

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM TECNOLOGIAS ENERGÉTICAS E NUCLEARES

NICOLAS ANDERSON LEAL MORAIS LUNA

Validação de Propriedades, Construção de Banco de Dados e Simulação da Produção de biogás via Aspen Plus[®]

NICOLAS ANDERSON LEAL MORAIS LUNA

Validação de propriedades, Construção de Banco de dados e simulação da produção de biogás via Aspen Plus[®]

Dissertação apresentada ao Programa de Pós-Graduação em Tecnologias Energéticas e Nucleares da Universidade Federal de Pernambuco, como requisito parcial para obtenção do título de Mestre em Tecnologias Energéticas e Nucleares.

Área de concentração: Fontes Renováveis de Energia.

Orientador: Prof. Dr. Allan de Almeida Albuquerque. Coorientador: Prof. Dr. Emmanuel Damilano Dutra.

Catalogação na fonte: Bibliotecário Carlos Moura, CRB-4/1502

L961v Luna, Nicolas Anderson Leal Morais.

Validação de propriedades, construção de banco de dados e simulação da produção de biogás via Aspen Plus[®]. / Nicolas Anderson Leal Morais Luna. – 2023. 244 f.: il.

Orientador: Prof. Dr. Allan de Almeida Albuquerque. Coorientador: Prof. Dr. Emmanuel Damilano Dutra.

Dissertação (mestrado) – Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Tecnologias Energéticas e Nucleares. Recife, 2023.

Inclui referências e apêndices.

1. Fontes renováveis de energia. 2. Modelagem. 3. Calibração de modelo. 4. Digestão anaeróbia. I. Albuquerque, Allan de Almeida (orientador). II. Dutra, Emmanuel Damilano (coorientador). III. Título.

621.042 CDD (22. ed.)

UFPE BCTG/2023-270

NICOLAS ANDERSON LEAL MORAIS LUNA

Validação de propriedades, Construção de Banco de dados e Simulação da Produção de biogás via Aspen Plus[®]

Dissertação apresentada ao Programa de Pós-Graduação em Tecnologias Energéticas e Nucleares da Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, como requisito parcial para obtenção do título de Mestre em Tecnologias Energéticas e Nucleares. Área de concentração: Fontes Renováveis de Energia.

Aprovada em: 31/08/2023

BANCA EXAMINADORA

Prof. Dr. Allan de Almeida Albuquerque (Orientador)
Universidade Federal de Pernambuco

Prof. Dr. Rômulo Simões Cezar Menezes (Examinadora Interno)
Universidade Federal de Pernambuco - UFPE

Prof. Dra. Bruna Soares Fernandes (Examinador Externo)
University of Manitoba, U.M., Canadá

Prof. Dr. Leonardo Henrique Soares Damasceno (Examinador Externo)
Universidade Federal de Alfenas, UNIFAL/MG

AGRADECIMENTOS

Agradeço primeiramente, a Deus, que me deu a força e a determinação para chegar aqui;

Agradeço aos meus pais, André e Fátima, pelo apoio e o amor incondicional, e pelos seus esforços e sacrifícios para que eu tivesse uma boa educação;

A minha irmã, Ana Clara, que sempre foi uma das pessoas que mais me incentivou a continuar;

A todos os meus familiares que sempre me deram suporte, me incentivaram e sonharam junto comigo;

A todos os amigos que fiz durante esta jornada de conhecimento, compartilhando alegrias, tristezas, frustações e emoções;

Ao Professor Dr. Emmanuel, pelo apoio, atenção, dedicação e paciência durante o decorrer deste trabalho:

Ao Professor Dr. Allan, pelo apoio, atenção, dedicação e paciência durante o decorrer deste trabalho:

Aos membros da banca examinadora;

A todos que direta ou indiretamente fizeram parte da minha formação e contribuíram para que eu me tornasse a pessoa que sou hoje.

RESUMO

Neste estudo, um modelo de simulação do processo de digestão anaeróbia implementado no software comercial Aspen Plus foi calibrado por meio da validação das propriedades físico-químicas de 61 componentes, comparando-os com valores reportados na literatura. No processo de validação de propriedades foram verificadas 396 propriedades puras, das quais 98 foram incluídas no modelo após validação. Propriedades dependentes da temperatura também foram validadas para componentes sem referência no banco de dados do Aspen Plus, resultando na inclusão de 10 modelos entre 14 validados. O modelo NRTL foi validado usando o método UNIFAC, gerando 967 interações binárias e enriquecendo um banco de dados de propriedades do modelo de digestão anaeróbia. Por fim o modelo de simulação calibrado de digestão anaeróbia consistiu na validação de dez casos sob diferentes condições operacionais, levando em conta a validação das propriedades puras e a representação adequada do equilíbrio líquido-vapor. Sete casos apresentaram melhores resultados, resultando em uma maior precisão do modelo calibrado com os dados experimentais, demonstrando a necessidade e a importância da realização das validações das propriedades na modelagem e simulação de processos químicos.

Palavras-chave: modelagem; calibração de modelo; digestão anaeróbia.

ABSTRACT

In this study, a simulation model of the anaerobic digestion process implemented in the commercial software Aspen Plus was calibrated by validating the physicochemical properties of 61 components, comparing them with values reported in the literature. In the property validation process, 396 pure properties were verified, of which 98 were included in the model after validation. Temperature-dependent properties were also validated for components with no reference in the Aspen Plus database, resulting in the inclusion of 10 models out of 14 validated. The NRTL model was validated using the UNIFAC method, generating 987 binary interactions and enriching a database of anaerobic digestion properties. Finally, validation of the calibrated anaerobic digestion simulation model consisted of validating ten cases under different operating conditions. Seven cases showed better results, resulting in greater accuracy of the calibrated model with the experimental data, highlighting the need for and importance of performing property validations in the modeling and simulation of chemical processes.

Keywords: modeling; anaerobic digestion; model calibration.

LISTA DE FIGURAS

Figura 1 –	Variação global de temperatura ao longo dos anos	21
Figura 2 –	Taxas médias de crescimento anual da oferta mundial de energias	22
	renováveis, 1990-2019.	
Figura 3 –	Principais fontes de biomassa.	24
Figura 4 –	Ilustração da composição estrutural da biomassa vegetal.	25
Figura 5 –	Fluxograma do Processo de Digestão Anaeróbia.	32
Figura 6 –	Fluxograma do processo de digestão anaeróbia simulado no	60
	software Aspen Plus.	
Figura 7 –	Relação da quantidade e percentual de propriedades validadas, as	69
	quais foram inseridas ou mantidas na simulação.	
Figura 8 –	Capacidade Calorifica do gás ideal em função da temperatura para	71
	a cisteína.	
Figura 9 –	Capacidade Calorifica do gás ideal em função da temperatura para	72
	Arginina.	
Figura 10 –	Capacidade Calorifica do gás ideal em função da temperatura para	72
	Glicina.	
Figura 11 –	Capacidade Calorifica do gás ideal em função da Temperatura para	73
	Histidina.	
Figura 12 –	Capacidade Calorifica do gás ideal em função da temperatura para	74
	Ácido Glutâmico.	
Figura 13 –	Capacidade Calorifica do gás ideal em função da temperatura para	74
	Fenilalanina.	
Figura 14 –	Calor de vaporização em função da temperatura para a Arginina.	76
Figura 15 –	Calor de vaporização em função da temperatura para a Cisteína.	77
Figura 16 –	Calor de vaporização em função da temperatura para a Prolina.	78
Figura 17 –	Calor de vaporização em função da temperatura para a Histidina.	79
Figura 18 –	Pressão de vapor em função da temperatura para Cisteína.	81
Figura 19 –	Pressão de vapor em função da temperatura para Prolina.	81
Figura 20 –	Pressão de vapor em função da temperatura para Arginina.	81
Figura 21 –	Pressão de vapor em função da temperatura para Histidina.	82

Figura 22 –	Comparação entre Dados de ELV (pontos de bolha) experimentais	84
	e calculados por NRTL de ELV para o sistema binário CO2/água e	
	calculados por NRTL à 318,23 K.	
Figura 23 –	Comparação entre Dados de ELV (pontos de bolha) experimentais	85
	e calculados por NRTL de ELV para o sistema binário CO2/água e	
	calculados por NRTL à 318,23 K	
Figura 24 –	Comparação entre dados de ELV (pontos de bolha) experimentais	85
	e calculados por NRTL para o sistema binário CH4/água à 324,56	
	K.	

LISTA DE TABELAS

Tabela 1 –	Quantificação das substâncias em função da classificação da	28
	biomassa.	
Tabela 2 –	Tipos e Características de Biomassa.	28
Tabela 3 –	Características dos principais modelos de digestão anaeróbia.	40
Tabela 4 –	Reações para o estágio de Hidrólise.	45
Tabela 5 –	Reações para o estágio de Acidogênese.	46
Tabela 6 –	Reações para o estágio de Acetogênese.	46
Tabela 7 –	Reações para o estágio de Metanogênese.	46
Tabela 8 –	Reações para degradação de aminoácidos.	47
Tabela 9 –	Lista de alguns componentes do modelo de simulação Aspen	52
	Plus.	
Tabela 10 –	Propriedades puras dos validadas.	55
Tabela 11 –	Propriedades puras dependentes da temperatura inseridas por	56
	Rajendran et al (2014).	
Tabela 12 –	Quadro resumo dos casos validados.	64
Tabela 13 –	Composição do substrato de entrada pré-definido por	66
	Rajendran et al (2014).	
Tabela 14 –	Resumo do modelo de cada componente para propriedade da	75
	capacidade calorifica e inclusão na simulação no Aspen Plus.	
Tabela 15 –	Resumo dos modelos estimados para propriedade de calor de	79
	vaporização utilizadas na equação de Watson para cada	
	componente.	
Tabela 16 –	Referência dos dados experimentais dos sistemas binarios	84
	utilizados para validação.	
Tabela 17 –	Dados do Caso 1 de produção de biogás por DA a partir de	87
	dejeto Bovino	
Tabela 18 –	Comparação entre os resultados simulados e experimentais do	87
	caso 1.	
Tabela 19 –	Dados do caso 2 de produção de biogás por DA de RSUs	88
Tabela 20 –	Comparação entre os resultados experimentais e simulados	89
	para o caso 2.	

Tabela 21 –	Dados do Caso 3 - Co-digestão: Produção de Biogás e	91
	Composição	
Tabela 22 –	Comparação entre os resultados experimentais e simulados	91
	para o caso 3.	
Tabela 23 –	Dados do Caso 4 – RSU: Produção de Biogás e Composição.	92
Tabela 24 –	Comparação entre os resultados experimentais e simulados	93
	para o caso 4.	
Tabela 25 –	Dados do Caso 5 – RSU: Produção de Biogás e Composição	94
Tabela 26 –	Comparação entre os resultados experimentais e simulados	94
	para o caso 5	
Tabela 27 –	Dados do caso 6 de produção de biogás por co-digestão	95
	anaeróbica de resíduos	
Tabela 28 –	Comparação entre os resultados experimentais e simulados	96
	para o caso 6	
Tabela 29 –	Dados do caso 7 de produção de biogás por co-digestão	97
	anaeróbica de dejetos suínos e palha de milho	
Tabela 30 –	Comparação entre os resultados experimentais e simulados	98
	para o caso 7	
Tabela 31 –	Dados do caso 8 de produção de biogás por DA de RAs	99
Tabela 32 –	Dados do caso 9 de produção de biogás por DA de RAs	99
Tabela 33 –	Dados do caso 10 de produção de biogás por DA de RAs	100
Tabela 34 –	Resultados Comparativos entre os Modelos e o Experimental	100
	(Caso 8,9 e 10: RA).	
Tabela 35 –	Quadro geral de resultados dos casos validados.	102

LISTA DE ABREVIATURAS E SIGLAS

ADM1 Modelo de Digestão anaeróbia

AOVs Ácidos orgânicos voláteis

BERSO Biorrefinaria Experimental de Resíduos Sólidos Orgânicos

C/N Razão entre carbono e nitrogênio

CH4 Metano

CNTP Condições Normais de Temperatura e Pressão

CO₂ Dióxido de carbono

CPTP Condições padrão de temperatura e pressão

DA Digestão Anaeróbia

DA Digestão Anaerobia

DIPPR Design Institute for Physical Properties

DQO Demanda Química de Oxigênio

ELV Equilíbrio líquido vapor

ETE Estação de Tratamento de Esgoto

ETEs Estação de tratamento de esgoto

GEE Gases de Efeito Estufa

H2 Hidrogênio

NIST National Institute of Standards and Technology

NRTL Nonrandom, two-liquid - Modelo de coeficiente de atividade

pH Potencial hidrogeniônico

RNAs Redes neurais artificiais

ST Sólidos totais

SV Sólidos voláteis

TRH Tempo de retenção hidráulica

UFPE Universidade Federal de Pernambuco

UNIFAC Universal Functional-group Activity Coefficients

LISTA DE SÍMBOLOS

C_{RL} Molaridade

E_a Energia de ativação

T₀ Temperatura inicial

T_{ri} Temperatura reduzida

c_{ni} GI Capacidade calorífica de um gás ideal

 \dot{m}_{SV}^F Vazão de sólidos voláteis na corrente de alimentação

 w_{SV}^F Porcentagem em massa de sólidos voláteis

 \dot{m}^F Vazão de substrato na corrente de alimentação

 p_{i}^{vap} Pressão de vapor

r_{RL} Reagente limitante

 $X_A(\%)$ Conversão

∀ Volume do reator

 ΔH_{i}^{vap} Entalpia de vaporização

ARD Desvio relativo

BVo produção de biogás corrigida para condição padrão

DBF Biogas dry factor (Fator de correção para biogás úmido)

OLR Taxa de carregamento orgânico

p Pressão

S0 Concentração de substrato por unidade de volume

t Tempo

TVSMR Total de massa de sólidos voláteis removido

T Temperatura

SUMÁRIO

1.	INTRODUÇÃO	16
1.1	OBJETIVO GERAL	19
1.2	OBJETIVOS ESPECÍFICOS	19
2	REVISÃO DA LITERATURA	20
2.1	MUDANÇAS CLIMÁTICAS	20
2.1.1	Energias Renováveis como uma alternativa para mitigar as	
	mudanças climáticas	21
2.2	ENERGIA DA BIOMASSA	22
2.2.1	Composição e características das biomassas	23
2.2.1.1	Celulose	25
2.2.1.2	Hemicelulose	26
2.2.1.3	Lignina	26
2.2.2	Classificação da biomassa	27
2.2.3	Processos de conversão da biomassa	28
2.2.3.1	Conversão físico-química	29
2.2.3.2	Conversão termoquímica	29
2.2.3.3	Conversão biológica	30
2.3	DIGESTÃO ANAERÓBIA: MECANISMO PARA PRODUÇÃO DE	
	BIOGÁS	31
2.3.1	Hidrólise	32
2.3.2	Acidogênese	33
2.3.3	Acetogênese	33
2.3.4	Metanogênese	33
2.4	PARÂMETROS E CONDIÇÕES QUE AFETAM A DIGESTÃO	
	ANAERÓBIA	34
2.4.1	Temperatura	34
2.4.1.1	Psicrofílica	35
2.4.1.2	Mesofílica	35
2.4.1.3	Termofílica	36
2.4.2	Efeito do pH	36
2.4.3	Carga de matéria orgânica	36
2.4.4	Tempo de retenção hidráulica	37

2.4.5	Características do substrato	37
2.4.6	Ácidos Graxos Voláteis	38
2.4.7	Inibidores	38
2.4.8	Conteúdo aquoso e nutrientes	39
2.5	MODELAGEM E SIMULAÇÃO DA DIGESTÃO ANAERÓBIA	39
2.5.1	Simulação do modelo de digestão anaeróbia baseado em Asp	en
	Plus	42
2.5.2	Modelagem e Simulação do processo de digestão anaeróbia	por
	Ranjendran et al. (2014) baseado em Aspen Plus	43
2.5.2.1	Premissas	44
2.5.2.2	Reações	44
2.6	PROPRIEDADES FÍSICO-QUÍMICAS NA SIMULAÇÃO DE	
	PROCESSOS	47
2.6.1	Seleção apropriada de métodos das propriedades físicas	48
2.6.2	Validação das propriedades dos componentes	49
2.6.3	Inserção das propriedades e parâmetros físico-químicos dos	
	componentes	50
3	MATERIAIS E MÉTODOS	50
3.1	MODELAGEM E SIMULAÇÃO DO PROCESSO DE DIGESTÃO	
	ANÁEROBIA	51
3.1.1	Definição dos componentes representativos	51
3.1.2	Seleção do modelo termodinâmico	53
3.1.3	Validação das propriedades	53
3.1.3.1	Validação das propriedades dos componentes puros	54
3.1.3.2	Validação das propriedades puras dependentes da temperatura	56
3.1.3.3	Verificação e estimação dos parâmetros binários do modelo NRTI	L. 58
3.1.4	Fluxograma para a simulação do processo de DA	59
3.1.5	Aprimoramento e calibração da simulação do processo de DA	۹. 61
3.1.6	Condição inicial e parâmetros de execução e desempenho da	l
	simulação	65
4	RESULTADOS E DISCUSSÃO	68
4.1	VALIDAÇÃO DAS PROPRIEDADES PURAS	68
4.2	VALIDAÇÃO DAS PROPRIEDADES PURAS DEPENDENTES DA	4
	TEMPERATURA	70

4.2.1	Validação da Capacidade Calorífica do gás ideal	70
4.2.2	Validação do calor de vaporização	75
4.2.3	Validação da Pressão de Vapor	80
4.3	VALIDAÇÃO DAS PROPRIEDADES DE EQUILÍBRIO	
	LÍQUIDO-VAPOR DA MISTURA (INTERAÇÃO BINÁRIA)	. 83
4.4	VALIDAÇÃO DA SIMULAÇÃO E ANÁLISE COMPARATIVA COM	
	CASOS EXPERIMENTAIS	. 86
4.4.1	Caso 1: Dejeto Bovino	86
4.4.2	Caso 2: Resíduos sólidos urbanos (RSU)	88
4.4.3	Caso 3: Co-digestão	90
4.4.4	Caso 4: RSU	92
4.4.5	Caso 5: RSU (Planta industrial)	94
4.4.6	Caso 6: Co-digestão (Planta industrial)	95
4.4.7	Caso 7: Dejetos suínos com palha de milho	97
4.4.8	Caso 8, 9 e 10: Resíduos Alimentares (RAs)	98
5	CONCLUSÃO	103
	REFERÊNCIAS	105
	APÊNDICE A - RESULTADO DOS CASOS SIMULADOS	113
	APÊNDICE B – BANCO DE DADOS DE PROPRIEDADES	159

1. INTRODUÇÃO

Segundo a Agência Internacional de Energia Atómica (IAEA), a energia e a disponibilidade energética são questões de importância para o futuro. A necessidade de fornecimento de energia de forma econômica e ecologicamente viáveis, em um longo prazo, representa um grande desafio para os pesquisadores (IAEA, 2018). Nessa perspectiva, a busca por recursos alternativos, que proporcionem menor impacto ambiental negativo, tornou-se um dos maiores desafios do setor energético (MIRANDA, MARTINS e LOPES, 2019).

Dentre as fontes de produção energética, os biocombustíveis são considerados uma das principais alternativas para diversificar a matriz energética e reduzir a dependência dos combustíveis fósseis (ANEEL, 2008). Avanços recentes têm possibilitado a utilização da biomassa e seus resíduos com maior eficiência e menores custos de processamento visando a produção de biocombustíveis (GUPTA et al., 2014).

Para transformar a biomassa em energia ou produtos de alto valor agregado, diversas tecnologias podem ser empregadas, sendo geralmente classificadas em bioquímicas e termoquímicas. Na conversão bioquímica, a decomposição da biomassa é feita por microrganismos, utilizando tecnologias de fermentação, hidrólise e digestão para a produção de vários compostos (AWASTHI *et al.*, 2020).

A conversão bioquímica da biomassa pode gerar diferentes produtos, dentre os quais se destaca o metano, obtido por meio do processo de digestão anaeróbia (DA). Embora o metano (CH₄) seja um gás de efeito estufa (GEE) mais potente do que o dióxido de carbono (CO₂), sua queima pode ser uma alternativa interessante para a geração de energia limpa e renovável. A partir da DA obtém-se o biogás, composto principalmente por metano (65%-70%), dióxido de carbono (20%-25%), além de outros gases, tais como hidrogênio, sulfeto de hidrogênio, vapor d'agua e outros gases residuais (GAUTAM *et al.*, 2020).

A DA para obtenção de biogás é um processo econômico, visto que emprega a biomassa como sua principal matéria-prima e gera como produtos: energia de fonte renovável e adubo orgânico para auxiliar no controle dos GEEs (GAUTAM *et al.*, 2020). Durante a digestão anaeróbia, diversos fatores operacionais afetam a produção de biogás, tais como temperatura, tempo de detenção hidráulica, quantidade de carga orgânica e suas características, pH, volume do reator, padrão de alimentação,

inclusão ou não de meio aquoso, razão carbono e nitrogênio (C/N), entre outros fatores (BHATT e TAO, 2020).

A produção de biogás e de biometano no Brasil têm se intensificado, especialmente, a partir do uso de dejetos de animais, apresentando a maior parte da produção nas regiões sul e sudoeste (CIBIOGÁS, 2020). Lima (2014) promoveu um estudo sobre potencial do aproveitamento energético de fontes de biomassa no Nordeste do Brasil, demonstrando resultados favoráveis à exploração desse potencial energético em vários estados da região.

Silva e colaboradores (2019) demonstraram que as regiões do Norte e Nordeste do Brasil possuem potencial de produção de 134.233 m³ de biogás por ano via dejetos produzidos por suinocultura. Dantas e colaboradores (2021) estimaram o potencial energético a partir do biogás produzido em um aterro sanitário localizado no Ceará, onde resultados indicaram que a energia gerada poderia suprir 426 residências durante um ano. Portanto, a aplicação do biogás na região Nordeste é favorável, porém os insuficientes apoios público e incentivos as práticas e tecnologias mais avançadas têm reprimido o seu emprego.

Atualmente, vários estudos têm sido conduzidos na área de digestão anaeróbia, entre os quais: aproveitamento de cinzas da biomassa no processo de purificação do biogás para o biometano (ALAVI, CAPELA e TARELHO, 2020); uso de ferramentas de aprendizado de máquina para predizer a performance e os principais parâmetros de um digestor anaeróbico (WANG *et al.*, 2019);

Nesse contexto, o uso de softwares de modelagem e simulação de processos químicos e bioquímicos têm sido encorajados por pesquisadores e indústrias, a fim de reduzir o tempo e o custo em plantas reais, principalmente, relacionado ao desenvolvimento de análises precisas e caras (LI *et al.*, 2019). O Aspen Plus é um *software* de engenharia de processos, que permite executar simulações em estado estacionário, com uma vasta base de dados e incorporando diversas propriedades para o desenvolvimento de modelos robustos (BRAVO *et al.*, 2018).

Nesse sentido, Rajendran et al. (2014) propôs um modelo de simulação do processo de DA usando o software Aspen Plus. O modelo proposto considera a interação de diferentes componentes envolvidos nas reações e nas condições operacionais, tais como temperatura, vazão e concentração de biomassa. Além disso, o modelo leva em conta as cinéticas de degradação dos componentes presentes na

biomassa, sendo capaz de prever a produção de biogás, a composição e a qualidade do gás produzido, assim como a produção de subprodutos.

Menacho, Mazid e Das (2022) utilizou a simulação proposta por Rajendran et al. (2014) para simular o processo de produção de biogás a partir de resíduos alimentares. Os resultados obtidos foram promissores, demonstrando a eficácia da simulação em avaliar e otimizar as condições de operação do processo de digestão anaeróbia para produção de biogás. Além disso, o estudo apontou possíveis melhorias na modelagem do processo.

Apesar desses dois trabalhos apresentarem resultados das simulações condizentes aos correspondentes experimentais, vários valores e modelos de propriedades puras dos componentes não foram inseridos no arquivo de simulação do software Aspen Plus proposto por Rajendran et al. (2014). Além disso, apenas foram consideradas 28 interações binárias do modelo *Non-Random two-liquid* (NRTL) relativas aos 61 componentes presentes na simulação, de modo que diversas interações foram negligenciadas. Nesse sentido, é esperado que os desvios entre os resultados experimentais e simulados para os sete e três casos investigados por Rajendran et al. (2014) e Menacho, Mazid e Das (2022), respectivamente, possam ser reduzidos a partir de uma validação minuciosa das propriedades puras e da estimação dos parâmetros de interações binárias ausentes do modelo NRTL. Também é esperado que tal validação permita o aprimoramento do modelo de simulação proposto por Rajendran et al. (2014), permitindo realizar predições de resultados de DA em condições operacionais diversas com maior confiabilidade.

Dessa forma, o presente trabalho pode contribuir para o aprimoramento do modelo de simulação desenvolvido por Rajendran et al. (2014), levando em consideração a validação das propriedades físico-químicas e a representação adequada do equilíbrio de fases dos componentes presentes no processo. Nesse contexto, os sete e três casos de DA de resíduos orgânicos reportados por Rajendran et al (2014) e Menacho, Mazid e Das (2022), respectivamente, podem ser simulados e comparados aos resultados experimentais reportados, visando reduzir os desvios e trazer maior confiabilidade ao modelo de simulação proposto por Rajendran et al. (2014). Por fim, é esperado que esse modelo aprimorado sirva de ponto de partida para o desenvolvimento de novos trabalhos experimentais e de simulação do grupo de pesquisa em Energia da Biomassa da Universidade Federal de Pernambuco (UFPE), tais como estudos de DA em condições psicrofílicas e mesofílicas; e de

simulação e otimização das condições operacionais do biodigestor da Biorrefinaria Experimental de Resíduos Sólidos Orgânicos (BERSO).

1.1 OBJETIVO GERAL

Aprimorar a simulação do processo de digestão anaeróbia, de modo que permita uma representação mais precisa e eficiente do processo, com base na validação de dados e modelos de propriedades puras e equilíbrio de fases, utilizando o software Aspen Plus.

1.2 OBJETIVOS ESPECÍFICOS

- Validar as propriedades físico-químicas dos componentes presentes na simulação;
- Estimar as interações binárias do modelo termodinâmico utilizado na simulação;
- Criar um banco de dados de propriedades dos componentes presentes no processo de digestão anaeróbia;
- Aprimorar e calibrar a simulação do processo de digestão anaeróbia no software Aspen Plus a partir de dez casos experimentais reportados na literatura.

2 REVISÃO DA LITERATURA

A fonte de energia advinda de combustíveis fósseis tem sido um dos pilares das indústrias modernas e da nossa sociedade desde 1850. Essa ainda domina o mercado de energia global, liderando com cerca 84% de consumo, segundo o Relatório de Sustentabilidade da Beneficência Portuguesa (BP) de São Paulo (BP, 2020). Nesse sentido, a utilização demasiada desses combustíveis tem contribuído diretamente para o aumento de gases de efeito estufa (GEE) na atmosfera (IPCC, 2014). Como esses gases possuem grande importância no equilíbrio climático do planeta, haja visto que promovem a captura de calor na atmosfera, contribuindo para a existência de vida. Contudo, a aceleração dessas emissões tem impulsionado negativamente no aumento das mudanças climáticas (LAMB *et al.*, 2021).

2.1 MUDANÇAS CLIMÁTICAS

Apesar da conscientização global acerca do tema das mudanças climáticas, que geraram no acordo de Paris, durante a COP 21 (21ª Conferência das Nações Unidas sobre as Mudanças Climáticas) de 2015, visando mitigar as emissões de GEE, diversas metas estabelecidas não têm sido cumpridas (PI, 2020). Atualmente, os efeitos das mudanças climáticas têm sido observados, conforme resultados obtidos no estudo da Organização Meteorológica Mundial (OMM), os quais expõem 2020 como um dos anos mais quentes registrados (UNO ENVIRONMENT PROGRAMME, 2022).

Estudos da BP (2020) ainda registraram que os maiores aumentos nas diferenças médias de temperaturas foram identificados entre os anos de 2011-2020, conforme mostra a Figura 1, demonstrando ter sido a década mais quente no planeta Terra. Apesar da temperatura média ser o mais conhecido indicador utilizado para evidenciar as mudanças climáticas, outros também podem ser usados: concentrações de GEE, conteúdo de calor do oceano, pH do oceano; nível médio global do mar, massa glacia, extensão do gelo marinho e eventos extremos (WMO, 2021).

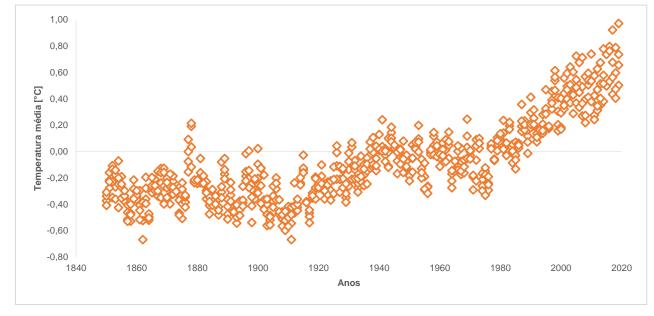


Figura 1 — Variação global de temperatura ao longo dos anos.

Fonte: (Morice et al, 2012)

2.1.1 Energias Renováveis como uma alternativa para mitigar as mudanças climáticas

energias renováveis começaram a Recentemente. as obter reconhecimento como formas sustentáveis de reduzir os impactos negativos das mudanças climáticas, bem como alternativas aos derivados do petróleo. O Painel Intergovernamental sobre Mudanças Climáticas (IPCC), por exemplo, considera as energias renováveis como peça-chave para o setor de energia, aliada a introdução de novas tecnologias capazes de promover uma geração mais eficiente de energia renovável a fim de mitigar e estabilizar as emissões de GEE (IPCC, 2014; IICA, 2015). Nesse contexto, alguns países desenvolvidos estão investindo fortemente no setor energético renovável no intuito de se tornarem exemplos bem-sucedidos. Entre eles, a Dinamarca que impulsionou o desenvolvimento e a implantação de parques eólicos, de modo que atualmente possui tecnologia consolidada, onde projetos eólicos comunitários geraram cerca de 56% da energia doméstica dinamarquesa em 2015 (MEY; DIESENDORF, 2017).

A partir do desenvolvimento tecnológico, tem se buscado descentralizar a geração de energia, por meio de diferentes fontes de energia. Nesse sentido, as energias eólica, solar e advindas da biomassa têm proporcionado benefícios a

sociedade por ser autossustentáveis e autossuficientes energeticamente. A Figura 2 evidencia esse contexto através da taxa média de crescimento anual das principais energias renováveis.

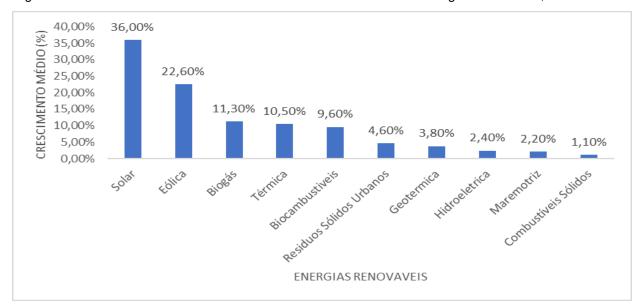


Figura 2 — Taxas médias de crescimento anual da oferta mundial de energias renováveis, 1990-2019.

Fonte: International Energy Agency (IEA) (2019).

Um dos principais relatórios de consolidação para tomada de ações em relação ao contexto climático foi apresentado pela BP (2020). Nesse foram identificados possíveis melhorias na utilização das energias renováveis visando reduzir as emissões de GEE, entre as quais: melhorar a eficiência e a oferta de conversão energética de transmissão e de distribuição; aumentar a eficiência em setores chaves de alta demanda energética (transporte, processos industriais e agricultura); e mudança de comportamento global no gerenciamento de energia.

2.2 ENERGIA DA BIOMASSA

A biomassa tem fornecido suporte energético à humanidade há milhares de anos, antes mesmo da disseminação da utilização do carvão e combustíveis fósseis na revolução industrial. Por exemplo, é datado que os primeiros passos da industrialização se iniciaram com uso de recursos da biomassa através do aproveitamento da abundância de madeira, extraída das grandes florestas, no século 18. Além disso, o emprego de carvão serviu diretamente para a produção de ferro,

sustentando o progresso da industrialização (MORE, 1981). Apesar disso, a biomassa não era considerada uma forma de energia indispensável. Contudo, recentemente tem se mostrado ser uma forma de bioenergia de baixo custo e com capacidade de suprir as necessidades energéticas de várias regiões do globo (REID, 2020).

Por esses motivos, a geração de energia da biomassa tem crescido significativamente em países desenvolvidos e em desenvolvimento, resultando na forma de energia renovável mais empregada mundialmente, representando 9,3% na matriz energética global (IEA, 2018). A Finlândia e a Suécia, por exemplo, possuem cerca de 20% de sua matriz energética advinda de fontes de biomassa. Nesse sentido, é importante determinar a alocação de cada biomassa em diferentes processos e usos de forma eficiente, aliando-se ao progresso tecnológico para fornecer uma bioenergia sustentável (ROSILLO-CALLE *et al.*, 2015).

Nesse contexto, diversas aplicações da biomassa têm sido investigadas. Jia (2018) confirmou o potencial de plastificantes de base biológica apresentando vantagens de renovabilidade, degradabilidade, lipotoxicidade, excelente extração resistente a solventes e desempenho de plastificação. Estudos de ZHANG et al (2019) mostraram a produção de hidrogênio por meio da gaseificação de água, utilizando biomassas com alto teor de umidade.

2.2.1 Composição e características das biomassas

Em termos de fonte energética, a biomassa refere-se a qualquer material biológico com a capacidade de ser utilizado como combustível. Durante o curso da história humana, a biomassa foi manejada das mais diversas formas, sendo uma fonte de recursos para o desenvolvimento do homem, onde a sua utilização engloba: comida, combustíveis, matéria-prima, fibra e fertilizantes (LIETH, 1975).

Nesse sentido, alguns dos materiais mais importantes, que caracterizam a biomassa, são ilustrados na Figura 3 e podem ser especificados como: materiais vegetais, incluindo resíduos agrícolas como palha, talos de milho, sobras de cana-deaçúcar, cascas de sementes, cascas de nozes; resíduos metabólicos de animais e micróbios como esterco de animais de fazenda; resíduos reutilizáveis do lixo municipal destinados à produção energética e ao tratamento de água (LIETH, 1975).

Figura 3 – Principais fontes de biomassa.

Fonte: Adaptado de Tursi (2019)

A composição da biomassa é amplamente diversificada, onde para fontes derivadas de plantas, a composição principal é formada por celulose, hemicelulose e lignina, conforme descrito na Figura 4.

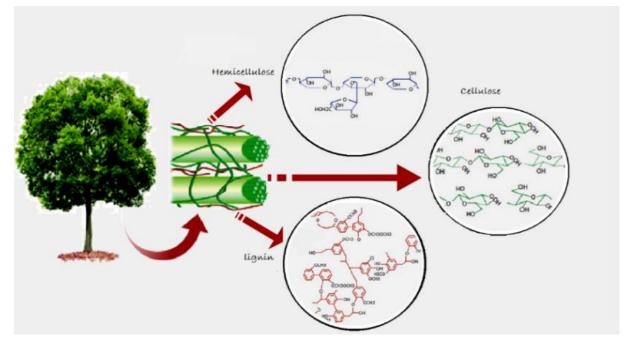


Figura 4 – Ilustração da composição estrutural da biomassa vegetal.

Fonte: Sivabalan et al. (2020).

2.2.1.1 Celulose

A celulose é um polímero linear formado por um complexo de carboidratos de alto peso molecular (polissacarídeos). É um dos compostos orgânicos mais abundantes encontrados na natureza, sendo um dos principais constituintes das paredes celulares das plantas (TURSI, 2019).

A estrutura molecular da celulose é caracterizada pela junção de moléculas de β -glicose através de ligações β -1,4-glicosídicas. Possui estrutura linear, fibrosa e úmida, na qual se estabelecem múltiplas ligações de hidrogênio entre os grupos hidroxilas das diferentes cadeias justapostas de glicose, tornando-as impenetráveis à água e, portanto, insolúveis. Tais ligações intermoleculares de hidrogênio com o grupo hidroxila têm influência direta na reatividade e na morfologia das cadeias de celulose (GONÇALVES *et al.*, 2017).

2.2.1.2 Hemicelulose

A hemicelulose encontra-se associada à celulose na parede celular das plantas terrestres. A constituição da hemicelulose decorre da ligação de heteropolímeros e polissacarídeos, diferentemente da celulose possui cadeias mais curtas e moléculas que, frequentemente, podem apresentar ramificações em sua estrutura. Além disso, incorporam diversos açúcares contendo cinco carbonos (xilose e arabinose) e seis carbonos (glicose, manose e galactose) (WERNER; POMMER; BROSTRÖM, 2014).

Ao contrário da celulose, que possui uma estrutura cristalina, forte e resistente à hidrólise, as hemiceluloses possuem uma estrutura amorfa, propriedades adesivas e são facilmente hidrolisadas por ácido ou base diluída (GOUVEIA *et al.*, 2009).

2.2.1.3 Lignina

A lignina é um heteropolímero com extrema importância no complexo estrutural dos vegetais terrestres. Também está contida nas paredes das células vegetais, onde preenche os espaços da parede celular entre os componentes da celulose, hemicelulose e pectina, com a função de fixar a aglutinação das fibras aprimorando a resistência estrutural da planta (CESARINO *et al.*, 2012).

A lignina é caracterizada por ser um polímero aromático, amorfo e com uma rede tridimensional, composta por unidades de fenilpropano interligadas. As unidades monoméricas são mantidas juntas de diferentes maneiras: por meio de oxigênio via pontes entre dois grupos propil e fenil ou entre um fenil e um grupo propil ou através de ligações carbono-carbono entre os mesmos grupos. Em geral, a macromolécula é formada através da polimerização oxidativa radical de três álcoois hidroxicinâmicos, que representam os monômeros estruturais básicos: monômero de fenil (tipo H), monômero de Guaiacil (tipo G) e monômero de Siringil (tipo S) (BOERJAN *et al.*, 2003).

Com a existência de muitos grupos polares e grupos hidroxila promovendo o estabelecimento de fortes ligações intramoleculares e intermoleculares de hidrogênio, acabam conferindo à lignina uma propriedade insolúvel para uma ampla quantidade de solventes (TURSI, 2019).

Com essas características a lignina desempenha um papel fundamental na condução de água e nutrientes aquosos para as plantas. Os componentes polissacarídeos das paredes das células vegetais são altamente hidrofílicos e, portanto, permeáveis à água, enquanto a lignina é mais hidrofóbica. A reticulação de polissacarídeos pela lignina é um obstáculo para a absorção de água pela parede celular. Portanto, a lignina possibilita que o tecido vascular da planta conduza a água de maneira eficiente (MONTIES, 1991).

2.2.2 Classificação da biomassa

A biomassa como matéria-prima abrange uma ampla variedade de processamentos energéticos, de forma inteiramente relacionada com a origem do material bioenergético. Logo, diferentes partes de uma planta com diferentes composições, bem como resíduos da agropecuária requerem processos de conversão energética distintos. A classificação da biomassa auxilia na divisão das fontes de processos energéticos com base em sua origem, função e produtos gerados (TUMULURU *et al.*, 2011):

- I. Madeira e biomassa lenhosa
- II. Biomassa herbácea
- III. Biomassa aquática
- IV. Biomassa de resíduos animais e humanos
- V. Misturas de biomassa

A composição química específica dessas diferentes classificações de biomassa é mostrada na tabela 1.

Tabala 1 Ouantificação	daa aubatânaiaa d	om funcão do	alagaificação da biomação
	uas substancias t	eni iunicao ua	classificação da biomassa.

Grupo de biomassa	С	0	Н	S	N	^a VM	♭FC	сМ	dA
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Madeira e	49-	32-	5-10	<1-1	<1-1	30-80	6-25	5-63	1-8
biomassa lenhosa	57	45							
Biomassa herbácea	42-	34-	3-9	<1-1	<1-3	41-77	9-35	4-48	1-19
	58	49							
Biomassa aquática	27-	34-	4-6	1-3	1-3	42-53	22-33	8-14	11-38
	43	46							
Biomassa de dejetos	57-	21-	7-8	1-2	6-12	43-62	12-13	3-9	23-34
de animais e	61	25							
humanos									
Misturas de	45-	16-	6-11	<1-2	1-6	41-79	1-15	3-38	3-43
biomassa	71	46							

Fonte: Adaptado de Vassilev et al. (2010).

A Tabela 2 proporciona uma visão das diversas categorias de biomassa, juntamente com suas características distintas.

Tabela 2 – Tipos e Características de Biomassa.

Tipo de Biomassa	Descrição e Características	Referências
Biomassa Lenhosa	Inclui materiais de árvores e arbustos lenhosos acima e abaixo do solo. Fonte de energia renovável por meio de florestas sustentáveis.	(TABATA, 2018)
Biomassa Herbácea	A biomassa de origem herbácea, geralmente, situa-se nos seguintes grupos: resíduos agrícolas e culturas energéticas. Resíduos agrícolas são subprodutos de alimentos, fibras ou alimentos industrializados.	(TURSI, 2019)
Biomassa Aquática	A biomassa aquática inclui macroalgas, microalgas e algumas plantas. Atualmente, essa biomassa é considerada uma matéria-prima ideal para a produção de biodiesel de terceira geração.	(ZEHNSDORF et al., 2018)
Biomassa de Resíduos - Animais e Humanos	Resíduos de animais e de humanos podem ser usados como fontes de processos de conversão baseados em biomassa, especialmente, na produção de bioenergia e biofertilizante.	(MANCINI et al., 2019); (BALAMAN, 2019)
Misturas de Biomassa	Classifica-se como a mistura de diferentes grupos de biomassa, dentre as misturas destaca-se os resíduos sólidos urbanos (RSU), que consistem em uma variedade de materiais descartados, como restos de alimentos, papel, plásticos e madeira.	(TUMULURU et al., 2011); (TURSI, 2019)
Fonte: Autor (2023)		

Fonte: Autor (2023).

2.2.3 Processos de conversão da biomassa

A biomassa, por meio de processos de tratamento e conversão, pode ser convertida em diferentes tipos de produtos. Os parâmetros que definem a escolha do

^a Material volátil; ^b Carbono fixo; ^c Mistura; ^d Cinzas;

processo de produção são variados, onde os mais importantes incluem o produto renovável necessário, qualidade e quantidade da biomassa, composição de biomassa e o custo do processo (TURSI, 2019).

É imprescindível avaliar a classificação e, consequentemente, a composição das biomassas aos processos de conversão, visto que é tarefa fundamental no processo de aproveitamento adequado dessas matérias-primas, buscando eficiência e rendimento consideráveis para o produto desejado. As rotas de conversão são essenciais para identificar qual componente será importante para a produção de determinado produto de interesse, bem como a melhor forma de aproveitar integralmente esse elemento (GARBA, 2020).

Segundo GARBA (2020) a biomassa pode ser convertida em energia por meio de três tipos de processos: conversão físico-química, termoquímica e biológica.

2.2.3.1 Conversão físico-química

Os processos de conversão físico-químicos da biomassa conduzem à produção de biocombustíveis de alta densidade. Especialmente, vários tipos de óleos vegetais e gorduras animais são convertidos em biodiesel por meio de processos de esterificação e/ou transesterificação.

De acordo com a Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), 69% do biodiesel do Brasil foi produzido a partir da soja, enquanto 16%, 10%, 3% e 2% foi obtido por meio de gordura animal, outras graxas, outros óleos e óleo de fritura usado, respectivamente, entre outros (ANP, 2022).

2.2.3.2 Conversão termoquímica

A conversão termoquímica, caracterizada por altas temperaturas e taxas de conversão, em geral, é mais adequada para biomassas de baixa umidade. Geralmente, os processos termoquímicos possuem maior eficiência do que processos biológicos devido ao menor tempo de reação. Por exemplo, os processos termoquímicos requerem alguns segundos ou minutos para conversão da biomassa

em biocombustíveis contra vários dias ou semanas dos processos biológicos (ZHANG; XU; CHAMPAGNE, 2010).

Os processos termoquímicos possuem a vantagem de degradar a maioria dos compostos orgânicos. Por exemplo, os materiais de lignina são normalmente considerados não fermentáveis e, portanto, não podem ser completamente decompostos por meio de abordagens biológicas, ao passo que são decompostos por meio de processamento termoquímico (ZHANG; XU; CHAMPAGNE, 2010).

A conversão termoquímica inclui como rotas de processos: combustão, torrefação, pirólise, gaseificação e liquefação. A tecnologia de combustão controlada de resíduos da biomassa gera calor. Como resultado, há produção de vapor que acarreta a geração de energia elétrica por meio de turbinas a vapor. A pirólise e a gaseificação representam métodos de tratamento térmico refinados como alternativas à combustão e são caracterizados pela transformação do resíduo em produto gasoso (gaseificação) ou líquido (pirólise) para geração de energia através da combustão desses produtos (MATERAZZI; FOSCOLO, 2019). A liquefação hidrotérmica, também conhecida como pirólise úmida, converte biomassa úmida em óleo biocru e produtos químicos em um reator. Sendo recomendada para materiais ricos em proteínas com alto teor de umidade, como resíduos de processamento de alimentos, esterco e lodo municipal (ZHANG; CHEN, 2018).

2.2.3.3 Conversão biológica

Os processos de conversão bioquímica são caracterizados pela decomposição da biomassa em carboidratos e, subsequentemente, podem ser convertidos em biocombustíveis como etanol e biogás, bem como em diferentes tipos de bioprodutos (MATERAZZI; FOSCOLO, 2019).

A base dessas tecnologias decorre da aplicação de agentes biológicos como bactérias, enzimas e fungos. Os principais processos de conversão biológica da biomassa são a digestão anaeróbia e a fermentação (GARBA, 2020).

Os carboidratos da biomassa podem ser convertidos por fermentação em etanol. Por exemplo, os carboidratos do milho, em especial amido, pode ser convertido em açúcares fermentescíveis, os quais leveduras auxiliam na fermentação para

produzir etanol. Esse, por sua vez, pode ser purificado à etanol anidro (99,5% em massa), sendo misturado à gasolina para aumentar a octanagem, ou usado como álcool combustível hidratado (92,5-94,6% em massa) (BIJARCHIYAN; SAHEBI; MIRZAMOHAMMADI, 2020; SANTOS *et al.*, 2022).

A digestão da biomassa de forma anaeróbica produz uma mistura de gases chamada de biogás. Esse processo de digestão é uma das tecnologias mais sustentáveis e econômicas para uso da biomassa, sendo bastante aplicada como forma de tratamento de resíduos (agroindustriais e urbanos) para recuperação de energia na forma de biocombustíveis. Esse processo auxilia tanto a minimizar a quantidade de resíduos quanto os transformam em bioenergia (BIJARCHIYAN; SAHEBI; MIRZAMOHAMMADI, 2020).

2.3 DIGESTÃO ANAERÓBIA: MECANISMO PARA PRODUÇÃO DE BIOGÁS

O biogás é um biocombustível obtido a partir do processo de digestão anaeróbia (DA), sendo aproximadamente composto por 60% em volume de metano (CH₄), 35% de dióxido de carbono (CO₂) e 5% de outros gases como hidrogênio (H₂), nitrogênio (N₂) e amônia (NH₃) (GARBA, 2020).

O processo de DA é caracterizado pela degradação biológica da matéria orgânica, em que microrganismos responsáveis pelo processo de decomposição são bactérias anaeróbicas e *arqueas* metanogênicas. Essas atuam na ausência de oxigênio, decompondo a estrutura de materiais orgânicos complexos e quebrando-os em compostos simples, tais como o metano (WALTER, 2002).

O processo de DA é capaz de gerar biogás a partir de diversas matérias-primas residuais como esterco animal, resíduos de colheita, resíduos industriais e a parcela orgânica dos resíduos sólidos urbanos (RSUs), principalmente, resíduos de alimentos (RAs) e resíduos verdes (VASSILEV et al., 2010). Os benefícios ambientais desse processo incluem estabilização de resíduos, controle de odores, redução de patógenos, impacto reduzido nas emissões e maximização da recuperação de recursos (CORNEJO, 2010).

O mecanismo bioquímico para conversão da biomassa usando a DA está ilustrado na Figura 5. Esse processo consiste em quatro etapas: hidrólise, acidogênese, acetogênese e metanogênese.

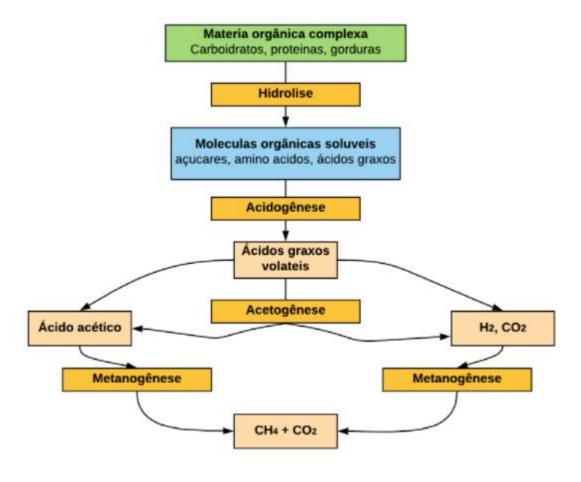


Figura 5- Fluxograma do Processo de Digestão Anaeróbia (DA).

Fonte: Adaptado de MELERO (2015).

2.3.1 Hidrólise

A hidrólise é a primeira etapa do processo de conversão da biomassa, onde as moléculas orgânicas complexas, como carboidratos, proteínas e gorduras, são decompostas em açúcares simples, aminoácidos e ácidos graxos. Esse estágio é conduzido por bactérias anaeróbias facultativas e obrigatórias produtoras de exoenzimas (CHEZEAU; BENOIT; VIAL, 2019)

Durante a hidrólise um dos componentes da biomassa, a lignina, é considerada como um material dificilmente biodegradável devido à sua inacessibilidade aos microrganismos. Tratamentos térmicos e alcalinos podem ser empregados para facilitar a quebra da estrutura da lignina e a digestão anaeróbia (KIM *et al.*, 2003).

2.3.2 Acidogênese

A acidogênese é o segundo estágio da DA, onde os microrganismos acidogênicos (bactérias fermentativas) decompõem ainda mais os produtos da hidrólise. Frequentemente, é a etapa mais rápida do processo de DA, em que são formados produtos como NH₃, CO₂, H₂, sulfeto de hidrogênio (H₂S), álcoois, ácidos graxos voláteis e ácidos carbônicos (KAMUSOKO *et al.*, 2022).

A transição de matéria orgânica para ácidos orgânicos causa a queda do valor do pH, sendo benéfico para bactérias acidogênicas e acetogênicas, pois preferem ambientes ligeiramente ácidos. A hidrólise e a acidogênese podem ser beneficiadas com o aumento da temperatura, porém pode ocorrer acúmulo de ácidos voláteis no substrato, resultando na inibição das bactérias acetogênicas e metanogênicas. Além disso, produtos intermediários devem ser consumidos na etapa de acetogênese, visto que não podem ser consumidos pelas bactérias metanogênicas (KIM et al., 2003).

2.3.3 Acetogênese

A etapa de acetogênese emprega microrganismos acetogênicos, que convertem a maior parte dos produtos gerados na fase de acidogênese em ácido acético, CO₂ e H₂. O H₂ desempenha um importante papel intermediário nesse processo, pois a reação só ocorre se a pressão parcial do H₂ for baixa o suficiente para permitir a conversão de todos os ácidos termodinamicamente (ALISHAH et al., 2022). As bactérias acetogênicas realizam associações sintróficas com aquelas sequestradoras de H₂, que reduzem a pressão parcial. Portanto, a concentração de H₂ de um digestor funciona como indicador chave de desempenho do processo (KIM et al., 2003).

2.3.4 Metanogênese

A metanogênese é a última etapa da DA, onde é gerado o CH₄, principal componente do biogás, e o CO₂ a partir dos principais produtos da acetogênese: ácido acético; CO₂ e H₂.

Existem duas formas para a geração de biogás, a primeira por meio da decomposição das moléculas de ácido acético, gerando CH₄ e CO₂ via *arqueas* metanogênicas acetoclásticas. A segunda forma ocorre através da conversão de CO₂ e H₂ por meio de *arqueas* metanogênicas hidrogenotróficas (OSTREM, 2004; BAKY *et al.*, 2014).

As arqueas metanogênicas hidrogenotróficas, que consomem H₂, crescem rapidamente com o tempo máximo de duplicação de 6 horas. Em contrapartida, as acetoclásticas possuem crescimento reduzido com tempo de duplicação entre 3 e 15 dias (MERLIN *et al.*, 2014). Uma quantidade significativa de metano de até 70% pode ser produzida por *arqueas* metanogênicas acetoclásticas. No entanto, essas são menos resistentes a mudanças de condições no sistema, quando comparadas às hidrogenotróficas. Geralmente, preferem um ambiente alcalino, sendo ligeiramente mais ativas numa faixa de pH de 6,5 a 8,0 (GUNASEELAN, 1997).

2.4 PARÂMETROS E CONDIÇÕES QUE AFETAM A DIGESTÃO ANAERÓBIA

O processo de DA tem seu desempenho condicionado por alguns fatores, como: pH; temperatura; potencial redox; relação C:N; teor de ácidos graxos voláteis (AGVs); e aspectos técnicos como potencial de biogás da matéria-prima, agitação, pré-tratamento, tempo de retenção, natureza do substrato, taxa de carregamento, entre outros. Alterações nessas condições podem acarretar instabilidade no processo, variação no rendimento do biogás e quantidade de microorganismos presentes (MERLIN et al., 2014).

2.4.1 Temperatura

Existem várias faixas de temperatura nas quais a digestão anaeróbia ocorre: psicrofílica (<30°C), mesofílica (30°C a 45°C) e termofílica (45°C a 60°C). A maioria dos microrganismos pertence ao grupo mesofílico. Os metanógenos termofílicos são mais sensíveis à temperatura do que os mesofílicos, onde pequenas variações de temperatura podem acarretar a diminuição da atividade desses microorganismos. A temperatura crítica para os mesófilos está na faixa de 40°C a 45°C, quando a atividade

das bactérias e *arqueas* é irreversivelmente perdida. Portanto, o parâmetro de temperatura de um biodigestor pode determinar que tipo de microrganismo pode sobreviver. Logo, é fundamental a estabilização de uma temperatura constante para manutenção do conjunto de microrganismos presentes (GARBA, 2020).

A temperatura também tem um efeito direto nas propriedades físico-químicas, afetando a termodinâmica e a cinética do processo. Um aumento na temperatura normalmente leva a um aumento da atividade metabólica. Além disso, o aumento da temperatura diminui a constante de acidez (pKa) da amônia, portanto, aumenta a fração de NH₃ livre, que inibe os microrganismos (ZHANG; XU; CHAMPAGNE, 2010).

2.4.1.1 Psicrofílica

A manutenção do processo de digestão anaeróbia em faixas de temperatura abaixo de 30°C é simples e relativamente econômica para a construção e a operação do sistema, visto que não demanda de nenhum trocador de calor envolvido no processo. Todavia, resulta em desvantagens, como baixa capacidade metabólica (baixa taxa de reação), alto tempo de residência e grande volume do biodigestor (ZHANG; XU; CHAMPAGNE, 2010).

2.4.1.2 Mesofílica

A digestão anaeróbia em condições mesofílicas permite altas taxas de reação quando comparada a faixa psicrofílica e, consequentemente, um menor tempo de residência. Ao operar um biodigestor na faixa de temperatura de 30°C a 45°C é indicado a adequação do pH do sistema, pois o pH pode favorecer a geração de diferentes produtos (TURSI, 2019).

2.4.1.3 Termofílica

A degradação anaeróbica termofílica ocorre entre 45°C a 60°C e pode ser definida por características opostas à degradação psicrofílica. A temperatura mais alta permite maiores cargas de matéria orgânica, menor tempo de retenção hidráulica, possibilidade de rápido crescimento de microrganismos na maioria das circunstâncias e, portanto, uma maior produção de metano pode ser obtida. Outras vantagens incluem a inativação de patógenos em temperaturas mais altas e menor volume útil de reatores (KIM; AHN; SPEECE, 2002).

2.4.2 Efeito do pH

A faixa ótima de pH para a digestão anaeróbia é de 6,8 a 7,5. Condições ácidas inibem a formação de gás metano, devido a altas concentrações de ácidos voláteis, e podem cessar o processo de biodigestão. Os microrganismos também são sensíveis a surfactantes e outras substâncias químicas, como os sulfatos. Esses podem inibir a atividade das *arqueas* metanogênicas pela dominância de bactérias redutoras de sulfato. Com tal inibição, há acúmulo de ácidos voláteis e consequente paralisação do biodigestor, bem como pode causar a corrosão dos equipamentos (MORAES, 2009).

2.4.3 Carga de matéria orgânica

A taxa de carga orgânica é considerada uma informação fundamental para o projeto de um biodigestor, pois essa informação permite determinar a eficácia, o volume útil e o tempo de detenção do processo (BIJARCHIYAN *et al.*, 2020). A taxa de carga orgânica (OLR) é uma medida que representa a quantidade de material orgânico seco que é introduzido em um digestor durante um determinado período. Manter um equilíbrio adequado de OLR é essencial para otimizar a eficiência do processo. Uma OLR mais alta resulta em vantagens, como a redução dos custos de aquecimento, a estimulação de diferentes espécies microbianas benéficas e a redução do tamanho e dos custos do próprio digestor. No entanto, existe um limite para o aumento da OLR, pois taxas excessivamente elevadas podem ter efeitos negativos. Por exemplo, podem sobrecarregar a bomba de circulação, prejudicar a

transferência de calor e resultar na formação de ácidos graxos e etanol altamente voláteis (INAYAT et al., 2019).

Megido et al. (2020) realizaram um estudo sobre a digestão anaeróbia de resíduos alimentares provenientes de supermercados. Foram testadas taxas de carga orgânica de 3,0, 3,6 e 4,6 kg de sólidos voláteis por m³ de reator e por dia. A taxa de carga orgânica de 3,6 (kg/m³) apresentou os melhores resultados, alcançando uma produção de metano até 48,1% maior por kg de resíduo tratado em comparação com as outras taxas de carga testadas.

2.4.4 Tempo de retenção hidráulica

Tempo de detenção hidráulica (TDH) é o tempo que o material permanece no interior do biodigestor, ou seja, é a duração de tempo entre a entrada do efluente e a saída da mistura reacional do digestor (RAVENDRAN *et al.*, 2019).

O TDH de resíduos animais tratados em um digestor mesofílico varia de 15 a 30 dias e de 12 a 14 dias em condições termofílicas. A taxa de carga orgânica é expressa, normalmente, em massa diária de demanda bioquímica de oxigênio (DBO) ou demanda química de oxigênio (DQO) por unidade de volume útil do biorreator. Logo, depende basicamente das características hidráulicas do reator, das características físico-químicas do despejo a ser tratado e das condições ambientais, como por exemplo, as temperaturas locais (RAVENDRAN et al., 2019).

2.4.5 Características do substrato

A biodegradação eficiente requer que fontes de carbono e nutrientes estejam disponíveis em quantidades suficientes no substrato. O tipo e a composição do substrato determinam diretamente o rendimento do biogás, pois os microorganismos envolvidos na digestão anaeróbica devem ter fontes de energia; de carbono para a síntese de novo material celular; de elementos inorgânicos (nutrientes) como nitrogênio, fósforo, enxofre, potássio, cálcio e magnésio; e de nutrientes orgânicos voltados à reprodução e ao crescimento das bactérias e das *arqueas* (GARBA, 2020).

A entrada de substrato anaeróbico é frequentemente medida em termos de DQO ou sólidos voláteis totais (SVT). Logo, é fundamental diferenciar entre a fração

degradável (substrato) e o insumo total, pois uma fração considerável do insumo pode ser anaerobicamente não biodegradável. Em geral, o termo "substrato" refere-se à fração degradável do insumo (ZHANG *et al.*, 2010).

A degradação progressiva pode causar o esgotamento de alguns dos nutrientes, tornando-os fatores limitantes e retardando o processo de digestão. Em contrapartida, a maioria dos nutrientes pode atuar como inibidor do processo, caso se apresentem em altas concentrações (RAVENDRAN *et al.*, 2019).

2.4.6 Ácidos Graxos Voláteis

A maioria dos problemas na digestão anaeróbia pode ser atribuída ao acúmulo de ácidos graxos voláteis e, consequentemente, a queda do pH. Os principais efeitos adversos dos ácidos orgânicos voláteis (AOVs) no processo de digestão anaeróbia estão relacionados ao fato de serem espécies intermediárias. A diminuição do pH abaixo de 6,6 implica na inibição do crescimento das *arqueas* metanogênicas. No entanto, as bactérias acidogênicas continuam suas funções até pH 4,5. O resultado é um rápido acúmulo de AOVs (TURSI, 2019).

2.4.7 Inibidores

No processo de digestão anaeróbia, diversos fatores podem afetar negativamente sua eficiência, incluindo a presença de inibidores. Esses compostos são definidos como substâncias que reduzem a atividade dos microrganismos presentes no reator, diminuindo a produção de biogás e, consequentemente, o desempenho do sistema.

O estudo de Serrano (2010) destaca alguns dos principais fatores inibitórios que afetam o processo de digestão anaeróbia. A presença de certos compostos em altas concentrações pode diminuir ou interromper a digestão, sendo considerados inibidores, enquanto em baixas concentrações, podem diminuir a taxa de digestão ou até mesmo interrompê-la, uma vez que são necessários para o metabolismo microbiano. Os principais compostos inibidores são a amônia, sulfeto, metais e alguns compostos orgânicos. Além disso, a presença de luz pode inibir a metanação, bem

como concentrações acima do aceitável de lignina, compostos lignocelulósicos, carbonato de cálcio, O₂, H₂ e compostos de enxofre.

Vários desses fatores inibitórios são fontes de estudo e pesquisa como, por exemplo, a degradação anaeróbia da lignina, que é um componente importante da biomassa lignocelulósica. Essa decomposição é um processo complexo e desafiador, visto que a estrutura rígida e complexa da lignina dificulta a ação de enzimas microbianas, sendo necessário o uso de pré-tratamentos para facilitar a digestão ou permitir a digestão de outros compostos. Por esse motivo, mais estudos têm sido amplamente desenvolvidos sobre o tema (YUAN et al., 2021).

Os principais problemas na digestão anaeróbia ocorrem devido à inibição das arqueas formadoras de metano por meio da ação de diferentes grupos de microrganismos, que trabalham em sequência, fornecendo as substâncias necessárias para o processo do grupo seguinte. Caso a primeira fase seja inibida, os substratos para as segundas e terceiras etapas serão limitados e, consequentemente, a produção de metano diminui. Se a terceira fase for inibida, os ácidos produzidos na acidogênese são acumulados (RASIT et al., 2015)

2.4.8 Conteúdo aquoso e nutrientes

O teor de água presente no biodigestor deve variar entre 60% e 90% do peso do conteúdo total, onde tanto o excesso quanto a escassez de água são prejudiciais. O teor da água varia de acordo com as diferenças apresentadas pelas matérias-primas destinadas à fermentação (TURSI, 2019).

Os principais nutrientes dos microrganismos são carbono, nitrogênio e sais orgânicos, a relação entre carbono e nitrogênio deve ser mantida entre 20:1 e 30:1. Os dejetos humanos e de animais são as principais fontes, enquanto os polímeros presentes no restante das culturas representam o principal fornecedor de carbono. A produção de biogás só é bem-sucedida se ambos os nutrientes estiverem presentes na relação ideal (RAVENDRAN *et al.*, 2019).

2.5 MODELAGEM E SIMULAÇÃO DA DIGESTÃO ANAERÓBIA

Para a escolha de um modelo apropriado de DA torna-se necessário rever brevemente o desenvolvimento de modelagens, os modelos relevantes existentes e sua aplicabilidade à DA. A modelagem da DA tem crescido consideravelmente nos últimos anos, com o desenvolvimento de diversos modelos de processos anaeróbicos. Esses variam de instruções de cinética simples a mais complexos e estruturados, como o modelo de ADM1, proposto por Batstone et al. (2002), que é amplamente utilizado como referência em estudos de modelagem da digestão anaeróbia (Nguyen, 2014). A Tabela 3 apresenta o histórico de modelos e aprimoramentos desenvolvidos na simulação do processo de DA.

Tabela 3- Características dos principais modelos de digestão anaeróbia.

N°	Descrição Básica do Modelo	Referência
1	O modelo inclui 2 etapas hidrolíticas enzimáticas, 8 etapas bacterianas e envolve 19 compostos químicos. O modelo também inclui uma descrição detalhada das características de pH e temperatura.	Angelidaki et al. (1999)
2	O modelo estruturado inclui várias etapas que descrevem processos bioquímicos e físico-químicos. Algumas das etapas bioquímicas incluem a desintegração de partículas homogêneas em carboidratos, proteínas e lipídios; hidrólise desses substratos particulados em açúcares,aminoácidos e ácidos graxos.	Batstone et al. (2002)
3	Simulação do processo de DA no software Aspen Plus, utilizando informações encontradas dos modelos ADM1 de Batstone et al. (2022) e Angelidaki et al. (1999).	Serrano (2011)
4	Modelo de DA simulado no software Aspen Plus contendo 46 reações químicas, equações cinéticas e validação experimental frente a dez casos distintos.	Rajendran et al. (2014)
5	Utilização disseminada do modelo de Rajendran et al. (2014) em estudos subsequentes sobre digestão anaeróbia. Por exemplo Ravendran et al (2019) e Menacho, Mazid e Das (2022).	

Fonte: Autor (2023).

Um modelo fundamental foi desenvolvido por Angelidaki et al. (1999), sendo fundamentado em conhecimentos teóricos sobre as diferentes etapas envolvidas no processo de DA, incluindo hidrólise, acidogênese, acetogênese e metanogênese. Para cada etapa, foram consideradas as reações bioquímicas envolvidas e os respectivos parâmetros cinéticos.

O modelo ADM1 apresenta a DA composta por quatro etapas subsequentes ligadas em reações bioquímicas: hidrólise, acidogênese, acetogênese e metanogênese. A desintegração dos componentes do substrato está associada à conversão de substratos orgânicos complexos em CH₄ e CO₂. Nesse sentido, os processos bioquímicos e físico-químicos dizem respeito aos processos líquido-gás (transferência líquido-gás) e processos líquido-líquido (associação/dissociação de íons) (BATSTONE *et al.*, 2002).

O modelo ADM1 de digestão anaeróbia foi originalmente formulado para ser utilizado com resíduos de lodo de estações de tratamento de esgoto (ETEs) provenientes de processos anaeróbios (BATSTONE *et al.*, 2002). Embora esse modelo não seja preciso em relação a certos pontos específicos do processo de DA, em comparação a outros modelos, sua vantagem está ligada à sua ampla gama de aplicações. No entanto, apesar de ser uma abordagem avançada e bem aceita para modelar a DA, o ADM1 possui uma configuração complexa, possuindo: 19 parâmetros cinéticos de reações bioquímicas, 26 variáveis de concentração de estado dinâmico, 56 parâmetros estequiométricos e cinéticos, 1 processo de degradação do substrato e 6 processos específicos de crescimento e decomposição da biomassa (NGUYEN, 2014).

Modelos recentes de DA têm sido construídos baseados em conhecimento prévio, a partir de modelos anteriores e de dados experimentais coletados de plantas reais, principalmente, impulsionados pela necessidade de modelar mais aspectos complexos da degradação anaeróbica, simulando variações intrínsecas do processo. Nesse contexto, modelos de DA têm sido desenvolvidos por meio de redes neurais artificiais (RNA), que oferecem uma alternativa interessante aos modelos tradicionais, visando solucionar problemas complexos, em particular, envolvendo processos sobre a via metabólica (SCHÖN, 2010).

O estudo de Gueguim (2012) descreve que o emprego de redes neurais pode ser viável no desenvolvimento de modelos de bioprocessos, sem requerer conhecimento prévio da cinética dos fluxos metabólicos dentro da célula e do meio bacteriano. Estrutura personalizada da arquitetura de rede e a quantidade certa de dados de entrada e de saída determinam o que é necessário. Contudo, outras variáveis importantes dentro do processo de monitoramento podem não ser contabilizadas. Por exemplo, pode-se tornar difícil a previsão de como os AGVs ou carbono inorgânico estão dispostos durante o processo de DA.

Uma das arquiteturas das RNAs mais utilizadas é a *perceptron* multicamadas, que aproxima as relações não lineares existentes entre múltiplas variáveis de processo causais (entradas) e as variáveis dependentes (saídas) correspondentes. A partir de um modelo de processo baseado em RNAs, com ligeira quantidade de dados bem definida e, posterior validação, pode-se otimizá-los adequadamente, visando garantir os valores ótimos das variáveis do processo (BELTRAMO *et al.*, 2016).

2.5.1 Simulação do modelo de digestão anaeróbia baseado em Aspen Plus

Em virtude que a construção de um modelo de DA facilita à compreensão do processo biológico da geração do biogás, é importante validar os resultados obtidos por meio de um modelo apropriado, que permita prever os comportamentos de um sistema real controlado. Posteriormente, esse modelo pode ser aplicado a um programa de simulação implementado em linguagens computacionais ou *softwares* com pacotes com modelagem pré-adaptadas para construção de um modelo (RAVENDRAN *et al.*; 2019).

O Aspen Plus é um simulador comercial corriqueiramente utilizado para modelagem e simulação de processos industriais. Apresenta desempenho avançado na simulação de processos químicos, em especial, devido ao seu amplo e confiável banco de dados de componentes puros e parâmetros de modelos termodinâmicos aplicáveis a componentes convencionais, eletrólitos, sólidos, polímeros, modelagem de unidades de processamento e monitoramento de desempenho online e otimização em tempo real. O *software* inclui ainda uma ferramenta chamada "*Aspen Process Economic Analyzer*", que pode ser usada na estimação de custos, receitas e perdas de processos. Essa opção é bastante útil na realização de um estudo de viabilidade econômica preliminar de um processo em comparação a outro (NGUYEN, 2014).

