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ABSTRACT

In this work, we calculated the thermal conductivity in the 110 direction of Si membranes

with a thickness of a single unit cell (5.431 Angstrom), using the homogeneous non-equilibrium

molecular dynamics method. The calculated conductivity using this method for these mem-

branes exhibits a size dependence with respect to to the x, y plane dimensions, but shows

convergence for sizes larger than 𝐿 × 𝐿 with 𝐿 = 30.72 nm. The conductivity is found to be

61.73 W/m/K. We also employed the spectral decomposition method of heat flux to separate

the average contribution of vibrational modes (phonons) to thermal conductivity. This analysis

revealed that the major contribution comes from low-frequency modes (𝑓 ≤ 4.5 THz). Addi-

tionally, decomposing the conductivity into in-plane and out-of-plane components allows us to

show that the in-plane components (longitudinal and transverse acoustic modes) are the pre-

dominant ones. It was observed that the introduction of periodic defects in these membranes

reduces the conductivity value by around 90% . This reduction also depends on the defect’s

geometrical shape. We tested circular, square, and equilateral triangle shapes for the same

removed material density (different shapes with same area). The reduction is approximately

90% for squares (𝜅 = 6.037 W/m/K) and circles (𝜅 = 6.116 W/m/K), while it is 95% for tri-

angles (𝜅 = 3.290 W/m/K). This suggests that the phonon scattering at the defect interface

depends not only on the removed material density, as already known in literature, but also on

the geometric shape of the inserted defects.

Keywords: silicon membranes; thermal conductivity; phonons; defects; molecular dynamics.



RESUMO

Neste trabalho calculamos a condutividade térmica na direção 110 de membranas de Si

com espessura de uma única célula unitária (5.431 Angstrom), usando o método de dinâmica

molecular homogênea de não-equilíbrio. A condutividade calculada por esse método para essas

membranas apresenta dependência com o tamanho no plano x,y, mas mostra convergência

para tamanhos maiores do que 𝐿 × 𝐿 com 𝐿 = 30.72 nm, sendo a condutividade dada por

61.73 W/m/K. Também usamos o método de decomposição espectral do fluxo de calor, para

separar a contribuição média dos modos vibracionais (fônons) para a condutividade, o que nos

mostra que a maior contribuição vem dos modos de baixa frequência (𝑓 ≤ 4.5 THz). Além

disso a decomposição da condutividade em componentes dentro e fora do plano, nos permite

mostrar que as componentes dentro do plano (modos acústicos longitudinais e transversais)

são predominantes. Observamos ainda que a inserção de defeitos periódicos nessas membranas,

reduz em cerca 90% o valor da condutividade. Essa redução depende também do formato do

defeito. Testamos formatos circulares, quadrados e triangulos equiláteros, para uma mesma

densidade de material removido (formas com a mesma área). A redução é cerca de 90% para

quadrados (𝜅 = 6.037 W/m/K) e círculos (𝜅 = 6.116 W/m/K), mas é de 95% para os

triângulos (𝜅 = 3.290 W/m/K). O que indica que o espalhamento dos fônons na interface dos

defeitos depende não só da densidade de material removido, como já é conhecido na literatura,

mas também da forma geométrica dos defeitos inseridos.

Palavras-chave: membranas de silício; condutividade térmica; fonôns; defeitos; dinâmica

molecular.
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1 THERMAL PROPERTIES AND APPLICATIONS OF SILICON MATERIALS

Bulk Silicon crystals which crystallize in diamond structure, illustrated in Fig. 1b, are

known to be good heat conductors (𝜅 > 100 Wm−1K−1) with heat conductivity 𝜅 = 148

Wm−1K−1 at room temperature (300K) [1]. Bulk silicon has a volume thermal expansion

coefficient 𝛼𝑣 = 9 × 10−6K−1 , which is considered low. Typically, metallic materials have

higher thermal expansion coefficient values with gold being the smallest of them 𝛼𝑣 < 42.6 ×

10−6K−1 [2]. This indicates that bulk silicon undergoes minimal expansion or contraction

when exposed to temperature changes. This property makes this material an excellent choice

for high-temperature applications where dimensional stability is crucial, such as in electronic

devices’ thermal management systems.

Figure 1 – (a) a-SiO2 crystal structure and (b) Bulk Silicon diamond structure.

Source: M. Uemoto et. al (2019) [3]

Silicon is also commonly used in photovoltaic devices, which convert sunlight into electricity.

The first photovoltaic cell made of silicon was created at Bell Labs in 1954 [4]. One of the

crucial factors for efficient photovoltaic devices, is heat dissipation. In fact, temperature loss

is the dominant factor for decrease in photovoltaic’s efficiency [5]. Then, its clear that a

material with a high thermal conductivity allows heat to be dissipated more efficiently, which

can help prevent overheating and degradation of the device’s performance. Therefore, the

thermal conductivity of silicon plays a critical role in the efficiency and long-term stability of

photovoltaic devices.

In addition to bulk silicon, other forms of silicon such as silicon dioxide (SiO2) have impor-

tant electronic applications. Silicon dioxide, presented in Fig. 1a, is an electrical insulator used
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in microelectronics as an intermediate layer material between conductive materials. Amorphous

films of SiO2 have a low thermal conductivity ranging from 0.8 to 2.2 Wm−1K−1 (depending

on the film thickness), which is much lower than that of bulk silicon [6]. This low thermal

conductivity makes SiO2 an excellent insulating material for microelectronics, where it is often

used as a dielectric layer between good electrical conductor materials. Its low thermal con-

ductivity allows it to effectively block the transfer of heat between the conductive materials,

preventing overheating and damage.

Silicon carbide (SiC) is a highly sought-after silicon-based material in high-temperature

applications such as thermal management systems and power electronics. It possesses a sig-

nificantly higher bandgap of 2.9 eV for 6H-SiC polytype when compared to bulk silicon’s 1.1

eV, making it ideal for high-frequency applications [7]. In addition, SiC’s larger breakdown

voltage of 4 MV/cm, surpasses that of silicon (and 0.3 MV/cm), allowing it to be utilized in

microelectronic Metal Oxide Field Effect Transistors (MOSFETs) operating at much higher

voltages than pure silicon [7, 8].

Figure 2 – SiC structures (a) 3C and 6H polytypes (blue means carbon and yellow means Si atoms) and (b)
4H polytype, k means quasi-cubic sites and h quasi-hexagonal sites (yellow means Si and black
means C atoms).

(a) (b)

Sources: (a) Zhe Cheng et. al (2022) [6] and (b) M. O. de Vries et. al (2021) [9]

What sets SiC apart from other materials is its exceptional thermal conductivity, ranging

from 300 to 500 Wm−1K−1 at room temperature, depending on the polytype considered [6].



12

This thermal conductivity is significantly higher than that of SiO2 and even surpasses that

of bulk silicon. Additionally, SiC exhibits excellent mechanical and chemical properties, which

make it a highly reliable and versatile material in high-temperature applications.

The thermal conductivity of SiC can vary depending on its crystal structure. SiC has several

polytypes, including 3C-SiC and 6H-SiC both showed in Fig. 2a and also 4H-SiC in Fig. 2b,

which have different crystal structures and thermal conductivities. The polytypes 4H-SiC and

6H-SiC show anisotropic heat conductivity values and both of them shows hexagonal symmetry.

For the direction parallel to the c-axis of symmetry (out of plane) 4H-SiC and 6H-SiC show

heat conductivities of 345 and 320 Wm−1K−1, respectively. For the direction perpendicular to

the c-axis (in plane) direction the values are 415 and 390 Wm−1K−1 [10]. The 3C-SiC form

shows cubic symmetry and an isotropic heat conductivity value of 500 Wm−1K−1, the highest

between the three kind of polytypes [6]. These high thermal conductivities make SiC a valuable

material for applications where efficient heat dissipation is crucial.

While it has been previously pointed out that the thermal conductivity of silicon (Si)

materials can be drastically altered by chemical bonding with other atoms such as oxygen

(O) and carbon (C), it is not always necessary to engage in such processes in order to achieve

changes in Si’s thermal properties. In fact, conductivity reduction can be achieved using pure Si

crystals. By utilizing two-dimensional (2D) silicon membranes instead of infinite bulk systems,

a drastic reduction of silicon heat conductivity can be obtained, when compared to its bulk

value [11].

1.1 TWO DIMENSIONAL MEMBRANES

It is known that phonon scattering is the responsible for heat conductivity reduction in solid

materials. In the specific case of 2D membranes, as the thickness dimension it is much smaller

than the other two it is expected that boundary scattering in this direction contributes more

for heat conductivity reduction. The dimensionality reduction also affects the group velocity

of phonons in the smallest direction of these Si membrane, which also contributes to decrease

in thermal conductivity. [11, 12] Heat conductivity shows to be a monotonically decreasing

function of membrane thickness, as Neogi and Donadio showed on their paper, reprinted in Fig

3. This effect is general and only has to do with the size reduction of the boundaries rather

than the material being studied, as Anufriev et. al verified the same functional behavior for

membranes made of SiC [12]. Another strategy to further decrease the conductivity of such
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Figure 3 – Normalized heat conductivity for Si as a function of membrane thickness. Note that heat conduc-
tivity is a monotonically decreasing function of membrane thickness

Source: Neogi and Donadio (2015) [11]

membranes is to explore the concept of Phononic Crystals (PNCs).
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1.2 PHONONIC CRYSTALS

In recent years PNCs have gained a lot of attention. The idea of PNCs is to modify an

existing material considered as the matrix by introducing periodically arranged defects made

of another material with different physical properties. On Fig. 4 there is an illustration of a

Figure 4 – Example of a generic phonic crystal membrane with periodicity a

Source: The author (2023)

generic PNC with circular defects. It has been verified that this type of combination creates

the possibility of zone folding behavior. That is, the phonon density of states exhibit gaps

into some ranges of frequency. Which is equivalent to say that the dispersion relations for the

phonons are modified in such a way that some frequencies do not contribute to the density of

states inside the first Brillouin Zone (BZ), as showed in Fig. 5 [14, 15]. These band gaps are

important because they spam different frequency ranges of the spectrum going from audible

sound (20 Hz to 20 KHz [16]), to kHz [17], to MHz [18] and more recently even a few GHz [19]

where photonic aplications are also important. The complete absence of mechanical vibration

into a given frequency range gives the most obvious application that is to use these PNCs

as physical filters of waves, for example. The not so obvious application is related to thermal

conductivity reduction. The lower frequency modes of a material (at room temperature) are

the ones that contribute the most to the lattice thermal conductivity. If the gap happens to

be in some region that affects this low frequency modes, the absence of mechanical modes
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Figure 5 – Dispersion relation bandgap in a phononic crystal

Source: J.N. Becker (2017) [13]

allows one to tune the heat conductivity of a (matrix) material that is a good conductor into

a heat insulator, only by modifying the type and the periodicity of defects inserted into it.

The key factors for the appearance of this zone folding behaviour on the dispersion relations

seems to be the difference in the velocity of sound, elastic constants and density between the

matrix and the defect material [14].

Our goal with this work is to explore these periodic array of defects with different geomet-

rical shapes in Si membranes and see how they can affect its heat conductivity. For thermal

conductivity calculations we will be using molecular dynamics and a method called Homo-

geneous Non Equilibrium Molecular Dynamics (HNEMD), which will be further detailed in

chapter 3, section 3.2. Before getting into the methodology section we will detail, in the next

chapter 2, another approach to calculate heat conductivity which is the one of solving the

Boltzmann Transport Equation (BTE).
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2 HEAT CONDUCTIVITY THEORY

The state of the art approaches of solving the BTE equation usually rely on approximation

of three, four and higher order phonon scattering process that usually rely on first principle

calculations [20, 21]. Despite using this method not being the focus of our work here, a simpler

approximation of the BTE can be explored to offer some insight into how each individual

phonon branch contributes to the overall thermal conductivity. In order to write an expression

for the transport coefficients associated with phonons (heat conductivity coefficient) in terms

of microscopic variables, it is necessary to solve the BTE. The derivation of the equations in

the next sections will be based on Henry [22] and Ziman’s book [23, Chapter 7].

2.1 BOLTZMANN TRANSPORT EQUATION

The BTE is an equation that relates the scattering rates of microscopic particles (electrons

and phonons) with the forces acting upon them. The function that represents the particles

is the probability distribution function 𝑓(𝑟), and it represents the number of particles in the

neighborhood of 𝑟, in essence the occupation number. At equilibrium, when no perturbations

are applied to the system this function 𝑓 0 has the form for phonons (for electrons) of the

Bose-Einstein (Fermi-Dirac) distribution:

𝑓 0 = 1

𝑒
(𝐸−𝜇)
𝑘𝐵𝑇 + 𝜂

(2.1)

where ℎ is planck’s constant, 𝑘𝐵 is Boltzmann constant, 𝑇 is the temperature, 𝐸 is the system

energy and 𝜇 is the chemical potential. Also 𝜂 = +1 for electrons and 𝜂 = −1 for phonons.

For phonons we can take 𝐸 = ℎ𝜈, where 𝜈 is the phonon frequency.

Working in k-space the function 𝑓(𝑟) depends on the crystal momentum of the lattice so

it will be relabeled as 𝑓𝑘, and with this notation the full BTE, under the assumption of steady

state condition, can be written as:

𝑓𝑘(diffusion) + 𝑓𝑘(fields) + 𝑓𝑘(scattering) = 0, (2.2)

the first term on the left hand side is related to diffusion. Using the chain rule, the probability

distribution 𝑓𝑘 changes with time as:
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𝑓𝑘(diffusion) = −𝜕𝑓𝑘

𝜕r .
𝜕r
𝜕𝑡

= −v𝑘.
𝜕𝑓𝑘

𝜕r
, (2.3)

the second term is related to how external fields are able to change the distribution 𝑓 , as

before the chain rule gives:

𝑓𝑘(fields) = −𝜕𝑓𝑘

𝜕k .
𝜕k
𝜕𝑡

, (2.4)

for phonons the term 𝜕k
𝜕𝑡

= 0, but for carriers with charge (electrons or holes), the term k̇ can

be written as:

k̇ = 𝑒

ℎ̄
[E + (v𝑘 × B)]

𝑓𝑘(fields) = −𝜕𝑓𝑘

𝜕k .
(︂

𝑒

ℎ̄
[E + (v𝑘 × B)]

)︂ (2.5)

where E and B are the external electric and magnetic field, respectively. And 𝑒 represents the

elementary electron’s charge, such that 𝑒 < 0 for an electron and 𝑒 > 0 for a hole. Substituting

equations 2.3, 2.4 and 2.5 back into 2.2 we get the full BTE equation:

𝑓𝑘(scattering) = v𝑘.
𝜕𝑓𝑘

𝜕r + 𝜕𝑓𝑘

𝜕k .
(︂

𝑒

ℎ̄
[E + (v𝑘 × B)]

)︂
(2.6)

2.2 LINEARIZED BOLTZMANN EQUATION SOLUTION FOR PHONONS

The whole problem of solving the BTE is the scattering term on the left hand side of equa-

tion 2.6. The simplest assumption is to consider that the probability distribution does not devi-

ate much from its equilibrium form in equation 2.1 and since the condition 𝑓𝑘(scattering)0 = 0

has to be satisfied, the scattering term can be written as:

𝑓𝑘(scattering) = −𝑓𝑘 − 𝑓 0
𝑘

𝜏
(2.7)

where 𝑓 0
𝑘 is given in 2.1 and 𝜏 is a relaxation constant that holds information about scattering

events, the minus sign is convention. Substituting that on the full BTE equation for phonons

(where the second term on the right hand side in equation 2.6 is zero), we obtain the linearized

Boltzmann equation:

𝑓𝑘 = 𝑓 0
𝑘 −

(︃
v𝑘.

