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ABSTRACT

The systems of second order differential equations (SODE) have played a very important
role in the study of physics and biological models, in particular, the Volterra-Hamilton system
is one of the most useful SODE in ecological problems. We develop the required background of
Finsler geometry and classical equation of ecological models to study some aspects of the tra-
jectories of a Volterra-Hamilton system and other subject called semispray. Some geometrical
invariants, called KCC-invariants, there are five, are computed to study aspects of the solution
trajectories of a semispray. We use Volterra-Hamilton systems theory and their associated cost
functional to study the population dynamics and productive processes of coral reefs together
with their symbiont algae in recovery from bleaching and show that the cost of production
remains the same after the process. The KCC-theory geometrical invariants are determined for
the model proposed to describe the renewed symbiotic interaction between coral and algae.

Keywords: Finsler spaces; KCC-theory; Volterra-Hamilton; production stability, coral reef.



RESUMO

As equações diferenciais de segunda ordem (SODE) têm desempenhado um importan-
tissímo papel do estudo de modelos físicos e biológicos, em particular, o sistema de Volterra-
Hamilton é um dos SODE mais usados em problemas ecológicos. Desenvolvemos os assuntos
necessários de geometria Finsler e quações clássicas de modelos ecológicos afim de esturdar-
mos alguns aspectos das trajetórias que são soluções de um sistema de Volterra-Hamilton e
outro objeto chamado de semispray. Alguns invariantes geométricos, chamados de invariantes
KCC, são cinco, são calculados para estudar aspectos das trajetótias soluções de um semispray.
Usamos a teoria dos sistemas de Volterra-Hamilton e seus funcionais de custo para estudar a
dinamica populacional e o processo de produção de um recife de cora, junto com suas algas
simbióticas, em recuperação de branqueamento, mostrar que o custo de produção permanece
o mesmo após o processo. A teoria KCC com seus invariantes geométricos são determinantes
para o modelo proposto afim de descrever a interação simbiótica renovada entre as algas e os
corais.

Palavras-chaves: espaços de Finsler; teoria KCC; Volterra-Hamilton; estabilidade de pro-
dução; recife de corais.
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1 INTRODUCTION

There is no doubt that increasing seawater temperature leads to coral bleaching (MAR-

SHALL, 2006). This process occurs when corals are stressed by changes in environmental
conditions such as temperature, light, or nutrients, leading to the expelling of the symbiotic
algae which lives in the coral’s tissues, causing it to turn white. So global warming causes
coral bleaching as increasing local seawater temperature stresses symbiotic algae (commonly
called zooxanthellae) in hermatypic coral (reef-building) (GLYNN, 1991) which leads to a break-
down in the symbiotic relationship between the coral animal and its zooxanthellae. This kind
of seaweed has been severely affected by global warming around the world (BAKER, 2003;
BAKER, 1997). It is important to note that an individual coral is compound by thousand or
even million of polyps which are animals of a few millimeters thick. The symbiotic algae living
within the polyp makes energy from sunlight; they share that energy with polyp in exchange
for a comfortable environment and their interaction produce CaCO3 for the reef building. If
there are no symbionts, the polyp run out of energy and dies within a few weeks or months,
causing the coral to appear white or ”bleached” (SAMMARCO; STRYCHAR, 2013), unless they
take more symbionts among those algae that naturally floating in the water around the coral
barrier. Some coral reefs have been observed to recover from bleaching in appropriate situations
(T.R.MCCLANAHAN, 2000; EDMUNDS; CARPENTER, 2001). In order to model this recovering we
suppose that before bleaching each polyp contains symbiotic algae living inside in a stable
symbiotic relationship, and that there exist different kinds of algae outside the polyp, which
benefit from the coral but do not influence it (commensal) some of which are possibly better
adapted to higher seawater temperatures. The recent paper (SCHARFENSTEIN et al., 2022)
shows that most coral species is supposed to acquire new symbionts from the environment to
have an adaptation to increases occurs following bleaching.

Techniques of Finsler geometry has been used to solve many problems of dynamical
system and ecology (ANTONELLI; INGARDEN; MATSUMOTO, 1993; ANTONELLI P. L.; RUTZ,
2003; BOEHMER; HARKO; SABAU, 2012). So, our first approach in this work is to describes
the population and production dynamics between a specie of coral #1 and a specie of algae
#2 living in a coral reef before the bleaching occurs and after the bleaching recovery it will
be supposed to happens. The main results used to treat the models involved in this work
will be obtained from the KCC-theory (ANTONELLI, 2003a; ANTONELLI; BUCATARU, 2001a).
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The principal model equations used here is the famous Volterra-Hamilton (VH) equations. We
show that a system of equation (VH) has a semispray form.

The production given by a simple symbiotic relation is a non optimal production in the
sense of Euler-Lagrange, so, we consider a Finsler functional that generates geodesics which
describes an optimal production relation and its trajectories are stable in Jacobi’s sense. For a
given Finsler functional 𝐹 = 𝐹 (𝑥, 𝑑𝑥), we can consider it to be a cost functional of production
and treat about it in dimension 2. We provide a curvature in dimension 2, called Gaussian
curvature, associated to the geodesics of 𝐹 , which determines the stability of these geodesic
equations. Thus, to dribble some "problems" caused by the simple form of the first approach,
we will consider the system obtained by the Euler-Lagrange equations of 𝐹 to model our
problem.
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2 BACKGROUND OF FINSLER GEOMETRY

At this time, we need to present convenient concepts and results for our aim. So, every
definition and proposition can be found in at least one of the references(ANTONELLI; INGARDEN;

MATSUMOTO, 1993; MIRON, 2015; ANTONELLI, 2003a). In almost all cases the author has made
an appropriated modification on the concepts and results to make the reading easier. We begin
with a general and necessary concept:

Suppose 𝑀 is a Hausdorff and second-countable topological space. We say that 𝑀 is a
smooth manifold of dimension n if:

(1) Exist a smooth structure 𝒜 = {(𝑈𝛼, 𝜑𝛼)} such that 𝜑𝛼 : 𝑈𝛼 ⊆ 𝑀 → R𝑛 is an
homeomorphism and 𝑈𝛼 is open in 𝑀 ;

(2) 𝑀 =
⋃︁
𝛼

𝑈𝛼, for all (𝑈𝛼, 𝜑𝛼) ∈ 𝒜;

(3) For all 𝛼, 𝛽, with 𝜑𝛼(𝑈𝛼) ∩ 𝜑𝛽(𝑈𝛽) = 𝑊 ̸= ∅ the sets 𝜑𝛼(𝑈𝛼) and 𝜑𝛽(𝑈𝛽) are open in
R𝑛 and 𝜑−1

𝛼 ∘ 𝜑𝛽 are smooth maps.

We require 𝒜 = {(𝑈𝛼, 𝜑𝛼)} to be maximal with respect to conditions (1) and (2) above.
We call this maximal smooth structure by maximal smooth atlas or just smooth atlas. The
pair (𝑈𝛼, 𝜑𝛼) is called chart of the atlas 𝒜.

Example 2.1. The most simple and important examples of a smooth manifold are the
Euclidean Spaces. For each nonnegative integer 𝑛, the Euclidean Spaces is a smooth n-manifold
determined by the single chart (R𝑛, IdR𝑛). We call the atlas formed by this single chart the
standart atlas on R𝑛.

Let 𝑀 be an 𝑛−dimensional smooth manifold and 𝒜 = {(𝑈𝛼, 𝜑𝛼)} a smooth atlas in 𝑀 .
For each local chart (𝑈, 𝜑) in 𝑝 ∈ 𝑈 ⊂ 𝑀 we denote by (𝑥𝑖) as local coordinates induced by
𝜑 such that 𝜑(𝑝) = (𝑥𝑖(𝑝)) ∈ R𝑛.

If (𝑈𝛼, 𝜑𝛼) and (𝑈𝛽, 𝜑𝛽) are any two charts in 𝑝 ∈ 𝑀 with local coordinates (𝑥𝑖) and (̃︀𝑥𝑖),
respectively, the transition maps 𝜑−1

𝛼 ∘ 𝜑𝛽 mentioned in the last item of the above definition
of an 𝑛-dimentional is an isomorphism, that is det

(︃
𝜕̃︀𝑥𝑖
𝜕𝑥𝑗

)︃
̸= 0.

Let 𝑀 be an 𝑛-dimensional smooth manifold and 𝑝 ∈ 𝑀 a fixed point. The literature
contains some different definitions of tangent space, for example (KUNHEL, 2002), although it
is usual to think about the tangent space at point 𝑝 ∈ 𝑀 as an 𝑛-dimensional vector space
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whose elements are "directional vectors". We denote the tangent space to 𝑀 at 𝑝 by 𝑇𝑝𝑀 .
The disjoint union of all tangent spaces at all points of 𝑀 is called the tangent bundlee of
𝑀 , which is still a manifold, and denoted by 𝑇𝑀 =

∐︁
𝑝∈𝑀

𝑇𝑝𝑀 .

Consider the natural projection 𝜋 : 𝑇𝑀 → 𝑀 defined in a natural way: if 𝑣 ∈ 𝑇𝑝𝑀

then 𝜋(𝑝, 𝑣) = 𝑝. It is obviously that 𝜋−1(𝑝) = 𝑇𝑝𝑀, ∀𝑝 ∈ 𝑀 . To be more rigorous the
tangent bundle is the triple (𝑇𝑀, 𝜋,𝑀). For a local chat (𝑈, 𝜑 = (𝑥𝑖)) on 𝑀 , we denote by
(𝜋−1(𝑈),Φ = (𝑥𝑖, 𝑦𝑖)) the induced local chat on 𝑇𝑀 . Sometimes is necessary to consider the
slit tangent bundle ̃︂𝑇𝑀 ≡

∐︁
𝑝∈𝑀

{𝑇𝑝𝑀 ∖𝑂𝑝} = 𝑇𝑀 ∖O, where each 𝑂𝑝 is null vector of 𝑇𝑝𝑀

and O : 𝑀 → 𝑇𝑀 is the null section.

Proposition 2.1. The tangent bundle 𝑇𝑀 is a 2𝑛−dimensional smooth manifold with the
natural smooth atlas 𝒜 =

{︁(︁
𝜋−1(𝑈𝛼), 𝜑𝛼

)︁}︁
where 𝜑𝛼(𝑝, 𝑣) = (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝), 𝑣1, . . . , 𝑣𝑛).

This proposition above will be useful in the definition of positively homogeneous functions.
Looking ahead we make the convenient substitution (𝑣𝑖) = (𝑦𝑖).

Definition 2.1. A vector field in 𝑀 is a continuous map 𝑋 : 𝑀 → 𝑇𝑀 with the property
that 𝜋 ∘𝑋 = Id𝑀 . One can look to 𝑋 as a section of the map 𝜋 : 𝑇𝑀 → 𝑀 .

We denote by 𝒳 (𝑀) the set of all vector field of 𝑀 and ℱ(𝑀) the set of all real smooth
functions defined in 𝑀 . These sets are both vector spaces over R.

According to (LEE, 2000) we define the Cotangent Space at 𝑝, denoted by 𝑇 *
𝑝𝑀 , to be

the dual space to 𝑇𝑝𝑀 :
𝑇 *
𝑝𝑀 = (𝑇𝑝𝑀)* .

Elements of 𝑇 *
𝑝𝑀 are costumary called tangent covectors at 𝑝, or just covectors at 𝑝. It

is costumary to call tangent vectors (𝑣 ∈ 𝑇𝑝𝑀) contravariant vectors and tangent convectors
as covariant vectors. Hence, 𝑇 *

𝑝𝑀 = {𝜔𝑝 : 𝑇𝑝𝑀 −→ R, 𝜔𝑝 is linear}. We consider the union

𝑇 *𝑀 =
⋃︁
𝑝∈𝑀

𝑇 *
𝑝𝑀

of cotangent spaces, which has a differentiable structure of 𝐶∞-class and dimension 2𝑛.
Since at point 𝑝 on a manifold 𝑀 we have defined a tangent space 𝑇𝑝𝑀 one can use these

tangent space to define tensors. Then, as for every 𝑝 there is a tensor, we can let 𝑝 varies on
the manifold to define a tensor field.

An 1-form on the manifold 𝑀 can be defined as a smooth map 𝜔 : 𝑀 −→ 𝑇 *𝑀 such
that 𝜋* ∘ 𝜔 = Id𝑀 , where the canonical submersion 𝜋* : 𝑇 *𝑀 → 𝑀 is defined by 𝜋*(𝜔) = 𝑞
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if and only if 𝜔 ∈ 𝑇 *
𝑞𝑀 . The set of 1-forms on 𝑀 is denoted by Λ1(𝑀). One can also define

Λ1(𝑀) in terms of 𝒳 (𝑀) as Λ1(𝑀) = {𝜔 : 𝒳 (𝑀) −→ ℱ(𝑀), 𝜔 is ℱ(𝑀)-linear }. In the
same sense, q-forms are q-ℱ(𝑀)-linear ans skew-symmetric map:

𝜔 : 𝒳 (𝑀) × · · · × 𝒳 (𝑀)⏟  ⏞  
𝑞-times

−→ ℱ(𝑀).

The set of all q-forms is denoted by Λ𝑞(𝑀).

Definition 2.2. A tensor field of (r,s)-type is an ℱ(𝑀)-linear map

𝑇 : Λ1(𝑀) × · · · × Λ1(𝑀)⏟  ⏞  
𝑟-times

× 𝒳 (𝑀) × · · · × 𝒳 (𝑀)⏟  ⏞  
𝑠-times

−→ ℱ(𝑀).

This is a good moment to introduce an important convention that will be exhaustively
used throughout this work. Because of the big number of summations that would be used
in the following definitions, results and computations, makes necessary to use the Einstein
Summation Convention, that is, if the same index name (such as i in the expression Γ = 𝑥𝑖𝜉𝑖)
appears twice in any term, once as an upper index and once as a lower index (or vice versa),
that term is understood to be summed over all possible values of that index.

Consider the map ℎ𝑟 : 𝑇𝑀 → 𝑇𝑀 defined by ℎ𝑟(𝑥, 𝑦) = (𝑥, 𝑟𝑦). This map is called
dilatation of ratio 𝑟 and is very important to define one of the most important definitions and
theorems on this work:

Definition 2.3. Let 𝑓 ∈ ℱ( ̃︂𝑇𝑀) be continuous on the null section O : 𝑀 → 𝑇𝑀 . We say
that 𝑓 is positively homogeneous (or just p-homogeneous) in 𝑦𝑖 of degree 𝑘 ∈ Z if 𝑓∘ℎ𝑟 = 𝑟𝑘𝑓 ,
for all 𝑟 > 0.

Proposition 2.2. If 𝑓 is p-homogeneous of degree 𝑘 in 𝑦𝑖 then any partial derivative of 𝑓
with respect to 𝑦𝑗 is p-homogeneous of degree 𝑘 − 1.

Proof. Suppose 𝑓 p-homogeneous of degree 𝑘 in 𝑦𝑖. By definition 𝑓(𝑥, 𝑟𝑦) = 𝑟𝑘𝑓(𝑥, 𝑦). Taking
partial derivative with respect to 𝑦𝑗 in both side we have 𝑟 𝜕𝑓

𝜕𝑦𝑗
= 𝑟𝑘

𝜕𝑓

𝜕𝑦𝑗
. Since 𝑟 > 0 the

result follows.

Although this definition makes clear the understanding of p-homogeneous functions the
famous following Euler’s Theorem turns easier the verification to determine if 𝑓 is positively
homogeneous:
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Theorem 2.1 (Euler). If 𝑓 ∈ ℱ( ̃︂𝑇𝑀) be continuous on the null section O : 𝑀 → 𝑇𝑀 is
p-homogeneous of degree 𝑘 in 𝑦𝑖 if and only if 𝜕𝑓

𝜕𝑦𝑖
𝑦𝑖 = 𝑘𝑓(𝑥, 𝑦)

Proof. Let us take 𝑓 a p-homogeneous function of degree 𝑘 in 𝑦𝑖. By definition we have the
relation 𝑓(𝑥, 𝑟𝑦) = 𝑟𝑘𝑓(𝑥, 𝑦), for any positive real number 𝑟. Let 𝑔(𝑟) = 𝑓(𝑥, 𝑟𝑦). Then we
get 𝑓(𝑥, 𝑟𝑦) = 𝑔(𝑟) = 𝑟𝑘𝑓(𝑥, 𝑦). Such as, differentiating both sides with respect to 𝑟, the
chain rule give us:

𝜕𝑓

𝑑𝑢𝑖
𝑑𝑢𝑖

𝑑𝑟
= 𝑔′(𝑟) = 𝑘𝑟𝑘−1𝑓(𝑥, 𝑦),

where 𝑢𝑖 = 𝑟𝑦𝑖. Setting 𝑟 = 1, one can see that

𝜕𝑓

𝜕𝑦𝑖
𝑦𝑖 = 𝑘𝑓(𝑥, 𝑦).

Corolary 2.1. • Linearity: if 𝑓 and 𝑔 are p-homogeneous of degree 𝑘 then 𝑎𝑓 + 𝑏𝑔 is
p-homogeneous of degree 𝑘.

• if 𝑓 is p-homogeneous of degree 𝑘1 in 𝑦𝑖 and 𝑔 is p-homogeneous of degree 𝑘2 then 𝑓.𝑔
is p-homogeneous of degree (𝑘1 + 𝑘2) in 𝑦𝑖.

Definition 2.4. A vector field 𝑋 ∈ 𝒳 (𝑇𝑀) is said to be p-homogeneous of degree 𝑘 in 𝑦𝑖 if

𝑋 ∘ ℎ𝑟 = 𝑟𝑘−1ℎ𝑟 ∘𝑋.

