AMPLIFICADORES ÓPTICOS A FIBRA DOPADA COM TÚLIO PARA A BANDA “S”

Carmelo José Albanez Bastos Filho.

Recife, 21 de Fevereiro de 2003
AMPLIFICADORES ÓPTICOS A FIBRA DOPADA COM TÚLIO PARA A BANDA “S”

por

Carmelo José Albanez Bastos Filho

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da UFPE como um dos requisitos à obtenção do título de Mestre

Orientador: Prof. Joaquim F. Martins Filho, PhD.
Co-orientador: Prof. Anderson S. L. Gomes, PhD.

Recife, 21 de fevereiro de 2003
Dedico este trabalho à memória do meu avô Edésio Rangel de Farias que tanto contribuiu para meu desenvolvimento intelectual e humano.
Agradecimentos

Foram instituições essenciais para o desenvolvimento e a realização desse trabalho: a CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior) que conferiu o suporte financeiro; o Departamento de Física (DF) da UFPE, através dos suportes laboratorial e técnico dispensados; o Departamento de Eletrônica e Sistemas (DES) da UFPE, em particular o Grupo de Fotônica, pela estrutura organizacional e pelo suporte aos translados e participações em conferências e a Ericsson do Brasil pelo suporte ao projeto onde o trabalho foi desenvolvido.

Agradecimentos a nível pessoal são especialmente dirigidos: ao Prof. Dr. Anderson S. L. Gomes, pela co-orientação no mestrado; ao Dr. Michael Sundheimer, por toda a atenção prestada e a todos os demais integrantes do Grupo de Optoeletrônica do DF; aos Professores e integrantes do Grupo de Fotônica; e especialmente ao Prof. Dr. Joaquim F. Martins Filho, pela orientação no mestrado, que sempre foi executada de forma onipresente.

Eterna gratidão dispenso aos meus pais (Carmelo J. A. Bastos e Rachel R. de F. A. Bastos) e irmãos (Maria Angélica R. Bastos e Petrus Rangel Bastos), pelo apoio moral e pelos princípios que levarei por toda a vida; à minha namorada Silvia Monteiro, pela dedicação, pelo apoio e encorajamento em todos os momentos; e, finalmente, a todos os amigos, principalmente Sérgio Campello Oliveira, José Paulo G. de Oliveira, Eric de A. J. Arantes, Carlos Henrique Duarte, Isonaldo J. S. Coelho, Leonardo Didier Coelho, entre outros que participaram direta ou indiretamente dessa grande conquista pessoal.
ÍNDICE

RESUMO...1

ABSTRACT...2

LISTA DE FIGURAS..3

LISTA DE TABELAS...8

CAPÍTULO 1: INTRODUÇÃO...9

1.1. Sistemas de Comunicações Ópticas ...10
1.2. Transmissores ..11
1.3. Fibras Ópticas ..12
1.4. Receptores ...15
1.5. Regeneradores / Amplificadores Ópticos ...16
1.6. Equalizadores Ópticos ...16
1.7. Acopladores Direcionais ..17
1.8. Isoladores ...18
1.9. Circuladores ..19
1.10. Multiplexadores / Demultiplexadores Ópticos ...19
1.11. Componentes ópticos de Adição-Remoção de canais (OADM)20
1.12. Conectores cruzados de Comprimentos de onda (WXC)21
1.13. Compensadores de dispersão ...21
1.14. Estrutura da dissertação ..22
REFERÊNCIAS PARA O CAPÍTULO 1 ...22

CAPÍTULO 2: CONCEITOS BÁSICOS SOBRE AMPLIFICADORES ÓPTICOS25

2.1. Modelagem teórica do ganho ...26
2.2. Modelagem teórica da Figura de ruído ..28
2.3. Aplicações ...33
2.4. Tipos de Amplificadores Ópticos ...35
 2.4.1. SOA ...35
 2.4.2. Amplificador de Fibra Raman ...38
 2.4.3. Amplificador Óptico Paramétrico ..41
 2.4.4. Amplificadores a fibras dopadas ...44
 2.4.4.1. EDFA ..45
 2.4.4.2. PDFA e NDFA ...47
 2.4.4.3. TDFA ..48
REFERÊNCIAS PARA O CAPÍTULO 2 ...49
CAPÍTULO 3: TDFA (Revisão Bibliográfica) ... 53

3.1. Introdução ... 53
3.2. Modelos Teóricos ... 58
 3.2.1. Equações de Taxa ... 59
 3.2.2. Modelo de caixa preta (BBM) .. 64
3.3. Tipos de fibras ópticas hospedeiras .. 67
3.4. Esquemas de Bombeamento duplo ... 67
 3.4.1. GSA com 1550 nm ... 68
 3.4.2. GSA com 1240 nm ... 70
 3.4.3. GSA com 800 nm .. 71
REFERÊNCIAS PARA O CAPÍTULO 3 .. 73

CAPÍTULO 4: TÉCNICAS DE MEDIÇÃO ... 80

4.1. Medicação de Ganho ... 81
 4.1.1. Ganho utilizando Analisador de Espectro Óptico 81
 4.1.2. Ganho distribuído utilizando a técnica de COFDR 83
 4.1.3. Técnica de COFDR ... 83
 4.1.4. Medicação de ganho com COFDR .. 87
4.2. Medicação de Figura de Ruído .. 91
REFERÊNCIAS PARA O CAPÍTULO 4 .. 93

CAPÍTULO 5: RESULTADOS EXPERIMENTAIS, CONCLUSÕES E PERSPECTIVAS PARA TRABALHOS FUTUROS ... 97

5.1. Bombeamento em 1050 nm ... 97
 5.1.1. Fibra dopada com Túlio de 9,8 m e 2500 ppm .. 97
 5.1.2. Fibra dopada com Túlio de 15 m e 2000 ppm .. 103
5.2. Bombeamento duplo (1050 nm + 1550 nm) .. 109
5.3. Conclusões ... 119
5.4. Perspectivas para trabalhos futuros ... 120
REFERÊNCIAS PARA O CAPÍTULO 5 ... 121

ACRÔNIMOS E TERMOS UTILIZADOS .. 124

LISTA DE PARÂMETROS ... 127

TRABALHOS PUBLICADOS ... 130

ANEXO A: EDFA PARA BOMBEAMENTO EM 1550 nm 132
Resumo

Com a crescente demanda por tráfego de dados tornou-se necessário expandir a capacidade dos sistemas de comunicações ópticas. Isto pode ser obtido aumentando a quantidade de canais transmitidos, através da multiplexação de comprimentos de onda. Devido à melhora dos processos de fabricação das fibras ópticas, atualmente é possível a utilização de todo o espectro de baixas perdas da sílica (1460nm – 1625nm), abrangendo várias bandas de transmissão.

Para compensar as perdas nestas bandas de transmissão são necessários amplificadores ópticos. Entre eles podemos citar: amplificadores Raman, amplificadores Paramétricos, amplificadores de semicondutor e amplificadores a fibra dopada com terras raras. No caso da banda S (1460nm – 1530nm) o mais promissor é o Amplificador de Fibra Dopada com Túlio (TDFA), foco desta dissertação de mestrado.

Com o bombeamento mais utilizado para TDFA, em 1050nm, construímos amplificadores com diferentes fibras tipo ZBLAN dopadas com Túlio e obtivemos ganhos da ordem de 27dB e figuras de ruído menores que 5dB, reproduzindo resultados semelhantes aos relatados na literatura.

Adicionamos ao laser de bombeamento principal outro bombeamento (1550nm) que otimiza a absorção de estado fundamental, mostrando o aumento da eficiência do sistema. Também utilizamos a técnica de Reflectometria Óptica Coerente no Domínio da Freqüência (COFDR), onde analisamos pela primeira vez a dinâmica de amplificação dentro da fibra dopada quando esta é bombeada por dois comprimentos de onda simultaneamente. Com esta técnica podemos otimizar o comprimento da fibra dopada.
Abstract

Due to the ever increasing amount of data traffic it has become necessary to expand the capacity of optical communication systems. This can be achieved by increasing the number of transmitted channels using Wavelength Division Multiplexing. Due to improvements of the manufacturing process of optical fibers, it is possible to use the entire low-loss spectral window of silica (1460nm – 1625nm), covering several transmission bands.

To compensate for the losses in those transmission bands, optical amplifiers are necessary. Among them are: Raman amplifiers, Parametric amplifiers, Semiconductor amplifiers and Rare Earth doped fiber amplifiers. In the case of the S band (1460nm – 1530nm) the most promising is the Thulium Doped Fiber Amplifier (TDFA), which is the main subject of this work.

With the most common TDFA pump (1050nm) we built amplifiers with different Thulium Doped ZBLAN fibers and we achieved a small signal gain of 27dB and noise figures below 5dB, in agreement with previous reports in the literature.

We also added an auxiliary pump (1550nm) which increases the ground state absorption, increasing the amplifier efficiency. We used Coherent Optical Frequency Domain Reflectometry (COFDR), to analyze for the first time the gain dynamics within the doped fiber when it is simultaneously pumped with both wavelengths. With this technique it is possible to optimize the doped fiber length in a non destructive way.
Lista de Figuras

1. **Figura 1.1** – Exemplo de sistema simples “ponto a ponto”, composto por Transmissor (TX), Fibra óptica (FO), Receptores (RX) e Regeneradores (RG) ou Amplificador óptico (AO).
2. **Figura 1.2** – Exemplo de rede óptica com roteamento de comprimento de onda; alguns elementos estão ilustrados Multiplexador e demultiplexador, Add-drop e WXC.
3. **Figura 1.3** – Espectro de perdas da fibra de sílica Truewave® com dispersão deslocada não nula da Lucent Technologies.
4. **Figura 1.4** – Espectro de dispersão de fibras de sílica Truewave® com dispersão deslocada não nula da Lucent Technologies.
5. **Figura 1.5** – Esquema de um OADM construído a partir de um multiplexador, um de multiplexador e chaves comutadoras 2x2.
6. **Figura 2.1** – Exemplos de aplicações de amplificadores ópticos: (a) Amplificador de linha, (b) Amplificador de potência, (c) Pré-amplificador e (d) amplificador de distribuição.
 TX – Transmissor, RX – Receptor, AO – Amplificador Óptico e FO – Fibra Óptica.
7. **Figura 2.2** – Diagrama de energia ilustrando o processo de amplificação Raman.
8. **Figura 2.3** – Espectro de ganho Raman para sílica.
9. **Figura 2.4** – (a) Diagrama de energia ilustrando o processo de amplificação paramétrica e (b) componentes de frequência criadas pelo processo.
10. **Figura 2.5** – (a) Diagrama de energia ilustrando o processo de amplificação através dos íons trivalentes de Érbio em sílica.
11. **Figura 3.1** – Espectro de absorção dos íons trivalentes de Túlio em fibras ZBLAN.
12. **Figura 3.2** – Diagrama de energia dos íons de Tm³⁺ em vidros fluorados com bombeamento único em 1050 nm.
13. **Figura 3.3** – Diagrama de energia das possíveis absorções de estado fundamental dos íons de Tm³⁺ em vidros fluorados.
14. **Figura 3.4** – Diagrama de energia dos íons de Tm³⁺ em vidros fluorados com bombeamento único em 1410 nm.
15. **Figura 3.5** – Diagrama de energia dos íons de Tm$^{3+}$ em vidros fluorados com bombeamento único em 1050 nm, apresentando as probabilidades de transição entre os níveis de energia envolvidos no modelo do Komukai.

16. **Figura 3.6** – Diagrama de energia das possíveis absorções de estado fundamental dos íons de Tm$^{3+}$ em vidros fluorados.

17. **Figura 3.7** – Diagrama de energia dos íons de Tm$^{3+}$ em vidros fluorados com auxílio de bombeamento complementar em 1550 nm.

18. **Figura 3.8** – Diagrama de energia dos íons de Tm$^{3+}$ em vidros fluorados com GSA em 1240 nm.

19. **Figura 3.9** – Diagrama de energia dos íons de Tm$^{3+}$ em vidros com auxílio de bombeamento complementar em 800 nm.

20. **Figura 4.1** – Foto do analisador de espectro óptico utilizado nos experimentos.

21. **Figura 4.2** – Exemplo de espectro de intensidade de entrada e saída utilizando o método de interpolação.

22. **Figura 4.3** – Esquema de funcionamento do OFDR baseado no interferômetro de Michelson.

23. **Figura 4.4** – Montagem experimental do OFDR.

24. **Figura 4.5** – Foto da Montagem experimental do COFDR, onde estão contidos o acoplador direcional, o oscilador local, o circulador, as redes de Bragg e o fotodetetor.

25. **Figura 4.6** – Foto dos equipamentos utilizados durante as medições com a técnica de COFDR, onde estão apresentados: o gerador de funções (esquerda acima), laser sintonizável (esquerda abaixo), osciloscópio (direita acima) e ESA (direita abaixo).

26. **Figura 5.1** – Esquema de montagem do TDFA com bombeamento único de 1050 nm.

27. **Figura 5.2** – Ganho de pequenos sinais do TDFA com bombeamento único em 1050 nm em função do comprimento de onda do sinal. Para 150mW (Triângulos invertido), 310mW (círculos), 407mW (Triângulos) e 660mW (quadrados) de potência de bombeamento. Fibra #1.

28. **Figura 5.3** – Ganho de pequenos sinais (quadrados) e figura de ruído (triângulos) do TDFA com bombeamento único em 1050 nm em função do comprimento de onda do sinal. Para Potência de bombeamento de 660 mW e potência de sinal de -31dBm. Fibra #1.
29. **Figura 5.4** – Ganho de pequeno sinal (quadrados) e figura de ruído (triângulos) do TDFA com bombeamento único em 1050 nm em função da potência de bombeamento. Para potência de sinal de -31 dBm em 1462 nm. Fibra #1.

30. **Figura 5.5** – Ganho (quadrados) e figura de ruído (triângulos) do TDFA com bombeamento único em 1050 nm em função da potência de sinal em 1462 nm. Para Potência de bombeamento de 380 mW em 1462 nm. Fibra #1.

31. **Figura 5.6** – Espectro de luminescência da fibra dopada com Túlio, gerado pelo laser de bombeamento em 1050 nm para diferentes potências de bombeamento. Fibra #2.

32. **Figura 5.7** – Curva de ganho do TDFA (quadrados) para potência de bombeamento de 300 mW e potência de sinal de – 30 dBm e espectro aproximado por uma Lorentziana. Fibra #2.

33. **Figura 5.8** – Modelo BBM (círculos) aplicado a curvas de ganho (quadrados) do TDFA, gerado pelo laser de bombeamento em 1050 nm para diferentes potências de bombeamento: (0) 0 mW, (1) 50 mW, (2) 100 mW, (3) 150 mW, (4) 200 mW, (5) 250 mW, (6) 300 mW e (7) 350 mW. A potência do sinal é de – 30 dBm. Fibra #2.

34. **Figura 5.9** – Modelo BBM (círculos) aplicado a espectro de ASE da fibra dopada com Túlio, gerado pelo laser de bombeamento em 1050 nm para diferentes potências de bombeamento. (1) 50 mW, (2) 100 mW, (3) 150 mW, (4) 200 mW, (5) 250 mW, (6) 300 mW e (7) 350 mW. Fibra #2.

35. **Figura 5.10** – Ganho (símbolos cheios) e figura de ruído (símbolos abertos) do TDFA com bombeamento único em 1050 nm em função do comprimento de onda do sinal; para diversas potências de bombeamento em 1050 nm: 200mW (triângulos), 300 mW (círculos) e 400 mW (quadrados). Fibra #2.

36. **Figura 5.11** – Ganho (símbolos cheios) e figura de ruído (símbolos abertos) do TDFA com bombeamento único em 1050 nm em função da potência de bombeamento para diversas potências de sinal: -10 dBm (triângulos), -20 dBm (círculos) e -30 dBm (quadrados). Para sinal em 1462 nm. Fibra #2.

37. **Figura 5.12** – Ganho e figura de ruído do TDFA com bombeamento único em 1050 nm em função da potência de sinal para potências de bombeamento de 200 mW em 1050 nm e comprimento de onda de sinal de 1462 nm. Fibra #2.
38. **Figura 5.13** – Diagrama de energia dos íons de Tm$^{3+}$ em vidros ZBLAN mostrando as absorções dos bombeamentos em 1050 nm e 1550 nm.

39. **Figura 5.14** – Esquema de montagem do TDFA com bombeamento duplo 1050 nm + 1550 nm.

40. **Figura 5.15** – Foto do Esquema de montagem do TDFA com bombeamento duplo 1050 nm + 1550 nm.

41. **Figura 5.16** – Ganho do TDFA com bombeamento duplo 1050 nm + 1550 nm (quadrados) e único em 1050 nm (triângulos) em função do comprimento de onda do sinal. Para potência de 1050 nm de 100 mW e de sinal de -15 dBm. Fibra #3.

42. **Figura 5.17** – Ganho do TDFA com bombeamento duplo 1050 nm + 1550 nm (quadrados) e simples 1050 nm (triângulos) em função da potência de bombeamento em 1050 nm. Para sinal de -15 dBm e 1470 nm. Fibra #3.

43. **Figura 5.18** – Ganho do TDFA em função da potência de bombeamento em 1550 nm. A potência de 1050 nm é de 150 mW, a potência de sinal é de -14 dBm e o comprimento de onda do sinal é 1470 nm. Fibra #3.

44. **Figura 5.19** – Ganho do TDFA com (símbolos fechados) e sem (símbolos abertos) a adição do bombeamento auxiliar de 2,5 mW de 1550 nm em função do comprimento de onda do bombeamento de 1550 nm. Para 200 mW (quadrados) e 100 mW (triângulos) de potência de 1050 nm. Fibra #3.

45. **Figura 5.20** – Resposta em frequência do OFDR gerada pelo analisador de espetro elétrico para: somente sinal (linha preta), 150 mW potência de 1050 nm (linha vermelha) e 150 mW potência de 1050 nm com 6 mW de potência de 1550 nm (linha azul). Fibra #3.

46. **Figura 5.21** – Ganho distribuído em função do comprimento da fibra para 150 mW de 1050 nm. As potências de 1550nm são: 0 mW (quadrados), 2 mW (círculos fechados), 4 mW (triângulos) e 6 mW (círculos abertos). Fibra #3.

47. **Figura A.1** – Esquema de montagem do EDFA.

50. **Figura A.4** – Potência de saída do EDFA versus comprimento da fibra dopada com Érbio #5.

51. **Figura A.5** - Relação sinal-ruído do amplificador versus comprimento da fibra dopada com Érbio #5.

52. **Figura A.6** – Potência de saída do EDFA versus potência de bombeamento na fibra dopada com Érbio #5.

53. **Figura A.7** – Foto do EDFA montado com a fibra dopada com Érbio #5.
Lista de Tabelas

1. **Tabela 4.1** – Parâmetros experimentais utilizados nas medidas com COFDR.
2. **Tabela 5.1** – Dados da fibra (#1) dopada com Túlio de 9,8 m e concentração de dopantes de 2500 ppm.
3. **Tabela 5.2** – Dados da fibra (#2) dopada com Túlio de 15 m e concentração de dopantes de 2000 ppm.
4. **Tabela 5.3** – Dados da fibra (#3) dopada com Túlio de 18 m e concentração de dopantes de 2000 ppm.
5. **Tabela A.1** – Fibra #4 dopada com Érbio.
6. **Tabela A.2** – Fibra #5 dopada com Érbio.
Com o crescimento acelerado da atual demanda por tráfego de telecomunicações, cada vez mais as comunicações por meios de sistemas ópticos estão sendo exploradas. Atualmente, a tecnologia de transmissão de informação por fibra óptica é considerada a mais promissora, principalmente pela possibilidade de estender a banda de transmissão até aproximadamente 50 Tb/s [1], preservando algumas características favoráveis como: baixa atenuação do sinal, baixa distorção do sinal, requerimento de baixa potência para funcionamento, entre outros [1]. Contudo, apesar do estado da arte de tal nicho estar em um estágio bem avançado, tais sistemas ainda têm grande potencialidade a ser desenvolvida. Com o surgimento da tecnologia de multiplexação em comprimento de onda (WDM, Wavelength Division Multiplexing), onde são transmitidos vários comprimentos de onda paralelamente em uma única fibra óptica, muitos esforços estão sendo direcionados para o desenvolvimento de amplificadores ópticos eficientes, confiáveis e de baixo custo, para que todo o espectro de baixas perdas nas fibras de sílica (1450 nm-1630 nm) possa ser utilizado simultaneamente.

As normas do ITU-T (International Telecommunication Union, Telecommunication Standardization Sector) definem as seguintes bandas de transmissão para comunicações ópticas [2]: Banda C (Conventional Band) com a região espectral de 1530 nm a 1565 nm; banda L (Long wavelengths band) com a região espectral de 1565 nm a 1625 nm e banda S (Short wavelengths band) com a região espectral de 1460 nm a 1530 nm [3]. O atual estado da arte para máxima capacidade de transmissão em uma única fibra está em 10,92 Tb/s, utilizando 273 canais nas três principais bandas de transmissão com cada canal operando em 40 Gb/s por 117 km [4]. É importante frisar que 85 destes canais foram alocados na banda S e para viabilizar a transmissão destes foram utilizados amplificadores a fibra dopada com Túlio (TDFA, Thulium Doped Fiber Amplifiers), demonstrando a importância do TDFA em sistemas de alta capacidade. Este capítulo tem o objetivo de mostrar e explicar o funcionamento dos mais importantes componentes e elementos de um sistema óptico.
1.1. **Sistemas de comunicações ópticas**

No sistema de comunicações por fibra óptica mais simples, chamado “ponto a ponto” (ver figura 1.1), temos os seguintes elementos básicos: os Transmissores (fontes de luz, ver seção 1.2), Meio de transmissão (fibra óptica, ver seção 1.3), Receptores (Fotodetetores, ver seção 1.4). Nestes sistemas, quando as perdas aumentam, geralmente com uma dependência direta do comprimento do enlace, é necessária a utilização de elementos que tornem o sinal capaz de atingir seu destino de forma inteligível. Nestes casos são utilizados Regeneradores ou Amplificadores (ver seção 1.5).

Atualmente, a grande maioria dos sistemas de comunicações via fibra óptica usa modulação de intensidade e detecção direta [5], apesar do esforço no desenvolvimento de sistemas coerentes de modulação e detecção. Por causa disto, a maioria dos sistemas ópticos são digitais, isto porque, sistemas digitais de alta performance admitem taxas de transmissão de muitos Gigabits por segundo. Estas podem chegar a 160 Gb/s em um único canal no estado atual da arte utilizando tecnologia de multiplexação óptica no domínio do tempo (OTDM, *Optical Time Domain Multiplexing*) [6] com uma taxa de erro por bit (BER, *Bit Error Rate*) pequena (tipicamente de 10^{-12}), através de longas distâncias no domínio óptico.

Um outro aspecto que deve ser abordado é a migração destes sistemas mais simples para topologias mais avançadas, onde é levada em conta, além da redundância de caminhos ópticos, a possibilidade de roteamento de informação por comprimento de onda. Na figura 1.2, temos um exemplo de configuração de rede óptica com roteamento de comprimento de onda, onde estão ilustrados alguns elementos que deverão, nos próximos anos, compor arquiteturas de redes mais complexas como: Multiplexador e demultiplexador (ver seção...
1.10); OADMs (Componentes ópticos de adição-remoção de canais) (ver seção 1.11) e WXC (Conector cruzado de comprimento de onda, ver seção 1.12).

Figura 1.2 – Exemplo de rede óptica com roteamento de comprimento de onda; alguns elementos estão ilustrados Multiplexador e demultiplexador, OADM e WXC.

