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ABSTRACT

In this work, we start studying some basic concepts of classical category theory, such as
categories, functors, natural transformations, products and co-products, among other important
concepts, understanding its definitions and their main properties. We proceed to the theory
of monoidal categories, with the objective of understanding a generalization of the product
in categories and of algebraic objects within such categories. We begin this part studying
properties of the neutral, the commutativity of certain diagrams and the properties of functors
that preserve the monoidal structure, with the aim of being able to prove MaclLane's coherence
theorem, which gives us the commutativity of a large class of diagrams, and the strictification
theorem, which gives us a monoidal category equivalent to the initial one that is algebraically
simpler. We finish the study of these categories by looking at additional braiding structures,
symmetry and internal algebraic structures (monoids, modules, bimodules and actions in
monoidal categories). Finally, we extend the study of monoidal categories to the case of
low-dimensional categories to prove a theorem recently proved by Shulman (which says that
a certain bicategory associated with an isofibrant monoidal double category is also monoidal
through a functorial association) and then we detail the applications of this result to some

scenarios.

Keywords: category theory; monoidal categories; monoidal bicategories; monoidal double

categories; locally cubical bicategories; low dimensional categories.



RESUMO

Neste trabalho comecamos estudando alguns conceitos basicos da teoria de categorias
classica, como as categorias, funtores, transformacées naturais, produtos e coprodutos, entre
outros conceitos importantes, indo a fundo em suas definicoes e em suas propriedades gerais.
Apos este estudo nos é permitido estender o conhecimento para a teoria das categorias
monoidais, com o objetivo de entender uma espécie de generalizacdo do produto em categorias
e de objetos algébricos dentro de tais categorias. Nesta parte, comecamos estudando propriedades
do neutro monoidal, a comutatividade de certos diagramas e propriedades de funtores que
respeitam esta estrutura monoidal, com o objetivo de conseguirmos provar o teorema de
coeréncia de MaclLane, que nos prové a comutatividade de uma grande classe de diagramas,
e o teorema de estritificacdo, que nos da uma categoria monoidal equivalente a inicial que é
mais algebricamente mais simples. Terminamos o estudo destas categorias vendo estruturas
adicionais de trancamento, simetria e estruturas algébricas internas (mondides, mddulos,
bimédulos e acdes em categorias monoidais). Por fim, estendemos o estudo de categorias
monoidais para o caso de categorias de baixa dimens3o para provar um teorema recentemente
provado por Shulman (que diz que uma certa bicategoria associada a uma categoria dupla
monoidal isofibrante é também monoidal através de uma associacdo funtorial) e detalhamos

aplicacOes deste resultado em algumas situacoes.

Palavras-chaves: teoria de categorias; categorias monoidais; bicategorias monoidais; categorias

duplas monoidais; bicategorias localmente clbicas; categorias monoidais de baixa dimensao.
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1 INTRODUCTION AND OVERVIEW OF THE WORK

Category theory is, in the words of Norman Steenrod, an "abstract nonsense". At first
glance one can think that this was an offense to the theory of categories, but actually he
was just referring to the power of abstraction that category theory brings to other areas of
mathematics. Steenrod took category theory as a very serious subject early on, since it allowed
him to quickly solve a problem that he was working on: find a proper axiomatic treatment of

homology theory ([16]).

Since it was formally founded by Saunders Mac Lane and Samuel Eilenberg in 1945, in the
paper [41] category theory has been gaining acknowledgment for its power to see problems
from above. It is a theory that allows algebraic geometers and topologists to work with
tools that allow to pose problems in an entirely new framework that can abstract the core
concepts more easily (see, for example, [10]). It also provides a framework to physicists
work with quantum mechanics, conformal quantum field theories, general relativity, quantum

computation and even some very well known areas, like thermostatistics and classical mechanics.

The theory of categorical graphical calculi has been developed since the 1980's. More recently,
it gained further momentum due to some contributions like the work of Bob Coecke's.
He provided an entirely categorical framework for quantum protocols and with quantum
mechanics. In the realms of theoretical and mathematical physics, the work of John Baez's
has received widespread recognition for posing physical problems in categorical language, as
well as using categories to gain more and new perspectives on the topics that are already
"well known" (see, for example, the references [27] to [38].) Last, but definitely not least
(indeed, the more important contribution to this dissertation), Michael Shulman has studied
the monoidal theory of low dimensional categories. His results have been used in research
on various topics — E.g.: [18], [19] and [20] are regularly cited in Baez's most recent works.

Shulman and Baez are coauthors of a paper on Petri Nets from a categorical viewpoint.

Now, we pose the big question: Why is low dimensional monoidal category theory important?
Well, a first reason is that this type of categories appears more and more in applied and

theoretical research — e.g. the categorical treatments of quantum theory, Markov chains,



monoidal fibrations, profunctors, categorical algebra, bimodules, cobordisms, etc. They are
very complicated structures with which to deal, so we need to develop new, clever ways to
work with them. A second reason is that the monoidal structure in low dimension is a good way
to start thinking on how we are going to generalize monoidal structures to categories of higher
dimensions, and gain further insight into the differences between the low- and high-dimensional

cases.

In this dissertation, we study a theorem by Shulman ([19]) that gives a functorial construction
for the so-called monoidal bicategory, namely, taking the underlying loose structure of an
isofibrant monoidal double category. It is a pretty simple and not general way, since we
have to require the double category to be fibrant in order to lift the monoidal structure.
Nonetheless, it is very useful because a lot of the monoidal bicategories arising in research are
built in that manner, and the axioms for a monoidal bicategory are exaustingly larger than
those for a monoidal double category. We start this journey acquiring a deep understanding
of the most fundamental concepts of category theory in Chapter 2, such as functors, natural
transformations, adjunctions, and some special objects like products and pullbacks. Then,
we proceed to carefully study the monoidal structures in 1-categories in Chapter 3, proving
coherence and strictification theorems, as well as other results on the fundamental structure of
this type of category. We end our work in chapter 4 introducing some types of low dimensional
categories, showing how we can generalize the fundamental concepts of category theory to
higher dimensions, as well as the monoidal structures and, finally, discussing the main theorem
of this paper: the loose bicategory of a monoidal double category inherit the monoidal structure
functorially. Our original contribution to this work consists of more detailed arguments for the
propositions and theorems of the paper, checking most of the details left to the reader. We
also do a very careful detailing of the construction Alg(D), where D is a double category, and
also detailing where and how the theorem can be applied. There is no single main reference
to chapters 2 and 3, its content follows from a mix of books (some parts are closer to one

book than another), for example [I], [2], [3], [4], [6] and [7].

With all said, now we can proudly start our study on "abstract nonsense"!



10

2 ELEMENTS OF CATEGORY THEORY

2.1 INITIAL DEFINITIONS AND EXAMPLES

For those who are interested in the rigorous foundations of the subject, there is a detailed
discussion in the appendix [A] For those who only use categories as a tool for other subjects, a
class can be viewed just as a certain "arbitrary" collection of sets that behaves pretty similarly
to sets themselves, and that we have essentially the same concepts involving them (unions,

intersections, functions, cartesian products, etc).

Definition 2.1.1. A (1-)Category C is a 5-tuple C = (Ob(C), Mor(C), dom, cod, o), where
Ob(C) and Mor(C) are classes (called, respectively, the class of objects and the class of
morphisms or arrows of C), and dom, cod are (class) functions dom, cod: Mor(C) — Ob(C)
(called, respectively, domain and codomain of the morphism). A morphism f with domain

A and codomain B is called a morphism from A to B and is denoted as A ENY:Y

The symbol o: Mor(C) x Mor(C) — Mor(C) is a partial binary operation called composition,
defined in the pair (g, f) (and denoted by go f = gf) if, and only if, cod(f) = dom(g), and,
in this case dom(gf) = dom(f) and cod(gf) = cod(g). When we can compose arrows, we

call them composable. Also, we require the two following conditions concerning morphisms:

1. (Associativity). For any three composable arrows f, g, h, we have h(gf) = (hg)f.

2. (Identities). For all x € Ob(C), there exists a1, € Mor(C) with dom(1,) = cod(1,) =z
such that for all arrows g, f with compatible domain/codomain, respectively, we have

lyof=/fandgol, =g.

We define, for A, B € Ob(C), the class hom¢(A, B) to be the class of all morphisms with
domain A and codomain B (sometimes called "hom-set”, even though it can be a proper
class - see |A - and the C is often ommitted, being clear from the context). We say that
C' is small when Ob(C) and Mor(C) are sets, and we say that C is locally small when,
for all objects A, B € Ob(C), hom(A, B) is a set. We say that C is thin when there is a
unique morphism between A and B, when one exists, and we say that C is discrete when
the only morphisms are the identities. An endomorphism is a morphism with domain equal

to its codomain, and the class of endomorphisms of an object A is denoted by End(A). An
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automorphism js an invertible endomorphism, and the class of automorphisms of an object

A is denoted by Aut(A).

Remark. For the sake of brevity, we simply write A € C for A € Ob(C).

Remark. It is important to notice that hom(A, B) does not need to be formed by functions
which preserve extra structure. Indeed, it does not need to be formed by functions at all (and
can contain elements in common with the class of objects). For example, we can define a

category C with:
Ob(C) = {N,R}, hom(N,N) = {0}, hom(R,R) = {N}, hom(N,R) = {R}.
Define a composition o in the class of morphisms as:
NoN=N, o) =0, Roh) =R, NoR=R.

It is clear that what we described is a category, but notice that we do not have functions as
morphisms. Category theory is a very general branch of mathematics, as we are going to see
better with the examples given in this section. Pretty much anything can be a category, and

we just have to be creative.

Definition 2.1.2. A directed graph will be defined as a pair G = (V(G), E(G)) = (V, E),
with V, E classes such that E C V' x V. We say that V is the class of vertices and E is the
class of edges. Given an edge e = (x,y) € E, we say that e has domain x and codomain y,
or that e is an edge from x to y. For those who are already familiar with notions of graph
theory, it is interesting to notice that this definition is very similar to the usual one where
V, E are sets. The only real difference is that, in our definition, V, E can be more general
collections of objects. When we are talking about a directed graph with G, E sets, we say
that this directed graph is small. We also may consider these directed graphs as directed
multigraphs (i.e, directed graphs in which there can be more than only one arrow from one
vertex to another). A directed graph morphism f: G — H from the graph G to the graph
H is a pair of functions f,: V(G) — V(H) and fy: E(G) — E(H) such that f, preserves
incidence relations, i.e, fo((x,y)) is an edge from fi(x) to fi(y). Sometimes, by abuse of
notation, we denote f; and fo by f, so the preservation of incidence relation can be easily

pictured as below.

Ty — f@) L% )
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With this definition, it is clear that every category can be represented by a directed
graph (and this representation of a category that we will call a graphic representation).
Nevertheless, not every directed graph can be viewed as a category, as we picture below

(identities ommitted):

We can impose gf = h to try turning this graph into a category, but jg and jh cannot be

defined with the edges we have, so this graph cannot represent a category.

Another important observation we make is that we cannot label morphisms with different
domain or codomain with the same morphism symbol. Graphically, we are saying that we do

not admit something like this:

7

The reason is pretty simple: the domain and codomain functions are not well defined for f

and g in this case. So, mathematically, we have that
(VA,B,A",B' € CO)[(A# A"V B # B') = homc¢(A, B) Nhomc(4’, B") = {].

We list here some examples of categories of sets with additional structure that appear
extensively throughout mathematics (all identities below are the identity function and the

composition of the morphisms is just the usual composition of functions):
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Cc Ob(C) Hom(A, B)

Set Sets Functions

Posets | Partially ordered sets | Order preserving functions
Ord Ordinal numbers Order preserving functions
Card Cardinal numbers Functions

Grph (Small) Graphs Graph morphisms

Grp Groups Group homomorphisms

Ab Abelian groups Group homomorphisms

Rng Rings ring homomorphisms

R-Mod | R-Modules Module homomorphisms
Vect, k-Vector Spaces Linear transformations

Top Topological spaces Continuous functions

Ban Banach spaces Bounded linear transformations
Hilb Hilbert spaces Bounded linear transformations
Diff Smooth manifolds Differentiable functions

The reader does not need to be familiar with all of these categories for the sake of understanding

this work. If any of the more unusual categories appears in the text, it will be detailed. For

now, we are satisfied with just listing those categories. We give some detailed examples below.

1. A partial order on a set P is a relation < on P which satisfies the following properties:

a) (Va € P)la < al

b) (Va,be€ P)[(a<b)A(b<a) = a=0D0

c) Va,b,ce P)[(a<b)A(b<c) = a<(]

A pair (P, <), where < is a partial order on P, is called a partially ordered set (or

just a poset). Every partially ordered set (P, <) can be viewed as a category itself. The

objects of this category are the elements of P, and there exists a (unique) morphism

a — b if and only if a < b. The composition of composable arrows always exists by the

property 3 above. A good graphical example of this construction is (N, <), where we
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omitted the identities below:

Now, we give a more abstract example. Take the poset P = {a,b,c,d, e, f,g,h,j}, with
the partial order <= {(a, a), (a,b), (a,c), (a,d), (a,e), (b,b), (b, e), (b,d), (¢, c), (d,d),
(e;e), (f, [), (f,0), (f,d),(f€). (9,9). (9, h), (9. 7). (4, ), (h, h)}. Its categorical (or graphical)

representation is as below (identities ommitted):

7N\

N
\c
g/j
\h

It is easily seen that, in the same way as before, posets can be viewed as directed graphs.

Of course, neither every category nor every directed graph can be viewed as a poset.

2. Every group G can be viewed as a category with a single object , and Mor(G) = G
(with identity and composition as in GG). As a concrete example, take x = {1,...,n},

and G = S5,,. Then S, is pictured as below:

The example above makes it evident that we are seeing the group as its isomorphic
group of permutations given by Cayley's Theorem. Indeed, we are going to see this

relation much closely when we study the Yoneda Lemma.
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3. Matry is the category of matrices over the ring R, where the objects are natural
numbers, and morphisms n — m are m x n matrices. This mysterious definition (a
category of matrices that doesn't have matrices as objects) will make more sense when
we discuss the equivalence of categories. For now, we stay with this heuristic argument:
Matrices and linear transformations are correlated, so in order to compare those things

in some sense, we have to treat matrices as morphisms.

4. Ch(R-Mod) is the category of chain complexes of R—modules. A chain complex of

R-modules is a sequence of modules and homomorphisms as below:

On—1

O My S M, B M, TS

where the sequence (0;),ez satisfies 0; 00,41 = 0 for all j € Z. Set theoretically we are
saying that Im(0;41) C Ker(9;). When this inclusion is an equality for all j € Z, we say
that the sequence is exact. These homomorphisms are called boundary or differentials
maps, motivated by applications of such operators in algebraic and differential topology.
A morphism f: M — N is a sequence of homomorphisms (f;: M; — N;);ez such that

the diagram below commutes:

an 81'1,71
M M, My, 1 —— -

J{fn#»l J{fn J{fnfl
8/ / 8/

42 n+1 oy, n—1
? NnJrl Nn anl >

8n+2 6n+1

Composition of these morphisms are defined by pointwise composition, and the identity
morphism is the sequence of identities. This class of objects endowed with the above

morphism, composition and identities is clearly a category.

5. The category Repg is the category of group representations of GG over the field
k. A group representation of GG is a group homomorphism p: G — GL(V'), where V/
is any k-vector space. The objects of Rep'f; are pairs (V,p), where V is a k-vector
space and p is a representation. A morphism f: (V,p) — (W, o) in this category is
called a interwining operator (or equivariant map), and it is defined as a linear

transformation f: V' — W such that the following diagram commutes for all g € G
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f

Vv —m—mm W
Pg‘ ‘09

6. The category Braid has natural numbers as objects and hom(m,n) = 0 if m # n,
hom(n,n) = B,, the braid group on n strands. Composition is obtained by just
connecting the end of one braid with the beggining of the next, seeing two braids as
essentially the same when they are ambient isotopic relative to their endpoints, i.e.,
when we can deform the space sending one onto the other so that the deformation is a
homeomorphism of 3-space onto itself at each instant, keeping their endpoints still. One
consequence is that two braid diagrams that can be deformed into each other without
changing their crossings clearly represent the same braid. The identity morphism is the

identity braid (i.e, the braid free of crossings). For more details, we suggest reading

Appendix [C|

Remark. We just need a preorder to define a category subjacent to it. l.e, we do not need

the second condition of a partial order.

It is important to stress that the most familiar examples of categories for the begginer are
given by a set with an additional structure, and morphisms between those sets being functions
that preserves these extra structures. Categories built in this way are examples of the so-called
concrete categories over Set, in which objects are sets, and the morphisms between any two
of them are some of the functions between them. Quoting MacLane, we only define categories
in order to define what are functors and natural transformations. The philosophy of category
theory tells us that relations between categories are more important than the categories. As
usual in mathematics, our definition of functor will be a function that preserves the structure
of the category. In the most simple case (i.e., when we do not have additional structures), we

only require the preservation of compositionality and units.

Definition 2.1.3. A (covariant) functor F': C — D between categories C and D is defined
as a pair of functions, one between objects and one between morphisms, in such a way that
a morphism A L BincCis mapped to a morphism F(A) gl F(B) in D, subject to the
relations F(gf) = F(g)F(f) (for any pair of composable arrows) and F(14) = 1p(ay (for
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all objects A). A contravariant functor F': C — D is defined just as above, but with the

compositionality condition being F(gf) = F(f)F(g).

Remark. The (quasi) category of all categories is called CAT. It is not an actual category

because there is no such thing as the class of all classes in the theory of classes NBG (see |A)).

For each concrete category C over Set, we have a functor U: C — Set, called the
forgetful (or underlying) functor, that sends to each object and each morphism, respectively
to its underlying set and function. Another fruitful example is the functor my: Top®™ — Grp,
that sends each pointed topological space to the fundamental group with base point *. In
a first course on algebraic topology, it is a routine exercise to show that 7 is, indeed, a
functor. A lot of other mathematical constructions can be viewed as functors (or at least a
part of a functor), just like the enveloping algebra of a Lie algebra, free groups, free vector
spaces, the matrix of a linear transformation (with respect to fixed bases), the Stone-Cech
compactification, the quotient field of an integral domain, etc. In most cases, the converse
is true, i.e., functors tell us what are the interesting objects in mathematics. Indeed, these
functors often can reflect important properties from one category to another, having the power

to turn hard problems in much simpler ones. Below, we detail some examples of functors.

1. To each set X, we associate with it the free k-vector space over X. The idea is to
construct a k-vector space F(X) such that it has X as a basis. First, we consider the
set of all functions f: X — k such that {z: f(x) # 0} is a finite set. In this set, we
introduce the sum f + g and the scalar action A\f as (f + g)(z) = f(z) + g(x) and
(Af)(x) = Af(x) respectively. Clearly, both can only have non-zero values in a finite
subset of X. It is very straightforward to show that this set with these operations is a

vector space. Now, we claim that X can be viewed as a basis for this vector space F(X).

Indeed, define for each zy € X, the function f, (zo) = 1, and f,,(z) = 0 for any
x # xp. The set of these functions f,, are in bijection with X, by construction.
Moreover, given any f € F(X), if {z1,...,2,} is the set of x € X such that f(x) # 0,
and if f(z;) = k;, then we claim that f = ki f,, + -+ knfe, -

fl) =0 = f = (kife, + - + knfs,)(x) for each x & {x1,...,2,}. Also, by
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proving that {f.,,..., [z, } is a basis for F(X). When we identify this basis with X,
we can identify F(X) with the set of all formal finite linear combinations of elements
of X. Therefore, we denote k; f,, + -+ k,f., just as kyzy + - - + k,x,. One could
start trying to define F(X) as this "set of formal finite linear combinations", but it
wouldn't be mathematically precise, unless it was already defined mathematically what
a formal finite linear combination is. Thus, we need the above construction to capture

this intuitive idea.

If we have f: X — Y a function, then there exists a unique linear transformation
F(f): F(X) — F(Y) that, when restricted to X, it is f. This is nothing new. All we
are saying here is that, if we define a function in all elements of a basis of a vector
space, then, there exists a unique extension to a linear transformation in the whole
vector space. By this constructive approach well known in linear algebra, it is clear that
F(1x)is 1g(x), and that F(fg) = F(f)F(g). Hence, this construction is indeed a functor

F: Set — Vect,.

At last, notice that essentially the same construction applies for the construction of
a free R-module over X, which also gives rise to a functor. Indeed, all usual free

constructions gives rise to functors.

. A Lie algebra is a k-vector space L with a bilinear, antisymmetric product [,]: L X
L — k called Lie bracket, satisfying the Jacobi identity, i.e, for all u,v,w € L,
[u, [v, w]] + [w, [u,v]] + [v, [w,u]] = 0. E.g.: Given an associative algebra, we have an
induced Lie bracket [u,v] = uv — vu, known as the commutator. A homomorphism
of Lie algebras will be a linear transformation preserving the Lie bracket. Given a
Lie algebra L, we wish to construct an algebra that includes L, and such that the
induced Lie bracket is the Lie bracket of L when restricted to elements of L. In
order to do so, we first define T(V) = @jeN((X)f:O V), the tensor algebra over
V. It is the free algebra over a given vector space V', with multiplication given by
(V1...0p) - (W1 ... W) = V1...0W1 ... Wy Here we identify the elements of the
direct sum with the words, i.e., the finite concatenation sequences of elements of the
summands of that direct sum. As usual, we grade each vector with the index of the

summand. Now, applying this construction to a Lie algebra L, we define the ideal (L)
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of T(L) generated by all elements of the form uv — vu — [u, v], where u,v € L. The
universal enveloping algebra U(L) of the Lie algebra L is defined as the quotient of
T(V) by I.

Given a Lie-algebra homomorphism f: L — L', then we can extend it in a unique

way to a morphism of algebras U(f): U(L) — U(L’). We define, for each summand,

Uf) (01 ®--®wv;) = f(v1) ®--- ® f(v;). This can be defined (without the quotient)
by the universal property of the tensor product (see ahead the appendix , and is well
defined considering the quotients because, since f preserves the Lie bracket, elements

in I(L) are taken to elements of I(L’).

The assignment of Lie algebras to their respective universal envelopping algebras is
functorial by construction. Thus, we have a functor U: Lie, — Alg,, where the first
category is the category of k-Lie algebras and the second category is the category of
k-algebras. Both of these categories are defined as a category of sets with additional

structure with morphisms being functions that preserves these extra structures.

Another interesting feature to observe in this example is that the function that assigns
a given algebra to its induced Lie algebra with commutator as Lie bracket, is itself a

functor.

. Not every important mathematical concept can be regarded as a functor. For example,
given a group G, its center Z(G) is defined as the subgroup consisting of each element
of G that commutes with all the elements of G.. We claim that there is no way that

we can assign a functor Z: Grp — Ab to this construction.

Indeed, from group theory, the dihedral group D,, has trivial center when 2 does not
divide n. We can see Z as a subgroup of D,, (generated by the reflection), and Z, is the
quotient of D,, by the normal subgroup generated by the rotation. Thus, the following
composite is an isomorphism:

Zo S D, 5 7.

If Z was a functor, then, its application to the above group homomorphism would result
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in group homomorphisms that compose into a group isomorphism:
ZQ Zg) {6} ZS) ZQ

Since Z(C)(z) = e for all x € Zy, and Z(m)(e) = 0, their composition is clearly not an

isomorphism, contradicting the assumption that 7 is a functor.

It is interesting to notice that although the center cannot be viewed as the object
function of any functor between categories of groups, it does not mean that it has no
categorical counterpart. Indeed, there is a notion of center in the context of 2-categories

that we will mention later.