Definition 2.5. A Finsler space is a pair F𝑛 = (𝑀,𝐹 (𝑥, 𝑦)) where 𝐹 : 𝑇𝑀 → R is a function
satisfying:
i) 𝐹 is a smooth function in ̃︂𝑇𝑀 and continuous on null section O : 𝑇𝑀 → 𝑀 ;
ii) 𝐹 is positive definite in ̃︂𝑇𝑀 ;
iii) 𝐹 is p-homogeneous of degree 1 in 𝑦𝑖, that is 𝐹 (𝑥, 𝑟𝑦) = 𝑟𝐹 (𝑥, 𝑦),∀𝑟 ∈ (0,+∞);
iv) The hessian matrix of 𝐹 2, whose entries are

𝑔𝑖𝑗(𝑥, 𝑦) = 1
2
𝜕2𝐹 2

𝜕𝑦𝑖𝜕𝑦𝑗
,

is positive definite in ̃︂𝑇𝑀 . We call 𝑔𝑖𝑗 the fundamental tensor.

Remark 2.1. If 𝐹 is a function satisfying the above definition, we call 𝐹 to be a Finslerian
Function, that is, if the pair (𝑀,𝐹 ) is a Finsler space we say that 𝐹 is a Finslerian function.

Definition 2.6. A Finsler space F𝑛 = (𝑀,𝐹 (𝑥, 𝑦)) is a Riemannian space if 𝑔𝑖𝑗(𝑥, 𝑦) is
independent of 𝑦.
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By assumption 𝐹 is p-homogeneous of degree 1 in 𝑦𝑖, then 𝐹 2 is p-homogeneous of degree
2 in 𝑦𝑖. According to Proposition (2.2) is easy to verify that 𝑔𝑖𝑗(𝑥, 𝑦) is p-homogeneous of
degre 0 in 𝑦𝑖. This implies that 𝜕𝑔𝑖𝑗

𝜕𝑦𝑟
𝑦𝑟 = 0 by definition. Since 𝐹 2 is p-homogeneous of degree

2, Theorem (2.1) guarants that 𝜕𝐹
2

𝜕𝑦𝑖
𝑦𝑖 = 2𝐹 2. Applying the same Theorem one more time

we get 𝐹 2(𝑥, 𝑦) = 1
2
𝜕2𝐹 2

𝜕𝑦𝑖𝜕𝑦𝑗
𝑦𝑖𝑦𝑗 = 𝑔𝑖𝑗(𝑥, 𝑦)𝑦𝑖𝑦𝑗. One important example is the Riemannian

metric 𝑔𝑖𝑗(𝑥) who depends only on the points of the manifold. So if (𝑀, 𝑔𝑖𝑗) is a Riemannian
manifold, the function 𝐹 (𝑥, 𝑦) =

√︁
𝑔𝑖𝑗(𝑥)𝑦𝑖𝑦𝑗 defines a Finsler space (𝑀,𝐹 ). This is the most

recurrent space used in applications because of the nature of problems. In our case we consider
2−dimensional spaces like that.

Remark 2.2. When 𝑀 is supposed to be a Finslerian manifold, that is, (𝑀,F) is a Finsler
space we call a tensor as in Definition (2.2) by a Finsler tensor.

The tensor of Cartan 𝒞𝑖𝑗𝑘 is a p-homogeneous function of degree -1 defined in terms of
derivatives of 𝐹 2 as:

𝒞𝑖𝑗𝑘 := 1
4

𝜕3𝐹 2

𝜕𝑦𝑖𝜕𝑦𝑗𝜕𝑦𝑘
.

Theorem 2.2. A Finsler space F𝑛 = (𝑀,𝐹 (𝑥, 𝑦)) is Riemannian if and only if 𝜕𝑔𝑖𝑗
𝜕𝑦𝑘

= 0.

Corolary 2.2. A Finsler space F𝑛 = (𝑀,𝐹 (𝑥, 𝑦)) is Riemannian if and only if the Cartan
tensor 𝒞𝑖𝑗𝑘 vanishes.

Proof. Since 𝑔𝑖𝑗(𝑥, 𝑦) = 1
2
𝜕2𝐹 2

𝜕𝑦𝑖𝜕𝑦𝑗
, one can see that 2𝒞𝑖𝑗𝑘 = 𝜕𝑔𝑖𝑗

𝜕𝑦𝑘
. Thus, by the above theorem

we can conclude the result.

Definition 2.7. A smooth parametrized curve in 𝑀 is a smooth map 𝛾 : [𝑎, 𝑏] → 𝑈 ⊂ 𝑀 .
We denote by ̃︀𝛾 : [𝑎, 𝑏] → 𝜋−1(𝑈) ⊂ ̃︂𝑇𝑀 the natural lift of 𝛾.

For each 𝑡 ∈ [𝑎, 𝑏], 𝛾(𝑡) = (𝑥𝑖(𝑡)) ∈ 𝑈 and ̃︀𝛾(𝑡) = ((𝑥𝑖(𝑡)), (𝑦𝑖(𝑡))) ∈ 𝜋1(𝑈), where
(𝑦𝑖(𝑡)) =

(︃
𝑑𝑥𝑖

𝑑𝑡

)︃
= 𝑑𝑥

𝑑𝑡
is the velocity vector. For our propose we will assume all curves to be

oriented with increasing parameter. Given a smooth parametrized curve 𝛾 the function 𝐹 (𝑥, 𝑦)

provides us a length notion as follow:

Definition 2.8. For a smooth parametrized curve 𝛾 : [𝑎, 𝑏] → 𝑈 ⊂ 𝑀 having the fixed
endpoints 𝛾(𝑎) and 𝛾(𝑏) we define its length as 𝐿(𝛾) =

∫︁ 𝑏

𝑎
𝐹

(︃
𝑥,
𝑑𝑥

𝑑𝑡

)︃
𝑑𝑡.
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The length 𝐿(𝛾) is well-defined since given different induced coordinates in 𝑇𝑀 we obtain
the same value for the integral.

Theorem 2.3 (Carathéodory). The integral 𝐿(𝛾) is independent of choice of parameter.

This is just an adaptation of Carathéodory Theorem (ANTONELLI; INGARDEN; MATSUMOTO,
1993). The original one requires 𝐹 (𝑥, 𝑦) to be p-homogeneous of degree 1 in 𝑦 and 𝛾 oriented.
These conditions are already satisfied from our theory. As a consequence of this result we will
be apt to investigate a canonical parameter with such peculiarities as follows.

Corolary 2.3. Given a smooth curve 𝛾 : [𝑎, 𝑏] → 𝑀 in a Finsler space F𝑛 = (𝑀,𝐹 (𝑥, 𝑦))

there is a canonical parameter 𝑠 such that 𝐹
(︃
𝑥(𝑠), 𝑑𝑥(𝑠)

𝑑𝑠

)︃
= 1.

Proof. Fix 𝑡0 ∈ [𝑎, 𝑏] and consider the so called arc length 𝑠(𝑡) =
∫︁ 𝑡

𝑡0
𝐹

(︃
𝑥(𝑢), 𝑑𝑥(𝑢)

𝑑𝑡

)︃
𝑑𝑢.

By the fundamental Theorem of calculus we know that 𝑠(𝑡) is a differentiable function and
𝑑𝑠

𝑑𝑡
= 𝐹

(︃
𝑥(𝑡), 𝑑𝑥(𝑡)

𝑑𝑡

)︃
> 0. Thus 𝑠(𝑡) is invertible by inverse Theorem function with inverse

𝑡 = 𝑡(𝑠). Note that by homogeneity we have 𝐹
(︃
𝑥(𝑡(𝑠)), 𝑑𝑥(𝑡(𝑠))

𝑑𝑠

)︃
= 𝐹

(︃
𝑥,
𝑑𝑥

𝑑𝑡
(𝑑𝑡/𝑑𝑠)

)︃
= 1.

So we obtain the result.

Definition 2.9. The curve 𝛾 = 𝛾0 is extremal of 𝐿(𝛾) if 𝛾 satisfy: for every smooth family
{𝛾𝜏} of curves 𝛾𝜏 : [𝑎, 𝑏] → 𝑀 such that 𝛾𝜏 (𝑎) = 𝛾𝜏 (𝑏) then 𝑑𝐿 [𝛾𝜏 ]

𝑑𝜏

⃒⃒⃒⃒
⃒
𝜏=0

= 0

The Theorem (2.3) allow us to suppose that all curves 𝛾𝜏 have their extremities fixed in
the above definition.

Theorem 2.4. The curve 𝛾 is an extremal for 𝐿(𝛾) if 𝛾 satisfy the Euler-Lagrange equation:

𝜕𝐹

𝜕𝑥
− 𝑑

𝑑𝑡

(︃
𝜕𝐹

𝜕𝑦

)︃
= 0, 𝑦 = 𝑑𝑥

𝑑𝑡
(2.1)

Proof. Let 𝜂(𝑡) := 𝜂(𝑥(𝑡)) be a contravariant vector field along 𝛾 such that 𝜂(𝑎) = 0 = 𝜂(𝑏).
In order to obtain 𝛾 as an extremal for the function 𝐿(𝛾) we define the 𝜀-family for 𝛾 by
𝑥𝑖𝜀(𝑡) = 𝑥𝑖(𝑡) + 𝜀 · 𝜂𝑖(𝑡) where 𝛾𝜀(𝑡) = (𝑥𝑖𝜀(𝑡)), 𝛾(𝑡) = (𝑥𝑖(𝑡)) and also |𝜀| is sufficiently small.

So consider the arc length of 𝛾𝜀:

𝐿 (𝛾𝜖) =
∫︁ 𝑏

𝑎
𝐹

(︃
𝑥(𝑡) + 𝜀𝜂(𝑡), 𝑑𝑥

𝑑𝑡
(𝑡) + 𝜖

𝑑𝜂

𝑑𝑡
(𝑡)
)︃
𝑑𝑡,

and suppose 𝑑𝐿 (𝛾𝜀)
𝑑𝜀

⃒⃒⃒⃒
⃒
𝜀=0

= 0.
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Differentiating under the integral sign and since 𝐹 is limited along the the lift 𝜎𝜀 we obtain:

𝑑𝐿 (𝛾𝜀)
𝑑𝜀

⃒⃒⃒⃒
⃒
𝜀=0

=
∫︁ 𝑏

𝑎

𝑑

𝑑𝜀
[𝐹 (𝑥𝜀(𝑡), 𝑦𝜀(𝑡))]

⃒⃒⃒⃒
⃒
𝜀=0

𝑑𝑡

=
∫︁ 𝑏

𝑎

(︃
𝜕𝐹

𝜕𝑥𝜀
𝜂 + 𝜕𝐹

𝜕𝑦𝜀
𝜂̇

)︃
𝑑𝑡

where 𝑦𝜀 = 𝑑𝑥𝜀
𝑑𝑡

and 𝜂̇ = 𝑑𝜂

𝑑𝑡
.

Note that∫︁ 𝑏

𝑎

(︃
𝜕𝐹

𝜕𝑦𝜀
𝜂̇

)︃
𝑑𝑡 = 𝜕𝐹

𝜕𝑦𝜀
𝜂

⃒⃒⃒⃒
⃒
𝑏

𝑎

−
∫︁ 𝑏

𝑎
𝜂 · 𝑑

𝑑𝑡

(︃
𝜕𝐹

𝜕𝑦𝜀

)︃
𝑑𝑡 = −

∫︁ 𝑏

𝑎
𝜂 · 𝑑

𝑑𝑡

(︃
𝜕𝐹

𝜕𝑦𝜀

)︃
𝑑𝑡

because of integration-by-parts and the condition 𝜂(𝑎) = 0 = 𝜂(𝑏). Now, evaluating the
expression 𝑑𝐿 (𝛾𝜀)

𝑑𝜀

⌋︃
𝜀=0

= 0 at 𝜀 = 0 we have:

∫︁ 𝑏

𝑎

[︃
𝜕𝐹

𝜕𝑥
− 𝑑

𝑑𝑡

(︃
𝜕𝐹

𝜕𝑦

)︃]︃
𝜂(𝑡)𝑑𝑡 = 0

and the Euler-Lagrange equation is a consequence of the arbitrariness of 𝜂(𝑡).

For our purpose it is convenient consider the coordinate form of Euler-Lagrange equation

𝜕𝐹

𝜕𝑥𝑖
− 𝑑

𝑑𝑡

(︃
𝜕𝐹

𝜕𝑦𝑖

)︃
= 0, 𝑦𝑖 = 𝑑𝑥𝑖

𝑑𝑡
. (2.2)

Example 2.2. Let 𝐹 (𝑥, 𝑦, 𝑡) = 1
2𝑒
𝜆𝑡𝑦2, 𝑦 = 𝑑𝑥

𝑑𝑡
. Let us compute the derivatives of 𝐹 in the

Euler Lagrange equations. Easily we can see that 𝜕𝐹
𝜕𝑥

= 0 while 𝜕𝐹

𝜕𝑦
= 𝑒𝜆𝑡𝑦. So, applying

Euler Lagrange equation we get:

0 = 𝜕𝐹

𝜕𝑥
− 𝑑

𝑑𝑡

(︃
𝜕𝐹

𝜕𝑦

)︃
= 0 − 𝑑

𝑑𝑡
(𝑒𝜆𝑡𝑦)

= −𝜆𝑒𝜆𝑡𝑦 − 𝑒𝜆𝑡
𝑑𝑦

𝑑𝑡

= −𝑒𝜆𝑡
(︃
𝜆𝑦 + 𝑑𝑦

𝑑𝑡

)︃
.

The Euler Lagrage equation is therefore

𝑑2𝑥

𝑑𝑡2
+ 𝜆

𝑑𝑥

𝑑𝑡
= 0.

The solution of this ODE known as Gompertz curve has a biological interpretation that will
be teased in the next chapters.

Definition 2.10. A curve 𝛾 : 𝑡 ∈ [𝑎, 𝑏] ↦→ 𝛾(𝑡) = (𝑥𝑖(𝑡)) is called a geodesic if it is solution
of Euler-Lagrange equation.
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To be a little more formal than the previous example and make clear the above definition
we present another example:

Example 2.3. Let 𝛼 > 0. Consider the function 𝐹 (𝑥, 𝑦, 𝑡) = 1
2 · 𝑒2𝛼𝑥−𝜆𝑡 · 𝑦2, 𝑦 = 𝑑𝑥

𝑑𝑡
.

According to Theorem (2.1) it is easy to see that 𝐹 is p-homogeneous of degree 2 in 𝑦 and
satisfies the other conditions to (𝑀,𝐹 (𝑥, 𝑦)) be a Finsler space. Clearly, 𝜕𝐹

𝜕𝑥
= 𝛼𝑒2𝛼𝑥−𝜆𝑡 · 𝑦2

and 𝜕𝐹

𝜕𝑦
= 𝑒2𝛼𝑥−𝜆𝑡 · 𝑦. The Euler-Lagrange equation becomes:

0 = 𝜕𝐹

𝜕𝑥
− 𝑑

𝑑𝑡

(︃
𝜕𝐹

𝜕𝑦

)︃

= 𝛼𝑒2𝛼𝑥−𝜆𝑡 · 𝑦2 − 𝑑

𝑑𝑡

(︁
𝑒2𝛼𝑥−𝜆𝑡 · 𝑦

)︁
= 𝛼𝑒2𝛼𝑥−𝜆𝑡𝑦2 −

[︃
𝜕

𝜕𝑥

(︁
𝑒2𝛼𝑥−𝜆𝑡𝑦

)︁]︃ 𝑑𝑥
𝑑𝑡

−
[︃
𝜕

𝜕𝑦

(︁
𝑒2𝛼𝑥−𝜆𝑡𝑦

)︁]︃ 𝑑𝑦
𝑑𝑡

−
[︃
𝜕

𝜕𝑡

(︁
𝑒2𝛼𝑥−𝜆𝑡𝑦

)︁]︃

= 𝛼𝑒2𝛼𝑥−𝜆𝑡𝑦2 −
[︁
2𝛼𝑒2𝛼𝑥−𝜆𝑡𝑦

]︁ 𝑑𝑥
𝑑𝑡

−
[︁
𝑒2𝛼𝑥−𝜆𝑡

]︁ 𝑑𝑦
𝑑𝑡

+ 𝜆𝑒2𝛼𝑥−𝜆𝑡𝑦

= 𝑒2𝛼𝑥−𝜆𝑡(𝛼𝑦2 − 2𝛼𝑦2 − 𝑑𝑦

𝑑𝑡
+ 𝜆𝑦).

The Euler-Lagrange equation is therefore the second order differential equation:

𝑑2𝑥

𝑑𝑡2
+ 𝛼

(︃
𝑑𝑥

𝑑𝑡

)︃2

− 𝜆
𝑑𝑥

𝑑𝑡
= 0.

The solutions of the equations obtained in the last two examples plays a very important
role in some mathematics models, for example in biological problems as we will see throughout
this text. As these curves are solution of Euler-Lagrange equation they are the geodesics of its
respective Finsler space; it is not coincidence they have the form of a second order differential
equation, the next proposition describe it very well.

Proposition 2.3. The geodesisc of a Finsler space F𝑛 = (𝑀,𝐹 (𝑥, 𝑦)) are solution of

𝑑2𝑥𝑖

𝑑𝑠2 + 𝛾𝑖𝑗𝑘

(︃
𝑥,
𝑑𝑥

𝑑𝑠

)︃
𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
= 0,

where 𝛾𝑖𝑗𝑘 are the Christoffel symbols of the fundamental tensor 𝑔𝑖𝑗:

𝛾𝑖𝑗𝑘 := 1
2𝑔

𝑖𝑟

(︃
𝜕𝑔𝑟𝑘
𝜕𝑥𝑗

+ 𝜕𝑔𝑗𝑟
𝜕𝑥𝑘

− 𝜕𝑔𝑗𝑘
𝜕𝑥𝑟′

)︃
.

