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RESUMO 

 

Em ambientes industriais, a eficiência operacional e a manutenção proativa são pilares essenciais 

para garantir a produtividade e a confiabilidade dos equipamentos. No âmbito desse contexto, a 

previsão do Remaining Useful Life (RUL), ou vida útil restante, de componentes como rolamentos 

industriais desempenha um papel fundamental. Ao antecipar o momento ideal para substituição ou 

reparo desses componentes, as empresas podem evitar falhas inesperadas, reduzir custos de 

manutenção e maximizar a disponibilidade operacional dos equipamentos. Este trabalho de 

conclusão de curso concentra-se em desenvolver e avaliar um modelo de previsão do RUL para 

rolamentos industriais, utilizando uma abordagem baseada em Deep Learning, mais 

especificamente uma Rede Neural Convolucional (CNN). A escolha por uma abordagem de Deep 

Learning se justifica pela sua capacidade de extrair padrões complexos e não-lineares a partir de 

grandes volumes de dados, o que pode levar a previsões mais precisas e confiáveis. A metodologia 

adotada neste estudo abrangeu desde a coleta de dados reais de rolamentos até o processamento, 

seleção de variáveis relevantes, implementação e treinamento da CNN. O objetivo principal é prever 

o RUL para possibilitar a otimização dos processos de manutenção e maximizar a disponibilidade 

dos equipamentos. Isto é demonstrado através da eficácia e métricas de avaliação do desempenho 

dos modelos treinados. Os resultados obtidos demonstram a eficácia da abordagem proposta. O 

modelo de previsão do RUL para os rolamentos industriais alcançou um Mean Absolute Percentage 

Error (MAPE) de 53%, indicando uma precisão notável na estimativa do tempo de vida útil restante. 

Em comparação com um estudo anterior (LI, 2019), que previa um MAPE de 62,3% para o mesmo 

tipo de rolamento e condições. Espera-se que os resultados experimentais deste estudo evidenciem 

a eficácia da abordagem proposta, comparando-os com referências da literatura. A validação do 

modelo em cenários reais de operação de rolamentos industriais será fundamental para demonstrar 

sua utilidade e potencial aplicabilidade em contextos industriais. 

 

Palavras-chave: manutenção; rolamentos; redes neurais convolucionais. 

 

 

 

 



 

 

ABSTRACT 

 

In industrial environments, operational efficiency and proactive maintenance are essential pillars to 

ensure equipment productivity and reliability. Within this context, predicting the Remaining Useful 

Life (RUL) of components such as industrial bearings plays a fundamental role. By anticipating the 

ideal time for replacement or repair of these components, companies can avoid unexpected failures, 

reduce maintenance costs, and maximize equipment operational availability. This thesis focuses on 

developing and evaluating an RUL prediction model for industrial bearings using a Deep Learning 

approach, specifically a Convolutional Neural Network (CNN). The choice of Deep Learning is 

justified by its ability to extract complex and non-linear patterns from large volumes of data, 

potentially leading to more precise and reliable predictions. The methodology adopted in this study 

ranged from collecting real bearing data to processing, selecting relevant variables, implementing, 

and training the CNN. The main objective is to predict RUL to optimize maintenance processes and 

maximize equipment availability. This is demonstrated through the effectiveness and performance 

evaluation metrics of the trained models. The results obtained show the effectiveness of the 

proposed approach. The RUL prediction model for industrial bearings achieved a Mean Absolute 

Percentage Error (MAPE) of 53%, indicating notable accuracy in estimating remaining useful life. 

In comparison with a previous study (LI, 2019) predicting a MAPE of 62.3% for the same type of 

bearing and conditions, our approach shows improvement. It is expected that the experimental 

results of this study will highlight the effectiveness of the proposed approach by comparing them 

with literature references. Validating the model in real operational scenarios of industrial bearings 

will be crucial to demonstrate its utility and potential applicability in industrial contexts. 

 

Keywords: maintenance; bearings; convolutional neural networks. 
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1 INTRODUÇÃO 

A maioria dos custos, cerca de 70-80% de um ativo de instalação é realizada durante a fase 

de operação e manutenção da vida útil da instalação ciclo. Um estudo do Instituto Nacional de 

Padrões e Tecnologia (NIST) de 2018 resumiu que US$ 50 bilhões são gastos anualmente em 

operações e manutenção no território continental dos Estados Unidos (SCAIFE et al., 2024). 

As máquinas são os principais componentes de qualquer unidade industrial ou fábrica. 

Assim, o lucro de qualquer indústria está altamente associado ao tempo de execução disponível das 

máquinas. O colapso repentino dos componentes da máquina pode levar a perdas substanciais de 

produção. O monitoramento adequado das condições desses componentes é essencial para garantir 

o funcionamento ininterrupto das indústrias (SAHA et al., 2022). 

Ambientes industriais são constituídos por diferentes tipos de equipamentos que fazem parte 

de sistemas de produção complexos, dentre os quais um dos mais importantes, e mais sujeitos a 

falhas, são as máquinas rotativas. Dessa forma a utilização de técnicas de manutenção eficientes 

são importantes para que esses equipamentos estejam sempre em condições de produção (SOARES 

et al., 2020). 

Apesar da sua indiscutível relevância, os processos de manutenção frequentemente se 

deparam com desafios ligados à previsibilidade, custo e impactos na produção. Os métodos 

tradicionais, em sua maioria baseados em manutenções periódicas ou reativas, muitas vezes são 

ineficientes, levando à subutilização de recursos e à detecção insuficiente de falhas incipientes. 

Dessa forma, redes neurais artificiais, um modelo de Inteligência artificial (IA) têm sido utilizadas 

em vários problemas de monitoração de condição, diagnóstico e prognóstico de falhas em máquinas 

(LUCIFREDI et al., 2000). 

ZHANG et al., 2017 afirma que modelos de diagnóstico de falhas baseados em métodos 

orientados a dados são vantajosos, pois podem fornecer diagnósticos precisos, mesmo sem o 

conhecimento do modelo do processo. Com a crescente demanda de monitoramento e a grande 

quantidade de informações de dados de processos industriais, a utilização de IA ganha cada vez 

mais atenção pois, por meio destas técnicas, é possível a extração de informações úteis de dados 

históricos (CHEN et al., 2019). 