1.2. Transmissores

O principal papel de um transmissor óptico é converter o sinal elétrico em sinal óptico que possa ser acoplado a uma fibra óptica (ver seção 1.3). Para sistemas de comunicações via fibra óptica, os transmissores são dispositivos à base de semicondutor [5, 7-10]. As vantagens no uso de dispositivos de semicondutor são muitas, entre elas: tamanho compacto, alta eficiência, boa confiabilidade, área de emissão compatível com as dimensões do núcleo de fibras ópticas disponíveis comercialmente, emissão em comprimentos de onda na faixa de baixas perdas das fibras de sílica e, principalmente, possibilidade de modulação direta.

Existem basicamente dois tipos de transmissor: o LED (Light Emitting Diode), que consiste em uma junção p-n polarizada diretamente gerando emissão espontânea e o LASER (Light Amplification by Stimulated Emission of Radiation) de semicondutor, que geralmente
é composto de heteroestruturas em múltiplas camadas cujas faces formas uma cavidade, gerando emissão estimulada.

As principais características do LED são [9]: emissão incoerente com largura espectral larga (entre 30 nm e 60 nm), baixa capacidade de modulação (freqüência máxima de modulação típica 100 MHz para LED de InGaAsP) e espalhamento angular elevado gerando dificuldade de acoplamento em fibras ópticas (eficiência de acoplamento máxima de 1 %). As aplicações mais importantes em telecomunicações destes dispositivos são em redes locais de relativa baixa velocidade (taxas de transmissão de 10 Mb/s) [9].

As principais características do LASER são [9]: emissão coerente com largura espectral estreita, tipicamente 1 nm para cavidades Fabry-Perot e menor que 0,1 nm para emissão laser com realimentação distribuída (DFB, Distributed Feedback Laser); capacidade de emissão de alta potência para utilização como sinal em telecomunicações (da ordem de 10 mW); pequeno espalhamento angular permitindo melhor acoplamento em fibras ópticas monomodo (eficiência de acoplamento máxima entre 30 % e 50 %); e melhor resposta em altas freqüências (até 40 GHz) [8] devido ao menor tempo de recombinação associada à emissão estimulada. As aplicações mais importantes em telecomunicações são em redes de longas distâncias principalmente as que utilizam tecnologia WDM [9].

1.3. Fibras ópticas

A partir de um formalismo simples, utilizando-se óptica geométrica, pode-se dizer que as fibras ópticas [5, 7, 9-13] nada mais são do que estruturas cilíndricas concêntricas, compostas de materiais amorfos como vidros (sílica, silicatos, teluretos, fluoretos, etc.) ou plásticos. O princípio utilizado é o efeito de reflexão interna total que confina a luz no guia de onda criado pela diferença de índice de refração, possibilitando assim a transmissão de informação. A região central da fibra óptica é chamada de núcleo, enquanto que a região periférica é chamada de casca. Para que haja o efeito de reflexão interna total devemos ter o índice de refração do núcleo maior do que o da casca. Os maiores limitantes para a transmissão de informação por uma fibra óptica são a atenuação e a dispersão [5, 7, 9, 11-13].
A atenuação [5, 7, 9, 11-13] faz com que haja perdas no sinal transmitido, prejudicando principalmente o alcance do enlace, e tem várias fontes como [5, 7, 9, 11]: a absorção no infravermelho e no ultravioleta do material que compõe a fibra, o espalhamento de Rayleigh e a absorção de íons que são depositados no material durante o processo de fabricação. Recentemente, os processos de fabricação melhoraram bastante fazendo com que as fibras ópticas tenham diminuído substancialmente os picos de absorção por íons, tornando o espectro de absorção mais plano, se aproximando muito do limite teórico, e tornando possível a exploração de uma faixa de comprimentos de onda bem mais extensa por meio da tecnologia WDM, inclusive a banda S, região espectral de interesse do nosso trabalho. Na figura 1.3, temos o exemplo do espectro de perdas da fibra de sílica *Truewave®* com dispersão deslocada não nula da Lucent Technologies. Note as bandas de transmissão ilustradas [14].

Figura 1.3 – Espectro de perdas da fibra de sílica *Truewave®* com dispersão deslocada não nula da Lucent Technologies.

A dispersão [5, 7, 9, 11-13], que provoca degradação devido à redistribuição de potência no âmbito espacial e temporal ao longo da propagação, pode ser basicamente
classificada da seguinte forma: intermodal e intramodal. A dispersão intermodal aparece porque os diferentes modos têm constantes de propagação distintas, ou seja, viajam com velocidades distintas na fibra. A solução mais prática e interessante para este caso é a utilização de fibras monomodo, que só admitem a propagação do modo fundamental LP01. A dispersão intramodal ocorre por causa da largura de linha associada à fonte de luz. Os dois fatores principais que compõem a dispersão intramodal são: a dependência do índice de refração do material com o comprimento de onda e o perfil de índices de refração do guia que confina a luz. Atualmente, existem fibras ópticas sofisticadas, como as fibras de dispersão deslocada não nula (NZDSF, Non zero Dispersion Shifted Fiber), cujo perfil de índices de refração é mais complexo, permitindo uma dispersão baixa e constante por uma faixa de comprimentos de onda bem maior, sendo assim possível aumentar a capacidade dos sistemas através de tecnologia WDM [7]. Na figura 1.4, temos exemplos de fibras de sílica Truewave® com dispersão deslocada não nula da Lucent Technologies [14].

Figura 1.4 – Espectro de dispersão de fibras de sílica Truewave® com dispersão deslocada não nula da Lucent Technologies.
Atualmente, devido ao desenvolvimento tecnológico nas propriedades das fontes e fibras e ao aumento das taxas de repetição, além da atenuação e dispersão da fibra, apareceram fatores que não eram importantes, por estarem associados a efeitos de menor magnitude. Este é o caso da dispersão por modo de polarização (PMD, *Polarization Mode Dispersion*) [15] que é aquela gerada entre as polarizações ortogonais degeneradas devido a fatores que mudam as características da fibra óptica, tornando um eixo de propagação mais rápido que o outro. Para sistemas de longas distâncias com altas taxas de transmissão (acima de 10 Gb/s), a PMD deve ser considerada no projeto.

1.4. Receptores

Os receptores [5, 7-12] são os elementos responsáveis em converter o sinal óptico transmitido em sinal elétrico capaz de ser processado. O mais importante componente é o fotodetector, que converte luz em corrente elétrica através da absorção de fôtons em uma junção p-n. Para sistemas de comunicações via fibra óptica, o receptor deve ter [9]: alta sensibilidade, resposta rápida, baixo ruído, baixo custo, boa confiabilidade e dimensões comparáveis ao diâmetro do núcleo das fibras ópticas utilizadas. Dois tipos básicos de fotodetectores são usados em sistemas de comunicações via fibra óptica: os fotodiodos p-i-n e o APD.

O p-i-n consiste em uma junção semicondutora p-n com uma camada de material intrínseco inserido entre as camadas para que o campo elétrico na região de depleção aumente devido à alta resistividade associada à camada não dopada, melhorando a sua resposta em frequência. A principal diferença entre o p-i-n e o fotodiodo é que a componente que domina a corrente é a de deriva. Também é interessante frisar que a largura de banda fica limitada pelo longo tempo de trânsito, devido ao comprimento da camada intrínseca [9].

O APD (*Avalanche Photodiode*) difere do p-i-n na adição de uma camada, onde pares elétrons-buracos são gerados através de ionização por impacto [8-9]. Tal geração de pares provê um fator multiplicativo na responsividade, tornando este mais sensível do que o p-i-n [7-9]. É importante mencionar que o processo de avalanche é intrinsecamente ruidoso [8].
1.5. Regeneradores / Amplificadores Ópticos

Antes do aparecimento dos amplificadores ópticos, os regeneradores ópticos eram os únicos dispositivos que compensavam as degradações impostas ao sinal. Um regenerador funciona da seguinte forma: toma o sinal óptico a ser regenerado, converte em sinal elétrico, realiza a reformatação, a retemporização e a reamplificação, e então converte o sinal regenerado para o âmbito óptico, dando continuidade à transmissão do sinal. O problema é que a capacidade de transmissão dos sistemas, e consequentemente a taxa de transmissão, aumentou significativamente e os circuitos eletrônicos responsáveis pela regeneração do sinal se tornaram caros e complexos. Com isso, aumentou a necessidade de que o processo de amplificação acontecesse no âmbito óptico gerando o surgimento de amplificadores totalmente ópticos [16, 17].

O fato dos íons trivalentes de Érbio (Er\(^{3+}\)) emitirem fluorescência exatamente na faixa de comprimentos de onda onde as perdas nas fibras de sílica são mínimas, consolidou o uso dos amplificadores ópticos, especialmente os amplificadores a fibra dopada com Érbio (EDFA, Erbium Doped Fiber Amplifier) (ver seção 2.4.4.1) em sistemas de alta capacidade [16]. As grandes vantagens dos amplificadores ópticos são: a indiferença quanto ao formato e taxa de sinal contendo a informação e o largo espectro de amplificação, permitindo o uso de tecnologia WDM [13, 17]. No Capítulo 2, abordaremos os conceitos e parâmetros-chave para os vários tipos de amplificadores ópticos.

1.6. Equalizadores Ópticos

Um dos principais requisitos para a utilização de amplificadores ópticos em redes com tecnologia WDM é que se deve manter o ganho e a figura de ruído aproximadamente o mesmo para cada um dos canais de transmissão [9-10, 18-19]. Quando os canais não são submetidos ao mesmo ganho e figura de ruído, é gerada uma diferença na Relação sinal ruído destes canais (SNR, Signal to Noise Ratio) e consequentemente uma diferença na taxa de erro por bit (BER, Bit Error Rate) de cada canal. Com isso podemos ter alguns canais ópticos com BER considerada inaceitável para o sistema [7]. Existem várias formas para
tornar o ganho de um amplificador óptico plano sobre toda a faixa de comprimentos de onda de transmissão necessária. A seguir descreveremos sucintamente as duas mais importantes.

Quando a luz se propaga através de uma fibra óptica com uma modulação periódica no índice de refração, sob certas condições, podemos ter um acoplamento com o modo de mesma constante de propagação, porém com direção contrária [7]. Isto acontece sob a condição de Bragg. Tal condição é satisfeita quando a diferença entre as constantes de propagação dos modos a serem acoplados é igual à frequência espacial da rede, formando as fibras com redes de Bragg (FBG, *Fiber Bragg Gratings*). Então, é possível, com o auxílio de um circulador (*ver seção 1.9*), tomar a reflexão de uma rede de Bragg no comprimento de onda desejado, controlando a equalização de cada canal através da reflectância da rede referente ao canal [20].

Também é possível utilizar fibras com modulação no índice de refração de longo período (LPG, *Long Period Gratings*) para equalização de ganho em amplificadores e outras aplicações [21-23]. O que ocorre é o acoplamento de luz do modo guiado LP01 em modos que se propagam na casca na mesma direção. Estes modos têm uma perda associada muito alta devido às perdas por espalhamento na interface casca-ar, curvaturas na fibra e outras perturbações. Estas redes têm uma grande variedade de aplicações por conta de sua grande capacidade de selecionar o espectro de perdas e apresentar uma banda relativamente larga. É possível controlar o pico de perda da rede e seu comprimento de onda central no processo de fabricação [21].

1.7. Acopladores direcionais

Os acopladores direcionais de comprimentos de ondas [12-13] permitem que feixes de luz, como por exemplo, os de sinal e de bombeamento em amplificadores ópticos, possam ser combinados. Os parâmetros mais importantes destes acopladores são a perda de inserção e a isolação entre as portas de saída. A perda de inserção é definida como a relação de potência emergindo da porta de saída e a potência presente em uma dada porta de entrada. Enquanto que a isolação é definida como a potência óptica em um comprimento de
Capítulo 1 – Introdução

onda indesejado em uma certa porta em relação à potência de entrada neste comprimento de onda.

Estes dispositivos são tipicamente construídos por acopladores de fibras fundidas [7, 13] ou por filtros refletores por interferência miniaturizados. Os dispositivos constituídos por fibras fundidas têm em geral, menor perda de inserção, maior confiabilidade e custo mais baixo. Enquanto que os baseados em filtros interferométricos têm como vantagens principais maior banda passante, menor perda dependente da polarização e maior isolação entre os canais [12].

1.8. Isoladores

Reflexões na entrada e na saída dos amplificadores ópticos podem gerar oscilações laser, comprometendo o desempenho. Estas reflexões podem ser geradas nos conectores, por espalhamento Rayleigh, ou por outras causas. Além disso, reflexões na entrada podem deteriorar o desempenho em relação ao ruído, pois reflexões de emissão espontânea amplificada (ASE, Amplified Spontaneous Emission) contrapropagante diminuem a inversão de população no início da fibra [12-13]. Para evitar estes problemas são utilizados isoladores, que são componentes que permitem transmissão em uma direção, mas que bloqueiam a propagação no sentido contrário. Os parâmetros-chave que descrevem o desempenho dos isoladores são: perda de inserção, que consiste na perda quando o sinal é transmitido na direção direta e isolação, que consiste na perda quando o sinal é transmitido na direção reversa. Um isolador típico é construído a partir do efeito de rotação de Faraday em conjunto com polarizadores, para uma polarização, ou separadores espaciais de polarização, para as duas polarizações [13]. Tipicamente a isolação é de 30-40 dB.
1.9. **Circuladores**

O circulador [12-13] é um componente passivo não recíproco, ou seja, é um dispositivo cuja operação não é a mesma se trocarmos a entrada pela saída. O circulador funciona tomando o feixe proveniente de uma porta conectada a uma fibra óptica e faz o roteamento para outra. O funcionamento se dá da seguinte forma: o sinal proveniente da porta 1 é direcionado para a porta 2; o da porta 2 para a porta 3 e assim em diante, dependendo do número de portas do dispositivo (normalmente 3 ou 4, mas podendo chegar a 10 portas). Existem circuladores de 3 portas que não permitem a passagem do sinal da porta 3 para a porta 1, pois a estrutura é mais simples e isto torna o dispositivo mais viável economicamente. A perda de inserção, definida como a perda do dispositivo no sentido de roteamento é de tipicamente 0,5 dB, enquanto que a isolação, definida como a perda do dispositivo no sentido inverso é por volta de 50 dB [13].

1.10. **Multiplexadores / Demultiplexadores ópticos**

Para tornar a tecnologia WDM possível são necessários componentes que combinem sinais de várias fontes com comprimentos de onda diferentes em uma única fibra óptica (MUX, *Multiplexadores*), bem como componentes que distribuam sinais provenientes de uma única fibra em várias saídas distintas de acordo com o comprimento de onda (DEMUX, *Demultiplexador*) [12]. É importante que ambos apresentem baixas perdas de inserção e pequena interferência entre os canais envolvidos. Existem vários métodos para construção destes dispositivos, entre eles: combinação de acopladores com grades, matrizes de redes de guias de onda, filtros ópticos miniaturas e divisores de potência com fibras ópticas.

A opção com menor perda de inserção consiste em filtros interferométricos dispostos em zigzag onde canais com pequena largura de linha podem ser adicionados ou retirados através de portas com lentes com variação de índice de refração gradual (GRIN, *Graded Refractive Index*) [12].
1.11. Componentes Ópticos de Adição-Remoção de canais (OADM)

A flexibilidade dos sistemas ópticos pode ser aumentada com a possibilidade de adição ou remoção de um comprimento de onda transportando informação em algum ponto da rede. Esta função é realizada por componentes ópticos de adição-remoção de canais (OADM, Optical Add-Drop Multiplexer), (ver Figura 1.5) [12-13]. Estes são construídos tipicamente a partir de filtros que transmitem ou refletem canais combinados com acopladores ou circuladores [12]. De forma ideal, estes dispositivos devem permitir que um canal, próximo a outros em comprimento de onda, possa ser adicionado ou removido com isolação suficiente entre os canais adjacentes, bem como, possuir baixa sensibilidade à polarização. Atualmente, o espaçamento mínimo entre canais adjacentes, recomendado pela ITU-T, é de 100 GHz.

Figura 1.5 – Esquema de um OADM construído a partir de um multiplexador, um demultiplexador e chaves comutadoras 2x2.
1.12. Conectores cruzados de comprimentos de onda (WXC)

Multiplexadores e demultiplexadores podem ser cascateados para construir conectores cruzados de comprimentos de onda (WXC, *Wavelength Cross Connectors*) estáticos [13]. Nos WXC estáticos, o padrão de conexão cruzada é fixo no tempo. Nestes, o roteamento de um sinal de uma porta de entrada para uma determinada porta de saída depende do seu comprimento de onda. É importante frisar que é possível a construção de WXC dinâmicos combinando elementos chaveadores com multiplexadores e demultiplexadores.

1.13. Compensadores de dispersão

O uso de amplificadores ópticos em sistemas de longa distância estendeu o comprimento dos enlaces até o ponto onde a dispersão se tornou o fator limitante de desempenho. Então, para aumentar o alcance do enlace surgiu a necessidade de se construir elementos compensadores de dispersão. Além disso, a compensação de dispersão tem um papel fundamental no controle da degradação induzida por não-linearidades [24], pois a combinação de auto modulação de fase (SPM, *Self Phase Modulation*) e dispersão cromática pode gerar distorções graves em sistemas de comunicação digital, levando à perda de informação.

Os componentes que podem compensar dispersão são: fibras compensadoras de dispersão, fibras com redes de difração de Bragg, compensadores de modo espacial de mais alta ordem ou por técnicas de inversão espectral [12].

Atualmente, as fibras compensadoras de dispersão constituem o método mais prático, especialmente quando o espectro para compensação requerido é largo. Neste caso, para a obtenção de dispersão negativa, deve-se aumentar a diferença entre os índices de refração do núcleo e da casca e/ou diminuir o diâmetro do núcleo [7, 12].
1.14. Estrutura da dissertação

No Capítulo 2, abordaremos os conceitos e parâmetros-chave para os vários tipos de amplificadores ópticos. No Capítulo 3, faremos uma exploração mais ampla do TDFA, abordando aspectos teóricos e apresentando os resultados mais importantes descritos na literatura. No Capítulo 4, explanaremos as técnicas de medição utilizadas. E no Capítulo 5, mostraremos os resultados obtidos, relevando nossas contribuições ao estado atual da arte.

REFERÊNCIAS PARA O CAPÍTULO 1

CAPÍTULO 2

Conceitos Básicos sobre Amplificadores Ópticos

Como discutido no capítulo 1, normalmente o alcance máximo de transmissão de um sistema de comunicações por fibra óptica é limitado pela atenuação e/ou dispersão. Logo, principalmente para sistemas limitados por atenuação, é muito favorável a utilização de amplificadores ópticos, que são indiferentes ao formato da informação, bem como à taxa de transmissão. Sendo assim, neste capítulo explanaremos os principais tipos de amplificadores ópticos.

Os amplificadores são dispositivos que através de emissão estimulada por inversão de população entre certos níveis de energia, podem gerar fótons com energia, fase, direção e polarização iguais a dos fótons incidentes na sua entrada. Na verdade, tais amplificadores utilizam o mesmo mecanismo dos lasers, porém sem a realimentação criada pela cavidade ressonante [2, 3]. O mais importante ingrediente para realização de ganho óptico em um amplificador é o bombeamento, que é o responsável pela inversão de população de...
portadores entre os níveis responsáveis pela amplificação. No caso do Amplificador Óptico de Semicondutor (SOA, Semiconductor Optical Amplifier) o bombeamento é elétrico através da injeção de portadores. Já no caso dos amplificadores de fibras dopadas e Raman, o bombeamento é óptico, utilizando um laser com comprimento de onda diferente do laser de sinal.

2.1. Modelagem Teórica do Ganho

O ganho óptico não depende somente da frequência do sinal incidente, mas também das intensidades do sinal e do bombeamento, comprimento de onda do bombeamento (no caso de bombeamento óptico), vidro hospedeiro (no caso de amplificadores a fibra), bem como outros parâmetros. O ganho do meio pode ser modelado, em primeira aproximação, por um meio ativo com dois níveis de energia alargados homogeneamente, cuja descrição é dada pela Lorentziana apresentada na equação 2.1 [4]:

\[
g(\omega) = \frac{g_0}{1 + (\omega - \omega_0)^2 T_2^2 + \frac{P}{P_{sat}}}, \quad (2.1)
\]

onde \(g_0\) é o valor máximo de ganho, determinado pela intensidade de bombeamento, \(\omega\) é a frequência óptica do sinal incidente, \(\omega_0\) é a frequência da transição atômica, \(P\) é a potência óptica do sinal a ser amplificado. \(P_{sat}\) é a potência de saturação para o sinal, que depende de parâmetros do meio que gera ganho, como tempo de fluorescência e seção de choque da transição. O parâmetro \(T_2\) é conhecido como tempo de relaxação de dipolo e é tipicamente muito pequeno (0,1 ps a 1 ns) [4].

Tomando a equação 2.1 pode-se ter uma ideia da resposta em frequência (comprimento de onda) do ganho óptico. Considerando a aproximação de pequeno sinal em que a potência de sinal é muito menor que a potência de saturação, temos:

\[
g(\omega) = \frac{g_0}{1 + (\omega - \omega_0)^2 T_2^2}. \quad (2.2)
\]
A equação 2.2 mostra que o ganho máximo ocorre quando a frequência \(\omega \) do sinal a ser amplificado coincide com a frequência \(\omega_0 \) de transição atômica. A largura de banda de ganho é definida como a faixa de comprimentos de onda onde não há uma variação maior do que 3 dB no ganho. Para a descrição aproximada da equação 2.2, temos a largura de banda do ganho do meio dada por:

\[
\Delta \nu_g = \frac{1}{\pi T_2}.
\]

(2.3)

Sabendo que L é a distância percorrida pelo sinal no meio ativo, o fator de ganho do amplificador está relacionado com o ganho do meio óptico por:

\[
G(\omega) = e^{g(\omega)L},
\]

(2.4)

A partir da equação 2.4, podemos facilmente deduzir que a largura de banda do amplificador \((\Delta \nu_A) \) é dada por:

\[
\Delta \nu_A = \Delta \nu_g \left(\frac{\ln(2)}{g_0 L - \ln(2)} \right),
\]

(2.5)

devido à dependência exponencial de \(G(\omega) \) com \(g(\omega) \) e ao fato de que normalmente \(g_0 L > \ln(2) \), a largura da banda de amplificação é menor do que a largura de banda do ganho do meio ativo.

Para aplicações onde a duração dos bits é maior do que o tempo de fluorescência (para o caso de bombeamento óptico) ou do que o tempo de recombinação (para o caso de bombeamento elétrico), pode-se assumir que o ganho e a potência de bombeamento são independentes do tempo.

Tomando a equação 2.1 e considerando que a frequência do sinal está exatamente sintonizada na frequência de transição atômica, temos:
Capítulo 2 – Conceitos Básicos Sobre Amplificadores Ópticos

Carmelo José Albanez Bastos Filho.

\[g = \frac{g_0}{1 + \frac{P}{P_{sat}}} . \quad (2.6) \]

A equação (2.6) nos mostra claramente que, para um dado bombeamento, o ganho do amplificador diminui com o aumento da potência óptica do sinal entrando no amplificador. Este efeito advém da insuficiência do bombeamento em manter o mesmo nível de inversão de população.

É importante salientar que para amplificar pulsos em diferentes comprimentos de onda (Sistemas WDM) o efeito de saturação do ganho para um dado pulso em um certo comprimento de onda é determinado pela potência contida em todos os canais. Isto causa efeitos de saturação cruzada, sendo indesejável em amplificadores de sistemas de comunicações ópticas, porém podendo ter aplicações bastante interessantes como veremos mais adiante.