Inayat et al. (2019) apresentou resultados da simulação de um reator de DA no software Aspen Plus a partir de cinco substratos, com a finalidade de produzir biogás. Os substratos modelados foram resíduos de sementes de tâmaras, resíduos de folhas de palmeira, resíduos de café, águas residuais e estrume animal. Para encontrar o valor ótimo para os substratos, foram variados os principais parâmetros de entrada da simulação.

O estudo desenvolvido por Rajendran et al. (2014) formulou um modelo de DA utilizando o *software* Aspen Plus. Na prática a simulação consistiu em 46 reações químicas, incluindo uma expressão matemática para inibição em função do pH. Modelou as etapas de acidogênese, acetogênese e metanogênese através de equações cinéticas em condição termofílica. Considerou como entradas do modelo o volume do reator (V), a carga de substrato e o TDH. A validação foi consolidada usando uma variedade de dados laboratoriais e industriais sobre DA. Um reator estequiométrico (RSTOIC) foi usado para simular a hidrólise, o qual um reator tanque continuamente agitado (CSTR) foi definido para as outras etapas. O fluxograma

simulado no simulador Aspen Plus forneceu uma previsão aproximada da produção de metano e biogás para uma ampla variedade de substratos.

Desde a publicação do estudo de Rajendran et al. (2014), o modelo desenvolvido tem sido usado como base para outros trabalhos na área de digestão anaeróbica. Por exemplo, Ravendran et al. (2019) que expandiram o estudo ao investigar e avaliar a influência de parâmetros como a vazão de entrada de substrato, adição de hidrogênio e pressão na produção ótima de biogás.

Menacho, Mazid e Das (2022) também utilizaram o modelo de Rajendran et al. (2014) como base, onde realizaram a validação do modelo com dados experimentais de três casos reportados na literatura de substratos originados de resíduos alimentares. Também avaliaram o efeito da variação da taxa de carga orgânica, do TDH e da concentração de gorduras (20-60% em massa) no teor de CH₄ gerado no biogás. Concluíram que a simulação pode ser aprimorada e empregada na otimização do rendimento de CH₄ em experimentos a nível laboratorial e industrial.

2.5.2 Modelagem e Simulação do processo de digestão anaeróbia por Ranjendran et al. (2014) baseado em Aspen Plus

A digestão anaeróbia é um processo altamente complexo, contendo diversas reações desejáveis e indesejáveis envolvidas, sendo influenciada por vários parâmetros operacionais e de projeto. Nesse contexto, o desenvolvimento de uma modelagem matemática confiável da DA pode auxiliar no melhor entendimento, projeto, simulação, otimização e previsão de desempenho do processo.

O trabalho de Rajendran et al. (2014) desenvolveu um modelo de simulação de processos para digestão anaeróbia no software Aspen Plus. Esse incorporou os modelos ADM1 e proposto por Angelidaki et al (1996) para descrever a cinética e as reações do processo de DA (BATSTONE *et al.*; 2002). O modelo fundamenta-se, principalmente, na divisão em dois grupos de reações: hidrólise, que é modelada por reações estequiométricas; e das fases ácidogênica, acetogênica e metanogênica, que são baseadas em equações e parâmetros cinéticos.

Por ser a hidrólise uma das etapas limitantes da DA, um conjunto de reações foi adicionado especificamente para estudar o efeito do pré-tratamento na eficiência da hidrólise a partir de diferentes substratos. As reações de hidrólise foram inseridas

visando a conversão de carboidratos, proteínas e gorduras em açúcares, aminoácidos e ácidos graxos.

O modelo proposto por Rajendran et al. (2014) foi utilizado e aprimorado para simular o processo de DA. Algumas das vantagens desse modelo incluem a possibilidade de uso de diversos tipos de substratos e componentes. Estudos recentes validaram o modelo, gerando resultados satisfatórios.

2.5.2.1 Premissas

Para o desenvolvimento da modelagem e da simulação do processo de DA, as seguintes premissas foram consideradas:

- O biodigestor opera isotermicamente;
- Modelagem em regime estacionário;
- Efeitos do tamanho, da forma e da área de superfície do substrato são desconsiderados.

2.5.2.2 Reações

Os processos em um biodigestor anaeróbico compreendem uma série de reações interligadas, que ocorrem em série ou de forma paralela em relação aos seus estágios. No modelo desenvolvido Rajendran et al. (2014), 46 reações foram consideradas, onde 13 delas representaram a etapa de hidrólise por meio de reações estequiométricas com conversões X_A (%) definidas, conforme mostra a Tabela 4.

Por outro lado, 2, 6 e 2 reações foram consideradas para representar as etapas de acidogênese, acetogênese e metanogênese, respectivamente, conforme mostram as Tabelas 5, 6 e 7. Essas foram consideradas reações de primeira ordem em relação aos reagentes limitantes, de modo que a ordem global de cada reação é igual a um. Além disso, as constantes cinéticas (k) são apresentadas nas Tabelas 5, 6 e 7, as quais permitiram a inserção dos valores do fator pré-exponencial de Arrhenius (k_0) no simulador Aspen Plus, considerando a energia de ativação (E_a) igual a zero para uma

temperatura de referência $T_0 = 323,15$ K. Nesse caso, a equação 1 proposta por Arrhenius (A) foi adotada para encontrar k e calcular a velocidade de decomposição do reagente limitante (r_{RL}) , a partir da sua molaridade (C_{RL}) , por meio da Equação 2.

$$k = k_0 \left(\frac{T}{T_0}\right)^n exp^{\left[\frac{-E_a}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]}$$
 (1)

$$r_{RL} = -kC_{RL} \tag{2}$$

Similarmente, 23 reações de degradação de aminoácidos foram inseridas no simulador Aspen Plus, conforme mostra a Tabela 7.

Tabela 4-Reações para o estágio de hidrólise.

N°	Componente	Reações	$X_A(\%)$
1	Amido	$(C_6H_{12}O_6)_n + H_2O \rightarrow_n C_6H_{12}O_6$	0.6 ± 0.2
2	Celulose	$(C_6H_{12}O_6)_n + H_2O \rightarrow_n C_6H_{12}O_6$	$0,4 \pm 0,1$
3	Hemicelulose	$C_5H_8O_4 + H_2O \rightarrow 2.5C_2H_4O_2$	$0,5 \pm 0,2$
4	Hemicelulose	$C_5H_8O_4 + H_2O \rightarrow C_5H_{10}O_5$	$0,6 \pm 0,0$
5	Xilose	$C_5H_{10}O_5 \rightarrow C_5H_4O_2 + 3H_2O$	$0,6 \pm 0,0$
6	Celulose	$C_6H_{12}O_6 + H_2O \rightarrow 2C_2H_6O + 2CO_2$	$0,4 \pm 0,1$
7	Etanol	$2C_2H_6O + CO_2 \rightarrow 2C_2H_4O_2 + CH_4$	0.6 ± 0.1
0	Proteína	$C_{13}H_{25}O_7N_3S + 6H_2O \rightarrow 6.5CO_2 + 6.5CH_4 + 3H_3N + H_2S$	$0,5 \pm 0,2$
8	Solúvel		
		P.I + 0,3337H ₂ O \rightarrow 0,045C ₆ H ₁₄ N ₄ O ₂ + 0,048C ₄ H ₇ NO ₄ +	$0,6 \pm 0,1$
0	Proteína	$0,047C_4H_9NO_3 + 0,172C_3H_7NO_3 + 0,074C_5H_9NO_4 + 0,111C_5H_9NO_2 +$	
9	Insolúvel	$0,\!25C_2H_5NO_2+0,\!047C_3H_7NO_2+0,\!067C_3H_6NO_2S+0,\!074C_5H_{11}NO_2+$	
		$0,07C_6H_{13}NO_2 + 0,046C_6H_{13}NO_2 + 0,036C_9H_{11}NO_2$	
10	Trioleína	$C_{57}H_{104}O_6 + 8,436H_2O \rightarrow 4C_3H_8O_3 + 2,43C_{16}H_{34}O$	$0,5 \pm 0,2$
11	Tripalmitina	$C_{51}H_{98}O_6 + 8,436H_2O \rightarrow 4C_3H_8O_3 + 2,43C_{16}H_{34}O$	$0,5 \pm 0,2$
12	Oleina de	$C_{37}H_{70}O_5 + 4,1H_2O \rightarrow 2,1C_3H_8O_3 + 0,9C_{16}H_{34}O + 0,9C_{18}H_{34}O_2$	$0,6 \pm 0,2$
12	palma		
12	Palmito	$C_{37}H_{68}O_5 + 4,3H_2O \rightarrow 2,2C_3H_8O_3 + 0,9C_{16}H_{34}O + 0,9C_{18}H_{32}O_2$	0.6 ± 0.2
13	linoleina		

Fonte: Rajendran et al. (2014)

Tabela 5-Reações para o estágio de acidogênese.

N	Componente	Reações	k
1	Dextrose	$C_6H_{12}O_6 + 0.115H_3N \rightarrow 0.1115C5H_7NO_2 + 0.744C_2H_4O_2 + 0.5C_3H_6O_2 +$	9.54x10 ⁻⁰³
	Dexilose	$0.4409 C_4H_8O_2 + 0.6909CO_2 + 1.0254H_2O$	9,54810
0	Clinaral	$C_3H_8O_3 + 0.407H_3N + 0.0291CO_2 + 0.0005H_2 \rightarrow 0.0471C_5H_7NO_2 +$	1,01x10 ⁻⁰²
2	Glicerol	$0.9185C_3H_6O_2 + 1.09309H_2O$	

Fonte: Rajendran et al. (2014)

Tabela 6-Reações para o estágio de acetogênese.

Componento	Pagaños	Const.
Componente	Reações	cinética
Ácido oloico	$C_{18}H_{34}O_2 + 15.2396H_2O + 0.2501CO_2 + 0.1701H_3N \rightarrow$	3,64x10 ⁻¹²
Acido oleico	0.1701C ₅ H ₇ NO ₂ + 8.6998C ₂ H ₄ O ₂ + 14.4978H ₂	3,04210
Ácido proposoios	$C_3H_6O_2 + 0.06198H_3N + 0.314336H_2O \rightarrow 0.06198C_5H_7NO_2 +$	4 OFv4O-07
Acido proparioico	$0.9345C_2H_4O_2 + 0.660412CH_4 + 0160688CO_2 + 0.00055H_2$	1,95x10 ⁻⁰⁷
Ásida isabutúrias	$C_4H_8O_2 + 0.0653H_3N + 0.8038H_2O + 0.0006H_2 + 05543CO_2 \rightarrow$	E 00×40-06
Acido isobutirico	0.0653C ₅ H ₇ NO ₂ + 1.8909C ₂ H ₄ O ₂ + 0.446CH ₄	5,88x10 ⁻⁰⁶
	$C_5H_{10}O_2 + 0.0653H_3N + 0.5543CO_2 + 0.8044H_2O \rightarrow$	
Ácido Isovalérico	$0.0653C_5H_7NO_2 + 0.8912C_2H_4O_2 + C_3H_6O_2 + 0.4454CH_4 +$	3,01x10 ⁻⁰⁸
	$0.0006H_2$	
Á aida linalaina	$C_{18}H_{32}O_2 + 15.356H_2O + 0.482CO_2 + 0.1701H_3N \rightarrow$	2.04.40-12
Acido linoleico	0.1701C ₅ H ₇ NO ₂ + 9.02C ₂ H ₄ O ₂ + 10.0723H ₂	3,64x10 ⁻¹²
6	$C_{16}H_{34}O + 15.253H_2O + 0.482CO_2 + 0.1701H_3N \rightarrow$	2.04.40.12
Acido Palmitico	$0.1701C_5H_7NO_2 + 8.4402C_2H_4O_2 + 10.0723H_2$	3,64x10 ⁻¹²
	Ácido oleico Ácido propanoico Ácido isobutírico Ácido Isovalérico Ácido linoleico Ácido Palmítico	

Fonte: Rajendran et al. (2014)

Tabela 7-Reações para o estágio de metanogênese.

N	Componente	Reações	Const. cinética
1	Ácido acético	$C_2H_4O_2 + 0.022H_3N \rightarrow 0.022C_5H_7NO_2 + 0.945CH_4 + 0.066H_2O + 0.945CO_2$	2,39x10 ⁻⁰³
2	Hidrogênio	$14.4976H_2 + 3.8334CO_2 + 0.0836H_3N → 0.0836C_5H_7NO_2 + 3.4154CH_4 + 7.4996H_2O$	2,39x10 ⁻⁰³

Fonte: Rajendran et al. (2014)

Tabela 8-Reações para degradação de aminoácidos.

N°	Componente	Reações	Const. Cinética
1	Glicina	$C_2H_5NO_2 + H_2 \rightarrow C_2H_4O_2 + H_3N$	1,28x10 ⁻²
2	Treonina	$C_4H_9NO_3 + H_2 \rightarrow C_2H_4O_2 + 0.5C_4H_8O_2 + H_3N$	1,28x10 ⁻²
3	Histidina	$C_6H_8N_3O_2 + 4H_2O + 0.5H_2 \rightarrow CH_3NO + C_2H_4O_2 + 0.5C_4H_8O_2 + 2H_3N + CO_2$	1,28x10 ⁻²
4	Arginina	$C_6H_{14}N_4O + 3H_2O + H_2 \rightarrow 0.5C_2H_4O_2 + 0.5C_3H_6O_2 + 0.5C_5H_{10}O_2 + 4H_3N + CO_2$	1,28x10 ⁻²
5	Prolina	$C_5H_9NO_2 + H_2O + H_2 \rightarrow 0.5C_2H_4O + 0.5C_3H_6O_2 + 0.5C_5H_{10}O_2 + H_3N$	1,28x10 ⁻²
6	Metionina	$C_5H_{11}NO_2S + 2H_2O \rightarrow C_3H_6O_2 + CO_2 + H_3N + H_2 + CH_4S$	1,28x10 ⁻²
7	Serina	$C_3H_7NO_3 + H_2O \rightarrow C_2H_4O_2 + CO_2 + H_3N + H_2$	1,28x10 ⁻²
8	Treonina	$C_4H_9NO_3 + H_2O \rightarrow C_3H_6O_2 + CO_2 + H_3N + H_2$	1,28x10 ⁻²
9	Ác. Aspártico	$C_4H_7NO_4 + 2H_2O \rightarrow C_2H_4O_2 + 2CO_2 + H_3N + 2H_2$	1,28x10 ⁻²
10	Ác. Glutâmico	$C_5H_9NO_4 + 2H_2O \rightarrow C_2H_4O_2 + 0.5C_4H_8O_2 + CO_2 + 2H_3N + 0.5H_2$	1,28x10 ⁻²
11	Ác. Glutâmico	$C_5H_9NO_4 + 2H_2O \rightarrow 2C_2H_4O_2 + CO_2 + H_3N + H_2$	1,28x10 ⁻²
12	Histidina	$C_6H_8N_4O_2 + 5H_2O \rightarrow CH_3NO + 2C_2H_4O_2 + CO_2 + 2H_3N + 0.5H_2$	1,28x10 ⁻²
13	Arginina	$C_6H_{14}N_4O_2 + 6H_2O \rightarrow 2C_2H_4O_2 + 2CO_2 + 4H_3N + 3H_2$	1,28x10 ⁻²
14	Lisina	$C_6H_{13}NO_2 + 2H_2O \rightarrow C_5H_{10}O_2 + H_3N + CO_2 + 2H_2$	1,28x10 ⁻²
15	Leucina	$C_6H_{14}N_4O_2 + 6H_2O \rightarrow 2C_2H_4O_2 + 2CO_2 + 4H_3N + 3H_2$	1,28x10 ⁻²
16	Isoleucina	$C_6H_{13}NO_2 + 2H_2O \rightarrow C_5H_{10}O_2 + CO_2 + H_3N + 2H_2$	1,28x10 ⁻²
17	Valina	$C_5H_{11}NO_2 + 2H_2O \rightarrow C_4H_8O_2 + CO_2 + H_3N + 2H_2$	1,28x10 ⁻²
18	Fenilalanina	$C_9H_{11}NO_2 + 2H_2O \rightarrow C_6H_6 + C_2H_4O_2 + CO_2 + H_3N + H_2$	1,28x10 ⁻²
19	Tirosina	$C_9H_{11}NO_3 + 2H_2O \rightarrow C_6H_6O + C_2H_4O_2 + CO_2 + H_3N + H_2$	1,28x10 ⁻²
20	Triptofano	$C_{11}H_{12}N_2O_2 + 2H_2O \rightarrow C_8H_7N + C_2H_4O_2 + CO_2 + H_3N + H_2$	1,28x10 ⁻²
21	Glicina	$C_2H_5NO_2 + 0.5H_2O \rightarrow 0.75C_2H_4O_2 + 0.5CO_2 + H_3N$	1,28x10 ⁻²
22	Alanina	$C_3H_7NO_2 + 2H_2O \rightarrow C_2H_4O_2 + CO_2 + H_3N + 2H_2$	1,28x10 ⁻²
23	Cisteína	$C_3H_6NO_2S + 2H_2O \rightarrow C_2H_4O_2 + CO_2 + H_3N + 0.5H_2 + H_2S$	1,28x10 ⁻²

Fonte: Rajendran et al (2014)

2.6 PROPRIEDADES FÍSICO-QUÍMICAS NA SIMULAÇÃO DE PROCESSOS

A simulação de processos é uma ferramenta fundamental para o desenvolvimento e aprimoramento de processos industriais. No entanto, é necessário que as propriedades físicas e químicas dos componentes envolvidos no processo sejam conhecidas e adequadamente modeladas, para que a simulação seja confiável e precisa.

Carlson (1996) destacou a importância da escolha correta de modelos de propriedades físicas e químicas na simulação de processos. Nesse caso sugeriu a realização dos seguintes passos: seleção apropriada de métodos de propriedades físicas; validação das propriedades físicas; avaliação das propriedades físico-químicas que não se encontram no banco de dados; inserção das propriedades e parâmetros físico-químicos dos componentes, seja através da verificação na literatura ou estimando-os. Vale ressaltar que o *software* Aspen Plus utiliza as recomendações de Carlson (1996) para sugerir os modelos termodinâmicos mais adequados à simulação por meio do *Property Method Selection Assistant*. Essa ferramenta auxilia o usuário na escolha apropriada do modelo termodinâmico baseado em condições como tipos de compostos (polares, apolares, eletrólitos), faixa de pressão, formação de equilíbrio líquido-líquido, disponibilidade de parâmetros de interações binárias, entre outras. A Figura XX ilustra o os passos de validação sugeridos por Carlson (1996).

2.6.1 Seleção apropriada de métodos das propriedades físicas

A seleção adequada do método de propriedades físicas é essencial para garantir a precisão e a confiabilidade dos resultados da simulação de processos químicos. A escolha pode ser baseada na avaliação das características do processo e dos componentes envolvidos, onde a validação do método escolhido deve ser realizada sempre que possível (LORENZ et al., 2022). Diversos fatores precisam ser levados em consideração para essa escolha, tais como a natureza das propriedades de interesse; a composição da mistura; a faixa de pressão e temperatura; e a disponibilidade de parâmetros. Devido à grande variedade de sistemas e processos existentes, não existe um único método capaz de lidar com todas as situações (CARLSON, 1996).

A escolha do método na simulação de processos é uma das etapas iniciais ao desenvolver uma simulação de processos. Carlson (1996) sugere levar em consideração o equilíbrio de fases, como a formação de equilíbrio líquido-vapor (ELV) e ELL, pois se trata de um ponto sensível para vários tipos de processos como destilação, extração, reação, entre outros. Além disso, outros fatores críticos que devem ser considerados na escolha de métodos de propriedades físicas são a entalpia e a capacidade calorífica de componentes puros e misturas. Esses dados são

fundamentais para diversas operações unitárias, tais como trocadores de calor, condensadores, colunas de destilação e reatores.

Quanto a representação de propriedades de misturas, há uma ampla gama de modelos termodinâmicos disponíveis na literatura para as mais variadas condições de processos, desde métodos simples a mais complexos. Os mais comumente utilizados são os modelos *Non-Random Two-Liquid* (NRTL) e *Universal Quasi Chemical* (UNIQUAC). Esses são amplamente utilizados em processos envolvendo misturas contendo compostos polares, sem a presença de eletrólitos, a pressões baixas e moderadas (< 10 bar), onde os parâmetros de interação binária estão disponíveis ou podem ser obtidos por regressão de dados experimentais. Também são capazes de representar equilíbrios de fases dessas misturas como ELV, ELL, equilíbrio líquido-líquido-vapor (ELLV), equilíbrio sólido-líquido, equilíbrio sólido-vapor, entre outros. Na ausência desses parâmetros de interações ou de dados suficientes para obtê-los por regressão, pode-se utilizar o modelo *Universal Functional Activity Coefficient* (UNIFAC), que é capaz de predizer composições e propriedades de misturas baseado no conceito de grupos funcionais (ALBUQUERQUE, 2019; ALBUQUERQUE et al., 2020; TESTA *et al.*, 2022).

Por outro lado, equações de estado são normalmente adotadas para simular processos contendo hidrocarbonetos e gases leves, como o hidrogênio, nitrogênio e metano, para uma ampla faixa de pressão e temperatura.

2.6.2 Validação das propriedades dos componentes

A validação das propriedades físicas trata-se de uma etapa necessária em qualquer projeto de simulação. Essa etapa é importante e deve ser realizada para componentes presentes ou ausentes no banco de dados do *software* Aspen Plus. A validação de propriedades torna-se necessária pelo fato de que as propriedades dos componentes afetam diretamente os resultados da simulação. Nesse sentido, a validação envolve verificar a concordância dos valores das propriedades dos componentes puros e das misturas com aquelas experimentais, as quais são reportadas na literatura ou obtidas experimentalmente. Entre as propriedades puras destacam-se a temperatura de ebulição, temperatura crítica, pressão crítica, volume crítico, entalpia de vaporização, densidade (ou volume específico), pressão de vapor,

viscosidade, capacidade calorífica, entre outras. Em contrapartida, as propriedades de misturas são, geralmente, validadas através de dados experimentais de equilíbrio de fases (ALBUQUERQUE *et al.*, 2018; ALBUQUERQUE, 2019; ALBUQUERQUE *et al.*, 2020; GMEHLING *et al.*, 2012).

A validação das propriedades puras e binárias é geralmente realizada por meio da comparação com valores de dados experimentais reportados na literatura ou em bancos de dados confiáveis, tais como o *National Institute of Standards and Technology* (NIST) *Chemistry WebBook*, *Design Institute for Physical Property Data* (DIPPR), REAXYS, entre outros.

2.6.3 Inserção das propriedades e parâmetros físico-químicos dos componentes

A obtenção e o uso de dados de propriedades físicas são essenciais para o desenvolvimento de modelos termodinâmicos e simulações de processos químicos e industriais. Para a realização de cálculos precisos de propriedades de misturas, é necessário ter dados confiáveis de propriedades de componentes puros. Nesse contexto, Carlson (1996) sugere a inserção de dados obtidos de diversas fontes, incluindo referências de compilação de dados, manuais, periódicos e coleções internas de dados. Para a obtenção de dados binários, que não são encontrados na literatura ou no banco de dados do simulador, o autor recomenda a utilização do modelo UNIFAC para estimação dos parâmetros binários, visando o cálculo do equilíbrio de fases. Portanto, na ausência de parâmetros binários dos modelos de correlação (NRTL e UNIQUAC) ou de dados experimentais para obtê-los, os resultados do modelo UNIFAC podem ser usados para obter esses parâmetros por regressão (ALBUQUERQUE, 2019; ALBUQUERQUE et al., 2020; ALBUQUERQUE; DANIELSKI: STRAGEVITCH, 2016).

3 MATERIAIS E MÉTODOS

A seção 3 de Materiais e Métodos abordou-se o processo de modelagem e simulação da digestão anaeróbia. Iniciando com a definição dos componentes representativos, pela seleção do modelo termodinâmico e validação das propriedades,

dividida em propriedades dos componentes puros e dependentes da temperatura. Em seguida, verificação e estimação dos parâmetros binários do modelo NRTL. Concluindo, detalhou-se a condição inicial e os parâmetros de execução e desempenho da simulação.

3.1 MODELAGEM E SIMULAÇÃO DO PROCESSO DE DIGESTÃO ANÁEROBIA

Na literatura estão disponíveis várias abordagens para realizar a simulação de um processo químico no *software* Aspen Plus. Nesse contexto, os pontos a seguir fundamentam a sequência de elaboração da simulação:

- a) Definição dos componentes representativos com base nas reações requeridas, dados da literatura e experiência no processo.
- b) Escolha do modelo termodinâmico com base nos componentes definidos e nas condições operacionais do processo.
- c) Validação das propriedades puras e de misturas, verificando a ausência de valores e parâmetros, os quais valores experimentais reportados na literatura são inseridos ou utilizados para regressão de parâmetros dos modelos de propriedades. Em último caso, valores de propriedades e parâmetros podem ser estimados por métodos de predição, quando dados experimentais ou parâmetros não foram reportados ou medidos experimentalmente.
- d) Definição e validação dos modelos cinéticos das reações presentes no processo.
- e) Desenvolvimento e simulação do fluxograma de processo por meio da inserção de correntes, blocos, condições operacionais, reações, parâmetros físicos, entre outros.
- f) Validação da simulação do processo por meio da comparação com resultados de plantas reais, experimentais e de simulações reportadas na literatura.

3.1.1 Definição dos componentes representativos

O software Aspen Plus possui um banco de dados extenso com milhares de componentes. Além disso, caso uma substância não esteja disponível, é possível

adicioná-la como um componente hipotético. Nesse caso é requerido ao menos a especificação da fórmula molecular do componente e a inserção de parâmetros como massa molecular, temperatura de ebulição, propriedades críticas, entre outros. A Tabela 9 apresenta alguns dos principais componentes utilizados na simulação do processo de DA, o qual foi representado por 61 componentes. Todos os componentes estão presentes na Tabela B1 (Apêndice B).

Tabela 9 — Lista de alguns dos componentes inseridos na simulação do processo de DA no *software*Aspen Plus.

Componente	Nome no simulador	Fórmula molecular	Característica
Água	WATER	H ₂ O	Um dos principais componentes da biomassa e importante no estágio de hidrólise
Hemicelulose	HEMECELL	C ₅ H ₈ O ₄	Um dos principais carboidratos encontrado na maior parte das biomassas
Xilose	XYLOSE	C ₅ H ₁₀ O ₅	É a pentose mais abundante na natureza
Etanol	ETHANOL	C ₂ H ₆ O2	Substância orgânica obtida da fermentação de açúcares
Dextrose	DEXTROSE	C ₆ H ₁₂ O ₆	Produto da hidrólise e essencial para a produção de ácido acético na etapa de acidogênese
Glicerol	GLYCEROL	C₃H ₈ O₃	Produto da hidrólise, que é fundamental para o estágio de acidogênese na geração do ácido acético
Ácido oleico	OLEIC-AC	C ₁₈ H ₃₄ O ₂	Subproduto ácido importante durante o estágio de acetogênese
Ácido propanoico	PROPI-01	$C_3H_6O_2$	Subproduto ácido importante durante o estágio de acetogênese
Ácido butírico	ISOBU-01	$C_4H_8O_2$	Subproduto ácido importante durante o estágio de acetogênese
Ácido valérico	ACISOV	C ₅ H ₁₀ O ₂	Subproduto ácido importante durante o estágio de acetogênese
Ácido linoleico	ISOVA-01	C ₁₈ H ₃₂ O ₂	Subprodutos ácido importante durante o estágio de acetogênese
Ácido acético	ACETI-AC	C ₂ H ₄ O ₂	Componente fundamental no estágio de metanogênese para geração do metano
Hidrogênio	HIDROGEN	H ₂	Componente fundamental no estágio de metanogênese para geração do metano
Metano	METHANE	CH ₄	Principal constituinte do biogás
Dióxido de carbono	CO2	CO ₂	Constituinte do biogás

Fonte: Autor (2023).

Dados os componentes considerados na simulação do processo de DA, as seguintes representações foram adotadas:

- a) Os carboidratos representados pela celulose, hemicelulose, dextrose e amido.
- b) Os lipídios representados pela trioleína, tripalmitina, SN-1-palmito-2-oleína e SN-1-palmito-2-linoleína.
- c) Proteínas representadas por pseudocomponentes hipotéticos, proteína e proteína insolúvel (PI).
- d) Lignina representada por um pseudocomponente hipotético inerte.

3.1.2 Seleção do modelo termodinâmico

O modelo termodinâmico NRTL foi selecionado para representar as interações binárias entre os componentes envolvidos na simulação do processo de DA, pois descreve misturas contendo compostos altamente polares a baixas pressões. A escolha corrobora com as recomendações de Scamardella et al. (2019), Rajendran et al. (2014) e Menacho, Mazid e Das (2022), que obtiveram resultados confiáveis da simulação em comparação ao processo real usando o modelo NRTL. Por outro lado, esses autores negligenciaram a ausência da maioria dos parâmetros de interações binárias, de modo que foram estimados neste trabalho por meio do modelo UNIFAC.

3.1.3 Validação das propriedades

A validação das propriedades de componentes puros e de misturas, bem como a verificação dos valores e parâmetros de propriedades ausentes são etapas fundamentais na modelagem e simulação utilizando o simulador Aspen Plus. A escolha de propriedades dos componentes puros ou de misturas sem validação pode afetar a confiabilidade dos resultados da simulação, podendo divergir daqueles obtidos experimentalmente. Nesse sentido, as propriedades de todos os componentes da simulação foram confrontadas com valores experimentais reportados na literatura, principalmente, aquelas obtidas de banco de dados como o TDE Nist do Aspen Plus, NIST Chemistry e REAXYS. Nesse caso, o erro médio relativo (ARD) foi calculado pela Equação 3, de modo que o valor experimental reportado na literatura foi inserido

no simulador caso |ARD| > 10%. Em contrapartida, valores presentes no banco de dados do Aspen Plus foram mantidos se $|ARD| \le 10\%$. A utilização do ARD oferece uma abordagem quantitativa para avaliar a precisão dos dados.

$$ARD = \frac{(valor\ experimental) - (valor\ da\ simulação)}{(valor\ experimental)} \times 100$$
(3)

3.1.3.1 Validação das propriedades dos componentes puros

Para a validação das propriedades dos componentes puros foram considerados dados do banco de dados do Aspen Plus e da literatura. A Tabela 10 lista as propriedades que foram verificadas por meio do procedimento metodológico dado a seguir:

- a) Estabelecimento do critério de diferença percentual: Foi estabelecido um critério de diferença percentual entre os valores obtidos no Aspen e os valores da literatura. Caso o |ARD| entre os dois conjuntos de dados fosse maior que 10%, considerou-se que existia uma discrepância significativa. Nesses casos, optou-se por adotar o valor da propriedade pura obtido na literatura, substituindo o valor anteriormente utilizado no Aspen.
- b) Inserção de valores ausentes no simulador a partir da literatura: Nos casos em que a propriedade pura foi encontrada na literatura, mas não estava disponível no Aspen, procedeu-se à inserção do valor correspondente na simulação.
- c) Tratamento de valores de propriedades ausentes na literatura: Quando não foi possível encontrar o valor da propriedade pura na literatura, decidiu-se manter o valor disponível no Aspen.

Tabela 10 – Propriedades puras validadas.

	Tabela 10 – Flophedades pulas validadas.					
N°	Propriedade	Descrição				
1	Energia livre de Gibbs	Medida da disponibilidade de energia de um componente em um sistema termodinâmico				
2	Energia de Gibbs padrão de formação de sólido	Energia de Gibbs associada à formação de uma substância sólida em condições padrão				
3	Energia de Gibbs padrão de formação de líquido	Energia de Gibbs associada à formação de uma substância líquida em condições padrão				
4	Entalpia padrão de formação de gás ideal	Calor associado à formação de uma substância a partir de seus elementos constituintes nas condições padrão de um gás ideal				
5	Entalpia padrão de formação de sólido	Calor associada à formação de uma substância sólida nas condições padrão				
6	Entalpia de vaporização	Quantidade de calor necessária para vaporizar uma substância a partir de seu estado líquido saturado				
7	Temperatura de fusão	Temperatura na qual uma substância passa do estado sólido para o estado líquido				
8	Entalpia padrão de combustão	Calor liberado durante a combustão completa de uma substância em condições padrão				
9	Momento Dipolo	Medida da polaridade de uma molécula				
10	Massa Molecular	Massa de uma molécula em unidades de massa atômica				
11	Fator acêntrico	Parâmetro que descreve o desvio de um componente do comportamento de um gás ideal				
12	Pressão Crítica	Pressão necessária para atingir a temperatura crítica de uma substância				
13	Parâmetro de densidade do líquido Rackett	Parâmetro utilizado para estimar a densidade de um líquido em função da temperatura				
14	Temperatura de Ebulição	Temperatura na qual uma substância passa do estado líquido para o estado gasoso				
15	Temperatura Crítica	Temperatura na qual ocorre a transição entre as fases líquida e gasosa de uma substância				
16	Volume Molar Líquido (Temperatura de ebulição)	Volume ocupado por um mol de substância líquida na temperatura de ebulição				
17	Volume Crítico	Volume ocupado por um mol de substância na temperatura e pressão críticas				
18	Fator crítico de compressibilidade	Relação entre a compressibilidade molar de uma substância e sua compressibilidade crítica				
19	Entalpia de fusão (Temperatura de fusão)	Entalpia envolvida no processo de fusão de uma substância a uma temperatura específica				
20	Temperatura do ponto triplo	Temperatura e pressão em que as três fases (sólida, líquida e gasosa) coexistem em equilíbrio				
Fonte: Autor	r (2023)					

Fonte: Autor (2023).

3.1.3.2 Validação das propriedades puras dependentes da temperatura

A validação foi realizada levando em conta que o *software* Aspen Plus estabelece modelos de propriedades dependentes da temperatura no seu banco de dados, os quais na maioria das vezes são bastante confiáveis, pois normalmente são provenientes de dados experimentais reportados na literatura científica.

A metodologia que se estabeleceu visou validar as propriedades inseridas por Rajendran et al. (2014). A Tabela 11 lista as propriedades dependentes da temperatura que foram inseridas pelos autores na simulação. Essas foram comparadas com valores reportados da literatura. Quando as propriedades foram encontradas na literatura, análises gráficas foram realizadas para identificar discrepâncias significativas. Quando necessário, os valores da literatura foram adotados para garantir resultados mais precisos e confiáveis.

Tabela 11– Modelos de propriedades puras dependentes da temperatura inseridos por Rajendran et al. (2014).

Propriedade	Componentes	
	Cisteína	
	Arginina	
Capacidade calorífica de um gás ideal	Glicina	
	Histidina	
	Ácido glutâmico	
	Arginina	
	Cisteína	
Calor de vaporização	Prolina	
	Histidina	
	Cisteína	
	Prolina	
Pressão de vapor do líquido	Arginina	
	Histidina	

Fonte: Autor (2023).

A) Capacidade Calorifica de um gás ideal

No Aspen Plus, a capacidade calorífica de um gás ideal (c_{pi}^{GI}) é representada por uma equação polinomial de sexto grau, conforme a Equação 4,

$$c_{pi}^{GI} = K_1 + K_2 T^1 + K_3 T^2 + K_4 T^3 + K_5 T^4 + K_6 T^5$$
(4)

Onde c_{pi}^{GI} representa a capacidade calorífica (J/mol.K), enquanto T representa a temperatura. Os coeficientes K_1 , K_2 , K_3 , K_4 , K_5 e K_6 são parâmetros que são determinados a partir de dados experimentais confiáveis ou por meio de correlações teóricas.

b) Calor de vaporização

O simulador incorpora diversos modelos para estimar a entalpia de vaporização $(\Delta H_i^{vap}(T))$. Dois modelos comumente utilizados são o *Designe Institute for Physical Properties* (DIPPR) 106 e o modelo de Watson dados pelas Equações 4 e 5, respectivamente, onde a temperatura reduzida da espécie i (T_{ri}) é dada pela Equação 6 (VETERE, 1979).

$$\Delta H_i^{vap}(T_r) = C_{1i}(1 - T_{ri})^{(C_{2i} + C_{3i}T_{ri} + C_{4i}T^2_{ri} + C_{5i}T^3_{ri})}$$
(4)

$$\Delta H_i^{vap}(T) = \Delta vap H_i(T_1) \left(\frac{1 - T_{/T_c}}{1 - T_1/T_c} \right)^{a_i + b_i (1 - \frac{T}{T_c})}$$
(5)

$$T_{ri} = T/T_c \tag{6}$$

Nessas equações T_c representa a temperatura crítica, C_{xi} representam as constantes da parametrização da equação. T_1 parâmetro para primeira temperatura, a_i e b_i são coeficientes determinados experimentalmente ou por métodos de correlação.

c) Pressão de vapor do líquido

A modelo de pressão de vapor mais utilizado no simulador baseia-se na equação de Antoine estendida, dada pela Equação 7,

$$\ln p_i = A_i + \frac{B_i}{T + C_i} + D_i T + E_i \ln (T) + F_i T^{G_i}$$
(7)

onde A_i , B_i , C_i , D_i , E_i , F_i e G_i são os coeficientes do modelo e pi^{vap} representa a pressão de vapor do componente i (kPa).

No Aspen Plus, existem três métodos disponíveis para estimar a propriedade de pressão de vapor, todos baseados na equação de pressão de vapor de Antoine estendida:

- a) **Método de Riedel:** Esse método requer informações sobre a temperatura de ebulição (T_b) , temperatura crítica (T_c) e pressão crítica (P_c) do componente. É uma abordagem que oferece boa precisão na estimativa da pressão de vapor para uma ampla gama de componentes.
- b) **Método de Li-Ma:** Esse método utiliza informações sobre a estrutura do componente e T_b para realizar a estimativa da pressão de vapor. É especialmente adequado para componentes polares e não polares sendo considerado preciso.
- c) **Método de Mani:** Requer informações como P_c e T_c do componente. Ele utiliza uma abordagem específica do software para estimar a pressão de vapor.

3.1.3.3 Verificação e estimação dos parâmetros binários do modelo NRTL

A simulação desenvolvida por Rajendran et al. (2014) utilizou o modelo NRTL com 28 iterações binárias entre os componentes. De forma a disponibilizar o restante das interações entre os componentes recorreu-se a ferramenta de estimação das interações do modelo NRTL presente no simulador, que se baseia no modelo UNIFAC. Nesse caso, foi necessária a inclusão das estruturas moleculares de alguns componentes, a determinação da faixa de temperatura de atuação da simulação, bem como os grupos funcionais envolvidos para cada substância no modelo UNIFAC (HANSEN et al., 1991).

A abordagem adotada para a validação consistiu na comparação gráfica por meio de diagramas de fases, comparando dados experimentais de ELV com resultados calculados pelo modelo NRTL contendo parâmetros de interação estimados via UNIFAC. Essas comparações foram apenas realizadas para os componentes mais relevantes nas fases líquida e vapor, ou seja, que possuem mais altas concentrações nas correntes de alimentação e produtos, como o metano, o dióxido de carbono e a água.

A equação 8 é utilizada no Aspen Plus para o modelo NRTL,

$$\ln \gamma_i = \frac{\sum_{j} x_j \tau_{ji} G_{ji}}{\sum_{k} x_k G_{ki}} + \sum_{j} \frac{x_j G_{ij}}{\sum_{k} x_k G_{kj}} \left(\tau_{ij} - \frac{\sum_{m} x_m \tau_{mj} G_{mj}}{\sum_{k} x_k G_{kj}} \right)$$
(8)

em que as equações 9, 10, 11, 12 e 13 representam alguns dos parâmetros da equação 8,

$$G_{ij} = \exp\left(-\alpha_{ij}\tau_{ij}\right) \tag{9}$$

$$\tau_{ij} = a_{ij} + \frac{b_{ij}}{T} e_{ij} \ln T + f_{ij} T \tag{10}$$

$$\alpha_{ij} = c_{ij} + d_{ij}(T - 273,15) \tag{11}$$

$$\tau_{ii} = 0 \tag{12}$$

$$G_{ii} = 1 ag{13}$$

onde a_{ij} , b_{ij} , c_{ij} , d_{ij} , e_{ij} e f_{ij} são parâmetros assimétricos.

3.1.4 Fluxograma para a simulação do processo de DA

O Aspen Plus possui diversos blocos que simulam operações unitárias de um processo, em que cada um possui um modelo interno e requer a determinação de certas variáveis para completar o balanço de informação. Por exemplo, o bloco RSTOIC tem como campos obrigatórios para seu funcionamento: reações e as condições operacionais (temperatura, pressão, carga térmica, entre outras). Já o bloco RCSTR permite a inclusão de modelos cinéticos, definição de volume e tempo de residência.

Os blocos são conectados por correntes materiais, as quais atuam como dutos onde as substâncias são transportadas de um bloco para outro. Na corrente é possível atribuir a vazão das correntes, composição da mistura, temperatura, pressão, entre outras condições operacionais.

Para a simulação do processo de DA foi adotado o fluxograma simplificado e proposto Rajendran et al. (2014), que contém um reator estequiométrico (B3-STOIC) e um reator CSTR (B1-CSTR), conforme os blocos e condições operacionais descritos na Figura 6.

B3-STOIC 328

B1-CSTR BIOGAS 328

LIQUID

LIQUID

Figura 6 – Fluxograma do processo de digestão anaeróbia simulado no software Aspen Plus

Fonte: O Autor (2023)

Para o B3-STOIC foram incorporadas as reações estequiométricas de hidrólise da Tabela 2, com especificação da fração de conversão e reações ocorrendo em paralelo. Para o bloco B1-CSTR foram atribuídas as reações das Tabelas 3 a 7, acetogênese, aminoácidos, acidogênese e metanogênese. Além disso foi estabelecido um volume de 5 m³ e um tempo de retenção de aproximadamente 18 dias na configuração do bloco.

A modelagem e a simulação incorporam também blocos de calculadoras para calcular a cinética das reações. Cada bloco de calculadora possui um código em Fortran e calcula a cinética nas etapas de acidogênese, acetogênese e metanogênese. Os compostos utilizados nas calculadoras são: glicerol, ácido butílico, ácido valérico, ácido propionico, ácido linoleico, aminoácidos, dextrose, ácido palmítico, ácido oleico, metano e hidrogênio.

O pH utilizado foi de 6,5 na condição padrão do processo. A corrente ENTRADA tem como condições padrão uma temperatura de 25°C e pressão de 1,01 bar. As outras correntes são de saída, dessa forma quando a simulação é executada indicaram composição e as propriedades que lhe foram geradas. Ao atribuir as informações requisitadas, o próprio software Aspen Plus indica se está pronto para compilar a simulação baseado no fechamento do balanço de informação que permita a resolução dos balanços de massa e de energia, bem como das relações de equilíbrio de fases e equações de soma das frações molares (ou mássicas).

Estabelecidas todas as condições do processo, a simulação inicia a execução do bloco B3-STOIC em que a degradação dos principais componentes de entrada é iniciada através das reações de hidrólise. A etapa seguinte se dá pela compilação dos blocos de calculadora que calculam as constantes cinéticas de diversos componentes. Com a cinética calculada o bloco B1-CSTR é iniciado com os cálculos restantes das

reações de aminoácidos, acidogênese, acetogênese e metanogênese. Finalmente, as correntes BIOGAS e LIQUID são geradas, representando o biogás e o digestato, respectivamente.

3.1.5 Aprimoramento e calibração da simulação do processo de DA

A metodologia para aprimorar e calibrar a simulação consistiu na comparação entre os resultados da simulação deste trabalho, após toda análise de propriedades e representação adequada do ELV, com os casos experimentais validados nos trabalhos de Rajendran et al (2014) e Menacho, Mazid e Das (2022). Todos os casos foram de DA na faixa de temperatura termofílica (55°C) e pH entre 6 e 7. As informações mais relevantes para os casos validados são apresentadas a seguir.

Caso 1: Dejeto bovino de um abatedouro foi utilizado como substrato, possuindo uma composição aproximada em massa de 70% de carboidratos, 8% de proteínas, 2% de gordura e 20% de cinzas. Uma vazão de entrada de 0,33 L dia-1, tempo de residência de 15 dias e volume do reator de 5 L. Possui uma relação de 6% de sólidos totais (ST) e 80% de sólidos voláteis (SV). A produção de biogás foi de 353,5 L·kg-1_{SV}·dia-1 (BUDIYONO, 2011; RAJENDRAN et al.; 2014).

Caso 2: Fração orgânica de resíduos sólidos urbanos (RSUs) foram utilizados como substrato, possuindo uma composição aproximada em massa de 61,5% de carboidratos, 10% de gorduras, 16% de proteínas e 12,5% de inertes e cinzas em m/m. Uma vazão de entrada de 3 g_{Vs}L⁻¹ dia⁻¹ foi adotada, bem como tempo de residência de 21 dias e volume do reator de 5 L. Uma relação de 15% de ST e 85% de SV foi aplicada (v/v), resultando em uma produção de 0,54 m³CH₄ kg⁻¹s_V dia⁻¹. (BORÅS ENERGY AND ENVIRONMENT AB, 2012; FORGACS *et al.*; 2012; RAJENDRAN *et al.*; 2014).

Caso 3: Co-digestão que utilizou 70% de RSUs e 30% de resíduos cítricos. Vazão de entrada 3 g_{vs}L⁻¹ dia⁻¹, tempo de residência de 21 dias e volume do reator de 5 L. Uma relação de 13% de ST e 87% de SV em v/v, resultando em uma produção de 0,555 m³CH₄ kg⁻¹_{vs} dia⁻¹ (RAJENDRAN *et al.*, 2014). Para esse caso a composição do substrato não foi fornecida diretamente pelo estudo de Rajendran et al. (2014), dado

que houve mistura entre a composição dos RSUs do caso 2 e aquela de resíduos cítricos fornecida por Forgacs et al. (2012) e Borås Energy and Environment AB (2012). Portanto, foi realizada uma estimação da composição com base nas informações disponíveis sobre os resíduos e suas características. Os resíduos cítricos foram compostos de glicose (8,1%), frutose (12,0%), sacarose (2,8%), pectina (25,0%), proteína (6,1%), celulose (22,0%), hemicelulose (11,1%), lignina (2,2%) e limoneno (3,8%) em % m/m (FORGACS et al., 2012).

Com base nesses dados foi possível estimar a contribuição de cada componente na nova composição da mistura de substrato, considerando que 70% dos resíduos eram RSUs e 30% eram resíduos cítricos. Os cálculos foram realizados para determinar a nova composição em massa, considerando as proporções de cada componente. Logo, a nova composição da mistura de substrato, após a adição dos resíduos cítricos, foi estimada em 68,4% de carboidratos, 14,1% de proteínas, 7,6% de lipídios e 9,9% de cinzas.

Caso 4: Dados de DA obtidos em biorreator de escala piloto utilizando RSUs como substrato. Uma vazão de entrada de 2 g_{vs}L⁻¹ dia⁻¹ foi adotada, bem como tempo de residência de 25 dias e volume do reator de 600 L. A produção de biogás foi de 401 L kg⁻¹_{vsrem} ao aplicar uma relação de 10% de ST e 90% de SV em %v/v (RAJENDRAN *et al.*, 2014). Elevados teores da fração orgânica (maior que 50%) e de umidade (88 a 91% em porcentagem mássica) foram adotados (ELIYAN, *et al.*, 2007).

Caso 5: Dados de DA em escala industrial utilizando RSUs como substrato para uma vazão de entrada de 150 m³ dia-1, tempo de residência de 19 dias e volume do reator de 3000 m³. Produção resultante de biogás de 9600 m³ dia-1. Relação de 15% ST e 85% SV em %v/v (BORÅS ENERGY AND ENVIRONMENT AB, 2012; RAJENDRAN et al., 2014).

Caso 6: DA em escala industrial utilizando co-digestão com substrato composto de 75% de resíduos de abatedouro, 15% de resíduos alimentares e 10% de dejetos bovinos. Uma relação de 12,5% de ST e 95% de SV foi reportada em %v/v, onde o substrato apresentou teor de 23,5% de carboidratos, 60,0% de gorduras, 12,2% de proteínas e 4,3% de cinzas em %m/m. O volume do reator foi de 3700 m³, vazão de entrada de 150 m³ dia-1 e tempo de residência de 20 dias. A produção de biogás foi

de 10.959 m³ dia-1 (BUDIYONO, 2011; PALATSI *et al.*, 2011; RAJENDRAN *et al.*, 2014).

.

Caso 7: Dejetos suínos foram utilizados como substrato em um reator com 30 L, vazão de entrada de 230,4 g⁻¹_{vs} dia⁻¹ e tempo de residência de 8 dias. Uma relação de 6,4% de ST e 72% de SV foi reportada em %v/v. O substrato foi composto de 44,06% de carboidratos, 4,90% de gorduras, 23% de proteínas e 28,04% de inertes e cinzas em %m/m. A produção de biogás experimental foi de 0,269 m³ kg⁻¹_{vs ad} (FUJITA *et al.*, 1980; RAJENDRAN *et al.*, 2014).

Caso 8: Resíduos alimentares (RAs) foram convertidos em um reator de 5 L, para um tempo de residência de 12 dias e vazão de entrada 15 g_{vs} L⁻¹ dia⁻¹. Os resultados experimentais forneceram uma concentração final em torno de 66,7 a 74,3%v/v de CH₄. A composição do RA foi de 55% de carboidratos, 40% de gorduras, 2% de proteínas e 3% de inerte em %m/m (MENACHO; MAZID; DAS, 2022; VOELKLEIN *et al.*, 2015).

Caso (9): RAs foram convertidos em um reator de 30 L para um tempo de residência de 15 dias e vazão de entrada 4,5 gcod L-1 dia-1. Os resultados experimentais forneceram uma concentração final em torno de 70,70 %v/v de CH4. A composição dos RAs foi a mesma do caso 8 (MENACHO; MAZID; DAS, 2022; VENTURA *et al.*, 2014).

Caso (10): RAs com a mesma composição dos casos 8 e 9 foram convertidos em um reator de 1 L para um tempo de residência de 8 dias e vazão de entrada 8 g_{vs} L⁻¹ dia⁻¹. Os resultados experimentais forneceram uma concentração final em torno de 57,35 %v/v de CH₄. (MENACHO, MAZID E DAS, 2022; YONG *et al.* (2015).

A Tabela 12 resume os principais parâmetros e resultados experimentais obtidos para esses dez casos.

57.35 %volCH4

	Tabela 12 – Resumo dos casos validados.					
	Volume Reator	TRH (dias)	Vazão de entrada	Substrato	Resultado experimental	
Caso 1	5 L	15	0,33 L dia ⁻¹	Dejetos Bovinos (DB)	353,5 L kg ⁻¹ vs dia ⁻¹	
Caso 2	5 L	21	3 g _{vs} L ⁻¹ dia ⁻¹	Resíduos Sólidos Urbanos (RSU)	0,54 m ³ CH ₄ kg ⁻¹ _{vs} dia ⁻¹	
Caso 3	5 L	21	3 g _{vs} L ⁻¹ dia ⁻¹	70% RSU e 30% Resíduos Cítricos	0,555 m ³ CH ₄ kg ⁻¹ _{vs} dia ⁻	
Caso 4	600 L	25	2 g _{vs} L ⁻¹ dia ⁻¹	RSU	401 L kg ⁻¹ vsrem	
Caso 5	3000 m³	19	150 m³ dia-1	RSU	9600 m³ dia ⁻¹	
Caso 6	3700 m³	20	150 m³ dia ⁻¹	75% Res. Abatedouro, 15% Res. Alimentar e 10% DB	10959 m³ dia ^{.1}	
Caso 7	30 L	8	230,4 g _{vs} dia ⁻¹	Dejetos Suínos (DS)	0,269 m ³ kg ⁻¹ _{vs ad}	
Caso 8	5 L	12	15 gvs L ⁻¹ dia ⁻	Resíduos Alimentares (RAs)	66,7 - 74,3 %volCH4	
Caso 9	30 L	15	4,5 g _{DQO} L ⁻¹ dia ⁻¹	RAs	70,70 % _{volCH4}	

Tabela 12 – Resumo dos casos validados.

Fonte: Adaptado de Rajendran et al. (2014) e Menacho, Mazid e Das (2022).

5 g_{vs} L⁻¹ dia⁻¹

RAs

Caso 10

1 L

8

Algumas considerações dos parâmetros utilizados foram realizadas para simular os cenários de DA, como por exemplo a taxa de carga orgânica (OLR) dada pela Equação 14,

$$OLR = \frac{S_0}{HRT} = S_0.\frac{Q}{\forall} \tag{14}$$

em que OLR é a taxa de carga orgânica baseada de SV ou demanda química de oxigênio (DQO) ((gvs/L). dia⁻¹), S_0 é a concentração de substrato (g/L), HRT é o tempo de retenção hidráulica (dias) e \forall é o Volume do reator (L ou m³) (LABATUT, 2018).

Outro parâmetro considerado foi o cálculo teórico do total de massa de sólido volátil removido (TVSMR). De acordo com Chandra et al. (2012), esse parâmetro pode ser obtido considerando o biogás um gás ideal. Logo, a massa total de sólidos voláteis removidos pode ser dada pela Equação 15,

$$TVSMR = m_{CH_4} + m_{CO2} \tag{15}$$

em que m_{CH_4} e m_{CO2} são as massas de CH₄ e CO₂, respectivamente. TVSMR também pode ser expressa e calculada em termos de fração volumétrica de CH₄ e CO₂ presente na corrente de biogás, conforme a Equação 16,

$$TVSMR = \frac{(16C_{CH_4} + 44C_{CO_2})}{22,413 \times 100} \times BV_O \times DBF$$
 (16)

em que C_{CH_4} é a concentração de CH₄ no corrente biogás (%), C_{CO_2} é a concentração de CO₂ na corrente de biogás (%). DBF ou *Dry biogas factor* é um fator de conversão para converter o biogás em termos de volume seco, requerendo calcular a porcentagem em volume de umidade no biogás.

Em contrapartida, BV_0 é a produção de biogás corrigida para condição padrão (CPTP) a 0°C e 1 atm,

$$BV_O = \left[\frac{273 + BV}{273 + T} \right] \tag{17}$$

em que BV é a vazão de biogás (m³/dia ou L/dia) em uma determinada temperatura observada T (°C).

3.1.6 Condição inicial e parâmetros de execução e desempenho da simulação

O cenário inicial da simulação, proposto por Rajendran et al. (2014), estabelece uma composição do substrato na corrente de entrada para os componentes, servindo de base para fundamentar as composições subsequentes. A Tabela 13 demonstra as frações mássicas dos componentes para o cenário inicial adotado.

Componente	Fração mássica	
Água	0,9400	
Dextrose	0,0100	
Amônia	0,0010	
Celulose	0,0220	
Hemicelulose	0,0100	
Trioleína	0,0004	
Tripalmitina	0,0004	
Palmito linoleína	0,0004	
Proteína	0,0030	
Proteína insolúvel (PI)	0,0018	
Inerte/Cinzas	0,0110	

Tabela 13—Composição do substrato de entrada pré-definida por Rajendran et al. (2014).

Fonte: Rajendran et al. (2014).

Nesse contexto é estabelecido uma relação para os compostos principais, removendo a umidade (H₂O) e o nitrogênio, que resulta nos seguintes teores de carboidratos, gorduras, proteínas e inertes/cinzas:

$$Carboidratos = 0.0100 (Dextrose) + 0.0220 (Celulose) + 0.0100 (Hemicelulose) = 0.0420 + 0 (amido)$$
 (18)

$$Gorduras = 0,0004 (Trioleína) + 0,0004 (Tripalmitina) + 0,0004 (Palmito linoleína) = 0,0012$$
 (19)

$$Proteinas = 0,0030 (Proteina) + 0,0018 (PI) = 0,0048$$
 (20)

$$Inerte/Cinzas = 0,0110$$
(21)

$$Total = 0.0420 (Carboidratos) + 0.0012 (Gorduras) + 0.0048 (Proteínas) + 0.0110 (Cinzas) = 0.059$$
 (22)

Do total são obtidas as composições bases desses substratos.

a) Carboidratos = 71,2 %m/m

67

b) Gorduras = 2.0 %m/m

c)) Proteinas = 8,1 % m/m

d) Cinzas e inertes = 18,7 %m/m

Outro ponto relevante para questões práticas na simulação trata-se da convergência e performance, que podem ser determinadas por parâmetros nas configurações do *software*. O Aspen Plus realiza cálculos iterativos, ajustando os parâmetros do processo até que um equilíbrio seja alcançado. A convergência referese à capacidade da simulação em alcançar uma solução estável e consistente para o sistema modelado. A performance está ligada ao tempo necessário para execução da simulação (CASTRO; HERNANDEZ, 2017).

Dois parâmetros importantes que podem ser definidos na configuração do software são: erro de tolerância e número máximo de iterações. O erro de tolerância é capaz de definir a precisão desejada para a convergência da simulação, onde quanto menor o valor desse parâmetro maior é a precisão exigida para a solução. Já o número máximo de iterações irá determinar o limite máximo de iterações que a simulação deverá realizar. Nesse sentido com a simulação não convergindo para o equilíbrio o *software* gera uma mensagem de erro (CASTRO; HERNANDEZ, 2017).

Para este trabalho foram especificadas as seguintes configurações de convergência:

a) Erro de tolerância: 0,0001

b) Número máximo de iterações: 1000

4 RESULTADOS E DISCUSSÃO

Nesse tópico são apresentados os resultados obtidos das análises das propriedades puras, das propriedades puras dependentes da temperatura e parâmetros binários do modelo termodinâmico. Por fim os dez casos descritos no item 3.1.5 foram validados por meio de simulações no *software* Aspen Plus.

4.1 VALIDAÇÃO DAS PROPRIEDADES PURAS

Para a validação das propriedades puras dos componentes presentes na simulação foi adotada a metodologia estabelecida no tópico 3.1.3.1, em que as propriedades listadas na Tabela 10 foram validadas para cada componente da simulação (excluindo íons e aníons).

No início da validação, foram realizadas buscas em uma variedade de fontes de dados, incluindo artigos publicados, manuais técnicos, livros e bancos de dados de propriedades, como NIST, CHEMEO, PUBCHEM, entre outros. Além da metodologia estabelecida, buscou-se adotar um critério na seleção do dado com o objetivo de obter informações confiáveis e representativas. Essas etapas seguiram uma ordem de prioridade, buscando inicialmente fontes de dados avaliadas criticamente, que são conhecidas por sua confiabilidade na comunidade científica.

Caso não fossem encontradas informações suficientes nessas fontes críticas avaliadas, foram exploradas fontes não avaliadas, que pudessem fornecer dados úteis, embora sua qualidade e confiabilidade variassem. A utilização dessas fontes não avaliadas foi realizada com cautela, levando em consideração a validação cruzada com outras fontes e a análise crítica dos dados disponíveis.

Por último, modelos técnicos de estimativas de propriedades, como por exemplo aqueles propostos por Joback e Berson, foram verificados e comparados com dados disponíveis fornecidos pelo Aspen Plus, onde estando presente o valor do parâmetro no *software* a propriedade não era substituída (BERSON *et al.*, 1969; JOBACK, 1987). As estimativas baseadas em modelos, como o de Joback, podem apresentar desvios significativos em relação aos valores experimentais. Além disso, esses modelos são baseados em correlações estatísticas e podem ter limitações na representação de certas interações moleculares.

Após a busca e obtenção de dados, foram validadas as propriedades para 49 componentes presentes na simulação. Um total de 396 propriedades foram comparadas entre os valores obtidos no Aspen Plus e os valores reportados nas fontes de dados. Observou-se que 98 dessas propriedades apresentaram uma diferença percentual maior que 10%. Nessas situações os valores foram incluídos no modelo da simulação. Para as 298 propriedades restantes, a diferença percentual foi menor que 10%, demonstrando uma boa concordância entre os dados do Aspen Plus e os valores reportados das fontes pesquisadas. Logo, os dados referentes a essas não foram alterados na simulação. As Tabelas B2 à B20 (Apêndice B) mostram de forma detalhada os valores das propriedades no banco do Aspen Plus e o que foi verificado na literatura. Já a Figura 7 sintetiza percentualmente as quantidades de propriedades que foram modificadas depois da validação.

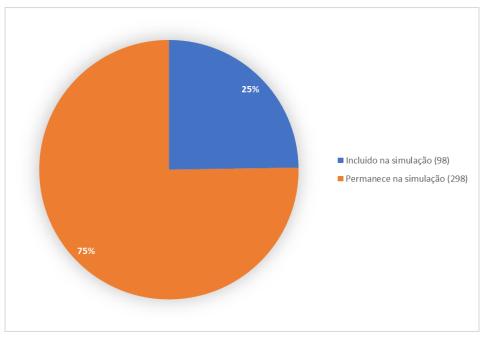


Figura 7 – Relação da quantidade e percentual de propriedades validadas, as quais foram inseridas ou mantidas na simulação.

Fonte: O Autor (2023)

Vale ressaltar a importância dos dados de propriedades puras, uma vez que são a base tanto para as propriedades de componentes puros quanto para as propriedades de misturas. Propriedades puras, como pressão de vapor, são essenciais para cálculos de equilíbrio de fases. Portanto, a obtenção de dados

precisos e confiáveis é crucial para garantir cálculos acurados das propriedades dos componentes e, consequentemente, das propriedades das misturas simuladas.

4.2 VALIDAÇÃO DAS PROPRIEDADES PURAS DEPENDENTES DA TEMPERATURA

Foi realizada a validação dos modelos de propriedades puras dependentes da temperatura inseridos na simulação de Rajendran et al. (2014). A Tabela 11 mostra os principais modelos analisados. A busca desses dados de propriedades foi realizada em artigos científicos, livros, bancos de dados confiáveis e outras referências reconhecidas. Nem todas as propriedades foram validadas devido à dificuldade de obtenção de dados confiáveis e precisos para determinadas propriedades, como a pressão de vapor, capacidade calorífica de um gás ideal e equação do calor de vaporização. Vale ressaltar que esses dados para alguns componentes não foram encontrados devido à escassez na literatura.

4.2.1 Validação da Capacidade Calorífica do gás ideal

A variação da capacidade calorífica do gás ideal em função da temperatura foi comparada entre os valores obtidos da simulação proposta por Rajendran et al. (2014) no Aspen Plus e os dados disponíveis na literatura. A Tabela 14 demonstra os modelos experimentais que resultam nas curvas comparadas.

A Figura 8 apresenta a comparação da variação da capacidade calorífica da cisteína em função da temperatura entre o modelo Aspen Plus e os dados experimentais da literatura. Observou-se uma tendência entre os pontos, contudo os valores quando comparados em uma mesma temperatura apresentaram diferença significativa. Dessa forma foi escolhido incorporar o modelo ajustado aos dados da literatura na simulação no Aspen plus.

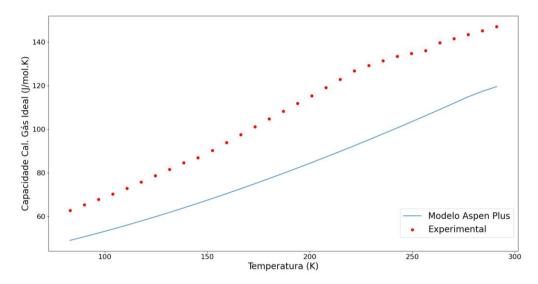


Figura 8 – Capacidade Calorifica do gás ideal em função da temperatura para a cisteína.

Fonte: O Autor (2023) e Paukov, Kovalevskaya e Boldyreva (2008)

A Figura 9 apresenta outra análise comparativa da variação da capacidade calorífica do componente arginina em relação à temperatura, entre o modelo Aspen Plus e os dados experimentais da literatura. Observou-se que, para temperaturas muito baixas, os pontos experimentais e o modelo apresentam valores significativamente diferentes. No entanto, ao analisar os dados a partir de uma temperatura próxima de 120 K, verifica-se uma tendência de convergência entre os valores. A partir desse ponto, ambos seguem uma trajetória semelhante, mas com valores divergentes. Dessa forma optou-se por adotar o modelo ajustado aos dados experimentais para a simulação do Aspen Plus.

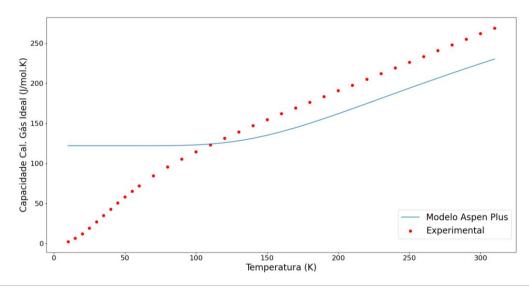


Figura 9 – Capacidade Calorifica do gás ideal em função da temperatura para Arginina.

Fonte: O Autor (2023) e Makhatadze (1998)

A Figura 10 mostra a validação de propriedade para a glicina, comparando graficamente é uma situação semelhante à da arginina. Nesse caso, para temperaturas muito baixas não a conformidade para os pontos, porém a partir de 90 K há uma convergência e aproximação dos dados. Portanto, optou-se por inserir o modelo ajustado aos dados experimentais na simulação.

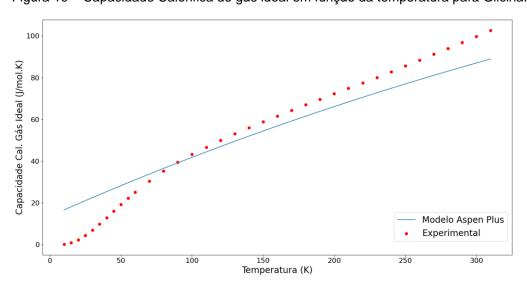


Figura 10 – Capacidade Calorifica do gás ideal em função da temperatura para Glicina.

Fonte: O Autor (2023) e Makhatadze (1998)

A Figura 11 mostra a validação de propriedade para a histidina, comparando graficamente não há conformidade nos dados experimentais com o modelo utilizado no Aspen Plus. Com o aumento de temperatura as diferenças entre as capacidades caloríficas do modelo e experimental aumentam. Dessa forma optou-se por utilizar o modelo ajustado aos dados experimentais.

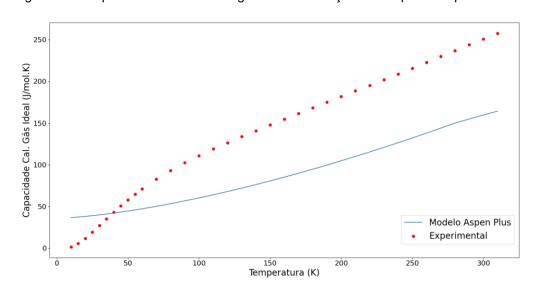


Figura 11 – Capacidade Calorifica do gás ideal em função da temperatura para Histidina.

Fonte: O Autor (2023) e Makhatadze (1998)

A Figura 12 mostra a validação de propriedade para o ácido glutâmico, comparando graficamente não há conformidade nos dados experimentais com o modelo utilizado no Aspen Plus para temperaturas baixas. Para temperaturas mais altas, próximas a 300K, há uma tendencia de aproximação dos valores dos dados experimentais. Dessa forma optou-se por manter os parâmetros do modelo capacidade calorífica do ácido glutâmico no estado de gás ideal, no software Aspen Plus, devida à proximidade das curvas quando a temperatura está próxima de 328,15 K.

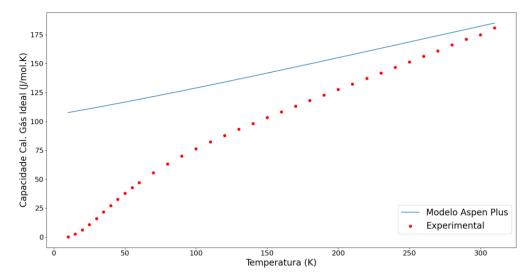


Figura 12 – Capacidade Calorifica do gás ideal em função da temperatura para Ácido Glutâmico.

Fonte: O Autor (2023) e Makhatadze (1998)

A Figura 13 mostra a validação de propriedade para a fenilalanina, comparando graficamente há uma boa correspondência entre as curvas do modelo do Aspen e os dados experimentais na faixa de temperatura esperada de 273,15 K a 328,15 K. Para esse caso optou-se por manter o modelo do Aspen já adotado na simulação

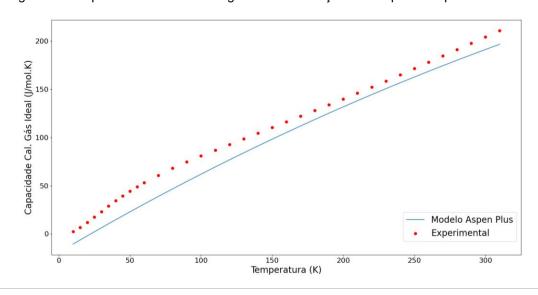


Figura 13- Capacidade Calorifica do gás ideal em função da temperatura para Fenilalanina.

Fonte: O Autor (2023) e MAKHATADZE (1998)

A Tabela 14 resume as propriedades dos componentes estudados e sua inclusão na simulação. Os componentes relacionados como incluídos na simulação,

pois, na validação realizada os dados do modelo de capacidade calorificam utilizados atualmente no modelo da simulação não apresentaram boa concordância em comparação com os dados experimentais. Já o ácido glutâmico e a fenilalanina tiveram uma boa consistência entre os dados do modelo com os dados experimentais encontrados, logo, não precisaram ser incluídas no modelo.

Tabela 14 – Resumo do modelo de cada componente para propriedade da capacidade calorífica e inclusão na simulação no Aspen Plus.

	K ₁ x10 ⁰²	K ₂ x10 ⁰²	K₃x10 ⁻⁰²	K ₄ x10 ⁻⁰⁵	K ₅ x10 ⁻⁰⁷	K ₆ x10 ⁻¹⁰	Inserido na simulação
Cisteína	-0,286	0,1979	-1,6	8,0	-2,0	2,0	Sim
Arginina	-177,52	162,79	-0,12	-3,0	2,0	-2,0	Sim
Glicina	-581,54	0,0037	0,44	-5,0	2,0	-2,0	Sim
Histidina	-198,27	178,49	-0,46	-1,0	1,0	-2,0	Sim
Ácido glutâmico	-0,134	107,04	-0,01	-3,0	1,0	-2,0	Não
Fenilalanina	-130,47	142,98	-0,7	2,0	-30,0	-600,0	Não

Fonte: Autor (2023).