Avanços recentes em IA na indústria mostraram o potencial dessa tecnologia para auxiliá-

las a enfrentar os desafios associados a essa transformação digital de Sistemas Ciber físicos (PERES 

et al., 2020). Clique ou toque aqui para inserir o texto.Combinando análises complexas com a 
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capacidade de adaptação a diferentes contextos, a IA supera as abordagens tradicionais, viabilizando 

um paradigma proativo de manutenção que, por sua vez, impacta positivamente os custos 

operacionais e a disponibilidade dos equipamentos. 

Nesse contexto, o tempo de vida útil restante (RUL) é uma métrica importante. O 

'Businessdictionary.com' define a vida útil como ‘o período durante o qual se espera que um ativo 

ou propriedade seja utilizável para a finalidade para a qual foi adquirido’. No entanto, em engenharia 

de confiabilidade, ela pode ser formalmente definida como ‘o período de tempo esperado durante o 

qual um ativo depreciado será produtivo’ (SI et al., 2011). 

O RUL fornece suporte teórico e base de tomada de decisão para a gestão de sistemas de 

saúde. Uma vez prevista a falha, as decisões de manutenção serão implementadas a tempo de reduzir 

o risco de perdas econômicas, garantindo ao mesmo tempo a segurança, a eficiência da manutenção 

e a confiabilidade do sistema (CAI et al., 2021). 

Utilizar na estimação do momento de falha de um equipamento traz vantagens competitivas 

ao definir o momento apropriado para manutenção. A crescente escassez e o consequente aumento 

dos preços dos recursos bem como a mudança social no contexto dos aspectos ecológicos exigem 

um foco mais intenso na sustentabilidade em contextos industriais (LASI et al., 2014).  

Nesse contexto, este trabalho busca explorar modelos de IA dentro da engenharia, focando 

na previsão do tempo de vida remanescente de rolamentos industriais. Especificamente, técnicas de 

Machine Learning (ML) e Deep Learning (DP) serão aplicadas em um conjunto de dados reais 

disponibilizado no IEEE PHM 2012 Prognostic challenge. 

1.1 OBJETIVO 

1.1.1 Geral 

Apresentar um modelo de previsão do RUL para rolamentos utilizando uma abordagem de 

CNN com intuito de fornecer previsões mais precisas que poderá dar suporte ao planejamento da 

manutenção. 

1.1.2 Específico 

● Fazer revisão da literatura sobre os seguintes tópicos: 

o Manutenção; 

o Confiabilidade; 

o RUL; 
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o CNN; 

o SPECTOGRAMA; 

● Coletar dados de vibração do IEEE PHM 2012 Prognostic challenge; 

● Realizar um pré-processamento para adequação dos dados utilizados; 

● Seleção de variáveis informativas para dados de vibração; 

● Modelagem prognóstica via uma abordagem CNN; 

● Comparação de resultados. 
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2 REFERENCIAL TEÓRICO 

2.1 CONFIABILIDADE E MANUTENÇÃO INDUSTRIAL 

A manutenção tem um papel essencial na garantia da qualidade e da produtividade 

empresarial. A manutenção deve ser encarada como uma função estratégica na obtenção dos 

resultados da organização e deve estar direcionada ao suporte do gerenciamento e à solução de 

problemas apresentados na produção, lançando a empresa em patamares competitivos de qualidade 

e produtividade (KARDEC & NASCIF, 2001). 

O custo da indisponibilidade concentra-se naqueles decorrentes da perda de produção, da 

não-qualidade dos produtos, da recomposição da produção e das penalidades comerciais, com 

possíveis consequências sobre a imagem da empresa (MIRSHAWKA; 1993). 

A manutenção é uma combinação de ações técnicas, incluindo as de verificação, destinadas 

a manter ou reparar um bem de um equipamento, para que possa desempenhar a sua função. Sendo 

assim, as principais práticas básicas de manutenção são: Manutenção corretiva, manutenção 

preventiva, manutenção preditiva e manutenção detectiva (ARMANDO DE ALMEIDA MURÇA 

et al., 2012). 

● Manutenção corretiva: é a manutenção que acontece após a identificação de um problema. 

O problema dessa política não está em fazer intervenções corretivas, mas em que sua 

aplicação isolada requer enormes estoques de peças para suportar as sucessivas quebras, 

tornando o trabalho imprevisível e, portanto, sem um plano capaz de equacionar os custos.  

● Manutenção preventiva: baseia-se em intervenções periódicas geralmente programadas 

segundo a frequências definida pelos fabricantes dos equipamentos. Essa política, em muitos 

casos, leva a desperdícios, pois não considera a condição real do equipamento. 

● Manutenção preditiva: caracteriza-se pela medição e análise de variáveis da máquina que 

possam prognosticar uma eventual falha. Com isso, a equipe de manutenção pode se 

programar para a intervenção e aquisição de peças (custo da manutenção), reduzindo gastos 

com estoque e evitando paradas desnecessárias da linha de produção (custo da 

indisponibilidade). 

A manutenção preditiva é indicada para equipamento de altos custos onde o monitoramento 

do sistema permite o entendimento de seu funcionamento e criação de planos de ação para evitar 

problemas futuros. Análise de dados como vibração e temperatura podem informar sobre o estado 



 

 

11 

de degradação de um ativo e, a partir daí, podem tomar decisões sobre como lidar com o processo 

produtivo.  

Geralmente, condições anormais de funcionamento de rolamentos como o desgaste, se 

manifestam na forma de vibração, o monitoramento dessa variável é uma das principais ferramentas 

para acompanhamento das condições de funcionamento das máquinas (SOARES et al., 2020). 

Neste contexto, confiabilidade pode ser entendida como a probabilidade de um sistema 

realizar tarefas para ele foi projetado. Sob certas condições, durante um período de tempo 

predefinido (HOYLAND & RAUSAND, 2009). Ou seja, quando se quer especificar a 

confiabilidade de uma máquina, deve-se informar que “a probabilidade dessa máquina operar de 

acordo com suas especificações nesse projeto é, por exemplo, de 99% nas próximas 5000 horas’ e 

não somente ‘A confiabilidade dessa máquina é de 99%’. O estudo dessa probabilidade permite 

antever eventos de falhas em um sistema e tomar decisões que mitiguem ou evitem esses eventos, 

considerados indesejados. 

Ainda, os termos “disponibilidade” e “manutenibilidade” (ou manutenibilidades) podem ser 

definidos como abaixo (NBR 5462:1994). 

