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ABSTRACT

The advancement of robotics may produce a positive impact on several aspects of our
society. However, in order for robotic agents to assist humans in a variety of everyday ac-
tivities, they need to possess representations of their environments that allow spatial and
human-centered semantic understanding. Many works in the recent literature use Convolu-
tional Neural Network (CNN) models to recognize semantic properties of images and incor-
porate the results into traditional metric or topological maps, a procedure known as semantic
mapping. The types of semantic properties (e.g., room size, place category, and objects) and
their semantic classes (e.g., kitchen and bedroom, for place category) are usually previously
defined and restricted to the planned tasks. Thus, all the visual data acquired and processed
during the construction of the maps is lost, and only the recognized semantic properties re-
main on the maps. In contrast, this research proposes using the visual data acquired during the
mapping process to create reusable representations of regions by consolidating deep features
extracted from the data. These consolidated representations would allow the recognition of
new semantic information in a flexible way, and consequently, the adaptation of the semantics
of the maps to new requirements of new tasks without the need for remapping. Such use of
reusable consolidated representations for the generation of semantic maps is demonstrated in
a topological mapping method that creates consolidated representations of deep visual fea-
tures extracted from RGB images captured around each topological node. This is done using
a process we denote as Topological Consolidation of Features by Moving Averages (TCMA).
Experiments performed with real-world indoor datasets suggested that the proposed method
is able to create consolidated representations that fairly preserve the visual features of the
original images they consolidated and do not degrade in quality over time. Furthermore, the
very promising results suggested that the consolidated representations produced are suitable
for recognizing different semantic properties, indicating the topological location of images and
adapting previously created maps with new semantic information. The experiments included
two different CNNs for deep features extraction, classifiers trained on large-scale datasets
from the literature, and more practical real-time scenarios. Different variations of the method
were evaluated, including a derivation of the TCMA process that uses the arithmetic mean of

multiple exponential moving averages.

Keywords: topological semantic mapping; deep learning for visual perception; representation

learning; visual features consolidation; transfer learning; mobile robotics.



RESUMO

O avanco da robética pode produzir um impacto positivo em varios aspectos da nossa
sociedade. No entanto, para que os agentes robéticos auxiliem os seres humanos em uma var-
iedade de atividades cotidianas, eles precisam possuir representacoes de seus ambientes que
permitam a compreensdo espacial e semantica centrada em seres humanos. Muitos trabalhos
na literatura recente usam Redes Neurais Convolucionais (CNN, do inglés Convolutional Neu-
ral Network) para reconhecer propriedades semanticas de imagens e incorporam os resultados
em mapas métricos ou topoldgicos tradicionais, um procedimento conhecido como mapea-
mento seméantico. Os tipos de propriedades semanticas (ex: tamanho do cémodo, categoria
de lugar e objetos) e suas classes semanticas (ex: cozinha e quarto, para categoria de lugar)
geralmente s3o previamente definidos e restritos as tarefas planejadas. Assim, todos os dados
visuais adquiridos e processados durante a construcdo dos mapas sao perdidos, restando ape-
nas as propriedades semanticas reconhecidas nos mapas. Em contraste, esta pesquisa propoe
usar os dados visuais adquiridos durante o processo de mapeamento para criar representacoes
reutilizaveis de regides pela consolidacdo de caracteristicas visuais profundas extraidas dos
dados. Essas representacdes consolidadas permitiriam o reconhecimento de novas informacdes
semanticas de forma flexivel e, consequentemente, a adaptacdo da semantica dos mapas a
novos requisitos de novas tarefas sem a necessidade de remapeamento. O uso de represen-
tacoes consolidadas reutilizaveis para a geracdao de mapas semanticos é demonstrado em um
método de mapeamento topoldgico que cria representacdes consolidadas de caracteristicas vi-
suais profundas extraidas de imagens RGB capturadas em torno de cada né topolégico. Isso é
feito usando um processo que denominamos como Consolidacao Topolégica de Caracteristicas
por Médias Méveis (TCMA, do inglés Topological Consolidation of Features by Moving Aver-
ages). Experimentos realizados com conjuntos de dados de ambientes internos do mundo real
sugeriram que o método proposto é capaz de criar representacGes consolidadas que preservam
as caracteristicas visuais das imagens originais consolidadas e ndo degradam a qualidade ao
longo do tempo. Além disso, os resultados promissores sugeriram que as representacoes consol-
idadas produzidas sao adequadas para o reconhecimento de diferentes propriedades semanticas,
a localizacdo topolégica de imagens e adaptacao de mapas criados anteriormente com novas
informacdes semanticas. Os experimentos incluiram duas CNNs diferentes para extracdo de
caracteristicas profundas, classificadores treinados em conjuntos de dados de larga escala da lit-
eratura e cenarios mais praticos com execucao em tempo real. Diferentes variaces do método
foram avaliadas, incluindo uma derivacdo do processo TCMA que usa a média aritmética de

multiplas médias mdveis exponenciais.

Palavras-chave: mapeamento semantico topolégico; aprendizagem profunda para percepcao
visual; aprendizagem de representacdes; consolidacao de caracteristicas visuais; aprendizagem

por transferéncia; robdtica moével.
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1 INTRODUCTION

Recent advances in machine learning and robotics have resulted in a growing number of ap-
plications of artificial autonomous agents, such as robots, in people's everyday environments to
perform many complex tasks in homes, industries, transportation, and so on. For these agents
to be able to adequately assist humans in a variety of activities, they need to have representa-
tions of their environments that go beyond spatial understanding. The spatial representations,
built as metric or topological maps from on-board sensors data, contain geometric information
that allow robotic agents to navigate through environments while locating themselves, plan-
ning trajectories, and avoiding obstacles. However, spatial understanding alone does not allow
the agents to differentiate the type of place where they are (e.g., living room or bedroom) or
which objects are present in the room, that is, it does not allow them to understand the world
through human concepts (ACHOUR et al., 2022).

Without human-centered understanding, it would be intractable for robotic agents to per-
form complex tasks common in everyday human life, such as responding to a natural language
command (e.g., "clean all the bedrooms" or "go to the kitchen and get an apple for me"),
interacting with the environment if necessary (e.g., opening a door to enter a destination or
picking up a requested object), or avoiding unpleasant behavior (e.g., standing in front of
a door for too long) (HAN et al,, 2021). Therefore, understanding the world through human
concepts is essential for robots to coexist with humans and assist them in everyday activities.
To address this issue, a procedure known in the literature as semantic mapping is used to
allow robotic agents to associate geometric entities in the spatial representations with human-
centered semantic information (KOSTAVELIS; GASTERATOS, [2015)).

Semantic mapping methods incorporate into traditional spatial maps (such as metric or
topological) human-centered semantic properties that vary depending on the type of environ-
ments they represent. In indoor environments (such as offices or homes), for example, semantic
properties like place categories (e.g., kitchen, corridor, and bathroom) and objects (e.g., chair,
bed, and television) may be important (PRONOBIS; JENSFELT, [2012). In the literature, the
semantic properties are generally obtained automatically from sensory data (such as RGB im-
ages and 2D depth measurements) using machine learning models. However, some approaches
also infer semantic properties from other semantic information already obtained (e.g., objects
recognized in a room may be used to infer the place category) or receive them through human
input (e.g., semantic properties of critical contexts can be defined manually, such as road
signs) (KOSTAVELIS; GASTERATOS, 2015 HAN et al., 2021; ACHOUR et al., [2022).

The recent development of deep learning, especially in Convolutional Neural Networks
, allowed the automatic acquisition of semantic properties of the mapped environments
at a new level. Currently, CNN models are the state-of-the-art for various computer vision tasks
(GU et al, [2018; |LI et al} 2022) and in semantic mapping they are widely used to recognize

semantic properties from images through classification, objects detection, and semantic seg-
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mentation (HAN et al., 2021} |ACHOUR et al, [2022; |ICHEN et al., 2022). The common approach in
semantic mapping is to recognize the semantic properties from individual images and fuse (or
accumulate) them over time into the associated spatial elements, as information recognized
in just one instant and view rarely provides a reliable semantic understanding (KOSTAVELIS;
GASTERATOS, 2015)).

However, training deep learning models like CNNs requires lots of data and is very costly
in terms of time and computational resources. Because of this, many modern semantic map-
ping methods use CNNs already trained (on large-scale datasets) to solve a related problem.
The pre-trained CNNs are used to perform recognition of semantic properties mainly in two
ways: without any changes or retraining (SUNDERHAUF et al., 2017; |[SOUSA; BASSANI, 2018;
RANGEL et al., [2019; ROSINOL et al., [2021)); or they are customized through transfer learning
to recognize task-specific semantic information (SUNDERHAUF et al., 2016; [MCCORMAC et al.,
2017} |RODDICK; CIPOLLA, [2020).

Even with the powerful addition of deep learning models for the automatic recognition of
semantic properties from images, modern semantic mapping methods still have the semantics
incorporated in the maps restricted to the types of semantic properties defined previously
to support the planned application scenarios. This occurs because the standard procedure
in semantic mapping methods is to use the acquired visual data to recognize the semantic
properties and associate them with the spatial entities only during the mapping process, that
is, the visual data acquired during the mapping process is used to recognize the semantic
properties and then discarded. Thus, no new semantic information can be recognized from the
lost data and only the semantic labels are kept in the maps. This restricts the application of
the produced maps to new tasks, which would require at least a remapping process with new
semantic properties recognition models or the use of other mechanisms (like human input).

Differently, this research investigates how to create semantic maps that can automatically
update their semantics using machine learning methods even after the mapping process and
proposes that a promising path is to use the large amount of visual data acquired during
the process to create visual representations of spatial regions that consolidate visual features
extracted from multiple images. Consolidation in this research is defined as the process of
combining several feature vectors into a single vector that is representative of the whole.
Hence, a consolidated visual representation is the result of the consolidation of multiple visual
representations (i.e., the visual features vectors) extracted from individual images by a latent
layer of a pre-trained CNN model.

These consolidated visual representations could be reused for the recognition of certain
semantic properties during the mapping process and would allow the recognition of new se-
mantic information to adapt the maps to fulfill the requirements of new tasks defined in the
future. Furthermore, all tasks that use path planning could automatically benefit from new
semantic information added to the maps for more efficient path planning, which could only be

accomplished by remapping all environments in the traditional procedure. Therefore, the use
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of reusable consolidated visual representations could improve the applicability of the maps in
several aspects.

Given the above, two objectives emerge for this thesis. The first is to develop a semantic
mapping method with an innovative procedure of adaptive semantic association made from
reusable consolidated visual representations and validate its efficacy through the use of the
consolidated representations for the flexible recognition of different semantic properties. The
second objective is to develop a process of deep visual features consolidation that can effectively
preserve relevant visual features of the consolidated images and richly represent the visual
characteristics of the associated spatial regions. The second objective aims to enable the first
objective with a specific consolidation process integrated into the semantic mapping method
and not to develop a general-purpose visual features consolidation method. Additionally, as
indoor and outdoor environments face different application challenges, this thesis restricts its
objectives to indoor environments.

To address the presented objectives, this thesis first proposes a topological semantic map-
ping method that creates consolidated representations of the deep visual features extracted
from images captured around each topological node. The deep visual features are extracted
using a pre-trained CNN and are consolidated through a process we denote as Topologi-
cal Consolidation of Features by Moving Averages (TCMA)). The consolidation process uses
exponential moving averages, is inspired by Self-Organizing Maps (SOM)) with time-varying
structure (ARAUJO; REGO, 2013)), and has visual persistence and visual habituation capabili-
ties. Experiments performed in a real-world indoor dataset suggest that the consolidated visual
representations produced are rich representations of the topological regions they cover, fairly
preserve the visual features of the consolidated images, and can be used to recognize varied
semantic properties (such as place category, room, and objects), as well as to indicate the
topological location of images (a distinct visual task).

Then, this thesis introduces a version of the topological semantic mapping method for
real-time operation and a derivation of the TCMA process that combines multiple exponential
moving averages, the (Topological Consolidation of Features by the Combination of
Multiple Moving Averages) process. The real-time version of the method is evaluated with both
proposed consolidation processes, separately, in experiments that aimed to assess the creation
and application of consolidated visual representations in more practical scenarios. The results
suggest that the consolidated visual representations produced are suitable for the accurate
recognition of different semantic properties using classifiers trained on large-scale datasets
found in the literature and can be reused to adapt the semantic information of previously
created maps.

Achieving the presented objectives is not an easy task, but the proposed solutions proved
to be very promising, which may represent a starting point for a new perspective for the

generation of semantic maps.
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1.1 THESIS OUTLINE

The rest of this thesis is organized as follows.

» Chapter [2| presents important concepts that contributed to the development of the

solutions proposed in this research;

= Chapter [3] presents a brief review of the literature on semantic mapping and contextu-

alizes the solutions proposed in this research;

» Chapter 4] details the proposed topological semantic mapping method and the experi-
ments performed to evaluate the maps produced with it. In the experiments, the quality

and applicability of the consolidated visual representations are evaluated;

» Chapter [5] details the version of the proposed method for real-time operation and the
TCCMA process. The chapter also details and discusses the experiments performed to

evaluate the application of the method and its variations in more practical scenarios;

» Chapter [0 discusses the contributions of this research, describes limitations identified in

the proposed solutions and proposes directions for future work.
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2 BACKGROUND

This chapter presents important concepts that contributed to the development of the so-
lutions proposed in this thesis. First, Section [2.1] provides a brief introduction to deep learning,
CNNs, and transfer learning, and also briefly describes GoogleNet (SZEGEDY et al/ [2015))
and MobileNetV2 (SANDLER et al., [2018), the two CNN models used in the proposed solutions.
Then, Section[2.2]details the main concepts of SOM and describes|[LARFDSSOM|(Local Adap-
tive Receptive Field Dimension Selective Self-Organizing Map) (BASSANI; ARAUJO, 2015), a
self-organizing map with time-varying structure. Finally, Section discusses the presented
concepts that inspired certain characteristics of the solutions proposed in this thesis.

2.1 DEEP LEARNING

For decades, considerable domain expertise was required to design feature extractors, such
as SIFT (LOWE, 1999) and SURF (BAY et al, 2008), that transformed raw data (e.g: the
pixels of an image) into adequate feature vectors (also called representations) from which
machine learning methods could detect or classify patterns (LECUN; BENGIO; HINTON, 2015)).
However, the performance of machine learning methods is strongly dependent on the data
representation on which they are applied and such domain expertise feature extractors are
unable to extract discriminate information from the data itself, in addition to requiring careful
human engineering (BENGIO; COURVILLE; VINCENT, 2013).

For this reason, much effort has been made in the literature to allow machine learning
methods to automatically discover from raw data the necessary representations for tasks such
as detection and classification. Deep learning methods are representation learning techniques
that learn multiple levels of representations by the composition of multiple non-linear modules.
Starting with the raw input, each module transforms the representation of the data at one
level into a slightly more abstract representation level. Very complex patterns can be learned
by composing several of these transformations (LECUN; BENGIO; HINTON, 2015)).

One of the most prominent deep learning approaches is the Convolutional Neural Network
(CNN). Currently, CNN-based models are the dominant approach in many computer vision
tasks (such as face recognition, object detection and semantic segmentation) and have allowed
the research community to make significant advances in very complex applications (such as
autonomous vehicles and medical diagnostics) (LECUN; BENGIO; HINTON, 2015; |GU et al., [2018;
Ll et al, 2022). The next section briefly describes the main components of a CNN.

2.1.1 Convolutional Neural Networks

CNN is a feedforward neural network designed to process input data in grid-like form. An

RGB image, for example, is a 3D grid composed of three 2D arrays containing pixel intensities
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Figure 1 — The outputs of convolutional and pooling layers in a typical CNN architecture applied to an RGB
image. Each rectangular image is a feature map.
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Source: Adapted from |LeCun, Bengio and Hinton| (2015)).

(one for each color channel) (GOODFELLOW; BENGIO; COURVILLE, |2016). The basic architecture

of a CNN is a sequence of several layers and each layer transforms the input volume (a 3D
matrix in the case of an RGB image) into a 3D output volume (also called representation).
The main three types of layers in a CNN are: convolutional, pooling and fully connected.
The role of the convolutional layer is to detect local conjunctions of features from the
previous layer (LECUN; BENGIO; HINTON, [2015). A convolutional layer is composed of a set of

learnable filters and each of them produces a different 2D feature map that makes up the 3D
output volume of the layer. Each filter has a different kernel (i.e.: a matrix of weights) for each
channel in the previous layer. The number of channels in the previous layer is determined by
the number of feature maps produced in that layer, or, if it is the first layer, by the number of
channels in the input data (e.g.: 3, for an RGB image). All kernels in a filter have the same
size (frequently called of filter size), usually N x N with N small (such as 5 x 5 or 3 x 3),
and all filters in a traditional convolutional layer have the same filter size.