Proof. Remarking that 𝐹 2 = 𝑔𝑖𝑗𝑦
𝑖𝑦𝑗, one can compute the following derivatives by the chain

rule.
𝜕𝐹

𝜕𝑥𝑖
= 1

2𝐹
𝜕

𝜕𝑥𝑖
(𝑔𝑖𝑗(𝑥, 𝑦)𝑦𝑖𝑦𝑗) = 1

2𝐹
𝜕𝐹 2

𝜕𝑥𝑖
,
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𝜕𝐹

𝜕𝑦𝑖
= 1

2𝐹
𝜕

𝜕𝑦𝑖
(𝑔𝑖𝑗(𝑥, 𝑦)𝑦𝑖𝑦𝑗) = 1

2𝐹
𝜕𝐹 2

𝜕𝑦𝑖
.

Suppose that 𝛾(𝑡) = (𝑥𝑖(𝑡)) satisfies the Euler-Lagrange equations (2.2). So, for this curve
we have:

𝑑

𝑑𝑡

(︃
𝜕𝐹 2

𝜕𝑦𝑖

)︃
− 𝜕𝐹 2

𝜕𝑥𝑖
= 𝑑

𝑑𝑡

(︃
2𝐹 𝜕𝐹

𝜕𝑦𝑖

)︃
− 2𝐹 𝜕𝐹

𝜕𝑥𝑖

= 2𝑑𝐹
𝑑𝑡

𝜕𝐹

𝜕𝑦𝑖
+ 2𝐹 𝑑

𝑑𝑡

(︃
𝜕𝐹

𝜕𝑦𝑖

)︃
− 2𝐹 𝜕𝐹

𝜕𝑥𝑖

= 2𝑑𝐹
𝑑𝑡

𝜕𝐹

𝜕𝑦𝑖
+ 2𝐹

(︃
𝑑

𝑑𝑡

(︃
𝜕𝐹

𝜕𝑦𝑖

)︃
− 𝜕𝐹

𝜕𝑥𝑖

)︃

= 2𝑑𝐹
𝑑𝑡

𝜕𝐹

𝜕𝑦𝑖
.

Therefore we obtain the equation:

𝑑

𝑑𝑡

(︃
𝜕𝐹 2

𝜕𝑦𝑖

)︃
− 𝜕𝐹 2

𝜕𝑥𝑖
= 2𝑑𝐹

𝑑𝑡

𝜕𝐹

𝜕𝑦𝑖
, 𝑦𝑖 = 𝑑𝑥𝑖

𝑑𝑡
.

Since corolary (2.3) ensures that the canonical parametrization gives constant Finslerian
speed, the above equation is equivalent to:

𝑑

𝑑𝑠

(︃
𝜕𝐹 2

𝜕𝑦𝑖

)︃
− 𝜕𝐹 2

𝜕𝑥𝑖
= 0, (2.3)

with 𝑥𝑖 = 𝑥𝑖(𝑠) and 𝑦𝑖 = 𝑑𝑥𝑖

𝑑𝑠
. For now, a convenient change in the indices of 𝑔𝑖𝑗 when

necessary will leads us to obtain what is expected. All below here in this proof is considering
𝑥 and 𝑦 as functions of 𝑠. By the chain rule we have:

𝑑

𝑑𝑠

(︃
𝜕𝐹 2

𝜕𝑦𝑟

)︃
= 𝜕𝐹 2

𝜕𝑦𝑟𝜕𝑥𝑘
𝑦𝑘 + 𝜕𝐹 2

𝜕𝑦𝑟𝜕𝑦𝑖
𝑑2𝑥𝑖

𝑑𝑠2

= 𝜕𝐹 2

𝜕𝑦𝑟𝜕𝑥𝑘
𝑦𝑘 + 2𝑔𝑖𝑟

𝑑2𝑥𝑟

𝑑𝑠2 ,

where 𝑔𝑖𝑗 is the fundamental tensor given by the metric, which has 𝑔𝑖𝑗 as its inverse.
The equations (2.3) can be rewrite as follow:

0 = 𝑑

𝑑𝑠

(︃
𝜕𝐹 2

𝜕𝑦𝑟

)︃
− 𝜕𝐹 2

𝜕𝑥𝑟

= 𝜕𝐹 2

𝜕𝑦𝑟𝜕𝑥𝑘
𝑦𝑘 + 2𝑔𝑖𝑟

𝑑2𝑥𝑖

𝑑𝑠2 − 𝜕𝐹 2

𝜕𝑥𝑟

= 2𝑔𝑖𝑟
{︃

1
2𝑔

𝑖𝑟 𝜕𝐹 2

𝜕𝑦𝑟𝜕𝑥𝑘
𝑦𝑘 − 1

2𝑔
𝑖𝑟 𝜕𝐹

2

𝜕𝑥𝑟
+ 𝑑2𝑥𝑗

𝑑𝑠2

}︃
,

which implies:
𝑑2𝑥𝑖

𝑑𝑠2 + 1
2𝑔

𝑖𝑟

(︃
𝜕𝐹 2

𝜕𝑦𝑟𝜕𝑥𝑘
𝑦𝑘 − 𝜕𝐹 2

𝜕𝑥𝑟

)︃
= 0.
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There is one more step to conclude the proof. Let us do it. Note that

𝜕𝐹 2

𝜕𝑦𝑟𝜕𝑥𝑘
𝑦𝑘 = 𝜕

𝜕𝑥𝑘

(︃
𝜕𝑔𝑖𝑗
𝜕𝑦𝑟

𝑦𝑖𝑦𝑗 + 𝑔𝑟𝑗𝑦
𝑗 + 𝑔𝑖𝑟𝑦

𝑖

)︃
𝑦𝑘

= 𝜕

𝜕𝑥𝑘

(︃
𝜕𝑔𝑖𝑗
𝜕𝑦𝑟

𝑦𝑖𝑦𝑗 + 𝑔𝑟𝑗𝑦
𝑗 + 𝑔𝑗𝑟𝑦

𝑗

)︃
𝑦𝑘

=
(︃

𝜕𝑔𝑖𝑗
𝜕𝑦𝑟𝜕𝑥𝑘

𝑦𝑖𝑦𝑗 + 𝜕𝑔𝑟𝑗
𝜕𝑥𝑘

𝑦𝑗 + 𝜕𝑔𝑗𝑟
𝜕𝑥𝑘

𝑦𝑗
)︃
𝑦𝑘

=
(︃
𝜕𝑔𝑟𝑗
𝜕𝑥𝑘

+ 𝜕𝑔𝑗𝑟
𝜕𝑥𝑘

)︃
𝑦𝑗𝑦𝑘,

this is sufficient to show that 𝜕𝐹 2

𝜕𝑦𝑟𝜕𝑥𝑘
𝑦𝑘 − 𝜕𝐹 2

𝜕𝑥𝑟
=
(︃
𝜕𝑔𝑟𝑘
𝜕𝑥𝑗

+ 𝜕𝑔𝑗𝑟
𝜕𝑥𝑘

− 𝜕𝑔𝑗𝑘
𝜕𝑥𝑟

)︃
𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
. The

equivalence between (2.1) and (2.3) ensures that solution of Euler-Lagrange equations are
also solution of

𝑑2𝑥𝑖

𝑑𝑠2 + 𝛾𝑖𝑗𝑘

(︃
𝑥,
𝑑𝑥

𝑑𝑠

)︃
𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
= 0.

Many of biological interactions are supposed to have a production associated to each
individual in their dynamics. The cost functional of this dynamics of production is usually
Finslerian function depending on production and its variation, so, sometimes will be convenient
express the geodesics associated to this functional.

To give an example of the above description of how are the geodesic equation in a Finsler
space we resort to our geodesic definition.

For example, consider the Finsler space F = (R∖{0}, 𝐹 ), where

𝐹 (𝑥, 𝑦) = 1
2𝑒

𝜆𝑡𝑦2, 𝑦 = 𝑑𝑥

𝑑𝑡
.

We have already computed its Euler-Lagrange equations in Example 2.2. So, the geodesics of
F are solution of the second order differential equation:

𝑑2𝑥

𝑑𝑡2
+ 𝜆

𝑑𝑥

𝑑𝑡
= 0.

On the other hand the Finsler space ̃︀F = (R*, 𝐹 ), with 𝐹 as in Example 2.3 has a quick
difference on its geodesics because Euler-Lagrange equation for this function 𝐹 has the form:

𝑑2𝑥

𝑑𝑡2
+ 𝛼

(︃
𝑑𝑥

𝑑𝑡

)︃2

− 𝜆
𝑑𝑥

𝑑𝑡
= 0,

and hence, by definition, the geodesics of ̃︀F = (R*, 𝐹 ) are solution of the above equation.
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3 KCC-THEORY

3.1 SEMISPRAYS

Throughout this chapter, we recall some basic definitions and statements about the geometric
aspects of a system of second order differential equations. We make use of the principal work
on this subject (ANTONELLI, 2003a).

Fix an 𝑛-dimensional manifold 𝑀 .

Definition 3.1. A vector field 𝑋 ∈ 𝒳 ( ̃︂𝑇𝑀) is called a semispray if

𝐽𝑋 = Γ,

where 𝐽 : 𝒳 (𝑇𝑀) → 𝒳 (𝑇𝑀), defined by 𝐽 = 𝜕

𝜕𝑦𝚤
⊗ 𝑑𝑥𝚤, which is globally defined on 𝑇𝑀

and is called the almost tangent structure (or vertical endomorphism of 𝑇𝑀) and the Liouville
vector field Γ = 𝑦𝑖

𝜕

𝜕𝑦𝑖
.

Remark 3.1. Let 𝑋 ∈ 𝒳 ( ̃︂𝑇𝑀). Write 𝑋 = 𝑋 𝑖 𝜕

𝜕𝑥𝑖
+ 𝑌 𝑖 𝜕

𝜕𝑦𝑖
. We can see that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐽

(︃
𝜕

𝜕𝑥𝑖

)︃
= 𝜕

𝜕𝑦𝑖
,

𝐽

(︃
𝜕

𝜕𝑦𝑖

)︃
= 0.

Thus, 𝐽𝑋 = 𝑋 𝑖 𝜕

𝜕𝑦𝑖
and we say that 𝑋 is a semispray if: 𝑋 𝑖 𝜕

𝜕𝑦𝑖
= 𝑦𝑖

𝜕

𝜕𝑦𝑖
.

Remark 3.2. A important case of the above definition is when𝑋 is said to be a p-homogeneous
vector field of degree 2 in 𝑦𝑖. When this happens we say that 𝑋 is a spray.

For a given semispray 𝑋 the property holds:

Proposition 3.1. For a neighborhood 𝜋−1(𝑈) of a induced local chart a semispray 𝑋 can be
written as

𝑋 = 𝑦𝑖
𝜕

𝜕𝑥𝑖
− 2𝐺𝑖(𝑥, 𝑦) 𝜕

𝜕𝑦𝑖
.

Proof. In fact, it is known that a vector field 𝑋 is uniquely written as 𝑋 = 𝑎𝑖(𝑥, 𝑦) 𝜕

𝜕𝑥𝑖
+

𝑏𝑖(𝑥, 𝑦) 𝜕

𝜕𝑦𝑖
. Assuming 𝑋 to be a semispray we have 𝑎𝑖(𝑥, 𝑦) 𝜕

𝜕𝑦𝑖
= 𝑦𝑖

𝜕

𝜕𝑦𝑖
. Hence 𝑎𝑖(𝑥, 𝑦) = 𝑦𝑖.

Taking 𝑏𝑖(𝑥, 𝑦) = −2𝐺𝑖(𝑥, 𝑦) we obtain the desired local coordinated form for 𝑋.
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A set of functions 𝐺𝑖(𝑥, 𝑦) is called the local coefficients of semispray 𝑋. These func-
tions are necessary and sufficient to determine a unique semispray. The local coefficients of a
semispray 𝑋 play a very important role on the characterization of sprays.

Proposition 3.2. A semispray 𝑋 is a spray if and only if its local coefficients 𝐺𝑖(𝑥, 𝑦) are
homogeneous functions of degree 2 in 𝑦𝑖.

Proof. As 𝑦𝑖 is p-homogeneous of degree 1 in 𝑦𝑖 and 𝜕

𝜕𝑥𝑖
is p homogeneous of degree 1 in 𝑦𝑖

follows that 𝑦𝑖 𝜕
𝜕𝑥𝑖

is p-homogeneous of degree 2 in 𝑦𝑖. If we set 𝑋 = 𝑦𝑖
𝜕

𝜕𝑥𝑖
− 2𝐺𝑖(𝑥, 𝑦) 𝜕

𝜕𝑦𝑖

then 𝑋 is p-homogeneous of degree 2 in 𝑦𝑖 if and only if 𝐺𝑖(𝑥, 𝑦) is p-homogeneous of degree
2 in 𝑦𝑖 because 𝜕

𝜕𝑦𝑖
is p-homogeneous of degree 0 in 𝑦𝑖.

On a induced local chart (𝜋−1(𝑈),Φ = (𝑥𝑖, 𝑦𝑖)) the paths integral of a semispray 𝑋 ∈

𝒳 (𝜋−1(𝑈)) are of form
𝑑𝑥𝑖

𝑑𝑡
= 𝑦𝑖,

𝑑𝑦𝑖

𝑑𝑡
= −2𝐺𝑖(𝑥, 𝑦), (3.1)

where𝐺𝑖(𝑥, 𝑦) are the local coefficients of𝑋. With this description about the paths integral
of 𝑋 we can say that on a coordinated neighborhood 𝑈 ⊂ 𝑀 these curves are solution of

𝑑2𝑥𝑖

𝑑𝑡2
+ 2𝐺𝑖

(︃
𝑥,
𝑑𝑥

𝑑𝑡

)︃
= 0. (3.2)

Remark 3.3. We call a differential equation as (3.2) by SODE.

Therefore, for a given semispray 𝑋 ∈ 𝒳 ( ̃︂𝑇𝑀) with local coefficients 𝐺𝑖(𝑥, 𝑦) there is a
equivalence from 𝑋 to a SODE as (3.2), for every coordinated neighborhood 𝑈 ⊂ 𝑀 . This
motives us to state the following definition:

Definition 3.2. The curves 𝛾 : 𝑡 ∈ [𝑎, 𝑏] ↦→ 𝛾(𝑡) = (𝑥𝑖(𝑡)) ∈ 𝑈 ⊂ 𝑀 which are solution of
(3.2) are called path of the semispray 𝑋.

Instead of be referring to semispray as a vector field 𝑋 ∈ 𝒳 ( ̃︂𝑇𝑀) we state that a semispray
is a set of second order differential equation of the form (3.2). The easier example of semispray
is to consider straight line equations.

Let 𝑀 be the Euclidian n-dimensional space R𝑛 with its canonical metric 𝑔𝑖𝑗 = 𝛿𝑖𝑗. Denote
by 𝑋0 the point (𝑥1

0, 𝑥
2
0, . . . , 𝑥

𝑛
0 ) ∈ R𝑛. The straight line 𝑋 + 𝑡𝑉 , 𝑉 = (𝑣0, . . . , 𝑣𝑛) ∈ R𝑛, has

the simple parametrization 𝑥𝑖 = 𝑥𝑖0 + 𝑡𝑣𝑖. It is clear that these equations satisfies:

𝑑2𝑥𝑖

𝑑𝑡2
= 0.
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There is no news that straight lines are simple examples of geodesics curves in the Euclidian
Spaces. Although, this example is just a motivation to note that if F𝑛 = (𝑀,𝐹 (𝑥, 𝑦)) is a
Finsler space and if we take 2𝐺𝑖(𝑥, 𝑦) = 𝛾𝑖𝑗𝑘

(︃
𝑥,
𝑑𝑥

𝑑𝑠

)︃
𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
, whit 𝛾𝑖𝑗𝑘 being the Christoffel

symbols, the equations 𝑑2𝑥𝑖

𝑑𝑠2 − 2𝐺𝑖(𝑥, 𝑦) = 0 gives a semispray whose solutions are the
geodesics of the finsler space F𝑛.

3.2 KCC-INVARIANTS

There is no doubt that many of physical and biological problems may be modelled by a
differential equation, or to be more precise, by a SODE as (3.2). Although the equations in
(3.2) represents a set of analytical objects there are some due geometrical questions. Kosambi
was pioneer in the proceed to find geometric invariants of a semispray in his titled paper
"Parallelism and Path-Spaces" (KOSAMBI, 1933). A few years later Kosambi publish another
work about this same subject (KOSAMBI, 1935) and theses works had the intuit to find the
geometric invariants of (3.2) under nonsingular 𝐶∞ coordinate transformations of type

𝑥̄𝑖 = 𝑓 𝑖
(︁
𝑥1, . . . , 𝑥𝑛

)︁
, 𝑖 = 1, . . . , 𝑛

𝑡 = 𝑡.
(3.3)

On the other hand in the same year of the publication (KOSAMBI, 1933) Cartan was
also working on this subject but with a little detail in the form of coordinate transformation
(CARTAN, 1933) . This topic received more information when the geometer Chern published
the paper "Sur la géometrie d’un système d’equations differentialles du second ordre" (CHERN,
1939). Throughout the works of Cartan and Chern we can find geometrical invariants of (3.2)
under transformations of type

𝑥̄𝑖 = 𝑓 𝑖
(︁
𝑥1, . . . , 𝑥𝑛, 𝑡

)︁
, 𝑖 = 1, . . . , 𝑛

𝑡 = 𝑡

The KCC-theory is associated to these two form of find geometrical invariants of a second
order differential equations, there are five KCC-invariants in fact. It is obvious the motivation
to call this theory "KCC" because the authors Kosambi, Cartan and Chern.