● Disponibilidade: É a capacidade de um item estar em condições de executar uma certa 

função em um dado instante ou durante um intervalo de tempo determinado, levando-se em 

conta os aspectos combinados de sua confiabilidade, manutenibilidade e suporte de 

manutenção, supondo que os recursos externos requeridos estejam assegurados. 

● Manutenibilidade: é a capacidade de um item ser mantido ou recolocado em condições de 

executar suas funções requeridas, sob condições de uso especificadas, quando a manutenção 

é executada sob condições determinadas e mediante procedimentos e meios prescritos.” Em 

outras palavras, a manutenibilidade é a rapidez com que procedimentos de reparo são 

executados para recolocar um ativo em funcionamento após a apresentação de um problema. 

Em outras palavras, disponibilidade é um indicador reativo, retrata o que aconteceu no 

passado. Manutenibilidade é a “facilidade” que uma equipe encontra para executar a manutenção 

de um determinado equipamento. A confiabilidade está ligado ao futuro, é uma projeção 

probabilística que aponta as chances de o equipamento funcionar perfeitamente em um determinado 

espaço de tempo. 
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2.1.1 RUL 

Como mencionado anteriormente, o conceito de RUL pertence às áreas de Engenharia e IA 

e se refere ao período de tempo estimado que um componente, máquina ou sistema possui até que 

alcance um estado de degradação que não permita mais seu funcionamento eficiente. A Figura 1 

demonstra graficamente a comparação entre um RUL real e sua respectiva previsão. 

     

Figura 1: Comportamento esperado do RUL estimado 

 

Fonte: (SUTRISNO et al., 2012) 

 

O RUL é uma informação utilizada na área de manutenção preditiva e prognóstico para 

estimar a quantidade de tempo restante antes de uma falha ou degradação significativa de um 

componente, equipamento ou sistema. O RUL é uma medida importante para prever a falha ou a 

necessidade de manutenção com antecedência, permitindo uma abordagem mais proativa e eficiente 

na gestão dos ativos (SAXENA et al., 2010). 

O RUL desempenha um papel crucial na manutenção preditiva e na otimização dos 

processos de produção, especialmente em setores com equipamentos complexos e caros, como 

aeronáutica, energia, manufatura e transporte. Ao estimar o tempo restante de vida útil dos ativos, 

as empresas podem programar suas atividades de manutenção de forma mais eficiente, evitando 

paradas inesperadas e reduzindo custos associados a falhas e reparos de emergência. Além disso, o 

RUL permite otimizar o uso dos recursos, estender a vida útil dos ativos e planejar estrategicamente 

as substituições quando necessário (SAXENA et al., 2010). 

O RUL é uma métrica fundamental para a manutenção preditiva, pois fornece informações 

valiosas sobre o estado atual dos ativos e a expectativa de sua vida útil restante. Com base no RUL, 

é possível tomar decisões informadas sobre quando realizar a manutenção preventiva, programar 

intervalos de manutenção, gerenciar estoques de peças de reposição e até mesmo planejar 
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investimentos em novos equipamentos. Além disso, o RUL pode ser usado como um indicador-

chave de desempenho (KPI) para avaliar a eficácia de estratégias de manutenção e comparar o 

desempenho de diferentes ativos ou sistemas (SI et al., 2011). 

2.1.2 Rolamentos 

Motores são um dos componentes principais para o funcionamento das máquinas industriais. 

As estatísticas mostram que os motores elétricos são usados como motores principais em mais de 

90% dos acionamentos mecânicos. (ZU, 2019) A falha nesses motores geralmente cai na categoria 

de falhas relacionadas ao rolamento, falhas associadas ao enrolamento do estator e falhas 

relacionadas ao rotor. Dentre essas falhas, a maior parte delas, quase 40%, ocorre devido a 

problemas relacionados aos rolamentos (MOHANTY, 2014). 

Os rolamentos estão entre os componentes mais importantes e frequentemente encontrados 

na grande maioria das máquinas rotativas, sendo sua capacidade de carga e confiabilidade 

proeminentes para o desempenho geral da máquina. Portanto, naturalmente, a identificação de 

falhas em rolamentos de elementos rolantes tem sido objeto de extensa pesquisa (TANDON; 

INTERNATIONAL; 1999). A Figura 2 ilustra rolamentos em condições normais e submetidos a 

desgaste, apresentando sinais visíveis de deterioração ao longo do tempo. 

Figura 2: Rolamentos normais e degradados  

 

 

Fonte: Adaptado de NECTOUX et al., 2012 

 

Rolamentos são componentes básicos essenciais para uma máquina rotativa e isto motiva o 

estudo da detecção antecipada de problemas para que não haja impactos nos processos produtivos 

onde eles estão presentes (SOARES et al., 2020). 
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Tendo em mente que gerar dados é a base da Indústria 4.0, sensores industriais possuem 

cada vez mais importância no setor. Cada tipo de sensor é capaz de detectar determinada grandeza 

física. Em seguida, ele transforma essa grandeza em sinais elétricos, sonoros em dados (DJP 

AUTOMAÇÃO, 2020). Nos últimos anos, os sensores tornaram-se mais baratos e prontamente 

disponíveis para indústrias (SAN MARTIN et al., 2019). 

Métodos diferentes são utilizados para a aquisição de informações e podem ser amplamente 

classificados dependendo do tipo de medições: vibração e acústica, temperatura e análise de 

resíduos de desgaste (TANDON & INTERNATIONAL, 1999). Dentre esses, as medições de 

vibração são comumente utilizadas no monitoramento de condições e diagnóstico de máquinas 

rotativas, principalmente devido aos sinais fáceis de mensurar e à análise plausível (SOUTO 

MAIOR, 2017). 

A medição de vibração do rolamento pode ser feita usando sensores de aceleração que são 

colocados na carcaça do rolamento. Quando ocorrem falhas no rolamento, o sinal de vibração será 

diferente do sinal em estado normal. Falhas localizadas em rolamentos produzem uma série de 

respostas de impulsos de banda larga no sinal de aceleração, à medida que os componentes do 

rolamento repetidamente impactam a falha (SOUTO MAIOR, 2017). 

2.2 ESPECTROGRAMA 

Uma das representações mais intuitivas de uma forma de onda é alcançada por meio da 

análise tempo-frequência, que descreve como os componentes de frequência de uma onda evoluem 

ao longo do tempo. Representações tempo-frequência, como o espectrograma, são bem conhecidas 

por permitir a caracterização completa de um sinal em termos de amplitude e fase (CROCKETT et 

al., 2023).  