. We say that a group G has presentation (S|R), where S is a set, called the set of
generators, and R is a set of relations among those generators, when G is isomorphic
to the quotient of the free group over S by the normal subgroup generated by the
relations R. Further in this section, we construct the free monoid over a set, and we
give an idea of how to adapt the construction to free groups. Of course, given any set
S and relations R in S, we can construct the group F(S)/Ng, where F(S) is the free
group generated by S, and Ny is its normal subgroup generated by the relations R.
We define the category of presentations Prst, with objects all pairs (S|R), for S
any set, and any set of relations R on S, so that a morphism f: (S|R) — (S'|R') is
any function f: .S — S’ that sends every pair in R to a pair in R’ (i.e, it preserves the
relations.) For each (S|R), we associate to it the group F(S)/Ng. We can extend each
morphism f: (S|R) — (S’|R’) to a group homomorphism f: F(S)/Ng — F(S")/Ng:

setting f(T) = f(x) for each z € S. It is well defined because f takes Ny to Ng:.

The construction above is functorial. Indeed, it is a functor T': Prst — Grp.

. Given a chain complex M, we define the i-th homology module of M as H; =
Ker(0;)/Im(0;—1). Given a morphism f: M — N of chain complexes, we can define a
sequence of morphisms from the homology modules of M to the homology modules of
N as follows: We define f,: H; — H! by f;(Z) = f;(x). It is a routine exercise to show
that each of these functions is, indeed, a module homomorphism. It is important to
notice that we can gather all information about the sequence H; in the graded module

@ H;. Here, a graded module is just a module with a direct sum decomposition

1=—00
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with Z as index. Morphisms of graded modules are morphisms of modules that preserve
the grading. We can then form the category grRR-Mod of graded R-modules. The
construction above of homology modules gives us morphisms between the homology

graded modules,and is functorial, indeed. It is called the homology functor

H: Ch(R-Mod) — grR-Mod.

6. Given any locally small category C, and any object ¢ € C, we have two hom-functors

associated to ¢, one covariant and one contravariant. The (covariant) functor
hom(c,_): C — Set

is defined on objects as hom(c,_)(d) = hom(c,d) and on a morphism d ' as the
function hom(c, f): hom(c,d) — hom(c,d’) given by hom(c, f)(g) = f o g. We also

have a contravariant functor hom(_, ¢) defined similarly.

Definition 2.1.4. If C is a category, then we define its opposite category C” as the
category with same objects as C, but with homeor (A, B) = hom¢(B, A) and focor g = goc f

(identities clearly still the same.)

Remark. A contravariant functor F': C — D is simply a (covariant) functor F': C” — D.

With this concept in mind, we can talk about a very important metatheorem concerning
theorems in the language of category theory. This metatheorem says, that if you prove a
theorem about categories, then you actually have proved two theorems about categories. To
be more precise, given a predicate P written in the language of category theory and NBG, we
can define the dual predicate P reversing the direction of all arrows that appears in P (only
the arrows in the categorical language, not those in set language). Typically, P° is not the

same predicate as P. We give some examples below which apply to any category C:

= P: Ais an object such that (VB € C)(3'4 EN B). (This means that A is an initial

object in C)
P°?: A'is an object such that (VB € C)(3'A L B). (This meansthat A is a final object
in C)

« P: A B has aleft inverse. (That means f is a section)

P?: AL Bhasa right inverse. (This means that f is a retraction)
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« P: AL Bissuch that (Vg,h: B— C: gf = hf)[g = h]. (This means that f is an
epimorphism)
P?. A< Bis such that (Vg,h: C — B: fg= fh)[g = h]. (This means that f is a

monomorphism)

First of all, notice that the above predicates have some free variables, so we cannot say,
for example, that they are valid for all categories C. We can only say that they are true (or
false), for example, for a given object A or a given morphism f, and this truth value depends
on the object or morphism being analyzed. In order to say that a predicate P is true for all
categories, we need P to have only bounded variables (both object and morphism variables),
which now we assume for the sake of the next argument. By construction of the concept
of dual statement, it is clear that P holds in a category C if and only if P° holds in the
category C?. From this observation, we have the following metatheorem, commonly called

The Duality Principle for Categories:
P is valid for all categories <= P is valid for all categories

Proposition 2.1.5. Initial objects are unique up to isomorphism. Dually, final objects are

unique up to isomorphism.

Proof. Let iq,172 be initial objects. By definition, there exist unique arrows f, g as follows:
o EN i5 % 41. The unique arrow i; — i; (that exists by definition of initial object) has to be
the identity, so we conclude gf = 1. In the same way we show that fg = 1, concluding that

those objects are isomorphic. [

As a matter of fact, not every category has initial or final objects (e.g. a poset with no
minimum element viewed as a category does not have an initial object.) But, when they exist,
they are unique up to isomorphism. Sometimes, the initial object is also terminal, and in this
case we call it a zero object (e.g. the trivial k-vector space, the trivial abelian group, the
trivial R-module). In Set, () is an initial object, for the unique function from ) to a set A is
the empty function, i.e., the empty set viewed as a left-total, functional relation ) C () x A),

and {0} is a final object.
Definition 2.1.6. A functor F': C — D is called faithful if and only if the map

F: hom¢(A, B) — homp(F A, FB)
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assigning f to F(f) is injective. F' is called full if and only if this function is surjective. F is
called essentially surjective on objects if and only if, for all d € Ob(D), exists ¢ € Ob(C)
such that F(c) = d. A fully faithful, essentially surjective functor is called an equivalence of

categories.

Remark. F': FinVect;, — Matry, defined as F'(V') = dim(V') and F(T) = [T is clearly an
equivalence, where FinVect;, is the category of the finite k-vectors spaces with a chosen fixed

basis.

Definition 2.1.7. A subcategory D of C is a category such that Ob(D) C Ob(C) and, for
each A, B € D, homp(A, B) C hom¢(A, B). We also require that the identities of D are
the identities of C, and that composition in D is the restriction of the composition in C. This
implies that whenever two morphisms in Mor(D) can be composed in C, the composition
must also belong to Mor(D)). A subcategory D is called full if and only if, for any A, B € D,
homp(A, B) = hom¢(A, B). It is clear that a subcategory is full if and only if the inclusion

functor is full.

Remark. A functor F' being faithful or full does not say anything about F' being itself injective
or surjective. Below, we give a graphical example of a fully faithful functor that is neither
injective nor surjective (in both objects and morphisms.) Identities are omitted from the

diagram:

fl

/N

F .
J
f/—l g/—l
/g \
[ L] L4 :
fllg'—1=p'—1 kj
h
[ ] [
h—l

In this diagram, F'(f) = f',F(g9) = ¢',F(h) = I, F(gf) = ¢'f’, where the inverses follow
this same pattern. The functor I’ does not reach the triangle with arrows j, k, kj, so it is
not surjective neither on the objects nor on the morphisms. F' also is not injective neither on
the objects nor on the morphisms, as we are going to argue now. Notice that dom(h) and
dom(gf) are different, but both are mapped to dom(%') = dom(¢'f’). gf and h are different

morphisms, both mapped to the same morphism ' = ¢’ f’. Nevertheless, F is locally injective
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and surjective on the hom-sets, which is what we want. A fully faithful functor F' gives us a
category formed by the image of F' that behaves fairly similar to the category in the domain
in terms of morphism properties.

Now, notice that the following functor is not fully faithful, where we require that ' # ¢/, f'g' =

g’ f' =1 for the category on the right:

Ff=f
f Q
° T? ° F (} °
Fg=g’'

Indeed, the functor fails to be full. Let the objects in the left category be, from left to right,
A and B. There are no morphisms B — A, while there are from F(B) — F(A).

Remark. If a functor F': C — D is injective on morphisms, it is faithful (obviously), but it
is also injective on objects. The reason to such a thing is that A # B <= 14 # 1, so,
assuming A # B, we have 1p4 = F(14) # F(1g) = lpp by injectivity of I in the class
of morphisms. By the equivalence first stated, we have F(A) # F(B), proving that F' is

injective on objects.

Definition 2.1.8. We say that a functor F reflects a property P (about objects or morphisms)
if and only if whenever P(FX) holds, P(X) also holds, where X is the suitable object or

morphism variable for the predicate P.
Proposition 2.1.9. The following hold for a functor F': C — D:
1. I preserves isomorphisms, sections and retractions.
2. If F is fully faithful, then, F reflects isomorphisms, sections and retractions.

3. If F' is fully faithful and surjective on objects, then, F' reflects monomorphisms and

epimorphisms.

4. If F'is fully faithful and surjective on objects, then, F' preserves and reflects initial and

final objects.

Proof.
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1. If f has left inverse g, 1p = F(1) = F(gf) = F(g9)F(f), so I preserves sections.
Dually, F' preserves retractions. An isomorphism is a section that is also a retraction,

so F' also preserves isomorphisms.

2. Considering the very argument we just gave, we will only prove that F' reflects sections.
If F(A) 5 F(B) is a section, there exists F(B) % F(A) such that hF(f) = 1p. F
being full implies that there is a morphism B <% A such that Fg = h. Therefore, we
have that 1r = F(g)F(f) = F(gf) and, by faithfulness, gf = 1, so f is indeed a

section.
3. Analogous to the proof of item 2.
4. Analogous to the proof of item 2. [J

Using the item 2. of the theorem above, we provide another way to verify that our example
given in page 12 of a functor that is not fully faithful is, indeed, not fully faithful (f' = F'f

is an isomorphism, but f is not one).

In mathematics, it is very common the occurence of free structures (over something), just like
free vector spaces, free monoids, free groups and, as we will see soon, free categories. Usually,
these objects are free in the sense that they are free of extra relations (i.e. relations that are
not included in the definition of their structure). To exemplify these free structures, let us
construct free monoids. If we are given a set L = {a,b,c, ...} (call this set our alphabet), a
word on L is a finite sequence of elements of L. On the set of words on L, we can define
the concatenation operation. The length of a word is tipically defined as the size of this
sequence, although this is not always the case (see section 2.3, for the appropriate discussion).
Denote by F);(L) the set L endowed with this operation. It is clear that concatenation has
a neutral element, namely, the empty string, and that it is associative, so Fj;(L) is indeed a
monoid. Moreover, given any monoid /N constructed over L, we can associate to each element
of Fiy(L) an element of N via the map that sends a sequence of symbols to their product.
That can make, for example, ab = ¢ in N, while in Fj;(L) this cannot be true, because
they are different strings. Therefore F;(L) cannot satisfy any algebraic property other than
associativity, existence of neutral and their consequences. Mathematically, we can make this
precise saying that, given any function f: L — M, where M is a monoid, there is a unique

monoid homomorphism ¢: Fy;(L) — M such that the following diagram commutes:
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N

The proof of this statement is a fairly simple exercise in algebra. Another interesting feature
is that all of the usual algebraic structures are quotients of free structures. In the case of
monoids, given a monoid M we can construct F);(M) (of course, here we are identifying the
monoid M with its underlying set) and, taking f = 1 above, we get a unique surjective
homomorphism Fy (M) — M mapping M onto itself. Therefore, it is clear that M is
isomorphic to a quotient of F;(M) (due to the first isomorphism theorem for monoids).
This argument is valid in many of the free structures. Also, notice that, categorically, we have

homset(L, U(M)) = hommon(EFnr(L), M), where U is the forgetful functor.

Now, suppose we are given a (class) directed graph G = (V, E). We wish to build a free
category over (G, which we are going to call FCat((G). The obvious way to do this, mimicking
our construction of a free monoid, is to take Ob(FCat(G)) = V/, and our morphisms between
A, B € V should be all words of composable arrows starting in A and ending in B, i.e., paths
between A and B. The composition is clearly associative, and the identities are the empty

paths. We state the following theorem:

Theorem 2.1.10. If G = (V,E) is a directed graph, C is an arbitrary category and if
v: G — G(C) is a graph morphism (where G(C) is the class directed graph underlying C),

then there is a unique functor H: FCat(G) — C such that the following diagram commutes:

N

In this diagram, we identified G(C) with C, for simplicity.

Proof. Define F' on the objects and "edges" (strings of size one, i.e, edges of GG) of
FCat(G) just as ¢ (in order for the diagram to commute, this is a necessary hypothesis). As
every other morphism will be a string of edges f1f> ... fu, F' be a functor means that we must

have that F preserves identities and that F/(fi... f,) = F(f1)... F(f.) = o(f1) ... o(fn)-
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This construction of F' as above is clearly functorial and unique, by construction. []

In order to state that every category is isomorphic to the quotient of a free one (just like
most algebraic cases), we must define what a quotient of a category is, and what we mean

by an isomorphism of categories. It is defined as the following:

Definition 2.1.11. A congruence relation on the class of morphisms Mor(C) of a category
C is a family of equivalence relations ~ (defined locally in hom-classes) such that for all
composable f, g, f', g’ (composable in respective pairs), it holds that (f ~ f')A(g ~ ¢') =
gf ~ ¢'f'. The category quotient of C' by ~ is then defined as the category C'/ ~, where
Ob(C/ ~) = Ob(C) and hom¢,~(A, B) = hom¢(A, B)/ ~. The composition is given by
Gf = gf, and domain and codomain are defined just like in C. This is clearly well defined
because ~ is a congruence, so it respects composition in the sense that, whenever we consider
other representatives of the congruence classes, the compositions will belong to the same

congruence class.

Definition 2.1.12. An isomorphism between two categories is a functor that admits a
two-sided inverse functor. We say that two categories C, D are isomorphic when there is an

isomorphism between them and, in this case, we write C = D.

Remark. Since isomorphisms are not as important as equivalences in practice, we chose not
to discuss any particular example. Nevertheless, a lot of examples of isomorphisms can be

constructed quotienting equivalences.

Now, returning to our last theorem, it is clear that if we define a congruence ~pg in
Mor(FCat(G(C))) as f ~y g <= Hf = Hg, FCat(G(C))/ ~ will be isomorphic to C.
It is very interesting to notice that this theorem generalizes the case for monoids, because
a monoid itself can be viewed as a category. This also generalizes the case for groups (and
other algebraic structures), but we would have to impose some other admissible relations in

the composition (e.g., g7'g ~ e, with g an element in the group).

Another important categorical construction is the product of categories.

Definition 2.1.13. The product category of the categories C, D is the category C x D,
where Ob(C x D) = Ob(C) x Ob(D), and morphisms from (a,b) to (a’,') are pairs (f, f),

!
where a L5 o' b Ly Composition is taken coordinate-wise, and identities are obviously pairs
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of identities. Furthermore, if we have F': A — C and GG: B — D functors, we can define a
functor F x G: Ax B— Cx D as (F xG)(x,y) = (F(x),G(y)) on objects (z,y) € Ax B,
and (F x G)(f,g) = (F(f),G(g)) on morphisms (f,g) € Mor(A x B). F x G is clearly a

functor, because F, G are functors and F' x (G is defined componentwise.

From the definition, it is fairly obvious that x: Cat x Cat — Cat is a functor. But
this is not a particular feature of this product, all usual products with additional structure
are also functors with a product category as domain (e.g., direct product of groups, direct
sum of vector spaces, direct sum of modules, topological product, tensor product). Functors
with such domain are called bifunctors. There is a pretty straightforward characterization of

bifunctors:

Proposition 2.1.14. A function (on objects and morphisms) F': A x B — C is a functor
if and only if it is functorial in both coordinates and these new functors are coherent with

respect to F', i.e.:

1. L, = F(a,-): B— C s a functor for all a € A (the morphism held fixed in the left is
1a).

2. R,y =F(-,b): A— Cis a functor for all b € B (the morphism held fixed in the right is
1p).

3 Fora Y b %V ,we have Ry(9)Lo(f) = Lu(f)Ry(9) = F(f,g). By abuse of
notation, we can state this condition as F(f,1)F(1,9) = F(1,9)F(f,1) = F(f,9).

Remark. It is interesting to notice that any pair of functors L,, R}, such that L,(b) = Ry(a)
satisfying 1.,2. and 3. above determine uniquely a bifunctor F': A x B — C by F(a,b) =

L,(b) = Ry(a) on objects and with the obvious formula stated in 3. for morphisms.

2.2 NATURAL TRANSFORMATIONS AND UNIVERSALS

Definition 2.2.1. A powerful and important concept in the theory of categories is that of
natural transformation. A natural transformation from I’ to GG, where F,G: C — D are
functors, is a function 7: Ob(C) — Mor(D) such that for each A € C, 7(A) = T4 is a
morphism F(A) ™ G(A) making, for each A, B € C and morphism A 1, B, the following
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diagram commute:

E(f) G(f)

F(B) — G(B)
When all components of a natural transformation are isomorphisms, we call this natural

transformation a natural isomorphism, and denote this by F' = G.

Remark. If 7 is a natural isomorphism then, given A, B € C, the following diagram commutes:

hom(A, B)

hom(F(A), F(B))

hom(G(A), G(B))

)

Where ©(h) = 750 ho1y'. It is clear, by definition of natural isomorphism, that ¢ is a

bijection between the image of F' and the image of (G in the diagram above.
Remark. We denote the class of natural transformations from F to G as Nat(F, G).

Below, we give some examples of natural transformations:

» The determinant of a matrix with entries over a commutative ring can be seen as a
natural transformation. The category of commutative rings is denoted here by CRng. We
have a functor (_)*: CRng — Grp that takes each commutative ring to its group of
unities (morphisms are taken to its restrictions), and functors GL,,: CRng — Grp that
takes each commutative ring to its general linear group of order n (morphisms are taken
coordinatewise). To each element in M € GL,(R) we can associate its determinant
det(M) € R*. The naturality follows from the commutativity of the following diagram

(that is commutative because f: R — S is a ring homomorphism):
GL,(R) — % R*
GLn(f) fIr
GL,(S) ———— S~

det

= The bidual can be seen as an endofunctor (_)** of the category Vect;, and we have

the natural transformation 7v-: Idy — V** that sends, to each v € V, the evaluation
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functional 7/ (v) € V** that is defined as 7 (v)(f) = f(v). The very definition of 7"*

makes the diagram below commute, sowing that 7 is indeed a natural transformation:
174 v 4
T T**
w
The restriction of 7 to the category of finite vector spaces is a natural isomorphism.

= In Set, we have a canonical isomorphism hom(A x B, C) = hom(A, hom(B, C)), which

is easily verified, by construction, to be natural in A, B, C.

» The universal properties of the tensor product of vector spaces, modules or abelian
groups gives us natural isomorphisms hom(U @ V,W) = hom(U, hom(V,W)). For

more details about this kind of universal property, see the appendix [B]

Definition 2.2.2. Let F', G and H be functors and 7, o be natural transformations as below

The vertical composition of T and o, denoted by cot: F' — H. It is defined componentwise

as (0 oT), =0, 07,. Its commutative diagram is pictured below:

(ooT)a
T F(z) i@(x) ), H(z)
! F(f) Gif) H(f)
y Fly) ——— Gly) ————= H(y)
(ooT)y

We also have the notion of horizontal composition between natural transformations. To
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define such a composition, suppose that we have Fy, Iy, G1,Gy functors and o, T natural

transformations as below:

N)

TN
D o FE
S~ o

2

T~
¢~ A

then we define the natural transformation o o 7: FyFy — G2G1 componentwise as the

composite morphism below (the diagram below is, indeed, commutative, by naturality of

0):

IF) (z)

FQFl(l') GQFl(ZL’)
Fo(7z) (0@7)7\ Ga(1e)
FQGl(ZL’) TGy (@) GQGl(I)

This is our horizontal composition.

Remark. We usually call this horizontal composition the Godement product. It is pretty

straightforward to verify that these two compositions are associative.

Therefore we have two notions of morphism composition. In one way, we can compose
vertically, like the usual composite of morphisms in categories, but we also have an extra
notion of horizontal composition. If we have functors F}, Fy, Gy, Gy, Hi, Hy and natural

transformations oy, 09, 71, T as below

T
e S p T

2 E
N N

Then we have the interchange law:

Proposition 2.2.3.

(03001)® (201) = (02 @ T) 0 (07 ®T)
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Diagramatically, we are saying that, in the diagrams below, the horizontal composition of

the first one is equal to the vertical composition of the second.

F F Fo Fy
S0 T T eon] T,
C T20T] D o200 FE = C — 6.6y ——

DR el

Proof of the interchange law: In this proof, we denote things like 71 (F(z)) as Ty p(a)

(and so on for the remaining natural transformations). Consider the following diagram:

FoFy(z) — 2 GoFy(z) — 20 HLF ()
Fa(r1,2) \(01®Tl)z\ Ga(T1,20) H(71,e)
ByGi(2) —5 o GoGh(w) — 2 HyGh(w)
Fy(r2,2) Ga(T2,2) \(02672)\ Hj(72,e)
FyHq () AN GoH,(x) T HyH,(x)

This diagram commutes because the top right and bottom left squares commute by naturality,
and the top left and bottom right squares commute by definition. The left hand side of the
interchange law is the upper right leg of the diagram, while the right hand side is the diagonal

composite. []

Therefore we have a notion of morphism between functors, with two types of composition.
We can form the category of functors from one to another, with morphisms being natural
transformations between those functors, and the composition being the vertical composition.
If we consider the category of functors F': C — D, we denote it by D€. The class of natural
transformations between two functors F,G € D€ is denoted by Nat(F,G) or [F,G]. We
cannot do horizontal composition in these functor categories D€. If we consider Cat as the

category of small categories, with morphisms between categories being functors, we have a



33

notion of morphism between those morphisms (being, in that case, natural transformations),
with some nice properties as we saw above. We call this type of category a two dimensional
category, or simply a 2-category. The formal definition of 2-category and some other types

of higher dimensional categories are going to arise soon in this work.

Earlier we defined an equivalence of categories as a fully faithful and essentially surjective
functor F': C — D. An isomorphism of categories is a pair of functors such that each functor
is the inverse of the other, i.e, F,G such that F'G = |dp and GF' = Idc. In the categorical
point of view, these equalities could have been replaced by natural isomorphisms and this
wouldn’t alter the categorical properties that are transferred from one category to another.

Luckily, there is a nice proposition binding these two concepts:

Proposition 2.2.4. A functor F': C — D is an equivalence of categories if and only if there

exists a functor G: D — C such that FG = Idp and GF = Idc.

Proof: First, suppose that the functor G exists. Then each d € D is isomorphic to F'(c),

where ¢ = G(d’) € C for some d € D. So F' is essentially surjective.

Since GF = Id¢, we have that hom(C, ") £ hom(GF(C),GF(C")) as in the initial remark
of this section. If F'(f) = F(g) for f: C — ", then obviously GF(f) = GF(g) and the

isomorphism ¢ gives us that f = g. The same argument applies to local surjectivity.

Now, assume that F' is an equivalence of categories. For D, D’ € D we define, on objects,
G(D) = C for a chosen C' € C and a chosen isomorphism F(C') = D (there always exists
at least one such C, by hypothesis). If f: D — D', we define G(f): C — C’ as the unique
arrow g: C' — C”" making the following diagram commute (C,C" are the choices made for

G(D),G(D'") on objects, respectively):

|

F(C)

D/

1%

F(g) F(C )

The arrow ¢ exists by local surjectivity and is unique by local injectivity. Functoriality of GG

follows from pasting diagrams and applying uniqueness. By its own construction, it is clear
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that the composites of F' and GG are naturally isomorphic to the identities. [

Definition 2.2.5. A universal arrow from an object A € C to a functor F: D — Cis a
pair (U,u), where U € D, u: A — F(U) and such that for any arrow f: A — F (D), there

exists a unique arrow f': U — D such that the following diagram commutes:

A" R
; )
F(D)

Remark. It is clear that we also have the notion of a universal arrow from a functor F' to an
object A. All of the universal properties of mathematics can be fitted in these definitions, with
F being the functor in the construction (e.g fields of quotients, free categories, free vector

spaces, free groups, tensor products).

Proposition 2.2.6. Given a functor F': D — C, a pair (U,u: A — F(U)) is universal from
A to F if and only if we have a family of functions ¢p: homp(U, D) — homp(A, F'(D)) that

defines a natural isomorphism.

Proof: Suppose that the pair is a universal arrow. We can choose ¢p to be the function
that sends f': U — D to ¢(f’) = F(f') ow. It is clear that ¢ as defined is a bijection,
by definition of universal arrow, for this function being bijective is just a restatement of the

definition. Being natural means that the following diagram commutes for every f: D — D’:
homp(U, D) —*2—— homp(A, F(D))
hom(U, f) hom(A,F(f))

homp (U, D') ————— homp (4, F(D"))

Pp’

The desired naturality actually holds because it is the same as requiring F\(ff') o u =

F(f)o (F(f') ou).