The theory developed by Kosambi is called KKC-theory of type (A) while the theory devel-
oped by Cartan and Chern is called KCC-theory of type (B). These invariants was exhaustively
applied by Peter Antonelli on his works, for example (ANTONELLI; BUCATARU, 2001b). The
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use of KCC-theory of type (A) has been proved powerful in biological models. The aim of our
work is treat a biological problem about the bleaching coral reef.

As many applications many need informations about the behavior of the trajectories of the
system (3.2) in a vicinity of a point (𝑥𝑖 (𝑡0)), where for simplicity one can take 𝑡0 = 0, we
will introduce a concept of instability for solution trajectories of the semispray (3.2). For the
following definition we will assume that 𝑀 is a real-smooth manifold in some Euclidian space.

Definition 3.3. Let 𝛾(𝑡) = (𝑥𝑖(𝑡)) ∈ 𝑈 ⊂ 𝑀 be a path in the semispray 𝑋. If any other
path with initial conditions close enough at 𝑡 = 𝑡0 remains close to 𝛾(𝑡) for all 𝑡 > 𝑡0, we say
that 𝛾(𝑡) is a trajectory Jacobi stable. We define (3.2) to be Jacobi stable if all its solutions
are Jacobi stable. Otherwise, we say that (3.2) is Jacobi unstable.

The above definition has been shown to be very useful in many applications, because makes
necessary to consider the Euclidian space as the universe in question (BOEHMER; HARKO;

SABAU, 2012; ABOLGHASEM, 2013; HARKO; PANTARAGPHONG; SABAU, 2015).

Definition 3.4. Let 𝜉𝑖(𝑡) be the contravariants components of a vector field 𝜉(𝑡) defined
along a path 𝛾(𝑡) = (𝑥𝑖(𝑡)) ∈ 𝑈 ⊂ 𝑀 of the semispray (3.2). The KCC-covariant differential
is defined by

D𝜉𝑖

𝑑𝑡
:= 𝑑𝜉𝑖

𝑑𝑡
+𝐺𝑖

𝑗

(︃
𝑥,
𝑑𝑥

𝑑𝑡

)︃
𝜉𝑗 (3.4)

where 𝐺𝑖
𝑗 := 𝜕𝐺𝑖

𝜕𝑦𝑗
is a set of functions determined by the semispray 𝑋 ∈ 𝒳 ( ̃︂𝑇𝑀).

If (𝜋−1(𝑈),Φ = (𝑥𝑖, 𝑦𝑖)) e (𝜋−1(𝑉 ),Ψ = (̃︀𝑥𝑖, ̃︀𝑦𝑖)) are induced local charts in 𝑇𝑀 then it
is known that the coordinates (𝑥𝑖, 𝑦𝑖) and (̃︀𝑥𝑖, ̃︀𝑦𝑖) are related by the coordinate change formula
in 𝑇𝑀 :

⎧⎪⎪⎨⎪⎪⎩
𝑥̃𝑖 = 𝑥̃𝑖 (𝑥1, . . . , 𝑥𝑛) , det (𝜕̃︀𝑥𝑖/𝜕𝑥𝑗) ̸= 0,

̃︀𝑦𝑖 = 𝜕̃︀𝑥𝑖
𝜕𝑥𝑗

𝑦𝑗.

(3.5)

For all 𝑢 ∈ 𝑇𝑀 we denote by 𝑇𝑢𝑇𝑀 the tangent space to 𝑇𝑀 at 𝑢. Denote by{︃
𝜕

𝜕𝑥𝑖

⃒⃒⃒⃒
⃒
𝑢

,
𝜕

𝜕𝑦𝑖

⃒⃒⃒⃒
⃒
𝑢

}︃
the natural base induced by the local chart (𝜋−1(𝑈),Φ = (𝑥𝑖, 𝑦𝑖)) for 𝑇𝑢𝑇𝑀 .
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Using the coordinate change mentioned in (3.5) the natural base for 𝑇𝑢𝑇𝑀 , just written,
changes as follow:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜕

𝜕𝑥𝑖

⃒⃒⃒⃒
⃒
𝑢

= 𝜕̃︀𝑥𝑗
𝜕𝑥𝑖

(𝑢) 𝜕

𝜕̃︀𝑥𝑗
⃒⃒⃒⃒
⃒
𝑢

+ 𝜕̃︀𝑦𝑗
𝜕𝑥𝑖

(𝑢) 𝜕

𝜕̃︀𝑦𝑗
⃒⃒⃒⃒
⃒
𝑢

,

𝜕

𝜕𝑦𝑖

⃒⃒⃒⃒
⃒
𝑢

= 𝜕̃︀𝑥𝑗
𝜕𝑥𝑖

(𝑢) 𝜕

𝜕̃︀𝑦𝑗
⃒⃒⃒⃒
⃒
𝑢

.

(3.6)

Theses coordinate changes will allow us to investigate some geometrical invariants under
nonsingular coordinate transformation as in (3.3). The first one to be investigated is the
KCC-covariante derivative defined in (3.4). For that consider the following result:

Proposition 3.3. Let 𝐺𝑖(𝑥, 𝑦) be the local coefficients of a semispray 𝑋 ∈ 𝒳 ( ̃︂𝑇𝑀). Under
coordinate changes (3.5) in 𝑇𝑀 , the functions 𝐺𝑖

𝑗 change as:

𝜕̃︀𝑥𝑗
𝜕𝑥𝑘

𝐺𝑘
𝑖 = ̃︀𝐺𝑗

𝑘

𝜕̃︀𝑥𝑘
𝜕𝑥𝑖

+ 𝜕̃︀𝑦𝑗
𝜕𝑥𝑖

. (3.7)

Here, one has to observe that if ̃︀𝑥𝑖 = ̃︀𝑥𝑖 (𝑥𝑗) is a local coordinate change, the contravariant
components of 𝜉𝑖(𝑡) transform as: ̃︀𝜉𝑖 = 𝜕̃︀𝑥𝑖

𝜕𝑥𝑗
𝜉𝑗.

Claim 1. The KCC-covariant differential is invariant under local coordiante transformation
̃︀𝑥𝑖 = ̃︀𝑥𝑖 (𝑥𝑗) in 𝑀 .

Proof. This can be observed from evaluating 𝜕̃︀𝑥𝑖
𝜕𝑥𝑗

D𝜉𝑗

𝑑𝑡
:

𝜕̃︀𝑥𝑖
𝜕𝑥𝑗

D𝜉𝑗

𝑑𝑡
= 𝜕̃︀𝑥𝑖
𝜕𝑥𝑗

(︃
𝑑𝜉𝑗

𝑑𝑡
+𝐺𝑗

𝑘

(︃
𝑥,
𝑑𝑥

𝑑𝑡

)︃
𝜉𝑗
)︃

= 𝜕̃︀𝑥𝑖
𝜕𝑥𝑗

𝑑𝜉𝑗

𝑑𝑡
+ 𝜕̃︀𝑥𝑖
𝜕𝑥𝑗

𝐺𝑗
𝑘

(︃
𝑥,
𝑑𝑥

𝑑𝑡

)︃
𝜉𝑗

= 𝜕̃︀𝑥𝑖
𝜕𝑥𝑗

𝑑𝜉𝑗

𝑑𝑡
+
(︃ ̃︀𝐺𝑖

𝑗

𝜕̃︀𝑥𝑗
𝜕𝑥𝑘

+ 𝜕̃︀𝑦𝑖
𝜕𝑥𝑘

)︃
𝜉𝑗

= 𝑑𝜉𝑖

𝑑𝑡
+ ̃︀𝐺𝑗

𝑘

(︃̃︀𝑥, 𝑑̃︀𝑥
𝑑𝑡

)︃ ̃︀𝜉𝑗
= D̃︀𝜉𝑖

𝑑𝑡

.

Note that (3.3) was used in the third equality in the above computation.

This conclusion has an important consequence on what we are interested. Since we proved
that D̃︀𝜉𝑖

𝑑𝑡
= 𝜕̃︀𝑥𝑖
𝜕𝑥𝑗

D𝜉𝑗

𝑑𝑡
, this shows that under local coordinate changes ̃︀𝑥𝑖 = ̃︀𝑥𝑖 (𝑥𝑗) in 𝑀 the
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KCC-covariant differential preserves tangent vectors, i.e. if 𝑣 is a tangent vector along 𝛾(𝑡)

then D𝑣
𝑑𝑡

is still a tangent vector.

If 𝛾(𝑡) = (𝑥𝑖(𝑡)) is a path in 𝑀 then 𝑑𝑥

𝑑𝑡
=
(︃
𝑑𝑥𝑖

𝑑𝑡

)︃
is a contravariant vector field. Assume

𝛾(𝑡) is solution of a semispray as (3.2) the computation (3.4) for 𝑑𝑥
𝑑𝑡

gives:

D
𝑑𝑡

(︃
𝑑𝑥𝑖

𝑑𝑡

)︃
= 𝑑2𝑥𝑖

𝑑𝑡2
+𝐺𝑖

𝑗

(︃
𝑥,
𝑑𝑥

𝑑𝑡

)︃
𝑑𝑥𝑗

𝑑𝑡

= −2𝐺𝑖

(︃
𝑥,
𝑑𝑥

𝑑𝑡

)︃
+𝐺𝑖

𝑗

(︃
𝑥,
𝑑𝑥

𝑑𝑡

)︃
𝑑𝑥𝑗

𝑑𝑡
.

This is a "practical" way to evaluate this derivative, and for that it will be necessary call
ℰ 𝑖(𝑥, 𝑦) = 2𝐺𝑖(𝑥, 𝑦) −𝐺𝑖

𝑗(𝑥, 𝑦)𝑑𝑥
𝑗

𝑑𝑡
. As we showed that D

𝑑𝑡
is invariant under nonsingular 𝐶∞

coordinate transformation of type (3.3) we have the contravariant vector field

D
𝑑𝑡

(︃
𝑑𝑥𝑖

𝑑𝑡

)︃
= −ℰ 𝑖(𝑥, 𝑦)

defining the first KCC-invariant of (3.2), or the deviation tensor as described in (GRIFONE,
1972). One can prove that ℰ 𝑖(𝑥, 𝑦) = 2𝐺𝑖(𝑥, 𝑦) − 𝐺𝑖

𝑗(𝑥, 𝑦)𝑑𝑥
𝑖

𝑑𝑡
is a (1,0)-type Finsler tensor

field. When ℰ 𝑖(𝑥, 𝑦) is not the null vector field, this represents an ’external force’ associated
to the second order differential equations (3.2).

Consider a semispray 𝑋. Any path of the semispray 𝑋 is solution of the system (3.2).
Consider 𝛾(𝑡) = (𝑥𝑖(𝑡)) a trajectory of which is solution of (3.2), and let vary it into nearby,
to define a new trajectory ̃︀𝛾(𝑡) = (̃︀𝑥𝑖(𝑡)), ones according to:

𝑥̃𝑖(𝑡) := 𝑥𝑖(𝑡) + 𝜀𝜉𝑖(𝑡)

where 𝜀 denotes a scalar parameter value |𝜀|, and 𝜉𝑖(𝑡) are components of a contravariant
vector field along 𝛾(𝑡) with conditions 𝜉𝑖(𝑎) = 𝜉𝑖(𝑏) = 0. Suppose that ̃︀𝛾 is also solution of
the SODE (3.2). Now, using ̃︀𝛾 with the semispray equations system we obtain:

𝑑2𝑥𝑖

𝑑𝑡2
+ 𝜀

𝑑2𝜉𝑖

𝑑𝑡2
+ 2 ̃︀𝐺𝑖

(︃̃︀𝑥, 𝑑̃︀𝑥
𝑑𝑡

)︃
= 𝑑2̃︀𝑥𝑖

𝑑𝑡2
+ 2 ̃︀𝐺𝑖

(︃̃︀𝑥, 𝑑̃︀𝑥
𝑑𝑡

)︃
= 0, (3.8)

assuming differentiability on the local coefficients of 𝑋, 𝐺𝑖(𝑥, 𝑦), we will express ̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡)
as a Taylor series of first order at 𝜀 = 0:

̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡) = 𝐺𝑖(𝑥, 𝑑𝑥/𝑑𝑡) +
[︃
𝜕 ̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡)

𝜕𝑥𝑗
𝜉𝑗 + 𝜕 ̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡)

𝜕𝑦𝑗
𝑑𝜉𝑗

𝑑𝑡

]︃
𝜀,
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where 𝑂 (𝜀2) This implies that (3.8) has a new face:

0 = 𝑑2̃︀𝑥𝑖
𝑑𝑡2

+ 2 ̃︀𝐺𝑖

(︃̃︀𝑥, 𝑑̃︀𝑥
𝑑𝑡

)︃

= 𝜀
𝑑2𝜉𝑖

𝑑𝑡2
+
[︃
𝑑2𝑥𝑖

𝑑𝑡2
+ 2𝐺𝑖(𝑥, 𝑑𝑥/𝑑𝑡)

]︃
+ 2

[︃
𝜕 ̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡)

𝜕𝑥𝑗
𝜉𝑗 + 𝜕 ̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡)

𝜕𝑦𝑗
𝑑𝜉𝑗

𝑑𝑡

]︃
𝜀

= 𝜀
𝑑2𝜉𝑖

𝑑𝑡2
+ 2

[︃
𝜕 ̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡)

𝜕𝑥𝑗
𝜉𝑗 + 𝜕 ̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡)

𝜕𝑦𝑗
𝑑𝜉𝑗

𝑑𝑡

]︃
𝜀

= 𝑑2𝜉𝑖

𝑑𝑡2
+ 2𝜕

̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡)
𝜕𝑥𝑗

𝜉𝑗 + 2𝜕
̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡)

𝜕𝑦𝑗
𝑑𝜉𝑗

𝑑𝑡
.

Note that ̃︀𝐺𝑖(̃︀𝑥, 𝑑̃︀𝑥/𝑑𝑡) = 𝐺𝑖(𝑥+𝜀𝜉, 𝑑𝑥/𝑑𝑡+𝜀𝑑𝜉/𝑑𝑡) and letting 𝜀 → 0 yields to the so-called
variational equations:

𝑑2𝜉𝑖

𝑑𝑡2
+ 2𝜕𝐺

𝑖

𝜕𝑥𝑗
𝜉𝑗 + 2𝜕𝐺

𝑖

𝜕𝑦𝑗
𝑑𝜉𝑗

𝑑𝑡
= 0. (3.9)

There is an equivalent form of the variational equations (3.9) in terms of the KCC-covariant
differential which will be necessary write it in that form. First, note that

0 = 𝑑2𝜉𝑖

𝑑𝑡2
+ 2𝜕𝐺

𝑖

𝜕𝑥𝑗
𝜉𝑗 + 2𝜕𝐺

𝑖

𝜕𝑦𝑗
𝑑𝜉𝑗

𝑑𝑡

=
(︃
𝑑2𝜉𝑖

𝑑𝑡2
+ 2𝐺𝑖

𝑗

𝑑𝜉𝑗

𝑑𝑡

)︃
+ 2𝜕𝐺

𝑖

𝜕𝑥𝑗
𝜉𝑗.

(3.10)

Now, it is convenient to apply the KCC-covariant differential to itself:

D2𝜉𝑖

𝑑𝑡2
= D
𝑑𝑡

(︃
𝑑𝜉𝑖

𝑑𝑡
+𝐺𝑖

𝑗𝜉
𝑗

)︃

= 𝑑

𝑑𝑡

(︃
𝑑𝜉𝑖

𝑑𝑡
+𝐺𝑖

𝑗𝜉
𝑗

)︃
+𝐺𝑖

𝑟

(︃
𝑑𝜉𝑟

𝑑𝑡
+𝐺𝑟

𝑗𝜉
𝑗

)︃

= 𝑑2𝜉𝑖

𝑑𝑡2
+ 𝑑

𝑑𝑡

(︁
𝐺𝑖
𝑗

)︁
𝜉𝑗 +𝐺𝑖

𝑗

𝑑𝜉𝑗

𝑑𝑡
+𝐺𝑖

𝑟

𝑑𝜉𝑟

𝑑𝑡
+𝐺𝑖

𝑟𝐺
𝑟
𝑗𝜉
𝑗

= 𝑑2𝜉𝑖

𝑑𝑡2
+
(︃
𝜕𝐺𝑖

𝑗

𝜕𝑥𝑟
𝑑𝑥𝑟

𝑑𝑡
+
𝜕𝐺𝑖

𝑗

𝜕𝑦𝑟
𝑑𝑦𝑟

𝑑𝑡

)︃
𝜉𝑗 + 2𝐺𝑖

𝑗

𝑑𝜉𝑗

𝑑𝑡
+𝐺𝑖

𝑟𝐺
𝑟
𝑗𝜉
𝑗.

(3.11)

From (3.11) we see that

𝑑2𝜉𝑖

𝑑𝑡2
+ 2𝐺𝑖

𝑗

𝑑𝜉𝑗

𝑑𝑡
= D2𝜉𝑖

𝑑𝑡2
−
(︃
𝜕𝐺𝑖

𝑗

𝜕𝑥𝑟
𝑑𝑥𝑟

𝑑𝑡
+
𝜕𝐺𝑖

𝑗

𝜕𝑦𝑟
𝑑𝑦𝑟

𝑑𝑡

)︃
−𝐺𝑖

𝑟𝐺
𝑟
𝑗𝜉
𝑗.