4.2.2 Validação do calor de vaporização

Para validação da propriedade de calor de vaporização dependente da temperatura dos componentes (arginina, cisteína, prolina e histidina) foi adotada uma abordagem diferente devido à escassez de dados confiáveis na literatura. Dessa forma foi realizada uma abordagem utilizando a funcionalidade do *software* Aspen Plus para estimar propriedades e parâmetros de componentes. Essa ferramenta possibilita a estimativa dos valores de propriedades com base em modelos específicos, necessitando-se geralmente de poucos dados experimentais.

Os dados de calor de vaporização dos componentes arginina, cisteína, prolina e histidina foram utilizados no modelo do Aspen Plus da digestão anaeróbia, inseridos pelo autor da simulação (RAJENDRAN *et al.*, 2014). No entanto, a origem exata desses dados não pôde ser verificada, portanto, foram comparados os dados de calor de vaporização desses componentes com os valores estimados pelo software Aspen Plus.

A validação da propriedade de calor de vaporização para a arginina foi realizada utilizando a equação de calor de vaporização de Watson, com o método de

Vetere em uma faixa de temperatura de 270 K a 370 K. Esse método requer informações sobre a massa molecular e a temperatura de ebulição (T_b). Para o caso da arginina, o valor de T_b foi validado em 761,86 K, Tabela B19. Como na simulação não foram encontrados dados de T_b da arginina, o valor encontrado da literatura foi inserido.

A Figura 14 demonstra a comparação gráfica entre as curvas de calor de vaporização da arginina obtidas na simulação proposta por Rajendran et al. (2014) e pelo método de Vetere, onde observa-se uma discrepância entre os resultados.

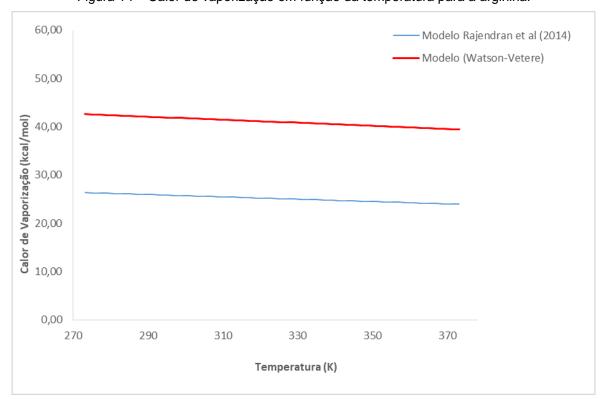


Figura 14 – Calor de vaporização em função da temperatura para a arginina.

Fonte: O Autor (2023) e Rajendran, et al. (2014)

Para a cisteína também foi utilizada a estimação pelo método de Watson-Vetere, visto que foram encontrados dados de T_b (910,52 K) e massa molecular na literatura.

A Figura 15 ilustra a comparação entre as curvas, que apresentam uma tendência de inclinação mais divergente, porém valores de entalpia de vaporização mais próximos.

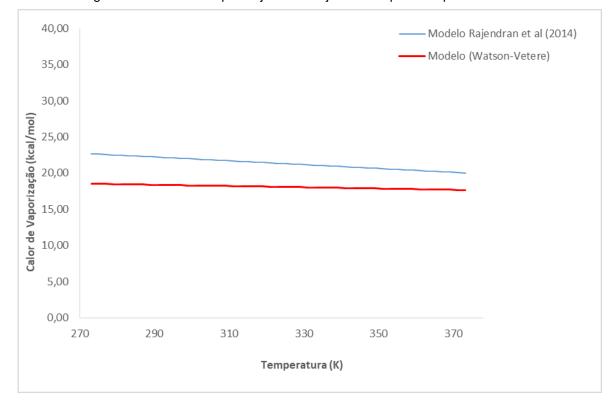


Figura 15 – Calor de vaporização em função da temperatura para a Cisteína.

Fonte: O Autor (2023) e (Rajendran, et al., 2014)

Analogamente a prolina apresentou valor de T_b na literatura de 523,68 K, o qual foi incorporado para gerar a curva Watson-Vetere. A Figura 16 mostra a comparação entre as curvas dos modelos estimado e apresentado na simulação proposta por Rajendran et al. (2014).

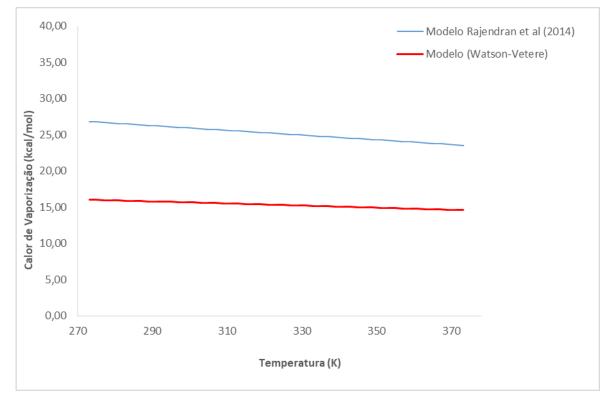


Figura 16 – Calor de vaporização em função da temperatura para a prolina.

Fonte: O Autor e (Rajendran, et al., 2014)

Para validação da histidina foi encontrado o valor experimental de T_b (458,9 K), logo, foi utilizado a estimação por Watson-Vetere. A Figura 17 mostra a comparação entre as curvas dos modelos estimado e apresentado na simulação proposta por Rajendran et al. (2014).

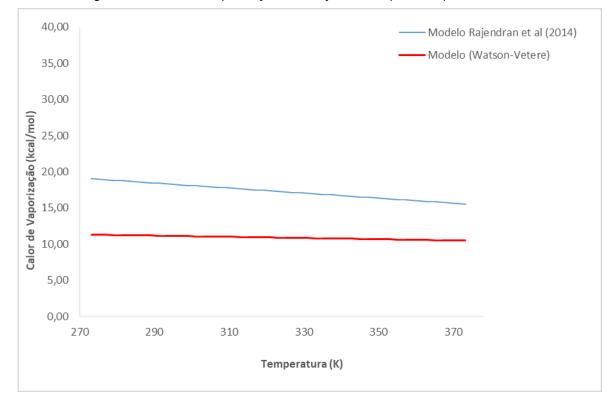


Figura 17 – Calor de vaporização em função da temperatura para a histidina.

Fonte: O Autor (2023) e (Rajendran, et al., 2014)

Os modelos estimados para o calor de vaporização dos componentes analisados foram inseridos na simulação no lugar dos modelos utilizados por Rajendran et al. (2014). Essa decisão se baseou na ausência de dados experimentais de entalpia de vaporização para os componentes analisados, além disso Watson Vetere é um método amplamente utilizado. A Tabela 15 demonstra os coeficientes para os modelos estimados de cada componente, de acordo com as equações 3 a 6 para o calor de vaporização de Watson.

Tabela 15 – Resumo dos modelos estimados para propriedade de calor de vaporização utilizadas na equação de Watson para cada componente.

Componente	Unidade	C1	C2	С3	C4	C5
Arginina	kcal/mol	18,270	488,710	0,38	0	31,594
Cisteína	kcal/mol	26,234	637,370	0,38	0	91,058
Prolina	kcal/mol	11,844	250,530	0,38	0	-63,678
Histidina	kcal/mol	9,666	185,750	0,38	0	-89,590

Fonte: Autor (2023).

4.2.3 Validação da Pressão de Vapor

A validação da pressão de vapor para os componentes seguiu o mesmo procedimento adotado para o calor de vaporização, devido à escassez de dados confiáveis na literatura. Nesse contexto, a abordagem utilizada foi similar, onde há a comparação entre o modelo da propriedade presente na simulação e as estimativas obtidas com métodos da ferramenta *Properties Estimation* do Aspen Plus.

Com base nessas informações, realizou-se a validação da pressão de vapor da cisteína, prolina, arginina e histidina por meio do método de Li-Ma. Esse método foi escolhido devido aos parâmetros requisitados serem conhecidos, como a estrutura molecular dos componentes e a T_b . As Figuras 18, 19, 20 e 21 apresentam a comparação entre as curvas dos modelos de pressão de vapor adotados por Rajendran et al. (2014) e aquelas estimadas pelo método de Li-Ma.

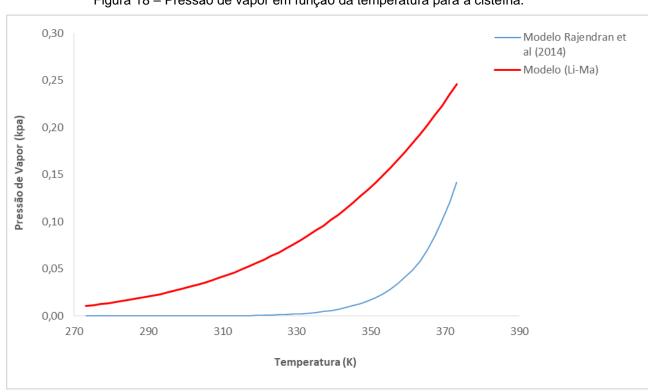


Figura 18 – Pressão de vapor em função da temperatura para a cisteína.

Fonte: O Autor (2023) e Ranjendran et al. (2014).

0,40 Modelo Rajendran et al (2014) 0,35 Modelo (Li-Ma) 0,30 Pressão de Vapor (kpa) 0,25 0,20 0,15 0,10 0,05 0,00 270 290 310 330 350 370 390 Temperatura (K)

Figura 19 – Pressão de vapor em função da temperatura para prolina.

Fonte: O Autor (2023) e Ranjendran et al. (2014).

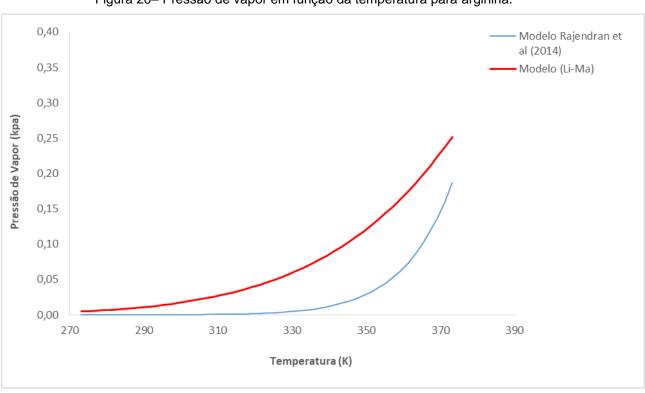


Figura 20- Pressão de vapor em função da temperatura para arginina.

Fonte: O Autor (2023) e Ranjendran et al. (2014).

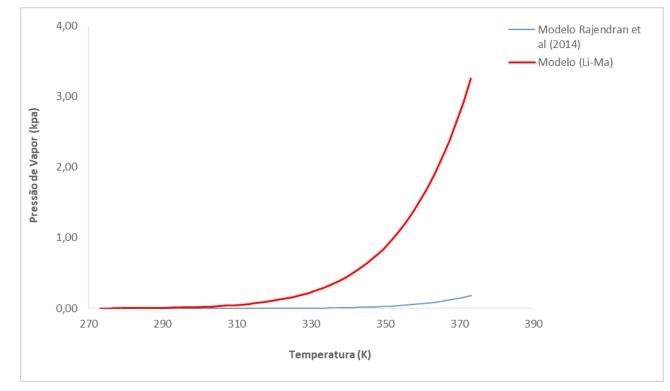


Figura 21 – Pressão de vapor em função da temperatura para histidina.

Fonte: O Autor (2023) e Ranjendran et al. (2014).

Analisando as Figuras 19 e 21 verificou-se uma boa concordância com o comportamento das curvas dos modelos estimados neste trabalho em comparação aqueles utilizados por Rajendran et al. (2014) na temperatura aproximada de operação 298,15K a 328,15. As Figuras 18 e 20, não apresentaram resultados próximos ao estimado. Essas diferenças entre os resultados dos modelos estimados por Li-Ma e apresentados por Rajendran et al. (2014) podem estar relacionadas a escolha do método de estimação escolhidos no software $Aspen\ Plus$ ou aos valores reportados na literatura de T_b , P_c e T_c que influenciam diretamente no método. Dessa forma os modelos estimados para a pressão de vapor dos componentes arginina e cisteina foram inseridos na simulação. Já a histidina e a prolina por seus modelos apresentarem resultados próximos ao modelo comparado na temperatura de operação (55°C) optou-se por manter os modelos da simulação de Rajendran et al. (2014).

4.3 VALIDAÇÃO DAS PROPRIEDADES DE EQUILÍBRIO LÍQUIDO-VAPOR DA MISTURA (INTERAÇÃO BINÁRIA)

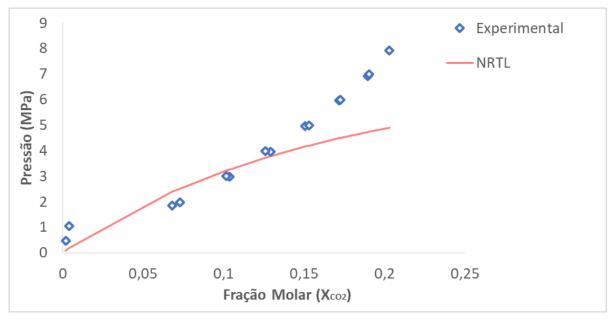
Ressalta-se que a falta de informações precisas sobre as propriedades dos componentes pode comprometer a precisão e a validade dos resultados obtidos por meio da simulação. Nesse caso é essencial a estimação de parâmetros e modelos para a simulação no software Aspen quando a disponibilidade de dados experimentais é limitada. Inicialmente, a simulação foi configurada com 28 interações binárias, utilizando o modelo NRTL para descrever o ELV da mistura. No entanto, considerando que a simulação abrange um total de 61 componentes (excluindo íons e pseudocomponentes), seria esperado um número maior de interações binárias.

Levando em conta a combinação de todos os componentes, um total de 1326 possíveis interações binárias devem ser consideradas. Essa grande quantidade de interações resulta da combinação de todos os pares de componentes presentes na mistura. No entanto, excluindo-se íons e pseudo-componentes, resulta em um total de 995 interações binárias.

Destaca-se que o emprego de apenas 28 interações binárias, por parte de Rajendran et al. (2014), pode ter sido tomado com base nos componentes considerados mais relevantes e presentes no banco de dados. Entretanto, para obtenção de resultados mais abrangentes e precisos, que possam abranger mais amplas faixas de composições de substratos, tornou-se necessário expandir o número de interações binárias para incluir todos os componentes.

A validação das propriedades do ELV da mistura foi realizada através da ferramenta *Properties Estimation* para estimar as interações binárias do modelo NRTL baseados no modelo de coeficientes de atividade UNIFAC, disponível no software Aspen Plus. A partir dos parâmetros de interações binárias, foram escolhidos os componentes mais relevantes do produto para realizar as comparações gráficas a fim de validar o modelo estimado.

A Tabela 16 mostra os dados experimentais dos sistemas binários de ELV que foram utilizados para validar os modelos simulados no *Aspen Plus*.


Tabela 16– Referência dos dados experimentais dos sistemas binários utilizados para a validação.

Sistemas	Temperatura (K)	N° de pontos	Referências
CO ₂ /H ₂ O	318,23	15	CHAPOY et al. (2004)
CO ₂ /CH ₄	303,15	10	PETROPOULOU et al (2018)
H ₂ O/CH ₄	324,15	7	JUN et al (1997)

Fonte: Autor (2023).

A validação das propriedades de ELV para os componentes CO₂ e água foi realizada comparando dados experimentais reportados na literatura com o modelo NRTL, o qual teve parâmetros de interação binária estimados pelo método UNIFAC. A Figura 22 mostra essa comparação. Da mesma forma os componentes CO2 e metano mostrado na Figura 23 e por final a Figura 24 mostrando a relação metano e água.

Figura 22 – Comparação entre Dados de ELV (pontos de bolha) experimentais e calculados por NRTL de ELV para o sistema binário CO₂/água e calculados por NRTL à 318,23 K

Fonte: O Autor e CHAPOY et al. (2004)

8 Experimental 7,9 -NRTL 7,8 7,7 Pressão (MPa) 7,6 7,5 7,4 7,3 ٥ 7,2 7,1 7 0,985 0,99 0,995 1 Fração Molar (Yco2)

Figura 23 – Comparação entre Dados de ELV (pontos de bolha) experimentais e calculados por NRTL de ELV para o sistema binário CO₂/água e calculados por NRTL à 318,23 K

Fonte: O Autor e PETROPOULOU et al (2018)

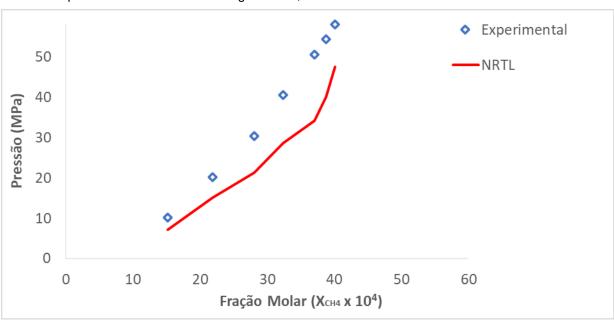


Figura 24 – Comparação entre dados de ELV (pontos de bolha) experimentais e calculados por NRTL para o sistema binário CH₄/água à 324,56 K.

Fonte: O Autor (2023) e Jun et al (1997).

Analisando os gráficos das Figuras 22, 23 e 24 o modelo simulado pelo software Aspen Plus em geral apresentou em seus modelos um comportamento similar aos dados experimentais, entretanto, apresenta uma diferença significativa principalmente com para pressões mais elevadas. Foi escolhido incorporar 967 interações binarias

estimadas por UNIFAC via *Aspen Plus*, dados presentes na Tabela B21 (Apêndice B). Essa consideração pode ser fundamental para capturar corretamente os efeitos das interações entre os diferentes componentes presentes na mistura.

4.4 VALIDAÇÃO DA SIMULAÇÃO E ANÁLISE COMPARATIVA COM CASOS EXPERIMENTAIS

Para avaliar a confiabilidade e o aprimoramento do modelo de simulação resultante deste trabalho, após a verificação das propriedades puras e parâmetros de interação binárias do modelo NRTL, foi realizada uma validação comparativa com casos experimentais relatados nos estudos de Rajendran et al. (2014) e Menacho, Mazid e Das (2022), que utilizaram a versão original da simulação. Dessa forma será possível a comparação tanto dos resultados experimentais quanto dos resultados das simulações. Os casos experimentais foram resumidos na Tabela 12 e abrangem diferentes composições, escalas (laboratorial, piloto e industrial) e diferentes tipos de substrato no processo de DA.

4.4.1 Caso 1: Dejeto Bovino

O caso 1 trata-se de um estudo conduzido por Budiyono (2011) que investigou o uso de dejetos bovinos, oriundos de um abatedouro, como substrato para a produção de biogás. O processo empregado foi termofílico (55°C) e o pH do sistema próximo de 6,7.

Para realizar a simulação do caso 1 foram utilizados os dados de entrada da Tabela 17, a qual é composta de dados encontrados nos trabalhos de Rajendran et al. (2014) e Budiyono (2011). Dados e parâmetros adicionais para esse caso, não reportados por Rajendran et al. (2014), foram buscados no artigo publicado pelo trabalho de Budiyono (2011), sendo incorporados na simulação deste trabalho. Parâmetros como volume de reator, tempo de residência e temperatura de operação foram incluídos no bloco B3. Vazão de entrada e composição foram incluídos na corrente ENTRADA. Procedimento similar foi realizado para os outros casos estudados de DA.

Tabela 17 – Dados do Caso 1 de produção de biogás por DA a partir de dejeto Bovino

Propriedades	Valores	
Substrato	Dejeto bovino	
Vazão de entrada (OLR)	0,33 L/dia	
Temperatura de operação	55 °C	
Tempo de residência	15 dias	
Volume do reator	5 L	
Relação ST (%vol seco)	6%	
Relação SV (%vol seco)	80%	
Produção de biogás	353,5 L/kgvs/dia	
Fração volumétrica de CH₄	48,89%	
Composição em %v/v (RAJENDRAN et al., 2014)	70% carboidrato, 8% proteína, 2% gorduras, 20% cinzas	
Referências	Rajendran et al. (2014) e Budiyono (2011)	

Fonte: Autor (2023).

Resultados detalhados da simulação do caso 1 são apresentados na Tabela A1, enquanto a Tabela 18 apresenta os resultados comparativos entre a simulação e o experimento reportado por Budiyono (2011) e Rajendran et al. (2014).

Tabela 18 – Comparação entre os resultados simulados e experimentais do caso 1.

Parâmetro	Valor	<i>ARD</i> (%)
Produção biogás Exp.	353,5 L/kg _{SV} /dia	-
Produção biogás Simulação ^a	341,9 L/kg _{SV} /dia	3,3
Produção biogás simulação⁵	365,83 L/kgsv/dia	3,4
Fração volumétrica CH ₄ experimental	48,89%	-
Fração volumétrica CH₄ simulaçãoª	50,55%	3,3
Fração volumétrica CH₄ simulação ^b	-	-

Fonte: Autor (2023).

Ao comparar os resultados do caso 1, observa-se que o valor simulado da produção de biogás (341,9 L/kgsv/dia) concorda com aquele obtido experimentalmente (353,5 L/kgsv/dia) por Budiyono (2011), sendo ligeiramente inferior com um |*ARD*| de 3,3%. Por sua vez, a produção de biogás simulada por Rajendran et al (2014) foi de 365,83 L/kgsv/dia, apresentando um |*ARD*| similar, porém ligeiramente superior, de 3,2% em relação ao valor experimental.

a Resultado referente a simulação deste trabalho.

^b Resultado referente a simulação realizada por Rajendran et al. (2014).

A causa desse resultado pode estar relacionada a baixa vazão de entrada em que os componentes estão em concentrações muito menores, dessa forma a validação das propriedades realizada pode não ter sido um fator relevante na previsão dos resultados desse caso.

Por outro lado, também foi comparada a fração volumétrica de CH₄, a qual não foi considerada na validação Rajendran et al. (2014), onde um valor de |*ARD*| de 3,3% entre o valor simulado e experimental foi obtido, que é considerado baixo por ser menor que 10%. Portanto, a simulação do caso 1 realizada neste trabalho demonstrou a capacidade do modelo desenvolvido por Rajendran et al. (2014), bem como que a validação das propriedades não afetou negativamente os resultados para esse caso

4.4.2 Caso 2: Resíduos sólidos urbanos (RSU)

No estudo de caso 2 foi realizada a DA de RSUs em um reator de 5 L em condições termofílicas (55°C). Os dados utilizados para a validação e a simulação são apresentados na Tabela 19.

Tabela 19 – Dados do caso 2 de produção de biogás por DA de RSUs

Propriedades	Valores
Substrato	Resíduos sólidos urbanos
Vazão de entrada (OLR)	3,0 gs√L/dia
Temperatura de operação	55 °C
Tempo de residência (THR)	21 dias
Volume do reator	5 L
Relação ST (%vol seco)	15%
Relação SV (%vol seco)	85%
Produção de biogás	0,54 m³CH4/kgsv/dia
Fração volumétrica de CH₄ experimental	-
Composição (RAJENDRAN et al., 2014)	61,5% carboidratos; 16% proteínas; 10% gorduras; 12,5% cinzas
Referências	Rajendran et al (2014); Forgacs et al. (2012) e Borås Energy and Environment AB (2012).
Fonte: Autor (2023)	

Fonte: Autor (2023).

Os dados da Tabela 19 foram incorporados na simulação. Para a vazão de entrada foi necessário lidar com uma limitação da ferramenta Aspen, que não permitia

especificar diretamente a vazão de entrada em gramas de sólidos voláteis por litro (gSV/L/dia). Como alternativa, adotou-se uma estratégia de inserir uma vazão de 1 L/dia de substrato e água na simulação, mantendo a proporção de 3 gramas de sólidos voláteis por litro.

Resultados da simulação do caso 2 são apresentados na Tabela A2. Abaixo a Tabela 20 traz os resultados comparativos entre os resultados da simulação e o experimento reportado por Forgacs et al. (2012) e Borås Energy and Environment AB (2012).

ParâmetroValor|ARD| (%)Produção metano experimental0,54 m³CH₄/kg₅v/dia-Produção de metano simulação³0,532 m³CH₄/kg₅v/dia1,5Produção de metano simulação⁵0,473 m³CH₄/kg₅v/dia12,4Fração volumétrica CH₄ experimental--

75,317%

Tabela 20 – Comparação entre os resultados experimentais e simulados para o caso 2.

Fonte: Autor (2023).

Fração volumétrica CH4 simulação^a

Fração volumétrica CH₄ simulação^b

Para o cálculo da produção de metano em relação à massa de sólidos voláteis, primeiramente, determinou-se a vazão de sólidos voláteis na corrente de alimentação (\dot{m}_{SV}^F) , multiplicando a porcentagem em massa de sólidos voláteis (w_{SV}^F) pela vazão de substrato na corrente de alimentação (\dot{m}^F) .

a)Vazão de SV na corrente de ENTRADA =

$$Vazão\ m\'assica\ da\ corrente\ ENTRADA\ (\frac{Kg}{h})\ x\ Porcentagem\ aproximada\ de\ SV$$
 (23)

a)
$$\dot{m}_{SV}^F = \dot{m}^F \times w_{SV}^F = 0.5268 \frac{\text{kg}}{\text{dia}} \times 3.0\% = 0.0158 \text{ kg SV/dia}$$
 (24)

Por seguinte a vazão mássica de CH₄ obtida na simulação foi dividida pela densidade do biogás a 55°C para obtenção da vazão volumétrica de CH₄. A densidade do biogás foi obtida do próprio banco de dados do Aspen com valor de 0,5957 kg/m³ (a 55°C).

b)
$$Vaz\~ao\ volum\'etrica\ CH4\ =\ 0.005\ \frac{kgCH4}{dia}\div\ 0.5957\ \frac{kg}{m^3}=\ 0.00841\ m^3CH4/dia$$
 (25)

^a Resultado referente a simulação deste trabalho.

b Resultado referente a simulação realizada por (Rajendran et al., 2014).

Para obtenção da produção de metano por massa de SV foi calculada a razão

c)Produção de metano por massa de SV = Vazão volumétrica CH4 ÷ $Vazão de SV na corrente de ENTRADA = 0,00841 \frac{m^3 CH^4}{dia} \div 0,0158 \frac{kgSV}{dia} = 0,532 \frac{\left(\frac{m^3 CH^4}{kgSV}\right)}{dia}$ (26)

Ao analisar os resultados do caso 2, observou-se que o valor obtido pela simulação está bastante próximo do valor experimental da produção de metano por massa de sólidos voláteis, resultando em um |ARD| de apenas 1,5%. Por sua vez, a produção de biogás simulada, de acordo com o estudo de Rajendran et al (2014), foi de $0.473 \frac{\left(\frac{m^3_{CH4}}{kg_{SV}}\right)}{dia}$, apresentando uma diferença significativa de 12,4% em relação aos dados experimentais.

Nesse contexto, comparando os resultados obtidos da simulação deste trabalho entre os casos 1 e 2 (mesmo substrato), observou-se maior concordância da simulação do caso 2 em relação ao caso 1. A maior concentração dos reagentes e a dinâmica da mistura, aliados a validação das propriedades, podem ter impactado positivamente nos resultados.

4.4.3 Caso 3: Co-digestão

No estudo de caso 3 foi realizada a co-digestão anaeróbica em um reator de 5L, utilizando aproximadamente 70% RSUs e 30% resíduos cítricos em condições termofílicas (55°C). A metodologia empregada para determinar a vazão de entrada e a vazão de metano por massa de SV foi similar àquela realizada para o caso 2. Os dados utilizados na simulação são apresentados na Tabela 21.

Tabela 21 – Dados do Caso 3 – Co-digestão: Produção de Biogás e Composição

70% RSU e 30% cítricos 3,0 gsv/L/dia
3,0 g _{sv} /L/dia
55 °C
21 dias
5 L
13%
87%
0,555 m³CH4/kg _{S√} /dia
-
68,4% carboidrato; 14,1% proteína; 7,6%
gorduras; 9,9% cinzas
Rajendran et al. (2014) e Forgacs et al. (2012)

Fonte: Autor (2023).

Resultados detalhados da simulação do caso 3 são apresentados na Tabela A3. A mesma abordagem do caso 2 foi aplicada para adequação das variáveis de entrada. A Tabela 22 apresenta os resultados comparativos entre a simulação e o experimento reportado por Forgacs et al. (2012).

Tabela 22 – Comparação entre os resultados experimentais e simulados para o caso 3.

Parâmetro	Valor	ARD (%)	
Produção metano experimental	0,555 m³CH4/kgsv/dia	-	
Produção de metano simulação ^a	0,561 m ³ CH4/kg _{SV} /dia	1,1	
Produção metano simulação ^b	0,537m³CH4/kgsv/dia	3,2	
Fração volumétrica CH₄ experimental	-	-	
Fração volumétrica CH₄ simulaçãoª	74,67%	-	
Fração volumétrica CH₄ simulação ^b	-	-	

Fonte: Autor (2023).

Ao comparar os resultados do caso 3, observa-se que o valor simulado da produção de metano (0,561 m³ CH4/kgsv/dia) concorda com aquele obtido experimentalmente (0,555 m³ CH4/kgSV/dia) por Forgacs et al. (2012), sendo ligeiramente superior com um |*ARD*| de 1,1%. Por sua vez, a produção de biogás

^a Resultado referente a simulação deste trabalho.

^b Resultado referente a simulação realizada por (Rajendran et al., 2014).

simulada por Rajendran et al. (2014) foi de 0,537 m³ CH4/kgSV/dia, apresentando um |*ARD*| superior de 3,2% em relação ao valor experimental de Forgacs et al. (2012).

4.4.4 Caso 4: RSU

No estudo de caso 4 foi realizada a DA de RSUs em um reator piloto de 600 L em condições termofílicas (55°C). Os dados utilizados para validação e simulação são apresentados na Tabela 23.

Tabela 23 – Dados do Caso 4 – RSU: Produção de Biogás e Composição.

Propriedades	Valores	
Substratos	RSU	
Vazão de entrada (OLR)	2,0 gsv/L/dia	
Temperatura	55 °C	
Tempo de residência	25 dias	
Volume do reator	600 L	
Relação ST (%vol seco)	10%	
Relação SV (%vol seco)	90%	
Produção específica de biogás	401 L/kgsv removido	
Fração volumétrica de CH₄ experimental	66%	
pH experimental	6,8-7,0	
Composição %v/v (RAJENDRAN et al.,	61,5% carboidratos; 16% proteínas; 10% gorduras;	
2014)	12,5% cinzas	
Referências	Rajendran et al (2014) e Eliyan et al (2012)	

Fonte: Autor (2023).

Para realizar a simulação foram estabelecidas as condições de entrada de acordo com os casos anteriores. Além disso, foi necessário calcular a quantidade de massa reagida ou removida durante o processo de biodigestão anaeróbia. Nesse sentido, utilizou-se o cálculo teórico dado pela Equação 9, assumindo o biogás como gás ideal. Essa consideração foi necessária para estimar o valor de SV_{removidos} este cálculo teórico já foi reportado em outros artigos como o Chandra et al. (2012).

$$TSV_{massa\ removida} = Massa_{CH4} + Massa_{CO2} \tag{9}$$

De acordo com a Tabela C4 as massas são:

$$TSV_{massa\ removida} = 0.263 \frac{kg}{dia} + 0289 \frac{kg}{dia} = 0.553 \frac{kg_{SV\ rem}}{dia}$$
 (26)

Então a produção específica de biogás pode ser dada pela relação:

$$Produção\ específica = \frac{Qbiogas}{TSV_{massa\ removida}} = \frac{241,5\ L/dia}{0,553\ kg_{SV\ rem}/dia} = 436,7\frac{L}{kg_{SV\ rem}} \tag{27}$$

A Tabela 24 apresenta os resultados comparativos entre a simulação e o experimento reportado por Eliyan et al. (2012).

Tabela 24– Comparação entre os resultados experimentais e simulados para o caso 4.

Parâmetro	Valor	<i>ARD</i> (%)
Produção específica biogás experimental	401 L/kg _{SV rem}	-
Produção específica biogás simulação ^a	436,7 L/kg _{SV rem}	8,9
Produção específica biogás simulação ^b	448 L/kg _{SV rem}	11,9
Fração volumétrica CH₄ experimental	66,0%	-
Fração volumétrica CH₄ simulaçãoª	59,6%	9,7
Fração volumétrica CH₄ simulação ^b	-	

Fonte: Autor (2023).

Ao comparar os resultados do caso 4, observa-se que o valor simulado da produção específica de metano (436,7 L/kgsvrem) concorda com aquele obtido experimentalmente (401 L/kgsvrem) por Eliyan et al (2012), sendo um pouco superior com |*ARD*| de 8,9%. Por sua vez, a produção de biogás simulada por Rajendran et al (2014) foi de 448 L/kgsvrem, uma diferença significativa de 11,9% em relação ao valor experimental. Quanto ao valor da fração volumétrica de metano simulado na corrente de biogás (59,6%), esse também está de acordo com aquele obtido experimentalmente (66,0%) por Elyian et al (2012), sendo superior com |*ARD*| de 9,7%. Nesse caso as validações das propriedades não proporcionaram resultados tão significativos de melhora na calibração do modelo. Todavia, a incerteza associada à estimação dos sólidos voláteis removidos, utilizando a Equação 9, pode ter contribuído para aumentar o |*ARD*|.

^a Resultado referente a simulação deste trabalho.

^b Resultado referente a simulação realizada por (Rajendran et al., 2014).

4.4.5 Caso 5: RSU (Planta industrial)

No estudo de caso 5 foi realizada a DA de RSUs em um reator de escala industrial de 3.000 m³ em condições termofílicas (55°C). Os dados utilizados para a validação e a simulação são apresentados na Tabela 25.

Tabela 25 – Dados do Caso 5 – RSU: Produção de Biogás e Composição

Propriedades	Valores
Substratos	Resíduo sólido municipal (RSU)
Vazão de entrada	150 m³/dia
Temperatura	55 °C
Tempo de residência (THR)	19 dias
Volume do reator	3000 m³
Relação ST (%vol seco)	15%
Relação SV (%vol seco)	85%
Produção de metano	9600 m³/dia
Fração volumétrica de CH₄	-
experimental	
Composição %v/v (RAJENDRAN et al.,	61,5% carboidrato; 16% proteína; 10% lipídios; 12,5%
2014)	cinzas
Referências	Rajendran et al (2014) e Borås Energy and
	Environment AB (2012).

Fonte: Autor (2023).

Resultados detalhados da simulação do caso 5 são apresentados na Tabela A5. A Tabela 26 apresenta os resultados comparativos entre a simulação e o experimento reportado por Borås Energy and Environment AB (2012).

Tabela 26 – Comparação entre os resultados experimentais e simulados para o caso 5

Valor	<i>ARD</i> (%)
9600 m³/dia	-
9307,2	3,0
10176 m³/dia	6,0
-	-
56,13%	-
-	-
	9600 m³/dia 9307,2 10176 m³/dia

Fonte: Autor (2023).

^a Resultado referente a simulação deste trabalho.

^b Resultado referente a simulação realizada por (Rajendran et al., 2014).

Ao comparar os resultados do caso 5, observa-se que o valor simulado da produção biogás (9.307,2 m³/dia) concorda com aquele obtido experimentalmente (9.600 m³/dia) por Borås Energy and Environment AB (2012) sendo ligeiramente inferior com |*ARD*| de 3,0%. Por sua vez, a produção de biogás simulada por Rajendran et al (2014) foi de 10.176 m³/dia, apresentando um |*ARD*| superior de 6,0% em relação ao valor experimental. Quanto ao valor da fração volumétrica de metano simulado na corrente de biogás, um valor de 56,13% foi obtido, enquanto o valor experimental correspondente não foi fornecido por Energy and Environment AB (2012) ou por Rajendran et al (2014).

4.4.6 Caso 6: Co-digestão (Planta industrial)

No estudo de caso 6 foi realizada a co-digestão anaeróbica de resíduos em um reator de escala industrial de 3.700 m³, localizado na Suécia, em condições termofílicas (55°C). Os dados utilizados para a validação e a simulação são apresentados na Tabela 27.

Tabela 27- Dados do caso 6 de produção de biogás por co-digestão anaeróbica de resíduos

Propriedades	Valores		
Substratos	75% de resíduos de abatedouro, 15% de resíduos		
	alimentares e 10% de esterco bovino		
Vazão de entrada	150 m³/dia		
Temperatura	55 °C		
Tempo de residência (THR)	20 dias		
Volume do reator	3700 m³		
Relação ST (%vol seco)	12,5%		
Relação SV (%vol seco)	95%		
Produção de metano	10959 m³/dia		
Fração volumétrica de CH₄ experimental	-		
Composição %v/v (Rajendran et al	23,5% carboidrato; 12,18% proteína; 60,0% gorduras		
(2014)	4,32% cinzas		
Referências	Rajendran et al (2014); Budiyono (2011) e Palatsi et a (2011).		

Fonte: Autor (2023).

Resultados detalhados da simulação do caso 6 são apresentados na Tabela A6. A Tabela 28 apresenta os resultados comparativos entre a simulação e o experimento reportado por Budiyono (2011) e Palatsi et al (2011).

Tabela 28 – Comparação entre os resultados experimentais e simulados para o caso 6.

Parâmetro	Valor	<i>ARD</i> (%)	
Produção biogás experimental	10959 m³/dia	-	
Produção de biogás simulaçãoª	10784,3	1,6	
Produção biogás simulação ^b	11694,6	6,7	
Fração volumétrica CH₄ experimental	-	-	
Fração volumétrica CH₄ simulaçãoª	81,6%	-	
Produção biogás simulação ^b	-	-	

Fonte: Autor (2023).

Ao comparar os resultados do caso 6, observa-se que o valor simulado da produção biogás (10.784,3 m³/dia) concorda com aquele obtido experimentalmente (10.959 m³/dia) por Budiyono (2011) e Palatsi et al. (2011), sendo um ligeiramente inferior com |*ARD*| de 1,6%. Por sua vez, a produção de biogás simulada por Rajendran et al (2014) foi de 11.694,6 m³/dia, apresentando um |*ARD*| superior de 6,7% em relação ao valor experimental. Quanto ao valor da fração volumétrica de metano simulado na corrente de biogás, um valor de 81,6% foi obtido, enquanto o valor experimental correspondente não foi fornecido por Budiyono (2011), Palatsi et al. (2011) ou por Rajendran et al (2014).

Comparando os casos 5 e 6 é possível destacar um melhor resultado da simulação deste trabalho. Por se tratar de casos de plantas industriais de DA, uma maior vazão utilizada gerou uma maior concentração dos componentes envolvidos, onde a influência das propriedades pode levar a previsões mais confiáveis. Contudo, ressalta-se a necessidade de validação de outros parâmetros de saída, além da produção de biogás.

a Resultado referente a simulação deste trabalho.

b Resultado referente a simulação realizada por Rajendran et al. (2014).

4.4.7 Caso 7: Dejetos suínos com palha de milho

No estudo de caso 7 foi realizada a co-digestão anaeróbica de dejetos suínos com palha de milho em um reator de 30 L em condições termofílicas (55°C). Os dados utilizados para a validação e a simulação são apresentados na Tabela 29.

Tabela 29 – Dados do caso 7 de produção de biogás por co-digestão anaeróbica de dejetos suínos e palha de milho

Propriedades	Valores		
Substratos	Dejetos suínos e palha de milho		
Vazão de entrada (OLR)	0,2304 kgsv/dia		
Temperatura	55 °C		
Tempo de residência (THR)	8 dias		
Volume do reator	30 L		
Relação ST	6,4%		
Relação SV (Entrada)	72%		
Redução de SV	47%		
Celulose entrada	0,369 kg		
Celulose redução	53,8 %		
Produção de biogás	0,269 m³/kgvs adic		
Fração volumétrica de CH₄ exp	62,9%		
рН	7,47		
Composição %v/v (RAJENDRAN et al., 2014)	44,06% carboidratos; 23,0% proteínas; 4,90% gorduras; 28,04% cinzas		
Referências	Rajendran et al. (2014) e Fujita et al (1980)		

Fonte: Autor (2023).

Resultados detalhados da simulação do caso 7 são apresentados na Tabela A7. A Tabela 30 apresenta os resultados comparativos entre a simulação e o experimento reportado por Rajendran et al. (2014) e Fujita et al. (1980).

Tabela 30 – Comparação entre os resultados experimentais e simulados para o caso 7.

Parâmetro	Valor	<i>ARD</i> (%)	
Rendimento biogás experimental	0,269 m³/kg _{VS adic}		
Rendimento experimental biogás simulação ^a	0,285 m³/kgvs adic	5,9	
Rendimento biogás simulação ^b	0,268 m³/kg _{VS adic}	0,3	
Redução percentual de SV experimental	47%	-	
Redução percentual de SV simulação ^a	36,5%	22,3	
Redução percentual de celulose experimental	53,8%	-	
Redução percentual de celulose simulaçãoª	69,9%	29,9	
Fração volumétrica CH₄ experimental	62,9%	-	
Fração volumétrica CH₄ simulaçãoª	58,1%	7,6	
Produção biogás simulação ^b	-	-	

Fonte: Autor (2023).

Ao comparar os resultados do caso 7, observa-se que o valor simulado do rendimento de biogás (0,285 m³/kgVS adic) concorda com aquele obtido experimentalmente (0,269 m³/kgVS adic) por Fujita et al (1980), sendo um pouco superior com |ARD| de 5,9%. Por sua vez, o rendimento de biogás simulado por Rajendran et al (2014) foi de 0,268 m³/kgVS adic, apresentando bastante concordância com o valor experimental (|ARD| de 0,3%). Quanto aos resultados obtidos por simulação da fração volumétrica de metano e das reduções percentuais de SVs e celulose na corrente de biogás, valores de 58,1%, 36,5% e 69,9% foram obtidos, sendo que o primeiro está de acordo com aquele obtido experimentalmente (62,9%) por Fujita et al (1980), sendo um pouco superior com |ARD| de 7,6%. Por outro lado, diferenças significativas foram encontradas entre as reduções percentuais de SVs (|ARD| de 22,3%) e celulose (|ARD| de 29,9%), que podem estar relacionadas a uma limitação do modelo para operar com pH acima de 7, sendo o pH experimental relatado por Fujita et al. (1980) foi de 7,47.

4.4.8 Caso 8, 9 e 10: Resíduos Alimentares (RAs)

Nos estudos de casos 8, 9 e 10 foram realizadas a DA de RAs em reatores de 5 L, 30 L e 1 L sob condições termofílicas (55°C). Esses casos compartilham características semelhantes em relação ao substrato utilizado e algumas das condições operacionais aplicadas. Por se tratar de premissas operacionais similares,

a: Resultado referente a simulação deste trabalho.

b: Resultado referente a simulação realizada por (Rajendran et al., 2014).

esses casos são apresentados juntos. Os dados utilizados para as validações e as simulações são apresentados nas Tabelas 31, 32 e 33.

Tabela 31 – Dados do caso 8 de produção de biogás por DA de RAs

Propriedades	Valores		
Substratos	RAs		
Vazão de entrada (OLR)	15 g _{vs} /L. dia		
Temperatura	55 ℃		
Tempo de residência (THR)	12 dias		
Volume do reator	5 L		
Produção de metano	-		
Fração volumétrica de CH4 experimental (VOELKLEIN et al., 2015)	66,7 – 74,3%		
Composição %v/v (MENACHO; MAZID; DAS, 2022)	; 50% carboidratos, 2% proteínas, 40% gorduras e 3% inertes		
Referências	Menacho, Mazid e Das (2022) e Voelklein et al. (2015)		

Fonte: Autor (2023).

Tabela 32 – Dados do caso 9 de produção de biogás por DA de RAs

Propriedades	Valores		
Substratos	RA		
Vazão de entrada (OLR)	4,5 g _{COD} /L. dia		
Temperatura	55 °C		
Tempo de residência (THR)	15 dias		
Volume do reator	30 L		
Fração volumétrica de CH4 experimental (VENTURA et al., 2014)	70,70%		
Composição %v/v (MENACHO; MAZID;	50% carboidratos, 2% proteínas, 40% gorduras e 3%		
DAS, 2022)	inertes		
Referências	Menacho, Mazid e Das (2022) e Ventura et al. (2014)		

Fonte: Autor (2023).

Tabela 33 – Dados do caso 10 de produção de biogás por DA de RAs

Propriedades	Valores		
Substratos	RA		
Vazão de entrada (OLR)	5 gvs/ (L/dia)		
Temperatura	55 °C		
Tempo de residência (THR)	8 dias		
Volume do reator	1 L		
Fração volumétrica de CH4 experimental (YONG et al., 2015)	57,35%		
Composição %v/v (MENACHO; MAZID; DAS, 2022)	50% carboidratos, 2% proteínas, 40% gorduras e 3% inertes		
Referências	Menacho, Mazid e Das (2022) e Yong et al. (2015)		

Fonte: Autor (2023).

Resultados detalhados das simulações dos casos 8, 9 e 10 são apresentados nas Tabelas A8, A9 e A10. A Tabela 34 apresenta os resultados comparativos entre as simulações e os experimentos dos casos 8, 9 e 10 reportados por Voelklein et al. (2015), Ventura et al. (2014) e Yong et al. (2015), respectivamente.

Tabela 34 – Resultados Comparativos entre os Modelos e o Experimental (Caso 8,9 e 10: RA).

Valor	Variação (%)
74,30%	-
73,94%	0,48%
72,29%	2,71%
70,70%	-
70,74%	0,06%
69,89%	1,15%
57,35%	-
53,22%	7,20%
55,67%	2,93%
	74,30% 73,94% 72,29% 70,70% 70,74% 69,89% 57,35% 53,22%

Fonte: Autor (2023).

Ao comparar os resultados dos casos 8, 9 e 10, observa-se que os valores simulados das frações volumétricas de CH₄ (73,94%, 70,74% e 53,22%) concordam com aqueles obtidos experimentalmente (74,30%, 70,70% e 57,35%) por Voelklein et al. (2015), Ventura et al. (2014) e Yong et al. (2015), respectivamente, apresentando

a: Resultado referente a simulação deste trabalho.

b: Resultado referente a simulação Menacho, Mazid e Das (2022).

baixos valores de |ARD| de 0,48%, 0,06% e 7,20%. Por sua vez, as frações volumétricas de CH₄ simuladas por Menacho, Mazid e Das (2022) foram de 72,29%, 69,89% e 55,67%, apresentando valores de |ARD| um pouco superiores aos correspondentes experimentais dos casos 8 (|ARD| de 2,71%) e 9 (|ARD| de 1,15%). Em contrapartida, menor desvio (|ARD| de 2,93%) em relação ao valor experimental foi obtido na simulação do caso 10 por Menacho, Mazid e Das (2022).

Analisando de forma geral os dez casos validados por meio da Tabela 35, verifica-se que houve uma melhora do modelo de simulação de DA após as validações das propriedades. Vale ressaltar que também foram utilizados dados colhidos dos artigos correspondentes a cada caso que possibilitam uma melhor calibração da simulação. Além disso, destaca-se o caso 1, que apresentou diferença significativa, provavelmente, devido à menor vazão de entrada. Já os resultados obtidos nas simulações deste trabalho para os casos 7 e 10 apresentaram maior |*ARD*| comparado àqueles reportados por Rajendran et al. (2014) e Menacho, Azid e Das (2022). Ao analisar os dados de entrada dos dez casos estudados, os casos 7 e 10 são os únicos que apresentam tempos de residência menores que 10 dias, onde é suposto que esses valores podem ter afetado os resultados das simulações obtidas neste trabalho.

	Resultados em vazão				
Casos	Resultado experimental	Resultado Simulação	ARD (%) ª	ARD (%) ^b	
1	353,5 L kg ⁻¹ vs dia ⁻¹	341,9 L/kgvs/dia	3,3	3,4	
2	0,54 m ³ CH ₄ kg ⁻¹ _{vs} dia ⁻¹	0,532 m³CH4/kg _{SV} /dia	1,5	12,4	
3	0,555 m ³ CH ₄ kg ⁻¹ _{vs} dia ⁻¹	0,561 m³CH4/kgsv/dia	1,1	3,2	
4	401 L kg ⁻¹ vsrem	436,7 L kg ⁻¹ _{vsrem}	8,9	11,9	
5	9600 m³/dia	9307,2 m³/dia	3,0	6,0	
6	10959 m³/dia	10784,3 m³/dia	1,6	6,7	
7	0,269 m ³ kg ⁻¹ _{vs ad}	0,285 m³/kgvs adic	5,9	0,3	
Resultados em fração volumétrica (%CH₄)					
8	66,7 - 74,3 % _{CH4}	73,94%сн4	0,48	2,71	
9	70,70 %cH4	70,74% _{CH4}	0,06	1,15	
10	57,35 % _{CH4}	53,22% _{CH4}	7,2	2,93	

Fonte: Autor (2023).

^a Desvio padrão obtido deste trabalho em comparação com o experimental

^b Desvio padrão obtido em trabalhos da literatura em comparação com o experimental

5 CONCLUSÃO

Foi calibrado um modelo de simulação do processo de digestão anaeróbia (DA) previamente implementado no *software* de simulação comercial Aspen Plus. O aprimoramento se deu por meio da validação das propriedades físico-químicas dos componentes comparando valores das propriedades do Aspen plus com valores reportados na literatura. A validação verificou um conjunto de 396 propriedades puras, onde 25% delas (98 propriedades) foram inseridas na simulação do processo de DA, levando em conta que os valores de |*ARD*| foram maiores que 10% para essas propriedades.

Também foram validadas as propriedades dependentes da temperatura dos componentes, os quais não referenciavam o banco de dados de origem no Aspen Plus. Nesse contexto, foi realizada uma análise comparativa utilizando gráficos, de modo que foram comparados os modelos desses componentes com aqueles reportados na literatura ou estimados. Os modelos que apresentaram diferenças significativas foram inseridos na simulação. Como resultado, foram verificadas as propriedades dependentes da temperatura de 14 componentes, sendo que foram inclusas 10 delas.

Além disso, os parâmetros ausentes do modelo NRTL foram estimados usando o método UNIFAC, resultando na determinação de 967 interações binárias, as quais foram inclusas na simulação. Para avaliar o efeito desses parâmetros na simulação do processo de DA, diagramas binários de ELV envolvendo os principais componentes do biogás foram construídos, comparando as curvas calculadas com os resultados experimentais reportados. No geral, o modelo NRTL foi capaz de representar adequadamente os dados de ELV a baixa pressão (<10 bar), a qual é a região de interesse do processo de produção de biogás sem requerer a simulação da etapa de purificação e de transporte. Como consequência, o processo de validação e estimação de parâmetros resultou na criação de um banco de dados de propriedades dos principais componentes da DA (Apêndice B).

Para validar o aprimoramento do modelo de simulação, dez casos experimentais distintos foram comparados, abrangendo diversas condições de operação e composições de substrato. Os resultados simulados, incluindo as propriedades validas e parâmetros estimados do modelo NRTL, demostraram

melhorias na representação de sete casos experimentais reportados, onde os valores de |ARD| reduziram em comparação aqueles obtidos por simulação em trabalhos anteriores.

Vale ressaltar que nos outros três casos estudados, nos quais não foram observadas melhorias substanciais na calibração da simulação, fatores como o volume de entrada muito baixo (caso 1) ou o tempo de residência inferior a 10 dias (casos 7 e 10), podem ter limitado o efeito positivo das propriedades validadas na precisão dos resultados, uma vez que as condições operacionais das simulações nestes cenários se afastam do regime mais estável e equilibrado, aumentando a sensibilidade do sistema a variações. Portanto, a ausência de melhorias substanciais nessas circunstâncias não invalida a importância da validação das propriedades, porém destaca os desafios da modelagem e simulação de processos complexos. Com essa abordagem foi possível verificar a consistência e a precisão dos resultados das simulações em relação aos dados experimentais e frente a simulação original, comprovando uma melhor concordância da simulação resultado do banco de dados criado neste trabalho.

Por fim reforça-se a importância de considerar detalhadamente as propriedades dos componentes do sistema, garantindo uma base sólida para simulações. A validação realizada evidenciou a melhoria da consistência e da qualidade dos resultados simulados. Neste sentido, estudos futuros podem considerar: incorporar novas reações; incorporar novos componentes; utilização dos valores de propriedades para validação e ao final a possibilidade de integração de modelos de redes neurais e aprendizado de máquina, trabalhando em uma abordagem mais preditiva e adaptativa.

REFERÊNCIAS

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (BRASIL), **Atlas de energia elétrica do Brasil** / Agência Nacional de Energia Elétrica. – Brasília: ANEEL, 2008, pp. 63-73.

ALAVI, S. A.; CAPELA, I.; TARELHO, L. Valorization of biomass ash in biogas technology: Opportunities and challenges. **Energy Reports**. Vol. 6. Pp. 472-476. Doi: 10.1016/j.egyr.2019.09.010 (2020).

ALBUQUERQUE, A. A.; FLORA. T. T.NG.; DANIELSKI, L.; STRAGEVITCH, L. Phase equilibrium modeling in biodiesel production by reactive distillation. **Fuel**, v. 271, p. 117688, 2020. ISSN 0016-2361. DOI: 10.1016/j.fuel.2020.117688.

ALBUQUERQUE, A. A. Reactive separation processes applied to biodiesel production: phase equilibrium, design, optimization, and techno-economic assessment. Tese de doutorado. **Universidade Federal de Pernambuco**. 2019.

ALISHAH, A.; SEEHAR, T.; SHARMA, K.; SOHAIL, S. **Chapter 7 - Biomass pretreatment technologies**. ELSEVIER, [s. I.], p. 203-228, 2022.

ANDRADE, M.M.M. Parâmetros operacionais da digestão anaeróbia de resíduos de alimentos para fins energéticos. Tese de Doutorado. **Universidade Federal de Pernambuco. Departamento de Energia Nuclear**. 2018.

ANGELIDAKI, I.; ELLEGAARD, L.; AHRING, B.K. A comprehensive model of anaerobic bioconversion of complex substrates to biogas. **Biotechnol. Bioeng**. v 63. p 363–372. 1999.

AWASTHI, M. K.; SARSAIYA, S.; PATEL, A.; JUNEJA, A.; SINGH, R. P.; YAN, B.; AWASTHI, S. K.; JAIN, A.; LIU, T.; DUAN, Y.; PANDEY, A.; ZHANG, Z; TAHERZADEH, M. J. Refining biomass residues for sustainable energy and bioproducts: An assessment of technology, its importance, and strategic applications in circular bioeconomy. **Renewable and Sustainable Energy Reviews**. Vol. 127. Disponível em: Doi:109876. 10.1016/j.rser.2020.109876 (2020).

BAKY, A. H.; NAZMUL, M.A; KADER, Faisal; CHOWDHURY, Habibullah A., **Production of Biogas by Anaerobic Digestion of Food Waste and Process Simulation**. the ASME 2014 8th International Conference on Energy Sustainability, [s. l.], p. 1-7, 2 jul. 2014.

BALAMAN, Ş. Y. Chapter 1 - Introduction to Biomass—Resources, Production, Harvesting, Collection, and Storage. Academic Press, [s. l.], p. 1-23, 2019.

BELTRAMO, T.; RANZAN, C.; HINRICHS, J.; HITZMANN, B. Artificial neural network prediction of the biogas flow rate optimised with an ant colony algorithm. **Biosystems Engineering**, v. 143, p. 68-78, 2016.

BENSON, S. W.; CRUICKSHANK, F. R.; GOLDEN, D. M.; HAUGEN, G. R.; O'NEAL,

.E.; RODGERS, A. S.; SHAW, R.; WALSH, R. Additivity rules for the estimation of thermochemical properties. **Chemical Reviews**, n. 3, v. 69, 279-324, 1969.

BHATT, A. H.; TAO, L. Economic perspectives of biogas production via anaerobic digestion. **Bioengineering**, 2020. v. 7, n. 3, p. 1–19.

BIJARCHIYAN, M., SAHEBI, H. & MIRZAMOHAMMADI, S. A sustainable biomass network design model for bioenergy production by anaerobic digestion technology: using agricultural residues and livestock manure. **Energ Sustain Soc**, v. 10, n. 19, 2020.

BOERJAN, W.; RALPH, J.; BAUCHER, M. Lignin Biosynthesis. **Annual Reviews**, v. 54, p. 519–546, 2003.

BORÅS ENERGY AND ENVIRONMENT AB. Sobacken Composition data. Borås, Sweden. 2012.

BRAVO, D.; ÁLVAREZ-HORNOS, F.; PENYA-ROJA, J.M.; SAN VALERO TORNERO, P.; & GABALDÓN, C. Aspen Plus process-simulation model: Producing biogas from VOC emissions in an anaerobic bioscrubber. **Journal of Environmental Management**. Vol. 213, doi: 10.1016/j.jenvman.2018.02.040 (2018).

BUDIYONO, W. Study on Slaughterhouse Wastes Potency and Characteristic for Biogas Production. **International Journal of Waste Resources**. v. 1. 2015.

CASTRO, F.G.; HERNANDEZ, J.S. Stochastic Process Optimization using Aspen Plus®. **CRC Press**. 2017.

CHANDRA, R.; VIJAY, V. K.; P.M.V, S.; Khura, T. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. **Applied Energy**, v. 93. p 148–159. 2012

CHAPOY, A.; COQUELET, C.; PARICAUD, P.; RICHON, D. Vapour-liquid equilibria in the carbon dioxide-water system, measurement and modelling from 278.2 to 318.2 K. **Fluid Phase Equilibria**. v. 226, p 333-344. 2004

CESARINO, I.; ARAÚJO, P.; JÚNIOR, D. P. A.; MAZZAFERA, P. An overview of lignin metabolism and its effect on biomass recalcitrance. **Brazilian Journal of Botany**, p. 1-10, 14 nov. 2012.

CHEZEAU, B. V. Modeling and Simulation of the Biohydrogen Production Processes. p. 445-483, 2019.

CIBIOGÁS (Instituição de Ciência e Tecnologia). **2020 e as principais tendências de avanço do biogás no Brasil**. [online], Disponível em: https://cibiogas.org/news/2020-e-as-principais-tendencias-de-avanco- do-biogas-no-brasil/ acessado em: 24 de agosto de 2020.

CORNEJO, CAMILO; Ann, C. WILKIE, Greenhouse gas emissions and biogas potential from livestock in Ecuador. **Energy for Sustainable Development**, v. 14,

- n.4, p. 256-266, 2010.
- DANTAS, M. J. F.; CHAVES, J. W. R.; PIRES, R. O. R. Estimativa do potencial energético proveniente do biogás gerado em aterro sanitário no Ceará. **Revista Tecnologia**, [S. I.], v. 42, n. 1, 2021. DOI: 10.5020/23180730.2021.10777. Disponível em: https://periodicos.unifor.br/tec/article/view/10777. Acesso em: 14 jun. 2022.
- ELIYAN, C.; ADHIKARI, R.; JUANGA, J.P.; VISVANATHAN, C. Anaerobic Digestion of Municipal Solid Waste in Thermophillic Continuous Operation. International Conference on Sustainable Solid Waste Management. **Asian Institute of Technology, Thailand**. 2007
- FORGÁCS, G.; POURBAFRANI, M.; NIKLASSON, C.; TAHERZADEH, M.; SÁRVÁRI, H. I. Methane production from citrus wastes: Process development and cost estimation. **Journal of Chemical Technology and Biotechnology**. v. 87, p 250 255, 2012.
- FUJITA, J.M.S.; MOO-YOUNG, M. Effect of corn stover addition on the anaerobic digestion of swine manure. **Agricultural Wastes**. v. 2, p 177-184. 1980.
- LABATUT, R.; PRONTO, J. Sustainable Waste-to-Energy Technologies: Anaerobic Digestion. **Sustainable Food Waste-To-energy Systems**. Chapter 4, p 47-67. ISBN 9780128111574. 2018MAKHATADZE, G I. Heat capacities of amino acids, peptides and proteins. **Biophysical chemistry**. v. 71, p 133-156. 1998.
- GAO, J.; ZHENG, D. Q.; GUO, T. M. Solubilities of methane, nitrogen, carbon dioxide, and a natural gas mixture in aqueous sodium bicarbonate solutions under high pressure and elevated temperature. **J. Chem. Eng. Data**. v. 42, p 69–73. 1997.
- GARBA, Abdurrahman, Biomass Conversion Technologies for Bioenergy Generation: An Introduction. **IntechOpen**, [s. I.], p. 1-17, 2020.
- GAUTAM, P.; NEHA; UPADHYAY, S. N.; DUBEY, S. K. Bio-methanol as a renewable fuel from waste biomass: Current trends and future perspective. **Fuel**, 2020. v. 273, n. April, p. 117-783.
- GE, M.; FRIEDRICH, J.; L. 4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors. World Resources Institute, p. 1-11, 6 fev. 2020.
- GMEHLING, J.; KOLBE, B.; KLEIBER, M.; RAREY, J.; Chemical Thermodynamics for Process Simulation. **Wiley**. ISBN: 978-3-527-31277-1. 2012.
- GONÇALVES, F. A. C.; AMARAL, E. L. S.; LOPES JUNIOR, J.L.; LOPES, L. S.; RIBEIRO JUNIOR, L. S.; BRABO, D. R.; AMARANTE, C. B., Fibras Vegetais: Aspectos Gerais, Aproveitamento, Inovação Tecnológica e uso em Compósitos. **Revista Espacios**, v. 39, n. 6, p. 1-16, 23 out. 2017.
- GOUVEIA, E. R.; NASCIMENTO, T. R.; MAIOR-SOUTO, M. A.; ROCHA, M. G. Validação de metodologia para a caracterização química de bagaço de cana-de-

- açúcar. Quim. Nova, p. 1-4, 3 jul. 2009.
- GUEGUIM, E.; LATEEF, A.; ADESIYAN, M. Modeling and optimization of biogas production on saw dust and other co-substrates using Artificial Neural network and Genetic Algorithm. **Renewable Energy**, Elsevier, vol. 46(C), p. 276-281, 2012.
- GUNASEELAN, V. N. Anaerobic digestion of biomass for methane production: A review. **Biomass and Bioenergy**, v. 13, n. 1-2, p. 83-114, 1997.
- GUPTA, V. K.; POTUMARTHI, R.; O'DONAVAN, A.; KUBICEK, C.; SHARMA, G. D.; TUOHY, M. Bioenergy Research: An Overview on Technological Developments and Bioresources. p. 23-47, 2014.
- HANSEN, H. K.; RASMUSSEN, P.; FREDENSLUND, A.; SCHILLER, M.; GMEHLING, J. Vapor-liquid equilibria by UNIFAC group contribution. 5. Revision and extension. **Industrial & Engineering Chemistry Research**, v. 30, n. 10, p. 2352–2355, 1991.
- IAEA. IAEA Annual Report 2018. Article II of the IAEA Statute. Vienna. 2018. Disponível em:
- https://www.iaea.org/sites/default/files/publications/reports/2018/gc63-5.pdf
- IICA. Use of and access to renewable energies in rural territories: **Methodological Guide**. [S. I.]: Inter-American Institute for Cooperation on Agriculture (IICA), 2015. 1-48 p. ISBN 978-92-9248-556-6.
- INAYAT, A.; RAZA, M.; GHENAI, C.; SAID, Z.; SAMMAN, S.; AL-MANSORI, A.; LAZKANI, A. **Simulation of Anaerobic Co-Digestion Process for the Biogas Production using ASPEN PLUS**. IEEE Xplore, Dubai, 2019.
- JIA, P.; XIA, H.; TANG, K.; ZHOU, Y., Plasticizers Derived from Biomass Resources: A Short Review. **Polymers MDPI**, v. 10, n. 12, p. 1-27, 24 nov. 2018.
- JOBACK, K. G.; REID, R. C. Estimation of Pure-Component Properties from GroupContributions. **Chem. Eng. Comm**. v. 57, p. 233-243, 1987.
- KAMUSOKO, R.; CHIKWAMBI, M, J. R.; PARAWIRA, W. Chapter 25 Biogas: microbiological research to enhance efficiency and regulation. ELSEVIER, [s. I.], 2022.
- KIM, M.; AHN, Y.; SPEECE, R.E. Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. **Water Research**, v. 36, ed. 17, p. 4369-4385, 2002.
- KIM, M.; GOMEC, C Y; AHN, Y.; SPEECE, R. E., Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. **Environmental Technology**, v. 24, 2003.
- LAMB, W. F.; WIEDMANN, T.; PONGRATZ, J. Plasticizers Derived from Biomass Resources: A Short Review. **Environmental Research**, [S. I.], p. 1-32, 13 dez. 2020.

- LEWIS, C. W. Biomass through the ages. **Biomass**, v. 1, n. 1, p. 5-15, 1981.
- LI, Q.; FAN, S.; CHEN, Q.; YANG, G.; CHEN, Y.; LI, L.; LI, G. Experimental and process simulation of hydrate-based CO2 capture from biogas. **Journal of Natural Gas Science and Engineering**. Vol. 72. p. 10-30 (2019).
- LIETH, H.; H, R. **Primary productivity of the biosphere**. Springer-Verlag New York Inc, 1975. ISBN 978-3-642-80915-6.
- LIMA, C.; SAMPAIO, E.; AGUIAR, R.; MENEZES, R.; Potencial de Aproveitamento Energético de Fontes de Biomassa no Nordeste do Brasil. **Revista Brasileira de Geografia Física**, vol.07, Pp. 207-221. 2014
- LORENZ, F. JAN, P. LUDGER, W. JOHANNES, S. BARDOW, A. Optimal experimental design of physical property measurements for optimal chemical process simulations. **Fluid Phase Equilibria**. v. 557, ISSN 0378-3812. 2022.113420. 2022
- MIRANDA, R. L.; MARTINS, M. E.; LOPES, K. A potencialidade energética da biomassa no Brasil. **Desenvolvimento Socioeconômico em Debate**, vol. 5, n. 1, pp. 94-106. 2019.
- MEGIDO, L.; NEGRAL, L.; FERNÁNDEZ-NAVA, Y.; SUÁREZ-PEÑA, B.; ORMAECHEA, P.; DÍAZ-CANEJA, P.; CASTRILLÓN, L.; MARAÑÓN, E. Impact of organic loading rate and reactor design on thermophilic anaerobic digestion of mixed supermarket waste. **Waste Management**, v. 123, p. 52-59, 2021. ISSN 0956-053X. DOI: 10.1016/j.wasman.2021.01.012.
- MENACHO, MAZID E DAS, W.A; MAZID, A.M; DAS, N. Modelling and analysis for biogas production process simulation of food waste using Aspen Plus. **Fuel**. v 309. 2022
- MATERAZZI, M. U.; FOSCOLO, P. The role of waste and renewable gas to decarbonize the energy sector. **Substitute Natural Gas from Waste**, p. 1-19, 2019.
- MENGPIN GE. 4 Charts Explain Greenhouse **Gas Emissions by Countries and Sectors**. https://thecityfix.com/blog/4-charts-explain-greenhouse-gas-emissions-countries-sectors/. Acesso: 02 de março de 2022.
- MEY, F.; DIESENDORF, M. Who owns an energy transition? Strategic action fields and community wind energy in Denmark. **Energy Research & Social Science**, v. 35, p. 108-117, 2018.
- MONTIES, B. Plant cell walls as fibrous lignocellulosic composites: relations with lignin structure and function. **Animal Feed Science and Technology**, v. 32, 1991.
- MORICE, C. P.; KENNEDY, J. J.; RAYNER, N. A.; JONES, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates. The HadCRUT4 dataset, **J. Geophys. Res.**, 117, D08101, doi:10.1029/2011JD017187 (2012).

- NGUYEN, H. Modelling of food waste digestion using ADM1 integrated with Aspen Plus. Doctoral thesis, University of southampton, p. 1-305, 2014.
- OLIVEIRA, M. Óleo para o biodiesel: Com o futuro aumento da produção do biocombustível, várias alternativas de matérias-primas deverão ser utilizadas. **Revista FAPESP**, 2016.
- PALATSI, J.; VIÑAS, M.; GUIVERNAU, M.; FERNANDEZ, B.; FLOTATS, X. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. **Bioresour. Technol**. V.102 (3), p.2219–2227. 2011.
- PAUKOV, I.I.; KOVALEVSKAYA, Y.; BOLDYREVA, E. Low-temperature thermodynamic properties of L -cysteine. **Journal of Thermal Analysis and Calorimetry**. v 93, p 423-428. 2008.
- PETROPOULOU, E.; VOUTSAS, E.; WESTMAN, S.; AUSTEGARD, A.; STANG, J.; LØVSETH, S. Vapor liquid equilibrium of the carbon dioxide/methane mixture at three isotherms. **Fluid Phase Equilibria**. v 462, p 44-58. 2018
- RASIT, N.; IDRIS, A.; HARUN, R.; GHANI, W. Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: An overview. **Renewable and Sustainable Energy Reviews**. p. 45. 351-358, 2015.
- RAJENDRAN, K. HARSHAVARDHAN R. KANKANALA, MAGNUS LUNDIN, MOHAMMAD J. TAHERZADEH. **A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus, Bioresource Technology**, V. 168, P 7-13, doi.org/10.1016/j.biortech.2014.01.051.2014
- RAVENDRAN, R. R.; ABDULRAZIK, A.; ZAILAN, R. **Aspen Plus simulation of optimal biogas production in anaerobic digestion process**. Sci. Eng, [s. l.], p. 1-9. 2019.
- REID, W. V., ALI, M. K., & FIELD, C. B. The future of bioenergy. **Global change biology**, 26(1), 274–286. https://doi.org/10.1111/gcb.14883 (2020).
- ROSILLO-CALLE, F.; DE GROOT, P.; HEMSTOCK, S. L.; WOODS, J. **The Biomass Assessment Handbook**. London: Routledge, 2015. ISBN 9781315723273.
- SANTOS, M. C.; COSTA, D. F.; ALBUQUERQUE, A. A.; SOLETTI, J. I.; MENEGHETTI, S. M. P. Alternative distillation configurations for bioethanol purification: Simulation, optimization and techno-economic assessment. **Chemical Engineering Research and Design**, v. 185, p. 130-145, ISSN 0263-8762. 2022. DOI: 10.1016/j.cherd.2022.06.036.
- SCAMARDELLA, D.; DE CRESCENZO, C.; MARZOCCHELLA, A.; MOLINO, A.; CHIANESE, S.; SAVASTANO, V.; TRALICE, R.; KARATZA, D.; MUSMARRA, D. Simulation and Optimization of Pressurized Anaerobic Digestion and Biogas Upgrading Using Aspen Plus. **Chemical Engineering Transactions**. P. 74 55, 2019.