Na Figura 3 podemos visualizar o exemplo de um espectrograma. Esses espectros de 

frequência são então plotados em um gráfico bidimensional, onde o eixo horizontal representa o 

tempo e o eixo vertical representa a frequência. A intensidade ou amplitude de cada frequência é 

geralmente representada por uma escala de cores que vão desde tons de azul para representar baixas 

intensidades, passando por tons de verde e amarelo para intensidades médias, até tons de vermelho 

e laranja para intensidades mais altas. 

Figura 3: Exemplo de um espectrograma 
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Fonte: CROCKETT et al., 2023 

 

O espectrograma é uma ferramenta fundamental na análise de sinais em diversas áreas. Ele 

revela informações cruciais contidas em sinais complexos, permitindo a visualização e compreensão 

de componentes de frequência que variam com o tempo. 

Espectrograma é definido como a magnitude ao quadrado da transformada de Fourier de 

curto tempo (STFT), que é gerada ao calcular a transformada de Fourier de seções consecutivas 

temporalmente truncadas (ou janeladas) do sinal de entrada, exibindo assim o seu conteúdo de 

frequência variável ao longo do tempo (LEON COHEN, 1995). 

Espectrograma é uma representação visual do espectro de frequências do som. No seu 

formato mais comum, ele é representado por um gráfico em que o eixo horizontal representa o 

tempo e o eixo vertical a frequência (COSTA, 2013). 

O espectrograma em sua essencia é uma matriz. Essa matriz pode ser representada em forma 

de imagem, onde a entrada 𝑖, 𝑗 na matriz corresponde à intensidade do pixel i, j na imagem (JANA 

et al., 2020). 

Embora o espectrograma seja uma ferramenta poderosa, ele não está isento de desafios. A 

escolha de parâmetros, como tamanho da janela e taxa de sobreposição, pode afetar a resolução 

temporal e espectral do espectrograma. Além disso, a interpretação requer conhecimento 

especializado para distinguir informações relevantes de artefatos. 



 

 

16 

2.3 IA 

2.3.1 Machine Learning 

Na última década, houve um notável aumento nas técnicas baseadas em ML, impactando 

muitas áreas da indústria, incluindo direção autônoma, cuidados de saúde, finanças e manufatura. 

O objetivo geral do ML é reconhecer padrões em dados, que informam a maneira como problemas 

não vistos são tratados. Por exemplo, em um sistema altamente complexo, como um carro 

autônomo, grandes quantidades de dados provenientes de sensores precisam ser convertidas em 

decisões sobre como controlar o carro por um computador que "aprendeu" a reconhecer o padrão 

de "perigo" (CARLEO et al., 2019). 

Normalmente, as metodologias de ML envolvem um processo de aprendizado com o 

objetivo de aprender com "experiência" (dados de treinamento) para realizar uma tarefa. Os dados 

em ML consistem em um conjunto de exemplos. Geralmente, um exemplo individual é descrito por 

um conjunto de atributos, também conhecidos como características ou variáveis. Uma característica 

pode ser nominal (enumeração), binária (ou seja, 0 ou 1), ordinal (por exemplo, A+ ou B-), ou 

numérica (número inteiro, número real, etc.) (LIAKOS et al., 2018). 

O desempenho do modelo de ML em uma tarefa específica é medido por uma métrica de 

desempenho que melhora com a experiência ao longo do tempo. Para calcular o desempenho de 

modelos e algoritmos de ML, são usados vários modelos estatísticos e matemáticos. Após o término 

do processo de aprendizado, o modelo treinado pode ser usado para classificar, prever ou agrupar 

novos exemplos (dados de teste) usando a experiência obtida durante o processo de treinamento 

(LIAKOS et al., 2018). Tradicionalmente, os modelos de ML são divididos em 3 classes 

(RASCHKA, 2015): 

- Aprendizado supervisionado: O aprendizado supervisionado é a tarefa de aprendizado de 

máquina que consiste em aprender uma função que mapeia uma entrada para uma saída com 

base em pares de entrada e saída de exemplo. Ele infere uma função a partir de dados de 

treinamento rotulados, que consistem em um conjunto de exemplos de treinamento. Os 

algoritmos de aprendizado de máquina supervisionado são aqueles que necessitam de 

assistência externa (MAHESH; 2020). 

Em problemas de regressão, são fornecidas amostras de um conjunto de variáveis 

independentes (preditoras) 𝑥1, 𝑥2, . . . , 𝑥𝑛 e o valor da respectiva variável dependente (saída) 

𝑦. Nosso objetivo é obter um modelo que de alguma forma capture o mapeamento 𝑦  =
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𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) com base nas amostras fornecidas. A classificação difere desse cenário, 

pois a classe é categórica em vez de numérica (TORGO; GAMA, 1996). 

- Aprendizado não supervisionado: ao contrário do aprendizado supervisionado mencionado 

anteriormente, não há respostas corretas e não há um professor. Os algoritmos são deixados 

por conta própria para descobrir e apresentar a estrutura interessante nos dados. Os 

algoritmos de aprendizado não supervisionado aprendem algumas características a partir dos 

dados. Quando novos dados são introduzidos, eles usam as características previamente 

aprendidas para reconhecer a classe dos dados. Isso é principalmente usado para 

agrupamento e redução de características (MAHESH; 2020). 

K-Means e PCA (Análise de Componentes Principais) representam dois dos algoritmos de 

aprendizado não supervisionado mais populares e amplamente utilizados na atualidade. O 

PCA é um método usado para reduzir o número de variáveis em seus dados, extraindo uma 

variável importante de um grande conjunto de dados (JOLLIFFE, 2022). 

Ele reduz a dimensão dos dados com o objetivo de reter o máximo de informação possível. 

Já O K-Means é a técnica de aprendizagem não-supervisionada mais simples, e consiste em 

fixar k centroides (de maneira aleatória), sendo um para cada cluster (PAN; HAN; YANG, 

2010). 

Em outras palavras, ele busca agrupar dados com características em comum envolta desses 

centróides. 

- Por Reforço: É aquele em que o aprendizado se dá por meio de recompensas ou não ao 

indutor, o que vai depender do seu desempenho em aproximar a função desejada. 