𝜕𝑓𝑘

𝜕r

)︃
𝜏 (2.8)
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from the form of 𝑓 0
𝑘 one seems to think that the function 𝑓𝑘 does not depend on the position,

but if we assume once again the chain rule and the fact that 𝑓𝑘 represents a small deviation

from 𝑓 0
𝑘 , then:

𝜕𝑓𝑘

𝜕r ≈ 𝜕𝑓 0
𝑘

𝜕𝑇
∇𝑇

𝑓𝑘 = 𝑓 0
𝑘 −

(︃
𝜕𝑓 0

𝑘

𝜕𝑇
v𝑘.∇𝑇

)︃
𝜏

(2.9)

where ∇𝑇 represents the temperature gradient on the system. Equation 2.9 is the Linearized

Boltzmann equation for phonons. Once the solution is found, one can calculate the heat flux

along any specific direction x̂ of the system as:

𝐽(𝑥) = 1
𝑉

∑︁
𝜆

∑︁
𝑘

𝐸𝑘,𝜆.𝑓𝑘,𝜆.v𝑘,𝜆.x̂ (2.10)

where 𝜆 represents the polarization of the mode, 𝑘 the sum over reciprocal space, and 𝑉 is the

sample volume. The sum over k-space can be converted into an integral and we can assume

that the density of states as a function of 𝑘 possess spherical symmetry (the last assumption

will be drooped latter on):

∑︁
𝑘

→
∫︁

𝑑3𝑘

𝑑3𝑘 = 𝑘2𝑑𝑘𝑑Ω(︁
2𝜋
𝑎

)︁3

(2.11)

where the variable 𝑎 represents the separation distance between the atoms. With those two

assumptions the heat flux can be rewritten as:

𝐽(𝑥) = 1
𝑉

∑︁
𝜆

∫︁ 𝑘=∞

𝑘=0

∫︁
Ω

𝐸𝑘,𝜆.𝑓𝑘,𝜆.𝑣𝑥,𝜆
𝑘2𝑑𝑘𝑑Ω(︁

2𝜋
𝑎

)︁3

𝐽(𝑥) = 1
𝑉

∑︁
𝜆

∫︁ ∞

0
𝐸𝑘,𝜆.𝑓𝑘,𝜆.𝑣𝑥,𝜆.𝐷(𝑘)𝑑𝑘

(2.12)

where on the last line of eq. 2.12 the condition of phase space spherical symmetry was drooped.

This can be seen by noticing that:

𝐷(𝑘)𝑑𝑘 =
∫︁

Ω

𝑘2𝑑𝑘𝑑Ω(︁
2𝜋
𝑎

)︁3 (2.13)

where 𝐷(𝑘)𝑑𝑘 represents the density of states in terms of wave vector 𝑘. In the density of

states definition 𝐷(𝑘)𝑑𝑘 = 𝐷(𝜈)𝑑𝜈 = 𝐷(𝐸)𝑑𝐸, such that the integral over k may be changed

into an integral over frequency, up to some frequency 𝜈𝑚𝑎𝑥. And using the fact that 𝐸𝑘 = ℎ𝜈

we obtain:
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𝐽(𝑥) = 1
𝑉

∑︁
𝜆

∫︁ 𝜈𝑚𝑎𝑥

0
ℎ𝜈𝜆.𝑓𝑘,𝜆.𝑣𝑥,𝜆.𝐷(𝜈)𝑑𝜈𝜆 (2.14)

where at equilibrium there is no average heat flux, such that the integral in 2.14 for 𝑓 0
𝑘 vanishes.

Then substituting the last line in eq. 2.9 on the previous integral, we get:

𝐽(𝑥) = − 1
𝑉

∑︁
𝜆

∫︁ 𝜈𝑚𝑎𝑥

0
ℎ𝜈𝜆.

𝜕𝑓 0
𝑘

𝜕𝑇
𝑣2

𝑥,𝜆.𝜏𝜆.
𝜕𝑇

𝜕𝑥
𝐷(𝜈)𝑑𝜈𝜆 (2.15)

where if the system is isotropic, 𝑣2
𝑥 = 1

3𝑣2. We can also define the heat capacity per unit volume

as a function of frequency as 𝐶(𝜈) = 1
𝑉

(︂
ℎ𝜈

𝜕𝑓0
𝑘

𝜕𝑇
𝐷(𝜈)

)︂
, so the heat flux can be rewritten as:

𝐽(𝑥) = −1
3
∑︁

𝜆

∫︁ 𝜈𝑚𝑎𝑥

0
𝐶𝜆(𝜈)𝑣2

𝜆.𝜏𝜆.𝑑𝜈𝜆.
𝜕𝑇

𝜕𝑥
(2.16)

this expression has the same form as the Fourier equation 𝐽 = −𝜅∇𝑇 with heat conductivity

𝜅 being given by:

𝜅 = −1
3
∑︁

𝜆

∫︁ 𝜈𝑚𝑎𝑥

0
𝐶𝜆(𝜈)𝑣2

𝜆.𝜏𝜆.𝑑𝜈𝜆, (2.17)

and in general 𝐶𝜆, 𝑣𝜆 and 𝜏𝜆 depend on the phonon branch 𝜆 being considered. By using the

definiton of mean free path Λ = 𝑣𝜏 , eq. 2.17 can be rewritten as:

𝜅 = −1
3
∑︁

𝜆

∫︁ 𝜈𝑚𝑎𝑥

0
𝐶𝜆(𝜈)𝑣𝜆.Λ𝜆.𝑑𝜈 (2.18)

that is, the overall thermal conductivity relates to the modal heat capacity, group velocity and

mean free path of each phonon mode.
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3 METHODOLOGY

3.1 MOLECULAR DYNAMICS SIMULATION

Molecular Dynamics (MD) is a simulation method that allows one to obtain time evolution

for atomic systems, and as consequence calculate quantities that exhibit time variation. This

kind of simulation is used in a large range of areas going from biology [24], to chemistry [25, 26]

and even condensed matter physics [27, 28]. Trajectories are generated following the laws of

classical mechanics. For the simplest formalism, keeping the number of particles constant, the

volume of the interest region fixed and requiring conservation of energy, we obtain the NVE

ensemble. Under NVE conditions, Hamilton equations reduce to the Newtonian equations of

motion. Given a potential function 𝑉 , for a particle of mass 𝑚 and velocity 𝑣 the Newtonian

equations of motion goes as follows:

𝐹𝑖 = −∇𝑖𝑉

𝑞𝑖 = 𝐹𝑖

𝑚𝑖

𝑞𝑖 = 𝑣𝑖

(3.1)

These equations can be numerically integrated to obtain the positions 𝑞𝑖(𝑡) and velocities

𝑞𝑖(𝑡) for all particles 𝑖 in the system, given the necessary initial conditions (starting geometry

and initial velocities of all particles). Newtonian equations can be numerically integrated to

obtain the trajectories of each particle on the system. Different numerical methods can be used

to integrate these equations of motion. The simplest method for integration of differential

equations in general is to assume that the derivative can be approximated by a ratio, if 𝑑𝑡 is

sufficiently small, that results in what is called the Euler method [29]:

𝑞𝑖(𝑡 + 𝑑𝑡) − 𝑞𝑖(𝑡)
𝑑𝑡

≈ 𝑞𝑖(𝑡)

𝑞𝑖(𝑡 + 𝑑𝑡) ≈ 𝑞𝑖(𝑡) + 𝑣𝑖𝑑𝑡

𝑣𝑖(𝑡 + 𝑑𝑡) ≈ 𝑣𝑖(𝑡) + 𝑞𝑖(𝑡)𝑑𝑡 = 𝑣𝑖(𝑡) + 𝐹 𝑖

𝑚𝑖

𝑑𝑡

(3.2)

The Euler method is just a Taylor series expansion for 𝑞𝑖(𝑡) and 𝑣𝑖(𝑡) truncated at first

order. The global error in Euler method is of order 𝑂(𝑑𝑡), that is, it scales linearly with 𝑑𝑡.

Even if a relatively small 𝑑𝑡 is chosen, accumulation of error makes the solutions for 𝑞𝑖(𝑡) and
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𝑣𝑖(𝑡) diverge if a large number of iterations is required, which results in non conservation of

energy. For that reason, the Euler method is rarely used for time integration in MD simulations.

Another method of integration is the Verlet algorithm [30, Chapter 3]. If we write the

Taylor series expansion for 𝑞𝑖(𝑡 + 𝑑𝑡) and 𝑞𝑖(𝑡 − 𝑑𝑡), we have:

𝑞𝑖(𝑡 + 𝑑𝑡) = 𝑞𝑖(𝑡) + 𝑣𝑖(𝑡)𝑑𝑡 + 1
2𝑎𝑖(𝑡)𝑑𝑡2

𝑞𝑖(𝑡 − 𝑑𝑡) = 𝑞𝑖(𝑡) − 𝑣𝑖(𝑡)𝑑𝑡 + 1
2𝑎𝑖(𝑡)𝑑𝑡2

(3.3)

Summing both equations in 3.3 we get the final form of the Verlet algorithm:

𝑞𝑖(𝑡 + 𝑑𝑡) = 2𝑞𝑖(𝑡) − 𝑞𝑖(𝑡 − 𝑑𝑡) + 𝑎𝑖(𝑡)𝑑𝑡2 (3.4)

Note that as velocity cancelled, if we had expanded the Taylor series up to third order in 3.3,

the terms carrying 𝑑𝑡3 would also cancel (in fact, all of the odd terms would cancel). So,

the local error on Verlet algorithm is of order 𝑂(𝑑𝑡4). This makes the Verlet algorithm much

more precise than the previous presented Euler method. Then, the original Verlet algorithm

does not require information about velocities, but it is necessary to have information about

𝑞𝑖(𝑡 − 𝑑𝑡) and 𝑞𝑖(𝑡) to initiate the method. A common way of circumvent this problem is to

use the initial positions as 𝑞𝑖(0) and calculate 𝑞𝑖(1) as in the Euler method. Then, from 𝑞𝑖(2)

onward, use equation 3.4. If velocities are required, it is possible to use the mid point rule to

calculate 𝑣𝑖(𝑡) as a ratio between 𝑞𝑖(𝑡 + 𝑑𝑡) and 𝑞𝑖(𝑡 − 𝑑𝑡):

𝑣𝑖(𝑡) ≈ 𝑞𝑖(𝑡 + 𝑑𝑡) − 𝑞𝑖(𝑡 − 𝑑𝑡)
2𝑑𝑡

(3.5)

Large-scale Atomic Molecular Massively Parallel Simulator (LAMMPS) use a variation

of the Verlet algorithm to integrate the differential equations under NVE conditions, which is

called Stormer-Verlet Algorithm or velocity-Verlet [30, Chapter 3]. The algorithm is similar, but

the step by step calculation of positions now depend on velocity. And the velocity calculation

depend on an average between 𝑎𝑖(𝑡) and 𝑎𝑖(𝑡 + 𝑑𝑡):

𝑞𝑖(𝑡 + 𝑑𝑡) = 𝑞𝑖(𝑡) + 𝑣𝑖(𝑡)𝑑𝑡 + 1
2𝑎𝑖(𝑡)𝑑𝑡2

𝑣𝑖(𝑡 + 𝑑𝑡) = 𝑣𝑖(𝑡) + 1
2 [𝑎𝑖(𝑡 + 𝑑𝑡) + 𝑎𝑖(𝑡)]

(3.6)

The advantage of using 3.6 over 3.4 and 3.5 is that, for the velocity-Verlet, the algorithm

is self initiative. That is, given the set of initial positions 𝑞𝑖(0) and velocities 𝑣𝑖(0), all of the

subsequent steps can be directly calculated from the set of equations 3.6. The local error is the
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same as in the original Verlet method, 𝑂(𝑑𝑡4). The step by step sequence to update positions

and velocities under this algorithm would be:

1. calculate acceleration 𝑎𝑖(0) based on initial positions 𝑞𝑖(0)

2. calculate 𝑞𝑖(𝑑𝑡), using the first equation in 3.6

3. calculate 𝑎𝑖(𝑑𝑡) based on the new positions 𝑞𝑖(𝑑𝑡)

4. calculate 𝑣𝑖(𝑑𝑡) using the equation for velocities in 3.6

And iterate the steps 2 − 4 up to the final timestep:

5. calculate 𝑞𝑖(2𝑑𝑡), using the first equation in 3.6
...

Note that in all of our previous discussions, it was always required to calculate the accelera-

tion at a given timestep 𝑡. That is where it lies the heart of MD simulations. The calculation of

acceleration is directly related to the force field, as given in equation 3.1. The results obtained

by the simulation are only reliable if the potential given by the force field is a good repre-

sentative of the system being simulated. For calculation of mechanical properties involving

Si, the Tersoff’s Potential [31, 32] remains the optimal choice, when it comes to empirically

parametrized potentials.

3.1.1 Tersoff’s Potential

The Tersoff potential was originally parametrized to reproduce lattice parameter and elastic

constants of bulk silicon [31]. The potential energy is written as a sum of cohesive energies

over each lattice site, in which the energy of a site is given by the interaction of an atom at

site i with all of its nearest neighbors j:

𝐸 =
∑︁

𝑖

𝐸𝑖 =
∑︁
𝑖 ̸=𝑗

1
2𝑉𝑖𝑗 (3.7)

Despite looking like a two-body potential function, that is not the case. The interaction energy

𝑉𝑖𝑗 for a given pair of atoms 𝑖, 𝑗 also depends on the interaction between atom 𝑖 and all of

its other nearest neighbors 𝑘, for 𝑘 ̸= 𝑗. That is, for the Tersoff model, the bonding between

two atoms 𝑖, 𝑘 can indirectly strengthen or weaken the 𝑖𝑗 bond, depending on their relative
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distances and angles. This characterizes 𝑉𝑖𝑗 as a many-body potential, with the functional

form:

𝑉𝑖𝑗 = 𝑓𝐶(𝑟𝑖𝑗)[𝑓𝑅(𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑓𝐴(𝑟𝑖𝑗)];

𝑓𝑅(𝑟) = 𝐴𝑒𝑥𝑝(−𝜆𝑟);

𝑓𝐴(𝑟) = −𝐵𝑒𝑥𝑝(−𝜇𝑟);

𝑓𝐶(𝑟𝑖𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, 𝑟𝑖𝑗 < 𝑅

1
2

(︁
1 + 𝑐𝑜𝑠[𝜋 (𝑟𝑖𝑗−𝑅)

𝑆−𝑅
]
)︁

, 𝑅 < 𝑟𝑖𝑗 < 𝑆

0, 𝑟𝑖𝑗 > 𝑆

𝑏𝑖𝑗 = (1 + 𝛽𝑛𝑖
𝑖 𝜁𝑛𝑖

𝑖𝑗 )− 1
2𝑛𝑖

𝜁𝑖𝑗 =
∑︁

𝑘 ̸=𝑖,𝑗

𝑓𝐶(𝑟𝑖𝑘)𝑔(𝜃𝑖𝑗𝑘)

𝑔(𝜃𝑖𝑗𝑘) = 𝛾𝑖𝑗𝑘

(︃
1 + 𝑐2

𝑖

𝑑2
𝑖

− 𝑐2
𝑖

[𝑑2
𝑖 + (ℎ𝑖 − 𝑐𝑜𝑠𝜃𝑖𝑗𝑘)2]

)︃

(3.8)

where 𝑓𝑅 is a repulsive term, 𝑓𝐴 is an attractive term, 𝑓𝐶 is a smooth cutoff function, that goes

from 1 to 0, chosen to guarantee continuity of the derivatives. 𝜁𝑖𝑗 is the term that contains the

influence of the 𝑖𝑘 bonds with nearest neighbors over the 𝑖𝑗 bond. 𝜃𝑖𝑗𝑘 represents the angle

between the 𝑖𝑗 bond and the 𝑖𝑘 bond. The parameter 𝑐𝑖 represents the intensity of the angular

effect and 𝑑𝑖 its "sharpness", that is, if 𝑑𝑖 is large (small) the angular variations would affect

less (more) the value of 𝑔(𝜃𝑖𝑗𝑘). ℎ𝑖 represents the 𝑐𝑜𝑠(𝜃0) with 𝜃0 representing the equilibrium

angle between the 𝑖𝑗 and 𝑖𝑘 bonds.