Each kernel is applied to all sub-regions N x N of its respective channel in the input volume.
For each sub-region, it is computed the sum of the results of the element-wise multiplication
between the weights in the kernel and the values in the sub-region. Therefore, each kernel
produces a processed version of its respective channel and all processed versions are summed
to produce the output 2D feature map. If a layer has n filters, n 2D feature maps are produced
and concatenated to form the 3D output volume for the next layer. Additionally, an activation
function, such as (Rectified Linear Unit) or sigmoid, is usually applied to each element
in the resulting 3D output volume before passing it to the next layer. In a CNN architecture,
the first convolutional layer learns to detect low-level features (such as curves and edges) and
subsequent layers learn to detect higher-level features representations from the output of the

previous layers, gradually.
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The pooling layer acts to reduce the dimensions of the input feature maps and create
invariance for small shifts and distortions (LECUN; BENGIO; HINTON, 2015). A pooling layer is
commonly inserted between convolutional layers and resizes each 2D feature map in the input
volume, separately (i.e.: the number of channels in the output volume remains unchanged).
Each element in a resized 2D feature map is typically the result of maximum or average
operation of all elements in a N x N sub-region in the input representation. Figure[I]exemplifies
the operation of convolutional and pooling layers in an RGB image.

In a CNN, after a sequence of several convolutional and pooling layers, it is common to add
fully connected layers (one or more). A fully connected layer in a CNN works in the same way
asin a regular (Multilayer Perceptron), and therefore has multiple units, each connected
to all units in the input volume by a set of learnable weights, and produces a 2D output
vector. Some CNN architectures use convolutional layers as final layers, so the use of fully
connected layers is not obligatory (GU et al., [2018). The output layer in a CNN depends on
the application. In a multiclass classification task, the output layer is usually a fully connected
layer with the number of units equal to the number of classes selected, followed by a softmax
function, which transforms the input vector into a vector of probabilities that sum to 100%.

Training the weights of a CNN is similar to training a regular deep neural network, by
backpropagating the gradient of the error through the layers of the network (LECUN; BENGIO;
HINTON, 2015)). The error is calculated between the prediction outputs and the expected values
in the training data using a loss function, such as the mean squared error and cross entropy
(often used for regression and classification tasks, respectively) (LI et al., 2022).

Typically, if the dataset used to train the CNN is very large and general, the CNN learns to
detect general features and its inner layers can be transferred to a second CNN, which will reuse
the learning for a new target task. This procedure is defined as transfer learning, which allows
the reuse of knowledge from one domain to another, helps to increase the generalization power
of the trained models and to decrease the training time (YOSINSKI et al., 2014; NEYSHABUR,;
SEDGHI; ZHANG, [2020)). The next section discusses transfer learning in more detail.

2.1.2 Transfer Learning

In the usual transfer learning process, the first n layers of a pre-trained CNN are transferred
to a new CNN which uses them as its first n layers, then the subsequent layers of the new
CNN are added and the network is trained on the data of the new target task. Training is
usually done in one of two ways: the weights of the transferred layers are left frozen, which
means that they will not change during training and the transferred layers will act as a features
extractor; or, the errors obtained during training are backpropagated through all layers of the
CNN, that is, the weights of the transferred layers will be used as initialization and finetuned
to the new task (YOSINSKI et al., 2014).

The choice of which procedure to use depends on several factors, two of them are: the
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size of the target dataset and the number of layers (more precisely, the number of weights)
transferred. For example, if the number of weights is small or the target dataset is large, the
transferred weights can be finetuned to improve the performance in the new task. However,
if the number of weights transferred is large and the target dataset is small, it is preferred
to freeze the transferred layers to avoid overfitting. In this way, transfer learning allows the
training of very effective deep networks with small datasets. (YOSINSKI et al., 2014]).

The use of a CNN trained on a very large (and general) dataset as a fixed features extractor
to transfer learning to a task of interest is a widely used procedure nowadays and is also used
in the solutions proposed in this thesis. The next sections briefly describe GoogleNet and
MobileNetV2, the two CNN models used in this thesis. The models are used pre-trained on
ImageNet-1K, a subset of ImageNet (DENG et al., 2009) with 1000 image categories. ImageNetE]
is a large-scale image database organized by the hierarchical structure of WordNet (FELLBAUM,

1998)) with over 14 million annotated images and more than 20.000 categories.

2.1.3 GooglLeNet

GoogleNet is the convolutional neural network that achieved the best classification results
in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14) (SZEGEDY et
al., [2015)). The challenge involved classifying images among the 1000 classes of ImageNet-1K,
which contains approximately 1.2 million images for training, 50.000 for validation and 100.000
for testing. GooglLeNet starts with some traditional convolutional and pooling layers, and then
stacks several Inception modules (with the occasional use of pooling layers in between). Its
basic architecture is illustrated in Figure [2|

Figure 2 — GooglLeNet basic architecture. Each block is a layer or Inception module. The number below a block
label is the size of the filters and the number above a block is the output size. For example: in the
first convolutional layer, the filters have size 7x7 and the output size of the layer is 112x112x64.
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Source: Adapted from |Szegedy et al.| (2015).

An Inception module (illustrated in Figure [3)) applies convolution filters of three different

sizes (1 x 1, 3 x 3, and 5 x 5) in parallel, and the resulting feature maps are concatenated
1

URL: |https://www.image-net.org
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to produce the output of the module. This design allows the layer after the module to receive
as input feature maps extracted at different scales concatenated into a single representation.
Furthermore, the 1 x 1 convolution filters are used to reduce the number of channels before
the 3 x 3 and 5 x 5 convolution filters, which allowed the CNN to increase its depth and
width without significant performance penalty. ReLU activation functions are applied after all
convolution filters in the architecture, including those within Inception modules. We refer the
reader to the original paper (SZEGEDY et al| 2015) for further details on the model and its

architecture.

Figure 3 — An Inception module from Googl eNet.
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Source: Adapted from [Szegedy et al | (2015).

2.1.4 MobileNetV2

MobileNetV2 (SANDLER et al., 2018)) is a convolutional neural network designed for mo-
bile and resource-constrained environments, which, while maintaining accuracy, significantly
decreases the number of operations and memory used. The model is based on MobileNetV1
(HOWARD et al., 2017]), a CNN that uses Depthwise Separable Convolutions as its main building
block. In a traditional convolutional layer, each filter is applied to all channels in the input
representation. Differently, a Depthwise Separable Convolution block divides the convolutional
process into two layers: the first is the depthwise convolution layer, which applies a single con-
volutional filter per input channel; and the second is a convolutional layer with 1 x 1 filters (also
called pointwise convolution layer), which calculates linear combinations of the output chan-
nels of the depthwise convolution layer. This design significantly reduces the computational
cost when compared to traditional convolutional layers.

MobileNetV2 extends the first version by introducing a module (illustrated in Figure |4)),
called Inverted Residual with Linear Bottleneck, which first expands the number of channels in
the input representation using a convolutional layer with 1 x 1 filters, then applies a depthwise

convolution layer with 3 x 3 filters, then a linear convolutional layer with 1 x 1 filters (also
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called linear bottleneck layer in this architecture) projects the resulting features back to a
representation with the original number of channels, and the obtained representation is added
to the original input representation through a shortcut connection. The use of such shortcut
connections allows the model to increase its ability to propagate gradients across layers. Fur-
thermore, ReLUG6 activation functions are applied after each convolutional layer in the module,
with the exception of the linear convolutional layer, since (as the authors suggest) using non-
linearities at bottlenecks can destroy too much information and degrade performance. ReLU6
limits the positive direction of the function to a maximum value and was used because it
showed robustness to low-precision computations.

There are two version of the module, the first is as described and the second does not
use the shortcut connection, i.e., the output of the module is that of the linear convolutional
layer (the last convolutional layer of the module). The architecture of the CNN starts with
a traditional convolutional layer followed by several Inverted Residual with Linear Bottleneck

modules, as illustrated in Figure [4]

Figure 4 — In (a) an Inverted Residual with Linear Bottleneck module from MobileNetV2 is illustrated, where
Dwise stands for depthwise convolution layer. In (b) the basic architecture of MobileNetV2 is
presented, where each block is a layer or Bottleneck module (Bottleneck stands for Inverted Residual
with Linear Bottleneck module). The number below a block label is the size of the filters and the
number above a block is the output size. If the block is a Bottleneck module, the number in the
bottom right corner is the number of repetitions of the module and the number above a block is
the size of the output after all repetitions.
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Source: Adapted from |Sandler et al.| (2018).

For further details on the MobileNetV2 and its architecture, we refer the reader to the
original paper (SANDLER et al., 2018). For more general details on deep learning and CNNs, we
refer the reader to (LECUN; BENGIO; HINTON), 2015} [GOODFELLOW; BENGIO; COURVILLE, 2016)),
on representation learning to (BENGIO; COURVILLE; VINCENT), 2013), and transfer learning for
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deep models to (YOSINSKI et al., [2014; NEYSHABUR; SEDGHI; ZHANG, [2020). Also, for recent
reviews on CNNs, we refer the reader to (GU et al., 2018; LI et al., [2022)).

2.2 SELF-ORGANIZING MAPS

Self-Organizing Maps (SOM) is a neural network originally proposed by Kohonen| (1982
as one of the first neural networks with unsupervised learning between the 1970s and 1980s,
and typically maps a high-dimensional distribution to a smaller regular grid in a compression
process that preserves the topological and metric relationships of the input data. SOM was
originally proposed for high-dimensional data visualization, but it is also frequently used for
other problems such as quantization and data clustering (HAYKIN, 1998)). The next section
describes the main components of the SOM of Kohonen.

2.2.1 SOM of Kohonen

The basic structure of a SOM is formed by an input layer and an output layer. The input
layer propagates the input data to all nodes in the output layer, a regular and usually two-
dimensional grid of nodes, where a topological structure is formed with the output nodes
summarizing the input data received over time.

The input layer is a vector x = {x;,i = 1...m}, where m is the number of dimensions of
the input data. The output layer is a grid of nodes, where each node j contains a vector of
weights w; = {w;;,7 = 1...m} and is connected to its immediate neighbors. Thus, each node
in the output layer has a weight for each dimension in the input vector. Figure || illustrates

the mentioned structure.

Figure 5 — Basic structure of the SOM of Kohonen in rectangular grid.

Output Layer

Input Layer

Source: Adapted from [Bassani| (2014)).

The SOM learning process consists of three steps: competition, where the nodes in the
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output layer compete and the node most similar to the input data is the winner; adaptation,
where the winning node is updated to better represent the input data; and cooperation, where
the neighbors of the winning nodes are also updated.

In this way, whenever an input pattern x is presented to the map, there is a competition
and the winner is the one with the smallest distance between the weights vector w; and the
input pattern x:

b(x) = argjmin[D(x, w;)l, (2.1)

where the distance D(x, w;) is usually calculated as the Euclidean distance, as follows:

m

D(X,Wj) = \IZ(ZEZ - wji)2- (22)

=1

Then, the winning node has its weights vector w; adapted in direction of the input data

w;(n+1) = w;(n) +n(n)hje) (n)(x = w;(n)), (2.3)

where 7)(n) is a learning rate calculated by a function that decays with the learning iterations:

n(n) = noewp< - n) (2.4)

T

where 71 is a parameter that adjusts the decay speed.

The term hjy,) is the neighborhood decay function, a function used in the adaptation of
the winning node and in the cooperation step, where the neighbor nodes of the winning node
are also updated in direction of the input data x but with a reduced level of adaptation usually

determined by a Gaussian, as follows:

r,—ry|?

where 1, and r; are the positions of the winning node b and the neighboring node j in the
output layer grid. The function o(n) starts with value oy and decreases with the training

iterations:
n

o(n) = aoemp< - ), (2.6)
T2
where 7, is a parameter that adjusts the decay speed.

The output layer in the basic structure of the SOM of Kohonen has a fixed and previously
defined number of nodes and connections between them. Thus, prior knowledge of the data is
necessary to obtain good results. A way to minimize this need is found in the literature, where
some works introduce models with topological structures (number of nodes and connections)
that can vary dynamically over time (FRITZKE, 1994; [KUNZE; STEFFENS, 1995; MARSLAND;
SHAPIRO; NEHMZOW, 2002; ARAUJO; REGO, 2013). LARFDSSOM is one such model, in which,
in addition to having a time-varying topological structure, it also learns a relevance value for

each dimension in the input data. This is different from what is done in the SOM of Kohonen,
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where all dimensions of the input data are considered equally by the distance metric. Employing
the same weight for all dimensions may cause problems in the clustering process, especially
in high-dimensional data, as some dimensions may be relevant to a cluster and irrelevant to
another (BASSANI, 2014)).

Some concepts from LARFDSSOM and SOM in general, inspired characteristics present
in the solutions proposed in this thesis. Therefore, the next section describes the operation of
LARFDSSOM in more detail.

2.2.2 LARFDSSOM

LARFDSSOM (Local Adaptive Receptive Field Dimension Selective Self-Organizing Map)
is a SOM with time-varying topological structure proposed by (BASSANI; ARAUJO, [2015),
which is based on two previous methods: (Dimension Selective Self-Organizing Map)
(BASSANI; ARAUJOL 2012), a SOM that applies different relevance to each input dimension
in the nodes of the output layer; and, on (Local Adaptive Receptive Field Self-
Organizing Map) (ARAUJO; COSTA, 2009), a SOM that modifies its topological structure when
necessary.

The LARFDSSOM learning process has the same steps of competition, adaptation, and co-
operation present in the SOM of Kohonen and is divided into two phases: the self-organization
phase, and the convergence phase. In the self-organization phase, the three steps are repeated
for several epochs, the nodes that do not reach a minimum winning percentage are removed
from the map, and whenever no node on the map reaches a minimum activation value for
the input pattern, a new node is added to the map. Then, in the convergence phase, the
self-organization process continues without adding new nodes, the nodes that do not reach a
minimum winning percentage are removed from the map, and the process continues until the
number of nodes on the map stops decreasing.

The next sections detail the LARFDSSOM learning process through the steps of competi-

tion, adaptation and cooperation.

2.2.2.1 Competition

In LARFDSSOM, each node j on the map (output layer) contains three vectors: the center
vector ¢; = {c;;,7 = 1...m}, which is the weight vector of the SOM of Kohonen renamed to
center of the cluster and m is the number of dimensions in the input data; the relevance vector
w; = {wj;,i = 1...m}, in which each component represents a weight, within [0, 1], for each
input dimension; and the average distance vector §; = {6ji,i = 1...m}, which is a moving
average of the distance between the input data and the center vector.

For each input pattern x, the winner of a competition is the node on the map with the
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highest activation ac(D,(x,c;),w;).
s(x) = arg max[ac(Dy (%, c;j),w;)]. (2.7)
J
The activation ac(D,,(x, c;),w;) of a node j is calculated by a radial basis function of the
weighted distance D, (x, c;)

1
D, (x,c;j) ’
([lwj [ +e)

ac(Dy,(x,¢j),w;) = (2.8)

1+

where ¢ is a small value to avoid division by zero and D, (x, c;) is the distance between the
input pattern x and the center vector c; of the node j, weighted by the relevance vector,

calculated as follows:

D, (x,c;) szw — i)’ (2.9)

If the winning node has an activation lower than the activation threshold a;, no node is
adapted and a new node 7 is added to the map, where ¢, = x, w, has all its components
initialized with value one, and 4, has all its components initialized with value zero. Otherwise,

the winning node and its neighbors are adapted.

2.2.2.2 Adaptation and Cooperation

First, the center vector c; of the winning node and its neighbors are adapted in direction
to the input data by the moving average below, using two learning rates, ¢, € |0, 1] for the

winning node and e,, € |0, e;] for the neighbors.
ci(n+1)=cj(n)+e(x—cj(n)), (2.10)

where e = ¢, if j is the winning node or ¢ = ¢, if j is one of its neighbors.

Next, the winning node and its neighbors have their average distance vectors 4; updated
through a moving average of the distance between the center of the node and the input
pattern:

5;(n+ 1) = (1 - e8)8;(n) + eB(lx — c;(n)]), (2.11)
where |x — c;(n)| is the absolute value of the difference between x and c;, 5 € |0, 1] controls
the rate of change of the moving average, and e = ¢, if j is the winning node or e = ¢, if j
is one of its neighbors.

Then, each component of the relevance vector w; of the winning node and its neighbors
is updated through an inverse logistic function of the average distance:

1

5 5 ) if 5]7,mzn 7é 5jimax
71 — Ujimean
wj; = 1+€xp<3( —— 5jimm)> (2.12)

5jzma:v

1, otherwise
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where 0imin, 0jimaz and Ojimean are the minimum value, the maximum value and the average
of the components of the distance vector §;. The parameter s > 0 controls the slope of the
function.

Each node j on the map has the variable cwins; that counts its number of wins in
competitions. Whenever a defined number of competitions occurs, nodes that have not reached
the minimum winning percentage [p are removed from the map and the number of wins for
all remaining nodes on the map is reset to zero. Furthermore, to prevent removal of nodes
recently added, when a new node j is added, its number of wins cwins; is initialized with the
value Ip X ncomps, where ncomps is the number of competitions since the last removal.

After a node removal occurs, the connections between all the remaining nodes are updated.
In addition, when a new node is added to the map, the connections between the new node
and all others are updated. LARFDSSOM uses the similarity between the relevance vectors of
two nodes to determine if there is a connection between them, so a connection between nodes
means that they cluster similar sub-spaces in the input data. The equation below details the
connectivity criterion between two nodes:

connected, if |w; —w;|| <cym
nodes i and j are | il < eym (2.13)

disconnected, otherwise

where |jw; —w|| is the norm of the difference between the relevance vectors, m is the number
of dimensions in the input data, and c is the connection threshold usually set to 0.5, which
means that two nodes with |lw; — w;|| below half the maximum \/m are connected.

