do
nosso codigo fonte estdo sendo integrados corretamente. Antigamente, esse processo era man-
ual e, com o passar do tempo, tornou-se uma tarefa repetitiva e propensa a erros. A necessidade
de resolver esse problema levou a ideia de automatizar esse processo, tornando-o mais rdpido,
completo e acessivel a qualquer pessoa.

A automacdo de compilagdo é o processo de automatizar a geragdo do codigo fonte de
um software, verificando a correta integragdo de todos os componentes. Dentre as agcdes que
fazem parte da automacao, incluem-se a compilagdo em cddigo bindrio, a execugdo de testes
automatizados, a publicagdo em um repositério compartilhado e centralizado, a realizagdo do
deploy, a verificacao do cédigo, a compatibilidade entre IDEs, o empacotamento e a distribuicdo
da aplicagdo, a adi¢@o de bibliotecas, entre outras.

Os beneficios da utiliza¢ao de ferramentas de automacao de build sdo enormes, destacando-
se:

* Aumento da produtividade: A automacdo de construcao garante um feedback répido, per-
mitindo que os desenvolvedores aumentem a produtividade. Eles gastardo menos tempo
lidando com ferramentas e processos € mais tempo entregando valor.

2.5 FERRAMENTAS DE AUTOMACAO DE BUILD 11

* Aceleracdo da entrega: A automacao de construcdo ajuda a acelerar a entrega, eliminando
tarefas redundantes e garantindo que problemas sejam identificados mais rapidamente,
possibilitando uma liberagao mais rapida.

* Melhoria da qualidade: A automacdo de construcao ajuda a equipe a se movimentar mais
rapidamente, encontrando problemas mais rapidamente e resolvendo-os para melhorar a
qualidade geral do produto e evitar construgdes inadequadas.

* Manuten¢do de um histérico completo: A automacgdo de compilagdo mantém um histérico
completo de arquivos e alteragdes, permitindo rastrear os problemas até a origem.

* Economia de tempo e dinheiro: A automacao de constru¢do economiza tempo e dinheiro,
configurando para CI/CD, aumentando a produtividade, acelerando a entrega e melho-
rando a qualidade.

Existem diversas opg¢des de ferramentas de automacao de build, incluindo o Maven, o Ant e o
Gradle. Este ultimo é o foco deste trabalho.

2.5.1 Gradle

O Gradle é uma ferramenta de compilacao open source, implementada na linguagem Groovy,
com foco na automacao de compilacio e suporte para desenvolvimento. Se vocé estd constru-
indo, testando, publicando e implantando software em qualquer plataforma, o Gradle oferece
um modelo flexivel que pode suportar todo o ciclo de vida de desenvolvimento, desde a com-
pilacdo e empacotamento do c6digo até a publicacdo de sites. O Gradle foi projetado para dar
suporte a automacdo de compilagdo em varias linguagens e plataformas, incluindo Java, Scala,
Android, Kotlin, C/C++ e Groovy, e estd intimamente integrado a ferramentas de desenvolvi-
mento e servidores de integragdo continua, como Eclipse, IntelliJ e Jenkins.

Dentre as ferramentas citadas, o Gradle é a mais recente e, por se tratar de uma ferramenta
open source, a quantidade de updates e upgrades tende a ser maior do que nas demais ferramen-
tas, aumentando a probabilidade de ser uma ferramenta cada vez mais moderna.

A ideia do Gradle é permitir configuracdes baseadas em tasks, ou seja, quando queremos
um novo comportamento durante o build, basta criar uma task. Uma task € basicamente uma es-
trutura que executa alguma acdo, dada uma certa entrada. Além disso, o Gradle possui diversas
tasks predefinidas para facilitar a configuracdo do projeto.

CAPITULO 3

Metodologia

O capitulo que se inicia tem por finalidade descrever a metodologia de pesquisa utilizada e o
método desenvolvido. Todo o embasamento tedrico necessario para esta etapa foi discutido no
Capitulo [2] - Conceitos Bdsicos, deixando para o Capitulo [3] a missdo de descrever o método
propriamente dito. A aplicagdo do método e os resultados obtidos serdo abordados no Capitulo
H4]— Experimentos e Andlise de Resultados.