Despite being originally parameterized to represent lattice and elastic constants, Tersoff

showed on its first paper [31] that phonon dispersion relations calculated through lattice

dynamics for bulk Si were in good agreement with experimental data, even though no phonon

parameter was used to fit the potential.

The highest discrepancies are found near the first BZ boundaries for the acoustic phonons.

Since 1989, several other attempts have been made to parameterize potentials for bulk silicon.

As we can see in Fan’s paper Fig.4 [33] reprinted here in Fig. 6, most of the empirical potentials

developed so far (including his modified version called mini-Tersoff), have trouble near the zone

boundary matching the experimental results for some of the acoustic branches. This certainly

has an effect on thermal conductivity.

Fan showed that his mini-Tersoff potential has a better agreement than Tersoff itself to

thermal conductivity of bulk silicon at various temperatures (including 𝑇 = 300 K). No silicon
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Figure 6 – Reprinted phonon dispersion relations for bulk diamond silicon for different MD potential energy
functions, including the original Tersoff potential. Red line represents empirical potentials results
and blue dots represents experimental results.

Source: Fan et. al [33] (2019)

membranes have been tested in his work. Neogi and Donadio [11] have recently tried to

compute heat conductivity for silicon membranes using Tersoff’s potential, but the authors

claimed that their results do not seem to quantitativaly agree with experiments.

Henry [22] used Enviroment-Dependent Interatomic Potential (EDIP) [34] to calculate

thermal conductivity of bulk silicon as a function of temperature and his results seem to

be comparable, when it comes to agreement with experiments, as the ones obtained by Fan.

Although EDIP is computationally more expensive due to a higher number of parameters when

compared to Tersoff and specially mini-Tersoff which has 3 parameters less than Tersoff.

Throughout all of this work we used only Tersoff 1989 [32] potential, which in terms of

empirical potentials is one of the simplest and more computationally efficient potentials. It

was designed to represent bulk silicon we assume will also work well for Si membranes.

3.1.2 Thermostats

If simulations out of the microcanonical (NVE) ensemble are required, as NVT or NPT,

for example, there needs to be a way of controlling the system’s temperature or pressure as

we integrate the equations of motion during the production run. Controlling the temperature

during the simulation is the role of thermostats.
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3.1.2.1 Berendsen

One of the simplest algorithms to couple the system temperature to a heat bath is the

Berendsen Thermostat. Berendsen [35] started with the idea of modifying the equations of

motion inserting a friction term 𝛾 (chosen to be equal for all particles, for simplicity) on the

system and a random noise 𝑅𝑖(𝑡), which results in a Langevin equation:

𝑚𝑖𝑣𝑖 = 𝐹𝑖 − 𝑚𝑖𝛾𝑣𝑖 + 𝑅𝑖(𝑡) (3.9)

where the random noise vector 𝑅𝑖(𝑡) shows a delta time correlation function of the form:

∫︁ ∞

0
𝑅𝑖(𝑡)𝑅𝑗(𝑡 + 𝜏)𝑑𝑡 = 2𝑚𝑖𝛾𝑘𝐵𝑇0𝛿(𝜏)𝛿𝑖𝑗 (3.10)

where 𝑖 and 𝑗 stands for the particle’s index. This procedure allows to weak couple the system’s

degrees of freedom with an external reservoir at a temperature 𝑇0. In order to derive an

expression for the equation of motion for the temperature of the bath at all times 𝑡 is helpful

to evaluate the time derivative of kinetic energy for the system:

d𝐸𝑘𝑖𝑛

d𝑡
= lim

Δ𝑡→0

[︃∑︀3𝑁
𝑘=1

𝑚𝑘

2 (𝑣2
𝑘(𝑡 + Δ𝑡) − 𝑣2

𝑘(𝑡))
Δ𝑡

]︃
, (3.11)

where 𝑁 represents the number of particles, 𝑘 goes from 1 to 3𝑁 degrees of freedom. Inte-

gration of equation 3.9 from time 𝑡 to 𝑡 + Δ𝑡 allows to obtain the difference Δ𝑣:

Δ𝑣𝑘 = 𝑣𝑘(𝑡 + Δ𝑡) − 𝑣𝑘(𝑡)

Δ𝑣𝑘 = 1
𝑚𝑘

∫︁ 𝑡+Δ𝑡

𝑡
𝐹𝑘(𝑡′) + 𝑚𝑘𝛾𝑣𝑘(𝑡′) + 𝑅𝑘(𝑡′)𝑑𝑡′

(3.12)

From the first equation of 3.12, we can obtain the relation:

𝑣2
𝑘(𝑡 + Δ𝑡) − 𝑣2

𝑘(𝑡) = Δ𝑣𝑘
2 + 2Δ𝑣𝑘𝑣𝑘(𝑡) (3.13)

Substituting 3.13 and the second equation of 3.12 in 3.11, and using the result for the corre-

lation for 𝑅𝑖(𝑡) in 3.10 we end up with:

d𝐸𝑘𝑖𝑛

d𝑡
= lim

Δ𝑡→0

[︃∑︀3𝑁
𝑘=1(𝐹𝑘𝑣𝑘 + 𝛾𝑘𝐵𝑇0 − 𝑚𝑘𝛾𝑣2

𝑘)Δ𝑡 + 𝑂(Δ𝑡2)
Δ𝑡

]︃
d𝐸𝑘𝑖𝑛

d𝑡
=

3𝑁∑︁
𝑘=1

𝐹𝑘𝑣𝑘 + 𝛾(3𝑁𝑘𝐵𝑇0 − 2𝐸𝑘𝑖𝑛)

d𝐸𝑘𝑖𝑛

d𝑡
=

3𝑁∑︁
𝑘=1

𝐹𝑘𝑣𝑘 + 2𝛾(3
2𝑁𝑘𝐵𝑇0 − 𝐸𝑘𝑖𝑛)

(3.14)
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where the second term on the right-hand side (written in terms of temperature) represents

the equation for the time evolution of the reservoir temperature:

(︃
d𝑇

d𝑡

)︃
𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟

= 2𝛾(𝑇0 − 𝑇 ) (3.15)

choosing 𝑅𝑖(𝑡) = 𝑚𝑖𝛾
𝑇
𝑇0

𝑣𝑖 makes the time derivative of the kinetic energy exactly equal to

that obtained in the last equation 3.14. Note that the noise has no explicit dependence on

time. Although he started the derivation with the hypothesis that the equation had a stochastic

term 𝑅𝑖(𝑡) in it, this term did not need to be stochastic to fulfill the requirement of coupling

the system to a bath. Which results in the final equation of motion:

𝑚𝑖𝑣𝑖 = 𝐹𝑖 + 𝑚𝑖𝛾
(︂

𝑇0

𝑇
− 1

)︂
𝑣𝑖 (3.16)

So the whole Berendsen method is equivalent to the transformation 𝑣𝑖 → 𝜆𝑣𝑖, with 𝜆 equal

to: (with 𝛾 = 1
2𝜏

)

𝜆 =
[︃
1 + Δ𝑡

2𝜏

(︂
𝑇0

𝑇
− 1

)︂]︃
(3.17)

The Berendsen method fails to reproduce phase space trajectories for the canonical en-

semble, producing unrealistic fluctuations [36] and can only be used for equilibration of tem-

perature, not for full canonical NVT simulations.

3.1.2.2 Nosé-Hoover and the Chains

The Nosé-Hoover thermostat comes to solve the problem of non-canonical phase space

trajectories that happened in the Berendsen thermostat. To derive his equations of motion,

Nosé [37] used the strategy of re-scaling time by the transformation:

𝑑𝑡′ = 𝑑𝑡

𝑠
(3.18)

The variable 𝑠 represents the degree of freedom associated with the thermostat. With this

scaling procedure, momentum and positions (real variables) are transformed into what he

called "virtual variables":

𝑝𝑖
′ = 𝑝𝑖

𝑠

𝑞𝑖
′ = 𝑞𝑖

(3.19)
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where 𝑝𝑖
′ and 𝑞𝑖

′ are the real momentum and position of the particle 𝑖, respectively. The set

{𝑝𝑖, 𝑞𝑖} represents the set of virtual momentum and position of all particles 𝑖 in the system,

respectively. With this transformation, the following hamiltonian can be written as:

𝐻(𝑞𝑖, 𝑝𝑖, 𝑝𝑠, 𝑠) =
∑︁
𝑖=1

𝑝𝑖.𝑝𝑖

2𝑚𝑖𝑠2 + 𝜑(𝑞𝑖) + 𝑝2
𝑠

2𝑄
+ (𝑁𝑑𝑓 + 1)𝑘𝐵𝑇 𝑙𝑛(𝑠) (3.20)

where 𝑁𝑑𝑓 represents the number of the system’s degrees of freedom, 𝑝𝑠 represents the mo-

mentum associated with the variable 𝑠 and the parameter 𝑄 is a fictitious mass term for the

thermostat which represents the strength of the coupling between the system and the reservoir.

From 3.20 the equations of motion based on virtual variables were found to be (i=1,2,...,N):

𝑞𝑖 = d𝐻

d𝑝𝑖

= 𝑝𝑖

𝑚𝑖𝑠2

𝑝̇𝑖 = −d𝐻

d𝑞𝑖

= 𝐹𝑖({𝑞𝑖})

𝑠̇ = d𝐻

d𝑝𝑠

= 𝑝𝑠

𝑄

𝑝𝑠 = −d𝐻

d𝑠
=
∑︁

𝑖

𝑝𝑖.𝑝𝑖

𝑚𝑖𝑠3 − (𝑁𝑑𝑓 + 1) 𝑘𝐵𝑇

𝑠

(3.21)

Nosé showed that this set of equations generates an ensemble that is compatible with the

canonical distribution. The only inconvenience was that these equations were only canoni-

cal under this "virtual variable" form. Only one year later, Hoover [38] showed that writing

equations 3.21 back in terms of real variables, with the definition of 𝜁 = 𝑠̇, leads to:

𝑞𝑖 = 𝑝𝑖

𝑚𝑖𝑠2 = 𝑝′
𝑖

𝑚𝑖𝑠
→ d𝑞′

d𝑡′ = 𝑝′
𝑖

𝑚𝑖

𝑝̇𝑖 = d (𝑝′
𝑖𝑠)

d𝑡
= d𝑝′

𝑖

d𝑡
𝑠 + 𝑝′

𝑖

d𝑠

d𝑡
= 𝐹 ({𝑞𝑖}) → d𝑝′

𝑖

d𝑡′ = 𝐹 ({𝑞′
𝑖}) − 𝜁𝑝′

𝑖

𝜁 = 1
𝑄

𝑝𝑠 = 1
𝑄

[︃∑︁
𝑖

𝑝𝑖.𝑝𝑖

𝑚𝑖𝑠3 − (𝑁𝑑𝑓 + 1)𝑘𝑇

𝑠

]︃
= 1

𝑄

[︃∑︁
𝑖

𝑝′
𝑖.𝑝

′
𝑖

𝑚𝑖𝑠
− (𝑁𝑑𝑓 + 1)𝑘𝐵𝑇

𝑠

]︃

→ d𝜁

d𝑡′ = 1
𝑄

[︃∑︁
𝑖

𝑝′
𝑖.𝑝

′
𝑖

𝑚𝑖

− (𝑁𝑑𝑓 + 1)𝑘𝐵𝑇

]︃
(3.22)

It has also been showed by Hoover on the same paper, that the transformation (𝑁𝑑𝑓 +1) → 𝑁𝑑𝑓

makes the set of simultaneous equations (i=1,2,...,N),

d𝑞′

d𝑡′ = 𝑝′
𝑖

𝑚𝑖

d𝑝′
𝑖

d𝑡′ = 𝐹𝑖({𝑞′
𝑖}) − 𝜁𝑝′

𝑖

d𝜁

d𝑡′ = 1
𝑄

[︃∑︁
𝑖

𝑝′
𝑖.𝑝

′
𝑖

𝑚𝑖

− 𝑁𝑑𝑓𝑘𝐵𝑇

]︃ (3.23)
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dependent only on the set of real variables {𝑞′
𝑖, 𝑝′

𝑖, 𝜁}, obey the canonical distribution. Clearly

from the second equation in 3.23 the 𝜁 parameter works as a friction term, that slows down

the particles, in order to keep constant the system’s average temperature.

Despite the probability distribution on the variables, 𝑞′
𝑖, 𝑝′

𝑖 and 𝜁 satisfying the canonical

distribution, Hoover [38] applied the equations 3.23 for a one dimensional harmonic oscillator

and the trajectories obtained did not seem to fill the whole phase space. If the trajectories are

not chaotic (fill the whole phase space), ergodicity can not be applied to the system. If the

system is not ergodic, then time averages are not good representatives of ensemble averages

and the usual thermodynamic quantities can not be computed via MD simulations.

To solve the problem of ergodicit, Martyna et. al [39] proposed a modification on the

Hoover equations of motion in order to include more than one thermostat variable:

𝑞𝑖 = 𝑝𝑖

𝑚𝑖

𝑝̇𝑖 = −𝜕𝑉

𝜕𝑞𝑖

− 𝑝𝑖

𝑝𝜂1

𝑄1

𝜂𝑗 =
𝑝𝜂𝑗

𝑄𝑗

˙𝑝𝜂1 =
[︃∑︁

𝑖

𝑝2
𝑖

𝑚𝑖

− 𝑁𝑑𝑓𝑘𝐵𝑇

]︃
− 𝑝𝜂1

𝑝𝜂2

𝑄2

˙𝑝𝜂𝑗
=
[︃

𝑝2
𝜂𝑗−1

𝑄𝑗−1
− 𝑘𝐵𝑇

]︃
− 𝑝𝜂𝑗

𝑝𝜂𝑗+1

𝑄𝑗+1

˙𝑝𝜂𝑀
=
[︃

𝑝2
𝜂𝑀−1

𝑄𝑀−1
− 𝑘𝐵𝑇

]︃

(3.24)

where 𝑀 is the number of additional thermostats added. The variable 𝜂1 is exactly the same

as 𝜁 defined in the Hoover equations, and 𝑝𝜂𝑗
is the momentum associated with the extra

thermostat variable 𝑗.