For further details on the LARFDSSOM, we refer the reader to the original paper (BASSANI;
ARAUJO, [2015)). For more information about other SOM models with time-varying structure,
we refer the reader to (ARAUJO; COSTA), [2009; |ARAUJO; REGO, 2013)), and about the original
SOM to (KOHONEN, |1982; KOHONEN| [1990)).

2.3 INSPIRATIONS

The concept of transfer learning in deep neural networks inspired the use in the proposed
method of deep representations extracted from individual images, by a CNN pre-trained on
a large-scale (and more general) dataset, for the creation of consolidated representations
of multiple images that could be reused for other tasks related to, but different from the
one for which the CNN used was originally trained. Furthermore, transfer learning was a
fundamental aspect to enable the training of classifiers to recognize semantic properties from
these consolidated representations, since they are trained using the same pre-trained CNN used
to extract the original representations. An important observation is that at the beginning of
this research, we did not know if the classifiers would be able to accurately recognize semantic
properties from the consolidated representations or if the consolidated representations would

be able to maintain the main characteristics of the individual images.
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Regarding self-organizing maps, the concept of time-varying topological structure of the
LARFDSSOM inspired the way the topological maps generated with the proposed method
add new spatial nodes and update the winning nodes, however, in the proposed methods
the competitions are made using the Euclidean distance as in the SOM of Kohonen. The
competitions in the proposed method are employed to determine the topological location of
the agent from received spatial coordinates, thus, the traditional Euclidean distance is adequate
for the task and it is not necessary to apply weights or activation function.

In addition, the procedure for updating the consolidated vectors in the two proposed con-
solidation processes (TCMA and TCCMA) was inspired by the adaptation step of the SOM
learning process, which uses an exponential moving average controlled by a learning rate to
adapt its nodes and better represent the input data. In addition, in the TCCMA process, the
concept of time-varying structure inspired how the consolidation items are created to represent
different patterns in the data consolidated in each spatial node.

Finally, the topological image localization approach, introduced in Chapter |4 to demon-
strate the application of the consolidated visual representations in a visual task other than the
recognition of semantic properties, was based on LARFDSSOM. In the approach, the data
consolidated in the nodes of the generated topological maps are used in competitions, where
relevance vectors are applied to the dimensions of the data in the nodes and the winning nodes

represent the location of the images on the maps.
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3 SEMANTIC MAPPING

This chapter presents a brief review (i.e., a non-exhaustive review focused on the main char-
acteristics) of the literature on semantic mapping and contextualizes the solutions proposed
in this thesis. First, Section discusses how semantic mapping is defined in the literature
and describes its main characteristics. Then, Section briefly defines the two types of maps
(metric and topological) traditionally used in semantic mapping methods to represent the en-
vironments spatially. Next, Section [3.3| describes how the semantic properties incorporated into
the maps are generally defined and acquired. Finally, Section relates the solutions proposed
in this thesis with the current literature. Section [3.4] is based on the contextualization with
the literature made in our last published paper (SOUSA; BASSANI, 2022).

3.1 DEFINITION

Semantic mapping is defined by |Pronobis (2011) as the process of building representations
of environments that associate human concepts with instances of spatial entities. The result
should ideally be an efficient and complete representation of the environment that contains
not only semantic information, but also the spatial entities with which the semantics are
associated. Following the same idea, Bastianelli et al.| (2013) define semantic mapping as
the process that allows robots to enrich maps used for navigation with semantic information
about the environments. |[Duvallet (2015) adds that robots with models of their environments
centered on humans may reason about high-level properties when interacting with people.

Han et al.| (2021) indicate that there are three common characteristics in semantic map-
ping: First, a geometric map. It contains geometric information about the environment and
is the base for attaching semantic information; Second, the semantic information. A human-
understandable description of the environment that links physical entities to conceptual ele-
ments and bridges the semantic gap between robots and humans; Third, the geometric map
and semantic information must have an organized structure that endows the robot with rea-
soning ability. Furthermore, |[Kostavelis and Gasteratos (2015) add that usually semantic maps
are large-scale, i.e., maps that are created incrementally and have a global coordinate system.

Given the above, typical semantic mapping approaches take sensory data (such as RGB
images, 2D or 3D depth measurements) as input, create spatial representations of the envi-
ronment incrementally using traditional metric or topological mapping methods, and simulta-
neously annotate the spatial representations during the mapping process with human-centered
semantic information (also called semantic properties) from the environment, such as ob-
jects and categories of place. The semantic information can also be obtained later, usually by

inference or human input.
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3.2 SPATIAL REPRESENTATIONS

Metric maps are two-dimensional or three-dimensional spatial representations that capture
geometric properties of physical environments. The metric maps have a higher resolution of
the environment when compared to topological maps, but come with a higher computational
cost (THRUN, 2002). There are typically two types of metric representations: sparse and dense
(examples in Figure |§[) Traditionally, sparse maps are used for localization purposes, since
they are feature-based and computationally more efficient than dense maps. However, classic
sparse maps usually do not provide enough geometric information for autonomous navigation
and dense maps are preferred for this task as they provide more detailed representations of the
environment (NIETO; GUIVANT; NEBOT), 2006)).

Figure 6 — Examples of metric maps: (a) shows a feature-based sparse 3D metric map of a room; and (b)
shows a dense 3D metric map of a laboratory.
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Source: (a) - [Mur-Artal, Montiel and Tardos| (2015)), [Cadena et al/ (2016)); (b) - [Newcombe et al|(2011)).

In most semantic mapping approaches, metric maps are obtained using [SLAM] (Simultane-
ous Localization and Mapping) methods, which allow localization and mapping while moving
in unknown environments (HAN et al., |2021} |CHEN et al., 2022). SLAM consists of concurrently
estimating the state (e.g., position and orientation) of the robotic agent equipped with on-
board sensors and building the spatial representation (the map) of the environment that the
sensors are perceiving (CADENA et al., 2016).

In SLAM, two-dimensional metric maps are usually modeled in two paradigms: occupancy-
grid maps, which discretizes the environment in cells and assigns a probability of occupation
to each cell (example in Figure ; and landmark-based maps, which models the environment
as a sparse set of landmarks (CADENA et al,, 2016). The creation of three-dimensional geo-
metric representations of the environments is more complicated and less standardized in the
literature than the 2D case. Three-dimensional metric maps are modeled in different types of
representations, one of the most used is the feature-based sparse representation, in which the

environment is represented as a set of sparse 3D landmarks corresponding to discriminative
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features detected of the scene (such as lines and corners) (CADENA et al., 2016)).

A SLAM method largely used in the semantic mapping literature that creates feature-based
sparse 3D representations is ORB-SLAM2 (MUR-ARTAL; TARDOS| 2017)), which is a version of
the ORB-SLAM (MUR-ARTAL; MONTIEL; TARDOS, 2015) that supports monocular, stereo and
RGB-D cameras. ORB-SLAM is a real-time monocular visual SLAM method that uses ORB
descriptors (RUBLEE et al., [2011) for feature matching and is composed of three main threads:
tracking, local mapping, and loop closing. Both methods can operate in small and large indoor
and outdoor environments, and are widely used due to their robustness and real-time CPU
performance (CHEN et al, 2022). ORB-SLAM2 is also used in this thesis to compose the
integrated solution introduced in Chapter [5]

Another popular way of modeling three-dimensional metric maps is through low-level dense
representations, which seek to model the geometry of the environment through high-resolution
3D representations usually described by a large set of points (i.e., point clouds) or polygons,
or encoded as a set of disks (i.e., surfel maps). Furthermore, 3D metric maps are also often
modeled to explicitly represent volumes in the environment through spatial-partitioning repre-
sentations. A popular procedure is to discretize the space into 3D cubes (also called voxels)
of fixed size and arrange them in a 3D grid. Additionally, many volumetric solutions model
voxels in octrees for more optimized performance (CADENA et al., [2016)).

On the other hand, topological maps offer more abstract representations of the environment
(example in Figure[7]). A topological map is typically created as a graph G = (V, E), in which
V = {v;,7 = 1l..m} is a vector of nodes where each node represents a distinct region in
the environment, and E = {e;,i = 1...n} is a vector of edges where each edge represents a
transitivity relationship between two nodes. Two nodes are connected by an edge only if it is
possible to move between them without going through any other node (ANATI, 2016).

As topological maps only store key spatial information, they consume less computational
resources than metric maps and, therefore, are a good option for mapping large environments
and for global path planning in the navigation process (ZHANG et al., [2023). However, topo-
logical maps are generally not suitable for local path planning as they lack detailed geometric
information, being metric maps better suited to this type of task. Nodes and edges in topo-
logical maps may contain various types of spatial information, such as the spatial position
of nodes or the metric distance between nodes. In semantic mapping methods, a common
approach is to create topological maps on top of the metric ones (PRONOBIS; JENSFELT), [2012;
HEMACHANDRA et al., 2014; LUO; CHIOU, 2018; ROSINOL et al, [2021)) and the real-time version
of the topological method proposed in this thesis follows this approach.
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Figure 7 — An example of a 2D topological map of an indoor environment: (a) shows the topological map
separately; and (b) shows the topological map on top of the associated 2D occupancy grid map.
Each node in the topological map represents a distinct region of the occupancy grid.
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Source: Adapted from |[Kostavelis and Gasteratos| (2015)).

3.3 SEMANTIC ACQUISITION

Typically, in semantic mapping techniques, the types of semantic properties (e.g., place
category, objects, and room size) and their semantic classes (e.g., bathroom and kitchen,
for place category) are defined in advance, and the semantic properties are automatically
recognized using machine learning methods from the input sensory data acquired during the
mapping process. Many recent semantic mapping approaches recognize the semantic properties
through semantic segmentation, object detection, and classification using models based on
CNNs (SUNDERHAUF et al} |2016; IMATURANA; ARORA; SCHERER, 2017} [LUO; CHIOU| [2018;
GRINVALD et al., 2019; IRODDICK; CIPOLLA), 2020; |ROSINOL et al., 2021 |ICHEN et al., 2022).

Furthermore, |Pronobis and Jensfelt (2012) point out that information acquired in just one
instant and view of the environment rarely provides sufficient evidence for reliable semantic
recognition and, therefore, any semantic mapping technique should integrate space and time in
its building process. This concept is defined by Kostavelis and Gasteratos| (2015) as temporal
coherence, which means enriching maps with semantic properties acquired at different time
instants.

Therefore, the traditional approach in the literature is to accumulate (or fuse) the semantic
information recognized from different perspectives over time in the geometric units of the
maps. In topological maps, the semantic properties are usually recognized by classification or
object detection, and incorporated to the nodes or vertices of the maps (examples in Figure
(PRONOBIS; JENSFELT, 2012} [HEMACHANDRA et al., |2014; IBERNUY; SOLAR)|, [2018; [SOUSA;

BASSANI, [2018)). In metric maps, the semantic properties are usually recognized from image
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segmentation or object detection, and incorporated into the metric units or segments that
compose the type of generated map (examples in Figure [9) (MCCORMAC et al) 2017} [MA et]

ll), 2017; MATURANA et al., [2018; INAKAJIMA et all, 2018} RODDICK; CIPOLLA), [2020} [PAZ et al|
2020; |ROSINOL et al., 2021).

Figure 8 — Examples of topological maps enriched with semantic information. In (a) the nodes contain proba-
bility distributions of room categories and in (b) of region categories. The probability distributions
are represented by pie charts.
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Source: (a) - |Pronobis and Jensfelt| (2012); (b) - [Hemachandra et al.| (2014).

In addition to the automatic acquisition of semantic properties through sensory data ac-
quired during the mapping process, there are two other common ways of acquiring semantic
properties in the literature (HAN et al., 2021} ACHOUR et al., [2022). The first is through inter-
action with humans. This procedure allows the inclusion of semantic information that would

be difficult to automatically recognize, is not restricted to previous definitions (such as a set
of place categories) and could be used even after the mapping process, however, it is heavily
dependent on humans. Frequently, the semantic mapping approaches in the literature that ac-
quire semantic information through human input use multimodal interfaces to allow interaction
in different ways, such as through natural language, where humans can provide descriptions of
places in natural language and enrich the maps with new semantic information (BASTIANELLI
let al, 2013} [KOLLAR et al., 2013; HEMACHANDRA et al., 2014 WALTER et al, [2014; [DUVALLET,
2015; |OH et al., 2015)).

The second is through inference of additional semantic information from the semantic

properties already obtained using the other procedures. In general, a knowledge database that

contains knowledge common to humans is used by a reasoning engine to infer the additional

information (ACHOUR et al., 2022)). A typical example is the semantic mapping approach intro-
duced by [Pronobis and Jensfelt| (2012)), which uses a probabilistic chain graph
RICHARDSON, [2002) and a ontology of commonsense knowledge to infer the place categories

of topological nodes from other semantic properties recognized using (Support Vector
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Machine) classifiers. Additionally, there are semantic mapping approaches in the literature

that obtain additional semantic information from other semantic properties through clustering

techniques, where the clusters represent the same semantic category (SOUSA; BASSANI, 2018;
IRANGEL et al., [2019).

Figure 9 — Examples of metric maps enriched with semantic information (each color represents a semantic
class): (a) feature-based sparse 3D metric map of a lab environment; (b) surfel-based dense 3D
metric map of a home environment; and (c) voxel-based dense 3D metric map of a home environ-
ment.

Source: (a) - [Sunderhauf et al. (2017); (b) - Nakajima et al. (2018); (c) - Xiang and Fox (2017)).

3.4 RELATED WORK

Recently, CNNs have been widely used in the semantic mapping literature for recognizing
semantic properties automatically from images in various types of approaches and applications
(MA et al, 2017; [NAKAJIMA et al., 2018; |GRINVALD et al., 2019; PAZ et al., |2020; RODDICK;
ICIPOLLA|, 2020)). In (MCCORMAC et al., 2017)), the authors use a CNN to perform semantic seg-

mentation of images and incorporate the predictions into a dense 3D metric map. In a method
created for Micro-Aerial Vehicles (MAV), Maturana, Arora and Scherer| (2017)) present a CNN
designed for fast on-board processing. The CNN performs semantic segmentation of images
and the 2D measurements are aggregated into a 2.5D grid map. In another work,
propose a CNN designed to perform semantic segmentation and incorporate the
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recognized semantic information into a 2.5D grid map created for off-road autonomous driv-
ing. Bernuy and Solar| (2018) use a CNN to perform semantic segmentation of images and the
output labels are accumulated in histograms that are used to assist the creation of topological
maps.

In a hybrid metric-topological semantic mapping approach, |Luo and Chiou (2018) use a
CNN to detect objects in a mapping system with multiple levels of semantic information. In
(SUNDERHAUF et al, [2017)), the authors use a pre-trained CNN to detect objects in images and
integrate the results into a 3D sparse metric map, where an unsupervised 3D segmentation
method is used to assign segments of 3D points of the map to the detected objects. |Nakajima
and Saito| (2019) use a pre-trained CNN to detect objects in images and enhance 3D maps
with object-oriented semantic information in an efficient framework. [Rosinol et al.| (2021)) use
a pre-trained CNN to perform semantic segmentation of images and incorporate the resulting
labels into a 3D graph representation (the 3D Dynamic Scene Graph) that includes metric and
semantic data from dynamic environments in different abstraction layers.

However, as mentioned earlier, the common approach in semantic mapping is to define
in advance the types of semantic properties (and their classes) that will be recognized in
the mapping process. They are predefined to attend the planned application scenarios, and
the aforementioned methods do the same. Distinctly, some works use pre-trained CNNs inte-
grated with other machine learning approaches to allow incremental learning of new classes
of a semantic property. In (SUNDERHAUF et al., 2016), the authors introduce a model that
incrementally learns new place categories, in a supervised fashion, by extending a CNN with
an one-vs-all Random Forest classifier. Rangel et al. (RANGEL et al, 2019)) present a semantic
mapping method that exploits previously trained CNNs to classify unlabeled images and per-
form a bottom-up aggregation approach that clusters images in the same semantic category.
Furthermore, in a previous work (SOUSA; BASSANI, [2018)), we introduced a topological seman-
tic mapping approach that incrementally and in an online fashion, forms clusters of object
vectors classified with a pre-trained CNN. The clusters are formed using a SOM-based method
and represent the categories of places visited. Still, even with the efforts to allow the semantic
mapping methods to incorporate new semantic classes incrementally, these methods remain
restricted to the previously defined types of semantic properties.

In addition, in the literature, the semantic properties are typically recognized by the CNNs
from individual images and accumulated in the maps over time. However, despite the accu-
mulation of information over time, this type of approach is limited only to what is seen locally
in the image frame and loses the residual context of previous images that could improve the
recognition accuracy. Differently, the method introduced by Xiang and Fox (2017) presents
a recurrent approach that accumulates features extracted with a CNN to perform multi-view
semantic segmentation in a joint 3D scene semantic mapping process. However, despite ad-
vances in the method that allow the accumulation of features from multiple views, it does not

create representations of regions that can be used to obtain other semantic information and
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the accumulated features are only used to label pixels of images. Furthermore, as with the
other methods, the semantic labels are restricted to what was planned.