Then, equations in (3.10) becomes to:

0 = D2𝜉𝑖

𝑑𝑡2
+ 2𝜕𝐺

𝑖

𝜕𝑥𝑗
𝜉𝑗 −

(︃
𝜕𝐺𝑖

𝑗

𝜕𝑥𝑟
𝑑𝑥𝑟

𝑑𝑡
+
𝜕𝐺𝑖

𝑗

𝜕𝑦𝑟
𝑑𝑦𝑟

𝑑𝑡

)︃
𝜉𝑗 −𝐺𝑖

𝑟𝐺
𝑟
𝑗𝜉
𝑗

= D2𝜉𝑖

𝑑𝑡2
+ 2𝜕𝐺

𝑖

𝜕𝑥𝑗
𝜉𝑗 −

𝜕𝐺𝑖
𝑗

𝜕𝑥𝑟
𝑦𝑟𝜉𝑗 + 2

𝜕𝐺𝑖
𝑗

𝜕𝑦𝑟
𝐺𝑟𝜉𝑗 −𝐺𝑖

𝑟𝐺
𝑟
𝑗𝜉
𝑗

= D2𝜉𝑖

𝑑𝑡2
+
(︃

2𝜕𝐺
𝑖

𝜕𝑥𝑗
−
𝜕𝐺𝑖

𝑗

𝜕𝑥𝑟
𝑦𝑟 + 2

𝜕𝐺𝑖
𝑗

𝜕𝑦𝑟
𝐺𝑟 −𝐺𝑖

𝑟𝐺
𝑟
𝑗

)︃
𝜉𝑗.
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The above equations may be rewrite as

D2𝜉𝑖

𝑑𝑡2
+ ℬ𝑖

𝑗𝜉
𝑗 = 0, (3.12)

where
ℬ𝑖
𝑗 := 2𝜕𝐺

𝑖

𝜕𝑥𝑗
−
𝜕𝐺𝑖

𝑗

𝜕𝑥𝑟
𝑦𝑟 + 2𝐺𝑖

𝑗𝑟𝐺
𝑟 −𝐺𝑖

𝑟𝐺
𝑟
𝑗 (3.13)

is called the Jacobi endomorphism in (CRAMPIN M.; MARTINEZ, 1996) and 𝐺𝑖
𝑗𝑘 :=

𝜕𝐺𝑖
𝑗

𝜕𝑦𝑘
. The

interesting study about (3.13) appears in the works, cited in the beginning of this chapter,
of Cartan, Chern and Kosambi in the search to find geometric invariants of a SODE. It
can be proved that ℬ𝑖

𝑗 is a (1,1)-type Finsler tensor field. The tensor ℬ𝑖
𝑗 defines the second

KCC-invariant of the SODE (3.2).
There is a very known equation obtained from (3.12) in the Riemannian case, the celebrated

Geodesic Deviation Equation of Jacobi. To make sure that Jacobi endomorphism is a good
name to ℬ𝑖

𝑗 be called, we present an important theorem for Riemannian Geometry, where can
be found in the book (LEE, 1979).

If for now we consider the second order differential equations (3.1) to be the geodesic
equations in a Riemannian manifold 𝑀 we have the following theorem:

Theorem 3.1 (The Jacobi Equation). Let 𝛾 be a geodesic and 𝑉 a vector field along 𝛾. If
𝑉 is the variation field of a variation through geodesics, then 𝑉 satisfies

D2𝑉 𝑖

𝑑𝑡2
+ ℬ𝑖

𝑗𝑉
𝑗 = 0.

When system (3.2) describes the geodesic equations in either Riemannian or Finsler space,
equation (3.12) is the usual Jacobi equation.

Now we quote a result that relates the Jacobi endomorphism with the solutions of the
semispray 𝑋. The second KCC-invariant ℬ𝑖

𝑗 gives information about the Jacobi instability of
(3.2).

Proposition 3.4 ((BOEHMER; HARKO; SABAU, 2012)). The trajectories of (3.2) are Jacobi
stable if and only if the real part of the eigenvalues of the tensor ℬ𝑖

𝑗 are strictly negative
everywhere, and Jacobi unstable, otherwise.

As mentioned previously there are five KCC-invariants of a SODE, but we showed only two
of them. The third KCC-invariant is defined in terms of ℬ𝑖

𝑗 and the fourth KCC-invariant in
terms of the third:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℬ𝑖
𝑗𝑘 := 1

3

(︃
𝜕ℬ𝑖

𝑗

𝜕𝑦𝑘
− 𝜕ℬ𝑖

𝑘

𝜕𝑦𝑗

)︃
,

ℬ𝑖
𝑗𝑘𝑙 :=

𝜕ℬ𝑖
𝑗𝑘

𝜕𝑦𝑙
.

The third invariant is interpreted as a torsion tensor, while the fourth is the Riemann–Christoffel
curvature tensor as described in (ANTONELLI, 2003a). The fifth and last one KCC-invariant is
called Douglas tensor and define by:

𝒟𝑖
𝑗𝑘𝑙 :=

𝜕2𝐺𝑖
𝑗

𝜕𝑦𝑘𝜕𝑦𝑙
= 𝜕3𝐺𝑖

𝜕𝑦𝑗𝜕𝑦𝑘𝜕𝑦𝑙

Theorem 3.2 ((DOUGLAS, 1928)). The Douglas tensor 𝒟𝑖
𝑗𝑘𝑙 vanish if and only if 𝐺𝑖 is inde-

pendent of 𝑦. Moreover, this condition is coordinate invariant.

Proof. First of all, note that 𝒟𝑖
𝑗𝑘𝑙 = 𝜕3𝐺𝑖

𝜕𝑦𝑗𝜕𝑦𝑘𝜕𝑦𝑙
vanish if and only if 𝐺𝑖 = 𝐺𝑖(𝑥, 𝑦) is

independent of 𝑦. The proof that the condition is valid in every coordinate system can be
found at the reference of this theorem.

The main result of KCC-theory is the following:

Theorem 3.3 ((ANTONELLI, 2000)). Two system of the form (3.2) on 𝑇𝑀 are equivalent
relative to (3.3) if and only if the five KCC-invariants are equivalent. In particular, there exists
coordinates (̃︀𝑥) in a coordinate neighborhood ̃︀𝑈 of 𝑀 for which the the 𝐺𝑖(𝑥̄, 𝑑𝑥̄/𝑑𝑠) all
vanish if and only if all KCC-invariants are zero.

This theorem will be used in the next chapter to compare two sprays obtained from mod-
eling a ecological problem. Its reference is indicated.
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4 VOLTERRA-HAMILTON SYSTEM

The aim of this chapter is to describe the dynamics of two given species (or even a finite
quantity 𝑛 > 2) along time, which live in the same space even they have no interaction.
To make clear our notation, denote by ∑︀ the population at a fixed location. Whenever we
mention ∑︀ will be implicit that there is at least one individual of this species population for
𝑡 ∈ [0, 𝑇 ], 𝑇 > 0, otherwise we say that the population was extinct. Let 𝑁(𝑡) ≥ 0 be the
density (or total number) of a population ∑︀ at time 𝑡. The density 𝑁(𝑡) will be assumed to
be a continuous function for all time instant.

4.1 POPULATION DYNAMICS BY HUTCHINSON

For our purpose it is necessary to admit some conditions on the density function 𝑁(𝑡) to
make easier the modelling of its dynamics. These conditions are known as Hutchinson Axioms
(HUTCHINSON, 1978):

(1) There is no abrupt change in population variation, i.e., 𝑑𝑁
𝑑𝑡

= 𝑓(𝑁), where 𝑓 is differ-
entiable;

(2) Every organism arises from at least one other of its own kind. So if 𝑁 = 0, then 𝑑𝑁
𝑑𝑡

≡ 0;

(3) There is a finite upper bound on the number of organisms 𝑁 that can utilize a given
finite space or location.

With these axioms we can obtain various models about the specie given by 𝑁(𝑡).
First of all, axioms (1) and (2) allows us to expand 𝑑𝑁

𝑑𝑡
around 𝑁 ≡ 0 as:

𝑓(𝑁) = 𝑓 ′(0)𝑁 + 𝑓 ′′(0)𝑁2 + . . . (4.1)

The first and easier model to think and obtain is when (4.1) is consider to be of first order.
Then, this yields to:

𝑑𝑁

𝑑𝑡
= 𝑓(𝑁) = 𝑓 ′(0)𝑁.

The solution of the above ODE is:

𝑁(𝑡) = 𝑒𝜆𝑡+𝐶 = 𝑁(0)𝑒𝜆𝑡, (4.2)

where 𝑓 ′(0) = 𝜆. Note that given initial conditions 𝑁(0) = 𝑁0, 𝜆 determines the population
growth. Here, we suppose 𝜆 > 0 (if 𝜆 < 0, the population is dying out). The solution (4.2) is
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known as model of population growth and it is often called Malthusian growth (ANTONELLI;

H.BRADBURY, 1996, page 1). Although this model of population growth has been exhaustively
used, for example, in describing the bacteria growth, it does not satisfies the third Hutchinson
axiom because 𝑁(𝑡) is not limited in this case:

lim
𝑡→+∞

𝑁(𝑡) = lim
𝑡→+∞

𝑁0𝑒
𝜆𝑡 = +∞.

Since the expected location will have finite recurs the exponential growth will makes no
sense to talk about the living of a population ∑︀ at this location because would be necessary
infinite resources for every given specie, but this is not true in real life. So, in order to obtain
an equation to model more real problems we will consider (4.1) to be of second order:

𝑑𝑁

𝑑𝑡
= 𝜆𝑁 − 𝜆

𝐾
𝑁2, (4.3)

where the constants 𝜆 is called the intrinsic growth rate and 𝐾 > 0 is called the carrying
capacity for ∑︀, i.e., 𝐾 represents how much the resources are available for the species. Let
us solve (4.3) for 𝑁 ̸= 𝐾:

Note that 𝑑𝑁

𝑑𝑡
= 𝜆𝑁 − 𝜆

𝐾
𝑁 = 𝜆𝑁

𝐾
(𝐾 − 𝑁). Which imply 𝑑𝑁

𝑁(𝐾 −𝑁) = 𝜆

𝐾
𝑑𝑡. So,

integrating in both side we obtain:∫︁ 𝑑𝑁

𝑁(𝐾 −𝑁) =
∫︁ 𝜆

𝐾
𝑑𝑡. (4.4)

To solve the integral on the left side, we have to consider the partial fraction on the form:

1
𝑁(𝐾 −𝑁) = 𝑎

𝑁
+ 𝑏

𝐾 −𝑁
= 𝑎(𝐾 −𝑁) + 𝑏𝑁

𝑁(𝐾 −𝑁) ,

which provides 𝑎𝐾 + (𝑏 − 𝑎)𝑁 = 𝑎(𝐾 − 𝑁) + 𝑏𝑁 = 1 such that has 𝑎 = 1
𝐾

and 𝑏 = 1
𝐾

as
solution. With this we obtain:∫︁ 𝑑𝑁

𝑁(𝐾 −𝑁) =
∫︁ 𝑎(𝐾 −𝑁) + 𝑏𝑁

𝑁(𝐾 −𝑁) 𝑑𝑁

=
∫︁ 𝑎

𝑁
𝑑𝑁 +

∫︁ 𝑏

𝐾 −𝑁
𝑑𝑁

=
∫︁ 1

𝐾

𝑁
𝑑𝑁 +

∫︁ 1
𝐾

𝐾 −𝑁
𝑑𝑁

= 1
𝐾

ln |𝑁 | − 1
𝐾

ln |𝐾 −𝑁 |

= 1
𝐾

ln
⃒⃒⃒⃒

𝑁

𝐾 −𝑁

⃒⃒⃒⃒
,

and to solve (4.3) just realize that using the above integral in equation (4.4) we get:

1
𝐾

ln
⃒⃒⃒⃒

𝑁

𝐾 −𝑁

⃒⃒⃒⃒
= 𝜆

𝐾
𝑡+ 𝐶1 =⇒ ln

⃒⃒⃒⃒
𝑁

𝐾 −𝑁

⃒⃒⃒⃒
= 𝜆𝑡+ 𝐶2 =⇒

⃒⃒⃒⃒
𝑁

𝐾 −𝑁

⃒⃒⃒⃒
= 𝑒𝜆𝑡𝑒𝐶2 = 𝐶𝑒𝜆𝑡.
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Then the solution of (4.3) is given as follow:

𝑁(𝑡) = 𝐾

1 + 𝑏𝑒−𝜆𝑡 (4.5)

where the constant 𝑏 is determined by the initial condition 𝑁0 = 𝑁(0) = 1
1 + 𝑏

.
The equation (4.3) is called the logistic differential equation and (4.5) is the logistic curve.

Note that the logistic curve is the simplest equation satisfying assumptions (1), (2) and (3).
The upper bound for this curve is the limit:

lim
𝑡→∞

𝑁(𝑡) = lim
𝑡→∞

𝐾

1 + 𝑏𝑒−𝜆𝑡 = 𝐾.

The straight line 𝑁 = 𝐾 is a horizontal asymptote. For a small interval of time the resources
are supposed to be in abundance, then the growth of 𝑁(𝑡) is also supposed to be exponentially.

Suppose that for a small time instant 𝑡, the carrying capacity 𝐾 is much bigger than 𝑁

and for this case we have that 𝐾 −𝑁

𝐾
≈ 𝐾

𝐾
= 1. Under this hypothesis we obtain 𝑑𝑁

𝑑𝑡
≈ 𝜆𝑁

for 𝑡 ∈ [0, 𝑇 ], for 𝑇 sufficiently small. Plotting the graph of the Malthusian and Logistic curves
one can observe that they are approximately equal in the beginning growth as show the simple
sketch:

Figure 1 – Exponential growth

Font: Khan Academy

Figure 2 – Shaped growth

Font: Khan Academy

Note that the red dashed line in figure 2 coincide with the horizontal asymptote 𝑁 = 𝐾.
This is the reason why 𝐾 is called Carrying capacity. When 𝑁(𝑡) get closer to 𝐾 this means
that the resources are running out from the location in question and the population growth
tends to be zero, because there will not have food or other resource for every individual.

For a given real problem, how to determine the constant 𝐾? Obviously, this is a question
that the answer needs much more information then just the dynamic. Essentially, the constant
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𝐾 is closely linked with the specie 𝑁 needs to survives; there would be no problem in replacing
𝐾 by 𝐾(𝑁) to sign the idea that the Carrying capacity 𝐾 is a "property" of specie. That is,
any important resource for the survival of a given specie is consider to be a upper bound in
its population growth. One can realize that to estimate the value of 𝐾 it is necessary have
a look on which resources are available for specie 𝑁 and how many individuals the location
is ready for. For example, we could think about plants and what they need to survival; even
though plants are organism that require just water and sunlight, the location can be a problem
because this is a finite resource compared to water and sunlight.

Here, we will present three situations involving population growth which can be modelled
by the Logistic curve:

• American Population

The logistic first arose in 1838 in the work of mathematician P. Verhulst and later in the
work of demographers R. Pearl and L. Reed in 1920. They found that it described the human
population growth in the U.S.A. from 1790 to 1920.

Figure 3 – USA (1790-1920)

Font: (PARL; REED, 1920)

• Harbor seal of Washington

It is very known that the number of Harbor seal were severely reduced by a state-financed
population control program. This population control ceased in the second half of the twentieth
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century and then the population started to grow up. The following graphic shows that the
Logistic curve is a great approximation to Harbor seal population growth:

Figure 4 – Harbor seal of Washington

Font: (EA OLSON JK; JK, 2020)

• Gigogas

In 2006 the plants Eichornia crassipes known as Gigogas had big notoriety in Brazil after
beaches, rivers and lagoons had become green with so much plants. Although the gigogas are
part of the ecosystem of the city ponds, the abrupt growth was caused by the sewer falling
into the rivers and lagoons of Rio de Janeiro in 2006. The sewer was being as large carrying
capacity of population of gigogas over the rivers and lagoons.

Figure 5 – Gigogas

Font: (RUTZ; SANTOS, 2009)

the red curve is clearly a Logistic curve and represents what happened in 2006.
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All what we have done is about the populational dynamics of one specie without considering
that this specie could interact with others species. As several species may forage for food ans
seek nesting sites in a given habitat, we will consider that various species live and interact with
many other species at the same location. For now, we reserve the symbol Π for a community.
Suppose that 𝑛 populations species comprise Π, if two species 𝑖 and 𝑗 live in the same habitat,
there is the possibility of 𝑖 and 𝑗 interact with each other or not. If for a given specie in Π it
does not interact with any other, the situation of populational growth of this community can
be described by a system of logistic equations:

𝑑𝑁 𝑖

𝑑𝑡
= 𝜆(𝑖)𝑁

𝑖

(︃
1 − 𝑁 𝑖

𝐾(𝑖)

)︃
, 𝑖 = 1, . . . , 𝑛 (4.6)

where 𝑁 𝑖 is the density and 𝜆(𝑖) is the intrinsic growth rate of specie 𝑖 and 𝐾(𝑖) is its carrying
capacity.

Remark 4.1. Throughout this work, we made use of Einstein summation convention, so, to
makes no mistakes we use parentheses to indicate not summed terms. All the products of the
form 𝑎(𝑖)𝑏

𝑖 is supposed to be not in sum because of parentheses.