Tomando as equações 2.4 e 2.6 e integrando-se ao longo do comprimento em todo o meio óptico pode-se mostrar que:

\[G = \frac{P_{saída}}{P_{entrada}} = G_0 e^{-\frac{(G_{sat})P_{saída}}{GP_{sat}}} . \quad (2.7) \]

Podemos observar que, à medida que \(P_{saída} \) se aproxima de \(P_{sat} \), o fator de amplificação \(G \) diminui.

2.2. Modelagem Teórica da Figura de ruído

As principais fontes de ruído de um amplificador óptico são as seguintes [5]: Batimento Sinal-Espontâneo (sig-sp), que é originado da mistura da luz coerente do sinal com a luz incoerente da emissão espontânea amplificada (ASE, Amplified Spontaneous Emission) quando estes têm a mesma polarização; Batimento Espontâneo-Espontâneo (sp-
sp), que é o batimento de componentes copolarizadas de ASE; Interferência de múltiplos caminhos (MPI, *Multipath Interference*), que aparece devido às flutuações de fase e frequência do sinal refletido em vários pontos dentro do amplificador; e ruído balístico, devido à natureza quantizada dos fótons. Em amplificadores com alto ganho, os espalhamentos estimulados de Raman e Brillouin podem contribuir de forma significante na adição de ruído.

A figura de ruído é um parâmetro utilizado para quantificar em quanto o ruído inserido pelo amplificador interfere na qualidade do sinal. Segundo a definição clássica, adotada pela ITU-T e utilizada em equipamentos de teste, a figura de ruído é definida por [5]:

\[
NF = 10 \log \left(\frac{SNR_{\text{entrada}}}{SNR_{\text{saida}}} \right),
\]

onde, \(SNR_{\text{entrada},\text{saida}}\) é a razão entre os níveis de sinal e ruído na entrada e na saída do amplificador, respectivamente.

Definindo essas relações em termos de parâmetros envolvendo fotocorrentes em um fotodetecttor, temos:

\[
SNR = \frac{\langle i_{\text{SINAL}} \rangle^2}{\langle \Delta^2 i_n \rangle},
\]

onde, \(\langle i_{\text{SINAL}} \rangle\) é a média da fotocorrente gerada e \(\langle \Delta^2 i_n \rangle = \Re \int_{B_e} S_p(f) df\) é a variância do ruído, \(\Re\) é a responsividade do fotodetetor, \(B_e\) é largura de banda de medida e \(S_p(f)\) é a densidade espectral de potência.

Desta forma pode-se escrever a SNR na entrada e na saída da seguinte forma:

\[
SNR_{\text{entrada}} = \frac{\langle i_{\text{entrada}} \rangle^2}{\langle \Delta^2 i_{\text{ruído, entrada}} \rangle} = \frac{\Re^2 P_{\text{entrada}}^2}{2q\Re P_{\text{entrada}} B_e} = \frac{np_{\text{entrada}}}{2hvB_e},
\]

Carmelo José Albanez Bastos Filho. 29
Capítulo 2 – Conceitos Básicos Sobre Amplificadores Ópticos

\[
SNR_{\text{saída}} = \frac{\left\langle i_{\text{saída}} \right\rangle^2}{\Delta^2 i_{\text{saída,saída}}} = \frac{G^2\Re^2 P^2_{\text{entrada}}}{B_c \Re^2 \left(S_{\text{sig,sp}} + S_{\text{sp,sp}} + S_{\text{MPI}} + S_{\text{Rayleigh}} + \ldots + \eta^{-1} S_{\text{shot}} \right)}.
\]

(2.11)

onde, \(q \) é a carga fundamental do elétron e \(\eta \) é a eficiência quântica do fotodetector.

Agrupando todos os ruídos de excesso e definindo uma densidade espectral de ruído de excesso, temos:

\[
S_e = S_{\text{sig,sp}} + S_{\text{sp,sp}} + S_{\text{MPI}} + S_{\text{Rayleigh}} + \ldots
\]

(2.12)

Substituindo a equação 2.12 na equação 2.11, e utilizando esta para dividir a equação 2.10, temos:

\[
F = \frac{SNR_{\text{entrada}}}{SNR_{\text{saída}}} = \frac{S_e}{2h \nu G^2 P_{\text{entrada}}} + \frac{S_{\text{shot}}}{2h \nu G^2 P_{\text{entrada}}},
\]

(2.13)

onde, \(F \) é chamado de fator de ruído.

Considerando o ruído de excesso mais importante como sendo o batimento sinal-esportânneo, as densidades de potência de ruído de excesso e balístico são dadas por [5]:

\[
S_e \sim S_{\text{sig,sp}} = 4 \rho_{\text{ASE}} GP_{\text{entrada}},
\]

(2.14)

\[
S_{\text{shot}} = 2h \nu GP_{\text{entrada}}.
\]

(2.15)

onde, \(\rho_{\text{ASE}} \) é a densidade espectral de emissão esportânnea amplificada.

Substituindo as equações 2.14 e 2.15 na equação 2.13, obtemos:

\[
F = \frac{2\rho_{\text{ASE}}}{h \nu G} + \frac{1}{G}.
\]

(2.16)
Outra forma de abordar a figura de ruído a partir da definição clássica, proposta por H. Friis do Laboratório Bell (EUA) em 1944 [5], considera que o amplificador adiciona uma potência de ruído independente do sinal (perfeito para o nosso caso, onde a emissão espontânea amplificada é a fonte de ruído e, a priori, independente da potência do sinal para situação sem depleção de bombeamento). Considerando nestes termos podemos escrever o fator de ruído como:

\[
F = \frac{S_i}{N_i} = \frac{G.N_i + N_a}{G.N_i} = 1 + \frac{N_a}{G.N_i},
\]

onde, \(G\) é o fator de ganho do amplificador, \(N_i\) é a potência de ruído na entrada e \(N_a\) é a potência de ruído adicionado pelo amplificador.

Existem modelagens mais modernas tratando a luz de forma quantizada [6-9] e cujas fontes de ruído têm distribuições probabilísticas diversas, como: o ruído gerado pelo amplificador tem uma distribuição de Bose-Einstein, os fôtons de sinal têm uma distribuição de Poisson e a média de fôtons na saída é função dos polinômios de Laguerre.

Outro aspecto importante a ser frisado é que como amplificadores ópticos não causam interferência intersimbólica eles podem ser considerados como lineares, apesar de apresentarem dependência com a potência de sinal.

A figura de ruído é influenciada de forma dominante pelo fator de inversão de população \(n_{sp}\), que representa a relação entre as taxas de emissão espontânea e estimulada. É importante frisar que este fator, quando existe inversão de população, somente assume valores maiores do que 1. Com alto fator de inversão de população temos uma menor figura de ruído [10]. O fator de inversão de população é definido como:

\[
n_{sp} = \frac{N_2}{N_2 - N_1},
\]

onde \(N_2\) é a densidade eletrônica no estado excitado e \(N_1\) é a densidade eletrônica no estado fundamental.
Então, podemos definir figura de ruído com caráter quântico através da abordagem clássica de Friis [6], normalizando a potência do ruído na entrada por:

\[N_f = \hbar \omega B \quad (2.19) \]

Substituindo a equação 2.19 na equação 2.17, obtemos:

\[F_{ASE} = 1 + \frac{P_{ASE}}{G \hbar \omega B} \quad (2.20) \]

Como sabemos que,

\[P_{ASE} = \hbar \omega n_{sp} B (G - 1) \quad (2.21) \]

Substituindo a equação 2.21 na equação 2.20, obtemos:

\[F_{ASE} = 1 + n_{sp} - \frac{n_{sp}}{G} \quad (2.22) \]

Para o caso onde o fator de amplificação é suficientemente elevado, temos um fator de inversão de população perfeito, ou seja, \(n_{sp} = 1 \), temos um fator de ruído igual a 2, que equivale a uma figura de ruído de 3 dB, correspondente ao chamado “limite quântico”.

Existem abordagens baseadas na definição da SNR considerando flutuações no quadrado da amplitude dos campos, como também na energia dos fótons de sinal e ruído, tanto na entrada quanto na saída. A abordagem baseada na energia se torna compatível com a definição clássica quando o número médio de fótons térmicos é pequeno. Um aspecto importante é que as variadas definições geram valores diferenciados para a figura de ruído, todavia contêm a mesma informação. Tal discordância nos valores é devido aos fatores de normalização que são utilizados em cada caso [6-9].

Ainda existe uma definição quântica a partir da SNR, porém baseada na flutuação do número de fótons, que apresenta a seguinte descrição para a figura de ruído [7]:
Amplificadores Ópticos à Fibra Dopada com Túlio para banda S

\[F_{puf} = \frac{1}{G} + 2n_{sp}\left(1 - \frac{1}{G}\right) + \frac{n_{sp}\left(1 - \frac{1}{G}\right)}{\langle n_s \rangle} \frac{1 + n_{sp}\left(1 - \frac{1}{G}\right)}{\langle n_s \rangle}, \quad (2.23) \]

onde o primeiro termo representa o comportamento dos fótons de entrada, seguindo a distribuição de Poisson; o segundo termo mostra o batimento entre o sinal e a ASE; e o terceiro, as flutuações dos fótons emitidos espontaneamente segundo a distribuição de Bose-Einstein.

Outro fator que contribui na degradação da SNR ocorre por causa das perdas internas não ressonantes \((\alpha_{int}) \), reduzindo o ganho do meio ativo de \(g \) para \(g - \alpha_{int} \). Incluindo as perdas internas temos que a figura de ruído é dada por:

\[NF' = NF + 10 \log \left(\frac{g}{g - \alpha_{int}} \right), \quad (2.24) \]

onde \(NF' \) é a figura de ruído considerando perdas internas não ressonantes.

A refletividade da face de entrada também influencia na figura de ruído. Esta contribuição pode ser representada através da multiplicação do fator de ruído por \(1 + R_1G \), onde \(R_1 \) é a refletividade da face de entrada. Para os amplificadores de ondas propagantes (TWA, Travelling Wave Amplifier), temos o termo \(R_1G \ll 1 \), logo esta contribuição pode ser desprezada.

2.3. Aplicações

Dependendo da necessidade, os amplificadores ópticos podem ser empregados de várias formas em projetos de sistemas de comunicações por fibra óptica. Existem várias aplicações como [10-12]: amplificador de linha, amplificador de potência, pré-amplificador, amplificador de distribuição, etc.

Uma importante aplicação é como amplificador de linha em sistemas de longa distância, onde os amplificadores colocados ao longo do sistema são responsáveis pela
compensação da potência perdida pelo sinal na propagação através do enlace (figura 2.1.a). Neste tipo de amplificador é importante manter a equalização entre os canais, pois em longos enlaces, vários destes amplificadores podem ser colocados em série, valorizando diferenças na resposta espectral. Também é importante que estes apresentem figura de ruído baixa, para que o sinal não perca a inteligibilidade através da degradação da SNR, e constante, para conservar a taxa de erro por bit dos canais em um mesmo patamar.

Outra forma de utilização é como amplificador de potência (Booster), sendo este colocado na saída do transmissor para aumentar a potência transmitida e possibilitar a chegada do sinal aos amplificadores de linha (figura 2.1.b). Pode-se obter um aumento significativo do alcance do sistema através do uso de um Booster (até 100 km) [4]. Também pode ser aplicado em redes metropolitanas para compensar perdas geradas pelos elementos de redes ópticas, como Add-Drops ópticos e WXCs (ver seções 1.12 e 1.13).

Pode-se melhorar bastante a sensibilidade do receptor através do emprego de um pré-amplificador antes do mesmo (figura 2.1.c). É necessário que a NF neste caso seja baixa, pois o sinal chega ao receptor bastante atenuado. Em redes metropolitanas de distribuição de sinal é comum o uso de amplificadores para compensar as perdas pela divisão do sinal nos nós, como mostrado na figura 2.1.d.
2.4. Tipos de amplificadores ópticos

2.4.1. SOA

Os amplificadores ópticos de semicondutor (SOA, Semiconductor Optical Amplifiers) [2-4, 12-14] partem do conceito de que se pode alterar a intensidade de uma onda em um meio semicondutor ativo, de acordo com as perdas do meio ou devido à injeção de portadores no mesmo. A atenuação é devida à absorção de fôtons, fazendo com que um elétron transicione da banda de valência para a banda de condução. Temos amplificação quando, através da injeção de portadores é causada uma situação de inversão de população entre o nível de energia fundamental e um nível de energia excitado com diferença de
energias ligeiramente menor do que a energia dos fótons que compõem a onda propagante. O ganho no material é dado pela seguinte equação [3]:

\[
g(h\omega) = \frac{\pi e^2 \hbar}{n_c m_0^2 e_0 (h\omega) \alpha p g} \left[\int N_{ev}(h\omega) \left[f^e(E^e) - (1 - f^b(E^b)) \right] \right], \quad (2.25)
\]

onde \(f^e(E^e) \) é a probabilidade de existir um elétron com energia \(E^e \) na banda de condução e \([1 - f^b(E^b)] \) é a probabilidade de não existir um elétron com energia \(E^h \) na banda de valência. O termo entre colchete na equação 2.25 aparece nesta forma porque o ganho é proporcional à diferença entre a emissão de fótons, proporcional a \(f^e(E^e) \), e absorção de fótons, proporcional a \([1 - f^e(E^e)][1 - f^b(E^h)]\).

Dado o ganho \(g \) de um meio semicondutor, temos que a intensidade da onda propagante dependente da distância percorrida por esta onda, e é dada por:

\[
I(z) = I_0 e^{gz}. \quad (2.26)
\]

Na verdade, um SOA é um laser de diodo sem realimentação. A estrutura é polarizada diretamente, porém em um ponto abaixo do limiar laser. Quando um sinal entra na cavidade a presença de fótons causa emissão estimulada, então um sinal amplificado e coerente emerge da cavidade na outra extremidade.

Existem duas formas de operação de um SOA. Como Amplificador de Onda Viajante (TWA, Travelling Wave Amplifier) ou Amplificador Fabry-Perot. No modo de operação TWA, o sinal atravessa uma única vez a cavidade sendo amplificado durante esta passagem. Este modo de operação é particularmente interessante para aplicações de alta velocidade, onde pulsos com largura menor que 1 ps podem ser amplificados. Já em uma cavidade Fabry-Perot, o sinal percorre múltiplos caminhos por causa da reflexão nos espelhos. O fator de amplificação é obtido pela teoria básica de interferômetros FP e é dado pela seguinte equação:
Amplificadores Ópticos à Fibra Dopada com Túlio para banda S

\[
G_{FP}(\nu) = \frac{(1 - R_1)(1 - R_2)G(\nu)}{\left(1 - G(\nu)\sqrt{R_1 R_2}\right)^2 + 4.G(\nu) \sqrt{R_1 R_2} \sin^2 \left[\pi \frac{\nu - \nu_m}{\Delta \nu_L} \right]^2}, \quad (2.27)
\]

onde \(\nu_m\) (\(m\) inteiro) representa as frequências de ressonância da cavidade e \(\Delta \nu_L\) é o intervalo entre os modos longitudinais. \(G(\nu)\) representa o ganho de uma única passagem pelo amplificador no modo TWA. Note que quando \(R_1 = R_2 = 0\), o ganho do amplificador Fabry-Perot se reduz ao ganho do TWA \([\nu] = G(\nu)\). Um parâmetro utilizado para caracterizar a operação como TWA é \(G_{FP}(\nu) < 0.17\), onde \(R_1\) e \(R_2\) são as refletividades da face de entrada e de saída, respectivamente [3].

Para conseguirmos que o SOA opere como um TWA, deve-se diminuir a refletividade das faces. O primeiro passo para isto, consiste em depositar camadas anti-refletoras nas duas interfaces. Além disso, inclinar a região do guia de ondas em relação à normal da interface ou inserir uma região transparente entre a região ativa e a interface. Neste caso, o raio óptico é espalhado antes de chegar à interface semicondutor-ar. A luz refletida espalha mais e não consegue ser acoplada satisfatoriamente na região ativa, cuja espessura é bastante delgada.

Uma característica indesejável do amplificador é a sensibilidade à polarização, ou seja, o ganho do amplificador é diferente para os modos transversais elétricos (TE) e para os modos transversais magnéticos (TM). Tal discrepância entre os modos tipicamente pode alcançar valores entre 5 dB e 8 dB, ocorrendo por causa da diferença entre os fatores de confinamento e os ganhos diferenciais entre as polarizações. Alguns esquemas foram desenvolvidos para reduzir a sensibilidade à polarização.

Numa primeira elaboração, os amplificadores foram projetados de forma que a largura e espessura da região ativa fossem comparáveis. Com esta técnica conseguiu-se que a diferença de ganho entre os modos TE e TM ficasse menor que 1,3 dB [13]. Outra forma de diminuir esta diferença foi confeccionar uma estrutura com uma maior cavidade óptica, fazendo com que a diferença de ganho se tornasse menor do que 1 dB [13].

Em um sistema multicanal, um amplificador ideal deve gerar o mesmo ganho para todos os canais. Entretanto, um conjunto de fatores faz com que um sistema multicanal seja
mais complicado de projetar que um sistema monocanal. Entre estes fatores temos: ganho espectral não uniforme, distorção de intermodulação e diafonia induzida pela saturação.

2.4.2. Amplificador de fibra Raman

Os amplificadores Raman [4, 12-16] se utilizam do espalhamento Raman estimulado em fibras ópticas, sendo este o mecanismo de interação molecular da luz com o material. Durante a propagação de um feixe de bombeamento intenso, através desta interação, ocorre transferência de energia do bombeamento para as moléculas, gerando vibração das mesmas. O espalhamento Raman estimulado difere da emissão estimulada em um aspecto fundamental: na emissão estimulada um fóton incidente gera outro fóton sem perda de energia, enquanto que no caso do espalhamento Raman estimulado os fótons incidentes perdem energia para gerar outro fóton com energia reduzida (ver figura 2.2). A diferença de energia é absorvida pelo meio, através de vibrações moleculares, na forma de fôtons ópticos. Assim, através destes estados vibracionais, a energia pode ser transferida do bombeamento para o sinal.

O princípio fundamental consiste na absorção de fótons de bombeamento, que têm maior energia que os de sinal, colocando as moléculas de sílica da fibra óptica em estados de vibração mecânica. À medida que o sinal se propaga, é amplificado através da transição entre o nível superior de inversão e os estados vibracionais. Conseqüentemente, fótons são irradiados na freqüência de Stokes [13], mas como as vibrações não são uniformes ao longo da fibra, a freqüência de Stokes não é um valor fixo, gerando uma banda de amplificação.
Por causa da natureza amorfa dos vidros que compõem as fibras ópticas, os níveis vibracionais se distribuem quase continuamente, possibilitando uma faixa de ganho homogêneo. Em fibras de sílica, devido ao grande número de estados vibracionais, a freqüência do sinal (ω_s) pode diferir bastante da freqüência do bombeamento (ω_p), propiciando um largo espectro de amplificação [13].

Podemos aproximar a resposta de ganho de um amplificador utilizando espalhamento Raman estimulado pela seguinte fórmula:

$$g(\omega) = g_R \left(\frac{P_p}{a_p} \right),$$

(2.28)

onde o coeficiente de ganho Raman (g_R) varia de forma inversamente proporcional com o comprimento de onda de bombeamento, P_p é a potência de bombeamento e a_p é a área de seção de choque para o bombeamento na fibra.

Para a otimização da performance, a diferença entre a freqüência do bombeamento e a freqüência do sinal deve corresponder ao pico da curva que determina o ganho em função desta diferença de freqüência. Para fibras de sílica, conforme figura 2.3, a diferença deve ser de aproximadamente 13 THz, que corresponde a 100 nm para comprimentos de onda em torno de 1550 nm [4, 15-16]. Também são utilizadas fibras de compensação de dispersão que além de sua função principal, têm núcleo menor, e assim o ganho Raman pode aumentar.
entre 5 e 10 vezes em relação às fibras padrão monomodo com perfil de índice de refração tipo degrau [17].

![Figura 2.3 – Espectro de ganho Raman para sílica para comprimentos de onda por volta de 1550 nm.](image)

Exceto para os picos de absorção da sílica, teoricamente pode-se obter amplificação Raman para comprimentos de onda entre 300 nm e 2000 nm [12]. Utilizando vários bombeamentos é possível a geração de espectro de amplificação bastante largo e com poucas variações. Tipicamente, em aplicações de banda larga o espaçamento entre os bombeamentos varia entre 20 nm e 30 nm, dependendo da uniformidade de ganho requerida [16]. O perfil de ganho Raman da sílica se concentra em comprimentos de onda maiores, porém outros materiais têm espectros Raman variados, propiciando a possibilidade de equalização e expansão da banda utilizando estágios com fibras compostas de outros materiais [16].

Estes amplificadores, além de possuírem uma larga banda de amplificação, são bastante flexíveis em relação ao pico de ganho [16], podendo suprir deficiências de banda de outros amplificadores, tornando-os atrativos para aplicações em comunicações por fibra óptica. Porém, ao contrário dos amplificadores construídos a fibra dopada com terras raras e
à base de semicondutor, são pouco eficientes requerendo alta potência de bombeamento e fibras extremamente longas (na ordem de quilômetros) [4, 13, 15].

Um aspecto importante que deve ser mencionado é a perda e o ruído associados à transferência de energia, através de processo de espalhamento Raman, de comprimentos de onda na banda S, para comprimentos de onda na banda L. Além de que, variações na potência de bombeamento, geram flutuações no ganho, que por sua vez induzem crosstalk no sinal. Também é válido mencionar que quando empregada a tecnologia WDM deve-se ter cuidado no projeto, pois um canal pode, através de depleção do bombeamento, forçar o aparecimento de crosstalk em outro canal de comprimento de onda maior. A utilização de bombeamento contrapropagante reduz drasticamente este efeito [14]. Atualmente, estes amplificadores são usados para complementar o uso de Amplificadores a fibras dopadas com Érbio (EDFA, Erbium Doped Fiber Amplifier) (ver seção 2.4.4.1), provendo um ganho adicional de forma distribuída em enlaces muito longos [14].

2.4.3. Amplificador Óptico Paramétrico (OPA)

Os amplificadores ópticos paramétricos (OPA, Optical Parametric Amplifiers) [18-19] são dispositivos baseados na dependência não linear do índice de refração da sílica com a intensidade do feixe propagante. Comparada à amplificação Raman, a conversão paramétrica é mais vantajosa, pois é possível a geração de freqüências mais altas (up conversion), através da geração de fótons anti-Stokes, ou de mais baixas (down conversion), através da geração de fótons Stokes.

Para um meio não linear a polarização induzida é dada por:

$$\tilde{P} = \chi^{(1)} \tilde{E} + \chi^{(2)} : \tilde{E} \tilde{E} \tilde{E} + \chi^{(3)} : \tilde{E} \tilde{E} \tilde{E} + \ldots,$$

(2.29)

onde, $\chi^{(i)}$ é a susceptibilidade elétrica de ordem i e as operações matemáticas entre as susceptibilidades elétricas e os campos são produtos tensoriais.
Como o material compositor das fibras é de natureza amorfa e por sua vez o meio é centro-simétrico, o valor de $\chi^{(2)}$ é zero. Os termos de susceptibilidade de ordem maior que três são considerados desprezíveis. Então, a polarização não linear é dada por:

$$P_{NL}(r,t) = \varepsilon_0 \chi^{(3)} : \tilde{E}(r,t)\tilde{E}(r,t),$$ \hspace{1cm} (2.30)

onde o $\chi^{(3)}$ é a susceptibilidade elétrica de terceira ordem com sua parte real relacionada ao ganho paramétrico e a parte complexa ligada a efeitos Raman.