In contrast, this thesis introduces variations of a topological semantic mapping method that
builds consolidated representations of deep visual features (i.e., extracted using a pre-trained
CNN) from the regions delimited by the topological nodes, and the desired semantic infor-
mation can be obtained afterward from these representations using a wide variety of machine
learning methods. This presents an advantage over previous methods, as the consolidated rep-
resentations are rich and allow new semantic information to be obtained whenever necessary,
increasing the flexibility and applicability of the maps produced. To the best of our knowledge,
this is the first approach in the semantic mapping literature with such characteristics, which
even allow the adaptation (e.g., modification or enrichment) of the semantic information from

previously created maps. The next chapter presents the proposed approach in detail.
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4 TOPOLOGICAL SEMANTIC MAPPING USING CONSOLIDATED VISUAL
REPRESENTATIONS

This chapter presents the topological semantic mapping method developed to address
the objectives of this research. The method creates topologically consolidated representations
of deep visual features, extracted from individual RGB images, using a process we denote
as Topological Consolidation of Features by Moving Averages (TCMA). First, Section
describes the method and its consolidation process in detail. Then, Section describes the
experiments performed with the main objective of evaluating the quality and applicability of
the consolidated representations of visual features produced. Most of this chapter is based on
our last published paper (SOUSA; BASSANI, [2022)).

41 THE METHOD

The topological semantic mapping method extracts deep visual features from RGB images
and incrementally creates consolidated representations of the visual features extracted from
the images captured around each topological node. The features are extracted from a deep
latent layer of a pre-trained CNN and consolidated into the nodes of the topological map using
the TCMA process. The CNN used is the GoogleNet (SZEGEDY et al., 2015), pre-trained on
ImageNet-1K and available in the PyTorch library (PASZKE et al/, 2019).

The TCMA process (detailed in Sections |4.1.1 and [4.1.2)) uses exponential moving aver-

ages to perform the consolidations, is inspired by SOM with time-varying structure and, in
addition, has two mechanisms inspired by the following neuroscience phenomena: visual habit-
uation, which is described as the decrease in visual attention to repeated stimuli (FANTZ, [1964;
COLOMBO; MITCHELL, 2009); and visual persistence, which refers to an optical illusion where a
visual stimulus continues to be experienced for some time after its off-set (COLTHEART, |1980).

The consolidated representations are used to perform the classification of objects and place
categories as semantic properties of the regions covered by the nodes. The objects are classified
using the classification layer of GooglLeNet, without retraining, and the place categories are
recognized using a shaIIow (Multilayer Perceptron). The consolidated representations are
also used to indicate the topological location of images with an approach also introduced in
this chapter (Section and could be used for the flexible recognition of other semantic
properties. An overview of the method is illustrated in Figure and the following sections

describe its operation in detail.

4.1.1 Topological Mapping

At each time step k, the method receives as input an RGB image z* and its spatial position
of capture s* = {s¥,i = 1..n} in the environment, where n = 2 in this scenario, but it can

easily be extended to 3 dimensions for 3D maps (as demonstrated in Chapter . Each image
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Figure 10 — Overview of the method: GooglLeNet extracts the visual features vector v* of the input images
and the nodes on the topological map corresponding to the input positions consolidate v* in
their representations; The consolidated visual features vector c; in each node is provided to the
classification layer of the GooglLeNet (without retraining) and the objects visualized in the nodes
are obtained; The vector c; in each node is also provided to a shallow MLP and the place category
of each node is obtained; The consolidated vectors c; and d;, the average features distance vector,
could be used to recognize other semantic properties or in other visual tasks, as in the topological
image localization experiments (Section which uses ¢; and 4.
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is provided as input to the GooglLeNet, the output of the 2D adaptive average pooling layer
(input of the linear classification layer) is flattened in the vector v¥ of m = 1024 dimensions
and used as a visual features vector.

The topological map starts empty and is built as a graph. Each node j in the graph contains
three vectors: p; = {p;;, i = 1...n}, the spatial position of the node; ¢; = {c;;,i = 1...m}, the
consolidated visual features vector; and §; = {6jz-,i = 1...m}, the average features distance
vector.

As the input data (v* and s*) is provided, the nodes compete to determine the topological
location of the agent on the map and establish the nodes that will consolidate the visual
features v¥. The competition (ARAUJO; REGO, 2013) is performed using the spatial location
provided, s*, and the winner is the node with the smallest spatial distance D, (s*, p;) to s*:

h(s") = arg min[De(sk, P;)l, (4.1)
J

where D,.(s*, p;) is calculated as the Euclidean distance between the given spatial position s”

and the spatial position of the node p;:

D.(s",p;) = (4.2)

If the map is empty or the spatial distance of the winning node to s” is greater than the

spatial distance threshold A, a new node 7 is inserted into the map with p, = sk, 577 =0,
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and the consolidated visual features vector c,, initialized through an average between the input
visual features v* and the current state of the consolidated visual features vector c; of the last
visited node [, if any:

yer + (1 — )V, if thereis a ¢

(4.3)

(‘:17 =
k .
Vo, otherwise,

where 7 is the persistence rate, which determines how much of the consolidated visual features
vector of the last visited node will persist on the new node.

If the spatial distance of the winning node is equal to or smaller than the spatial distance
threshold )\, the node consolidates the input visual features v¥ as described in the next section
(Section . Moreover, if there are other nodes with spatial distance higher, but equal to
or smaller than )\, these nodes also consolidate the input visual features v*. This is because
an image may be captured by the agent at an intersection position between nodes.

A connection between nodes is created whenever a transition occurs between them as the
agent moves through the environment, and a transition is determined when the consecutive
winning nodes are different. In addition, when a new node is inserted into the map, a connection

is created between the new node and the previous winner, if any.

4.1.2 Visual Features Consolidation

The visual features in the input data are consolidated in the node 5 by updating the vector
c; through an exponential moving average considering the learning rate a € |0, 1] and the
squared Euclidean distance, D(v*,u;), between the visual features input vector v¥ and the

last visual features vector consolidated in node j, u;:

c:(k) + a(vF —c;(k if D(vF u;) > 71
o+ 1) = {9 Al m ) D) (4.0
c;(k), otherwise,
where 7 is the minimum distance between the input features vector and the last features
vector consolidated in the node, which prevents the node from consolidating very similar
visual features vectors in sequence and, therefore, controls the visual habituation of the node.

D(v* u;) is the squared Euclidean distance described as follows:

m

D(Vk, Uj) = Z(’Uf — Uji)Q. (45)
i=1
Also through a moving average (introduced by Bassani and Araujo| (2015)), the average

features distance vector §; of node j is updated considering the distance between v* and c;:

5. (k1) = 8;(k) +aB(¢—48;(k), if D(vF,u;)>r1 (4.6)
’ 0;(k), otherwise, '
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where 5 € ]0, 1] controls the rate of change of the moving average, « is the learning rate,
¢ = |v" — ¢ (k)| denotes the absolute value of each component of the resulting difference
vector, and 7 controls the visual habituation of the node. After the update, if c; and é; were

updated in relation to v¥, then u; = v*.

4.1.3 Object and Place Classification

The visual features consolidated in the vector c; are used to classify the objects visualized
by the agent in the regions covered by each node j. For that, the vector c; of each node
is provided to the linear classification layer of GoogleNet and the classification outputs are
obtained without the need of retraining.

In addition, the visual features consolidated in the vector c; are also used to obtain the
place categories of the regions covered by each node j. A simple MLP implemented with the
PyTorch library classifies the vector c; of each node and the place category is obtained. The
MLP contains one hidden layer with 20 units and RelLU activation functions. Furthermore,
the loss function used for training in the MLP was cross entropy and the optimizer was Adam
(KINGMA; BA, [2014). In the experiments described in Section , the MLP is trained with
visual features vectors of 1024 dimensions extracted from RGB images using the GoogleNet,
where the output of the adaptive average pool 2D layer is the visual features vector of each
image used for training.

The classification of the objects and place category of each node can be performed when-
ever necessary with the current state of the vector c;. The same could be done to recognize
other semantic properties of nodes using, for example, new classifiers through transfer learning
(as will be demonstrated in Section or clustering methods.

4.1.4 Image Localization

To present the use of a generated map in other type of visual task, we use the consolidated
visual features vector c; and the average features distance vector d,; of each node j to localize
RGB images on the map. The images have their features extracted using GoogleNet, where
the output of the adaptive average pool 2D layer is used as the visual features vector x of
each image. The node with the highest activation ac(D,(x,c;),w;) represents the estimated

location of the image on the map:

loc(x) = arg]ynax[ac(Dw(x, cj),w;)]. (4.7)

Thus, w; is the relevance vector of the node j, in which each component is computed by
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an inverse logistic function based on the one proposed by Bassani and Araujo (2015):
1
s ) if 5jzmzn 7£ 5jimax
= { L) (49

1, otherwise,

w

where djimin, Ojimaz aNd Ojimean are respectively the minimum value, the maximum value and
the average of the components of the distance vector §;. s > 0 controls the slope of the
sigmoid function.

The activation ac(D,(x, c;),w;) for each node j is calculated by a function of the weighted
distance and the sum of the components of the relevance vector (introduced on (BASSANI;

ARAUJO) 2012)):

w1
Dy (x,¢;) + [lwjll, + &
where ¢ is a small value to avoid division by zero, |||, is the L'-norm, and D, (x,c;) is the

ac(Dy(x,¢;),w;) = (4.9)

weighted Euclidean distance between the consolidated visual features vector and the image

visual features vector, with weights given by w;:

D, (x,c;) —$Zwﬂ T; cjz ) (4.10)

Such an adaptive distance is validated in (BASSANI; ARAUJO, 2015) and provides better
results with high dimensional data. Furthermore, in this thesis §; is only used for the task
of topological image localization, but could be used to obtain semantic properties through
unsupervised and semi-supervised subspace clustering methods (BRAGA; BASSANI, 2018), which

is a future work.

4.2 EXPERIMENTS

This section details the experiments performed to evaluate the topological maps produced
with the proposed method and their consolidated representations of deep visual features. First,
Section describes the dataset used in the experiments and Section details how the
hyperparameters of the method were adjusted for the experiments. Next, the topology of the
generated maps is evaluated in Section [4.2.3] Then, the quality of the consolidated represen-
tations is evaluated in the tasks of object classification (Section , place classification
(Sections [4.2.5 and [4.2.6)), and topological image localization (Section [4.2.7)).

4.2.1 Dataset

The experiments were performed using data selected from the |COLD datasetﬂ(COsy Lo-
calization Database) (PRONOBIS; CAPUTO) 2009), a real-world indoor dataset that has three
1 URL: https://www.cas.kth.se/COLD/
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sub-datasets acquired in three different laboratories: COLD-Freiburg, COLD-Ljubljana, and
COLD-Saarbrucken. Each sub-dataset contains data sequences acquired in different paths in
the facilities. Not all data sequences in the dataset were used due to inaccuracies in the po-
sition data provided. We selected for use in experimentation 18 data sequences of 6 paths, 3
sequences of each path. Of the total, 6 data sequences of 2 paths are from COLD-Freiburg,
where path 1 is a sub-part of path 2. In addition, 12 sequences of 4 paths are from COLD-
Saarbrucken, in which paths 1 and 3 are, respectively, sub-parts of paths 2 and 4. The dataset
has different types of data, but only RGB images from regular camera and their acquisition
positions (given in meters) were used. The positions were computed by the dataset authors
with a laser-based localization technique. In all selected data, there are 11 place categories,
12592 images in COLD-Freiburg and 17700 in COLD-Saarbrucken (examples of images from
both sub-datasets in Figure . Table lists the place categories and presents the number of

images in each sub-dataset by place category.

Figure 11 — Examples of images from the COLD-Freiburg (a) and COLD-Saarbrucken (b) sub-datasets.

Source: |Pronobis and Caputo| (2009).

4.2.2 Hyperparameter Adjustment

Almost all hyperparameters of the proposed method (and image localization approach)
were tuned for the following experiments using a hyperparameter sampling technique, the
Latin Hypercube Sampling (LHS]) (HELTON; DAVIS; JOHNSON) 2005)). The LHS samples the

hyperparameters within pre-established ranges and the ranges of each hyperparameter are

divided into subintervals of equal probability. Then, a single value is randomly chosen from
each subinterval.
The spatial distance threshold A was set manually and the value of 0.9 meters was used

for all experiments. All other hyperparameters were sampled using LHS and we selected the
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hyperparameter setting that provided the best result in each experimentation scenario, i.e.,
a different hyperparameter setting for each evaluation and dataset configuration. Table

presents the ranges used for each hyperparameter.

Table 1 — Total number of images in the selected data and by place category.

Place Category COLD-Freiburg COLD-Saarbrucken
Corridor 5732 7692
Printer area 1432 1413
Robotics lab 0 628
Stairs area 1023 0
Bathroom 1284 2362
Kitchen 483 643
Terminal room 0 1701
Conference room 0 1526
1-person office 511 1052
2-person office 1672 683
Large office 455 0
Total 12592 17700

Source: Created by the thesis author using data selected from [Pronobis and Caputol (2009)).

Table 2 — Hyperparameter ranges.

Hyperparameter min max

Features consolidation rate () 0.001 0.1
Minimum distance of features () 1.0  100.0

Features persistence rate (7) 0.001 0.999
Moving average rate (3) 0.001 0.999
Relevance smoothness (s) 0.001 0.1

Source: Thesis author.

4.2.3 Topology

In the proposed method, an adequate positioning of the topological nodes is vital for an
adequate consolidation of the visual features. Thus, we evaluated the positioning of the nodes

by checking if they were coherent with the spatial positions provided in the input data. For
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this, the data sequences that were captured in the same area were presented randomly to the
method and a single map was generated per area, where each map was generated with 6 data
sequences of 2 paths. The selected data contains a single area (paths 1 and 2) in COLD-
Freiburg, and in COLD-Saarbrucken it contains area 1 (paths 1 and 2) and area 2 (paths 3
and 4).

The process was repeated 10 times per area and in each execution the positions of the
nodes in the generated map were first visually evaluated by plotting them over the positions of
all input data (Figure [12shows examples). Then, the mean and maximum Euclidean distances
between all input position data and their nearest nodes were computed. The results obtained
in all executions were averaged, resulting in: 0.304 +0.004 / 0.873+0.010 (mean / maximum
distance) for Freiburg single area; 0.314 +0.009 / 0.863 + 0.020 (mean / maximum distance)
for Saarbrucken area 1; and, 0.313 4+ 0.022 / 0.842 £ 0.025 (mean / maximum distance) for
Saarbrucken area 2.

The results allowed us to conclude that all the nodes were positioned coherently with the
input data (with mean distance close to 0.3 meters) and the spatial distance threshold A (with
maximum distance always below A\ = 0.9 meters). We also analyzed all connections between

the nodes and verified that they all represented viable transitions in the environments.

4.2.4 Object Classification

In this experiment, we assume that in the evaluated indoor environments only a small
number of instances of classes are present and we use object classification as a sensible task
to evaluate the quality of the consolidated visual features vectors with respect to preserving
the specific visual characteristics of the original images they consolidated and, consequently,
of the regions they cover. Since the visual features of multiple images are consolidated in the
same node j, the TOP-1 label assigned by the GoogleNet to an image may not be the TOP-1
label when classifying the consolidated visual features vector c; using the same classification
layer (as described in Section . However, we expect it to be ranked close to the top. To
evaluate this, we compute how frequently the TOP-1 classification label (among all the 1000
classes in ImageNet—lKED of each image is present in the TOP-5 classification labels of c; of
each node j that consolidates the image. Images can be consolidated by more than one node
as long as they have been captured at an intersection position between nodes.

This evaluation is done per sub-dataset, with all selected data sequences from all paths
and one map generated per data sequence. Table (3| presents the accuracy results obtained,
which suggest that the consolidated visual features fairly preserve the classifications observed
in the original images.

As the TOP-5 accuracy is not sensitive enough to detect small variations, to evaluate

the effect of the visual persistence (VP) capability of the consolidation process, we classify

2 Most classes in ImageNet-1K are objects, but they also include some breeds of animals.
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Figure 12 — Nodes of topological maps generated with the selected data sequences from COLD-Freiburg single
area (a), from COLD-Saarbrucken area 1 (b), and from COLD-Saarbrucken area 2 (c). The nodes
were plotted over the positions of all the input data and the selected data sequences from each
area were provided to the proposed method in random order. Each colored line (there are six
colors) represents the positions provided in a different data sequence. The nodes of the map and
their connections are in black.

Source: Thesis author.

the vector c; of each node j with the linear classification layer of the GoogleNet, provide
the outputs of 13 classes of objects from ImageNet-1K (selected based on what is found in
the COLD imagesED for a softmax layer and obtain the classification vector o;. Then, we
obtain the average classification of all images (classified by GoogleNet, with the outputs of
the same 13 classes provided for a softmax layer) captured around each node j in the vector
m;. Finally, we compare m; to o; for all nodes with an error measure based on the I1-norm:

€T mean = 7of Z;‘f’:l ||o; —m;l||1, where b = 13 is the number of classes of objects we selected

3 Object classes selected for the evaluation: washbasin, soap dispenser, toilet seat, photocopier, monitor,
desktop computer, desk, dining table, barber chair, microwave oven, stove, dishwasher and toaster.
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and k is the sum of the number of nodes in each generated map. This evaluation is also done
per sub-dataset, with one map generated per data sequence.

Table [3] presents the results obtained, which give evidence of the positive contribution of
the visual features persistence in the consolidation process. The results also provide further
evidence that the consolidated visual features are representative of their regions in order to ap-
proximate the classification results to those of the average classification of all images captured

in those regions.

Table 3 — Results of the objects classification evaluation.

