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ABSTRACT

The problem of 3D pose estimation of multiple persons in a multi-view scenario has been
an ongoing challenge in computer vision. Most current state-of-the-art methods for 3D pose
estimation have relied on supervised techniques, which require a large amount of labelled
data for training. However, generating accurate 3D annotations is costly, time-consuming, and
prone to errors. Therefore, a novel approach that does not require labeled data for 3D pose
estimation has been proposed. The proposed method, the Unsupervised Multi-View Multi-
Person approach, uses a plane sweep method to generate 3D pose estimations. This approach
defines one view as the target and the rest as reference views. First, the depth of each 2D
skeleton in the target view is estimated to obtain the 3D poses. Then, instead of comparing the
3D poses with ground truth poses, the calculated 3D poses are projected onto the reference
views. The 2D projections are then compared with the 2D poses obtained using an off-the-
shelf method. Finally, the 2D poses of the same pedestrian obtained from the target and
reference views are matched for comparison. The matching process is based on ground points
to identify the corresponding 2D poses and compare them with the respective projections.
To improve the accuracy of the proposed approach, a new reprojection loss based on the
smooth 𝐿1 norm has been introduced. This loss function considers the errors in the estimated
3D poses and the projections onto the reference views. It has been tested on the publicly
available Campus dataset to evaluate the effectiveness of the proposed approach. The results
show that the proposed approach achieves better accuracy than state-of-the-art unsupervised
methods, with a 0.5% points improvement over the best geometric system. Furthermore,
the proposed method outperforms some state-of-the-art supervised methods and achieves
comparable results with the best-managed approach, with only a 0.2% points difference. In
conclusion, the Unsupervised Multi-View Multi-Person approach is a promising method for 3D
pose estimation in multi-view scenarios. Its ability to generate accurate 3D pose estimations
without relying on labeled data makes it valuable to computer vision. The evaluation results
demonstrate the proposed approach’s effectiveness and potential for future research in this
area.

Keywords: 3D human pose estimation; unsupervised learning; deep learning; reprojection
error.



RESUMO

O problema da estimativa de pose 3D de múltiplas pessoas em cenários de múltiplas
visualizações tem sido um desafio contínuo em visão computacional. A maioria dos métodos
de estado da arte para estimativa de pose 3D atualmente depende de técnicas supervisionadas,
que exigem uma grande quantidade de dados rotulados para o treinamento. No entanto, gerar
anotações 3D precisas é caro, consome tempo e está sujeito a erros. Portanto, foi proposta uma
abordagem nova que não requer dados rotulados para estimativa de pose 3D. A abordagem
proposta não supervisionada que trata de múltiplas visualizações e múltiplas pessoas, utiliza
um método de varredura de planos para gerar estimativas de pose 3D. Essa abordagem define
uma visualização como alvo e as demais como visualizações de referência. Primeiramente, a
profundidade de cada esqueleto 2D na visualização alvo é estimada para obter as poses 3D. Em
seguida, em vez de comparar as poses 3D com as poses verdadeiras, as poses 3D calculadas
são projetadas nas visualizações de referência. As projeções 2D são, então, comparadas com
as poses 2D obtidas usando um método pronto para uso. Por fim, as poses 2D do mesmo
pedestre obtidas a partir das visualizações alvo e de referência são comparadas para avaliação.
O processo de comparação é baseado em pontos de referência para identificar as poses 2D
correspondentes e compará-las com as respectivas projeções. Para melhorar a precisão da
abordagem proposta, foi introduzida uma nova perda de reprojeção baseada na norma 𝐿1

suave. Essa função de perda considera os erros nas poses 3D estimadas e nas projeções nas
visualizações de referência. Ela foi testada no conjunto de dados público Campus para avaliar
a eficácia da abordagem proposta. Os resultados mostram que a abordagem proposta alcança
maior precisão do que os métodos não supervisionados de estado da arte, com uma melhoria de
0,5 ponto percentual em relação ao melhor sistema geométrico. Além disso, o método proposto
supera alguns métodos supervisionados de estado da arte e alcança resultados comparáveis
com a melhor abordagem supervisionada, com apenas uma diferença de 0,2 ponto percentual.
Em conclusão, a proposta abordagem não supervisionada em um cenário com múltiplas vistas
e múltiplas pessoas é um método promissor para a estimativa de pose 3D. Sua capacidade de
gerar estimativas de pose 3D precisas sem depender de dados rotulados a torna valiosa para
a visão computacional.

Palavras-chaves: estimação de poses humanas em 3D; aprendizado não supervisionado;
aprendizado profundo; erro de reprojeção.
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1 INTRODUCTION

3D human pose estimation is an active research area on Computer Vision. It has the goal
of estimating the 3D position of articulated human joints. Depending on the scenario, these
joints are obtained from RGB images acquired by single or multiple cameras. Furthermore,
3D human pose estimation has several applications: video surveillance, autonomous driving,
biomechanics and medicine, sports performance analysis and education, autonomous driving,
human-computer interaction, psychology, try-on, and fashion (WANG et al., 2021). Therefore, it
is a relevant and large field to be explored and an excellent opportunity to generate impacting
contributions to society.

Some application areas are selected, and it is described the relevance of the 3D pose
estimation on these real-world applications (WANG et al., 2021):

• Sports performance and instruction. People playing sports need to execute physical mo-
vements following specific rules. The manner the person moves or executes the activities
can be improved using 3D pose estimation (HWANG; PARK; KWAK, 2017). For example,
if a football player kicks a ball in a penalty kick, the leg’s angle and the foot’s position
can wrongly lead the ball far away from the goal. Estimating its 3D position makes it
possible to measure and suggest adaptations and corrections to the football player. In
this manner, this player can improve. This context can be extended to other sports like
swimming, skateboarding, marathons, and gym training. In this case, it can suggest the
best position to exercise a specific muscle. Figure 1 shows some pose estimations in a
sports dataset;

Figure 1 – Qualitative results from (HWANG; PARK; KWAK, 2017) on LSP dataset (JOHNSON; EVERINGHAM,
2010).

Source: HWANG; PARK; KWAK (2017)
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• Psychology. Mental states or emotions also can be recognized from 3D poses. As in
(MARINOIU et al., 2018), it is possible to use the 3D pose estimations in therapy for
helping people with mental diseases, in this case, children with autism. The Figure 2
illustrates human interactions and the respective 2D and 3D pose estimations;

Figure 2 – 2D and 3D pose reconstructions shown on annotated dataset from (MARINOIU et al., 2018).

Source: MARINOIU et al. (2018)

• Autonomous Driving. An autonomous car can deal with undesired situations involving
pedestrians, such as collisions. 3D pose estimation can be used to avoid these collisions
utilizing the information about the positioning and movement intention of the pedestrian
(KIM et al., 2019). Figure 3 shows pedestrian estimated poses.

This work deals with multi-view multi-person 3D pose estimation. Estimating poses from
multiple people is important in several applications, such as surveillance, human-computer in-
teraction, and augmented reality. (CORMIER et al., 2022) shows pose estimation for surveillance
context as illustrated on Figure 4. (CIMEN et al., 2018) is an example of human pose estimation
for augmented reality, as shown in Figure 5.

It uses multiple cameras to estimate people’s positions. The cameras need to be calibrated
(once we need to know the camera’s extrinsic and intrinsic parameters) and synchronized.
Furthermore, unlike monocular solutions, multiple views have the advantage of obtaining depth
information. In this manner, it is possible to solve occlusion problems. Also, multi-view allows



21

Figure 3 – Left: Image with bounding boxes around the pedestrians. Right: A rendered image with the 3D
human mesh models.

Source: KIM et al. (2019)

Figure 4 – Street fight containing multiple human interactions for pose estimation.

Source: CORMIER et al. (2022)

various cameras to be available in several environments, increasing the coverage. The visibility
is also improved using more than one singular camera, as shown in Figure 6.

With the RGB images obtained by each camera, 2D pose estimations are generated. These
estimations are the input to the method presented in this dissertation to estimate the 3D
skeleton of each person. Beyond the proposed work (that will be detailed) (BELAGIANNIS et al.,
2014; BELAGIANNIS et al., 2014; BELAGIANNIS et al., 2015; DONG et al., 2019; ERSHADI-NASAB

et al., 2018; HUANG et al., 2020; TU; WANG; ZENG, 2020; LIN; LEE, 2021) also deal with the 3D
pose estimation in a multi-view multi-person scenario. The first works were based on geometric
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Figure 5 – Automatically augmenting mobile pictures with digital avatars imitating poses.

Source: CIMEN et al. (2018)

Figure 6 – Multi-view example in an outdoor environment from (BERCLAZ et al., 2011). The same scene is
viewed by different cameras, bringing more coverage, visibility, redundancy and depth information.

Source: The author (2023)

approaches, and the most recent are developed using neural networks. The proposed approach
provides a solution using neural networks and geometric concepts, enabling 3D pose estimation
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in an unsupervised manner.
An unsupervised 3D pose estimation method has the advantage of not using annotated

3D ground truth. Generating 3D pose labels is a high-cost process and can have wrong anno-
tations and other joint problems related to the label-generating process. The Campus dataset
(BERCLAZ et al., 2011), for example, was generated by manual joint annotation (BELAGIAN-

NIS et al., 2014). In this method, the reference values compared with the estimations (output
of the neural network) are obtained along with the 3D pose estimation. Therefore, only the
camera parameters and the synchronization among the cameras are necessary. In that case,
it performs neural network training more efficiently than traditional neural network methods.
Consequently, it can create a 3D pose estimation model without needing people to generate
3D annotated ground truth.