Sutton e Barto (1998) descrevem a aprendizagem por reforço (AR) como uma técnica de 

Inteligência Artificial que capacita um agente a adquirir conhecimento por meio de sua 

interação com o ambiente em que opera. Essa aprendizagem é baseada na compreensão do 

estado atual do agente no ambiente, nas ações que ele executa nesse ambiente e nas 

mudanças resultantes dessas ações. Em termos formais, o AR utiliza uma estrutura que 

inclui estados, ações e recompensas (GUELPELI et al., 2003). 

O sucesso do ML nos tempos recentes foi inicialmente marcado por melhorias significativas 

em algumas tecnologias existentes, como no campo do reconhecimento de imagens. Em grande 

medida, esses avanços constituíram as primeiras demonstrações do impacto que os métodos de ML 

podem ter em tarefas especializadas. Mais recentemente, aplicativos tradicionalmente inacessíveis 
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a softwares automatizados foram habilitados com sucesso, em particular, pela tecnologia de Deep 

Learning (DL) (CARLEO et al., 2019). 

2.3.2 Deep Learning  

O DL é um tipo de ML que envolve o uso de redes neurais com múltiplas camadas para 

aprender representações de dados com vários níveis de abstração. Esses métodos melhoraram 

dramaticamente o que há de mais moderno em reconhecimento de fala, reconhecimento visual de 

objetos, detecção de objetos e muitos outros domínios, como descoberta de medicamentos e 

genômica. O DL descobre estruturas complexas em grandes conjuntos de dados usando o algoritmo 

de retropropagação para indicar como uma máquina deve alterar seus parâmetros internos que são 

usados para calcular a representação em cada camada a partir da representação na camada anterior 

(LECUN et al., 2015). 

De acordo com HAYKIN, 2001 a rede neural se assemelha ao cérebro humano em dois 

aspectos básicos: a) o conhecimento é adquirido pela rede a partir de seu ambiente, por intermédio 

do processo de aprendizagem; b) forças de conexão entre neurônios (pesos sinápticos) são utilizadas 

para armazenar o conhecimento adquirido.  

As tradicionais distinções entre aprendizado tradicional e profundo continuam a ser 

debatidas. No entanto, fundamental para o aprendizado profundo é o conceito de Rede Neural 

Artificial (ANN). ANNs são modelos de aprendizado de máquina projetados para emular o cérebro 

humano e são caracterizados por uma ou mais camadas de nós interconectados (neurônios) que 

geram representações não lineares das características de entrada, sendo úteis para problemas 

supervisionados, não supervisionados ou semi-supervisionados (AIZENSTEIN; MOORE, 2023). 

A maior parte dos modelos de DL corresponde simplesmente às ANNs com múltiplas 

camadas de nós interconectados. No contexto da aprendizagem supervisionada, ajustar modelos de 

ANNs com mais camadas (i.e., modelos mais profundos) tem o potencial de levar a uma melhor 

precisão de previsão, e esta é uma das principais razões pelas quais a aprendizagem profunda tem 

recebido considerável atenção recentemente (AIZENSTEIN; MOORE, 2023). 

Figura 4 mostra como um modelo de aprendizado profundo funciona. Quando um 

computador vê uma imagem, como esta com todos os seus pixels, entender o que está nela é difícil. 

O modelo de DP resolve isso dividindo a tarefa em partes mais simples. Primeiro, a imagem é 

apresentada à camada inicial, onde são observados os pixels. Depois, uma série de camadas 

"ocultas" analisa a imagem, procurando por características como bordas, cantos e partes de objetos. 
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Cada camada oculta procura padrões um pouco mais complexos do que a anterior. Por fim, o modelo 

usa essas informações para identificar o que está na imagem. 

 

Figura 4: Funcionamento de um modelo de DP 

 
Fonte: HEATON, 2018 

2.3.3 CNN  

Uma rede neural convolucional (CNN) é um tipo de algoritmo de aprendizado profundo que 

tem se tornado popular especialmente para classificação de imagens, devido à capacidade desse 

algoritmo de encontrar padrões em imagens  (LIN; YUH, 2022). Uma das primeiras aplicações 

bem-sucedidas das CNNs foi na classificação de imagens. Em particular, o artigo seminal de 

KRIZHEVSKY, 2012 demonstrou que uma CNN profunda (chamada AlexNet) poderia superar 

significativamente o estado-da-arte em um conjunto de dados de classificação de imagens de grande 

escala (ImageNet). A Figura 5 demonstra o processo de inferência de uma CNN, desde  a entrada 

do dado da imagem como uma matriz até a predição. 

As CNNs são uma classe de modelos de aprendizado profundo especialmente adequados 

para processamento de dados de entrada com estrutura de grade, como imagens, sinais de áudio e 

dados de séries temporais. As CNNs são baseadas em camadas convolucionais, que usam operações 

de convolução para extrair recursos relevantes dos dados de entrada. De acordo com LECUN, 2015, 

atualmente uma típica arquitetura de uma Rede Convolucional é dividida em uma série de estágios. 

Os primeiros estágios são compostos de dois tipos de camadas, as camadas de convolução e as 

camadas de pooling.  
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Figura 5: Exemplo de uma imagem de uma rede neural convolucional em funcionamento. 

 

Fonte: MAIOR et al., 2021 

 

CNNs demonstraram excelente desempenho em tarefas como como classificação de dígitos 

escritos à mão e detecção de faces (ZEILER; FERGUS, 2014). Vários fatores são responsáveis por 

esse interesse renovado em modelos de convnet: (i) a disponibilidade de muitos conjuntos de 

treinamento maiores, com milhões de exemplos rotulados; (ii) poderosas implementações de GPU, 

tornando a prática de treinamento de modelos muito grandes e (iii) melhores estratégias de 

regularização de modelos, como Dropout (KRIZHEVSKY; SUTSKEVER; HINTON, 2012). 

Nos últimos anos, o avanço na visão computacional com redes neurais convolucionais CNN 

despertou muito interesse em pesquisas. Uma das abordagens é a representação de sinais acústicos 

(fala, música ou som) em multi-resolução tempo-frequência (T-F) como entrada para a CNN. Uma 

camada convolucional da CNN processa uma imagem da fala ou som (espectrograma ou qualquer 

outra representação T-F) (CHAURASIYA, 2020). 

Clique ou toque aqui para inserir o texto.A principal camada das CNNs é a convolução, cuja 

função é aplicar máscaras em dados de entrada, podendo ser não apenas imagens, mas também 

sequências de texto, com base em uma vizinhança de pixels. A saída produzida nessa operação são 

os filtros de convolução (matrizes) que armazenam os pesos das conexões entre os neurônios 

(PARKHI et al., 2015). 