COLD-Freiburg COLD-Saarbrucken

TCM A*(Accuracy) 0.8185 0.7616
TCMA (errmean) 0.0123(0.0068) 0.0163(0.0079)
TCMA_yp (€rrmean) 0.0146(0.0083) 0.0196(0.0109)

Standard deviations are shown in parentheses.

*TCMA is the proposed method with the complete TCMA process and
TCMA_yp is the proposed method with the TCMA process without Vi-
sual Persistence.

Source: Thesis author.

4.2.5 Place Classification

In this experiment, the consolidated visual features vector c¢; of each node j is fed into the
MLP described in Section [4.1.3|to classify the nodes in one of the 11 place categories present
in the dataset. This experiment is performed using an adaptation of the k-fold cross-validation
method, in which each fold is a sequence of data selected from the datasets, & is the number
of sequences chosen, and the order of the sequences is randomly selected. Thus, all images
in the & — 1 sequences of data are used to train the MLP in batch mode, with all images
per epoch. The number of epochs is experimentally determined and only one value is defined
for each cross-validation run. The remaining data sequence is used in the generation of the
map and the resulting consolidated visual features vector c; of each node j is classified by the
MLP. Therefore, this experiment is done per area, i.e., we use per execution the selected data
sequences that were captured in the same area (for instance, the data sequences from paths
1 and 2 of COLD-Saarbrucken area 1).

Table presents the excellent results obtained (classification accuracy), which suggest that
even a simple MLP can be used to accurately recognize the place categories of the nodes from
the visual features consolidated in them and that the consolidated representations preserve
the specific visual characteristics of the regions they cover. Figure illustrates an example

of the place classification results obtained with the map generated from a data sequence of
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COLD-Freiburg, in which we can see that only two nodes were misclassified. Both nodes are
located close to the borders between different place categories in the ground truth, from where
it is possible to see the other regions (Figure [13| exemplifies images), what may have led to
the errors.

For comparison, we used the same adaptation of the cross-validation method with the
difference that, at each run, the visual features vectors extracted from all images of the re-
maining data sequence are directly classified by the MLP. Again, the number of training epochs
was experimentally determined and only one value was defined for each cross validation run.
The results obtained (IMAGES columns in Table [4]) were all smaller than the results obtained
with the proposed method, which suggests that the proposed features consolidation process
produces rich visual representations of regions and contributes positively to the classification

of place categories.

Table 4 — Results of the place classification experiment. Standard deviations are shown in parentheses.

TCMA? IMAGES
Accuracy
Frl and Fr22  Sal and Sa3 and Frl and Fr2 Sal and Sa3 and
Sa2 Sa4 Sa2 Sa4
Corridor 0.987(0.018) 0.984(0.016) 1.000(0.000) | 0.975(0.011) 0.958(0.021) 0.964(0.007)

Printer area
Robotics lab
Stairs area
Bathroom
Kitchen
Terminal room

Conference
room

1-person office
2-person office

Large office

1.000(0.000)
3

0.944(0.124)
1.000(0.000)
1.000(0.000)

1.000(0.000)
0.907(0.099)
1.000(0.000)

1.000
0.944

(0.000)
(0.078)
1.000(0.000)

0.968(0.022)
1.000(0.000)

0.933(0.094)
0.917(0.186)

1.000(0.000)

1.000(0.000)
0.970(0.043)

1.000(0.000)

0.914(0.057)
0.911(0.032)
0.972(0.025)
0.730(0.147)

0.845(0.091)
0.891(0.104)
0.699(0.072)

0.908(0.072)
0.665(0.013)

0.965(0.012)

0.917(0.071)
0.921(0.065)

0.818(0.031)
0.861(0.054)

0.972(0.025)

0.978(0.009)
0.914(0.056)

0.977(0.021)

Overall

0.979(0.021)

0.982(0.013)

0.995(0.011) \ 0.931(0.025)

0.928(0.032)

0.967(0.015)

L TCMA stands for the proposed method and IMAGES denotes the results obtained with the direct clas-
sification of the visual features vectors extracted from the images.
2 Fr(n) is Freiburg (n = path 1 or 2) and Sa(n) is Saarbrucken (n = path 1, 2, 3 or 4).

3

— means the place category is not present in the paths used.

Source: Thesis author.

In addition, we performed a complementary comparison with the results of place classifi-
cation obtained by Rubio et al.| (2016) and [Mancini et al.| (2017)). Both works use the COLD
dataset in a stratified 5-fold cross-validation process using only the path 2 images of each
sub-dataset, separately. They consider each room as a place category and as there are two
different 2-person office rooms in the path 2 of Freiburg, we use 9 categories for the Freiburg

path 2 in this comparison only. The number of place categories used for the Saarbrucken path
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2 remains 8. In (RUBIO et al., 2016), the authors extract [HOG| (Histogram of Oriented Gradi-
ents) features from RGB images and perform the classification using different classifiers. The
best results from Rubio et al.| (2016)) were obtained using a Bayesian network as classifier and
we used these results for comparison. Mancini et al | (2017)) introduce an end-to-end trainable
deep approach to place classification that integrates a[NBNN| (Naive Bayes Nearest Neighbor)
model into a CNN.

Figure 13 — Example of place classification results obtained with the map generated from a path 2 data
sequence of COLD-Freiburg. The color of each node is the class assigned by the MLP and the
colored blocks represent the place categories of the nodes covered by the blocks in the ground
truth. In the black boxes are examples of images captured in the regions of each misclassified

node, these images demonstrate how visible is specific visual data of other place categories (e.g.,
a printer at the entrance to the printer area) from the misclassified nodes.

Corridor
Printer area

Stairs area

Bathroom
Kitchen

1-person office

2-person office

Large office

Source: Thesis author.

In order to approximate the experimentation scenarios for comparison, we use the same
cross validation adaptation used earlier with the proposed method and consider only the se-
lected data from path 2 of each sub-dataset. Table |5 presents the results obtained (denoted
here as room classification), which are higher than the best obtained by Rubio et al.| (2016)
and similar to the results of Mancini et al.| (2017). This suggests that the visual features con-
solidated with the proposed method can also be used to recognize the specific room of the

topological nodes with similar accuracy to the current literature.

Table 5 — Room classification comparison with |Rubio et al.| (2016) and |Mancini et al.| (2017).

Accuracy Fr2 Sa2
Rubio et al.| (2016)) 0.823! 0.844
Mancini et al.| (2017) 0.952 0.973
TCMA 0.957(0.018)  0.973(0.011)

Standard deviations (STD) are shown in parentheses.
! IRubio et al.|(2016) and Mancini et al. (2017) did not provide variance or STD
values.

Source: Created by the thesis author including data from [Rubio et al.| (2016 and [Mancini et al.| (2017).
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4.2.6 Place Classification Over Time

In this experiment, from each area in the dataset, we first selected data sequences of the
longest path that contain all the place categories found in that respective area. Then, in an
evaluation procedure repeated 10 times, we use one of these data sequences to train the MLP
and the remaining 5 data sequences from the same area are used to generate the map. In
the generation process, when all data in a data sequence is finished, the current state of the
consolidated features vector c; of each node j is classified by the MLP. Thus, the evaluation
takes place in 5 instants of time in the mapping process. This evaluation procedure is performed
with each data sequence selected from the longest paths and the order of the remaining data
sequences used in the generation of the maps is randomized at each run.

The mean and standard deviation of the accuracy results obtained at each instant of time
are illustrated in the graphs in Figure [I4] They show that for all three areas the results are
stable or increasing as more data is consolidated in the mapping process. This suggests that
the consolidated representations do not degrade with more data or might even improve. Figure
also shows that the standard deviations tend to get smaller as more data is consolidated
into the maps, suggesting that the consolidated representations are less biased in relation to
the initial features received and more representative of the regions covered by each topological
node.

4.2.7 Image Localization Experiment

In the last experiment of this chapter, we use the visual data consolidated in each node
to localize images on the maps using the approach described in Section and study the
effect of the visual habituation (VH) capability of the consolidation process. This experiment
is performed using the same adaptation of the k-fold cross-validation method used earlier
with the proposed method in Section [4.2.5] but here & — 1 sequences of data are used in the
generation of the map and all images in the remaining sequence of data are localized on the
map. Thus, in this experiment we use per execution only the selected data sequences that
were captured in the same area and a single map is generated per area.

We evaluated this in three scenarios in which 10% of the images in each sequence were
replicated O times in the first scenario, 20 in the second, and 40 times in the third. The images
to be replicated were randomly selected at the beginning of the map construction in each
execution from the data sequences used to build the map. With this, we simulate moments
when the robot stops moving and captures very similar images for a while. Table [6] shows the
TOP-1 and TOP-5 accuracy values measured with the proposed method with the complete
TCMA process (TCM A) and with the TCMA process without visual habituation capability
(TCMA_y ). TOP-1 evaluates whether for each image the node on the map with the highest

activation is the node (or one of the nodes) in the ground truth. TOP-5 evaluates whether,
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Figure 14 — Results of the place classification over 5 instants of time: (a) shows the average results obtained
with the data from Freiburg area; (b) and (c) show the average results obtained with the data
from Saarbrucken area 1 and 2, respectively. Each legend item is the data sequence used to train
the MLP. Fr2CI1 was not used in (a) because it does not contain all the place categories.
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Source: Thesis author.

for each image, one of the five nodes on the map with the highest activation is the node (or
one of the nodes) in the ground truth. The ground truth for an image can be more than one
node, if it was captured at an intersection position between nodes.

The results with the complete consolidation process (T'C' M A) remained stable as the
number of image replications increased, which shows the positive influence of the visual habit-
uation capability in the consolidation of visual features. While the results in TCMA_y y got
worse as the number of image replications increased, which suggests that without the visual
habituation capability it would increasingly degrade its consolidated features the longer the
robot stays put, due to the sequential presentation of similar features. In addition, the results
in TC'M A suggest that the consolidated representations in each node can be used to locate

images with good accuracy.



Table 6 — Results of the image localization experiment with random image replication. Standard deviations

are shown in parentheses.

IR! Data Sequences

TCM A?

TOP-1 Acc

TOP-5 Acc

TCMA_ vy

TOP-1 Acc

TOP-5 Acc

Fr1(CI1,Nt1,Nt3), Fr2(CI1,CI2,CI3)3
0 Sa1(ClI1,CI2,CI3), Sa2(CI1,CI2,CI3)
Sa3(Cl1,CI2,CI3), Sa4(Cl1,CI2,CI3)

0.744(0.067)
0.697(0.059)
0.834(0.021)

0.907(0.033)
0.911(0.028)
0.976(0.016)

0.741(0.036)
0.700(0.072)
0.837(0.015)

0.912(0.014)
0.907(0.034)
0.973(0.017)

Fr1(CI1,Nt1,Nt3), Fr2(CI1,CI2,CI3)
20 sa1(CI1,CI2,CI3), Sa2(CI1,CI2,CI3)
Sa3(CI1,CI2,CI3), Sa4(Cl1,CI2,CI3)

0.746(0.066)
0.693(0.065)
0.846(0.024)

0.904(0.019)
0.918(0.037)
0.976(0.018)

0.686(0.076)
0.672(0.076)
0.790(0.040)

0.883(0.054)
0.893(0.043)
0.968(0.021)

Fr1(CI1,Nt1,Nt3), Fr2(Cl1,CI2,CI3)
40 531(CI1,CI2,CI3), Sa2(Cl1,CI2,CI3)
Sa3(ClI1,CI2,CI3), Sa4(Cl1,CI2,CI3)

0.759(0.060)
0.693(0.052)
0.833(0.043)

0.902(0.020)
0.913(0.030)
0.976(0.016)

0.638(0.068)
0.650(0.079)
0.753(0.061)

0.880(0.030)
0.882(0.042)
0.951(0.017)

L IR is n® of image replications and Acc stands for Accuracy.

2 TCMA is the proposed method with the complete TCMA process and TCM A_y g is the proposed
method with the TCMA process without Visual Habituation.

3 Fr(n) is Freiburg (n = path 1 or 2), Sa(n) is Saarbrucken (n = path 1, 2, 3 or 4), CI(n) is cloudy
sequence (n = sequence 1, 2 or 3) and Nt(n) is night sequence (n = sequence 1 or 3).

Source: Thesis author.

4.3 SUMMARY

This chapter presented a topological semantic mapping method that consolidates deep
visual features of regions using a process we denoted as Topological Consolidation of Features
by Moving Averages (TCMA). The process uses exponential moving averages and is empowered
with visual persistence and visual habituation capabilities. The experiments, performed using
a real-world indoor dataset, suggested that the consolidated representations are rich visual
representations of the topological regions they cover and fairly represent the visual features
of the original images they consolidated. Furthermore, the experiments suggested that the
consolidated representations do not degrade over time, can be used for extracting different
semantic properties (such as place category, specific room, and objects) and to indicate the
topological location of images.

Despite of the promising results, such use of reusable consolidated representations of visual
features for the acquisition of semantics for spatial maps represents an innovation for the
area. Therefore, evaluating them in more practical scenarios is essential to demonstrate their
applicability in real-world tasks and their capacity for flexible use in adapting the semantics of
the maps to new requirements of new tasks.

With this purpose, the next chapter (Chapter adapts the proposed method for real-time
operation and uses classifiers trained on large-scale datasets from the literature to recognize

different semantic properties for the same maps, generated from 5 different home environ-
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ments and two scenarios of hyperparameter configuration. The first scenario uses the same
hyperparameter setting for all environments and the second uses the best setting found for
each environment. The chapter also presents a new visual features consolidation process based
on the use of multiple vectors of moving averages per node.

This thesis uses the term real-time as a reference for the online execution of the method
simultaneously with data capture in a real or simulated embedded scenario (regardless of the
frame rate). The study of the maximum frame rate at which the method can be executed
on current hardware equipment is not the focus of this thesis. However, for information, the
experiments detailed in the next chapter were performed with the input data at a frame rate
of approximately 5Hz on a laptop from the year 2013 with an Intel i7-4500U processor, 8GB
of DDR3 RAM and NVIDIA GeForce GT 750M graphics card with 2GB of memory.
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5 REAL-TIME MAPPING WITH FLEXIBLE SEMANTIC RECOGNITION

This chapter introduces a version for operation in real-time of the topological semantic
mapping method introduced in the previous chapter. First, the operation of the method is
detailed in Section . Then, a new features consolidation process based on the combination of
multiple vectors of exponential moving averages is introduced in Section [5.2] Next, Section
introduces a modification of the method that uses a more classical semantic mapping approach
based in the topological counting (or accumulation) of semantic properties recognized from
individual images. Finally, Section describes the experiments performed to evaluate the
method and all its variations in more practical scenarios. The experiments are performed with

data from 5 different home environments and in two scenarios of hyperparameter configuration.

51 THE METHOD FOR REAL-TIME OPERATION

The topological semantic mapping method proposed in the previous chapter (Chapter (4))
was adapted for real-time operation in an integrated solution built on m (Robot Operating
System) (QUIGLEY et al) 2009). The solution uses the ORBSLAM2 (MUR-ARTAL; TARDOS,
2017)) for 3D metric (Simultaneous Localization and Mapping) and for deep features
extraction a CNN model designed for mobile and resource-constrained environments, the Mo-
bileNetV2 (SANDLER et al., 2018), pre-trained on ImageNet-1K and available in the Pytorch
library.

Two shallow MLP classifiers recognize semantic properties from the visual features con-
solidated in each topological node. Both MLPs are trained on large-scale datasets from the
literature using the pre-trained MobileNetV2 for transfer learning. The first is a multiclass
classifier that recognizes the nodes in 6 different place categories. The second is a multi-label
classifier that indicates the presence of 10 different objects classes in the regions covered by
each topological node. An overview of the real-time version of method is illustrated in Fig-
ure [I5] The following sections detail how the method operates, highlighting similarities and

differences with the previous version.

5.1.1 Topological Consolidation of Visual Features

The method receives as input RGB and Depth images, asynchronously. At each time step &
(following the RGB images frequency), the 3D Metric SLAM module (ORBSLAM2) estimates
the current spatial position s* = {s¥,i = 1...n}, where n = 3. MobileNetV?2 receives as input
the RGB image z*, the output of the 2D adaptive average pooling layer is flattened in the
vector v¥ of m = 1280 dimensions and used as a visual features vector.

The rest of the method follows almost the same process described earlier in Sections
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Figure 15 — Overview of the method: ORBSLAM2 estimates the current spatial position s* on the metric map
for the input images. MobileNetV2 extracts the visual features vector v* of the input RGB images,
and the nodes in the topological map that correspond to the obtained metric spatial positions
consolidate v*. The consolidated visual features vector c; of each node is classified by two shallow
MLPs trained on large-scale datasets of the literature using the pre-trained MobileNetV2 for
transfer learning. The first indicates the place category of each node out of 6 available and the
second, a multi-label classifier, indicates the presence of 10 different object classes in the region
covered by each node. Other classifiers could be added to recognize different semantic properties,
they just need to be trained using the same pre-trained CNN, the MobileNetV2 pre-trained on
ImageNet-1K.
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4.1.1) and |4.1.2, Each node j in the topological map has a spatial position vector p; =

{pji;i = 1..n} and a consolidated visual features vector c; = {c;;,i = 1..m}. As v¥ and
s¥ are obtained, the current topological location is determined by the node with the smallest
Euclidean distance between the given spatial position s* and the spatial position of the node
p;, if the distance is equal to or smaller than the spatial distance threshold A. If not, or if the
map is empty, a new node 7 is inserted into the topological map.