A mistura de quatro ondas (FWM, Four Wave Mixing) é um fenômeno criado através de $\chi^{(3)}$, onde novas freqüências são criadas combinando as freqüências dos feixes incidentes. Temos dois tipos de termos gerados pelo FWM. No primeiro caso, temos a transferência de energia de três fótons para um único fóton, com freqüência $\omega_4 = \omega_1 + \omega_2 + \omega_3$, responsável pela conversão de freqüência. No segundo caso, a energia de dois fótons, de freqüências ω_i e ω_2, é transferida para dois outros fótons, de freqüências ω_3 e ω_4 (ver figura 2.4.a). Como o processo é paramétrico, este deve ocorrer de tal forma que $\omega_1 + \omega_2 = \omega_3 + \omega_4$. Para o FWM se tornar um processo eficiente, devemos ter casamento de fase, que no caso da transferência de energia de dois fótons para outros dois fótons, deve obedecer a seguinte equação [18-19]:

$$\Delta k = k_3 + k_4 - k_1 - k_2 = \left(\frac{\omega_3n_3 + \omega_4n_4 - \omega_1n_1 - \omega_2n_2}{c}\right) = 0,$$ \hspace{1cm} (2.31)

onde k representa o número de onda, n o índice de refração de cada feixe e c é a velocidade da luz.

Para o caso degenerado, onde $\omega_1 = \omega_2$, é relativamente fácil a obtenção da condição de casamento de fase. Com a aplicação de um bombeamento intenso, são criadas duas bandas laterais alocadas simetricamente em relação à freqüência do laser de bombeamento, uma chamada de banda de sinal e a outra chamada de banda de Idler (ver figura 2.4.b). Com a incidência de um sinal pouco intenso, através do processo mostrado na figura 2.4.a,
absorvendo dois fótons de bombeamento pode-se obter ganho com a simultânea geração de outro fóton de freqüência menor. Este ganho é chamado de ganho paramétrico.

Figura 2.4 – (a) Diagrama de energia ilustrando o processo de amplificação paramétrica e (b) componentes de freqüência criadas pelo processo.

Se a operação ocorrer em modo contínuo (CW, continuous wavelength) e sem depleção do bombeamento, podemos expressar o ganho por [18]

\[
g_p = \frac{2\pi n_2^*}{\lambda_1^*}, \quad (2.32)
\]

onde \(n_2\) é o índice de refração não linear da fibra e \(\lambda_1\) é o comprimento de onda do bombeamento.

Para o caso prático da construção de um OPA, as fibras devem apresentar comprimento menor que o comprimento de coerência \((L_C = \frac{2\pi}{\Delta k})\) [18-19], onde \(\Delta k\) é o máximo descasamento de fase tolerado. Isto ocorre porque em fibras muito longas, a manutenção do casamento de fase é difícil devido à variações do diâmetro do núcleo. E também por causa da influência do espalhamento Raman estimulado, que compete com o processo de amplificação paramétrica.
Um fator que é importante ser frisado é que o deslocamento do máximo de amplificação, bem como a largura da banda de amplificação, são altamente dependentes da intensidade do feixe de bombeamento. Outro aspecto importante é que estes amplificadores, apesar da capacidade de geração de uma banda de amplificação larga (maior que 100 nm) [20], utilizam potências de bombeamento muito altas (tipicamente maiores que 1 W) [20], tornando difícil a implementação prática.

Para diminuir a potência de bombeamento necessária para gerar um patamar de ganho compatível com as necessidades práticas de sistemas de comunicações ópticas, pode-se usar fibras com maior coeficiente de não linealidade, como holey fibers que são formadas de estruturas periódicas cuja a inserção de microestruturas internas pode gerar fibras com propriedades diferentes das fibras convencionais [21].

2.4.4. Amplificadores a fibras dopadas

Desde 1985, quando na Universidade de Southampton (U.K.) [2, 22] foi demonstrada uma nova técnica para fabricação de fibras ópticas dopadas com terras raras apresentando baixas perdas, os amplificadores ópticos com constituição baseada nestas fibras foram imediatamente identificados como dispositivos importantes para aplicações em comunicações por fibras ópticas, principalmente devido ao alto ganho, baixo ruído intrínseco, baixa dependência com polarização, transmissão com taxa de erro por bit (BER, Bit Error Rate) baixíssima e alta eficiência de conversão de potência [2].

Apesar de uma preocupação inicial em relação às perdas inseridas por dopantes nas fibras, através do relato de que as perdas não aumentavam significativamente para baixos níveis de dopagem, o primeiro laser de fibra foi construído. O primeiro elemento de terra rara a ser utilizado foi o Neodímio, melhor dopante para lasers de estado sólido. Estes lasers se mostraram eficientes com um limiar de operação em regime laser bastante baixo. Diante destes resultados encorajadores, outros dopantes foram utilizados para a construção de amplificadores ópticos, como: Túlio, Itérbio e Érbio [1].
Como veremos nas sub-seções a seguir, foram desenvolvidos vários amplificadores a fibra dopada com terras raras diferentes, aproveitando as propriedades de fluorescência características de cada uma. Primeiro abordaremos o amplificador óptico a fibras dopadas com Érbio (EDFA, *Erbium Doped Fiber Amplifiers*) [1, 4, 10, 12-13, 15, 22-25] que pode prover ganho para as seguintes bandas de transmissão óptica, definidas pela ITU-T [16]: banda C, banda L e até mesmo para a região superior da banda S [17]. Depois abordaremos o amplificador óptico a fibras dopadas com Praseodímio (PDFA, *Praseodimium Doped Fiber Amplifiers*) [13, 23] e amplificador óptico a fibras dopadas com Neodímio (NDFA, *Neodimium Doped Fiber Amplifiers*) [23, 27-29], que podem ser usados para obtenção de ganho na janela de 1300 nm. Enquanto que os amplificador óptico a fibras dopadas com Túlio (TDFA, *Thulium Fiber Amplifiers*), objeto principal do nosso estudo, que serão explorados juntamente com os GS-TDFA, podem prover ganho para toda a **banda S** de transmissão óptica (1460 nm-1530 nm) [16].

2.4.4.1. EDFA

No final de 1986, O grupo de Southampton construiu o seu primeiro amplificador óptico a fibras dopadas com Érbio (EDFA, *Erbium Doped Fiber Amplifiers*) [1, 4, 10, 12-13, 15, 22-25], publicando vários resultados encorajadores na OFC (*Optical Fiber Communication Conference*) de 1987. EM 1986, Emmanuel Desurvire começou a trabalhar nos laboratórios Bell e imediatamente começou a lidar com os EDFAs, onde realizou medidas detalhadas, desenvolveu o modelo teórico e realizou a primeira otimização do comprimento da fibra dopada [1]. Os EDFAs são os melhores amplificadores ópticos conhecidos, principalmente porque seu espectro de amplificação coincide exatamente com o mínimo de atenuação da sílica, por volta de 1550 nm.

Para EDFAs utilizando a sílica como vidro hospedeiro, todas as possíveis transições entre os níveis de energia do Érbio são altamente não radiativas, devido ao processo de decaimento por múltipla emissão de fôtons, exceto a transição que envolve os níveis $^4I_{13/2}$ e $^4I_{15/2}$ que é 100% radiativa. Esta transição exibe um espectro de emissão bastante largo (40 nm), centrada em 1550 nm, que propicia a amplificação em toda a **banda C** [22].
Capítulo 2 – Conceitos Básicos Sobre Amplificadores Ópticos

O tempo de vida do nível superior é de 10 ms [10], que é muito mais lento do que aqueles associados às taxas de transmissão de sinal de interesse prático, além de facilitar o processo de inversão de população, também torna a distorção intersimbólica e o crosstalk entre os canais desprezível. Devido à multiplicidade dos níveis de energia, a absorção de alguns comprimentos de onda de bombeamento pode ocorrer a partir do nível superior de amplificação diminuindo a eficiência do bombeamento. Este processo é chamado de absorção de estado excitado. Os comprimentos de onda de bombeamento 980 nm e 1480 nm estão livres de absorção de estado excitado. Além disso, eles podem ser gerados a partir de lasers de diodo comerciais [22]. O bombeamento em 980 nm minimiza a figura de ruído e é mais adequado quando o EDFA é utilizado como pré-amplificador [15].

Os íons de Érbio absorvem o sinal propagante, característica de um sistema com três níveis, assim temos um parâmetro importante do EDFA que é a potência de transparência, ou seja, a potência de bombeamento a partir da qual o amplificador não gera ganho, nem perda.

Figura 2.5 – (a) Diagrama de energia ilustrando o processo de amplificação através dos ions trivalentes de Érbio em sílica.

Com relação ao EDFA, o ponto mais importante (de acordo com o foco do nosso trabalho) é a possibilidade de geração de ganho na faixa de comprimentos de onda maiores da banda S. M. A. Arbore e colaboradores mostraram ganho gerado pela fibra de 36 dB em 1512 nm e ganho da fibra maior do que 20 dB entre 1480 nm e 1510 nm, com figura de ruído da fibra menor do que 8 dB [17]. A amplificação nestes comprimentos de onda só é
possível com a supressão da emissão espontânea amplificada, gerando alto fator de inversão de população. A supressão de ASE pode ser feita através de filtros entre múltiplos estágios de amplificação [26], tornando o sistema bastante complexo, ou utilizando estruturas de fibras especiais com comprimento de onda de corte por volta de 1530 nm, gerando altas perdas para o ASE [17]. A limitação mais importante a destacar é a faixa de amplificação, não provendo ganho na faixa de comprimentos de ondas mais baixos da banda S. As principais vantagens consistem na confiabilidade e maturidade da tecnologia para fibras de sílica e lasers de bombeamento.

2.4.4.2. PDFA e NDFA

É sabido que uma das janelas de baixa atenuação nas fibras ópticas de sílica é a de comprimento de onda em torno de 1300 nm e antes do desenvolvimento e maturidade da tecnologia dos lasers de diodo compostos da liga quaternária de semicondutor InGaAsP que emitem na faixa de 1550 nm [3] (mínimo de atenuação das fibras de sílica) foram implantados muitos sistemas operando na faixa de 1300 nm. Então, é natural a demanda por amplificadores ópticos que possam operar nesta faixa. E isto pode ser conseguido através da utilização de fibras dopadas com algumas terras raras, como Praseodímio [13, 23], Neodímio [23, 27-29] e Disprósio [30]. É importante salientar que o processo de amplificação nesses materiais funciona como um sistema de quatro níveis e a vantagem deste é que não existe absorção do sinal a partir do estado fundamental.

O Praseodímio emite fluorescência na região espectral de 1300 nm, permitindo amplificação nos comprimentos de onda desejados [13, 23], sendo possível a construção de um amplificador óptico a fibra dopada com Praseodímio (PDFA, Praseodimium Doped Fiber Amplifier). Entretanto, devido ao fato do Praseodímio ter um sistema de energia de quatro níveis, a eficiência de bombeamento para atingir altos fatores de ganho é extremamente baixa. Enquanto, por volta de 20 mW de bombeamento é o suficiente para a obtenção de 20dB de ganho em um EDFA, em um PDFA são necessárias algumas centenas de miliwatts para atingir o mesmo ganho [13].
O Neodímio, outra terra rara, também emite fluorescência na janela de 1,3 µm [23], sendo possível a construção de amplificadores ópticos [27-28] e lasers sintonizáveis [29] à fibras de ZBLAN dopadas com Neodímio. O maior problema relacionado a estas fibras é a competição com a transição em 1,05 µm (4F3/2 → 4I11/2) que pode suprimir a emissão desejada [29]. Utilizando técnicas para supressão de ganho em 1,05 µm, pode-se obter amplificadores com até 10dB de ganho [27] ou lasers com eficiência de até 15,7% [29].

Existem também citações na literatura de uso de Disprósio para amplificação na janela de 1,3µm [30].

2.4.4.3. TDFA

Na perspectiva de ampliar a banda de transmissão em sistemas WDM, o amplificador à fibra dopada com Túlio (TDFA, *Thulium Doped Fiber Amplifier*) é um forte candidato a permitir a utilização da banda S devido à característica de sua fluorescência. É importante salientar que o processo de amplificação se dá por absorção de dois fótons em um sistema que pode ser tratado como tendo três níveis de energia [31, 32].

No início do desenvolvimento do TDFA, a excitação responsável pelo processo de inversão de população entre os níveis que geram amplificação se realizava através de um único bombeamento, porém a eficiência de tais processos não era satisfatória, sendo necessária alta potência (centenas de miliWatts) para obtenção de ganho no patamar requerido. Outro aspecto que se tornou objeto de pesquisa é o deslocamento da banda de amplificação para cobrir a faixa entre os espectros de amplificação dos EDFA e TDFA. Para solucionar tais problemas várias técnicas foram propostas como uso de fibras dopadas com altas concentrações de Túlio (até 8000 ppm, quando o padrão é de 2000 ppm) e utilização de esquemas de bombeamento duplo (foco do nosso trabalho) [18, 32].

No Capítulo 3, faremos uma abordagem mais ampla do TDFA, incluindo os aspectos teóricos e apresentando os resultados mais importantes descritos na literatura. No Capítulo 4, explanaremos as técnicas de medição utilizadas. E no Capítulo 5, mostraremos os resultados obtidos, relevando nossas contribuições ao estado da arte atual.
REFERÊNCIAS PARA O CAPÍTULO 2

Capítulo 2 – Conceitos Básicos Sobre Amplificadores Ópticos

3.1. Introdução

Em 1982, B. M. Antipenko e colaboradores propuseram que os íons trivalentes de Túlio (Tm³⁺) tinham uma transição laser entre os níveis de energia ³F₄ e ³H₄, que correspondia a uma emissão em torno de 1,47 µm [1]. Em 1989, J. Y. Allain e colaboradores demonstraram, pela primeira vez, oscilação tipo laser em torno de 1,48 µm usando uma fibra multimodo à base de Fluor dopada com Tm³⁺, utilizando como fonte de bombeamento um laser de Criptônio com comprimento de onda de operação em 0,676 µm [1].

Entretanto, pouca atenção foi dada na época por causa de dois problemas básicos. O primeiro é que o vidro usado como vidro hospedeiro (ver seção 3.3) deveria ter baixa energia por fônons para que não houvesse uma perda de eficiência por meio de decaimento não radiativos, tornando, neste caso, a sílica imprópria para este tipo de uso [1-2]. O outro problema é que a transição utilizada para amplificação pertence a um sistema de quatro níveis de energia, onde o tempo do nível superior (1,35 ms para concentração de 2000 ppm) é menor do que o tempo do nível inferior (9 ms para concentração de 2000 ppm) [1-2], tornando a inversão de população difícil [3] quando utilizamos o bombeamento populando diretamente o nível ³H₄, seja ele através de um laser em 0,676 µm ou 0,79 µm [1]. Um sistema deste tipo é dito auto terminável.

Devido à sofisticação das técnicas de fabricação de fibras a partir de outros vidros, tornou-se possível a construção de fibras monomodo compostas por vários vidros diferentes e solucionando assim o problema da emissão fonônica. É importante frisar que o material mais utilizado é o vidro fluorado ZBLAN (mais informações na seção 3.3).

Com isso apareceram as primeiras soluções para resolver o problema da diferença entre os tempos de vida. Entre eles: bombeamento em 1064nm através de dois fôtons
sequenciais utilizando a conversão ascendente de energia [1-2]; co-dopar a fibra com íons de Ho$^{3+}$ [4] para diminuir o tempo de vida do nível inferior de amplificação (3F_4); ou gerar uma emissão laser entre os níveis 3F_4 e 3H_6, correspondente a emissão em aproximadamente 1,9 µm, diminuindo assim a população no nível inferior de amplificação (3F_4). Vale ressaltar que é possível a construção de amplificadores e lasers sintonizáveis operando por volta de 1,9 µm [5-6]. O espectro de absorção do Túlio em fibras ZBLAN está mostrado na figura 1.

Figura 3.1 – Espectro de absorção dos íons trivalentes de Túlio em fibras ZBLAN.

Entre as três alternativas apresentadas para gerar inversão de população suficiente para amplificação, a mais viável e comum é a de conversão ascendente de energia, que se utiliza do processo de absorção sequencial por dois fôtons. Nos íons trivalentes de Túlio em vidros à base de Fluor este processo ocorre da seguinte forma (ver figura 3.2): A primeira excitação se dá entre os níveis 3H_6 e 3H_5, chamada de absorção de estado fundamental (GSA, Ground State Absortion). Os portadores decaem do nível 3H_5 para 3F_4 através de fôtons, então ocorre uma segunda excitação (por isso é chamada de absorção por dois fôtons sequencial) entre os níveis 3H_4 e 3F_2, chamada de absorção de estado excitado (ESA, Excited State Absortion). Então, os portadores decaem do nível 3F_2 para 3H_4 através de
fôtons, gerando assim inversão de população entre $^3\text{H}_4$ e $^3\text{F}_4$ e tornando possível a amplificação. É importante frisar que para bombeamento em 1050 nm pode ocorrer a absorção de fôtons a partir do segundo estado excitado, diminuindo a eficiência do processo.

![Diagrama de energia dos íons de Tm$^{3+}$ em vidros fluorados com bombeamento único em 1050 nm.](image)

Figura 3.2 – Diagrama de energia dos íons de Tm$^{3+}$ em vidros fluorados com bombeamento único em 1050 nm.

Em 1992, T. Komukai e colaboradores demonstraram lasers de fibra altamente eficientes (27 % de conversão após limiar de 200 mW) operando em regime CW e Q-switched com emissão por volta de 1470 nm a partir de bombeamento de dois fôtons em 1064 nm [7]. Também já foram demonstrados lasers operando neste comprimento de onda, com alta potência de saída (1 W) e alta eficiência de conversão de potência (39 %) [8].

Lasers utilizando várias transições entre os níveis de energia dos íons trivalentes de Túlio em vidros ZBLAN já foram demonstrados operando em comprimentos de onda diversos, como (ver Figura 3.3): 0,45 µm [9]; 0,48 µm [9]; 0,8 µm [4, 9-10]; 1,47 µm [7-8, 10-12]; 1,9 µm [5-6, 9, 10-11]; e 2,3 µm [7-9].
Uma das figuras de mérito para quantificar a qualidade no processo de amplificação é a eficiência de conversão de potência (PCE, Power Conversion Efficiency), definida como [2]:

$$PCE = \frac{P_{saída_{sinal}} - P_{entrada_{sinal}}}{P_{total_{bombeamento}}}$$ \hspace{1cm} (3.1)$$

onde $P_{entrada_{sinal}}$ é a potência em Watts do sinal na entrada do amplificador, $P_{saída_{sinal}}$ é a potência em Watts do sinal na saída do amplificador e $P_{total_{bombeamento}}$ é a potência total em Watts para bombeamento do amplificador.

Em primeira aproximação, a máxima eficiência de conversão de potência para um sistema de amplificação com conversão ascendente de energia (absorção de dois fótons) e bombeamento simples é dada por: $PCE_{máx} = \frac{h \nu}{2 h \nu_p}$, que para bombeamento em 1050 nm gerando amplificação na banda S (por volta de 1,47 \(\mu\)m) gera um PCE < 35,7% [13].

Existem fatores que diminuem o PCE, como a emissão espontânea amplificada no infravermelho distante (1,9 \(\mu\)m, transição $^3F_4 \rightarrow ^3H_6$ e 2,3 \(\mu\)m, $^3H_4 \rightarrow ^3H_5$) [1], infravermelho.

Figura 3.3 – Diagrama de energia das possíveis absorções de estado fundamental dos íons de Tm$^{3+}$ em vidros fluorados.
Amplificadores Ópticos à Fibra Dopada com Túlio para banda S

próximo (0,8 µm, \(^3H_4 \rightarrow ^3H_6 \)), visível (0,515 µm, \(^1D_2 \rightarrow ^3H_5 \) e 0,48 µm, \(^1G_4 \rightarrow ^3H_6 \)) e ultravioleta (0,36 µm, \(^1D_2 \rightarrow ^3H_6 \)) [13].

Outro aspecto é que temos a probabilidade de emissão espontânea para a transição \(^3H_4 \rightarrow ^3H_6 \) (0,8 µm) maior do que para as transições \(^3H_4 \rightarrow ^3F_4 \) (1,47 µm) e \(^3H_4 \rightarrow ^3H_5 \) (2,3 µm), e como a emissão estimulada depende fortemente da probabilidade de emissão espontânea [1, 3, 14], espera-se que o ganho em 1,47 µm seja saturado pela emissão espontânea em 0,8 µm, já que as taxas de emissão espontâneas para 0,8 µm, 1,47 µm e 2,3 µm são respectivamente 0,893; 0,083 e 0,024. Contudo, o bombeamento em 1,064 µm suprime ASE em 0,8 µm porque a absorção a partir do estado fundamental é pequena não criando forte inversão de população entre \(^3H_4 \) e \(^3H_6 \) [13], evitando assim este problema.

Apesar da fibra dopada com Túlio ser considerada transparente para o sinal, ou seja, não apresenta perdas, existe um pico de absorção na transição de amplificação em 1,65 µm que gera perdas por absorção de estado excitado [3, 13].

Os principais limitantes da banda são: para comprimentos de onda menores que 1,45 µm, a absorção de estado excitado a partir do nível superior de amplificação \((^3F_3 \rightarrow ^1G_4) \) [7] e para comprimentos de onda maiores que 1,5 µm, a absorção de estado fundamental com pico por volta 1,7 µm (transição \(^3H_6 \rightarrow ^3F_4 \)) [7].

Existe também um outro bombeamento único que consegue gerar inversão de população pelo processo de conversão ascendente de energia em 1,4 µm [15-17]. O processo de excitação está mostrado na figura 3.4. Uma das principais vantagens na utilização de 1,4 µm é que a terceira absorção de estado excitado, entre \(^3H_4 \) e \(^1G_4 \) não é ressonante, evitando a geração de luz azul (em 0,48 µm) [15].
Figura 3.3 – Diagrama de energia dos íons de Tm$^{3+}$ em vidros fluorados com bombeamento único em 1410 nm.

O TDFA pode ser combinado com outros tipos de amplificadores ópticos para aumentar a banda de transmissão do sistema, como: Amplificadores de fibra Raman [18-21] e OPAs [22].

É interessante frisar que já existem TDFAs com bombeamento realizado unicamente com lasers de semicondutor tanto em 1050 nm [23-25] quanto em 1400 nm [15-17] tornando-os mais compactos e com custo mais baixo. Em [23] é apresentado um laser de semicondutor operando em 1050 nm com potência máxima de 300 mW composto por InGaAs/GaAsP.

3.2. Modelos teóricos

É de suma importância que de alguma forma se possa prever teoricamente como o amplificador irá se comportar quando submetido a uma certa dinâmica. O Túlio tem um diagrama de energia que pode ser aproximado por quatro níveis, sendo sua modelagem um pouco mais complexa que no caso do Érbio, com apenas três níveis. Entretanto, esforços da comunidade científica foram e continuam sendo feitos para identificar discrepâncias entre os modelos teóricos e casos práticos.

Basicamente existem dois modelos estabelecidos para este caso. O primeiro, proposto por Komukai e colaboradores em 1995 [1], se utiliza das equações de taxa para um sistema aproximado por quatro níveis de energia em conjunto com a aproximação de...
que o espectro de amplificação tem o comportamento de uma Lorentziana (ver seção 2.1). O outro, consiste em um modelo de caixa preta (BBM, Black Box Model), desenvolvido principalmente pelo grupo de pesquisa do Professor Hugo Fragnito, do Instituto de Física Gleb Wataghin, na Unicamp. É importante ressaltar que os resultados experimentais utilizados para validar o modelo de caixa preta foram produzidos por nós no Laboratório de Fotônica e Optoeletrônica do Departamento de Física da UFPE. Mais detalhes sobre o BBM podem ser encontrados na dissertação de mestrado de Andrés Rieznik (Unicamp, 2003).