3.1 Contextualizacao

A metodologia em um trabalho de graduacado refere-se a descricdo detalhada dos métodos e
procedimentos utilizados para abordar seu tema de estudo, desempenhando assim um papel
fundamental na estruturacdo e na compreensdo deste trabalho, pois fornece informagdes so-
bre como foram coletados e analisados os dados, como chegou as conclusdes e como foram
garantidas a validade e a confiabilidade desta pesquisa.

3.2 [Etapas

Neste trabalho, a metodologia esta dividida em seis topicos: @ - Desenvolvimento, Estrutura
- Instalacéo - [3.2.3] Utilizacéo - [3.2.4le Arquivos Gerados -[3.2.

3.2.1 Desenvolvimento

O desenvolvimento do projeto se deu em duas etapas: parametrizacdo do cédigo do maven-
FAST) para funcionamento com o JUnit 4 e implementagdo do plugin para o Gradle. Na
parametrizagdo do c6digo do maven-FAST) para funcionamento com o JUnit 4, foi necessario
fazer algumas atualiza¢des no codigo para dar suporte as annotations do JUnit 4, tornando-o
capaz de lidar com projetos que utilizem esta versdo. Para esta etapa, foi utilizado um sistema
operacional MacOS, além do Visual Studio Code/ como IDE. O cédigo fonte estd disponibi-
lizado no repositério maven-FAST.

Na implementagdo do plugin para o Gradle, foram utilizados alguns tutoriais, como o do
proprio Gradle, do Baeldung, além de um artigo de Tom Gregory. Além disso, foram con-
sultados alguns repositérios de plugins do Gradle e alguns links do Stack Overflow para sanar
algumas duvidas. Para esta etapa, foi utilizado um sistema operacional MacOS, além do IntelliJ
IDEA como IDE. O cédigo fonte estad disponibilizado no repositério FAST-gradle-plugin.

3.2.2 Estrutura

Como abordado anteriormente, este projeto pode ser dividido em duas partes. O projeto FAST-
Maven € composto pelo diretério /py, onde sdo armazenados os arquivos fast.py, Ish.py e pri-

12

https://github.com/FAST-tool/maven-FAST
https://github.com/FAST-tool/maven-FAST
https://github.com/FAST-tool/maven-FAST
https://code.visualstudio.com/
https://github.com/FAST-tool/maven-FAST
https://docs.gradle.org/current/userguide/custom_plugins.html
https://www.baeldung.com/gradle-create-plugin
https://gradlehero.com/introduction-to-gradle-plugins/
https://stackoverflow.com/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://github.com/luizandrejs/FAST-gradle-plugin

3.2 ETAPAS 13

oritize.py, responsaveis pela fungdo central do projeto, a priorizagdo de casos de testes. Além
disso, a pasta também possui o arquivo FASTWatchdog.py, utilizado para monitorar alteracdes
que podem ter sido feitas no projeto a ser testado. Ele também é composto pelo diretério /tests,
que possul os testes desenvolvidos para o projeto. Por fim, a pasta /tools possui ferramen-
tas auxiliares que foram desenvolvidas para facilitar a sua utilizagdo. Ele é composto pelos
arquivos clean-project.py, que realiza a exclusdo dos arquivos gerados pelo projeto, e pelo ar-
quivo project-instrumentation.py que pode adicionar ou remover a instrumentacdo necessaria
nas classes de teste do projeto [3].

A integragdo entre o FAST-gradle-plugin com o projeto FAST-maven € realizada através da
execucdo de comandos via CMD feitos pelo plugin internamente. Para esta integragdo também €
necessario que o repositério do FAST-maven seja clonado localmente. Tal processo € realizado
internamente através do plugin e clona o repositorio no diretdrio local do Maven (normalmente o
diretério /.m2/repository), dentro da pasta do plugin (/.m2/repository/br/ufpe/cin/fast-tool/fast-
maven-plugin).

O processo de clonagem inicial do repositdrio € realizado apenas uma unica vez, durante
a compilacdo do projeto apds a adi¢ao do plugin a ele. Este procedimento adiciona um tempo
extra que ird variar de acordo com a largura de banda da conexdo a internet do usudrio. Nos
testes realizados, o tempo inicial ficou entre um e trés minutos. Além disso, todo o processo
de clonagem do repositério € transparente para o usudrio, sendo exibido no terminal o processo
[3]]. O processo de clonagem do repositério do FAST-maven ndo € repetido quando o usudrio
tenta integra-lo a outros projetos Java, depois do primeiro uso no ambiente. Para essas proxi-
mas utilizacdes € usado o repositério que foi clonado inicialmente, e € exibida ao usudrio uma
mensagem de que o repositério ndo necessita ser clonado [3]].