4.2 EQUATIONS OF INTERACTION

According to (GAUSE; WITT, 1935), if 𝑖 and 𝑗 compete for the same food items and nesting
site then the situation is described by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑𝑁 𝑖

𝑑𝑡
= 𝜆(𝑖)𝑁

𝑖

(︃
1 − 𝑁 𝑖

𝐾(𝑖)
− 𝛿(𝑖)

𝑁 𝑗

𝐾(𝑖)

)︃
𝑑𝑁 𝑗

𝑑𝑡
= 𝜆(𝑗)𝑁

𝑗

(︃
1 − 𝑁 𝑗

𝐾(𝑗)
− 𝛿(𝑗)

𝑁 𝑖

𝐾(𝑗)

)︃ (4.7)

where all coefficients 𝜆′𝑠, 𝐾 ′𝑠, 𝛿′𝑠 are positive. These equations were proposed in 1935 and are
known as Gause-Witt equations. The constants 𝜆(𝑖) and 𝐾(𝑖) have the same means as before,
however 𝛿(𝑖) represents how much the specie 𝑖 is affected by the specie 𝑗 in the interaction.
Equations (4.7) describes the competition between species 𝑖 and 𝑗 because 𝛿(𝑖), 𝛿(𝑗) > 0,
however the dynamics of the species in ∑︀ can be modelled by:

𝑑𝑁 𝑖

𝑑𝑡
= 𝜆(𝑖)𝑁

𝑖

(︃
1 − 𝑁 𝑖

𝐾(𝑖)
− 𝛿(𝑖)

𝑁 𝑗

𝐾(𝑖)

)︃
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛 (4.8)

where 𝜆(𝑖) and 𝐾(𝑖) are positive constants denoting intrinsic growth rate and carrying capacity
for specie 𝑖, respectively. The coefficient 𝛿(𝑖) represents how much the specie 𝑖 is affected by
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the specie 𝑗 in the interaction. The sign of 𝛿(𝑖) tells what kind of interaction it is. Consider
the system of two equations taking any 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑖 ̸= 𝑗, in (4.8). There are three
possibilities to this system as follow:

• Parasitism: 𝛿(𝑖) > 0, 𝛿(𝑗) < 0 or 𝛿(𝑖) < 0, 𝛿(𝑗) > 0;

• Competition: 𝛿(𝑖) > 0, 𝛿(𝑗) > 0;

• Symbiosis: 𝛿(𝑖) < 0, 𝛿(𝑗) < 0.

One can check that the positive equilibrium of a Gause-Witt equations system is:

𝑁1
* = 𝐾(1) − 𝛿(1)𝐾(2)

1 − 𝛿(1)𝛿(2)
, 𝑁2

* = 𝐾(2) − 𝛿(2)𝐾(1)

1 − 𝛿(2)𝛿(1)
. (4.9)

According to (GAUSE; WITT, 1935) we see that Competition case in a Gause Witt model.
Assuming 𝛿(𝑖), 𝛿(𝑗) > 0, the competition case, set 𝑖 = 1, 𝑗 = 2 for 𝑛 = 2. Then we have the
following theorem (ANTONELLI; H.BRADBURY, 1996, page 21):

Theorem 4.1. For the system (4.7) we have the following four cases:

1. If 𝛿(1) >
𝐾(1)

𝐾(2)
and 𝛿(2) >

𝐾(2)

𝐾(1)
, then only one of the two species will persist after

the competition and the winner will be determined entirely by the starting proportions.
Equilibrium (4.9) is unstable;

2. If 𝛿(1) >
𝐾(1)

𝐾(2)
and 𝛿(2) <

𝐾(2)

𝐾(1)
, then the specie 1 will be eliminated by the competition;

3. If 𝛿(1) <
𝐾(1)

𝐾(2)
and 𝛿(2) >

𝐾(2)

𝐾(1)
, then the specie 2 will be eliminated by the competition;

4. If 𝛿(1) <
𝐾(1)

𝐾(2)
and 𝛿(2) <

𝐾(2)

𝐾(1)
, then both species persist together at equilibrium (4.9).

It is stable.

The following result is a lemma that makes easier the proof of the above theorem. Its prove
can be found at (ANTONELLI; H.BRADBURY, 1996).

Lemma 4.1 (Linear Stability Theorem). Suppose we are given the system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝑥

𝑑𝑡
= 𝐹 (𝑥, 𝑦)

𝑑𝑦

𝑑𝑡
= 𝐺(𝑥, 𝑦)

(4.10)

for which (𝑥0, 𝑦0) is a steady-state, that is, 𝐹 (𝑥0, 𝑦0) ≡ 0 ≡ 𝐺 (𝑥0, 𝑦0). The point (𝑥0, 𝑦0) is
stable if and only if 𝐽0, the jacobian of (4.10) at (𝑥0, 𝑦0), has both eigenvalues 𝑟𝑗 (𝑗 = 1, 2)
with Re [𝑟𝑗] < 0. If Re [𝑟𝑗] = 0 (𝑥0, 𝑦0) is neutrally stable, otherwise, (𝑥0, 𝑦0) unstable.
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To prove theorem (4.1), let us apply the above lemma to (4.7). Note that

𝐹
(︁
𝑁1, 𝑁2

)︁
= 𝜆(1)𝑁

1 −
𝜆(1)

𝐾(1)

(︁
𝑁1
)︁2

−
𝜆(1)𝛿(1)

𝐾(1)
𝑁1𝑁2

𝐺
(︁
𝑁1, 𝑁2

)︁
= 𝜆(2)𝑁

2 −
𝜆(2)

𝐾(2)

(︁
𝑁2
)︁2

−
𝜆(2)𝛿(2)

𝐾(2)
𝑁1𝑁2,

Using 𝐹 (𝑁1
* , 𝑁

2
* ) = 0 = 𝐺 (𝑁1

* , 𝑁
2
* ) once (𝑁1

* , 𝑁
2
* ) is a steady state of (4.7) we obtain:

𝐽0 =

⎛⎜⎜⎝ 𝜕𝐹/𝜕𝑁1 𝜕𝐹/𝜕𝑁2

𝜕𝐺/𝜕𝑁1 𝜕𝐺/𝜕𝑁2

⎞⎟⎟⎠
(𝑁1

* ,𝑁
2
*)

=

⎛⎜⎜⎝ − 𝜆(1)
𝐾(1)

𝑁1
* −𝜆(1)𝛿(1)

𝐾(1)
𝑁1

*

−𝜆(2)𝛿(2)
𝐾(2)

𝑁2
* − 𝜆(2)

𝐾(2)
𝑁2

* .

⎞⎟⎟⎠ (4.11)

Therefore, we see that the characteristic polynomial of the matrix 𝐽0, (4.11), is given by
𝑝(𝑟) = 𝑟2 − tr(𝐽0)𝑟 + det(𝐽0), where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

det 𝐽0 = 𝜆(1)𝜆(2)

𝐾(1)𝐾(2)
𝑁1

*𝑁
2
*

(︁
1 − 𝛿(1)𝛿(2)

)︁
Tr (𝐽0) = −

𝜆(1)𝑁
1
*

𝐾(1)
−
𝜆(2)𝑁

2
*

𝐾(2)

(4.12)

Let us now prove item (1) of theorem (4.1). The prove of the others items can be found
at the principal reference, (ANTONELLI; H.BRADBURY, 1996), of this chapter.

Proof. Suppose that 𝛿1 >
𝐾(1)

𝐾(2)
and 𝛿(2) >

𝐾(2)

𝐾(1)
. Use the hypothesis on the point 𝑁1* to note

that

0 < 𝑁1* = 𝐾(1) − 𝛿(1)𝐾(2)

1 − 𝛿(1)𝛿(2)
=

⎡⎢⎣
𝐾(1)
𝐾(2)

− 𝛿(1)

1 − 𝛿(1)𝛿(2)

⎤⎥⎦𝐾(2)

which implies 1 − 𝛿(1)𝛿(2) < 0 and consequently det 𝐽0 < 0. So, the roots 𝑟1 and 𝑟2 of 𝑝(𝑟)
satisfies 𝑟1𝑟2 < 0, which ensures that 𝑟1, 𝑟2 are real with one of them positive and the other is
negative. The use of 𝑁1* or 𝑁2* implies the same result. From linear stability theorem (4.1),
this shows (4.9) is unstable.

Now we introduce a natural measure of production 𝑥𝑖 of a population 𝑁 𝑖, the Volterra’s
production Variable (VOLTERRA, 1936), by defining:

𝑥𝑖(𝑡) = 𝑘(𝑖)

∫︁ 𝑡

0
𝑁 𝑖(𝜏)𝑑𝜏 + 𝑥𝑖(0) (4.13)

where 𝑥(0) > 0. The per capita production rate, 𝑘, is defined by 1
𝑁

· 𝑑𝑥
𝑑𝑡

= 𝑘 > 0 and supposed
to be constant.

Let 𝑀 be an 𝑛-dimensional manifold and ̃︂𝑇𝑀 its slit tangent bundle. If (𝑈, 𝜑 = (𝑥𝑖)) is
a local chart on 𝑀 , then (𝜋−1(𝑈),Φ = (𝑥𝑖, 𝑁 𝑖)) will denote the induced local chart on ̃︂𝑇𝑀 ,
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where 𝜋 : 𝑇𝑀 → 𝑀 is the natural projection. By an 𝑛-dimensional Volterra-Hamilton system
we mean a system of ordinary differential equation of the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑𝑥𝑖

𝑑𝑡
= 𝑘(𝑖)𝑁

𝑖 𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛
𝑑𝑁 𝑖

𝑑𝑡
= −𝐺𝑖

𝑗𝑘𝑁
𝑗𝑁𝑘 + 𝜆(𝑖)𝑁

𝑖 + 𝑒𝑖
(4.14)

where𝐺𝑖
𝑗𝑘 are coefficients possible depending on 𝑥𝑖, 𝑁 𝑖, 𝑡; these 𝑛3 functions are p-homogeneous

of degree 0 in 𝑁 𝑖. The coordinate 𝑥𝑖 are Volterra production variables, whose constant per
capita rate is 𝑘𝑖. This system represents not just an populational dynamics but it describes a
set of 𝑛 producer populations whose sizes are denoted by 𝑁1, . . . , 𝑁𝑛.

The Gause-Witt equations and (4.8) are just a particular case of a more general system of
equations which describes interactions of species in a simple community Π, which is:

𝑑𝑁 𝑖

𝑑𝑡
= −𝐺𝑖

𝑗𝑘𝑁
𝑗𝑁𝑘 + 𝜆(𝑖)𝑁

𝑖 + 𝑒𝑖, 𝑖, 𝑗, 𝑘 = 1, . . . , 𝑛 (4.15)

where 𝑒𝑖 means that (4.14) represents a non-constant environment and this quantity 𝑒𝑖 is how
the different species 𝑁 𝑖 react to external influences and 𝜆(𝑖) is already defined as the intrinsic
growth rate of specie 𝑖.

For a Volterra-Hamilton system as (4.14) we have three possibilities:

• Ecological Interactions: if the coefficients 𝐺𝑖
𝑗𝑘 are constants;

• Metabolic Interactions: if the coefficients 𝐺𝑖
𝑗𝑘 = 𝐺𝑖

𝑗𝑘(𝑥𝑖) are explicit functions of coor-
dinates 𝑥𝑖, only;

• Social Interactions: if the coefficients 𝐺𝑖
𝑗𝑘 = 𝐺𝑖

𝑗𝑘

(︃
𝑥𝑖,

𝑁 𝑖

𝑁 𝑗

)︃
are functions which may

depend on 𝑥𝑖 and 𝑁 𝑖

𝑁 𝑗
.

For our purpose it is convenient assume that (4.14) describes an ecological interaction
and take 𝜆(𝑖) = 𝜆 for all 𝑖 ∈ {1, . . . , 𝑛}. This condition is called the pre-symbiant condition
(ANTONELLI; INGARDEN; MATSUMOTO, 1993). The usual parameter of time 𝑡 allows us to
rewrite (4.14) as the differential equations:

𝑑2𝑥𝑖

𝑑𝑡2
= −𝐺𝑖

𝑗𝑘

𝑑𝑥𝑗

𝑑𝑡

𝑑𝑥𝑘

𝑑𝑡
+ 𝜆

𝑑𝑥𝑖

𝑑𝑡
+ 𝑒𝑖, 𝑖, 𝑗, 𝑘 = 1, . . . , 𝑛. (4.16)

The pre-symbiant condition allows us to consider other parameter, for exemplo, setting
𝑠 = 𝑒𝜆𝑡 (𝑑𝑠 = 𝜆𝑒𝜆𝑡𝑑𝑡) defines an intrinsic time sacle, longer than t, which is related with the
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individual’s own organism (LAIRD, 1965; LAIRD; BARTON; TYLER, 1968). So, at this intrinsic
parameter we obtain by chain rule 𝑑𝑥

𝑖

𝑑𝑠
= 𝑑𝑥𝑖

𝑑𝑡

𝑑𝑡

𝑑𝑠
and

𝑑2𝑥𝑖

𝑑𝑠2 = 𝑑

𝑑𝑠

(︃
𝑑𝑥𝑖

𝑑𝑡

1
𝜆𝑠

)︃

= 𝑑

𝑑𝑠

(︃
𝑑𝑥1

𝑑𝑡

)︃
1
𝜆𝑠

+ 𝑑𝑥𝑖

𝑑𝑡

(︂
− 1
𝜆𝑠2

)︂

= 𝑑2𝑥𝑖

𝑑𝑡2
1

𝜆2𝑠2 − 𝑑𝑥𝑖

𝑑𝑡

(︂ 1
𝜆𝑠2

)︂
Now, taking 𝑒𝑖 = 0 representing a constant environment we have:

𝑑2𝑥𝑖

𝑑𝑠2 = 𝑑2𝑥𝑖

𝑑𝑡2
1

𝜆2𝑠2 − 𝑑𝑥𝑖

𝑑𝑡

1
𝜆𝑠

=
(︃

−𝐺𝑖
𝑗𝑘

𝑑𝑥𝑗

𝑑𝑡

𝑑𝑥𝑘

𝑑𝑡
+ 𝜆

𝑑𝑥𝑖

𝑑𝑡

)︃
1

𝜆2𝑠2 − 𝑑𝑥𝑖

𝑑𝑡

1
𝜆𝑠2

= −𝐺𝑖
𝑗𝑘

𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
+ 𝑑𝑥𝑖

𝑑𝑡

1
𝜆𝑠2 − 𝑑𝑥𝑖

𝑑𝑡

1
𝜆𝑠2

= −𝐺𝑖
𝑗𝑘

𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠

where we have take 𝑘(𝑖) = 1, otherwise, they enter the 𝐺𝑖
𝑗𝑘 multiplicatively. The Volterra-

Hamilton system takes the spray form as defined in Chapter 2:

𝑑2𝑥𝑖

𝑑𝑠2 +𝐺𝑖
𝑗𝑘

𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
= 0 (4.17)

or could be considered that 𝐺𝑖
𝑗𝑘 is p-homogeneous of degree 0 to write 𝐺𝑖

𝑗𝑘

𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
= 2𝐺𝑖 by

Euler theorem (2.1). Thus, as 𝐺𝑖
𝑗𝑘 are constant in (𝑈, 𝜑 = (𝑥𝑖)) we often just say (4.17) is a

constant spray. For a two-dimensional constant sprays (ANTONELLI, 2003b), equations (4.17)

have the following form:

0 = 𝑑2𝑥1

𝑑𝑠2 + 𝛼1

(︃
𝑑𝑥1

𝑑𝑠

)︃2

+ 2𝛼2

(︃
𝑑𝑥1

𝑑𝑠

)︃(︃
𝑑𝑥2

𝑑𝑠

)︃
+ 𝛼3

(︃
𝑑𝑥2

𝑑𝑠

)︃2

0 = 𝑑2𝑥2

𝑑𝑠2 + 𝛽3

(︃
𝑑𝑥1

𝑑𝑠

)︃2

+ 2𝛽2

(︃
𝑑𝑥1

𝑑𝑠

)︃(︃
𝑑𝑥2

𝑑𝑠

)︃
+ 𝛽1

(︃
𝑑𝑥2

𝑑𝑠

)︃2

,

(4.18)

for which the constants 𝛼′𝑠 and 𝛽 ′𝑠 play the role:

1. The case of competition:

⎧⎪⎪⎨⎪⎪⎩
𝛼1 > 0, 𝛼3 = 0, 𝛼2 > 0

𝛽1 > 0, 𝛽3 = 0, 𝛽2 > 0

2. The case of parasitism:

⎧⎪⎪⎨⎪⎪⎩
𝛼1 > 0, 𝛼3 = 0, 𝛼2 < 0

𝛽1 > 0, 𝛽3 = 0, 𝛽2 > 0
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3. The case of mutualism:

⎧⎪⎪⎨⎪⎪⎩
𝛼1 > 0, 𝛼3 = 0, 𝛼2 < 0

𝛽1 > 0, 𝛽3 = 0, 𝛽2 < 0

where the second case means that specie 1 is parasite on specie 2. We choose to evaluate
(4.17) for 𝑛 = 2 because that will be useful to us in the next chapter.

Remark 4.2. Suppose we have a community with 𝑛 species and each specie produces the
amount 𝑥𝑖. Let (𝑥1, . . . , 𝑥𝑛) = (𝑥),

(︃
𝑑𝑥1

𝑑𝑡
, . . . ,

𝑑𝑥𝑛

𝑑𝑡

)︃
=
(︃
𝑑𝑥

𝑑𝑡

)︃
, be 2𝑛 coordinates in a open

connected subset Ω of the Euclidian (2𝑛)-dimensional space R𝑛 × R𝑛. If 𝐹 = 𝐹 (𝑥, 𝑑𝑥) is a
Finslerian function which quantify the cost of total production, then 𝐹 is called cost functional,
so, the pair F𝑛 = (Ω, 𝐹 ) is a Finsler space which geodesics are solution of Euler-Lagrange
equations associated to 𝐹 (𝑥, 𝑑𝑥), and passing to the canonical parameter 𝑠, the geodesics of
F are solution of

𝑑2𝑥𝑖

𝑑𝑠2 + 𝛾𝑖𝑗𝑘

(︃
𝑥,
𝑑𝑥

𝑑𝑠

)︃
𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
= 0,

where 𝛾𝑖𝑗𝑘 the the Christoffel symbols of the fundamental tensor 𝑔𝑖𝑗 = 1
2
𝜕2𝐹 2

𝜕𝑦𝑖𝜕𝑦𝑗
.