3.2.1. Equações de taxa

Este modelo foi proposto por T. Komukai e colaboradores, em 1995. O modelo foi desenvolvido para a conversão ascendente de energia com um único comprimento de onda de bombeamento, no caso 1050 nm. Como simplificação, os níveis 3F_2 e 3F_3 por serem muitos próximos foram considerados como somente um nível. Na figura 3.5 pode se observar os níveis envolvidos, bem com as principais transições envolvidas no processo com suas respectivas probabilidades de transições.

Figura 3.5 – Diagrama de energia dos íons de Tm$^{3+}$ em vidros fluorados com bombeamento único em 1050 nm, apresentando as probabilidades de transição entre os níveis de energia envolvidos no modelo do Komukai.
A partir da Figura 3.5, pode-se escrever as equações de taxas, que regem o comportamento do sistema:

\[
\frac{dN_0}{dt} = -W_{p1}N_0 + \gamma_{10}N_1 + \gamma_{30}N_3 + \gamma_{50}N_5
\]

(3.2)

\[
\frac{dN_1}{dt} = -(W_{p2} + \gamma_{10} + W_s)N_1 + \gamma_{21}N_2 + W_sN_3
\]

(3.3)

\[
\frac{dN_2}{dt} = W_{p1}N_0 - \gamma_{21}N_2 + \gamma_{32}N_5
\]

(3.4)

\[
\frac{dN_3}{dt} = W_sN_1 - (\gamma_{30} + W_s + W_{p3})N_3 + \gamma_{43}N_4
\]

(3.5)

\[
\frac{dN_4}{dt} = W_{p2}N_1 - \gamma_{43}N_4
\]

(3.6)

\[
\frac{dN_5}{dt} = W_{p3}N_3 - (\gamma_{50} + \gamma_{53})N_5
\]

(3.7)

onde os estados 3H_6, 3F_4, 3H_5, 3H_4, $^3F_{2,3}$ e 1G_4 são definidos respectivamente como estado 0, 1, 2, 3, 4 e 5. As transições de excitação estão definidas na Figura 3.4 e suas probabilidades de transição são dadas por: W_{p1}, para absorção de estado fundamental ($^3H_6 \rightarrow ^3H_5$); W_{p2}, para absorção a partir do primeiro estado excitado ($^3F_4 \rightarrow ^3F_{2,3}$) e W_{p3}, para para absorção a partir do segundo estado excitado ($^3H_4 \rightarrow ^1G_4$). Considerou-se também uma outra simplificação: a seção de choque de emissão estimulada é igual à seção de choque de absorção, sendo ambas dadas por W_s. As outras probabilidades de transição por emissão espontânea ou decaimento multifonônico de um nível (i) para outro com menor energia (j) são representadas por γ_{ij}. Devido ao emprego de vidros ZBLAN, γ_{32} é pequeno e pode ser desprezado. Como em regime de amplificação a emissão estimulada é muito maior que a emissão espontânea, também pode-se desprezar γ_{31}. Temos que γ_{51}, γ_{53} e γ_{54} são muito menores que γ_{50} e γ_{52} e podem ser descartados. Também temos que γ_{52}, γ_{20}, γ_{42}, γ_{41} e γ_{40} são pequenos e podem ser desprezados. Também temos que:
Amplificadores Ópticos à Fibra Dopada com Túlio para banda S

\[W_{pj} = \frac{I_p \sigma_{pj}}{h \nu_p}, \quad j = 1, 2, 3 \] \hspace{1cm} (3.8)

\[W_s = \frac{I_s \sigma_s}{h \nu_s} \] \hspace{1cm} (3.9)

\[\gamma_{30} = \frac{1}{\tau_3} \] \hspace{1cm} (3.10)

\[\gamma_{10} = \frac{1}{\tau_1} \] \hspace{1cm} (3.11)

onde, \(I_p \) é a intensidade de bombeamento e \(I_s \) é a intensidade do sinal. \(\sigma_{p1}^{a} \), \(\sigma_{p2}^{a} \) e \(\sigma_{p3}^{a} \) são as seções de choque de absorção das transições \(^3\text{H}_6 \rightarrow ^3\text{H}_5, ^3\text{F}_4 \rightarrow ^3\text{F}_{2,3} \) e \(^3\text{H}_4 \rightarrow ^1\text{G}_4 \), respectivamente. \(\tau_1 \) e \(\tau_3 \) são os tempos de vida de \(^3\text{F}_4 \) e \(^3\text{H}_4 \). \(h \) é a constante de Planck, \(\nu_p \) é a frequência óptica do bombeamento e \(\nu_s \) é a frequência óptica do sinal.

Como os tempos de decaimento não-radiativo das transições \(^3\text{H}_5 \rightarrow ^3\text{F}_4 \) e \(^3\text{F}_{2,3} \rightarrow ^3\text{H}_4 \) são muito menores que os tempos de vida dos níveis 1 e 3, a concentração de portadores nos estados 2 e 4 são muito menores do que nos outros estados. Assim, pode-se desprezar as concentrações destes dois níveis e a concentração total \(N \) será dada por:

\[N = N_0 + N_1 + N_3 + N_5. \] \hspace{1cm} (3.12)

Definindo a inversão de população entre os níveis de interesse para amplificação (estados 1 e 3), como:

\[\Delta N = N_3 - N_1, \] \hspace{1cm} (3.13)

Podemos mostrar que na condição de estado estacionário:

\[\Delta N = \frac{A}{B} N, \] \hspace{1cm} (3.14)
onde,

\[A = (\gamma_{s_0} + \gamma_{s_2})W_{p_1}(W_{p_2} - W_{p_3} - \gamma_{s_0}), \quad (3.15) \]

\[B = \left(\gamma_{s_0} + \gamma_{s_2} \right) \left[\gamma_{s_0}W_{p_1} + \gamma_{s_0}W_{p_2} + W_{p_1}W_{p_2} + \gamma_{s_0}W_{p_3} + W_{p_1}W_{p_3} + (\gamma_{s_0} + \gamma_{s_2})W_{s_1} + 2W_{p_1}W_{s_1} \right] \left(\gamma_{s_0} + W_{p_1} \right) \left(W_{p_2} + W_{s_1} \right) W_{p_3}, \quad (3.16) \]

Para atingirmos a condição de inversão de população, ou seja, \(\Delta N > 0 \), devemos ter:

\[I_p > \frac{h \nu_p}{(\sigma_{p_2} - \sigma_{p_3})} \tau_3. \quad (3.17) \]

Considerando que, para bombeamento não muito intenso, a segunda absorção de estado excitado pode ser ignorada, a população do nível \(^1G_4\) torna-se desprezível. Temos duas equações diferenciais que descrevem o comportamento do bombeamento e sinal de uma forma mais simples. São elas:

\[\frac{dI_s}{dz} = \sigma_s \Delta N I_s \quad (3.18) \]

onde \(\sigma_s \) é dado pela equação 3.9.

\[\frac{dI_p}{dz} = -\left(\sigma_{p_2} N_0 + \sigma_{p_2} N_1 \right) I_p \quad (3.19) \]

Como o ganho do meio ativo é dado por:

\[g(I_s) = \sigma_s \Delta N \quad (3.20) \]
Podemos reescrever o ganho do meio para este caso, utilizando as equações 3.18 e 3.19, da seguinte forma:

\[g(I_s) \approx K \frac{\sigma_s N}{1 + \frac{I_s}{I_{stat}}} \]

(3.21)

Onde,
\[K = \frac{1}{1 + \left(\gamma_{10} + 3 \gamma_{30} \right) \nu_p} \]
\[I_{stat} = \frac{1}{2} \left(\frac{\sigma_{p2}}{\sigma_s} \right) \left(\frac{\nu_s}{\nu_p} \right). \]

Um fato interessante que pode ser observado é que no sistema, apesar de apresentar quatro níveis, o ganho se comporta como um sistema de três níveis, com a diferença de ter um fator multiplicativo \(K \).

Utilizando a fórmula fechada de Digonnet [26] para um sistema de quatro níveis com uma fibra de comprimento \(L \), podemos descrever o ganho do meio por:

\[g(L) = K \frac{\sigma_s \tau_3}{h \nu_p \omega_p^2} \frac{a^2}{r_s^2 + r_p^2} P_p(L) \frac{1}{1 - e^{-\left(\frac{a}{\eta_p} \right)^2}} \]

(3.22)

onde, \(a \) é o raio do núcleo da fibra, \(r_p \) é o raio modal do bombeamento, \(r_s \) é o raio modal do sinal e \(P_p \) é a potência de bombeamento absorvida pelo meio, que é dada por:

\[P_p = P(0) \left[1 - e^{-\alpha_p r_p L} \right] \]

(3.23)

onde, \(\alpha_p \) é o coeficiente de absorção (dado aproximadamente por \(\sigma_{p2}^s N_i \)), \(\eta_p \) é o fator de confinamento, que expressa a fração de campo confinado ao núcleo da fibra, e \(P(0) \) é a potência de bombeamento na entrada da fibra.
O fator de ganho do amplificador é dado por:

\[G_{db}(L) = 10 \log\left(e^{gL}\right) \] \hspace{1cm} (3.24)

Apesar das aproximações este modelo reproduz de forma razoável dados experimentais. O maior problema associado a este tipo de modelo é a necessidade do conhecimento prévio dos parâmetros, como: fator de confinamento, seções de choque para o bombeamento e sinal e tempos de vida dos níveis envolvidos.

3.2.2. Modelo de caixa preta (BBM)

No modelo de caixa preta (BBM, \textit{Black Box Model}) considera-se o TDFA como uma caixa preta com uma função de transferência não-linear. O modelo foi desenvolvido assumindo o sistema com quatro níveis de energia e homogeneamente alargado.

Como já foi visto na seção anterior a equação 3.18 descreve o comportamento do sinal na fibra dopada com Túlio. Tomando tal equação e reescrevendo para a potência do sinal em vez de intensidade, com a inserção das perdas pelo termo \(\gamma(\lambda, z) \) e considerando a população do nível 5 da figura 3.4 desprezível, pode-se obter:

\[
\frac{\partial P(\lambda, z)}{\partial z} = \left[\Gamma(\lambda)\left[W_s^a + W_s^b\right]N_3 + \Gamma(\lambda)\left[W_s^a\right]N_0 - \Gamma(\lambda)\left[W_s^a\right]N - \gamma(\lambda, z)\right]P_s(\lambda, z) \] \hspace{1cm} (3.25)

onde, \(\Gamma(\lambda) \) é a integral de \textit{overlap} que expressa a fração de campo confinado ao núcleo da fibra dopada [27]. Resolvendo a equação 3.25 e utilizando a equação 3.24, podemos descrever o ganho como:

\[
G_{db}(\lambda) = \varepsilon(\lambda)n_3 + \alpha(\lambda)n_0 - \alpha(\lambda)L - \gamma(\lambda) \] \hspace{1cm} (3.26)

onde,

\[
\varepsilon(\lambda) = 10.\log(e)\Gamma(\lambda)N[\sigma_z^t(\lambda) + \sigma_z^r(\lambda)] \] \hspace{1cm} (3.27)
Amplificadores Ópticos à Fibra Dopada com Túlio para banda S

\[\alpha(\lambda) = 10 \cdot \log(e) \Gamma(\lambda) N [\sigma^*(\lambda)] \]
(3.28)

\[n_i = \frac{1}{N} \int_0^L n_i(z) dz \]
(3.29)

\[\gamma'(\lambda) = 10 \cdot \log(e) \int_0^L \gamma(z) dz \]
(3.30)

Pode-se escrever a equação 3.26 para três comprimentos de onda diferentes (\(\lambda, \lambda_1, \lambda_2 \)) e combiná-las para eliminar \(n_0 \) e \(n_3 \). Fazendo isto, tem-se:

\[G_{ab}(\lambda) = F_1(\lambda, \lambda_1, \lambda_2) G_{ab}(\lambda_1) + F_2(\lambda, \lambda_1, \lambda_2) G_{ab}(\lambda_2) + F_3(\lambda, \lambda_1, \lambda_2) \]
(3.31)

onde,

\[F_1(\lambda, \lambda_1, \lambda_2) = \frac{\varepsilon(\lambda) \alpha(\lambda_2) - \varepsilon(\lambda_1) \alpha(\lambda)}{\varepsilon(\lambda_1) \alpha(\lambda_2) - \varepsilon(\lambda_2) \alpha(\lambda)}, \quad F_2(\lambda, \lambda_1, \lambda_2) = \frac{\varepsilon(\lambda) \alpha(\lambda) - \varepsilon(\lambda) \alpha(\lambda_1)}{\varepsilon(\lambda) \alpha(\lambda_2) - \varepsilon(\lambda_2) \alpha(\lambda_1)} \]
\[F_3(\lambda, \lambda_1, \lambda_2) = F_1(\lambda, \lambda_1, \lambda_2) \gamma'(\lambda_1) + F_2(\lambda, \lambda_1, \lambda_2) \gamma'(\lambda_2) - \gamma'(\lambda). \]
(3.32)

O modelo se baseia nas equações 3.31 e 3.32. Através delas, é possível a determinação do ganho em qualquer comprimento de onda, desde que sejam conhecidas as funções \(F_1(\lambda, \lambda_1, \lambda_2) \), \(F_2(\lambda, \lambda_1, \lambda_2) \) e \(F_3(\lambda, \lambda_1, \lambda_2) \); bem como o ganho em dois comprimentos de onda, medidos na mesma condição de bombeamento. As funções \(F_1(\lambda, \lambda_1, \lambda_2) \) e \(F_2(\lambda, \lambda_1, \lambda_2) \) contêm informações relacionadas às seções de choque das transições, ou seja, a forma como a resposta espectral se comporta. Enquanto que, \(F_3(\lambda, \lambda_1, \lambda_2) \) explicita as perdas do sistema.

Podemos obter as funções \(F_1(\lambda, \lambda_1, \lambda_2) \), \(F_2(\lambda, \lambda_1, \lambda_2) \) e \(F_3(\lambda, \lambda_1, \lambda_2) \) a partir de três curvas espectrais medidas, cada uma medida com uma condição de saturação diferente. Com este conjunto de equações pode-se obter o seguinte sistema:
Resolvendo este sistema pode-se calcular o ganho em qualquer situação de bombeamento, desde que sejam conhecidos os ganhos em dois comprimentos de onda diferentes, usados como referência. É importante salientar que as medidas devem ser realizadas com as mesmas condições de saturação, ou seja, a mesma potência de sinal.

Com este modelo, também é possível reproduzir a resposta espectral da ASE. Considerando uma densidade espectral de ruído equivalente na entrada \(\left(S_{eq}^{dBm}(\lambda) \right) \) do amplificador gerando o ASE na saída do mesmo \(\left(S^{dBm}(\lambda) \right) \), descrito pela equação 3.34, pode-se calcular as funções equivalentes a \(F_1(\lambda, \lambda_1, \lambda_2) \), \(F_2(\lambda, \lambda_1, \lambda_2) \) e \(F_3(\lambda, \lambda_1, \lambda_2) \) para a modelagem do ASE.

\[
S^{dBm}(\lambda) = S_{eq}^{dBm}(\lambda) + G^{dB}(\lambda) \tag{3.34}
\]

No caso, as funções \(F_1^{ASE}(\lambda, \lambda_1, \lambda_2) \) e \(F_2^{ASE}(\lambda, \lambda_1, \lambda_2) \) se mantêm iguais a \(F_1(\lambda, \lambda_1, \lambda_2) \) e \(F_2(\lambda, \lambda_1, \lambda_2) \), respectivamente. Porém a função de \(F_3^{ASE}(\lambda, \lambda_1, \lambda_2) \) se altera para:

\[
F_3^{ASE}(\lambda, \lambda_1, \lambda_2) = F_3(\lambda, \lambda_1, \lambda_2) - F_1^{ASE}(\lambda, \lambda_1, \lambda_2)S_{eq}^{dBm}(\lambda_1) - F_2^{ASE}(\lambda, \lambda_1, \lambda_2)S_{eq}^{dBm}(\lambda_2) + S_{eq}^{dBm}(\lambda) \tag{3.35}
\]

O aspecto interessante da possibilidade de modelagem da ASE em amplificadores ópticos a fibras é que, como o fator preponderante na geração de ruído é a ASE, podemos modelar a figura de ruído teoricamente através do BBM.

Este modelo é bastante poderoso no que concerne a descrever a função de transferência, sem a necessidade do conhecimento dos parâmetros intrínsecos do sistema.
físico. Outra característica do modelo que está sendo estudada é a possibilidade de modelagem de TDFAs com esquema de bombeamento duplo.

3.3. Tipos de fibras ópticas hospedeiras

Os íons trivalentes de Túlio quando excitados apresentam uma rápida relaxação não radiativa multifonônica de $^3\text{H}_4$ para $^3\text{H}_5$ (*ver figura 3.1*), cuja energia é de aproximadamente 4400 cm$^{-1}$ [1-2, 9]. Como em sílica, a energia de fôns é de 1100 cm$^{-1}$, esta não é a melhor alternativa para utilização como vidro hospedeiro [1, 28], apesar de vários esforços estarem sendo feitos para desenvolver técnicas que tornem os compostos silicatos viáveis como vidros hospedeiros [28-31]. Para solução deste problema temos algumas alternativas como: Fluoretos [1], Teluretos [30], Calcohalogênios [28], etc.

Destas alternativas, a mais utilizada consiste no emprego de vidros fluorados, como o ZBLAN (composto por ZrF$_4$ – BaF$_2$ – LaF$_3$ – AlF$_3$ – NaF$_3$). Contudo, apesar de resolver o problema da emissão multifonônica, pois têm energia por fôns da ordem de 500 cm$^{-1}$, as fibras ZBLAN apresentam certas dificuldades que estão atualmente em pesquisa, entre elas o fato de que elas são higroscópicas (sensíveis à água) e têm ponto de fusão mais baixo (450°C), complicando o processo de emenda com as fibras de sílica padrão. Até o presente momento, apesar do esforço da comunidade científica em desenvolver técnicas para resolver o problema das emendas [32], este ainda é um fator limitante, pois apenas algumas empresas no mundo detêm tecnologia para realizá-las. Além disto, as emendas têm o problema de degradação principalmente quando submetidas a altos níveis de potência óptica.

3.4. Esquemas de bombeamento duplo

Apesar do TDFA com bombeamento em um único comprimento de onda funcionar, este não apresenta uma eficiência de conversão de potência satisfatória. Então, para aumentar o desempenho existem basicamente duas técnicas: a primeira consiste na utilização de fibras altamente dopadas [2, 15-17, 33] e a segunda consiste no emprego de esquemas de bombeamento combinando dois comprimentos de onda [13, 26, 34-44].
Capítulo 3 – TDFA (Revisão Bibliográfica)

Quanto à utilização de fibras de Túlio altamente dopadas, sabe-se que por causa do aumento da concentração, ocorre uma relaxação cruzada entre os íons de Túlio para o nível 3F_4, diminuindo o fator de inversão de população, deslocando a banda de amplificação para comprimentos de onda maiores [2]. Aumentando a dopagem de 2000 ppm para 8000 ppm temos uma variação do pico de amplificação de 1473 nm para 1505 nm [2]. Com o aumento da concentração para 6000 ppm já foi conseguida uma eficiência de conversão de potência de até 70% [15], apesar da utilização de potência de bombeamento muito alta (755 mW).

É importante frisar que existem várias formas de excitar os íons trivalentes de Túlio a partir do estado fundamental, ou seja, vários comprimentos de onda diferentes podem ser usados na absorção do primeiro fóton para compor o esquema de bombeamento, como (ver figura 3.6): 800 nm [35, 44]; 1240 nm [35, 42]; 1410 nm [15-17, 35]; e 1550 nm [13, 26, 34-36, 40-41].

3.2.3. GSA com 1550 nm

Com a adição de um bombeamento auxiliar em 1,55 µm, cuja tecnologia de lasers de diodo já está bem estabelecida, podemos melhorar a absorção de estado fundamental (GSA), pois o pico de absorção para a transição $^3H_6 \rightarrow ^3F_4$ (ver figura 3.7.a) está por volta
de 1,7 µm [13]. Neste caso existe deslocamento de banda para comprimentos de ondas maiores porque o fator de inversão de população diminui, isto se deve ao fato do bombeamento de 1550 nm popular diretamente o nível inferior de amplificação [13, 36]. Em [33] a adição de 12 mW de 1,56 µm aos 110 mW de 1050 nm (proporção de potência de 1,56 µm é de aproximadamente 10% da potência total) melhora a resposta espectral de ganho entre 5- e 8 dB, porém quando são adicionados 35,3 mW de 1,56 µm (proporção de aproximadamente 25% da potência total) a banda de amplificação é deslocada para comprimentos de onda menores apresentando um ganho menor [33]. É importante frisar que a melhoria no processo de inversão de população através da adição do bombeamento auxiliar em 1,56 µm se deve ao fato de que a sua seção de choque de absorção a partir do estado fundamental é uma ordem de magnitude maior que para 1,05 µm. Segundo F. Roy e colaboradores [39-40] para otimizar o ganho, a proporção ideal para 1550 nm em relação a potência total é de aproximadamente 7%.

No caso do deslocamento espectral da curva de ganho, a explicação é que o túlio tem o coeficiente alargado homogeneamente, podendo este ser expresso por:

$$g(\lambda) = N_U \sigma_{em}(\lambda) - N_L \sigma_{abs}(\lambda) \quad (3.36)$$

onde N_U é a população no nível superior, N_L é a população no nível inferior e $\sigma_{em}(\lambda)$ e $\sigma_{abs}(\lambda)$ são as seções de choque de emissão e absorção respectivamente.

Como para bombeamento único, tanto em 1050 nm quanto em 1400 nm, o mesmo comprimento de onda é responsável pela absorção de estado fundamental e excitado, e a absorção de estado excitado é mais eficiente. Temos que N_L é pequeno comparado com N_U, assim o espectro de ganho fica dominado por $\sigma_{em}(\lambda)$, que tem seu pico em 1,46 µm. A adição de 1,56 µm ao bombeamento principal gera população diretamente no nível 3F_4, aumentando N_L, modificando, assim, o espectro de ganho. Como $\sigma_{abs}(\lambda)$ é maior que $\sigma_{em}(\lambda)$ para comprimentos de onda menores, o ganho é deslocado para comprimentos de onda maiores [34]. Existe ainda o fato de que o pico de absorção da transição de amplificação ($^3H_4 \rightarrow ^3F_4$) está localizado em 1420 nm [35].
Outro aspecto importante é que como a absorção de estado fundamental é mais eficiente, temos uma menor população neste, levando a uma menor perda para sinais com comprimentos de onda maiores que têm maior probabilidade de serem absorvidos a partir do estado fundamental [34].

Para melhorar o ESA pode-se usar o bombeamento em 1400 nm em vez de 1050 nm (ver figura 3.7.b) [33], isto aumenta a eficiência (existe relato de 29% de eficiência de conversão de potência), contudo torna o amplificador mais ruidoso [35]. A vantagem na utilização de 1,56 µm em conjunto com 1,4 µm é a disponibilidade de lasers de diodo comerciais nestes comprimentos de onda [34-35]. Também foi observado por F. Roy e colaboradores que para 1400 nm + 1550 nm o deslocamento da banda de amplificação é maior que para 1050 nm + 1550 nm [40].