1.1 PROBLEM

3D human pose estimation is a challenging task. The challenge is even more significant
when dealing with multiple people. However, some scenarios facilitate the creation of robust
solutions, such as using various cameras. Furthermore, multiple cameras can provide depth
information different from a single camera. This dissertation proposes to estimate 2D poses
from different views and combine them using a neural network approach to generate 3D poses.
Figure 7 briefly shows a structure for 3D pose estimation using Neural Networks.

Figure 7 – Schema of Neural Network approach for multi-view multi-person 3D pose estimation.

Source: HUANG et al. (2020)

The most relevant works on 3D pose estimation are based on geometric methods or neural
networks. The neural network approach achieves the best results. However, it has the limitation
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and costs of obtaining labeled datasets. These datasets are obtained with human annotations.
Therefore, they can have errors and also a high price. Furthermore, the need for 3D labeled data
makes the methods less general since they can work only when 3D ground truth is available.

This work aims to perform 3D pose estimation using state-of-the-art approaches like neural
networks. However, it also has the goal of not using 3D annotated data. In this manner, it can
perform training without using these labeled data.

1.1.1 Hypothesis

In the rest of this dissertation, we will analyze the hypothesis statements presented below:

• H1: The reprojection error of 2D poses can be utilized as a loss function for training
models in 3D pose estimation. By doing so, there is no need to employ losses that directly
compare the estimations with 3D labels. This hypothesis is tested by incorporating the
reprojection error as a loss in a neural network designed to estimate 3D poses.

• H2: The reprojection error mentioned earlier can be calculated using the smooth L1 loss.
This hypothesis is tested by employing the mentioned loss for comparing the 2D poses.

• H3: In a multi-person scenario, calculating reprojection error requires performing person
matching between views. Ground point matching and back-projection approaches can
be used for this purpose. The matching directly impacts the comparison of 2D poses;
therefore, a robust method is necessary to achieve accurate results.

1.2 GOALS

The main goal of this work is to perform 3D pose estimation in an unsupervised manner
combining neural networks and geometric concepts. This dissertation has the following specific
purposes:

• Study multi-view multi-person 3D pose estimation methods, focusing on the state-of-
the-art. The goal is to identify the key contributions of each paper, aiming to develop
the presented method;

• Group techniques based on their approach: neural networks and geometric approaches;
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• Study geometric and neural network-based techniques that can be able to generate 3D
poses in an unsupervised way;

• Estimate 3D poses of multiple people in a multiple-view scenario using geometric and
neural network-based techniques in an unsupervised manner.

• Evaluate the proposed approach using PCP (percentage of correctly estimated parts)
metric (WANG et al., 2021). Considering the complexity of the dataset and the precision
of 2D part detectors, the PCP score provides more informative results compared to those
based on the Euclidean distance.

1.3 CONTRIBUTIONS

The following contributions can be pointed out:

• A review of methods for 3D pose estimation of multiple people in a multi-view scenario,
classifying the techniques into two groups: neural networks and geometric;

• An innovative approach to performing person matching is presented. The method utili-
zes ground points to represent each person, instead of comparing 2D poses. The mat-
ching process is based on measuring the distance between single points attached to
each person. This approach avoids the use of more complex techniques like person re-
identification or epipolar distance, which would also require higher computational costs;

• An unsupervised manner of training a model able to perform 3D pose estimation in
a multi-view multi-person scenario, that is, training a model without using 3D labeled
data;

• Examination and comparison of the acquired findings with pertinent studies, encompas-
sing both geometric and neural networks approaches.

• Publication at International Conference on Artificial Neural Networks (ICANN) 2022:
Unsupervised Multi-view Multi-person 3D Pose Estimation Using Reprojection Error.

• Publication at International Conference on Computer Vision Theory and Applications
(VISAPP) 2023: UMVpose++: Unsupervised Multi-View Multi-Person 3D Pose Esti-
mation Using Ground Point Matching.
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1.4 WORK STRUCTURE

The chapters are organized as follows. Chapter 2 briefly shows and explains essential basic
concepts to understand the core topics of 3D pose estimation. Chapter 3 discusses the related
works, classified as neural networks or geometric methods. Chapter 4 describes the propo-
sed process, showing the core concepts for developing this unsupervised 3D pose estimation
approach. Chapter 5 analyzes and discusses the results and experiments, comparing the pre-
sented method results with the state of the art. Finally, Chapter 6 presents the conclusion and
suggestions for future works.
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2 THEORETICAL BACKGROUND

This chapter discusses the key concepts to define a theoretical base related to this work.
These concepts cover the necessary knowledge to develop the solution and research proposed.
The foundations of this work include the Computer Vision and Artificial Intelligence areas.
Section 2.1 describes how to project points from 3D to 2D using camera parameters. Section
2.2 shows how the reprojection error works. Section 2.3 describes key machine learning topics,
such as learning methods (supervised, unsupervised, and semi-supervised). Section 2.4 explains
relevant deep learning components such as Convolutional Neural Network (CNN) and the
general view of loss functions—finally, section 2.5 presents evaluation metrics for comparing
3D skeletons.

2.1 CAMERA MULTIVIEW GEOMETRY

A camera is an instrument made by sensors responsible for taking objects (or points) in the
world (3D points) and projecting them onto 2D images. This process involves a well-defined
pipeline, converting world points to camera points and image points. This transformation of
3D (real world) to 2D (image) is also called projection. The projection maps 3D objects to
2D images in a defined projection plane (HARTLEY; ZISSERMAN, 2003). Furthermore, there
are different methods of projection, as shown in Figure 8. However, this work is interested in
perspective projection. Therefore, the following paragraphs detail the process and explain the
camera parameters.

Figure 8 – As shown above, two 3D objects are mapped to 2D using different techniques. The first is an
orthographic projection, and the second is a perspective projection.

Source: JIA et al. (2014)
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The transformation from 3D to 2D is made using projective geometry. This 3D to 2D
mapping is created by matrix multiplications, considering points as vectors. These matrices
must contain information related to the intrinsic and extrinsic camera parameters. Modeling
the camera as the projection matrix P, we can convert world points to image points (HARTLEY;

ZISSERMAN, 2003). The projection of 3D onto 2D is described with the following equation:

x = PX, (2.1)

where x are the 2D coordinates (image point), P is the projection matrix, and X are the
world 3D points. This equation maps 3D to 2D, multiplying the camera matrix by the world
coordinates. The camera matrix contains parameters related to internal and external camera
factors. In this manner, the parameters must correctly represent the camera, obligating the
camera to be calibrated. Equation 2.1 can also be written as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑥
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𝑧
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𝑋

𝑌

𝑍

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.2)

The x equation is related to homogeneous coordinates. Initially, the image has 2D points,
and this third coordinate is added to represent scale and translation, making more effortless
transformations such as scaling, rotation, and translation. In addition, homogeneous coordina-
tes facilitate lines and shape representations in the space and projection and back-projection
operations (HARTLEY; ZISSERMAN, 2003). The same applies to X: in this case, there are four
coordinates, considering the additional homogeneous coordinate for the world 3D point. Note
that to convert x from homogeneous coordinates to the corresponding 2D vector, remove the
third coordinate and divide the x and y terms by z.

The camera matrix contains information related to the camera position and internal ele-
ments from a camera that impact image projection. In this manner, the camera matrix is
compound by the intrinsic and extrinsic (translation and rotation) matrices (KITANI, 2017) as
shown in the equation below:
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⎤⎥⎥⎥⎥⎥⎥⎥⎦𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐. (2.3)

Intrinsic parameters are related to how the camera captures the images. The intrinsic
matrix contains focal length (𝑓𝑥 and 𝑓𝑦) and translation operators (𝑐𝑥 and 𝑐𝑦). The goal of the
intrinsic matrix is to convert from the camera coordinate system to the pixel coordinate system.
The extrinsic matrix parameters are related to camera location and orientation (translation
and rotation matrices). Therefore, the extrinsic matrix must convert from world coordinates to
camera coordinates (FORSYTH; PONCE, 2002). It obtains the projection matrix P by multiplying
these matrices.

2.2 REPROJECTION ERROR

As mentioned in Section 2.1, it is possible to project points from 3D to 2D or back-project
from 2D to 3D, given the camera parameters. There are measures to check if the parameters
are correct and if the camera is calibrated. One manner to verify this is the reprojection error.
The reprojection error involves the distance measured between a projected point and the actual
point position in that image (HARTLEY; ZISSERMAN, 2003).

Beyond that, it is also possible to check a 3D position of a point using reprojection error.
Given a multi-view scenario, a fact viewed in all camera images can be estimated in world
coordinates. In case this 3D estimation is correct, the projection onto the camera images must
be at the same position as the original point location in the camera images.

Considering the actual point position as x and x̂ as the projected point, the reprojection
error is simple to calculate, as seen in the following equation:

𝑑(x, x̂) =
⎯⎸⎸⎷ 𝑛∑︁

𝑖=1
|𝑥𝑖 − 𝑥𝑖|2. (2.4)

The 𝑑(x, x̂) term is related to Euclidean distance between the true position x and the
projected point x̂. This projected point is obtained by multiplying the projection matrix P by
the corresponding 3D point X̂ that we wish to project:

x̂ = PX̂. (2.5)
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Figure 9 shows an example of reprojection error.

Figure 9 – The 3D point X is projected onto an image (green plane), and this projection x is used for compa-
rison. The reprojection error is the Euclidian distance between the projected point x and the actual
point position t.