A camada de convolução consiste em mapas de atributos, conectados a cada unidade da 

camada anterior através de um conjunto de parâmetros compartilhados entre todas as unidades e 

pode possuir ReLUs (Rectified Linear Units), neurônios com função de ativação mais utilizada, 

definida como a não-linearidade aplicados na saída de cada camada convolucional 

(KRIZHEVSKY; SUTSKEVER; HINTON, 2012). 
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𝑅(𝑧) = max(0, 𝑧) 

A ativação é uma estrutura muito importante na camada de convolução. Essa realiza um 

ajuste entre um conjunto de neurônios, com uma função de ativação sobre uma convolução. Isso 

produz os mapas de características que armazenam as informações aprendidas dos filtros (PARKHI 

et al., 2015). 

Existem outras funções de ativação tais como: sigmoides e tangente hiperbólica, mas ReLU 

é a mais utilizada para CNNs. Além disso, essa função de ativação reduz o tempo de convergência 

dos parâmetros, pois ela é simplesmente a função identidade para valores positivos 

(KRIZHEVSKY; SUTSKEVER; HINTON, 2012). A Figura 6 mostra a aplicação da função ReLU 

em uma matriz. 

Figura 6 – Aplicação da função ReLU. 

 

Fonte: Adaptado de HIJAZI et al., 2015 

 

A camada de pooling é responsável por reduz a dimensionalidade dos mapas de 

características, diminuindo a largura e a altura dos mapas de características. A operação de pooling 

possibilita uma invariância espacial. O agrupamento de características, na maioria das arquiteturas 

de convolução, utilizam uma função de Max pooling. Essa determina o valor máximo de 

agrupamento em uma vizinhança retangular. (ZHOU; CHELLAPPA, 1992) 

As próximas camadas das CNNs desempenham o papel de regressão das ativações. Em 

qualquer rede desse tipo, após a camada de pooling, é necessário ao menos uma camada totalmente 

conectada (Fully Conected Layer- FCL). Elas servem para criar caminhos de decisões, a partir dos 

filtros obtidos na camada anterior (PARKHI et al., 2015). 

A última camada, a FCL, por sua vez, é responsável por realizar a classificação dos dados. 

Nessa situação, uma função determina a identificação das saídas em classes. A função mais utilizada 

é a Softmax (para problemas de múltiplas classes) ou Sigmoid (problemas binários) (PARKHI et 

al., 2015). 
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O treinamento das RNCs é realizado na maioria dos casos com o backpropagation, que ajusta 

os pesos w dos neurônios pelo erro mensurado entre a verdade e a predição da rede, utilizando os 

componentes do vetor gradiente. 
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3 CONJUNTO DE DADOS 

O conjunto de dados utilizado nesta pesquisa foi o IEEE PHM 2012 Data Challenge. O 

desafio teve foco na estimação do RUL dos rolamentos. Os conjuntos de dados do desafio foram 

fornecidos pelo Instituto FEMTO-ST (Besançon - França, //www.femto-st.fr/). Os experimentos 

foram realizados em uma plataforma experimental de laboratório (PRONOSTIA) que permite a 

degradação acelerada dos rolamentos sob constante e/ou variável condições de operação, enquanto 

coleta dados de monitoramento de saúde online (velocidade de rotação, força de carga, temperatura, 

vibração) (NECTOUX et al., 2012). 

No desafio, o conjunto de dados contém um conjunto de treino de 6 rolamentos que estão 

operando em 3 diferentes condições, e um conjunto de teste com mais 11. Existem no total 17 

conjuntos de dados obtidos em três condições de operação diferentes. Todos os rolamentos são 

operados desde as condições de teste até a falha, uma vez que o tempo de vida útil restante só pode 

ser medido quando o rolamento apresenta uma falha. A Tabela 1 ilustra essa divisão entre o conjunto 

de treinamento e teste. 

Tabela 1: Conjuntos de treino e teste 

 Condições de operação 

 Condição 1 Condição 2 Condição 3 

Conjunto de 

treinamento 

Rolamento1_1 Rolamento2_1 Rolamento3_1 

Rolamento1_2 Rolamento2_2 Rolamento3_2 

Conjunto de teste 

Rolamento1_3 Rolamento2_3 Rolamento3_3 

Rolamento1_4 Rolamento2_4  

Rolamento1_5 Rolamento2_5  

Rolamento1_6 Rolamento2_6  

Rolamento1_7 Rolamento2_7  

Fonte: Dataset do IEEE 2012 PHM Prognostic Challenge 

 

Tanto os conjuntos de dados de treinamento quanto de teste foram fornecidos em pastas 

compactadas no formato "7z". Os parâmetros de aquisição de dados estão listados abaixo: 

● Sinais de vibração (horizontal e vertical); 

○ Frequência de amostragem: 25,6 kHz; 
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○ Gravações: São registradas 2560 amostras (ou seja, 1/10 s) a cada 10 segundos.; 

● Sinais de temperatura; 

○ Frequência de amostragem: 10 Hz; 

○ Gravações: São registradas 600 amostras a cada minuto; 

Para cada arquivo ASCII, os dados foram organizados conforme ilustrado abaixo na Tabela2 

Tabela 2: Informações sobre os tipos do conjunto de dados 

Sinais 1 2 3 4 5 6 

Vibração Hour Minute Second µ-second Horiz. accel vert. accel. 

Temperatura Hour Minute Second 0.x second Rtd sensor  

Fonte: Dataset do IEEE 2012 PHM Prognostic Challenge 

 

Nesse trabalho a proposta foi um pouco diferente. Decidimos por nos concentrar apenas na 

condição 1. Os conjuntos de treino e teste foram divididos de uma forma diferente também. Para o 

primeiro caso foi utilizado os rolamentos 1, 2, 3, 4, 5 e 6 para o treinamento da rede e o conjunto 7 

para teste como ilustrado pela Tabela 3. 