SCHÖN, M. Numerical modelling of anaerobic digestion processes in agricultural biogas plants. 1. ed. Innsbruck university press, 2010. ISBN 978-3-902719-61-4.

SERRANO, R.P. Biogas Process Simulation using Aspen Plus. Master Thesis. **Department of Chemical Enginnering**. Syddansk Universitet. 2010

SILVA, L. F.; CURY, L. D.; NAPOLEÃO, G. M.; MALTEZ, M. A. P.; Rippel, D. N.; Menegali, I. Biogás e água residuária de suinocultura: potencial de produção nas regiões norte e nordeste. **Revista Tekhne e Logos**, v. 10, n.3, 2019

SIVABALAN, K.; HASSAN, S.; YA, H.; PASUPULETI, J. A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. **J. Phys.: Conf. Ser - IOP Publishin**, p. 1-23, 2020.

SOUSA, M. H. et al. Valorizing municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: an integrated biorefinery approach. **Biomass Conversion and Biorefinery**, 2021. Disponível em: https://doi.org/10.1007/s13399-020-01252-5

STATISTICAL REVIEW OF WORLD ENERGY. [S. I.]: Bp, 2020.

TABATA, Tomohiro. Chapter 26 - Environmental Impacts of Utilizing Woody Biomass for Energy: A Case Study in Japan. Elsevier, p. 751-778, 2018.

TAMNITRA, R.; JITWUNG, R.; PUANGPETCH, T.; PATTHAVEEKONGKA, W.; LEEHENG, K. Kinetic modeling and simulation of bio-methanol process from biogas by using aspen plus. MATEC Web of Conferences, v. 192, n. 03030, 2018.

TESTA, L. CHIARAMONTI, D; PRUSSI, M; BENSAID, S. Challenges and opportunities of process modelling renewable advanced fuels. **Biomass Conversion and Biorefinery**. p 1-36. 2022

TUMULURU, J. S.; WRIGHT, C. T., BOARDMAN, R. D.; YANCEY, N. A; SOKHANSANJ, S. **A Review on Biomass Classification and Composition, Co-Firing Issues and Pretreatment Methods**. ASABE, 10 ago. 2011. doi:10.13031/2013.37191

TURSI, A. A review on biomass: importance, chemistry, classification, and conversion. **Biofuel Research Journal**, 1 jun. 2019.

UNO ENVIRONMENT PROGRAMME. **O aumento alarmante da temperatura global**. UNO environment programme. p. 1-3, 21 jan. 2022.

Vassilev, S.; Baxter, D.; Andersen, L.; Vassileva, C. An Overview of the Chemical Composition of Biomass. **FUEL**. V 89 (5), p 913-933. 2010.

VENTURA, J.R.S.; JEHOON LEE; DEOKJIN JAHNG. A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste.

Journal of Environmental Sciences. v. 26, p 1274-1283. ISSN 1001-0742. 2014

VETERE, A. New correlations for predicting vaporization enthalpies of pure compounds. **The Chemical Engineering Journal**. v. 17, p 157-162. 1979.

WALTER K. D. Carbon, In Aquatic Ecology. Academic Press, p.229-244, 2002.

WANG, L.; LONG, F.; LIAO, W.; LIU, H. Prediction of Anaerobic Digestion Performance and Identification of Critical Operational Parameters Using Machine Learning algorithms. **Bioresource Technology**. v. 298, p. 122495, doi: 10.1016/j.biortech.2019.122495 (2019).

WANG, Z.; BUI, Q.; ZHANGA, B. The relationship between biomass energy consumption and human development: Empirical evidence from BRICS countries. **Energy**, v. 194, pp. 116-906. 2020

WERNER, K.; POMMER, L.; BROSTRÖM, M. Thermal decomposition of hemicelluloses. **Journal of Analytical and Applied Pyrolysis**, v. 110, p. 130-137, 2014.

WOLD METEROLOGICAL ORGANIZATION. **2020** was one of three warmest years on record. Wold Meterological Organization, p. 1-6. 2021.

ZEHNSDORF, A.; MOELLER, L.; STABENAU, N.; BAUER, A.; HARALD, W.; GALLEGOS, Daniela; STINNER, W.; HERBES, C. Biomass potential analysis of aquatic biomass and challenges for its use as a nonconventional substrate in anaerobic digestion plants. **Engineering in Life Sciences**, V. 18, N.7, P. 492-497, 2018.

ZHANG, L.; XU, C.; CHAMPAGNE, P. Overview of recent advances in thermochemical conversion of biomass. **Energy Conversion and Management**, v. 51, p. 969-982, 2010.

ZHANG, Y.; LI, L.; XU, P.; LIU, B.; SHUAI, Y.; LI, B. Hydrogen production through biomass gasification in supercritical water: A review from exergy aspect. **International Journal of Hydrogen Energy**, v. 44, ed. 30, p. 15727-15736, 14 jun. 2019.

ZHANG, W.; CHEN, T. Hydrothermal liquefaction of protein-containing feedstocks. Liquefaction for Energy Applications. **Woodhead Publishing**, p 127-168. ISBN 9780081010297. 2018.

APÊNDICE A – RESULTADO DOS CASOS SIMULADOS

O Apêndice A mostra os resultados dos casos validados do tópico 4.4.

Tabela A1 – Resultado geral da simulação para o caso 1: Dejeto bovino

Correntes	ENTRADA		BIOGAS	LIQUID
Descrição	Entrada substrato	de	Saida de biogás	digestato
Fase			Vapor	Liquida
Temperatura (K)	296,15		328,15	328,15
Pressão (N/sqm)	101325		101325	101325
Densidade molar (kmol/m³)	34,8757119		0,037137866	47,89748053
Densidade mássica (kg/m³)	659,222706		1,003231143	967,2611308
Vazão volumétrica (L/dia)	0,33		3,064427219	0,24880973
Vazão molar (kmol/dia) por corrente	0,00047954		4,74193E-06	0,000496557
DQO da mistura (PPM)	89079,3812		2440504,042	263178,628
Fração r	nolar por compo	nente		
WATER	0,98700466		0,150628459	0,947911842
GLYCEROL	0		2,24478E-10	2,60894E-05
OLEIC-AC	0		2,44629E-18	2,22607E-05
DEXTROSE	0,00053509		2,58287E-16	0,00043725
ACETI-AC	0		0,002513404	0,01166865
PROPI-01	0		6,16136E-20	9,04318E-05
ISOBU-01	0		2,77034E-06	7,96634E-05
ISOVA-01	0		3,51981E-06	4,04697E-05
H+	0		0	0
OH-	0		0	0
NH3	0,00521649		0,052393942	0,004690408
NH4+	0		0	0
CO2	0		4,29229E-05	1,21005E-07
C5H7NO2	0		2,78013E-06	0,00011402
ARGININE	0		2,75299E-12	8,4459E-06
HISTIDIN	0		2,18595E-11	4,05033E-05
LYSINE	0		9,21748E-13	0,000296946
TYROSINE	0		5,13496E-84	4,05033E-05
ТКҮРТОРН	0		5,13496E-84	4,05033E-05
PHENYLAL	0		4,51151E-11	7,3062E-06
CYSTEINE	0		1,09704E-13	1,24306E-05
METHIONI	0		3,36246E-83	0,000245609
THREONIN	0		2,2383E-84	5,7202E-05
SERINE	0		2,37485E-84	3,28225E-05
LEUCINE	0		5,15281E-84	1,42163E-05
ISOLEUCI	0		3,51568E-84	9,69958E-06

WALINE		4.40000 0.4	4 405475 05
VALINE	0	4,16099E-84	1,43547E-05
GLUTAMIC	0	3,79967E-12	1,44423E-05
ASPARTIC	0	2,6247E-86	9,11706E-06
GLYCINE	0	6,5997E-12	0,002917343
ALANINE	0	1,06396E-82	0,000880845
PROLINE	0	3,04946E-13	2,07548E-05
HYDROGEN	0	0,003306512	8,92739E-06
METHANE	0	0,505549813	9,76812E-05
INDOLE	0	7,9262E-09	4,05033E-05
FROMAMID	0	1,3402E-20	4,05033E-05
H2S	0	9,13006E-05	0,000639731
CH4S	0	0,263218118	0,024562001
BENZENE	0	0,002390838	2,24508E-05
PHENOL	0	1,35765E-07	0,000216389
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,00034973	1,28457E-83	0,000101324
HEMECELL	0,00429215	7,01081E-10	0,001658027
GLUCOSE	0	0	0
TRIOLEIN	8,5392E-06	2,2012E-115	8,24662E-07
TRIPALM	2,3438E-06	6,0416E-116	2,26345E-07
PALM	0	3,04655E-16	8,84373E-05
SN-101	0	0	0
SN-102	1,9136E-05	4,17047E-34	1,84804E-06
XYLOSE	0	1,55442E-09	0,000414507
FURFURAL	0	0	0
LINOLEIC	0	1,62028E-17	7,56603E-05
STARCH	0	0	0
ETHANOL	0	0,000512928	0,000265299
PROTEIN	0,00010289	3,57735E-05	9,59487E-06
KERATIN	0,00038975	0,019306772	3,82489E-06
ACETATE	0	0	0
INERT	0,00207923	6,96998E-16	0,002007977
Vazão mássica (kg/dia) - Total por corrente	0,21754349	0,003074329	0,240663981
Vazão mássica	(kg/dia) por compor	nente	
WATER	0,20464316	0,000308826	0,203511519
GLYCEROL	0	2,35274E-12	2,86338E-05
OLEIC-AC	0	7,86377E-20	7,49335E-05
DEXTROSE	0,00110947	5,29567E-18	0,000938791
ACETI-AC	0	1,71775E-05	0,008350878
PROPI-01	0	5,19446E-22	7,9836E-05
ISOBU-01	0	2,77783E-08	8,36462E-05

ISOVA-01	0	4,09121E-08	4,9258E-05
H+	0	0	0
ОН-	0	0	0
NH3	0,00102245	0,000101549	0,000951962
NH4+	0	0	0
CO2	0	2,14983E-07	6,34647E-08
C5H7NO2	0	3,57895E-08	0,000153711
ARGININE	0	5,4579E-14	1,7534E-05
HISTIDIN	0	3,83483E-13	7,44064E-05
LYSINE	0	1,53354E-14	0,000517337
TYROSINE	0	1,05886E-85	8,74597E-05
ТКҮРТОРН	0	1,19349E-85	9,85796E-05
PHENYLAL	0	8,48158E-13	1,43834E-05
CYSTEINE	0	1,50011E-15	1,77994E-05
METHIONI	0	5,70996E-85	0,000436751
THREONIN	0	3,03438E-86	8,1204E-05
SERINE	0	2,84039E-86	4,11082E-05
LEUCINE	0	7,69238E-86	2,22237E-05
ISOLEUCI	0	5,24838E-86	1,51629E-05
VALINE	0	5,54751E-86	2,00404E-05
GLUTAMIC	0	6,36232E-14	2,53233E-05
ASPARTIC	0	3,97591E-88	1,44619E-05
GLYCINE	0	5,6382E-14	0,002609865
ALANINE	0	1,0788E-84	0,000935252
PROLINE	0	3,99563E-15	2,8477E-05
HYDROGEN	0	7,58579E-07	2,14471E-07
METHANE	0	0,000923016	1,86754E-05
INDOLE	0	1,05676E-10	5,65475E-05
FROMAMID	0	6,86979E-23	2,17409E-05
H2S	0	3,54131E-07	0,000259837
CH4S	0	0,00144114	0,014082117
BENZENE	0	2,12541E-05	2,08997E-05
PHENOL	0	1,45413E-09	0,000242697
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,00065263	2,37039E-85	0,000195789
HEMECELL	0,0065263	1,05412E-11	0,002610522
GLUCOSE	0	0	0
TRIOLEIN	8,7017E-05	2,2181E-116	8,70174E-06
TRIPALM	2,1754E-05	5,5451E-117	2,17543E-06
PALM	0	8,88096E-18	0,000269961
SN-101	0	0	0
SN-102	0,00013053	2,81292E-35	1,30526E-05

XYLOSE	0	2,65587E-11	0,000741623
FURFURAL	0	0	0,000741023
LINOLEIC	0	5,17146E-19	0,000252874
STARCH	0	0	0,000232874
ETHANOL	0		
		2,68925E-06	0,000145655
PROTEIN	0,00043509	1,49586E-06	4,20128E-05
KERATIN	0,0005221	0,000255747	5,30559E-06
ACETATE	0	0	0
INERT	0,00239298	7,93228E-18	0,002392978
	ssica por component		
WATER	0,9407	0,10045325	0,845625165
GLYCEROL	0	7,65287E-10	0,000118978
OLEIC-AC	0	2,55788E-17	0,000311361
DEXTROSE	0,0051	1,72254E-15	0,003900837
ACETI-AC	0	0,0055874	0,034699328
PROPI-01	0	1,68962E-19	0,000331732
ISOBU-01	0	9,03557E-06	0,000347564
ISOVA-01	0	1,33077E-05	0,000204676
H+	0	0	0
OH-	0	0	0
NH3	0,0047	0,033031321	0,003955565
NH4+	0	0	0
CO2	0	6,99285E-05	2,63707E-07
C5H7NO2	0	1,16414E-05	0,000638697
ARGININE	0	1,77532E-11	7,28568E-05
HISTIDIN	0	1,24737E-10	0,000309171
LYSINE	0	4,98821E-12	0,002149624
TYROSINE	0	3,44421E-83	0,00036341
TRYPTOPH	0	3,88212E-83	0,000409615
PHENYLAL	0	2,75884E-10	5,97653E-05
CYSTEINE	0	4,87946E-13	7,39594E-05
METHIONI	0	1,8573E-82	0,001814777
THREONIN	0	9,87006E-84	0,000337417
SERINE	0	9,23905E-84	0,000170811
LEUCINE	0	2,50213E-83	9,23431E-05
ISOLEUCI	0	1,70716E-83	6,30046E-05
VALINE	0	1,80446E-83	8,32714E-05
GLUTAMIC	0	2,0695E-11	0,000105223
ASPARTIC	0	1,29326E-85	6,00917E-05
GLYCINE	0	1,83396E-11	0,010844434
ALANINE	0	3,50906E-82	0,003886132
PROLINE	0	1,29968E-12	0,000118327
HYDROGEN	0	0,000246746	8,91164E-07
METHANE	0	0,300233384	7,75995E-05
INDOLE	0	3,43735E-08	0,000234965

FROMAMID	0	2,23456E-20	9,03373E-05
H2S	0	0,00011519	0,001079668
CH4S	0	0,468765762	0,058513603
BENZENE	0	0,006913419	8,68417E-05
PHENOL	0	4,72992E-07	0,001008447
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,003	7,71028E-83	0,000813537
HEMECELL	0,03	3,42878E-09	0,010847165
GLUCOSE	0	0	0
TRIOLEIN	0,0004	7,2148E-114	3,61572E-05
TRIPALM	0,0001	1,8037E-114	9,0393E-06
PALM	0	2,88875E-15	0,001121735
SN-101	0	0	0
SN-102	0,0006	9,1497E-33	5,42358E-05
XYLOSE	0	8,63885E-09	0,003081569
FURFURAL	0	0	0
LINOLEIC	0	1,68214E-16	0,001050736
STARCH	0	0	0
ETHANOL	0	0,000874745	0,00060522
PROTEIN	0,002	0,000486564	0,000174571
KERATIN	0,0024	0,083187785	2,20456E-05
ACETATE	0	0	0
INERT	0,011	2,58017E-15	0,009943235

Tabela C2 – Resultado geral da simulação para o caso 2: RSU

Correntes	ENTRADA		BIOGAS	LIQUID
Descrição	Entrada substrato	de	Saida de biogás	Digestato
Fase			Vapor	Liquida
Temperatura (K)	296,15		328,15	328,15
Pressão (n/sqm)	101325		101325	101325
Densidade molar (kmol/m³)	28,2039		0,037137866	51,29458856
Densidade mássica (kg/m³)	526,8789		0,760319922	961,0554015
Vazão volumétrica (L/dia)	1		11,16158411	0,547553272
Vazão molar (kmol/dia) por corrente	0,001175		1,72716E-05	0,001170272
DQO da mistura (ppm)	64329,5		2,57E+06	81360,6
Fração molar por componente				
WATER	0,993716		0,155348585	0,98782633
GLYCEROL	0		1,05014E-09	8,7117E-05

OLEIC-AC	0	6,69114E-18	2,96165E-05
DEXTROSE	0,001804	6,75288E-16	0,000113771
ACETI-AC	0	0,001651043	0,00588271
PROPI-01	0	4,31365E-06	0,000908094
ISOBU-01	0	4,70083E-06	0,000785348
ISOVA-01	0	2,01766E-07	8,62877E-07
H+	0	0	0
OH-	0	0	0
NH3	0,001536	0,007484728	0,000984093
NH4+	0	0	0
CO2	0	0,05694802	0,000117992
C5H7NO2	0	3,70066E-05	0,000504235
ARGININE	0	5,55044E-12	1,56382E-05
HISTIDIN	0	7,41265E-13	8,80973E-07
LYSINE	0	1,20516E-12	4,39176E-06
TYROSINE	0	2,23002E-85	1,6154E-06
ТКҮРТОРН	0	4,1473E-85	3,00425E-06
PHENYLAL	0	2,65881E-09	2,4539E-05
CYSTEINE	0	3,10026E-13	2,43226E-05
METHIONI	0	2,3531E-84	6,1239E-06
THREONIN	0	3,29001E-84	2,08655E-05
SERINE	0	5,61807E-84	6,00445E-05
LEUCINE	0	6,78497E-83	3,53518E-05
ISOLEUCI	0	5,31367E-83	2,76863E-05
VALINE	0	2,79892E-83	3,10855E-05
GLUTAMIC	0	1,81725E-11	2,99011E-05
ASPARTIC	0	6,05509E-85	1,84364E-05
GLYCINE	0	2,54806E-13	8,47262E-05
ALANINE	0	3,25433E-84	1,75717E-05
PROLINE	0	1,31365E-12	3,99435E-05
HYDROGEN	0	5,08374E-11	1,16807E-06
METHANE	0	0,753172793	0,000105161
INDOLE	0	8,04298E-10	3,77543E-06
FROMAMID	0	2,72044E-21	7,27065E-07
H2S	0	6,71976E-12	4,04137E-05
CH4S	0	8,03542E-05	5,87123E-06
BENZENE	0	0,001622239	3,91765E-06
PHENOL	0	5,37445E-07	3,11579E-06
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,000346	1,43743E-83	0,000104126
HEMECELL	0,000608	3,29514E-10	0,000244222
GLUCOSE	0	0	0

TRIOLEIN	2,11E-05	5,6551E-115	2,11867E-06
TRIPALM	2,32E-05	6,2086E-115	2,32604E-06
PALM	0	3,52E-15	0,000179125
SN-101	0	0	0
SN-102	5,67E-05	1,55605E-33	5,69744E-06
XYLOSE	0	2,49314E-10	6,10556E-05
FURFURAL	0	0	0
LINOLEIC	0	6,34514E-17	0,000131769
STARCH	0	0	0
ETHANOL	0	0,000653004	0,000268032
PROTEIN	7,63E-05	6,58458E-05	6,68667E-06
KERATIN	0,000674	0,022926623	8,82456E-08
ACETATE	0	0	0
INERT	0,00114	3,0215E-15	0,001144307
Vazão mássica (kg/dia) - Total por	0,526879	0,008486375	0,52622903
corrente			
Vazão mássica (kg/dia) por componente			
WATER	0,504908	0,001160088	0,499826806
GLYCEROL	0	4,00888E-11	0,000225339
OLEIC-AC	0	7,83429E-19	0,000234957
DEXTROSE	0,009168	5,04295E-17	0,000575679
ACETI-AC	0	4,10991E-05	0,009922175
PROPI-01	0	1,3246E-07	0,001889411
ISOBU-01	0	1,71682E-07	0,001943421
ISOVA-01	0	8,54197E-09	2,47522E-06
H+	0	0	0
OH-	0	0	0
NH3	0,000738	5,28382E-05	0,00047072
NH4+	0	0	0
CO2	0	0,001038893	0,000145847
C5H7NO2	0	1,73519E-06	0,001601975
ARGININE	0	4,00798E-13	7,65138E-05
HISTIDIN	0	4,73648E-14	3,81417E-06
LYSINE	0	7,30303E-14	1,80323E-05
TYROSINE	0	1,6749E-86	8,22083E-06
TRYPTOPH	0	3,51095E-86	1,72326E-05
PHENYLAL	0	1,82061E-10	0,000113853
CYSTEINE	0	1,54409E-14	8,20805E-05
METHIONI	0	1,45544E-85	2,56646E-05
THREONIN	0	1,62452E-85	6,98093E-05
SERINE	0	2,4474E-85	0,000177234
LEUCINE	0	3,68928E-84	0,000130244
ISOLEUCI	0	2,88927E-84	0,000102003
VALINE	0	1,35915E-84	0,00010228
GLUTAMIC	0	1,10831E-12	0,000123563

ASPARTIC	0	3,34083E-86	6,89231E-05
GLYCINE	0	7,92871E-15	0,000178635
ALANINE	0	1,20186E-85	4,39704E-05
PROLINE	0	6,26929E-14	0,000129164
HYDROGEN	0	4,24806E-14	6,61353E-08
METHANE	0	<u> </u>	<u> </u>
INDOLE		0,005008602	4,73839E-05
	0	3,90574E-11	1,24225E-05
FROMAMID	0	5,07914E-23	9,19769E-07
H2S	0	9,49337E-14	3,86857E-05
CH4S	0	1,60242E-06	7,93326E-06
BENZENE	0	5,25272E-05	8,59508E-06
PHENOL	0	2,09665E-08	8,23601E-06
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,001581	9,66111E-85	0,000474191
HEMECELL	0,002266	1,80456E-11	0,000906232
GLUCOSE	0	0	0
TRIOLEIN	0,000527	2,0756E-115	5,26879E-05
TRIPALM	0,000527	2,0756E-115	5,26879E-05
PALM	0	3,73742E-16	0,001288663
SN-101	0	0	0
SN-102	0,000948	3,82272E-34	9,48382E-05
XYLOSE	0	1,55153E-11	0,000257451
FURFURAL	0	0	0
LINOLEIC	0	7,37633E-18	0,001037929
STARCH	0	0	0
ETHANOL	0	1,247E-05	0,000346811
PROTEIN	0,00079	1,00284E-05	6,90034E-05
KERATIN	0,002213	0,001106157	2,88486E-07
ACETATE	0	0	0
INERT	0,003214	1,25247E-16	0,003213961
Fração mássica por componente			
WATER	0,9583	0,136700119	0,949827503
GLYCEROL	0	4,7239E-09	0,000428214
OLEIC-AC	0	9,23161E-17	0,000446492
DEXTROSE	0,0174	5,9424E-15	0,001093971
ACETI-AC	0	0,004842954	0,018855241
PROPI-01	0	1,56086E-05	0,003590473
ISOBU-01	0	2,02303E-05	0,003693109
ISOVA-01	0	1,00655E-06	4,70369E-06
H+	0	0	0
OH-	0	0	0
NH3	0,0014	0,006226235	0,000894516
	-,	-,	

NH4+	0	0	0
CO2	0	0,122418936	0,000277156
C5H7NO2	0	0,000204467	0,003044254
ARGININE	0	4,72284E-11	0,0001454
HISTIDIN	0	5,58127E-12	7,24811E-06
LYSINE	0	8,60559E-12	3,42671E-05
TYROSINE	0	1,97364E-84	1,56221E-05
TRYPTOPH	0	4,13716E-84	3,27473E-05
PHENYLAL	0	2,14534E-08	0,000216356
CYSTEINE	0	1,81949E-12	0,000155979
METHIONI	0	1,71503E-83	4,87708E-05
THREONIN	0	1,91427E-83	0,000132659
SERINE	0	2,88392E-83	0,0003368
LEUCINE	0	4,34729E-82	0,000247505
ISOLEUCI	0	3,40459E-82	0,000193837
VALINE	0	1,60157E-82	0,000193337
GLUTAMIC	0	1,30599E-10	0,000134304
ASPARTIC	0	3,93669E-84	0,000234006
GLYCINE	0	9,34287E-13	0,000130973
ALANINE	0	1,41622E-83	8,35576E-05
PROLINE	0	7,38747E-12	0,000245451
HYDROGEN	0	5,00574E-12	1,25678E-07
METHANE	0	0,590193315	9,00442E-05
INDOLE	0	4,60237E-09	2,36066E-05
		<u> </u>	
FROMAMID	0	5,98505E-21	1,74785E-06
H2S	0	1,11866E-11	7,35149E-05
CH4S BENZENE	0	0,000188822	1,50757E-05
	0	0,006189596	1,63333E-05
PHENOL	0	2,47061E-06	1,5651E-05
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,003	1,13843E-82	0,000901111
HEMECELL	0,0043	2,12642E-09	0,001722124
GLUCOSE	0	0	0
TRIOLEIN	0,001	2,4458E-113	0,000100123
TRIPALM	0,001	2,4458E-113	0,000100123
PALM	0	4,40402E-14	0,002448863
SN-101	0	0	0
SN-102	0,0018	4,50454E-32	0,000180222
XYLOSE	0	1,82826E-09	0,000489238
FURFURAL	0	0	0
LINOLEIC	0	8,69197E-16	0,001972391
STARCH	0	0	0

ETHANOL	0	0,001469418	0,00065905
PROTEIN	0,0015	0,001181711	0,000131128
KERATIN	0,0042	0,130345074	5,48214E-07
ACETATE	0	0	0
INERT	0,0061	1,47585E-14	0,006107533

Tabela A3 – Resultado geral da simulação para o caso 3: Co-digestão

Correntes	ENTRADA		BIOGAS	LIQUID
Descrição	Entrada substrato	de	Saida de biogás	digestato
Fase			Vapor	Liquida
Temperatura (K)	296,15		328,15	328,15
Pressão (n/sqm)	101325		101325	101325
Densidade molar (kmol/m³)	28,22817		0,037137866	51,42188771
Densidade mássica (kg/m³)	526,743		0,762734626	961,0235131
Vazão volumétrica (L/dia)	1		11,87363027	0,546428131
Vazão molar (kmol/dia) por corrente	0,001176		1,83734E-05	0,001170765
DQO da mistura (PPM)	60817,4		2,52E+06	75021,7
Fração molar por componente				
WATER	0,993126		0,155425735	0,9885381
GLYCEROL	0		1,06263E-09	8,66517E-05
OLEIC-AC	0		8,1625E-18	3,22359E-05
DEXTROSE	0,000518		6,17017E-16	9,78427E-05
ACETI-AC	0		0,001554264	0,00546245
PROPI-01	0		4,36762E-06	0,000919426
ISOBU-01	0		4,82182E-06	0,000791743
ISOVA-01	0		2,41386E-07	1,00807E-06
H+	0		0	0
OH-	0		0	0
NH3	0,001972		0,007485372	0,000928244
NH4+	0		0	0
CO2	0		0,065175388	0,000134507
C5H7NO2	0		3,85916E-05	0,000514822
ARGININE	0		5,58617E-12	1,55978E-05
HISTIDIN	0		6,71486E-13	7,84881E-07
LYSINE	0		1,2591E-12	4,38258E-06
TYROSINE	0		1,87385E-85	1,34523E-06
ТКҮРТОРН	0		3,27388E-85	2,3503E-06

PHENYLAL	0	2,61574E-09	2,27037E-05
CYSTEINE	0	3,09686E-13	2,39132E-05
METHIONI	0	2,02726E-84	5,14296E-06
THREONIN	0	3,21138E-84	1,99882E-05
SERINE	0	5,666E-84	5,97047E-05
LEUCINE	0	6,61349E-83	3,33274E-05
ISOLEUCI	0	5,07182E-83	2,55589E-05
VALINE	0	2,76618E-83	2,99692E-05
GLUTAMIC	0	1,80461E-11	2,90968E-05
ASPARTIC	0	6,84047E-85	1,79888E-05
GLYCINE	0	2,57786E-13	8,46428E-05
ALANINE	0	3,23317E-84	1,71873E-05
PROLINE	0	1,32257E-12	3,9501E-05
HYDROGEN	0	5,66331E-11	1,11236E-06
METHANE	0	0,746729198	0,000103644
INDOLE	0	6,19516E-10	2,88204E-06
FROMAMID	0	2,35939E-21	5,84002E-07
H2S	0	6,82913E-12	4,37993E-05
CH4S	0	6,35998E-05	4,60361E-06
BENZENE	0	0,001241042	2,89419E-06
PHENOL	0	4,0144E-07	2,25549E-06
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,001151	1,44945E-83	0,000104055
HEMECELL	0,001695	3,13524E-10	0,000227029
GLUCOSE	0	0	0
TRIOLEIN	2,11E-05	5,6513E-115	2,11723E-06
TRIPALM	2,31E-05	6,2044E-115	2,32446E-06
PALM	0	3,67333E-15	0,000159353
SN-101	0	0	0
SN-102	3,15E-05	1,57587E-33	5,69357E-06
XYLOSE	0	2,33858E-10	5,67573E-05
FURFURAL	0	0	0
LINOLEIC	0	6,0452E-17	0,000110862
STARCH	0	0	0
ETHANOL	0	0,00066039	0,000267117
PROTEIN	7,62E-05	6,95214E-05	6,56222E-06
KERATIN	0,000657	0,021547061	7,4452E-08
ACETATE	0	0	0
INERT	0,000728	2,6557E-15	0,000956066
Vazão mássica (kg/dia) - Total por corrente	0,526743	0,009056429	0,525130282
Vazão mássica (kg/dia) por componente			

WATER	0,505463	0,001234708	0,500397918
GLYCEROL	0	4,31535E-11	0,00022423
OLEIC-AC	0	1,01667E-18	0,000255846
DEXTROSE	0,009165	4,90174E-17	0,000495293
ACETI-AC	0	4,11583E-05	0,009217222
PROPI-01	0	1,42673E-07	0,001913795
ISOBU-01	0	1,87335E-07	0,001960073
ISOVA-01	0	1,08712E-08	2,89293E-06
H+	0	0	0
OH-	0	0	0
NH3	0,000737	5,62138E-05	0,000444193
NH4+	0	0	0
CO2	0	0,001264834	0,000166332
C5H7NO2	0	1,92494E-06	0,001636298
ARGININE	0	4,29111E-13	7,63482E-05
HISTIDIN	0	4,56433E-14	3,39957E-06
LYSINE	0	8,11667E-14	1,80022E-05
TYROSINE	0	1,49717E-86	6,84878E-06
ТКҮРТОРН	0	2,94835E-86	1,34872E-05
PHENYLAL	0	1,90539E-10	0,000105382
CYSTEINE	0	1,64079E-14	8,07327E-05
METHIONI	0	1,33389E-85	2,15627E-05
THREONIN	0	1,68686E-85	6,69024E-05
SERINE	0	2,62575E-85	0,000176305
LEUCINE	0	3,82544E-84	0,000122838
ISOLEUCI	0	2,93369E-84	9,42048E-05
VALINE	0	1,42894E-84	9,86485E-05
GLUTAMIC	0	1,17081E-12	0,00012029
ASPARTIC	0	4,01493E-86	6,72782E-05
GLYCINE	0	8,53316E-15	0,000178534
ALANINE	0	1,27022E-85	4,30267E-05
PROLINE	0	6,71454E-14	0,000127787
HYDROGEN	0	5,03426E-14	6,30072E-08
METHANE	0	0,005282539	4,67201E-05
INDOLE	0	3,20034E-11	9,48691E-06
FROMAMID	0	4,68606E-23	7,391E-07
H2S	0	1,02633E-13	4,19442E-05
CH4S	0	1,34921E-06	6,22305E-06
BENZENE	0	4,27478E-05	6,35235E-06
PHENOL	0	1,66598E-08	5,96447E-06
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,00158	1,03634E-84	0,000474069

HEMECELL	0,002107	1,82653E-11	0,000842789
GLUCOSE	0	0	0
TRIOLEIN	0,000527	2,2065E-115	5,26743E-05
TRIPALM	0,000527	2,2065E-115	5,26743E-05
PALM	0	4,14903E-16	0,001146906
SN-101	0	0	0
SN-102	0,000948	4,11838E-34	9,48137E-05
XYLOSE	0	1,54819E-11	0,000239428
FURFURAL	0	0	0
LINOLEIC	0	7,47598E-18	0,000873612
STARCH	0	0	0
ETHANOL	0	1,34156E-05	0,000345773
PROTEIN	0,00079	1,12637E-05	6,77477E-05
KERATIN	0,002212	0,001105917	2,43496E-07
ACETATE	0	0	0
INERT	0,002686	1,17106E-16	0,002686389
Fração mássica por componente			
WATER	0,9587	0,136335021	0,952902422
GLYCEROL	0	4,76496E-09	0,000426998
OLEIC-AC	0	1,1226E-16	0,000487204
DEXTROSE	0,005	5,41245E-15	0,000943181
ACETI-AC	0	0,004544645	0,017552258
PROPI-01	0	1,57538E-05	0,003644419
ISOBU-01	0	2,06853E-05	0,003732546
ISOVA-01	0	1,20039E-06	5,50898E-06
H+	0	0	0
OH-	0	0	0
NH3	0,0018	0,006207058	0,000845872
NH4+	0	0	0
CO2	0	0,139661437	0,000316744
C5H7NO2	0	0,00021255	0,003115984
ARGININE	0	4,7382E-11	0,000145389
HISTIDIN	0	5,03988E-12	6,47377E-06
LYSINE	0	8,96233E-12	3,42815E-05
TYROSINE	0	1,65316E-84	1,30421E-05
ТКҮРТОРН	0	3,25554E-84	2,56835E-05
PHENYLAL	0	2,10391E-08	0,000200678
CYSTEINE	0	1,81174E-12	0,000153738
METHIONI	0	1,47286E-83	4,10617E-05
THREONIN	0	1,86261E-83	0,000127401
SERINE	0	2,89932E-83	0,000335736
LEUCINE	0	4,224E-82	0,000233919
ISOLEUCI	0	3,23935E-82	0,000179393
VALINE	0	1,57782E-82	0,000187855
GLUTAMIC	0	1,2928E-10	0,000229067

ASPARTIC	0	4,43323E-84	0,000128117
GLYCINE	0	9,42221E-13	0,000339981
ALANINE	0	1,40256E-83	8,19353E-05
PROLINE	0	7,41411E-12	0,000243343
HYDROGEN	0	5,55877E-12	1,19984E-07
METHANE	0	0,583291574	8,89686E-05
INDOLE	0	3,53378E-09	1,80658E-05
FROMAMID	0	5,17429E-21	1,40746E-06
H2S	0	1,13327E-11	7,98738E-05
CH4S	0	0,000148978	1,18505E-05
BENZENE	0	0,004720162	1,20967E-05
PHENOL	0	1,83956E-06	1,13581E-05
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,01	1,14431E-82	0,000902764
HEMECELL	0,012	2,01684E-09	0,001604914
GLUCOSE	0	0	0
TRIOLEIN	0,001	2,4364E-113	0,000100307
TRIPALM	0,001	2,4364E-113	0,000100307
PALM	0	4,58131E-14	0,002184041
SN-101	0	0	0
SN-102	0,001	4,54747E-32	0,000180553
XYLOSE	0	1,70949E-09	0,00045594
FURFURAL	0	0	0
LINOLEIC	0	8,25488E-16	0,00166361
STARCH	0	0	0
ETHANOL	0	0,001481335	0,000658452
PROTEIN	0,0015	0,001243726	0,000129011
KERATIN	0,0041	0,122114003	4,63686E-07
ACETATE	0	0	0
INERT	0,0039	1,29307E-14	0,005115662

Tabela A4 – Resultado geral da simulação para o caso 4: RSU

Correntes	ENTRADA		BIOGAS	LIQUID
Descrição	Entrada substrato	de	Saida de biogás	digestato
Fase			Vapor	Liquida
Temperatura (K)	296,15		328,15	328,15
Pressão (n/sqm)	101325		101325	101325
Densidade molar (kmol/m³)	45.57302		0.037137866	51.96338

Vazão volumétrica (L/dia)	23,89802	241,5032795	20,90886619
Fração molar por componente			
WATER	0,992374	0,155264918	0,99102793
GLYCEROL	0	5,15716E-10	5,21573E-05
OLEIC-AC	0	9,36695E-16	3,96901E-07
DEXTROSE	0,000313	7,22239E-18	7,90594E-07
ACETI-AC	0	6,27664E-05	0,00028542
PROPI-01	0	1,55196E-06	0,000305182
ISOBU-01	0	2,3295E-05	0,00023938
ISOVA-01	0	4,45183E-10	2,37187E-09
H+	0	0	0
OH-	0	0	0
NH3	0	0,001199024	7,62397E-05
NH4+	0	0	0
CO2	0	0,23820214	0,000671675
C5H7NO2	0	9,09325E-06	0,000150651
ARGININE	0	2,20763E-12	8,26581E-06
HISTIDIN	0	6,37111E-12	9,65982E-06
LYSINE	0	5,83743E-13	2,18893E-06
TYROSINE	0	2,3409E-89	2,25348E-10
ТКҮРТОРН	0	6,54367E-89	6,2993E-10
PHENYLAL	0	9,35581E-10	7,90784E-06
CYSTEINE	0	1,47191E-13	1,44111E-05
METHIONI	0	4,66974E-86	1,35038E-07
THREONIN	0	4,15661E-85	3,15767E-06
SERINE	0	1,08968E-84	1,49765E-05
LEUCINE	0	5,62813E-84	3,04481E-06
ISOLEUCI	0	5,1604E-84	2,79177E-06
VALINE	0	3,41444E-84	4,35613E-06
GLUTAMIC	0	1,66083E-11	3,26851E-05
ASPARTIC	0	1,45661E-84	2,10613E-05
GLYCINE	0	4,56588E-14	1,94429E-05
ALANINE	0	1,32452E-84	9,06951E-06
PROLINE	0	2,68942E-14	1,03503E-06
HYDROGEN	0	2,07422E-11	3,94264E-07
METHANE	0	0,595822289	0,000114896
INDOLE	0	9,43856E-14	5,88827E-10
FROMAMID	0	6,64697E-30	1,20166E-22
H2S	0	1,24534E-08	0,000125224
CH4S	0	1,57109E-08	1,52052E-09
BENZENE	0	5,87423E-16	5,08301E-16
PHENOL	0	6,26358E-11	3,69135E-10
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0

HS-	0	0	0
CELLULOS	0,000929	2,90115E-83	0,00027928
HEMECELL	0,00057	2,66808E-10	0,000228502
GLUCOSE	0	0	0
TRIOLEIN	4,25E-06	1,1376E-115	4,26193E-07
TRIPALM	4,67E-06	1,2489E-115	4,67908E-07
PALM	0	1,38913E-12	2,36344E-06
SN-101	0	0	0
SN-102	6,35E-05	2,35709E-33	6,36723E-06
XYLOSE	0	1,7553E-10	5,71255E-05
FURFURAL	0	0	0
LINOLEIC	0	1,13302E-14	1,93668E-06
STARCH	0	0	0
ETHANOL	0	0,001410397	0,000733105
PROTEIN	0,000154	0,000152654	1,41457E-05
KERATIN	0,000129	0,007851842	2,51346E-08
ACETATE	0	0	0
INERT	0,005459	1,32652E-14	0,005471721
Vazão mássica (kg/dia) - Total por corrente	20,5	0,66	19,84

Vazão mássica (kg/dia) por componente			
WATER	19,4709	0,0772388	18,97354594
GLYCEROL	0	1,31149E-09	0,005104712
OLEIC-AC	0	7,30595E-15	0,000119141
DEXTROSE	0,0615	3,59298E-17	0,000151366
ACETI-AC	0	0,000104083	0,01821538
PROPI-01	0	3,17467E-06	0,024025817
ISOBU-01	0	5,66749E-05	0,022413894
ISOVA-01	0	1,25553E-09	2,57442E-07
H+	0	0	0
OH-	0	0	0
NH3	0	0,000563869	0,00137985
NH4+	0	0	0
CO2	0	0,289478438	0,031414513
C5H7NO2	0	2,8403E-05	0,018109996
ARGININE	0	1,06195E-11	0,00153025
HISTIDIN	0	2,71191E-11	0,00158245
LYSINE	0	2,35645E-12	0,000340072
TYROSINE	0	1,17123E-88	4,33923E-08
TRYPTOPH	0	3,69028E-88	1,36719E-07
PHENYLAL	0	4,26767E-09	0,001388251
CYSTEINE	0	4,88352E-13	0,001840136
<u> </u>			

METHIONI	0	1,92408E-85	2,14135E-05
THREONIN	0	1,36725E-84	0,000399738
SERINE	0	3,16225E-84	0,001672661
LEUCINE	0	2,03862E-83	0,000424455
ISOLEUCI	0	1,8692E-83	0,000389181
VALINE	0	1,10452E-83	0,000542322
GLUTAMIC	0	6,74761E-11	0,005110632
ASPARTIC	0	5,35371E-84	0,002979186
GLYCINE	0	9,46448E-14	0,00155108
ALANINE	0	3,25859E-84	0,000858726
PROLINE	0	8,55018E-14	0,000126639
HYDROGEN	0	1,15462E-12	8,44642E-07
METHANE	0	0,263947163	0,001958864
INDOLE	0	3,05331E-13	7,33083E-08
FROMAMID	0	8,26709E-30	5,75188E-21
H2S	0	1,17202E-08	0,004535578
CH4S	0	2,08711E-08	7,77387E-08
BENZENE	0	1,26707E-15	4,21958E-14
PHENOL	0	1,62777E-10	3,69196E-08
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,164	1,29894E-82	0,048123678
HEMECELL	0,082	9,73364E-10	0,032082452
GLUCOSE	0	9,73364E-10 0	0
	0 0,0041	<u> </u>	0 0,000401031
GLUCOSE	0	0	0
GLUCOSE TRIOLEIN TRIPALM PALM	0 0,0041	0 2,7814E-114	0 0,000401031
GLUCOSE TRIOLEIN TRIPALM	0 0,0041 0,0041 0	0 2,7814E-114 2,7814E-114 9,82539E-12 0	0 0,000401031 0,000401031
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102	0 0,0041 0,0041 0	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32	0 0,000401031 0,000401031 0,000643358 0 0,004010307
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE	0 0,0041 0,0041 0 0 0,041	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL	0 0,0041 0,0041 0 0 0	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC	0 0,0041 0,0041 0 0 0,041 0 0	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC STARCH	0 0,0041 0,0041 0 0 0,041 0 0	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC STARCH ETHANOL	0 0,0041 0,0041 0 0 0,041 0 0 0	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14 0 0,001794203	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215 0 0,035891952
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC STARCH ETHANOL PROTEIN	0 0,0041 0,0041 0 0 0,041 0 0 0 0 0 0	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14 0 0,001794203 0,001548793	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215 0 0,035891952 0,005523413
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC STARCH ETHANOL PROTEIN KERATIN	0 0,0041 0,0041 0 0 0,041 0 0 0 0 0 0 0,0615 0,0164	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14 0 0,001794203 0,001548793 0,025236357	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215 0 0,035891952 0,005523413 3,10905E-06
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC STARCH ETHANOL PROTEIN KERATIN ACETATE	0 0,0041 0,0041 0 0 0,041 0 0 0 0 0 0 0,0615 0,0164	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14 0 0,001794203 0,001548793 0,025236357 0	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215 0 0,035891952 0,005523413 3,10905E-06 0
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC STARCH ETHANOL PROTEIN KERATIN ACETATE INERT	0 0,0041 0,0041 0 0 0,041 0 0 0 0 0 0 0,0615 0,0164	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14 0 0,001794203 0,001548793 0,025236357	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215 0 0,035891952 0,005523413 3,10905E-06
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC STARCH ETHANOL PROTEIN KERATIN ACETATE INERT Fração mássica por componente	0 0,0041 0,0041 0 0 0,041 0 0 0 0 0 0 0 0,0615 0,0164 0 0,05945	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14 0 0,001794203 0,001548793 0,025236357 0 3,66298E-14	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215 0 0,035891952 0,005523413 3,10905E-06 0 0,591494444
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC STARCH ETHANOL PROTEIN KERATIN ACETATE INERT Fração mássica por componente WATER	0 0,0041 0,0041 0 0 0,041 0 0 0 0 0 0 0,0615 0,0164 0 0,5945	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14 0 0,001794203 0,001548793 0,025236357 0 3,66298E-14	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215 0 0,035891952 0,005523413 3,10905E-06 0 0,591494444
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC STARCH ETHANOL PROTEIN KERATIN ACETATE INERT Fração mássica por componente WATER GLYCEROL	0 0,0041 0,0041 0 0 0,041 0 0 0 0 0 0 0,0615 0,0164 0 0,5945	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14 0 0,001794203 0,001548793 0,025236357 0 3,66298E-14 0,117028485 1,98711E-09	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215 0 0,035891952 0,005523413 3,10905E-06 0 0,591494444
GLUCOSE TRIOLEIN TRIPALM PALM SN-101 SN-102 XYLOSE FURFURAL LINOLEIC STARCH ETHANOL PROTEIN KERATIN ACETATE INERT Fração mássica por componente WATER	0 0,0041 0,0041 0 0 0,041 0 0 0 0 0 0 0,0615 0,0164 0 0,5945	0 2,7814E-114 2,7814E-114 9,82539E-12 0 3,85747E-32 7,27685E-10 0 8,77438E-14 0 0,001794203 0,001548793 0,025236357 0 3,66298E-14	0 0,000401031 0,000401031 0,000643358 0 0,004010307 0,009114299 0 0,000577215 0 0,035891952 0,005523413 3,10905E-06 0 0,591494444

ACETI-AC	0	0,000157702	0,000918114
PROPI-01	0	4,81011E-06	0,001210979
ISOBU-01	0	8,58711E-05	0,001129733
ISOVA-01	0	1,90232E-09	1,29759E-08
H+	0	0	0
OH-	0	0	0
NH3	0	0,000854346	6,95489E-05
NH4+	0	0	0
CO2	0	0,438603693	0,001583393
C5H7NO2	0	4,30349E-05	0,000912802
ARGININE	0	1,60901E-11	7,71295E-05
HISTIDIN	0	4,10896E-11	7,97606E-05
LYSINE	0	3,57038E-12	1,71407E-05
TYROSINE	0	1,77459E-88	2,18711E-09
ТКҮРТОРН	0	5,59133E-88	6,8911E-09
PHENYLAL	0	6,46617E-09	6,99723E-05
CYSTEINE	0	7,39928E-13	9,27488E-05
METHIONI	0	2,91527E-85	1,07931E-06
THREONIN	0	2,07159E-84	2,01481E-05
SERINE	0	4,79129E-84	8,43075E-05
LEUCINE	0	3,08881E-83	2,13939E-05
ISOLEUCI	0	2,83212E-83	1,9616E-05
VALINE	0	1,67352E-83	2,73348E-05
GLUTAMIC	0	1,02236E-10	0,000257592
ASPARTIC	0	8,11168E-84	0,000150161
GLYCINE	0	1,43401E-13	7,81794E-05
ALANINE	0	4,93726E-84	4,32826E-05
PROLINE	0	1,29548E-13	6,38303E-06
HYDROGEN	0	1,74943E-12	4,25727E-08
METHANE	0	0,399919944	9,87331E-05
INDOLE	0	4,62622E-13	3,69497E-09
FROMAMID	0	1,25259E-29	2,89914E-22
H2S	0	1,77578E-08	0,000228608
CH4S	0	3,16229E-08	3,91828E-09
BENZENE	0	1,9198E-15	2,1268E-15
PHENOL	0	2,46632E-10	1,86087E-09
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,008	1,96808E-82	0,002425589
HEMECELL	0,004	1,47479E-09	0,001617059
GLUCOSE	0	0	0
TRIOLEIN	0,0002	4,2142E-114	2,02132E-05
TRIPALM	0,0002	4,2142E-114	2,02132E-05

PALM	0	1,4887E-11	3,24273E-05
SN-101	0	0	0
SN-102	0,002	5,84465E-32	0,000202132
XYLOSE	0	1,10255E-09	0,00045939
FURFURAL	0	0	0
LINOLEIC	0	1,32945E-13	2,90935E-05
STARCH	0	0	0
ETHANOL	0	0,00271849	0,00180907
PROTEIN	0,003	0,002346657	0,000278398
KERATIN	0,0008	0,038236904	1,56706E-07
ACETATE	0	0	0
INERT	0,029	5,54997E-14	0,029309196

Tabela A5 – Resultado geral da simulação para o caso 5: RSU (Planta Industrial)

Correntes	ENTRADA		BIOGAS	LIQUID
Descrição	Entrada substrato	de	Saída de biogás	Digestato
Fase			Vapor	Liquida
Temperatura (K)	296,15		328,15	328,15
Pressão (n/sqm)	101325		101325	101325
Densidade molar (kmol/m³)	50,85602234		0,037137866	50,43183756
Densidade mássica (kg/m³)	1019,576392		0,894169246	966,6524629
Vazão volumétrica (L/dia)	150000		9307239,255	149456,0957
Vazão molar (kmol/dia) por corrente	317,8501396		14,40212521	314,0560641
DQO da mistura (ppm)	207650		1,52E+06	149456
Fração molar por componente				
WATER	0,986874778		0,154912575	0,981984103
GLYCEROL	0		3,05397E-09	0,000300804
OLEIC-AC	0		2,94617E-19	8,88338E-07
DEXTROSE	0,004284354		3,4601E-17	7,01186E-06

ACETI-AC	0	0,000957868	0,004249575
PROPI-01	0	5,75683E-05	0,002251548
ISOBU-01	0	0,000178442	0,001938355
ISOVA-01	0	2,60759E-07	1,50667E-06
H+	0	0	0
OH-	0	0	0
NH3	0	0,014901936	0,001126811
NH4+	0	0	0
CO2	0	0,266540237	0,000788122
C5H7NO2	0	4,94665E-05	0,000881691
ARGININE	0	2,96608E-15	9,65876E-09
HISTIDIN	0	1,43949E-21	5,36142E-18
LYSINE	0	4,96535E-22	4,80946E-18
TYROSINE	0	2,49834E-94	3,38745E-21
ТКҮРТОРН	0	2,49834E-94	3,38577E-21
PHENYLAL	0	1,04709E-12	1,50826E-08
CYSTEINE	0	3,0531E-16	2,80704E-08
METHIONI	0	6,39799E-94	5,1613E-18
THREONIN	0	1,35444E-87	1,0088E-08
SERINE	0	5,76318E-87	7,20613E-08
LEUCINE	0	4,01861E-86	2,93273E-08
ISOLEUCI	0	2,6408E-86	1,92722E-08
VALINE	0	2,16744E-86	3,10031E-08
GLUTAMIC	0	7,92239E-15	1,58833E-08
ASPARTIC	0	1,42314E-87	2,01101E-08
GLYCINE	0	1,44145E-16	5,36598E-08
ALANINE	0	3,07026E-87	1,96912E-08
PROLINE	0	1,22413E-15	4,65047E-08
HYDROGEN	0	1,34121E-10	4,09766E-07
METHANE	0	0,561358202	9,51027E-05
INDOLE	0	1,09603E-22	1,09603E-22
FROMAMID	0	3,92934E-30	1,09602E-22
H2S	0	2,76226E-12	0,000895189
CH4S	0	1,09603E-22	1,09603E-22
BENZENE	0	6,02474E-06	2,24163E-08
PHENOL	0	1,09603E-22	1,09603E-22
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,000247292	8,96801E-84	7,5084E-05
HEMECELL	0,004400678	1,89596E-09	0,001781537
GLUCOSE	0	0	0
TRIOLEIN	4,52853E-06	1,2234E-115	4,58324E-07
INIOLLIN	.,0_000_00	, -	.,

PALM	0	3,39878E-16	1,82018E-05
SN-101	3,37129E-06	9,1073E-116	3,41202E-07
SN-102	0,000372104	1,40264E-32	3,76599E-05
XYLOSE	0	1,57353E-09	0,000445384
FURFURAL	0	0	0
LINOLEIC	0	1,15461E-17	1,73461E-05
STARCH	1,76637E-06	6,40571E-86	5,36313E-07
ETHANOL	0	0,000375736	0,000182993
PROTEIN	0,000982171	0,000471648	7,77746E-05
KERATIN	1,72244E-05	0,000190029	1,79926E-09
ACETATE	0	0	0
INERT	0,002806761	4,66856E-15	0,002840669
Vazão mássica (kg/dia) - Total por	152936,4587	8322,247111	144472,103
corrente			
Vazão mássica (kg/dia) por componente			
WATER	135624,0516	964,6405475	133341,0587
GLYCEROL	0	9,72158E-05	208,8031624
OLEIC-AC	0	2,87643E-14	1,891270053
DEXTROSE	5888,053661	2,15466E-12	9,521482669
ACETI-AC	0	19,88268751	1923,514218
PROPI-01	0	1,474073183	1257,179817
ISOBU-01	0	5,434267086	1287,238068
ISOVA-01	0	0,009205414	1,15985172
H+	0	0	0
OH-	0	0	0
NH3	0	87,72218631	144,6433491
NH4+	0	0	0
CO2	0	4054,618503	261,4333691
C5H7NO2	0	1,934077425	751,7256013
ARGININE	0	1,78598E-10	0,012682217
HISTIDIN	0	7,66983E-17	6,22927E-12
LYSINE	0	2,50902E-17	5,29945E-12
TYROSINE	0	1,56469E-89	4,62624E-15
TRYPTOPH	0	1,76363E-89	5,21186E-15
PHENYLAL	0	5,97878E-08	0,01877947
CYSTEINE	0	1,26798E-11	0,025421353
METHIONI	0	3,29982E-89	5,80479E-12
THREONIN	0	5,57677E-83	0,009057561
SERINE	0	2,09352E-82	0,057081659
LEUCINE	0	1,82207E-81	0,028996162
ISOLEUCI	0	1,19736E-81	0,019054621
VALINE	0	8,77644E-82	0,027375267
GLUTAMIC	0	4,029E-10	0,017614186
ASPARTIC	0	6,54751E-83	0,020175499
GLYCINE	0	3,74014E-12	0,030361114
	-		

ALANINE	0	9,455E-83	0,013223277
PROLINE	0	4,87149E-11	0,04035629
HYDROGEN	0	9,3454E-08	0,00622615
METHANE	0	3112,841324	11,49979941
INDOLE	0	4,43819E-18	9,67801E-17
FROMAMID	0	6,11738E-26	3,72088E-17
H2S	0	3,25406E-08	229,9622649
CH4S	0	1,82257E-18	3,97433E-17
BENZENE	0	0,16266838	0,013198019
PHENOL	0	3,56542E-18	7,77483E-17
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	305,8729175	5,0261E-79	91,76187524
HEMECELL	4435,157303	8,6581E-05	1774,062835
GLUCOSE	0	0	0
TRIOLEIN	30,58729175	3,744E-110	3,058729175
TRIPALM	30,58729175	3,744E-110	3,058729175
PALM	0	3,00917E-11	35,14134895
SN-101	15,29364587	1,872E-110	1,529364587
SN-102	1682,301046	2,87336E-27	168,2301046
XYLOSE	0	8,16553E-05	503,9932048
FURFURAL	0	0	0
LINOLEIC	0	1,11926E-12	36,6671957
STARCH	15,29364587	2,51305E-80	4,588093762
ETHANOL	0	5,98315566	63,54224883
PROTEIN	2752,856257	59,89890476	215,3867209
KERATIN	15,29364587	7,645244434	0,001578502
ACETATE	0	0	0
INERT	2141,110422	1,61369E-10	2141,110422
Fração mássica por componente			
WATER	0,8868	0,115911068	0,922953677
GLYCEROL	0	1,16814E-08	0,001445284
OLEIC-AC	0	3,45631E-18	1,30909E-05
DEXTROSE	0,0385	2,58904E-16	6,59053E-05
ACETI-AC	0	0,002389101	0,013314087
PROPI-01	0	0,000177124	0,008701886
ISOBU-01	0	0,000652981	0,008909942
ISOVA-01	0	1,10612E-06	8,02821E-06
H+	0	0	0
OH-	0	0	0
NH3	0	0,010540685	0,001001185
NH4+	0	0	0
CO2	0	0,487202368	0,001809577

C5H7NO2	0	0,000232398	0,005203258
ARGININE	0	2,14603E-14	8,77832E-08
HISTIDIN	0	9,21605E-21	4,31175E-17
LYSINE	0	3,01483E-21	3,66815E-17
TYROSINE	0	1,88012E-93	3,20217E-20
TRYPTOPH	0	2,11917E-93	3,60752E-20
PHENYLAL	0	7,18409E-12	1,29987E-07
CYSTEINE	0	1,5236E-15	1,7596E-07
METHIONI	0	3,96506E-93	4,01793E-17
THREONIN	0	6,70104E-87	6,26942E-08
SERINE	0	2,51557E-86	3,95105E-07
LEUCINE	0	2,18939E-85	2,00704E-07
ISOLEUCI	0	1,43874E-85	1,31891E-07
VALINE	0	1,05458E-85	1,89485E-07
GLUTAMIC	0	4,84124E-14	1,21921E-07
ASPARTIC	0	7,86748E-87	1,3965E-07
GLYCINE	0	4,49415E-16	2,10152E-07
ALANINE	0	1,13611E-86	9,15282E-08
PROLINE	0	5,85357E-15	2,79336E-07
HYDROGEN	0	1,12294E-11	4,30959E-08
METHANE	0	0,37403856	7,95988E-05
INDOLE	0	5,33292E-22	6,69888E-22
FROMAMID	0	7,35064E-30	2,5755E-22
H2S	0	3,91008E-12	0,001591742
CH4S	0	2,18999E-22	2,75093E-22
BENZENE	0	1,95462E-05	9,13534E-08
PHENOL	0	4,2842E-22	5,38155E-22
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,002	6,03935E-83	0,000635153
HEMECELL	0,029	1,04036E-08	0,012279622
GLUCOSE	0	0	0
TRIOLEIN	0,0002	4,4988E-114	2,11718E-05
TRIPALM	0,0002	4,4988E-114	2,11718E-05
PALM	0	3,61581E-15	0,00024324
SN-101	0,0001	2,2494E-114	1,05859E-05
SN-102	0,011	3,45262E-31	0,001164447
XYLOSE	0	9,81169E-09	0,003488516
FURFURAL	0	0	0
LINOLEIC	0	1,3449E-16	0,000253801
STARCH	0,0001	3,01967E-84	3,17576E-05
ETHANOL	0	0,000718935	0,000439824
PROTEIN	0,018	0,007197444	0,001490853
	·	<u> </u>	

KERATIN	0,0001	0,000918651	1,0926E-08
ACETATE	0	0	0
INERT	0,014	1,93901E-14	0,014820234

Tabela A6 – Resultado geral da simulação para o caso 6: Co-digestão (Planta Industrial)

Correntes	ENTRADA		BIOGAS	LIQUID
Descrição	Entrada substrato	de	Saída de biogás	digestato
Fase			Vapor	Liquida
Temperatura (K)	296,15		328,15	328,15
Pressão (n/sqm)	101325		101325	101325
Densidade molar (kmol/m³)	46,70140336		0,037137866	48,48681897
Densidade mássica (kg/m³)	941,7901937		0,622705589	952,5098715
Vazão volumétrica (L/dia)	150000		10784298,31	140842,2521
Vazão molar (kmol/dia) por corrente	291,883771		16,68774277	284,541366
DQO da mistura (ppm)	274225		3,17E+06	160565
Fração molar por componente				
WATER	0,991223939		0,155514854	0,969258268
GLYCEROL	0		1,8792E-08	0,001761189
OLEIC-AC	0		3,6334E-28	2,83099E-15
DEXTROSE	0,002798411		1,67895E-17	5,26697E-06
ACETI-AC	0		0,00525706	0,019852649
PROPI-01	0		1,16312E-11	0,001800474
ISOBU-01	0		5,41352E-06	0,001338793
ISOVA-01	0		5,85967E-06	3,46707E-05
H+	0		0	0
OH-	0		0	0
NH3	0,001776178		0,021695628	0,001736762
NH4+	0		0	0
CO2	0		7,26877E-05	1,85234E-07
C5H7NO2	0		9,09803E-05	0,001571676
ARGININE	0		4,81857E-13	1,37931E-06
HISTIDIN	0		1,13192E-12	1,49534E-06
LYSINE	0		7,9848E-14	3,83108E-07
TYROSINE	0		9,60641E-87	7,06996E-08
ТКҮРТОРН	0		5,21224E-87	3,83602E-08
PHENYLAL	0		5,88093E-11	1,49884E-06
CYSTEINE	0		2,48018E-14	2,18772E-06
METHIONI	0		2,521E-85	9,8672E-07
THREONIN	0		9,2124E-86	6,64861E-07
SERINE	0		1,5982E-85	1,78156E-06
LEUCINE	0		3,12494E-85	2,98795E-07
ISOLEUCI	0		3,01593E-85	2,88372E-07

VALINE	0	1,42745E-85	2,23918E-07
GLUTAMIC	0	6,46263E-13	1,31318E-06
ASPARTIC	0	2,30193E-85	2,94137E-06
GLYCINE	0	2,40341E-15	7,95005E-07
ALANINE	0	1,37596E-85	8,14802E-07
PROLINE	0	3,34394E-14	1,17862E-06
HYDROGEN	0	4,81623E-15	4,5126E-06
METHANE	0	0,8162402	0,000132144
INDOLE	0	1,07669E-11	5,13507E-08
FROMAMID	0	5,29977E-20	5,41965E-05
H2S	0	5,79244E-12	0,000748622
CH4S	0	0,000113144	9,06677E-06
BENZENE	0	0,00035405	1,65465E-06
PHENOL	0	4,53601E-08	3,04572E-07
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,000124373	5,20064E-84	3,82748E-05
HEMECELL	7,632E-05	3,13197E-11	3,13158E-05
GLUCOSE	0	0	0
TRIOLEIN	2,27758E-05	6,2362E-115	2,33636E-06
TRIPALM	0,000162533	4,4503E-114	1,66727E-05
PALM	0	7,6396E-16	0,000109169
SN-101	0	0	0
SN-102	0,002041596	4,97681E-32	0,000209428
XYLOSE	0	3,14657E-11	7,82894E-06
FURFURAL	0	0	0
LINOLEIC	0	2,24003E-17	9,08533E-05
STARCH	0	0	0
ETHANOL	0	0,00019504	9,06276E-05
PROTEIN	0,000768404	0,000303585	6,10186E-05
KERATIN	1,73257E-05	0,000151435	5,02991E-09
ACETATE	0	0	0
INERT	0,000988144	9,72709E-16	0,001013643
Vazão mássica (kg/dia) - Total por corrente	141268,5291	6715,442827	134153,6355
Vazão mássica (kg/dia) por componente			
WATER	125093,2825	1122,074598	119244,1781
GLYCEROL	0	0,000693134	1107,636677
OLEIC-AC	0	4,11035E-23	5,46075E-09
DEXTROSE	3531,713226	1,21143E-12	6,479928507
ACETI-AC	0	126,4396452	8141,541464
PROPI-01	0	3,45089E-07	910,8383457
ISOBU-01	0	0,191027348	805,5213005

ISOVA-01	0	0,239689513	24,18164879
H+	0	0	0
OH-	0	0	0
NH3	211,9027936	147,982373	201,9881217
NH4+	0	0	0
CO2	0	1,281206464	0,055670602
C5H7NO2	0	4,121739402	1214,071446
ARGININE	0	3,36188E-08	1,640870038
HISTIDIN	0	6,98817E-08	1,57411407
LYSINE	0	4,67508E-09	0,38246713
TYROSINE	0	6,97119E-82	0,087480489
TRYPTOPH	0	4,26334E-82	0,053500022
PHENYLAL	0	3,89084E-06	1,690829671
CYSTEINE	0	1,1935E-09	1,795063234
METHIONI	0	1,50658E-80	1,005448646
THREONIN	0	4,39509E-81	0,540845991
SERINE	0	6,72691E-81	1,278597631
LEUCINE	0	1,64173E-80	0,26765768
ISOLEUCI	0	1,58446E-80	0,25832104
VALINE	0	6,69736E-81	0,179134724
GLUTAMIC	0	3,80821E-08	1,319424892
ASPARTIC	0	1,22714E-80	2,673602932
GLYCINE	0	7,22582E-11	0,407546087
ALANINE	0	4,90978E-81	0,495744477
PROLINE	0	1,54193E-09	0,926669181
HYDROGEN	0	3,88849E-12	0,062122377
METHANE	0	5244,521922	14,47719975
INDOLE	0	5,05176E-07	0,04108152
FROMAMID	0	9,56034E-16	16,67000834
H2S	0	7,90667E-08	174,2379082
CH4S	0	2,180036222	2,978746762
BENZENE	0	11,07645514	0,882650483
PHENOL	0	0,001709751	0,195747713
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	141,2685291	3,37725E-79	42,38055872
HEMECELL	70,63426453	1,65723E-06	28,25370415
GLUCOSE	0	0	0
TRIOLEIN	141,2685291	2,2115E-109	14,12685291
TRIPALM	918,2454389	1,4374E-108	91,82454389
PALM	0	7,83728E-11	190,9605662
SN-101	0	0	0
SN-102	8476,111743	1,18131E-26	847,6111743

XYLOSE	0	1,89199E-06	8,026589429
FURFURAL	0	0	0
LINOLEIC	0	2,51605E-12	174,0019886
STARCH	0	0	0
ETHANOL	0	3,59866167	28,51190146
PROTEIN	1977,759407	44,67363247	153,1023082
KERATIN	14,12685291	7,059428375	0,003998077
ACETATE	0	0	0
INERT	692,2157924	3,89576E-11	692,2157924
Fração mássica por componente			
WATER	0,8855	0,167088698	0,888862815
GLYCEROL	0	1,03215E-07	0,008256479
OLEIC-AC	0	6,12074E-27	4,07052E-14
DEXTROSE	0,025	1,80395E-16	4,83023E-05
ACETI-AC	0	0,018828192	0,060688191
PROPI-01	0	5,13874E-11	0,006789517
ISOBU-01	0	2,8446E-05	0,006004469
ISOVA-01	0	3,56923E-05	0,000180253
H+	0	0	0
OH-	0	0	0
NH3	0,0015	0,02203613	0,001505648
NH4+	0	0	0
CO2	0	0,000190785	4,14976E-07
C5H7NO2	0	0,00061377	0,009049859
ARGININE	0	5,00619E-12	1,22313E-05
HISTIDIN	0	1,04061E-11	1,17337E-05
LYSINE	0	6,96169E-13	2,85096E-06
TYROSINE	0	1,03808E-85	6,52092E-07
ТКҮРТОРН	0	6,34856E-86	3,98797E-07
PHENYLAL	0	5,79387E-10	1,26037E-05
CYSTEINE	0	1,77725E-13	1,33807E-05
METHIONI	0	2,24345E-84	7,49476E-06
THREONIN	0	6,54475E-85	4,03154E-06
SERINE	0	1,00171E-84	9,53085E-06
LEUCINE	0	2,4447E-84	1,99516E-06
ISOLEUCI	0	2,35943E-84	1,92556E-06
VALINE	0	9,97308E-85	1,3353E-06
GLUTAMIC	0	5,67083E-12	9,83518E-06
ASPARTIC	0	1,82733E-84	1,99294E-05
GLYCINE	0	1,076E-14	3,03791E-06
ALANINE	0	7,31118E-85	3,69535E-06
PROLINE	0	2,29609E-13	6,90752E-06
HYDROGEN	0	5,79037E-16	4,63069E-07
METHANE	0	0,780964421	0,000107915
INDOLE	0	7,5226E-11	3,06227E-07

FROMAMID	0	1,42364E-19	0,000124261
H2S	0	1,17739E-11	0,001298794
CH4S	0	0,00032463	2,2204E-05
BENZENE	0	0,001649401	6,5794E-06
PHENOL	0	2,546E-07	1,45913E-06
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,001	5,02907E-83	0,000315911
HEMECELL	0,0005	2,46779E-10	0,000210607
GLUCOSE	0	0	0
TRIOLEIN	0,001	3,2931E-113	0,000105304
TRIPALM	0,0065	2,1405E-112	0,000684473
PALM	0	1,16705E-14	0,001423447
SN-101	0	0	0
SN-102	0,06	1,7591E-30	0,006318212
XYLOSE	0	2,81737E-10	5,98313E-05
FURFURAL	0	0	0
LINOLEIC	0	3,74666E-16	0,001297035
STARCH	0	0	0
ETHANOL	0	0,000535879	0,000212532
PROTEIN	0,014	0,006652373	0,001141246
KERATIN	0,0001	0,001051223	2,98022E-08
ACETATE	0	0	0
INERT	0,0049	5,80119E-15	0,005159874

Tabela A7 – Resultado geral da simulação para o caso 7: Dejeto suíno com palha de milho.