The above remark will be useful to determine when the production of, for example, two
species is optimal or not. If the Euler-Lagrange equations of the cost functional 𝐹 coincide
with the Volterra-Hamilton system in the spray form (4.17) we obtain that the interaction of
the species minimize the cost of production. Otherwise, the interaction well not be a optimal
production.

4.3 TWO DIMENSIONAL CONSTANT SPRAYS

Let F2 = (𝑀,𝐹 (𝑥, 𝑦)) be a two-dimensional Finsler space. We have showed that Volterra-
Hamilton system in the canonical parameter has the spray form

𝑑2𝑥𝑖

𝑑𝑠2 +𝐺𝑖
𝑗𝑘

𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
= 0, (4.19)

and proceeding with the same trajectories variation as in the last chapter to define a new
trajectory ̃︀𝛾(𝑡) = (̃︀𝑥𝑖(𝑡)), according to:

𝑥̃𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝜀𝜉𝑖(𝑡)

where 𝜀 denotes a scalar parameter value 𝜀 > 0, and 𝜉𝑖(𝑡) are components of a contravariant
vector field along 𝛾(𝑡) with conditions 𝜉𝑖(𝑎) = 𝜉𝑖(𝑏) = 0 . Suppose that ̃︀𝛾 is also solution
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of the second order differential equations (4.19). Now, using ̃︀𝛾 with the semispray equations
system we obtain:

𝑑2𝑥𝑖

𝑑𝑡2
+ 𝜀

𝑑2𝜉𝑖

𝑑𝑡2
+ 2 ̃︀𝐺𝑖

(︃̃︀𝑥, 𝑑̃︀𝑥
𝑑𝑡

)︃
= 𝑑2̃︀𝑥𝑖

𝑑𝑡2
+ 2 ̃︀𝐺𝑖

(︃̃︀𝑥, 𝑑̃︀𝑥
𝑑𝑡

)︃
= 0.

Using the KCC-covariant differential (3.4) we can rewrite the above equation into its
invariant form, that is, the Jacobi equation:

D2𝜉𝑖

𝑑𝑠2 + ℬ𝑖
𝑗𝜉
𝑗 = 0, (4.20)

where
ℬ𝑖
𝑗 = 2𝜕𝐺

𝑖

𝜕𝑥𝑗
−
𝜕𝐺𝑖

𝑗

𝜕𝑥𝑟
𝑦𝑟 + 2𝐺𝑖

𝑗𝑟𝐺
𝑟 −𝐺𝑖

𝑟𝐺
𝑟
𝑗

is the second KCC-invariant. The others four KCC-invariants are given as before in chapter
2, with a remark that ℰ 𝑖 ≡ 0 because 2𝐺𝑖 = 𝐺𝑖

𝑗𝑘

𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
is p-homogeneous of degree 2 in

𝑦𝑖 = 𝑑𝑥𝑖

𝑑𝑥
. But we pay attetion to the third KCC-invariant, defined by:

ℛ𝑖
𝑗𝑘 := 1

3

(︃
𝜕ℬ𝑖

𝑗

𝜕𝑦𝑘
− 𝜕ℬ𝑖

𝑘

𝜕𝑦𝑗

)︃

=
𝜕𝐺𝑖

𝑗

𝜕𝑥𝑘
− 𝜕𝐺𝑖

𝑘

𝜕𝑥𝑗
+𝐺𝑟

𝑗𝐺
𝑖
𝑟𝑘 −𝐺𝑟

𝑘𝐺
𝑖
𝑟𝑗,

because the geometer L. Berwald has introduced the Berwald’s Gaussian curvature 𝒦 for two-
dimensional Finsler space and defined from his famous formula (BERWALD, 1941):

ℛ𝑖
𝑗𝑘 = 𝐹𝒦𝑚𝑖 (𝑙𝑗𝑚𝑘 − 𝑙𝑘𝑚𝑗) (4.21)

where 𝑙𝑖 = 𝑦𝑖/𝐹 is the unit vector in the 𝑦𝑖 direction, and 𝑚𝑖 the unique (up to orientation)
unit vector perpendicular to 𝑙𝑖. In such 2-dimensional Finsler space (𝑙𝑖,𝑚𝑖) is referred to as
the Berwald frame. Lowering the index on 𝑚𝑖 via the metric tensor gives 𝑚𝑖, which satisfies:⎧⎪⎪⎨⎪⎪⎩

𝐹 (𝑥,𝑚) = 𝑔𝑖𝑗(𝑥, 𝑦)𝑚𝑖𝑚𝑗 ≡ 𝑚𝑖𝑚
𝑖 = 1;

𝑔𝑖𝑗(𝑥, 𝑦)𝑙𝑖𝑚𝑗 = 0.
(4.22)

The whole discussion about the construction of the vectors 𝑙𝑖(𝑥, 𝑦) and 𝑚𝑖(𝑥, 𝑦) can be found
at (ANTONELLI; INGARDEN; MATSUMOTO, 1993). One can show that a Jacobi field 𝑉 𝑖, solution
of (4.20), along a geodesic 𝛾(𝑠) may be expressed as

𝑉 𝑖 = 𝑣(𝑠)𝑚𝑖.
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Use of (4.21) and (4.22) give us

ℛ𝑖
𝑗𝑘𝑦

𝑗 = 𝐹 2𝒦𝑚𝑖𝑚𝑘. (4.23)

Therefore, the equation (4.23) reduces the Jacobi equation D2𝑉 𝑖

𝑑𝑠2 + ℬ𝑖
𝑗𝑉

𝑗 = 0 to

𝑑2𝑉

𝑑𝑠2 + 𝒦𝑉 = 0.

In the chapter 2, the posposition (3.4) discuss about the instability of (4.19) in the sense
of Jacobi instability using the eigenvalues of ℬ𝑖

𝑗. A characterization of Jacobi instability was
developed in terms of the Berwald’s Gaussian curvature 𝒦 as you can see this relation at
(ANTONELLI; H.BRADBURY, 1996). According to definition (3.3) we have the following result:

• If 𝒦(𝑥, 𝑦) > 0 everywhere on ̃︂𝑇𝑀 , then (4.19) is Jacobi-stable;

• If 𝒦(𝑥, 𝑦) ≤ 0 everywhere on ̃︂𝑇𝑀 , then (4.19) is Jacobi-unstable.

This notion of stability is a Lyapunov notion, but it is a whole trajectory concept.
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5 APPLICATION

5.1 BLEACHING RECOVERY MODEL

Let 𝑁1(𝑡), 𝑁2(𝑡) and 𝑁3(𝑡) be continuous functions of time which denote coral, symbiotic
alga and commensal alga population density, respectively. We split this modelling in three
stages: (𝐼) Commensal + Symbiosis; (𝐼𝐼) Symbiosis + Competition; (𝐼𝐼𝐼) Symbiosis. Here,
it is initially assumed the pre-symbiant condition 𝜆(𝑁1) = 𝜆(𝑁2) = 𝜆(𝑁3) = 𝜆, where these
constants have the same meaning as in (4.8). Following this pre-symbiont assumptions, we
can describe these three stages of interactions between coral and algae.

Remark. The first stage describes how these three species live in the coral reef barrier
before bleaching; Second stage is the dynamic produced by bleaching, and we will focus our
attention at the competition between the algae while the coral stay in its stable steady state;
in the last one, we suppose alga 𝐴2 will develop a symbiotic relation with the coral which was
invaded by the outside algae, creating the condition to stop bleaching and start the recovering
process.

• Commensal + Symbiosis

At this stage we suppose water temperature is adequate for both species of Alga and
to the Coral. First, note that algae 𝐴2 lives outside the Polyp (commensal relation), then
this interaction is beneficial only one to alga 𝐴2. By the other hand, alga 𝐴1 and coral have
a symbiotic interaction. So, we can describe this relation by extended interactive equations
(4.15) as follow: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑁1

𝑑𝑡
= 𝜆𝑁1 − 𝜆(𝑁1)2

𝐾(1)
+ 𝛿(1)

𝜆𝑁𝑁2

𝐾(1)

𝑑𝑁2

𝑑𝑡
= 𝜆𝑁2 − 𝜆(𝑁2)2

𝐾(2)
+ 𝛿(2)

𝜆𝑁2𝑁1

𝐾(2)

𝑑𝑁3

𝑑𝑡
= 𝜆𝑁3 − 𝜆(𝑁3)2

𝐾(3)
+ 𝛿(3)

𝜆𝑁3𝑁1

𝐾(3)

(5.1)

where 𝛿′𝑠 > 0 to describes the symbiosis. If 𝑁1 was affected by 𝑁3, there would be a 4𝑡ℎ

term in the 1𝑠𝑡 equation, but for now, we are supposing that 𝑁1 and 𝑁3 have no interaction.

• Symbiosis + Competition
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We suppose that due to the weakening of the symbiont alga, an external secundary one
is allowed in the coral. Here we assume that water warming is less lethal to 𝑁3 than to 𝑁2.
The increasing water temperature produce a decreasing population density of algae 𝑁2, since
these species are not well adjusted to live in these conditions. This situation provides adequate
conditions to algae 𝑁3 penetrate the Polyp to establish the symbiotic relation that coral needs
to live. In this case we have a dynamic where each specie interact to each other described as
follow: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑁1

𝑑𝑡
= 𝜆𝑁1 − 𝜆(𝑁1)2

𝐾(1)
+ 𝛿(1)

𝜆𝑁1(𝑁2 +𝑁3)
𝐾(1)

𝑑𝑁2

𝑑𝑡
= 𝜆𝑁2 − 𝜆(𝑁2)2

𝐾(2)
+ 𝛿(2)

𝜆𝑁2𝑁1

𝐾(2)
− 𝜇(2)

𝜆𝑁2𝑁3

𝐾(2)

𝑑𝑁3

𝑑𝑡
= 𝜆𝑁3 − 𝜆(𝑁3)2

𝐾(3)
+ 𝛿(3)

𝜆𝑁3𝑁1

𝐾(3)
− 𝜇(3)

𝜆𝑁2𝑁3

𝐾(3)

(5.2)

where 𝜇(𝑖) (𝑖 = 2, 3) are positive contants and 𝜇(𝑖) is the impact that 𝑁 𝑖 suffers by interection
with specie 𝑁 𝑗, for 𝑖, 𝑗 ∈ {2, 3}. We expect that competition between 𝑁2 and 𝑁3 is so strong
that we can assume 𝜇(2), 𝜇(3) ≫ 𝛿(1), 𝛿(2), 𝛿(3). Therefore (5.2) becomes a classical Gause-Witt
competition system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑁2

𝑑𝑡
= 𝜆𝑁2 − 𝜆(𝑁2)2

𝐾(2)
− 𝜇(2)

𝜆𝑁2𝑁3

𝐾(2)

𝑑𝑁3

𝑑𝑡
= 𝜆𝑁3 − 𝜆(𝑁3)2

𝐾(3)
− 𝜇(3)

𝜆𝑁2𝑁3

𝐾(3)
.

(5.3)

As we have supposed that warmer water is more lethal to 𝑁2 than 𝑁3, then 𝜇3 < 𝜇2

because this competition is harder 𝑁2. Thus, by item 2 of theorem 1 we can conclude that
𝑁2 is eliminated by the competition described in (5.3).

• Symbiosis

After elimination of 𝑁1 by competition with 𝑁3, the coral 𝑁1 has a new alga population
to establish a symbiotic relation and then stop bleaching. The situation before bleaching and
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after recovering is quite the same in the sense of system of equations as follow:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑁1

𝑑𝑡
= 𝜆𝑁1 − 𝜆(𝑁1)2

𝐾(1)
+ 𝛿(1)

𝜆𝑁1𝑁2

𝐾(1)

𝑑𝑁3

𝑑𝑡
= 𝜆𝑁3 − 𝜆(𝑁3)2

𝐾(3)
+ 𝛿(3)

𝜆𝑁3𝑁1

𝐾(3)

(5.4)

Remark. Equations (5.4) have the same form of the equations system to describe interaction
of 𝑁1 and 𝑁2 in (5.1). This occurs because 𝑁2 is supplanted by 𝑁3.

5.2 PROPOSAL OF THE MODEL

Before bleaching disruption, it is known that coral and symbiotic alga develop a by-product
as a result of their interaction. The same occurs after bleaching recovery since we are assuming
alga 𝑁3 becomes the symbiotic alga before the coral dies completely. Volterra-Hamilton is well
suited to describe this production. For simplicity, we suppose all three populations have the
same percapita rate of production (set 𝑘(𝑖) = 1, 𝑖 = 1, 2, 3), and hence we present the first
situation, before bleaching, with classical ecological interaction equations as follow:

𝑑𝑥1

𝑑𝑡
= 𝑁1,

𝑑𝑁1

𝑑𝑡
= 𝜆𝑁1 − 𝜆(𝑁1)2

𝐾(1)
+ 𝛿(1)

𝜆𝑁1𝑁2

𝐾(1)
(5.5)

to describe how coral produce and interact with the symbiotic algae. Likewise, the production
of algae represented by 𝑁2 is given by equations:

𝑑𝑥2

𝑑𝑡
= 𝑁2,

𝑑𝑁2

𝑑𝑡
= 𝜆𝑁2 − 𝜆 (𝑁2)2

𝐾(2)
+ 𝛿(2)

𝜆𝑁2𝑁1

𝐾(2)
(5.6)

where the quantities 𝑥1 and 𝑥2 are the Volterra production variable corresponding to each
specie.

Let (𝑥1, 𝑥2), (𝑁1, 𝑁2) be 4 coordinates in a open connected subset Ω of the Euclidian
4-dimensional space R2 × R2. Let us define a functional 𝐹 on ̃︂𝑇Ω, the tangent bundle with
deleted origin by:

𝐹 (𝑥, 𝑑𝑥) = 𝐹
(︁
𝑥1, 𝑥2, 𝑁1, 𝑁2

)︁
= 𝑒𝜓(𝑥1,𝑥2) (𝑁2)1+(1/𝜆)

(𝑁1)1/𝜆 (5.7)

where 𝜓 is of the form 𝜓 (𝑥1, 𝑥2) = 𝐴𝑥1 +𝐵𝑥2, with:

𝐴 = −
(︃
𝜆𝛿(2)

𝐾(2)
+ 𝐾(2) + 𝛿(2)𝐾(1)

𝐾(1)𝐾(2)

)︃
;

𝐵 =
⎛⎝−𝜆𝛿(1)

𝐾(1)
+

(1 + 𝜆)
(︁
𝐾(1) + 𝛿(1)𝐾(2)

)︁
𝐾(1)𝐾(2)

⎞⎠ ;
(5.8)
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For this functional 𝐹 let us verify the conditions in definition (2.5).

Claim 2. The pair F2 = (Ω, 𝐹 ) is a Finsler space.

Proof. Let (𝑥,𝑁) ∈ Ω, with 𝑥 = (𝑥1, 𝑥2) and 𝑁 = (𝑁1, 𝑁2). As 𝜓(𝑥) is clearly smooth for
each 𝑥, and hence 𝑒𝜓(𝑥) is also smooth. The smoothness of 𝐹 (𝑥, 𝑑𝑥) on ̃︂𝑇Ω is a simple check
that 𝐹 (𝑥, 𝑑𝑥) = 𝑒𝜓(𝑥)𝑃 (𝑁2)/𝑄(𝑁1), with 𝑃 and 𝑄 polynomial functions. As 𝑁1 > 0 on ̃︂𝑇Ω,

we have 𝐹
(︁
𝑥1, 𝑥1, 𝑁1, 𝑁1

)︁
= 𝑒𝜓(𝑥1,𝑥1) (𝑁1)1+(1/𝜆)

(𝑁1)
1
𝜆

= 𝑒𝜓(𝑥1,𝑥1)𝑁1 > 0. This shows that 𝐹 is

positive definite on ̃︂𝑇Ω.
Let 𝑟 ∈ (0,+∞). Note that

𝐹
(︁
𝑥1, 𝑥2, 𝑟𝑁1, 𝑟𝑁2

)︁
= 𝑒𝜓(𝑥1,𝑥2) (𝑟𝑁2)1+1/𝜆

(𝑟𝑁1)1/𝜆

= 𝑒𝜓(𝑥1,𝑥2)
(︁
𝑟1+1/𝜆

)︁
(𝑁2)1+1/𝜆

𝑟1/𝜆 · (𝑁1)1/𝜆

= 𝑟𝑒𝜓(𝑥1,𝑥2) (𝑁2)1+(1/𝜆)

(𝑁1)1/𝜆

= 𝑟𝐹 (𝑥1, 𝑥2, 𝑁1, 𝑁2),

which implies 𝐹 is p-homogeneous of degree 1 in 𝑁 .