Node 7 is initialized with p,, = s* and the current state of the consolidated visual features
vector c¢; of the last visited node [, if any, is persisted in c, through an average between the
input visual features v¥ and c; determined by , the persistence rate (as per Equation .

If the current topological location was determined by the node with the smallest Euclidean
distance to s¥, the node consolidates v* using a modification of the exponential moving average
detailed in Equation [4.4] In the modification, the squared Euclidean distance is replaced by the
Manhattan distance (also known as L1-norm) as the distance metric used to control the visual

* is consolidated by the node only if the distance D(v*, u;)

habituation of the node, where v
between the input visual features vector v* and the last visual features vector consolidated in
the node, u;, is equal to or greater than the minimum distance 7. The Manhattan distance

was chosen as it works better on high dimensional data than the squared Euclidean distance.
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Therefore, D(v"* u;) is now defined as follows:

m

D(v*, u;) = Z |vf — wjil. (5.1)

i=1

Then, other close nodes also consolidate v* following the same process if their Euclidean
distances to s* are also equal to or smaller than \. Figure [16|illustrates the process when two
nodes consolidate the same visual features vector v* captured in a spatial position s* that
attends A for both nodes. Finally, as in the previously introduced version of the method, a

connection between nodes is created whenever a transition occurs between them.

Figure 16 — lllustrations of two topological nodes (in cyan color) consolidating the same visual features vector
captured in a metric spatial position (red arrow) that attends the spatial distance threshold A
for both nodes. (a) shows a close-up view and (b) a top view. Metric and topological maps
were generated for the path home_at of the SUN3D dataset (XIAO; OWENS; TORRALBA, [2013),
described in Section

Source: Thesis author.

5.1.2 Semantic Properties Classification

In the method, the consolidated visual features vector c; of each topological node is clas-
sified by two MLPs (implemented using the PyTorch library) that indicate the place category
of the node out of 6 available and the presence of 10 different objects in the region covered by
the node. The pre-trained MobileNetV2 was used in the training process of both classifiers. For
this, all the weights of the MobileNetV2 were frozen except the ones of the linear classification

layer.



59

For the places classifier, the linear classification layer (i.e., the layer right after the 2D
adaptive average pooling layer) was replaced by an MLP (with random weights) that contains
one hidden layer with 48 units, followed by ReLU activation functions and 6 units in the output
layer. Then, the model was trained and validated with the data selected from the Places365-
Standard dataset (ZHOU et al), [2018) (details in Section [.4.2.1]). The loss function used for
training was cross entropy and the optimizer was Adam (KINGMA; BA, 2014). Furthermore, the
dropout and batch normalization layers were kept active during training. Finally, the trained
MLP was detached from the CNN and used as places classifier.

For the multi-label objects classifier, the MLP that replaces the linear classification layer
contains one hidden layer with 160 units, ReLU activation functions and 10 units in the output
layer. The model was trained and validated with the data selected and prepared from the COCO
dataset (LIN et al}, [2014) (details in Section [5.4.2.2)). The optimizer was the same (Adam) and
the loss function used was binary cross entropy. Again, the dropout and batch normalization
layers were kept active during training. Lastly, the trained MLP was detached from the CNN
and used as multi-label objects classifier. The learning rate and number of epochs of training
were determined experimentally for both classifiers.

The same process could be done to train and include other classifiers in the future. These
classifiers could, from the same vectors of consolidated visual features (i.e., the vector c; of
each topological node), for example, add new semantic properties to the map, add new seman-

tic classes (e.g., a new place category), or even replace old classifiers for better performance.

5.2 VISUAL FEATURES CONSOLIDATION BY THE COMBINATION OF MULTIPLE MOV-
ING AVERAGES

This section introduces a new process of visual features consolidation that calculates the
consolidated visual features vector c; of a node j by the combination, through the arithmetic
mean, of multiple vectors of exponential moving averages consolidated in the node. We denote
this process as Topological Consolidation of Features by the Combination of Multiple Moving
Averages and the main purpose of the introduction of this process is to serve as a
comparison to the TCMA process (introduced in Section in the experiments, where the
method is evaluated using the two processes separately.

In the process, in addition to the consolidated visual features vector ¢; = {cj;,7 = 1...m}
it is added to each node j a vector of consolidation items I; = {I;,7 = 1...q}, where each
I;; = {l;i,l = 1...m} is a exponential moving averages vector and ¢ is a number that changes
for each node.

First, when a new node is created in the topological map, the current state of the con-
solidated visual features vector c; of the last visited node [, if any, is persisted in the first

consolidation item I;, created for I; through an average between the input visual features
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vector v* and ¢;, as follows:

yer + (1 — )V, if thereis a ¢
L, = A _ (5.2)
vy otherwise,

where v is the persistence rate.

Then, as in the TCMA, the input visual features vector v* is consolidated by a node j
only if the distance D(v*,u;) (Equation between v* and the last visual features vector
consolidated in the node, uj, is equal to or greater than 7, which represents the visual ha-
bituation control of the node. If D(v* u;) >= 7, the consolidation items in I; compete to
consolidate v¥ and the winner is the item with the smallest distance to v*:

h(v¥) = arg min[D(vk, L), (5.3)

1

where D(v¥ 1;;) is the Manhattan distance described as follows:
D(Vk,:[ji) = Z |Ulk — ]jil|- (54)
1=1

If the distance of the winner to v* is greater than the distance threshold of consolidation
items (, then a new consolidation item 7 is added in I; with I;, = v¥_If not, the winning

consolidation item is updated in direction to v* as follows:

After the update of the consolidation items vector I;, the consolidated visual features

vector c; is updated by the arithmetic mean of all consolidation items in I;, as follows:

cj(k+1) = ;zq:Iji(kJrl). (5.6)

5.3 TOPOLOGICAL SEMANTIC MAPPING BY INDIVIDUAL IMAGE CLASSIFICATION
COUNTING

This section presents a modification of the proposed method that uses an approach based
on topological counting (or accumulation) of semantic properties recognized from individual
images. The modification follows a more classical semantic mapping approach and is only
used as a simple baseline method for comparison in the experiments (Sections and
, where it's use is always referred to as the TC (Topological Counting) method.

In the modification, the consolidation process is removed and each topological node j
contains two vectors: the place category counts vector q; of 6 dimensions (one for each place

category), and the objects presence counts vector g; of 10 dimensions (one for each object
label).
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During the mapping process, each visual features vector v* extracted by MobileNetV2 is
classified by the places classifier and the multi-label objects classifier (introduced in Section
. Each node j with Euclidean distance between the spatial position vector p; and the
current spatial position s* equal to or smaller than ), sums one to the value in the dimension
of the place category counts vector q; corresponding to the place category indicated by the

classifier (given in numeric value):

where i is the place category indicated by the classifier.
Also, in the same way, each node j with Euclidean distance to s* equal to or smaller than
A, sums each dimension of the objects presence counts vector g; to each dimension of the

10-dimensional binary output vector o given by the multi-label objects classifier, as follows:
gij(k+1)=g;k)+o. (5.8)

At the end of the mapping process, for each node j, the dimension of the place category
counts vector q; with the highest value indicates the place category of the node and each
dimension in the objects presence counts vector g; that has value higher than the objects
count threshold determines the presence of the respective object label in the node. Therefore,
the value set for the objects count threshold determines which object labels are present in each
node.

Note that this modification of the proposed method does not provide the flexibility of the
reusable consolidated representations and is included here only as a reference of quality, as it
directly classifies the extracted feature vectors (the ideal scenario for the classifiers, which are

trained from feature vectors of individual images).

5.4 EXPERIMENTS

This section details the experiments performed to evaluate the application of the proposed
method in more practical scenarios. The method is evaluated in home environments with the
consolidated visual features produced with both the TCMA and TCCMA processes, separately.
First, the metrics used to evaluate the results in the experiments are described in Section
[.4.1] Then, the experimental setup is detailed in Section [5.4.2] Next, the topology of the
produced maps is evaluated in Section [5.4.3] Finally, the consolidated representations are
evaluated in two different hyperparameter scenarios for the simultaneous recognition of place
categories (Section and multiple object labels (Section [5.4.5)), as semantic properties
of the topological nodes.
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5.4.1 Metrics

Two very common metrics in the literature are used to evaluate the results in the experi-

No. of correct predictions
Total no. of predictions

ments. As in the previous chapter, accuracy ( ) is used to evaluate the place

classification results obtained in the experiments. Differently, the metric used to evaluate the
multi-label object classification results is the F1l-score, which is given by the harmonic mean

of precision and recall:

2 - precision - recall

precision + recall ’

No. of correct positive predictions and recall = No. of correct positive predictions
No. of positive predictions " No. of positive instances in the dataset”

where precision =

However, as the objects classification results obtained are multi-label, a metric that con-
siders all the output labels is more adequate to obtain an average perspective of the quality of
the results. For this, the Macro Average F1-score is used as the main metric to evaluate the

multi-label objects classification results obtained, which is calculated as follows:
Macro Avg. = 1Y F;, (5.10)
i=1

where n is the number of labels considered in the average, which is 10 in the standard Macro
Average F1-score in the experiments. However, a different version that considers only the labels
present in the evaluated environments is also used in the experiments and is denoted as Macro
Average F1-score B.

The data selected for the experiments are unbalanced, therefore, the Macro Average F1-
score is a suitable metric to use. However, for comparison, the Micro Average F1-score is also
used to evaluate the multi-label objects classification results. The metric can be calculated as
the harmonic mean of Micro Average Precision and Micro Average Recall, which are calculated

as follows:

>oi 1 No. of correct positive predictions of label i

Micro Avg. Precision = : (5.11)

1 No. of positive predictions of label i

>y No. of correct positive predictions of label i

Micro Avg. Recall =

(5.12)

> 1 No. of positive instances of label i in the dataset’

where n is the number of labels considered in the average, which is 10 in the experiments.

5.4.2 Experimental Setup

The experiments demanded extensive preparation due to the more practical nature of the
evaluations. Therefore, this section was created to detail all the information related to the
experimental setup, such as the datasets used, the preparations made on the selected data,

the annotation processes performed, and how the hyperparameters were adjusted.
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5.4.2.1 Places365 dataset

The Places365-Standard was the dataset used to train the places classification model. It
contains approximately 1.8 million images from 365 place categories and is a version of the
Places365 dataset]l] a subset of the Places2 dataset (ZHOU et al, 2018)). The dataset has indoor,
nature, and urban as macro-classes. However, as the scope of this thesis is indoor environments

and the following experiments are performed in home settings, we selected data from 6 place
categories commonly present in home environments to train the places classification model.
The categories were: bathroom, bedroom, corridor, home office, kitchen, and living room.
Each category of the Places365-Standard has 3068 to 5000 training images and 100 val-
idation images. Therefore, we used 30000 (5000 each category) and 600 images (100 each
category) in the places classifier training and validation processes, respectively. Figure ex-

emplifies images from the selected place categories.

Figure 17 — Example images of each selected place category from Places365-Standard dataset.

Bathroom Bedroom Corridor Home office Kitchen Living room

Source: Adapted from [Zhou et al.| (2018]).

5.4.2.2 COCO dataset

For training the multi-label objects classifier we used the latest version of the [COCQ]
(Common Objects in Context]) dataset (LIN et al}, [2014), released in the year of 20177 The

dataset introduces everyday complex scenes of objects in their natural context and was designed

for object detection, segmentation, person keypoints detection, and captioning. The 2017
version has 123287 images (118287 for training and 5000 for validation), 80 object categories
and 886284 annotated object instances, with the presence of multiple instances and categories

of objects per image being the usual (Figure [18| shows examples).

1 URL: http://places2.csail.mit.edu/
2 URL: https://cocodataset.org
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We selected 10 object categories: chair, couch, bed, dining table, toilet, TV, laptop,
oven, sink, and refrigerator. Then, we used the annotated objects instances to generate a
10-dimensional ground truth vector for each image in the dataset that contains any instance
of the selected categories, where each dimension represents an object category which receives
value 1 if an instance of the object is present in the image or 0 if not (example of a resulting
vector: 110101000 0). Thus, ground truth vectors were generated for 34474 training
images and 1497 validation images. Finally, these images and their respective ground truth
vectors were used in the training and validations processes of the multi-label objects classifier.

Additionally, as the classification outputs obtained from the multi-label objects classifier
are sigmoidal, thresholds are needed to define the presence (1) or not (0) of the object labels.
Therefore, for each output dimension of the classifier, we performed threshold moving on
the outputs obtained from the validation images, calculated the Fl-score for each threshold
variation, and selected the value that maximized the result. The 10 selected thresholds (one

for each object label) were used in all of the experiments.

Figure 18 — Example images from COCO dataset: (a) shows an image with containing two couch instances
and one TV instance; (b) shows an image containing multiple instances of chair, as well as single
instances of oven, refrigerator and others.

Source: Adapted from (2014).

5.4.2.3 SUN3D dataset

The experiments performed to evaluate the method use data selected from the SUN3D
dataset (XIAO; OWENS; TORRALBA) [2013), a place-centric RGB-D dataset| that provides data

sequences captured in the full 3D extent of many indoor places. The authors use an ASUS

Xtion PRO LIVE sensor mounted to a laptop and capture the RGB-D sequences at a height
and viewing angle similar to that of a person, i.e., a viewing angle that is mostly horizontal but

slightly tilted towards the ground. The operators mimic human exploration in the capturing

3 URL: https://sun3d.cs.princeton.edu/
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process. They walk slowly through the entire space, scanning each room, including floor, walls
and every object. The dataset has 415 data sequences captured from 254 different spaces,
in 41 buildings mainly distributed across North America, Europe and Asia. Some places were
scanned multiple times, on different days and times of the day.

The data sequences are from various types of environments of different sizes, such as
apartment, conference hall, classroom, dorm, lab, lounge, office, and others (Figureshows
examples). However, for the experiments, we only selected data sequences from paths that
represent complete environments (that is, environments with multiple categories of places)
of houses and apartments. We selected one data sequence per path and the paths were:
home_at, home_han, home_md, home_puigpunyen, and home_rz. From path home_md we
used the data sequence 9 (out 10 available), as it covers the entire apartment, and from
home_puigpunyen we used data sequence 2 (out 4 available), as it covers the entire house
floor with the number of images close to the average of the other sequences. The other selected

paths have only one data sequence available.

Figure 19 — In each column are examples of point clouds from different environment types and their median
coverage areas.

apartment conference room conference hall restroom classroom dorm hotel room lounge

Source: [Xiao, Owens and Torralba| (2013)).

The environments covered by the selected paths vary in size and also in number of images,
where: path home_at has 14785 RGB images and 14851 depth images; path home_han has
8595 RGB images and 8595 depth images; path home_md has 13341 RGB images and 13401
depth images; path home_ puigpunyen has 16726 RGB images and 16726 depth images; and
path home_rz has 30333 RGB images and 30469 depth images. Path home_rz is the one
that covers the largest environment, an entire house. Paths home_han and home_md cover
apartments. Paths home_at and home_ puigpunyen cover entire floors of houses. Figure

shows some open-angle images of each selected path.
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Figure 20 — Examples of RGB and Depth images of the selected paths from the SUN3D dataset: (a) home_at
path; (b) home_han path; (c) home_md path; (d) home_puigpunyen path; and (e) home_rz
path.

Source: Adapted from Xiao, Owens and Torralbal (2013)).

5.4.2.4 Data Preparation

The SUN3D dataset doesn't provide rosbags of the data sequences. A rosbag is a ROS

file format for storing ROS communication data and is used to play back real-time ROS

simulations (QUIGLEY et al., 2009). Therefore, to enable real-time experiments, we developed a

ROS-based software tooﬂ adapted for SUN3D data, which generates rosbags from sequences
of image files (RGB and Depth), and used it to generate a rosbag for each of the selected
data sequences.

The dataset also doesn’t provide many ground truth semantic annotations, only for 8 data
sequences from environment types unsuitable for our experiments. Thus, we annotated the
RGB images of the data sequences from the selected paths with the 6 place categories defined
in Section and the 10 object categories defined in Section The images captured

4

Avaliable at: https://github.com/ygorsousa/rosbag_gen_ utils
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inside each room in each path received the most appropriate place category (out of the 6)
and all objects present in the room (out of the 10 selected) as ground truth, i.e., each image
received as ground truth a 10-dimensional vector (as described in Section with the
presence of all objects in the room, not those visualized in the image.

The annotations were made using part of the method in a real-time process, where for each
selected data sequence: the corresponding rosbag provided the data in real-time; ORB-SLAM?2
estimated the spatial position vector for each image; MobileNetV2 extracted the visual features
vector from each image; then, the spatial position and visual features vectors corresponding
to each image were stored in a file along with the respective ground truth data, provided in
real-time through a software tool developed for the task.

Thus, a file was generated for each pathf| containing the following data for each image:
id of the image; spatial position vector; visual features vector; place category (in numeric
format); and 10-dimensional objects vector. In addition to the annotated ground truth, the
spatial position and visual features vectors included allowed us to use the data in the process
of hyperparameter adjustment for the experiments, described in Section [5.4.2.6]

The loss of some image frames during the annotation processes was expected since it was
done in real-time. However, fortunately, a very small number of RGB frames was lost in most
paths (6 in home_at, 2 in home_md, 1 in home_puigpunyen, and 42 in home_rz) and only
in path home_han a larger number (558) was lost, which represents approximately 6.5% of
the total number. This larger number was obtained because ORBSLAM?2 lost some frames,
probably due to the characteristics of the RGB images of this path, which are slightly dark
and have a variable frame rate. Table [7| presents the number (by place category, by object

category and total) of annotated images of each path.