Now, suppose that we have the natural isomorphism ¢ as in the statement of the proposition.

If we choose D = U, we have the following commutative diagram (for any D', f': U — D'):



35

homp (U, U) —2—— homp (A, F(U))
hom(U, f") hom(A,F(f'))

homp (U, D) ————— homp (4, F(D"))
Mapping 1y in each composite, we have that ¢p/(f") = F(f’) ou. Since each component

of ¢ is a bijection, the desired result follows. [

The Yoneda lemma and how it establishes the Yoneda embedding may be the most important
result in the elementary theory of categories, not only for being a very useful tool, but also
for its conceptual role. It describes how any locally small category C can be embedded into
a category of contravariant functors defined from C to Set. This generalizes classical results

such as the Cayley’s theorem from group theory (interpreted categorically).

Theorem 2.2.7. (Yoneda lemma) Given a functor F': C — Set, with C locally small,
and any object A € C, there exists a bijection y: Nat(hom(A,_),F) — F(A) defined by

y(7) = 7a(la).

Proof: Since 7 is natural, we have the commutativity of the following diagram (for any

f: A— B):
hom(A, A) ———— F(A)
hom(A,f) h
hom(A, B) ——— F(B)
Applying both composites on 1,4, we obtain TB( ) = F(f)(1a(14)). This implies that every

natural transformation 7 is uniquely determined by 74(14), from where injectivity follows.
Surjectivity is equally simple since we have exactly how a natural transformation is related to
74(14). More explicitly, if X € F(A), we can define a natural transformation with 75(f) =
F(f)(X) as components. We know that 75(f) = F(f)(7a(14)). Putting f = 1,, we get
Tp(14) = 7a(14) = y(7) = X, proving the desired result. [J

Corollary. If we are given objects A, B € C and a natural transformation 7: hom(A,_) —

hom(B,_), then there exists h: B — A such that T = hom(h,_).

Proof: By the same argument in our last proof, we have 7¢(f) = hom(B, f)(74(14)) =

fo(ra(la)), where 74(14): B — A. We can then take h = 74(14). O
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Proposition 2.2.8. The bijection y of theorem 2.22 is a natural isomorphism y: N — F,
with N, E: Set® x C — Set defined as follows:

1. E is the evaluation functor, which sends (F, A) to F(A) and (1: F — G, f: A — B)

to G(f)oTa =7 o F(f), i.e, the diagonal of the naturality square;

2. N is the natural functor, which maps (F, A) to the set Nat(hom(A,_), F') and maps
(r: F = G, f: A— B) to the function ©: Nat(hom(A,_), F) — Nat(hom(B,_),G)

defined as ©(o)c = 7 0 oc o hom(f, C') which is indeed a natural transformation, for

) —

it is the composite of natural transformations.

Proof: What we say in this proposition is theorem 2.21 restated in a more categorical

viewpoint. []

Theorem 2.2.9. (The Yoneda embedding) The assignment Y : C — Set“” defined as
Y (A) = hom(_, A) on objects and Y (f) = hom(_, f) is a fully faithful functor. Y is called
the Yoneda embedding.

Proof: Functoriality is evident. Being fully faithful follows pretty straightforward from our

previous results. []

Corollary. If there exists a natural isomorphism ¢: hom(A,_) — hom(B,_), then we have

that A = B via an isomorphism f: B — A such that p(g) =go f.
Proof: Fully faithful functors reflect isomorphisms. [J
Corollary. If hom(F(_),_) = hom(G(_),_) naturally, then F' = G naturally.

Proof: That F(A) and G(A) are isomorphic follows from the last corollary. We just

need to prove that this isomorphism is natural in A. Naturality follows from the fact that
hom(F'(A), F(B)) = hom(G(A), F(B)) = hom(G(A), G(B)) naturally. O
Remark. The categories in this final discussion are locally small and, usually, when we say that

something "follows from Yoneda Lemma" we are actually saying that it follows from any of

these results we stated.

Adjunction is a weak form of equivalence between categories that greatly extends the
idea of relating categories. There are adjunctions that can be modified to become actual

equivalences of categories.
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Definition 2.2.10. An adjunction from C to D is a triple (F,G,¢): C— D, where F': C —
D and G: D — C are functors and ¢ is a family of natural isomorphisms o, ,: homp(F'(a),b) —
homc(a, G(b)) that are usually denoted just as . In this case we say that I is a left adjoint
for G, G is a right adjoint for F' and we write F' 4 G.

If we set b = F'(a) above, we can define the arrow 1, = ¢(1rw)): a = G(F(a)). Also,
if we set a = G(b), we can define ¢, = ¢! (G(b)). These arrows are universal, by Yoneda's
lemma. The same argument in Yoneda's lemma gives us ¢(f) = G(f)na, f: F(a) — b and
0 g) = &F(g), g: a — G(b). By definition, we have GeonG =1 and ¢F o Fp = 1. We

get this following theorem:

Theorem 2.2.11. Each adjunction (F, G, ) is uniquely determined by natural transformations
n:1— GF and e: FG — 1 such that eF o F'n=1 and Ge onG = 1.

Proof: By our previous discussion, we have ¢ and ¢! defined uniquely by 7 and €. [J

Definition 2.2.12. An adjoint equivalence is an adjunction (F,G,n,€) such that n and e

are natural isomorphisms, i.e, F' and G form an equivalence.

Remark. We do not give many examples of this final part since we practically will not use this
concept here. One should notice that universal properties usually give rise to an adjunction.
For those more familiar with category theory, it is important to say that the concept of an
adjunction is so general that most of the core concepts of the theory are a special case of

adjunctions.

2.3 WORDS AND ASSOCIATIVITY

In this section we are going to learn the essential tools to develop the theory of associativity

in monoidal categories.

Definition 2.3.1. Given any set 3., we define the set of words in the alphabet X, denoted
by W (X), as the set of all finite sequences of elements of ¥.. Clearly, W (%) is a monoid with
concatenation as the monoid operation, and the empty word (i.e, the empty sequence) as the

neutral element.

Definition 2.3.2. Given any set 3. with a distinguished element ey € % and a distinguished

symbol , we define recursively a set W (X%, , eq) as below:
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1. Every element of 3 is an element of W (3, x, ey);

2. Ifx,y € W(3,*,e), then the word (z xy) € W(X, %, ¢eq). Here, parenthesis are also

viewed as symbols of the word.

By abuse of notation, the outter parenthesis of an expression in W (X, %, eq) will often not be

written.

Clearly, there is an operation in this set induced by the second condition, which is the
operation x: W (X, %, e9) X W(X, *,e9) — W (X, *, €g), that sends (x,y) to x*y. Clearly this
operation is not associative nor does it have a neutral element. The reason why we introduced
this new set it is because in category theory we are not interested just in (strict) associativity,
but also in associativity up to isomorphism. So, with a little bit of effort we can make this set
into a category that will model this idea of associativity up to isomorphism. From now on, we

are going to fix ¥ = {(_), eo} a binary alphabet.

Definition 2.3.3. The length of a word of W({(_),e0},*,¢€0), denoted by L, is defined

recursively as below:
1. L((_)) =1, and L(eg) = 0;
2. L(zx*y) = L(x)+ L(y).

It is clear from this definition that the set of all words of length n represents all possible
parenthesizations of a x product of n instances of (_) and an arbitrary number of e's. We
define L(eg) = 0 because in a product the neutral element must not alter the size of our

formal product (e.g., 2y = xye = zyee in a monoid).

Definition 2.3.4. We define a category W as the category with objects W ({(_), eo},*, €o)
and a morphism z — w if and only if L(z) = L(w), with identities and composition of arrows
defined just like in a poset viewed as a category. If a morphism exists, it is an isomorphism
(by symmetry, if there exists a morphism z — w, there will exist a morphism w — z, and
by uniqueness the composition must be the identity). By the comment of our last paragraph,
it is a category in which all e's of a word can be deleted up to isomorphism and in which x
is associative up to isomorphism. We call this category the category of unary words (the

reason for "unary" and not "binary", althought some authors use binary in this context, is that
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we can delete, up to isomorphism, all instances of ¢, and e itself has no length, so it can be

viewed as a disposable letter).

Now, suppose that we have a bifunctor ®: Cx C — C and a distinguished element e € C.
We can define functors F': C" — C obtained recursively from ®-iterations using these words
defined before, in such way that we can view words as functors associated with this words.
Again, we take ¥ = {(_),eo} as our alphabet and define recursively, for each element in

W (3, %, e), functors as below:
1. ey: C — C is the functor that sends every object to e and every morphism to 1.;
2. (_)=1Idc: C—C;

3. For two given words (viewed as functors) v: C* — C, w: C™ — C given by this

process, we define v x w: C"t™ — C as the composite C"*" " € x € & C.

Intuitively, these functors just tell us that, if we have a word of length n with some instances
of ey, then we replace every instance of ey with e (or 1.), each blank space with objects
(or morphisms) of the given n-uple in C (in the order that they are given) and each * with
the bifunctor ® . Now, it should be clearer that this functor produces to us all instances
of ®-products of elements of C, with all possible parenthesizations. These concepts will be
important when we soon start discussing coherence questions in monoidal categories. Below,

we give an example of a functor defined recursively as above.

C5 (eo*(((L)*(L))*(L)))*eo C
(al,ag,ag,a4,a5) % (6@((&2@@3) ®a‘4)) ®e
(1, fo, f3: fas [5) (L@ ((f2®[f3)® fi) @ L.

This functor gives us all possible ®-products of objects (and morphisms) with this fixed
parenthesization and the two e's fixed in their positions. So, to study associativity issues, we
have to compare two functors with the same length, where the length of such a functor is

defined as the length of the associated word.
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2.4 PRODUCTS, COPRODUCTS, PULLBACKS AND PUSHOUTS

As we saw in the first section, products are an interesting construction, arising with

universal diagrams across all mathematics. In general, we can define a product as follows:

Definition 2.4.1. A product p of objects ay,...,a, in a category C is an object p € C
together with morphisms (called projections) 7;: p — a; such that for any other object ¢ € C
and morphisms f;: ¢ — m;, we have a unique arrow ¢: ¢ — p making the following diagram

commute (for alli,j € {1,...,n}):

@i ™ p 7 a;
The dual concept of product is called a coproduct. In general, we call the dual of a concept its
coconcept. Categorically, the definition of product gives us that we have a natural isomorphism

11 hom(_, a;) = hom(_, p). We give some examples below.
=1

» If a poset P is viewed as a category, then a product is, by definition, a least upper

bound.

= In Vect,, Grp, Set, Top, the product is the usual direct cartesian product studied in

the respective theories.

Remark. A product of 0 objects is, by definition, a terminal object.

Proposition 2.4.2. Products are unique up to natural isomorphism. Dually, coproducts are

unique up to natural isomorphism.

Proof. If p,p’ are products of a4, ..., a,, then the following diagrams commute:
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/ /
p p
|
I
o m ! i L
J J i J
lp/ v i ©
i
~
/
a; o p ' a] a; e p T aJ
J |
I
|
/
©
; | Tr;
v
/
p

Therefore, 1, and ¢'¢ are arrows making the left diagram commute. By uniqueness of this
arrow, @' = 1,. Similarly, we have p¢' = 1,, proving that p = p'. Naturality is pretty

straightforward. []

This product object, which is unique up to isomorphism, will be denoted as a; x - - - X a,,, and
the unique arrow ¢ of the definition will be denoted as f; x - -- X f,,. Using the same argument
of uniqueness as before, it is clear that, when the arrows in discussion are composable, we

have
(i fu) X (g1 90) = (1 X g1) ... (furmy_y X ganH)

. This is illustrated in the diagram below as well as discussed for the case n = 2. For arbitrary

n, the argument is analogous:

c
|
1
f l
1 fxg g
|
as——F—— aXx b — b
I
|
Vi | flmaxg'my g
|
— N
e — ex f = f

/

Y
Now, if a L o and b = ¥ we have a x @ = b x b', where ¢ = (pm,) X (¢'m). The inverse

for ¢ is ¢/ = (p~'my) x (@' "'my) due to the last equality proved.

We proved that, when the product exists, it is unique, but we did not prove that all possible

parenthesizations for the product of ay,...,a, are isomorphic. First of all, consider the
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following morphisms constructed from (a x b) X ¢ to a,b and ¢:

(axb) xc

1
axb
m% x‘
b

Now, using the universal property of the product, we have unique ¢ and ¢’ as below, making

a C

the diagram commute. By the same uniqueness argument given before, each ¢, ¢’ are

isomorphims, being one the inverse of the other.

(axb)xc

The argument can be mimicked for a x (b x ¢), so in particular we have (a xb) x ¢ = ax (bxc)

as the composition of these two isomorphism involving a x b X c.

If a category C has products for all pair of objects, we can define a bifunctor )XX: C x C — C
as X(a,b) = a x b on objects and X(f,g) = (fm,) x (gm) for a Lcand b % d X is
functorial because of what we already proved about products. Notice that 7.0 X(f, g) = fm,
and 40X (f, g) = gmp. Our last argument in this section proved that (a xb) x ¢ = a x (bx ¢)
for any a,b,c € C. In functorial terms, we can rewrite this as X(ldc x X) = X (X xId¢).

We claim that this isomorphism (say, «) is, indeed, natural:
Theorem 2.4.3. X (ldc x X) = X (X xId¢) constructed as before is a natural isomorphism.

Proof. By construction, our isomorphism ¢ is the only morphism making the following
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diagram commute:

™ ! 1
axb ; T,
I
I
I
I
I

axb c
1 2
Pk
I
a b | w2
T |
I
i
! bxe
I
i
1
I

2
v /b)(c'

ax (bxc)

It remains to show that this assignment is natural. We will label the isomorphism ¢ above as
©Yabc- We have to prove that the following diagram commutes for all a,b,c,d, e, f € C and

morphisms a % d, b KN e, c EN f:
(axb)xc—2" 4 ax(bxc)
[X(Xx1dc)](g,h.5) [X(1de xX)](g,h.5)

(dXe)xfWLiX(exf)

In order to prove that, we only have to show that the two compositions are the same when we
compose them with the projections, due to the universality of the product. We do this with 73,
and all the remaining projections are similar. We are going to use the following commutative

diagram to do our calculations. Both of them are commutative by definition of the functors

involved:
(a xb) xc
7T(1L><b 7'1'3
axb c
y il
b
a b
gl h [X(Xx1dc)](g,h.5) J
d e
\ a1
7T1 ¢
d
dxe f
Wéx\ /”}

(dxe)xf
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ax (bxc)
ng/ ™2
bxc a
7'(2
b ﬂ_g
b c
f{ j [X(1de xX))(g,1,) g
d e
\ 2
71'2 ¢
f
ex f /
7:52><f\ 7r3
dx (exf)

Ta@de.f[X(Ide x X)|(g, h, j) = mimg [ X(Ide x X)|(g, b, J) = gmiTas-

T3 X (Ide x X)1(gs by ) Pabe = T2 Pabe = GTeTE -

The same argument holds with the same diagrams for obtaining the other equality. Therefore,

the isomorphism is natural. []

Theorem 2.4.4. All parenthesizations of products are naturally isomorphic. More precisely,

all words of length n viewed as functors are naturally isomorphic.

Proof: We prove this by induction on the length n of the word. For n = 3 we have the
previous proposition. We proceed to adapt the argument that is usually given for the general

associativity law for algebraic operations satisfying associativity for any 3 elements.

Assume, by induction, that any word of length m < n is naturally isomorphic to a canonical
word, constructed following its action on objects as below (here we are given j objects

al,...,aj):
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If z is any word of length n, it is clear by construction that z = v xw, with L(v), L(w) < L(z).
By the induction hypothesis, there exist natural isomorphisms v = []a;, w = [[b; for
some sequence of objects. By our previous results we have the following sequence of natural

isomorphisms (here, the ¢;, d, are just relabelings of the sequence of objects involved):

vxw = (J]a;) < ([]bx) = (aixﬁaj)x(ku) gaix(ﬁajxnbk) %aixnl:[ a :ﬁdp

We applied the induction hypothesis to the last natural isomorphism that is not an equality

above, and we could do so because it is a word of length n — 1.

As any word of length n is naturally isomorphic to this canonical word, we have that all

words of length n are naturally isomorphic. []
Corollary. A category has binary products if and only if has finite products.

Proof: We construct finite products recursively using binary products via the canonical
words constructed in the proof above. [

r
>~

Remark. There exists an isomorphism a X b b x a because we can use m,, m for both

products and the diagrams involved obviously will stay commuting.

Proposition 2.4.5. If ¢ is a terminal object in a category C with finite products, then
e X a = a = a x e naturally for any a € C. We denote this isomorphisms by r,: a X e — a

andl,: e X a — a.

Proof: We can just prove that a is a product of a and e. The unique arrow a — e will be

denoted as !;. The following diagram commutes for any a:

Q 4= Q

1, 151

Where f is any morphism and !5 is the only morphism ¢ — e. Uniqueness of the middle arrow
f: ¢ — a making the diagram commute follows from the requirement that the left triangle is

commutative. It follows that a is a product of a and e. [J

Definition 2.4.6. A group object in a category C with finite products and a terminal object
e is a 4-uple (G, i, m,0) such that G € C, u: G x G — G, n: e - G, 0: G — G, and the
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diagrams below commute. € is the unique morphism G — e. Sometimes, . 1, 0, and € are

called, respectively, multiplication, unit (morphism), inversion, and counit.:

Gx(GXxG) —2 H (GxG)xG —" L GxG
1Xp M
GxG G

m

nX1 1Xn
exXG ———— GxGE+—— Gxe

l g r
G
G b GxG
1x1 \5\ 1X0
G xd e G x G
AN
0X1 n w
\
G x G 7 G

Remark. The first two diagrams characterize a monoid object in a (cartesian) category (see
chapter . The morphism @ is introduced, together with its diagram, to introduce inverses in
the monoid, making it a group. Nevertheless, the objects in the category do not need to be
sets, and we do not require elements to realize the group theoretical ideas. Also, notice that
in some morphisms from the diagram we did the product X(f, g) = f X g and in others the

product f X g.

All results in this sections hold dually for coproducts. This theorem can be viewed as a
coherence theorem. It is a specific instance of a much more general theorem for the so called

monoidal categories.

Definition 2.4.7. In a category C, we define a pullback of a pair of arrows A Jyc B

as an object D together with two arrows m: D — A, my: D — B such that for any other
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object E and any two other arrows p1: E — A, ps: E— B such that f o p; = g o po, there

exists a unique ¢: E — D such that the following diagram commutes:

A pushout in a category is defined as a pullback in the opposite category.

Categorically, a pullback gives us a natural isomorphism
Sub(_) — hom(_, D).

Where Sub(_) is the functor induced by the subclass of hom(_, A) x hom(_, B) formed by
the pair of morphisms (p1, p2) satisfying f o p; = g o ps.

Remark. Just as before, we can show that the pullback is unique up to isomorphism. Sometimes
the pullback is called the fiber product, and denoted D = A X B. In many situations, Ax o B
can be thought as consisting of pairs (x,y) € A x B such that f(x) = g(y), like the pullback
in Set or Cat. Indeed, given functors B 5 c LB, the morphisms of the pullback B x¢ B are
formed by the pairs of morphisms (f, ¢) such that S(f) = T'(g). Later we will see, in a certain
context, S, T as source and target functors, so that the pullback gives us the composable

morphisms.

Using this interpretation given in the above remark, we can better understand the following
definition, which generalizes the concept of small category to be thought as relative to an

"ambient" category C:

Definition 2.4.8. Given a category C with pullbacks, an internal category (or category
object) D in C consists of two objects Dy, Dy of C (called objects and morphisms of D)
together with morphisms s,t: Dy — Dy, e: Dy — Dy and o': Dy xp, Dy — D;, where
the pullback is taken over s, t. We call s the source morphism, t the target morphism, e

the identity-assigning morphism and o' the composition morphism. They satisfy diagrams
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analogous to the axioms we gave in the definition of a category, abstracting from classes to

categories.

Remark. A small category is just an internal category to Set, for example. All the definitions

given to categories can be abstracted to internal categories in a reasonably natural way.
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3 MONOIDAL CATEGORIES

3.1 MONOIDAL CATEGORIES: THE BEGINNING

Definition 3.1.1. A (relaxed) monoidal category consists of a 6-uple (C,®,e,a,r,1),

where:

~

. ®: Cx C— Cis a bifunctor (called tensor product);

2. d(ldex ®) =~ ®(® x Idc) is a natural isomorphism (called associator or associativity

constraint);
3. e € Cis a special object (called neutral object or unit object);

4. Viewing e as the functor e: {x} — C that sends the unique object to e and the
T l
unique morphism to 1., we have ®(ldc X €) = Idc and ®@(e X Id¢) = Idc are natural
isomorphisms (called right and left unitors or unit constraints respectively);

5. The associator is subject to the following condition, for all objects a,b,c,d € C:

(a®b)® (c®d)

a® (b®(c®d))) (e®b)®c)®d)

The pentagon axiom
la®ayp c,a Qq,b,c®lq

a® ((b®c)®d) (a®(b®c))®d

Qg bRc,d
6. The unitors are subject to the following coherence condition, for all objects a,b € C':

The triangle axiom

Qg e,b

re®1p
1a®lb

a®b

a® (e®0b)

When these natural isomorphisms are the identities, we call the monoidal category strict.

Sometimes the name "Tensor categories" arise in the literature as a monoidal category
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with some other additional structures, but here in this text tensor categories and monoidal

categories are the same concept.

Remark. We could have taken the inverse of associators and unitors to define what a monoidal
category is. We would just have to adjust the directions of arrows in the coherence axioms.
Actually, we are going to use this alternative definition later on in order to stay close to recent

research papers.

Remark. Sometimes we will omit the subscripts from the associators and unitors, or else the

equations will simply become unreadable.

Remark. One can ask if the other graphs constructed via parenthesizations have a well
determined shape (like the parenthesizations for words of 4 letters form a pentagon). One

can see this discussion in [42].

There are a lot of diverse examples on monoidal categories, and it is usually pretty easy to
prove that a given category is monoidal (the diagrams for the usual examples are extremely

simple to be verified). We give some interesting examples below:

1. Set, Top, Grp, Vect,, Rng, Grph, Cat, CAT and many others are monoidal categories
with ® = X, their usual categorical products, and e their terminal object (Dually,

coproducts with initial objects).

2. The categories Vect;, Ab and R — Mod are monoidal categories with usual tensor
product ® and e = k, e = the trivial group, e = R (respectively). For more details see

[Bl All basic constructions can be generalized to the other two categories.

3. Ch(R-Mod) is a monoidal category with tensor product defined on objects by (M ®
N), = €P (M;® Nj), and on morphisms just as in vector spaces. Here, ¢ is the chain
comple;f]-:-n—> 0—1—0—---, with 1 marked with label n = 1 in the chain.

4. In the category Diff, we can take ® to be the disjoint union M LI N. A tensor product
of morphisms f; ® fo: M7 ® My — Ny ® Ny is defined as (f1 ® fo)(z) = fi(z) if
x € My and (f1 ® fo)(x) = fo(z) if @ € Ms. Here, e is the empty manifold.

5. Braid is a strict monoidal category with m®n = m+n and given two braids B: n — n,
B’: m — m, we define B® B': n+m — n+m as the juxtaposition of the two braids.

We regard the only braid () € hom(0,0) as the neutral object.
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6. Repg is a strict monoidal category, with tensor product p®o: G — GL(V ®W) defined
as (p® o), = py ® 0,. The tensor product of two equivariant linear transformations is

defined as the tensor product of the two underlying linear functions.

7. For any category C we can view End(C), the category of endofunctors of C, as a

monoidal category with ® = o.

8. As we showed earlier, any category C with finite products can be regarded as a monoidal
category (choosing, for each pair of objects, a specified product, and the neutral object
being the terminal object). A cartesian monoidal category is a monoidal category

where the tensor product is the categorical product.