![Diagrama de energia dos íons de Tm³⁺ em vidros fluorados com auxílio de bombeamento complementar em 1550 nm.](image)

Figura 3.7 – Diagrama de energia dos íons de Tm³⁺ em vidros fluorados com auxílio de bombeamento complementar em 1550 nm.

3.2.4. GSA com 1240 nm

Uma alternativa para melhorar a GSA é a utilização de 1,24 µm [42-43] (ver figura 3.8) com decaimento não radiativo para 3F₄, isto porque a transição 3H₆→3F₄ tem o seu pico de absorção em aproximadamente 1700nm, que é relativamente longe de 1550nm [42-43]. Roy e colaboradores conseguiram uma eficiência de conversão de potência de 48% com
410 mW de potência total (20% em 1240 nm) [42-43]. Porém muita potência de 1,56 µm ou 1,24 µm aumenta a população em 3F_4 e isto degrada a performance [35].

![Diagrama de energia dos íons de Tm$^{3+}$ em vidros fluorados com GSA em 1240nm.](image)

Figura 3.8 – Diagrama de energia dos íons de Tm$^{3+}$ em vidros fluorados com GSA em 1240nm.

3.2.5. GSA com 800 nm

Outra forma é o bombeamento direto do estado fundamental para o estado de amplificação superior com 800nm, que junto com 1400 nm [35, 38] ou 1050 nm [44] pode prover uma maior eficiência de conversão de potência.

No caso da utilização do bombeamento 800 nm + 1400 nm pode-se conseguir uma eficiência de conversão de potência maior que 50 % [35]. Um fato bastante interessante na utilização de 800 nm como segundo bombeamento é que este apresenta tecnologia à base de semicondutor bastante madura. E com a nova possibilidade de emprego de lasers de diodo operando em 1050 nm [45-46], podemos construir um amplificador compacto operando com bombeamento em dois comprimentos de onda.
Outro aspecto interessante concerne a um melhor desempenho em ruído, já que o nível de amplificação superior 3H_4 é bombeado diretamente e não através de dois fôtons [35].

É interessante frisar que o esquema de bombeamento descrito na figura 3.9.a foi desenvolvido pelo nosso grupo de pesquisa durante o período do mestrado. Informações adicionais podem ser encontradas em [44].
REFERÊNCIAS PARA O CAPÍTULO 3

Neste capítulo, descreveremos as técnicas de medição utilizadas durante a execução dos nossos experimentos, ressaltando os cuidados necessários para a realização correta das medidas. Os principais parâmetros de caracterização foram: fator de ganho do amplificador, ganho distribuído na fibra e figura de ruído.

Na seção 4.1 abordaremos as técnicas utilizadas para medição de ganho. Na seção 4.1.1 mostras-se o uso de Analisador de Espectro Óptico (OSA, Optical Spectrum Analyser - figura 4.1) na medição do fator de ganho de um amplificador óptico. Na seção 4.1.2 é explorada a técnica de reflectometria óptica coerente no domínio da frequência (COFDR, Coherent Optical frequency Domain Reflectometry) [1-14], ferramenta poderosa para caracterização de componentes ópticos, como por exemplo, amplificadores ópticos a fibras dopadas [15-21].

Figura 4.1 – Foto do analisador de espectro óptico utilizado nos experimentos.
É importante ressaltar que a técnica de COFDR é a melhor para caracterizar o ganho distribuído ao longo da fibra dopada em Amplificadores de fibras dopadas com Érbio (EDFA, Erbium Doped Fiber Amplifiers) e Túlio (TDFA, Thulium Doped Fiber Amplifiers) [1-8]. Na seção 4.1.2.1, para um melhor entendimento desta técnica abordaremos aspectos teóricos de funcionamento do COFDR.

4.1. Medicação de Ganho

A principal característica de um amplificador é o seu fator de ganho. E este é definido com sendo a relação entre o nível de potência de sinal na saída e o nível de potência de sinal na entrada, tipicamente expresso em decibéis. Então, podemos escrever o ganho do amplificador como:

$$ G_{(dB)} = 10 \log \frac{P_{saída}}{P_{entrada}}, \quad (4.1) $$

onde, $P_{saída}$ representa a potência do sinal na saída do amplificador e $P_{entrada}$ representa a potência do sinal na entrada do amplificador. É necessário ressaltar que nesta expressão, $P_{saída}$ e $P_{entrada}$ devem ser tratadas em escala linear, enquanto que o ganho deve ser expresso em escala logaritmica.

4.1.1. Ganho utilizando analisador de espectro óptico

Apesar de parecer conceitualmente simples, a medição do ganho do amplificador requer alguns cuidados, como o monitoramento do nível de potência da ASE, a emissão espontânea da fonte de luz (SSE, Source Spontaneous Emission) e a degradação introduzida pelos conectores utilizados nos cordões ópticos na entrada e na saída.
Existem alguns métodos para diferenciar o sinal e o ruído, como: método de interpolação, utilização de filtros, utilização de polarizadores ou utilização de esquemas de modulação do sinal associados ao uso de detetores sensíveis à fase (amplificadores do tipo Lock-in) [15].

Nós optamos pelo método de interpolação que consiste no seguinte: Primeiro medimos a resposta espectral da entrada e então tomamos os valores de potência no comprimento de onda do sinal \((P_{\text{Sinal}}) \), e em comprimentos de onda deslocados de um certo valor pré-definido, acima \((P_{\text{SSE}^+}) \) e abaixo \((P_{\text{SSE}^-}) \) do comprimento de onda do sinal. O ruído na entrada \((P_{\text{SSE}}) \) consiste na média entre \(P_{\text{SSE}^+} \) e \(P_{\text{SSE}^-} \) (ver figura 4.2). Este deslocamento deve ser suficiente para que, com a resolução adotada, não medemos potência de sinal e, por outro lado deve ser o menor possível para minimizar o erro. Depois medimos a resposta espectral da saída e extraímos os valores de \(P_{\text{Saída}} \), \(P_{\text{Total}^+} \) e \(P_{\text{Total}^-} \) da mesma forma que na entrada. Então, o ruído na saída \((P_{\text{ASE}}) \) consiste na média entre \(P_{\text{ASE}^+} \) e \(P_{\text{ASE}^-} \), onde \(P_{\text{ASE}^+} = P_{\text{Total}^+} - G.P_{\text{SSE}^+} \) e \(P_{\text{ASE}^-} = P_{\text{Total}^-} - G.P_{\text{SSE}^-} \). Esta técnica é chamada de subtração da contribuição da fonte.

O ganho correto deve ser calculado utilizando os parâmetros obtidos no procedimento acima através da seguinte expressão [15]:

\[
G_{(\text{dB})} = 10 \log \left(\frac{P_{\text{Saída}} - P_{\text{ASE}}}{P_{\text{Entrada}} - P_{\text{SSE}}} \right) \quad (4.2)
\]

Normalmente, o ruído proveniente da fonte, quando esta é de boa qualidade, é pequeno comparado à potência do sinal não influenciando na medida do ganho e podendo ser desprezado. Quando a relação sinal-ruído \(P_{\text{ASE}} \) na saída for maior do que 20 dB, podemos desprezar o termo de ruído na saída, com um erro associado menor do que 1%.
4.1.2. Ganho distribuído utilizando a técnica de COFDR

O aspecto mais importante desta técnica é a capacidade de obtenção do ganho distribuído experimentado pelo sinal ao longo da fibra dopada com o intuito de otimizar seu comprimento [1-8]. Existe outra técnica como o método de corte, onde a fibra é cortada até que se encontre o comprimento para o qual o ganho é maximizado, mas esta é uma técnica que além de limitada em sensibilidade e resolução, é destrutiva, gerando desperdício de material.

Para um melhor entendimento, antes da descrição da técnica para extrair a distribuição de ganho, descreveremos o princípio básico de funcionamento do COFDR.

4.1.2.1. Técnica de COFDR

Técnicas no domínio do tempo são normalmente usadas para caracterização de vários quilômetros de fibra óptica com resolução de algumas dezenas de metros tomando o retro-espalhamento Rayleigh, sendo possível a obtenção de uma sensitividade por volta de 30 dB. Através da utilização de interferometria de baixa coerência pode-se ter uma
Capítulo 4 – Técnicas de Medição

resolução submilimétrica, porém o máximo alcance permitido é de 1 m, apesar da sensibilidade de -162 dB [9]. Além disto, alta potência óptica e longo tempo de medida são necessários para a obtenção de baixos níveis de ruído.

A reflectometria óptica coerente no domínio da freqüência [1-14] é uma alternativa poderosa às técnicas mencionadas acima, sendo baseada na detecção coerente da luz proveniente do dispositivo ou fibra sob teste. Por causa do sistema de detecção coerente a sensibilidade melhora bastante em relação às técnicas de reflectometria óptica no domínio da freqüência (OFDR, Optical Frequency Domain Reflectometry) convencionais, porém o alcance é limitado pela largura de linha do laser, sendo necessária uma largura de linha menor para um maior alcance [9]. Um aspecto relevante é que a técnica de OFDR convencional (não coerente) não deve ser empregada por causa do alto nível de ASE emitido pelo amplificador, sendo mais recomendado a técnica de COFDR que filtra naturalmente o ASE.

A técnica consiste basicamente na análise em freqüência do batimento entre o sinal proveniente de um oscilador local, utilizado como referência, e o sinal refletido internamente pelo dispositivo sob teste, como ilustrado na figura 4.3. Para que possamos distinguir cada ponto interno do dispositivo sob teste, o laser de sinal é modulado linearmente em freqüência. A técnica utiliza um esquema baseado no interferômetro de Michelson [5-9], onde com um acoplador direcional de 3 dB, podemos obter o sinal do espelho local, juntamente com o refletido ao longo do dispositivo sob teste. Para cada ponto o sinal refletido apresenta uma certa diferença de freqüência em relação à referência, e com o batimento realizado no fotodetetor, podemos obter o comportamento do dispositivo com um analisador de espectro elétrico (ESA, Electrical Spectrum Analyzer) que calcula a Transformada Rápida de Fourier (FFT, Fast Fourier Transform).
Para o sinal refletido em um dado ponto no dispositivo, temos um retardo τ em relação ao oscilador local. Devido a este atraso e à modulação linear da frequência do laser de sinal, para um sinal lançado em um certo instante de tempo pelo laser, teremos no fotodetetor que a frequência proveniente do oscilador local será maior que a do sinal refletido. A diferença de frequência será proporcional ao atraso, portanto a frequência do batimento será proporcional ao atraso no dispositivo. Como o atraso depende do caminho óptico percorrido, então a diferença de frequência é diretamente proporcional à distância entre o oscilador local (no caso, um conector óptico com espelho) e o ponto em questão [1-8].

Ao mesmo tempo, a intensidade da reflexão é dada pelo quadrado da amplitude do sinal de batimento em uma dada frequência, que é proporcional ao campo elétrico da luz refletida.

Para um modelo matemático simples, considere-se um laser de sinal cuja frequência é modulada linearmente de acordo com a seguinte expressão:

$$E(t) = E_0 e^{i\omega(t)t}$$ \hspace{1cm} (4.3)

onde, E é a amplitude do campo elétrico e $\omega(t)$ é a frequência instantânea. Assumindo que o coeficiente de variação de frequência β é constante e não influi na forma do espectro do laser de sinal, e considerando que após o interferômetro, o termo de interferência na intensidade da luz é dado por:
Capítulo 4 – Técnicas de Medição

\[I(t) = 2 \Re \left[E_{OL}(t) E_R^*(t - \tau) \right] \]
(4.4)

onde, \(E_{OL}(t) \) é o campo elétrico proveniente do oscilador local e \(E_R(t) \) é o campo elétrico proveniente do dispositivo sob teste, temos que os campos \(E_{OL}(t) \) e \(E_R(t) \) têm as seguintes expressões:

\[E_{OL}(t) = |E_{OL}| e^{i\omega t} \]
(4.5)

\[E_R(t - \tau) = |E_R| e^{i(\omega - \beta \tau)(t - \tau)} \]
(4.6)

onde, a frequência do sinal refletido no dispositivo sob teste é menor do que a do sinal proveniente do oscilador local devido ao atraso.

Substituindo as equações 4.5 e 4.6 na equação 4.4, temos:

\[I(t) = 2 |E_{OL}| |E_R| \Re \left[e^{i\omega t} e^{-j(\omega - \beta \tau)(t - \tau)} \right] \]
(4.7)

ou equivalentemente,

\[I(t) = 2 |E_{OL}| |E_R| \Re \left[e^{j(\beta \tau \omega - (\omega - \beta \tau^2)} \right] \]
(4.8)

onde, podemos notar que a frequência do sinal detectado é \(\beta \tau \), ou seja, é proporcional ao atraso dentro do dispositivo, e por consequência à distância dentro da fibra dopada para o caso de caracterização do ganho distribuído ao longo da fibra.

As principais fontes de ruído [9] são: flutuações de intensidade de luz do laser; ruído balístico, devido à natureza quântica da luz; ruído de fase do laser; amplificador eletrônico e os circuitos de controle. Tais fontes são proporcionais à largura de linha medida, de forma que diminuindo a largura de linha, podemos aumentar a sensibilidade [9].

O ruído de fase do laser, um dos principais responsáveis pelo ruído de fundo, é responsável pelas flutuações de fase entre o sinal refletido e o de referência. Este é proporcional à distância do ponto de reflexão no dispositivo sob teste ao oscilador local,
bem como à intensidade da reflexão. Então, para que sistemas de alta sensibilidade sejam realizáveis só podem existir pequenas reflexões, principalmente em pontos distantes do oscilador local. Por isso devemos ter um laser com largura de linha estreita. A máxima distância detectável é limitada pelo comprimento de coerência do laser, dado por:

\[L_C = \frac{c}{\pi \Delta f} , \]

onde \(\Delta f \) é a largura de linha do laser, \(c \) é a velocidade da luz e \(L_C \) é o comprimento de coerência.

Uma pequena diferença entre o caminho óptico do oscilador local e a porta que conecta o dispositivo sob teste, compondo um interferômetro de Michelson, gera um batimento em baixas freqüências que podemos eliminar através do ajuste da freqüência mínima percebida pelo fotodetetor. A freqüência mínima utilizada por nós para detecção foi de 300 Hz. Outro aspecto importante para o ajuste de uma freqüência mínima na caracterização de um amplificador é devido à ASE proveniente do amplificador, pois esta é detectada com freqüência zero.

4.1.2.2. Medição de ganho com COFDR

O esquema experimental empregado para a aquisição de dados utilizando a técnica de COFDR está mostrado na figura 4.4. Na figura 4.5, pode-se ver a foto da caixa contendo os elementos ópticos utilizados para realização do experimento. Podemos distinguir o interferômetro de Michelson formado pelo acoplador direcional e o oscilador local (OL), que no nosso caso é um conector de fibra tipo FC/PC com um espelho. O dispositivo sob teste é o nosso Amplificador a fibra dopada com Túlio (TDFA, *Thulium Doped Fiber Amplifier*). Inserimos um isolador logo após o laser de sinal para evitar que tanto a luz proveniente do oscilador local, quanto a luz retroespalhada pelo TDFA, afetem o mesmo.

Utilizamos como sinal um laser sintonizável comercial que permite sua modulação através da aplicação de tensão em um material piezoelétrico. Foi observado um bom grau
de linearidade quanto à modulação. Um gerador de funções operando com uma onda triangular foi usado como sinal modulador do laser e este também funcionou para gerar o gatilho, necessário para que o analisador de espectro elétrico que calcula a FFT sincronize a aquisição de dados na região onde a onda triangular é mais linear. Outro artifício utilizado para evitar não linearidades foi a adição de um nível de tensão contínuo ao sinal de modulação. O osciloscópio tem a função de monitorar o sinal modulador do laser e o recebido pelo ESA.

Podemos observar um conjunto de um circulador óptico associado a uma fibra com rede de Bragg (FBG, *Fiber Bragg Grating*) (ver seção 1.6), que tem a função de filtrar a ASE, pois esta pode saturar o fotodetetor aumentando bastante o ruído de fundo nas medidas. Tínhamos disponíveis FBGs com comprimentos de onda centrados em 1460-, 1470-, 1480-, 1490- e 1500 nm, e com largura espectral de aproximadamente 0,8 nm. Tais FBG foram fabricadas pelo grupo do Dr. Walter Margulis, na ACREO, Suécia.

![Diagrama de Montagem Experimental do OFDR](image)

Figura 4.4 – Montagem experimental do OFDR
Amplificadores Ópticos à Fibra Dopada com Túlio para banda S

Figura 4.5 – Foto da Montagem experimental do COFDR, onde estão contidos o acoplador direcional, o oscilador local, o circulador, as redes de Bragg e o fotodetetor.

Na figura abaixo pode-se ver a foto dos equipamentos utilizados durante as medições com a técnica de COFDR, onde estão apresentados: o gerador de funções (esquerda acima), laser sintonizável (esquerda abaixo), osciloscópio (direita acima) e ESA (direita abaixo).

Figura 4.6 – Foto dos equipamentos utilizados durante as medições com a técnica de COFDR, onde estão apresentados: o gerador de funções (esquerda acima), laser sintonizável (esquerda abaixo), osciloscópio (direita acima) e ESA (direita abaixo).
Na tabela 4.1 podemos observar alguns parâmetros utilizados durante os experimentos com o OFDR. O intervalo entre as medidas está relacionado à frequência de modulação do laser de sinal (8 Hz), no caso metade do período (62,5 ms), já que tomamos para a aquisição de dados sempre um ponto na rampa de subida da onda triangular. O tempo de aquisição do ESA é de apenas 4 ms, ou seja, muito menor que o intervalo de aquisição de dados. É importante notar que o ponto de aquisição não deve ser no final da rampa de subida, pois podemos durante a medida sair da região linear da onda triangular.

Também devemos ressaltar que a resolução está relacionada com a varredura efetiva de frequência, que no nosso caso corresponde a 300 MHz. Como, para um laser ideal, o espaçamento entre as frequências de Fourier determina a resolução e é dada por:

$$\Delta L = \frac{c}{2n.\Delta \nu}, \quad (4.10)$$

onde $\Delta \nu$ é a varredura total de frequências ópticas, c é a velocidade da luz, n é o índice de refração e o ΔL é a resolução das medidas.

Considerando o índice de refração aproximadamente 1,5 e varredura efetiva utilizada de 300 MHz, temos uma resolução de 30 cm, que é bem razoável no que concerne à caracterização de amplificadores ópticos de fibras dopadas.

| Tabela 4.1 – Parâmetros experimentais utilizados nas medidas com COFDR. |
|-----------------|-----------------|
| Intervalo entre as medidas | 62,5 ms |
| Tempo de aquisição do ESA | 4 ms |
| Varredura efetiva utilizada | 300 MHz |
| Velocidade de aquisição | 960 espectros por minuto |
| Resolução | 30 cm |

Então, para o TDFA podemos definir o ganho da fibra como a diferença entre a intensidade do sinal refletido quando a fibra é bombeada e quando não é bombeada, esta dividida por dois, já que o sinal é submetido ao meio ativo tanto na propagação, quanto na retropropagação [1-4, 6].
4.2. Medicação de Figura de Ruído

Como já discutido na seção 2.2, o ruído pode ser caracterizado indiretamente pela medição do espectro de potência óptica, usando um modelo aproximado para extrair a intensidade do ruído. Alternativamente, pode ser usada detecção opto-eletrônica utilizando técnicas bem estabelecidas [22].

A caracterização da figura de ruído pode ser direta ou detalhada, dependendo do contexto empregado. No caso de amplificadores ópticos, onde a contribuição dominante do ruído é o batimento entre o sinal e a ASE, é possível calcular a figura de ruído total utilizando somente a densidade de potência de ASE. Para a obtenção da figura de ruído com precisão é necessário o emprego de métodos opto-eletrônicos.

Para as técnicas de medição no domínio óptico, é necessária a obtenção dos seguintes parâmetros: densidade espectral da emissão espontânea amplificada, comprimento de onda do canal e fator de ganho do dispositivo, que são obtidos através de um OSA.

Amplificadores ópticos não sofrendo interferência intersimbólica podem ser considerados como lineares, apesar da dependência com a potência de sinal. Como a saturação ocorre devido ao longo tempo de relaxação do meio gerador de ganho, então as medidas de figura de ruído devem ser realizadas sob as condições de operação [23]. Contudo, nestes termos temos o problema em separar a ASE do amplificador e a SSE do laser de sinal.

As técnicas mais empregadas para este fim são: a subtração da contribuição da fonte (a contribuição de SSE amplificada é diretamente subtraída do valor medido do ruído total na saída), a extinção no domínio do tempo (onde se usa o fato de que o tempo de extinção do ASE é lento correspondendo a alguns microsegundos), a extinção da polarização do sinal (onde a polarização do sinal é filtrada e consideramos o ruído de ASE na polarização ortogonal dobrado) e a redução da fonte (onde removemos o canal para medição do ASE, adicionando a potência do canal de medição aos canais adjacentes segundo uma regra específica) [22].

Na técnica de subtração da contribuição da fonte, técnica mais simples e utilizada por nós, em conjunto com o processo de interpolação para aquisição dos valores de ASE e
SSE (descrito na seção 4.1.1). O real valor da ASE corresponde à densidade de potência medida na saída deslocada do comprimento de onda de sinal, subtraída a contribuição de SSE. Então, o fator de ruído real é:

\[
F = \frac{2(\rho_{\text{total}} - G \cdot \rho_{\text{SSE}})}{G \cdot h \cdot v} + \frac{1}{G}
\]

(4.11)

A partir da qual podemos calcular a figura de ruído por:

\[
NF = 10 \log\left(\frac{2(\rho_{\text{total}} - G \cdot \rho_{\text{SSE}})}{G \cdot h \cdot v} + \frac{1}{G}\right)
\]

(4.12)

onde, \(\rho_{\text{total}}\) é a densidade total de ruído na saída do amplificador, \(\rho_{\text{SSE}}\) é a densidade total de ruído gerado pela fonte, \(h\) é a constante de Planck e \(v\) é a frequência do sinal.
REFERÊNCIAS PARA O CAPÍTULO 4

Capítulo 4 – Técnicas de Medição

Neste capítulo apresentaremos os resultados dos experimentos realizados, focando a nossas contribuições no atual estado da arte da tecnologia, tanto para o bombeamento com um único comprimento de onda (1050 nm), como para o esquema de bombeamento duplo com 1050 nm e 1550 nm, que no caso optimiza a absorção de estado fundamental. Depois abordaremos nossas conclusões sobre o trabalho desenvolvido, bem como as ideias que surgiram para geração de trabalhos futuros.

5.1. Bombeamento em 1050 nm

É sabido que os íons trivalentes de Túlio (Tm$^{3+}$) têm um dos seus picos de absorção por volta de 1050 nm (ver capítulo 3). Apesar de bem explorado na literatura [1-7], nossos primeiros experimentos consistiram em montar amplificadores ópticos de fibras dopadas com Túlio (TDFA, Thulium doped fiber Amplifiers) de bombeamento único em 1050 nm com o intuito de caracterizar nossas fibras, bem como para obter parâmetros de comparação com esquemas de bombeamento mais complexos. A seguir descreveremos resultados obtidos com duas fibras diferentes, uma com 9,8 m e outra com 15 m de comprimento.