Correntes	ENTRADA		BIOGAS	LIQUID
Descrição	Entrada substrato	de	Saída de biogás	digestato
Fase			Vapor	Liquida
Temperatura (K)	296,15		328,15	328,15
Pressão (n/sqm)	101325		101325	101325
Densidade molar (kmol/m³)	6,214072405		0,037137866	34,04679708
Densidade mássica (kg/m³)	137,1300345		1,03827326	953,5672835
Vazão volumétrica (L/dia)	30		178,0151889	5,676667057
Vazão molar (kmol/dia) por corrente	0,007767591		0,000275463	0,008053014
DQO da mistura (ppm)	317725,392		2106449,986	778997,015
Fração molar por componente				
WATER	0,965866175		0,15655342	0,842875902
GLYCEROL	0		7,19898E-10	0,000228056
OLEIC-AC	0		5,83252E-18	0,000237953
DEXTROSE	0,000244982		4,45337E-22	0,000110302

ISOBU-01 0	ACETI-AC	0	0,008187307	0,055611371
ISOVA-01	PROPI-01	0	6,20788E-10	0,004090286
H+ 0 0 0 OH- 0 0 0 NH3 0,001295768 0,049504335 0,0174786 NH4+ 0 0 0 CO2 0 0,077866262 0,0003268 C5H7NO2 0 8,61483E-06 0,0012956 ARGININE 0 3,12954E-11 9,68137E-11 HISTIDIN 0 2,49681E-10 0,0009387 LYSINE 0 2,14697E-17 0,0009467 TYROSINE 0 1,20417E-82 0,0009577 TRYPTOPH 0 1,32113E-82 0,001500 PHENYLAL 0 2,6924E-10 0,000934C CYSTEINE 0 9,78672E-12 0,001650 METHIONI 0 2,68929E-83 0,0009972 SERINE 0 9,78672E-12 0,001651 METHIONI 0 1,80667E-83 0,001826 ISOLEUCI 0 9,62962E-83 0,001825 SERINE 0 1,17077E-82	ISOBU-01	0	1,13859E-08	0,005022112
OH- 0 0 0 NH3 0,001295768 0,049504335 0,0174786 NH4+ 0 0 0 CO2 0 0,077866262 0,0003265 CSH7NO2 0 8,61483E-06 0,0012955 ARGININE 0 3,12954E-11 9,68137E-11 HISTIDIN 0 2,49681E-10 0,0009381 LYSINE 0 2,14697E-17 0,000957 TRYPOSINE 0 1,20417E-82 0,000957 TRYPTOPH 0 1,32113E-82 0,0010507 PHENYLAL 0 2,69242E-10 0,000934 CYSTEINE 0 9,78672E-12 0,016518 METHIONI 0 2,68929E-83 0,000972 SERINE 0 5,11758E-83 0,001952 SERINE 0 5,11758E-83 0,016125 LEUCINE 0 9,62962E-83 0,0019582 VALINE 0 1,17077E-82 0,0017856 VALINE 0 <th< th=""><th>ISOVA-01</th><th>0</th><th>5,82387E-07</th><th>3,88037E-05</th></th<>	ISOVA-01	0	5,82387E-07	3,88037E-05
NH3 0,001295768 0,049504335 0,0174786 NH4+ 0 0 0 CO2 0 0,077866262 0,0003268 C5H7NO2 0 8,61483E-06 0,0012955 ARGININE 0 3,12954E-11 9,68137E-11 HISTIDIN 0 2,49681E-10 0,0009387 LYSINE 0 2,14697E-17 0,0009467 TYROSINE 0 1,20417E-82 0,0009577 TRYPTOPH 0 1,32113E-82 0,0010507 TRYPTOPH 0 1,3213E-82 0,001657 METHIONI 0 2,68924E-10 0,009346 CYSTEINE 0 9,78672E-12 0,0018516 METHIONI 0 2,68929E-83 0,0009974 THREONIN 0 1,80667E-83 0,001997 SERINE 0 5,11758E-83 0,0018616 ISOLEUCI 0 9,62962E-83 0,001862 ISOLEUCI 0 9,62962E-83 0,001862 VALINE	H+	0	0	0
NH4+ 0 0 0 CO2 0 0,077866262 0,0003265 C5H7NO2 0 8,61483E-06 0,001295 ARGININE 0 3,12954E-11 9,68137E-11 HISTIDIN 0 2,49681E-10 0,0009387 LYSINE 0 2,14697E-17 0,0009461 TYROSINE 0 1,20417E-82 0,0009577 TRYPTOPH 0 1,32113E-82 0,0010507 PHENYLAL 0 2,69242E-10 0,0009340 CYSTEINE 0 9,78672E-12 0,0016516 METHIONI 0 2,68929E-83 0,0009972 THREONIN 0 1,80667E-83 0,0009972 SERINE 0 5,11758E-83 0,0016122 LEUCINE 0 9,62962E-83 0,0018425 VALINE 0 1,17077E-82 0,0017865 GLUTAMIC 0 8,89365E-11 0,000807 ASPARTIC 0 2,51257E-83 0,0013226 GLYCINE	OH-	0	0	0
CO2 0 0,077866262 0,0003268 C5H7NO2 0 8,61483E-06 0,0012958 ARGININE 0 3,12954E-11 9,68137E-11 HISTIDIN 0 2,49681E-10 0,0009367 LYSINE 0 1,20417E-82 0,0009461 TYROSINE 0 1,20417E-82 0,0009577 TRYPTOPH 0 1,32113E-82 0,0010507 PHENYLAL 0 2,6924E-10 0,0009346 CYSTEINE 0 9,78672E-12 0,0016516 METHIONI 0 2,68929E-83 0,0009972 THREONIN 0 1,80667E-83 0,0016126 LEUCINE 0 5,11758E-83 0,001842 ISOLEUCI 0 9,62962E-83 0,001842 ISOLEUCI 0 9,62962E-83 0,001868 VALINE 0 1,17707F-82 0,0017861 GLYCINE 0 1,63641E-12 0,0017861 GLYCINE 0 1,63641E-12 0,0013976 <t< th=""><th>NH3</th><th>0,001295768</th><th>0,049504335</th><th>0,017478617</th></t<>	NH3	0,001295768	0,049504335	0,017478617
C5H7NO2 0 8,61483E-06 0,001295E ARGININE 0 3,12954E-11 9,68137E-1HISTIDIN LYSINE 0 2,49681E-10 0,0009387 LYSINE 0 2,14697E-17 0,0009457 TRYPTOPH 0 1,22113E-82 0,000957 TRYPTOPH 0 1,32113E-82 0,0009340 CYSTEINE 0 9,78672E-12 0,0016516 METHIONI 0 2,68929E-83 0,000974E THREONIN 0 1,80667E-83 0,000974E SERINE 0 5,11758E-83 0,001612E LEUCINE 0 9,6585E-83 0,001842G ISOLEUCI 0 9,62962E-83 0,001862G VALINE 0 1,17077E-82 0,0017851 GLUTAMIC 0 8,8936E-11 0,000841 ALANINE 0 1,63641E-12 0,0013978 GLYCINE 0 1,63641E-12 0,0012286 PROLINE 0 8,91004E-12 0,0012236	NH4+	0	0	0
ARGININE 0 3,12954E-11 9,68137E-1HISTIDIN LYSINE 0 2,49681E-10 0,0009387 LYSINE 0 2,14697E-17 0,0009461 TYROSINE 0 1,20417E-82 0,0009577 TRYPTOPH 0 1,32113E-82 0,0010507 PHENYLAL 0 2,68924E-10 0,000934 CYSTEINE 0 9,78672E-12 0,0016516 METHIONI 0 2,68929E-83 0,0009745 THREONIN 0 1,80667E-83 0,0009972 SERINE 0 5,11758E-83 0,0016125 LEUCINE 0 9,62962E-83 0,0019682 VALINE 0 1,17077E-82 0,0017854 GLUTAMIC 0 8,89365E-11 0,0008074 ASPARTIC 0 1,63641E-12 0,0013266 GLYCINE 0 1,63641E-12 0,0013266 ALANINE 0 8,93703E-83 0,0013266 PROLINE 0 8,91004E-12 5,32654E-14 <t< th=""><th>CO2</th><th>0</th><th>0,077866262</th><th>0,000326908</th></t<>	CO2	0	0,077866262	0,000326908
HISTIDIN	C5H7NO2	0	8,61483E-06	0,001295549
LYSINE 0 2,14697E-17 0,0009461 TYROSINE 0 1,20417E-82 0,0009577 TRYPTOPH 0 1,32113E-82 0,0010507 PHENYLAL 0 2,69242E-10 0,000934C CYSTEINE 0 9,78672E-12 0,0016515 METHIONI 0 2,68929E-83 0,0009745 THREONIN 0 1,80667E-83 0,0009972 SERINE 0 5,11758E-83 0,0018125 LEUCINE 0 9,05855E-83 0,001825 ISOLEUCI 0 9,62962E-83 0,001882 VALINE 0 1,17077E-82 0,0017861 GLUTAMIC 0 8,89365E-11 0,0008074 ASPARTIC 0 2,51257E-83 0,0013266 GLYGINE 0 1,63641E-12 0,0013266 ALANINE 0 8,39703E-83 0,0013266 PROLINE 0 8,91004E-12 0,0012266 HYDROGEN 0 4,17102E-12 5,32654E-	ARGININE	0	3,12954E-11	9,68137E-05
TYROSINE 0 1,20417E-82 0,0009577 TRYPTOPH 0 1,32113E-82 0,0010507 PHENYLAL 0 2,69242E-10 0,0009340 CYSTEINE 0 9,78672E-12 0,0016518 METHIONI 0 2,68929E-83 0,000974 THREONIN 0 1,80667E-83 0,0009972 SERINE 0 5,11758E-83 0,0016125 LEUCINE 0 9,62962E-83 0,0018423 ISOLEUCI 0 9,62962E-83 0,0018423 ISOLEUCI 0 9,62962E-83 0,0018423 VALINE 0 1,17077E-82 0,0018423 GLUTAMIC 0 8,89365E-11 0,0008074 ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,0013265 ALANINE 0 8,39703E-83 0,0013265 ALANINE 0 8,91004E-12 0,0012236 HYDROGEN 0 4,17102E-12 5,32654E-	HISTIDIN	0	2,49681E-10	0,000938739
TRYPTOPH 0 1,32113E-82 0,0010507 PHENYLAL 0 2,69242E-10 0,0009340 CYSTEINE 0 9,78672E-12 0,0016515 METHIONI 0 2,68929E-83 0,0009745 THREONIN 0 1,80667E-83 0,0009972 SERINE 0 5,11758E-83 0,0016125 LEUCINE 0 9,62962E-83 0,0018423 ISOLEUCI 0 9,62962E-83 0,0018423 VALINE 0 1,17077E-82 0,0017865 GLUTAMIC 0 8,89365E-11 0,0008074 ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,0013978 GLYCINE 0 1,63641E-12 0,0013978 GLYCINE 0 8,39703E-83 0,0013978 GLYCINE 0 8,91004E-12 0,0012936 HYDROGEN 0 4,17102E-12 5,32654E-14 METHANE 0 0,5814662 0,0002807	LYSINE	0	2,14697E-17	0,000946182
PHENYLAL 0 2,69242E-10 0,0009340 CYSTEINE 0 9,78672E-12 0,0016515 METHIONI 0 2,68929E-83 0,0009745 THREONIN 0 1,80667E-83 0,0009972 SERINE 0 5,11758E-83 0,0016125 LEUCINE 0 9,65855E-83 0,0018423 ISOLEUCI 0 9,62962E-83 0,0018582 VALINE 0 1,17077E-82 0,0017856 GLUTAMIC 0 8,89365E-11 0,000807 ASPARTIC 0 2,51257E-83 0,0013976 GLYCINE 0 1,63641E-12 0,0013265 ALANINE 0 8,39703E-83 0,0013265 PROLINE 0 8,91004E-12 0,0012236 HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 <	TYROSINE	0	1,20417E-82	0,000957761
CYSTEINE 0 9,78672E-12 0,0016515 METHIONI 0 2,68929E-83 0,0009745 THREONIN 0 1,80667E-83 0,0009972 SERINE 0 5,11758E-83 0,0016125 LEUCINE 0 9,65855E-83 0,0018423 ISOLEUCI 0 9,62962E-83 0,0019582 VALINE 0 1,17077E-82 0,0017851 GLUTAMIC 0 8,89365E-11 0,0008071 ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,0013268 GLYCINE 0 1,63641E-12 0,0013268 PROLINE 0 8,91004E-12 0,0012238 HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 0,02958062 0,0035141 BE	ТКҮРТОРН	0	1,32113E-82	0,001050785
METHIONI 0 2,68929E-83 0,0009745 THREONIN 0 1,80667E-83 0,0009972 SERINE 0 5,11758E-83 0,0016125 LEUCINE 0 9,05855E-83 0,0018423 ISOLEUCI 0 9,62962E-83 0,0019582 VALINE 0 1,17077E-82 0,0017851 GLUTAMIC 0 8,89365E-11 0,0008074 ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,001326 ALANINE 0 8,39703E-83 0,001326 PROLINE 0 8,91004E-12 0,0012238 HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0028907 INDOLE 0 3,15594E-07 0,001597 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 0,02958062 0,0031465 CH4S 0 0,028920136 0,0023960 PHENOL <th>PHENYLAL</th> <th>0</th> <th>2,69242E-10</th> <th>0,000934064</th>	PHENYLAL	0	2,69242E-10	0,000934064
THREONIN 0 1,80667E-83 0,000997Z SERINE 0 5,11758E-83 0,001612E LEUCINE 0 9,05855E-83 0,001842S ISOLEUCI 0 9,62962E-83 0,001958Z VALINE 0 1,17077E-82 0,0017851 GLUTAMIC 0 8,89365E-11 0,0008074 ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,0013265 ALANINE 0 8,39703E-83 0,0013225 PROLINE 0 8,91004E-12 0,0012238 HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0 0 PHENOL 0<	CYSTEINE	0	9,78672E-12	0,001651555
SERINE 0 5,11758E-83 0,0016125 LEUCINE 0 9,05855E-83 0,0018423 ISOLEUCI 0 9,62962E-83 0,0019582 VALINE 0 1,17077E-82 0,0017851 GLUTAMIC 0 8,89365E-11 0,0008074 ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,0013265 ALANINE 0 8,39703E-83 0,0013265 PROLINE 0 8,91004E-12 0,0012236 HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,028920136 0,00239662 PHENOL 0 0 0 BENZENE 0 0 0 CO3-2 0 0<	METHIONI	0	2,68929E-83	0,000974579
LEUCINE 0 9,05855E-83 0,0018423 ISOLEUCI 0 9,62962E-83 0,0019582 VALINE 0 1,17077E-82 0,0017851 GLUTAMIC 0 8,89365E-11 0,0008071 ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,0013265 ALANINE 0 8,39703E-83 0,0013225 PROLINE 0 8,91004E-12 0,0012238 HYDROGEN 0 4,17102E-12 5,32654E-METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 CO3-2 0 0 0 CO3-2 0 0 0 CO3-2 0 0 0 CELLULOS 0,0012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,00016116 GLUCOSE 0 0 0 CTIOLEIN 9,96934E-05 2,5667E-114 9,616E-060 TRIOLEIN 9,616E-060 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-060 TRIOLEIN 9,616	THREONIN	0	1,80667E-83	0,000997254
ISOLEUCI 0 9,62962E-83 0,0019582 VALINE 0 1,17077E-82 0,0017854 GLUTAMIC 0 8,89365E-11 0,0008074 ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,0013268 ALANINE 0 8,39703E-83 0,0013225 ALANINE 0 8,91004E-12 0,0012238 HYDROGEN 0 4,17102E-12 5,32654E-METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048564 H2S 0 0,02395862 0,0035144 BENZENE 0 0,02958062 0,0035144 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 CO3-2 0 0 0 CO3-2 0 0 0 CO3-2 0 0 0 CELLULOS 0,0012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001614 GLUCOSE 0 0 0 CTRIOLEIN 9,96934E-05 2,5667E-114 9,616E-060 TRIOLEIN 9,616E-060 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-060 TRIOLEIN 9,616E-060 TRIOLEIN 9,616E-060 TRIOLEIN 9,616E-060 TRIOLEIN 9,616E-060 TRIOLEIN 9,616E-060 TRIOLEIN 9	SERINE	0	5,11758E-83	0,001612582
VALINE 0 1,17077E-82 0,0017851 GLUTAMIC 0 8,89365E-11 0,0008071 ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,0013265 ALANINE 0 8,39703E-83 0,0013225 PROLINE 0 8,91004E-12 0,0012236 HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,00239662 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82	LEUCINE	0	9,05855E-83	0,001842319
GLUTAMIC 0 8,89365E-11 0,0008071 ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,0013265 ALANINE 0 8,39703E-83 0,0013225 PROLINE 0 8,91004E-12 0,0012238 HYDROGEN 0 4,17102E-12 5,32654E-12 METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035	ISOLEUCI	0	9,62962E-83	0,001958281
ASPARTIC 0 2,51257E-83 0,0013978 GLYCINE 0 1,63641E-12 0,0013265 ALANINE 0 8,39703E-83 0,0013225 PROLINE 0 8,91004E-12 0,0012238 HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 0 0 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611	VALINE	0	1,17077E-82	0,001785175
GLYCINE 0 1,63641E-12 0,0013265 ALANINE 0 8,39703E-83 0,0013225 PROLINE 0 8,91004E-12 0,0012238 HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0	GLUTAMIC	0	8,89365E-11	0,000807199
ALANINE 0 8,39703E-83 0,0013225 PROLINE 0 8,91004E-12 0,0012238 HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 CO3-2 0 0 0 CO3-2 0 0 0 CELULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	ASPARTIC	0	2,51257E-83	0,001397804
PROLINE 0 8,91004E-12 0,0012238 HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	GLYCINE	0	1,63641E-12	0,001326555
HYDROGEN 0 4,17102E-12 5,32654E- METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	ALANINE	0	8,39703E-83	0,001322591
METHANE 0 0,5814662 0,0002807 INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	PROLINE	0	8,91004E-12	0,001223817
INDOLE 0 3,15594E-07 0,0015977 FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	HYDROGEN	0	4,17102E-12	5,32654E-06
FROMAMID 0 1,13538E-18 0,0048561 H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	METHANE	0	0,5814662	0,000280725
H2S 0 2,0448E-12 0,0023482 CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	INDOLE	0	3,15594E-07	0,001597739
CH4S 0 0,02958062 0,0035141 BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	FROMAMID	0	1,13538E-18	0,004856185
BENZENE 0 0,028920136 0,0023966 PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	H2S	0	2,0448E-12	0,002348215
PHENOL 0 5,5319E-06 0,0034851 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	CH4S	0	0,02958062	0,003514164
H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	BENZENE	0	0,028920136	0,002396656
HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	PHENOL	0	5,5319E-06	0,00348514
CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	H2CO3	0	0	0
HS- 0 0 0 CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	HCO3-	0	0	0
CELLULOS 0,012112942 4,40687E-82 0,0035050 HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	CO3-2	0	0	0
HEMECELL 0,000417581 2,62197E-11 0,0001611 GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	HS-	0	0	0
GLUCOSE 0 0 0 TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	CELLULOS	0,012112942	4,40687E-82	0,003505087
TRIOLEIN 9,96934E-05 2,5667E-114 9,616E-06	HEMECELL	0,000417581	2,62197E-11	0,000161112
	GLUCOSE	0	0	0
TDIDALM 0.000136914 2.5224E 114 1.21065E	TRIOLEIN	9,96934E-05	2,5667E-114	9,616E-06
1,51905E-	TRIPALM	0,000136814	3,5224E-114	1,31965E-05

PALM	0	1,55186E-16	0,00018207
SN-101	0	0	0
SN-102	3,72349E-05	4,30759E-35	3,59152E-0
XYLOSE	0	1,49793E-10	4,0278E-05
FURFURAL	0	0	0
LINOLEIC	0	2,56019E-16	0,00603107
STARCH	0	0	0
ETHANOL	0	0,00847228	0,00905709
PROTEIN	0,0010811	0,000219308	9,67766E-0
KERATIN	0,00568779	0,059215074	0,0007175
ACETATE	0	0	0
INERT	0,013019919	2,13358E-16	0,0125584
Vazão mássica (kg/dia) - Total por corrente	4,113901036	0,184828411	5,41308398
Vazão mássica (kg/dia) por componente			
WATER	3,243810967	0,018645652	2,9347718
GLYCEROL	0	4,38308E-10	0,0040592
OLEIC-AC	0	1,08915E-17	0,01299020
DEXTROSE	0,008227802	5,30415E-22	0,0038406
ACETI-AC	0	0,003250473	0,6454532
PROPI-01	0	3,04029E-10	0,0585627
ISOBU-01	0	6,63205E-09	0,0855191
ISOVA-01	0	3,93235E-07	0,0007659
H+	0	0	0
OH-	0	0	0
NH3	0,004113901	0,005573733	0,05753149
NH4+	0	0	0
CO2	0	0,022655452	0,0027806
C5H7NO2	0	6,44236E-06	0,0283235
ARGININE	0	3,60421E-11	0,0032595
HISTIDIN	0	2,54448E-10	0,0279675
LYSINE	0	2,07499E-17	0,0267337
TYROSINE	0	1,44245E-82	0,0335400
ТКҮРТОРН	0	1,78376E-82	0,0414763
PHENYLAL		0.040005.40	0,0298218
	0	2,94039E-10	0,0230210
	0	2,94039E-10 7,77397E-12	<u> </u>
CYSTEINE METHIONI			0,0383525
CYSTEINE	0	7,77397E-12	0,0383525 0,0281058
CYSTEINE METHIONI	0	7,77397E-12 2,6529E-83	0,03835258 0,0281058 0,02295948
CYSTEINE METHIONI THREONIN SERINE	0 0 0	7,77397E-12 2,6529E-83 1,42278E-83	0,03835258 0,0281058 0,02295948 0,03275422 0,0467073
CYSTEINE METHIONI THREONIN SERINE LEUCINE	0 0 0 0	7,77397E-12 2,6529E-83 1,42278E-83 3,55561E-83	0,0383525 0,0281058 0,0229594 0,0327542 0,0467073
CYSTEINE METHIONI THREONIN SERINE LEUCINE ISOLEUCI	0 0 0 0	7,77397E-12 2,6529E-83 1,42278E-83 3,55561E-83 7,85567E-83	0,03835258 0,0281058 0,02295948 0,0327542
CYSTEINE METHIONI THREONIN	0 0 0 0 0	7,77397E-12 2,6529E-83 1,42278E-83 3,55561E-83 7,85567E-83 8,3509E-83	0,0383525 0,0281058 0,0229594 0,0327542 0,0467073 0,0496472 0,0404189
CYSTEINE METHIONI THREONIN SERINE LEUCINE ISOLEUCI VALINE	0 0 0 0 0 0	7,77397E-12 2,6529E-83 1,42278E-83 3,55561E-83 7,85567E-83 8,3509E-83 9,06737E-83	0,03835258 0,0281058 0,02295948 0,03275423 0,0467073 0,04964723

ALANINE	0	4,94594E-83	0,022774265
PROLINE	0	6,78187E-12	0,027232169
HYDROGEN	0	5,5588E-14	2,07529E-06
METHANE	0	0,061670514	0,000870423
INDOLE	0	2,44425E-07	0,036175872
FROMAMID	0	3,38082E-19	0,042273921
H2S	0	4,60732E-13	0,015467892
CH4S	0	0,009408176	0,032675018
BENZENE	0	0,014934862	0,036182802
PHENOL	0	3,4419E-06	0,06339276
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,366137192	4,72391E-82	0,109841158
HEMECELL	0,010284753	2,29012E-11	0,004113901
GLUCOSE	0,010204733	0	0,004113901
TRIOLEIN	0,016455604	1,5024E-113	0,00164556
TRIPALM	0,020569505	1,8781E-113	0,00104330
PALM	0,020309303	2,62793E-16	0,002030951
SN-101	0	0	0,009013033
SN-102	0,004113901	1,68777E-34	0,00041139
XYLOSE	0,004113901	1,48675E-10	0,00041139
FURFURAL	0	0	0,001108717
LINOLEIC	0	4,74682E-16	0,326904853
STARCH	0	0	0
ETHANOL	0	0,002580379	0,080643192
PROTEIN	0,074050219	0,00053271	0,006872312
KERATIN	0,123417031	0,04556593	0,016142586
ACETATE	0	0	0
INERT	0,242720161	1,41054E-16	0,242720161
Fração mássica por componente	0,242720101	1,410042 10	0,242720101
WATER	0,7885	0,100880878	0,542162624
GLYCEROL	0	2,37143E-09	0,000749895
OLEIC-AC	0	5,89275E-17	0,002399789
DEXTROSE	0,002	2,86977E-21	0,000709515
ACETI-AC	0	0,017586438	0,119239473
PROPI-01	0	1,64492E-09	0,010818731
ISOBU-01	0	3,58822E-08	0,015798593
ISOVA-01	0	2,12757E-06	0,000141503
H+	0	0	0
OH-	0	0	0
NH3	0,001	0,030156257	0,010628229
NH4+	0	0	0
CO2	0	0,122575592	0,000513689
		0,122010002	0,000010000

C5H7NO2	0	3,48559E-05	0,005232427
ARGININE	0	1,95003E-10	0,000602168
HISTIDIN	0	1,37667E-09	0,005166652
LYSINE	0	1,12266E-16	0,003100032
TYROSINE	0	7,80426E-82	0,004936733
TRYPTOPH	0	9,6509E-82	0,000190113
PHENYLAL	0	·	·
CYSTEINE		1,59088E-09	0,00550922
	0	4,20605E-11	0,007085158
METHIONI	0	1,43533E-82	0,0051922
THREONIN	0	7,69787E-83	0,004241473
SERINE	0	1,92374E-82	0,006050936
LEUCINE	0	4,25025E-82	0,008628596
ISOLEUCI	0	4,51819E-82	0,009171708
VALINE	0	4,90583E-82	0,007466897
GLUTAMIC	0	4,68046E-10	0,004240425
ASPARTIC	0	1,19623E-82	0,006642965
GLYCINE	0	4,39387E-12	0,003555499
ALANINE	0	2,67596E-82	0,004207262
PROLINE	0	3,66928E-11	0,005030805
HYDROGEN	0	3,00755E-13	3,83385E-07
METHANE	0	0,333663605	0,0001608
INDOLE	0	1,32244E-06	0,006683043
FROMAMID	0	1,82917E-18	0,007809582
H2S	0	2,49276E-12	0,002857501
CH4S	0	0,050902218	0,006036304
BENZENE	0	0,08080393	0,006684323
PHENOL	0	1,86221E-05	0,011711025
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,089	2,55583E-81	0,020291789
HEMECELL	0,0025	1,23905E-10	0,000759992
GLUCOSE	0	0	0
TRIOLEIN	0,004	8,1288E-113	0,000303997
TRIPALM	0,005	1,0161E-112	0,000379996
PALM	0	1,42182E-15	0,001665161
SN-101	0	0	0
SN-102	0,001	9,13156E-34	7,59992E-05
XYLOSE	0	8,04393E-10	0,000215906
FURFURAL	0	0	0
LINOLEIC	0	2,56823E-15	0,060391609
STARCH	0	0	0
ETHANOL	0	0,013960942	0,014897828
PROTEIN	0,018	0,002882185	0,001269574
	•	,	· · · · · · · · · · · · · · · · · · ·

KERATIN	0,03	0,246530982	0,002982142
ACETATE	0	0	0
INERT	0,059	7,63159E-16	0,044839534

Tabela A8 – Resultado geral da simulação para o caso 8: RA

Densidade mássica (kg/m³) 827,7631143 0,734672802 957,629941 Vazão volumétrica (L/dia) 15 544,69575 12,53390773 Vazão molar (kmol/dia) por corrente 0,027441055 0,000842868 0,027061503 Fração molar por componente WATER 0,994186521 0,15691781 0,992262284 GLYCEROL 0 3,15902E-09 0,000234765 OLEIC-AC 0 5,95287E-18 1,62181E-05 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,002062077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 2,66826E-06 1,00442E-05 H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205	Correntes	ENTRADA		BIOGAS	LIQUID
Temperatura (K) 296,15 328,15 320,15 Pressão (n/sqm) 101325 101325 101325 101325 Densidade molar (kmol/m³) 43,90568812 0,037137866 51,81752504 Vazão volumétrica (L/dia) 15 544,69575 12,53390779 Vazão molar (kmol/dia) por corrente 0,027441055 0,000842868 0,027061503 Fração molar por componente WATER 0,994186521 0,15691781 0,992262284 GLYCEROL 0 3,15902E-09 0,00023456 0 OLEIC-AC 0 3,15902E-09 0,00023456 0 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,90625193 0,002062077 PROPI-01 0 3,87546E-12 0,000867086 1508U-01 0 0 0 ISOBU-01 0 6,75476E-13 0,00061224 15000-0 0 0 H+ 0 0 0 0 0 OH- 0 0 0 0	Descrição		de	Saída de biogás	Digestato
Pressão (n/sqm) 101325 101325 101325 Densidade molar (kmol/m³) 43,90568812 0,037137866 51,81752504 Densidade mássica (kg/m³) 827,7631143 0,734672802 957,629941 Vazão volumétrica (L/dia) 15 544,69575 12,53390779 Vazão molar (kmol/dia) por corrente 0,027441055 0,000842868 0,027061503 Fração molar por componente WATER 0,994186521 0,15691781 0,992262284 GLYCEROL 0 3,15902E-09 0,000234766 OLEIC-AC 0 5,95287E-18 1,62181E-02 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,002062077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 0 0 OH- 0 0 0 OH- 0 0 0 VARDAS 0,10991506	Fase			Vapor	Liquida
Densidade molar (kmol/m³) 43,90568812 0,037137866 51,81752504 Densidade mássica (kg/m³) 827,7631143 0,734672802 957,629941 Vazão volumétrica (L/dia) 15 544,69575 12,53390779 Vazão molar (kmol/dia) por corrente 0,027441055 0,000842868 0,027061503 Fração molar por componente WATER 0,994186521 0,15691781 0,992262284 GLYCEROL 0 3,15902E-09 0,000234765 OLEIC-AC 0 5,95287E-18 1,62181E-05 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,0020202077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 0 0 H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0	Temperatura (K)	296,15		328,15	328,15
Densidade mássica (kg/m³) 827,7631143 0,734672802 957,629941 Vazão volumétrica (L/dia) 15 544,69575 12,53390773 Vazão molar (kmol/dia) por corrente 0,027441055 0,000842868 0,027061503 Fração molar por componente WATER 0,994186521 0,15691781 0,992262284 GLYCEROL 0 3,15902E-09 0,000234765 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,002062077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,0006124 ISOVA-01 0 2,66826E-06 1,00442E-05 H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,00064033	Pressão (n/sqm)	101325		101325	101325
Vazão volumétrica (L/dia) 15 544,69575 12,53390779 Vazão molar (kmol/dia) por corrente 0,027441055 0,000842868 0,027061503 Fração molar por componente WATER 0,994186521 0,15691781 0,992262284 GLYCEROL 0 3,15902E-09 0,000234765 OLEIC-AC 0 5,95287E-18 1,62181E-05 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,002062077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 6,75476E-13 0,00061224 ISOVA-01 0 0 0 OH- 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 CSHNO2 0	Densidade molar (kmol/m³)	43,90568812		0,037137866	51,81752504
Vazão molar (kmol/dia) por corrente 0,027441055 0,000842868 0,027061503 Fração molar por componente WATER 0,994186521 0,15691781 0,992262284 GLYCEROL 0 3,15902E-09 0,000234765 OLEIC-AC 0 5,95287E-18 1,62181E-05 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,00260207 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 0 0 H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 <th>Densidade mássica (kg/m³)</th> <th>827,7631143</th> <th></th> <th>0,734672802</th> <th>957,629941</th>	Densidade mássica (kg/m³)	827,7631143		0,734672802	957,629941
Fração molar por componente WATER 0,994186521 0,15691781 0,992262284 GLYCEROL 0 3,15902E-09 0,000234765 OLEIC-AC 0 5,95287E-18 1,62181E-05 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,00262077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOWA-01 0 6,75476E-13 0,00061224 H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 2,98641E-94	Vazão volumétrica (L/dia)	15		544,69575	12,53390779
WATER 0,994186521 0,15691781 0,992262284 GLYCEROL 0 3,15902E-09 0,000234765 OLEIC-AC 0 5,95287E-18 1,62181E-05 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,002062077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 6,75476E-13 0,00061224 ISOVA-01 0 0 0 OH- 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 TYROSINE 0	Vazão molar (kmol/dia) por corrente	0,027441055		0,000842868	0,027061503
GLYCEROL 0 3,15902E-09 0,000234765 OLEIC-AC 0 5,95287E-18 1,62181E-05 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,002062077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 0 0 H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 0,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,333062E-23 PHENYLAL 0					
OLEIC-AC 0 5,95287E-18 1,62181E-05 DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,002062077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 2,66826E-06 1,00442E-05 H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 0,550981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE		0,994186521			
DEXTROSE 0,000941835 1,15823E-17 1,2086E-06 ACETI-AC 0 0,000625193 0,002062077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 2,66826E-06 1,00442E-05 H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 0,10991506 0,00064033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI				*	0,000234765
ACETI-AC 0 0,000625193 0,002062077 PROPI-01 0 3,87546E-12 0,000867086 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 2,66826E-06 1,00442E-05 H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33302E-23 RHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 4,87528E-86 2,68291E-07 SERINE 0 <th></th> <th></th> <th></th> <th>*</th> <th>1,62181E-05</th>				*	1,62181E-05
PROPI-01 0 3,87546E-12 0,000867080 ISOBU-01 0 6,75476E-13 0,00061224 ISOVA-01 0 2,66826E-06 1,00442E-05 H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33302E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 4,87528E-86 2,68291E-07 SERINE 0 <th></th> <th>0,000941835</th> <th></th> <th>1,15823E-17</th> <th>1,2086E-06</th>		0,000941835		1,15823E-17	1,2086E-06
ISOBU-01	ACETI-AC	0		•	0,002062077
SOVA-01	PROPI-01	0		3,87546E-12	0,000867086
H+ 0 0 0 OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33202E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,98366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	ISOBU-01	0		6,75476E-13	0,00061224
OH- 0 0 0 NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33302E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,0836E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,10093E-84 4,83184E-07	ISOVA-01	0		2,66826E-06	1,00442E-05
NH3 0,001881938 0,018873959 0,000752916 NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33302E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	H+	0		0	0
NH4+ 0 0 0 CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33202E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	OH-	0		0	0
CO2 0 0,10991506 0,000220205 C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33202E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	NH3	0,001881938		0,018873959	0,000752916
C5H7NO2 0 5,50981E-05 0,000664033 ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33202E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	NH4+	0		0	0
ARGININE 0 9,56393E-14 2,56875E-07 HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33202E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	CO2	0		0,10991506	0,000220205
HISTIDIN 0 1,91062E-21 3,98274E-18 LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33202E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	C5H7NO2	0		5,50981E-05	0,000664033
LYSINE 0 6,89825E-22 6,84771E-18 TYROSINE 0 2,98641E-94 2,33202E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	ARGININE	0		9,56393E-14	2,56875E-07
TYROSINE 0 2,98641E-94 2,33202E-23 TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	HISTIDIN	0		1,91062E-21	3,98274E-18
TRYPTOPH 0 2,98641E-94 2,33362E-23 PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	LYSINE	0		6,89825E-22	6,84771E-18
PHENYLAL 0 4,86739E-11 3,78144E-07 CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	TYROSINE	0		2,98641E-94	2,33202E-23
CYSTEINE 0 9,96832E-15 7,03768E-07 METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	TRYPTOPH	0		2,98641E-94	2,33362E-23
METHIONI 0 9,08366E-94 8,73983E-18 THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	PHENYLAL	0		4,86739E-11	3,78144E-07
THREONIN 0 4,87528E-86 2,68291E-07 SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	CYSTEINE	0		9,96832E-15	7,03768E-07
SERINE 0 1,83944E-85 1,80669E-06 LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	METHIONI	0		9,08366E-94	8,73983E-18
LEUCINE 0 1,67534E-84 7,3528E-07 ISOLEUCI 0 1,10093E-84 4,83184E-07	THREONIN	0		4,87528E-86	2,68291E-07
ISOLEUCI 0 1,10093E-84 4,83184E-07	SERINE	0		1,83944E-85	1,80669E-06
	LEUCINE	0		1,67534E-84	7,3528E-07
VALINE 0 7,97245E-85 7,77296E-07	ISOLEUCI	0		1,10093E-84	4,83184E-07
	VALINE	0		7,97245E-85	7,77296E-07

GLUTAMIC	0	2,89628E-13	4,22416E-07
ASPARTIC	0	4,82003E-86	5,04192E-07
GLYCINE	0	4,66113E-15	1,42708E-06
ALANINE	0	1,00574E-85	4,93688E-07
PROLINE	0	4,20958E-14	1,16594E-06
HYDROGEN	0	2,13166E-10	2,45381E-06
METHANE	0	0,708611012	0,00010022
INDOLE	0	1,47977E-23	1,47977E-23
FROMAMID	0	1,2251E-29	6,65306E-24
H2S	0	2,69382E-12	1,30639E-05
CH4S	0	5,44805E-26	5,44805E-26
BENZENE	0	5,99822E-05	1,18796E-07
PHENOL	0	6,53787E-22	6,53787E-22
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,001395307	6,14666E-83	0,000424463
HEMECELL	0,000713509	4,48495E-10	0,000289407
GLUCOSE	0	0	0
TRIOLEIN	0,000202283	5,475E-114	2,0512E-05
TRIPALM	0,000198705	5,3782E-114	2,01492E-05
PALM	0	3,04033E-16	6,77828E-06
SN-101	0	0	0
SN-102	5,72601E-05	8,66966E-34	5,80632E-06
XYLOSE	0	3,09915E-10	7,23516E-05
FURFURAL	0	0	0
LINOLEIC	0	5,02049E-19	6,07918E-07
STARCH	0	0	0
ETHANOL	0	0,002817752	0,001044139
PROTEIN	1,02625E-05	1,22232E-05	6,59934E-07
KERATIN	0,000129581	0,002109238	4,05722E-09
ACETATE	0	0	0
INERT	0,000282798	1,03721E-15	0,000286765
Vazão mássica (kg/dia) - Total por corrente	12,41644671	0,400173153	12,00284538
Vazão mássica (kg/dia) por componente			
WATER	11,79562438	0,057185271	11,60995835
GLYCEROL	0	5,88515E-09	0,014042066
OLEIC-AC	0	3,40137E-17	0,002975231
DEXTROSE	0,11174802	4,22105E-17	0,000141416
ACETI-AC	0	0,000759481	0,080426588
PROPI-01	0	5,80753E-12	0,041717977
ISOBU-01	0	1,20389E-12	0,035034169
ISOVA-01	0	5,51272E-06	0,000666259
		•	

H+	0	0	0
OH-	0	0	0
NH3	0,021107959	0,006502238	0,008327963
NH4+	0	0	0
CO2	0	0,087853762	0,006294185
C5H7NO2	0	0,000126076	0,048784001
ARGININE	0	3,37026E-13	2,90629E-05
HISTIDIN	0	5,9578E-21	3,98735E-16
LYSINE	0	2,03998E-21	6,50166E-16
TYROSINE	0	1,09461E-93	2,74431E-21
ТКҮРТОРН	0	1,23378E-93	3,09535E-21
PHENYLAL	0	1,62651E-10	4,05704E-05
CYSTEINE	0	2,42284E-14	5,49192E-05
METHIONI	0	2,74183E-93	8,46985E-16
THREONIN	0	1,17478E-85	2,07566E-05
SERINE	0	3,91049E-85	0,000123317
LEUCINE	0	4,44553E-84	6,26421E-05
ISOLEUCI	0	2,92134E-84	4,11648E-05
VALINE	0	1,88928E-84	5,91404E-05
GLUTAMIC	0	8,62016E-13	4,03652E-05
ASPARTIC	0	1,29781E-85	4,35863E-05
GLYCINE	0	7,07804E-15	6,95764E-05
ALANINE	0	1,81262E-85	2,8567E-05
PROLINE	0	9,80406E-14	8,7184E-05
HYDROGEN	0	8,69267E-12	3,21269E-06
METHANE	0	0,239962974	0,001044232
INDOLE	0	3,50678E-23	1,1259E-21
FROMAMID	0	1,11622E-29	1,94622E-22
H2S	0	1,85722E-12	0,000289173
CH4S	0	5,30195E-26	1,70227E-24
BENZENE	0	9,47808E-05	6,02689E-06
PHENOL	0	1,24468E-21	3,99622E-20
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,148997361	2,01608E-82	0,044699208
HEMECELL	0,062082234	1,19863E-09	0,024832892
GLUCOSE	0	0	0
TRIOLEIN	0,117956244	9,8064E-113	0,011795624
TRIPALM	0,105539797	8,7741E-113	0,01055398
PALM	0	1,57535E-15	0,001127634
SN-101	0	0	0
SN-102	0,022349604	1,03939E-32	0,00223496
XYLOSE	0	9,41207E-10	0,007054772

FURFURAL	0	0	0
LINOLEIC	0	2,84822E-18	0,00011073
STARCH	0	0	0
ETHANOL	0	0,002625928	0,031241411
PROTEIN	0,002483289	9,08485E-05	0,00015748
KERATIN	0,009933157	0,004966272	3,06708E-07
ACETATE	0	0	0
INERT	0,01862467	2,09815E-15	0,01862467
Fração mássica por componente			
WATER	0,994186521	0,15691781	0,992262284
GLYCEROL	0	3,15902E-09	0,000234765
OLEIC-AC	0	5,95287E-18	1,62181E-05
DEXTROSE	0,000941835	1,15823E-17	1,2086E-06
ACETI-AC	0	0,000625193	0,002062077
PROPI-01	0	3,87546E-12	0,000867086
ISOBU-01	0	6,75476E-13	0,00061224
ISOVA-01	0	2,66826E-06	1,00442E-05
H+	0	0	0
OH-	0	0	0
NH3	0,001881938	0,015873959	0,000752916
NH4+	0	0	0
CO2	0	0,10991506	0,000220205
C5H7NO2	0	5,50981E-05	0,000664033
ARGININE	0	9,56393E-14	2,56875E-07
HISTIDIN	0	1,91062E-21	3,98274E-18
LYSINE	0	6,89825E-22	6,84771E-18
TYROSINE	0	2,98641E-94	2,33202E-23
ТКҮРТОРН	0	2,98641E-94	2,33362E-23
PHENYLAL	0	4,86739E-11	3,78144E-07
CYSTEINE	0	9,96832E-15	7,03768E-07
METHIONI	0	9,08366E-94	8,73983E-18
THREONIN	0	4,87528E-86	2,68291E-07
SERINE	0	1,83944E-85	1,80669E-06
LEUCINE	0	1,67534E-84	7,3528E-07
ISOLEUCI	0	1,10093E-84	4,83184E-07
VALINE	0	7,97245E-85	7,77296E-07
GLUTAMIC	0	2,89628E-13	4,22416E-07
ASPARTIC	0	4,82003E-86	5,04192E-07
GLYCINE	0	4,66113E-15	1,42708E-06
ALANINE	0	1,00574E-85	4,93688E-07
PROLINE	0	4,20958E-14	1,16594E-06
HYDROGEN	0	2,13166E-10	2,45381E-06
METHANE	0	0,728611012	0,00010022
INDOLE	0	1,47977E-23	1,47977E-23
FROMAMID	0	1,2251E-29	6,65306E-24

H2S	0	2,69382E-12	1,30639E-05
CH4S	0	5,44805E-26	5,44805E-26
BENZENE	0	5,99822E-05	1,18796E-07
PHENOL	0	6,53787E-22	6,53787E-22
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,001395307	6,14666E-83	0,000424463
HEMECELL	0,000713509	4,48495E-10	0,000289407
GLUCOSE	0	0	0
TRIOLEIN	0,000202283	5,475E-114	2,0512E-05
TRIPALM	0,000198705	5,3782E-114	2,01492E-05
PALM	0	3,04033E-16	6,77828E-06
SN-101	0	0	0
SN-102	5,72601E-05	8,66966E-34	5,80632E-06
XYLOSE	0	3,09915E-10	7,23516E-05
FURFURAL	0	0	0
LINOLEIC	0	5,02049E-19	6,07918E-07
STARCH	0	0	0
ETHANOL	0	0,002817752	0,001044139
PROTEIN	1,02625E-05	1,22232E-05	6,59934E-07
KERATIN	0,000129581	0,002109238	4,05722E-09
ACETATE	0	0	0
INERT	0,000282798	1,03721E-15	0,000286765

Tabela A9 – Resultado geral da simulação para o caso 9: RA

Correntes	ENTRADA		BIOGAS	LIQUID
Descrição	Entrada substrato	de	Saída de biogás	Digestato
Fase			Vapor	Liquida
Temperatura (K)	296,15		328,15	328,15
Pressão (n/sqm)	101325		101325	101325
Densidade molar (kmol/m³)	43,68847091		0,037098298	50,62832552
Densidade mássica (kg/m³)	828,7908405		0,883933535	951,1320158
Vazão volumétrica (L/dia)	4		17,71028034	3,470019356
Vazão molar (kmol/dia) por corrente	0,007281412		2,73759E-05	0,007320053
Fração molar por componente				
WATER	0,989839852		0,156779513	0,987216526
GLYCEROL	0		1,43979E-09	0,000401613
OLEIC-AC	0		2,71183E-11	0,000530938
DEXTROSE	0,000947693		9,7538E-19	1,74861E-07
ACETI-AC	0		0,000428789	0,00193245

PROPI-01	0	0,000346041	0,001907183
ISOBU-01	0	6,5991E-05	0,001634539
ISOVA-01	0	2,22717E-07	4,1834E-06
H+	0	0	0
OH-	0	0	0
NH3	0,001893643	0,004958992	0,001504145
NH4+	0	0	0
CO2	0,00431051	5,54826E-07	4,10485E-09
C5H7NO2	0	7,77185E-07	0,000462154
ARGININE	0	3,06754E-16	8,73466E-10
HISTIDIN	0	2,20849E-16	6,28855E-10
LYSINE	0	3,83968E-17	1,09573E-10
TYROSINE	0	2,00494E-91	1,51911E-12
ТКҮРТОРН	0	2,00941E-91	1,5225E-12
PHENYLAL	0	1,86282E-16	2,01109E-10
CYSTEINE	0	1,79828E-18	2,05748E-10
METHIONI	0	1,50789E-89	1,14251E-10
THREONIN	0	3,05167E-89	2,31221E-10
SERINE	0	2,35254E-89	1,78249E-10
LEUCINE	0	5,46354E-90	4,13965E-11
ISOLEUCI	0	5,38922E-90	4,08334E-11
VALINE	0	2,24523E-93	1,70118E-14
GLUTAMIC	0	2,657E-16	4,70243E-10
ASPARTIC	0	3,50792E-89	2,6579E-10
GLYCINE	0	7,98692E-17	4,06172E-10
ALANINE	0	1,67911E-89	1,27224E-10
PROLINE	0	8,10601E-19	9,27442E-11
HYDROGEN	0	5,0243E-07	3,95823E-11
METHANE	0	0,707434611	0,001451083
INDOLE	0	3,22701E-16	1,54038E-12
FROMAMID	0	5,98524E-27	1,51606E-12
H2S	0	0,006575822	0,000253403
CH4S	0	0,0390055	0,000184644
BENZENE	0	0,063552946	9,90311E-05
PHENOL	0	3,18343E-11	2,2303E-10
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,001403986	5,52963E-83	0,000418972
HEMECELL	0,000717947	7,14102E-11	0,000285663
GLUCOSE	0	0	0
TRIDALM	0,000203541	1,64832E-21	2,02467E-05
TRIPALM	0,000199941	1,4904E-20	1,98885E-05
PALM	0	0,001261311	0,000167991

SN-101	0	0	0
SN-102	5,76162E-05	4,1317E-18	5,73121E-06
XYLOSE	0	2,85409E-10	7,14157E-05
FURFURAL	0	0	0
LINOLEIC	0	2,2709E-12	3,50833E-05
STARCH	0	0	0
ETHANOL	0	0,002259775	0,001108808
PROTEIN	1,03263E-05	8,96337E-06	9,93659E-07
KERATIN	0,000130387	0,017319688	7,63335E-08
ACETATE	0	0	0
INERT	0,000284557	7,18535E-16	0,000283055
Vazão mássica (kg/dia) - Total por corrente	3,315163362	0,015654711	3,300446505
WATER	3,11625356	0,001855708	3,124488239
GLYCEROL	0	8,71188E-11	0,006497828
OLEIC-AC	0	5,03268E-12	0,026346691
DEXTROSE	0,02983647	1,15453E-19	5,5344E-06
ACETI-AC	0	1,69182E-05	0,020387556
PROPI-01	0	1,68424E-05	0,024820792
ISOBU-01	0	3,82007E-06	0,025300427
ISOVA-01	0	1,49451E-08	7,50622E-05
H+	0	0	0
OH-	0	0	0
NH3	0,005635778	5,54883E-05	0,004500326
NH4+	0	0	0
CO2	0,033151634	1,6043E-08	3,17375E-08
C5H7NO2	0	5,77602E-08	0,009184106
ARGININE	0	3,51096E-17	2,67317E-08
HISTIDIN	0	2,23673E-17	1,703E-08
LYSINE	0	3,68799E-18	2,81413E-09
TYROSINE	0	2,38681E-92	4,83563E-11
TRYPTOPH	0	2,69627E-92	5,4626E-11
PHENYLAL	0	2,0218E-17	5,83641E-09
CYSTEINE	0	1,41961E-19	4,34304E-09
METHIONI	0	1,47828E-90	2,99497E-09
THREONIN	0	2,38837E-90	4,8388E-09
SERINE	0	1,6244E-90	3,291E-09
LEUCINE	0	4,70873E-91	9,5398E-10
ISOLEUCI	0	4,64468E-91	9,41003E-10
VALINE	0	1,72812E-94	3,50114E-13
GLUTAMIC	0	2,56847E-17	1,21549E-08
ASPARTIC	0	3,06775E-90	6,2152E-09
GLYCINE	0	3,93921E-18	5,35656E-09
ALANINE	0	9,82896E-91	1,99133E-09
PROLINE	0	6,13173E-20	1,87589E-09

HYDROGEN	0	6,65456E-10	1,40181E-11
METHANE	0	0,007456668	0,004089749
INDOLE	0	2,48384E-17	3,17026E-11
FROMAMID	0	1,7712E-28	1,19964E-11
H2S	0	0,000147249	0,001517265
CH4S	0	0,001232904	0,001560578
BENZENE	0	0,003261685	0,001359013
PHENOL	0	1,96845E-12	3,68755E-09
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,03978196	5,89077E-84	0,011934588
HEMECELL	0,016575817	6,19862E-12	0,006630327
GLUCOSE	0	0	0
TRIOLEIN	0,031494052	9,58892E-22	0,003149405
TRIPALM	0,028178889	7,89731E-21	0,002817889
PALM	0	0,000212269	0,007559555
SN-101	0	0	0
SN-102	0,005967294	1,60884E-18	0,000596729
XYLOSE	0	2,81526E-11	0,001883609
FURFURAL	0	0	0
LINOLEIC	0	4,18441E-13	0,001728554
STARCH	0	0	0
ETHANOL	0	6,83996E-05	0,008974104
PROTEIN	0,000663033	2,16378E-06	6,41395E-05
KERATIN	0,002652131	0,001324504	1,5609E-06
ACETATE	0	0	0
INERT	0,004972745	4,72093E-17	0,004972745
Fração mássica por componente			
WATER	0,94	0,118539938	0,946686527
GLYCEROL	0	5,56502E-09	0,001968773
OLEIC-AC	0	3,2148E-10	0,007982766
DEXTROSE	0,009	7,37498E-18	1,67686E-06
ACETI-AC	0	0,00108071	0,006177211
PROPI-01	0	0,001075869	0,007520434
ISOBU-01	0	0,000244021	0,007665759
ISOVA-01	0	9,54672E-07	2,2743E-05
H+	0	0	0
OH-	0	0	0
NULO		0.000544544	0.004000554
NH3	0,0017	0,003544514	0,001363551
NH4+	0,0017	0,003544514	0,001363551
		<u> </u>	
NH4+	0	0	0

HISTIDIN	0	1,42879E-15	5,15992E-09
LYSINE	0	2,35584E-16	8,52651E-10
TYROSINE	0	1,52466E-90	1,46514E-11
ТКҮРТОРН	0	1,72234E-90	1,65511E-11
PHENYLAL	0	1,2915E-15	1,76837E-09
CYSTEINE	0	9,06824E-18	1,31589E-09
METHIONI	0	9,44305E-89	9,07445E-10
THREONIN	0	1,52566E-88	1,46611E-09
SERINE	0	1,03764E-88	9,97139E-10
LEUCINE	0	3,00787E-89	2,89046E-10
ISOLEUCI	0	2,96695E-89	2,85114E-10
VALINE	0	1,1039E-92	1,06081E-13
GLUTAMIC	0	1,6407E-15	3,6828E-09
ASPARTIC	0	1,95963E-88	1,88314E-09
GLYCINE	0	2,51631E-16	1,62298E-09
ALANINE	0	6,2786E-89	6,03352E-10
PROLINE	0	3,91686E-18	5,68376E-10
HYDROGEN	0	4,25084E-08	4,24735E-12
METHANE	0	0,476321034	0,00123915
INDOLE	0	1,58664E-15	9,60556E-12
FROMAMID	0	1,13142E-26	3,63478E-12
H2S	0	0,009406065	0,000459715
CH4S	0	0,078756132	0,000472839
BENZENE	0	0,208351646	0,000411767
PHENOL	0	1,25742E-10	1,11729E-09
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,012	3,76294E-82	0,003616053
HEMECELL	0,005	3,95959E-10	0,002008918
GLUCOSE	0	0	0
TRIOLEIN	0,0095	6,12526E-20	0,000954236
TRIPALM	0,0085	5,04468E-19	0,00085379
PALM	0	0,013559459	0,002290464
SN-101	0	0	0
SN-102	0,0018	1,02771E-16	0,000180803
XYLOSE	0	1,79835E-09	0,000570713
FURFURAL	0	0	0
LINOLEIC	0	2,67294E-11	0,000523733
STARCH	0	0	0
ETHANOL	0	0,004369269	0,002719057
PROTEIN	0,0002	0,000138219	1,94336E-05
KERATIN	0,0008	0,084607405	4,72936E-07
ACETATE	0	0	0

INERT	0,0015	3,01566E-15	0,001506689
	0,00.0	0,0.000= .0	0,00.00000

Tabela A10 – Resultado geral da simulação para o caso 10: RA

Correntes	ENTRADA		BIOGAS	LIQUID
Descrição	Entrada substrato	de	Saída de biogás	Digestato
Fase			Vapor	Liquida
Temperatura (K)	296,15		328,15	328,15
Pressão (n/sqm)	101325		101325	101325
Densidade molar (kmol/m³)	43,68847091		0,039956691	51,77936859
Densidade mássica (kg/m³)	828,7908405		1,373795434	978,0332698
Vazão volumétrica (L/dia)	5		1,897234184	4,234552235
Vazão molar (kmol/dia) por corrente	0,009101765		3,15863E-06	0,009135935
Fração molar por componente				
WATER	0,989839852		0,046531259	0,983081367
GLYCEROL	0		1,83385E-10	0,000412791
OLEIC-AC	0		1,00488E-12	0,000487163
DEXTROSE	0,000947693		1,43098E-17	0,000275944
ACETI-AC	0		0,000173	0,002730681
PROPI-01	0		2,48727E-05	0,000544524
ISOBU-01	0		1,03924E-05	0,000484429
ISOVA-01	0		1,03837E-09	2,23815E-08
H+	0		0	0
OH-	0		0	0
NH3	0,001893643		0,001865647	0,001745367
NH4+	0		0	0
CO2	0,00431051		0,091122646	0,00571304
C5H7NO2	0		5,04378E-08	0,000172472
ARGININE	0		8,12453E-14	2,91465E-06
HISTIDIN	0		3,74624E-18	1,34395E-10
LYSINE	0		9,08239E-17	3,26538E-09
TYROSINE	0		1,07795E-85	8,60083E-07
ТКҮРТОРН	0		4,08907E-88	3,26262E-09
PHENYLAL	0		2,18903E-13	2,33295E-06
CYSTEINE	0		2,31847E-15	4,34443E-06
METHIONI	0		4,09046E-88	3,26373E-09
THREONIN	0		3,8112E-85	3,04091E-06
SERINE	0		1,39844E-84	1,1158E-05
LEUCINE	0		5,68934E-85	4,53946E-06
ISOLEUCI	0		3,73748E-85	2,9821E-06
VALINE	0		2,50748E-94	1,98794E-20
GLUTAMIC	0		2,08349E-13	4,77677E-06

ASPARTIC	0	3,89019E-85	3,10393E-06
GLYCINE	0	1,91541E-13	1,61884E-05
ALANINE	0	3,81078E-85	3,04057E-06
PROLINE	0	3,83855E-15	7,19281E-06
HYDROGEN	0	0,182609541	1,51496E-05
METHANE	0	0,494712569	0,001489867
INDOLE	0	1,91221E-13	7,19527E-09
FROMAMID	0	3,1619E-24	6,81518E-09
H2S	0	0,000233223	9,19206E-06
CH4S	0	0,000353779	3,58653E-06
BENZENE	0	0,000723311	2,59531E-06
PHENOL	0	1,46875E-23	1,46875E-23
H2CO3	0	0	0
НСО3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,001403986	5,25914E-83	0,00041962
HEMECELL	0,000717947	3,86363E-12	0,000286105
GLUCOSE	0	0	0
TRIOLEIN	0,000203541	1,32392E-23	2,0278E-05
TRIPALM	0,000199941	1,47885E-22	1,99193E-05
PALM	0	7,95207E-05	0,000499892
SN-101	0	0	0
SN-102	5,76162E-05	7,94515E-20	5,74008E-06
XYLOSE	0	5,63311E-11	7,15262E-05
FURFURAL	0	0	0
LINOLEIC	0	9,94988E-14	3,65428E-05
STARCH	0	0	0
ETHANOL	0	0,000726448	0,001118736
PROTEIN	1,03263E-05	2,06927E-06	1,02805E-06
KERATIN	0,000130387	0,18083167	2,42939E-06
ACETATE	0	0	0
INERT	0,000284557	1,35847E-17	0,000283493
Vazão mássica (kg/dia) - Total por corrente	4,143954203	0,002606412	4,141532969
Vazão mássica (kg/dia) por componente			
WATER	3,89531695	6,35472E-05	3,883244411
GLYCEROL	0	1,28029E-12	0,008335448
OLEIC-AC	0	2,1517E-14	0,030171409
DEXTROSE	0,037295588	1,95432E-19	0,010900302
ACETI-AC	0	7,87567E-07	0,035955611
PROPI-01	0	1,39679E-07	0,008844617
ISOBU-01	0	6,94117E-08	0,009358406
ISOVA-01	0	8,03952E-12	5,0121E-07
H+	0	0	0

NH3 0,007044722 2,40862E-06 0,006517483 NH4+ 0 0 0 CO2 0,041439542 0,000304009 0,055129097 CSH7NO2 0 4,32505E-10 0,004277679 ARGININE 0 1,07291E-15 0,000111329 HISTIDIN 0 4,37769E-20 4,54242E-09 LYSINE 0 1,0668E-07 3,41697E-05 TYROSINE 0 1,48063E-87 3,41697E-05 TRYPTOPH 0 6,3307E-90 1,46099E-07 PHENYLAL 0 2,74126E-15 8,45004E-05 CYSTEINE 0 2,11175E-17 0,00014453 METHIONI 0 4,62692E-90 1,0678E-07 THREONIN 0 3,44158E-87 7,94244E-05 SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,65748E-87 0,0001561 ISOLUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22881E-96 5,10624E-19 <th>OH-</th> <th>0</th> <th>0</th> <th>0</th>	OH-	0	0	0
NH4+ 0 0 0 CO2 0,041439542 0,000304009 0,055129097 C5H7NO2 0 4,32505E-10 0,004277679 ARGININE 0 1,07291E-15 0,00011329 HISTIDIN 0 4,37769E-20 4,54242E-09 LYSINE 0 1,00653E-18 1,04668E-07 TYROSINE 0 1,48063E-87 3,41697E-05 TYPODH 0 6,3307E-90 1,46099E-07 PHENYLAL 0 2,74126E-15 8,45004E-05 CYSTEINE 0 2,11175E-17 0,000114453 METHIONI 0 4,62692E-90 1,0678E-07 THREONIN 0 3,44158E-87 7,0000114453 METHIONI 0 3,4158E-87 7,0000139563 ISOLEUCI 0 5,65748E-87 0,00015963 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLYGINE 0 2,32338E-15 0,00015941		0,007044722		
C5H7NO2 0 4,32505E-10 0,004277679 ARGININE 0 1,07291E-15 0,000111329 HISTIDIN 0 4,37769E-20 4,54242E-09 LYSINE 0 1,00653E-18 1,04688E-07 TYROSINE 0 1,48063E-87 3,41697E-05 TRYPTOPH 0 6,3307E-90 1,46099E-07 PHENYLAL 0 2,74126E-15 8,45004E-05 CYSTEINE 0 2,11175E-17 0,000114453 METHIONI 0 4,62692E-90 1,0678E-07 THREONIN 0 3,44158E-87 7,94244E-05 SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,65748E-87 0,000130563 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUCINE 0 3,92529E-87 9,05873E-05 GLYCINE 0 1,0899E-15 0,00026452 ALANINE 0 2,57379E-87 5,93976E-05		·		
CSH7NO2 0 4,32505E-10 0,004277679 ARGININE 0 1,07291E-15 0,000111329 HISTIDIN 0 4,37769E-20 4,54242E-09 LYSINE 0 1,0663E-18 1,04686E-07 TYROSINE 0 1,48063E-87 3,41697E-05 TRYPTOPH 0 6,3307E-90 1,46099E-07 PHENYLAL 0 2,74126E-15 8,45004E-05 CYSTEINE 0 2,11175E-17 0,000114453 METHIONI 0 4,62692E-90 1,0678E-07 THREONIN 0 3,44158E-87 7,94244E-05 SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,65748E-87 0,000130563 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 3,3525E-87 9,05873E-05 GLYCINE 0 1,0899E-15 0,000266452 ALANINE 0 1,0899E-15 0,000266452<	CO2	0,041439542	0,000304009	0,055129097
HISTIDIN	C5H7NO2	0	4,32505E-10	
LYSINE 0 1,00653E-18 1,04668E-07 TYROSINE 0 1,48063E-87 3,41697E-05 TRYPTOPH 0 6,3307E-90 1,46099E-07 PHENYLAL 0 2,74126E-15 8,45004E-05 CYSTEINE 0 2,11175E-17 0,000114463 METHIONI 0 4,62692E-90 1,0678E-07 THREONIN 0 3,44158E-87 7,94244E-05 SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,6574BE-87 0,00013056 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 3,2522E-87 9,05873E-05 GLYCINE 0 1,0899E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0 0,05267E-07	ARGININE	0	1,07291E-15	0,000111329
TYROSINE 0 1,48063E-87 3,41697E-05 TRYPTOPH 0 6,3307E-90 1,46099E-07 PHENYLAL 0 2,74126E-15 8,45004E-05 CYSTEINE 0 2,11175E-17 0,000114453 METHIONI 0 4,62692E-90 1,0678E-07 THREONIN 0 3,44158E-87 7,94244E-05 SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,65748E-87 0,00013056 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 2,32383E-15 0,0001541 ASPARTIC 0 3,92529E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,00524071	HISTIDIN	0	4,37769E-20	4,54242E-09
TRYPTOPH 0 6,3307E-90 1,46099E-07 PHENYLAL 0 2,74126E-15 8,45004E-05 CYSTEINE 0 2,11175E-17 0,000114453 METHIONI 0 4,62692E-90 1,0678E-07 THREONIN 0 3,44158E-87 7,94244E-05 SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,65748E-87 0,000130563 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 2,32383E-15 0,0001569-19 GLYCINE 0 3,95229E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 GLYCINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,77961E-05 6,69624E-06 METHANE 0 0,00601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07	LYSINE	0	1,00653E-18	1,04668E-07
PHENYLAL 0 2,74126E-15 8,45004E-05 CYSTEINE 0 2,11175E-17 0,000114453 METHIONI 0 4,62692E-90 1,0678E-07 THREONIN 0 3,44158E-87 7,94244E-05 SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,65748E-87 0,000130563 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 2,32383E-15 0,0001541 ASPARTIC 0 3,92529E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,698624E-06 METHANE 0 0,00601648 0,00524E-06 METHANE 0 0,00601648 0,00524C-07 FROMAMID 0 1,6982E-15 1,84822E-07	TYROSINE	0	1,48063E-87	3,41697E-05
CYSTEINE 0 2,11175E-17 0,000114453 METHIONI 0 4,62692E-90 1,0678E-07 THREONIN 0 3,44158E-87 7,94244E-05 SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,65748E-87 0,000130563 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 2,32383E-15 0,0001541 ASPARTIC 0 3,92529E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,00026452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79961E-05 6,69824E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,8982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,8611E-05	ТКҮРТОРН	0	6,3307E-90	1,46099E-07
METHIONI 0 4,62692E-90 1,0678E-07 THREONIN 0 3,44158E-87 7,94244E-05 SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,65748E-87 0,000130563 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 2,32383E-15 0,0001541 ASPARTIC 0 3,95252E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,00026452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,9924E-06 METHANE 0 0,000601648 0,005240717 HYDROGEN 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05	PHENYLAL	0	2,74126E-15	8,45004E-05
THREONIN 0 3,44158E-87 7,94244E-05 SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,65748E-87 0,000130563 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 2,32383E-15 0,0001541 ASPARTIC 0 3,92529E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-06 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05	CYSTEINE	0	2,11175E-17	0,000114453
SERINE 0 1,11412E-86 0,000257115 LEUCINE 0 5,65748E-87 0,000130563 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 2,32383E-15 0,0001541 ASPARTIC 0 3,92529E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 0 0	METHIONI	0	4,62692E-90	1,0678E-07
LEUCINE 0 5,65748E-87 0,000130563 ISOLEUCI 0 3,71655E-87 8,57701E-05 VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 2,32383E-15 0,0001541 ASPARTIC 0 3,92529E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 0 0 HCO3- 0 0 0 CO3-2	THREONIN	0	3,44158E-87	7,94244E-05
ISOLEUCI	SERINE	0	1,11412E-86	0,000257115
VALINE 0 2,22681E-96 5,10624E-19 GLUTAMIC 0 2,32383E-15 0,0001541 ASPARTIC 0 3,92529E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 CC3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745	LEUCINE	0	5,65748E-87	0,000130563
GLUTAMIC 0 2,32383E-15 0,0001541 ASPARTIC 0 3,92529E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3- 0 0 0 HCO3- 0 0 0 CELULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 <t< th=""><th>ISOLEUCI</th><th>0</th><th>3,71655E-87</th><th>8,57701E-05</th></t<>	ISOLEUCI	0	3,71655E-87	8,57701E-05
ASPARTIC 0 3,92529E-87 9,05873E-05 GLYCINE 0 1,08999E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 HCO3-2 0 0 0 HCO3-2 0 0 0 HS- 0 0 0 CELULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 <t< th=""><th>VALINE</th><th>0</th><th>2,22681E-96</th><th>5,10624E-19</th></t<>	VALINE	0	2,22681E-96	5,10624E-19
GLYCINE 0 1,08999E-15 0,000266452 ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIPALM 0,035223611	GLUTAMIC	0	2,32383E-15	0,0001541
ALANINE 0 2,57379E-87 5,93976E-05 PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIPALM 0,035223611 9,04129E-2	ASPARTIC	0	3,92529E-87	9,05873E-05
PROLINE 0 3,35022E-17 0,000181576 HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 <th>GLYCINE</th> <th>0</th> <th>1,08999E-15</th> <th>0,000266452</th>	GLYCINE	0	1,08999E-15	0,000266452
HYDROGEN 0 2,79061E-05 6,69624E-06 METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIPALM 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101	ALANINE	0	2,57379E-87	5,93976E-05
METHANE 0 0,000601648 0,005240717 INDOLE 0 1,6982E-15 1,84822E-07 FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 CO3-2 0 0 0 CC1LULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE <th>PROLINE</th> <th>0</th> <th>3,35022E-17</th> <th>0,000181576</th>	PROLINE	0	3,35022E-17	0,000181576
INDOLE	HYDROGEN	0	2,79061E-05	6,69624E-06
FROMAMID 0 1,07961E-26 6,73053E-08 H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13	METHANE	0	0,000601648	0,005240717
H2S 0 6,02567E-07 6,86911E-05 CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511	INDOLE	0	1,6982E-15	1,84822E-07
CH4S 0 1,29023E-06 3,78323E-05 BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511	FROMAMID	0	1,07961E-26	6,73053E-08
BENZENE 0 4,28314E-06 4,44508E-05 PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511	H2S	0	6,02567E-07	6,86911E-05
PHENOL 0 1,04787E-25 3,03082E-22 H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511	CH4S	0	1,29023E-06	3,78323E-05
H2CO3 0 0 0 HCO3- 0 0 0 CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511	BENZENE	0	4,28314E-06	4,44508E-05
HCO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511	PHENOL	0	1,04787E-25	3,03082E-22
CO3-2 0 0 0 HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511		0	0	0
HS- 0 0 0 CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511	HCO3-	0	0	0
CELLULOS 0,04972745 6,4643E-85 0,014918235 HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511		0	0	0
HEMECELL 0,020719771 3,86956E-14 0,008287908 GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511				
GLUCOSE 0 0 0 TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511			6,4643E-85	
TRIOLEIN 0,039367565 8,88633E-25 0,003936756 TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511		0,020719771	3,86956E-14	
TRIPALM 0,035223611 9,04129E-24 0,003522361 PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511				
PALM 0 1,5441E-06 0,028075434 SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511				
SN-101 0 0 0 SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511		<u> </u>		
SN-102 0,007459118 3,56959E-21 0,000745912 XYLOSE 0 6,41106E-13 0,002354511		0	1,5441E-06	
XYLOSE 0 6,41106E-13 0,002354511				
FURFURAL 0 0 0				
	FURFURAL	0	0	0

LINOLEIC	0	2,11536E-15	0,002247102
STARCH	0	0	0
ETHANOL	0	2,53702E-06	0,011300592
PROTEIN	0,000828791	5,76356E-08	8,28214E-05
KERATIN	0,003315163	0,001595581	6,20005E-05
ACETATE	0	0	0
INERT	0,006215931	1,02982E-19	0,006215931
Fração mássica por componente			
WATER	0,94	0,024381098	0,937634552
GLYCEROL	0	4,91208E-10	0,002012648
OLEIC-AC	0	8,25542E-12	0,007285082
DEXTROSE	0,009	7,49813E-17	0,002631949
ACETI-AC	0	0,000302165	0,008681716
PROPI-01	0	5,35905E-05	0,00213559
ISOBU-01	0	2,66311E-05	0,002259648
ISOVA-01	0	3,08452E-09	1,2102E-07
H+	0	0	0
OH-	0	0	0
NH3	0,0017	0,000924115	0,001573689
NH4+	0	0	0
CO2	0,01	0,116638832	0,013311278
C5H7NO2	0	1,65939E-07	0,001032873
ARGININE	0	4,11643E-13	2,6881E-05
HISTIDIN	0	1,67959E-17	1,0968E-09
LYSINE	0	3,86175E-16	2,52728E-08
TYROSINE	0	5,68071E-85	8,25051E-06
TRYPTOPH	0	2,42889E-87	3,52766E-08
PHENYLAL	0	1,05174E-12	2,04032E-05
CYSTEINE	0	8,10214E-15	2,76355E-05
METHIONI	0	1,77521E-87	2,57826E-08
THREONIN	0	1,32043E-84	1,91775E-05
SERINE	0	4,27453E-84	6,20821E-05
LEUCINE	0	2,1706E-84	3,15252E-05
ISOLEUCI	0	1,42593E-84	2,07098E-05
VALINE	0	8,54358E-94	1,23294E-19
GLUTAMIC	0	8,91583E-13	3,72084E-05
ASPARTIC	0	1,50601E-84	2,18729E-05
GLYCINE	0	4,18197E-13	6,43366E-05
ALANINE	0	9,87484E-85	1,43419E-05
PROLINE	0	1,28538E-14	4,38428E-05
HYDROGEN	0	0,010706699	1,61685E-06
METHANE	0	0,230833841	0,001265405
INDOLE	0	6,51547E-13	4,46266E-08
FROMAMID	0	4,14212E-24	1,62513E-08
H2S	0	0,000231187	1,65859E-05

CH4S	0	0,000495022	9,13485E-06
BENZENE	0	0,00164331	1,07329E-05
PHENOL	0	4,02035E-23	7,31812E-23
H2CO3	0	0	0
HCO3-	0	0	0
CO3-2	0	0	0
HS-	0	0	0
CELLULOS	0,012	2,48015E-82	0,003602105
HEMECELL	0,005	1,48463E-11	0,002001169
GLUCOSE	0	0	0
TRIOLEIN	0,0095	3,40941E-22	0,000950555
TRIPALM	0,0085	3,46886E-21	0,000850497
PALM	0	0,000592425	0,006778996
SN-101	0	0	0
SN-102	0,0018	1,36954E-18	0,000180105
XYLOSE	0	2,45973E-10	0,000568512
FURFURAL	0	0	0
LINOLEIC	0	8,116E-13	0,000542577
STARCH	0	0	0
ETHANOL	0	0,000973377	0,002728601
PROTEIN	0,0002	2,2113E-05	1,99978E-05
KERATIN	0,0008	0,612175425	1,49704E-05
ACETATE	0	0	0
INERT	0,0015	3,95111E-17	0,001500877
			-

APÊNDICE B - BANCO DE DADOS DE PROPRIEDADES

O apêndice B apresenta inicialmente a Tabela B1 contendo a descrição de todos os componentes da simulação. Em seguida apresenta a Tabela B2 a Tabela B20. Essas tabelas são compostas por valores das propriedades físico-químicas do banco do *software* comercial Aspen Plus, uma coluna dois referentes aos dados reportados na literatura para a propriedade do respectivo componente onde esses dados foram investigados em bancos de dados como REAXYS, TDE NIST, CHEMEO, PUBCHEM e outros. Por final uma terceira coluna indicando o desvio relativo entre o valor da propriedade no banco de dados do Aspen contra o encontrado na literatura.