Reprojection error

Source: The author (2023)

2.3 MACHINE LEARNING

According to Machine Learning pioneer Tom Mitchell, “Machine Learning is the study of
computer algorithms that allow computer programs to improve through experience automati-
cally” (MITCHELL et al., 2007). This definition shows the core idea behind Machine Learning:
algorithms are the methods used for the computer learning process, and the experience is di-
rectly related to data. As a branch of Artificial Intelligence, Machine Learning has the goal of
computer learning through training models and data. Beyond that, machine learning methods
can be used in applications such as recommendation systems, object detections, clustering,
2D or 3D pose estimation, and image segmentation. Furthermore, Machine Learning is a topic
encompassed by Artificial Intelligence, as shown in Figure 10.

Machine Learning involves many relevant topics related to its structure: learning algorithms
according to the problem context, evaluation metrics, optimization algorithms, data analysis,
and feature engineering in some cases. Beyond that, Machine Learning has several methods
according to how the data is used. Some of these methods are supervised learning, unsupervised
learning, and semi-supervised learning.
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Figure 10 – Artificial Intelligence encompasses Machine Learning and Deep learning, and Machine Learning
encompasses Deep Learning. Artificial Intelligence is more general, considering any intelligent
system able to execute tasks that need human Intelligence. However, Machine Learning is made
by a learning algorithm that depends on data. The same applies to Deep Learning, but the learning
algorithms are more complex using neural networks.

Source: SOCIETY (2021)

2.3.1 Supervised learning

Considering a machine learning model, how the model learns from data determines super-
vised learning. A managed model learns from labels attached to each sample. Considering data
for training a model, this data can be divided into X and y, where X is the data features, and
y are the labels. In the case of a credit analysis problem, X is the client’s characteristics, such
as age, credit history, and salary. Then y is the client’s situation as a good or lousy payer.
Based on client features, this model aims to learn to determine if that person will repay the
loan. It is essential to mention that, along the training process, the model output is compared
with the labels (ground truth). In this manner, the model parameters are adjusted to minimize
the error (LIU; LIU, 2011).

Most Machine Learning models are supervised. Furthermore, there is the need to create
labels. If the goal is to train a model to detect a face, a dataset must contain bounding boxes
manually attached to each front. The model uses this information to tune the parameters and
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Figure 11 – They supervised learning schema. Data is used as input along with the respective labels. The
model uses both information (data features and labels) to learn. The next step after training the
model is to make predictions using test data; in this manner, it is possible to check the model
behaviour on external data and verify if the model solves the classification problem.

Source: RAGUPATHI (2022)

minimize the errors in the training dataset (LIU; LIU, 2011).
Labelling samples takes work. In some contexts, such as estimating 3D poses, obtaining

ground truth data is challenging. Some online services provide the possibility of hiring people
to perform labelling. Nevertheless, manual labels can be wrong, affecting the model training
(TU; MENZIES, 2022).

Beyond that, the model can suffer from overfitting, in the case the performance on training
data is high, but the model needs to better generalize to external data. Therefore, before
training the model, it is essential to make an exploratory data analysis to verify if the data is
generalizing the context.

Therefore, the supervised methods need to be labelled data to compare with the model’s
output, and so learn how to apply this data knowledge. The labels are the core difference
compared with the other machine learning approaches. Figure 11 illustrates the supervised
learning process.

2.3.2 Unsupervised learning

Different from supervised methods, unsupervised learning does not need labelled data as
shown in Figure 12. Furthermore, the context is different, as will be described. First, it briefly
details the meaning of supervised learning and unsupervised, so it is easier to see the difference
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between them. Usually, supervised learning is present in classification and regression problems.
A model is trained to aim to learn to predict a class correctly or estimate a value according to
the respective received input. However, unsupervised learning refers to discovering underlying
patterns in data without explicit training on labelled data. An unsupervised approach can
detect clusters, for example, the K-means method. K-means is an unsupervised model that
identifies groups based on data features. By taking centroids at a start point and updating
each algorithm iteration, these centroids will be the centre of the created clusters. The goal
is to create homogeneous groups considering the elements in each cluster and heterogeneous
compared with the other clusters. The learning process occurs according to characteristics
related to input data (DAYAN; SAHANI; DEBACK, 1999).

Figure 12 – Unsupervised learning schema. Just for illustration, this example considers data represented on a
cartesian plane; this method extends to N-dimensional data. In this example, the data is described
in a Cartesian plane, and the goal is to identify homogeneous groups. The cluster creation is made
using an unsupervised learning algorithm. In this figure, there are 3 data clusters. The algorithm
goal is that each group is homogeneous among its elements and heterogeneous related to other
groups.

Source: JEFFARES (2018)

These created groups can serve as a manner to identify similar elements. Beyond that,
measuring performance is directly related to the context and solution purpose, different from
supervised methods that compare the prediction to ground truth and can obtain the model’s
performance.

Beyond clustering, unsupervised learning is also used for association and dimensionality re-
duction. The association approach consists in obtaining relationships between variables, com-
monly used to develop recommendations in the retail market as Amazon’s “Customers Who
Bought This Item Also Bought”. Finally, dimensionality reduction can be used to decrease the
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number of features in a dataset, which makes the training process faster or helps visualize the
data, considering that fewer features are easier to understand (GHAHRAMANI, 2004).

2.3.3 Semi-supervised learning

The semi-supervised approach deals with unlabeled and labelled data. This manner is
considered a hybrid method. Usually, a semi-supervised method is used to train a supervised
model in a massive dataset with unlabeled data. The semi-supervised method can be used to
generate these labels. Manually labelling data is costly and takes a considerable amount of
time. Generating labels automatically using semi-supervised learning can help improve model
performance once more data are able to perform supervised learning (ZHU, 2005).

Self-training is an example of semi-supervised learning to generate labels for this huge
unlabeled dataset. The self-training procedure can be described in a well-defined pipeline.
The first step is taking a small portion of manually labelled data, which is used to train
a supervised model. This first classifier is used in the unlabeled data so that self-training
can generate pseudo-labels. Each generated label has a level of confidence obtained as a
prediction score. The generated labels with the highest confidence values complement the
manually labelled data. This new dataset made by combining auto and manually-generated
labels is used to train the supervised model, improving the model. This process can be iterative,
and after retraining using the hybrid dataset, the process of generating labels can run again
until the model performance is satisfactory (HADY; SCHWENKER, 2013). Figure 13 illustrates
this pipeline.
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Figure 13 – The self-training method is a semi-supervised method used in large unlabeled datasets. This figure
illustrates the self-training pipeline. After step 3, it is possible to return to step 2 and iteratively
apply the model.

Source: ALTEXSOFT (2022)

2.4 DEEP LEARNING

As shown in Figure 10, the Deep Learning approach is a subset of Machine Learning. Deep
Learning consists of training learning models using artificial neural networks. Neural networks
can have several layers and learn the relevant features from input data. There are a lot of
deep learning structures such as CNN (convolutional neural networks) (O’SHEA; NASH, 2015),
Recurrent Neural Network (RNN) (SHERSTINSKY, 2020), Transformers (VASWANI et al., 2017),
Generative Adversarial Network (GAN) (GOODFELLOW et al., 2020), and Long Short Term
Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997). The context and purpose of the appli-
cation determine the approach to be used. For example, the recent text generator ChatGPT
(based on Generative Pre-Trained Transformer (GPT)-3.5 architecture (BROWN et al., 2020))
is made with Transformers. Text models such as Bidirectional Encoder Representations from
Transformers (BERT) (DEVLIN et al., 2018) also use transformers. Generating faces or neural
styles can be made with GANs, such as the online tool Deep Dream (MORDVINTSEV; OLAH;

TYKA, 2015). For 2D pose estimation or 3D pose estimation, it is possible to obtain excellent
results with CNNs; however, transformers also can be used in some cases, as in (EINFALT;

LUDWIG; LIENHART, 2023; ZHENG et al., 2021).
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2.4.1 Convolutional Neural Network

Convolutional neural networks are high-performance neural networks for solving problems
in image, audio, and speech data contexts. They comprise layers such as the convolutional
layer, pooling layer, and fully-connected layer. The convolutional layer is the first layer in
the architecture of CNNs, followed by other convolutional layers or pooling layers, and the
fully-connected layer is the last (O’SHEA; NASH, 2015). For example, figure 14 illustrates a
CNN.

Figure 14 – The CNN is compound basically by convolutional, pooling, and fully-connected layers.

Source: VARSHINI et al. (2020)

The convolutional layer can be considered the CNN core. It is responsible for the majority
of computation. The essential components are the input data, a filter, and a feature map.
The convolutional layer will check the features of the respective input using a filter by the
convolution process. After the convolution, transformation such as Rectified linear unit (ReLU)
is applied, for example. The pooling layers are responsible for dimensionality reduction and
downsampling. Pooling layers also use a filter for the input; instead of a convolution, they
apply a filter that runs an aggregation function. The main pooling processes are max pooling
and average pooling. They help to improve efficiency and limit overfitting. Finally, the fully-
connected layer is responsible for the classification or regression process based on the features
generated by the previous layers. Fully-connected layers use an activation function and are the
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last layer in the CNN architecture (O’SHEA; NASH, 2015).

2.4.2 Loss

A training model aims to obtain the minimum loss value. The loss is a penalty for wrong
predictions, indicating how good or bad a model prediction is. A correct prediction, equal to
ground truth, generates a zero value as a loss. However, a lousy prediction will have a high
loss value. In this manner, the weights from a neural network are updated to minimize the
loss. Figure 15 illustrates two models and their failures.

Figure 15 – The arrow’s length is related to loss considering this respective single point; high lengths mean
high loss. This way, the fitted model represented by the blue line has a higher loss value than all
the aggregated arrows in the right image. It means the model at the right is better since it can
obtain a minimum loss value.