In fact, a linear chain of thermostats are added, where only the first thermostat is in

contact with the whole 𝑁𝑑𝑓 degrees of freedom of the system, and after the first, the other

˙𝑝𝜂𝑗
variables for 𝑗 > 1 are only in contact with its first neighbors. That is why this algorithm

is also called, Nosé-Hoover chain algorithm.

3.1.2.3 Langevin

The Langevin equation is the same used at the starting point of the derivation for the

Berendsen method 3.9. The difference lies in the random force term 𝑅𝑖(𝑡). In the original
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Langevin equations 𝑅𝑖(𝑡) is a random force term that acts every time step, following a Gaussian

distribution, with zero mean and delta function correlation given by 3.10. As Schneider [40]

showed (appendix A on his paper) the random force term has the functional form:

𝑅𝛼
𝑖 (𝑡) =

(︃
2𝑚𝑘𝐵𝑇𝛾Δ

𝑝

)︃1/2∑︁
𝑗

𝛿(𝑡 − 𝑡𝑗)𝛽𝛼
𝑖 (𝑡𝑗)Θ(𝑝 − 𝑎𝛼

0𝑖𝑗) (3.25)

where 𝛼 represents a component of the vector, Δ represents a time step, 𝑗 counts the

timesteps, 𝛽𝛼
𝑖 and 𝑎𝛼

0𝑖𝑗 are random numbers between 0 and 1 that follow a Gaussian and

a uniform distribution, respectively. The Heavside function Θ(𝑝 − 𝑎𝛼
0𝑖𝑗) associated with the

parameter 𝑝, means that the random process only takes place if the random number 𝑎𝛼
0𝑖𝑗 is

greater than the probability 𝑝 associated with the collision.

This would be the form of the random force vector if the equation 3.9 was a continuous

function. As the goal is to perform MD simulations on it, where the equations will be integrated

numerically, it needs some adjustments. But before that, the delta function in 3.25 implies a

discontinuity at the velocities, that can be found by integrating 3.9 from 𝑡𝑗 + 𝜖 and 𝑡𝑗 − 𝜖 and

then taking the limit 𝜖 → 0:

∫︁ 𝑡𝑗+𝜖

𝑡𝑗−𝜖
𝑣𝑖

𝛼(𝑡′)𝑑𝑡′ =
∫︁ 𝑡𝑗+𝜖

𝑡𝑗−𝜖

1
𝑚𝑖

𝑅𝛼
𝑖 (𝑡′)𝑑𝑡′ +

∫︁ 𝑡𝑗+𝜖

𝑡𝑗−𝜖

1
𝑚𝑖

𝐹 𝛼
𝑖 𝑑𝑡′ +

∫︁ 𝑡𝑗+𝜖

𝑡𝑗−𝜖

1
𝑚𝑖

𝑣𝛼
𝑖 (𝑡′)𝑑𝑡′ (3.26)

the integral on 𝐹𝑖 vanishes in the limit that 𝜖 goes to zero because the force is continuous,

and the integral on 𝑣𝑖(𝑡′) also goes to zero, due to continuity of 𝑥𝛼
𝑖 (𝑡𝑗). Then we end up with:∫︁ 𝑡𝑗+𝜖

𝑡𝑗−𝜖
𝑣𝑖

𝛼(𝑡′)𝑑𝑡′ =
∫︁ 𝑡𝑗+𝜖

𝑡𝑗−𝜖

1
𝑚𝑖

𝑅𝛼
𝑖 (𝑡′)𝑑𝑡′

𝑣𝛼
𝑖 (𝑡𝑗 + 0+) − 𝑣𝛼

𝑖 (𝑡𝑗 − 0−) =
(︃

2𝑘𝐵𝑇𝛾Δ
𝑚𝑖𝑝

)︃1/2

𝛽𝛼
𝑖 (𝑡𝑗)Θ(𝑝 − 𝑎𝛼

0𝑖𝑗)
(3.27)

This gives the discontinuity of 𝑣𝛼
𝑖 at a time step 𝑡𝑗. From the form of equation 3.9 it can be

seen that 𝑣𝛼
𝑖 (𝑡) ∼ 𝑒−𝛾𝑡, or that 𝑣𝛼

𝑖 (𝑡) ∼ −𝛾𝑒−𝛾𝑡 due to the friction term. With this assumption:
∫︁ Δ

0
𝑣𝛼

𝑖 (𝑡)𝑑𝑡 ∼ 1 − 𝑒−𝛾Δ

𝛾
(3.28)

For small Δ :
1 − 𝑒−𝛾Δ

𝛾
= 1 − 𝑒− 𝛾Δ

2 𝑒− 𝛾Δ
2

𝛾

≈
1 − 𝑒− 𝛾Δ

2 (1 − 𝛾Δ
2 )

𝛾

≈ Δ
2 𝑒− 𝛾Δ

2

(3.29)
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That is, the discontinuity on velocity in equation 3.27 implies a shift in position 𝑥𝛼
𝑖 at a time

𝑡 + Δ of:

𝑥𝛼
𝑖 (𝑡 + Δ) ∼ Δ

2 𝑒− 𝛾Δ
2

(︃
2𝑘𝐵𝑇𝛾Δ

𝑚𝑖𝑝

)︃1/2

= Δ2𝑒− 𝛾Δ
2

(︃
𝑘𝐵𝑇𝛾

2𝑚𝑖𝑝Δ

)︃1/2

𝛽𝛼
𝑖 Θ(𝑝 − 𝑎𝛼

0𝑖𝑖) (3.30)

Now, the equation of motion 3.9 can not be integrated numerically using Verlet or velocity-

verlet algorithm, because the acceleration is itself velocity dependent. To avoid this problem,

Schneider [40] introduces a change of variables in the form:

𝑥𝛼
𝑖 (𝑡) = 𝑒− 𝛾𝑡

2 𝑦𝛼
𝑖 (𝑡)

𝑥̇𝑖
𝛼(𝑡) = −𝛾

2 𝑒− 𝛾𝑡
2 𝑦𝛼

𝑖 + 𝑒
−𝛾𝑡

2 𝑦𝑖
𝛼

𝑥𝑖
𝛼(𝑡) = 𝛾2

4 𝑒− 𝛾𝑡
2 𝑦𝛼

𝑖 − 𝛾𝑒− 𝛾𝑡
2 𝑦𝑖

𝛼 + 𝑒− 𝛾𝑡
2 𝑦𝑖

𝛼

(3.31)

Substituting the set of equations in 3.31 on the original Langevin equation (eq. 3.9), without

the random force term, we obtain an equation of motion in the new variable 𝑦𝛼
𝑖 (𝑡), given by:

𝑦𝑖
𝛼(𝑡) = 𝛾2

4 𝑦𝛼
𝑖 − 1

𝑚𝑖

𝑒
𝛾𝑡
2 (∇𝑖𝑉 )𝛼 (3.32)

where V represents the potential energy function. Schneider chose to use Verlet integration

on his implementation. So equation 3.32 can be integrated with Verlet scheme as:

𝑦𝑖
𝛼(𝑡) = 2𝑦𝛼

𝑖 (𝑡) − 𝑦𝛼
𝑖 (𝑡 − 𝑑𝑡) + 𝑑𝑡2𝑦𝑖

𝛼(𝑡)

𝑥𝛼
𝑖 (𝑡 + 𝑑𝑡) = 2𝑥𝛼

𝑖 (𝑡)𝑒− 𝛾𝑑𝑡
2 − 𝑒−𝛾𝑑𝑡𝑥𝛼

𝑖 (𝑡 − 𝑑𝑡) + 𝑑𝑡2𝑒− 𝛾𝑑𝑡
2

(︂1
4𝛾2𝑥𝛼

𝑖 (𝑡) − 1
𝑚𝑖

(∇𝑖𝑉 )𝛼
)︂ (3.33)

The second equation from 3.33 does not present translation invariance. So it can be converted

to a more suitable form:

𝑥𝛼
𝑖 (𝑡 + 𝑑𝑡) = 𝑥𝛼

𝑖 (𝑡) + [𝑥𝛼
𝑖 (𝑡) − 𝑥𝑖(𝑡 − 𝑑𝑡)] 𝑒−𝛾𝑑𝑡 − 𝑑𝑡2𝑒− 𝛾𝑑𝑡

2
1

𝑚𝑖

(∇𝑖𝑉 )𝛼 (3.34)

The equation above represents an algorithm for numerical integration of a differential equa-

tion that depends on velocity. But in equation 3.30, we saw that 𝑥𝛼
𝑖 is shifted (with a shift

proportional to 𝑑𝑡2) due to the discontinuity imposed on 𝑣𝛼
𝑖 (𝑡) due to the random force term.

So equation 3.34 is modified to include this shift and becomes:

𝑥𝛼
𝑖 (𝑡 + 𝑑𝑡) = 𝑥𝛼

𝑖 (𝑡) + [𝑥𝛼
𝑖 (𝑡) − 𝑥𝛼

𝑖 (𝑡 − 𝑑𝑡)] 𝑒−𝛾𝑑𝑡

− 𝑑𝑡2𝑒− 𝛾𝑑𝑡
2

1
𝑚𝑖

⎡⎣(∇𝑖𝑉 )𝛼 +
(︃

𝑘𝐵𝑇𝛾

2𝑚𝑖𝑝𝑑𝑡

)︃1/2

𝛽𝑖Θ(𝑝 − 𝑎0𝑖𝑖)
⎤⎦ (3.35)
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This is the final form of the equation of motion in the algorithm of Schneider, in which

the random force induces a change of trajectories which is proportional to
(︁

𝑘𝐵𝑇 𝛾
𝑚𝑖𝑑𝑡

)︁1/2
. This

samples canonical distribution of phase space, as long as 𝛾 << 𝑓𝑠 where 𝑓𝑠 represents the

natural frequency associated with the system.

3.1.2.4 BDP thermostat

Another thermostat that guarantees the canonical distribution is the one implemented by

Bussi, Donadio and Parrinello [41]. Their thermostat is similar to the Berendsen 3.1.2.1, in the

sense that it’s also based on rescaling of a mechanical quantity associated with the dynamics,

but instead of velocity, kinetic energy itself is rescaled. They argue on the paper that the choice

of kinetic energy scaling is arbitrary, as long as it preservers the canonical distribution. With

this in mind, their choice is to do time evolution on the kinetic energy, followed by stochastics

dynamics. Their protocol for kinetic energy rescaling is: after time integration with an energy

conserving algorithm (e.g. Velocity Verlet) to calculate velocities (and kinetic energies), the

obtained values for kinetic energies are changed by the stochastic dynamics equation:

𝑑𝐾 = (𝐾̄ − 𝐾)𝑑𝑡

𝜏
+

⎯⎸⎸⎷2𝐾𝐾̄

𝑁𝑓𝜏
𝑑𝑊 (3.36)

where 𝑁𝑓 is the number of degrees of freedom in the system, 𝐾̄ is the target value for kinetic

energy 𝐾̄ = 𝑁𝑓

2𝛽
with 𝛽 = 1

𝑘𝐵𝑇
. 𝜏 is the thermostat constant and 𝑑𝑊 is a random term called

Wiener noise. If we take the random term 𝑑𝑊 = 0, the thermostat reduces to the one of

Berendsen (eq. 3.16). To see that, putting K in evidence in 3.36:

𝑑𝐾 = 𝐾

𝜏

(︃
𝐾̄

𝐾
− 1

)︃
𝑑𝑡

𝑑𝐾 = 𝐾

𝜏

(︂
𝑇0

𝑇
− 1

)︂
𝑑𝑡

𝑑𝐾 =
∑︁

𝑖

𝑚𝑖𝑣𝑖.𝑣𝑖

2𝜏

(︂
𝑇0

𝑇
− 1

)︂
𝑑𝑡

(3.37)

from the first to the second equation above the equipartition theorem for kinetic energy was

used to set 𝐾̄
𝐾

= 𝑇0
𝑇

. And on the last equation the definition of kinetic energy was used. From

this same definition of kinetic energy:

𝐾 = 1
2
∑︁

𝑖

𝑚𝑖𝑣𝑖.𝑣𝑖

𝑑𝐾 =
∑︁

𝑖

𝑚𝑖𝑣𝑖.𝑣̇𝑖𝑑𝑡
(3.38)
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comparing the last equation above with the last equation in 3.37:

𝑣̇𝑖 = 𝑣𝑖

2𝜏

(︂
𝑇0

𝑇
− 1

)︂
(3.39)

which summed with the term 𝐹𝑖

𝑚𝑖
(coming from NVE integration) yields the Berendsen equation

3.16. This thermostat is also compatible with the Nosé-Hoover equations of motion. To see

that, it is only required to define the following transformation rules:

𝑑𝐾 = −2𝜖𝐾
𝑑𝑡

𝜏
= −𝜖

∑︁
𝑖

𝑝𝑖.𝑝𝑖

𝑚𝑖

𝑑𝑡

𝜏

𝑑𝜖 =
(︂

𝐾

𝐾̄
− 1

)︂
𝑑𝑡

𝜏

(3.40)

with the definition of 𝑑𝐾 in terms of momentum, one can obtain:

𝑑𝐾 =
∑︁

𝑖

𝑝𝑖

𝑚𝑖

𝑝̇𝑖𝑑𝑡 by comparing with first equation of 3.40 →

𝑝̇𝑖 = −𝑝𝑖

𝜖

𝜏

(3.41)

which summing with previous NVE integration, yields:

𝑝̇𝑖 = 𝐹 𝑖({𝑞𝑖}) − 𝑝𝑖

𝜖

𝜏
(3.42)

with 𝜖
𝜏

being the Nosé-Hoover variable 𝜁 (as in second equation of 3.23). From Hoover’s

equations of motion, the time evolution for 𝜁 can be written as:

𝑑𝜁 = 1
𝑄

(︃∑︁
𝑖

𝑝𝑖.𝑝𝑖

𝑚𝑖

− 𝑁𝑘𝐵𝑇0

)︃
𝑑𝑡

𝑑𝜁 = 𝑁𝑘𝐵𝑇0

𝑄

(︂2𝐾

2𝐾̄
− 1

)︂
𝑑𝑡

𝑑𝜁 = 𝑁𝑘𝐵𝑇0

𝑄

(︂
𝐾

𝐾̄
− 1

)︂
𝑑𝑡

(3.43)

which in terms of 𝜖 and comparing with the second equation in eq. 3.40 yields the condition

for the thermostat mass (Q):

𝑑𝜖 = 𝜏𝑑𝜁 = 𝑁𝑘𝐵𝑇0𝜏

𝑄

(︂
𝐾

𝐾̄
− 1

)︂
𝑑𝑡 →

𝑄 = 𝑁𝑘𝐵𝑇0𝜏
2

(3.44)

under this condition and the set of equations 3.40, the BDP thermostat yields Nosé-Hoover

equations of motion and hence follows the canonical distribution.