The equations (5.5) and (5.6) are equivalent to a second order differential equations.
Passing 𝑥1(𝑡) and 𝑥2(𝑡) to the natural parameter 𝑑𝑠 = 𝜆𝑒𝜆𝑡𝑑𝑡, these equations become to be
a constant spray as in (4.18). This can be easily checked by the simple computation:

𝑑2𝑥1

𝑑𝑠2 = 𝑑

𝑑𝑠

(︂
𝑁1 1

𝜆𝑠

)︂
= 𝑑2𝑥1

𝑑𝑡2
1

𝜆2𝑠2 − 𝑑𝑥1

𝑑𝑡

1
𝜆𝑠2

= − 𝜆

𝐾(1)

(︃
𝑑𝑥1

𝑑𝑠

)︃2

+ 𝛿(1)𝜆

𝐾(1)

(︃
𝑑𝑥1

𝑑𝑠

)︃(︃
𝑑𝑥2

𝑑𝑠

)︃
,

and by symmetry, the constant spray is the following.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑑2𝑥1

𝑑𝑠2 + 𝜆

𝐾(1)

(︃
𝑑𝑥1

𝑑𝑠

)︃2

−
𝜆𝛿(1)

𝐾(1)

(︃
𝑑𝑥1

𝑑𝑠

)︃(︃
𝑑𝑥2

𝑑𝑠

)︃
= 0

𝑑2𝑥2

𝑑𝑠2 + 𝜆

𝐾(2)

(︃
𝑑𝑥2

𝑑𝑠

)︃2

−
𝜆𝛿(2)

𝐾(2)

(︃
𝑑𝑥2

𝑑𝑠

)︃(︃
𝑑𝑥1

𝑑𝑠

)︃
= 0,

(5.9)

with 𝛼1 = 𝜆

𝐾(1)
, 𝛽1 = 𝜆

𝐾(2)
, 2𝛼2 = 𝜆𝛿(1)

𝐾(1)
, 2𝛽2 = 𝜆𝛿(2)

𝐾(2)
and 𝛼3 = 0 = 𝛽3.

Theorem 5.1. Production given by (5.5) and (5.6) preserves 𝐹 (𝑥, 𝑑𝑥) along any solution 𝛾.
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Proof. By the chain rule the derivative of 𝐹 with respect to 𝑡 is:
𝑑𝐹

𝑑𝑡
= 𝜕𝐹

𝜕𝑥1𝑁
1 + 𝜕𝐹

𝜕𝑥2𝑁
2 + 𝜕𝐹

𝜕𝑁1 · 𝑑𝑁
1

𝑑𝑡
+ 𝜕𝐹

𝜕𝑁2
𝑑𝑁2

𝑑𝑡

= 𝐹

(︃
𝐴𝑁1 +𝐵𝑁2 − 1

𝜆𝑁1
𝑑𝑁1

𝑑𝑡
+ 1
𝜆𝑁2

𝑑𝑁2

𝑑𝑡
+ 1
𝑁2

𝑑𝑁2

𝑑𝑡

)︃

= 𝑁1
(︃
𝐴+ 1

𝐾(1)
+ 𝛿(1)

𝐾(2)
+ 𝜆𝛿(2)

𝐾(2)

)︃
+𝑁2

(︃
𝐵 −

𝛿(1)

𝐾(1)
− 1
𝐾(2)

− 𝜆

𝐾(2)

)︃
,

where constants (5.8) ensures that 𝑑𝐹/𝑑𝑡 = 0. This is the necessary condition to implies that
production given by (5.5) and (5.6) preserves 𝐹 (𝑥, 𝑑𝑥) along any solution 𝛾 of these equations
systems.

Under suitable conditions, the Finsler space F2 = (Ω, 𝐹 ) is called to be a Wagner space
and there are new results beyond the Finsler case. The paper (ANTONELLI, 2003b) is one of the
most complete work about Wagner theory in two-dimension with constant sprays and there
one can find a more elegant proof of the above theorem and much more about it. In this
theory, the equations (5.9) are called the Wagner autoparallels and these are almost never the
equations of the geodesics of the metric function 𝐹 (𝑥, 𝑑𝑥).

We will focus our attention to the constant spray (5.9) which describes the symbiotic
relation of production dynamics of algae and coral at barrier coral reef before bleaching. For
this one spray we have

2𝐺1 = 𝜆

𝐾(1)

(︃
𝑑𝑥1

𝑑𝑠

)︃2

−
𝜆𝛿(1)

𝐾(1)

(︃
𝑑𝑥1

𝑑𝑠

)︃(︃
𝑑𝑥2

𝑑𝑠

)︃
,

2𝐺2 = 𝜆

𝐾(2)

(︃
𝑑𝑥2

𝑑𝑠

)︃2

−
𝜆𝛿(2)

𝐾(2)

(︃
𝑑𝑥2

𝑑𝑠

)︃(︃
𝑑𝑥1

𝑑𝑠

)︃
;

(5.10)

then, the coefficients of spray (5.9) are:

𝐺1
11 = 𝜆

𝐾(1)
, 𝐺1

12 = −
𝜆𝛿(1)

𝐾(1)
= 𝐺1

21

𝐺2
11 = 𝜆

𝐾(2)
, 𝐺2

12 = −
𝜆𝛿(2)

𝐾(2)
= 𝐺2

21.

Now, we will use these coefficients to compute those five KCC-invariants mentioned in
theorem (3.3) to obtain information about the dynamics of the barrier coral reef and how
it will be related to dynamics after recovery bleaching. This computation will be evaluate
with (MAPLE, ) where will make use of (RUTZ, 2001). This is a great tool which has been
showed a very important useful in computing KCC-invariants and others Finsler geometrical
calculations. Because of this, we will consider (5.10) as in the general semispray (3.2) to obtain
the required.



(3)(3)

> > 

> > 

> > 

(5)(5)

(9)(9)

(7)(7)

> > 

(6)(6)

> > 

(10)(10)

> > 

(2)(2)

(1)(1)

(8)(8)

> > 

(4)(4)

> > 

2

The coordinates are:

The d-coordinates are:

49



> > 

> > 
(14)(14)

> > 

(15)(15)

> > 

(10)(10)

> > 

> > 

(12)(12)

> > 

(13)(13)

(16)(16)

(11)(11)
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Note that the matrix associated to the deviation tensor ℬ𝑖
𝑗 is as follow:

(ℬ𝑖
𝑗) =

⎛⎜⎜⎜⎜⎝
𝜆2𝛿(1)𝑁

2

𝐾(1)
ℬ1 −

𝜆2𝛿(1)𝑁
1

𝐾(1)
ℬ1

𝜆2𝛿(2)𝑁
2

𝐾(2)
ℬ2 −

𝜆2𝛿(2)𝑁
1

𝐾(2)
ℬ2

⎞⎟⎟⎟⎟⎠
where the constants ℬ′𝑠 are:

ℬ1 = 1
4
𝐾(1)𝛿(2)𝑁

1 −𝐾(2)𝛿(1)𝑁
2 + 2𝐾(1)𝑁

2

𝐾(1)𝐾(2)
,

ℬ2 = 1
4
𝐾(1)𝛿(2)𝑁

1 −𝐾(2)𝛿(1)𝑁
2 − 2𝐾(2)𝑁

1

𝐾(1)𝐾(2)
.

It is known that the characteristic polynomial of a 2 × 2 matrix as (ℬ𝑖
𝑗) is given by the

quadratic polynomial 𝑝(𝑟) = 𝑟2 − tr[(ℬ𝑖
𝑗)]𝑟 + det[(ℬ𝑖

𝑗)]. The above computation by maple
shows that the eigenvalues of ℬ𝑖

𝑗 have non-negative real part. One can check that the system
(5.5) and (5.6) has a positive equilibrium stead-point (𝑁1

* , 𝑁
2
* ) given by:

𝑁1
* = 𝐾(1) − 𝛿(1)𝐾(2)

1 − 𝛿(1)𝛿(2)
, 𝑁2

* = 𝐾(2) − 𝛿(2)𝐾(1)

1 − 𝛿(2)𝛿(1)
,

that is, this symbiotic relation has stability in the sense of population dynamics, however the
second KCC-invariant shows that trajectories of (5.9) are Jacobi unstable. This instability
means that the production relation between the coral and algae is unstable by proposition
(3.4). Besides the trajectories of spray (5.9) are not stable they are not the Euler-Lagrange
of functional 𝐹 . Although one can prove that 𝐹 is conserved along the Wagner autoparallels,
this model proposed to describes the symbiotic relation between the coral and algae is an easy
approach of the one of the most important production relation in a barrier coral reef. For this
reason we will consider a new Finsler functional that generates equations which are not just
ecological interactions.

Consider 𝐹 (𝑥, 𝑑𝑥) = 𝐹 , with 𝜓(𝑥) = 𝐴𝑥1 + 𝐵𝑥2 + 𝜈3𝑥
1𝑥2. The Euler-Lagrange for ̃︀𝐹

were once obtained in (MAPLE, ; RUTZ, 2001), and they are:

𝑑2𝑥1

𝑑𝑠2 + 𝜆(𝐴− 𝜈3𝑥
2)
(︃
𝑑𝑥1

𝑑𝑠

)︃2

= 0,

𝑑2𝑥2

𝑑𝑠2 + 𝜆
(︂
𝐵 + 𝜈3

𝜆+ 1𝑥
1
)︂(︃

𝑑𝑥2

𝑑𝑠

)︃2

= 0;
(5.11)

which is clearly different from (5.9). This tell us that the symbiotic relation between algae and
coral before the bleaching is not an optimal production.
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Note that, if 𝜈3 = 0, then the original two-dimensional logistic system (4.3) with production
are obtained. So, non-vanishes of the parameter 𝜈3 (called the exchange parameter) is responsible
to (5.11) describes a metabolic interaction. These equations have the spray form

𝑑2𝑥𝑖

𝑑𝑠2 +𝐺𝑖
𝑗𝑘

𝑑𝑥𝑗

𝑑𝑠

𝑑𝑥𝑘

𝑑𝑠
= 0,

with 𝐺𝑖
𝑗𝑘 = 𝐺𝑖

𝑗𝑘(𝑥) being explicit functions of coordinates 𝑥𝑖, only. These coefficients of spray
are expressed in (5.11) by:

𝐺1
11 = −𝜆𝜈3𝑥

2, 𝐺1
12 = 0 = 𝐺1

21,

𝐺2
11 = 𝜆𝜈3

𝜆+ 1𝑥
1, 𝐺2

12 = 0 = 𝐺2
21.

Moreover, Lyapunov stability (4.21) of this sytem is completely determined by the sign of the
curvature:

𝒦 = 𝜆2

𝜆+ 1 · 𝜈3 ·
(︃
𝑦1

𝑦2

)︃1+2𝜆

exp
{︁
−2

[︁
−𝐴𝑥1 +𝐵𝑥2 + 𝜈3𝑥

1𝑥2
]︁}︁
, 𝑦𝑖 = 𝑑𝑥𝑖

𝑑𝑠
. (5.12)

The exchange parameter, 𝜈3, is responsible to intensify the production dynamics between
these two species and determine the stability of (5.11) by the sign of 𝜈3. It is natural take
𝜈3 > 0 since we are interested in a new modelling with Jacobi stability.

This system is conservative relative to the total production parameter s, along its solution
in that 𝑑 ̃︀𝐹/𝑑𝑠 = 0. In addition, system (5.11) represents an optimal production dynamics and
its trajectories are Jacobi stable since the Gaussian curvature (4.21) 𝒦 > 0 for 𝜈3 > 0. There
are some production models where Volterra-Hamilton system (4.14) are not Euler-Lagrange
for any functional 𝐹 , and hence describes a non optimal production interaction. For example,
our first approach was a simple symbiosis which is not the geodesics of any Finsler space, so,
this interaction has not a satisfactory production.

This idea of considering a production cost functional ̃︀𝐹 is commonly used in our applications
when we are interested in studying optimally production relation of two species. There is a
good reason for that; notice that before we treat the properties of (5.11) we were working on
non-optimally productive and an unstable system. The same occur in (ANTONELLI P. L.; RUTZ,
2003). The metabolic characteristic in the interaction has a property about how intense is the
production dynamic between the species.

We present the maple calculus to obtain the geodesic spray 5.11) generated by the Euler-
Lagrange equations of ̃︀𝐹 (𝑥, 𝑑𝑥) as follow:



(6)(6)

(5)(5)

> > 

> > 

> > 

> > 
(1)(1)

(4)(4)

(3)(3)

(2)(2)

> > 

(7)(7)

> > 

> > 

The coordinates are:

The d-coordinates are:

The components of the metric are:
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(8)(8)

(9)(9)
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6 CONCLUSION

The reader can notice that equations (5.5) and (5.6) have a clear appearance with

𝑑𝑥1

𝑑𝑡
= 𝑁1,

𝑑𝑁1

𝑑𝑡
= 𝜆𝑁1 − 𝜆 (𝑁1)2

𝐾(1)
+ 𝛿(1)

𝜆𝑁1𝑁3

𝐾(1)
;

𝑑𝑥3

𝑑𝑡
= 𝑁3,

𝑑𝑁3

𝑑𝑡
= 𝜆𝑁3 − 𝜆 (𝑁3)2

𝐾(3)
+ 𝛿(3)

𝜆𝑁3𝑁1

𝐾(3)
,

(6.1)

even though they describes different moments in the barrier coral reef. This happens because
𝑁3 occupies 𝑁2 niche. The first one (5.5) and (5.6) accords to the symbiotic relation before
coral reef starts bleaching. The second one is the symbiotic relation after bleaching recovery of
coral reef. The resemblance between these equations may be justified by the classical models
we choose to start the modeling and because both represent a symbiotic relation. Converting
𝑡 into the natural parameter 𝑠 = 𝑒𝜆𝑡, the equations (6.1) becomes:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑2𝑥1

𝑑𝑠2 + 𝜆

𝐾(1)

(︃
𝑑𝑥1

𝑑𝑠

)︃2

−
𝜆𝛿(1)

𝐾(1)

(︃
𝑑𝑥1

𝑑𝑠

)︃(︃
𝑑𝑥3

𝑑𝑠

)︃
= 0,

𝑑2𝑥3

𝑑𝑠2 + 𝜆

𝐾(3)

(︃
𝑑𝑥3

𝑑𝑠

)︃2

−
𝜆𝛿(3)

𝐾(3)

(︃
𝑑𝑥1

𝑑𝑠

)︃(︃
𝑑𝑥3

𝑑𝑠

)︃
= 0,

(6.2)

which is also an ecological interaction.
According to theorem (3.3) we have should compute the five KCC-invariants of (6.1 to

verify the equivalence between the two systems, however there is no why efforts to compute
the KCC-invariants of (6.2) because it has the same form as (5.9) and consequently the KCC-
invariants of (6.2) can be obtained from the maple calculus (5.2) with a simple replacement
of 𝐾(2), 𝛿(2) and 𝑁2 by 𝐾(3), 𝛿(3) and 𝑁3, respectively. Thus, the KCC-invariants of (5.5)

and (6.1) are equivalent relative to (3.3). According to the main theorem of KCC-theory
(3.3) we have that the production dynamics given before bleaching is "equal" to production
dynamics after bleaching recovery. Assuming that the new alga replaces the original one in the
same ecological niche to be the new symbiotic alga, we interpret this event as representing
an adaptation process, as oppose to an evolutionary one, where the cost of production is
supposed to diminish, leading to a more efficient interaction pattern. If we consider the same
Finsler space F2 = (Ω, 𝐹 ) of claim (2), with 𝐹 = 𝐹 (𝑥1, 𝑥3, 𝑁1, 𝑁3) as in (5.7) and (5.8)

after change 𝑥2 by 𝑥3 and 𝑁2 by 𝑁3. Similarly, one can prove that 𝑑𝐹/𝑑𝑠 = 0 along any
solution of (6.2) and furthermore eigenvalues of the second KCC-invariant of the above spray
has non-negative real part. So, the new equations have also non stable trajectories in the
Jacobi’s sense. This was expected from the production relation before coral bleaching and
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after bleaching recovery because the production of the simple symbiotic approach in (5.4) is
not too significant as production of other species. To solve this problem we consider the Finsler
functional ̃︀𝐹 = 𝐹 (𝑥1, 𝑥3, 𝑁1, 𝑁3), with 𝜓(𝑥1, 𝑥3) = ̃︀𝐴𝑥1 + ̃︀𝐵𝑥3 + 𝜈3𝑥

1𝑥3. The geodesics for̃︀𝐹 are given by:
𝑑2𝑥1

𝑑𝑠2 + 𝜆( ̃︀𝐴+ 𝜈3𝑥
2)
(︃
𝑑𝑥1

𝑑𝑠

)︃2

= 0,

𝑑2𝑥3

𝑑𝑠2 + 𝜆
(︂ ̃︀𝐵 + 𝜈3

𝜆+ 1𝑥
1
)︂(︃

𝑑𝑥3

𝑑𝑠

)︃2

= 0,
(6.3)

where 𝜈3 is the same exchange parameter, responsible for the metabolic interaction between
species #1 and #2. This metabolic interaction is completely determined by the Gaussian
curvature given by:

𝒦 = 𝜆2

𝜆+ 1 · 𝜈3 ·
(︃
𝑦1

𝑦3

)︃1+2𝜆

exp
{︁
−2

[︁
−𝐴𝑥1 +𝐵𝑥3 + 𝜈3𝑥

1𝑥3
]︁}︁
, 𝑦𝑖 = 𝑑𝑥𝑖

𝑑𝑠

which is positive, because 𝜈3 is supposed to be positive. The correspondent description of
these subjects such as sprays and Gaussian curvature is already detailed in the section (4.3).
By a similar argument applied to the system describing production dynamics before coral
bleaching, one can see that the metabolic interaction (6.3) has the appropriate properties of
the production dynamics between the coral and algae. Calculation ensuring this result can be
found on appendix A.

A perspective of new researches from this work arise by the insertion of an external force in
the environment. If we consider again (5.5) and (5.6), but now with 𝑒𝑖 = −(𝛿𝑖𝑗𝜎𝑘(𝑥))𝑁 𝑗𝑁𝑘,
and 𝜎𝑘(𝑥) being a smooth covariant vector field on production space there is a new dynamic
to investigate. That is, the new equations are Volterra-Hamilton system (4.14) representing a
non-constant environments.
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The coordinates are:

The d-coordinates are:
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The coordinates are:

`Y assigned to DCoordinateName`
The d-coordinates are:

The components of the metric are:
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