Source: GOOGLE (2022)

There are several loss functions such as Mean squared error (MSE) (𝐿2 norm) for regression
problems and cross-entropy for binary and multi-class classification. As an example, the MSE
loss is given by

𝑀𝑆𝐸 = 1
𝑁

∑︁
(𝑥,𝑦)∈𝐷

(𝑦 − 𝑝𝑟𝑒𝑑(𝑥))2, (2.6)

where 𝑥 is the input data, 𝑝𝑟𝑒𝑑() is the function model obtained along training process,
𝑝𝑟𝑒𝑑(𝑥) is the model’s output, 𝑦 is the ground truth, 𝐷 is the dataset containing labels and
input features, and 𝑁 is the cardinality of the sample set. Note that our goal is to obtain a
𝑝𝑟𝑒𝑑() function able to have the minimum loss and also able to generalize for data outside
the training set (ALZUBAIDI et al., 2021).
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2.5 EVALUATION METRICS FOR 3D POSE ESTIMATION

3D pose estimation in this work consists of estimating 3D positions from points related to
2D human body poses obtained from Red Green Blue (RGB) images. Once received the 3D
skeleton, it is necessary to compare it with the ground truth to check the performance of the
3D pose estimator. The most frequent evaluation metrics for 3D pose estimation are (Mean
Per Joint Position Error (MPJPE) (WANG et al., 2021), Percentage of Correctly estimated Parts
(PCP) (WANG et al., 2021), Percentage of Correct Keypoints (PCK) (WANG et al., 2021), Bone
Error, Bone Std, Illegal Angle, and Mean of the Root Position Error (MRPE) (WANG et al.,
2021).

The metric is chosen depending on the problem context and dataset. Some datasets, such
as Human3.6M (IONESCU et al., 2013), have well-defined protocols such as P1, P2, and P3
combined with MPJPE to evaluate the estimator performance. In Campus (BERCLAZ et al.,
2011) or Shelf-dataset (BELAGIANNIS et al., 2014), it is common to use the PCP metric. Figure
16 illustrates PCP.

Figure 16 – In this image, there are two body parts, the grey one is the ground truth, and the orange one is
the estimation. PCP is obtained by comparing these body parts’ start and endpoints. The analysis
is correct if it is less or equal to a defined threshold.

Source: The author (2023)

PCP works by comparing skeleton parts, where each piece is composed of two joint points.
PCP is calculated by comparing these collaborative pairs’ positions, i.e. the estimated couple
(𝑠𝑛, 𝑒𝑛) and the ground-truth pair (𝑠𝑛, 𝑒𝑛). Considering that 𝑠 is the start joint point and 𝑒 is
the endpoint, they are compared, and in case the distance is below a threshold, that part is
considered correct according to the following equation:
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||𝑠𝑛 − 𝑠𝑛|| + ||𝑒𝑛 − 𝑒𝑛||
2 ≤ 𝛼||𝑠𝑛 − 𝑒𝑛||. (2.7)

Note that the larger the body part, the larger the threshold, so the sensitivity is more
significant in small amounts with less tolerance. Furthermore, 𝛼 is a threshold parameter,
working as a factor to control the limit values to consider a body part as correct.
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3 RELATED WORKS

This chapter describes approaches for multi-view multi-person 3D pose estimation. It is
divided in two groups of methods: geometric, and deep learning based approaches.

3.1 MULTI-VIEW MULTI-PERSON GEOMETRIC METHODS

There are 3D pose estimation works in the multi-view multi-person context developed
entirely using projective geometry concepts. This section details how these methods work.

The (BELAGIANNIS et al., 2014) is a work that addresses 3D pose estimation for multiple
persons using images obtained from the multi-view scenario. As mentioned in (BELAGIANNIS

et al., 2014), multi-person 3D pose estimation is a more challenging problem than the single-
person context. There are issues such as occlusion, identifying the same person in different
views, and a larger state space. To deal with these problems they create a reduced state
space by triangulation of the skeleton joints from the camera views. Furthermore, they also
introduce a novel 3D Pictorial Structure (3DPS). The 3DPS model from (BELAGIANNIS et al.,
2014) infers a 3D pose from their reduced state space.

Beyond 3DPS model creation, they introduce the Shelf and Campus datasets. Both of them
are for the multi-view multi-person scenario. However, Shelf comprises an indoor environment,
while Campus in an outdoor dataset. To compare their approach, they performed 3D pose
estimation on images containing only a single person as in KTH Multiview Football II dataset
(BURENIUS; SULLIVAN; CARLSSON, 2013).

Using a novel 3DPS approach, they create a graphical model of the human body. The
human body is represented by 11 variables as shown in Figure 17. The 3D pose is represented
by the configuration of these variables.

They were able to achieve good results at Human-Eva I, being superior at (SIGAL et al.,
2012) and got near results compared to (AMIN et al., 2013). They also obtained competitive
results compared to (BURENIUS; SULLIVAN; CARLSSON, 2013) in the KTH dataset.

The authors in (BELAGIANNIS et al., 2014) were also responsible for some of the most famous
datasets for multi-view multi-person 3D pose estimation, the Shelf and Campus datasets. In
this manner, they started as the reference of state of the art. This work can be considered
a starting point for multi-view multi-person 3D pose estimation methods. Some results are
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Figure 17 – Graphical representation of the human body involves 11 variables to depict different body parts.
Kinematic constraints are denoted by green edges (for rotation) and yellow edges (for translation),
whereas collision constraints are depicted with blue edges.

Source: BELAGIANNIS et al. (2014)

shown in Figures 18 and 19.

Figure 18 – 2D projections from 3D pose estimations in (BELAGIANNIS et al., 2014) related to Campus dataset.

Source: BELAGIANNIS et al. (2014)

The same authors released this improved version (BELAGIANNIS et al., 2015) of the (BELAGI-

ANNIS et al., 2014). They also use a 3DPS model, however, now they use a Structured Support
Vector Machine (svm) (SSVM) to improve the 3DPS model. They use multiple potential func-
tions that must be weighted correctly. In this manner, they used Structured Support Vector
Machine (ssvm) to learn the model parameters. They also increased the number of variables
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in the graphical model to represent the human body. Now they use 14 variables, instead of 11
as in the previous work.

Figure 19 – 2D pose projections from estimated 3D skeletons in 4 of 5 views from Shelf dataset.

Source: BELAGIANNIS et al. (2015)

With this new approach they were able to achieve significant improvements compared with
the previous work (BELAGIANNIS et al., 2014). They achieved the state-of-the-art at Kungliga
Tekniska högskolan - Royal Institute of Technology (KTH) Multiview Football II (BURENIUS;

SULLIVAN; CARLSSON, 2013) and also outperformed other methods in the Campus and Shelf
datasets.

This work needs to match the 2D poses to perform 3D pose estimation. Furthermore, this
2D pose moves during time coherently. To estimate the 3D poses considering the consistency
over time as mentioned before, (BELAGIANNIS et al., 2015) use a 3DPS (3D Pictorial Structure)
model as shown in Figure 20. The temporal consistency improves the 3D pose estimation
performance, once (BELAGIANNIS et al., 2015) identified the position before inference reducing
the state space size.

They build a temporally consistent 3DPS using a Conditional Random Field (CRF). This
field is composed of unary, pairwise, and ternary potential functions. These unary functions
are responsible for describing the relationship between the random variables and the state
space. The random variables are the joints from the body pose, and they take their values
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Figure 20 – On the left, human body graphical model with 14 variables used by (BELAGIANNIS et al., 2015) in to
represent the body joints. On the right, graph factors are illustrated. The constrains are translation
(red) and rotation (green) factors (edges). The yellow edges are the collision constrains. Source:
(BELAGIANNIS et al., 2015).

Source: BELAGIANNIS et al. (2015)

from a defined state space. Furthermore, the pairwise and ternary potentials are responsible
for modeling the interactions between the random variables (BELAGIANNIS et al., 2015).

Figure 21 – Qualitative comparison between (BELAGIANNIS et al., 2015) and (BELAGIANNIS et al., 2014). The
top row are the (BELAGIANNIS et al., 2015) results and the bottom are related to (BELAGIANNIS
et al., 2014). In all comparisons, the estimated poses from (BELAGIANNIS et al., 2015) are more
precise due to reduced state space and temporal potential function regularisation.

Source: BELAGIANNIS et al. (2015)

By using 3DPS and considering temporal consistency, they were able to outperform state-
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of-the-art methods in the Campus and Shelf datasets. The metric used for evaluation and
comparison was the PCP metric. Some results are shown in Figure 21.

3.2 MULTI-VIEW MULTI-PERSON DEEP LEARNING BASED METHODS

This section details how multi-view multi-person supervised methods work. Differently
from the geometric approaches, these methods need to use labeled data to learn the 3D pose
estimation task.

The methods mentioned before use 3DPS to perform 3D pose estimation. The 3DPS
approach has high computation costs and low accuracy in the task of joint detection. With
the popularity of Deep Neural Networks, a new manner was established, considering three
well-defined steps: 2D pose detection in each view, creation of a 2D pose cluster related to
each person through a matching process, and finally 3D pose estimation.

Figure 22 – The framework of (HUANG et al., 2020). The images are the input into to the 2d poses estimator
(HUANG et al., 2020) to get the heatmaps. Next, they apply soft-argmax on heatmaps to get the
corresponding 2d poses. Then, they feed both heatmaps and 2D estimated poses into matching
module. They then sent the heatmaps into a network to get weight matrices. Finally, each cluster
is sent to a weight-sharing 3d pose estimator to get the 3D pose.