Regarding the usual tensor products, like the tensor product of modules, vector spaces, or
abelian groups, it is clear that the pentagon axiom and the triangle axiom hold because of the
equalities apyw (v ® (VO w)) = (U®v) W, ry(v®a) = av and ly(a @ v) = av. One can
think at first glance that the pentagon and the triangle axioms could be deduced from the
other properties, which is completely false. If we take the natural isomorphism o/ = —a in
these tensor products, the pentagon axiom simply will not hold for, one way, we get a positive

sign and, in the other one, we get a negative sign.

In many contexts within category theory, we identify things that are isomorphic as the same
thing, for example in the classification of finite groups, or the classification of compact
connected topological surfaces, so one can try to avoid our discussion about coherence
and these associators and unitors by just identifying these isomorphic objects and setting

all monoidal isomorphisms equal to identities. We now see that this is not the case, as Isbell

showed ([1]).

Isbell argument: Let Card be the usual skeleton of Set (i.e., it will be the category of
cardinal numbers). In Set, our tensor product will be the usual cartesian product, and our
neutral element will be the set {()}. In the same way we define the tensor product in Card. We
have Ny x Ny = N, and both projections w1, m5: Ny X Ng — N, are epimorphisms. ldentifying
the isomorphic objects, we can identify @ = Id to make an attempt of avoiding associators.

Now, given any three functions f, g, h: Xg — Ny, we have the following equalities:

fmi=m(f x (g xh))=m((f*xg)xh)=(fxg)m
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gma = ma((h x f) x g) =m(h x (f X g)) = (f X g)m2

As 1y, 79 are epimorphisms, we conclude that f = f x g = g for any functions f, g: Ng — g,
which is obviously false. We conclude that we cannot just identify isomorphic objects and put

a = Id to avoid the theory of monoidal categories. []

Proposition 3.1.2. The following diagram commutes for all a,b € C in a monoidal category:

® (a®b) feat (e®a)®b a® (b®e) fabe (a®b) e
m‘ Ab 1a®rp Ta®b
a®b a®b
Proof: Consider the following diagram:
(a®e)® (c®d)
a® (e® (c®d)) ra®lega=ra®(1c®14) (e®e)®@c)®d
— J{ —
1a®lega (ra®1e)®1g T
i K
1.®a a®(c®d) —a— (a®c)Rd a®ly
J _— ~
1a®(lc®1d) (1a®lc)®1d
— ~
a® ((e®c)®d) a (a®(e®c))®d

The outter pentagon commutes by the pentagon axiom. The two squares (the upper and lower
ones) commute by naturality of the associator. The upper left triangle and the right triangle
commute by the triangle axiom (we also use bifunctoriality on the right triangle). All terms

involved in these equations are isomorphisms, so we have that the left triangle also commutes.

We conclude that [1, ® (I. ® 14)](1, ® @) = 1, ® l.gq. Taking a = e, and using bifunctoriality
on the left side of the equation, we get 1. ® [(I. ® 14)a] = 1. ® l.gq. By naturality of the left
unitor, we conclude that l.5q = (l. ® 14)c, and this is exactly what we wanted to prove. The

other equality follows from a similar argument, taking ¢ = d = e in the pentagon. [
Proposition 3.1.3. The following relations hold in a monoidal category C (for any a € C):
le®a =1L® la; Tage = Ta & 187 le =Te

Proof:

1) The following diagram commutes by naturality of the left unitor:
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le®a
eRe®a) ——— e®a
16®l(l lLl
e®a a

la
But as [, is an isomorphism, we conclude that l.g, = 1. ® l,. A similar argument holds for

the identity involving r,s..

2) The two diagrams below commute (the first one by the triangle axiom, and the second one

by our previous proposition):

e®(e®e) < (e®e)®@e e® (e®e) " (e®@e)®e
1m /@1& % le®]1e
e®e e®e
But we already proved that l.gc = 1. ® [, so, comparing the two diagrams, we obtain

re ® 1, =, ® 1,. By naturality of unitors, we get r. = [,. [
Proposition 3.1.4. End(e) is a commutative monoid with respect to composition.

Proof: Let f,g: e — e be endomorphisms of e.

f@g=(fol)®@leog)=(f@1)1e®g) = (r. fre)( ' gle) = . (fg)re
fog=leof)®(gole) =L@ g)(f @ 1) = (I gle)(r. fre) =77 (gf)re

We used bifunctoriality of ® and the fact that . = [.. As r. is an isomorphism, we conclude

that fg = gf. Moreover, we have f @ g =¢g® f.

Proposition 3.1.5. Given a monoidal category C, if there exists €’ and natural isomorphisms
®(Ide x €) ’Tﬁl“ ldc and ®(e’ x Idc) %/ Idc satisfying the triangle axiom, then we have a unique
coherent isomorphism e = ¢’. A coherent isomorphism of monoidal units is an isomorphism
such that the diagram formed by the two triangle axioms connected by this isomorphism is

commutative.
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l—l r!
~

Proof: ¢/ = e® ¢ = e. We want to prove that this isomorphism is coherent, i.e, that the

following diagram commutes:

[0}

ol 1)®1) a o (1®(r'ol~
—_—

® (e ®b)

~ ~
1®I rel
1! ~ v r’'®1

a®b

a® (e ®b)

The top square commutes by naturality of o. The inner and outter triangles commute by the

triangle axiom. The right triangle commutes because the following diagram commutes:

b (6 ® e/)lbwo% Qe
Ly®ri=ryq oc )
b®e b

Ty

We can cancel a out of the legs of the diagram, and the commutativity follows from naturality
of r’. The left triangle commutes by a similar calculation. Therefore, we found an isomorphism
©: € — e such that the first diagram here commutes. ¢ being coherent can be summarize

by saying that I/, = l, 0 (¢ ® 1,), r, = 1,0 (1, ® @) for each a € C.

Now we wish to prove that an isomorphism ¢: ¢/ — e that satisfies the condition above is
unique. In order to prove that, it suffices to show that the unique coherent automorphism of e
is the identity. Indeed, if we have two coherent isomorphisms ¢, ¢': ¢/ — ¢, then ¢ o p~! is a
coherent automorphism of e. Now, if ¢ is a coherent automorphism of ¢, then [, = l.o(¢¥®1,),
ie, 1o ® 1, = lege = ¥ ® 1, so it follows that ¢ = 1.. [J

Remark. With this proposition in mind, we can refer about the monoidal unit of a given

monoidal product.

Definition 3.1.6. A (lax) monoidal functor F': (C,®,¢e,a,1,l) — (D,X, ¢, o/, 7", l') is a

functor F': C — D with a morphism Fy and a family of natural morphisms Fy(-,-) such that:
Fyo: e — F(e)
Fy(a,b): F(a) X F(b) —» F(a®b)

making the diagrams below commute for all a, b, c € C. When these morphisms are isomorphisms,

we call the monoidal functor strong. Furthermore, if they are all identities, then we call it

(a®e)@b+—— (a®e)Rb
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strict.
¢ B F(a) —"0 pla) Fla)®e — "9 pla)
FoR1p (g F(la) 1r(a)XFo F(ra)
F(e)@F(a)WF(e@)a) F(a)&F(e)WF(a@)e)

F(a)X (F(b) X F(c)) ——— (F(a) X F(b)) X F(c)

1p(a)¥F2(b,c) F(a,b)X¥1p )
Fla) X F(b® c) Fla®b) X F(c)
Fs(a,b®c) F>(a®b,c)

Fla® (b®c))

— F(la®b)®c)

Remark. By dualization, that is, reversing the arrows of Fj, F}, and the diagrams, we obtain

the definition of F' being a colax or oplax monoidal functor.

As usual, a natural transformation has to be from one functor to another. In the case of
the family F3, it is a natural transformation Mo (F' x F) 2 Fo®. Sometimes we will denote
Fy(a,b) just as Fy. In these situations, the a,b will be clear from the context. Sometimes
we also are going to denote X and ® with the same symbol by abuse of notation. This can
be tolerated because we usually do not work with two different tensor products for the same
category, so the tensor product to which we are referring can be easily inferred from the

context.

Below, we detail some examples of monoidal functors:

= The underlying functor U: Ab — Set, with maps U.: {*} — Z and Ug: U(R) X
U(S) - U(R®S) defined as U.(x) =1 and U(x,y) =2 y.

= The homology functor H is a monoidal functor with the mapping Hy: H(C)®@H(D) —
H(C ® D) given by Hg (T ®7) =2 ® y.

= One can show that the enveloping algebra U is a monoidal functor essentially the same

way as H above.
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= Define the monoidal category Bord,,_1 ,,) as the category that has (n — 1)-dimensional
closed manifolds as objects, and each morphism is a cobordism, which is an n-dimensional
manifold with boundary given by the disjoint union of two disjoint (n — 1)-dimensional
closed manifolds, namely, its domain and codomain. The tensor product is the disjoint
union. A topological quantum field theory in dimension n is a monoidal functor
F: Bord(, ;1) — Vecty, often required to satisfy extra conditions with quantum-

theoretical motivations.

Given a monoidal functor F': C — D, for each unary word w such that L(w) = n, we can

define families of natural transformations
Fu(ay,...,a,): w(F(ay),...,F(a,)) = F(w(a,...,a,))
recursively as below:
1. F,, = Fy
2. F y(a) =1p: F(a) = F(a)

3. Given u,v € W with L(u) = n, L(v) = m, we define F,,, as the composite I, o (F, ®

F,). Diagramatically, we have the following commutative diagram:

(u*v)(F(A), F(B)) F((u*v)(A, B))

u(F(A)) @ v(F(B)) —5om— F(u(A) @ F(u(B)) ——F—— F(u(A) @ v(B))

In the diagram above we made the identifications A = (ay,...,a,), B = (b1,...,bn),

F(A) = (F(ar), ..., F(ay)), F(B) = (F(b),...,F(by)).

If w € W with L(w) = n, then the natural transformation F, is defined from the functor

w o (F™) to the functor F' o w, where F" is ' x --- x F' (n times).

Definition 3.1.7. One of the most important concepts in the early discussion of monoidal
categories is the concept of canonically constructed isomorphism(or simply canonical

isomorphism/morphism/arrow) in W, which is defined by structural recursion as follows:
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1. 1,, ayyw, lu, T, and its inverses are canonically constructed isomorphisms for each

words u,v,w € W;

2. For each pair of composable canonically constructed isomorphisms f, g, we have that

go f is also a canonically constructed isomorphism; and

3. For each canonically constructed isomorphisms f,qg, we have that f ® g is also a

canonically constructed isomorphism.

Putting this idea into words, the canonically constructed isomorphisms are built by taking
all instances of our isomorphisms and their inverses from the monoidal structure of W, all
identities, and then, recursively, we take tensor products and compositions. With this in mind,
given a canonically constructed isomorphism 7 in W and any monoidal category C, we can
define canonically constructed isomorphisms in C just replacing all instances of identities,
associators, unitors, tensor products and compositions of 1 by their interpretations in C (i.e,
change the symbols of W in 7 to symbols of C). Furthermore, we can stretch this idea, and
transform any given canonically constructed isomorphism 7 in C into a canonically constructed
isomorphism in any other monoidal category D just by changing the identities, associators,
and so on for their analogues symbols in D. In this way, it makes sense to talk about 7 as
we do below, namely, writing 7 as an arrow of D on the left side and F'(n) on the right side,
as if n was an arrow of C). Following this idea, we can see canonically constructed arrows as

natural isomorphisms n: v — w.

Definition 3.1.8. A formal diagram on a monoidal category C is any diagram made of

canonically constructed isomorphisms in W interpreted as a diagram of C.

Following this definition, we proceed to explain one final important thing: even if, for
example, t = (a®b) ® c = a® (b® ¢) in C, we cannot use 1, as a canonical isomorphism
when talking about formal diagrams, because ((_) * (_)) *(_) # (_) * ((_) * (_)). This has
a very deep and clear connection with the Isbell argument, since we tried to replace instances
of the associator with identities via that argument. Hence, the Isbell argument really shows us

that not every diagram commute, but the coherence theorem will show us that any formal

diagram commute.
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Theorem 3.1.9. Given a monoidal functor F': C — D and a canonnicaly constructed

isomorphism 1, the following diagram commutes:

v(Flar),. .., Flay)) ——— F(v(ay,...,an))
n F(n)
w(F(ay),...,F(ay)) — F(w(ay,...,a,))

Proof: We prove this by structural induction on the construction of canonically constructed
isomorphisms. For compositions, we just have to vertically paste diagrams and, for tensor
products, the result follows from bifunctoriality. Indeed, we can work on each part of the

tensor product separately, and apply the induction hypothesis to each of them.

For a,r,[ and its inverses, the calculations are pretty similar. For this reason, we are only
going to prove the case where n = ay,,. We have to prove that the diagram below

commutes, assuming that the corresponding diagrams for u, v, w commute. Below, we identify

A= (ay,...,a,), and F(A) = (F(a1),...,F(an)):

[k (0% )] (F(A)) — P(fuk (0% w)](4))
Qv w Flawww)
(1% v)  w](F(A)) ——— P([(uv)*w](4))

F(u*v)*w

We proceed to calculate the two legs of the diagram. First, the top leg:
F(a)o Fros(osw) = F(a)o Fy0(F, ® Fyup)) = F(a)o Fyo (F, ® (Fyo (F, ® Fy))).

Now, we are going to do a "smart" trick: Writing F,, = 1oF,,, we get (1o F,,)®(Fro(F,®F,)))
inside the outter parenthesis, so we can apply bifunctoriality to proceed with our calculations.
In the diagrammatic calculus for monoidal categories, this "smart" trick becomes quite justified

and, rather, pretty trivial to do in that context (see [2]). In the given context, it may look like
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a rather magical step. With this trick, we have:
F(a) o Fuuwwy = Fla) o Fy0 (1 ® Fy) o [F, ® (F, ® F,)].
Now, for the down leg (using the same trick as before):

F(u*v)*woa:FQO(Fu*v®Fw)Oa
=Fol[(Fho(F,®F,))®F,|o«a
(3.1)
=Fo(lh®l)o|(F,®F,) ® F,] o«
=Fo(lh®l)oaolF,® (F,®F,)]
The last equality follows from naturality of «. In order to conclude that both legs of the

diagram result in the same composition, we observe that, since F' is a monoidal functor, we

have that Fl(a)o Fho (1 ® Fy) = Fyo (Fa® 1) oa. [

3.2 COHERENCE AND STRICTIFICATION

First, we are going to explain the meaning of both concepts. Then, we formalize them in

terms of monoidal categories with no further structure required.

Coherence: When we talk about coherence, we usually mean that going from one situation to
another via some canonical "operations" (or arrows) is the same, regardless of the sequence
of operations choosed. In the context of arrows, this means that some sort of "canonical
diagrams" always commutes. In the case of monoidal categories, we are saying that all
canonically constructed isomorphisms from one object to another are equal (i.e, all formal

diagrams commute).

Strictification: The idea of strictification is to create, for each category with a loose additional
structure of some kind, a category with the same additional structure, equivalent to it via
functors that preserve the structure in some sense, such that the additional structure now
is strict. In the case of monoidal categories, strictification wants to build a strict monoidal

category that is equivalent to the given monoidal category via a strong monoidal functor.

In order to prove coherence theorems, we start by showing that W is the free monoidal
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category with only one non-neutral object. In categorical terms, we wish to prove the following

theorem:

Theorem 3.2.1. (Mac Lane Coherence Theorem, 1963, version 1) For each monoidal

category C and a € C, we have a unique strict monoidal functor F': W — C such that

F(L) =a

Proof: If F'((_)) = a and F'is a strict monoidal functor, then we have the following:
Fleo) = e, F((L)) = a, F(uxv) = F(u) ® F(v).

This completely determines F' in the objects of W by structural recursion. The harder part is
determining F in its morphisms. Two words with the same length in W always are connected by
an isomorphism that can be expressed as a path (regarding the category as its underlying graph
— see its definition below) in which each morphism is a canonically constructed isomorphism
without composition in its construction. Since F is built to be a monoidal functor, we must
have that all paths containing those canonically constructed isomorphisms in the image of F
are equal. In other words, we must prove that any two ways to go from one parenthesization
of iterated products of a and e to another one (possibly deleting some e's) are equal. All
definitions in this proof apply to any monoidal category, so we will choose conveniently,
according to the definition, whether we work with the symbols of an arbitrary category or with

the symbols of W.

First part : We define the underlying graph of C, (z,,, with vertices all words of length
n over b, without instances of e. The edges of this graph shall be called basic arrows. They

are defined recursively as below:
1. All instances of o, a~! are basic arrows;

2. If §is a basic arrow, 1 ® $ and 3 ® 1 are also basic arrows.

By construction, a basic arrow possesses an instance of o or an instance of a~! in its

construction, but not both. If it possesses «, we call it directed, otherwise we call it antidirected.

We also define the canonical word of length n (denoted as w(™) as the word with all

parenthesis in front, i.e., in the leftmost position. Of course, we can always apply a sequence
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of a's to achieve that, starting from any other word of length n having no instances of e. We
define the rank (denoted by 7) of a word to measure how far from this canonical word an

arbitrary word is as below:
r(e) =0, r((_) =1, r(u®@v) =r(u) +r(v) + L(v) — 1.

The rank of an arbitrary word is zero if and only if the rank of its components are also zero
and L(v) —1 =0, i.e, L(v) = 1. Therefore we conclude, by recursion, that the rank of a
word is zero if and only if the word is a canonical word. Now, we verify by induction (on the
construction of basic arrows) that, if we have a word and apply to it a basic directed arrow,

then the rank will necessarily decrease.
ru® (v ®w)) = r(u) + r(v) + r(w) + L(v) + 2L(w) — 2

r((u®v) @w) =r(u) +r(v) +r(w) + Lv) + L(w) — 2

By a direct comparison, we see that the rank after applying « is necessarily lower. Now,
if 5: v — v satisfies the statement that we wish to prove, we are going to prove that

l®p:u®v— u®v also satisfies it ( ® 1 is analogous):
rlu@v) =r(u)+r@)+ L) =1 <r(u)+rw)+ Lv) —1=r(u®wv)

as desired.

Second part: Now, we wish to prove that GG, commutes. We start by noting that it is sufficient
to prove that any two paths of directed basic arrows from one word of length n to the canonical
word have equal composites. This is pretty straightforward: if we have a path of basic arrows
from a word v to a word w, we draw the directed paths from v and w to the canonical word,
and for each antidirected basic arrow in the path from v to w, we invert its direction and
change the instance of o~ ! for an instance of . Now, we have a diagram of directed basic

arrows connecting words as below:

U1 (%) V3
w™

V4 Us
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If we had the uniqueness of directed paths connecting words to the canonical word, this
diagram would commute, so the initial path would have a unique composition (by uniqueness
of the arrows involved here), showing that G,, commutes. In order to prove that we actually
do have it, we apply induction on the rank. Assume, without loss of generality, that the first
arrow of the path is the one that is different. We wish to construct a word z in a commutative,

diamond-shaped diagram as below:
v
y \‘
U// ,U/
z

|

w™

Above, 3, are the first directed basic arrows of the paths. In this situation, we can apply the
induction hypothesis on v/, v” and prove the statement. Suppose that v = u ® w. We have,

by construction of basic arrows, three possibilites for 5 (and the same for ):
1. =1
2. B=0"®1,
3. B =y Where w =s®t.
f5=1®p" and v =" ® 1, we choose d; =" ® 1 and dy = 1 ® 3’ to make the diagram

commute, by bifunctoriality. If 5 =" ® 1 and v =1 ® +/, the same argument applies.

If 5= aus:and y=19"® 1, we can use functoriality to complete the diagram:

UR (s@t) ——— (URs) Rt
7'®(181) (v"enel

UWRERt) ———— (W Rs)dt

«
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Swapping the roles of (3,~ also works this way. If both 3,7 are «a, we just need to fill
dy =dy = 1.

Now we wish to study the case where § = 1 ® 3/, and v = 1 ® 4. This case is pretty

straightforward, as the diagram below shows:

U@

w
U RQw
1®c1 ‘A
)

u @ wkw

u®w/ "

Here, ¢; and ¢, are the unique composites of paths from w’, and w”, respectively, to the
canonical word w(®)). We have two composites (c; o 3') and (c; 0 ¥') from w to the

canonical word, which are equal by the induction hypothesis, so this whole diagram commutes.

The most interesting situation is when we have § = «,,; and v = 1 ® 7. In this case,
we have three possibilities for +/, just like we had for 5 and ~ above. If v/ = 1 ® n or
~" = 1n' ® 1, the reasoning is the same as done before for § = a and v = 7" ® 1, i.e, we
are going to see 7/ acting through 1 or 1 on s or t while holding the others fixed. It is left
the case 7' = «,,,. Here, we can complete the diagram as in the following pentagon, which

commutes by the pentagon axiom:

u®(s®(p®q))

- ~_

107 =1®a a=4
— \
u® ((s®@p)®q) (u®s)®(p@qg)
aJ{ a/
—

(u®(s®p)®qg —asi— (URs5)Bp) ®q

This finishes our proof that G,, commutes.
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Third and last part: Now, it only remains the insertion of the unitors in the diagrams. If we
had two paths consisting of some kind of "basic arrows" constructed as before, but changing
the instances of « for instances of r, [, we would apply a similar method as before and prove
that these diagrams commutes (the inductive reasoning would be applied on the number of
e's in the word). This is not very difficult, since all the technical details are essentially equal
to the reasoning that we did to prove that (G,, was indeed commutative. With this in mind,
we only have to, for each given path, find a path with same composite such that this path
is constructed by a sequence of basic arrows built from associators followed by a sequence of
basic arrows built from unitors. Indeed, with the structural recursion, unitors will appear in
any desired position as we build new words.

If, in the composite of the path, we have something like 5 o (, with 5 a basic arrow built
from associators and ( a basic arrow built from unitors, we would have, inductively, three
possibilities for 5 and six for ¢ (because we can built it from [ or from r), as we already
studied before. With the possibilities in mind, it is pretty straightforward that we can use
naturality of the isomorphisms or the commutative diagrams involving «,r, [ to find a path
with composite (' o 3/ = (5 o (, where ' is a basic arrow built from associators, and (' a
basic arrow built from unitors. Therefore, we can always find, for an arbitrary path, other path
(1 Cuf1- -+ Bn with equal composite, where all ('s are basic unitors arrows and all 3's are

basic associators arrows, proving the last remaining step. [

Our latest result was the coherence for iterated products of a fixed object (and neutrals),
but we can use the universal property of W to prove the general coherence theorem. The
main idea is to construct a category such that we can take a = ld¢, and the iterated products
of b can be regarded as words in the objects of C, proving that any (formal) diagram involving
the monoidal constraints will commute. Here, it is important to remember the earlier argument
that we gave, due to Isbell. It shows that, if we change the monoidal constraints for identities,
not all diagrams will commute. Therefore, even if (A ® B) @ C = A® (B ® C), we cannot
replace by 14g(Bgc) in a diagram involving this object, or else we cannot assure that the

diagram will still commute.

Corollary. (Mac Lane Coherence Theorem, 1963, version 2) For each monoidal category
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C, we can assign, to each ordered pair of words (v, w), a unique natural isomorphism can(v, w):
w such that all canonically constructed isomorphisms (viewed as natural transformations

between word functors) are canonical.

Proof: Given a monoidal category C we construct the monoidal category It(C) (the
category of all ®-iterations of objects of C), with objects given by the pairs (n,T"), where
n € Nand T: C" — C is a functor, and morphisms from (n,7) — (m,S) only defined
when n = m, in which case they are all natural transformations 7" — S. The tensor
product ® is defined as (n,7) ® (m,S) = (n + m,® o [T x S]). The neutral element
¢ is the functor ¢’: {*} = C" — C, and o/,7,I' in It(C) are defined elementwise using
a,r,lin C. For example, r7.: ¢ @ T'— T is defined elementwise as the natural isomorphism
(%, T) = rp@y e @ T(x) — T'(x). It is straightforward to show that It(C) is a monoidal
category because the monoidal structure of It(C) is constructed using the very monoidal

structure of C).