3.2.3 Instalacido

Esta secdo tem por objetivo explicar a utilizacdo do plugin em projetos que utilizam o Gradle
como ferramenta de build. Inicialmente, é necessdrio fazer o clone do repositério do projeto
e executar os comandos gradle build e gradle publishToMavenLocal para executar o build e
publicar no repositério maven local (pasta .m2). O Gradle utiliza os repositérios do Maven
em seus plugins. No cendrio ideal, o plugin ji estard publicado em um repositério remoto,
como o Maven Central Repository, ndo sendo necessario este passo. Serd necessario apenas
referenciar o plugin nos arquivos de configuracdao do Gradle. Este passo serd explicado mais a
frente. Devido a algumas questdes externas, a publicacdo em um repositério externo estd fora
do escopo deste trabalho.

3.2.4 Utilizacao

Ap6s a instalacdo explicada na secdo [3.2.3] o plugin fica disponivel para utilizagdo no Gradle.
Para isso, deverdo ser feitas altera¢des nas configuragdes nos arquivos do Gradle settings.gradle
e build.gradle.

No arquivo settings.gradle, serd necessdrio inserir as configuracdes de acordo com a figura
3.1} Na linha 3, é permitido o acesso do projeto ao repositério local do Maven para tornar o
plugin visivel ao projeto. Na linha 4 é permitido o acesso aos plugins remotos do Gradle que
sdo utilizados pelo projeto.

Ja no arquivo build.gradle, serd preciso importar a dependéncia do plugin, conforme linha
8 da figura Além disso, serd preciso definir a parametrizacdo da task prioritize do plugin,
conforme mostrado na figura[3.3]

https://mvnrepository.com/repos/central

3.2 ETAPAS 14

pluginManagement <{
repositories {

mavenLocal()
gradlePluginPortal()

version '0.0.1

Figura 3.2: Instanciando o plugin no arquivo build.gradle

Além dos passos supracitados, € necessario definir as tasks para priorizacdo, conforme as
figuras[3.4]e onde definimos as seguintes tasks:

* testPrioritizedBuild: possibilita a execugdo dos passos do build padrdo do Gradle, adicio-
nando a task prioritize para efetuar a priorizacao.

* testPrioritized: possibilita a execugdo dos testes de acordo com a priorizagdo do plugin.

* test: possibilita apenas a execug@o dos testes sem priorizagao.

Seguindo os passos acima descritos, € possivel a utilizacdo da priorizacdo do FAST em
qualquer projeto que utiliza o Gradle como ferramenta de build.

3.2.5 Arquivos Gerados

Durante o processo de priorizagao dos casos de teste, sdo criados alguns arquivos no diretério do
projeto, sendo a pasta /.fast um deles. Esta pasta contém os arquivos resultantes da priorizagao
dos casos de teste, incluindo assinaturas dos casos de teste, os resultados da priorizacao, os
caminhos de cada caso de teste identificado no projeto, e outros documentos relevantes. Além
disso, é produzido o arquivo FASTPrioritizedSuite.java (conforme exibido na figura [3.6), uma
classe Java que armazena os casos de teste ordenados com base nos resultados do processo de
priorizagdao do FAST.

prioritize {

projectPath '/ luizandre sitori C/projec
algorithm =

repetitions

Figura 3.3: Utilizando a task Prioritize do plugin no arquivo build.gradle

3.2 ETAPAS 15

'compile
'proc
'tes

'prioritize’,

'check',

'build']

Figura 3.4: Registranto task testPrioritizedBuild no arquivo build.gradle

test {
filter {
excludeTestsMatching

s.register(
include

Figura 3.5: Definindo instrumentagdo para executar os testes priorizados ou nao de acordo com
a task

3.2 ETAPAS 16

UnmodifiableOrderedBidiMapTest.cla
CollectionUtilsTest.class,
TestUtils.