Source: HUANG et al. (2020)

Several methods work by running this process in a cascade manner through each one of
these steps. This way, the 2D images and camera parameters feed the steps. One point to
consider is that the steps can be correlated, so a change in one can affect the others. To avoid
these problems, (HUANG et al., 2020) propose an end-to-end approach that joins the steps in
a single model as shown in Figure 22. The step of the matching process disjoints the pipeline.
To solve this, (HUANG et al., 2020) inspires Capsule Networks to create a dynamic matching
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process working as path gradient flow select, directing the paths from steps 1 to 3. Beyond
that, they propose a novel matching algorithm to deal with a large number of cameras.

The (TU; WANG; ZENG, 2020) method is also known as VoxelPose and is shown in Figure
23. Previous works needed to obtain cross-view correspondences based on 2D poses from
challenging environments. This way, these poses sometimes are incomplete or noisy. VoxelPose
has a different approach that deals with incomplete and noisy 2D poses, directly working in
the 3D space, thus avoiding to handle wrong 2D poses from the camera views.

Figure 23 – Overview of (TU; WANG; ZENG, 2020) approach. There are three well defined steps: (a) first, they
estimated 2D pose heatmaps; (b) second, they build a feature volume from a 3D space warping
the heatmaps, so they fed a Cuboid Proposal Network to find people instances; c) Finally, they
build a finer-grained feature volume and obtain the 3D human pose.

Source: TU; WANG; ZENG (2020)

VoxelPose works directly in 3D through a method in which the features from the camera
views must be aggregated in the 3D voxel space and serve as input to a Cuboid Proposal
Network (CPN) to locate the people. After that, they then propose a Pose Regression Network
(PRN) to obtain the detailed 3D poses. VoxelPose is robust to occlusion, which is an important
aspect considering the practical scenarios.

3D pose estimation methods usually obtain cross-view correspondences to obtain clusters
of 2D poses of people present in the multi-view scenario. From these clusters, they can esti-
mate the 3D body pose. Algorithms for computing cross-view correspondences in multi-view
scenarios may deal with challenging environments that give rise to incorrect correspondences.
This wrong matching can impact 3D pose estimation.

The work of (LIN; LEE, 2021) has an approach based on plane sweep stereo, which performs
cross-view matching and 3D pose estimation in a single task, different from methods based
on multi-stage solutions.
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Figure 24 – Overview of (LIN; LEE, 2021). First is estimated a 2D pose estimation for each view. Second they
use the plane sweep algorithm to obtain cross-view consistency for the highlighted target person.
The person-level depth is obtained in (a), and the joint-level is obtained in (b). Combining person-
level and joint-level (LIN; LEE, 2021) is able to estimate the 3D pose.

Source: LIN; LEE (2021)

They propose a method in which a target view is defined among the available views, and
the others are considered reference views. They obtain the depth of each joint from the 2D
body poses of the target view. Using a back-projection method, they use the multiple reference
views to enforce consistency across views.

This method is considered a coarse-to-fine scheme. First, they estimate the person-level
depth, and so the joint-level depth as illustrated in Figure 24. Combining them they are able
to perform the 3D pose.
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4 UNSUPERVISED MULTI-VIEW MULTI-PERSON 3D POSE ESTIMATION

This chapter proposes a unsupervised 3D pose estimation of multiple persons in a multi-
view scenario. This work develops two approaches and compare each other. The first is using
backprojecting as matching process, and the next is using ground point matching. Beyond
that, the backprojecting approach has a MSE loss, instead of a 𝐿1 smooth loss as the second
approach. Both methods aim to obtain 3D body skeletons using the plane sweep stereo work
(LIN; LEE, 2021) as shown in Figure 25. With (LIN; LEE, 2021) technique, the 3D poses are
generated. The obtained poses are then projected onto each one of the reference views, so
these 2D projections are compared with the respective matched 2D body skeletons. The back-
projection method is illustrated in Figure 26 and ground point matching approach is detailed
in Figure 27.

Figure 25 – First, we define a target view and the reference views. Then we estimate the 3D joints using these
defined views as our input. Each predicted depth is related to the 2D pose estimations from the
target view, so our predictions are based on the target view skeletons.

Target view

Reference view Reference view

Source: The author (2023)

One of the key points in this work is the matching process between target and reference
views. The matching is obtained using two methods: backprojecting the estimated 2D pose
(LIN; LEE, 2021), and ground points attached to people for which we wish to estimate the 3D
pose (LIMA et al., 2021).
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Figure 26 – Considering the multiple views available, as in (LIN; LEE, 2021), we define a target view, and all
the others are determined as reference views. Our overview solution image has two views: the
target view and only one reference view. Our approach follows two sequential steps: the first is to
estimate the 3D pose using (LIN; LEE, 2021), go along with the projection of this 3D pose onto
the reference view. The second is to utilize back-projection to make the matching process, so we
establish the 2D pose compared with the 2D projection obtained from 3D estimation. Comparing
these poses, we have a reprojection error loss.

Source: The author (2023)

Related to backprojecting, the 2D pose from target view is projected in sucessive virtual
depth planes, so these 3D skeletons are projected in the respective reference views. We compare
the skeletons, and the nearest 2D pose in the reference view is our matched pose. In the ground
point case, it is estimated the 2D ground points attached to each 2D body skeleton, then these
points are projected onto world points using a homography matrix, and finally the Hungarian
algorithm is used for matching the poses using the Euclidean distances among the calculated
ground points.

Beyond the matching process, other key points of this work are the reprojection error and
the loss. The backprojecting approach uses a MSE loss, and the ground point a smooth 𝐿1

loss to compare the projected and the matched 2D poses, and so optimize the neural network.
Usually the MSE loss is the typical approach to compare 2D poses, as shown in (LI et al., 2021).
However, using smooth 𝐿1 loss achieves higher performance. Another works also use smooth
𝐿1 loss, such as (BRYNTE; KAHL, 2020) for calculating the reprojection error. The plane sweep
approach also uses smooth 𝐿1 loss to compare the pose estimations (LIN; LEE, 2021). This
work improved significantly the results by using the smooth 𝐿1 loss.

It is important to mention that the matching process is used only during the training
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Figure 27 – We have well-defined target and reference views. Using the 2D poses estimated in each view, we
perform 3D pose estimation as in (Lin and Lee, 2021). Each 3D skeleton is projected onto the
reference view, and we compare them with the matched 2D poses. These matching 2D poses are
obtained using ground points. For each 2D pose, we have ground points associated and, utilizing
a homography matrix as in (Lima et al., 2021), we project these points onto world coordinates.
Taking the Euclidean distance, we build a cost matrix used on the Hungarian Algorithm to perform
the matching. With the 2D poses matched, we compare them with a smooth L1 loss (Girshick,
2015).

Target view

Reference view

3D pose
estimator

Loss

Target
Reference

Ground point

Ground point

Ground point

Ground point

Target view

Reference view

Projection

Matching process

Ground points on
world coordinates

2D pose matched

2D pose matched

2D projection

2D projection

Source: The author (2023)

process. Once the model is trained, the 3D poses can be inferred using the neural network
structure provided by (LIN; LEE, 2021).
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Figure 28 – Overview of the reprojection process. Once we have a point in a target view, we estimate its depth
using [12] and project this point onto both the reference views. The squared Euclidean distance
between the points is the reprojection error [7]. The blue and orange points represent the real
position of the target point in the respective reference view. We compare the projected point
(green point) with the estimated position. We are not using ground truth to verify if the 3D point
is in the correct position; instead, we use the reprojection error.

Source: The author (2023)

4.1 REPROJECTION ERROR

At this section, it is brief detailed the reprojection error (HARTLEY; ZISSERMAN, 2003).
This key concept is used for computing the loss. In this case, the reprojection error is the
manner of how to compare the 2D poses during the training process. This way, it is possible
to train the neural network model without needing to use 3D pose labeled ground-truth data.

A 3D pose is estimated for each 2D pose on the target view using (LIN; LEE, 2021). The
generated 3D poses are projected onto the respective reference views, so that pose goes from
world points (3D pose) to image points (2D pose). This way, the projected poses are compared
with the matched 2D poses in the reference views. The comparison is made using MSE loss
and smooth 𝐿1 norm, as it is described in the next sections.

Furthermore, it can be established that the reprojection error is the process of comparing
the projection of a 3D point onto a 2D point (image point) with the original 2D position of
that point in a given image as illustrated in Figure 28.
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Figure 29 – The estimated 2D pose in the target view is back-projected onto successive virtual depths planes,
and each 3D skeleton is projected onto the reference view. We compare the skeletons, and the
nearest 2D pose in the reference view is our matched pose. This matched pose is compared with
the 2D projection of the estimated 3D pose.

Target view

Virtual depth planes

Matching

Source: The author (2023)

4.2 UNSUPERVISED MULTI-VIEW MULTI-PERSON 3D POSE ESTIMATION WITH BACK-
PROJECTION MATCHING

4.2.1 Matching process

Based on (LIN; LEE, 2021), we estimate 2D poses from all the views using an off-the-shelf
method (SUN et al., 2019), and after that, we perform a back-projection for each 2D pose of
the target image using virtual depth planes as shown in Figure 29. Finally, each 3D pose in
these depth planes is projected onto the reference views, and we measure the distance between
this projected 3D pose and the estimated 2D poses in the reference view:

𝑚 = arg min
𝑟

𝐽∑︁
𝑖=1

𝑑(𝑟𝑖, 𝑝𝑖), (4.1)

where 𝐽 is the number of joints, 𝑑(𝑥, 𝑦) is the distance between the joints 𝑥 and 𝑦, {𝑟} is the
set of the 2D poses from the reference view, 𝑝 is the projected pose in reference view, and 𝑚

is the nearest 2D pose in the {𝑟} set.