5.4.2.5 Metric Maps

In order to maintain the stability of the metric spatial positions provided by the ORBSLAM?2
over the executions and experiments, we first ran the ORBSLAM2 on each of the selected paths
(using the rosbags) and saved the generated 3D metric maps. Then, for each of the previously
described annotation processes, as well as in the experiments, ORBSLAM?2 loaded the map
corresponding to the considered path and acted only in localization mode. The ORBSLAM2
was always run in RGB-D mode, i.e., using both RGB and Depth images. Figure 21| shows a
close-up view of the map generated for one of the selected paths and Figure [24] shows a top

view of the metric maps generated for each of the selected paths.

5 The generated files will be made available at: https://github.com /ygorsousa/semantic_annotations_sun3d
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Table 7 — Number of annotated RGB images of each selected path from SUN3D. Numbers are presented by
location category, object category, and total.

Place category home__at home__han home_md home_pui* home_rz
Bathroom 2944 1163 2844 2461 3410
Bedroom 0 3085 2781 2754 5297
Corridor 1440 1044 0 1031 5568
Home office 0 0 0 0 3495
Kitchen 4302 1681 2193 3498 5610
Living room 6093 1064 5521 6981 6911

Object category

Chair 10395 4149 5521 9735 21313
Couch 6093 1064 5521 6981 6911
Bed 0 3085 2781 2754 5297
Dining table 10395 0 5521 10479 5610
Toilet 2944 1163 2844 2461 3410
TV 10395 2377 5521 13233 19184
Laptop 0 1772 0 6981 0
Oven 4302 1681 2193 3498 5610
Sink 7246 2844 5037 5959 9020
Refrigerator 4302 1681 2193 3498 5610
Total number 14779 8037 13339 16725 30291

* home_pui stands for the home_ puigpunyen.

Source: Thesis author.

5.4.2.6 Hyperparameter Adjustment

The process of hyperparameter adjustment for the experiments used the data annotated
as described in Section [5.4.2.4] and followed a few steps. First, a single value for the spatial
distance threshold A was chosen to be used in all the experiments and in all variations of the
method. Larger values for A would decrease the number of nodes created in the topological
maps, and, consequently, increase the results obtained only due to the smaller number of
nodes. In contrast, smaller values would increase the number of nodes, and consequently
could decrease the results obtained due to the lack of visual representativeness of the nodes.

Therefore, to find a suitable value for A\, we sampled all hyperparameters of the method
(including (, introduced in the TCCMA process) within pre-established ranges using a uniform

distribution and for each random configuration of hyperparameters, we calculated the average
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Figure 21 — A close-up view of the feature-based 3D metric map generated for path home_rz using ORB-
SLAM2.

Source: Thesis author.

of the place classification accuracy results obtained in all selected paths, i.e., the average of
the results obtained in all selected paths using the same hyperparameters setting. The aver-
ages were obtained with the method using each consolidation process (TCMA and TCCMA),
separately, and an intermediate value in the sampled range that presented good average results
for both processes was selected. Thus, the value chosen for A\ was 1.1342 meters. Figure
illustrate in graphs the average accuracy results obtained by sampling the value of X in the
pre-established range.

Then, with the value of A fixed, we sampled all the other hyperparameters within the same
pre-established ranges and for each variation of the method (which includes both consolidation
processes and the ablation variations) we selected the hyperparameter setting that presented
the best average result of place classification (accuracy) obtained in all selected paths. The
selected hyperparamarater settings are used in the classification of places and objects in the
experiments (that is, the hyperparameter settings adjusted for the place classification results
are also used for the multi-label objects classification) and are denoted as 'BAP’ (Best in All
Paths) in the result tables.

Next, from the same random values sampled for the hyperparemeters, we selected for each
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variation of the method (including both consolidation processes and the ablation variations)
the hyperparameter settings that presented the best place classification results in each path,
i.e., a different hyperparameter setting for each path. The selected hyperparamarater settings
are again used in the classification of places and objects in the experiments and are denoted
as 'BEP’ (Best in Each Path) in the result tables.

Figure 22 — Average accuracy results of places classification obtained by sampling the value of the spatial
distance threshold X in the pre-established range. (a) shows the results obtained with the method
using the TCMA process and (b) the results obtained using the TCCMA process.
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Source: Thesis author.

Lastly, in the hyperparameter adjustment process, all results were obtained using a version
of the method made to operate with the annotated data. Therefore, the results obtained with
the hyperparameter settings selected for both consolidation processes were validated in ROS
simulations with the real-time version of the method. Table (8| presents the ranges used for

each hyperparameter.

Table 8 — Hyperparameter ranges.

Hyperparameter min max
Features consolidation rate («) 0.0001 0.2

Minimum distance of features (7) 50.0 800.0
Features persistence rate (7) 0.01  0.99

Distance threshold of consolidation items ({)  50.0  500.0

Source: Thesis author.

In addition, the hyperparameter that had the most effect on the average of the results
obtained in each path (both in the classification of places and objects) with the two consoli-
dation processes (TCMA and TCCMA) was the minimum distance of features 7, followed by
the features persistence rate 7, as shown in the graphs illustrated in Figure 23 The hyper-
parameter 7 controls the visual habituation of the nodes, which directly affects the number

of consolidation updates of each node. The distance threshold of consolidation items ( also
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demonstrated having effect on the results with the TCCMA process, ¢ controls the number of

consolidation items created to represent the different patterns in the input features.

Figure 23 — Results of average accuracy of place classification and average Macro Average F1-score of objects

Avg. Macro Avg. F1

Avg. Macro Avg. F1

classification obtained with all hyperparameters sampled within the pre-established ranges (as per
Table , except spatial distance threshold A\ that was fixed with the value of 1.1342 meters.
(a) and (b) shows the results obtained with method using the TCMA process and the TCCMA
process (respectively). (c) shows the results obtained with method using the TCCMA process for
the hyperparameter (.
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5.4.3 Topology

In the previous chapter (Section , the positioning of the nodes produced with the
method was evaluated in relation to the two-dimensional spatial position data provided by the
dataset used in the experiments. In addition, this section evaluates whether the positioning
of the topological nodes produced is coherent with the three-dimensional spatial positions
provided by ORBSLAM2. For this, a topological map was generated for each path selected
from SUN3D, then the mean and maximum Euclidean distances between all position data and
their nearest nodes were computed.

The results obtained were: 0.381 / 1.022 (mean / maximum distance) for home_at path;
0.396 / 1.084 (mean / maximum distance) for home_han path; 0.382 / 0.963 (mean /
maximum distance) for home_md path; 0.440 / 1.081 (mean / maximum distance) for
home_ puigpunyen path; and, 0.423 / 1.023 (mean / maximum distance) for home_rz path.
The results indicate that all nodes were positioned coherently with the 3D metric position
data provided by ORBSLAM2 (with mean distance around 0.4 meters) and the spatial dis-
tance threshold A\ (with maximum distance always below A\ = 1.1342 meters). We also verified
that all connections between nodes represented viable transitions in the environments. Figure

shows a topological map generated for each path.

5.4.4 Place Classification

This section presents the first part of the experiments performed to evaluate the application
of the method in more practical scenarios. The method is evaluated on the 5 selected paths
using the two proposed consolidation processes (TCMA and TCCMA), separately. For each
consolidation process, two hyperparameters scenarios are considered.

In the first scenario, the consolidated visual features are produced using the same hyperpa-
rameter setting for all paths (the 'BAP’ hyperparameter setting described in Section [5.4.2.6)).
Then, the consolidated visual features vector c; of each topological node j present in the gen-
erated maps is classified by the places classifier (introduced in Section , which indicates
the place category of each node among the 6 available. In the second, the consolidated visual
features are produced using the best hyperparameter setting obtained for each path (the 'BEP’
hyperparameter settings described in Section . Again, the consolidated visual features
vector c; of each topological node j present in the generated maps is classified by the places
classifier.

Table [9] presents the excellent results obtained, where the results with the best hyper-
parameters found for each path (BEP) are higher than all others and the results obtained
with the same hyperparameters for all paths (BAP) are still very good, being mostly higher
than the results obtained with the TC method (introduced in Section . Therefore, the
results suggest that both consolidation processes (TCMA and TCCMA) generate adequate
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Figure 24 — Top view of the topological maps generated using the method and their respective metric maps.
In (a) are the maps for home_at path, (b) for home_han, (c) for home_puigpunyen, (d) for
home_rz, and (e) for home_md.

Source: Thesis author.

visual representations (even if the hyperparameter values are not the best) to be used in the
accurate recognition of place categories from an MLP classifier trained on data from other
environments.

However, the places classifier seems to perform poorly in some categories of the selected
paths, as demonstrated in the results obtained with the TC method (which uses the individual
classification of images). The low performance in some classes may be related to the data used
to train the classifier. Despite the large-scale dataset used, the training data may not represent

the visual characteristics of the paths in some place categories. This probably affected the
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classifications of the consolidated vectors in some classes, which decreased the overall accuracy
results in some paths. Emphasis on the classification results of the living room category in path
home_md, which were zero in all scenarios.

Table [9] also shows that the results obtained with the two consolidation processes are very
similar in overall accuracy when using the best hyperparameters found for each path (BEP).
However, the overall accuracy results obtained with the TCMA process were more balanced
when using the same hyperparameters in all paths (BAP) than the results obtained with the
TCCMA process, which indicates that the TCCMA process may be more difficult to tune for
more general environments than the TCMA process.

Table [L0| adds results obtained with variations of the consolidation processes without their
visual habituation and visual persistence capabilities. Despite the accuracy of place classifica-
tions being a metric that is not very sensitive to detect small variations in the consolidated
representations, the results indicate that both visual habituation and visual persistence present
a positive contribution to the TCMA process. However, the results obtained with the TCCMA
indicate that despite the visual habituation and visual persistence capabilities still having a
positive contribution, they seem to have less significance in the consolidation process. This
may be related to the use of multiple consolidation items per node, which may have helped
to avoid tainting the resulting consolidation vectors with repeated visual information.

Additionally, Table presents the average number of updates performed in the consoli-
dated features vector of each node during the evaluations. As expected, the average number
of updates is similar in all paths when using the same hyperparameter settings (BAP) and
very different when using the best hyperparameter settings found for each path (BEP). The
numbers also show that the TCMA process appears to perform better on average with more
updates than the TCCMA process, but that the TCCMA process can also perform well with
a high number of updates. It is important to note that the number of updates in each path
is different even with the same hyperparameter setting, as the number of images and sizes of
each path are different.

Table also presents the average number of consolidation items created in each node
during the evaluations with the TCCMA process. Interestingly, most of the numbers are very
similar to the number of updates, which ends up causing the consolidated features vector
of each node to be calculated almost as the simple average of the features vectors that
each consolidation item was initialized, since the consolidation items had almost no updates.

Evaluating this behavior is a future work.

5.4.5 Multi-Label Object Classification

This section presents the second part of the experiments. This part enriches all the maps
produced in the previous section with a new semantic property, the objects present (among

10 available) in the regions covered by each topological node. For this, each node j present



Table 9 — Place classification results.

Accuracy Bathroom Bedroom  Corridor Home Kitchen Living Overall
office room
TCMA1| BAP?
home_at 1.000 — 0.667 — 1.000 0.750 0.833
home__han 1.000 1.000 0.714 — 1.000 0.500 0.773
home_md 1.000 1.000 — — 1.000 0.000 0.615
home_pui® 1.000 1.000 0.500 — 1.000 0.333 0.654
home_rz 1.000 1.000 0.500 0.333 0.714 0.333 0.629
TCMA | BEP
home_at 1.000 — 1.000 — 1.000 1.000 1.000
home__han 1.000 1.000 0.857 — 1.000 0.500 0.818
home_md 1.000 1.000 — — 1.000 0.000 0.615
home_ pui 1.000 1.000 0.0 — 1.000 0.667 0.769
home_rz 1.000 1.000 0.500 0.667 0.714 0.444 0.686
TCCMA | BAP
home__at 1.000 — 1.000 — 1.000 0.875 0.944
home__han 1.000 0.800 0.571 — 1.000 0.167 0.591
home_md 1.000 1.000 — — 0.500 0.000 0.538
home_ pui 1.000 0.800 0.500 — 1.000 0.583 0.731
home_rz 1.000 1.000 0.500 0.000 0.714 0.444 0.629
TCCMA | BEP
home_at 1.000 — 1.000 — 1.000 1.000 1.000
home_han 1.000 1.000 1.000 — 1.000 0.333 0.818
home_md 1.000 1.000 — — 1.000 0.000 0.615
home_ pui 1.000 1.000 0.500 — 1.000 0.583 0.769
home_rz 1.000 1.000 0.667 0.000 1.000 0.444 0.714
TC
home_at 1.000 — 1.000 — 1.000 0.500 0.778
home_han 1.000 0.800 0.714 — 0.500 0.000 0.545
home_md 1.000 1.000 — — 1.000 0.000 0.615
home_ pui 1.000 1.000 1.000 — 1.000 0.417 0.731
home_rz 1.000 0.625 0.833 0.000 0.286 0.111 0.429

YTCMA is the method using the TCMA process, TCCM A is the method using the TCCMA
process, and TC is the modification of the method that performs topological counting of place
categories recognized from individual images.

2 BAP is the hyperparameter setting that presented the best average result in all paths and BEP is
the best hyperparameter setting obtained for each path.

3 home_ pui stands for home_ puigpunyen and — means that the category is not present in the path.

Source: Thesis author.
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Table 10 — Place classification. Evaluation with variations of the consolidation processes.

Accuracy Hyperparam.  home_at home_han home_md home_pui home_rz
Setting
TCMA® BAP 0.833 0.773 0.615 0.654 0.629
TCMA vy BAP 0.833 0.727 0.461 0.731 0.514
TCMA_vp BAP 0.833 0.636 0.538 0.577 0.571
TCMA _vgyvp BAP 0.833 0.636 0.461 0.538 0.571
TCMA BEP 1.000 0.818 0.615 0.769 0.686
TCMA_vy BEP 1.000 0.727 0.615 0.731 0.629
TCMA_vyp BEP 0.889 0.727 0.538 0.731 0.657
TCMA_yvgyvp BEP 0.833 0.682 0.538 0.654 0.571
TCCMA BAP 0.944 0.591 0.538 0.731 0.629
TCCMA_yvy  BAP 0.889 0.454 0.615 0.654 0.686
TCCMA_yp  BAP 0.944 0.545 0.615 0.654 0.657
TCCMA_ypyyp BAP 0.889 0.500 0.615 0.654 0.657
TCCMA BEP 1.000 0.818 0.615 0.769 0.714
TCCMA_vyg  BEP 0.944 0.727 0.615 0.692 0.714
TCCMA_vp  BEP 0.944 0.682 0.615 0.731 0.714
TCCMA_vgvp BEP 0.944 0.682 0.615 0.692 0.714

*TCMA is the method using the TCMA process and TCCM A is the method using the
TCCMA process. TCM A_vy p is the TCMA without Visual Persistence, TCM A_y g is the
TCMA without Visual Habituation, and TCMA_y v p is TCMA without Visual Habitua-
tion and Visual Persistence. The same nomenclature applies to the TCCMA process.

Source: Thesis author.

in all maps, including the maps generated with the two consolidation processes and both
hyperparameter scenarios, has its consolidated visual features vector c; classified by the multi-
label objects classifier (introduced in Section , which indicates the presence or not of 10
different classes of objects.

In order to use the TC method (Section for comparison in the experiments, we selected
for each path a different object counts threshold in a range of 1 and 1000 that maximized
the Macro Average Fl-score obtained (Figure [25|illustrates the process in graphs). In the TC
method, the objects count threshold determines which object labels are present in each node
J from its objects presence counts vector g;.

Table presents the results obtained, where the results of Micro Average Fl-score ob-
tained with the best hyperparameters found for each path (BEP) are in general a little higher
(mainly those of TCMA) than the results obtained with the method TC and the results of
Macro Average Fl-score obtained (also with the BEP hyperparameter settings) are generally
similar to those obtained with the TC method. Although the results obtained with the same
hyperparameters for all paths (BAP) are not as good as the others, they are still good in some

paths.
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Table 11 — Number of updates and consolidation items (for TCCM A only) per node. Standard deviations
are shown in parentheses.

No. of Updates home_at home_han home_md home_ pui home_rz
TCMA™| BAP 69.5 (41.6) 34.5 (29.4) 113.5 (57.2) 57.7 (23.7) 73.9 (36.4)
TCMA | BEP 21.7 (14.6) 4 (3.1) 11.6 (5.2) 140.9 (55.5) 31.1 (15.3)
TCCMA | BAP 6.1 (4.4) 5 (2.8) 10.8 (5.1) 4.5 (2.5) 7.5 (4.5)
TCCMA | BEP 13.6 (9.4) 1(4.3) 313.5 (154.3) 14.8 (6.6) 197.6 (99.1)
No. of Consolida- home_at home_han home_md home_ pui home_rz
tion ltems
TCCMA | BAP 7.0 (4.4) 3.5 (2.7) 11.5 (5.0) 5.4 (2.3) 8.4 (4.4)
TCCMA | BEP 13.9 (9.0) 1.5 (0.8) 87.4 (25.1) 15.7 (6.5) 79.7 (26.2)
*TCMA is the method using the TCMA process and TCCM A is the method using the TCCMA
process.