ArrayStackTest

SetUtilsTest.«

PredicatedMapTest.
DefavltKeyValueTes
TiedMapEntryTest.c
MultiKeyTest.i '
DefaultMapEntryTest.c
UnmodifiableMapEntryTest
AbstractMapEntryTest.cl .
UnmodifiableMultiValvedMapTest.c
AbstractCollectionTest.c S,
AbstractAnyAllOnePredicateTest.c
AbstractMapIteratorTe
AllPredicateTest
AbstractMapTest.:

AbstractCompositePredicateTest.c
AbstractListTest.c
AbstractQueveTest.
AbstractBagTest.:

1)
% public c 5 FASTPrioritizedSvited{}

Figura 3.6: Contetdo do arquivo FASTPrioritizedSuite.java do Commons CLI

CAPITULO 4

Experimentos e Analise de Resultados

Nesta secdo, serdo apresentados os resultados dos experimentos realizados com o FAST-gradle-
plugin com o intuito de avaliar os resultados obtidos, analisando o tempo adicional de execucdo
do plugin para a priorizacdo dos testes, comparando com a execu¢ao sem a devida priorizacao.

Nos testes, foram utilizados projetos da familia Commons devido a quantidade relevante de
testes que cada projeto possui. No entanto, considerando que todos os projetos utilizados neste
trabalho utilizam o Maven como ferramenta de build, foi necessério converté-los para o Gradle.
Utilizando a task gradle init, foi possivel migrar boa parte das configuragdes, mas, apos isso,
ainda foi necessario corrigir versdes de bibliotecas e trocar o escopo de dependéncias.

Nos testes do projeto, foram metricadas as quantidades de métodos de teste. Como resul-
tados, foram avaliados os tempos de execu¢do com e sem o plugin e o percentual de tempo
adicionado apds a execucao dos testes com o plugin. Os experimentos e resultados estdo de-
scritos adiante.

4.1 Commons CSV

O Commons CSV € uma biblioteca que fornece muitos recursos uteis para criar e ler arquivos
CSV. Arquivos CSV (valores separados por virgula) sao amplamente utilizados para a troca de
dados entre aplicativos. No entanto, as operagdes com arquivos CSV podem ser complicadas e
demoradas.

Os resultados obtidos nos experimentos estao demonstrados na tabela d.1]

4.2 Commons Collections

O Commons Collections € uma biblioteca que fornece uma série de classes, interfaces e métodos
para facilitar as operagdes com cole¢des de dados.
Os resultados obtidos nos experimentos estao demonstrados na tabela 4.2

Quantidade de testes 305 testes
Tempo de execugdo dos testes sem plugin | 17,349 segundos
Tempo de execugdo dos testes com plugin | 18,291 segundos
Overhead de tempo do plugin em segundos | 0,942 segundos
Overhead percentual de tempo do plugin 5,43%

Tabela 4.1: Resultados da execucdo do plugin no Commons CSV

17

4.3 COMMONS CODEC 18

Quantidade de testes 16190 testes
Tempo de execucdo dos testes sem plugin | 14,993 segundos
Tempo de execugdo dos testes com plugin | 16,124 segundos
Overhead de tempo do plugin em segundos | 1,131 segundos
Overhead percentual de tempo do plugin 7,5%

Tabela 4.2: Resultados da execugdo do plugin no Commons Collections

Quantidade de testes 803 testes
Tempo de execugdo dos testes sem plugin | 13,889 segundos
Tempo de execugdo dos testes com plugin | 14,207 segundos
Overhead de tempo do plugin em segundos | 0,318 segundos
Overhead percentual de tempo do plugin 2,24%

Tabela 4.3: Resultados da execu¢ao do plugin no Commons Codec

4.3 Commons Codec

O Commons Codec é uma biblioteca que contém codificadores e decodificadores simples para
varios formatos, como Base64 ¢ Hexadecimal. Além desses codificadores e decodificadores
amplamente utilizados, o pacote de codecs também mantém uma cole¢do de utilitarios de codi-
ficacdo fonética.