4.2.2 Loss function

In (LIN; LEE, 2021) they compute two losses, one for person position (center hip joint) and
another for joints positions. With the regressed depth, they obtain the 3D hip point and joints.
Then, they compare the estimates with the 3D ground truth. UMVpose uses the regressed



52

depth to generate a 3D point (using the center hip) related to the person’s position and a 3D
pose with all the joints. We project the person’s 3D location and the estimated 3D pose onto
each reference view. Using the concept of reprojection error, we compute a loss comparing the
target 3D estimate projected onto the reference view with the matched 2D pose. As in (LIN;

LEE, 2021), we use two losses, a position loss (related to hip point) and a joint loss. Both
losses are computed using MSE.

The position loss is given by

ℒ𝑝𝑜𝑠𝑒 =
𝑅∑︁

𝑟=0

1
𝑃

𝑃∑︁
𝑖=1

(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟(𝑖)𝑝𝑟𝑜𝑗 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟(𝑖)𝑟𝑒𝑓 )2, (4.2)

where 𝑃 is the number of persons in the target view, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟(𝑖)𝑝𝑟𝑜𝑗 is the projected pose and
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟(𝑖)𝑟𝑒𝑓 is the matched pose in the reference view, and 𝑅 is the number of reference
views.

The joint loss is obtained by

ℒ𝑗𝑜𝑖𝑛𝑡 =
𝑅∑︁

𝑟=0

1
𝑃

𝑃∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑗𝑜𝑖𝑛𝑡𝑟,𝑗(𝑖)𝑝𝑟𝑜𝑗 − 𝑗𝑜𝑖𝑛𝑡𝑟,𝑗(𝑖)𝑟𝑒𝑓 )2, (4.3)

where 𝑃 is the number of persons in the target view, 𝑗𝑜𝑖𝑛𝑡𝑟,𝑗(𝑖)𝑝𝑟𝑜𝑗 are the 17 joints projected
onto the reference view and 𝑗𝑜𝑖𝑛𝑡𝑟,𝑗(𝑖)𝑟𝑒𝑓 are the joints from the matched skeleton in the
reference view.

4.2.2.1 Regularizer term

We also use a regularizer term, more precisely the Kullback-Leibler (KL) one (ERVEN;

HARREMOS, 2014), inspired by (NIBALI et al., 2018). We get the keypoints positions, and we
multiply each coordinate by a Gaussian distribution 𝒩 (0, 𝜎), so we apply this to projected and
matched 2D poses. We apply KL divergence to these poses multiplied by 𝜆. We also make this
with the center hip point in ℒ𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. We use the parameter values 𝜎 = 1 and 𝜆 = 1, since
they provide the best results in (NIBALI et al., 2018).

4.2.2.2 Optimizer

3D pose estimation learning methods commonly use the Adam optimizer (KINGMA; BA,
2014). Unfortunately, Adam takes a long time to converge, so we decided to use AdaBe-
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lief (ZHUANG et al., 2020), which has three key features: fast convergence, good generalization,
and training stability. AdaBelief was faster in convergence than Adam. Therefore, we could
see progress early. Furthermore, we could make the analysis faster than the Adam optimizer
when we performed different tests.

Figure 30 – The matching process occurs using ground points. Each person has a ground point, and it is
projected onto world coordinates. Next, we measure the distance between these points to obtain
a cost matrix. Finally, we use the Hungarian algorithm to perform matching between target and
reference views based on our cost matrix.

1
0 2

10
2

Target

Reference

Target
Reference

Source: The author (2023)
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4.3 UNSUPERVISED MULTI-VIEW MULTI-PERSON 3D POSE ESTIMATION WITH GROUND
POINT MATCHING

4.3.1 Matching process

In this section it is detailed how to execute the matching process using an approach based
on ground points as shown in Figure 30. It is important to mention that the matching process
is used only during the training process. When performing inference, it is not needed to use
the ground point matching technique.

It is performed unsupervised 3D body pose estimation using the reprojection error. Further-
more, it is made a comparison betwen poses using ground point matching. The matching
process aims to identify the corresponding 2D pose in a reference view related to a projected
2D pose from respective 3D body skeleton. This way, it is clear the relevance of the matching
process, since it is necessary to compare the corresponding 2D poses in order to obtain a
coherent training process for generating the 3D poses.

The matching process is build up using ground points approach as in (LIMA et al., 2021),
as illustrated in Figure 31. First, the ground points are obtained from 2D poses. They are
estimated considering a line between the right and left ankle joints, so we get the middle point
of this line, and, taking an offset 𝛿 in the ground direction, it generates the ground point.
The offset is calculated using the own 2D pose. Considering the 2D body skeleton, we take
the highest and lowest value from 𝑥 and 𝑦 coordinates. This way, we have the bounding box
related to that 2D pose as shown in (XIU et al., 2018). Once the bounding box is estimated,
we get the maximum 𝑦 value of the bounding box (𝑏𝑏𝑦𝑚𝑎𝑥) and the highest 𝑦 value between
the right (𝑟𝑎𝑦) and left (𝑙𝑎𝑦) ankle joints, and then calculate 𝛿 as:

𝛿 = 𝑏𝑏𝑦𝑚𝑎𝑥 − 𝑚𝑎𝑥(𝑙𝑎𝑦, 𝑟𝑎𝑦). (4.4)

The 3D ground points are located in the ground plane. Therefore, their 𝑍 component in
world coordinates must be zero. This way, the ground points in image coordinates are projected
onto the world coordinate system using a homography matrix H as in (LIMA et al., 2021):
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Figure 31 – We assign a ground point to each 2D pose. We obtain this ground point as described in (LIMA
et al., 2021). We estimate a bounding box for each 2D pose and build a line between the ankles.
So we take the middle point and apply an offset in the direction of the ground. Our goal is to
represent each person by this point. Therefore the ground points are our reference to match the
2D skeletons of the target and reference views.

Ground point

Ground point
Ground point

Source: The author (2023)
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where K represents the intrinsic parameters matrix, while [R|t] is the extrinsic parameters
matrix. Note that the world ground points are represented by (𝑋, 𝑌, 0) coordinates, and (𝑥, 𝑦)

are the image points. Each R𝑖 corresponds to the 𝑖-th column of R.
As an example, in Figure 30 we take a pair of views (target and reference) and project

the ground points from 2D image coordinates of each view onto world coordinates. Then we
take the Euclidean distance between the projected ground points in world coordinates, so it is
created a cost matrix. The cost matrix rows are the corresponding distances between target
view ground points and reference view ground points. This way, each row is the Euclidean
distance between the world ground point of a person in the respective target view and all the
ground points of other persons on a given reference view. The elements of the cost matrix
can be described as 𝑑(𝑡𝑎𝑟𝑔𝑒𝑡𝑝𝑒𝑟𝑠𝑜𝑛𝑖 ,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑝𝑒𝑟𝑠𝑜𝑛𝑗 ), where 𝑑 is the Euclidean distance between
the world ground points correspondent to two persons in the respective views. The matching
process is performed using the Hungarian algorithm (KUHN, 1955). Performing matching using
ground points is a robust approach, because it is compared only one sigle point (ground point)
instead of all the joints present in a 2D skeleton. Furthermore, it is not necessary to perform
several 3D projections of all 2D points as seen in the back-projection method presented in
(LIN; LEE, 2021). In this case, the matching using ground points is more simple, once it only
needs to estimate the ground point from the 2D pose and project it onto world coordinates.
Differently from the back-projection method, ground point matching is more robust, since
back-projection can generate false positive matchings when the person in target view is not in
the reference views. The cost matrix is as follows:

𝐶𝑜𝑠𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑11 𝑑12 ... 𝑑1𝑛

𝑑21 𝑑22 ... 𝑑2𝑛

... ... . . . ...

𝑑𝑛1 𝑑𝑛2 . . . 𝑑𝑛𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.6)

4.3.2 Loss Function

Based on the neural network structure presented in (LIN; LEE, 2021), this work suggests a
new loss while retaining the existing structure. The goal is to eliminate the need for 3D labeled
data by utilizing reprojection errors. By matching poses and using the 2D projections obtained
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from the estimated 3D pose, it is possible to create a loss function that does not require
ground-truth information. Unlike works that compare 2D poses using MSE, our approach
recommends using the smooth 𝐿1 loss instead of the MSE loss.

Loss functions that involve the comparison of 2D poses typically utilize the MSE loss, as
demonstrated in (LI et al., 2021). Nonetheless, some studies, such as (BRYNTE; KAHL, 2020),
employ the smooth 𝐿1 loss to compute the reprojection error. Additionally, the neural network
in (LIN; LEE, 2021) also uses the smooth 𝐿1 loss.

The smooth 𝐿1 loss is defined as

smooth𝐿1(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0.5𝑥2 if |𝑥| < 1

|𝑥| − 0.5 otherwise.

In this work context, the adoption of the smooth 𝐿1 loss resembles the use of an M-
estimator function, for instance the Huber function, to compute the reprojection error, which
enhances the resilience of our approach to outliers. Additionally, it is conducted experiments
with the Kullback-Leibler loss regularizer and it is employed AdaBelief as the optimizer.