Source: Thesis author.

Despite the fact that the hyperparameter settings used were adjusted for the place clas-
sification task, the multi-label objects classification results obtained with the hyperparameter
settings 'BEP’ were very good and comparable to those obtained with the TC method, which
had the objects count threshold adjusted for each path. This suggests that new semantic
properties can be extracted from the visual representations consolidated in previously created
maps, even if the hyperparameter values used to generate the representations are not optimal
for the new property.

Furthermore, it is important to note that the classifications are evaluated by the objects
present in the room in which each node is positioned, and not by the objects visualized in the
images consolidated in the node. This is a more difficult task because the images consolidated
by many nodes may not capture some objects that are present in the rooms where they
are positioned. Also, the classification threshold of each output dimension in the multi-label
objects classifier was adjusted by the validation data selected from the COCO dataset, which
may not have produced optimal thresholds to be used in environments with the different visual
characteristics of the selected paths.

In addition to the results already discussed, Table[13] presents the results obtained with the
hyperparameter settings that yielded the best multi-label objects classification results (Macro
Average Fl-score) in each path, which includes results with variations of both consolidation
processes without their visual habituation and visual persistence capabilities. The results are
additional evidence of the positive contribution of both visual habituation and visual persistence
in the TCMA consolidation process. Furthermore, the results show that these capabilities also
contribute positively to the TCCMA consolidation process, but reinforce that they have less
significance.

Table [13] also shows that the results obtained with the TCMA process were mainly higher
than the results obtained with the TCCMA process in agreement with the results obtained
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Table 12 — Multi-label objects classification results.

F1-Score  Chair Couch Bed Dining Toilet TV  Lap- Oven Sink Refrige-| Micro Macro Macro
table top rator | Avg. Avg. Avg.
B4
TCM AY| BAP?
home_at 0.800 0.823 — 0.800 0.800 0.526 —  1.000 0.933 0.833 | 0.791 0.652 0.815
home_han 0.833 0.545 0.667 —  0.500 0.667 0.000 0.500 0.471 0.500 | 0.582 0.468 0.520
home_md 0.714 0.750 0.727 0.333 0.667 0.000 —  0.000 0.889 0.000 | 0.594 0.408 0.453
home_pui® 0.872 0.667 0.800 0.625 0.667 0.429 0.000 0.364 0.778 0.545 | 0.620 0.575 0.575
home_rz 0.906 0.762 0.750 0.600 0.3330.160 — 0.857 0.621 0.727 | 0.660 0.572 0.635
TCMA | BEP
home_at 0.846 0.889 — 0.750 0.800 0.667 —  1.000 0.933 0.667 | 0.812 0.655 0.819
home_han 0.870 0.800 0.833 —  0.500 0.615 0.000 0.500 0.500 0.444 | 0.617 0.506 0.562
home_md 0.714 1.000 1.000 0.750 1.000 0.750 —  0.000 0.889 0.800 | 0.823 0.690 0.767
home_pui 0.809 0.647 0.889 0.686 0.800 0.667 0.000 0.600 0.750 0.714 | 0.676 0.656 0.656
home_rz 0.926 0.800 0.667 0.571 0.286 0.160 —  0.857 0.600 0.727 | 0.650 0.559 0.622
TCCMA | BAP
home_at 0.846 0941 — 0.667 0.800 0.632 — 0.909 0.823 0.727 | 0.787 0.634 0.793
home_han 0.880 0.800 0.667 —  0.571 0.461 0.000 0.400 0.533 0.444 | 0.587 0.476 0.529
home_md 0.769 0.889 0.727 0.571 0.5710.333 — 0.000 1.000 0.000 | 0.667 0.486 0.540
home_pui 0.820 0.687 0.889 0.621 0.667 0.370 0.154 0.800 0.778 0.727 | 0.649 0.651 0.651
home_rz  0.898 0.571 0.737 0.636 0.364 0.000 — 0.769 0.615 0.444 | 0.611 0.503 0.559
TCCMA | BEP
home_at 0.800 0.889 — 0.783 0.800 0.556 — 1.000 0.933 0.909 | 0.816 0.667 0.834
home_han 0.762 0.667 0.833 —  0.400 0.364 0.000 0.250 0.471 0.500 | 0.535 0.425 0.472
home_md 0.833 1.000 0.800 0.889 0.667 0.571 —  0.667 0.889 0.000 | 0.761 0.632 0.702
home_pui 0.800 0.562 0.889 0.667 0.667 0.483 0.000 0.833 0.778 0.833 | 0.650 0.651 0.651
home_rz  0.902 0.571 0.778 0.667 0.333 0.160 —  0.857 0.615 0.444 | 0.636 0.533 0.592
TC
home_at 0.818 0.857 — 0.762 0.800 0.632 —  0.833 1.000 0.889 | 0.810 0.659 0.824
home_han 0.667 0.444 0.889 —  0.667 0.286 0.500 0.800 0.615 1.000 | 0.612 0.587 0.652
home_md 0.769 1.000 0.571 0.889 0.5710.889 — 0.667 0.727 1.000 | 0.747 0.708 0.787
home_pui 0.800 0.600 0.889 0.606 0.500 0.686 0.286 0.833 0.609 0.714 | 0.661 0.652 0.652
home_rz  0.931 0.621 0.500 0.560 0.1330.632 — 0.560 0.429 0.378 | 0.550 0.474 0.527

L TCMA is the method using the TCMA process, TCCM A is the method using the TCCMA process,
and TC is the modification of the method that performs topological counting of the presence of objects
recognized from individual images.

2 BAP is the hyperparameter setting that presented the best average result in all paths and BEP is the

best hyperparameter setting obtained for each path.

3 home_ pui stands for home_puigpunyen and — means that the category is not present in the path.

4 Macro Avg. F1-Score B is calculated using only the categories present in the path.

Source: Thesis author.
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with the 'BEP’ hyperparameter settings presented in Table[I2] where the results obtained with
the TCMA process were also slightly higher. This suggests that the TCMA process produces
consolidated visual features that are more representative and suitable for classifying multi-label
objects when optimal values of hyperparameters are used.

Finally, despite the good results, the objects classifier had problems recognizing some object
labels from the consolidated features vectors. This could have been caused by a challenge we
faced while creating the consolidation processes: how to handle the repeated presentation of
very similar images. Even with the visual habituation, both processes seem to be consolidating
similar visual features from different images that end up suppressing representative charac-
teristics previously consolidated. The introduction of multiple consolidation vectors per node
(in the TCCMA process) was an attempt to build consolidations that are more representative
and less susceptible to this problem, but, despite being promising, the results with the current

version of the TCCMA process were not as good as expected.

Table 13 — Multi-label objects classification. Results obtained with the hyperparameter settings that presented
the best object classification results in each path.

Macro Avg. F1-Score B home_at home_han home_md home_pui home_rz

TCMA? 0.901 0.647 0.767 0.713 0.661
TCMA_ vy 0.896 0.575 0.637 0.697 0.638
TCMA_yp 0.802 0.621 0.600 0.670 0.581
TCMA_yyuvp 0.803 0.555 0.544 0.631 0.579
TCCMA 0.884 0.654 0.736 0.699 0.636
TCCMA_ vy 0.845 0.575 0.757 0.685 0.610
TCCMA_vp 0.849 0.625 0.736 0.683 0.625
TCCMA_vuvp 0.831 0.575 0.757 0.652 0.610

1 Macro Avg. F1-Score B is calculated using only the categories present in the path.

2TCMA is the method using the TCMA process and TCCMA is the method
using the TCCMA process. TCM A_vy p is the TCMA without Visual Persistence,
TCMA_yv g is the TCMA without Visual Habituation, and TCMA_yvgyvp is
TCMA without Visual Habituation and Visual Persistence. The same nomenclature
applies to the TCCMA process.

Source: Thesis author.
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Figure 25 — The graphs show the Macro Avg. Fl-score results obtained with the TC method for each path
varying the objects count threshold between 1 and 1000. The best thresholds found are shown as
black diamonds.
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55 SUMMARY

This chapter presented an adaptation for real-time operation of the topological seman-
tic mapping method proposed in Chapter [4] The adapted version was built as an integrated
solution that aggregates a 3D metric SLAM method, a pre-trained CNN designed for resource-
constrained environments, and two shallow MLP classifiers trained on large-scale datasets using
the pre-trained CNN for transfer learning. In addition to the TCMA process, the first consol-
idation process proposed, a new visual features consolidation process denoted as Topological
Consolidation of Features by the Combination of Multiple Moving Averages (TCCMA) was
introduced.

The experiments, performed with data from 5 different home environments and in two
scenarios of hyperparameter configuration, evaluated the method with the consolidated visual
features produced with both TCMA and TCCMA processes, separately. The results suggested
that the consolidated representations generated by both processes are suitable for accurate
recognition of different semantic properties using classifiers trained on large-scale datasets of
the literature (i.e, trained on data from other environments) and can be reused to adapt previ-
ously created maps for future applications through the recognition of new semantic properties.

The results also suggest that, despite not being as good as those obtained with the best
hyperparameter values found for each environment, the consolidated representations produced
with more general hyperparameter values are still rich and allow the recognition of different
semantic properties.

Although the results of this research are very promising and bring significant progress to
the generation of adaptive semantic maps by the use of consolidated representations of visual
features, such innovation also uncovers additional challenges to be solved. The consolidation
processes introduced in this thesis are just the beginning and numerous improvements can be
considered. The next chapter describes some limitations identified in the developed solutions,

proposes some directions for future work, and lists the contributions of this research.
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6 CONCLUSIONS

This research investigated the creation of semantic maps that can automatically adapt
their semantics even after the mapping process through the use of consolidated visual rep-
resentations of spatial regions. First, a topological semantic mapping method that creates
consolidated representations of the deep visual features extracted from RGB images captured
around each topological node was proposed. In the method, the deep visual features are ex-
tracted using a pre-trained CNN and consolidated through the TCMA process, a deep visual
features consolidation process that uses exponential moving averages and is empowered with
visual persistence and visual habituation capabilities.

Then, a version for real-time operation of the topological semantic mapping method was
introduced. The version was adapted into an integrated solution that aggregated a feature-
based 3D metric SLAM method, a pre-trained CNN designed for resource-constrained systems,
and two shallow MLP classifiers trained on large-scale datasets using the pre-trained CNN for
transfer learning. In addition, the TCCMA process was introduced, a derivation of the TCMA
process that combines multiple exponential moving averages.

The very promising results obtained with the proposed solutions presented significant ad-
vances in the objectives of this thesis. Experiments performed using an indoor real-world dataset
suggested that the consolidated representations produced are rich visual representations of the
topological regions they cover, fairly preserve the visual features of the consolidated images
and do not degrade over time. The results also suggested that the consolidated representations
are suitable for recognizing different semantic properties and for indicating the topological lo-
cation of images. Furthermore, experiments performed in more practical scenarios indicated
that the consolidated representations are suitable for recognizing semantic properties using
classifiers trained on large-scale datasets from the literature and can be reused to adapt (i.e.,

modify or enhance) the semantics of previously created maps for new applications.

6.1 CONTRIBUTIONS

Given the above, the main contributions of this thesis are:

= A topological semantic mapping method that creates consolidated representations of
deep visual features extracted from RGB images captured around each topological node
and recognizes semantic information for the maps from the consolidated visual repre-

sentations;

= A version of the method for real-time operation adapted into an integrated ROS-based

solution that can be easily incorporated into real robots;



83

= A promising path for generating semantic maps that can automatically adapt their

semantics through machine learning methods even after the mapping process;

» Strong evidence that exponential moving averages can be used to effectively consolidate

deep visual features of spatial regions.

Other contributions are:

= Two processes of topological consolidation of deep visual features (the TCMA and TC-
CMA) that use exponential moving averages as a basis and are endowed with mechanisms

of visual persistence and visual habituation;

» Different experiments that evaluated variations of the methods in indoor environments
and aimed to demonstrate the richness, stability and applicability of the consolidated

visual features;

= Demonstration that the consolidated visual features are suitable for accurate recognition
of different semantic properties and for other applications, such as topological location

of images;

» The demonstration that the consolidated visual features can be reused to adapt the
semantics of previously created maps to new requirements using classifiers trained on

large-scale datasets found in the literature;

» The semantic annotation of the RGB images from 5 paths of the SUN3D dataset. The

annotations included 6 place categories and 10 object categories.

During the development of this research, the method, experiments and results described
in Chapter |4| were published in the IEEE Robotics and Automation Letters (2022). Below is
the full citation of the paper:

= SOUSA, Y. C. N.; BASSANI, H. F. Topological semantic mapping by consolidation of
deep visual features. IEEE Robotics and Automation Letters, v. 7, n. 2, p. 4110-4117,
2022.

6.2 LIMITATIONS

Despite the relevant progress obtained in this research, there are many limitations in the

proposed solutions and evaluations performed. Some of them are discussed below:

= The CNNSs used in the proposed methods were chosen because they are classic models
in the literature. Their use was very important to demonstrate that the consolidated
representations built are rich even with the original deep features extracted with CNNs

that are not the most modern in the literature. However, the use of more recent CNN
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models could provide richer visual features to the consolidation processes and improve

the results obtained;

The consolidation of deep visual features was evaluated only with the output of the
adaptive average pooling layer of each CNN model used. The use of the output of other
layers in the latent space still needs to be evaluated and could possibly lead to better

results:

There are scenarios in which the consolidation processes appear to be consolidating
similar visual features from different images and end up suppressing representative char-
acteristics already consolidated. This might be related to zigzag or circular visual move-
ments, which would provide the repeated presentations of very similar images, or to the
continuous consolidation of similar visual features from different angles and positions in
the rooms. The visual habituation mechanism certainly needs improvements to better
handle more advanced scenarios like these, however, further investigation is needed to

better understand the causes of this behavior;

The spatial area covered by each topological node has a spherical and fixed shape,
which may not be suitable for different types of environment. Other coverage formats
need to be evaluated, which may even be adaptive to the type of region considering
other input data not used in this research so far, such as depth measures associated

with the estimated metric position;

Despite the promising results obtained with more general hyperparameter values (in the
experiments of Chapter , the results obtained with the best hyperparameter values
for each evaluated path were mostly superior. This indicates that the most appropriate
hyperparameter values of the consolidation processes for different types of environments
need to be studied further. Furthermore, this suggests that the proposed consolidation
processes could be improved to better adapt to different environments. One possibility

is to study a features consolidation rate adaptive to input patterns;

Nodes positioned close to the borders between rooms end up consolidating specific visual
characteristics of different rooms. This is probably the main cause that leads these nodes
to be more frequently misclassified than the others in the experiments. This is a problem
directly related to the use of visual information and the creation of solutions to mitigate

it requires further study;

The experiments performed did not evaluate the proposed solutions in dynamic envi-
ronments. The use of exponential moving averages should give some robustness to the
consolidation processes for this type of scenario since this type of average gives greater
weight to the most recent data. However, the challenges in dynamic scenarios are many
and a robust assessment would certainly provide evidence for improving the proposed

solutions;
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= The TCCMA process was evaluated only in the practical scenarios of experimentation.
The use of multiple vectors of exponential moving averages seems promising to build
consolidations that better represent different patterns in the input features, however,
the consolidation process needs more detailed evaluations so that its behavior is better

understood and improvements are proposed.

6.3 FUTURE WORK

The limitations described above lead to future steps that can be immediately explored to

improve the solutions introduced in this research. Some of them are:

» Perform experiments in challenging scenarios to further evaluate the representativeness

and stability of the consolidated visual representations over time;

» Evaluate the proposed solutions in other types of indoor environments, including static

and dynamic;

» Perform a deeper analysis of the impact of each hyperparameter of the proposed solutions

and indicate the most appropriate values for different types of indoor scenarios;

= Use more recent CNNs in the proposed methods and evaluate the consolidation of the
output representations of layers in the latent space other than the adaptive average

pooling layer;

» Extend the proposed consolidation processes to include a visual features consolidation
rate adaptive to input patterns and more advanced mechanisms of visual habituation

and visual persistence;

» Further study the use of multiple vectors of exponential moving averages in the consol-

idation processes;

» Study a technique that allows the adaptation of the spatial areas covered by each topo-
logical node to the shape of the covered region (e.g., up to the limit of a wall present

in the covered region).

However, as this research investigated an innovative procedure for generating semantic
maps, the solutions proposed and applications explored so far are just the starting point and

many other possibilities for future directions can be considered from them, such as:

» Evaluate the use of the consolidated visual representations for the recognition of other
less usual semantic information in semantic maps for indoor environments, such as

activities normally performed in each room;
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Evaluate the use of the consolidated visual representations in applications that require
the use of path planning. New semantic information integrated into the maps could

allow immediate use and more efficient path planning;

Expand the proposed solutions for creating multi-hierarchical maps with multiple levels
of consolidated visual representations;

Adapt the proposed solutions to outdoor environments. In urban scenarios, for example,
the consolidated representations could be used to recognize different semantic informa-
tion such as the type of area (e.g., commercial or residential) and if there is adequate
artificial lighting;

Investigate the literature to find new references that could improve the quality of the
consolidated visual representations. One possibility is the literature on visual feature

aggregation, present in different applications.
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