Now, we take a = Idc in our previous theorem to conclude that there is a unique strict
monoidal functor F': W — It(C) such that F'((_)) = Idc. Since F is strict monoidal, the
unique morphism v — w in C is sent to a natural transformation v — w (in the latter, the
words are viewed as functors). Due to its uniqueness, we denote this natural transformation
by can(v,w), seeing it as "canonical". Still using the fact that F' is strict monoidal, the
monoidal constraints are strictly preserved, so the canonically constructed isomorphisms are

indeed canonical in the sense of this theorem. [J

Remark. By uniqueness of the natural isomorphism in this corollary, we have that all formal

diagrams commutes.

Corollary. (Coherence theorem for monoidal functors) For any pair of unary words v,
w of same length, and any monoidal functor F', there exists a unique canonical arrow n such

that the following diagram commutes:

v(F(ay),...,F(a,)) S LN F(v(ay,...,a,))
n F(n)
w(F(ay),...,F(ay)) — F(w(ay,...,a,))

Proof: It follows immediately from theorem 3.5 and the last coherence theorem. [

v —
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There are easier ways to prove coherence, but the proof above is very enlightening, visual,
and beautiful, explicitly using only the most basic commutative diagrams of a monoidal
category and basic concepts. Now we provide a theorem that implies coherence as a corollary,
but the theorem itself gives us something more: it connects the concept of strictification to

coherence.

Theorem 3.2.2. For a given monoidal category C, if there is a strong monoidal locally
injective functor F': C — D, where D is a strict monoidal category, then coherence holds for
C. In particular, if C is equivalent to a strict monoidal category Str(C) via a strong monoidal

functor, then, coherence holds for C.

Proof: Let 1,1’ v — w be two canonically constructed isomorphisms. Of course coherence
holds for D, since D is strict, so all canonical isomorphisms are identities. We saw earlier that

the following diagram commutes for 1 and 1’ separately:

Above, the canonical arrows at the left side are interpreted as canonical arrows in D, and
those at the right side are interpreted as canonical arrows in C. Since coherence holds for D,
n=mn"in D, so we have F'(n) = F(n) because the correspondence § — F'() in the diagram
must be bijective, observing that F),, F,, are isomorphisms and the diagram commutes. Using

local injectivity, we conclude that n =’ in C. In this way, coherence also holds for C. [
Corollary. Coherence holds for all monoidal categories.

Proof: Given any category C (monoidal or not), we can view the endofunctor category
ct = [C, C] as a strict monoidal category with composition regarded as its tensor product.
When C is monoidal, we can construct a strong monoidal functor £: C — C€ that acts on

objects taking a to the functor a®_ (the functor that acts as a tensor product with a) and, for
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each morphism f: a — b, the natural transformation f ® 1: a ® _ — b® _. This is indeed a

natural transformation because, due to bifunctoriality, the following diagram is commutative::

T a®$&>b®x
g 1a®g 1,®g
(1 ARY —o— by

To show the local injectivity of F' is fairly simple: We apply F'(f) to e, so we have f ® 1. If
F(f) = F(g) (locally), we would have, in particular, f ® 1. = g ® 1., which we already saw
that implies f = g.

The fact that F' is indeed strongly monoidal is a straightforward calculation. [J

Theorem 3.2.3. (Strictification of monoidal categories) Any monoidal category C is
equivalent to a strict monoidal category Str(C) via a strong monoidal functor F': Str(C) — C

and a strong monoidal functor G: C — Str(C).

Proof: We define the objects of Str(C) as the class of words with alphabet in C. The
tensor product is chosen to be the concatenation - on objects, so it is strictly associative.
Before we define the morphisms of Str(C), we define a function F': Str(C) — C (here Str(C)
is regarded just as a class of objects) as F(ay ...a,) = w™(ai,...,a,). The main idea is to
set, for u,v € Str(C), homsy(c)(u, v) = homc(F(u), F(v)). Composition in Str(C) is induced
by that of C componentwise, so F' is extended to morphisms as a functor. The tensor product

of two morphisms f: u; — vy and g: us — v9 is defined as following composite:

Flup ) — s F(uy) @ Flug) —222— F(v1) @ F(vs) —="— F(uy - vs)

Due to the uniqueness of the canonical arrows in the composite above, this tensor product is

strictly associative.

In order to see that the functor F' defined as above is a strong monoidal functor, we just have

to take Fy = 1. and Fy(u,v) as the only canonical isomorphism F(u) ® F(v) — F(u - v).
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The axioms that I and F, must satisfy in order to F' be a monoidal functor follow from the

coherence theorem for C, for Fyy and F, are defined as canonical isomorphisms in C).

Now we define a functor G: C — Str(C) naturally as G(a) = a, G(f) = f, and Go, G
are just identities. This functor is strong monoidal because all of its instances are identities,
making the commutativity of diagrams immediate. It is easy to see that F'G = Id¢c, while GF

is naturally isomorphic to Ids.(c) because its only effect is changing the parenthesis order. [J

3.3 BRAIDINGS

Definition 3.3.1. A braiding for a monoidal category C consists of a natural isomorphism
® < ® o7, where 7: Cx C— C x C is the flip functor, i.e, T(a,b) = (b,a) on objects and

morphisms, and the braiding is subject to the following conditions for all a,b,c € C:

a®e e a

(a®b)®@c —F—— c®R (a®Db) a®(b®c) —— (b®c)®a
a® (b®c) (c®a)®b (a®b)®c b® (c® a)
1®0 o®1 o®1 1®o
a®(c®b) ———— (a®c)®Db (b®a)®cT>b®(a®c)

Remark. When C is strict, these conditions just state that

Oa®b,c — (1(1 X Ub,c) (Ua,c ® 16) and Oa,b®c — (Oa,b & 10)(1b X Ja,c)'
Remark. The two last conditions above are called the hexagon axiom.
Definition 3.3.2. A braided monoidal category is a monoidal category equipped with

a braiding. A symmetry in a monoidal category is a braiding o such that o, b= Opa A

symmetric monoidal category is a monoidal category equipped with a symmetry.
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Proposition 3.3.3. For any object a € C, we have

-1

la O0ge =Tay Ta©O0¢a = laa Oc,a = 0-%@'

If C is strict, then these relations assert that 0., = 1, = 0.

)

Proof: Consider the following diagram:

(e®@b)@a+—"——a®R(e®b) ——— (a®e) @b
/ Jlb@)l 1®lbl rocl /
o —
e® (b®a) b®a a®b\ o®1
\ Tl,@a Tla@b 1a®1
1 T~

e®(b®a) 27  e@(a®b) —2— (e®a)®b

The outter heptagon commutes by the hexagon axiom, noticing that one of the edges of
the heptagon is the identity. We proved earlier the commutativity of the left triangle and of
the bottom right one. The upper square commutes by naturality of . The bottom square
commutes by naturality of [. The upper right triangle commutes by the triangle axiom. We
obtain the commutativity of the middle right triangle combining the commutativity of the
upper and lower right triangles with that of the heptagon, as well as the fact that all edges

are isomorphic (ant, thus, invertible) in a diagram chase. Hence:

Tq & 1b - (la ® ]-b) o (Ua,e & ]—b) - (la o Ua,e) X 1b~

If we take b = e, we conclude that r, = [, 0 0, .. For the second desired equation, we use the

other diagram from the hexagon axiom in a similar way.

Combining these two relations, we obtain 7, =1, 004 =740 0c4 004, SO Ocq = 0,

If C is strict, then [, = r, = 1,, so the final statement of the theorem follows substituting 1,

for r,, 1, in our relations. [J

Proposition 3.3.4. Braidings follow the loose Yang-Baxter equation, i.e, the following
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dodecagon diagram commutes:

(A9 B)® C
o®1 a1
(BA)eC A® (B ()
a~?t 1®o
B®(Ax(C) A® (C®B)
1®0 a
B® (C®A) (A C)® B
« o®1
(BeC)® A (C®A) @B
o®1 a1
(CoB)®A C®(A® B)
! 180
C®(B®A)

Proof: Consider the following diagram:

(A B)®C

C®(B®A)
The left and right parts of the diagram commute by the hexagon axiom, while the middle

square commutes by naturality. Glueing those three commutative diagrams together, we have

the commutativity of the dodecagon. [J
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Remark. Cartesian monoidal categories are symmetric, Braid and Diff are also symmetric.

Vect, and R-Mod are braided.

3.4 ALGEBRAIC STRUCTURES IN MONOIDAL CATEGORIES

To motivate the generalization of a monoid in a monoidal category, we start categorifying

the notion of monoids and k-algebras.

Given a monoid (M, -, ¢), we know that - : M x M — M is a binary operation, and since e is
a fixed object, we can understand it as a unary operation é: {x} — M defined by &(x) = e.
Since this determines € completely, we can write € = e for simplicity. The associativity axiom

becomes

Mx(MxM) —2*—— (MxM)x M —>— MxM

Mx M . M
and the axiom for the neutral becomes

(b x M —20 s Mx M« M x {x}

M

Now, if we are given an k-algebra (A, -, ¢e), we know that - : A x A — A is a bilinear map
and e is a neutral element for this map. By the universal property of the tensor product, we
can view this bilinear map - as a linear map u: A® A — A. We know that a linear map
T: k — Ais completely determined by 7'(1), so we can understand e as the map n: k — A
that sends 1 to e. Requesting associativity for - is the same as requesting commutativity of

the following diagram:
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AR (ARA) — 2 (AgA)eAd —"1  AgA

1op H

AR A A

n

Requesting that e is the neutral for this product is the same as requesting commutativity of

this other diagram:

koA —"0 L A9A T Ak
l : T
A

In both categorifications above, we obtain relations involving the monoidal structure of Set

and Vect,,.

Definition 3.4.1. A monoid M in a monoidal category C is a triple (M, u,n), where M € C,
uw: M ® M — M and n: e — M such that the following diagrams commute:

MeMaM) ——— (MoM)eM —"* s Me M

1®u Iz

Mo M M

w

€®MLM®M&M®€

M
Definition 3.4.2. A monoid (homo)morphism f: (M, u,n) — (M', 1’ n') is a morphism
f: M — M’ such that fu=p/'(f® f) and fn=r1'.

Remark. Comparing to our usual homomorphisms from algebra, the first equality above is the
analogous for the preservation of the product and the second equality is the analogous to the

preservation of unity.

For a given monoidal category C, we define the category Monc as the category of monoids

of C. We give some examples of monoids:
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1. In Set a monoid is the just an ordinary monoid.

2. In Vect, a monoid is an k-algebra.

3. A monoid in Ab is a ring with the tensor product as the multiplication action.
4. A monoid in Ch(R — Mod) is what is called a differential graded algebra.

5. In End(C) a monoid is called a monad. It is a very important concept in categorical

algebra.

6. In Top a monoid is a topological monoid, i.e, a topological space with a continuous

monoid structure.

Remark. For those who are familiar with the theory of lattices, it is very interesting to notice
that a monoid in the category of complete join-semilattices is a unital quantale. This is a
useful thing to keep in mind, since quantales can be used as a framework for point-set topology

and linear logic.

Definition 3.4.3. For each unary word u, we define recursively a product pu,,: w(M, ..., M) —

M as:
1 pey =m:eg— M;
2w y=1y: M — M;
3 By =p: MM — M;
4. Ifu=v*w, then pu, = po (fly @ ).

Remark. Just as we discussed before, this definition of 1, gives us all the possible ways to do

the monoid product for the parenthisizations of the ®-iterated products of M.

Theorem 3.4.4. (General associative law for monoids) If (M, 1, n) is a monoid in C and
v,w are unary words with the same length, then i, o cany (v, w) = p,, where we denote

cany (v, w) = [can(v,w)] .. )

Proof: We prove this by structural induction on the construction of canonical arrows. We
start by assuming can(v, w) = a. The following diagram commutes by naturality of a and by

the very definition of a monoid in C:
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(51 & (UQ X U3)

(u1 X UQ) X us

Py ®(pug ®fiug) (M) ®pug ) Bpiug
M & (M ® M) _ (M®M)® M
low n®1
M M M@ M
\‘ /
M

But pro (11 ®1) 0 [(ftuy ® fhuy) @ fas) = 110 [(14 0 (Huy @ fhusy)) @ phus] = 10 (Huiyuy @ fhus) =

Ho(ur @u2)@us -

In the same way, we prove that o (1 ® p1) © [ftu; @ (fus @ fluy)] = Hui@(uscug)- Since
the diagram commutes, we have that jiy, g (ueus) = H(u@us)ous © @ An analogous argument

can be applied to the isomorphisms r and [.

Identities and compositions of canonical arrows follow straightforward from the induction
hypothesis. The tensor product of canonical arrows follows from the following calculation,
where ¢1, co are the canonical arrows ¢;: u — u/, co: v — V'

e ©(c1®c2) = 10 (fw ® ) 0 (c1®c2) = pro[(pur 0c1) @ (por 0C2)] = po (Uu @ o) = flugo

This concludes our proof. []

Remark. It is interesting to notice that, just as before, we can state this coherence theorem

in terms of commuting paths on a graph.

Definition 3.4.5. A left action of a monoid (M, 11,m) on an object A is defined as an arrow

v: M ® A — A such that the following diagram commutes:

MoMeA) —2  (MaM)A —"21 s MeA— " x4

1®v I f
M®A A
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Definition 3.4.6. A left action (homo)morphism f: v — v/ is a morphism f: A — A’

such that v'(1 ® f) = fv. Here, the monoid M is maintained fixed.

We then define Lact,, as the category of left actions of M.

Remark. In algebra, when we let an algebraic structure act on itself via its own product, we
call this action the regular representation. If we take A = M and v = i above, we get

what we call the left regular representation of M.

Definition 3.4.7. A (left) module A over a monoid M is simply an object A with a left
actionv: M @ A — A.

Definition 3.4.8. Given a left action v: M ® A — A and a unary word u with last

non-parenthesis character being (_), we define v,: uw(M, ..., M, A) — A recursively by:
Ly =140 A= A
2 v ) =v: M®A— A
3 Ifu=v*w, then vy, = v o (ji, @ Vy).

Theorem 3.4.9. (Coherence for actions) If v: M ® A — A is a left action and v, w

are unary words with the same length, then v, o cany 4(v,w) = v,, where we denote

cany; 4(v, w) = [can(v, )] (..., 4)-

Proof: The proof is completely analogous to the proof of the general associative law for

monoids. [

Definition 3.4.10. A M — N bimodule is an object A together with two actions iy : M ®

A— A, uy: A® N — A such that the following diagram commutes:
M®A®N) —2 (MA@ N M AgN
1®uNn UN

M®A A

1228

Definition 3.4.11. A bimodule homomorphism (also called an equivariant map) from
the M — N bimodule A to the P — () bimodule B is a triple of morphisms o: A — B,
f: M — N, g: P— Q such that the following diagram commutes for left and right actions

(ommiting monoidal constraints):
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M@AQN —2" _, M@ N
fRo®g f®g

PRB®Q P®Q

action
Remark. Usual monoids, modules, topological monoids, topological modules, algebras, topological
algebras and so on are easy examples of the usual algebraic structures equipped with algebraic
structures (and are algebraic objects in some category, like Vect;, Top, Set, etc). For this

reason we have not given a list of examples.

Remark. Algebraic structures of various kinds in categories with additional structure of various
kinds are natural extensions of the work on the respectively original algebraic structures. The
research on this field has been very active for decades, producing a myriad of interesting
structures, and establishing connections between different specialties within mathematics,

logic, computer science, and physics.

Remark. We will not develop the general theory of enrichment, so the basic idea of a category
enriched over a monoidal category M is: rather than having hom-sets, it has hom-objects
that are objects of M, and there is a notion of composition (associative and unital) between
hom-objects inherited from the monoidal structure of M (o: hom(B, (') ® hom(A, B) —
hom(A, C')). The usual notion of category is that of a category enriched over Set endowed

with its usual monoidal structure given by the Cartesian product.
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4 LOW DIMENSIONAL CATEGORY THEORY

4.1 LOW DIMENSIONAL CATEGORIES

Now we are going to lift the categorical and monoidal structures that we studied to higher
dimensions. The nomenclature will remain practically unchanged. For example, adjunctions
will remain defined as they are, but reinterpreted with the new concepts of functors, natural

transformations, etc.

Definition 4.1.1. A (strict) 2-category is a category enriched over Cat. Unravelling this

definition, a 2-category C consists of:
1. A class of objects, also called 0-cells;

2. For each ordered pair of objects (A, B), a category homc(A, B). The objects of this
category are called 1-cells, and its morphisms are called 2-cells. The composition of

2-cells is usually called vertical composition, and denoted by o = oy;

3. For each object A, there is a functor id: {*} — hom¢c(A, A), that picks out the object
that we call the identity 1-cell and the morphism that we call the identity 2-cell.

These two are often denoted as ids and id;y, respectively;

4. For all objects A, B, C, there is a functor oy = ©: hom¢(B,C) x homc(A, B) —
hom¢(A, C) called horizontal composition, which is associative and which has id4

and idy, as identities.

Remark. From this definition above it is reasonably easy to define what is a (strict) n-category:
We have arrows between arrows and so on, until we reach recursively n-arrows between

(n — 1)-arrows, equipped with strict compositions that behaves in a functorial way.

We give some examples below:
» Cat can be regarded as a 2-category, as we saw earlier.

» Every l-category can be trivially regarded as a 2-category introducing only identities

2-cells.
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» We can define Rel as the category of sets with relations between them as morphisms.

Here, we can define a 2-cell as a function that preserves relations.

Definition 4.1.2. A bicategory is a category "weakly" enriched over Cat. The only difference
from a bicategory to a 2-category is that the unities and associativity of og only work up to

natural isomorphisms that satisfy the triangle and pentagon axiom.

Remark. The natural isomorphisms above consist of 2-cells. We picture bicategories diagramatically
just as CAT, with 1-cells drawn horizontally and 2-cells drawn vertically. Diagramatically, we
denote 1-cells with — and 2-cells with =. Sometimes, when it is clear from the context, we

denote any type of arrow simply by —.
We give some examples below:
= In Top, we can regard homotopies as 2-cells. Actually, we can also consider homotopies
between homotopies and so on. Composition of homotopies is a strict operation, but
concatenation is associative only up to isomorphism. These morphisms between morphisms

between morphisms (and so on) can be generalized in category theory as weak n-categories

or even (oo, 1)-categories if we take homotopy classes.

= We define the bicategory Rng as the bicategory in which O-cells are rings, 1-cells

f: R— S are R — S—bimodules, and 2-cells are bimodule homomorphisms.

» We define the bicategory nCob as the bicategory in which 0O-cells are closed n-manifolds,

1-cells are cobordisms and 2-cells are diffeomorphisms between these cobordisms.

Definition 4.1.3. Given the bicategories D and E, a (pseudo) functor F': D — E frm D

to E consists of the following:
1. A function Fo, sending objects of D to objects of E, which we denote by F';

2. For each hom-category homp(A, B), a functor Fs g: homp(A, B) — homg(F(A), F(B)),

which we also denote by F';
3. For each A € D, an isomorphism Fy,: 1pay = F(14); and
4. A family of natural isomorphisms F, ;: F(g) ® F(f) = F(g® f).

The above isomorphisms are required to satisfy the same coherence diagrams as monoidal

functors.
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Definition 4.1.4. An oplax (or colax) transformation 7: F' — G between two pseudo

functors consists of 1-cells T4: F(A) — G(A) and 2-cells

£(f)
—

such that, for any object A, any 1-cells f ,and g and any 2-cell o: f = g, the following

conditions hold:

F(f)
(o) — F(f)—
F(g)
4
TA Tg TB = TA Tf B
Z G0~
Glo) ~— Gi;g(f(")
1rca) 1
< S
7
TA T1 4 TA = TA >~ TA
//G(l?;) - /
—~ lGl%A)lA/, Lo
F(af) -
_ ﬂFJf Flof)
T () — Y —— F(g) — R
7 / J/
TA Tf B Ty TC = TA Tgf TC
s s /

—G(f)— " —Gl) —2 —
G(gf)
‘U’GQ f
G(gf)
We call T a pseudo(natural) transformation if the 2-cells 7; are isomorphisms. The concept
of lax transformation is obtained from the concept of oplax transformation reversing the

directions of the 2-cells ;.

Remark. In order to clarify the diagrams in the above definition, first notice that 7; is a

2-cell from 75 @ F(f) to G(f) ® 4. In the first equality, the left hand side must be read
. ITBQF(U) T, . .

as the composite 75 © F(f) "= "~ 15 ® F(g9) = G(g) ® Ta. The right hand side of the

second equality is the natural isomorphism obtained using the unit constraints for horizontal

composition.
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Definition 4.1.5. Anicon 7: F' — G between pseudo functors that agree on objects consists
of 2-cells 7;: f = g which are natural in the 1-cells f, and such that, for any A N3N

the following diagrams commutes:

Fl Ff

lpay ———— F(14) F(g) @ F(f) ——— F(g o f)
~ Tiy TgOTf TgOf
Laa) — ., G(1a) G(g) © G(f) G, G(g© f)

Remark. The isomorphism above is actually the identity, since F'(A) = G(A). Roughly
speaking, an icon can be defined as an oplax transformation between functors that agrees

on objects such that all 1-cell components are identities.

Definition 4.1.6. A modification ;: 7 — 7' between oplax transformations consists of a

family of 2-cells Ty: T4 = T} such that:

F(f) F(f)
aw A
Th YA TA Tf B = T "B &g B

\~Z 7 N/

G(f) G(f)

Remark. All this definitions apply to 2-categories because they can be seen as bicategories.

Remark. With these various concepts in mind, we can define some bicategories:
1. Bicat.(C,D);
2. Bicat,(C,D);
3. Bicat,(C, D).

All of the three have the pseudo functors F': C — D as objects (0-cells), and the modifications

as 2-cells. Their 1-cells are the colax, lax, and pseudo transformations respectively.

Definition 4.1.7. Generalizing the definition given for 1-categories, an equivalence between
2-categories C and D is a pair of pseudo functors F': C — D and G: D — C with
pseudonatural transformations F'o G = 1p, G o F = 1¢. We say that two 2-categories

are equivalent (or biequivalent) if, and only if, there is an equivalence between them.
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Just as in monoidal 1-categories, we can state a coherence and a strictification theorem
for bicategories. We are not going to prove them, because they follows exactly the lines of the
theorems we already proved for the monoidal case. A proof can be found in [23], and one can

check that the proof is really the same as our proof for monoidal 1-categories.

Theorem 4.1.8. Every formal diagram in a bicategory D commutes (here, a formal diagram

is defined just as before).
Theorem 4.1.9. Every bicategory is biequivalent to a strict 2-category.
Definition 4.1.10. A (pseudo) double category D consists of:
1. Two categories, Dy, and D;;
2. The following functors, called structure functors:
U: Dy — D
S, T: Dy — Dy

®: D1 X Dy D1 — Dl,

where the pullback is over S,T. These structure functors are required to satisfy the

following conditions, naturally:

3. The following natural isomorphisms:
a: © (@ X /dD) = @(/dD X @)
[: ®(UoT x ldp) = Idp

L @(/dDXUOS)g/dD

such that T'(a), S(a), (), S(I), T'(x), S(r) are all identities, and such that the triangle

and pentagon axiom hold for these natural isomorphisms.
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Remark. In the same way that we thought of a bicategory as a category weakly enriched over
CAT, a pseudo double category can be seen as a category weakly internal to CAT. With
this in mind, we say that S and T are the source and target functors, respectively. U
is the loose identity (or unit) functor, and © is the loose composition functor. The
natural transformation a makes the composition functor associative up to isomorphism, on
both objects and morphisms of D;. In their turn, the natural transformations I, ¢ make U
give units up to isomorphisms, on both objects and morphisms of D;. Also notice that what
appears in the unit constraints above is U o T" and U o S, for the identities are taken on
different sides. For example, in I, we compose an arrow with the identity on the left, so the

identity must be the identity of the target of that arrow.

Remark. As done for bicategories, we may strictify the loose structure by the argument given
in the coherence/strictification theorem. A proof of these results can be found in [24], but, just
as in the case of bicategories, the proof is essentially the one we presented for the coherence

theorem for monoidal 1-categories.