5.1.1. Fibra dopada com Túlio de 9,8 m e 2500 ppm

Na primeira construção e caracterização de um TDFA utilizamos uma fibra relativamente curta (9,8 m de comprimento) comercializada pela Thorlabs contida em um módulo. Este, com características descritas na tabela 5.1, é composto por uma fibra dopada
Capítulo 5 – TDFA – Resultados, conclusões e perspectivas para trabalhos futuros

com Túlio, com concentração de dopante de 2500 ppm, emendada a fibras tipo padrão monomodo de sílica. O esquema da montagem experimental do TDFA está apresentado na Figura 5.1. A fonte de bombeamento em 1050 nm consiste de um laser de fibra de Itérbio bombeada com laser de diodo, cujo bombeamento é acoplado em uma fibra monomodo padrão através de lentes objetivas (não mostrado na Figura 5.1). É interessante observar que a fibra é multimodo para o comprimento de onda de bombeamento utilizado (1050 nm). O laser utilizado como sinal a ser amplificado é um laser comercial sintonizável continuamente entre 1456 nm e 1584 nm, com um único modo longitudinal. O laser de sinal e o laser de bombeamento são acoplados através de um multiplexador de comprimentos de onda. A porta de saída do multiplexador de comprimentos de onda é emendada por fusão, ao módulo com a fibra dopada com Túlio. As portas de entrada e saída do amplificador têm isoladores ópticos para suprimir oscilações do tipo laser, devido à criação de possíveis cavidades Fabry-Perot. Os isoladores também têm a função de suprimir a propagação de sinal retro-propagante. Utilizamos a outra saída do multiplexador de comprimentos de onda para monitorar a potência de bombeamento entrando no módulo, através de um medidor de potência.

Tabela 5.1 – Dados da fibra (#1) dopada com Túlio de 9,8 m e concentração de dopantes de 2500 ppm.

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Fibra #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricante</td>
<td>Thorlabs</td>
</tr>
<tr>
<td>Tipo de fibra</td>
<td>Monomodo</td>
</tr>
<tr>
<td>Composição da fibra</td>
<td>ZrF₄-BaF₂-LaF₃-AlF₃-NaF</td>
</tr>
<tr>
<td>Identificação da fibra</td>
<td>2.5T120617#0644</td>
</tr>
<tr>
<td>Fibra do Pigtail</td>
<td>Fibra de Sílica padrão</td>
</tr>
<tr>
<td>Dopante</td>
<td>Tm³⁺</td>
</tr>
<tr>
<td>Concentração de dopante</td>
<td>2500 ppm</td>
</tr>
<tr>
<td>Abertura numérica</td>
<td>0,28</td>
</tr>
<tr>
<td>Comprimento de onda de corte</td>
<td>1100 nm</td>
</tr>
<tr>
<td>Diâmetro do núcleo</td>
<td>3 μm</td>
</tr>
<tr>
<td>Diâmetro da casca</td>
<td>125 μm</td>
</tr>
<tr>
<td>Comprimento da fibra</td>
<td>9,8 m</td>
</tr>
</tbody>
</table>
Na Figura 5.2, apresentamos os resultados de ganho de pequenos sinais (potência do sinal de -31 dBm) do amplificador em função do comprimento de onda do sinal, parametrizados para várias potências de bombeamento de 1050 nm. Pode ser observado que o máximo ganho ocorre para comprimentos de onda do laser de sinal por volta de 1462 nm e que para toda a banda S temos uma variação de no máximo 5 dB para as potências de bombeamento consideradas.

Na Figura 5.3, apresentamos os resultados de ganho e figura de ruído de pequenos sinais (potência do sinal de -31 dBm) do amplificador em função do comprimento de onda do sinal, para 660 mW de potência de bombeamento de 1050 nm acoplada ao módulo contendo a fibra dopada. Pode ser observado que a figura de ruído tem um valor baixo, por volta de 4 dB. Isto se deve ao fato de que a maior influência na figura de ruído [8] em um amplificador óptico com fibra dopada é o batimento entre o sinal e a emissão espontânea amplificada. Como este fator de batimento é diretamente proporcional à potência de emissão espontânea (que no caso é menor que em uma fibra dopada com Érbio) e ao comprimento de onda do sinal (note que nosso TDFA opera em comprimentos de onda menores que na banda C), é esperado que tenhamos uma figura de ruído baixa. Também podemos notar que a figura de ruído aumenta com a diminuição do ganho, confirmando o comportamento esperado a partir da equação 2.16, utilizada para cálculo da figura de ruído.
Capítulo 5 – TDFA – Resultados, conclusões e perspectivas para trabalhos futuros

Figura 5.2 – Ganho de pequenos sinais do TDFA com bombeamento único em 1050 nm em função do comprimento de onda do sinal. Para 150mW (triângulos invertido), 310mW (círculos), 407mW (triângulos) e 660mW (quadrados) de potência de bombeamento. Fibra #1.

Figura 5.3 – Ganho de pequenos sinais (quadrados) e figura de ruído (triângulos) do TDFA com bombeamento único em 1050 nm, em função do comprimento de onda do sinal. Para potência de bombeamento de 660 mW e potência de sinal de -31dBm. Fibra #1.
Obtivemos a curva de ganho e figura de ruído de pequenos sinais do TDFA em função da potência de bombeamento para potência do sinal de -31 dBm em 1462 nm (ver Figura 5.4). Pode ser observado que a saturação de ganho não foi atingida, apesar da alta potência de bombeamento, mostrando a ineficiência do processo de conversão ascendente de energia com uma única fonte de bombeamento laser em 1050 nm. A figura de ruído tem um valor baixo entre 3,1 e 4,2 dB e decrescente, pois a figura de ruído é inversamente proporcional ao ganho (ver equação 2.16) e o ganho aumenta com a potência de bombeamento.

Na Figura 5.5, podemos observar a curva de ganho e figura de ruído do amplificador em função da potência do sinal de entrada para uma potência de 380 mW de bombeamento em 1050 nm. Pode ser observada uma pequena tendência à saturação a partir de 1 mW de potência de sinal. Isto se deve ao fato de que a partir de uma certa potência de sinal, o meio gerador de ganho apresenta efeitos de depleção de portadores excitados. Também podemos notar que a figura de ruído aumenta significativamente para 1 mW de...
Capítulo 5 – TDFA – Resultados, conclusões e perspectivas para trabalhos futuros

potência de sinal, pois não existe inversão de população suficiente para gerar ganho e começamos a ter absorção entre o nível inferior de amplificação \((^{3}\text{F}_4)\) e o nível superior de amplificação \((^{3}\text{H}_4)\), ao invés de emissão.

Figura 5.5 – Ganho (quadrados) e figura de ruído (triângulos) do TDFA com bombeamento único em 1050 nm em função da potência de sinal em 1462 nm, para potência de bombeamento de 380 mW em 1462 nm. Fibra #1.
5.1.2. Fibra dopada com Túlio de 15 m e 2000 ppm

Como a primeira fibra dopada que utilizamos era relativamente curta (9,8m de comprimento) e gerava um baixo ganho, fizemos a aquisição de outra fibra maior contida em um módulo de fabricação Le Verre Fluoré. O módulo, com características descritas na tabela 5.2, consiste em uma fibra dopada com Túlio, com concentração de dopante de 2000 ppm e 15 m de comprimento, emendada a fibras padrão monomodo de sílica. O esquema da montagem experimental do TDFA é o mesmo da Figura 5.1. A fonte de bombeamento em 1050 nm consiste em um laser de fibra de Itérbio bombeado com laser de diodo, cujo bombeamento é acoplado em uma fibra monomodo padrão através de lentes objetivas (não mostrado na Figura 5.1). O laser de sinal e o laser de bombeamento são acoplados através de um multiplexador de comprimentos de onda. A porta de saída do multiplexador de comprimentos de onda é emendada (por fusão) ao módulo com a TDF. As portas de entrada e saída do amplificador têm isoladores ópticos, para suprimir oscilações do tipo laser, devido à criação de possíveis cavidades Fabry-Perot. Os isoladores também têm a função de suprimir a propagação de sinal retro-propagante. Utilizamos a outra saída do multiplexador de comprimentos de onda para monitorar a potência de bombeamento entrando no módulo, através de um medidor de potência.

Tabela 5.2 – Dados da fibra (#2) dopada com Túlio de 15 m e concentração de dopantes de 2000 ppm.

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Fibra #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricante</td>
<td>Le Verre Fluoré</td>
</tr>
<tr>
<td>Tipo de fibra</td>
<td>Monomodo</td>
</tr>
<tr>
<td>Composição da fibra</td>
<td>ZrF₄-BaF₂-LaF₃-AlF₃-NaF</td>
</tr>
<tr>
<td>Identificação da fibra</td>
<td>DN011016/1</td>
</tr>
<tr>
<td>Fibra do Pigtail</td>
<td>Fibra de Sílica padrão</td>
</tr>
<tr>
<td>Dopante</td>
<td>Tm³⁺</td>
</tr>
<tr>
<td>Concentração de dopante</td>
<td>2000 ppm</td>
</tr>
<tr>
<td>Abertura numérica</td>
<td>0.238</td>
</tr>
<tr>
<td>Comprimento de onda de corte</td>
<td>1050 nm</td>
</tr>
<tr>
<td>Diâmetro do núcleo</td>
<td>2,8 µm</td>
</tr>
<tr>
<td>Diâmetro da casca</td>
<td>125 µm</td>
</tr>
<tr>
<td>Comprimento da fibra</td>
<td>15 m</td>
</tr>
</tbody>
</table>
Capítulo 5 – TDFA – Resultados, conclusões e perspectivas para trabalhos futuros

Na figura 5.6, apresentamos os espectros de luminescência do amplificador quando excitado por diferentes potências do laser de bombeamento em 1050 nm. Podemos notar o pico de emissão espontânea amplificada (ASE, Amplified Spontaneous Emission) centrado em 1462 nm, que é a nossa região de interesse.

![Espectro de luminescência da fibra dopada com Túlio](image)

Figura 5.6 – Espectro de luminescência da fibra dopada com Túlio, gerado pelo laser de bombeamento em 1050 nm para diferentes potências de bombeamento. Fibra #2.

Na figura 5.7, podemos ver a resposta espectral (quadrados) do TDFA com potência de bombeamento em 1050 nm de 300 mW e potência de sinal de -30 dBm. Também podemos considerar uma aproximação, considerando que temos um sistema de três níveis homogeneamente alargados, por uma Lorentziana descrita pela equação 5.1. Os valores utilizados para tal ajuste foram: $G_0 = -12,16$ dB; $a_0 = 28,51$ dB; $\omega_0 = 1468$ nm e $T_2 = 21,23$ ms. O termo considerando a saturação por potência do sinal (mostrado na equação 2.1) foi desprezado porque a potência de sinal é pequena em comparação à potência de saturação para o sinal de entrada (aproximadamente 0 dBm). Podemos verificar uma concordância excelente entre as duas curvas.

$$G(\omega) = G_0 + \frac{a_0}{1 + (\omega - \omega_0)^2 T_2^2}$$ \hspace{1cm} (5.1)
Figura 5.7 – Curva de ganho do TDFA (quadrados) para potência de bombeamento de 300 mW e potência de sinal de – 30 dBm. Espectro aproximado por uma Lorentziana. Fibra #2.

Nas figuras 5.8 e 5.9, podemos observar o emprego do modelo de caixa preta (BBM, *Black Box Model*) abordado na seção 3.2.2, aplicado aos resultados experimentais para descrever o ganho e a emissão espontânea amplificada (*ASE, Amplified Spontaneous Emission*), respectivamente. Podemos observar um bom ajuste das curvas teóricas às experimentais. Mais detalhes podem ser encontrados em [9].
Capítulo 5 – TDFA – Resultados, conclusões e perspectivas para trabalhos futuros

Figura 5.8 – Modelo BBM (círculos) aplicado às curvas de ganho (quadrados) do TDFA gerado pelo laser de bombeamento em 1050 nm para diferentes potências de bombeamento: (0) 0 mW, (1) 50 mW, (2) 100 mW, (3) 150 mW, (4) 200 mW, (5) 250 mW, (6) 300 mW e (7) 350 mW. A potência do sinal é de – 30 dBm. Fibra #2.

Figura 5.9 – Modelo BBM (círculos) aplicado aos espectros de ASE da fibra dopada com Túlio gerado pelo laser de bombeamento em 1050 nm para diferentes potências de bombeamento: (1) 50 mW, (2) 100 mW, (3) 150 mW, (4) 200 mW, (5) 250 mW, (6) 300 mW e (7) 350 mW. Fibra #2.
Amplificadores Ópticos à Fibra Dopada com Túlio para banda S

Na Figura 5.10, apresentamos os resultados de ganho de pequenos sinais (potência do sinal de -42 dBm) do amplificador em função do comprimento de onda do sinal, parametrizados para várias potências de bombeamento em 1050 nm. Pode ser observado que o máximo ganho, como na fibra menor (9,8 m) ocorre para comprimento de onda do sinal por volta de 1462 nm. Ao contrário da fibra menor, onde ocorreu uma pequena variação de ganho para toda a banda S (3-5 dB), temos uma maior variação de ganho na ordem de 10 dB em toda a banda S para potência de bombeamento de 400 mW. A figura de ruído, como nos resultados anteriores para a fibra menor, tem um valor baixo entre 3,3 e 4,5 dB. Também podemos notar que a figura de ruído apresenta a tendência esperada, pois esta é inversamente proporcional ao ganho (ver equação 2.16).

![Figura 5.10 - Ganho (símbolos cheios) e figura de ruído (símbolos abertos) do TDFA com bombeamento único em 1050 nm, em função do comprimento de onda do sinal; para diversas potências de bombeamento em 1050 nm: 200 mW (triângulos), 300 mW (círculos) e 400 mW (quadrados). Fibra #2.](image)

Obtivemos curvas de ganho e figuras de ruído para três potências de sinais diferentes em função da potência de bombeamento (ver figura 5.11). Pode ser observado que à medida em que aumentamos a potência de sinal, o amplificador começa a saturar para altas potências de bombeamento. Isto se deve à depleção de portadores no nível superior de amplificação. A figura de ruído tem um valor entre 3,5- e 5,3 dB e decrescente, pois a esta é
Capítulo 5 – TDFA – Resultados, conclusões e perspectivas para trabalhos futuros

inversamente proporcional ao ganho (ver equação 2.16), e o ganho aumenta com a potência de bombeamento.

Obtivemos curvas de ganho e figuras de ruído do amplificador, em função da potência do sinal de entrada (ver figura 5.12), para o sinal com comprimento de onda onde o ganho é máximo (1462 nm), com potência de bombeamento de 200 mW. Pode ser observada uma pequena tendência à saturação quando a potência de sinal excede -15 dBm.

A figura de ruído aumenta com a potência do sinal, pois não existe inversão de população suficiente para gerar ganho, e começamos a ter absorção entre o nível inferior de amplificação (3F_4) e o nível superior de amplificação (3H_4), ao invés de emissão.

Figura 5.11 – Ganho (símbolos cheios) e figura de ruído (símbolos abertos) do TDFA com bombeamento único em 1050 nm, em função da potência de bombeamento para diversas potências de sinal: -10 dBm (triângulos), -20 dBm (círculos) e -30 dBm (quadrados). (sinal em 1462 nm). Fibra #2.
Figura 5.12 – Ganho e figura de ruído do TDFA com bombeamento único, em 1050 nm, em função da potência de sinal para potências de bombeamento de 200 mW em 1050 nm e comprimento de onda de sinal de 1462 nm. Fibra #2.

5.2. Bombeamento duplo (1050nm + 1550nm)

Com o intuito de otimizar o ganho e a eficiência de conversão de potência, e reduzir a potência total de bombeamento, vários esquemas de bombeamento duplo da fibra dopada com Túlio foram propostos (ver seção 3.4). A adição do bombeamento de 1550 nm ao bombeamento simples de 1050 nm otimiza a excitação do primeiro fóton entre o nível fundamental (3H6) e o inferior de amplificação (3F4) (ver figura 5.13), implicando no aumento do ganho e da eficiência de conversão de potência, e assim reduzindo a potência total de bombeamento necessária para obtenção do mesmo ganho [5-6, 10-15].
Capítulo 5 – TDFA – Resultados, conclusões e perspectivas para trabalhos futuros

![Diagrama de energia dos íons de Tm³⁺ em vidros ZBLAN mostrando as absorções dos bombeamentos em 1050 nm e 1550 nm.]

Figura 5.13

A Figura 5.14 mostra a montagem experimental do nosso TDFA com esquema de bombeamento duplo em 1050 nm e 1550 nm. A foto do experimento está apresentada na figura 5.15. A fonte de bombeamento em 1550 nm consiste em um laser de diodo (Potência máxima de 2 mW) com vários modos longitudinais, cuja saída é amplificada por um EDFA de potência, por nós construído (ver apêndice A), com potência máxima de saída de 10 mW. O bombeamento em 1050 nm consiste em um laser de fibra de Itérbio bombeado com laser de diodo, cujo bombeamento é acoplado em uma fibra monomodo padrão através de lentes objetivas (não mostrado na Figura 5.14). O laser utilizado como sinal a ser amplificado é um laser comercial sintonizável continuamente entre 1456 nm e 1584 nm, com um único modo longitudinal. O laser de sinal e os dois lasers de bombeamento são acoplados através de um arranjo de multiplexadores de comprimentos de onda comerciais. A porta de saída do arranjo de multiplexadores de comprimentos de onda é emendada por fusão ao módulo com a fibra dopada com Túlio, cujas características estão descritas na Tabela 5.3. O módulo consiste em uma fibra, dopada com Túlio, emendada a fibras padrão monomodo de sílica. As portas de entrada e saída do amplificador têm isoladores ópticos para suprimir oscilações do tipo laser, devido à criação de possíveis cavidades Fabry-Perot. Os isoladores também têm a função e suprimir a propagação de sinal retro-propagante. Utilizamos a outra saída do multiplexador de comprimentos de onda para monitorar a potência de bombeamento entrando no módulo, através de um medidor de potência.
Amplificadores Ópticos à Fibra Dopada com Túlio para banda S

Apesar dos 10 mW de 1550 nm conseguidos na saída do EDFA, por causa das perdas dos conectores e dos multiplexadores de comprimentos de onda, conseguimos um máximo de 6 mW de 1550 nm na entrada do módulo. Também é necessário frisar que, como precaução, limitamos a potência máxima de 1050 nm em 450 mW para evitar possíveis danos às emendas contidas no módulo contendo a fibra dopada com Túlio.

Figura 5.14 – Esquema de montagem do TDFA com bombeamento duplo 1050 nm + 1550 nm.

Figura 5.15 – Foto do esquema de montagem do TDFA com bombeamento duplo 1050 nm + 1550 nm.
Tabela 5.3 – Dados da fibra (83) dopada com Túlio de 18 m e concentração de dopantes de 2000 ppm.

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Fibra #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricante</td>
<td>Le Verre Fluoré</td>
</tr>
<tr>
<td>Tipo de fibra</td>
<td>Monomodo</td>
</tr>
<tr>
<td>Composição da fibra</td>
<td>ZrF₄-BaF₂-LaF₃-AlF₃-NaF</td>
</tr>
<tr>
<td>Identificação da fibra</td>
<td>DN01221/1</td>
</tr>
<tr>
<td>Fibra do Pigtail</td>
<td>Fibra de Sílica padrão</td>
</tr>
<tr>
<td>Dopante</td>
<td>Tm³⁺</td>
</tr>
<tr>
<td>Concentração de dopante</td>
<td>2000 ppm</td>
</tr>
<tr>
<td>Abertura numérica</td>
<td>0.238</td>
</tr>
<tr>
<td>Comprimento de onda de corte</td>
<td>880 nm</td>
</tr>
<tr>
<td>Diâmetro do núcleo</td>
<td>2,8 µm</td>
</tr>
<tr>
<td>Diâmetro da casca</td>
<td>125 µm</td>
</tr>
<tr>
<td>Comprimento da fibra</td>
<td>18 m</td>
</tr>
</tbody>
</table>

Na Figura 5.16 apresentamos os resultados de ganho de pequenos sinais do amplificador em função do comprimento de onda do sinal, com (quadrados) e sem (triângulos) a adição do bombeamento de 1550 nm. Pode ser observado um aumento entre 4 dB e 5 dB, sem indicação de dependência com comprimento de onda, devido ao acréscimo de apenas 5 mW de 1550 nm aos 100 mW de bombeamento em 1050 nm.

Figura 5.16 – Ganho do TDFA com bombeamento duplo 1050 nm + 1550 nm (quadrados) e único em 1050 nm (triângulos) em função do comprimento de onda do sinal. (Para potência de 1050 nm de 100 mW e de sinal de -15 dBm). Fibra #3.
Nós também verificamos a contribuição do bombeamento de 1550 nm em função da potência de bombeamento de 1050 nm, conforme mostrado na Figura 5.17. Novamente, um aumento entre 4- e 5 dB no ganho foi observado quando o bombeamento de 1550 nm é inserido indicando que, para as potências de bombeamento e sinal (-15 dBm) usadas, não são observados efeitos de compressão de ganho.

É válido ressaltar que para bombeamento único para se conseguir 25 dB de ganho precisamos de 450 mW potência de 1050 nm. Enquanto que com o bombeamento duplo proposto, para obter 25 dB de ganho só são necessários 350 mW de potência de 1050 nm e 5 mW de potência de 1550 mW, ou seja, com o bombeamento duplo obtivemos uma redução de 95 mW na potência total (100 mW de 1050 nm) para que o amplificador gerasse o mesmo ganho requerido. Esta redução de potência é mais pronunciada para altas potências de bombeamento e é refletida em diminuição de custos e maior confiabilidade, uma vez que os componentes e, principalmente as emendas da fibra dopada com Túlio, são bastante sensíveis a altos níveis de potência.

Figura 5.17 – Ganho do T DFA com bombeamento duplo 1050 nm + 1550 nm (quadrados) e simples 1050 nm (triângulos) em função da potência de bombeamento em 1050 nm. (Para sinal de -15 dBm e 1470 nm). *Fibra #3.*
Capítulo 5 – TDFA – Resultados, conclusões e perspectivas para trabalhos futuros

Na Figura 5.18 analisamos o ganho do amplificador em função da potência de bombeamento de 1550 nm. Mostramos que para pequenos sinais (-14 dBm) o ganho aumenta linearmente com a potência de bombeamento de 1550 nm. A taxa de variação, calculada a partir da Figura 5.16, é de 0.88 dB/mW. Não observamos nenhum efeito de compressão de ganho para as potências de bombeamento e sinal utilizadas, indicando que o ganho para o bombeamento pode aumentar ainda mais se maiores potências de 1550 nm forem usadas. Entretanto, F. Roy e colaboradores em [5] mostraram que a máxima eficiência de conversão de potência ocorre quando a potência de 1550 nm corresponde a 7% da potência total. Acima deste nível de bombeamento, efeitos de compressão de ganho aparecem devido à diminuição de inversão de população. Para nosso TDFA o efeito de compressão de ganho deve aparecer com potências de bombeamento de 1550 nm por volta de 10 mW, quando a potência de 1050 nm é 150 mW, porém este patamar de potência não pôde ser obtido devido à potência de saturação de saída limitada do nosso EDFA.

![Ganho do TDFA em função da potência de bombeamento em 1550 nm. A potência de 1050 nm é de 150 mW, a potência de sinal é de -14 dBm e o comprimento de onda do sinal é 1470 nm. Fibra #3.](image)

Usando o laser sintonizável como fonte de bombeamento por volta de 1550 nm, e outro laser de diodo operando em 1470 nm como fonte de sinal, nós obtivemos o ganho
Amplificadores Ópticos à Fibra Dopada com Túlio para banda S

para pequenos sinais do nosso TDFA, como função do comprimento de onda do bombeamento por volta de 1550 nm, conforme mostrado na Figura 5.19. Pudemos ver, portanto, que o acréscimo de ganho devido ao bombeamento por volta de 1550 nm independe do comprimentos de onda em torno de 1550 nm (de 1540 nm a 1565 nm), confirmando assim resultados previamente obtidos [15]. O espectro de comprimentos de onda utilizada ficou limitado devido à banda de amplificação do EDFA. Esta independência com o comprimento de onda de bombeamento auxiliar (1550nm) permite a utilização de lasers de diodo de baixo custo como fonte do bombeamento em torno de 1550 nm, pois estes não precisam ser monomodo.