Os resultados obtidos nos experimentos estao demonstrados na tabela .3

4.4 Commons CLI

O Commons CLI € uma biblioteca que fornece suporte para operacdes que utilizam a linha de
comando, como execuc¢do de programas, passagem de argumentos, além de comandos de ajuda.
Os resultados obtidos nos experimentos estdo demonstrados na tabela4.4]

4.5 Resultados

De acordo com os resultados descritos nas se¢des anteriores deste capitulo, foi possivel avaliar
a execucgdo dos testes com o FAST-gradle-plugin. Nos projetos avaliados, a priorizagdo do
plugin gerou um overhead computacional entre 2,24% e 7,5% para a execu¢do completa da
suite de testes. E importante ressaltar que, embora exista um overhead, esses niimeros sio con-
siderados bastante favordveis, pois ndo compromete significativamente o desempenho global,
considerando os beneficios proporcionados pelo uso eficaz do plugin. O ganho na eficiéncia

Quantidade de testes 408 testes
Tempo de execugdo dos testes sem plugin 59ms
Tempo de execugdo dos testes com plugin 63ms
Overhead de tempo do plugin em segundos 4ms
Overhead percentual de tempo do plugin 6,78%

Tabela 4.4: Resultados da execu¢@o do plugin no Commons CLI

4.5 RESULTADOS 19

do processo de teste devido a prioriza¢do dos casos € um aspecto crucial que pode superar esse
pequeno overhead, refor¢ando a utilidade e a eficicia do FAST-gradle-plugin na prética.

CAPITULO 5

Conclusao e Trabalhos Futuros

A priorizacdo de casos de teste € uma técnica importante para otimizar o processo de testes
de software. Com a crescente complexidade dos sistemas de software, a execucdo de todos
os casos de teste pode se tornar invidvel em termos de tempo e recursos. Nesse contexto, a
utilizagdo de técnicas de priorizacdo de casos de teste pode ajudar a identificar os casos de teste
mais relevantes e reduzir o tempo de execucao dos testes.

Este trabalho apresentou o FAST-gradle-plugin, uma ferramenta que possibilita a utilizacao
do FAST (Approaches to Scalable Similarity-based Test Case Prioritization) para priorizacao
de casos de teste em projetos que utilizam o Gradle como ferramenta de automagao de build. O
objetivo geral deste trabalho foi construir uma ferramenta que possibilite a utilizagdo do FAST
para priorizagdo de casos de teste e analisar o ganho que essa técnica trard em uma execugdo de
uma quantidade massiva de testes.

Para atingir esse objetivo, foram definidos objetivos especificos, como a criagdo de um plu-
gin no Gradle que possibilite a integracdo com o FAST e um estudo comparativo dos resultados
com e sem a aplicacdo do FAST aos testes de alguns projetos nos diversos tipos de algoritmos
suportados pelo FAST.

A revisdo bibliogréfica realizada neste trabalho mostrou que a priorizacao de casos de teste
¢ uma técnica amplamente utilizada na industria de software. Diversas abordagens foram pro-
postas para a priorizacdo de casos de teste, como a utilizacdo de métricas de cddigo, a andlise
de dependéncias entre os casos de teste e a utilizacdo de técnicas de aprendizado de maquina.
O FAST € uma abordagem que se destaca por sua eficiéncia e escalabilidade, sendo capaz de
lidar com grandes conjuntos de casos de teste em um curto espaco de tempo.

A implementacdo do FAST-gradle-plugin mostrou-se simples e de facil utilizagcdo. O plugin
foi desenvolvido em Java e utiliza o FAST para realizar a priorizacdo dos casos de teste. A
integracdo com o Gradle foi realizada através da criagdo de um novo plugin, que pode ser
facilmente adicionado ao arquivo de configuragdo do Gradle. O plugin permite a configuracao
de diversos parametros, como o nimero miximo de casos de teste a serem priorizados € o tipo
de algoritmo a ser utilizado pelo FAST.

Os resultados obtidos mostraram que a utilizacdo do FAST-gradle-plugin pode trazer bene-
ficios significativos para o processo de testes de software. O estudo comparativo realizado neste
trabalho mostrou que a utilizacao do plugin gera um overhead no tempo de execugdo dos testes,
porém esses nimeros sdo considerados bastante favordveis, pois ndo comprometem significati-
vamente o desempenho global. Entdo, através da anélise de métricas de c6digo e da priorizagdo
dos casos de teste mais com maior chance de falha, € possivel aumentar a eficiéncia do processo
de teste como um todo.