Definition 4.1.11. The compositions on Dy and D, are said to be tight compositions
because they are strictly associative and have a strict unit. The composition ® is called a
loose composition, since associativity and unitality hold only up to natural isomorphism.
The objects of Dy are called objects or 0-cells, and the morphisms of Dy are called tight
1-cells. We denote the 1-cells as f: A — B. The objects of D, are called loose 1-cells,
and the morphisms of Dy are called 2-cells. If M is a I-cell such that S(M) = A, and
T(M) = B, we denote M as M: A -+ B .Ifa: M — N is a 2-cell such that S(«a) = f,

and T'(«) = g, we denote v as below:

A, B
fl ﬂa lg
C’TD

Remark. Sometimes k-cells are called k-morphisms. Also notice that, due to the functoriality

of ®, we have the following interchange law:
(Ml ® MQ) (6] (Nl ® NQ) == (Ml e} Nl) ® (MQ O Ng)

This property allows us to perform calculations using diagrams without caring about what

type of composition we do first.
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Definition 4.1.12. A 2-cell with identities as source and target is called globular.

Remark. With this definition, a, I, ¢ are globular. It is also important to notice that a globular
2-cell is pictured just like a natural transformation: it is a 2-morphism between parallel loose

1-morphisms.

Definition 4.1.13. Given a double category D, we define L(D) as the loose bicategory,

consisting of the objects of D, loose 1-cells, and globular 2-cells.

Remark. Sometimes this category is called "horizontal bicategory" or "vertical bicategory" in
the literature, but this nomenclature depends on how the author draws the diagrams, or what

he or she calls a horizontal or vertical arrow.

Remark. To gain a better understanding on why £(D) is indeed a bicategory, see theorem

4.39.

Definition 4.1.14. Given two double categories C, and D, we can define their product as a
double category C x D in a way similar to the product of 1-categories: We define objects and

all types of morphisms as pairs, and define compositions componentwise.

Here are some good examples of double categories, pointing out their respective loose

bicategories:

» We define nCob as the double category which has closed n-manifolds as objects,
diffeomorphisms as tight 1-cells, cobordisms as loose 1-cells, and diffeomorphisms between
cobordisms as 2-cells. The bicategory £(nCaob) is the bicategory of cobordisms that we

discussed earlier.

» We define Mod as the double category which has rings as objects, ring homomorphisms
as tight 1-cells, bimodules as loose 1-cells and equivariant bimodule maps as 2-cells. We

have £(Mod) = Mod, the bicategory that we already discussed.

» A profunctor A — B is defined as a functor B°® x A — Set. We define Prof as the
double category that has categories as 0-cells, functors as tight 1-cells, profunctors
as loose 1-cells, and natural transformations as 2-cells. The bicategory L(Prof) is

commonly encountered in category theory ([18], [19], [20]).

Definition 4.1.15. A (pseudo double) functor F': D — E between double categories

consists of the following data:
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1. Functors Fy: Dy — Ey and Fy: Dy — E; such that SoF; = FyoS andToF; = FyoT;

2. Natural transformations F,: Fy(M)OF\(N) = F1(M®N) and Fyy: Ugyay — F1(Ua)
whose components are globular isomorphisms and which satisfy the same coherence

diagrams as monoidal functors.
Remark. Both F{, F are usually denoted as F'.

Definition 4.1.16. A (tight) natural transformation 7: ' — G between two pseudo
double functors consists of two natural transformations 1o: Fy — Go and 11: Fy — G; (both
usually denoted by 7) with S(7a) = Tsuy and T(Tar) = Tr(uy such that the following

equalities holds for all objects and 1-cells:

FA) 2 gy 2N po) FA) 2 gy 2N R
| ) of o ] ] e
F(A) F(NoM) —— F(C) = G(A) <t G(B) ity G(C)
o H Jre | | t
G(4) GV G(C) G(4) GV G(C)

F(A) 259 p(a) F(A) 259 Fa)

| e | Al fe

FA) 2% pea) - G(A) =9 Ga)

o N

G(4) i G(A) G(4) i G(A)

Remark. We have three different opposites for a double category D:

1. D" is the loose opposite, in which we and maintaining the tight 1-cells, reverse the
loose 1-cells, and reverse the 2-cells only in the loose direction, i.e, we just interchange

the roles of S and T';

2. D"°P is the tight opposite, obtained reversing the tight 1-cells, and maintaining loose

1-cells and 2-cells;
3. D"°P is the double opposite, where we reverse both types of morphisms.

Definition 4.1.17. We define Dbl as the strict 2-category of double categories, pseudo double

functors, and tight natural transformations. We define Dbl as its underlying 1-category.
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Remark. A 2-cell 7 in Dbl is invertible if, and only if, each 74 and each 7,; are invertible.

Definition 4.1.18. A monoidal double category D is a double category equipped with

pseudo double functors ®: D x D — D and e: {x} — D and tight natural isomorphisms

@(ldp x ®) = ®(® x Idp)

IR~

®(6 X /dD) /dD

12+

®(/dD X 6) /dD

satisfying the pentagon and triangle axioms. Unraveling this definition, we have the following

data:

~

Monoidal categories D, and D;;
2. For the monoidal neutral e of Dy, U, is the monoidal neutral of D;;

3. Strict monoidal functors S and T', meaning that S(M @ N) = S(M)® S(N), T(M ®
N)=T(M)®T(N), and that S and T preserve associators and unitors;

4. Globular isomorphisms ¥ = ®, and 1 = ®y; that satisfy the axioms of a pseudofunctor

for ®; and
5. «,r,l that satisfy the diagrams of a tight natural transformation.

Remark. Note that we did not introduce anything more than what is stated in the definition.
For example, 3 follows from the first condition of the definition of a double functor combined
with the conditions required for T'(«v) and S(«) for tight natural transformations. We unpacked

this definition just to show that it can be done, althought it may not help much.

Definition 4.1.19. A braided monoidal double category D is a monoidal double category
equipped with a natural isomorphism & = ® o T that satisfies the usual axioms for a braiding,

where T is the flip functor. If o is involutory, the category is called symmetric.

» nCob is a symmetric monoidal double category if we take ® to be the disjoint union of

manifolds;

= Mod is a symmetric monoidal category with respect to the usual tensor product of rings

and bimodules;



86

» Prof is a symmetric monoidal with respect to the cartesian product of categories.

Definition 4.1.20. A lax monoidal double functor F': D — E is a pseudo double functor
F' together with tight natural transformations Fy: eg — Foep and Fy: @o(F x F) — Fo®
satisfying the usual diagrams for a monoidal functor. In the same way we define colax monoidal

double functors, braided functors and symmetric functors.

Definition 4.1.21. Given a tight 1-cell f: A — B in a double category, a companion of f

is an arrow f : A —+ B together with two 2-morphisms

1, i
1 ) | bl
Ea N
such that the following equalities hold:
Ua Ua
| Jf H
o = LYy
) X
U U
| by Bl -] b7

A conjoint for f is defined as a companion of f in D".

Remark. When doing diagrammatic calculus as below, even when we have associativity and
unit isomorphisms, we write "=" and ommit them in the calculation. This can be done because,
when we reach a conclusion, we just have to put the canonical arrows that are missing and,

by coherence, it does not matter what the order or what isomorphisms we choose.

Proposition 4.1.22. Let f f' be companions for f: A — B. Then there is a unique globular

isomorphism 9]?]?,: f — f’ such that

Ua
——
ll}l\ilf Ua
i - Al
N —

1

fl ﬂE?’

U5
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Proof: Notice that, if the above equality holds, then so does the following one:

Ua 7
— —t
1‘@4 ! Us, Ua, ]
T S
U lH ﬂe Hl - lH flu ! ﬂUff ﬂf Hl
A D L ¥ 4 ¥ 4
R F U s

Applying the definition of companion on the left hand side of the equation, we obtain that
the top and bottom rectangles are identities, so when we compose these 2-cells we get 6. The

right hand side is similar, since Uy is an identity. Therefore, we have

Ua f

o — —t+
B I A
f]?,% ﬂj[\,—)vgyf?

This proves that, if 6 exists, then it must be the above loose composite. Reversing the steps,
it is clear that 6 defined as above satisfies the condition that we stated in the proposition.
Now, it remains to show that the 2-cell # is an isomorphism. If we interchange the roles of
f and f’ in the equation above, we get HfA,f. Now we prove that this 2-cell is equal to 9};%

Composing them, we get:

Ua J? Ua Ua J/”\ J?
—t —t } t 1 —t
~ I —~ ~ | I ~ A
K AR T IR AR GO I O
RV SRR ACH BN
S e~ B ]Lf\ UB B ]’c\
|ty o)
<+
HfA—} —UQB—>

The equalities follow from the definition of companions. For the other composite of the 0's,

the calculation is essentially the same. [
Remark. Note that 6 as defined in the proposition is actually an isomorphism f@UA > UBQ]?'

but, as we already commented, we are ommitting the constraints so that we can say that 6 is

an isomorphism f%’ f’, as long as we keep this in mind!

Corollary. 9)’”\,]?: 11?.

Proof: The identity clearly satisfies the equality stated in the last proposition, so the

equality above follows from the uniqueness of 6. [
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Corollary. If [ has three companions f, f', and [, then (‘)f = Qﬁ 700 6’?}@.

Proof:
Ua f Ua f
— —4— — ——
- | 5% o~ | —~
0% 70055 = "7l s ugf 1 = 1 Mnf”f uf 1 = b
TR Ua v o/ 4 [
— /*>
H—: | fEA BT T BT
I b o)
+
f// B

Where the second equality follows from the definition of companion. [J

Proposition 4.1.23. U, is, canonically, a companion for 14.

Proof: We define e = luy = np The equalities in the definition of companion are

automatically satisfied. []
Proposition 4.1.24. If f is a companion for f: A — B, and § is a companion of g: B — C,

then g ® f is @ companion of gf.

Proof: We define

! 9 Ua Ua
—— —— ——
~ ~ 1~ R N
“ar = fl ﬂf Hl ﬂg ‘1 7 = 1H ﬂf f MUf lf
~Ug»" —g— =
! . 1l \
gl MUH 9 Meg ‘1 1H U7 ! ﬂ’?; g
v v
o o ﬂf\—> ﬂg\—>

We will check only the second equality in the definition of companion, since the calculations

for the first equality are essentially the same. The left hand side of the equality is:

I

UIA ZI\
I ﬂff W b s

—Up > f/\*}
1Au J L e ‘

g
H e
Uo
In the big central square:

Ug ]/c\ J/C\
—— —— ——
fJ ﬂUf Jf HG? 1 fJ ME? 1
- Up > Up ~ = —Up >
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When we replace this in our diagram, we can apply the definition of companion to conclude
that the composite of the diagram must be 1gAf because n ® € appears at the top and at the

bottom. [J

Remark. Sometimes, when we are only interested in 2-cells, and the respecive 1-cells can be
inferred in the context, we ommit those 1-cells for brevity. The next proposition is one such

example.

Proposition 4.1.25. If f: A — B has f as a companion and g: B — C has g as a

companion, then 652 © foA, = 9§®f§, of
Proof: Due to our last proposition and our last corollary, the first equality of the following

sequence of equalities holds:

Gy, Yo, L, 3 Y o
1 MﬂfA’ Jf MUf Jf Mgf 1 Ml? 1 1 Mﬁ?l MG?l MIQJ
O ToeT = — =Y -Ug>"-Up~>" —3g— = — P>V -Ug>»Y—3g—
| o b bl ) ) ks
PS ' PS B
g

=
m\
N
&

=

<
—
=)

L —
<3

%

_<:m
)

'

4
T

t f
_ % ‘Uf/\ M’T’\/ Mf _ O~ (DO~ ~
S R I I
}

y 4 4
T T T

The other equalities follow easily from the properties of identities. [

Proposition 4.1.26. If f is a companion for f: A — B, then HﬁerA and ef,UB@f are equal

to the unit constraints.

Proof: Using the definition of @, our previous propositions, the definition of companion,

and the functoriality of U, we obtain the following equalities:
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4
T

—t

T

:
—t 7

bl | b | )

' 4 '
T T T T

ﬁf@UA

Ommitting the isomorphism constraints as we usually do, we have the desired isomorphism.

The other statement is equally easy. [

Proposition 4.1.27. If F': D — E is a pseudo double functor between the double categories
D, E and f is a companion of f: A — B in D, then F(f) is a companion of F(f) in E.

-~

Symbolically: F(f) = ]*{(7) up to isomorphism.

Proof: We define € and 7 as:

F(f) Ur(a)
e e
| |
7P = — F(Up) — U = — F(Uy) —
v ber |
—_—t —_—
Ur(p) F(f)

Checking the second diagram of the definition:

F(f) UFi(A)
| ] e |
— F({Up) —  — F(Uas) — = _
[ T A | e |
Urcs) F(iA)
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Where, in the first equality, we used the same trick used in proposition 4.6 (adding loose
unities) and, in the second equality, we just used the functoriality of F' and the definition of

a companion. The first diagram follows similarly. [J
Remark. We ommitted the isomorphisms Fy; and F, in our diagrammatic calculations for the

same reason as before. We will continue to ommit these arrows.

Corollary. If D is a monoidal double category and f: A — B, g: C'— D have companions

f and g respectively, then f® g is a companion of f ® g.

Proof: Since ® is a pseudo double functor ®: D x D — D, and since a companion in
D x D is just, by definition, a pair of companions in D, the result follows directly from our

last proposition. []

Proposition 4.1.28. If F': D — E is a pseudo double functor and f , ]?’ are companions for

f: A — B, then GF(}\LF(]?/) = F(ef,f’)
Proof:
—_— — —t+
F(e}\,}\"\: H HF(W?,@e;;) H _ H ﬂF(nf)l ﬂF(e?) H :9F(B’F<?)
—_— —— Y —t—

As we wanted. [J

Proposition 4.1.29. lff is a companion for a tight isomorphism f: A — B, then f is a

conjoint for f~1: B — A.

Proof: Recall that a conjoint is a companion obtained reversing the loose arrows in the
definition of conjoint. We want to proof that f together with € and 7] as defined below, is a
conjoint for f:

o~

/ Up
—t— —t
fl ﬂ€? ! f‘ll HU’”LH
E}.\ = -Up > ﬁf = —Ua~>
f{ MU“JJ” ! ﬂn? Jf
T 5

In order to prove this, let us paste the diagrams together, reducing the problem to the diagrams

of a companion, obtaining the first equality below. For the second one, we add identities on
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the bottom of the first diagram and on the top of the second diagram, for this will not alter

the tight 2-cell composition, and then we perform the loose composition, obtaining:

‘;‘\ Up Ua }.\
—t— —— —f— —— —— —t—
fl Me M/UIB fJ »Hsz Jf M«E f J Mfl J M& J
—Up~> —-Up-~> = —-Up~» " —-Up~> = —_—t  ——
Ry
—Upa>»Y —Us > —Us»V—Us~>
| b ]s | b e

The last diagram is equal to 1fA by definition of companion. In the second equality, we used

the functoriality of U to conclude U;-10U; = U; = 1y, so this is indeed a tight identity 2-cell.

The verification of the first equality that defines a conjoint is straightforward . and we do
not need any trick of adding identities, so we just look at the diagrams pasted vertically in

order to conclude the proof. [J

Definition 4.1.30. We call a double category D (iso)fibrant if every tight isomorphism has

a companion.

Remark. We denote as Dbl the sub-2-category of Dbl that contains all double categories
and all pseudo double functors between them, but only the tight transformations such that

each of the components a4 has a companion.

Remark. We denote as Dbl the sub-2-category of Dbl that contains all double categories
and all pseudo double functors between them, but only the tight transformations such that

each component a4 has a companion.

Proposition 4.1.31. If F': D — E is a pseudo double functor, then QUF(A%F(UA) = Iy,

Proof: Due to propositions [4.1.23| and |4.1.27| we have that Up4) and F(Uy) are

companions for 1pay: F(A) — F(A), so it makes sense to talk about the isomorphism

OU 14y F(Ua)-

We are going to check that the equality of proposition[4.1.22]holds for the globular isomorphism
Fy. We substitute the 7 and € as in propositions [4.1.23] and [4.1.27] A direct substitution

gives us
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The

Ur(a)
—t—

%bF(Ailﬂm

F(A)

—t —t —t
»U«FU 1r(a) MlUF(A MUlp(A

F(Ua)

= —t = —
1F(A)l ‘M’IF(UA 1F(A)

U 1r(a)

1ray

equality stated in this proposition follows from the uniqueness of the globular isomorphism

6. [

Although we did not defined yet what a monoidal 2-category is, we observe what happens in

the general case of enriched bicategories. However, we can appreciate their definition restricting

it to

V = Dbl and ® = x (See definition 4.1.33).

Definition 4.1.32. Suppose we are given a monoidal 2-category V. A bicategory C enriched

over V (or simply V-bicategory) consists of the following data:

1

2.

. A collection of objects;
For each ordered pair of objects (A, B), an object homc(A, B) € V;

For each ordered triple of objects (A, B, C), a 1-cell ©®: hom(B,C) ® hom(A, B) —
hom(A,C) of V;

For each object A, a 1-cell I4: e — hom(A, A);

For each ordered quadruple of objects (A, B, C, D), an invertible 2-cell of V

hom(C, D) @ hom(B, C') ©® hom(A, B) ool hom(B, D) @ hom(A, B)

180 / ®

hom(C, D) @ hom(A, C) hom(A, D)

O]

Where the associativity constraint of ® is supressed from the diagram; and

For each ordered pair of objects (A, B), invertible 2-cells of V



94

e ® hom(A, B) MY N hom(A, A) ® hom(A, B)

hom(A, B) ® hom(A, A) L hom(A,B) ® e

‘ \r§& g/

©

I —

hom(A, B)
We impose that the usual axioms for a bicategory hold, albeit interpreted in a new language.

Remark. Our idea of enrichment over a monoidal 1-category is pretty similar to this one, and

can easily be abstracted.

Definition 4.1.33. A locally cubical bicategory C is a bicategory enriched over the
monoidal 2-category Dbl, where the tensor product is x, and e = {x} (So it is a cartesian

monoidal category.) Furthermore, it is called 1-strict if, and only if, a, ¢, | are globular.

Remark. The objects of a locally cubical bicategory are called O-cells. The objects of hom(A, B)
are called 1-cells. The tight/loose 2-cells of a locally cubical bicategory are the tight/loose
1-cells of hom(A, B). In the same way, we define the 3-cells of a locally cubical bicategory

as the 2-cells of hom(A, B). The notation is fixed as:
1. —— for l-cells;
2. =—= for tight 2-cells;
3. —— for loose 2-cells;
4, = for 3-cells.

We denote the constraints for the loose composition as a®, r* and [°®. However, we may
ommit them, strictifying the hom-double categories. Due to coherence, one can adjust the
domain/codomains of the diagrams with any composition of canonical arrows that fits. Also,
the loose composition in the hom-double categories is denoted as e and « e 3, and it is read

as [ after a. Tight composition in the hom-double categories is denoted as -. Finally, the
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composition along objects is written just as o. The compositions - and o follow the usual

order of composition, in contrast with e.

Definition 4.1.34. If C, D are V-bicategories, a V-enriched functor F': C — D consists of

the following data:
1. A function from the objects of C to the objects of D;

2. For each ordered pair of objects (A, B), a I-cell homc(A, B) — homp(F(A), F(B))
of V:

3. For each ordered triple of objects (A, B, C'), an invertible 2-cell

@o(FXF)
— . T
homc(A, B) @ homc(B,C) || homp(F(A), F(C))
\—/
Fo®
4. For each object A, an invertible 2-cell
e = hom¢(A, A)
=
Fy

homp(F(A), F(A))
We require these cells to satisfy the usual coherence diagrams.

Definition 4.1.35. A functor of locally cubical bicategories is defined as an enriched
functor over the monoidal 2-category Dbl. Furthermore, it is called 1-strict if, and only if,

Fy and Fy, are globular.

Definition 4.1.36. If F, G, H, K: C — D are pseudo functors between bicategories, o.: F =
G, p: H = K are pseudo transformations, v: F' = H, and 0: G = K are icons, then a

cubical modification

F—=—=
H:5>K

is defined as a family of 2-cells I" y: vy = 4 such that the following equality holds:
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F(A) —% F(B) 2~ G(B F(A) —% F(B) -2~ G(B)
H b H T T
G(A) = = H(A) < H(B) —— K(B)
H ﬂm s ﬂéf H | [ |
K(A) ——— K(B) H(A) —— K(A4) 0N K(B)

Definition 4.1.37. The following locally cubical bicategories are going to be important for

our work:

1. Any category can be regarded as a strict double category in the loose direction, as
we already saw. This operation clearly preserves products so, in this way, any strict
2-category can be viewed as a locally cubical bicategory. We regard Dbl¢ as the locally

cubical bicategory Bbly.

2. The locally cubical bicategory Bitat is defined having bicategories as 0-cells, pseudo
functors as 1-cells, pseudonatural transformations as loose 2-cells, icons as tight 2-cells,

and cubical modifications as 3-cells.

Remark. Loose composition of pseudo transformations and icons is given by the usual Godement

product. The loose composition of cubical modifications is defined as

FF(A) 229 qpray S99 qara)
1‘ Lpra) ‘ 1 Oat, ‘ 1
HF'(A) —— KF'(A) —— KG'(A)
F/(A) K(a'y)

1‘ = ‘ 1 K(T,)) ‘ 1
HH'(A) —— KH'(A) ST KK'(A)
Br(a) K(3))

Remark. All conditions for a locally cubical bicategory are satisfied for 0,1 and 2-cells as to
we studied so far. We will not verify the conditions for 3-cells because they follow the exact

same lines as before, performing simple graphical calculations with our diagrams.

A final important point regarding higher monoidal category theory is the notion of an
equivalence. For an n-category, this is a morphism that is invertible in a maximally
weak sense, i.e, up to all higher equivalences. For example, in a 0-category (i.e, a class), an

equivalence is equality. In a 1-category, an equivalence is an isomorphism. In a 2-category, an
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equivalence between f and g consists of 2-cell isomorphisms fg = 1, gf = 1. In a 3-category,
an equivalence between f and g consists of two 2-cells fg — 1, gf — 1 that are equivalences
in their hom-2-category. Recursively, we can define what is an equivalence in a (strong or weak)

n-category, in a bicategory, or in any other kind of higher dimensional category that we treated.

4.2 LIFTING THE ASSIGNMENT L

Here, we denote the underlying 1-categories of Dbl and Bicat by Dbl and Bicat, respectively.

Theorem 4.2.1. If D is a double category, then L(D) is a bicategory, and if we are given a
pseudo double functor F': D — E, we have an induced pseudofunctor L(F): L(D) — L(E).

In this way, the assignment L defines a functor of 1-categories L: Dbl — Bicat.

Proof: Since the constraints for D are globular, they collapse like below

—t L
| b i

Therefore this constraints are transported to £ as the constraints of a bicategory. Also, when
we have a pseudo double functor F', the constraints Fi, and Fy; become the constraints of
the underlying pseudo functor, by definition. Since we are taking just an underlying structure,

it is clear that £ also preserves unities and compositions. []

Remark. The functor R: Bicat — Dbl that regards a bicategory as a double category (in the

way we said earlier) is, by definition, a left adjoint to L.

Theorem 4.2.2. We have a functor of bicategories L: Dbl.((C, D) — Bicat.(L(C), L(D))
defined as L(F') on functors and L(«) = & on colax transformations. Here we are regardind

the domain 1-category as a bicategory with identity 2-cells.

Proof: Define the 1-cells of & choosing fixed companions &4 = 4. The 2-cell ay is

defined as -

Ury — F(f) ap

} } t
~ | 5
1H MnaA aa Maf ap M,D‘B
, + , + X
—

aa alp) UGI(B)

1
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We can see that this composition is indeed a colax transformation. To check the diagrams
involved, we can just paste simple diagrams together and manipulate like we have been

manipulating everything. For example (suppresing canonical isomorphisms):

Urm)  Flg) ac

T T T

n~ \Ma \ﬂeA ‘

1 epap {9 ap (L 2c ||1
Ura) F(f) H N v
T t —ap —t
n~ | | e~ G(g) UG(C)
I e g b g

. + v
—

aa aly) UGI(B)

y 4 1 |

= Qgof
The other axioms for a colax transformations are easier than this one, and one should be able

to see that they hold just examining their diagrams pasted.