A Tabela B21 mostra as interações binarias e seus receptivos parâmetros NRTL que foram inseridos na simulação deste trabalho.

Tabela B1– Todos os componentes da simulação da DA e seus ID, tipos e fórmulas moleculares no Aspen Plus.

Substância	ID do componente - Simulação	Tipo	Alias
Água	WATER	Convencional	H2O
Glicerol	GLYCEROL	Convencional	C3H8O3
Acido oleico	OLEIC-AC	Convencional	C18H34O2
Dextrose	DEXTROSE	Convencional	C6H12O6
Ácido Acetico	ACETI-AC	Convencional	C2H4O2-1
Ácido propanoico	PROPI-01	Convencional	C3H6O2-1
Ácido isobutírico	ISOBU-01	Convencional	C4H8O2-4
Ácido isovalérico	ISOVA-01	Convencional	C5H10O2-D3
Hídron (H+)	H+	Convencional	H+
Ânion hidróxido (OH-)	OH-	Convencional	OH-
Amônia	NH3	Convencional	H3N
Amónio	NH4+	Convencional	NH4+
Dioxido de carbono	CO2	Convencional	CO2
Cianoacetato de etila	C5H7NO2	Convencional	C5H7NO2
Arginina	ARGININE	Convencional	C6H14N4O2
Histidina	HISTIDIN	Convencional	C6H8N3O2-E
Lisina	LYSINE	Convencional	C6H14N2O2
Tirosina	TYROSINE	Convencional	C9H11NO3
Triptofano	TRYPTOPH	Convencional	C11H12N2O2
Fenilalanina	PHENYLAL	Convencional	C9H11NO2

	0) (0.751) 15		0011011000		
Cisteína	CYSTEINE	Convencional	C3H6NO2S-E		
Metionina -	METHIONI	Convencional	C5H11NO2S		
Treonina	THREONIN	Convencional	C4H9NO3		
Serina	SERINE	Convencional	C3H7NO3		
Leucina	LEUCINE	Convencional	C6H13NO2		
Isoleucina	ISOLEUCI	Convencional	C6H13NO2-I		
Valina	VALINE	Convencional	C5H11NO2		
Ácido glutâmico	GLUTAMIC	Convencional	C5H9NO4		
Ácido aspártico	ASPARTIC	Convencional	C4H7NO4		
Glicina	GLYCINE	Convencional	C2H5NO2-D1		
Alanina	ALANINE	Convencional	C3H7NO2		
Prolina	PROLINE	Convencional	C5H9NO2		
Hidrogênio	HYDROGEN	Convencional	H2		
Metano	METHANE	Convencional	CH4		
Indol	INDOLE	Convencional	C8H7N		
Formamida	FROMAMID	Convencional	CH3NO		
Sulfeto de hidrogênio	H2S	Convencional	H2S		
Metanotiol	CH4S	Convencional	CH4S		
Benzeno	BENZENE	Convencional	C6H6		
Fenol	PHENOL	Convencional	C6H6O		
Ácido carbônico	H2CO3	Convencional	H2CO3		
Ion HCO3-	HCO3-	Convencional	HCO3-		
Ion CO3-2	CO3-2	Convencional	CO3-2		
Ion HS-	HS-	Convencional	H2S CH4S C6H6 C6H6O H2CO3 HCO3- CO3-2 HS- CELLULOSE C5H8O4 C6H12O6 C57H104O6		
Celulose	CELLULOS	Convencional	CELLULOSE		
Hemicelulose/Ác. Glutárico	HEMECELL	Convencional	C5H8O4		
Glucose	GLUCOSE	Convencional	C6H12O6		
Trioleína	TRIOLEIN	Convencional	C57H104O6		
Tripalmitina	TRIPALM	Convencional	C51H98O6		
Álcool palmítico	PALM	Convencional	C16H34O		
SN-1-palmito-2-oleína	SN-101	Convencional	C37H70O5-1		
SN-1-palmito-2- linoleína	SN-102	Convencional	C37H68O5-1		
Xilose	XYLOSE	Convencional	C5H10O5		
Furfural	FURFURAL	Convencional	C5H4O2		
Ácido linoleico (C18H32O2)	LINOLEIC	Convencional	C18H32O2		
Celulose	STARCH	Convencional	CELLULOSE		
Etanol	ETHANOL	Convencional	C2H6O-2		
Proteina (Pseudo	PROTEIN	Pseudo-	C13H25O7N3		
componente) Queratina (Pseudo	KERATIN	componente Pseudo-	S C4.39H8NO2.		
componente)	NEIVATIN	componente	1		
Acetato	ACETATE	Convencional	CH3COO-		
Inerte (Pseudo componente)	INERT	Pseudo- componente	INERT		

Tabela B2- Validação das propriedades puras.

			Água			Glicero		Ácido oleico		
		As		As	Gilcero	' " 	As	JIGO OIE	100	
	Unid	pen Plu	Literat		pen Plu	Litera	ARD	pen Plu	Litera	ARD
Propriedade	ade	S	ura	ARD	S	tura	(%)	S	tura	(%)
	le I/m	Con	-	0.01	Con			Con		60.7
Energia Livre de Gibbs	kJ/m ol	Cop	228,80 00	0,01	Cop	-478,3	6,98 %	Cop r©	-84,84	62,7 6%
Energia de Gibbs padrão de	kJ/m	Cop	- 00	70	10	-470,3	70	10	-04,04	0 70
Formação de Solido	ol	r©	-			_			_	
Energia de Gibbs padrão de	kJ/m									
Formação de Líquido	ol		-			-			-	
		~	-	0.07	•			0		
Formação de gás ideal	kJ/m ol	Cop r©	241,83 00	0,07 %	Cop r©			Cop r©		
Entalpia de formação padrão	kJ/m	Cop	00	/0	10	-		10	-	
de Sólido	ol	r©	_			_			_	
				-			-			-
Calor de Vaporização	kJ/m	Сор	54,460	33,8			50,0	Сор	128,4	83,3
(Temperatura de ebulição)	ol	r©	0	6%	r©	91,7	1%	r©	9	5%
Temperatura de fusão		Con	273,50	0,11	Con			Con	289,4	- 1,02
(Condição padrão)	K	Cop r©	00	0,11 %	Cop	_		Cop r©	209,4	1,02 %
(Condição padrão)	10	10	- 00	70	10		-	10		-
Entalpia padrão de combustão	kJ/m				Сор		12,7	Сор	11145	6,15
(Condição padrão)	ol		-		r©	-1665	3%	r©	,75	%
	deby	Cop	4 0000		Cop			Cop		
Momento Dipolo	е	r©	1,8000 18,015	0.00	r©	3	0,00	r©	282,4	0,00
Massa Molecular		Cop r©	3	0,00	Cop r©	_	%	Cop r©	202,4	0,00 %
Wassa Wolcoular		Cop		0,00	Cop		70	Cop	1,156	1,86
Fator Acêntrico de Pitzer		r©	0,3440	%	r©	-		r©	3	, %
		Сор	22046,	0,00	Cop			Сор	1332,	4,10
Pressão Crítica	kPa	r©	0000	%	r©	6680	0.44	r©	96	%
Parâmetro de densidade do		Cop r©		0,01 %	Cop		0,11 %	Cop r©		
líquido Rackett		16	-	70	16	-	70	16	-	_
		Сор	372,90		Сор			Сор		0,16
Temperatura de Ebulição	K	r©	00		r©	563		r©	633	['] %
										•
Tanananatana Oritica	12	Cop	647,14		Cop	700		Cop	841,6	9,31
Temperatura Crítica Volume Molar Líquido	K m³/k	r©	00		r© Cop	726		r© Cop	8	%
(Temperatura de ebulição)	mol	Cop r©	_		r©	_		r©	_	
(1011)poratara de esangae)	11101							-10		-
	m³/k	Сор		0,08	Сор		0,00	Сор		4,80
Volume Crítico	mol	r©	0,0560	%	r©	0,255	%	r©	1,048	%
Fator crítico de		Cop	0.0000		Cop	0.00		Cop		
compressibilidade	-	r©	0,2290		r©	0,28		r©	-	
Entalpia de fusão	kcal/	Сор		0,19	Сор		0,90	Сор		
(Temperatura de fusão)	mol	r©	-	%	r©	_	%	r©	_	
, , , , , , , , , , , , , , , , , , , ,		Сор	273,16		Cop			Сор		
Temperatura do ponto triplo	K	r©	00		r©	291,8		r©	-	

Tabela B3– Validação das propriedades puras.

			Dextros	Δ	Áςi	do Acét	ico	Δcid	o propa	noico
	1	Asp	PEYILOS	C	Asp	uo ACEI	100	Acid	о ргора 	
		en			en		AR	en		
	Unid	Plu	Litera	ARD	Plu	Litera	D	Plu	Litera	ARD
Propriedade	ade	S	tura	(%)	S	tura	(%)	S	tura	(%)
Topriedade	auc	Cop	tura	(70)	3	tura	(/0)	3	tura -	(70)
	kJ/m	r©	793,7	7,21	Сор		0,01	Сор	369,5	0,00
Energia Livre de Gibbs	ol		4	%	r©	-376,9	%	r©	69	%
Energia de Gibbs padrão de	kJ/m	Сор		,,,		0.0,0	,,,			7.0
Formação de Solido	ol	r©	_			-			-	
	-									
Energia de Gibbs padrão de	kJ/m				Сор		0,37			
Formação de Líquido	ol		-		r©	-484,3	%		-	
		Cop	-				-			
	kJ/m	r©	1035,	4,96	Cop		0,06	Сор	455,4	0,00
Formação de gás ideal	ol		02	%	r©	-435,4	%	r©	4	%
		Cop	-							
Entalpia de formação padrão	kJ/m	r©	1271,	0,17						
de Sólido	ol		1	%		-			-	
Oalan da Manari-a - 5 -	1. 1/	Cop			Cop		- 0.4	Cop		40.0
Calor de Vaporização	kJ/m	r©			r©	22.7	0,01	r©	40.0	49,8
(Temperatura de ebulição)	ol	Con	-		Con	23,7	%	Con	48,3	2%
Tomporatura da fueña		Cop		0,92	Cop r©			Cop r©	250,8	0.64
Temperatura de fusão (Condição padrão)	K	r©	423	0,92	10			16	250,8	0,64
(Condição padrão)	IX	Сор	423	70	Сор	_	_	Сор		70
Entalpia padrão de combustão	kJ/m	r©		10,5	r©		7,17	r©	1528,	9,55
(Condição padrão)	ol	10	-2805	4%	10	-874,2	%	10	3	%
(Condição padrão)	deby	Сор	2000	770	Сор	014,2	0,00	Сор	U	70
Momento Dipolo	e	r©	_		r©	1,3	%	r©	_	
memeric Bipole	† <u> </u>	Cop	180,1	0,00	Cop	60,05	0,00	Cop	74,07	0,00
Massa Molecular		r©	577	%	r©	26	%	r©	944	%
		Сор			Сор		1,54	Сор		2,99
Fator Acêntrico de Pitzer		r©	-		r©	0,447	%	r©	0,52	%
		Cop		-	Cop			Сор		
		r©	6631,	37,5	r©		0,08	r©		0,19
Pressão Crítica	kPa		37	8%		5781	%		5360	%
Parâmetro de densidade do					Cop			Cop		
líquido Rackett			-		r©	-		r©	-	
		Cop		-	Cop			Cop		-
		r©	844,4	36,8	r©		0,28	r©	414,2	0,06
Temperatura de Ebulição	K		8	7%		390	%		5	%
		Cop	4004	-	Cop	500 7	0.00	Cop		
Tomporatura Crítica	 	r©	1034,	36,9	r©	592,7	0,28	r©	C40	0,16
Temperatura Crítica	K	Con	02	6%	Con	1	%	Con	613	%
Volume Molar Líquido (Temperatura de ebulição)		Cop	I		Cop			Cop r©		
(remperatura de ebulição)	m³/k		l _		r(C)	_		ı ı	ı -	1
	mol	r©	-		r©	-				
	mol	r© Cop	-	- 11 1	Сор	-	- 0 10	Сор		3 10
Volume Crítico	mol m³/k	r©	0.46	- 11,1 1%		0 171	- 0,10 %		0 222	3,18
Volume Crítico Fator crítico de	mol	r© Cop r©	0,46	- 11,1 1%	Cop r©	0,171	%	Cop r©	0,222	%
Fator crítico de	mol m³/k	r© Cop r©	0,46		Cop r©		0,00	Cop r©		0,83
Fator crítico de compressibilidade	mol m³/k mol	r© Cop r© Cop r©	0,46		Cop r© Cop r©	0,171	%	Cop r© Cop r©	0,222	%
Fator crítico de compressibilidade Entalpia de fusão	mol m³/k mol kcal/	r© Cop r© Cop r© Cop	- 0,46		Cop r© Cop r© Cop		0,00	Cop r© Cop r© Cop		0,83
Fator crítico de compressibilidade	mol m³/k mol	r© Cop r© Cop r© Cop r©	0,46		Cop r© Cop r© Cop r©		0,00	Cop r© Cop r© Cop r©		0,83
Fator crítico de compressibilidade Entalpia de fusão	mol m³/k mol kcal/	r© Cop r© Cop r© Cop	0,46		Cop r© Cop r© Cop		0,00	Cop r© Cop r© Cop		0,83

Tabela B4– Validação das propriedades puras.

		Ácid	o isobu	tírico	Ácid	o isova	lérico		Amônia	a
		Asp			Asp			Asp		
		en			en			en		
Drawindada	Unid	Plu	Litera	ARD	Plu	Litera	ARD	Plu	Litera	ARD
Propriedade	ade	S	tura	(%)	S	tura	(%)	S	tura	(%)
	kJ/m	Сор	285,3	21,1	Сор	276,9	24,5	Сор		0,01
Energia Livre de Gibbs	ol	r©	8	9%	r©	6	3%	r©	-16,16	%
Energia de Gibbs padrão de	kJ/m									
Formação de Solido	ol		-			-			-	
Energia de Gibbs padrão de	kJ/m							Cop		
Formação de Líquido	ol	0	-	0.04	0	-	0.07	r©	-	0.00
Cormonão do gán ideal	kJ/m	Cop	404.0	0,01 %	Cop	E00 E	2,37 %	Cop	45.70	0,00
Formação de gás ideal Entalpia de formação padrão	ol kJ/m	r©	-484,2	70	r©	-502,5	70	r©	-45,72	%
de Sólido	ol		_			_			_	
de Condo	01	Сор		-	Сор		-	Сор		
Calor de Vaporização	kJ/m	r©		22,7	r©	54,18	36,4	r©		0,05
(Temperatura de ebulição)	ol		50,5	0%		6	9%		23,35	%
Temperatura de fusão		Сор		0,09	Сор	243,8	0,00	Сор	194,9	0,23
(Condição padrão)	K	r©	227	%	r©	5	%	r©	5	%
F .(-1.' 1."	1.1/	Cop			Cop			Cop		-
Entalpia padrão de combustão (Condição padrão)	kJ/m ol	r©			r©			r©	-382,8	20,8 2%
(Condição padrão)	deby	Сор	-	0,00	Сор	-	0,00	Сор	-302,0	0,00
Momento Dipolo	e	r©	1,3	%	r©	1	%	r©	1,5	%
Weller Bipele		Cop	88,10	0,00	Cop	102,1	0,00	Cop	.,0	70
Massa Molecular		r©	63	%	r©	332	%	r©	-	
		Cop		-	Cop			Cop		
		r©		2,13	r©			r©		0,00
Fator Acêntrico de Pitzer		_	0,623	%		-			0,25	%
		Cop	4054,	0.02	Cop r©		10.1	Cop r©		0.20
Pressão Crítica	kPa	r©	12	0,03	10	3400	12,1 4%	10	11300	0,20 %
Parâmetro de densidade do	Ki u	Сор	12	70	Сор	0400	470	Сор	11000	70
líquido Rackett		r©	-		r©	-		r©	-	
		Сор		-	Сор			Сор		-
		r©	428,1	0,06	r©	449,6	0,01	r©	240,1	0,19
Temperatura de Ebulição	K	_	5	%	_	5	%		5	%
		Cop	000.4	-	Cop	000.0	-	Cop		0.00
Tomporoturo Crítico	K	r©	609,1 5	0,02 %	r©	633,8	0,29 %	r©	405,6	0,00
Temperatura Crítica Volume Molar Líquido	m³/k	Сор	5	70	Сор	3	70	Сор	405,6	%
(Temperatura de ebulição)	mol	r©	_		r©	_		r©	_	
(Tomporatara do obangao)		Cop		-	Cop			Cop		
	m³/k	r©		1,63	r©		3,18	r©		0,50
Volume Crítico	mol		0,292	%		0,335	%		0,072	%
Fator crítico de		Cop	0,214	6,65	Cop			Cop		0,00
compressibilidade	,	r©	7	%	r©	-		r©	0,242	%
Entalpia de fusão	kcal/	Cop			Cop			Cop		
(Temperatura de fusão)	mol	r©	-		r©	-		r©	105 /	0,00
Temperatura do ponto triplo	K	Cop r©	_		Cop r©	_		Cop r©	195,4 1	0,00 %
remperatura do porito tripio	11	I I			I I	L -		I U		/0

Tabela B5- Validação das propriedades puras.

			ióxido d			oaceta				
			carbono		L	etila	<u>u</u>	Lisina		
		Asp en	1.4	AR	Asp en	1.4	400	Asp en	1.4	4.00
Propriedade	Unid ade	Plu s	Litera tura	D (%)	Plu s	Litera tura	ARD (%)	Plu s	Litera tura	ARD (%)
•			-			-		Сор	-	
Energia Livre de Gibbs	kJ/m ol	Cop r©	394,6 478	0,00	Cop	109,5	46,5 8%	r©	135,6 4	37,7
Energia de Gibbs padrão de	kJ/m	10	4/6	70	10		0%	Сор	4	8%
Formação de Solido	ol		_			-		r©	_	
Energia de Gibbs padrão de	kJ/m	Cop								
Formação de Líquido	ol	r©	-			-			-	
	kJ/m	Cop r©		0,01	Сор			Cop r©	369,6	19,8
Formação de gás ideal	ol	10	-393,8	%	r©	_		10	8	1%
Entalpia de formação padrão	kJ/m		000,0	70				Сор		0,00
de Sólido	ol		-			-		r©	-678,7	%
Calor de Vaporização	kJ/m	Cop			Cop			Cop		
(Temperatura de ebulição)	ol	r© Cop	-		r© Cop	-		r© Cop	-	
Temperatura de fusão		r©		0,00	r©	371,6	48,2	r©		15,7
(Condição padrão)	K		216,6	%		5	7%		419,6	4%
Entalpia padrão de combustão	kJ/m			0,00	Cop			Cop		
(Condição padrão)	ol		0	%	r©	-		r©	-	
Momento Dipolo	deby e		_		Cop r©	_		Cop r©	_	
		Сор	44,00	0,00	Cop	113,1	0,00	Сор	146,1	0,00
Massa Molecular		r©	98	%	r©	161	%	r©	894	%
		Cop		-	Cop			Cop		
Fator Acêntrico de Pitzer		r©	0,239	6,22	r©	_		r©	_	
Tator / toeritrioo do Fitzer		Сор	0,200	70	Сор		-	Сор		-
		r©		0,49	r©	3555,	6,46	r©	4345,	23,1
Pressão Crítica	kPa		7340	%		77	%		39	0%
Parâmetro de densidade do líquido Rackett		Cop r©			Cop r©					
IIquido Nackett		Cop	-		Cop		-	Сор	-	_
		r©		0,00	r©		0,64	r©	627,3	2,01
Temperatura de Ebulição	K		194,7	%		482,2	%		5	%
		Cop	204.0	- 0.05	Cop	600.0	2.00	Cop	004.4	- 0.00
Temperatura Crítica	K	r©	304,9 5	0,25	r©	692,8 1	2,03 %	r©	821,1 4	0,02 %
Volume Molar Líquido	m³/k	Сор		/0	Сор	<u>'</u>	/0	Сор	7	/0
(Temperatura de ebulição)	mol	r©	-		r©	-		r©	-	
	0."	Cop		-	Cop		-	Cop		40 -
Volume Crítico	m³/k	r©	0.004	0,06	r©	0.265	1,96 %	r©	0.440	10,5
Volume Crítico Fator crítico de	mol	Сор	0,094	0,00	Сор	0,365	70	Сор	0,449	6%
compressibilidade		r©	0,274	%	r©	-		r©	-	
Entalpia de fusão	kcal/	Cop			Сор		13,3	Сор		
(Temperatura de fusão)	mol	r©	-	0.00	r©	11,78	3%	r©	-	
Temperatura de ponte triple	k	Cop	216,5	0,00	Cop	247	1,46	Cop		
Temperatura do ponto triplo	K	r©	8	%	r©	247	%	r©	-	

Tabela B6- Validação das propriedades puras.

		F	<u> </u>	na	Ácid	do glutâ	mico		Glicina	
		Asp		i i a	Asp	Jo giata		Asp		
		en			en			en		AR
	Unid	Plu	Literat	ARD	Plu	Litera	ARD	Plu	Litera	D
Propriedade	ade	s	ura	(%)	s	tura	(%)	s	tura	(%)
			-	(70)	Сор	-	(70)	Сор	-	(,,,,
	kJ/m	Сор	64,420	53,7	r©	476,2	28,9	r©	233,3	22,2
Energia Livre de Gibbs	ol	r©	0	2%		5	1%		3	5%
Energia de Gibbs padrão de	kJ/m	Сор	_		Сор			Сор	_	
Formação de Solido	ol	r©	-		r©	-		r©	_	
Energia de Gibbs padrão de	kJ/m							Сор		
Formação de Líquido	ol		-			-		r©	-	
,		Сор	-		Сор	-		Сор		
	kJ/m	r©	228,86	26,8	r©	647,6	21,4	r©		0,41
Formação de gás ideal	ol		00	6%		4	0%		-390,5	· %
, ,		Сор			Cop	-		Cop		-
Entalpia de formação padrão	kJ/m	r©			r©	1005,	0,48	r©		1,72
de Sólido	ol		-			2	%		-537,2	%
Calor de Vaporização	kJ/m	Cop			Cop			Cop		33,2
(Temperatura de ebulição)	ol	r©	-		r©	-		r©	54,11	6%
		Cop			Cop			Сор		-
Temperatura de fusão		r©	556,15	0,00	r©	486,1	2,21	r©	530,4	4,14
(Condição padrão)	K		00	%		5	%		9	%
		Cop	-	-	Сор			Cop		
Entalpia padrão de combustão	kJ/m	r©	4667,0	5,95	r©			r©		
(Condição padrão)	ol		000	%		-			-	
	deby	Cop			Сор			Cop		
Momento Dipolo	е	r©	-		r©	-		r©	-	
		Cop	165,19	0,00	Cop	147,1	0,00	Сор	75,06	0,00
Massa Molecular		r©	20	%	r©	308	%	r©	724	%
		Cop			Cop			Сор		
Fator Acêntrico de Pitzer		r©	-		r©	-			-	
		Сор		-	Cop		-	Cop		-
		r©	4266,2	22,9	r©		38,3	r©	6967,	3,38
Pressão Crítica	kPa		800	5%		5713	3%		65	%
Parâmetro de densidade do										
líquido Rackett			-			-			-	
		Cop	500.00		Cop	077.5	-	Cop	400 =	00.5
T	1,	r©	568,00	9,55	r©	677,9	14,7	r©	463,7	33,6
Temperatura de Ebulição	K		00	%		9	2%		4	6%
		Cop	005.00	4 00	Cop	0046	40.5	Cop	050.0	00.0
Tamana natura Odili a	1,	r©	865,09	1,30	r©	864,2	10,5	r©	653,3	36,0
Temperatura Crítica	K	0	00	%	0	6	2%	0	9	0%
Volume Molar Líquido	m³/k	Cop			Cop			Cop		
(Temperatura de ebulição)	mol	r©	-	F 0.4	r©	-	7.00	r©	-	40.0
Valuma Crítica	m³/k	Cop	0.4700	5,34	Cop	0.000	7,38	Cop	0.000	13,6
Volume Crítico	mol	r©	0,4790	%	r©	0,389	%	r©	0,202	8%
Fator crítico de		Cop			Cop			Cop		
compressibilidade	leac!/	r©	-		r©	-		r©	-	
Entalpia de fusão	kcal/	Cop			Cop			Cop		
(Temperatura de fusão)	mol	r©	-		r©	-		r©	-	
Tomporoture de perte triale	L	Cop			Cop			Cop		
Temperatura do ponto triplo	K	r©	-		r©	-		r©	-	<u> </u>

Tabela B7- Validação das propriedades puras.

			Hidrogênio)		M
Propriedade	Unidade	Aspen Plus	Literatura	ARD (%)	Aspen Plus	Lit
Energia Livre de Gibbs	kJ/mol	Copr©	53,88		Copr©	
Energia de Gibbs padrão de Formação de Solido	kJ/mol		-			-
Energia de Gibbs padrão de Formação de Líquido	kJ/mol	Copr©	-		Copr©	-
Formação de gás ideal	kJ/mol		-		Copr©	
Entalpia de formação padrão de Sólido	kJ/mol		-			-
Calor de Vaporização (Temperatura de ebulição)	kJ/mol	Copr©	0,9	0,48%	Copr©	
Temperatura de fusão (Condição padrão)	K	Copr©	13,81	1,36%	Copr©	
Entalpia padrão de combustão (Condição padrão)	kJ/mol	Copr©	-285,8	-18,19%	Copr©	
Momento Dipolo	debye	Copr©	-		Copr©	
Massa Molecular		Copr©	2,01588	0,00%	Copr©	16
Fator Acêntrico de Pitzer		Copr©	0,216	1,82%	Copr©	
Pressão Crítica	kPa	Copr©	1300	-0,23%	Copr©	
Parâmetro de densidade do líquido Rackett		Copr©	-		Copr©	-
Temperatura de Ebulição	K	Copr©	20,28	0,59%	Copr©	
Temperatura Crítica	K	Copr©	33,18	0,06%	Copr©	
Volume Molar Líquido (Temperatura de ebulição)	m³/kmol	Copr©	-		Copr©	T -
Volume Crítico	m³/kmol	Copr©	0,065	-0,14%	Copr©	
Fator crítico de compressibilidade		Copr©	0,306	-0,33%	Copr©	
Entalpia de fusão (Temperatura de fusão)	kcal/mol	Copr©	-		Copr©	
Temperatura do ponto triplo	K	Copr©	13,96	-0,07%	Copr©	

Tabela B8- Validação das propriedades puras.

			Formamida	1	Sulfe	to c
Propriedade	Unidade	Aspen Plus	Literatura	ARD (%)	Aspen Plus	Lit
Energia Livre de Gibbs	kJ/mol	Copr©	-75,53	48,65%	Copr©	
Energia de Gibbs padrão de Formação de Solido	kJ/mol		-			-
Energia de Gibbs padrão de Formação de Liquido	kJ/mol		-		Copr©	-
Formação de gás ideal	kJ/mol	Copr©	-186	0,10%	Copr©	
Entalpia de formação padrão de Sólido	kJ/mol		-			-
Calor de Vaporização (Temperatura de ebulição)	kJ/mol	Copr©	64,98	-26,67%	Copr©	
Temperatura de fusão (Condição padrão)	K	Copr©	275,54	0,06%	Copr©	
Entalpia padrão de combustão (Condição padrão)	kJ/mol	Copr©	-568,2	-12,28%	Copr©	-
Momento Dipolo	debve	Copr©	_		Copr©	_

Massa Molecular		Copr©	45,04096	0,00%	Copr©	-
Fator Acêntrico de Pitzer		Copr©	-		Copr©	-
Pressão Crítica	kPa	Copr©	7145,47	7,20%	Copr©	-
Parâmetro de densidade do líquido Rackett		Copr©	•		Copr©	-
Temperatura de Ebulição	K	Copr©	483,65	1,70%	Copr©	
Temperatura Critica	K	Copr©	536,54	30,32%	Copr©	
Volume Molar Líquido (Temperatura de ebulição)	m³/kmol	Copr©	-		Copr©	-
Volume Crítico	m³/kmol	Copr©	0,138	15,34%	Copr©	
Fator crítico de compressibilidade		Copr©	•		Copr©	
Entalpia de fusão (Temperatura de fusão)	kcal/mol	Copr©	8,67	-8,72%	Copr©	-
Temperatura do ponto triplo	K	Copr©	275,6	0,00%	Copr©	

Tabela B9- Validação das propriedades puras.

			Benzeno			Fenol	
		Aspe	Delizello		Aspe	1 GIIOI	
	Unida	n	Literatu	ARD	n	Literatu	ARD
Propriedade	de	Plus	ra	(%)	Plus	ra	(%)
		Copr		0,04	Copr		0,03
Energia Livre de Gibbs	kJ/mol	©	129,7	%	©	-32,9	%
Energia de Gibbs padrão de Formação					Copr		
de Solido	kJ/mol		-		©	-	
Energia de Gibbs padrão de Formação							
de Liquido	kJ/mol		-			-	
					Copr		-
,		Copr		0,10	©		0,02
Formação de gás ideal	kJ/mol	©	82,9	%		-96,44	%
	,				Copr		
Entalpia de formação padrão de Sólido	kJ/mol	0	-	0.70	©	-	4.00
Calor de Vaporização (Temperatura de	la l/ma al	Copr	20.50	0,72	Copr	40.0	4,02
ebulição)	kJ/mol	Conr	30,56	%	Conr	43,8	%
Tomporatura do fueño (Candiaño padrão)	K	Copr ©	278,65	0,02 %	Copr ©	314	0,00
Temperatura de fusão (Condição padrão)	I.	Copr	270,00	70	Copr	314	70
Entalpia padrão de combustão (Condição		Copi ©		4,20	© Copi		5,00
padrão)	kJ/mol		-3267,6	%		-3067	%
padiao	RO/IIIOI	Copr	0201,0	70	Copr	0007	70
Momento Dipolo	debye	©	_		©	_	
,	, .	Copr	78,1136	0,00	Copr	94,1130	0,00
Massa Molecular		©	4	['] %	©	4	[′] %
		Copr		0,00	Copr		0,45
Fator Acêntrico de Pitzer		©	0,212	%	©	0,438	%
		Copr		0,85	Copr		7,51
Pressão Crítica	kPa	©	4852,27	%	©	5670	%
Parâmetro de densidade do líquido		Copr			Copr		
Rackett		©	-		©	-	
		Copr			Copr		-
		©		0,00	©		0,03
Temperatura de Ebulição	K		353,3	%		455,15	%

		Copr		0,16	Copr		0,26
Temperatura Crítica	K	©	561,2	%	©	692,4	%
Volume Molar Líquido (Temperatura de	m³/km	Copr			Copr		
ebulição)	ol	©	-		©	-	
		Copr			Copr		-
	m³/km	©		1,07	©		1,34
Volume Crítico	ol		0,256	%		0,229	%
		Copr			Copr		-
		©		1,11	©		1,25
Fator crítico de compressibilidade			0,268	%		0,243	%
Entalpia de fusão (Temperatura de	kcal/m	Copr		9,23	Copr		8,02
fusão)	ol	©	8,95	%	0	10,58	%
		Copr			Copr		0,02
Temperatura do ponto triplo	K	©	-		(C)	314	%

Tabela B10- Validação das propriedades puras.

		He	micelulos	e/Ác.			
			Glutáric	0		Glucose)
		Aspe			Asp		
	Unida	n	Literatu	ARD	en	Literat	ARD
Propriedade	de	Plus	ra	(%)	Plus	ura	(%)
		Copr			Copr		
Energia Livre de Gibbs	kJ/mol	©	-540,26	22,61%	0	793,74	7,21%
Energia de Gibbs padrão de Formação		Copr			Copr		
de Solido	kJ/mol	©	-		0	-	
Energia de Gibbs padrão de Formação							
de Líquido	kJ/mol		-			-	
		Copr			Copr	-	
Formação de gás ideal	kJ/mol	©	-676,15	19,89%	0	1035,02	4,96%
		Copr			Copr		
Entalpia de formação padrão de Sólido	kJ/mol	©	-960	-0,01%	0	-1271,1	0,17%
Calor de Vaporização (Temperatura de		Copr			Copr		
ebulição)	kJ/mol	©	-		©	-	
Temperatura de fusão (Condição		Copr			Copr		-
padrão)	K	©	371,6	0,01%	0	423	0,92%
		Copr			Copr		-
Entalpia padrão de combustão		©			©		10,54
(Condição padrão)	kJ/mol		-2151,6	-8,93%		-2805	%
		Copr			Copr		
Momento Dipolo	debye	©	-		©	-	
		Copr	132,116		Copr	180,157	
Massa Molecular		©	12	0,00%	0	7	0,00%
		Copr			Copr		
Fator Acêntrico de Pitzer		©	-		0	-	
		Copr			Copr		-
		©			©		37,58
Pressão Crítica	kPa		4270	-5,69%		6631,37	%
Parâmetro de densidade do líquido		Copr					
Rackett		©	-			-	

	[Copr			Copr		-
		©			©		36,87
Temperatura de Ebulição	K		576,15	3,26%		844,48	%
		Copr			Copr		-
		©			©		36,96
Temperatura Critica	K		840	-4,09%		1034,02	%
Volume Molar Líquido (Temperatura de	m³/km	Copr			Copr		
ebulição)	ol	©	-		(O	-	
		Copr			Copr		-
	m³/km	©			©		11,11
Volume Crítico	ol		0,365	-0,55%		0,46	%
		Copr			Copr		
Fator crítico de compressibilidade		©	-		(O	-	
Entalpia de fusão (Temperatura de	kcal/m	Copr			Copr		
fusão)	ol	©	18,8	9,99%	0	-	
		Copr			Copr		
Temperatura do ponto triplo	K	©	369,65	0,54%	©	-	

Tabela B11– Validação das propriedades puras.

			Trioleín	а	Álc	ool paln	nítico	Tr	ipalmiti	na
Propriedade	Unid ade	Asp en Plu s	Litera tura	ARD (%)	Asp en Plu s	Litera tura	ARD (%)	Asp en Plu s	Litera tura	AR D (%)
Energia Livre de Gibbs	kJ/m ol	Cop r©	-34,48	88,1 8%	Cop r©	-52,98	6,73 %	Cop r©	325,6 6	31,6 8%
Energia de Gibbs padrão de Formação de Solido	kJ/m ol		-		Cop r©	-		Cop r©	-	
Energia de Gibbs padrão de Formação de Líquido	kJ/m ol		1		Cop r©	-			1	
Formação de gás ideal	kJ/m ol	Cop r©	1607, 83	20,5 8%	Cop r©	-513,7	0,10	Cop r©	- 1835, 65	14,2 8%
Entalpia de formação padrão de Sólido	kJ/m ol		-		Cop r©	-687,1	0,42 %	Cop r©	-	
Calor de Vaporização (Temperatura de ebulição)	kJ/m ol	Cop r©	169,4 3	97,7 4%	Cop r©	112,3	100,3 7%	Cop r©	-	
Temperatura de fusão (Condição padrão)	K	Cop r©	278,5 7	- 0,15 %	Cop r©	324,2 3	- 0,58 %	Cop r©	337,4	0,47
Entalpia padrão de combustão (Condição padrão)	kJ/m ol	Cop r©	35099 ,6	89,3 1%	Cop r©	- 10510	7,28 %	Cop r©	31605 ,9	- 6,67 %
Momento Dipolo	deby e	Cop r©	1		Cop r©	1,018	42,21 %	Cop r©	1	
Massa Molecular		Cop r©	885,4 21	0,00	Cop r©	256,1 4497	0,00	Cop r©	806,4 838	0,00
Fator Acêntrico de Pitzer	-	Cop r©	-		Cop r©	_		Cop r©	-	

		Сор			Сор		-	Сор		
		r©	245,0	24,0	r©		7,33	r©	280,7	23,4
Pressão Crítica	kPa		6	0%		1610	%		6	7%
Parâmetro de densidade do		Cop			Cop					
líquido Rackett		r©	-		r©	-			-	
		Cop			Cop		-	Cop		
		r©	692,2	14,9	r©		3,73	r©	690,0	13,1
Temperatura de Ebulição	K		5	3%		607	<u>%</u>		2	2%
		Cop			Cop		-	Cop		
T	.,	r©			r©	770	2,67	r©		
Temperatura Crítica	K		-			770	%		-	
Volume Molar Líquido	m³/k	Сор			Cop			Cop		
(Temperatura de ebulição)	mol	r©	-		r©	-		r©	-	
		Cop			Cop		-	Cop		-
	m³/k	r©		0,55	r©		4,85	r©		0,34
Volume Crítico	mol		3,233	%		0,951	%		2,958	%
Fator crítico de		Сор			Cop		3,63	Cop		
compressibilidade		r©	-		r©	0,239	%	r©	-	
		Сор			Cop			Cop		-
Entalpia de fusão	kcal/	r©			r©		2,12	r©	179,3	6,84
(Temperatura de fusão)	mol		-			57,7	%		7	%
		Сор			Сор		-	Сор		-
		r©	258,9	6,89	r©	323,1	0,25	r©		0,18
Temperatura do ponto triplo	K		9	%		7	%		339,5	%

Tabela B12- Validação das propriedades puras.

-	1				Á -	ا مادا
			Furfural	<u> </u>		ido lin
Propriedade	Unidade	Aspen Plus	Literatura	ARD (%)	Aspen Plus	Litera
Energia Livre de Gibbs	kJ/mol	Copr©	-		Copr©	_
Energia de Gibbs padrão de Formação de Solido	kJ/mol		-			
Energia de Gibbs padrão de Formação de Liquido	kJ/mol		-			
Formação de gás ideal	kJ/mol	Copr©	-151,4	-0,25%	Copr©	-44
Entalpia de formação padrão de Sólido	kJ/mol		-			
Calor de Vaporização (Temperatura de ebulição)	kJ/mol	Copr©	50,7	-20,85%	Copr©	
Temperatura de fusão (Condição padrão)	K	Copr©	234,5	0,91%	Copr©	2
Entalpia padrão de combustão (Condição padrão)	kJ/mol	Copr©	-2344	-4,19%	Copr©	-1E
Momento Dipolo	debye	Copr©	-		Copr©	
Massa Molecular		Copr©	96,08556	0,00%	Copr©	280
Fator Acêntrico de Pitzer		Copr©	0,38	14,45%	Copr©	
Pressão Crítica	kPa	Copr©	5510	0,04%	Copr©	
Parâmetro de densidade do líquido Rackett		Copr©	-		Copr©	
Temperatura de Ebulição	K	Copr©	434,15	0,16%	Copr©	
Temperatura Crítica	K	Copr©	670	-1,98%	Copr©	94
Volume Molar Líquido (Temperatura de ebulição)	m³/kmol	Copr©	-		Copr©	
Volume Crítico	m³/kmol	Copr©	-		Copr©	1
Fator crítico de compressibilidade		Copr©			Copr©	
Entalpia de fusão (Temperatura de fusão)	kcal/mol	Copr©	14,7	-2,15%	Copr©	

Tabela B13- Validação das propriedades puras.

			Tirosin	а	-	Triptofa	no	N	letionin	а
		As		<u> </u>	Asp			Asp		
		pen			en			en		AR
	Unid	Plu	Litera	ARD	Plu	Litera	ARD	Plu	Litera	D
Propriedade	ade	s	tura	(%)	s	tura	(%)	s	tura	(%)
			-	-					-	
	kJ/m	Cop	219,0	137,5	Cop				177,3	0,00
Energia Livre de Gibbs	ol	r©	4	7%	r©	-			9	%
Energia de Gibbs padrão de	kJ/m									Į.
Formação de Solido	ol	↓	-			-			-	
Energia de Gibbs padrão de	kJ/m									Į.
Formação de Líquido	ol	 	-			-			-	
	,		-	4505			-			0.00
F	kJ/m	Cop	406,1	153,5	Cop	4440	317,5		440.5	0,00
Formação de gás ideal	ol L. I/aa	r©	7	4%	r©	-414,2	4%		-413,5	%
Entalpia de formação padrão de Sólido	kJ/m		GOE C	0,00					577 F	0,00
	ol kJ/m	-	-685,6			-	0.00		-577,5	%
Calor de Vaporização (Temperatura de ebulição)			016	0,00		1011	0,00 %		120	0,00
Temperatura de fusão	ol	+	84,6 508,3			184,4 503,1	0,00		139 359,5	0,00
•	K		506,3	0,00		503,1	0,00 %			0,00 %
(Condição padrão)	I.	+	4	70		3	70		2	70
Entalpia padrão de combustão	kJ/m		4481,	0,00					3564,	0,00
(Condição padrão)	ol		7	%		_			3504,	%
(Coridição padrão)	deby		,	70					'	70
Momento Dipolo	е		_			_			_	
Womento Dipolo		Сор	181,1	0,00	Сор	204,2	0,00	Сор	149,2	0,00
Massa Molecular		r©	913	%	r©	3	%	r©	143,2	%
Fator Acêntrico de Pitzer		1.0		70			70			70
Tator Acertifico de Fitzer		+	5235,	0,00					4684,	0,00
Pressão Crítica	kPa		81	%		_			89	%
Parâmetro de densidade do	iti u	1	01	70					- 00	70
líquido Rackett			_			_			_	Į.
		1	730,7	0,00		721,0	0,00		454,1	0,00
Temperatura de Ebulição	K		6	%		5	%		5	%
			953,9	0,00		_			805,1	0,00
Temperatura Crítica	K		9	%		_			4	%
Volume Molar Líquido	m³/k									
(Temperatura de ebulição)	mol		-			-			-	
										- 1
	m³/k			0,00				Сор		0,12
Volume Crítico	mol		0,446	%				r©	0,417	%
Fator crítico de										
compressibilidade			-			-			-	
Entalpia de fusão	kcal/									
(Temperatura de fusão)	mol		-			-			-	

1						0,00		ĺ
	Temperatura do ponto triplo	K	-		79,2	%	-	

Tabela B14– Validação das propriedades puras.

		Treonina				Serina	1	Leucina			
Basanda Isala	Unid	As pen Plu	Litera	ARD	As pen Plu	Litera	ARD	As pen Plu	Litera	ARD	
Propriedade	ade	S	tura	(%)	S	tura	(%)	S	tura	(%)	
Energia Livre de Gibbs	kJ/m ol	Cop r©	358,1 9	172,3 9%	Cop r©	508,7 866	318,4 1%	Cop r©	204,5	34,12 %	
Energia de Gibbs padrão de	kJ/m	10	3	370	10	000	1 70	10	3	70	
Formação de Solido	ol		_			_			_		
Energia de Gibbs padrão de	kJ/m										
Formação de Líquido	ol		_			_			_		
- omação do Enquido	0.			_		_	_		_	_	
	kJ/m	Сор	_	169,6	Сор	726,3	318,4	Сор	408,7	392,4	
Formação de gás ideal	ol	r©	519,7	9%	r©	598	1%	r©	5	7%	
3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1						-					
Entalpia de formação padrão	kJ/m		_	0,00		732,7	0,00			0,00	
de Sólido	ol		776,3	%		3	%		-646,8	%	
Calor de Vaporização	kJ/m		,	0,00					,	0,00	
(Temperatura de ebulição)	ol		158	%		_			62,24	%	
Temperatura de fusão			359,6	0,00			0,00		321,3	0,00	
(Condição padrão)	K		7	%		363,4	-		9	%	
Entalpia padrão de			-			-					
combustão (Condição	kJ/m		2084,	0,00		1448,	0,00			0,00	
padrão)	ol		6	%		21	%		-3570	%	
	deby										
Momento Dipolo	е		-			-			-		
·		Cop	119,1	0,00	Cop	105,0	0,00	Cop	131,1	0,00	
Massa Molecular		r©	204	%	r©	9352	%	r©	7476	%	
Fator Acêntrico de Pitzer			-			-			-		
Pressão Crítica	kPa		6084, 49	0,00 %		7014, 41	0,00 %		4077, 71	0,00 %	
Parâmetro de densidade do											
líquido Rackett			-			-			-		
				0,00		578,3			554,3	0,00	
Temperatura de Ebulição	K		439			6			8	%	
			784,1			760,2			743,1	0,00	
Temperatura Crítica	K		9	%		2	%		9	%	
Volume Molar Líquido	m³/k										
(Temperatura de ebulição)	mol		-			-			-		
	m³/k			0,00			0,00			0,00	
Volume Crítico	mol		0,321	%		0,271	%		0,413	%	
Fator crítico de											
compressibilidade			-			-			-		
Entalpia de fusão	kcal/										
(Temperatura de fusão)	mol		-			-			-		
Temperatura do ponto triplo	K		-			-			-		

Tabela B15- Validação das propriedades puras.

		Isoleud	Valina			
Propriedade	Unidade	Aspen Plus	Literatura	ARD (%)	Aspen Plus	Lit
Energia Livre de Gibbs	kJ/mol	Copr©	-204,53	-34,12%	Copr©	
Energia de Gibbs padrão de Formação de Solido	kJ/mol		-	,		-
Energia de Gibbs padrão de Formação de Líquido	kJ/mol		-			-
Formação de gás ideal	kJ/mol	Copr©	-408,75	- 392,47%	Copr©	
Entalpia de formação padrão de Sólido	kJ/mol		-646,8	0,00%		
Calor de Vaporização (Temperatura de ebulição)	kJ/mol		62,24	0,00%		<u> </u>
Temperatura de fusão (Condição padrão)	K		321,39	0,00%		
Entalpia padrão de combustão (Condição padrão)	kJ/mol		-3583,7	0,00%		
Momento Dipolo	debye		-			-
Massa Molecular		Copr©	131,1748	0,00%	Copr©	1
Fator Acêntrico de Pitzer			-			-
Pressão Crítica	kPa		4077,71	0,00%		
Parâmetro de densidade do líquido Rackett			-			-
Temperatura de Ebulição	K		554,38	0,00%		
Temperatura Crítica	K		743,19	0,00%		
Volume Molar Líquido (Temperatura de ebulição)	m³/kmol		-			-
Volume Crítico	m³/kmol		0,413	0,00%		
Fator crítico de compressibilidade			-			-
Entalpia de fusão (Temperatura de fusão)	kcal/mol		-			-
Temperatura do ponto triplo	K		-			-

Tabela B16- Validação das propriedades puras.

			Alanina		Ácido carbônic			
Propriedade	Unidade	Aspen Plus	Literatura	ARD (%)	Aspen Plus	Literatura	AF	
Energia Livre de Gibbs	kJ/mol		-227,35	0,00%				
Energia de Gibbs padrão de Formação de Solido	kJ/mol		-					
Energia de Gibbs padrão de Formação de Liquido	kJ/mol		-		Copr©	-699,65	0,0	
Formação de gás ideal	kJ/mol		-414,7	0,00%				
Entalpia de formação padrão de Sólido	kJ/mol		-562,7	0,00%				
Calor de Vaporização (Temperatura de ebulição)	kJ/mol		-					
Temperatura de fusão (Condição padrão)	K		555,82	0,00%				
Entalpia padrão de combustão (Condição padrão)	kJ/mol		-1634,1	0,00%				
Momento Dipolo	debye		-					
Massa Molecular		Copr©	89,09412	0,00%	Copr©	62,02508	0,0	

Fator Acêntrico de Pitzer			-				
Pressão Crítica	kPa		6046,69	0,00%			
Parâmetro de densidade do líquido Rackett			1				
Temperatura de Ebulição	K		486,18	0,00%			
Temperatura Crítica	K		677,88	0,00%	Copr©	418	0,0
Volume Molar Líquido (Temperatura de ebulição)	m³/kmol		•				
Volume Crítico	m³/kmol	Copr©	0,252	-0,60%			
Fator crítico de compressibilidade			1				
Entalpia de fusão (Temperatura de fusão)	kcal/mol		•				
Temperatura do ponto triplo	K		-				

Tabela B17- Validação das propriedades puras.

		SN-	1-Palmito oleína	-2-	SN-	-2-	
Propriedade	Unidad e	Aspe n Plus	Literatu ra	AR D (%)	Aspe n Plus	Literatu ra	AR D (%)
Energia Livre de Gibbs	kJ/mol		-			-	
Energia de Gibbs padrão de Formação de Solido	kJ/mol		-			-	
Energia de Gibbs padrão de Formação de Líquido	kJ/mol		-			-	
Formação de gás ideal	kJ/mol	Copr ©	-		Copr ©	-	
Entalpia de formação padrão de Sólido	kJ/mol		-			-	
Calor de Vaporização (Temperatura de ebulição)	kJ/mol		-			-	
Temperatura de fusão (Condição padrão)	K		-			-	
Entalpia padrão de combustão (Condição padrão)	kJ/mol		-			-	
Momento Dipolo	debye		-			-	
Massa Molecular		Copr ©	-		Copr ©	-	
Fator Acêntrico de Pitzer		Copr ©	-		Copr ©	-	
Pressão Crítica	kPa	Copr ©	-		Copr ©	-	
Parâmetro de densidade do líquido Rackett			-			-	
Temperatura de Ebulição	K	Copr ©	-		Copr ©	-	
Temperatura Crítica	K	Copr ©	-		Copr ©	-	
Volume Molar Líquido (Temperatura de ebulição)	m³/kmo I		-			-	
Volume Crítico	m³/kmo I	Copr ©	_		Copr ©	_	
Fator crítico de compressibilidade		Copr ©	-		Copr ©	-	
Entalpia de fusão (Temperatura de fusão)	kcal/m ol		-			-	

Temperatura do ponto triplo	K	_		_	
Temperatura do ponto tripio	1.				ı

Tabela B18– Validação das propriedades puras.

		Xilose			C	elulose	,	Cisteína			
Propriedade	Unid ade	Asp en Plu s	Litera tura	ARD (%)	Asp en Plu s	Litera tura	A R D (%	Asp en Plu s	Litera tura	ARD (%)	
Energia Livre de Gibbs	kJ/m ol		- 757,1 8	0,00		-			337,5 8	0,00	
Energia de Gibbs padrão de Formação de Solido	kJ/m ol	Cop r©	-			-			-		
Energia de Gibbs padrão de Formação de Líquido	kJ/m ol		_			-			-		
Formação de gás ideal	kJ/m ol	Cop r©	1042, 4	- 17,5 3%	Cop r©	-		Cop r©	556,0 3	270,6 9%	
Entalpia de formação padrão de Sólido	kJ/m ol	Cop r©	-			-			-1105	0,00	
Calor de Vaporização (Temperatura de ebulição)	kJ/m ol		-			-			1		
Temperatura de fusão (Condição padrão)	K	Cop r©	418,3	0,10 %		-			584,2	0,00 %	
Entalpia padrão de combustão (Condição padrão)	kJ/m ol		2342, 2	0,00		-			-4248	0,00 %	
Momento Dipolo	deby e		-			-			-		
Massa Molecular		Cop r©	150,1 314	0,00 %	Cop r©	-		Cop r©	120,1 522	0,00 %	
Fator Acêntrico de Pitzer		Cop r©	-		Cop r©	-			-		
Pressão Crítica	kPa	Cop r©	6588	73,9 0%	Cop r©	-			5739, 21	0,00	
Parâmetro de densidade do líquido Rackett			-			-			1		
Temperatura de Ebulição	K	Cop r©	729,8 6	- 18,7 2%		-			910,5 2	0,00	
Temperatura Crítica	K	Cop r©	900,6	- 16,8 1%	Cop r©	-			1133, 18	0,00 %	
Volume Molar Líquido (Temperatura de ebulição)	m³/k mol		-			-			-		
Volume Crítico	m³/k mol	Cop r©	0,391	3,80		-			0,576	0,00 %	

Fator crítico de compressibilidade		Cop r©	-		Cop r©	_		-	
Entalpia de fusão	kcal/	Сор		6,56					
(Temperatura de fusão)	mol	r©	31,7	%		-		-	
		Cop							
Temperatura do ponto triplo	K	r©	-			-		-	

Tabela B19- Validação das propriedades puras.

			Prolina		Arginina				
		Aspe	FIUIIIIa		Aspe				
	Unida	n	Literatu	ARD	n	Literatu	ARD		
Propriedade	de	Plus	ra	(%)	Plus	ra	(%)		
•				,			0,00		
Energia Livre de Gibbs	kJ/mol		-150,26	0,00%		157,35	%		
Energia de Gibbs padrão de Formação									
de Solido	kJ/mol		-			-			
Energia de Gibbs padrão de Formação							0,00		
de Líquido	kJ/mol		-			-621,2	%		
		0		-					
Farmação do más ideal	le I/ma al	Copr	504.4	249,60					
Formação de gás ideal	kJ/mol	©	-524,4	%		-			
Entalpia de formação padrão de Sólido	kJ/mol		-515,18	0,00%		-			
Calor de Vaporização (Temperatura de	kJ/mol					_			
ebulição) Temperatura de fusão (Condição	KJ/IIIOI		-			-	0,00		
padrão)	K		372,79	0.00%		498	%		
Entalpia padrão de combustão			372,73	0,0070		-30	0,00		
(Condição padrão)	kJ/mol		-2746,2	0.00%		21466,6	%		
Momento Dipolo	debye		-			-	, ,		
		Copr			Copr	174,202	0,00		
Massa Molecular		©	115,132	0,00%	©	9	['] %		
Fator Acêntrico de Pitzer			-			-			
Pressão Crítica	kPa		5585,83	0,00%		-			
Parâmetro de densidade do líquido			,	,					
Rackett			-			-			
							0,00		
Temperatura de Ebulição	K		523,68			761,86	%		
Temperatura Crítica	K		729,91	0,00%		-			
Volume Molar Líquido (Temperatura de	m³/km								
ebulição)	ol		-			-			
	m³/km								
Volume Crítico	ol		·	0,00%		-			
Fator crítico de compressibilidade	ļ,		-			-			
Entalpia de fusão (Temperatura de	kcal/m								
fusão)	ol		-			-			
Temperatura do ponto triplo	K		-						

Tabela B20- Validação das propriedades puras.

		Inerte (Pseudo componente)	Proteina (Pseudo componente)	Queratina (Pseudo componente)
	Unid	Rajendran et al	Rajendran et al	Rajendran et al
Propriedade	ade	(2014)	(2014)	(2014)
	kJ/m			
Energia Livre de Gibbs	ol	345,4405	594,1062696	3,537556647
Energia de Gibbs padrão de	kJ/m			
Formação de Solido	ol			
Energia de Gibbs padrão de	kJ/m			
Formação de Líquido	ol			
F	kJ/m	400.0505	400 0070000	000 7000500
Formação de gás ideal	ol	492,0585	423,6273836	-228,7090589
Entalpia de formação padrão	kJ/m			
de Sólido	Ol La L/ma			
Calor de Vaporização	kJ/m ol	127 5207	24 4206250	20.76022005
(Temperatura de ebulição) Temperatura de fusão	OI	137,5307	31,1286258	28,76922995
(Condição padrão)	K			
Entalpia padrão de	N.			
combustão (Condição	kJ/m			
padrão)	ol			
padiao)	deby			
Momento Dipolo	е	0,0000	0	0
Massa Molecular		0,0000	0	
Fator Acêntrico de Pitzer		0,2369	-0,003091511	0.002001511
	I.Da	· · · · · · · · · · · · · · · · · · ·	·	-0,003091511
Pressão Crítica	kPa	8208,9115	17454,40032	17454,40032
Parâmetro de densidade do		0.4000	0.007400500	0.470040000
líquido Rackett	17	0,1339	0,887136583	0,476940099
Temperatura de Ebulição	K			
Temperatura Crítica	K	1650,0962	673,6540702	673,6540702
Volume Molar Líquido	m³/k			
(Temperatura de ebulição)	mol	0,0479	0,258178518	0,083653694
	m³/k			
Volume Crítico	mol	0,4500	0,094189896	0,094189896
Fator crítico de				
compressibilidade		0,2693	0,293521441	0,293521441
Entalpia de fusão	kcal/			
(Temperatura de fusão)	mol			
Temperatura do ponto triplo	K			

Tabela B21- Interações binárias

ID Compo nente i	ID Compo nente j	Fonte	Uni d. Te mp erat ura	A IJ ^a	A JI ^a	B _{IJ} ^a	Вл а	C _I	D _I	E _{IJ}	E _{JI}	F _{IJ} a	F _{JI} a	T min (K)	T max (K)
------------------------	------------------------	-------	--------------------------------------	--------------------------	--------------------------	------------------------------	------	----------------	----------------	-----------------	-----------------	-------------------	-------------------	-----------------	-----------------

WATER	GLYCE ROL	Rajen dran et al (2014) d	K	- 1,25 15	- 0,731 8	272,6 075	170,9 167	0, 3	0	0	0	0	0	25	290
WATER	OLEIC- AC	UNIF AC °	K	7,19 0574 15	- 0,322 7322 2	3002, 4762 2	869,7 0675 1	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	DEXTR OSE	UNIF AC °	K	2,57 5009 13	- 1,541 2319	228,2 0657	- 116,9 3559 1	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	ACETI- AC	UNIF AC °	K	1,46 7623 72	- 0,183 9339 3	108,2 8037 8	- 92,38 8954 3	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	PROPI- 01	APV1 10 VLE- HOC d	K	Copr ©	Copr ©	Copr ©	Copr ©	C op ©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
WATER	ISOBU- 01	Rajen dran et al (2014	К	9,56 26	- 8,895 1	- 1198, 3892	2034, 584	0, 2	0	0	0	0	0	-0,1	25,8
WATER	ISOVA- 01	Rajen dran et al (2014	К	0	0	1630, 3029	- 254,3 688	0, 2	0	0	0	0	0	25	25
WATER	NH3	Rajen dran et al (2014	K	- 6,26 84	9,612 1	1525, 4543	- 3232, 8159	0, 3	0	0	0	0	0	10	91,5
WATER	CO2	APV1 10 ENRT L-RKb	K	Copr ©	Copr ©	Copr ©	Copr ©	C op ©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
WATER	C5H7N O2	UNIF AC °	K	3,17 3864 93	- 0,820 1200 8	202,6 5884 9	334,9 6610 1	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	HISTIDI N	UNIF AC °	K	5,45 5582 77	- 0,088 5700 1	- 738,4 5541 4	- 442,6 1707 7	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	LYSINE	UNIF AC °	К	3,88 9206 94	- 0,888 1900 3	269,9 0300 4	- 280,4 6282 2	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	PHENY LAL	UNIF AC °	К	4,77 8865 89	- 0,244 7756 7	447,7 9091 6	- 2,894 9088 2	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	CYSTEI NE	UNIF AC °	K	3,21 0604 73	- 0,736 9633 7	- 252,0 3867	- 191,7 7561 7	0, 3	0	0	0	0	0	273 ,15	373, 15

	Т			ı	ı	ı	ı	ı	1		1			1	1
WATER	THREO NIN	UNIF AC °	K	2,73 8874 1	- 0,993 9571 5	44,25 3826 1	- 194,0 8109 4	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	SERIN E	UNIF AC °	K	2,41 3526 34	- 0,988 8332 5	- 31,70 3725	- 206,6 7793 3	0,	0	0	0	0	0	273 ,15	373, 15
WATER	LEUCIN E	UNIF AC °	K	3,66 0991 92	- 0,526 9778 3	216,0 0834	- 126,4 1744 7	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	ISOLEU CI	UNIF AC °	K	3,66 0991 92	- 0,526 9778 3	216,0 0834	- 126,4 1744 7	0,	0	0	0	0	0	273 ,15	373, 15
WATER	GLUTA MIC	UNIF AC °	K	3,28 1244 62	- 0,989 5760 4	- 151,0 6484 4	- 197,5 9725 3	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	ASPAR TIC	UNIF AC°	K	2,99 0297 4	- 1,015 4882 5	- 247,4 7962 6	- 192,3 3233 3	0,	0	0	0	0	0	273 ,15	373, 15
WATER	GLYCI NE	UNIF AC °	K	2,51 4290 22	0,930 3648 3	593,0 3963 1	- 91,58 8145 3	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	ALANIN E	UNIF AC °	K	2,45 1735 34	- 0,610 7642 8	- 24,41 0235 7	- 235,8 1051 1	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	PROLI NE	UNIF AC °	K	3,64 1309 69	- 0,336 1271 7	- 123,4 9050 7	- 294,3 4060 1	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	HYDRO GEN	UNIF AC °	K	2,14 1021 09	- 1,508 2019 6	- 0,000 1392 2	2,62 E-05	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	METHA NE	UNIF AC °	К	0,01 6918 68	0,460 7012 5	530,2 0734 2	1805, 3590 9	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	H2S	APV1 10 ENRT L-RK	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op @	Cop r©	Cop r©
WATER	CH4S	UNIF AC	K	1,42 8673 62	- 0,294 6298 4	0,011 5698 2	- 0,004 3064 4	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	BENZE NE	Rajen dran et al (2014)	К	140, 0874	45,19 05	- 5954, 3071	591,3 676	0, 2	0	- 20, 025 4	- 7,5 62 9	0	0	0,8	77
WATER	PHENO L	Rajen dran et al	K	- 0,53 63	2,301 5	1412, 7316	- 879,7 008	0, 3	0	0	0	0	0	44, 4	182

		(2014													
WATER	H2CO3	UNIF AC °	K	1,24 5752 65	- 0,657 0455 4	99,39 6321 2	- 147,3 3779 5	0,	0	0	0	0	0	273 ,15	373, 15
WATER	HEMEC ELL	UNIF AC °	K	3,04 3431 17	- 0,805 0067 2	82,16 0216 9	- 64,76 2999 2	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	GLUCO SE	UNIF AC °	K	2,57 5009 13	- 1,541 2319	228,2 0657	- 116,9 3559 1	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	TRIOLE IN	UNIF AC °	K	18,2 4982 54	- 0,965 3861 5	1188 8,126 9	1072, 8098 2	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	TRIPAL M	UNIF AC °	K	17,6 6750 26	- 0,910 4577 6	1024 5,379 2	1202, 1666	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	PALM	UNIF AC °	K	6,74 5003 71	- 0,449 6886 2	2673, 3714 2	1042, 4345 3	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	SN-1 01	UNIF AC °	K	12,1 3288 13	- 0,550 8548 9	6651, 4184 3	805,3 3536 8	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	SN-1 02	UNIF AC °	K	11,6 4759 65	- 0,563 3805 2	6758, 2485 5	754,1 1226	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	FURFU RAL	APV1 10 VLE- LIT ^b	K	Copr ©	Copr ©	Copr ©	Copr ©	ပေဗှစ္	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
WATER	LINOLE IC	UNIF AC	K	6,74 5032 99	- 0,445 9581 7	3073, 5753 8	826,3 4113 5	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	ETHAN OL	APV1 10 VLE- LIT ^b	K	Copr ©	Copr ©	Copr ©	Copr ©	ပဗုစ္	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
WATER	ACETA TE	UNIF AC °	K	1,46 7623 72	- 0,183 9339 3	108,2 8037 8	- 92,38 8954 3	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	OLEIC- AC	UNIF AC °	K	2,19 8076 01	- 0,337 5258 3	1375, 4236 2	1542, 9661 2	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	DEXTR OSE	UNIF AC °	K	- 0,90 1369 8	1,094 3823 4	54,26 7101 4	- 78,21 8356 4	0,	0	0	0	0	0	273 ,15	373, 15

			•												
GLYCE ROL	ACETI- AC	UNIF AC °	K	0,69 8238 89	- 0,707 9159 6	430,6 5337 8	- 240,1 6267 8	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	PROPI- 01	UNIF AC °	K	- 0,69 8139 5	1,326 1753 4	40,20 9999 7	- 59,43 1605 9	0,	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	ISOBU- 01	UNIF AC °	K	- 0,39 0729 6	1,245 6694 8	48,32 4156 1	51,02 6686 7	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	ISOVA- 01	UNIF AC °	K	- 0,09 0317 6	1,119 8442 4	79,98 9456 2	152,0 7745 9	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	NH3	UNIF AC °	K	16,1 1105 62	- 4,573 5815 7	4033, 8956 5	- 343,1 3284 3	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	CO2	UNIF AC °	K	3,48 5794 18	- 2,142 7074 8	924,1 7702 1	- 263,2 1618 3	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	C5H7N O2	UNIF AC °	K	- 0,14 9669 2	0,355 2117 1	273,7 0522 6	527,5 6279 8	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	HISTIDI N	UNIF AC °	K	0,81 2928 53	0,716 8839 6	- 189,3 1033 1	- 150,9 2548 2	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	LYSINE	UNIF AC °	K	0,06 0338 72	0,529 9005 5	24,88 6811 9	- 603,4 6911 9	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	PHENY LAL	UNIF AC °	K	0,74 4822 24	0,485 3607 7	40,43 8456 4	- 154,7 8586 1	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	CYSTEI NE	UNIF AC °	K	- 0,27 7304 4	0,974 5294 9	328,6 5154 9	20,29 3006	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	THREO NIN	UNIF AC °	K	0,04 4059 91	0,162 6883	25,91 5218 6	- 236,4 5988 8	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	SERIN E	UNIF AC °	K	- 0,05 2976 2	0,157 8514 4	58,39 6648	- 254,6 2933 5	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	LEUCIN E	UNIF AC °	K	0,22 7400 29	0,760 4077 1	70,18 3189 6	- 323,1 3882 1	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	ISOLEU CI	UNIF AC °	K	0,22 7400 29	0,760 4077 1	70,18 3189 6	323,1 3882 1	0, 3	0	0	0	0	0	273 ,15	373, 15

GLYCE ROL	GLUTA MIC	UNIF AC °	K	1,05 1166 23	- 1,580 9614 7	- 1128, 9124 3	1556, 5059 5	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	ASPAR TIC	UNIF AC °	К	0,06 1909 67	- 0,375 7245 2	- 713,6 7631 7	1114, 2991 2	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	GLYCI NE	UNIF AC °	К	- 0,79 5805 1	0,866 9834 5	54,64 6077 1	- 506,7 0258 9	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	ALANIN E	UNIF AC °	K	- 0,94 1010 8	1,514 0802	157,6 7734 8	- 647,5 4000 4	0,	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	PROLI NE	UNIF AC °	K	0,03 0352 94	0,873 4620 2	- 3,618 4836 5	- 189,6 4880 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	HYDRO GEN	UNIF AC °	K	- 7,11 E-15	7,412 1430 2	3000 0	- 367,6 5645 3	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	METHA NE	UNIF AC °	K	- 1,96 1837 3	0,848 7353 6	574,8 7062 2	2611, 9087 2	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	H2S	UNIF AC °	K	6,22 2502 09	2,943 1630 6	1118, 0887 6	- 227,0 232	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	CH4S	UNIF AC °	K	- 1,39 4856 6	1,101 3925 5	461,8 2031 1	1216, 9923 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	BENZE NE	UNIF AC °	K	- 0,54 5401 6	0,821 8295 9	632,3 3723 8	1801, 1142 1	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	PHENO L	UNIF AC °	K	5,68 6266 7	0,260 9379 9	7258, 3936 7	- 1824, 1978 5	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	H2CO3	UNIF AC °	K	- 0,80 6600 6	0,770 3231 2	- 20,35 7874 7	207,9 2889 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	HEMEC ELL	UNIF AC °	K	- 0,14 8233 8	0,650 4924 4	171,9 5441 8	- 240,6 7513 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	GLUCO SE	UNIF AC °	К	- 0,90 1369 8	1,094 3823 4	54,26 7101 4	- 78,21 8356 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	TRIOLE IN	UNIF AC °	K	5,30 1795 74	- 0,873 1656 6	6927, 2628 2	2633, 9794 1	0, 3	0	0	0	0	0	273 ,15	373, 15