3.1.3 Barostats

Another thermodynamical variable that is of interest to control on a simulation is the

pressure of the system. Algorithms capable of controling the pressure in MD simulations are

called barostats.
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3.1.3.1 Berendsen barostat

One of the first popular used Barostats is the one from Berendsen [35]. Its idea is similar

to its thermostat (section 3.1.2.1), the system is in weak coupling with an external bath. And

the pressure changes of the system with time, are related to the bath’s pressure 𝑃0 as:

d𝑃

d𝑡
=
(︂

𝑃0 − 𝑃

𝜏𝑃

)︂
(3.45)

which implies exponential relaxation of the system’s pressure to the target value, through a

single relaxation constant 𝜏𝑃 . To achieve this goal, particle coordinates (𝑥𝑖) together with

lattice vectors (𝑙𝑖) are scaled by a time varying coefficient 𝜇(𝑡):

𝑥
′

𝑖(𝑡) = 𝜇(𝑡)𝑥𝑖(𝑡)

𝑙
′

𝑖(𝑡) = 𝜇(𝑡)𝑙𝑖
(3.46)

In practice these transformations are achieved by changing the equations of motion of 𝑥𝑖 as:

d𝑥
′
𝑖

d𝑡
= 𝑣𝑥𝑖

+ 𝛼𝑥
′

𝑖
(3.47)

comparing with the time derivative of first equation in 3.46 we have:

d𝑥
′
𝑖

d𝑡
= 𝑣𝑥𝑖

+ 𝛼𝑥
′

𝑖

d𝑥
′
𝑖

d𝑡
= 𝜇

d𝑥𝑖

d𝑡
+ d𝜇

d𝑡
𝑥𝑖

(3.48)

It is easy to see, by comparing the terms on the first equation in 3.48 with the terms on the

second equation, that the following exprssions are only valid on the regime that 𝜇 ≈ 1 →

𝑥
′
𝑖 ≈ 𝑥𝑖, that is 𝛼 and 𝑑𝑡 are small enough (such that weak coupling is valid), then:

𝜇 ≈ 1
d𝜇

d𝑡
= 𝛼 → 𝜇(𝑡) = 1 + 𝛼𝑑𝑡

(3.49)

That is, the scaling factor works on the coordinates as if it was instantaneous 𝑥(𝑡 + Δ𝑡) =

𝜇𝑥(𝑡 + Δ𝑡). This fact is implicit on the original Berendsen [35] method. The equation 3.47

implies a volume transformation of the kind:

d𝑉
′

d𝑡
= 3𝛼𝑉

with 𝑉
′ = 𝜇3𝑉

(3.50)
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Following the same steps as in equation 3.48 for the volume equation leads to an equivalent

definition of 𝜇 as:

𝜇(𝑡) = (1 + 3𝛼𝑑𝑡)1/3 (3.51)

To find alpha, it is necessary to relate the time derivative of pressure with the isothermal

compressibility factor 𝑘𝑇 as:
𝑘𝑇 = − 1

𝑉

𝜕𝑉

𝜕𝑃

d𝑃

d𝑡
= − 1

𝑘𝑇 𝑉

d𝑉

d𝑡

(3.52)

combining the second equation in 3.52 with the transformation rule for volume in 3.50 and

3.45 the value of alpha is obtained:

d𝑃

d𝑡
= − 1

𝑘𝑇 𝑉

d𝑉

d𝑡
= −3𝛼𝑉

𝑘𝑇 𝑉

− 3𝛼

𝑘𝑇

= 𝑃0 − 𝑃

𝜏𝑃

𝛼 = −𝑘𝑇 (𝑃0 − 𝑃 )
3𝜏𝑃

(3.53)

with this the value of 𝜇 follows immediately from 3.51 to be:

𝜇(𝑡) =
(︃

1 − 𝑘𝑇 (𝑃0 − 𝑃 )
𝜏𝑃

𝑑𝑡

)︃1/3
(3.54)

for an isotropic material. The condition of weak coupling imposes a restriction on the ratio
𝜏𝑃

𝑑𝑡
which is typically taken to be 𝜏𝑃

𝑑𝑡
= 1000. Despite its simplicity and efficiency to reach the

target Pressure value, the Berendsen algorithm does not sample the true NPT ensemble [42],

so in situations in which this is required it can not be used.

When required, for an isotropic system, the internal pressure is calculated as :

𝑃 = 2
3𝑉

⎛⎝∑︁
𝑖

𝑚𝑖𝑣𝑖.𝑣𝑖 +
∑︁
𝑖<𝑗

r𝑖𝑗.F𝑖𝑗

⎞⎠ (3.55)

If however, the system is anisotropic a tensor product version of 3.55 can be written as:

P = 1
𝑉

⎛⎝∑︁
𝑖

𝑚𝑖v𝑖 ⊗ v𝑖 +
∑︁
𝑖<𝑗

r𝑖𝑗 ⊗ F𝑖𝑗

⎞⎠ (3.56)

And the equation for the scaling parameter (eq 3.54 in terms of box lenghts) on the anisotropic

case changes to:

𝜇 = 1 − 𝑘𝑇 𝑑𝑡 (P0 − P)
3𝜏𝑃

(3.57)



35

Now that we talked about the fundamentals of Molecular Dynamics simulation and how

thermostats and barostats work. There can be an explanation about the way heat conductivity

is calculated using this technique.

3.2 CALCULATING HEAT CONDUCTIVITY WITHIN MD

Heat conductivity coefficients under the MD framework are usually calculated following

two different schemes. The first kind of methods rely on the calculation of fluctuations of the

energy current, measured by the integral of its correlation function, under thermal equilibrium

conditions (the whole system is in contact with a reservoir at temperature T). These methods

rely on the Green-Kubo formula [43, Section 21-8] (eq. 3.58) and are called Equilibrium

Molecular Dynamics (EMD) methods.

𝜅𝜇𝜈 = 1
𝑘𝐵𝑇 2𝑉

∫︁ ∞

0
⟨𝐽𝜇(𝑡′)𝐽𝜈(0)⟩ 𝑑𝑡′ (3.58)

where V is the system’s volume, 𝑘𝐵 is Boltzmann’s constant, T is the reservoir temperature,

and 𝐽𝜇 is the 𝜇 cartesian component of the energy current, that is usually defined as:

𝐽𝜇 = d
d𝑡

⎛⎝ 𝑁∑︁
𝑗=1

𝑟𝜇
𝑗 𝐸𝑗

⎞⎠ (3.59)

where 𝑗 represents the atom’s index and 𝐸𝑗 is the total on site energy.

The second approach is based on driving the system out of equilibrium, by imposing a

temperature gradient and measuring the response flux [44] (these are called Non Equilbrium

Molecular Dynamics (NEMD) methods) or by imposing a heatflux and measuring the tempera-

ture gradient as a response [45] (these are called reverse Non Equilibrium Molecular Dynamics

(rNEMD) methods).

An intermediate method was also developed, one that posses caracteristics of both equi-

librium and out of equilibrium methods. This one was first used by Evans [46] in 1982 (only

for twobody potentials) and then recently extended by Fan (2019) [47] for manybody poten-

tials. On this method, a small force is applied to the system such that it is removed from

equilibrium, then its not like in the EMD method, were correlation functions of the equilibrium

flux generate the heat conductivity response. But, it is also not like the thermostated NEMD

methods, due to the fact that no heat flux or temperature gradient is fiercely imposed on the

system. The heat conductivity coefficient calculated here, is a result of measuring the heat
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current itself on the out of the equilibrium distribution. This out of equilibrium heat current

can be related to the equilibrium distribution by a flux correlation function similar to the one

in Green-Kubo’s formula (eq. 3.58), but with the definition that the flux defined is a response

to a small force continuously applied to the system. Given the use of both equilibrium and non

equilibrium concepts on the same method, it was named HNEMD. In our work we only used

rNEMD and HNEMD to measure the heat conductivity for the Si membranes, so more details

will be given for each of these methods at the subsections below.

3.2.1 Reverse Non Equilibrium Molecular Dynamics (rNEMD)

In the case of rNEMD, the whole simulation box is divided in N identical regions, the 𝑙 = 1

region is the cold reservoir, and the 𝑙 = 𝑁/2+1 is the hot reservoir. The algorithms follows the

procedure developed by Muller-Plathe in 1997 [45]. Basically the algorithm exchange, at each

𝒲 steps, the velocity vector from the atom that has the smallest velocity on the hot region

(coldest atom) with the one that has the highest velocity in the cold region (hottest atom).

By defining the rate of exchange, which we call 𝒲 , it is possible to control the imposed heat

flux on the system. The method is called reverse, because an imposed heat flux generates a

temperature gradient on the system, as a response. Which is the contrary of the usual NEMD

methods, were a imposed temperature difference generates the heat flux as a response. The

heat conductivity is then calculated via Fourier’s law as:

𝜅𝜇𝜇 = −⟨𝐽𝜇(𝑡)⟩
⟨∇𝑇𝜇⟩ (3.60)

where 𝐽𝜇 is the flux in the 𝜇 direction, and ∇𝑇𝜇 is the temperature gradient measured in the

same direction as the flux. As mentioned before, the relevant energy that contributes to the

flux comes from the difference between kinetic energies from the hottest atom on the cold

reservoir (velocity 𝑣ℎ), and the coldest atom on the hot reservoir (velocity 𝑣𝑐). 𝐽𝜇 is then

calculated as:

𝐽𝜇(𝑡) =
∑︀

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑠
𝑚(𝑣2

ℎ−𝑣2
𝑐 )

2
2𝑡𝐴

(3.61)

(3.62)

where 𝐴 is the transversal section area to the 𝜇 direction. The factor of two on the denominator

accounts for the fact that we use periodic boundary conditions on direction 𝜇.
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3.2.2 Homogeneous Non-Equilibrium Molecular Dynamics - HNEMD

In this section we present the ideas behind the HNEMD method based on the same steps

as detailed in [46, 47, 48]. The central idea in HNEMD is the application of a small driving

force to the system, such that it is removed from equilibrium but still keeps on the regime of

linear response theory, under such circumstances the equations of motion are modified such

that:

𝑞̇𝑖(𝑡) = 𝑝𝑖

𝑚

𝑝̇𝑖(𝑡) = 𝐹𝑖 + 𝐷𝑖(𝑞𝑖, 𝑝𝑖)𝐹𝑒

(3.63)

where 𝐷𝑖 is, in general a rank two tensor, and 𝐹𝑒 is a vector parameter that is time dependent,

but here will be taken to be constant in the transport direction of interest. 𝐹𝑒 has units of

distance−1, such that 𝐷𝑖𝐹𝑒 has units of force.

The term 𝐷𝑖𝐹𝑒 is the driving force responsible to take the system out of equilibrium. Under

such conditions the system is no longer Hamiltonian, in the sense that Hamilton’s equations

do not generate the equations of motion in eq. 3.63. Despite that, the equilibrium Hamiltonian

can be thought of as a phase space variable, or phase variable, for short. If the system is not

Hamiltonian, the time derivative of the phase variable H is not zero, under the equations of

motion 3.63 the derivative is given by [46, 47, 48]:

d𝐻

d𝑡
= −𝐽𝑑𝐹𝑒 (3.64)

where 𝐽𝑑 is the dissipative heat (or energy) current vector. On the other hand, the time

derivative of the phase variable H can be calculated as:

d𝐻

d𝑡
= 𝜕𝐻

𝜕Γ Γ̇ =
∑︁

𝑖

𝜕𝐻

𝜕𝑞𝑖

𝑞̇𝑖 + 𝜕𝐻

𝜕𝑝𝑖

𝑝̇𝑖

=
∑︁

𝑖

−𝐹𝑖
𝑝𝑖

𝑚𝑖

+ 𝑝𝑖

𝑚𝑖

(𝐹𝑖 + 𝐷𝑖.𝐹𝑒)

d𝐻

d𝑡
= −

∑︁
𝑖

(︂
− 𝑝𝑖

𝑚𝑖

𝐷𝑖𝐹𝑒

)︂ (3.65)

where Γ denotes all the set of 6𝑁 phase space variables 𝑞𝑖, 𝑝𝑖 with 𝑁 being the number of

particles on the system. By comparing last line in eq. 3.64 with eq. 3.65, the dissipative flux

vector can be identified as:
𝐽𝑑 =

∑︁
𝑖

− 𝑝𝑖

𝑚𝑖

𝐷𝑖 (3.66)
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Two more steps are required to derive the relation with the thermal conductivity tensor,

identifying 𝐽𝑑 and calculating the expectation value of the heat current out of equilibrium.

First we try to achieve the latter. The expectation value of a general time evolved phase

variable 𝐴(𝑡), can be calculated as:

⟨𝐴(𝑡)⟩ =
∫︁

𝑑Γ𝐴(Γ, 0)𝑓(Γ, 𝑡) (3.67)

𝐴(Γ, 0) represents the equilibrium value of phase variable 𝐴. And 𝑓(Γ, 𝑡) represents time

evolution of the equilibrium phase space density 𝑓(Γ, 0). The distribution 𝑓(Γ, 𝑡) follows a

Liouville equation, which in the Γ notation can be written as:

𝜕𝑓(Γ, 𝑡)
𝜕𝑡

= −𝑖𝐿𝑓 = −
𝜕
(︁
𝑓 Γ̇
)︁

𝜕Γ
(3.68)

where 𝐿 is the so called Liouville operator. Under the condition that 𝜕Γ̇
𝜕Γ = 0, the Liouville

equation can be simplified to:

𝜕𝑓(Γ, 𝑡)
𝜕𝑡

= −𝑖𝐿𝑓 = −𝜕𝑓

𝜕ΓΓ̇ = −𝑖𝐿0𝑓 (3.69)

where 𝐿0 represents only the part of the Liouvillean that is independent of the external force.