As noted in (LIN; LEE, 2021), there exist two distinct losses, one dedicated to the individuals
positions and the other to the positions of their joints. Specifically, the person position loss
concerns the central hip joint, i.e. a single point, while the joint loss pertains to all of the
person’s joints. To compute these losses, this approach suggests utilizing reprojection error
instead of comparing estimations with 3D ground truth. As a result, it obtains two distinct
losses: one for the pose (person position) and another for the joints (joint position). These
losses correspond to two distinct neural networks, namely the person-level depth regression
network and the joint-level depth regression network, as shown in (LIN; LEE, 2021). The pose
loss is defined as follows:

ℒ𝑝𝑜𝑠𝑒 =
𝑅∑︁

𝑟=0

1
𝑃

𝑃∑︁
𝑖=1

||𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟(𝑖)𝑝𝑟𝑜𝑗 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟(𝑖)𝑟𝑒𝑓 ||𝑠1. (4.7)

Equation 4.7 outlines the pose loss calculation, where 𝑃 denotes the number of individuals
in the target view, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟(𝑖)𝑝𝑟𝑜𝑗 represents the projected pose, and 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟(𝑖)𝑟𝑒𝑓 means
the matched pose in the reference view, obtained using ground point matching. The variable
𝑅 denotes the number of reference views, while the index 𝑠1 relates to the use of the Smooth
𝐿1 loss. Additionally, the joint loss is determined by
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ℒ𝑗𝑜𝑖𝑛𝑡 =
𝑅∑︁

𝑟=0

1
𝑃

𝑃∑︁
𝑖=1

𝐽∑︁
𝑗=1

||𝑗𝑜𝑖𝑛𝑡𝑟,𝑗(𝑖)𝑝𝑟𝑜𝑗 − 𝑗𝑜𝑖𝑛𝑡𝑟,𝑗(𝑖)𝑟𝑒𝑓 ||𝑠1, (4.8)

where 𝐽 represents the overall number of joints, 𝑗𝑜𝑖𝑛𝑡𝑟,𝑗(𝑖)𝑝𝑟𝑜𝑗 means a joint that is projected
onto the corresponding reference view, and 𝑗𝑜𝑖𝑛𝑡𝑟, 𝑗(𝑖)𝑟𝑒𝑓 denotes a joint from the matched
2D pose in the reference view.
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5 RESULTS AND EXPERIMENTS

This section entails a detailed presentation of the experimental outcomes of our 3D pose
estimation study, represented in Figures 32 and 33. Initially, it generates 3D poses for various
individuals in a multi-view setting. Then, it proceeds with the training process by leveraging
a publicly available dataset and evaluating the model’s efficacy through the Percentage of
Correctly Estimated Parts (PCP) metric (WANG et al., 2021). 3D pose estimation is applied
by considering all humans together, with unknown identities. Each actor is associated with a
person from the dataset. The evaluation of 3D pose estimation is performed by assessing the
performance of each actor. After estimating the 3D pose for each actor, their performance is
evaluated using PCP (Percentage of Correct Parts) individually. Therefore, the results consist
of evaluating the 3D pose estimation for each actor. The configuration of the plane sweep
pose estimator (number of epochs, batch size, learning rate, and other hyperparameters) is the
same as described in (LIN; LEE, 2021). Finally, this work conducts an exhaustive assessment of
its approach, comparing its PCP results with previous works that utilized geometric and neural
network techniques. This analysis provides a comprehensive understanding of the presented
model’s performance in the context of existing processes and its potential for improving future
research.

Figure 32 – The figure has several illustrations of this work 3D pose estimation using the Campus Dataset.
The results showcase the estimated 2D skeleton and its corresponding 3D pose, which provides
numerous instances for qualitative analysis.

Source: The author (2023)
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Figure 33 – The Campus Dataset contains instances of 3D pose estimation using this work, with green ske-
letons representing the estimated 2D poses and the corresponding 3D poses displayed above for
qualitative analysis.

Source: The author (2023)

5.1 DATASET

In this study, the Campus dataset was utilized to estimate 2D poses using High-Resolution
Net (HR-Net), a deep learning architecture that was pre-trained on the Microsoft Common
Objects in Context (MS-COCO) dataset. This dataset is used because it is one of the principal
benchmarks for 3D pose estimation of multiple people in a multi-view scenario. It does not
undergo any pre-processing on the images. The Campus dataset is a widely-used benchmark
dataset for multi-view, multi-person scenarios, which contains videos of three actors interac-
ting with each other in an outdoor environment, captured by three cameras as illustrated in
Figure 34. The Campus dataset contains 2000 frames. Although the dataset’s 3D ground truth
annotations are incomplete, the researchers used synthesized 3D MoCap poses from (LIN; LEE,
2021) to train their model. They compared their approach with the results obtained using
geometric and supervised methods that relied on the Campus dataset, and evaluated their
model’s performance on frames 350-470 and 650-750, consistent with previous studies (DONG

et al., 2019), (HUANG et al., 2020), (TU; WANG; ZENG, 2020). The training set consists of the
remaining frames. It should be noted that the 2D poses in the dataset consist of 17 joints.
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Figure 34 – The Campus Dataset includes a collection of footage captured by three calibrated and synchronized
cameras, each offering a unique perspective of the same scenario. These cameras have successfully
captured a range of diverse scenes, providing different viewpoints of the same events. For instance,
in scene 2, camera 0 has recorded the presence of three individuals, while camera 1 and 2 only
managed to capture two individuals. Likewise, in scene 3, camera 0 has recorded the presence of two
people, while cameras 1 and 2 have only managed to capture one person. The multi-perspective
footage captured by the Campus Dataset’s cameras offers researchers a valuable resource to
study and analyze the dynamics of events, as well as to develop and test novel computer vision
algorithms.

Source: The author (2023)

5.2 METRICS

In this study, it has utilized the PCP as the evaluation metric, which has also been com-
monly employed in other related works. Given the dataset’s complexity and the accuracy of 2D
part detectors, the PCP (Percentage of Correct Parts) score yields more informative results
when compared to metrics based solely on the Euclidean distance. In order to ensure a fair
comparison of its results with those of previous studies, it has adopted the same metric. By
using a standardized metric, it can ensure that it results are directly comparable to those of
other studies, which will enable to draw meaningful conclusions and make informed recom-
mendations based on the analysis of the collected data. PCP (WANG et al., 2021) is given
by
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||𝑠𝑛 − 𝑠𝑛|| + ||𝑒𝑛 − 𝑒𝑛||
2 ≤ 𝛼||𝑠𝑛 − 𝑒𝑛||, (5.1)

where 𝑠𝑛 and 𝑒𝑛 are the start and end coordinates of ground truth 𝑛-th body part, 𝑠𝑛 and 𝑒𝑛

are the corresponding estimations, and 𝛼 is a given threshold parameter, in our case 𝛼 = 0.5.

Table 1 – Comparing PCP on Campus Dataset of ground point with backprojection approaches.

Method Actor1 Actor2 Actor3 Average Std
Backprojection with

Adam
(MSE loss) 78.0 85.1 83.0 82.0 3.6

Backprojection with
Adabelief

(MSE loss) 96.9 87.8 88.9 91.2 5.0
Backprojection with

Adabelief and
KL regularizer

(MSE loss) 93.3 86.8 89.4 89.8 3.3
Backprojection with

Adam
(Smooth 𝐿1 loss) 98.6 92.7 98.3 96.5 3.3

Backprojection with
Adabelief

(Smooth 𝐿1 loss) 98.2 92.9 98.2 96.4 3.0
Backprojection with

Adabelief and
KL regularizer

(Smooth 𝐿1 loss) 97.4 92.5 98.6 96.2 3.2
Ground point matching

with Adam
and Smooth 𝐿1 loss 98.4 93.4 98.6 96.8 2.9

Source: The author (2023)

5.3 COMPARISON BETWEEN BACKPROJECTION AND GROUND POINT MATCHING
APPROACHES

Given the approaches of this work based on backprojection and ground point matching
algorithms, it conducted a series of experiments to compare their performances. The back-
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projection was performed because it is quite similar to a (LIN; LEE, 2021). Since plane sweep
stereo is utilized as a 3D pose estimator, the back-projection, which is also used by the plane
sweep stereo, seems to be an interesting option for the matching process. As for ground point
matching, it is used because of its simplicity and ability to provide a robust matching process.
Instead of comparing entire poses, it now requires comparing only one single point (ground
point) attached to each person. As mentioned before, to evaluate this work, it utilized two
approaches, each one with a own loss process: MSE loss and smooth 𝐿1 loss functions. By
conducting these experiments and evaluations, it aimed to gain a deeper understanding of
the strengths and weaknesses of the presented algorithms and identify areas where further
improvements could be made.

By leveraging ground point matching and employing the smooth 𝐿1 loss instead of the
traditional mean squared error (MSE) loss, the ground point matching method has been
demonstrated to produce superior outcomes in comparison to backprojection approach as
evidenced by the data presented in Table 1. These findings suggest that the incorporation of
ground point matching and the smooth 𝐿1 loss can significantly enhance the accuracy and
reliability of pose estimation systems. Furthermore, related to backprojection approach, it’s
noteworthy to state that the effective utilization of the Adabelief optimizer not only ensures
rapid convergence but also facilitates strong generalization and stable training.

The study demonstrates that utilizing ground point matching with the Adam optimizer and
Smooth L1 loss leads to significantly better performance in comparison to all backprojection
methods, irrespective of the optimizer and loss function employed. These compelling results
strongly support the notion that ground point matching offers a more effective approach for
accurate 3D pose estimation. It’s also worth highlighting that the demonstrated superiority of
the smooth L1 loss underscores its enhanced suitability for tackling this particular challenge,
likely attributed to its robustness in effectively handling outliers.