				,	,	,		,					,		, ,
GLYCE ROL	TRIPAL M	UNIF AC °	К	5,11 8362 45	- 0,972 2127 1	5847, 7261 1	2717, 6035 4	0,	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	PALM	UNIF AC °	K	2,10 8207 79	- 0,242 123	1002, 8518 8	1292, 2217 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	SN-1 01	UNIF AC °	K	3,70 4106 94	- 1,018 3825 1	3257, 2206 8	2019, 4556	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	SN-1 02	UNIF AC °	K	3,53 9867 11	- 1,046 6807 6	3376, 6709 5	2016, 5819 3	0,	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	FURFU RAL	UNIF AC °	K	- 0,39 6961 8	0,880 3070 1	106,6 8672 9	1078, 9442 5	0,	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	LINOLE IC	UNIF AC °	К	2,00 9601 87	- 0,426 4695 7	1481, 2533 9	1541, 4346 8	0,	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	ETHAN OL	APV1 10 VLE- LIT ^b	К	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
GLYCE ROL	ACETA TE	UNIF AC °	К	0,69 8238 89	- 0,707 9159 6	430,6 5337 8	- 240,1 6267 8	0,	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	DEXTR OSE	UNIF AC °	K	0,61 6378 03	1,622 2179 7	2769, 4771 5	2124, 6806	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	ACETI- AC	UNIF AC °	К	- 1,80 3273 3	1,495 2041 3	276,8 7177 1	729,2 8523 4	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	PROPI- 01	UNIF AC °	K	- 1,49 4176 3	1,196 1001 6	145,7 9918 8	504,8 1432 2	0,	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	ISOBU- 01	UNIF AC °	K	- 1,24 4035 8	0,961 1842 6	66,95 8327 2	396,2 1990 1	0,	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	ISOVA- 01	UNIF AC °	K	- 1,04 9784 7	0,820 8813 6	23,57 1577 9	304,1 9407 5	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	NH3	UNIF AC °	K	- 7,11 E-15	- 13,62 5305 2	3000 0	- 789,1 8179 7	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	CO2	UNIF AC °	К	- 7,11 E-15	- 6,631 2277 6	3000 0	- 789,1 8179	0, 3	0	0	0	0	0	273 ,15	373, 15

		1		•	•										
OLEIC- AC	C5H7N O2	UNIF AC °	K	- 1,20 4024 5	1,839 4963 4	583,9 1468 1	369,4 7650 1	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	HISTIDI N	UNIF AC °	K	1,00 0206 2	2,051 3215 4	665,3 2287 6	766,3 2446 6	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	LYSINE	UNIF AC °	K	- 0,92 2773 5	1,294 6211 6	479,2 1535 1	305,7 5268 9	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	PHENY LAL	UNIF AC °	K	- 0,96 1659 5	1,386 2469 2	380,4 9644 5	216,0 6811 7	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	CYSTEI NE	UNIF AC °	K	- 1,30 5305 2	1,872 8165 9	633,7 4959 7	876,3 8537 5	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	THREO NIN	UNIF AC °	K	- 0,92 1296 5	1,717 1936 5	1101, 4854 9	877,7 8653 9	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	SERIN E	UNIF AC °	K	- 0,99 1345 4	1,975 6840 2	1321, 4333 5	1266, 9376 4	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	LEUCIN E	UNIF AC °	K	- 1,02 6170 5	1,171 1773 1	219,7 3887 5	184,2 6375 1	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	ISOLEU CI	UNIF AC °	K	- 1,02 6170 5	1,171 1773 1	219,7 3887 5	184,2 6375 1	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	GLUTA MIC	UNIF AC °	K	- 1,05 0347	1,648 8642 3	976,2 5611 1	972,3 0567 3	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	ASPAR TIC	UNIF AC°	K	- 1,17 3236 6	1,815 0701 7	1229, 7862 9	1440, 9762 9	0,	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	GLYCI NE	UNIF AC °	K	- 1,61 5970 7	2,290 8901 8	815,8 6687 2	1076, 9262 2	0,	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	ALANIN E	UNIF AC °	K	- 1,46 8985 2	1,822 1734 7	459,9 5069 7	536,7 9052 5	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	PROLI NE	UNIF AC °	K	- 1,29 4854	1,591 9471 2	320,2 4883 1	422,1 6250 6	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	HYDRO GEN	UNIF AC °	K	- 7,11 E-15	- 18,32 2077 1	3000 0	- 789,1 8179 7	0, 3	0	0	0	0	0	273 ,15	373, 15

					,	,		,				,			,
OLEIC- AC	METHA NE	UNIF AC °	K	55,2 1776 66	7,022 0988 2	- 6093, 2512 7	291,5 3587 9	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	H2S	UNIF AC °	К	- 7,11 E-15	- 6,498 6632 8	3000 0	- 789,1 8177 2	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	CH4S	UNIF AC °	K	11,9 3030 73	- 3,963 7795 4	- 1119, 9281 4	172,7 2339 8	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	BENZE NE	UNIF AC °	K	5,49 1132 58	- 2,765 2243 2	- 880,6 476	288,6 4934	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	PHENO L	UNIF AC °	K	- 1,52 0643 2	1,166 4912	197,3 2497 4	615,4 9286 8	0,	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	H2CO3	UNIF AC °	K	- 1,27 3435 5	2,418 0725 5	1560, 3237 3	2875, 7566 7	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	HEMEC ELL	UNIF AC °	K	- 1,19 3333 1	1,756 8399 6	648,3 0044 3	673,4 1048 3	0,	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	GLUCO SE	UNIF AC °	K	0,61 6378 03	1,622 2179 7	2769, 4771 5	2124, 6806	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	TRIOLE IN	UNIF AC °	К	- 2,25 6927	3,813 6055 9	262,5 8907 5	- 593,0 5536 3	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	TRIPAL M	UNIF AC °	K	- 2,21 3040 6	3,672 1874	257,8 7581	- 545,8 5875 4	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	PALM	UNIF AC °	K	6,30 0393 1	5,535 0522 1	3888, 2718 7	3409, 9100 2	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	SN-1 01	UNIF AC °	K	- 1,31 3203	1,750 1153 2	- 96,38 8524 5	201,5 4160 3	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	SN-1 02	UNIF AC °	K	- 1,17 7610 2	1,507 5185 4	- 109,1 0732 7	214,4 8622 6	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	FURFU RAL	UNIF AC °	K	- 1,61 1146 8	1,710 4994 1	389,4 5837 7	522,4 2556 5	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	LINOLE IC	UNIF AC °	K	- 0,61 6475	0,497 5795 4	557,0 6101	- 466,4 6261 6	0, 3	0	0	0	0	0	273 ,15	373, 15

OLEIC- AC	ETHAN OL	APV1 10 VLE- LIT ^b	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
OLEIC- AC	ACETA TE	UNIF AC °	K	1,80 3273 3	1,495 2041 3	276,8 7177 1	729,2 8523 4	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	ACETI- AC	UNIF AC °	K	3,04 1676 33	- 1,959 4273 2	595,9 5666 7	- 193,7 1080 1	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	PROPI- 01	UNIF AC °	K	- 1,15 2552 7	1,945 2919 8	3,576 7675 9	- 47,49 6810 1	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	ISOBU- 01	UNIF AC °	K	- 0,88 5552 2	2,154 8380 2	42,33 9544 3	117,2 1217 9	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	ISOVA- 01	UNIF AC °	K	- 0,61 2412 9	2,195 4140 1	117,8 4201 7	266,3 5782 9	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	NH3	UNIF AC °	K	- 7,11 E-15	- 8,891 7471 6	3000 0	- 510,6 6217	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	CO2	UNIF AC °	K	8,23 7415 53	3,437 8692 8	2491, 9932 6	- 347,7 4976 7	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	C5H7N O2	UNIF AC °	K	- 0,87 09	1,128 2003	360,1 4151 6	787,4 7349 3	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	HISTIDI N	UNIF AC °	K	- 0,06 1765	1,785 4363 7	- 159,6 6707 3	- 369,1 7684 2	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	LYSINE	UNIF AC °	K	- 0,95 8250 4	2,171 3168 3	3,426 0908 2	- 1011, 5723 5	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	PHENY LAL	UNIF AC °	K	- 0,03 8605 3	1,602 6973 8	- 1,392 1437 5	- 240,0 6295 2	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	CYSTEI NE	UNIF AC °	K	- 0,86 9282 5	1,808 0007 7	272,8 7126 3	29,49 4508 5	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	THREO NIN	UNIF AC °	K	0,71 0253 62	- 0,821 3966 1	1091, 6528 8	- 534,2 1297 5	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	SERIN E	UNIF AC °	K	1,55 5730 16	- 1,302 7172 5	1012, 7748 9	- 434,1 3911 3	0, 3	0	0	0	0	0	273 ,15	373, 15

	1	1			•									•	
DEXTR OSE	LEUCIN E	UNIF AC °	K	- 0,39 8612 2	1,963 8271 7	8,623 1445 9	- 452,1 7311 6	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	ISOLEU CI	UNIF AC °	K	- 0,39 8612 2	1,963 8271 7	8,623 1445 9	- 452,1 7311 6	0,	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	GLUTA MIC	UNIF AC °	K	- 0,14 8841 8	- 0,370 5236 7	1570, 6436 1	- 789,0 4873 2	0,	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	ASPAR TIC	UNIF AC °	K	24,7 2421 87	- 15,62 5411 4	- 1408 6,585 7	8869, 1236	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	GLYCI NE	UNIF AC °	K	3,08 6010 4	- 2,191 8325 4	2346, 3161 1	- 565,9 5010 3	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	ALANIN E	UNIF AC °	K	1,23 8914 35	- 1,355 9760 4	1872, 8158 8	- 627,3 1115 8	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	PROLI NE	UNIF AC °	K	- 0,65 7828 8	1,881 2797 6	- 19,26 7021 6	- 331,5 4889	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	HYDRO GEN	UNIF AC °	K	- 7,11 E-15	- 13,54 2121	3000 0	- 510,6 6217	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	METHA NE	UNIF AC °	K	- 2,58 4972 7	- 0,409 4175 1	903,9 3192 9	4643, 5686 3	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	H2S	UNIF AC °	K	13,6 3981 03	4,373 4933 7	5695, 5059 8	- 478,7 0848 7	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	CH4S	UNIF AC °	K	2,04 6585 2	1,018 1626 9	658,7 5215 4	2043, 4059 7	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	BENZE NE	UNIF AC °	K	- 1,22 7496 8	0,958 4776 1	974,8 9183 8	3116, 9621 9	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	PHENO L	UNIF AC °	K	- 41,0 761	2,131 6527 4	3444 4,384 7	- 3901, 6466 7	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	H2CO3	UNIF AC °	K	3,83 4408 36	- 2,213 5684 7	- 302,5 6732 2	106,7 5287 1	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	HEMEC ELL	UNIF AC °	K	- 0,75 3401	1,593 7461	70,87 0642 7	- 347,8 3529	0, 3	0	0	0	0	0	273 ,15	373, 15

	1	1	ı			1	1	1	1	1	1	1		ı	
DEXTR OSE	GLUCO SE	UNIF AC °	К	- 0,54 6413 6	0,424 8955 6	534,5 6771 6	- 442,4 3425 3	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	TRIOLE IN	UNIF AC °	K	6,94 2851 13	0,136 6478 6	8000, 3939 1	4374, 2655 5	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	TRIPAL M	UNIF AC °	K	6,58 2985 82	0,073 9467 3	6860, 4723 3	4466, 9560 8	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	PALM	UNIF AC °	К	1,43 7018 25	0,706 4704 7	1757, 2267 4	2388, 5181 9	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	SN-1 01	UNIF AC °	К	3,94 9787 35	0,208 8681 1	4313, 8590 6	3263, 5797 8	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	SN-1 02	UNIF AC °	К	3,74 2475 25	0,160 4433 3	4431, 9335 7	3247, 1398 5	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	FURFU RAL	UNIF AC °	K	- 1,09 7262 1	1,400 2843 9	278,3 6214 5	1598, 6244 6	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	LINOLE IC	UNIF AC °	K	1,35 7315 66	0,456 5547 5	2235, 0171 8	2751, 8573 6	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	ETHAN OL	UNIF AC °	К	- 1,14 3459 2	1,092 4641 9	- 18,74 2190 8	276,1 5627 1	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	ACETA TE	UNIF AC °	K	3,04 1676 33	- 1,959 4273 2	595,9 5666 7	- 193,7 1080 1	0,	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	PROPI- 01	APV1 10 VLE- HOC ^b	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op ©	Cop r©	Cop r©
ACETI- AC	ISOBU- 01	UNIF AC °	K	0,30 5650 63	- 0,328 7858 7	155,1 6980 3	- 74,25 9432 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	ISOVA- 01	UNIF AC °	К	0,60 2667 13	- 0,595 1989 5	107,7 6405 4	5,157 0045 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	NH3	UNIF AC °	K	4,26 0624 12	- 2,379 5949 2	658,3 8642 1	- 192,0 8326 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	CO2	UNIF AC °	К	1,46 7355 43	- 1,191 8032	700,0 1462 5	- 337,3 7996	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	C5H7N O2	UNIF AC °	K	0,77 5029 07	- 0,521 0220 5	127,9 8332 6	29,46 8640 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	HISTIDI N	UNIF AC °	K	1,31 2421 98	- 0,803	- 20,71	- 30,56	0, 3	0	0	0	0	0	273 ,15	373, 15

					2015 4	6615 8	1689 4								
ACETI- AC	LYSINE	UNIF AC °	K	- 1,75 8253 1	2,647 0961 7	- 112,8 5569 1	285,0 6783 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	PHENY LAL	UNIF AC °	K	- 1,27 4320 3	1,659 9166 2	- 71,92 8840 6	154,8 7263 8	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	CYSTEI NE	UNIF AC °	K	- 0,85 7791 8	0,967 3479 8	- 235,1 2651	425,6 5183 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	THREO NIN	UNIF AC °	K	- 1,42 6145 5	1,972 8280 1	82,01 4521 8	- 152,5 0358 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	SERIN E	UNIF AC °	K	0,77 7604 53	- 0,716 8462 2	136,0 8903 7	50,23 3500 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	LEUCIN E	UNIF AC °	K	- 1,50 6618 9	2,126 0391 1	99,50 8272 1	- 184,4 5665 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	ISOLEU CI	UNIF AC °	K	- 1,50 6618 9	2,126 0391 1	99,50 8272 1	- 184,4 5665 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	GLUTA MIC	UNIF AC °	K	- 1,52 2055 7	2,168 7430 4	- 15,40 0037 5	31,88 7858 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	ASPAR TIC	UNIF AC °	K	- 1,18 7044 8	1,543 5634 1	79,40 4633 8	- 129,9 1521 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	GLYCI NE	UNIF AC °	K	- 0,50 6850 5	0,453 6194 5	487,8 2053 2	- 434,7 8689 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	ALANIN E	UNIF AC °	K	- 0,80 0017 8	0,938 0922 5	- 112,3 0377 9	174,3 5965 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	PROLI NE	UNIF AC °	К	- 0,06 0193 5	- 0,036 8927 7	205,1 0785	- 180,8 8598 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	HYDRO GEN	UNIF AC °	K	6,20 3756 7	- 2,918 0756 2	773,8 3113 8	- 170,5 5297 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	METHA NE	UNIF AC °	K	- 0,81 0947 3	0,714 7180 2	64,51 9058 1	669,9 4592 5	0, 3	0	0	0	0	0	273 ,15	373, 15

	ı		ı	1	1	1	Т				1				1
ACETI- AC	H2S	UNIF AC °	K	- 1,02 7344 8	1,026 8625 7	34,75 5882 5	- 332,4 1006 7	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	CH4S	UNIF AC °	K	- 0,31 1233 2	0,200 3009 5	66,05 4156 4	- 238,5 6600 6	0,	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	BENZE NE	APV1 10 VLE- HOCb	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
ACETI- AC	PHENO L	UNIF AC °	K	1,34 0113 46	- 1,066 0269 3	- 376,5 5900 3	448,6 1680 8	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	H2CO3	UNIF AC °	K	0,56 8686 42	- 0,232 6663 2	33,45 6721 9	62,68 7082 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	HEMEC ELL	UNIF AC°	K	- 1,38 7107 3	1,907 9205 4	0,395 6133 9	- 0,738 8140 1	0,	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	GLUCO SE	UNIF AC °	K	- 1,95 9426 4	3,041 6726 7	- 193,7 1143 6	595,9 5930 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	TRIOLE IN	UNIF AC°	K	- 0,51 5342 1	3,215 4608 6	2652, 7822 4	685,3 3786 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	TRIPAL M	UNIF AC °	K	- 16,8 9332	3,679 7569 2	1105 4,048 6	- 3065, 199	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	PALM	UNIF AC °	K	0,90 0345 03	- 1,553 7590 8	957,1 5770 2	47,44 3135 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	SN-1 01	UNIF AC°	K	- 18,4 3983 1	39,62 2789 3	1014 8,385 7	- 2213 6,046 2	0,	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	SN-1 02	UNIF AC °	K	5,54 2044 63	- 6,647 9214 5	- 3250, 7879 9	3470, 2778	0,	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	FURFU RAL	UNIF AC °	K	0,76 8670 7	- 0,913 6590 1	- 707,6 5783 4	1113, 3821 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	LINOLE IC	UNIF AC °	K	1,72 1614 69	- 1,809 6548	737,0 5452 2	282,3 3657 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	ETHAN OL	APV1 10 VLE- HOC ^b	К	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©

	Γ	1	1	ı	1	ı	1			1	1			1	1
ACETI- AC	ACETA TE	UNIF AC °	K	- 0,54 6413 6	0,424 8955 6	534,5 6771 6	- 442,4 3425 3	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	ISOBU- 01	APV1 10 VLE- HOCb	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
PROPI- 01	ISOVA- 01	UNIF AC °	K	- 0,02 2101 9	- 0,056 3660 1	286,2 9107 3	- 199,8 1583 2	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	NH3	UNIF AC °	K	5,93 3560 24	- 2,868 6444 3	1068, 0905	- 230,1 6297 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	CO2	UNIF AC °	K	2,44 8710 09	- 1,715 3293 2	866,8 2168 8	- 322,1 8088 2	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	C5H7N O2	UNIF AC °	K	0,55 2552 47	- 0,285 2872 5	234,4 6155 1	- 25,28 2844 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	HISTIDI N	UNIF AC °	K	1,02 6103 65	- 0,516 3538 9	12,55 2487 8	- 11,13 7027 4	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	LYSINE	UNIF AC °	K	- 1,33 5246	1,775 9876 8	- 154,6 0320 4	325,4 1980 1	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	PHENY LAL	UNIF AC °	K	0,05 3759 39	- 0,140 8147 6	96,00 5480 1	- 101,4 5706	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	CYSTEI NE	UNIF AC °	K	- 1,01 0954 5	1,326 1543 2	442,7 4200 3	- 591,6 1633 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	THREO NIN	UNIF AC °	K	0,85 0613 29	- 0,680 7026 7	151,3 5385 6	- 31,56 4799 8	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	SERIN E	UNIF AC °	K	0,87 0390 53	- 0,559 9271 4	165,9 4289 4	- 8,784 8848 8	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	LEUCIN E	UNIF AC °	K	- 1,13 9560 5	1,468 6777	- 37,20 2571 5	64,50 9557 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	ISOLEU CI	UNIF AC °	K	- 1,13 9560 5	1,468 6777	- 37,20 2571 5	64,50 9557 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	GLUTA MIC	UNIF AC °	K	0,60 6979 45	- 0,583 9000 1	121,4 8147 1	- 37,11 4812 4	0, 3	0	0	0	0	0	273 ,15	373, 15

PROPI- 01	ASPAR TIC	UNIF AC °	K	0,72 4192 46	- 0,556 1181	100,2 6094 1	26,50 9737 7	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	GLYCI NE	UNIF AC °	K	0,03 1567 27	0,117 3638 1	88,64 6148 3	- 33,39 0398 3	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	ALANIN E	UNIF AC °	K	- 0,56 3235 7	0,469 4920 8	527,5 3903 2	- 451,4 8154 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	PROLI NE	UNIF AC °	K	0,07 1241 37	- 0,076 0909 1	239,1 6967	- 201,5 4764 4	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	HYDRO GEN	UNIF AC °	K	8,79 7222 76	- 3,488 6048 7	1594, 6441 2	- 244,3 9561 6	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	METHA NE	UNIF AC °	K	- 1,00 1267 9	0,701 249	- 3,185 0797 8	675,7 4767 2	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	H2S	UNIF AC °	K	35,8 6945 03	- 20,69 8713 7	- 2039 4,320 2	1181 2,515 5	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	CH4S	UNIF AC °	K	- 0,70 5757 2	0,598 4670 4	80,44 3400 4	- 303,3 1863 6	0,	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	BENZE NE	APV1 10 VLE- HOC ^b	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
PROPI- 01	PHENO L	UNIF AC °	K	0,84 6466 27	- 0,776 6905 5	- 319,6 7028 3	460,1 8524 9	0,	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	H2CO3	UNIF AC °	K	0,32 4775 91	0,170 0731 8	106,5 0860 5	141,1 083	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	HEMEC ELL	UNIF AC °	K	0,96 1228 18	- 1,045 1811 5	- 584,3 5700 5	614,1 7658 6	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	GLUCO SE	UNIF AC °	K	1,94 5267	- 1,152 5472 4	- 47,48 0515 2	3,572 6964 5	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	TRIOLE IN	UNIF AC °	K	7,71 8843 94	- 8,549 8978 7	- 4466, 8276 7	4535, 8216 3	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	TRIPAL M	UNIF AC °	K	23,0 6424 3	47,05 6715	1301 9,744 5	- 2642 2,531 7	0, 3	0	0	0	0	0	273 ,15	373, 15

		1		•	•										
PROPI- 01	PALM	UNIF AC °	K	0,50 6288 43	- 1,172 0778 7	846,5 5078 4	- 119,0 4016 4	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	SN-1 01	UNIF AC °	K	- 4,27 7599	11,82 4986 5	839,1 5234 8	- 3461, 8717 8	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	SN-1 02	UNIF AC°	K	- 4,19 8059 4	11,12 1114 8	874,6 9443	- 3388, 6665 5	0,	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	FURFU RAL	UNIF AC °	K	0,40 0638 89	- 0,382 1882 8	- 473,4 4075 4	798,8 4431 9	0,	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	LINOLE IC	UNIF AC °	K	1,41 6167 73	- 1,521 6060 3	486,9 2930 3	151,4 9568 6	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	ETHAN OL	APV1 10 VLE- HOCb	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
PROPI- 01	ACETA TE	UNIF AC °	K	- 1,06 1417 7	0,942 0488 5	742,3 4560 1	- 658,2 7651	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	ISOVA- 01	UNIF AC °	K	- 0,48 5087 7	0,365 2119 4	501,7 5929	- 409,0 6770 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	NH3	UNIF AC °	K	7,73 0611 24	- 3,297 8534 1	1737, 3474 6	- 284,4 2678 1	0,	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	CO2	UNIF AC °	K	3,31 0618 24	- 2,084 2815 6	1051, 0703 8	- 320,2 3469	0,	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	C5H7N O2	UNIF AC °	K	0,32 8428 9	- 0,053 9026	307,8 8390 8	- 48,54 2972 8	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	HISTIDI N	UNIF AC °	К	0,74 7529 21	- 0,232 6491	33,75 5786 4	33,07 7542 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	LYSINE	UNIF AC °	K	- 0,84 7722 4	0,984 1550 5	- 164,8 3171 5	281,5 4338 8	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	PHENY LAL	UNIF AC °	K	0,60 9258 05	- 0,508 7120 7	158,5 3857 4	- 101,0 4133 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	CYSTEI NE	UNIF AC °	K	0,30 6123 71	- 0,157 2850 7	- 181,8 6776 7	250,2 3586 3	0, 3	0	0	0	0	0	273 ,15	373, 15

ISOBU- 01	THREO NIN	UNIF AC °	K	0,79 9956 43	- 0,487 6925 7	192,4 1867 4	- 0,037 9735 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	SERIN E	UNIF AC °	K	0,72 8405 07	- 0,296 0393 8	223,2 4081 7	32,77 4651 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	LEUCIN E	UNIF AC °	К	- 0,80 8076 5	0,955 1935 4	- 85,33 3964 8	129,9 6245 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	ISOLEU CI	UNIF AC °	K	- 0,80 8076 5	0,955 1935 4	- 85,33 3964 8	129,9 6245 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	GLUTA MIC	UNIF AC °	K	0,66 8552 72	- 0,489 9351 1	116,6 3061 3	34,23 1030 7	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	ASPAR TIC	UNIF AC °	K	0,57 7926 63	- 0,317 2543 4	150,8 0967 7	87,26 4478 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	GLYCI NE	UNIF AC °	K	- 0,16 8809 1	0,399 7395	117,5 2142 1	25,07 7230 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	ALANIN E	UNIF AC °	K	- 0,27 9308 9	0,350 1116 8	236,3 3878 2	- 201,3 5609 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	PROLI NE	UNIF AC °	K	- 0,07 5820 3	0,142 9472 2	188,1 2340 6	- 166,7 8794 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	HYDRO GEN	UNIF AC °	K	12,0 8420 08	- 4,081 0837 8	3552, 8749 9	- 370,9 0931 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	METHA NE	UNIF AC °	K	- 1,00 6392 9	0,337 0676 4	- 105,5 3092 1	802,5 7699 7	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	H2S	UNIF AC °	K	3,79 1463 18	2,260 8134 1	1048, 6767 8	- 308,1 9004 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	CH4S	UNIF AC °	K	- 1,10 4987 3	1,092 8607 6	144,7 4399 8	- 430,5 615	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	BENZE NE	UNIF AC °	К	- 0,19 3275 3	0,167 8403 1	- 72,62 2289 6	458,2 3880 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	PHENO L	UNIF AC °	K	0,24 2438 07	- 0,286 5506 8	- 162,6 3553 8	373,6 3991 6	0, 3	0	0	0	0	0	273 ,15	373, 15

ISOBU- 01	H2CO3	UNIF AC °	K	0,11 2316 4	0,537 2117 6	200,2 2949 4	223,9 2678	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	HEMEC ELL	UNIF AC °	K	0,43 0345 86	- 0,350 7561 4	84,70 5530 1	3,796 8848	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	GLUCO SE	UNIF AC °	K	2,15 4833 77	- 0,885 5507 2	117,2 1464 5	42,33 8429 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	TRIOLE IN	UNIF AC °	K	- 22,8 9902 4	46,58 4384 4	1292 6,004 7	- 2618 6,886	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	TRIPAL M	UNIF AC °	K	5,07 1597 7	14,78 6718 8	1345, 7809 1	- 5330, 7252 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	PALM	UNIF AC °	K	9,45 9824 7	5,421 5355 3	6098, 1146 4	3667, 9403 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	SN-1 01	UNIF AC °	K	3,76 0310 4	9,726 8136 1	520,1 7726 9	- 2144, 0797 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	SN-1 02	UNIF AC °	K	3,66 6078 2	9,159 5884 6	528,2 4464 4	- 2076, 1818 7	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	FURFU RAL	UNIF AC °	K	0,07 2507 29	0,051 8040 5	- 275,4 4390 7	566,9 1869	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	LINOLE IC	UNIF AC °	K	1,17 8786 6	- 1,291 1282 8	365,6 7128	76,83 0852 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	ETHAN OL	UNIF AC °	K	- 0,99 7165 8	1,396 4247 6	406,9 6210 2	569,8 0410 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	ACETA TE	UNIF AC °	K	- 1,88 0496 8	2,215 5529 2	956,8 7689 4	- 1118, 4645 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	NH3	UNIF AC °	K	9,74 2307 94	3,721 9177 6	3055, 2698 4	- 375,9 0665 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	CO2	UNIF AC °	K	4,13 2226 01	- 2,383 7828 7	1271, 8163 3	- 326,5 8715 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	C5H7N O2	UNIF AC °	K	0,11 3966 55	0,176 1205 5	357,9 8574 1	- 53,16 0125 7	0, 3	0	0	0	0	0	273 ,15	373, 15

				0.40	0.054	70.00	l == 40	1			ı	1	1	1	
ISOVA- 01	HISTIDI N	UNIF AC °	K	0,48 5327 86	0,054 8850 2	72,83 6076 7	77,16 6240 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	LYSINE	UNIF AC °	K	0,15 7521 27	- 0,129 7335	158,3 3882 3	- 133,5 5516 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	PHENY LAL	UNIF AC °	K	0,46 9960 54	- 0,342 4387 3	193,5 9059 9	- 104,6 5946 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	CYSTEI NE	UNIF AC °	K	0,07 5992 2	0,136 3558	- 59,07 7386 1	220,4 7617	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	THREO NIN	UNIF AC °	K	0,64 7786 09	- 0,254 6399 3	249,1 0121 6	33,47 0707	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	SERIN E	UNIF AC °	K	0,54 5227 44	- 0,023 0703	293,2 9771 9	79,57 4002 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	LEUCIN E	UNIF AC °	K	- 0,40 0090 2	0,423 9057 1	- 103,3 3528 4	135,0 4227 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	ISOLEU CI	UNIF AC °	K	- 0,40 0090 2	0,423 9057 1	- 103,3 3528 4	135,0 4227 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	GLUTA MIC	UNIF AC °	K	0,50 7117 57	- 0,269 3159 1	168,6 9644 6	79,25 7311 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	ASPAR TIC	UNIF AC °	K	0,37 2015 87	- 0,050 8373 2	224,9 1923 2	144,8 6183 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	GLYCI NE	UNIF AC °	K	- 0,36 2389 6	0,678 1666 2	170,5 9216 3	68,34 5080 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	ALANIN E	UNIF AC °	K	0,24 0830 3	0,361 2159 1	105,9 1863 4	- 24,90 7139 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	PROLI NE	UNIF AC °	К	- 0,08 4710 9	0,206 1313	60,43 0363 8	- 21,64 1347	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	HYDRO GEN	UNIF AC °	K	18,1 8687 79	- 4,896 5601 2	7314, 2592 5	- 491,0 1107	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	METHA NE	UNIF AC °	K	19,3 1348 28	- 12,18 5542 4	- 1081 9,562 4	6751, 5505 5	0, 3	0	0	0	0	0	273 ,15	373, 15

ISOVA- 01	H2S	UNIF AC °	K	4,55 5628	- 2,519 2333 6	1294, 0530 6	- 322,3 4974 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	CH4S	UNIF AC °	K	- 1,68 2816 7	2,037 8594 8	323,3 5690 8	- 792,8 5991 8	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	BENZE NE	UNIF AC °	K	- 0,42 0633 2	0,388 4236	- 45,34 4222 6	398,0 1251	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	PHENO L	UNIF AC °	K	- 0,18 9580 9	0,151 5546	- 47,41 6969 8	292,7 6208 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	H2CO3	UNIF AC °	K	- 0,06 6782 5	0,856 5774 7	302,0 2723 9	318,6 2993 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	HEMEC ELL	UNIF AC °	K	0,26 5723 58	- 0,142 627	107,9 4785 5	42,37 0369 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	GLUCO SE	UNIF AC °	K	2,19 5416 41	- 0,612 4150 7	266,3 5534 8	117,8 4323 4	0,	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	TRIOLE IN	UNIF AC °	K	- 4,74 6948 9	13,24 4881 3	1194, 1653 9	- 4605, 4798 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	TRIPAL M	UNIF AC °	K	- 4,54 1867 3	12,59 822	1039, 3207 9	- 4049, 6011	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	PALM	UNIF AC °	K	2,18 6166 15	- 2,379 4811 5	- 1281, 1460 5	1252, 8625 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	SN-1 01	UNIF AC °	K	3,36 9292 5	8,030 691	336,1 2514 3	- 1319, 1561 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	SN-1 02	UNIF AC °	K	3,27 8030 3	7,577 9798 1	336,9 4719 9	- 1271, 4477 3	0,	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	FURFU RAL	UNIF AC °	K	- 0,20 355	0,397 5885 9	- 124,3 2594 7	413,2 4285 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	LINOLE IC	UNIF AC °	K	1,00 0609 25	- 1,100 0830 3	289,1 5642 7	29,49 0021 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	ETHAN OL	UNIF AC °	K	- 0,53 3295 5	0,822 0801 1	32,82 2627 3	- 66,96 0440 8	0, 3	0	0	0	0	0	273 ,15	373, 15

															,
ISOVA- 01	ACETA TE	UNIF AC °	K	- 0,91 9904	1,124 1267 4	215,6 4602 1	- 230,3 9927 4	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	CO2	UNIF AC °	K	0,63 8117 6	- 0,552 8511 8	- 0,001 5937 6	0,001 0641 4	0,	0	0	0	0	0	273 ,15	373, 15
NH3	C5H7N O2	UNIF AC °	K	- 4,01 9715 8	11,88 6221 6	- 308,5 7294 9	2761, 6535 2	0,	0	0	0	0	0	273 ,15	373, 15
NH3	HISTIDI N	UNIF AC °	K	3,79 6350 9	10,84 6562	- 77,48 7818	521,1 1272 5	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	LYSINE	UNIF AC °	K	5,19 5229 4	22,55 6633 4	- 328,7 9529 9	4974, 1950 2	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	PHENY LAL	UNIF AC °	K	5,03 4485 8	20,79 6567 9	- 320,4 9858 9	4493, 0907 7	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	CYSTEI NE	UNIF AC °	K	- 3,28 6601 2	7,969 5093 9	0,000 5681 5	- 0,003 0244 3	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	THREO NIN	UNIF AC °	K	- 4,38 0257 9	15,03 5743 5	- 164,5 3219 1	1552, 6683 5	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	SERIN E	UNIF AC °	K	3,76 4368 9	10,66 3488 7	- 43,38 9754 2	273,8 0666 8	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	LEUCIN E	UNIF AC °	K	- 4,70 1297 2	16,57 1978 3	- 459,1 4624 1	6175, 9824	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	ISOLEU CI	UNIF AC °	K	- 4,70 1297 2	16,57 1978 3	- 459,1 4624 1	6175, 9824	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	GLUTA MIC	UNIF AC °	K	- 4,46 4132 6	15,33 6593	- 303,2 7965	3300, 2452 5	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	ASPAR TIC	UNIF AC °	K	- 3,86 6529 6	11,25 4674	- 129,0 3144 9	938,1 9293 2	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	GLYCI NE	UNIF AC °	К	- 2,57 5526 9	4,981 4158	- 0,000 9812 1	0,003 7665 9	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	ALANIN E	UNIF AC °	K	3,13 6489 2	7,182 6368	- 135,4 2221 6	685,4 0019 8	0, 3	0	0	0	0	0	273 ,15	373, 15

NH3	PROLI NE	UNIF AC °	K	3,60 0281 1	9,459 5306 7	- 222,4 1012 9	1524, 2379 4	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	HYDRO GEN	UNIF AC °	K	- 2,47 8626 1	2,691 2631 8	1408, 2915 4	- 1518, 0739 8	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	METHA NE	UNIF AC °	K	- 1,00 2811 3	1,251 7987	0,000 8048 8	- 0,001 4145 2	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	H2S	UNIF AC °	K	- 1,16 1967 7	1,508 7175 9	- 0,000 1632 6	0,000 312	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	CH4S	UNIF AC °	K	- 1,86 4319 6	2,920 5105 9	- 0,000 3324 4	0,000 9068 5	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	BENZE NE	UNIF AC °	K	- 2,60 4714 9	5,084 5925 8	0,000 3982 8	- 0,001 5499 6	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	PHENO L	UNIF AC °	K	- 3,09 4851	6,994 5386 5	- 147,5 8739 9	634,5 4260 1	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	H2CO3	UNIF AC °	K	2,33 8930 6	4,215 4301 8	1,643 1308 7	- 13,44 4432 1	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	HEMEC ELL	UNIF AC °	K	- 4,07 9797	11,58 2906 2	- 464,1 5750 1	4788, 3092 7	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	GLUCO SE	UNIF AC °	K	- 8,89 1747 2	- 7,11 E-15	- 510,6 6217	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	TRIOLE IN	UNIF AC °	K	28,3 2887 1	- 7,11 E-15	- 1169 1,050 8	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	TRIPAL M	UNIF AC °	K	- 43,2 7648	- 7,11 E-15	- 1142, 1665	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	PALM	UNIF AC °	K	- 13,0 1323 9	- 7,11 E-15	- 822,9 4214 5	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	SN-1 01	UNIF AC °	K	- 31,7 5297 1	- 7,11 E-15	- 1573, 1662	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	SN-1 02	UNIF AC °	K	31,4 2629 6	- 7,11 E-15	- 1565, 3322 1	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15

									•			•	•		
NH3	FURFU RAL	UNIF AC °	K	- 2,68 7758	5,384 4974 3	0,000 8753 6	- 0,003 5413 3	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	LINOLE IC	UNIF AC °	K	- 13,3 6180 6	- 7,11 E-15	- 778,4 8299 2	3000 0	0,	0	0	0	0	0	273 ,15	373, 15
NH3	ETHAN OL	APV1 10 VLE- RK ^b	К	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
NH3	ACETA TE	UNIF AC °	K	- 2,37 9593 7	4,260 6185 7	- 192,0 8401 5	658,3 8976	0,	0	0	0	0	0	273 ,15	373, 15
CO2	C5H7N O2	UNIF AC °	К	- 2,51 1888 8	4,621 6607 2	- 249,1 8325 9	1009, 9588 5	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	HISTIDI N	UNIF AC °	K	- 2,76 4644 8	5,658 6749 4	- 76,18 6477 8	300,9 1441 6	0,	0	0	0	0	0	273 ,15	373, 15
CO2	LYSINE	UNIF AC °	K	- 2,96 5116 6	6,357 1755 7	- 204,0 6444 9	1019, 4313 5	0,	0	0	0	0	0	273 ,15	373, 15
CO2	PHENY LAL	UNIF AC °	K	3,15 1146 1	7,185 3278 6	- 203,2 2880 5	1089, 3422 3	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	CYSTEI NE	UNIF AC °	K	2,09 2929 9	3,499 9746	- 0,000 8534 6	0,002 6031	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	THREO NIN	UNIF AC °	K	- 2,46 3813 6	4,577 6606	- 136,9 4733 2	495,8 0402	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	SERIN E	UNIF AC °	K	- 1,99 5042 3	3,244 6824	- 62,95 7163 2	162,8 2375 7	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	LEUCIN E	UNIF AC °	K	- 2,82 5680 4	5,667 4067 9	- 291,7 2669 9	1435, 6655 4	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	ISOLEU CI	UNIF AC °	K	- 2,82 5680 4	5,667 4067 9	- 291,7 2669 9	1435, 6655 4	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	GLUTA MIC	UNIF AC °	K	2,67 1417 2	5,210 5995 4	- 212,3 1550 2	915,7 1236 1	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	ASPAR TIC	UNIF AC °	K	- 2,29 8279 4	4,051 7538 5	- 137,3 3654 1	460,5 3223 7	0, 3	0	0	0	0	0	273 ,15	373, 15

CO2	GLYCI NE	UNIF AC °	K	0,01 3728 04	- 0,116 9917 1	9,86 E-06	- 9,78 E-06	0,	0	0	0	0	0	273 ,15	373, 15
CO2	ALANIN E	UNIF AC °	K	- 1,83 8104 5	2,804 2039 8	- 198,8 9331 6	544,6 4864 4	0,	0	0	0	0	0	273 ,15	373, 15
CO2	PROLI NE	UNIF AC °	K	- 2,45 3951	4,465 2865 8	- 220,7 2788 9	835,5 7913 8	0,	0	0	0	0	0	273 ,15	373, 15
CO2	HYDRO GEN	UNIF AC °	K	- 0,92 7740 3	1,322 9770 6	3,097 8866 4	- 7,561 8073 4	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	METHA NE	UNIF AC °	K	- 0,13 0417 6	0,340 7301 8	97,38 0922 1	- 107,2 8857 7	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	H2S	UNIF AC °	K	- 0,01 9443	0,197 8092 5	106,1 5284 5	- 107,2 2345 9	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	CH4S	UNIF AC °	K	0,44 3290 9	- 0,370 7927 6	97,27 3714 5	- 73,04 2608 5	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	BENZE NE	UNIF AC °	K	- 1,75 2798 7	2,660 7787 2	- 9,38 E-05	0,000 2420 9	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	PHENO L	UNIF AC °	K	1,73 4737 26	- 1,730 4072 2	- 652,8 5963 1	196,9 3570 7	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	H2CO3	UNIF AC °	K	1,18 7159 8	- 0,665 5497 2	52,66 6806 1	- 33,12 4453 7	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	HEMEC ELL	UNIF AC °	K	- 2,56 7086	4,673 8088 8	- 331,6 8358 4	1470, 5744 2	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	GLUCO SE	UNIF AC °	K	3,43 7856 4	8,237 3196 7	- 347,7 5780 7	2492, 0590 9	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	TRIOLE IN	UNIF AC °	K	- 25,4 5621	- 7,11 E-15	- 1185, 2535 4	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	TRIPAL M	UNIF AC °	K	- 22,9 4642	- 7,11 E-15	- 1142, 1665	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	PALM	UNIF AC °	K	6,07 9059 4	- 7,11 E-15	- 822,9 4140 6	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15

												•			
CO2	SN-1 01	UNIF AC °	K	- 16,3 9109 1	- 7,11 E-15	- 1573, 1662	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	SN-1 02	UNIF AC °	K	- 16,2 3564 5	- 7,11 E-15	- 1565, 3322 1	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	FURFU RAL	UNIF AC °	K	- 1,73 0599	2,610 8968 7	3,60 E-05	- 9,19 E-05	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	LINOLE IC	UNIF AC °	K	- 6,53 8958 9	- 7,11 E-15	- 778,4 8297	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	ETHAN OL	UNIF AC °	K	- 1,29 9324 7	1,636 9250 9	- 339,7 3661 2	751,3 6910 9	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	ACETA TE	UNIF AC °	K	- 1,19 1804 1	1,467 3564 7	- 337,3 7940 1	700,0 1390 2	0,	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	HISTIDI N	UNIF AC °	K	0,55 3730 8	0,472 6811	122,8 2788 5	- 44,43 5339 1	0,	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	LYSINE	UNIF AC °	K	0,85 1463 86	- 0,420 0195 2	- 39,74 7054	114,5 4764 5	0,	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	PHENY LAL	UNIF AC °	K	0,85 7159 08	- 0,295 2800 3	- 258,6 2550 6	194,4 8621 3	0,	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	CYSTEI NE	UNIF AC °	K	0,20 4327 88	0,139 6669 6	270,7 4326 8	- 65,98 7198	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	THREO NIN	UNIF AC °	K	0,40 5406 86	- 0,062 9372 4	457,1 2171 1	10,08 5555	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	SERIN E	UNIF AC °	K	0,28 0407 28	0,160 9676 4	511,4 0814 7	- 13,30 6173 6	0,	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	LEUCIN E	UNIF AC °	K	0,59 6957 8	- 0,232 2515 2	- 40,42 8768 7	217,4 2055 5	0,	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	ISOLEU CI	UNIF AC °	K	0,59 6957 8	- 0,232 2515 2	- 40,42 8768 7	217,4 2055 5	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	GLUTA MIC	UNIF AC °	K	0,80 0274 07	- 0,146 2516	220,3 6450 2	26,04 7240 6	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	ASPAR TIC	UNIF AC °	K	0,65 3708 38	0,049 9839 5	275,0 8756 3	23,62 9211 2	0, 3	0	0	0	0	0	273 ,15	373, 15

C5H7N O2	GLYCI NE	UNIF AC °	K	- 0,20 2183 6	0,632 8266 3	234,7 5958 9	- 100,6 7299 2	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	ALANIN E	UNIF AC °	K	- 0,01 3355 5	0,352 3666 8	116,3 7200 2	- 6,832 7331 1	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	PROLI NE	UNIF AC °	K	0,18 5334 08	0,201 5851	85,37 9917 6	72,16 6858 3	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	HYDRO GEN	UNIF AC °	K	25,6 8599 48	5,478 7606 3	6782, 3634 4	- 384,0 5122 6	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	METHA NE	UNIF AC °	K	- 1,47 2738 8	0,812 8474 6	95,71 2543	1020, 9267 2	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	H2S	UNIF AC °	K	5,08 2336 17	- 2,649 1928 1	1034, 2132 9	- 245,2 9489 5	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	CH4S	UNIF AC °	K	3,20 1897 14	- 1,972 6324 8	- 88,38 9276 1	23,64 0755 3	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	BENZE NE	UNIF AC °	K	- 0,54 7984 3	0,645 5357 2	40,64 8095 8	236,5 9555 1	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	PHENO L	UNIF AC °	K	1,01 0007 03	- 1,375 3298 9	2333, 6883 4	- 724,9 2166 7	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	H2CO3	UNIF AC °	K	- 0,31 6965 2	1,065 5198 2	470,5 4234 7	77,27 8320 2	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	HEMEC ELL	UNIF AC °	K	0,61 5540 07	- 0,048 1158 2	95,00 3083 6	107,9 9101 8	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	GLUCO SE	UNIF AC °	K	1,12 8208 71	- 0,870 9007 1	787,4 6749 2	360,1 4196 7	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	TRIOLE IN	UNIF AC °	K	2,22 4907 63	- 2,482 3066 4	1992, 1783 7	997,5 7807 9	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	TRIPAL M	UNIF AC °	K	2,09 7370 25	- 2,464 1034 3	1920, 2580 5	1047, 6803 4	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	PALM	UNIF AC °	K	1,54 0271 12	- 1,225 6573 6	511,8 1220 2	506,5 9912 1	0, 3	0	0	0	0	0	273 ,15	373, 15

Γ	T	1	ı		1						1			ı	1
C5H7N O2	SN-1 01	UNIF AC °	K	2,16 1120 5	1,943 1566	938,4 0942 4	565,3 4933 9	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	SN-1 02	UNIF AC °	K	2,22 1711 44	- 1,899 4652	851,7 2359 6	517,7 9677 1	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	FURFU RAL	UNIF AC °	К	- 0,75 7220 5	0,891 9036 9	82,28 6211 8	- 301,0 2230 4	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	LINOLE IC	UNIF AC °	K	1,87 3616 11	- 1,157 1406 7	276,0 6472 3	512,8 2466 8	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	ETHAN OL	UNIF AC °	К	- 0,67 3539 1	0,632 7175 8	107,8 1229 7	314,5 3847 1	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	ACETA TE	UNIF AC °	K	- 0,52 1194	0,775 3445 6	29,57 9617 8	127,7 7904 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	LYSINE	UNIF AC °	К	0,50 0475 6	- 0,070 4579	95,08 2190 9	14,00 2533 5	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	PHENY LAL	UNIF AC °	K	0,34 7709 3	- 0,164 9444 7	51,64 2334 8	- 20,99 1621	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	CYSTEI NE	UNIF AC °	К	- 0,29 1750 5	0,519 8596 4	67,25 1930 8	- 46,86 7507 3	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	THREO NIN	UNIF AC °	K	0,31 6327 84	0,361 1685	11,32 1406 5	11,30 4210 2	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	SERIN E	UNIF AC °	К	0,15 0227 09	0,662 8853 3	18,96 6289 6	5,248 7893	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	LEUCIN E	UNIF AC °	K	0,42 2607 63	0,069 2979 1	108,6 9954 7	57,96 9995 9	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	ISOLEU CI	UNIF AC °	К	0,42 2607 63	0,069 2979 1	108,6 9954 7	57,96 9995 9	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	GLUTA MIC	UNIF AC °	К	0,29 0106 92	0,172 6506 8	9,388 0577 8	- 0,011 3040 2	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	ASPAR TIC	UNIF AC °	K	0,09 5160 86	0,420 9877	21,55 3725 1	- 14,44 3795 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	GLYCI NE	UNIF AC °	K	- 0,56 8859 9	1,138 1440 9	36,18 4876 3	9,733 5931 9	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	ALANIN E	UNIF AC °	К	- 0,36 0785 2	0,825 1112 3	20,51 6500 3	4,065 9780 2	0, 3	0	0	0	0	0	273 ,15	373, 15

HISTIDI N	PROLI NE	UNIF AC °	К	- 0,32 5514 3	0,538 2324 6	97,02 7416 7	- 109,2 7082 5	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	HYDRO GEN	UNIF AC °	K	14,5 9050 76	- 4,317 4213 2	794,4 6745 9	- 91,18 1973 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	METHA NE	UNIF AC °	K	- 1,50 1860 4	1,358 1619 5	247,7 6942 5	1054, 9116	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	H2S	UNIF AC°	K	3,56 6264 48	- 2,129 8296 5	284,1 3200 5	- 98,35 9121	0,	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	CH4S	UNIF AC °	K	- 0,76 1073	0,650 7226 9	199,2 4801 6	- 224,9 4241	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	BENZE NE	UNIF AC°	K	- 0,65 0673 5	0,594 0427	70,35 5961 1	686,9 1438 4	0,	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	PHENO L	UNIF AC °	K	2,48 9206 64	- 1,658 6639 8	133,2 0014	- 22,09 2856 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	H2CO3	UNIF AC °	K	- 0,36 456	1,772 2606 1	- 48,18 3796 5	2,913 8185 1	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	HEMEC ELL	UNIF AC °	K	0,14 0517 74	0,312 3794 2	- 103,6 2554 1	28,62 0222 7	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	GLUCO SE	UNIF AC °	K	1,78 5414 82	- 0,061 7548 8	- 369,1 6380 6	- 159,6 7334 1	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	TRIOLE IN	UNIF AC °	K	3,59 6983 17	- 1,854 3643 3	3601, 4260 4	1395, 3159 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	TRIPAL M	UNIF AC °	K	3,43 1188 79	- 1,894 9897 4	3308, 3447 3	1453, 3421 1	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	PALM	UNIF AC °	K	1,70 5671 01	- 0,461 0661 5	1152, 4241 1	91,80 1608 2	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	SN-1 01	UNIF AC °	K	3,51 3136 23	- 1,340 5730 4	1466, 3680 6	643,2 3698 6	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	SN-1 02	UNIF AC °	K	3,58 6610 42	- 1,312 7206 3	1353, 265	604,9 7239 6	0, 3	0	0	0	0	0	273 ,15	373, 15

	,		•									•			
HISTIDI N	FURFU RAL	UNIF AC °	K	- 0,53 8340 2	0,516 1147 7	- 202,1 4822 1	665,2 6450 8	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	LINOLE IC	UNIF AC °	К	2,07 3976 98	- 0,962 4362 8	661,1 9712 4	602,7 9436 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	ETHAN OL	UNIF AC °	K	- 1,31 9723	2,409 3160 8	697,9 7578 8	- 1075, 5769 2	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	ACETA TE	UNIF AC °	K	- 0,80 5039 8	1,316 7798 6	- 29,37 3244 4	- 23,53 3014 9	0,	0	0	0	0	0	273 ,15	373, 15
LYSINE	PHENY LAL	UNIF AC °	K	- 0,35 7554 2	0,412 8854 9	325,6 4216 3	- 291,7 5150 8	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	CYSTEI NE	UNIF AC °	K	- 0,53 7266 8	0,650 2008 3	28,20 5563 8	68,66 1029 8	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	THREO NIN	UNIF AC °	K	- 2,36 0424 1	2,783 2965 9	1281, 8378 1	- 1531, 2884 8	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	SERIN E	UNIF AC °	K	- 0,35 9963	0,664 3561 5	3,406 4127 8	- 55,09 7080 7	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	LEUCIN E	UNIF AC °	K	- 1,14 0806 1	1,199 3650 3	686,8 5105 2	- 687,0 0059 8	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	ISOLEU CI	UNIF AC °	K	- 1,14 0806 1	1,199 3650 3	686,8 5105 2	- 687,0 0059 8	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	GLUTA MIC	UNIF AC °	K	- 0,95 1115 9	1,070 3661 4	532,6 3451 6	- 553,1 0093 6	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	ASPAR TIC	UNIF AC °	K	0,30 3420 3	0,426 5779 8	29,85 0917 1	78,61 8748 3	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	GLYCI NE	UNIF AC °	K	- 0,75 6445 6	0,813 7842	19,66 9197 1	118,4 4615 4	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	ALANIN E	UNIF AC °	K	1,28 8387	- 1,026 4781 2	- 31,53 9931 8	20,26 6346	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	PROLI NE	UNIF AC °	K	- 0,15 7351 5	0,067 7306 7	404,7 2836 7	- 320,7 4305 5	0, 3	0	0	0	0	0	273 ,15	373, 15

LYSINE	HYDRO GEN	UNIF AC °	K	- 7,11 E-15	- 7,365 6759 7	3000 0	- 332,6 2963 6	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	METHA NE	UNIF AC °	K	- 1,66 3082 7	0,386 9367 2	59,78 8479 7	1342, 1857 9	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	H2S	UNIF AC °	К	6,79 4522 78	- 3,068 956	1062, 2846 6	- 205,2 8626 6	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	CH4S	UNIF AC °	K	4,11 9308 23	- 2,310 9812 4	153,4 1498 8	- 53,09 0092	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	BENZE NE	UNIF AC °	K	- 0,85 5433 9	0,862 3641 1	52,33 8360 8	628,8 4310 6	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	PHENO L	UNIF AC °	K	- 43,5 6682 2	8,227 3126 7	5380 0,554 9	9379, 4056 6	0,	0	0	0	0	0	273 ,15	373, 15
LYSINE	H2CO3	UNIF AC °	K	- 0,67 1561 1	1,220 0674 5	- 113,8 3486 7	223,7 0162 4	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	HEMEC ELL	UNIF AC °	K	0,63 0109 22	- 0,614 9886	428,7 887	- 272,0 9426 3	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	GLUCO SE	UNIF AC °	K	2,17 1320 55	- 0,958 2536 9	- 1011, 5747 8	3,428 2436 6	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	TRIOLE IN	UNIF AC °	K	2,16 8626 19	2,380 4575 3	1798, 9694 9	1162, 5487 4	0,	0	0	0	0	0	273 ,15	373, 15
LYSINE	TRIPAL M	UNIF AC °	K	2,14 0505 99	- 2,310 9408 4	1493, 3410 5	1125, 4854 9	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	PALM	UNIF AC °	K	0,03 4766 05	- 0,105 1778 2	1504, 9979 6	- 558,4 9728 3	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	SN-1 01	UNIF AC °	K	1,74 3352 36	- 1,380 3614 4	868,9 0315 9	182,0 3889 6	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	SN-1 02	UNIF AC °	K	1,79 4156 66	- 1,373 5859 9	838,5 0884 4	179,8 0709 3	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	FURFU RAL	UNIF AC °	K	- 0,69 0396 3	0,714 1848 6	- 207,4 6358	648,6 3725	0, 3	0	0	0	0	0	273 ,15	373, 15

LYSINE	LINOLE IC	UNIF AC °	K	1,28 9983 94	- 0,908 0278 1	290,1 6625 6	458,0 8968 9	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	ETHAN OL	UNIF AC °	К	0,69 1091 97	- 1,223 8427 3	2214, 2709 4	- 690,3 9109	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	ACETA TE	UNIF AC °	К	2,64 7096 63	- 1,758 2531 4	285,0 6754 1	- 112,8 5567 1	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	CYSTEI NE	UNIF AC °	K	- 0,40 2116	0,536 0656 1	- 15,14 9864 1	95,81 5013 2	0,	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	THREO NIN	UNIF AC °	K	- 0,03 8171 4	0,457 4019 9	100,7 3464 1	6,694 1752 7	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	SERIN E	UNIF AC°	K	- 0,13 3535 1	0,722 2693 8	146,3 6356 7	20,45 9534 5	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	LEUCIN E	UNIF AC °	K	- 0,41 4504 8	0,571 7742 9	199,4 9443	- 206,2 0026 4	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	ISOLEU CI	UNIF AC °	K	- 0,41 4504 8	0,571 7742 9	199,4 9443	- 206,2 0026 4	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	GLUTA MIC	UNIF AC °	K	- 0,09 1609 7	0,311 5415 6	183,7 9629	- 91,19 1862 3	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	ASPAR TIC	UNIF AC °	K	- 0,19 7937 8	0,519 2949	199,2 5562 6	- 36,18 1663 3	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	GLYCI NE	UNIF AC °	K	- 0,76 0932 2	1,048 5724 2	88,06 0538 7	82,32 5489 6	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	ALANIN E	UNIF AC °	K	- 0,89 2233 5	1,204 4800 3	222,1 2072 5	- 293,2 7351 6	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	PROLI NE	UNIF AC °	K	0,54 9933 6	- 0,522 8464 1	276,0 926	- 188,9 1262 5	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	HYDRO GEN	UNIF AC °	K	- 7,11 E-15	- 6,646 945	3000 0	327,2 9002 2	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	METHA NE	UNIF AC °	K	12,7 5227 85	- 18,82 2721	- 7800, 1277 1	1162 2,174 6	0, 3	0	0	0	0	0	273 ,15	373, 15

PHENY LAL	H2S	UNIF AC °	K	6,13 2782 57	- 2,908 7278 3	950,0 8976 9	- 204,0 9855 2	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	CH4S	UNIF AC °	K	3,74 3066 03	- 2,177 3828 5	255,1 4050 8	- 101,0 7177 2	0,	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	BENZE NE	UNIF AC °	K	- 0,82 4260 8	0,650 8548 4	- 22,15 4964 4	526,0 2298	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	PHENO L	UNIF AC °	K	- 15,4 5202 8	0,400 3405 6	1552 4,763 1	- 2475, 3439 8	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	H2CO3	UNIF AC °	K	- 0,56 6215 5	1,747 7184 8	137,6 1293 6	120,8 7057 7	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	HEMEC ELL	UNIF AC °	K	- 0,88 9288 2	1,087 9088	560,0 8780 9	- 588,0 6517 8	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	GLUCO SE	UNIF AC °	K	1,60 2678 74	- 0,038 5969 1	- 240,0 5189 5	- 1,397 1287 5	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	TRIOLE IN	UNIF AC °	K	2,64 1078	2,134 6398 9	1133, 6396 5	752,8 4559 8	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	TRIPAL M	UNIF AC °	K	2,57 2045 34	2,075 5448 6	965,6 6215 8	750,7 9034	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	PALM	UNIF AC °	K	0,85 4313 73	- 0,488 1933 9	797,3 8190 3	- 185,9 3030 5	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	SN-1 01	UNIF AC °	K	2,19 6395 2	- 1,427 1702 6	471,7 6532	166,3 8782 2	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	SN-1 02	UNIF AC °	K	2,24 1613 37	- 1,408 0965 4	429,7 7673 9	152,9 2623 4	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	FURFU RAL	UNIF AC °	K	- 0,73 0364 8	0,520 8030 4	- 172,9 4510 1	599,0 9498 7	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	LINOLE IC	UNIF AC °	K	1,37 9001 71	- 0,933 0855 7	183,7 7192 7	349,2 9030 6	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	ETHAN OL	UNIF AC °	K	5,94 5989 8	7,562 6705 8	3339, 4621 3	- 4252, 5633 7	0, 3	0	0	0	0	0	273 ,15	373, 15

PHENY LAL	ACETA TE	UNIF AC °	К	1,65 9917 5	- 1,274 3206 9	154,8 7224 6	- 71,92 8626 6	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	THREO NIN	UNIF AC °	К	0,49 8637 73	- 0,311 3314 4	110,9 4189 6	80,76 3361 8	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	SERIN E	UNIF AC °	K	0,33 3800 4	- 0,080 2463 3	141,8 1479 1	47,37 0984 8	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	LEUCIN E	UNIF AC °	K	0,54 6150 92	- 0,368 3945 9	144,4 9232 6	39,20 9157	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	ISOLEU CI	UNIF AC °	K	0,54 6150 92	- 0,368 3945 9	144,4 9232 6	39,20 9157	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	GLUTA MIC	UNIF AC °	K	0,59 6867 98	- 0,548 4345 8	- 188,1 4251 7	119,3 4966 8	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	ASPAR TIC	UNIF AC °	K	0,31 5707 45	- 0,281 1528 9	- 131,1 6608 1	88,12 2272 1	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	GLYCI NE	UNIF AC °	K	- 1,77 6877	2,091 1662 2	945,3 9516 3	- 1090, 7135	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	ALANIN E	UNIF AC °	К	- 0,96 7655 7	0,994 3662 6	630,8 4006	- 606,8 8219 8	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	PROLI NE	UNIF AC °	K	- 0,37 7236 5	0,371 6790 1	377,3 2321 3	- 322,9 8857 5	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	HYDRO GEN	UNIF AC °	K	11,9 4389 43	- 3,957 3183 5	- 0,001 3006	- 9,34 E-05	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	METHA NE	UNIF AC °	K	- 1,37 5203 4	1,211 4692 3	253,8 2446 3	1043, 8105 7	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	H2S	UNIF AC °	K	3,23 9261 83	- 1,993 5933 7	- 0,000 2871 4	3,07 E-06	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	CH4S	UNIF AC °	K	1,84 1857 28	- 1,351 5707 7	- 0,000 1156 2	2,98 E-05	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	BENZE NE	UNIF AC °	K	- 0,42 0397 7	0,506 0565	97,24 1269 7	698,3 0499	0, 3	0	0	0	0	0	273 ,15	373, 15

CYSTEI NE	PHENO L	UNIF AC °	K	1,92 9045 07	- 1,372 9157 4	363,7 4040 6	- 121,1 7869 7	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	H2CO3	UNIF AC °	K	- 0,32 6498 5	0,914 7586 2	96,98 5770 8	20,29 7917 2	0,	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	HEMEC ELL	UNIF AC °	K	0,15 5125 94	- 0,162 8587 5	- 172,5 8302 6	74,92 5831 1	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	GLUCO SE	UNIF AC °	K	1,80 7983 68	- 0,869 2781 6	29,50 4662 5	272,8 6860 3	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	TRIOLE IN	UNIF AC °	K	1,67 8091 06	- 2,598 1516 8	4176, 1812 3	1529, 2755	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	TRIPAL M	UNIF AC °	K	1,65 5262 88	- 2,642 5357 9	3755, 1464 6	1568, 6041 4	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	PALM	UNIF AC °	K	1,76 0091	- 1,148 1906 5	1054, 3589 5	534,1 1406 9	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	SN-1 01	UNIF AC °	K	2,38 2883 2	- 2,079 3422 5	1860, 2661 9	907,2 5575 2	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	SN-1 02	UNIF AC °	K	2,48 4364 22	2,039 0344 5	1764, 6487 1	867,7 6392 5	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	FURFU RAL	UNIF AC °	K	- 0,38 1706 4	0,437 9017 2	- 256,3 5867 4	741,8 4854	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	LINOLE IC	UNIF AC °	K	1,92 5878 4	- 1,266 6344 9	787,6 9657 9	581,3 8827 3	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	ETHAN OL	UNIF AC °	K	- 0,23 5570 9	0,506 6369 4	29,79 1596 4	278,4 1971 6	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	ACETA TE	UNIF AC °	K	0,96 7346 21	- 0,857 7909 5	425,6 5298 2	- 235,1 2705 9	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	SERIN E	UNIF AC °	K	- 1,08 1280 3	1,011 2168 4	734,1 3952 8	- 672,1 5935 8	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	LEUCIN E	UNIF AC °	K	0,09 9178 64	0,211 6484 5	43,87 8348 4	51,90 5653 1	0, 3	0	0	0	0	0	273 ,15	373, 15

			1							•	•				
THREO NIN	ISOLEU CI	UNIF AC °	K	0,09 9178 64	0,211 6484 5	43,87 8348 4	51,90 5653 1	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	GLUTA MIC	UNIF AC °	K	- 0,59 6963 1	0,557 5375 3	502,6 0173 9	- 444,2 7891	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	ASPAR TIC	UNIF AC °	K	- 1,12 0461 6	1,220 5499 8	631,0 3617 5	- 646,7 5498 2	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	GLYCI NE	UNIF AC °	K	14,5 7058 97	- 11,35 1662 6	- 8332, 4073 6	6511, 4371 5	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	ALANIN E	UNIF AC °	K	0,71 4959 18	- 0,635 2938 8	192,7 0159 9	- 134,4 8872 9	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	PROLI NE	UNIF AC °	K	- 0,16 5466 3	0,455 9581 6	- 11,01 5389 7	56,91 7786 2	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	HYDRO GEN	UNIF AC °	K	25,4 6057 37	- 6,411 5899	1354 4,831 2	- 197,9 1613 8	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	METHA NE	UNIF AC °	K	- 1,81 4631 9	1,011 1920 9	365,8 4945 4	1788, 8438 6	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	H2S	UNIF AC °	K	5,88 7431 93	2,830 8650 2	529,0 9308 1	- 126,3 7949 4	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	CH4S	UNIF AC °	K	- 1,10 0483	0,669 7446 2	- 74,69 1882 3	804,5 0760 7	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	BENZE NE	UNIF AC °	K	- 0,65 7834 6	0,746 0244 5	297,5 5000 3	1210, 0194 2	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	PHENO L	UNIF AC °	K	- 24,3 0231 8	1,442 8740 9	2166 6,802 3	- 3179, 0083 7	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	H2CO3	UNIF AC °	K	- 0,65 5504	0,787 9471 2	- 32,76 9031 3	169,9 2425	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	HEMEC ELL	UNIF AC °	K	- 0,50 0942 6	0,660 7987 2	221,5 6979 8	- 228,4 2971 6	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	GLUCO SE	UNIF AC °	K	- 0,82 1394 4	0,710 2476 2	- 534,2 1429 4	1091, 6565 7	0, 3	0	0	0	0	0	273 ,15	373, 15

				2,61	l -	4868,	2175,								
THREO NIN	TRIOLE IN	UNIF AC °	K	0333	2,033 7833	6224 9	7407 9	0, 3	0	0	0	0	0	,15	373, 15
THREO NIN	TRIPAL M	UNIF AC °	K	2,52 6333 76	2,191 1508 5	4065, 4489 7	2232, 7315 9	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	PALM	UNIF AC °	K	1,54 3685 03	- 0,423 0119 2	776,7 8567 9	492,5 5679 2	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	SN-1 01	UNIF AC °	K	2,80 4846 3	- 1,619 3207 2	1783, 7353 9	1249, 2267 5	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	SN-1 02	UNIF AC °	K	2,82 1644 6	- 1,607 2680 4	1815, 0272 2	1241, 4393 3	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	FURFU RAL	UNIF AC °	K	- 0,49 4521 5	0,661 3049 8	- 124,3 7343 7	953,8 4760 2	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	LINOLE IC	UNIF AC °	K	1,70 7940 89	- 0,921 9000 8	902,5 6831 8	1078, 0156 4	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	ETHAN OL	UNIF AC °	K	0,56 5904 2	- 0,689 4007 5	825,7 5006 5	- 402,8 2227 6	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	ACETA TE	UNIF AC °	K	1,97 2829 25	- 1,426 1458 8	- 152,5 0442 8	82,01 4821 3	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	LEUCIN E	UNIF AC °	K	0,35 4423 17	0,097 973	85,43 9240 7	97,09 5693 8	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	ISOLEU CI	UNIF AC °	K	0,35 4423 17	0,097 973	85,43 9240 7	97,09 5693 8	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	GLUTA MIC	UNIF AC °	K	- 0,03 2450 1	0,097 1518	218,5 9787 3	- 191,3 3019 2	0,	0	0	0	0	0	273 ,15	373, 15
SERIN E	ASPAR TIC	UNIF AC °	K	- 0,54 0121 3	0,521 9689 3	462,7 9704 6	- 412,1 2631	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	GLYCI NE	UNIF AC °	K	1,23 7423 26	- 0,997 3559 7	171,3 9157 2	- 112,5 7629 8	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	ALANIN E	UNIF AC °	K	- 1,81 9887 3	2,084 6897 4	1012, 2608	- 1133, 6526 3	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	PROLI NE	UNIF AC °	K	0,07 7311 24	0,331 7556 9	- 16,19	99,14 2790 2	0, 3	0	0	0	0	0	273 ,15	373, 15

						8767 3									
SERIN E	HYDRO GEN	UNIF AC °	K	24,4 0595 06	- 5,275 2211 7	820,1 5967 5	- 63,71 2410 9	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	METHA NE	UNIF AC °	K	- 1,68 4529 6	1,135 6132	449,4 8295 2	1874, 5399 3	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	H2S	UNIF AC °	K	4,64 6828 64	- 2,475 8841 9	152,4 0498 3	- 49,63 0495 9	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	CH4S	UNIF AC °	K	- 1,02 7408 8	0,878 1306 8	- 17,94 5160 3	752,7 7218 7	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	BENZE NE	UNIF AC °	K	- 0,44 5008 3	0,642 8134	366,8 1100 7	1314, 6114	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	PHENO L	UNIF AC °	K	21,0 9788 8	1,408 2930 8	1913 7,414 8	- 3052, 7001 7	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	H2CO3	UNIF AC °	K	- 2,90 7880 5	3,629 7662 1	1516, 9377 7	- 1916, 8225 2	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	HEMEC ELL	UNIF AC °	K	0,02 2238 94	0,154 8374 3	- 19,56 9181 5	65,11 1859	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	GLUCO SE	UNIF AC °	K	- 1,30 2717	1,555 7293 7	- 434,1 3922 1	1012, 7752 8	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	TRIOLE IN	UNIF AC °	K	3,34 5145 14	- 1,601 2862 6	6237, 1463 8	2185, 3651 1	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	TRIPAL M	UNIF AC °	K	3,08 2909 02	- 1,812 2845 1	5298, 9058 2	2293, 8665 9	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	PALM	UNIF AC °	K	1,85 3610 45	- 0,494 5105 8	1059, 7843 7	686,6 6796 4	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	SN-1 01	UNIF AC °	K	3,06 5004 37	- 1,548 5691 3	2612, 9469 6	1480, 7343 9	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	SN-1 02	UNIF AC °	K	3,08 2907 16	- 1,530 8027 6	2652, 4354 7	1469, 8693 2	0, 3	0	0	0	0	0	273 ,15	373, 15