Expanding eq. 3.68 and rewritting 𝑓 = Δ𝑓(Γ, 𝑡) + 𝑓(Γ, 0) and 𝐿 = Δ𝐿 + 𝐿0 we end up with:

𝜕

𝜕𝑡
(𝑓(Γ, 0) + Δ𝑓(Γ, 𝑡)) = −𝑖(𝐿0 + Δ𝐿)(𝑓(Γ, 0) + Δ𝑓(Γ, 𝑡))

𝜕Δ𝑓(Γ, 𝑡)
𝜕𝑡

= −𝑖𝐿0Δ𝑓 − 𝑖Δ𝐿𝑓(Γ, 0)
(3.70)

where to get to the second line of eq. 3.70 we used −𝑖𝐿0𝑓(Γ, 0) = 0 and take only the first

order terms. The formal solution to this linearized Liouville equation, as given by Evans [46, 48]

is:

Δ𝑓(Γ, 𝑡) = −
∫︁ 𝑡

0
𝑑𝑡′𝑒𝑥𝑝[−𝑖𝐿0(𝑡 − 𝑡′)]𝑖Δ𝐿(𝑡′)𝑓(Γ, 0) (3.71)

which we see that it is indeed the solution because when 𝑡 = 0, Δ𝑓 = 0 as it should be. Now

we go back to eq. 3.67 and rewrite 𝑓(Γ, 𝑡) = Δ𝑓 + 𝑓(Γ, 0) to obtain:

⟨𝐴(𝑡)⟩ =
∫︁

𝑑Γ𝐴(Γ, 0)(Δ𝑓(Γ, 𝑡) + 𝑓(Γ, 0))

⟨𝐴(𝑡)⟩ =
∫︁

𝑑Γ𝐴(Γ, 0)𝑓(Γ, 0) +
∫︁

𝑑Γ𝐴(Γ, 0)Δ𝑓(Γ, 𝑡)
(3.72)

the first term on the right rand side of the second line in eq. 3.72 is just the equilibrium average

of the phase variable 𝐴, substituting the result given in eq. 3.71 for Δ𝑓 in the previous equation,

we obtain:

⟨𝐴(𝑡)⟩ = ⟨𝐴(0)⟩ −
∫︁

𝑑Γ𝐴(Γ, 0)
∫︁

𝑑𝑡′𝑒𝑥𝑝[−𝑖𝐿0(𝑡 − 𝑡′)]𝑖Δ𝐿(𝑡′)𝑓(Γ, 0) (3.73)
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the action of the operator 𝑖Δ𝐿 on 𝑓(Γ, 0) is:

𝑖Δ𝐿𝑓(Γ, 0) = 𝑖𝐿𝑓(Γ, 0) = Γ̇𝜕𝑓(Γ, 0)
𝜕Γ

(3.74)

where again the fact that 𝑖𝐿0𝑓(Γ, 0) = 0 was used. If the system is in contact with a heat

reservoir at a temperature T, the equilibrium distribution will follow a Boltzmann type distri-

bution:

𝑓(Γ, 0) = 𝑒𝑥𝑝[−𝛽𝐻]
𝑍(𝛽) (3.75)

with 𝛽 = 1
𝑘𝐵𝑇

and 𝑍(𝛽) the partition function of the system. Substituting eq. 3.75 in eq. 3.74:

𝑖Δ𝐿𝑓(Γ, 0) = Γ̇𝜕𝑓(Γ, 0)
𝜕Γ = Γ̇𝜕𝑓(Γ, 0)

𝜕𝐻

𝜕𝐻

𝜕Γ
(3.76)

from first line of equation 3.65, 𝜕𝐻
𝜕Γ = 1

Γ̇
d𝐻
d𝑡

, it follows then that:

𝑖Δ𝐿𝑓(Γ, 0) = Γ̇𝜕𝑓(Γ, 0)
𝜕𝐻

𝜕𝐻

𝜕Γ = 𝜕𝑓(Γ, 0)
𝜕𝐻

d𝐻

d𝑡
= 𝛽𝐽𝑑𝐹𝑒𝑓(Γ, 0) (3.77)

by using the results that 𝜕𝑓(Γ,0)
𝜕𝐻

= −𝛽𝑓(Γ, 0) and the result of eq. 3.64 for d𝐻
d𝑡

. Substituting

eq. 3.77 back into 3.73 we obtain:

⟨𝐴(𝑡)⟩ = ⟨𝐴(0)⟩ − 𝛽
∫︁ 𝑡

0
𝑑𝑡′
∫︁

𝑑Γ𝐴(Γ, 0)𝑒𝑥𝑝[−𝑖𝐿0(𝑡 − 𝑡′)]𝐽𝑑(Γ, 0)𝐹𝑒(𝑡′)𝑓(Γ, 0) (3.78)

the exponential of the Liouvillean operator can act backwards on the phase variable A (similar

to the Heisenberg interpretation in quantum mechanics where the time evolution operator acts

on the operators instead of the states, for example), such that:

⟨𝐴(𝑡)⟩ = ⟨𝐴(0)⟩ − 𝛽
∫︁ 𝑡

0
𝑑𝑡′
(︂∫︁

𝑑Γ𝐴(Γ, 𝑡 − 𝑡′)𝐽𝑑(Γ, 0)𝑓(Γ, 0)
)︂

𝐹𝑒(𝑡′) (3.79)

the term under parenthesis is exactly the definition of the time correlation function between

A and the components of 𝐽𝑑, such that the final expression for the expectation value of a

general phase variable 𝐴(𝑡) is:

⟨𝐴(𝑡)⟩ = ⟨𝐴(0)⟩ − 𝛽
∫︁ 𝑡

0
𝑑𝑡′ ⟨𝐴(𝑡 − 𝑡′)𝐽𝑑(0)⟩ 𝐹𝑒(𝑡′) (3.80)

this equation is valid in the limit that 𝐹𝑒 → 0, which defines the linear response regime. To

go from this equation to the connection with the Green-Kubo formula (eq. 3.58), we need to

set both phase variables 𝐴 and 𝐽𝑑 equals to 𝐽𝜇
𝑞 and −𝐽𝑞, respectively. With 𝐽𝑞 equals to the

heat current vector and 𝐽𝜇
𝑞 its 𝜇 cartesian component (e.g, x, y or z). Note that we set A to

𝐽𝜇
𝑞 because in our notation we started the derivation with 𝐴 being a scalar phase variable, but
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the derivation could have been carried out with A being a vector. Incorporating the previous

modifications, we get:
⟨
𝐽𝜇

𝑞 (𝑡)
⟩

=
⟨
𝐽𝜇

𝑞 (0)
⟩

+ 𝛽
∫︁ 𝑡

0
𝑑𝑡′
⟨
𝐽𝜇

𝑞 (𝑡 − 𝑡′)𝐽𝑞(0)
⟩

𝐹𝑒(𝑡′) (3.81)

from here to simplify, assuming that 𝐹𝑒 is constant (independent of 𝑡′) and it lies in some

given cartesian direction (e.g., 𝐹𝑒 = 𝐹𝑒𝑥̂). Assuming also that there is no average heat current

at equilibrium ⟨𝐽𝑞(0)⟩ = 0 and using the Green-Kubo relation we end up with:⟨
𝐽𝜇

𝑞 (𝑡)
⟩

= 𝛽
∫︁ 𝑡

0
𝑑𝑡′
⟨
𝐽𝜇

𝑞 (𝑡 − 𝑡′)𝐽𝑥
𝑞 (0)

⟩
𝐹 𝑥

𝑒

𝜅𝜇𝑥(𝑡) =
⟨
𝐽𝜇

𝑞 (𝑡)
⟩ 1

𝑇𝑉 𝐹 𝑥
𝑒

(3.82)

or in general, assuming 𝐹𝑒 is constant and only has component in the 𝜈 cartesian direction,

any of the 9 components on the heat conductivity tensor can be calculated as:

𝜅𝜇𝜈(𝑡) =
⟨
𝐽𝜇

𝑞 (𝑡)
⟩ 1

𝑇𝑉 𝐹 𝜈
𝑒

(3.83)

Note that if we substitute the expression for
⟨
𝐽𝜇

𝑞 (𝑡)
⟩

in the first equation of 3.82, on the second

equation in 3.82, we get back to the Green-Kubo formula (eq. 3.58). That is equivalent to say

that this method gives results that are equivalent to the EMD Green-Kubo method.

Differently from the EMD case, the calculation of the correlation function during the

simulation run is not required. It is only required to know how to define the heat flux 𝐽𝑞(𝑡) for

all times 𝑡. Fan [47] write’s down the general form of the heatflux 𝐽𝑞 for a manybody potential

as:
𝐽𝑞 =

∑︁
𝑖

𝑝𝑖

𝑚𝑖

𝐸𝑖 +
∑︁
𝑖,𝑗 ̸=𝑖

𝑝𝑖

𝑚𝑖

(︃
𝜕𝑈𝑗

𝜕𝑟𝑗𝑖

⊗ 𝑟𝑖𝑗

)︃
(3.84)

comparing with the result obtained in eq.3.66 and remembering to set 𝐽𝑑 = −𝐽𝑞 we get:

𝐷𝑖 = 𝐸𝑖1 +
∑︁
𝑗 ̸=𝑖

(︃
𝜕𝑈𝑗

𝜕𝑟𝑗𝑖

⊗ 𝑟𝑖𝑗

)︃
(3.85)

where 1 is the identity matrix and ⊗ is the outer product or tensor product operation. Therefore

𝐷𝑖 is indeed a tensor. So to calculate the heat conductivity coefficient with this method it is

only necessary to first apply the force 𝐷𝑖𝐹𝑒 to the system on top of the interaction potential

force, subtract from it the mean force on the system (to ensure conservation of momentum

which will not be achieved without this procedure, due to the external force). Calculate the

heat flux, for each time 𝑡, as defined in eq. 3.84 and finally take its time average (ensemble

average due to assumed ergodicity) over the total production run time. And them use eq. 3.83

to calculate 𝜅.
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3.2.3 Heat current: Spectral Decomposition

Spectral decomposition of transport properties such as conductivity (𝜅) and conductance

(𝐺) can be calculated indirectly by knowing how to spectrally decompose the heat current

(𝐽𝑞). This result can be achieved by Fourier transforming the force-velocity correlation function

[49] or equivalently the virial-velocity correlation function [47]. The approach of Saaskilahti

[49] requires the definition of an imaginary surface in the middle of the system where one

computes the interaction forces at the particles in first half of the system with the ones in

the second half (and vice versa, allowing for symmetrization). Whereas the approach of Fan

calculates all the interactions on a defined subsystem volume, with no requirement of defining

an imaginary surface. Here we follow the approach of Fan, since this is the one implemented

on the Graphics Processing Units Molecular Dynamics (GPUMD) software, which we will be

using for the MD simulations (more details about the simulation details are given in section

3.3).

The virial-velocity correlation function is, thus, defined as:

K(𝑡) =
∑︁
𝑖,𝑗 ̸=𝑖

r𝑖𝑗(0)
⟨(︃

𝜕𝑈𝑗(0)
𝜕r𝑖𝑗

v𝑖(𝑡)
)︃⟩

𝑛𝑒

(3.86)

where the sum over 𝑖 runs over all the particles inside a group of atoms which are inside a

given subsystem volume and 𝑗 runs over all nearest neighbors of 𝑖 within the potential cutoff

distance. At 𝑡 = 0 this coincides directly with the potential part of the general heat current

for many-body potentials as given by [50]. Defining the Fourier transform of 𝐾(𝑡) as 𝐾̃(𝜔),

allows to define the reverse Fourier transform of this function as:

K(𝑡) =
∫︁ +∞

−∞
K̃(𝜔)𝑒𝑖𝜔𝑡 𝑑𝜔

2𝜋
(3.87)

setting 𝑡 = 0 and using the fact that the heat current (𝐽𝑞) must be a real function, we get:

K(0) =
∫︁ +∞

−∞
K̃(𝜔)𝑑𝜔

2𝜋

J𝑞 =
∫︁ +∞

0
Re
{︁
2K̃(𝜔)

}︁𝑑𝜔

2𝜋

J𝑞(𝜔) = Re
{︁
2K̃(𝜔)

}︁
(3.88)

with 𝐽𝑞(𝜔) being the spectral decomposed potential part of the heat current. Immediately

inspired by the equation 3.83 in section 3.2.2, one can define the spectral decomposed heat

conductivity as:

𝜅𝜇𝜈(𝜔) =
𝐽𝜇

𝑞 (𝜔)
𝑇𝑉 𝐹 𝜈

𝑒

(3.89)



42

where 𝑉 is the volume of the specified subsystem (or control volume as in [51]), 𝑇 is the

system’s temperature and 𝐹𝑒 is the HNEMD external driving force parameter. In S.I units

𝜅(𝜔) is given in Wm−1K−1Hz−1. On the other hand, during an NEMD or rNEMD simulation,

conductance can also be spectral decomposed and calculated as:

𝐺𝜇(𝜔) =
𝐽𝜇

𝑞 (𝜔)
𝑉 Δ𝑇

(3.90)

where 𝑉 is also the subsystem volume and Δ𝑇 is the temperature difference between the

thermal reservoirs typical of an NEMD simulation. And in S.I units 𝐺 is given in units of

Wm−2K−1Hz−1 .

3.3 GENERAL SIMULATION DETAILS

Molecular Dynamics simulations were performed inside LAMMPS [52] and GPUMD [53].

To do the simulations, first we created a Si unit cell (inside lammps), oriented in the 100

direction and rotated 45 degrees such that the transport direction corresponds to the 110

direction. First we created membranes with dimensions 2𝑎′
0 ×2𝑎′

0 ×1𝑎0, where 𝑎′
0 = 𝑎0

√
2 due

to the orientation on the 110 direction. Then we reconstructed the dimers at the surface of

these membranes, in order to avoid excessive phonon scattering in the z direction due to non

bonded Si atoms at the membrane’s surface. The reconstruction was done according to Fig.

7. Then the 2 × 2 × 1 unit cell was then replicated to create an 10𝑎′
0 × 10𝑎′

0 × 1𝑎0 supercells

which was the starting point to all of the MD simulations performed here. The value of lattice

parameter used for Silicon was taken from National Insitute of Standards and Technology

(NIST) website [54] up to four figures of merit as 𝑎0 = 5.431 𝐴.

All GPUMD simulations were done using periodic boundary conditions only on 𝑥 and

𝑦 directions. Also, for GPUMD simulations a relaxation protocol was developed as follows,

minimize the unit supercell, short temperature equilibration at 900 K (50 ps), longer box

relaxation (at 0 bar and 300 K using berendsen barostat in anisotropic conditions) for the

duration of 500 ps and finally temperature equilibration at 300 K. The steps involving only

temperature equilibration were performed using the BDP thermostat 3.1.2.4 with a coupling

constant of 𝜏 = 0.1 ps. Standard 1 fs time step was used in all GPUMD simulations. Below

there is an example with the input file required to run the simulation within GPUMD. The

last block of information on this file is dedicated to the HNEMD run, which will be detailed

in the next section.
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Figure 7 – Surface dimerization (a) 2𝑎′
0 × 2𝑎′

0 × 1𝑎0 Si membrane no dimerization. (b) same membrane as in
(a) but with dimerization at the surface. Si atoms were connected upon (red in (a)) the z axis and
below (blue in (a)) it in an alternated manner.

(a) (b)

Source: The author (2023)

The rNEMD simulations were performed inside LAMMPS using full periodic boundary

conditions and vacumm in the 𝑧 direction. The structures were minimized, NVT equilibration

(NHC thermostat 𝜏 = 0.1 ps and 10 chains) for 100 ps at 900 K, then 50 ps at 300 K,

then 1 ns relaxation under NPT conditions at 300 K, and finally 50 ps NVT. At this first

equilibration and relaxation phase a 1 fs timestep was used. After that, we started the rNEMD

simulations. The timestep was changed to 0.1 fs, the energy between hot and cold reservoir

was exchanged at each 10000 time steps (𝒲 = 10000) and the production run was performed

under NVT conditions (NHC thermostat 𝜏 = 0.1𝑝𝑠 and 10 chains) until reaching a convergent

heat conductivity.

potential Si_Tersoff_1989.txt #ilustration only , full path required here

velocity 300

minimize sd -1 3000

ensemble nvt_bdp 900 900 100

dump_exyz 10000 0 0

dump_thermo 1000

run 50000

ensemble npt_ber 300 300 100 0 0 0 100 100 100 1000

dump_exyz 1000 0 0

dump_thermo 1000

dump_restart 500000
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run 500000

ensemble nvt_bdp 300 300 100

dump_exyz 1000 0 0

dump_thermo 1000

run 50000

ensemble nvt_bdp 300 300 100

dump_exyz 100000 0 0

dump_thermo 1000

compute_hnemd 1000 1e-5 0 0

compute_shc 5 500 0 1000 120.0

run 15000000

Source: The author (2023)
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4 RESULTS AND DISCUSSION

As stated at the end of section 1.2, the idea behind this work was to see how the insertion

of periodically arranged defects with different geometrical shapes (e.g circles, squares and

triangles) would affect the thermal conductivity in 110 direction of these Si membranes. But

before getting into the defects we first explored the calculation of thermal conductivity, thermal

conductance and other related quantities in the absence of any defects.