Now we only have to construct and check the axioms for the functor constraints. Using
propositions 4.23 and 4.24, we have isomorphisms
EEA,EA@EX\A: 60414 - BA ©dq

0~

1A7UA: 14> Uy
The first family of constraints is natural since the domain category of the functor has no
non-identity 2-cells (so any 2-cell f — f’ must be identities, and the diagram for naturality

of F,  commutes trivially).

The associativity and unit constraints follow from the uniqueness of the 6's, recalling that

those 6's preserve compositions in a suitable way. [

Remark. Note that £ above actually depends on the choice of the companions of «ay4.
Nevertheless, we will now prove a proposition connecting functors constructed with different

choices, providing a sort of covariance for them via icons.
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Proposition 4.2.3. If we construct functors L and L' as in the last theorem, perhaps with
different choices for companions of tight transformations, we have an invertible icon L = [’

constructed from the isomorphisms 6.

Proof: Given a transformation ac: F' — G, we will show that the #'s corresponds to 2-cells
a = a' in Bicat.(L(C), L(D)) (i.e, invertible modifications). We need to show this because
an icon consists of, among other things, 2-cells in the codomain category. Using the definitions
of @y and 0, the statement that the 0's constitute a modification is, by definition, equivalent

to the validity of the following equality:

By definition of companions, it actually holds.

Now we can see that these 6's form, indeed, an invertible icon. We do not need to do any
calculation with 2-cells, for all of the 2-cells in our domain category are identities. Functoriality

follows easily from our propositions about how 6 behaves. []

Theorem 4.2.4. The assignment L defines a 1-strict functor of locally cubical bicategories
L: Bbly — Bicat.

Proof: The first two conditions of definition 4.34 follow from theorems 4.38 and 4.39.
The third condition requires a tight transformation F: foa /B/C_D\a, forany a: F = G
and #: H = K horizontally composable transformations with loosely strong companions.

Moreover, this isomorphism must make the following diagrams commutes:

Lemyocr) —r Ty ®1p Ja © SB - QO] S) o(a® B)
= Fo Fo FoOFy
legpory ———— 1l O 1p YOI ———— (YO ) o (a®p)

[4

Since © is a functor, we have that 5 © & = Bg(A) o H(@ua) is a companion of (8 ® «)a

because of propositions 4.24 and 4.27. Therefore, we can take F, = 0 and

BeayoH (G),B00,"
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the commutativity of the coherence diagrams above follows from the coherence of 's that

our results from this section provide. An analogous argument can be applied to Fy;. [
Proposition 4.2.5. The functor L : Bbly — Bicat preserves products.

Proof: Since L acts like a forgetful functor, we have that £(C x D) = L(C) x £(D).
Projections also follows with 7.y = L(n¢c). The terminal object is also preserved because:
In Bbl¢, the initial object is the category with only one object and only identities cells. The

underlying bicategory is the terminal object of Bicat as well. [

4.3 MONOIDAL STRUCTURE IN LOCALLY CUBICAL BICATEGORIES

We start this section noticing that a bicategory C with just one object can be regarded as
a monoidal 1-category, and vice-versa. Indeed, the objects of this monoidal 1-category are the
1-cells of C, its morphisms are the 2-cells of C, irs composition is the tight composition of the
bicategory, and its tensor product ® is ®. This is a rather compact, convenient description of
monoidal 1-categories. We can produce a notion of a monoidal bicategory in the same exact
way, first giving a suitable concept of tricategory and, then, defining a monoidal bicategory

to be a tricategory with only one object.

Definition 4.3.1. A tricategory T is a category weakly enriched over the cartesian monoidal

2-category Bicat. Unfolding this definition, we get the following data:
1. A class of objects, called the 0-cells of T;

2. For each ordered pair of objects (A, B), a bicategory T(A, B) = hom(A, B). Its n-cells
are called the (n + 1)-cells of T, where n € {0, 1, 2}. Vertical composition is denoted
as usual, and horizontal composition is denoted as ©. We will not write explicitly the

constraints, since we can supress them by coherence;

3. For each ordered triple ofobjects (A, B, C), a pseudo functor ®: hom(B,C') x
hom(A, B) — hom(A,C), simply called composition. Again, due to coherence, we

will not write explicitly the constraints of the functor;

4. For each object A, a pseudo functor 14: {*} — hom(A, A),
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5. For each ordered quadruple of objects (A, B, C, D), adjoint equivalences

hom(C, D) x hom(B, C') x hom(A, B) ox hom(B, D) x hom(A, B)

M% / %

hom(C, D) x hom(A,C) hom(A, D)

&

IA><1

{x} ® hom(A, B) hom(A, A) ® hom(A, B)

\E %I/ ‘

<

hom(A, B)

hom(A, B) x hom(A, A) hom(A, B) x {x}

. T :/
|

hom(A, B)

6. For objects A, B, C, D, E, invertible modifications m, 1, \, p as below:

®x1x1 ®x1x1
AN <~ S
Ix1x® 1X®X1 a><1 Yl 1X1X®/1/1><® Yl
T ®RXx1 )/<:a:
ﬂ a ®
L/ 1x® )/ N ®
&®
1
1xIx1 \ ‘ /
Klj‘/ - /1/ :
1 J |
NE@/S ) o
B —
®

I><1></' \ /\ Ix%j@)\\\a@il
A
o AT e el
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1 11 /
, T \\xl ¢ T

_=
®T 4/1 T@

il
lxlx\ll\x{i/lé:g 1X1X¥& /

The modifications above are required to satisfy the axioms below, in which we ommit

® from the diagram, writing ab to denote a ® b. We also ommit the 1-cells:

(1a)1

a1 \ E 81/7 \
N / ui, & o

a

~ 1a
Wﬂ(ll) \ /
a

N

™

A
a \ /; Ml(la)

ﬂmﬁ/
N oA

\//?

(=11 al (11

Je
M

<hi

12

o

- //
I

&/

il al (1t

= IR =
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l(fi;;;é¢?7
W W 1(10) 1(e~11) 14 1(11)
d

a \i%m/V
I

d = 1 a '
11 o
A

a

Remark. For the same reasons that we did in the previous section, for companions, we ommit

the vertices of the diagrams.

Remark. Note that 7 generalizes the pentagon axiom, and p generalizes the triangle axiom.
Since we want a theory based on equivalences, and we are in a category of dimension 3, we
have to take in account that the equality is not the last step when we have two diagrams of

2-cells, so 7 is not necessarily an equality, and so is not the pentagon axiom.

Remark. From now one, assume that we have a 1-strict locally cubical bicategory C.

Definition 4.3.2. Let {x} be the terminal object of the locally cubical bicategory C, and
ir: A — A x {x} and iy: A — {x} x A be the canonical isomorphisms. A monoidal
object in C is an object A equipped with 1-cells @: A x A — A and I,: {x} — A,
loose 2-cell equivalences a: ® (® x 1) == (1 x®), [+ & ([ x1)is == 1 and
r: @1 x1)ip ==1 (i1: A - A x {x} and is: A — {x} x A are the canonical
isomorphisms), and invertible globular 3-cells 1(a x 1) eale1(l x o) === aleleal ,
1r'xeael(lxl)=t=1, 1(Ix1) =2= alell and 1(1 xr ') == r'1eal
generalizing the 3-cells from definition 4.43. They are required to satisfy axioms very similar
to those in that definition, the only difference being that they are translated into the language
of locally cubical bicategories. The axioms may be found explictly in appendix [D, but since
they are so huge, we rather keep in mind the small diagrams of definition 4.43, since they are

essentially the same.

Remark. We choose to call the composition ® because it plays the role of the tensor product

of a monoidal bicategory.

Remark. We can define additional structures (e.g braidings and symmetries) in an entirely

similar way. For more details, see [19] and [25].
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Remark. When we take C to be %icat and Bbls, respectively, we have the usual notions of

monoidal bicategory and monoidal double category.

Definition 4.3.3. A I-cell f: A — B between monoidal objects is called lax monoidal
if, and only if, there exist 2-cells x: & (f X f) —— f® and ¢: Ip —+— fl4 , and
invertible globular 3-cells w: 1(x x 1) e xl @ la == ale1(1 x x)ex1 ,

y:lex1)lexlell == 11

and 0:1r7' == r~'1e1(1 x 1)1 @ x1 that satisfy axioms analogous to the axioms of
definition for a trihomomorphism,i.e, a I-morphism between tricategories, interpreted in the

language of locally cubical bicategories. All of the coherence axioms are in appendix D)

Definition 4.3.4. A lax monoidal 2-cell is a loose 2-cell 3 in C equipped with globular 3-cells
II: 1g(f x ) e xg == xs®flg and M:1; e, == 1y e [31;, satisfying the axioms

given in appendix D,

Definition 4.3.5. A lax monoidal 2-cell is a loose 2-cell 3 in C equipped with globular 3-cells

II: 1g(f x B) e xg == xs®flg and M:1; e, == 1y e [31;, satisfying the axioms

stated in the appendix.

Definition 4.3.6. A monoidal icon is a tight 2-cell in C equipped with non-globular 3-cells

1 NP8 Bl; 1o (B%p) 3 Blg

satisfying the axioms given in appendix|D}
Definition 4.3.7. A monoidal 3-cell I is a 3-cell in C with the following shape:
:‘ﬁ
MF
e ——

so that the vertical arrows are icons, and the horizontal arrows are monoidal 2-cells. We also

require them to satisfy the axioms given in appendix D
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Remark. The obvious examples of these concepts are precisely those in which we are interested,
namely, the locally cubical bicategories ¥icat and Bblz. By their very definition, they give us
exactly the monoidal bicategories/double categories, and their respective 1, 2, and 3-cells (and

icons).

Definition 4.3.8. We are now going to define mathematical objects denoted with two indices,
in the form X;;. The subscripts i and j refer to the laxity of the I1-cells and the laxity of the
2-cells, respectively. The subscript | means lax, ¢ means colax, and p means strong/pseudo.
Sometimes, s is used, meaning strict. In order to obtain locally cubical bicategories, we define
Mon;;(C) with monoidal objects of C as 0-cells, monoidal 1-cells of correct laxity as I-cells,
and so on, respecting the laxity of the subscripts. Similarly, we can define BrMon;;(C) and

SymMon,;;(C) for the braided and symmetric cases, respectively.

Remark. Our verifications given in this work are mostly for the monoidal case with no further
structure. The cases with braidings, symmetries, etc., are similar, so they will not be verified

explicitly.
Lemma 4.3.9. The hom-spaces of Mon,;, i.e., hom Monij(c)(A, B) are, indeed, double categories.

Proof: Observe that colax cases (indices c¢) lead to lax cases (indices ) by duality, and
vice-versa. Also, once we have proved the case j = ¢, the strong (pseudo) case j = p will

basically follow from our calculations because the composite of invertible cells is invertible.

First, let us show that 1-cells and icons (in the respective hom's) form a category. Given
a lax 1-cell f: A — B, the identity icon 1; is a lax monoidal icon equipped with the 3-cells
N = 1,, and Yl = 1,,. Coherence equations are trivially satisfied because we are dealing
with identities. For any 1-cells f and g, and monoidal icons «, 3: f = g, we can equip the
composite 3 - with N?* = N8 . N® and £/« = ¥# . ¥ We have that 3 - « is a monoidal
icon because its coherence diagram can be obtained pasting the coherence diagrams for «

and (3.

For pseudo 1-cells and icons, we need to verify, additionally, that the above cells N'7,
NFA< ¥ and £ are inverses to their colax counterparts in the loose direction, i.e, with
respect to e. This holds because of the interchange law for e and -. Therefore, we have that

NeP e N¥F' = (N*. NP) o (N* - N¥) = (N* e N*) . (N* ¢ NP) =1 for z € {«, 3}, and
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for 2/ an inverse in the loose direction for x, which is the case because we are studying the

strong (pseudo) case.

Now, we will show that lax monoidal 2-cells together with monoidal 3-cells form a category.
If we are given a lax monoidal 2-cell «, then the identity 3-cell 1, is trivially lax monoidal
because all parts of the coherence diagrams are identities. If we are given monoidal 3-cells
o =%= £ and f SN v, then the composition K - L is a monoidal 3-cell because, as
before, the diagram can be decomposed as the pasting of the diagrams of K and L. The

colax and pseudo cases follows from the same reasoning.

Now, we are ready to describe the loose composition structure: e and 1 corresponds to ® and
U from the definition of double category, so we need to see that these operations are indeed
well defined. For instance, we need to show that the loose composition of lax monoidal 2-cells
is indeed a lax monoidal 2-cell in a way that respect compositions, at least, up to canonical
isomorphisms. We start by noticing that, if f is a lax monoidal 1-cell, then 1 is a strong

monoidal 2-cell with structure 3-cells being M'/ and IT'/ as below:

Ms = 1
Ip == fla B Iz

B(f x f) LS8 (f x f) == fo

=R

R(f x f) == [®

The coherence diagrams for these cells follows from the coherence of ¢* and I°.

[

1f{l®

If v is a monoidal icon, then 1, is a monoidal 3-cell by a similar reasoning.
Now, if we are given composable monoidal 2-cells «, 3, then « @ 3 is a monoidal 2-cell with

structure 3-cells being their respective 3-cells pasted vertically as below:
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W
m

(0405)11
1®°[(a°ﬁ)>< (aep)]

1®(a><a ll@ ﬁxﬁm I

Haoﬂ

Again, the huge coherence diagrams are decomposed simply as diagrams in the given 2-cells.

If I" and A are composable monoidal 3-cells, then I" ® A is a monoidal 3-cell using arguments

analogous to the ones we already gave.

Functoriality of e and 1 follows from their functoriality in homc(A, B). Coherence of these

functors also follows from the properties of the associators and unitors a® and so on. []
Lemma 4.3.10. The data from definition define locally cubical bicategories.

Proof: The detailed proof in [19] is neither considerably different from our proof of
proposition [4.3.9] nor more enlightening than it, so we chose to just provide a brief outline.
We already proved that the hom-sets are double categories, so what remains to prove in order
to show that these categories are locally cubical is that the external composition ® between
hom-sets works like a external composition of a bicategory. Indeed, the result follows the
same ideas in the proof of proposition [4.3.9] namely, pasting diagrams together to define the

structure cells of the composites, and pasting diagrams to prove the coherence equations in

appendix D] O

Theorem 4.3.11. Given I-strict locally cubical bicategories C and D with products, if
F: C — D is a I-strict functor that preserves those products, then I’ preserves monoidal

objects, 1-cells, 2-cells, icons and 3-cells. Any braided or symmetric structure is also preserved.
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Proof: Observe that, since F' preserves products, if we have a monoidal object A, then
F(A x A) can be regarded as a product F'(A) x F(A). Since we have a 1-cell ®: A x A —
A, then, applying the functor F', we obtain induced 1-cells ®p: F(A) x F(A) — F(A)
and I = F(I4) in view of our first observation. Since Fy and F, are globular, we have
F(fog) = F(f)oF(g) and F(14) = 1pay. Applying the functor F' to the diagrams of
monoidal objects, we have that the only thing that differs from the respective coherence
diagrams for the cells on the image of Fis that we get values with the form F'(v) instead of
F(B)F (7). Nevertheless, these expressions are canonically isomorphic due to coherence of the
enriched pseudo functors, so this is not really a problem. The exact same argument applies
to the monoidal cells (braided and symmetric structures included.) Therefore, F' preserves all

these structures. [J

Theorem 4.3.12. Given I-strict locally cubical bicategories C and D with products, if
F: C — D is a I-strict functor that preserves those products, then, for i,j € {l,c,p},
F' lifts to a functor

Mon;; F: Mon;;(C) — Mon;;(D).

We have similar liftings in the presence of braided or symmetric additional structure.

Proof: By theorem [4.3.11] the assignment F gives a well-defined function Mon;; ' from

Mon;;(C) to Mon;;(D). Now we have to show that F gives rise to a pseudo double functor
Moni F': hom aton,(c) (A, B) = hom pon, o) (Mon F(A), Mon F(B)).

This actually holds because F(N*?) = F(N*-NP) = F(N®)-F(N*), F(N') = F(1,,) =

1 = N'F(. The natural transformations F, and Fy; are 3-cells in Mon;(D), and the

LF(f)
coherence diagrams follow from the coherence of pseudo double functors. Now, we just need
to prove that F, and F} are tight transformations in hom e,y (F'(A), FI(B)). Since their
components are globular 3-cells, it only remains to show that they are monoidal, but this holds

due to the coherence of enriched pseudo functors. [

Corollary. The functor L : Bl — Bicat lifts to a functor
MOHU,CZ Monij (mhlf) — MO?’Lij (%liﬂt)

with 1,7 =1, c,p. We have similar liftings for the braided and symmetric extra structures.
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Proof: This is merely the application of theorem [4.3.12]to the locally cubical bicategories
of theorem [4.2.4] [

4.4 APPLICATIONS

Definition 4.4.1. Suppose that we have a double category D. We can define the double

category Alg(D) consisting of the following data:
1. The monoids in the monoidal category D, are the 0-cells of Alg(D);
2. Monoid homomorphisms in Dy are the tight 1-cells of Alg(D);
3. Bimodules in Dy are the loose 1-cells of Alg(D); and
4. Equivariant maps in Dy are the 2-cells of Alg(D).
Remark. To be precise, we need to impose that D has local coequalizers to define the loose
composition of bimodules and equivariant maps. See the definition below.
Remark. We consider the structures above as we defined them in monoidal categories, replacing

® by ® in their definitions.

Definition 4.4.2. A coequalizer of a pair of arrows f,g: A — B in a 1-category is an arrow
h: B — C such that ho f = hog and, for any other h': B — C' satisfying these equations,

we have a unique morphism p: C' — C" such that:

Definition 4.4.3. We say that a double category D has local coequalizers if, and only if,

for each objects A, B, hom(A, B) has coequalizers.

If D has local coequalizers, then, given a A— B bimodule M and a B—C bimodule N, we
define their horizontal composition M[JN = K as the coequalizer of the maps M@ B®N —
M ® N obtained by left and right actions of the bimodules. The A — C' bimodule structure
in K is the structure induced by those maps. Loose composition of 2-cells is as follows. First,

suppose that we have
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A B C
| | |

D 5 E ) F
in Alg(D). We define the horizontal composition a3 as below:

actions

- = coequalizer
M®BON M ®N MUON
R !
a®gos a®s i
actions |
_— ~
POE®Q PoOQ ., POQ
R coequalizer

The first square commutes for left and right actions because o and 3 are equivariant. The
existence of the dotted arrow follows from the definition of a coequalizer. The dotted arrow
is the definition of alJf.

The other compositions in the definition of Alg(D) are easier to deal with: tight composition

of monoid homomorphisms and equivariant maps are just the usual composition.

Theorem 4.4.4. If D is a fibrant monoidal double category with local equalizers such that
® preserves local coequalizers, then the loose bicategory Alg(D) = L(Alg(D)) is a monoidal
bicategory, where its monoidal structure is lifted from ®. Furthermore, if D is braided or

symmetric, then so is Alg(D).

Proof: First, we impose that ® preserves local coequalizers so it can work like a interchange
law for our horizontal composition, i.e, (ROA) ® (TOB) = (R T)O(A® B). If Ais a
R — S bimodule, and B is a T — U bimodule, then A@ Bisa R®T — S ® U bimodule.
The neutral object for this operation is the same neutral of ® in D;. Note that the domain
of the left action is (R® T)O(A® B) = (ROA) ® (TOB), so we can apply each left action
of the bimodules separately, and take their tensor product. The same argument applies to the
right actions. The required axioms follow from the functoriality of the tensor product added
to the fact that we are defining the action on the tensor product as the tensor product of
the actions. Due to this argument, this @ gives Alg(D) a (double) monoidal structure with
the constraints being essentially the constraints of the tensor product in D. For instance, the

associativity constraint is given below:

(M@N)® P)O(A®B)®@C) —2* , (M ® (N® P)0A® (B®C))
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Also, Alg(D) is fibrant because any monoid homomorphism f: A — B induces an A — B
bimodule structure on teal B with f as the left action, and the identity as the right action -
The axioms are easily verified. Note that this argument indeed shows that not only Alg(D) is

fibrant, but also that it has companion and conjoints for all tight 1-morphisms.

The result follows immediately from their statements of theorems [4.3.10] and [4.3.11] [

Remark. Using our last proof we can easily see that Alg is a functor Alg: Mon,,(Dbls) —
Mon,,(Dbls).

Proposition 4.4.5. The construction Alg gives rise to a functor Mon,,,(Dblg) — Mon(Bicat).

Proof: Compose the functor Alg: Mon,,,(Dblf) — Mon,p(Dbls) with the functor obtained
from theorem 4.53. [J

Definition 4.4.6. We define 2Vect as Alg(FVect), where FVect is the braided monoidal

category of finite dimensional vector spaces.

Remark. Recalling that Vect is the category of all vector spaces, we can also define 2Vect
as a bicategory consisting of the internal categories to Vect. These objects are also called

Baez-Crans vector spaces (see [39] for more details).
Proposition 4.4.7. The bicategory 2Vect is symmetric monoidal.
Proof: A direct application of theorem gives us this result. [J

Definition 4.4.8. A span in a 1-category C from A to B is a diagram of the form A <+—

S — B. If C has pullbacks, then we can compose spans using the following diagram:

SXBS/

A B C

Remark. Using the same arguments we gave earlier in this work, we can show that the above
composition is associative up to isomorphism. Hence, we can define a bicategory Span(C)
that has objects of C as 0-cells, spans as 1-cells, and morphisms between spans as 2-cells. We

can also define a double category Span(C) that has the objects of C as 0-cells, morphisms of
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C as tight 1-cells, spans as loose 1-cells, and morphisms between spans as 2-cells. We usually
denote Span(Set) = Span. By construction, £(Span(C)) = Span(C). A monoidal structure
in a category of spans can be easily obtained if C has all finite products making it a cartesian

monoidal category.

From now on, we assume that when we talk about the category of spans of C, C has

pullbacks and finite products in order to compose spans.

Remark. By definition, a monoid in Span(C) is an internal category to C, by definition. From

the involved definitions, it is easy to show that Prof(C) = Alg(Span(C)).

Remark. A companion of a functor F': A — B in Prof is obtained regarding F' as a

representable profunctor hom(F(_),_).

Proposition 4.4.9. The bicategory Prof(C) of internal categories and profunctors in a

category C with pullbacks and coequalizers preserved by pullback is symmetric monoidal.

Proof: Since Prof(C) can be constructed as Alg(Span(C)), we have that Prof(C) =
Alg(Span(C)). Span(C) has local coequalizers and companions. Indeed, a companion of
f: A — B is this morphism regarded as a span B Joad A, while a coequalizer for a
span is just an equalizer in C for the pair of arrows in the composite diagram. With all this in

hand, the result follows from a direct application of theorem [4.4.4] [J

Remark. We can easily generalize this construction to categories and profunctors enriched

over a so-called complete closed symmetric monoidal category ([19], [20]).

Remark. If C and D are categories with pullbacks and coequalizers, and F': C — D is a
functor that preserves pullbacks and coequalizers, then it is easy to see that F' induces a
strong symmetric monoidal double functor Span(C) — Span(D). From this, F' induces a
monoidal functor Alg(Span(C)) — Alg(Span(D)) and, finally, a symmetric monoidal functor
of bicategories Prof(C) — Prof(D).