SERIN E	FURFU RAL	UNIF AC °	К	- 0,30 3150 7	0,581 2303 7	- 130,5 5730 4	985,3 9729 4	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	LINOLE IC	UNIF AC °	K	1,96 6399 66	- 0,989 6890 6	1297, 4015 4	1298, 6037 2	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	ETHAN OL	UNIF AC °	K	- 0,41 1153 7	0,069 4173 1	993,3 9475	- 584,3 2307 4	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	ACETA TE	UNIF AC °	K	- 0,71 6845 8	0,777 6039 9	50,23 3689 1	136,0 8930 7	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	ISOLEU CI	UNIF AC °	K	- 0,54 6413 6	0,424 8955 6	534,5 6771 6	- 442,4 3425 3	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	GLUTA MIC	UNIF AC °	K	0,07 6948 63	0,081 8793 7	104,2 7991 3	71,44 1095 2	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	ASPAR TIC	UNIF AC °	K	0,06 3863 3	0,314 8906	154,1 8321 4	140,5 3321 3	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	GLYCI NE	UNIF AC °	K	- 0,68 3539 7	0,939 3106 2	122,1 5275 7	110,3 3488	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	ALANIN E	UNIF AC °	K	- 0,79 6820 8	0,991 7533 1	228,6 9732 8	- 242,3 9839 7	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	PROLI NE	UNIF AC °	K	- 0,89 3051 9	1,141 3718 4	371,5 0651 1	- 442,0 8563 9	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	HYDRO GEN	UNIF AC °	K	- 7,11 E-15	- 6,649 5343 2	3000 0	- 472,5 5101 3	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	METHA NE	UNIF AC °	K	- 4,94 5220 3	4,982 7899 9	2550, 2719 3	- 2800, 5172 8	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	H2S	UNIF AC °	K	6,05 5075 19	- 2,927 2116 5	1490, 5968 6	- 293,5 6869	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	CH4S	UNIF AC °	K	3,76 7038 11	- 2,192 5462	294,8 5226 8	- 109,6 2168 2	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	BENZE NE	UNIF AC °	K	- 0,71 4908 7	0,657 8023	- 19,78 8789	497,3 7618 1	0, 3	0	0	0	0	0	273 ,15	373, 15

LEUCIN E	PHENO L	UNIF AC °	K	- 13,8 3901 4	0,480 4874 3	1398 5,762 1	- 2431, 5671 9	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	H2CO3	UNIF AC °	K	- 0,42 7173 5	1,230 5511 7	90,43 5673 2	331,4 3167 9	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	HEMEC ELL	UNIF AC °	K	- 0,34 1780 8	0,458 6936 8	159,3 1305 6	- 121,7 4608 6	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	GLUCO SE	UNIF AC °	K	1,96 3798 78	- 0,398 5994 2	- 452,1 5562 5	8,615 027	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	TRIOLE IN	UNIF AC °	K	1,41 8474 55	- 2,297 4008 7	1072, 4463 2	538,4 8013 8	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	TRIPAL M	UNIF AC °	K	1,28 0554 47	- 2,185 4838 3	907,0 9629 9	518,3 4848 6	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	PALM	UNIF AC °	K	0,15 8497 37	- 0,462 4720 7	1106, 3474 2	- 448,5 7147 7	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	SN-1 01	UNIF AC °	K	- 12,3 0070 6	6,772 6504 1	7829, 1134 5	- 4485, 1056 2	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	SN-1 02	UNIF AC °	K	- 14,5 6972 3	9,121 6575	9110, 9311 2	- 5771, 5621 3	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	FURFU RAL	UNIF AC °	K	- 0,53 3465 9	0,634 4907 3	- 166,9 1279 1	545,1 5164 2	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	LINOLE IC	UNIF AC °	K	1,19 3344 57	- 1,010 6538 8	186,2 1877 2	203,9 5087 8	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	ETHAN OL	UNIF AC °	K	0,41 0875 41	- 0,683 3743 8	1137, 2122 2	- 540,2 2666 3	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	ACETA TE	UNIF AC °	K	2,12 6038 62	- 1,506 6186 3	- 184,4 5632 3	99,50 8124 7	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	GLUTA MIC	UNIF AC °	K	0,07 6948 63	0,081 8793 7	104,2 7991 3	71,44 1095 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	ASPAR TIC	UNIF AC °	К	- 0,06 3863 3	0,314 8906	154,1 8321 4	140,5 3321 3	0, 3	0	0	0	0	0	273 ,15	373, 15

ISOLEU CI	GLYCI NE	UNIF AC °	К	- 0,68 3539 7	0,939 3106 2	122,1 5275 7	110,3 3488	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	ALANIN E	UNIF AC °	K	- 0,79 6820 8	0,991 7533 1	228,6 9732 8	- 242,3 9839 7	0,	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	PROLI NE	UNIF AC °	K	- 0,89 3051 9	1,141 3718 4	371,5 0651 1	- 442,0 8563 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	HYDRO GEN	UNIF AC °	K	- 7,11 E-15	- 6,649 5343 2	3000 0	- 472,5 5101 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	METHA NE	UNIF AC °	K	- 4,94 5220 3	4,982 7899 9	2550, 2719 3	- 2800, 5172 8	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	H2S	UNIF AC °	K	6,05 5075 19	- 2,927 2116 5	1490, 5968 6	- 293,5 6869	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	CH4S	UNIF AC °	K	3,76 7038 11	- 2,192 5462	294,8 5226 8	- 109,6 2168 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	BENZE NE	UNIF AC °	K	- 0,71 4908 7	0,657 8023	- 19,78 8789	497,3 7618 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	PHENO L	UNIF AC °	K	- 13,8 3901 4	0,480 4874 3	1398 5,762 1	- 2431, 5671 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	H2CO3	UNIF AC °	K	- 0,42 7173 5	1,230 5511 7	90,43 5673 2	331,4 3167 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	HEMEC ELL	UNIF AC °	K	- 0,34 1780 8	0,458 6936 8	159,3 1305 6	- 121,7 4608 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	GLUCO SE	UNIF AC °	K	1,96 3798 78	- 0,398 5994 2	- 452,1 5562 5	8,615 027	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	TRIOLE IN	UNIF AC °	K	1,41 8474 55	2,297 4008 7	1072, 4463 2	538,4 8013 8	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	TRIPAL M	UNIF AC °	K	1,28 0554 47	- 2,185 4838 3	907,0 9629 9	518,3 4848 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	PALM	UNIF AC °	K	0,15 8497 37	- 0,462 4720 7	1106, 3474 2	- 448,5 7147 7	0, 3	0	0	0	0	0	273 ,15	373, 15

ISOLEU CI	SN-1 01	UNIF AC °	K	12,3 0070 6	6,772 6504 1	7829, 1134 5	- 4485, 1056 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	SN-1 02	UNIF AC °	K	- 14,5 6972 3	9,121 6575	9110, 9311 2	- 5771, 5621 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	FURFU RAL	UNIF AC °	К	- 0,53 3465 9	0,634 4907 3	- 166,9 1279 1	545,1 5164 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	LINOLE IC	UNIF AC°	K	1,19 3344 57	- 1,010 6538 8	186,2 1877 2	203,9 5087 8	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	ETHAN OL	UNIF AC °	K	0,41 0875 41	- 0,683 3743 8	1137, 2122 2	- 540,2 2666 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	ACETA TE	UNIF AC °	K	2,12 6038 62	- 1,506 6186 3	- 184,4 5632 3	99,50 8124 7	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	ASPAR TIC	UNIF AC °	K	1,10 3402 4	1,040 0812 2	737,4 3756 9	- 679,1 0969 3	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	GLYCI NE	UNIF AC °	K	1,46 6470 57	- 1,136 4091 8	38,60 3569 2	- 23,23 2824 9	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	ALANIN E	UNIF AC °	K	0,95 9145 68	- 0,805 9264 9	- 36,56 0269 6	26,35 1345 8	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	PROLI NE	UNIF AC °	K	- 0,42 2360 3	0,615 3590 1	80,97 3685 5	- 72,23 6309 9	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	HYDRO GEN	UNIF AC °	K	2,49 8695 01	- 6,334 8810 5	2838 5,093 4	- 336,1 5649 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	METHA NE	UNIF AC °	K	- 1,75 3031 7	1,008 9751 4	307,1 3474 3	1463, 9799 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	H2S	UNIF AC °	K	5,81 2322 42	- 2,833 7928 7	956,7 1108 3	- 209,6 2080 6	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	CH4S	UNIF AC °	К	3,61 3104 9	2,144 9651 8	402,1 6381 7	- 140,8 3181 8	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	BENZE NE	UNIF AC °	K	- 0,75 7209 2	0,783 9317 5	212,0 1172 8	1001, 3405 4	0, 3	0	0	0	0	0	273 ,15	373, 15

GLUTA MIC	PHENO L	UNIF AC °	K	- 10,9 2333	0,413 7114	1162 1,503 8	- 2239, 0351	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	H2CO3	UNIF AC °	K	- 0,66 5121 2	1,029 1256 5	- 56,06 7675 3	66,95 1078 8	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	HEMEC ELL	UNIF AC °	K	- 0,02 0335 7	- 0,001 8727 3	217,9 7867 9	- 189,6 0537 2	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	GLUCO SE	UNIF AC °	K	- 0,37 0524	- 0,148 8365 8	- 789,0 4847 7	1570, 6401 7	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	TRIOLE IN	UNIF AC °	K	2,20 0360 95	- 2,077 5759 7	4851, 0624 7	1928, 6554 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	TRIPAL M	UNIF AC °	K	1,96 4104 86	- 2,324 0250 6	4038, 1661 4	2010, 4816 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	PALM	UNIF AC °	K	1,28 5310 43	- 0,465 6252 1	1102, 9746 2	255,9 2138 8	0,	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	SN-1 01	UNIF AC °	K	2,55 4943 84	- 1,611 7756 5	1864, 2768 8	1006, 8622 1	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	SN-1 02	UNIF AC °	K	2,67 2884 66	- 1,562 5202 4	1873, 1205 9	990,5 1445 9	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	FURFU RAL	UNIF AC °	K	- 0,57 0257 8	0,673 3536 6	- 244,1 8425 3	940,5 7380 6	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	LINOLE IC	UNIF AC °	K	1,74 0464 64	- 0,999 5064 4	976,7 2470 5	942,5 4750 6	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	ETHAN OL	UNIF AC °	K	0,43 8075 9	- 0,676 6902 5	1093, 0178 4	- 491,4 2615 8	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	ACETA TE	UNIF AC °	K	2,16 8744 15	- 1,522 0560 7	31,88 7331 9	- 15,39 9842 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	GLYCI NE	UNIF AC °	K	1,22 0487 82	- 0,983 4033 2	89,78 3134 5	- 57,81 2784 9	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	ALANIN E	UNIF AC °	K	- 1,35 661	1,600 4091 9	677,4 6451 7	- 771,3 1533 9	0, 3	0	0	0	0	0	273 ,15	373, 15

ASPAR TIC	PROLI NE	UNIF AC °	К	- 0,09 0884 2	0,298 7936 7	11,74 4578 8	83,35 2196 3	0,	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	HYDRO GEN	UNIF AC °	K	23,5 6079 32	5,225 3000 5	2504, 7570 8	- 181,4 6436 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	METHA NE	UNIF AC °	K	- 1,64 7692 6	1,161 3575	404,6 3307 3	1527, 0054	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	H2S	UNIF AC °	K	4,71 2391 28	- 2,507 5328 1	460,6 5995 2	- 128,4 6253 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	CH4S	UNIF AC °	K	2,83 3140 51	- 1,829 2278 4	216,7 5221 8	- 94,68 5282 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	BENZE NE	UNIF AC °	K	- 0,57 8736 4	0,673 1750 2	283,1 7054 2	1094, 8234 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	PHENO L	UNIF AC °	K	9,92 3111 9	0,520 7680 7	1061 5,306 2	- 2207, 2769 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	H2CO3	UNIF AC °	K	- 0,61 6688 8	0,899 6738 8	- 39,22 4955 7	- 38,37 2361 7	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	HEMEC ELL	UNIF AC °	K	- 0,51 7795 2	0,567 1686 9	377,2 6759 3	- 351,8 161	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	GLUCO SE	UNIF AC °	K	- 15,6 2541 3	24,72 4221 7	8869, 1246 2	- 1408 6,587 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	TRIOLE IN	UNIF AC °	K	2,47 5824 5	- 1,669 2536 8	6588, 2750 2	1963, 3629 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	TRIPAL M	UNIF AC °	K	2,01 1843 91	2,010 4849 2	5603, 604	2121, 8866 7	0,	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	PALM	UNIF AC °	K	1,55 9302 44	- 0,586 4167	1407, 2609 9	489,9 7560 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	SN-1 01	UNIF AC °	K	2,61 2948 29	- 1,613 8589 2	2839, 0759	1280, 6094 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	SN-1 02	UNIF AC °	K	2,75 4936 53	- 1,548 7270 4	2858, 8320 1	1257, 4438	0, 3	0	0	0	0	0	273 ,15	373, 15

ASPAR TIC	FURFU RAL	UNIF AC °	K	- 0,42 2389 9	0,606 2505 4	- 239,6 6135 5	958,1 0103 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	LINOLE IC	UNIF AC °	K	1,92 7460 3	- 1,111 1504 8	1453, 0860 5	1195, 6573 9	0,	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	ETHAN OL	UNIF AC °	K	- 0,09 7212 3	- 0,232 8982 6	1101, 3003 3	- 554,9 0609 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	ACETA TE	UNIF AC °	K	1,54 3561 55	- 1,187 0436 5	- 129,9 1416 1	79,40 3995 1	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	ALANIN E	UNIF AC °	K	- 0,01 539	0,037 2400 4	195,0 0987 8	- 140,9 3198 1	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	PROLI NE	UNIF AC °	K	0,67 6376 53	- 0,424 0321 6	- 52,27 1677 6	94,63 6371 7	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	HYDRO GEN	UNIF AC °	K	7,61 2112 21	3,213 6624 4	0,000 7081 8	9,26 E-05	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	METHA NE	UNIF AC °	K	- 1,08 1511 8	1,060 2141 6	279,1 2835 5	1086, 4544 3	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	H2S	UNIF AC °	K	2,11 1666 97	- 1,492 9167 9	- 0,000 1360 3	2,65 E-05	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	CH4S	UNIF AC °	K	3,79 8706 9	4,485 2869 6	4374 2	2463, 2912 9	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	BENZE NE	UNIF AC °	K	0,17 3359 49	0,055 6119 1	112,1 3598 4	776,8 7192 3	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	PHENO L	UNIF AC °	K	- 32,1 4773 3	2,018 2979 9	2704 9,446 2	- 3645, 8914 3	0,	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	H2CO3	UNIF AC °	K	0,09 2764 74	- 0,001 4474 9	- 228,8 4885 4	88,28 2530 3	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	HEMEC ELL	UNIF AC °	K	- 0,76 5964 8	0,897 7564	- 115,8 1115 3	168,6 8757 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	GLUCO SE	UNIF AC °	K	- 2,19 1833 1	3,086 0157 7	- 565,9 4978 4	2346, 3131 2	0, 3	0	0	0	0	0	273 ,15	373, 15

GLYCI NE	TRIOLE IN	UNIF AC °	K	1,43 0713 62	- 2,669 3955 9	5342, 7295 1	1563, 6751 2	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	TRIPAL M	UNIF AC °	K	1,53 3986 8	- 2,799 7535 8	4483, 1650 1	1604, 2056 8	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	PALM	UNIF AC°	K	1,74 9127 24	- 1,120 2490 5	1414, 8012 1	200,8 9852 8	0,	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	SN-1 01	UNIF AC °	K	2,34 7767 1	2,208 2530 5	2248, 0104 9	815,3 0918 2	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	SN-1 02	UNIF AC °	K	2,45 9273 75	- 2,178 3828 8	2221, 8314 8	804,3 8257	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	FURFU RAL	UNIF AC °	K	0,20 0048 51	- 0,085 9124 3	- 373,6 1956 1	814,7 0526	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	LINOLE IC	UNIF AC °	K	2,36 5102 06	- 1,580 0032 2	1053, 7353 7	790,5 0264 2	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	ETHAN OL	UNIF AC °	K	0,18 2375 74	- 0,484 6078 6	1288, 4608 2	- 587,1 1938 9	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	ACETA TE	UNIF AC °	K	- 1,02 4532 1	0,887 7570 6	788,5 5932 5	- 686,0 4558 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	PROLI NE	UNIF AC °	K	0,06 7383 06	0,004 4380 3	170,2 7425 4	- 146,5 8011 8	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	HYDRO GEN	UNIF AC °	K	11,3 7344 03	3,889 8590 6	1166, 0417 1	- 155,7 9336 7	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	METHA NE	UNIF AC °	K	- 1,25 3305 1	0,972 2561 3	129,5 9176 2	919,5 3180 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	H2S	UNIF AC °	K	3,39 6213 47	2,076 3575 2	520,5 2922 8	- 178,9 7885 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	CH4S	UNIF AC °	K	1,98 7687 96	- 1,435 6519 1	217,8 5187 1	- 117,4 5051 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	BENZE NE	UNIF AC °	K	- 0,16 1784 3	0,232 5275 6	13,56 5834 3	633,9 8591 8	0, 3	0	0	0	0	0	273 ,15	373, 15

ALANIN E	PHENO L	UNIF AC °	K	- 13,0 6237	0,542 6557 7	1321 2,286 4	- 2416, 4353 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	H2CO3	UNIF AC °	K	- 0,09 0669 2	0,406 3024 1	- 140,1 9177 3	171,2 2884 8	0,	0	0	0	0	0	273 ,15	373, 15
ALANIN E	HEMEC ELL	UNIF AC °	K	- 0,71 7109	0,829 9202 6	- 126,3 0726 5	176,8 7595 5	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	GLUCO SE	UNIF AC °	K	- 1,35 5974 8	1,238 9106 6	- 627,3 1179 8	1872, 8176 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	TRIOLE IN	UNIF AC °	K	1,65 9306 49	- 2,920 501	2473, 2382 3	1109, 8776 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	TRIPAL M	UNIF AC °	K	1,66 0843 56	- 2,844 8908 7	2049, 8295 8	1054, 9846 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	PALM	UNIF AC °	K	1,12 6253 06	- 1,027 6274	1064, 3629 8	- 67,94 9062 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	SN-1 01	UNIF AC °	K	1,67 5041 58	2,069 6860 9	1186, 3685 8	366,2 3280 8	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	SN-1 02	UNIF AC °	K	1,79 8285 97	- 2,058 1066 6	1158, 8641 3	364,7 0605	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	FURFU RAL	UNIF AC °	K	- 0,04 6065 9	0,064 8607 6	- 369,6 4997 5	801,5 1380 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	LINOLE IC	UNIF AC °	K	1,88 1528 1	- 1,444 7006 4	529,5 4279 2	442,0 5310 7	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	ETHAN OL	UNIF AC °	K	0,21 4979 08	- 0,527 4131 4	1169, 3398 9	- 568,8 4103 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	ACETA TE	UNIF AC °	K	0,93 8092 98	- 0,800 0181 3	174,3 5929 7	- 112,3 0362 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	HYDRO GEN	UNIF AC °	К	14,4 9862 74	- 4,357 3438 1	2961, 2691	- 288,6 2105 3	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	METHA NE	UNIF AC °	К	- 1,32 9621 8	0,861 1487 4	67,49 7312 8	870,1 8973 1	0, 3	0	0	0	0	0	273 ,15	373, 15

											•				
PROLI NE	H2S	UNIF AC °	K	4,04 9053 96	- 2,324 3691 1	804,3 9240 9	- 231,2 5703 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	CH4S	UNIF AC °	K	2,54 1905 75	- 1,714 4340 4	383,1 4312 1	- 169,5 4905 1	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	BENZE NE	UNIF AC °	K	- 0,51 5595 6	0,420 3430 2	- 29,11 2777 6	587,5 4832	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	PHENO L	UNIF AC °	K	1,90 6006 62	- 1,371 0569 4	- 156,0 5838 4	106,4 0594 4	0,	0	0	0	0	0	273 ,15	373, 15
PROLI NE	H2CO3	UNIF AC °	K	- 0,23 4480 2	1,035 3077 1	50,71 4012 6	108,4 9233 2	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	HEMEC ELL	UNIF AC °	K	- 0,49 7855 3	0,491 8460 3	457,3 0130 7	- 416,5 3661 2	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	GLUCO SE	UNIF AC °	K	1,88 1188 34	- 0,657 7935 9	- 331,4 9011 8	- 19,28 9993 7	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	TRIOLE IN	UNIF AC °	K	1,77 6822 09	- 2,690 2881 1	1777, 1289 2	854,8 5551 4	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	TRIPAL M	UNIF AC °	K	1,70 7787 43	- 2,618 7625 7	1560, 4379 4	840,1 9359 4	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	PALM	UNIF AC °	K	1,08 1281 77	- 0,929 3948 7	902,9 7117 4	- 92,53 2946 7	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	SN-1 01	UNIF AC °	K	1,66 0568 35	- 1,897 6540 6	905,1 0147 4	262,7 8228 6	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	SN-1 02	UNIF AC °	K	1,76 6887 27	- 1,881 1196 1	855,1 3032 9	252,5 9619 2	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	FURFU RAL	UNIF AC °	K	- 0,32 0405 8	0,248 7900 3	- 333,6 8645 8	776,7 1147 3	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	LINOLE IC	UNIF AC °	K	1,63 9213 72	1,269 8354 4	385,0 6619 3	296,7 7526 5	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	ETHAN OL	UNIF AC °	K	- 2,82 7019	2,341 2888 6	1983, 3777 3	- 1624, 0005 1	0, 3	0	0	0	0	0	273 ,15	373, 15

				1	1	1	1	1						1	1
PROLI NE	ACETA TE	UNIF AC °	K	- 0,03 6893	- 0,060 1932 5	- 180,8 8584	205,1 0768 8	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	METHA NE	UNIF AC °	K	- 1,52 4462	2,174 2494 4	0,001 461	- 0,003 3638	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	H2S	UNIF AC °	K	- 1,65 5220 9	2,445 5962 5	- 0,000 1870 8	0,000 4600 1	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	CH4S	UNIF AC °	K	- 2,30 4787 2	4,103 1413 6	0,000 8867 1	- 0,002 9944 9	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	BENZE NE	UNIF AC °	K	- 2,91 4572 2	6,245 9917 9	0,000 5387 1	- 0,002 4207 3	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	PHENO L	UNIF AC °	K	3,44 4434 1	8,698 8917 1	- 148,1 5771	806,2 6488 5	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	H2CO3	UNIF AC °	K	3,17 9622 1	7,453 5478 2	1,068 0605 8	- 11,78 4820 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	HEMEC ELL	UNIF AC °	K	- 5,69 2752 1	27,07 0545	- 528,5 1120 1	1124 1,693 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	GLUCO SE	UNIF AC °	K	- 13,5 4212 1	- 7,11 E-15	- 510,6 6217	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	TRIOLE IN	UNIF AC °	K	7,11 E-15	- 7,11 E-15	3000 0	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	TRIPAL M	UNIF AC °	K	7,11 E-15	- 7,11 E-15	3000 0	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	PALM	UNIF AC °	K	- 17,8 0105 7	- 7,11 E-15	- 822,9 4214 5	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	SN-1 01	UNIF AC °	K	- 42,1 8989 7	- 7,11 E-15	- 1573, 1662	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	SN-1 02	UNIF AC °	K	- 41,7 3527 9	- 7,11 E-15	- 1565, 3322 1	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	FURFU RAL	UNIF AC °	K	- 3,07 9126	6,968 3928 9	- 0,001 0729 6	0,005 1987 9	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	LINOLE IC	UNIF AC °	K	- 17,9	- 7,11 E-15	- 778,4	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15

				3063 6		8299 2									
HYDRO GEN	ETHAN OL	UNIF AC °	K	3,55 0701 4	9,217 0722 5	- 198,0 4243 6	1271, 3532 6	0,	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	ACETA TE	UNIF AC °	K	- 2,91 8075 7	6,203 7555 5	- 170,5 5293 6	773,8 3165 5	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	H2S	UNIF AC °	K	- 0,15 6572	0,161 6163 3	- 6,48 E-05	7,11 E-05	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	CH4S	UNIF AC °	K	0,55 2940 59	- 0,555 0738 9	306,9 9892 7	- 7,665 3359 7	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	BENZE NE	UNIF AC °	K	0,78 5221 07	- 0,825 4635 4	186,2 8037 6	- 40,27 0498 8	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	PHENO L	UNIF AC °	K	0,69 5016 24	- 1,060 7186 1	865,9 1463 3	16,89 3915 6	0,	0	0	0	0	0	273 ,15	373, 15
METHA NE	H2CO3	UNIF AC °	K	1,04 0443 57	- 1,121 4745 5	1738, 5486 8	579,1 3598	0,	0	0	0	0	0	273 ,15	373, 15
METHA NE	HEMEC ELL	UNIF AC °	K	0,85 5766 92	- 1,570 2920 2	1197, 0808 2	173,3 8261 1	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	GLUCO SE	UNIF AC °	K	- 0,40 9463 6	- 2,584 9813 4	4643, 5956 5	903,9 3668 8	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	TRIOLE IN	UNIF AC °	K	- 26,6 1422 1	- 7,11 E-15	332,4 7181 3	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	TRIPAL M	UNIF AC °	K	- 24,1 5148 4	- 7,11 E-15	249,4 5233 6	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	PALM	UNIF AC °	K	- 6,87 7666 5	49,95 0892	502,9 8110 6	- 8581, 8568 1	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	SN-1 01	UNIF AC °	K	- 17,6 2150 3	- 7,11 E-15	724,5 399	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	SN-1 02	UNIF AC °	K	- 17,4 2214	- 7,11 E-15	774,4 0938 4	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	FURFU RAL	UNIF AC °	K	1,01 0033	- 1,030 5643 3	703,3 3883 5	66,59 6677 9	0, 3	0	0	0	0	0	273 ,15	373, 15

	T		1												
METHA NE	LINOLE IC	UNIF AC °	K	- 6,88 5580 3	51,52 1271 1	343,9 7861 8	- 6564, 5095	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	ETHAN OL	UNIF AC °	K	0,73 0208 06	- 1,077 1668 6	972,8 6038 6	31,35 4908 9	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	ACETA TE	UNIF AC °	K	0,71 4701 59	- 0,810 9436 2	669,9 5627 2	64,51 6476 4	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	CH4S	UNIF AC °	K	- 0,73 0785 3	0,855 0409 7	0,000 2186 4	- 0,000 3319 2	0,	0	0	0	0	0	273 ,15	373, 15
H2S	BENZE NE	UNIF AC °	K	- 1,14 0748 3	1,452 7970 7	0,000 1593 7	- 0,000 3012	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	PHENO L	UNIF AC °	K	0,76 7056 75	- 1,091 7139 6	- 427,0 282	120,5 7450 7	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	H2CO3	UNIF AC °	K	- 1,23 9351 2	1,656 0324 6	20,04 0159 2	- 52,59 0935 8	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	HEMEC ELL	UNIF AC °	K	- 2,73 1678 8	5,230 6149 8	- 329,7 6959 4	1546, 3312	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	GLUCO SE	UNIF AC °	K	- 4,37 3510 1	13,63 9923 2	- 478,7 0052 1	5695, 4599 1	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	TRIOLE IN	UNIF AC °	K	- 24,5 6907 5	- 7,11 E-15	- 1185, 2535 4	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	TRIPAL M	UNIF AC °	K	- 22,2 7745 9	- 7,11 E-15	- 1142, 1665	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	PALM	UNIF AC °	K	- 6,28 1726 5	- 7,11 E-15	- 822,9 4216 3	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	SN-1 01	UNIF AC °	K	- 16,2 5159	- 7,11 E-15	- 1573, 1662	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	SN-1 02	UNIF AC °	K	- 16,0 6969 6	- 7,11 E-15	- 1565, 3322 1	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	FURFU RAL	UNIF AC °	K	- 1,38 4591 9	1,896 5118	7,17 E-05	- 0,000 1537 6	0, 3	0	0	0	0	0	273 ,15	373, 15

H2S	LINOLE IC	UNIF AC °	K	- 6,37 9946 7	- 7,11 E-15	- 778,4 8289 3	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	ETHAN OL	UNIF AC °	K	1,51 0669 64	- 1,432 9978 6	- 482,2 0986 4	89,95 2977 6	0,	0	0	0	0	0	273 ,15	373, 15
H2S	ACETA TE	UNIF AC °	K	1,02 6864 51	- 1,027 3461 9	- 332,4 1124 6	34,75 6737 3	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	BENZE NE	UNIF AC °	K	0	0	- 207,5 478	272,3 024	0, 3	0	0	0	0	0	40	40
CH4S	PHENO L	UNIF AC °	K	0,09 9099 58	- 0,497 7280 4	- 422,4 6069 4	211,9 9289 4	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	H2CO3	UNIF AC °	K	0,59 3379 25	- 0,402 6334 4	675,3 9064 5	15,36 2821 8	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	HEMEC ELL	UNIF AC °	K	2,10 2286 7	3,423 9390 1	- 249,6 9141 8	734,0 9473 1	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	GLUCO SE	UNIF AC °	K	1,01 8163 01	- 2,046 583	2043, 4051 7	658,7 5076 4	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	TRIOLE IN	UNIF AC °	K	- 15,2 1173 9	- 7,11 E-15	1993, 2364 1	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	TRIPAL M	UNIF AC °	K	- 13,6 2256 1	- 7,11 E-15	2036, 3234 4	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	PALM	UNIF AC °	K	- 3,91 2137 9	10,10 7351 6	676,5 5396 3	- 2613, 2712 7	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	SN-1 01	UNIF AC °	K	9,83 3232 4	- 7,11 E-15	1293, 3562 7	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	SN-1 02	UNIF AC °	K	9,75 6511 2	- 7,11 E-15	1163, 3944 4	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	FURFU RAL	UNIF AC °	K	0,26 8618 4	- 0,295 9294 5	- 3,65 E-05	3,09 E-05	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	LINOLE IC	UNIF AC °	K	3,96 1898 6	11,99 6437 8	96,33 2611 8	- 689,3 6837 5	0, 3	0	0	0	0	0	273 ,15	373, 15

CH4S	ETHAN OL	UNIF AC °	K	0,40 6453 7	- 0,564 9664 1	330,6 6181 1	211,3 4824 6	0,	0	0	0	0	0	273 ,15	373, 15
CH4S	ACETA TE	UNIF AC °	К	0,20 0299 67	- 0,311 2321	- 238,5 6521 4	66,05 3446 9	0, 3	0	0	0	0	0	273 ,15	373, 15
BENZE NE	PHENO L	Rajen dran et al (2014	К	0	0	389,2 036	- 15,05 35	0,	0	0	0	0	0	70	80
BENZE NE	H2CO3	UNIF AC °	К	0,00 5497 33	0,491 8515 9	1385, 1267 4	492,4 2974 6	0, 3	0	0	0	0	0	273 ,15	373, 15
BENZE NE	HEMEC ELL	UNIF AC °	K	0,57 4063 02	- 0,616 1636	873,0 7919 3	93,85 2859	0, 3	0	0	0	0	0	273 ,15	373, 15
BENZE NE	GLUCO SE	UNIF AC °	K	0,95 8498 74	- 1,227 4942	3116, 9499 9	974,8 9035 5	0, 3	0	0	0	0	0	273 ,15	373, 15
BENZE NE	TRIOLE IN	UNIF AC °	K	- 8,29 9460 4	- 7,11 E-15	356,6 0777 6	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
BENZE NE	TRIPAL M	UNIF AC °	K	- 7,32 2287 8	24,64 2841 8	296,1 6965 4	1407 3,331 4	0, 3	0	0	0	0	0	273 ,15	373, 15
BENZE NE	PALM	UNIF AC °	K	- 2,72 2047	5,069 5480 7	471,6 4565 5	- 1208, 5337 4	0,	0	0	0	0	0	273 ,15	373, 15
BENZE NE	SN-1 01	UNIF AC °	K	5,02 0551 7	21,07 4372 6	241,4 3695 2	- 2269, 5943 6	0,	0	0	0	0	0	273 ,15	373, 15
BENZE NE	SN-1 02	UNIF AC °	K	- 4,97 9724 6	20,64 5716 2	235,0 0546 4	- 2180, 0455 5	0,	0	0	0	0	0	273 ,15	373, 15
BENZE NE	FURFU RAL	APV1 10 VLE- LIT ^b	K	Copr ©	Copr ©	Copr ©	Copr ©	C op ©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
BENZE NE	LINOLE IC	UNIF AC	K	- 2,77 4430 9	5,536 4860 7	283,2 7883 2	- 875,6 9423 4	0, 3	0	0	0	0	0	273 ,15	373, 15
BENZE NE	ETHAN OL	APV1 10 VLE- LIT ^b	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
BENZE NE	ACETA TE	UNIF AC °	K	- 0,49 4523 8	0,586 1698 8	634,0 6330 9	- 171,2 7717 5	0, 3	0	0	0	0	0	273 ,15	373, 15

PHENO L	H2CO3	UNIF AC °	K	0,32 8504 15	0,130 2507 7	- 726,1 4345 3	1286, 4504 5	0,	0	0	0	0	0	273 ,15	373, 15
PHENO L	HEMEC ELL	UNIF AC °	K	- 0,37 1883 4	0,049 8918 7	739,4 2528	- 255,0 0789 6	0,	0	0	0	0	0	273 ,15	373, 15
PHENO L	GLUCO SE	UNIF AC °	K	2,13 1639 84	- 41,07 614	- 3901, 6386 2	3444 4,406 7	0,	0	0	0	0	0	273 ,15	373, 15
PHENO L	TRIOLE IN	UNIF AC °	K	5,96 4314 9	28,44 6696 8	960,0 7334 1	- 8094, 9646 2	0,	0	0	0	0	0	273 ,15	373, 15
PHENO L	TRIPAL M	UNIF AC °	K	- 4,86 4712 6	17,88 7995 3	624,2 5428 5	- 4184, 2973 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENO L	PALM	UNIF AC °	K	0,27 5412 6	- 0,259 1266 3	- 494,1 8671 7	218,8 8835	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENO L	SN-1 01	UNIF AC °	K	3,31 8689 4	6,338 8221 4	- 650,7 5499 7	5345, 2069 5	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENO L	SN-1 02	UNIF AC °	K	3,37 4636 7	5,980 1419 5	- 727,2 1803 9	6547, 4089 3	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENO L	FURFU RAL	UNIF AC °	K	- 1,52 9612 2	1,684 1954 4	- 426,9 7088 4	1347, 8520 6	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENO L	LINOLE IC	AC c	K	0,80 9101 57	- 1,443 3062 5	710,0 5453 9	122,5 4514	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENO L	ETHAN OL	APV1 10 VLE- IG ^b	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	o p ⊚	C op r©	C op r©	Cop r©	Cop r©
PHENO L	ACETA TE	UNIF AC °	K	- 1,07 0724 4	1,346 7096 8	451,6 5034 1	380,8 3370 3	0,	0	0	0	0	0	273 ,15	373, 15
H2CO3	HEMEC ELL	UNIF AC °	K	0,93 2492 51	- 0,481 4967 3	95,24 4607 4	46,77 5346 2	0, 3	0	0	0	0	0	273 ,15	373, 15
H2CO3	GLUCO SE	UNIF AC °	K	- 2,21 3568 6	3,834 4083 5	106,7 5298	- 302,5 6744 8	0, 3	0	0	0	0	0	273 ,15	373, 15
H2CO3	TRIOLE IN	UNIF AC °	K	4,09 6585 74	1,223 3039 9	1137 4,784 4	1804, 6503 1	0, 3	0	0	0	0	0	273 ,15	373, 15

H2CO3	TRIPAL M	UNIF AC °	K	3,91 7522 22	- 1,354 3453 9	9295, 4561	1912, 4183 2	0, 3	0	0	0	0	0	273 ,15	373, 15
H2CO3	PALM	UNIF AC °	K	2,38 6519 48	- 1,141 6603 7	2317, 8374 6	1239, 3885 8	0, 3	0	0	0	0	0	273 ,15	373, 15
H2CO3	SN-1 01	UNIF AC °	K	3,04 2640 26	- 1,380 6763 3	5929, 1591	1565, 3070 7	0, 3	0	0	0	0	0	273 ,15	373, 15
H2CO3	SN-1 02	UNIF AC °	K	2,96 2028 06	- 1,320 2101 8	6201, 9167	1536, 5632 5	0, 3	0	0	0	0	0	273 ,15	373, 15
H2CO3	FURFU RAL	UNIF AC °	K	0,68 3095 72	- 0,051 3216	- 195,3 4474 9	942,8 9270 7	0, 3	0	0	0	0	0	273 ,15	373, 15
H2CO3	LINOLE IC	UNIF AC °	K	2,28 3979 64	- 1,252 0523 4	3143, 6945 3	1560, 7158 2	0, 3	0	0	0	0	0	273 ,15	373, 15
H2CO3	ETHAN OL	UNIF AC °	K	0,08 3427 97	0,159 4982 1	269,6 1316 3	24,99 2812 6	0, 3	0	0	0	0	0	273 ,15	373, 15
H2CO3	ACETA TE	UNIF AC °	K	- 0,23 3371 3	0,569 6380 3	63,13 9985 9	32,84 3845	0, 3	0	0	0	0	0	273 ,15	373, 15
HEMEC ELL	GLUCO SE	UNIF AC °	K	1,56 5378 08	- 0,738 0967 7	- 329,5 0236 4	60,98 2205 6	0, 3	0	0	0	0	0	273 ,15	373, 15
HEMEC ELL	TRIOLE IN	UNIF AC °	K	2,13 3075 33	- 2,530 4382 8	3377, 8984 2	1520, 3801 9	0, 3	0	0	0	0	0	273 ,15	373, 15
HEMEC ELL	TRIPAL M	UNIF AC °	K	2,05 1917 35	- 2,623 6645 8	2592, 2096 2	1499, 4437 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HEMEC ELL	PALM	UNIF AC °	K	1,38 1845 83	- 0,873 9846 8	774,2 7743 9	262,5 9957 5	0, 3	0	0	0	0	0	273 ,15	373, 15
HEMEC ELL	SN-1 01	UNIF AC °	K	2,42 7518 68	- 1,886 211	1249, 9770 4	731,5 4084 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HEMEC ELL	SN-1 02	UNIF AC °	K	2,56 0692 5	- 1,843 8338 8	1296, 2534 5	724,5 6498 6	0, 3	0	0	0	0	0	273 ,15	373, 15
HEMEC ELL	FURFU RAL	UNIF AC °	K	- 0,39 1058 8	0,418 9797 7	- 321,6 2519 2	960,1 0241 5	0, 3	0	0	0	0	0	273 ,15	373, 15

	T	T		1	1	1	1								
HEMEC ELL	LINOLE IC	UNIF AC °	K	1,86 4274 72	- 1,146 7319 3	722,6 0740 6	624,3 3569 9	0, 3	0	0	0	0	0	273 ,15	373, 15
HEMEC ELL	ETHAN OL	UNIF AC °	K	- 0,80 8841 7	0,548 9405 6	812,4 7147 4	- 611,9 7674 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HEMEC ELL	ACETA TE	UNIF AC °	К	1,90 7914 79	- 1,387 1051 3	- 0,735 4117 1	0,394 3053 4	0,	0	0	0	0	0	273 ,15	373, 15
GLUCO SE	TRIOLE IN	UNIF AC °	K	6,94 2851 13	0,136 6478 6	8000, 3939 1	4374, 2655 5	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUCO SE	TRIPAL M	UNIF AC °	K	6,58 2985 82	0,073 9467 3	6860, 4723 3	4466, 9560 8	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUCO SE	PALM	UNIF AC °	K	1,43 7018 25	0,706 4704 7	1757, 2267 4	2388, 5181 9	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUCO SE	SN-1 01	UNIF AC °	К	3,94 9787 35	0,208 8681 1	4313, 8590 6	3263, 5797 8	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUCO SE	SN-1 02	UNIF AC °	K	3,74 2475 25	0,160 4433 3	4431, 9335 7	3247, 1398 5	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUCO SE	FURFU RAL	UNIF AC °	К	- 1,09 7262 1	1,400 2843 9	278,3 6214 5	1598, 6244 6	0,	0	0	0	0	0	273 ,15	373, 15
GLUCO SE	LINOLE IC	UNIF AC °	K	1,35 7315 66	0,456 5547 5	2235, 0171 8	2751, 8573 6	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUCO SE	ETHAN OL	UNIF AC °	K	- 1,14 3459 2	1,092 4641 9	- 18,74 2190 8	276,1 5627 1	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUCO SE	ACETA TE	UNIF AC °	K	3,04 1676 33	- 1,959 4273 2	595,9 5666 7	- 193,7 1080 1	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIOLE IN	TRIPAL M	UNIF AC °	K	- 0,64 6282 1	0,523 1082 4	570,9 7183 1	- 479,0 6246 8	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIOLE IN	PALM	UNIF AC °	K	16,8 8770 68	- 11,12 6919 4	- 9427, 0256 6	6155, 3520 6	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIOLE IN	SN-1 01	UNIF AC °	K	- 0,66 5336	0,650 0391 6	171,7 3124 6	- 36,66 1325 2	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIOLE IN	SN-1 02	UNIF AC °	K	- 0,65 8089 8	0,637 5845 9	179,8 4581	- 33,37 3182	0, 3	0	0	0	0	0	273 ,15	373, 15

			1												
TRIOLE IN	FURFU RAL	UNIF AC °	K	- 2,88 5057 5	0,488 9214 9	638,4 3095 2	1989, 3775 8	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIOLE IN	LINOLE IC	UNIF AC °	K	4,21 7774 73	- 2,388 6261 2	- 563,0 0711 4	234,7 0128 2	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIOLE IN	ETHAN OL	UNIF AC °	K	- 3,09 2374	0,614 8815 8	812,0 5862 9	2138, 0239 8	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIOLE IN	ACETA TE	UNIF AC °	K	- 3,21 546	- 0,515 3590 7	685,3 3726 4	2652, 7932 4	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIPAL M	PALM	UNIF AC °	K	15,3 5492 06	- 10,57 8663	- 8585, 2108 4	5877, 6894 5	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIPAL M	SN-1 01	UNIF AC°	K	- 0,60 5378 1	0,579 1313 7	238,3 0539 1	- 105,1 0671 6	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIPAL M	SN-1 02	UNIF AC °	K	- 0,57 3288 2	0,538 6592	233,2 8923 4	- 79,68 3254 5	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIPAL M	FURFU RAL	UNIF AC °	K	2,69 2260 9	0,742 0519 5	543,3 6535 7	1653, 8640 8	0,	0	0	0	0	0	273 ,15	373, 15
TRIPAL M	LINOLE IC	UNIF AC °	K	4,04 2119 52	- 2,342 5940 8	- 554,8 2818 4	249,8 4313	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIPAL M	TRIPAL M	UNIF AC °	K	2,91 3699 6	0,893 9786 4	743,0 1286 7	1742, 7103 5	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIPAL M	ACETA TE	UNIF AC °	K	3,67 9756 9	- 16,89 3320 3	- 3065, 1989 5	1105 4,048 5	0, 3	0	0	0	0	0	273 ,15	373, 15
PALM	SN-1 01	UNIF AC °	K	- 1,75 9488 1	2,597 6513 6	258,6 3773 1	- 481,1 7556 1	0, 3	0	0	0	0	0	273 ,15	373, 15
PALM	SN-1 02	UNIF AC °	K	- 1,80 1375 4	2,645 6302 4	331,1 6261 1	- 595,5 4492 5	0, 3	0	0	0	0	0	273 ,15	373, 15
PALM	FURFU RAL	UNIF AC °	K	- 1,63 7630 8	1,821 3303 6	444,1 4460 8	409,2 2006 4	0, 3	0	0	0	0	0	273 ,15	373, 15
PALM	LINOLE IC	UNIF AC °	K	6,55 8835 62	- 7,538 0261 6	- 4015, 6408 4	4629, 5870 3	0, 3	0	0	0	0	0	273 ,15	373, 15

PALM	ETHAN OL	UNIF AC °	K	- 1,44 1642 6	1,588 9611 9	221,8 4764 6	210,7 7102 5	0,	0	0	0	0	0	273 ,15	373, 15
PALM	ACETA TE	UNIF AC °	K	- 1,55 3755 3	0,900 3392 6	47,44 1256 1	957,1 6078 2	0,	0	0	0	0	0	273 ,15	373, 15
SN-1 01	SN-1 02	UNIF AC °	K	- 0,58 1870 7	0,461 6109 2	546,2 8188 4	- 454,8 8122 3	0, 3	0	0	0	0	0	273 ,15	373, 15
SN-1 01	FURFU RAL	UNIF AC °	K	- 2,22 8586 5	0,924 3030 1	336,0 0695 3	1148, 1360 9	0, 3	0	0	0	0	0	273 ,15	373, 15
SN-1 01	LINOLE IC	UNIF AC °	K	2,19 9451 33	- 1,543 8661 5	164,6 6563 6	- 70,94 7935	0, 3	0	0	0	0	0	273 ,15	373, 15
SN-1 01	ETHAN OL	UNIF AC °	K	8,33 1143 99	- 17,75 5532 4	- 5461, 9474 7	1121 5,973	0, 3	0	0	0	0	0	273 ,15	373, 15
SN-1 01	ACETA TE	UNIF AC °	K	39,6 2279 14	- 18,43 9833 2	- 2213 6,047 5	1014 8,386 8	0, 3	0	0	0	0	0	273 ,15	373, 15
SN-1 02	FURFU RAL	UNIF AC °	K	- 2,23 8299 1	0,931 2756 4	347,3 6353	1166, 7312 1	0, 3	0	0	0	0	0	273 ,15	373, 15
SN-1 02	LINOLE IC	UNIF AC °	K	2,00 1565 41	- 1,444 8300 4	189,6 8352 1	- 86,20 3204 9	0, 3	0	0	0	0	0	273 ,15	373, 15
SN-1 02	ETHAN OL	UNIF AC °	K	9,88 4418 36	- 19,44 4766 4	- 6315, 9495 6	1219 3,728 2	0, 3	0	0	0	0	0	273 ,15	373, 15
SN-1 02	ACETA TE	UNIF AC °	K	- 6,64 7920 7	5,542 0429 9	3470, 2774	- 3250, 7870 9	0, 3	0	0	0	0	0	273 ,15	373, 15
FURFU RAL	LINOLE IC	UNIF AC °	K	1,62 7863 02	- 1,606 5315 9	571,1 4463 8	387,9 6629 3	0, 3	0	0	0	0	0	273 ,15	373, 15
FURFU RAL	ETHAN OL	APV1 10 VLE- LIT ^b	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
FURFU RAL	ACETA TE	UNIF AC °	K	- 0,91 3767 9	0,768 7146 7	1113, 4505 5	- 707,6 8607 4	0, 3	0	0	0	0	0	273 ,15	373, 15
LINOLE IC	ETHAN OL	UNIF AC °	K	- 1,53 6956 1	1,670 6952 1	257,4 1629	419,5 5754 2	0, 3	0	0	0	0	0	273 ,15	373, 15

	Γ	1		ı				ı		ı	1				1
LINOLE IC	ACETA TE	UNIF AC °	K	- 1,80 9659	1,721 6301 7	282,3 3940 9	737,0 4517 1	0, 3	0	0	0	0	0	273 ,15	373, 15
ETHAN OL	ACETA TE	UNIF AC °	К	2,01 1905 6	2,577 5468 8	997,2 8402 8	- 1294, 5988 6	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	FROMA MID	NIST V110 NIST- IG ^b	К	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
INDOL E	BENZE NE	NIST V110 NIST- IG ^b	К	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
FROMA MID	BENZE NE	NIST V110 NIST- IG ^b	К	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©
WATER	VALINE	UNIF AC °	K	3,26 7255 52	- 0,556 5976 5	132,5 0066 2	- 172,5 0554 6	0,	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	VALINE	UNIF AC °	K	- 0,45 0478 2	1,222 9996 2	353,6 5338 9	- 663,9 354	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	VALINE	UNIF AC °	K	- 1,15 8609 7	1,350 1188 1	273,4 3712 3	255,8 7555 8	0,	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	VALINE	UNIF AC °	K	- 1,92 7729 8	3,737 9048 5	850,4 6627 9	- 1777, 5549 6	0,	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	VALINE	UNIF AC °	K	- 1,30 4233 2	1,754 1176 2	13,57 2798 2	- 23,38 7606 8	0,	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	VALINE	UNIF AC °	K	- 0,93 0028 9	1,133 4894 8	- 78,84 4863 9	126,6 4075 1	0,	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	VALINE	UNIF AC °	K	- 0,51 6212 6	0,564 4483 6	- 107,0 3247 6	146,4 8250 2	0,	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	VALINE	UNIF AC °	K	- 0,47 1061 2	0,410 4286 4	456,4 4787 5	- 390,3 5102 5	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	VALINE	UNIF AC °	К	- 4,08 5451 7	12,25 8522 6	- 333,7 2716 4	3131, 9167 6	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	VALINE	UNIF AC °	K	- 2,55 5029 8	4,754 3262	- 258,0 1915 6	1071, 5915 4	0, 3	0	0	0	0	0	273 ,15	373, 15

	1			ı	ı	ı	ı								
C5H7N O2	VALINE	UNIF AC °	K	0,41 4755 28	0,070 1560 2	- 16,41 9362	164,7 0973 5	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	VALINE	UNIF AC °	K	0,16 7462 28	0,282 1873 8	79,16 5252 1	25,51 4325 1	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	VALINE	UNIF AC °	K	0,34 6649 19	- 0,327 7745 8	70,84 3185 3	- 57,79 8356	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	VALINE	UNIF AC °	K	- 0,90 7682 3	1,171 3471 3	402,7 9769 2	- 486,9 5986 3	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	VALINE	UNIF AC °	K	0,34 0774 28	- 0,216 2592	119,8 1904 8	- 2,711 8780 1	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	VALINE	UNIF AC °	K	- 0,15 0644 1	0,387 5200 5	48,34 4476 6	- 17,58 2217 4	0, 3	0	0	0	0	0	273 ,15	373, 15
SERIN E	VALINE	UNIF AC °	K	0,11 3020 01	0,232 2884 1	58,25 7727	42,29 0307 5	0, 3	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	VALINE	UNIF AC °	K	- 0,69 1417 9	0,567 1665 7	589,1 3584 5	- 497,1 3934	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	VALINE	UNIF AC °	K	- 0,69 1417 9	0,567 1665 7	589,1 3584 5	- 497,1 3934	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	GLUTA MIC	UNIF AC °	K	0,23 1197 68	- 0,123 3486 9	68,49 4596 8	36,67 2040 2	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	ASPAR TIC	UNIF AC °	K	0,09 8746 39	0,080 9835 8	95,50 0011 8	99,89 8307 8	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	GLYCI NE	UNIF AC °	K	- 0,55 6458 7	0,746 0956 4	86,38 4777 3	68,06 4603 7	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	ALANIN E	UNIF AC °	K	- 1,55 4066 6	1,760 1423 9	824,6 5053 3	- 908,4 9759 5	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	PROLI NE	UNIF AC °	K	- 1,06 0358 3	1,193 8318 8	608,5 5081 1	- 642,2 0550 9	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	HYDRO GEN	UNIF AC °	К	27,2 2445 51	5,605 2379 1	7576, 6630 6	- 402,4 0517 9	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	METHA NE	UNIF AC °	K	- 1,32	0,294 3102 5	- 51,64	1079, 9994 9	0, 3	0	0	0	0	0	273 ,15	373, 15

				0060		7586 1									
VALINE	H2S	UNIF AC°	K	5,18 7722 75	- 2,682 0729	1097, 9835 5	- 255,2 4303 3	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	CH4S	UNIF AC °	K	3,20 4659 61	- 1,986 0770 8	297,6 6829 1	- 120,8 3211 1	0,	0	0	0	0	0	273 ,15	373, 15
VALINE	BENZE NE	UNIF AC°	K	- 0,58 6008 2	0,572 2385 7	8,939 2210 1	525,5 4424	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	PHENO L	UNIF AC°	K	- 13,7 6517 3	0,505 3508 7	1387 7,683 4	- 2437, 1418 7	0,	0	0	0	0	0	273 ,15	373, 15
VALINE	H2CO3	UNIF AC°	K	- 0,33 1644 2	0,983 8047 2	13,49 0427 7	261,4 1592 8	0,	0	0	0	0	0	273 ,15	373, 15
VALINE	HEMEC ELL	UNIF AC °	K	- 0,69 4588 1	0,701 8777 8	501,8 6244 1	- 464,3 8922 8	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	GLUCO SE	UNIF AC°	K	2,67 3021 89	- 1,184 9712 5	- 1089, 3078 1	370,4 2439 8	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	TRIOLE IN	UNIF AC °	K	1,55 4512 51	- 2,490 2623 4	1318, 1195 9	672,2 6123 9	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	TRIPAL M	UNIF AC °	K	1,44 2264 1	- 2,384 8215 9	1109, 4111 5	642,2 9466 5	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	PALM	UNIF AC °	K	0,43 5154 89	- 0,633 1515 7	1053, 0122 8	- 342,9 4047 3	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	SN-1 01	UNIF AC°	K	0,92 9082 88	- 1,563 8198 7	835,1 5623 9	44,80 4437	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	SN-1 02	UNIF AC °	K	1,09 9292 02	- 1,587 4134 8	780,2 2232 4	57,67 5437 7	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	FURFU RAL	UNIF AC °	K	- 0,39 3354 6	0,466 8091 1	- 232,4 5898 6	621,5 5201 4	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	LINOLE IC	UNIF AC °	K	1,38 1859 3	- 1,141 5732 6	255,0 5736 4	257,1 9007 6	0, 3	0	0	0	0	0	273 ,15	373, 15

VALINE	ETHAN OL	UNIF AC °	K	0,33 7920 35	- 0,639 7821 9	1174, 5868 3	- 559,7 4407 7	0, 3	0	0	0	0	0	273 ,15	373, 15
VALINE	ACETA TE	UNIF AC °	K	1,75 4117 46	- 1,304 2331 6	- 23,38 7610 5	13,57 2838	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	METHI ONI	UNIF AC °	K	3,60 7342 17	- 0,913 2999 3	- 77,76 6957 7	- 144,9 2353 9	0,	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	METHI ONI	UNIF AC °	K	2,94 3111 47	- 2,168 9913	- 1667, 7151	1190, 4714 5	0, 3	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	METHI ONI	UNIF AC °	K	- 0,81 9234 6	1,634 9903 6	276,3 7183 9	197,8 953	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	METHI ONI	UNIF AC °	K	- 0,81 4829 4	0,088 3809	1729, 0984 4	- 931,3 4582 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	METHI ONI	UNIF AC °	K	- 1,65 3124 1	2,405 1683 9	- 141,9 6374 5	345,9 0715 8	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	METHI ONI	UNIF AC °	K	- 1,20 9721 8	1,543 9283 3	- 177,3 0800 1	360,4 0835 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	METHI ONI	UNIF AC °	K	- 0,64 3444 6	0,680 2926 4	- 210,4 9424 6	350,5 0797 2	0, 3	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	METHI ONI	UNIF AC °	K	- 0,02 1655 6	0,102 7000 5	85,59 3447 6	- 88,21 8519 2	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	METHI ONI	UNIF AC °	K	- 4,62 0922 2	17,04 0076 6	- 213,6 6518 7	2334, 81	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	METHI ONI	UNIF AC °	K	- 2,76 8825 5	5,630 3046	- 149,1 0216 6	645,9 7616	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	METHI ONI	UNIF AC °	K	0,57 2431 01	- 0,257 5405 7	275,1 4586 9	- 153,5 0313 9	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	METHI ONI	UNIF AC °	K	0,32 7262 37	0,036 9751 3	8,438 8100 9	0,772 2388 5	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	METHI ONI	UNIF AC °	K	- 0,64 9240 6	0,520 4474 9	576,7 4525 5	- 483,5 2529 3	0, 3	0	0	0	0	0	273 ,15	373, 15

			•								•				
PHENY LAL	METHI ONI	UNIF AC °	K	0,01 1330 19	- 0,072 1581 5	- 381,1 6857 8	471,3 4319 3	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	METHI ONI	UNIF AC °	K	0,37 9483 06	- 0,335 0583 2	116,8 0539 4	- 51,51 3574 6	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	THREO NIN	UNIF AC °	K	- 1,14 3387 6	1,205 1881 9	717,3 9039 2	- 719,6 7981 1	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	SERIN E	UNIF AC °	K	- 0,29 5504 2	0,510 671	83,16 2839 8	- 71,38 0990 4	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	LEUCIN E	UNIF AC °	K	- 0,46 1026 7	0,470 6003 4	386,4 8132 9	333,3 6071 6	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	ISOLEU CI	UNIF AC °	K	- 0,46 1026 7	0,470 6003 4	386,4 8132 9	- 333,3 6071 6	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	VALINE	UNIF AC °	K	- 0,38 4720 9	0,280 1744 9	469,6 0660 4	- 376,7 8995	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	GLUTA MIC	UNIF AC °	K	0,01 4287 24	- 0,030 2429	183,9 9100 1	- 162,5 6858 2	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	ASPAR TIC	UNIF AC °	K	- 0,55 9904 3	0,703 5310 5	242,3 5754 8	240,9 8460 7	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	GLYCI NE	UNIF AC °	K	- 1,41 1208 1	1,877 6911 5	504,4 2866 1	700,9 8695 5	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	ALANIN E	UNIF AC °	K	1,11 9086 03	- 0,916 7437 3	57,11 1201 6	- 37,15 6359 8	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	PROLI NE	UNIF AC °	K	0,19 9752 79	- 0,219 9937 5	261,7 3082 2	- 204,8 7926 6	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	HYDRO GEN	UNIF AC °	K	9,19 9599 28	- 6,466 6034 9	2405 4,299	- 236,4 9079 6	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	METHA NE	UNIF AC °	K	- 1,63 9393 8	0,718 0916 6	110,3 7198 4	1196, 1877 2	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	H2S	UNIF AC °	K	5,88 8917 96	- 2,836 5476 6	652,4 7727 9	- 148,6 0077 8	0, 3	0	0	0	0	0	273 ,15	373, 15

METHI ONI	CH4S	UNIF AC °	K	3,57 2287 17	- 2,121 7038 1	210,1 2363 6	- 77,12 3994 5	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	BENZE NE	UNIF AC °	K	- 0,75 8223 7	0,813 6345 7	6,113 3023	632,8 1056 7	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	PHENO L	UNIF AC °	K	- 22,1 6907 9	0,813 8744 9	2073 2,753 3	- 2882, 7899 6	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	H2CO3	UNIF AC °	K	- 0,66 4640 2	1,187 8907 7	- 37,40 0269 4	126,3 2454 8	0,	0	0	0	0	0	273 ,15	373, 15
METHI ONI	HEMEC ELL	UNIF AC °	K	- 0,27 8087 1	0,261 9406	- 131,3 8155 3	49,57 7779 5	0,	0	0	0	0	0	273 ,15	373, 15
METHI ONI	GLUCO SE	UNIF AC°	K	0,08 8366 23	- 0,814 7931 1	- 931,3 3634	1729, 0750 3	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	TRIOLE IN	UNIF AC °	K	3,09 9330 05	- 2,104 1747 7	1214, 5940 8	874,3 4741 1	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	TRIPAL M	UNIF AC °	K	2,07 1672 51	2,394 8789 1	1852, 0977 4	1206, 5464	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	PALM	UNIF AC °	K	0,70 8370 03	- 0,445 6514 2	1098, 0683 5	- 222,0 1901 2	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	SN-1 01	UNIF AC °	K	2,15 5123 55	- 1,455 9596 8	738,9 6521 5	229,0 1279 5	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	SN-1 02	UNIF AC °	K	2,43 1931 53	- 1,349 4520 1	470,7 8118 5	115,6 1954 8	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	FURFU RAL	UNIF AC °	K	- 0,63 2792 1	0,681 6663 5	- 223,6 7510 4	675,8 8581 8	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	LINOLE IC	UNIF AC °	K	2,04 8986 78	- 0,815 1221 7	- 200,2 6804 4	211,2 7286	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	ETHAN OL	UNIF AC °	K	1,02 6223 68	- 1,091 0195 5	1216, 8022 9	- 478,0 4877	0, 3	0	0	0	0	0	273 ,15	373, 15
METHI ONI	ACETA TE	UNIF AC °	K	2,40 5168 48	- 1,653 1239 5	345,9 0726 2	- 141,9 6388 3	0, 3	0	0	0	0	0	273 ,15	373, 15

											•	•			
WATER	XYLOS E	UNIF AC °	K	2,53 7782 84	- 1,599 0914 6	- 94,84 4544 4	57,25 2765 6	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCE ROL	XYLOS E	UNIF AC °	K	0,09 7611 73	- 0,141 9373 4	235,8 7426 6	- 165,1 6804	0,	0	0	0	0	0	273 ,15	373, 15
OLEIC- AC	XYLOS E	UNIF AC °	K	0,33 7505 09	1,828 7392 1	2763, 4995 2	2405, 5308 1	0, 3	0	0	0	0	0	273 ,15	373, 15
DEXTR OSE	XYLOS E	UNIF AC °	K	- 1,25 4716	1,192 7655 4	826,5 0685 4	- 771,8 0184 3	0, 3	0	0	0	0	0	273 ,15	373, 15
ACETI- AC	XYLOS E	UNIF AC °	K	- 1,63 2291 7	2,346 7752 2	1,533 0465 3	6,215 4724 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PROPI- 01	XYLOS E	UNIF AC °	K	1,79 8164 15	- 1,023 6433 8	106,5 754	49,36 2892 9	0,	0	0	0	0	0	273 ,15	373, 15
ISOBU- 01	XYLOS E	UNIF AC °	K	1,91 4485 3	- 0,743 2369 7	230,6 1068 4	124,3 8335 7	0,	0	0	0	0	0	273 ,15	373, 15
ISOVA- 01	XYLOS E	UNIF AC °	K	1,88 7510 65	- 0,458 4911 1	379,7 5072 7	219,6 4775 8	0, 3	0	0	0	0	0	273 ,15	373, 15
NH3	XYLOS E	UNIF AC °	K	7,50 0233 3	- 7,11 E-15	- 434,1 2347 8	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
CO2	XYLOS E	UNIF AC °	K	3,04 5809 1	6,597 3291 1	- 267,3 2358 7	1477, 0967 4	0, 3	0	0	0	0	0	273 ,15	373, 15
C5H7N O2	XYLOS E	UNIF AC °	K	0,93 2197 64	- 0,608 4609 9	836,4 3193 5	235,3 3187 1	0, 3	0	0	0	0	0	273 ,15	373, 15
HISTIDI N	XYLOS E	UNIF AC °	K	1,28 1318 88	0,321 9749 3	- 90,50 5633 7	- 294,1 7680 8	0, 3	0	0	0	0	0	273 ,15	373, 15
LYSINE	XYLOS E	UNIF AC °	K	0,60 4844 66	0,154 3963 2	- 446,4 4740 9	- 224,5 5403 2	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENY LAL	XYLOS E	UNIF AC °	K	1,10 8735 56	0,270 5486 8	- 12,88 9731 6	- 73,54 8709 6	0, 3	0	0	0	0	0	273 ,15	373, 15
CYSTEI NE	XYLOS E	UNIF AC °	K	1,53 1948 56	- 0,733 8500 1	7,686 7261 8	264,7 8300 7	0, 3	0	0	0	0	0	273 ,15	373, 15

		ı				T	T				1				
METHI ONI	XYLOS E	UNIF AC °	K	4,72 9605 25	3,400 9839 5	- 2608, 0074 4	1810, 5538 9	0, 3	0	0	0	0	0	273 ,15	373, 15
THREO NIN	XYLOS E	UNIF AC °	K	0,79 7258 05	- 0,519 0523	- 312,2 8686 2	35,61 0417 4	0,	0	0	0	0	0	273 ,15	373, 15
SERIN E	XYLOS E	UNIF AC °	K	1,31 6185 19	- 1,017 8906	- 521,3 8905 6	142,1 4138	0,	0	0	0	0	0	273 ,15	373, 15
LEUCIN E	XYLOS E	UNIF AC °	K	1,42 9683 99	- 0,045 8683 1	- 109,9 3295 9	- 46,01 7052 2	0,	0	0	0	0	0	273 ,15	373, 15
ISOLEU CI	XYLOS E	UNIF AC °	K	1,42 9683 99	- 0,045 8683 1	- 109,9 3295 9	- 46,01 7052 2	0,	0	0	0	0	0	273 ,15	373, 15
VALINE	XYLOS E	UNIF AC °	K	1,34 9435 24	- 0,273 2929 6	- 129,1 9410 3	- 122,6 2719 7	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUTA MIC	XYLOS E	UNIF AC °	K	- 0,60 1066 4	1,058 3552 9	265,6 1032 9	- 625,1 1086 4	0, 3	0	0	0	0	0	273 ,15	373, 15
ASPAR TIC	XYLOS E	UNIF AC °	K	0,68 0599 35	- 0,421 4056 5	- 357,9 6666 5	- 1,663 2873 6	0, 3	0	0	0	0	0	273 ,15	373, 15
GLYCI NE	XYLOS E	UNIF AC °	K	2,96 0899 59	- 2,034 4405 1	- 1251, 2081 4	247,0 4721 6	0, 3	0	0	0	0	0	273 ,15	373, 15
ALANIN E	XYLOS E	UNIF AC °	K	- 1,00 3672 9	0,929 1714 7	- 555,4 8373 1	1256, 1679 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PROLI NE	XYLOS E	UNIF AC °	K	1,49 1041 46	- 0,374 1357 4	- 55,20 7895 2	- 77,67 6193 4	0, 3	0	0	0	0	0	273 ,15	373, 15
HYDRO GEN	XYLOS E	UNIF AC °	K	- 11,6 7034 2	- 7,11 E-15	- 434,1 3381 1	3000 0	0, 3	0	0	0	0	0	273 ,15	373, 15
METHA NE	XYLOS E	UNIF AC °	K	- 0,02 8088 4	- 2,406 6902 9	4236, 6075	898,2 0834 6	0, 3	0	0	0	0	0	273 ,15	373, 15
H2S	XYLOS E	UNIF AC °	K	3,89 2477 2	10,92 1357 4	- 339,6 9167 9	2928, 6140 4	0, 3	0	0	0	0	0	273 ,15	373, 15
CH4S	XYLOS E	UNIF AC °	K	1,07 9508 84	- 1,833 9908 5	1606, 0195 5	511,4 9997 3	0, 3	0	0	0	0	0	273 ,15	373, 15

	Ī	ı		1	1	1	1			1				1	1
BENZE NE	XYLOS E	UNIF AC °	K	0,94 9787 87	- 1,062 0856 3	2715, 9447 7	909,1 5920 6	0, 3	0	0	0	0	0	273 ,15	373, 15
PHENO L	XYLOS E	UNIF AC °	K	0,88 7801 18	- 19,50 2680 6	- 2808, 0192 3	1873 9,245 8	0,	0	0	0	0	0	273 ,15	373, 15
H2CO3	XYLOS E	UNIF AC °	K	2,05 1840 3	3,365 3316 4	140,1 1657 2	- 338,7 5570 9	0, 3	0	0	0	0	0	273 ,15	373, 15
HEMEC ELL	XYLOS E	UNIF AC °	K	1,20 3394 95	- 0,495 0496 5	- 67,65 8296 4	46,47 2921 4	0, 3	0	0	0	0	0	273 ,15	373, 15
GLUCO SE	XYLOS E	UNIF AC °	K	- 1,25 4716	1,192 7655 4	826,5 0685 4	- 771,8 0184 3	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIOLE IN	XYLOS E	UNIF AC °	K	0,03 1981 39	7,268 5084 5	4000, 6773 2	8670, 0123 2	0, 3	0	0	0	0	0	273 ,15	373, 15
TRIPAL M	XYLOS E	UNIF AC °	K	0,01 9475 22	6,908 7507 4	4087, 5253 5	7609, 0828 9	0, 3	0	0	0	0	0	273 ,15	373, 15
PALM	XYLOS E	UNIF AC °	K	0,41 2927 35	1,672 2413 3	2440, 2327 6	2045, 1056 9	0, 3	0	0	0	0	0	273 ,15	373, 15
SN-1 01	XYLOS E	UNIF AC °	K	0,12 4139 51	4,248 5581 6	3055, 1386	4759, 0078 4	0, 3	0	0	0	0	0	273 ,15	373, 15
SN-1 02	XYLOS E	UNIF AC °	K	0,06 2727 5	4,032 2500 5	3032, 6892 9	4808, 3686 3	0, 3	0	0	0	0	0	273 ,15	373, 15
XYLOS E	FURFU RAL	UNIF AC °	K	- 0,92 6009 4	1,265 0041 1	198,4 5996 3	1289, 2022 5	0,	0	0	0	0	0	273 ,15	373, 15
XYLOS E	LINOLE IC	UNIF AC °	K	1,56 7461 29	0,184 7044 6	2438, 9939 1	2713, 3992 3	0, 3	0	0	0	0	0	273 ,15	373, 15
XYLOS E	ETHAN OL	UNIF AC °	K	- 1,10 8117 7	1,290 3800 4	39,90 8987 3	239,9 3102 5	0, 3	0	0	0	0	0	273 ,15	373, 15
XYLOS E	ACETA TE	UNIF AC °	K	2,34 6770 45	- 1,632 2907 8	6,218 7414	1,532 3869 9	0, 3	0	0	0	0	0	273 ,15	373, 15
WATER	ACETI- AC	APV1 10 VLE- HOC b	K	Copr ©	Copr ©	Copr ©	Copr ©	C op r©	C op r©	Co pr©	Co pr ©	C op r©	C op r©	Cop r©	Cop r©

^a Parâmetros de interação binária

^b Parâmetros com origem em bancos de dados do Aspen versão 11.0

[°] Parâmetros com origem UNIFAC quer dizer que foram estimados por método UNIFAC.

^d parâmetros de interação binário com origem do modelo de simulação de Rajendran et al. (2014).