Tabela 3: Conjuntos de treino e teste para o projeto primeiro caso 

 Rolamentos na condição de operação 1 

Conjunto de treinamento 

 

Rolamento1_2 

Rolamento1_3 

Rolamento1_4 

Rolamento1_5 

Rolamento1_6 

Rolamento1_7 

Conjunto de teste 

 

Rolamento1_1 

Fonte: Autor 

 

Para o caso 2, foi utilizado os rolamentos 1, 2, 3, 4, 5 e 7 para o treinamento e o conjunto 6 

para o teste como ilustrado na tabela 4. 
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Tabela 3: Conjuntos de treino e teste para o projeto segundo caso 

 Rolamentos na condição de operação 1 

Conjunto de treinamento 

 

Rolamento1_1 

Rolamento1_2 

Rolamento1_3 

Rolamento1_4 

Rolamento1_5 

Rolamento1_7 

Conjunto de teste 
 

Rolamento1_6 

Fonte: Autor 

Como visto, nesse conjunto de dados temos informações de vibração e temperatura ao longo 

do tempo. O esforço foi concentrado em lidar somente com os dados de vibração, e utilizando 

somente os valores da vibração horizontal. O espectrograma associado a essa variável foi extraído 

e preparado para ser utilizado como input inicial da construção do modelo. 
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4 METODOLOGIA 

A metodologia aplicada é apresentada abaixo. Dados de vibração de rolamentos são usados 

como insumo para a metodologia. A Figura 7 demonstra os passos da metodologia. 

 

Figura 7 – Ilustração da metodologia 

 

Fonte: Autor 

4.1 Coleta de Dados 

Nesta fase, foi implementado um script de download para adquirir os dados necessários e 

armazená-los localmente em um diretório denominado "data/". 

4.2 Pré-processamento de Dados 

O conjunto de dados passou por um processo de pré-processamento para otimizar sua 

usabilidade no ambiente Python, utilizando a biblioteca Pandas. Foram realizadas transformações 

específicas para garantir a adequação dos dados ao escopo da análise. Os dados foram fornecidos 

em vários arquivos .csv, então foi feito um tratamento para agrupar esses dados e utilizá-los da 

melhor forma. 
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4.3 Seleção e Preparação de Variáveis 

Na etapa subsequente, focamos na variável de interesse, que neste caso é a "frequência 

horizontal". O espectrograma associado a essa variável foi extraído e preparado para ser utilizado 

como input na construção do modelo. 

4.4 Modelagem 

O modelo adotado para este estudo é uma CNN. A implementação foi realizada utilizando 

a biblioteca TensorFlow, uma ferramenta amplamente reconhecida para o desenvolvimento de redes 

neurais. A escolha da CNN baseou-se em sua capacidade de lidar eficazmente com tarefas 

relacionadas à imagem e processamento de dados multidimensionais. 

A concepção das camadas tem como objetivo a criação de imagens adicionais, as quais 

podem ser consideradas como matrizes, uma vez que no âmbito do nosso problema não estamos 

lidando diretamente com imagens convencionais. O propósito dessa abordagem é gerar 

representações de dados de dimensões progressivamente menores à medida que as camadas são 

empilhadas. 

Consequentemente, observa-se que ao progredir de uma camada para a próxima, são geradas 

imagens adicionais com resoluções reduzidas, o que viabiliza a capacidade de identificar padrões 

com maior eficiência e precisão. A figura 8 ilustra as camadas da rede utilizada. 

Figura 8 – Camadas da CNN utilizada. 
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Fonte: Autor 

 

Primeira Camada de Convolução: 

- Filtros: 32 

- Tamanho do Kernel: 5x5 

- Função de Ativação: ReLU (Rectified Linear Unit) 

- Camada de Entrada: A forma da camada de entrada é determinada pela forma dos 

dados de treinamento (variável train). 

- Propósito: Esta camada realiza a convolução dos filtros de tamanho 5x5 com os 

dados de entrada, aplicando a função de ativação ReLU. Ela é responsável por extrair 

características de baixo nível das imagens de entrada. 

- Input: Nessa camada temos como input as imagens geradas pelo espectrograma da 

vibração horizontal. 

Camada de MaxPooling (Pooling Máximo) 1: 

- Pooling Máximo: Tamanho do pool 2x2 com um passo (stride) de 2. 

- Propósito: Esta camada reduz as dimensões espaciais das características extraídas 

pela camada de convolução anterior. Ela ajuda a preservar as características mais 

importantes e reduz a quantidade de parâmetros na rede. 

Segunda Camada de Convolução: 

- Filtros: 64 

- Tamanho do Kernel: 5x5 

- Função de Ativação: ReLU 

- Camada de Entrada: Assume a forma da saída da primeira camada de convolução. 

- Propósito: Assim como a primeira camada de convolução, esta camada realiza a 

convolução com filtros maiores (5x5) para extrair características de mais alto nível 

das imagens. A função de ativação ReLU é aplicada novamente. 

Camada de MaxPooling (Pooling Máximo) 2: 

- Pooling Máximo: Tamanho do pool 2x2 com um passo (stride) de 2. 

- Propósito: Mais uma vez, esta camada reduz as dimensões espaciais das 

características extraídas pela segunda camada de convolução. Isso ajuda a preparar 

os dados para as camadas totalmente conectadas. 
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Camada de Flattening: 

- Propósito: Esta camada transforma as características em um vetor unidimensional. 

Isso é necessário para conectar as camadas totalmente conectadas. 

Primeira Camada Totalmente Conectada (Dense): 

- Neurônios: 256 

- Função de Ativação: ReLU 

- Propósito: Camada totalmente conectada que realiza operações lineares e aplica a 

função de ativação ReLU. Ela aprende relações mais complexas nos dados. 

Segunda Camada Totalmente Conectada (Dense): 

- Neurônios: 256 

- Função de Ativação: ReLU 

- Propósito: Outra camada totalmente conectada com 256 neurônios e função de 

ativação ReLU. 

Camada de Saída (Dense): 

- Neurônios: 1 

- Função de Ativação: Linear 

- Propósito: Esta é a camada de saída da rede.  

A função softmax não é tipicamente usada nas camadas de saída de Convolutional Neural 

Networks (CNNs) para tarefas de classificação de imagens. A função softmax é usada para 

converter um vetor de valores reais em uma distribuição de probabilidade, onde a soma de todas as 

saídas é igual a 1. Isso é útil quando você tem várias classes e deseja atribuir uma probabilidade 

para cada classe. 

A ativação 'Linear’ na última camada da rede mostrada é devido ao nossa problema buscar 

uma resposta numérica, ou seja, uma tarefa que a rede está configurada para uma tarefa de regressão, 

onde a saída é um valor numérico. Abaixo é mostrado uma ilustração de como ficou nosso modelo 

e suas camadas.  