Além dos beneficios em termos de tempo de execucdo dos testes, a utilizagdo do FAST-
gradle-plugin também pode contribuir para a melhoria da qualidade do software. A priorizagdo
dos casos de teste mais relevantes permite identificar os defeitos mais criticos do software,
aumentando a efetividade dos testes e reduzindo o risco de falhas em producao.

Como trabalhos futuros, sugere-se a realizacao de estudos mais aprofundados sobre a apli-

20

CAPITULO 5 CONCLUSAO E TRABALHOS FUTUROS 21

cacdo do FAST em diferentes contextos e a implementacao de novas funcionalidades no FAST-
gradle-plugin. Também ¢é importante destacar que a utilizacdo de técnicas de priorizacdo de
casos de teste deve ser combinada com outras técnicas de teste, como testes exploratorios e
testes de integracdo, para garantir a qualidade do software.

Em resumo, este trabalho apresentou uma solugdo pratica e eficiente para a utilizacdo do
FAST em projetos de desenvolvimento de software. Através da utilizacdo do FAST-gradle-
plugin, € possivel priorizar os casos de teste mais relevantes e reduzir o tempo de execugdo dos
testes, contribuindo para a melhoria da qualidade do software e para a otimizag¢ao do processo
de testes. A utilizacdo do FAST em conjunto com outras técnicas de teste pode trazer beneficios
ainda maiores para o processo de desenvolvimento de software, aumentando a efetividade dos
testes e reduzindo o risco de falhas em produgdo.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Referéncias Bibliograficas

G. G. Malimpensa, “Uma abordagem para a priorizacdo de casos de teste de regressao
baseada em rastreabilidade,” 2018 (cit. on pp. [I} [[7).

R. S. Pressman, Software engineering: a practitioner’s approach. Palgrave macmillan,
2005 (cit. on p.[I).

S. A. d. Barros, “FAST-MAVEN-PLUGIN: Um Plugin para a Priorizagao de Casos de
Testes Baseada em Similaridade,” Trabalho de Graduagdo, 2021 (cit. on pp.[TH3] 9} [13).

A. Memon, Z. Gao, B. Nguyen, et al., “Taming google-scale continuous testing,” in 2017
IEEE/ACM 39th International Conference on Software Engineering: Software Engineer-
ing in Practice Track (ICSE-SEIP), 1IEEE, 2017, pp. 233-242 (cit. on p. E[)

B. E. S. Cavalcante et al., “Uma técnica de priorizagdo de casos de teste para muiltiplas
mudangas agregadas.,” 2016 (cit. on pp. [I} § [6).

G. J. Myers, The art of software testing. John Wiley & Sons, 2006 (cit. on p.[I)).

J. Tian, Software quality engineering: testing, quality assurance, and quantifiable im-
provement. John Wiley & Sons, 2005 (cit. on p. [3).

A.R. Vidal et al., “Teste funcional sistematico estendido: Uma contribui¢@o na aplica¢ao
de critérios de teste caixa-preta,” 2011 (cit. on p.[3).

I. Sommerville, Software Engineering, 9/E. Pearson Education India, 2011 (cit. on pp.[3]
H).

W. WEISZFLOG, “Diciondrio online-dicionarios michaelis-uol,” Editora Melhoramen-
tos Ltda, 2009 (cit. on p.).

O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured programming. Academic Press
Ltd., 1972 (cit. on p.).

J. C. Maldonado, E. F. Barbosa, A. M. Vincenzi, M. E. Delamaro, S. d. R. S. Souza, and
M. Jino, “Introducao ao teste de software (versao 2004-01),” 2004 (cit. on p. 3).

G.J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of software testing. Wiley
Online Library, 2004, vol. 2 (cit. on p.[5).

L. N. Paschoal, “Contribui¢des ao ensino de teste de software com o modelo flipped
classroom e um agente conversacional,” Ph.D. dissertation, Universidade de Sao Paulo,
2019 (cit. on p.[6).

R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for
the practicing programmer,” Computer, vol. 11, no. 4, pp. 34—41, 1978 (cit. on p. [).

S. A. d. Andrade and M. E. Delamaro, “Execuc¢do paralela de programas como suporte
ao teste de mutagdo,” Anais, 2014 (cit. on p. @)

22

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

REFERENCIAS BIBLIOGRAFICAS 23

R. Abid and A. Nadeem, “A novel approach to multiple criteria based test case prioriti-
zation,” in 2017 13th International Conference on Emerging Technologies (ICET), IEEE,
2017, pp. 1-6 (cit. on p.[6).