4.1 SIZE DEPENDENCE

It is well known that in the case of EMD simulations with the Green-Kubo method the

heat conductivity measured scales with system size up to some critical value where it reaches

convergence [55, 56, 57]. To explore the presence of such finite size effects in our system,

we performed HNEMD simulations with the constant force parameter 𝐹𝑒 in eq. (3.83) set to

Fe = 1 × 10−5Å−1x̂ which is small enough to keep the system within the regime of linear

response theory. The membranes were constructed with dimensions 𝐿 × 𝐿 × 1. In Fig.8 (a and

b) we see the time average (for the membrane with 𝐿 = 7.681 nm) over 10 runs of 𝜅𝑥,𝑖𝑛(𝑡)

and 𝜅𝑥,𝑜𝑢𝑡(𝑡), respectively. This heat conductivity decomposition on in-plane and out-of-plane

contributions, relies on decomposing the flux in eq. 3.83 on those same components and is the

same as done by Fan in [58]. All the HNEMD simulations done here have run for 15 ns, further

increase in the simulation time did not seem to change the final values much. So, the value

of 𝜅(𝑡) will be taken to be sufficiently converged at the end of 15 ns. For this particular case

in Fig.8(c) we see that 𝜅𝑥,𝑖𝑛 >> 𝜅𝑥,𝑜𝑢𝑡 and the in-plane contribution contributes the most

to the total conductivity (in black). Also on Fig.8(d) we see that at 15 ns the only non zero

component is 𝜅𝑥𝑥, which is consistent with the fact that the (110) direction coincides with

the Si principal axis.

In Fig. 9 we see each of the 10 individual runs before averaging. None of the trajectories

are the same, but most of them converge at the end of the 15 ns around their average (within

statistical uncertainty).

The same procedure detailed before was repeated for other 4 values of 𝐿 and the results

are summarized in table (1). All values of 𝜎 calculated here are estimated as the distribution’s

standard deviation of final values of 𝜅 from plots like the ones in (a-c) in Fig. 9. Column
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Figure 8 – HNEMD average data for the membrane with dimensions 𝐿×𝐿×1 with L=7.681 nm (a) is 𝜅𝑥,𝑖𝑛(𝑡)
in-plane contribution. (b) 𝜅𝑥,𝑜𝑢𝑡(𝑡) out-of-plane contribution. (c)𝜅𝑥,𝑖𝑛(𝑡) in red,𝜅𝑥,𝑜𝑢𝑡(𝑡) in blue
and 𝜅𝑥,𝑡𝑜𝑡𝑎𝑙(𝑡) which is the sum of the previous two (in black). (d)𝜅𝜈𝑥 with 𝜈=x,y or z.

Source: The author (2023)

3 on table 1 shows that total conductivity increases up to 𝐿 = 30.72 nm, where from that

point on remains constant. Although the corresponding uncertainty (𝜎) keeps decreasing with

increasing L. The same behaviour can be seen for the in-plane conductivity 𝜅𝑥,𝑖𝑛 and 𝜅𝑥,𝑜𝑢𝑡,

always with 𝜅𝑥,𝑖𝑛 >> 𝜅𝑥,𝑜𝑢𝑡. This is expected as the thickness of the membrane (dimension

on 𝑧 direction) is much smaller than the plane dimensions (𝑥 and 𝑦) such that the number

of modes that contribute to the in-plane conductivity is much larger than the out-of-plane

number of phonons.

Using the methods described in section 3.2.3 we proceeded to analyze the size effect on

the spectral decomposition of heat conductivity (𝜅) and heat conductance (𝐺).
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Figure 9 – Individual runs data for membrane with dimensions 𝐿 × 𝐿 × 1 with L=7.681 nm (a) is 𝜅𝑥,𝑖𝑛(𝑡)
in-plane contribution. (b) 𝜅𝑥,𝑜𝑢𝑡(𝑡) out-of-plane contribution. (c)𝜅𝑥,𝑡𝑜𝑡𝑎𝑙(𝑡)

Source: The author (2023)

Table 1 – HNEMD results for Si membranes (10 independent runs)

L (nm) size 𝑁 × 𝑁 (𝑁𝑎′
0) 𝜅𝑥 (Wm−1K−1) 𝜎 𝜅𝑥,𝑖𝑛 (Wm−1K−1) 𝜎 𝜅𝑥,𝑜𝑢𝑡 (Wm−1K−1) 𝜎

7.681 10 22 12 17.6 8.4 4.0 5.4
15.36 20 44 11 36.8 8.8 7.6 3.2
30.72 40 60.5 7.5 49.0 6.1 11.5 2.2
53.76 70 65.4 2.8 51.7 2.5 13.65 0.73
69.13 90 61.7 2.5 48.4 1.8 13.31 0.84

Source: The author (2023)

4.1.0.1 Spectral heat conductivity

The spectral heat conductivity (𝜅) is calculated using the expression in eq. 3.89 which

relies on the spectral heat flux 𝐽𝑞(𝜔). The spectral heat flux can be obtained by Fourier

Transforming the virial-velocity correlation function (eq. 3.86). To accurately sample the virial-

velocity correlation function we sampled the data each 5 timesteps, using 500 correlation steps
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which results in a total correlation time of 2.5 ps (due to 1 fs simulation time step). Reasonable

correlation functions like Fig. 10 were obtained for all the membrane sizes analyzed in table

1. The spectral heat flux for each membrane size was averaged over 10 independent runs

and spectral conductivity was calculated as in eq. 3.89 (dividing by an average volume, since

each NPT relaxation makes the box sizes slightly different from one another). The spectral

conductivities were plotted together in Fig. 11. We can see that for the membranes with

dimensions larger than 40×40 (𝐿 = 30.72 nm) the spectral thermal conductivity plots tend to

converge. Also, the integrals on the legend inside Fig. 11 are consistent with the values observed

in Column 3 at table 1. That is, the integration values converge for the same membrane size

(𝑁 > 40) as it was obtained in table 1 without considering spectral decomposition. The

spectral heat conductivity plot can be interpreted as the average contribution of phonons with

frequency 𝑓 to the thermal conductivity. We see that the modes with small frequency (𝑓 ≤ 4.5

THz) dominate the spectrum.

Figure 10 – Virial-velocity correlation function for the 20𝑎′
0 × 20𝑎′

0 membrane

Source: The author (2023)

A point of particular interest is the value at 𝑓 = 0. At this point the optical phonons

have zero group velocity (𝜕𝜔
𝜕𝑘

= 0). In other words, this point corresponds to the contribution

to thermal conductivity coming from acoustic modes only. On table (2) we see that as the
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Figure 11 – Spectral thermal conductivity as a function of membrane size. On the legend we get the integral
of each one of the curves, which corresponds to the total thermal conductivity of the membrane.

Source: The author (2023)

Table 2 – thermal conductivity at 𝜔 = 0, contribution of acoustic phonons, averages over 10 runs

L (nm) size 𝑁 × 𝑁 (𝑁𝑎′
0) 𝜅𝑥,𝑖𝑛 (Wm−1K−1) 𝜎 𝜅𝑥,𝑜𝑢𝑡 (Wm−1K−1) 𝜎

7.681 10 0.0 2.8 0.1 3.9
15.36 20 3.4 3.1 3.5 4.5
30.72 40 15.0 4.5 9.2 3.9
53.76 70 12.9 2.4 10.0 1.6
69.13 90 12.4 1.3 10.9 1.2

Source: The author (2023)

membrane size increases the 𝜅𝑥,𝑖𝑛 and 𝜅𝑥,𝑜𝑢𝑡 at 𝜔 = 0 tend towards convergence, again for the

membrane sizes with 𝑁 > 40. Also the in-plane and out-of-plane contributions are equivalent

in magnitude, that is the longitudinal acoustic phonons (LA), associated with the in-plane, and

the transverse acoustic (ZA) phonons, associated with the out-of-plane component, contribute

equally to thermal conductivity.
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4.1.0.2 Spectral heat conductance

Proceeding the investigation on size effects in membranes with no defects, we evaluated

the spectral heat conductance, which is calculated by the expression given in 3.90 (also using

a spectral heat flux and volume that are the average over 10 independent runs).

Prior to the calculation of heat conductance the system is divided in groups, where one

of them will be fixed, two will be the hot and cold reservoir, and the others will work as

intermediate groups. To better explain how the system is divided in such groups, lets take

the 20 × 20 membrane as an example which is represented in Fig.12. For this specific case

there is a total of 13 groups, and the group sizes were divided according to the coordinate of

the Si atoms in the x direction. The group zero (white in Fig. 12) contain all atoms within

0 ≤ 𝑥 ≤ 2𝑎′
0 and these are kept fixed during all the simulation to avoid kinetic energy drift.

Group one (red in Fig. 12) contain atoms between 2𝑎′
0 ≤ 𝑥 ≤ 6𝑎′

0 and work as the hot

reservoir (coupled to a langevin thermostat with coupling constant 𝜏 = 0.1 ps and kept at

310 K) in the NEMD simulation. The last group (blue in Fig. 12), which in this specific case

is group 12, works like the cold reservoir (coupled to a langevin thermostat with coupling

constant 𝜏 = 0.1 ps and kept at 290 K). All the intermediate groups (green in Fig. 12) have

1𝑎′
0 dimension in the x direction. The spectral heat conductance is calculated only for one of

the intermediate groups in Fig. 12 which needs to be as far from the reservoirs as possible.

For all the membranes sizes the closest intermediate group to the (left of) membrane’s middle

was chosen, in this this case of the 20 × 20 that corresponds to group 6. The volume used in

equation 3.90 is the volume of this specific group (subsystem), not the whole system volume.

For all the membrane sizes studied in this section, the hot (red) and cold (blue) reservoirs

in Fig. 12 always have 4𝑎′
0 in the x direction, except for the 10𝑎′

0 × 10𝑎′
0 where this distance

was reduced to 2𝑎′
0. Changing the size of the reservoir in 10 × 10 membranes was necessary

to have at least one intermediate group (green) to calculate conductance which is not the

nearest neighbour group to the reservoir. Apart from the previous exception, all the other

membrane sizes have a group zero (size 2𝑎′
0 in x direction) which is fixed, a group one (size

4𝑎′
0 in x direction) which is the hot reservoir, a final group (size 4𝑎′

0 in x direction) and

𝑁 − 10 intermediate groups (each with size 1𝑎′
0). The spectral heat conductance will then be

calculated only into one of the specific intermediate groups, which has index 𝑁−10
2 + 1.

We can see in Fig. 13 that averaging the conductance plot over different runs (3 in this

case) and 20 ns production time do not seem to significantly change the curve’s shape. Then,
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Figure 12 – Membrane NEMD model for thermal conductance calculation (20𝑎′
0 × 20𝑎′

0 membrane). Group 0
is fixed, group 1 (in red) is the hot reservoir and group 12 is the cold reservoir (in blue).

Source: The author (2023)

in order to make sure convergence has been reached, we increased production time to 40 ns

and evaluated a single run, instead of averaging the results as we did for 𝜅(𝜔).

In Fig. 14 we see that as the membrane size increases, the integral over the conductance

spectrum starts to converge. Although it keeps decreasing for all membrane sizes used here,

the amount of decrease for the membranes with 𝑁 ≥ 40 is much smaller than the ones with

𝑁 < 40. The explanation for decreasing conduction could be attributed to the increase in

the green region in Fig. 12. As the membrane size increases, the distance between reservoirs

also increase, the lifetime of phonons traveling from hot to cold reservoir decreases due to

scattering on the way, such that conductance decreases until it eventually reaches its diffusive

limit.
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Figure 13 – Comparing average spectral conductance with single run spectral conductance for the 10𝑎′
0 ×10𝑎′

0
membrane with 20 ns production time.

Source: The author (2023)

Figure 14 – Spectral thermal conductance as a function of membrane size. On the legend we get the integral
of each one of the curves, which corresponds to the total membranes’ thermal conductance.

Source: The author (2023)
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4.2 DEFECTS

Next we analyzed how the presence of nanometric size holes on the membrane, with

different geometric shapes, affects the value of heat conductivity (𝜅), heat conductance (𝐺)

and mean free path (𝜆). Three different geometrical shapes of defects were investigated: circles,

squares and equilateral triangles, as illustrated in Fig. 15. Each defect occupies the center of

a supercell with dimensions 10𝑎′
0 × 10𝑎′

0 which is replicated 7 times in x and y directions,

resulting in 70𝑎′
0 × 70𝑎′

0 membranes. In this first analysis all of the defects are adjusted such

that they have the same area of a circle with diameter 5𝑎′
0, which corresponds to half of the

unit supercell size.
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Figure 15 – 70𝑎′
0 × 70𝑎′

0 membranes with defects (a) circles, (b) squares and (c) triangles.

(a) circles (b) squares

(c) triangles

Source: The author (2023)
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Table 3 – HNEMD results for Si membranes with defects (average over 10 independent runs)

defect 𝜅𝑥 (Wm−1K−1) 𝜎 𝜅𝑥,𝑖𝑛 (Wm−1K−1) 𝜎 𝜅𝑥,𝑜𝑢𝑡 (Wm−1K−1) 𝜎

none 65.4 2.8 51.7 2.5 13.65 0.73
circles 6.12 0.75 5.34 0.93 0.78 0.54
squares 6.04 0.64 5.48 0.59 0.56 0.24
triangles 3.29 0.53 3.01 0.31 0.28 0.35

Source: The author (2023)

As shown in the previous section, the analyses indicated that membranes with 𝑁 > 40𝑎′
0

are effective in producing a converging spectrum, at least in the absence of defects. Given

the well-known impact of defects on reducing conductivity due to phonon scattering, we can

infer that membranes with 𝑁 > 40𝑎′
0 will continue to suffice even when defects are present.

Consequently, we proceeded by fixing the membrane size to 𝑁 = 70𝑎′
0 for all of the further

defects studies in this section.

On table (3) we present the final results from HNEMD simulation, where the values of 𝜅 are

measured after 15 ns of simulation and averaged over 10 runs. The values of 𝜅 for membranes

with circular and square defects are around 10% of the value where there is no defect. Also the

in-plane conductivities dominate the out-of-plane ones. And all the out-of-plane contribution

for the cases with defects are near zero, which indicates strong reduction on TA phonon modes

contribution to total thermal conductivity in the presence of such scattering centers. There is

an almost 50% reduction on total thermal conductivity when comparing triangular defects with

the other two. Most of the reduction is due to a decrease on the in-plane thermal conductivity.

This difference may be related to nonuniform scattering at the interface between the Si and

the vacuum region. If we imagine in-plane phonons coming from 𝑥 = 0 in the unit supercell,

they would scatter more or less uniform in the case of a circular interface. The values of

conductivity in table 3 also seem to suggest that the same is true for a squared interface.

But for the triangular geometry showed in Fig. 16, phonons would reach the interface at

different positions due to the triangular symmetry. In terms of waves, phonons would reach

the interface with different phases and their recombination after scattering could produce

destructive interference decreasing the number of available modes and then by the theory in

Chapter 2, with less modes contributing to the sum in eq. 2.18 we have a decrease in total

thermal conductivity.

The same patterns observed in table 3 can be seem in Fig. 17, where the spectral con-

tribution of the membrane with no holes (black) is much larger than the cases with defects.
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Figure 16 – Phonons (Schematic colored arrows) inside the unit supercell reach the scattering interface at
different positions, due to triangular symmetry.