Figura 5.19 – Ganho do TDFA com (símbolos fechados) e sem (símbolos abertos) a adição do bombeamento auxiliar de 2,5 mW de 1550 nm, em função do comprimento de onda do bombeamento de 1550 nm, para 200 mW (quadrados) e 100 mW (triângulos) de potência de 1050 nm. Fibra #3.

Para que pudéssemos entender como funciona a dinâmica de ganho e como está distribuído o ganho dentro da fibra dopada, realizamos medidas utilizando a técnica de reflectometria óptica coerente no domínio da freqüência (COFDR, Coherent Optical Frequency Domain Reflectometry) (ver seção 4.1.2). A montagem experimental está
descrita na Figura 4.3. O sinal gerado para a modulação do laser de prova foi uma onda triangular com 2 Vpp e 8 Hz. Configuramos o equipamento que calcula a FFT para realizar 100 médias por medida. Na Figura 5.20, está apresentado o espectro obtido pelo analisador de espectro elétrico para três condições de bombeamento: sem bombeamento, apenas sinal (linha inferior); bombeamento simples em 1050 nm (linha intermediária); e bombeamento duplo, 1050 nm + 1550 nm (linha superior). Os picos finos representam reflexões dos componentes do TDFA, como acoplagadores direcionais (ver seção 1.7) e emendas da fibra dopada. As emendas de entrada e saída da fibra dopada estão indicadas. Desde que a frequência é proporcional à diferença de fase entre os sinais refletidos do amplificador e do oscilador local, que por sua vez é proporcional ao caminho óptico, então a partir do comprimento total da fibra dopada podemos converter o eixo de frequência em distância e obter o ganho distribuído na fibra. É importante frisar que para que a técnica de COFDR funcione devemos retirar o isolador da entrada.

Figura 5.20 – Resposta em frequência do OFDR gerada pelo analisador de espectro elétrico para: somente sinal (linha preta), 150 mW potência de 1050 nm (linha vermelha) e 150 mW potência de 1050 nm com 6 mW de potência de 1550 nm (linha azul). Fibra #3.
Amplificadores Ópticos à Fibra Dopada com Túlio para banda S

Na Figura 5.21 nós apresentamos o ganho na fibra em função da distância à emenda de entrada para diferentes condições de bombeamento, obtido a partir de uma figura semelhante à figura 5.20. Note que o ganho da fibra, medido com o COFDR, pode ser convertido no ganho do amplificador se subtraírmos as perdas do sinal até à fibra dopada em seu comprimento de onda. No nosso TDFA, nós medimos uma perda de 5.1 dB para o sinal, da entrada do amplificador até a entrada da fibra dopada. Também podemos notar claramente na Figura 5.21, um efeito de saturação do bombeamento de 1550 nm no ganho da fibra, desde que as curvas para 4 mW e 6 mW são quase idênticas. Note que os resultados mostrados na figura 5.17 não indicam efeito de saturação com potências de sinal de –15 dBm. Na Figura 5.20 a potência do sinal foi aumentada para -4.5 dBm para que o retro-espalhamento de Rayleigh ultrapassasse o ruído de fundo no fotodetector do COFDR (ver seção 4.1.2).

Outro aspecto importante é que utilizando a técnica de COFDR podemos identificar o tamanho ideal de fibra dopada para um dado bombeamento. Por exemplo, na figura 5.21, se desejamos um ganho de 14 dB, precisamos de 150 mW de bombeamento de 1050 nm em uma fibra dopada de 18 m. Com a adição de 4 mW de 1550 nm, mantendo os 150 mW de bombeamento de 1050 nm, podemos reduzir o comprimento da fibra dopada de 18 m para 10 m, conseguindo os mesmos 14 dB de ganho. Devido ao alto custo de fibras ZBLAN dopadas com Túlio, o uso de esquemas de bombeamento duplo pode significar uma redução significativa nos custos de um TDFA.

Note que para este tipo de medição, temos uma região no início da fibra dopada onde o sinal de ruído retro-espalhado foi bastante amplificado, tornando a medição do ganho impossível. Este ruído de baixa freqüência cria uma zona morta, que no nosso caso específico é de aproximadamente 3 m.
Figura 5.21 – Ganho distribuído em função do comprimento da fibra para 150 mW de 1050 nm. As potências de 1550nm são 0 mW (quadrados), 2 mW (círculos fechados), 4 mW (triângulos) e 6 mW (círculos abertos).

Fibra #3.
5.3. Conclusões

Conseguimos construir amplificadores ópticos a fibra dopada com Túlio (TDFA, *Thulium Doped Fiber Amplifiers*) com um único comprimento de onda para bombeamento, no caso 1050 nm, utilizando o processo de conversão ascendente de energia. A partir dos resultados pudemos demonstrar a reprodução dos resultados publicados na literatura atual.

Também, a partir dos resultados experimentais [10-12], pudemos concluir que o emprego de esquemas de bombeamento duplo para aumentar a eficiência do processo de inversão de população produz um aumento no ganho do amplificador, que pode ser revertido em menores potências de bombeamento ou menor comprimento de fibra dopada para atingir um mesmo ganho pré-estabelecido. Para o caso da combinação de 1050 nm com 1550 nm para bombeamento, nós obtivemos um ganho de pequenos sinais de até 28 dB com aproximadamente 5 dB de figura de ruído, com o emprego do esquema de bombeamento duplo (455 mW de potência total). A adição de 5 mW de 1550 nm resultou em um aumento de 5 dB no ganho de pequenos sinais, que pode ser traduzido na redução de 95 mW na potência total de bombeamento ou na redução de até 44% do comprimento da fibra dopada.

Obtivemos, pela primeira vez através da técnica de reflectometria óptica no domínio da freqüência, o ganho distribuído ao longo da fibra dopada em amplificadores ópticos de fibras dopadas com Túlio, operando na banda *S* com bombeamento em dois comprimentos de onda simultaneamente [10-12]. Também mostramos que esta técnica é bastante poderosa no que concerne à otimização de ganho em função do comprimento da fibra dopada e das potências de bombeamento nos diferentes comprimentos de onda.
5.4. Perspectivas para Trabalhos Futuros

Pretendemos dar continuidade aos trabalhos desenvolvidos durante o mestrado no doutorado, principalmente no que concerne à pesquisa e melhor caracterização do TDFA com outros esquemas de bombeamentos, que melhorem a eficiência do processo de conversão de energia.

Também pretendemos avançar no emprego de técnicas, como a de dupla passagem do sinal pelo amplificador através da utilização de espelhos, para a obtenção de maiores níveis de ganho não saturado.

Visamos o desenvolvimento de um protótipo para que possamos fazer caraterizações sistêmicas, como o estudo da influência da combinação de bombeamentos com comprimentos de onda diversos na taxa de erro por bit (BER, Bit Error Rate).

J.-O. Byun e colaboradores mostraram pela primeira vez estudos de transientes em TDFA utilizando o esquema de bombeamento duplo 1400 nm + 1550 nm [16]. Existe a necessidade do estudo comparativo da resposta transiente em TDFA com vários esquemas de bombeamento diferentes, bem como do aperfeiçoamento de técnicas de compensação de transitório em tais amplificadores [17].
REFERÊNCIAS PARA O CAPÍTULO 5

Capítulo 5 – TDFA – Resultados, conclusões e perspectivas para trabalhos futuros

Acrônímos e termos utilizados

1. ADD-DROP Ópticos – Dispositivos Ópticos que tem a capacidade de adicionar, acessar ou remover um canal em sistema WDM.
2. ASE (Amplified Spontaneous Emission) – Emissão Espontânea Amplificada.
4. Banda C (Conventional Band) – Região Espectral compreendida entre 1530 nm e 1565 nm, segundo o ITU-T.
5. Banda L (Long Wavelength Band) – Região Espectral compreendida entre 1565 nm e 1625 nm, segundo o ITU-T.
6. Banda S (Short Wavelength Band) – Região Espectral compreendida entre 1460 nm e 1530 nm, segundo o ITU-T.
7. BBM (Black Box Model) – Modelo de caixa preta.
8. BER (Bit Error Rate) – Taxa de Erro por Bit.
11. CW (Continuous Wave) – Onda Contínua.
12. DEMUX (Multiplexer) – Demultiplexador.
13. DFB (Distributed Feedback laser) – Laser com Realimentação Distribuída.
14. DWDM (Dense Wavelength Division Multiplexing) – Multiplexação Densa por Comprimento de Onda.
15. EDF (Erbium Doped Fiber) – Fibra Dopada com Érbio.
16. EDFA (Erbium Doped Fiber Amplifier) – Amplificador a fibra dopada com Érbio.
17. ESA (Excited State Absorsion) – Absorção de Estado Excitado.
18. ESA (Electrical Spectrum Analyser) – Analisador de espectro Óptico.
20. FBG (Fiber Bragg Gratings) – Fibras com Redes de Bragg.
21. FFT (Fast Fourier Transform) – Transformada Rápida de Fourier.
22. FWM (Four Wave Mixing) – mistura de quatro ondas.
23. GRIN (*Graded Refractive Index*) – Índice de Refração Gradual.
24. GSA (*Ground State Absorption*) – Absorção de Estado Fundamental.
25. GS-T DFA (*Gain Shifted - Thulium Doped Fiber Amplifier*) – Amplificador de fibra dopada com Túlio com curva de ganho deslocada em frequência.
26. IDLER – Banda conjugada ocasionada pelo processo de amplificação paramétrica.
27. IEC (*International Engineering Consorci um*) – Consórcio Internacional de engenharia.
29. LASER (*Light Amplification by stimulated Emission Radiation*) – Amplificação de Luz por Emissão de Radiação estimulada.
31. LPG (*Long Period Gratings*) – Fibras com modulação no índice de refração com longo período.
32. MASER (*Microwave Amplification by stimulated Emission Radiation*) – Amplificação de Microondas por Emissão de Radiação estimulada.
33. MPI (*Multipath Interference*) – Interferência de múltiplos caminhos.
34. MUX (*Multiplexer*) – Multiplexador.
35. NDFA (*Neodimium Doped Fiber Amplifier*) – Amplificador de fibra dopada com Neodímio.
36. NF (*Noise Figure*) – Figura de Ruído.
37. OFC (*Optical Fiber Communication Conference*) – Conferência em Comunicações por Fibras Ópticas, realizada nos EUA.
38. OFDR (*Optical Frequency Domain Reflectometry*) – Reflectometria Óptica no domínio da frequência.
39. OL – Oscilador Local
40. OTDR (*Optical Time Domain Reflectometry*) – Reflectometria Óptica no domínio do tempo.
41. OPA (*Optical Parametric Amplifier*) – Amplificador Óptico Paramétrico.
42. OSA (*Optical Spectrum Analyser*) – Analisador de Espectro Óptico.
<table>
<thead>
<tr>
<th>Acronimos e termos utilizados</th>
</tr>
</thead>
<tbody>
<tr>
<td>43. PCE (Power Conversion Efficiency) – Eficiência de Conversão de Potência.</td>
</tr>
<tr>
<td>44. PDFA (Praseodimium Doped Fiber Amplifier) – Amplificador a fibra dopada com Prasedívio.</td>
</tr>
<tr>
<td>45. pin – Fotodiodo com camada intrínseca interna para absorção de fótons.</td>
</tr>
<tr>
<td>46. PMD (Polarization Mode Dispersion) – Dispersão do Modo de Polarização.</td>
</tr>
<tr>
<td>47. Regenerador 3R – realiza a reformatação, retemporização e reamplificação do sinal.</td>
</tr>
<tr>
<td>48. RX – Receptor.</td>
</tr>
<tr>
<td>49. sig-sp (Signal-Spontaneous Beat) – Batimento Sinal-Espontâneo.</td>
</tr>
<tr>
<td>50. SNR (Signal to Noise Ratio) – Relação sinal ruído.</td>
</tr>
<tr>
<td>51. SOA (Semiconductor Optical Amplifier) – Amplificador Óptico de Semicondutor.</td>
</tr>
<tr>
<td>52. sp-sp (Spontaneous -Spontaneous Beat) – Batimento Espontâneo -Espontâneo.</td>
</tr>
<tr>
<td>53. SRS (Stimulated Raman Scattering) – Espalhamento Raman estimulado.</td>
</tr>
<tr>
<td>54. SSE (Source Spontaneous Emission) – Emissão Espontânea da Fonte de Luz.</td>
</tr>
<tr>
<td>55. TDF (Thulium Doped Fiber) – Fibra dopada com Túlio.</td>
</tr>
<tr>
<td>56. T DFA (Thulium Doped Fiber Amplifier) – Amplificador a fibra dopada com Túlio.</td>
</tr>
<tr>
<td>57. TE (Transversal Eletric) – Elétrico transversal.</td>
</tr>
<tr>
<td>58. TM (Transversal Magnetic) – Magnético transversal.</td>
</tr>
<tr>
<td>59. TWA (Travelling Wave Amplifier) – Amplificador de onda propagante.</td>
</tr>
<tr>
<td>60. TX – Transmissor.</td>
</tr>
<tr>
<td>61. WDM (Wavelength Division Multiplexing) – Multiplexação por Comprimento de Onda.</td>
</tr>
<tr>
<td>62. WXC (Wavelength Cross Conectors) – conectores cruzados de comprimentos de onda.</td>
</tr>
<tr>
<td>63. ZBLAN – Vidros Fluorzirconados (ZrF4-BaF2-LaF3-AlF3-NaF) na sua composição. Usados como hospedeiro para terras raras que necessitam de vidros com baixa energia por fônons, inclusive os íon trivalentes de Túlio (Tm³⁺).</td>
</tr>
</tbody>
</table>
Lista de parâmetros

1. a – Raio do núcleo da fibra.
2. a_p – Área de seção de choque para o bombeamento na fibra.
3. B_e – Largura de banda no domínio elétrico de medida na figura de ruído.
4. c – velocidade da luz.
5. E – Campo elétrico.
6. F – Fator de ruído do amplificador.
7. $f'(E_c)$ – Probabilidade de ocupação de um elétron com energia E_c na banda de condução.
8. $f'(E_v)$ – Probabilidade de ocupação de um buraco com energia E_v na banda de valência.
10. g – Ganho no meio óptico.
11. g_0 – Máximo de ganho no meio óptico.
12. g_R – Coeficiente de ganho Raman.
13. h – Constante de Planck.
14. $\langle i_{SINAL} \rangle$ - Média da fotocorrente gerada no fotodetector.
15. I_P – Intensidade do bombeamento.
17. k – Número de onda.
18. L – Comprimento do meio óptico ativo.
19. L_c – Comprimento de coerência.
20. m_0 – Massa do elétron.
22. N_f – Densidade eletrônica no estado fundamental.
23. N_x – Densidade eletrônica no estado excitado.
24. N_{vi} – Potência de ruído adicionado pelo amplificador.
26. N_j, para $j = 0, 1, 2, 3, 4$ e 5. – Estado de energia dos íons trivalentes de Túlio.
Lista de parâmetros

27. *NF* – Figura de ruído do amplificador.
29. *N_u* – Densidade eletrônica no estado superior.
30. *n_r* – Índice de refração.
31. *n_sp* – Fator de inversão de população.
32. *P* – Potência óptica do sinal.
34. *P_entrada* – Potência de entrada no amplificador.
35. *P_p* – Potência de bombeamento.
36. *P_saida* – Potência de saída no amplificador.
37. *P_{sat}* – Potência de saturação do amplificador.
38. *q* – Carga fundamental do elétron.
39. *R_1* – Refletividade da face de entrada de um SOA.
40. *R_2* – Refletividade da face de saída de um SOA.
41. *r_p* – Raio modal do bombeamento.
42. *r_p* – Raio modal do sinal.
43. *SNR_entrada* – Relação sinal-ruído na entrada do amplificador.
44. *SNR_saida* – Relação sinal-ruído na saída do amplificador.
45. *S^{dbm}_f* – Densidade espectral do ruído na saída do amplificador.
46. *S_{e^{dbm}}_f* – Densidade espectral do ruído na equivalente na entrada do amplificador.
47. *S_{MPI}(f)* – Densidade espectral de potência da interferência por múltiplos caminhos.
49. *S_{shot}(f)* – Densidade espectral de potência do ruído de disparo.
50. *S_{sig,sp}(f)* – Densidade espectral de potência do batimento do sinal com a emissão espontânea.
51. *S_{sp,sp}(f)* – Densidade espectral de potência do batimento da emissão espontânea com a emissão espontânea.
52. *W_{pi}* – Probabilidade de absorção a partir do nível i.
53. *W_s* – Probabilidade de absorção ou emissão de um fóton de sinal.
55. α_P – Coeficiente de absorção.
56. γ_{ij} – Probabilidades de transição entre os níveis i e j por emissão espontânea ou decaimento multifonônico.
57. Δf – Largura de linha do laser.
58. Δk – Máximo descasamento de fase tolerado em um OPA.
59. ΔL – Resolução do COFDR.
60. $\Delta \nu$ – Varredura total de frequência na técnica COFDR.
61. $\Delta \nu_A$ – Largura de banda do amplificador.
62. $\Delta \nu_g$ – Largura de banda do ganho do meio.
63. $\Delta \nu_L$ – Intervalo entre os modos longitudinais de uma cavidade Fabry-Perot.
64. $\langle \Delta^2 i_n \rangle$ – Variância do ruído no fotodetector.
65. ε_0 – Permissividade elétrica no vácuo.
66. η – Eficiência quântica.
67. η_P – Fator de confinamento para o bombeamento.
68. ν – Freqüência do sinal.
69. ν_m – Freqüências de ressonância da cavidade Fabry-Perot.
70. ρ_{ASE} – Densidade espectral de potência da emissão espontânea amplificada.
71. ρ_{total} – Densidade espectral de potência de ruído na saída do amplificador.
72. ρ_{SSE} – Densidade espectral de potência de ruído na entrada do amplificador.
73. σ_{abs} – Seção de choque para absorção.
74. σ_{em} – Seção de choque para emissão.
75. σ_s – Seção de choque para o sinal.
76. τ_i – Tempo de vida do nível i.
77. $\chi^{(i)}$ – Susceptibilidade elétrica de ordem i.
78. ω – Freqüência do sinal.
79. ω_0 – Freqüência de transição atômica.
80. \Re – Responsividade do fotodetetor.
Trabalhos publicados

Trabalhos Publicados

Artigos completos publicados em periódicos

Artigos publicados em eventos

Amplificadores Ópticos à Fibras Dopadas com Túlio para banda S

Artigos completos aceitos ou submetidos a periódicos

Artigos completos aceitos ou submetidos a eventos

ANEXO A

EDFA de potência para bombeamento de 1550nm

Para realizar o experimento com bombeamento duplo 1050 nm + 1550 nm, foi necessária a construção de uma fonte de bombeamento de 1550 nm. Como dispunhamos de fibras ópticas dopadas com Érbio (ver tabelas A.1 e A.2) e um laser multimodo operando em 1550 nm, resolvemos construir um EDFA (ver seção 2.4.1), otimizado para gerar potência. O EDFA foi construído segundo o esquema apresentado na Figura A.1.

<table>
<thead>
<tr>
<th>Tabela A.1 – Fibra #4 dopada com Érbio.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição</td>
</tr>
<tr>
<td>Fabricante</td>
</tr>
<tr>
<td>Tipo de fibra</td>
</tr>
<tr>
<td>Composição da fibra</td>
</tr>
<tr>
<td>Identificação da fibra</td>
</tr>
<tr>
<td>Dopante</td>
</tr>
<tr>
<td>Concentração de dopante</td>
</tr>
<tr>
<td>Abertura numérica</td>
</tr>
<tr>
<td>Comprimento de onda de corte</td>
</tr>
<tr>
<td>Diâmetro do núcleo</td>
</tr>
<tr>
<td>Diâmetro da casca</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabela A.2 – Fibra #5 dopada com Érbio.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição</td>
</tr>
<tr>
<td>Fabricante</td>
</tr>
<tr>
<td>Tipo de fibra</td>
</tr>
<tr>
<td>Composição da fibra</td>
</tr>
<tr>
<td>Identificação da fibra</td>
</tr>
<tr>
<td>Dopante</td>
</tr>
<tr>
<td>Concentração de dopante</td>
</tr>
<tr>
<td>Abertura numérica</td>
</tr>
<tr>
<td>Comprimento de onda de corte</td>
</tr>
<tr>
<td>Diâmetro do núcleo</td>
</tr>
<tr>
<td>Diâmetro da casca</td>
</tr>
</tbody>
</table>
Primeiramente, utilizamos a fibra descrita na Tabela A.1 (Érbio 17) para compor nosso amplificador e fomos progressivamente cortando a fibra e para cada comprimento de fibra, medindo as características do EDFA. Observamos que a máxima potência de saída do amplificador ocorria quando a fibra dopada tinha aproximadamente 5,7 m de comprimento (ver Figura A.2) e que aumentando a potência de bombeamento acoplada na fibra dopada estávamos diminuindo a Relação Sinal-Ruído (SNR) (ver Figura A.3).
Obtivemos uma potência máxima de saída do EDFA de 6,5 mW, observando que a fibra #4 não é otimizada para construção de amplificadores de potência. Contudo, devido a necessidade de mais potência para bombeamento complementar (1550 nm) do nosso TDFA (ver seção 5.2), utilizamos a fibra #5 para construção do nosso EDFA.

Fizemos a caracterização com a fibra #5 para três comprimentos diferentes e observamos uma variação da potência de saída de aproximadamente 1 mW (Figura A.4). Também medimos a Relação Sinal-Ruído para os três comprimentos diferentes e observamos que para uma fibra de 10 m tínhamos uma Relação Sinal-Ruído melhor do que para comprimentos menores (Figura A.5).

Optamos por este comprimento de onda intermediário (10 m), onde não tivemos uma perda grande de potência (< 1 mW) e uma Relação Sinal-Ruído bem melhor do que para comprimentos um pouco maiores.

Notamos também, que a derivada da relação entre a potência de saída do amplificador com a potência acoplada na fibra dopada com Érbio é maior que zero (Figura A.6). O que indica que, com mais potência de bombeamento do EDFA, poderíamos aumentar a potência de saída do mesmo. Contudo, ficamos limitados à potência disponível do laser de diodo utilizado para bombear o amplificador.

Figura A.3 - Relação sinal-ruído do EDFA versus comprimento da fibra dopada com Érbio #4.

Figura A.4 - Variação da potência de saída para comprimentos diferentes.

Figura A.5 - Relação sinal-ruído para três comprimentos diferentes.

Figura A.6 - Derivada da relação entre potência de saída e potência acoplada na fibra dopada com Érbio.
Amplificadores Ópticos à Fibras Dopadas com Túlio para banda S

Figura A.4 – Potência de saída do EDFA versus comprimento da fibra dopada com Érbio #5.

Figura A.5 - Relação sinal-ruído do amplificador versus comprimento da fibra dopada com Érbio #5.
Anexo A – EDFA de potência para bombeamento de 1550nm

Carmelo José Albanez Bastos Filho.

Figura A.6 – Potência de saída do EDFA versus potência de bombeamento acoplada na fibra dopada com Érbio #5.

Abaixo está apresentada, na figura A.7, a foto do EDFA montado utilizando a fibra #5. Pode-se observar o laser de bombeamento (980 nm) montado sobre uma estrutura metálica para irradiar calor e a fibra dopada com Érbio em suporte preto no canto superior direito da figura.

Figura A.7 – Foto do EDFA montado com a fibra dopada com Érbio #5.