By maintaining the back-projection matching and solely modifying the loss function, this
work were able to achieve considerable enhancements in the PCP values. However, it is im-
portant to note that back-projection is a multifaceted technique for matching between the
target and reference views and may produce erroneous matches. Therefore, this work opted
to adopt ground point matching instead. The outcome of this decision was that ground point
matching, in conjunction with the Adam optimizer, outperformed back-projection matching
both on average and across all actors.
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Table 2 – Comparing ground point matching approach PCP on Campus Dataset with the state-of-the-art.

Method Actor1 Actor2 Actor3 Average Std
Belagiannis
et al., 2014a 82.0 72.4 73.7 75.8 5.2
Belagiannis

et al., 2014b 83.0 73.0 78.0 78.0 5
Belagiannis
et al., 2015 93.5 75.7 84.4 84.5 8.9

Ershadi-Nasab
et al., 2018 94.2 92.9 84.6 90.6 5.2

Dong
et al., 2019 97.6 93.3 98.0 96.3 2.6

de França Silva
et al., 2022 96.9 87.8 88.9 91.2 5.0

Ours 98.4 93.4 98.6 96.8 2.9
Huang

et al., 2020 98.0 94.8 97.4 96.7 1.7
Tu

et al., 2020 97.6 93.8 98.8 96.7 2.6
Lin and Lee,

2021 98.4 93.7 99.0 97.0 2.9
Source: The author (2023)

5.4 COMPARISON OF GROUND POINT MATCHING WITH STATE-OF-THE-ART

It is shown the table 2 comparing ground point matching approach with all other methods.
The table is divided into two parts: the first part contains unsupervised/geometric methods,
and the second part includes supervised methods. The proposed method outperform all the
unsupervised methods with the approach using ground points in the matching process and
smooth 𝐿1 reprojection error loss. Furthermore, it outperforms on average and also in all the
actors. The results from this master thesis are located at the bottom of the first part of the
table since this approach, like the others, is unsupervised. However, the last three techniques
are supervised. The division is based on two groups of techniques: unsupervised and supervised.

Furthermore, the table 2 illustrates the notable advancements achieved by the techniques
over time. Initially, some methods, such as 3DPS, underwent refinements, leading to improve-
ments in their performance. Subsequently, the incorporation of neural networks further revolu-
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tionized the field. Notably, significant enhancements were observed in unsupervised methods,
particularly in crucial stages like the matching process, which played a pivotal role in refining
the clustering of 2D poses. These improvements subsequently had a positive impact on the
accuracy of 3DPS. The transition from 3DPS to neural networks marked a transformative
turning point in 3D pose estimation. The adoption of supervised neural network techniques,
employing 2D (LIN; LEE, 2021) or 3D (TU; WANG; ZENG, 2020) CNNs, proved to be a game-
changer, resulting in substantial progress and propelling the state-of-the-art forward. The
integration of neural networks brought numerous benefits, including improved generalization
capabilities, better handling of complex spatial relationships, and the ability to learn from
labeled datasets. Consequently, the performance of 3D pose estimation methods witnessed a
significant boost, with state-of-the-art results. It is worth mentioning that the success of these
neural network-based approaches is owed to both the availability of rich, annotated datasets
and advancements in deep learning architectures. In summary, the results presented in Table
2 demonstrate the progressive evolution of 3D pose estimation techniques over time. The
transition from traditional methods like 3DPS to the incorporation of neural networks has
resulted in significant performance improvements. Moreover, supervised neural networks has
propelled the state-of-the-art, showcasing the potential of deep learning approaches in pushing
the boundaries of 3D pose estimation accuracy and applicability.

It is important to note that performance varies among actors, and several key factors
influence these differences. One crucial aspect is occlusion, where certain parts of the actor’s
body may be hidden from view. The 3D pose estimation process relies on obtaining a 2D pose
from the RGB images captured by the cameras. However, if a person is not fully visible to all
cameras, the accuracy of the 3D pose estimation becomes more challenging. Additionally, the
person’s positioning can pose difficulties for estimating their 2D pose accurately. For instance,
if a person is in an unusual or complex pose, it may be harder to determine their exact position
from the images. Another challenging scenario occurs when people interact closely with each
other. In such cases, estimating their poses becomes more challenging compared to situations
where individuals are more distant from each other.

Compared to the supervised methods, it outperforms (HUANG et al., 2020) and (TU; WANG;

ZENG, 2020) on average, being below (LIN; LEE, 2021) only. Moreover, considering that (HU-

ANG et al., 2020) and (TU; WANG; ZENG, 2020) need 3D annotations, the proposed method has
an impressive advantage. Enhanced results achieved through ground point matching suggest
that this approach could prove more efficacious for 3D pose estimation in scenarios involving
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multiple views and individuals. As depicted in table 2, the standard deviation of PCP values
among the three actors stands out as notably low when compared to alternative methods.
Consequently, the ability to maintain robustness across different actors becomes a crucial at-
tribute for a 3D pose estimation technique, ensuring its effective performance with diverse
individuals in real-world scenarios. Additionally, it’s worth noting that the practical effective-
ness of unsupervised learning extends seamlessly to the realm of 3D pose estimation, thereby
enlarging the horizons of its potential applications. This attribute becomes especially valuable
when confronted with scenarios where acquiring labeled data presents challenges or constraints
in terms of availability.
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6 CONCLUSION

The present work aims to propose a novel solution to the problem of 3D pose estimation
of multiple persons in a multi-view scenario, using an unsupervised approach with a simpler
and more robust matching process. To achieve this, this leverages ground points to eliminate
the need for 3D back-projections, allowing for a more straightforward and efficient matching
process. Additionally, this method compare only one point per person, making the process
more reliable and reducing the chances of errors.

Key discoveries from this study highlight the viability of leveraging reprojection error to
obviate the need for 3D labeled data. Instead of resorting to intricate matching algorithms, a
simplistic approach involving a reference point (a singular point of comparison as opposed to
an entire 2D pose) yields noteworthy outcomes. The crux of achieving accurate results with the
reprojection error lies in the precision of the matching process, underscoring the method’s pro-
ficiency in making apt comparisons. When considering methods like backprojection, employing
enhanced optimizers emerges as a promising avenue for refining the matching process. Notably,
the choice of loss function exerts a pivotal influence on the results, with the implementation of
the smooth L1 loss demonstrating its significance; yet, potential enhancements in the neural
network architecture also hold promise for enhancing the precision of 3D estimations.

In contrast to preceding methodologies, this study holds a strong and commendable po-
sition, boasting exceptional outcomes. When juxtaposed with geometric approaches, this re-
search distinguishes itself by harnessing a more robust technique grounded in deep learning
principles, thereby surpassing the capabilities of traditional geometric methods. Furthermore,
the matching process is notably simplified, as this work foregoes the intricacies associated
with amalgamating epipolar geometry and person reidentification. In the realm of previous
deep learning methods, this research exhibits a significant advantage by sidestepping the need
for labeled data. This innovation is achieved by computing loss through reprojection error,
enabling the generation of labels during the training process through the comparison of 2D
poses, thereby eliminating the reliance on pre-annotated 3D data.

Additionally, it is noteworthy to consider the assessment of the proposed approach across
a range of views, such as employing 2, 4, or 5 views. This investigation would provide insight
into whether augmenting the number of views yields improved outcomes or if comparable or
diminished results are obtained with fewer views. Moreover, the challenges associated with
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indoor environments must be acknowledged, as increased proximity and prolonged interaction
among individuals could complicate matching. Thus, it is imperative to conduct the methodo-
logy across a diverse array of scenarios. Furthermore, it is imperative to extend the application
of the presented approach to scenarios involving two or more actors, potentially encompassing
five or even six individuals. This expansion is of paramount importance given that the typical
environments targeted for monitoring or pedestrian tracking tend to be densely populated.
Consequently, it becomes crucial to thoroughly assess the efficacy of the approach under such
circumstances, gauging its performance in scenarios characterized by a significant volume of
individuals.

Given that the neural network architecture mirrors that of (LIN; LEE, 2021), the method
introduced here demonstrates comparatively inferior outcomes. This discrepancy arises due to
the computation of loss using 2D poses instead of the 3D annotated poses employed in the
reference work. The original neural network design was tailored for 3D pose comparison, thus
prompting consideration for adjustments that render it more compatible with the evaluation
of 2D poses. Such adaptations could potentially propel the proposed unsupervised technique
to surpass the current state-of-the-art represented by (LIN; LEE, 2021).

Moreover, it employs a smooth L1 loss instead of comparing 2D poses with the Mean
Squared Error (MSE). This modification has proved to be highly effective, and the results ob-
tained with this approach demonstrate the enormous potential of using unsupervised methods
instead of supervised ones based on 3D annotations.

The future work includes conducting experiments on more datasets to further validate our
method’s effectiveness and refine the loss using other regularizers such as Jensen-Shanon. By
exploring the use of other regularization techniques, it hopes to further enhance the perfor-
mance of the proposed method, making it even more effective for 3D pose estimation. Overall,
this work provides a promising approach for pose matching that has the potential to impact
several fields, including computer vision, robotics, and augmented reality.

Taking into account the foregoing insights, the prospect of attaining a 3D pose estimator
without necessitating annotated 3D labels offers the tantalizing opportunity to develop a
neural network exclusively reliant on captured images. This approach circumvents the resource-
intensive task of manually annotating 3D poses. An intriguing proposition involves establishing
a designated locale furnished with synchronized and calibrated cameras, enabling the training
of the model using the captured images. Subsequently, the trained model can be harnessed
for diverse applications, including but not limited to pedestrian tracking, movement intention
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analysis, and semantic interpretation. This trajectory envisions the progression of this master’s
thesis into a potent product, one brimming with potential to simplify the process of 3D pose
estimation for multiple individuals.
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