Source: The author (2023)

The largest differences lie in the range of small frequencies (𝑓 ≤ 4.3 THz) which supports the

hypothesis that ZA modes are strongly reduced in the presence of defects. Comparing circles

(red) and squares (green) there is practically no difference over the entire frequency spectrum.

For the triangles, however, there is a systematic decrease in conductance when compared to

circles and squares, which covers almost the entire frequency range. The integrals over the

entire frequency range are on legend inside Fig.17 and the results are comparable to the ones

in table (3).

From spectral conductance data the same trend can be observed. The membrane where

there is no defects has the larger conductance, followed by squares and circles which are close

to each other and then triangles have the lowest conductance values, see Fig. 18. The largest

differences in conductance for the membrane with no defects compared to the others are below

7 THz. This is more evident particularly at the maximum conductance (𝑓 ≈ 2.5 THz), which

contributes to its larger integral when compared to the cases with defects. It is difficult to

estimate the error associated with the spectral conductance plot, as in principle, each frequency

value would have an error bar associated with it. However, by visualizing the integrated values

for spectral conductance (legend inside Fig. 18) it is reasonable to say that triangles have the

smallest total conductance 𝐺 between all the membranes studied here. The low to middle

frequency region in the spectrum (𝑓 ≤ 7 THz) seems to be the one that contributes the most
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Figure 17 – Spectral thermal conductivity as a function of defects. On the legend we get the integral of each
one of the curves, which corresponds to the total thermal conductivity of the specified membrane.

Source: The author (2023)

for this decrease.

4.2.0.1 Mean free path

There is a mathematical relation between heat conductance (𝐺) and heat conductivity (𝜅)

[47, 59]. As 𝜅 depends on the sample length, 𝐺 does not :

𝐺 = 𝜅

𝐿
(4.1)

this implies that the ratio between 𝜅 and 𝐺, gives an estimate of the characteristic length in

the sample, which can be used as an estimate for the phonon mean free path under certain

conditions (see appendix B in [47]). As 𝜅 and 𝐺 depend on the frequency, it is natural to

extend the relation 4.1 to the frequency dependent mean free path, as:

𝜆(𝜔) = 𝜅(𝜔)
𝐺(𝜔) (4.2)

under the condition that 𝜅 is calculated in the diffusive limit and 𝐺 corresponds to the ballistic

conductance. In Fig. 19a we observe the mean free path as a function of frequency for the
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Figure 18 – Spectral thermal conductance as a function of defect shape. On the legend we get the integral of
each one of the curves, which corresponds to the total membranes’ thermal conductance.

Source: The author (2023)

different membranes. It is clear that the presence of defects results in a reduction in the mean

free path in the low frequency limit (𝑓 ≤ 3.5 THz). However, in the high frequency limit

(𝑓 = 16.5 THz) there is also a reduction in 𝜆. The appearance of such a high frequency

peak on the spectrum may be associated to a slow decaying phonon due to the "artificial

dimerization" done at the membrane’s surface when creating the structures. Due to this, we

believe that the results for this high frequency regime observed in the spectrum, may not be

so reliable, due to the fact that some values of 𝜆 show nonphysical negative values at this

high frequency limit. The responsible for this negative 𝜆 values should be the poor statistical

averaging, indicating the requirement of more than 10 runs to improve the predictions of 𝜆 in

such high frequency limit. Despite that, for the semi quantitative analysis we are doing here,

10 runs should suffice. The comparison in Fig. 19b show that the squares and circles have

similar values of 𝜆, but the triangles have a value that is 18% smaller than the value for the

circles. Showing that the observed decrease in conductivity and conductance, for the triangles,

also results in a decrease in mean free path values.
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Figure 19 – Spectral mean free path for the 70𝑎′
0 × 70𝑎′

0 membranes as a function of defect geometry (a)
including the membrane with no defects, (b) data only for circles, squares and triangles.

(a)

(b)

Source: The author (2023)
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4.3 LENGTH DEPENDENCE

When performing NEMD simulations to calculate heat conductivity, where the length de-

pendence has to performed in order to get to the true diffusive, its customary to use the

ballistic to diffusive formula [47, 58, 60]:

𝜅(𝐿) = 𝜅𝑑𝑖𝑓𝑓

1 + 𝜆
𝐿

(4.3)

where 𝜆 is an effective mean free path and 𝜅𝑑𝑖𝑓𝑓 is the thermal conductivity in the diffusive

limit, when 𝐿 → ∞. Under the framework of spectral decomposition 𝜅𝑑𝑖𝑓𝑓 = 𝜅𝑑𝑖𝑓𝑓 (𝜔) and

𝜆 = 𝜆(𝜔) both depend on frequency. This allows to define the length dependent thermal

conductivity as:
𝜅(𝐿) =

∫︁ ∞

0

𝑑𝜔

2𝜋
𝜅(𝐿, 𝜔) =

∫︁ ∞

0

𝑑𝜔

2𝜋

𝜅𝑑𝑖𝑓𝑓 (𝜔)
1 + 𝜆(𝜔)

𝐿

(4.4)

where 𝜅(𝐿, 𝜔) is the frequency dependent analogue of eq. 4.3 and takes into account the

average contribution of all available phonon modes with frequency 𝜔 for a given sample size

𝐿, resulting in a better model than eq. 4.3.

In Fig. 20a we can see the length dependent thermal conductivity calculated using eq. 4.4.

The membrane with no defects, once again, is the one with largest thermal conductivity, for

all 𝐿 values. As 𝐿 goes to infinity the length dependent conductivity converge to the spectral

conductivity integral, over the entire frequency range (values on the legend inside Fig. 17).

In Fig. 20b we see that circles and squares have the same conductivity over the entire length

scale, but triangles always have a length dependent conductivity that is smaller than the other

two, as a result of having smaller mean free path and smaller spectral conductivity.
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Figure 20 – Length dependent thermal conductivity calculated by the expression in eq. 4.4, from 10 to 108

nm: (a) all membranes, (b) only the ones with defects.

(a)

(b)

Source: The author (2023)
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4.4 COMPARISON TO RNEMD RESULTS

To check if our results are consistent we choose to compare the length dependent thermal

conductivity 𝜅(𝐿) for the membrane with no defects obtained in the previous section, with

a 𝜅(𝐿) obtained from rNEMD using the Muller-Plathe method. The plots can be seen in

Fig. 21. The conductivity values obtained with the MP method are systematically below the

curve obtained with HNEMD. We believe that the disagreement between the two methods is

related to the large temperature differences observed within MP. As we can not control the

temperature differences in MP, only the rate of kinetic energy exchange, as detailed in sec.

3.2.1 it may happen that the temperature differences may converge to a value that produces

a gradient which is too large to keep the linear regime required by Fourier Law. For the

largest simulated membrane size the Δ𝑇 values converged to 100 K, which is indeed a large

temperature difference. To put this in a mathematical form, the heat conductivity in the MP

method is calculated assuming Fourier law as:

𝜅𝑐𝑎𝑙𝑐,𝑥 = − 𝐽𝑥

(∇𝑇 )𝑥
(4.5)

Thinking in terms of Taylor expanding the heat flux beyond first order, we get:

𝐽𝑥 = −𝜅𝑡𝑟𝑢𝑒,𝑥
d𝑇

d𝑥
+
∑︁
𝑛≥2

𝑐𝑛

𝑛!
𝑑𝑛𝑇

𝑑𝑥𝑛 (4.6)

where the second term in the right hand side represents the higher order terms, beyond linearity.

Combining expressions in eq. 4.6 with the one in eq. 4.5 we get:

𝜅𝑐𝑎𝑙𝑐,𝑥 = 𝜅𝑡𝑟𝑢𝑒,𝑥 −
∑︁
𝑛≥2

𝑐𝑛

𝑛!
𝑑𝑛−1𝑇

𝑑𝑥𝑛−1 (4.7)

which shows that the calculated value would be below the true thermal conductivity value if

the higher order terms are important, which is the case when the gradient is not to small.

The diamonds in Fig. 21 considers the gradient to be the difference between the hot and

cold thermostat divided by the effective path between the reservoirs, which is taken to be

𝐿 = 𝐿𝑥/2. The crosses are defined by taking the gradient to be the (absolute) average of the

linear fit angular coefficients at the two linear parts on a temperature profile, such as the one

in Fig. 22. Note that in a profile like this, the temperature difference between the hot and cold

reservoirs has always a larger gradient than the linear fit region. As a result, the crosses are

closer than diamonds to the HNEMD curve , due to the fact that their gradients in eq. 4.7

are smaller. If that is the reason why we did not find an agreement between the two methods,
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using a method that allows for the control of the temperature gradient (such as NEMD using

a langevin thermostat) would be preferable instead of an rNEMD method like MP. As even

smaller gradients would be required to reach the HNEMD curve.

We are aware that according to Zheng Li et. al [59] the correct way to compute the tem-

perature gradient is the one represented in Fig. 21 by diamonds, where the whole temperature

difference between thermostats is taken into account, not just the gradient of the linear region.

But analyzing the difference between the Zheng Li method (diamonds) and the linear fit region

(crosses) offered us intuition to see that the incompatibility in HNEMD and rNEMD data may

be related to the large temperature gradients observed inside rNEMD, which is something that

we need to explore in future work.

Figure 21 – Comparing the results obtained by HNEMD with the ones obtained in Muller-Plathe method

Source: The author (2023)
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Figure 22 – Average temperature profile for Si membrane with no defects and 𝐿 = 477.11 nm

Source: The author (2023)

4.5 DEFECT SIZE DEPENDENCE

It is well known from literature that changing the density of the material by creating holes in

the structure, as in the case of phononic crystals, has an effect on the material properties such

as elastic constants and heat conductivity [14, 61]. Increasing the defect’s area (decreasing its

density) results in a decrease in thermal conductivity.

As another test to verify the consistence of our results, we use circular defect membranes

to see if changing the circle’s diameter has some effect in the measured heat conductivity.

On table 4, we see that as the defect’s diameter increase the heat conductivity decreases

Table 4 – Si membranes Heat conductivity with circular defects as a function of defect’s diameter (averaged
over 10 HNEMD runs)

diameter (𝑎′
0) 𝜅𝑥 (Wm−1K−1) 𝜎 𝜅𝑥,𝑖𝑛 (Wm−1K−1) 𝜎 𝜅𝑥,𝑜𝑢𝑡 (Wm−1K−1) 𝜎

3 11.36 0.81 9.61 0.83 1.75 0.25
5 6.12 0.75 5.34 0.93 0.78 0.54
7 2.82 0.61 2.58 0.55 0.23 0.29

Source: The author (2023)
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monotonically. Both the in-plane and out-of-plane components show a decrease, with the out-

of-plane component going to zero for the largest diameter (third row on table 4). That shows

the possibility of completely removing the contribution of ZA modes to thermal conductivity

by increasing the defect size on these Si membranes.

In Fig. 23 we see the length dependent conductivity and the spectral data for these mem-

branes. Both spectral conductivity (𝜅(𝑓)) and conductance (𝐺(𝑓)) in Fig. 23a and 23b show a

decrease over the entire frequency spectrum as the defect size is increased. That is, removing

Si atoms from the membranes makes the conductivity and conductance decrease, as expected,

due to density differences. These observations also corroborates with data in table 4.

Figure 23 – Spectral data and length dependent conductivity for 70𝑎′
0 × 70𝑎′

0 Si membranes with circular
defects as a function of defect’s diameter (a) conductivity, (b) conductance, (c) mean free path
and (d) length dependent conductivity.

(a) (b)

(c) (d)

Source: The author (2023)

In Fig. 23c it is possible to see a mean free path decrease for small frequencies (𝑓 ≤ 1.5

THz). For frequencies higher than 1.5 THz the spectral mean free paths are very similar
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between the three kinds of membranes over almost the entire frequency range, except in the

high frequency limit. As also verified in section 4.2.0.1, the large frequency limit seem to show

unreliable results. For frequencies near 16 THz there is a divergence in 𝜆(𝑓) for the membrane

with the largest defect diameter (7𝑎′
0) and some negative mean free path values are also

observed. Those again could be related with the dimerization at the surface.

The dimerization was introduced to minimize the problem that the Si atoms at the surface

remained without its dimers. Despite that, it can not be done perfectly. Some of the atoms at

the membrane surface still remain not bonded to a dimer. These imperfections can artificially

create high frequency phonons that do not decay due to phonon scattering and show artificially

infinite mean free paths, particularly at those high frequencies. The negative values could also

be associated with insufficient statistics.

The length dependence, Fig. 23d, shows that for the larger defects (5𝑎′
0 and 7𝑎′

0) it takes

about 900 nm samples to get close to the diffusive limit (𝜅(𝐿 → ∞)) where in the case of the

smallest defect (3𝑎′
0) a sample with more than 10000 nm is required. Which means increasing

the removed area makes the length dependent thermal conductivity convergence be reached

with a smaller material sample size.
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5 CONCLUSIONS

In this work, we verified that introducing periodic defects with different geometrical shapes

in Si membranes decreases their thermal conductivity in the 110 direction, even though the area

of each defect is set to be the same. This decrease is the same whether the defect has a square

or circular geometry (around 90% reduction compared to the membrane with no defects).

However, the triangular ones seem to produce a larger decrease in thermal conductivity (around

95 %). When comparing circles (𝜅 = 6.116 Wm−1K−1) and squares (𝜅 = 6.037 Wm−1K−1),

with triangles (𝜅 = 3.290 Wm−1K−1), we get that in triangles we have a 46% reduction in

thermal conductivity. Spectral decomposition of thermal conductivity 𝜅, thermal conductance

𝐺 and mean free path 𝜆 validates this observation. Triangular defects seem to be special

and have a lower thermal conductivity than the other two shapes. Reduction of the spectral

quantities at the low frequency regime, seems to be the responsible for the observed decreases

in total thermal conductivity. The in/out plane decomposition also shows that the contribution

of ZA phonon modes to thermal conductivity goes to zero, as any kind of defects is introduced

in the membrane.

In terms of physically interpreting the results, it is reasonable to expect that at the interface

between Si and the vacuum region, in the case of circular defects, the phonon scattering

happens homogeneously. That is, thinking in the phonon as a particle moving inside the unit

cell, it could hit the interface at any position, and the resulting scattering would be equivalent

to the one observed at any other position at the interface, due to circular symmetry. The square

geometry seem to produce that same effect (due to similar values of 𝜅 to the circles), at least

when looking to the thermal conductivity in the 𝑥 direction, as we are doing here. However,

the triangular symmetry introduces the possibility of the phonon reaching the interface at

nonequivalent positions, as showed in Fig. 16, which contributes to inhomogeneous scattering

decreasing the mean free paths at lower frequencies. Or if one wants to think in terms of

a wave interpretation, a destructive interference arises due to the different phases involved,

which contributes to a decrease in the number of available modes and hence decreases the

overall thermal conductivity in the 𝑥 direction.

As future work, we intend to evaluate how the orientation of the defect affects the thermal

conductivity. If there is a dependence with the shape of the interface Si-vacuum, spinning the

triangle along the 𝐶3 axis of symmetry should change the observed thermal conductivity. Also
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could be of interest to increase the membrane thickness and temperature in order to quantify

the thermal conductivity dependence on those quantities.
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