4.5 Avaliação de Resultados 

A análise dos resultados foi conduzida com base em métricas de desempenho, 

especificamente a métrica de mean absolute error (MAE) e mean absolute percentagem error 

(MAPE). Essas métrica, entre outras são comumente utilizadas para avaliar a qualidade de modelos 
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de regressão, fornecendo uma medida quantitativa do desempenho do modelo em relação aos dados 

observados. Essas métricas serão utilizadas para fazer comparações com a literatura mais a frente. 

A fórmula convencional do MAE e MAPE usada também avaliando a função objetiva, 

geralmente são definidas abaixo (ZHANG; NIU, 2024). 

𝑀𝐴𝐸  =  
1

𝑛
 ∑|𝑦𝑖 − 𝑦̅𝑖|

𝑛

𝑖=1

 

𝑀𝐴𝑃𝐸  =  
1

𝑛
 ∑

|𝑦𝑖 − 𝑦̅𝑖|

𝑦𝑖

𝑛

𝑖=1

 

4.6 Comparação com a literatura 

Na ultima etapa foi realizada uma comparação com a literatura para identificar a 

performance de cada abordagem. 
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5 RESULTADOS 

Para o caso 1, onde foi considerado os rolamentos 2, 3, 4, 5, 6 e 7 para treino e o rolamento 

1 para teste foi obtido um MAE de 5095.13. Esse valor não traz muita informação sobre se essa 

variação é grande ou não. Conjuntamente com o MAE, foi calculado o MAPE, que trás a informação 

percentual do MAE. Foi obtido um valor 53% de variação para o MAPE. Comparando com a 

literatura, o artigo de LI, 2019 trás uma previsão de MAPE para o mesmo rolamento 1 na condição 

1 de 62,3%.  

O artigo traz um comparação entre diferentes abordagens para prever o RUL para cada 

rolamento descrito no conjunto de dados utilizado neste trabalho. O modelo de DL implementado 

foi uma rede neural profunda convencional, também conhecida como multi-layer perceptron 

(MLP). A Figura 9 ilustra o RUL real para o rolamento 1 na condição 1 e o RUL predito para esse 

rolamento, junto com uma reta de tendência para a predição do modelo. 

Figura 9 – RUL real vs RUL predito para o rolamento 1 na condição 1. 

Fonte: Autor 

 

É esperado que o erro nos conjuntos de treino sejam menores pois estamos fazendo uma predição 

para dados já vistos pelo modelo e utilizados justamente no seu treino. Logo, é esperado que ele 

tenha apreendido o comportamento de dados já vistos. 

Tabela 4: Valores do MAE e MAPE para o treino e teste do rolamento 1 na condição 1. 
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Conjunto de dados MAE MAPE 

Treino 1410.01 0.33 

Teste 5095.13 0.53 

Fonte: Autor. 

 

Tabela 5: Valores de MAPE para rolamento 1 na condição 1 para o modelo de CNN Utilizado 

nesse trabalho e o MLP  utilizado em LI; ZHANG; DING, 2019 

Conjunto de dados MAPE 

CNN 0.53 

MLP 0.62 

Fonte: Autor.. 

 

Para o caso 2, onde foi considerado os rolamentos 1, 2, 3, 4, 5 e 7 para treino e o rolamento 6 para 

teste foi obtido um MAE e MAPE de 15% e 53% respectivamente. Comparando com resultado 

obtido por LI, 2019 foi de 49,4% de MAPE. A Figura 10 ilustra o RUL real para o rolamento 6 na 

condição 1 e o RUL predito para esse rolamento.  

 

Figura 10 – RUL real vs RUL predito para o rolamento 6 na condição 1. 

Fonte: Autor 
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Tabela 6: Valores do MAE e MAPE para o treino e teste do rolamento 6 na condição 1. 

Conjunto de dados MAE MAPE 

Treino 1073.77 0.15 

Teste 2762.17 0.536 

Fonte: Autor. 

 

Tabela 7: Valores de MAPE para rolamento 6 na condição 1 para o modelo de CNN Utilizado 

nesse trabalho e o MLP  utilizado em LI; ZHANG; DING, 2019 

Conjunto de dados MAPE 

CNN 0.53 

MLP 0.49 

Fonte: Autor. 
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6 CONCLUSÃO 

Nesse trabalho é proposto uma proposta para a predição do RUL utilizando uma CNN. 

Comparando resultados com a literatura foi visto que para o caso 1 essa abordagem teve um 

desempenho melhor, para o caso 2 a abordagem de MLP foi ais bem-sucedida. Pode-se perceber 

que para a abordagem 1, com os devidos conjunto de treino e teste a proposta de arquitetura feita 

nesse trabalho conseguiu uma performance melhor. Se adaptando e aprendendo melhor o 

comportamento desse conjunto de dados. Para o caso 2 isso não ocorreu, o conjunto de treino e teste 

para esse caso 2 são diferentes, logo a abordagem proposta não conseguiu tirar melhor proveito 

dessa situação para preformar melhor a literatura. De forma geral podemos perceber que para 

diferentes rolamentos uma abordagem ou outra pode ser mais adequada. Além de pontos como 

otimização de parâmetros nesse trabalho não foram considerados. Os resultados experimentais 

sugerem que o método proposto é promissor para problemas prognósticos e é adequado para 

aplicações industriais. 

Apesar dos bons resultados prognósticos alcançados pelo método proposto, deve-se destacar 

que são necessários dados de treinamento rotulados suficientes. Isso é geralmente exigido por todas 

as abordagens baseadas em dados, especialmente para problemas prognósticos. 

Como próximos passos, se destacam pontos como realizar ajustes na arquitetura da CNN, 

como modificar o número de camadas, utilização de mais variáveis mudando a abordagem, o 

tamanho dos filtros, a função de ativação, ou adicionar técnicas como dropout e batch normalization 

para melhorar o desempenho do modelo. Utilizar conjuntos de dados de rolamentos de diferentes 

fabricantes, condições operacionais e tipos de falhas, para avaliar a generalização do método 

proposto e entender sua robustez em diferentes contextos. Experimentar diferentes arquiteturas de 

redes neurais, como Redes Neurais Recorrentes (RNNs). 

Como output desse trabalho temos esse repositório no github 

https://github.com/marcosvliras/CNN_Bearing onde descreve como é possível replicar o projeto. 
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