It is also interesting to notice that these theorems solve a conjecture due to Baez and
Courser ([40]) as a simple application of theorem [4.3.11] to the strong symmetric double

functor they construct in the paper. The conjecture was solved in [19] in the theorem 6.17.
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APENDICE A - FOUNDATIONS AND LOGIC

To define what a category is, in a way such that all the collections of usual mathematical
objects of a kind (e.g. groups, vector spaces, sets, topological spaces, manifolds, graphs,
propositions, modules) form a category, we are tempted to go beyond Zermelo-Frankel set
theory with choice (ZFC), and immerse ourselves in alternative set theories, such as set
theories with universe or extensions of ZFC (i.e, theories that includes a notion of sets in
such a way that all axioms of ZFC still holds for these so called sets). Indeed, ZFC is a
well known and widely spread theory, doing a great job supporting the mathematical theories.
Nevertheless, in ZFC, we cannot talk about a well defined mathematical object that contains all
sets (or virtually any other type of mathematical structure) so, in order to make these objects
mathematically precise, we use a theory that contains as objects not only sets, but also these
other collections of objects, like the collection of all sets, or all groups, or all vector spaces
(called proper classes). These proper classes arise typically from unrestricted comprehension,
which is basically associating to a predicate P a mathematical object that contains all sets that
satisfies P. For example, the predicate P(x): x = z gives us the collection of all sets, which we
know that is not a set, allowing the well known Russell’s paradox. Our theory of categories will
be developed under the assumption that we are working within the Neumann-Bernays-Godel
(NBG) set theory, which we detail in this section. We choose NBG over any other theory
because it treats sets exactly like ZFC. Shoenfield proved that, indeed, NBG is a conservative
extension of ZFC, meaning that everything about sets proved in NBG can also be proved in
ZFC. Furthermore, NBG treats classes in a very similar way to how ZFC treats sets. If we
wish to talk about a "class of classes", we cannot do that in NBG, we would have to appeal,

for example, to a theory of conglomerates.

Of course, we are talking about the objects of the category. In a lot of examples, the morphisms
between mathematical objects are functions that preserves some structure, so we have only a

set of such morphisms, not a proper class. This will be the case of locally small categories.

The NBG set theory uses the primitive notions of sets, classes and the relation of membership
(belonging) denoted by €. Again, we reiterate that classes are nothing more than just

a collection of objects that captures not only the notion of sets but also of other bigger
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collections of objects (like the collection of all sets). We will denote the sentence "X is a
set" by Set(X), and the sentence "X is a class, but not a set" (i.e, X is a proper class) by
Proper(X). Throughout this section latin letters, as well as latin letters with subscript, will

denote arbitrary classes. The axioms for NBG are the following:

1. Ve(x € X < x€Y) = X =Y (the converse is a clear logical truth, so it does

not need to be stated as an axiom)
2. VX@EY: X €Y = Set(X))
3. (Vx,y: Set(x), Set(y))[(3Z: Set(Z)): (a € Z <= a=xVa=y)

4. If ¢ is a first order formula in which the only quantified variables are set variables, then

we have the following:

(VX1,...,. Xp)[FY 2 eY <= oz, Xy,...,X,)]

5. The infinity, union, power set, replacement and regularity axioms of ZF hold for sets.

6. There exists a (class) function F' between the class of all sets and itself such that

(VX: Set(X)AX #0D)[F(X) € X]

The first axiom is the axiom of extensionality, meaning that equality for classes occurs if and
only if they have the same elements. The second axiom means that proper classes cannot be
elements of other classes, i.e, all elements of a class are sets. The third axiom is the axiom of
pairing, that states that for all 2, y sets, we have a set {x, y}. The fourth axiom is the extension
of the restricted comprehension axiom of ZFC, meaning that for any first order formula P
(i.e, a logic statement which does not quantifies over predicates) that only quantifies over set
variables, there is a class C such that all elements of C' are fully characterized by P. In ZFC,
this cannot occur, as we explained in the first paragraph of this section. What we have in
ZFC is that, given a predicate P and a set a, there exists a b C a such that elements of b are
characterized by being those elements of a satisfying P. The fifth axiom is just the remaining
axioms of ZF. The sixth axiom interesting because it is a global version of the axiom of choice.
As we are not working with sets anymore, we can define a more general notion of function,
such that the domain or the codomain can be proper classes. In the usual axiom of choice,

for every set of non-empty sets, we would have (at least) one choice function associated with
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it, but this axiom states that there is a global function such that, for any non-empty set, it
chooses an element of it. This axiom implies the axiom of choice because we can define a
choice function on a set of non-empty sets using this global F' that we postulated in the axiom.
Also, it is interesting to know that global choice is strictly stronger than the axiom of choice
([13]). Here, the notions of small sets and large sets that arise in other set theories (just
as set theories with a universe set) corresponds, respectively, to sets and proper classes.

When we speak about something that is "small" in this dissertations, it means that it is a set.

Of course, the set (), as written above, is well defined as a consequence of the axiom 4 because
we can determine the empty set as set formed by the sets = that satisfies the property x # .
Just as that, we can define the class of all sets to be the class of those sets x such that x = z.
We will denote this class by Set). Functions between classes are also well defined just as we
define them for sets. The union of classes indexed by sets can also be done. Some classic

examples of proper classes (i.e, classes that are not sets) are:
1. The class of sets:
2. The classes of groups, rings and fields;
3. The classes of topological spaces;
4. The classes of ordinals and cardinals. For a proof, see the Burali-Forti paradox in [13].

Now, for those with the proper background in logic, we provide a brief sketch of the proof
that NBG with local choice (i.e., with the axiom 6 - the axiom of global choice - replaced by
the usual axiom of choice of ZFC) is a conservative extension of ZFC, assuming soundness
and completeness for countable vocabularies. Denote by NBG* the theory that assumes the
axioms 1 to 5 (i.e., NBG without choice). First of all, notice that it is obvious that anything

proved in ZF can be proved in NBG, for NBG has all axioms of ZF for sets.
Theorem A.0.1. NBG*+ ¢ —> ZF+ ¢ (p any sentence in the language of set theory)

Idea for a proof: For each model of ZF we construct a model of NBG* as the set of
all subsets of our initial ZF model. It is intuitive that this will be indeed a model of NBG,
taking our subsets that are sets of our model of ZF to be the sets of our model of NBG, and

those subsets that are not sets of our initial model will be the proper classes of our model of
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NBG. A sentence about sets is true in our model of ZF if and only if it is in our model of
NBG, by construction. Then, by hypothesis and by soundness, our model of NBG will model
. From this, we can conclude that our initial model will also model ¢, but as we started with
an arbitrary model of ZF, we infer that ZF' F ¢ and, by completeness, ZF' + ¢. So, it is clear
thar NBG* + (local) choice is a conservative extension of ZFC, using the fact that the axiom

of choice is independent of ZF. [

One easy consequence of conservative extension is that ZFC and NBG are equiconsistent:
If either ZFC or NBG is inconsistent, we have that the proposition () = @) A (@ # 0) is true
due to the principle of explosion. But notice that this is a statement about sets, so the other

theory would also be inconsistent.

Another interesting feature of NBG that we can discuss (pretty informally) is that it is a
finitely axiomatizable theory, while ZF is not. Moreover, if ZF is consistent, then it is not
finitely axiomatizable, as Montague once proved in [15]. In ZF, the axiom schema of restricted
comprehension consists of infinitely many axioms, namely, one axiom for each predicate in the
language of ZF that are used to form subsets. Predicates and sets aren not in direct bijection,
so we cannot try to change something in this axiom to replace this "quantification over
predicates" by a real quantification over sets. But classes are in direct bijection with these
predicates, by our axiom 4. Therefore, intuitively, in axiom 4 we are really quantifying over
classes, which is an object of our theory, making it possible to build a finite axiomatization. This
is more a heuristic argument than a mathematical argument, but these formal arguments run

out of the scope of this work. A similar problem occurs with the axiom schema of replacement.
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APENDICE B - MULTILINEAR ALGEBRA

In this appendix we try to give a more categorical viewpoint of some of the points of
multilinear algebra. We start remembering a fairly simple proposition from linear algebra. We

denote the vector space of bilinear functions f: V x W — U by Bil(V, W;U).

Remark. The basic theory done here can be carried to the tensor products of modules and

those of abelian groups.

Proposition B.0.1. The function ¢: Bil(V,W;U) — hom(V, hom(W,U)) given by o(f)(v)(w) =

f(v,w) defines a natural isomorphism.

Definition B.0.2. A function f: Vi x --- x V,, — W defined from a product of n vector
spaces to a vector space, all over the same ground field, is said to be an n-linear function (or
Just multilinear function) if and only if f(vy,...,v;+ A, ... ;0,) = f(v1,. .. 05, 00) +
M(vr, ... 0.0 0,) forany X € k,v; € Vi, v, € Vi, i=1,...,n. Wedefine Mult(Vy, ..., V,; W)

to be the vector space of multilinear functions.

Proposition B.0.3. The function p: Mult(Vy,...,V,; W) — hom(Vy, hom(... hom(V,,,W))...)

given by o(f)(v1)...(vn) = f(v1,...,v,) defines a natural isomorphism.

Definition B.0.4. A tensor product of the vector spaces Vi,...,V, is a vector space V
together with a n-linear map m: Vi x --- x V,, — V such that for any vector space W and
any n-linear map f: Vi x ---V,, — W, there exists a unique linear transformation f: V — W

such that the following diagram commutes:

%XXVn%W

-

Remark. This property of a tensor product is called the universal property of the tensor

product.
Proposition B.0.5. Any two tensor products are naturally isomorphic.

Proof: By the universal property, we have the commutativity of the following diagram:
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m -7 -7

Ve
By uniqueness of the arrows involved, it is clear that 72 and m/ are inverses for each other.

Naturality of these isomorphisms is proved by pasting those diagrams together. []
Corollary. hom(U @ V, W) is naturally isomorphic to hom(U, hom(V, W)).
Proof: This follows from our first proposition and by the universal property of the tensor

product. []

Remark. In general, we have a natural isomorphism
hom(V; @ --- ® V,,, W) = hom(Vi, hom(... hom(V,, W))...).

Theorem B.0.6. For any Vi, ...V, there exists a tensor product V; ® --- ® V,,. We denote
the tensor product by V; ® --- ® V,,, and refer to it as the tensor product because we know

that tensor products are unique up to natural isomorphisms from Proposition[B.0.5,

Proof: First we consider the free vector space F = F(V} x ---xV},). Now, we consider the
subspace Uy = ((v1, ..., 0; + AL, .. 0n) — (U1, 0oy gy ooy Un) — A(U1, 00,0 oo )t A E

k,Uj EVj,U;GVi,Z’:L...,’n)

We define Vi @ --- @ V,, = F(V} x -+ x V,,)/Up. It is clear, by definition of Uy, that the

composite map
VixeooxVy ——= s FVix - xVy) — s F(Vi x -+ x V;,)/Uy

is multilinear. We denote this composite as ®(v1,...,0,) =01 ® -+ Q@ v, = (V1,..., V).

Now, suppose that we are given a multilinear map f: Vi x---xV,, — W. Due to the freeness
of F, we have a unique linear transformation 7: F — W that is equal to f when restricted
to elements of the basis. This unique linear transformation gives us a linear transformation

f:Vi®---®V, = W, since Uy is annihilated by T" due to the multilinearity of f. [J

Remark. The set of vectors of the form v; ® - - - ® v,, generate the tensor product space, but

is not a basis in general.
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Proposition B.0.7. There are natural isomorphisms
Uo(VeaW)2UeV)eW

l r
kV=V=Vek
VeUXUQV
Defined by a(u ® (v@w)) = (u®v) @w, (A®v) =, r(v @A) = Xv, T(V@u) = uwv.

Moreover, choosing V' = k, we obtain k @ k = k via the multiplication operation.

Proof: We are going to give a proof of the existence of o. The existence of r, [, 7 is proved

using similar ideas. We have the following sequence of natural isomorphisms:
hom(U @ (V @ W), 0) = hom(U, hom(V ® W, O)) = hom(U, hom(V, hom(W, 0))).

Applying the first corollary in this appendix and the Yoneda lemma, we conclude that U® (V ®
W) = U®V W naturally. The other parenthesization is shown to be naturally isomorphic to
these two in the same way. Due to the formulae in Yoneda lemma, this particular isomorphism

is given by the equation stated in the proposition. []
Proposition B.0.8. We have (@;c; U;)QV = @;c;(U;®V) via the transformation T'((u;);e1®

v) = (Ui ® V)jer-

Proof: Just like the last proposition, we are going to prove this categorically.
First, notice that hom((B;c; U; )@V, W) = hom(@,c; U, hom(V, W)) = T];c; hom(U;, hom(V, W))
= [lier hom(U; @ V, W) = hom(@e, (Ui @ V), W). O

Corollary. If {v;}ic; is a basis for V and {w;};c; is a basis for W, then {v; ® w;} ¢ jyerxs is

a basis for V@ W. Moreover, we have dim(V @ W) = dim(V )dim(WW).

Proof:

UV (@) e (@w)= B {(uelw)= P (uow)

el jeEG (4,7)EIxJ (i,7)eIxJ

As we wanted. [J

Definition B.0.9. Given two linear maps f: V. — W and g: V! — W', we define a linear

map f@g: VRV - W@W as (f®g)(ved)=flv)®gv).
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This definition gives rise to a linear mapping A: hom(U’, V') ® hom(U, V') — hom(U ®
U,V V') defined as A(f ® g)(u @ u') = f(u) @ g(u').

We can also study the notions of duality, trace and dimension in a categorical point of view,
but we will not do this here. The reason to this is that the categorical structure of this study
are categories with duality, such as the (right/left) rigid ones, ribbon categories, and traced
categories, which we do not explore here. In some of these type of categories with additional
structure, we have sufficient structural resources to introduce the notions of (quantum) trace
and dimension to abstract what happens in the category Vect,. Another interesting feature
of these categories is how rich their graphical calculi is. Unfortunately, we do not deal with

this type of situation in this dissertation. If one is interested, one should look up, for instance,

[2].
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APENDICE C - ARTIN BRAID GROUPS

There are two main approaches to the theory of Artin braid groups, being one algebraic
and the other topological. Here, we shall give both and mention their connection. For the

formal details of this connection one can see [17].

One well known fact from group theory is that S, the permutation group of n objects,
can be presented by the Coxeter presentation

(1, 1<i<n—1: 5707 = T TyTign, 7T = Ty, 7o =1, 1< j <, |i—j| >2).

One can define the Artin braid group on n strands B,, just by forgetting the idempotence

relations above:
B, = (0, 1<i<n—1: 0;0j410; = 0j110;0;4+1, 00, = 0304, 1 < j <mn, |i —j| > 2)

The first set of relations of the presentation is often called cubic relations or braid relations.
It follows from this definition and standard results in combinatorial group theory that there is

an epimorphism p,,: B, — S5, defined on generators by
pu(Tj) =05, 1 <j<n-—1.

Thus, we conclude that B, = S,,/Ker(p,). It is also clear that B,, < B, for all n € N, so

we can define the Artin braid group on oo strands as B., = U, B,.

A lot can be said about the braid groups using only these algebraic properties and working
with them in a similar way as we do for basic properties of S,,, since both look algebraically
pretty similar. There is a very deep mathematical interpretation to braid groups: one can define
them in an entirely topological viewpoint as the fundamental group of certain configuration

spaces.

The name of the subject is very suggestive. A braid, intuitively, is something like this:
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;

With this picture in mind, we inform that our formal topological definition of a braid on n

strands must have the following features:

1. They consists of a set of n paths that starts on n different labels and end in a

permutation of those labels;

2. These paths are strictly monotonic functions of their projections onto a preferred
direction (in our picture, the vertical one), so that each path advances without turning

back along it;
3. These paths cannot intersect each other.

If M is a manifold with dimension at least 2, we can define the braid group of M on n

strands as follows:
= We define the permutation action v: S, xM™ — M"™ as (0, (21, ...,2n)) = (To@)s - - -, Tom));

= We take the quotient M"™/ ~ where ~ is defined as the equivalence relation induced
by the orbit partition of . This quotient is called the n-fold symmetric product of

M. A path in the n-fold symmetric product is a set of n strings traced independently;

= Since we do not want paths crossing each other, we have to remove the subspaces of
M™ defined by conditions z; = z;, with 1 < i < j < n. Call this new set Conf,, (M),

the n-th (ordered) cofiguration space of M;

= Conf, (M) is invariant under -, since if we exchange the order of the points, they remain

distinct from each other;

= With this perspective, we have that Conf, (M )/ ~ is a subspace of M"/ ~. We call
Conf,(M)/ ~= UConf, (M) the n-th unordered cofiguration space of M,
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= We define the braid group of M on n strands as m;(UConf,(M)).

Graphically, an element of 7 (UConf,,(M)) can be understood as a path that starts in some
fixed set of distinct points (z1,...,2,) € M™ and ends in some permutation (,x1), - - -, Zo(n))
of that initial point, each set contained in one of two parallel planes, with the component-paths
never crossing each other, and consider up to ambient homotopy relative to the planes
containing the fixed endpoint. Hence, the whole ambient space (say R? x [0, 1]) is deformed
continuously so that we have a homemorphism at each instant and, via the restriction of the
deformation to the strands, these are moved along, always mantaining that pair of parallel
planes fixed. But this is exactly the naive idea of what a braid on n strands is! To understand

this better, we will focus on the case where M = R?, which was the original case due to Artin.

Let us see how we can visualize elements of m;(UConf,(R?)) in R? x [0, 1].

Definition C.0.1. A braid on n strands is a set of n pairwise disjoint curves starting at the
points (k,0,1), 0 < k < n and ending at the points (k,0,0), 0 < n (each of these curves
do not need to end in the same = coordinate that it started). We also need to require that
these curves cannot contain closed arcs and the intersection of these n curves with the plane

R? x z consists of exactly n points.

Definition C.0.2. A braid projection is the union of a finite number of arcs in R? starting at
the points (k,1), 0 < k <n and ending at the points (k,0), 0 < n (as before, each of these
curves do not need to end in the same x coordinate that it started) such that the intersection
of each of these curves with R X y consists of exactly one point. A crossing in this projection
is a point that belongs to the interior of at least two of these curves. The order of a crossing

point is the number of distinct curves passing through this point.

Definition C.0.3. A braid diagram is a braid projection such that the order of all crossing
points is 2 (this is called a regular projection) and, for each crossing point P, the set Ep
of the two edges passing through P is ordered. The smallest is called the overcrossing edge

and the other is called undercrossing edge.

In this better formalized ground, our initial picture of a braid is actually a braid diagram.
It is pretty intuitive that braids have braid diagrams associated to it (projecting them into the

plane xz and the order of each Ep is given by the order induced by their y coordinate), and
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that for each braid diagram D we can construct a braid B such that the braid diagram of
B can be deformed continuously to D (maintaining the properties of braid diagrams in each
instant of the deformation). The complete formal details of this paragraph can be seen in
any book containing the basics of knot theory (see, for example, [2]). It is also important to
say that Reidemester gave a way to characterize the ambient isotopies of knots (embeddings
of the circle into 3-space considered up to ambient isotopy) via three types of elementary
movements on their associated knot diagrams, called the Reidemester moves, and that
these movements can be adapted to the connection between any two braid diagrams of the
same braid. Actually, knots, braids, and their generalizations all the way to certain topological
graphs form the ground setting for the visualization of various categories with additional

structures and the resulting graphical calculi.

Remark. e are only considering progressive braids and braid projections/diagrams: They

only "follow one direction" (descending the last coordinate).

We can give a structure of group to the set containing the class of equivalence of these
braids (or braid diagrams), glueing them vertically (here our distinguished direction is the

vertical one.) For example, the following two braids are inverses:

Y
(

—

since their composition is

C
<

which clearly can be deformed onto two vertical lines via an adequate isotopy.

Elements of 7 (UConf,,(R?)) and braids on n strands as we defined are "essentially the same"
things, for: given a v = (71, ...,7,) € m1(UConf,(IR?)), we can associate it to a braid via the

union of the images of the v;, 1 < i < n, and, for each braid B on n strands, we can assign a
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path v componentwise choosing 7;((z, %)) to be the projection onto R? of the intersection of
the plane R? with the curve of B that ends at (,0,0). It is not hard to convince oneself that
these assignments are inverse to each other, and preserve products and neutrals, since we are
not changing pretty much anything in their structures. Indeed, 71 (UConf, (R?)) is isomorphic
to the group structure described for the equivalence classes of braids/braid diagrams on n

strands.

Theorem C.0.4. (Artin, 1925)
B, = m (UConf, (R?)).

Partial proof: We shall give a part of the proof that is very tangible, and the rest can be
found at [17]. For a given braid diagram, we can move the crossing points up or down in a way
that for each fixed gy, coordinate there is at most one crossing point with yq as y coordinate.
In this new representation, we can partition [0, 1] as intervals [t;,t;11], 0 < ¢ < N such that
for each fixed interval [t;,t;11] there is exactly one crossing point with y coordinate lying on

it. If it has only one crossing point, then, it is equivalent to something like this:

y
’

We conclude that any braid diagram is the composition of braid diagrams similar to the
diagram above, with just one crossing between two immediately neighboring strands so that
the one with leftmost endpoints may pass either over or under the other strand. Braids like
the above are one called ¢;, 1 < j < n — 1, where ¢; maintain all strands straight except for
the strands starting at j, j + 1, that we require to end at j + 1, j respectively, with the curve

starting at j being the overcrossing. Its inverse braid, c}l changes it into the undercrossing.

In [17] Artin proved that the assignment o; — ¢; is an isomorphism. It is not hard to see that
exists an homomorphism ¢: B,, — m(UConf,,(R?)) given by o; — ¢;, since the generators
c; satisfies the presentation relations of 5,,. The braid relation is just the third Reidemester

move, that says that one can freely slide a strand that is above two other strands:
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Rp

N\

is equivalent to

\

S
>

The remaining relation just says that we can move crossing points involving not immediately

neighboring strands up and down, i.e:

y
’

is equivalent to

y
>

This ends the idea of the partial proof that we wanted to describe. []

As one can expect from their names, braids and braidings on monoidal categories have a
very deep connection. Unfortunately this connection is out of the scope of this dissertation,

so we strongly suggest the reading of the respective chapter on [2].
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APENDICE D - COHERENCE AXIOMS FOR SOME CONCEPTS

The coherence diagrams here were extracted directly exactly as they were in the article
[19]. The author of this present dissertation did not write the diagrams of this section, just
extracted them from this article as images (since the software used for the diagrams in this
present work did not support well the size of these diagrams - the diagrams appeared bigger

than the pages in the main latex style of CCEN, hidding most of its content).

Axioms for monoidal objects:

First we require that these two following diagrams are equal:
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We also require the equality of the following two diagrams:
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Finally, we require the equality of the following two diagrams:
@(idx®) Td(Idxae)ld @(idx®)
@(idx@) (idx[e(idx)]xid) === (idxexid) (idxidx®)
(idxidxFxid) (idixidx I xid)
Idid
(Idxr" xId) S(ld =
eldld

@(e@xid)
alidxe) (dxidxid)  Jo (idxexid)

/ (idxicx I xid)

&(idx®)
Gicxidx[@(Fxid)]y

@(@xid] 1d1d,
(idxl@(idx1 i Jaodd) IS o
114
(Idxr" xId) B(@xid) aldid B(idx®) (@xid)
(idx@) (@xidxid) (@xidxid) (idxidx®) ldid
tidxids</xid) (idxidx £xid) (idxid/ xid) (tdxldxl)
@(@xid)
(idxidxid)
@(Exid) .
; alidx[a(xid)))
(idxixid) ) S(idx®)
(@xidxid) (@xiaxid) &

s([@(idx )] xid) @(idxid)
140 1) (@xidxid) (@xidxid)
Id
@(idxid)
(@xidxid)
/ T
@(@xid)

@(@xid)




132

(iox®) Ld(ldxald (idxe)
@(idxe) (dx[@idxD]xid) (idxe@xid) (idxidx@)
(igxidxIxid) (idicxI Xid)
1a1d
(1dxr ' x1d)
1500
2 2 N @(idx@)
@lidx®) (idxidxid) da (idxidx[e(Ixid)])
T ()
11
(1dx1dxry
B(idxe) ®(idxe)
d
o l)ﬁ
1
|(@xid) @(@xid)
Axioms for monoidal 1-cells:
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We also have the equality of the following two diagrams:
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Axioms for monoidal 2-cells:
We require the following equalities:
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Axioms for monoidal icons:

We require the following equalities:
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