R. Greca, B. Miranda, and A. Bertolino, “State of practical applicability of regression
testing research: A live systematic literature review,” ACM Computing Surveys, vol. 55,
no. 13s, pp. 1-36, 2023 (cit. on p.[6).

H. Srikanth, M. Cashman, and M. B. Cohen, “Test case prioritization of build acceptance
tests for an enterprise cloud application: An industrial case study,” Journal of Systems
and Software, vol. 119, pp. 122-135, 2016 (cit. on p. [6).

S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization: A family of
empirical studies,” IEEE transactions on software engineering, vol. 28, no. 2, pp. 159-
182, 2002 (cit. on pp. [oH).

S. R. Rakitin, Software verification and validation: a practitioner’s guide. Artech House,
Inc., 1997 (cit. on p. [6).

D. Elfriede, “Automate regression tests when feasible,” Automated Testing: Selected Best
Practices, Pearson Education, 2003 (cit. on p. @)

E. Cruciani, B. Miranda, R. Verdecchia, and A. Bertolino, “Scalable approaches for test
suite reduction,” in 2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE), IEEE, 2019, pp. 419-429 (cit. on p. [6).

H. Do, “Recent advances in regression testing techniques,” Advances in computers, vol. 103,
pp. 53-77, 2016 (cit. on p.[7).

V. Siqueira and B. Miranda, “Investigating the adoption of history-based prioritization
in the context of manual testing in a real industrial setting,” in 2022 48th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), IEEE, 2022,
pp. 141-148 (cit. on p.[7).

B. Miranda and A. Bertolino, “Scope-aided test prioritization, selection and minimization
for software reuse,” Journal of Systems and Software, vol. 131, pp. 528-549, 2017 (cit.

on p.[7).

C. SIMONS, “Priorizacao de casos de testes de regressao usando amostragem por persegui¢ao
de defeitos,” Ph.D. dissertation, Pontificia Universidade Catélica do Parana, 2010 (cit. on
p-[1.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case prioritization: An em-
pirical study,” in Proceedings IEEE International Conference on Software Maintenance-
1999 (ICSM’99).’Software Maintenance for Business Change’(Cat. No. 99CB36360),
IEEE, 1999, pp. 179-188 (cit. on p.[7).

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases for regres-

sion testing,” IEEE Transactions on software engineering, vol. 27, no. 10, pp. 929-948,
2001 (cit. on p.[7).

C. Catal and D. Mishra, “Test case prioritization: A systematic mapping study,” Software
Quality Journal, vol. 21, pp. 445-478, 2013 (cit. on p.[7).

S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization:
A survey,” Software testing, verification and reliability, vol. 22, no. 2, pp. 67-120, 2012

(cit. on p.[7).

REFERENCIAS BIBLIOGRAFICAS 24

[32] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, “Fast approaches to scalable
similarity-based test case prioritization,” in Proceedings of the 40th International Con-
ference on Software Engineering, 2018, pp. 222-232 (cit. on pp. 9] [I0).

	FAST-GRADLE-PLUGIN: UM PLUGIN PARA PRIORIZAÇÃO DE CASOS DE TESTE UTILIZANDO O FAST
	fa6cfba7008f929a4050388ea9c5c9ba02040df489c7e939c8b162541170fa7c.pdf
	FAST-GRADLE-PLUGIN: UM PLUGIN PARA PRIORIZAÇÃO DE CASOS DE TESTE UTILIZANDO O FAST
	Introdução
	Motivação
	Objetivos

	Conceitos Básicos
	Engenharia de Software
	Testes de Software
	Técnicas e Critérios de Teste

	Testes de Regressão
	Priorização do Casos de Testes
	FAST Approaches to Scalable Similarity-based Test Case Prioritization

	Ferramentas de Automação de Build
	Gradle

	Metodologia
	Contextualização
	Etapas
	Desenvolvimento
	Estrutura
	Instalação
	Utilização
	Arquivos Gerados

	Experimentos e Análise de Resultados
	Commons CSV
	Commons Collections
	Commons Codec
	Commons CLI
	Resultados

	Conclusão e Trabalhos Futuros
	Referências Bibliográficas

